]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched.c
sched: enable early use of sched_clock()
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/kthread.h>
56 #include <linux/seq_file.h>
57 #include <linux/sysctl.h>
58 #include <linux/syscalls.h>
59 #include <linux/times.h>
60 #include <linux/tsacct_kern.h>
61 #include <linux/kprobes.h>
62 #include <linux/delayacct.h>
63 #include <linux/reciprocal_div.h>
64 #include <linux/unistd.h>
65 #include <linux/pagemap.h>
66
67 #include <asm/tlb.h>
68 #include <asm/irq_regs.h>
69
70 /*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75 unsigned long long __attribute__((weak)) sched_clock(void)
76 {
77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78 }
79
80 /*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89 /*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98 /*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
103
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
107 /*
108 * These are the 'tuning knobs' of the scheduler:
109 *
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
112 */
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 static inline int rt_policy(int policy)
137 {
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141 }
142
143 static inline int task_has_rt_policy(struct task_struct *p)
144 {
145 return rt_policy(p->policy);
146 }
147
148 /*
149 * This is the priority-queue data structure of the RT scheduling class:
150 */
151 struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154 };
155
156 #ifdef CONFIG_FAIR_GROUP_SCHED
157
158 #include <linux/cgroup.h>
159
160 struct cfs_rq;
161
162 /* task group related information */
163 struct task_group {
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166 #endif
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
171 unsigned long shares;
172 /* spinlock to serialize modification to shares */
173 spinlock_t lock;
174 struct rcu_head rcu;
175 };
176
177 /* Default task group's sched entity on each cpu */
178 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
179 /* Default task group's cfs_rq on each cpu */
180 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
181
182 static struct sched_entity *init_sched_entity_p[NR_CPUS];
183 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
184
185 /* Default task group.
186 * Every task in system belong to this group at bootup.
187 */
188 struct task_group init_task_group = {
189 .se = init_sched_entity_p,
190 .cfs_rq = init_cfs_rq_p,
191 };
192
193 #ifdef CONFIG_FAIR_USER_SCHED
194 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
195 #else
196 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
197 #endif
198
199 static int init_task_group_load = INIT_TASK_GRP_LOAD;
200
201 /* return group to which a task belongs */
202 static inline struct task_group *task_group(struct task_struct *p)
203 {
204 struct task_group *tg;
205
206 #ifdef CONFIG_FAIR_USER_SCHED
207 tg = p->user->tg;
208 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
209 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
210 struct task_group, css);
211 #else
212 tg = &init_task_group;
213 #endif
214 return tg;
215 }
216
217 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
218 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
219 {
220 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
221 p->se.parent = task_group(p)->se[cpu];
222 }
223
224 #else
225
226 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
227
228 #endif /* CONFIG_FAIR_GROUP_SCHED */
229
230 /* CFS-related fields in a runqueue */
231 struct cfs_rq {
232 struct load_weight load;
233 unsigned long nr_running;
234
235 u64 exec_clock;
236 u64 min_vruntime;
237
238 struct rb_root tasks_timeline;
239 struct rb_node *rb_leftmost;
240 struct rb_node *rb_load_balance_curr;
241 /* 'curr' points to currently running entity on this cfs_rq.
242 * It is set to NULL otherwise (i.e when none are currently running).
243 */
244 struct sched_entity *curr;
245
246 unsigned long nr_spread_over;
247
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
250
251 /*
252 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
253 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
254 * (like users, containers etc.)
255 *
256 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
257 * list is used during load balance.
258 */
259 struct list_head leaf_cfs_rq_list;
260 struct task_group *tg; /* group that "owns" this runqueue */
261 #endif
262 };
263
264 /* Real-Time classes' related field in a runqueue: */
265 struct rt_rq {
266 struct rt_prio_array active;
267 int rt_load_balance_idx;
268 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
269 };
270
271 /*
272 * This is the main, per-CPU runqueue data structure.
273 *
274 * Locking rule: those places that want to lock multiple runqueues
275 * (such as the load balancing or the thread migration code), lock
276 * acquire operations must be ordered by ascending &runqueue.
277 */
278 struct rq {
279 /* runqueue lock: */
280 spinlock_t lock;
281
282 /*
283 * nr_running and cpu_load should be in the same cacheline because
284 * remote CPUs use both these fields when doing load calculation.
285 */
286 unsigned long nr_running;
287 #define CPU_LOAD_IDX_MAX 5
288 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
289 unsigned char idle_at_tick;
290 #ifdef CONFIG_NO_HZ
291 unsigned char in_nohz_recently;
292 #endif
293 /* capture load from *all* tasks on this cpu: */
294 struct load_weight load;
295 unsigned long nr_load_updates;
296 u64 nr_switches;
297
298 struct cfs_rq cfs;
299 #ifdef CONFIG_FAIR_GROUP_SCHED
300 /* list of leaf cfs_rq on this cpu: */
301 struct list_head leaf_cfs_rq_list;
302 #endif
303 struct rt_rq rt;
304
305 /*
306 * This is part of a global counter where only the total sum
307 * over all CPUs matters. A task can increase this counter on
308 * one CPU and if it got migrated afterwards it may decrease
309 * it on another CPU. Always updated under the runqueue lock:
310 */
311 unsigned long nr_uninterruptible;
312
313 struct task_struct *curr, *idle;
314 unsigned long next_balance;
315 struct mm_struct *prev_mm;
316
317 u64 clock, prev_clock_raw;
318 s64 clock_max_delta;
319
320 unsigned int clock_warps, clock_overflows;
321 u64 idle_clock;
322 unsigned int clock_deep_idle_events;
323 u64 tick_timestamp;
324
325 atomic_t nr_iowait;
326
327 #ifdef CONFIG_SMP
328 struct sched_domain *sd;
329
330 /* For active balancing */
331 int active_balance;
332 int push_cpu;
333 /* cpu of this runqueue: */
334 int cpu;
335
336 struct task_struct *migration_thread;
337 struct list_head migration_queue;
338 #endif
339
340 #ifdef CONFIG_SCHEDSTATS
341 /* latency stats */
342 struct sched_info rq_sched_info;
343
344 /* sys_sched_yield() stats */
345 unsigned int yld_exp_empty;
346 unsigned int yld_act_empty;
347 unsigned int yld_both_empty;
348 unsigned int yld_count;
349
350 /* schedule() stats */
351 unsigned int sched_switch;
352 unsigned int sched_count;
353 unsigned int sched_goidle;
354
355 /* try_to_wake_up() stats */
356 unsigned int ttwu_count;
357 unsigned int ttwu_local;
358
359 /* BKL stats */
360 unsigned int bkl_count;
361 #endif
362 struct lock_class_key rq_lock_key;
363 };
364
365 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
366 static DEFINE_MUTEX(sched_hotcpu_mutex);
367
368 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
369 {
370 rq->curr->sched_class->check_preempt_curr(rq, p);
371 }
372
373 static inline int cpu_of(struct rq *rq)
374 {
375 #ifdef CONFIG_SMP
376 return rq->cpu;
377 #else
378 return 0;
379 #endif
380 }
381
382 /*
383 * Update the per-runqueue clock, as finegrained as the platform can give
384 * us, but without assuming monotonicity, etc.:
385 */
386 static void __update_rq_clock(struct rq *rq)
387 {
388 u64 prev_raw = rq->prev_clock_raw;
389 u64 now = sched_clock();
390 s64 delta = now - prev_raw;
391 u64 clock = rq->clock;
392
393 #ifdef CONFIG_SCHED_DEBUG
394 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
395 #endif
396 /*
397 * Protect against sched_clock() occasionally going backwards:
398 */
399 if (unlikely(delta < 0)) {
400 clock++;
401 rq->clock_warps++;
402 } else {
403 /*
404 * Catch too large forward jumps too:
405 */
406 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
407 if (clock < rq->tick_timestamp + TICK_NSEC)
408 clock = rq->tick_timestamp + TICK_NSEC;
409 else
410 clock++;
411 rq->clock_overflows++;
412 } else {
413 if (unlikely(delta > rq->clock_max_delta))
414 rq->clock_max_delta = delta;
415 clock += delta;
416 }
417 }
418
419 rq->prev_clock_raw = now;
420 rq->clock = clock;
421 }
422
423 static void update_rq_clock(struct rq *rq)
424 {
425 if (likely(smp_processor_id() == cpu_of(rq)))
426 __update_rq_clock(rq);
427 }
428
429 /*
430 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
431 * See detach_destroy_domains: synchronize_sched for details.
432 *
433 * The domain tree of any CPU may only be accessed from within
434 * preempt-disabled sections.
435 */
436 #define for_each_domain(cpu, __sd) \
437 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
438
439 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
440 #define this_rq() (&__get_cpu_var(runqueues))
441 #define task_rq(p) cpu_rq(task_cpu(p))
442 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
443
444 /*
445 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
446 */
447 #ifdef CONFIG_SCHED_DEBUG
448 # define const_debug __read_mostly
449 #else
450 # define const_debug static const
451 #endif
452
453 /*
454 * Debugging: various feature bits
455 */
456 enum {
457 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
458 SCHED_FEAT_WAKEUP_PREEMPT = 2,
459 SCHED_FEAT_START_DEBIT = 4,
460 SCHED_FEAT_TREE_AVG = 8,
461 SCHED_FEAT_APPROX_AVG = 16,
462 };
463
464 const_debug unsigned int sysctl_sched_features =
465 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
466 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
467 SCHED_FEAT_START_DEBIT * 1 |
468 SCHED_FEAT_TREE_AVG * 0 |
469 SCHED_FEAT_APPROX_AVG * 0;
470
471 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
472
473 /*
474 * Number of tasks to iterate in a single balance run.
475 * Limited because this is done with IRQs disabled.
476 */
477 const_debug unsigned int sysctl_sched_nr_migrate = 32;
478
479 /*
480 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
481 * clock constructed from sched_clock():
482 */
483 unsigned long long cpu_clock(int cpu)
484 {
485 unsigned long long now;
486 unsigned long flags;
487 struct rq *rq;
488
489 local_irq_save(flags);
490 rq = cpu_rq(cpu);
491 /*
492 * Only call sched_clock() if the scheduler has already been
493 * initialized (some code might call cpu_clock() very early):
494 */
495 if (rq->idle)
496 update_rq_clock(rq);
497 now = rq->clock;
498 local_irq_restore(flags);
499
500 return now;
501 }
502 EXPORT_SYMBOL_GPL(cpu_clock);
503
504 #ifndef prepare_arch_switch
505 # define prepare_arch_switch(next) do { } while (0)
506 #endif
507 #ifndef finish_arch_switch
508 # define finish_arch_switch(prev) do { } while (0)
509 #endif
510
511 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
512 static inline int task_running(struct rq *rq, struct task_struct *p)
513 {
514 return rq->curr == p;
515 }
516
517 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
518 {
519 }
520
521 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
522 {
523 #ifdef CONFIG_DEBUG_SPINLOCK
524 /* this is a valid case when another task releases the spinlock */
525 rq->lock.owner = current;
526 #endif
527 /*
528 * If we are tracking spinlock dependencies then we have to
529 * fix up the runqueue lock - which gets 'carried over' from
530 * prev into current:
531 */
532 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
533
534 spin_unlock_irq(&rq->lock);
535 }
536
537 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
538 static inline int task_running(struct rq *rq, struct task_struct *p)
539 {
540 #ifdef CONFIG_SMP
541 return p->oncpu;
542 #else
543 return rq->curr == p;
544 #endif
545 }
546
547 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
548 {
549 #ifdef CONFIG_SMP
550 /*
551 * We can optimise this out completely for !SMP, because the
552 * SMP rebalancing from interrupt is the only thing that cares
553 * here.
554 */
555 next->oncpu = 1;
556 #endif
557 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
558 spin_unlock_irq(&rq->lock);
559 #else
560 spin_unlock(&rq->lock);
561 #endif
562 }
563
564 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
565 {
566 #ifdef CONFIG_SMP
567 /*
568 * After ->oncpu is cleared, the task can be moved to a different CPU.
569 * We must ensure this doesn't happen until the switch is completely
570 * finished.
571 */
572 smp_wmb();
573 prev->oncpu = 0;
574 #endif
575 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
576 local_irq_enable();
577 #endif
578 }
579 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
580
581 /*
582 * __task_rq_lock - lock the runqueue a given task resides on.
583 * Must be called interrupts disabled.
584 */
585 static inline struct rq *__task_rq_lock(struct task_struct *p)
586 __acquires(rq->lock)
587 {
588 for (;;) {
589 struct rq *rq = task_rq(p);
590 spin_lock(&rq->lock);
591 if (likely(rq == task_rq(p)))
592 return rq;
593 spin_unlock(&rq->lock);
594 }
595 }
596
597 /*
598 * task_rq_lock - lock the runqueue a given task resides on and disable
599 * interrupts. Note the ordering: we can safely lookup the task_rq without
600 * explicitly disabling preemption.
601 */
602 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
603 __acquires(rq->lock)
604 {
605 struct rq *rq;
606
607 for (;;) {
608 local_irq_save(*flags);
609 rq = task_rq(p);
610 spin_lock(&rq->lock);
611 if (likely(rq == task_rq(p)))
612 return rq;
613 spin_unlock_irqrestore(&rq->lock, *flags);
614 }
615 }
616
617 static void __task_rq_unlock(struct rq *rq)
618 __releases(rq->lock)
619 {
620 spin_unlock(&rq->lock);
621 }
622
623 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
624 __releases(rq->lock)
625 {
626 spin_unlock_irqrestore(&rq->lock, *flags);
627 }
628
629 /*
630 * this_rq_lock - lock this runqueue and disable interrupts.
631 */
632 static struct rq *this_rq_lock(void)
633 __acquires(rq->lock)
634 {
635 struct rq *rq;
636
637 local_irq_disable();
638 rq = this_rq();
639 spin_lock(&rq->lock);
640
641 return rq;
642 }
643
644 /*
645 * We are going deep-idle (irqs are disabled):
646 */
647 void sched_clock_idle_sleep_event(void)
648 {
649 struct rq *rq = cpu_rq(smp_processor_id());
650
651 spin_lock(&rq->lock);
652 __update_rq_clock(rq);
653 spin_unlock(&rq->lock);
654 rq->clock_deep_idle_events++;
655 }
656 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
657
658 /*
659 * We just idled delta nanoseconds (called with irqs disabled):
660 */
661 void sched_clock_idle_wakeup_event(u64 delta_ns)
662 {
663 struct rq *rq = cpu_rq(smp_processor_id());
664 u64 now = sched_clock();
665
666 rq->idle_clock += delta_ns;
667 /*
668 * Override the previous timestamp and ignore all
669 * sched_clock() deltas that occured while we idled,
670 * and use the PM-provided delta_ns to advance the
671 * rq clock:
672 */
673 spin_lock(&rq->lock);
674 rq->prev_clock_raw = now;
675 rq->clock += delta_ns;
676 spin_unlock(&rq->lock);
677 }
678 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
679
680 /*
681 * resched_task - mark a task 'to be rescheduled now'.
682 *
683 * On UP this means the setting of the need_resched flag, on SMP it
684 * might also involve a cross-CPU call to trigger the scheduler on
685 * the target CPU.
686 */
687 #ifdef CONFIG_SMP
688
689 #ifndef tsk_is_polling
690 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
691 #endif
692
693 static void resched_task(struct task_struct *p)
694 {
695 int cpu;
696
697 assert_spin_locked(&task_rq(p)->lock);
698
699 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
700 return;
701
702 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
703
704 cpu = task_cpu(p);
705 if (cpu == smp_processor_id())
706 return;
707
708 /* NEED_RESCHED must be visible before we test polling */
709 smp_mb();
710 if (!tsk_is_polling(p))
711 smp_send_reschedule(cpu);
712 }
713
714 static void resched_cpu(int cpu)
715 {
716 struct rq *rq = cpu_rq(cpu);
717 unsigned long flags;
718
719 if (!spin_trylock_irqsave(&rq->lock, flags))
720 return;
721 resched_task(cpu_curr(cpu));
722 spin_unlock_irqrestore(&rq->lock, flags);
723 }
724 #else
725 static inline void resched_task(struct task_struct *p)
726 {
727 assert_spin_locked(&task_rq(p)->lock);
728 set_tsk_need_resched(p);
729 }
730 #endif
731
732 #if BITS_PER_LONG == 32
733 # define WMULT_CONST (~0UL)
734 #else
735 # define WMULT_CONST (1UL << 32)
736 #endif
737
738 #define WMULT_SHIFT 32
739
740 /*
741 * Shift right and round:
742 */
743 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
744
745 static unsigned long
746 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
747 struct load_weight *lw)
748 {
749 u64 tmp;
750
751 if (unlikely(!lw->inv_weight))
752 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
753
754 tmp = (u64)delta_exec * weight;
755 /*
756 * Check whether we'd overflow the 64-bit multiplication:
757 */
758 if (unlikely(tmp > WMULT_CONST))
759 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
760 WMULT_SHIFT/2);
761 else
762 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
763
764 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
765 }
766
767 static inline unsigned long
768 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
769 {
770 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
771 }
772
773 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
774 {
775 lw->weight += inc;
776 }
777
778 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
779 {
780 lw->weight -= dec;
781 }
782
783 /*
784 * To aid in avoiding the subversion of "niceness" due to uneven distribution
785 * of tasks with abnormal "nice" values across CPUs the contribution that
786 * each task makes to its run queue's load is weighted according to its
787 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
788 * scaled version of the new time slice allocation that they receive on time
789 * slice expiry etc.
790 */
791
792 #define WEIGHT_IDLEPRIO 2
793 #define WMULT_IDLEPRIO (1 << 31)
794
795 /*
796 * Nice levels are multiplicative, with a gentle 10% change for every
797 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
798 * nice 1, it will get ~10% less CPU time than another CPU-bound task
799 * that remained on nice 0.
800 *
801 * The "10% effect" is relative and cumulative: from _any_ nice level,
802 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
803 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
804 * If a task goes up by ~10% and another task goes down by ~10% then
805 * the relative distance between them is ~25%.)
806 */
807 static const int prio_to_weight[40] = {
808 /* -20 */ 88761, 71755, 56483, 46273, 36291,
809 /* -15 */ 29154, 23254, 18705, 14949, 11916,
810 /* -10 */ 9548, 7620, 6100, 4904, 3906,
811 /* -5 */ 3121, 2501, 1991, 1586, 1277,
812 /* 0 */ 1024, 820, 655, 526, 423,
813 /* 5 */ 335, 272, 215, 172, 137,
814 /* 10 */ 110, 87, 70, 56, 45,
815 /* 15 */ 36, 29, 23, 18, 15,
816 };
817
818 /*
819 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
820 *
821 * In cases where the weight does not change often, we can use the
822 * precalculated inverse to speed up arithmetics by turning divisions
823 * into multiplications:
824 */
825 static const u32 prio_to_wmult[40] = {
826 /* -20 */ 48388, 59856, 76040, 92818, 118348,
827 /* -15 */ 147320, 184698, 229616, 287308, 360437,
828 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
829 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
830 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
831 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
832 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
833 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
834 };
835
836 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
837
838 /*
839 * runqueue iterator, to support SMP load-balancing between different
840 * scheduling classes, without having to expose their internal data
841 * structures to the load-balancing proper:
842 */
843 struct rq_iterator {
844 void *arg;
845 struct task_struct *(*start)(void *);
846 struct task_struct *(*next)(void *);
847 };
848
849 #ifdef CONFIG_SMP
850 static unsigned long
851 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
852 unsigned long max_load_move, struct sched_domain *sd,
853 enum cpu_idle_type idle, int *all_pinned,
854 int *this_best_prio, struct rq_iterator *iterator);
855
856 static int
857 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
858 struct sched_domain *sd, enum cpu_idle_type idle,
859 struct rq_iterator *iterator);
860 #endif
861
862 #ifdef CONFIG_CGROUP_CPUACCT
863 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
864 #else
865 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
866 #endif
867
868 #include "sched_stats.h"
869 #include "sched_idletask.c"
870 #include "sched_fair.c"
871 #include "sched_rt.c"
872 #ifdef CONFIG_SCHED_DEBUG
873 # include "sched_debug.c"
874 #endif
875
876 #define sched_class_highest (&rt_sched_class)
877
878 /*
879 * Update delta_exec, delta_fair fields for rq.
880 *
881 * delta_fair clock advances at a rate inversely proportional to
882 * total load (rq->load.weight) on the runqueue, while
883 * delta_exec advances at the same rate as wall-clock (provided
884 * cpu is not idle).
885 *
886 * delta_exec / delta_fair is a measure of the (smoothened) load on this
887 * runqueue over any given interval. This (smoothened) load is used
888 * during load balance.
889 *
890 * This function is called /before/ updating rq->load
891 * and when switching tasks.
892 */
893 static inline void inc_load(struct rq *rq, const struct task_struct *p)
894 {
895 update_load_add(&rq->load, p->se.load.weight);
896 }
897
898 static inline void dec_load(struct rq *rq, const struct task_struct *p)
899 {
900 update_load_sub(&rq->load, p->se.load.weight);
901 }
902
903 static void inc_nr_running(struct task_struct *p, struct rq *rq)
904 {
905 rq->nr_running++;
906 inc_load(rq, p);
907 }
908
909 static void dec_nr_running(struct task_struct *p, struct rq *rq)
910 {
911 rq->nr_running--;
912 dec_load(rq, p);
913 }
914
915 static void set_load_weight(struct task_struct *p)
916 {
917 if (task_has_rt_policy(p)) {
918 p->se.load.weight = prio_to_weight[0] * 2;
919 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
920 return;
921 }
922
923 /*
924 * SCHED_IDLE tasks get minimal weight:
925 */
926 if (p->policy == SCHED_IDLE) {
927 p->se.load.weight = WEIGHT_IDLEPRIO;
928 p->se.load.inv_weight = WMULT_IDLEPRIO;
929 return;
930 }
931
932 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
933 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
934 }
935
936 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
937 {
938 sched_info_queued(p);
939 p->sched_class->enqueue_task(rq, p, wakeup);
940 p->se.on_rq = 1;
941 }
942
943 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
944 {
945 p->sched_class->dequeue_task(rq, p, sleep);
946 p->se.on_rq = 0;
947 }
948
949 /*
950 * __normal_prio - return the priority that is based on the static prio
951 */
952 static inline int __normal_prio(struct task_struct *p)
953 {
954 return p->static_prio;
955 }
956
957 /*
958 * Calculate the expected normal priority: i.e. priority
959 * without taking RT-inheritance into account. Might be
960 * boosted by interactivity modifiers. Changes upon fork,
961 * setprio syscalls, and whenever the interactivity
962 * estimator recalculates.
963 */
964 static inline int normal_prio(struct task_struct *p)
965 {
966 int prio;
967
968 if (task_has_rt_policy(p))
969 prio = MAX_RT_PRIO-1 - p->rt_priority;
970 else
971 prio = __normal_prio(p);
972 return prio;
973 }
974
975 /*
976 * Calculate the current priority, i.e. the priority
977 * taken into account by the scheduler. This value might
978 * be boosted by RT tasks, or might be boosted by
979 * interactivity modifiers. Will be RT if the task got
980 * RT-boosted. If not then it returns p->normal_prio.
981 */
982 static int effective_prio(struct task_struct *p)
983 {
984 p->normal_prio = normal_prio(p);
985 /*
986 * If we are RT tasks or we were boosted to RT priority,
987 * keep the priority unchanged. Otherwise, update priority
988 * to the normal priority:
989 */
990 if (!rt_prio(p->prio))
991 return p->normal_prio;
992 return p->prio;
993 }
994
995 /*
996 * activate_task - move a task to the runqueue.
997 */
998 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
999 {
1000 if (p->state == TASK_UNINTERRUPTIBLE)
1001 rq->nr_uninterruptible--;
1002
1003 enqueue_task(rq, p, wakeup);
1004 inc_nr_running(p, rq);
1005 }
1006
1007 /*
1008 * deactivate_task - remove a task from the runqueue.
1009 */
1010 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1011 {
1012 if (p->state == TASK_UNINTERRUPTIBLE)
1013 rq->nr_uninterruptible++;
1014
1015 dequeue_task(rq, p, sleep);
1016 dec_nr_running(p, rq);
1017 }
1018
1019 /**
1020 * task_curr - is this task currently executing on a CPU?
1021 * @p: the task in question.
1022 */
1023 inline int task_curr(const struct task_struct *p)
1024 {
1025 return cpu_curr(task_cpu(p)) == p;
1026 }
1027
1028 /* Used instead of source_load when we know the type == 0 */
1029 unsigned long weighted_cpuload(const int cpu)
1030 {
1031 return cpu_rq(cpu)->load.weight;
1032 }
1033
1034 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1035 {
1036 set_task_cfs_rq(p, cpu);
1037 #ifdef CONFIG_SMP
1038 /*
1039 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1040 * successfuly executed on another CPU. We must ensure that updates of
1041 * per-task data have been completed by this moment.
1042 */
1043 smp_wmb();
1044 task_thread_info(p)->cpu = cpu;
1045 #endif
1046 }
1047
1048 #ifdef CONFIG_SMP
1049
1050 /*
1051 * Is this task likely cache-hot:
1052 */
1053 static inline int
1054 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1055 {
1056 s64 delta;
1057
1058 if (p->sched_class != &fair_sched_class)
1059 return 0;
1060
1061 if (sysctl_sched_migration_cost == -1)
1062 return 1;
1063 if (sysctl_sched_migration_cost == 0)
1064 return 0;
1065
1066 delta = now - p->se.exec_start;
1067
1068 return delta < (s64)sysctl_sched_migration_cost;
1069 }
1070
1071
1072 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1073 {
1074 int old_cpu = task_cpu(p);
1075 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1076 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1077 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1078 u64 clock_offset;
1079
1080 clock_offset = old_rq->clock - new_rq->clock;
1081
1082 #ifdef CONFIG_SCHEDSTATS
1083 if (p->se.wait_start)
1084 p->se.wait_start -= clock_offset;
1085 if (p->se.sleep_start)
1086 p->se.sleep_start -= clock_offset;
1087 if (p->se.block_start)
1088 p->se.block_start -= clock_offset;
1089 if (old_cpu != new_cpu) {
1090 schedstat_inc(p, se.nr_migrations);
1091 if (task_hot(p, old_rq->clock, NULL))
1092 schedstat_inc(p, se.nr_forced2_migrations);
1093 }
1094 #endif
1095 p->se.vruntime -= old_cfsrq->min_vruntime -
1096 new_cfsrq->min_vruntime;
1097
1098 __set_task_cpu(p, new_cpu);
1099 }
1100
1101 struct migration_req {
1102 struct list_head list;
1103
1104 struct task_struct *task;
1105 int dest_cpu;
1106
1107 struct completion done;
1108 };
1109
1110 /*
1111 * The task's runqueue lock must be held.
1112 * Returns true if you have to wait for migration thread.
1113 */
1114 static int
1115 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1116 {
1117 struct rq *rq = task_rq(p);
1118
1119 /*
1120 * If the task is not on a runqueue (and not running), then
1121 * it is sufficient to simply update the task's cpu field.
1122 */
1123 if (!p->se.on_rq && !task_running(rq, p)) {
1124 set_task_cpu(p, dest_cpu);
1125 return 0;
1126 }
1127
1128 init_completion(&req->done);
1129 req->task = p;
1130 req->dest_cpu = dest_cpu;
1131 list_add(&req->list, &rq->migration_queue);
1132
1133 return 1;
1134 }
1135
1136 /*
1137 * wait_task_inactive - wait for a thread to unschedule.
1138 *
1139 * The caller must ensure that the task *will* unschedule sometime soon,
1140 * else this function might spin for a *long* time. This function can't
1141 * be called with interrupts off, or it may introduce deadlock with
1142 * smp_call_function() if an IPI is sent by the same process we are
1143 * waiting to become inactive.
1144 */
1145 void wait_task_inactive(struct task_struct *p)
1146 {
1147 unsigned long flags;
1148 int running, on_rq;
1149 struct rq *rq;
1150
1151 for (;;) {
1152 /*
1153 * We do the initial early heuristics without holding
1154 * any task-queue locks at all. We'll only try to get
1155 * the runqueue lock when things look like they will
1156 * work out!
1157 */
1158 rq = task_rq(p);
1159
1160 /*
1161 * If the task is actively running on another CPU
1162 * still, just relax and busy-wait without holding
1163 * any locks.
1164 *
1165 * NOTE! Since we don't hold any locks, it's not
1166 * even sure that "rq" stays as the right runqueue!
1167 * But we don't care, since "task_running()" will
1168 * return false if the runqueue has changed and p
1169 * is actually now running somewhere else!
1170 */
1171 while (task_running(rq, p))
1172 cpu_relax();
1173
1174 /*
1175 * Ok, time to look more closely! We need the rq
1176 * lock now, to be *sure*. If we're wrong, we'll
1177 * just go back and repeat.
1178 */
1179 rq = task_rq_lock(p, &flags);
1180 running = task_running(rq, p);
1181 on_rq = p->se.on_rq;
1182 task_rq_unlock(rq, &flags);
1183
1184 /*
1185 * Was it really running after all now that we
1186 * checked with the proper locks actually held?
1187 *
1188 * Oops. Go back and try again..
1189 */
1190 if (unlikely(running)) {
1191 cpu_relax();
1192 continue;
1193 }
1194
1195 /*
1196 * It's not enough that it's not actively running,
1197 * it must be off the runqueue _entirely_, and not
1198 * preempted!
1199 *
1200 * So if it wa still runnable (but just not actively
1201 * running right now), it's preempted, and we should
1202 * yield - it could be a while.
1203 */
1204 if (unlikely(on_rq)) {
1205 schedule_timeout_uninterruptible(1);
1206 continue;
1207 }
1208
1209 /*
1210 * Ahh, all good. It wasn't running, and it wasn't
1211 * runnable, which means that it will never become
1212 * running in the future either. We're all done!
1213 */
1214 break;
1215 }
1216 }
1217
1218 /***
1219 * kick_process - kick a running thread to enter/exit the kernel
1220 * @p: the to-be-kicked thread
1221 *
1222 * Cause a process which is running on another CPU to enter
1223 * kernel-mode, without any delay. (to get signals handled.)
1224 *
1225 * NOTE: this function doesnt have to take the runqueue lock,
1226 * because all it wants to ensure is that the remote task enters
1227 * the kernel. If the IPI races and the task has been migrated
1228 * to another CPU then no harm is done and the purpose has been
1229 * achieved as well.
1230 */
1231 void kick_process(struct task_struct *p)
1232 {
1233 int cpu;
1234
1235 preempt_disable();
1236 cpu = task_cpu(p);
1237 if ((cpu != smp_processor_id()) && task_curr(p))
1238 smp_send_reschedule(cpu);
1239 preempt_enable();
1240 }
1241
1242 /*
1243 * Return a low guess at the load of a migration-source cpu weighted
1244 * according to the scheduling class and "nice" value.
1245 *
1246 * We want to under-estimate the load of migration sources, to
1247 * balance conservatively.
1248 */
1249 static unsigned long source_load(int cpu, int type)
1250 {
1251 struct rq *rq = cpu_rq(cpu);
1252 unsigned long total = weighted_cpuload(cpu);
1253
1254 if (type == 0)
1255 return total;
1256
1257 return min(rq->cpu_load[type-1], total);
1258 }
1259
1260 /*
1261 * Return a high guess at the load of a migration-target cpu weighted
1262 * according to the scheduling class and "nice" value.
1263 */
1264 static unsigned long target_load(int cpu, int type)
1265 {
1266 struct rq *rq = cpu_rq(cpu);
1267 unsigned long total = weighted_cpuload(cpu);
1268
1269 if (type == 0)
1270 return total;
1271
1272 return max(rq->cpu_load[type-1], total);
1273 }
1274
1275 /*
1276 * Return the average load per task on the cpu's run queue
1277 */
1278 static inline unsigned long cpu_avg_load_per_task(int cpu)
1279 {
1280 struct rq *rq = cpu_rq(cpu);
1281 unsigned long total = weighted_cpuload(cpu);
1282 unsigned long n = rq->nr_running;
1283
1284 return n ? total / n : SCHED_LOAD_SCALE;
1285 }
1286
1287 /*
1288 * find_idlest_group finds and returns the least busy CPU group within the
1289 * domain.
1290 */
1291 static struct sched_group *
1292 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1293 {
1294 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1295 unsigned long min_load = ULONG_MAX, this_load = 0;
1296 int load_idx = sd->forkexec_idx;
1297 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1298
1299 do {
1300 unsigned long load, avg_load;
1301 int local_group;
1302 int i;
1303
1304 /* Skip over this group if it has no CPUs allowed */
1305 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1306 continue;
1307
1308 local_group = cpu_isset(this_cpu, group->cpumask);
1309
1310 /* Tally up the load of all CPUs in the group */
1311 avg_load = 0;
1312
1313 for_each_cpu_mask(i, group->cpumask) {
1314 /* Bias balancing toward cpus of our domain */
1315 if (local_group)
1316 load = source_load(i, load_idx);
1317 else
1318 load = target_load(i, load_idx);
1319
1320 avg_load += load;
1321 }
1322
1323 /* Adjust by relative CPU power of the group */
1324 avg_load = sg_div_cpu_power(group,
1325 avg_load * SCHED_LOAD_SCALE);
1326
1327 if (local_group) {
1328 this_load = avg_load;
1329 this = group;
1330 } else if (avg_load < min_load) {
1331 min_load = avg_load;
1332 idlest = group;
1333 }
1334 } while (group = group->next, group != sd->groups);
1335
1336 if (!idlest || 100*this_load < imbalance*min_load)
1337 return NULL;
1338 return idlest;
1339 }
1340
1341 /*
1342 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1343 */
1344 static int
1345 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1346 {
1347 cpumask_t tmp;
1348 unsigned long load, min_load = ULONG_MAX;
1349 int idlest = -1;
1350 int i;
1351
1352 /* Traverse only the allowed CPUs */
1353 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1354
1355 for_each_cpu_mask(i, tmp) {
1356 load = weighted_cpuload(i);
1357
1358 if (load < min_load || (load == min_load && i == this_cpu)) {
1359 min_load = load;
1360 idlest = i;
1361 }
1362 }
1363
1364 return idlest;
1365 }
1366
1367 /*
1368 * sched_balance_self: balance the current task (running on cpu) in domains
1369 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1370 * SD_BALANCE_EXEC.
1371 *
1372 * Balance, ie. select the least loaded group.
1373 *
1374 * Returns the target CPU number, or the same CPU if no balancing is needed.
1375 *
1376 * preempt must be disabled.
1377 */
1378 static int sched_balance_self(int cpu, int flag)
1379 {
1380 struct task_struct *t = current;
1381 struct sched_domain *tmp, *sd = NULL;
1382
1383 for_each_domain(cpu, tmp) {
1384 /*
1385 * If power savings logic is enabled for a domain, stop there.
1386 */
1387 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1388 break;
1389 if (tmp->flags & flag)
1390 sd = tmp;
1391 }
1392
1393 while (sd) {
1394 cpumask_t span;
1395 struct sched_group *group;
1396 int new_cpu, weight;
1397
1398 if (!(sd->flags & flag)) {
1399 sd = sd->child;
1400 continue;
1401 }
1402
1403 span = sd->span;
1404 group = find_idlest_group(sd, t, cpu);
1405 if (!group) {
1406 sd = sd->child;
1407 continue;
1408 }
1409
1410 new_cpu = find_idlest_cpu(group, t, cpu);
1411 if (new_cpu == -1 || new_cpu == cpu) {
1412 /* Now try balancing at a lower domain level of cpu */
1413 sd = sd->child;
1414 continue;
1415 }
1416
1417 /* Now try balancing at a lower domain level of new_cpu */
1418 cpu = new_cpu;
1419 sd = NULL;
1420 weight = cpus_weight(span);
1421 for_each_domain(cpu, tmp) {
1422 if (weight <= cpus_weight(tmp->span))
1423 break;
1424 if (tmp->flags & flag)
1425 sd = tmp;
1426 }
1427 /* while loop will break here if sd == NULL */
1428 }
1429
1430 return cpu;
1431 }
1432
1433 #endif /* CONFIG_SMP */
1434
1435 /*
1436 * wake_idle() will wake a task on an idle cpu if task->cpu is
1437 * not idle and an idle cpu is available. The span of cpus to
1438 * search starts with cpus closest then further out as needed,
1439 * so we always favor a closer, idle cpu.
1440 *
1441 * Returns the CPU we should wake onto.
1442 */
1443 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1444 static int wake_idle(int cpu, struct task_struct *p)
1445 {
1446 cpumask_t tmp;
1447 struct sched_domain *sd;
1448 int i;
1449
1450 /*
1451 * If it is idle, then it is the best cpu to run this task.
1452 *
1453 * This cpu is also the best, if it has more than one task already.
1454 * Siblings must be also busy(in most cases) as they didn't already
1455 * pickup the extra load from this cpu and hence we need not check
1456 * sibling runqueue info. This will avoid the checks and cache miss
1457 * penalities associated with that.
1458 */
1459 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1460 return cpu;
1461
1462 for_each_domain(cpu, sd) {
1463 if (sd->flags & SD_WAKE_IDLE) {
1464 cpus_and(tmp, sd->span, p->cpus_allowed);
1465 for_each_cpu_mask(i, tmp) {
1466 if (idle_cpu(i)) {
1467 if (i != task_cpu(p)) {
1468 schedstat_inc(p,
1469 se.nr_wakeups_idle);
1470 }
1471 return i;
1472 }
1473 }
1474 } else {
1475 break;
1476 }
1477 }
1478 return cpu;
1479 }
1480 #else
1481 static inline int wake_idle(int cpu, struct task_struct *p)
1482 {
1483 return cpu;
1484 }
1485 #endif
1486
1487 /***
1488 * try_to_wake_up - wake up a thread
1489 * @p: the to-be-woken-up thread
1490 * @state: the mask of task states that can be woken
1491 * @sync: do a synchronous wakeup?
1492 *
1493 * Put it on the run-queue if it's not already there. The "current"
1494 * thread is always on the run-queue (except when the actual
1495 * re-schedule is in progress), and as such you're allowed to do
1496 * the simpler "current->state = TASK_RUNNING" to mark yourself
1497 * runnable without the overhead of this.
1498 *
1499 * returns failure only if the task is already active.
1500 */
1501 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1502 {
1503 int cpu, orig_cpu, this_cpu, success = 0;
1504 unsigned long flags;
1505 long old_state;
1506 struct rq *rq;
1507 #ifdef CONFIG_SMP
1508 struct sched_domain *sd, *this_sd = NULL;
1509 unsigned long load, this_load;
1510 int new_cpu;
1511 #endif
1512
1513 rq = task_rq_lock(p, &flags);
1514 old_state = p->state;
1515 if (!(old_state & state))
1516 goto out;
1517
1518 if (p->se.on_rq)
1519 goto out_running;
1520
1521 cpu = task_cpu(p);
1522 orig_cpu = cpu;
1523 this_cpu = smp_processor_id();
1524
1525 #ifdef CONFIG_SMP
1526 if (unlikely(task_running(rq, p)))
1527 goto out_activate;
1528
1529 new_cpu = cpu;
1530
1531 schedstat_inc(rq, ttwu_count);
1532 if (cpu == this_cpu) {
1533 schedstat_inc(rq, ttwu_local);
1534 goto out_set_cpu;
1535 }
1536
1537 for_each_domain(this_cpu, sd) {
1538 if (cpu_isset(cpu, sd->span)) {
1539 schedstat_inc(sd, ttwu_wake_remote);
1540 this_sd = sd;
1541 break;
1542 }
1543 }
1544
1545 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1546 goto out_set_cpu;
1547
1548 /*
1549 * Check for affine wakeup and passive balancing possibilities.
1550 */
1551 if (this_sd) {
1552 int idx = this_sd->wake_idx;
1553 unsigned int imbalance;
1554
1555 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1556
1557 load = source_load(cpu, idx);
1558 this_load = target_load(this_cpu, idx);
1559
1560 new_cpu = this_cpu; /* Wake to this CPU if we can */
1561
1562 if (this_sd->flags & SD_WAKE_AFFINE) {
1563 unsigned long tl = this_load;
1564 unsigned long tl_per_task;
1565
1566 /*
1567 * Attract cache-cold tasks on sync wakeups:
1568 */
1569 if (sync && !task_hot(p, rq->clock, this_sd))
1570 goto out_set_cpu;
1571
1572 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1573 tl_per_task = cpu_avg_load_per_task(this_cpu);
1574
1575 /*
1576 * If sync wakeup then subtract the (maximum possible)
1577 * effect of the currently running task from the load
1578 * of the current CPU:
1579 */
1580 if (sync)
1581 tl -= current->se.load.weight;
1582
1583 if ((tl <= load &&
1584 tl + target_load(cpu, idx) <= tl_per_task) ||
1585 100*(tl + p->se.load.weight) <= imbalance*load) {
1586 /*
1587 * This domain has SD_WAKE_AFFINE and
1588 * p is cache cold in this domain, and
1589 * there is no bad imbalance.
1590 */
1591 schedstat_inc(this_sd, ttwu_move_affine);
1592 schedstat_inc(p, se.nr_wakeups_affine);
1593 goto out_set_cpu;
1594 }
1595 }
1596
1597 /*
1598 * Start passive balancing when half the imbalance_pct
1599 * limit is reached.
1600 */
1601 if (this_sd->flags & SD_WAKE_BALANCE) {
1602 if (imbalance*this_load <= 100*load) {
1603 schedstat_inc(this_sd, ttwu_move_balance);
1604 schedstat_inc(p, se.nr_wakeups_passive);
1605 goto out_set_cpu;
1606 }
1607 }
1608 }
1609
1610 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1611 out_set_cpu:
1612 new_cpu = wake_idle(new_cpu, p);
1613 if (new_cpu != cpu) {
1614 set_task_cpu(p, new_cpu);
1615 task_rq_unlock(rq, &flags);
1616 /* might preempt at this point */
1617 rq = task_rq_lock(p, &flags);
1618 old_state = p->state;
1619 if (!(old_state & state))
1620 goto out;
1621 if (p->se.on_rq)
1622 goto out_running;
1623
1624 this_cpu = smp_processor_id();
1625 cpu = task_cpu(p);
1626 }
1627
1628 out_activate:
1629 #endif /* CONFIG_SMP */
1630 schedstat_inc(p, se.nr_wakeups);
1631 if (sync)
1632 schedstat_inc(p, se.nr_wakeups_sync);
1633 if (orig_cpu != cpu)
1634 schedstat_inc(p, se.nr_wakeups_migrate);
1635 if (cpu == this_cpu)
1636 schedstat_inc(p, se.nr_wakeups_local);
1637 else
1638 schedstat_inc(p, se.nr_wakeups_remote);
1639 update_rq_clock(rq);
1640 activate_task(rq, p, 1);
1641 check_preempt_curr(rq, p);
1642 success = 1;
1643
1644 out_running:
1645 p->state = TASK_RUNNING;
1646 out:
1647 task_rq_unlock(rq, &flags);
1648
1649 return success;
1650 }
1651
1652 int fastcall wake_up_process(struct task_struct *p)
1653 {
1654 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1655 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1656 }
1657 EXPORT_SYMBOL(wake_up_process);
1658
1659 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1660 {
1661 return try_to_wake_up(p, state, 0);
1662 }
1663
1664 /*
1665 * Perform scheduler related setup for a newly forked process p.
1666 * p is forked by current.
1667 *
1668 * __sched_fork() is basic setup used by init_idle() too:
1669 */
1670 static void __sched_fork(struct task_struct *p)
1671 {
1672 p->se.exec_start = 0;
1673 p->se.sum_exec_runtime = 0;
1674 p->se.prev_sum_exec_runtime = 0;
1675
1676 #ifdef CONFIG_SCHEDSTATS
1677 p->se.wait_start = 0;
1678 p->se.sum_sleep_runtime = 0;
1679 p->se.sleep_start = 0;
1680 p->se.block_start = 0;
1681 p->se.sleep_max = 0;
1682 p->se.block_max = 0;
1683 p->se.exec_max = 0;
1684 p->se.slice_max = 0;
1685 p->se.wait_max = 0;
1686 #endif
1687
1688 INIT_LIST_HEAD(&p->run_list);
1689 p->se.on_rq = 0;
1690
1691 #ifdef CONFIG_PREEMPT_NOTIFIERS
1692 INIT_HLIST_HEAD(&p->preempt_notifiers);
1693 #endif
1694
1695 /*
1696 * We mark the process as running here, but have not actually
1697 * inserted it onto the runqueue yet. This guarantees that
1698 * nobody will actually run it, and a signal or other external
1699 * event cannot wake it up and insert it on the runqueue either.
1700 */
1701 p->state = TASK_RUNNING;
1702 }
1703
1704 /*
1705 * fork()/clone()-time setup:
1706 */
1707 void sched_fork(struct task_struct *p, int clone_flags)
1708 {
1709 int cpu = get_cpu();
1710
1711 __sched_fork(p);
1712
1713 #ifdef CONFIG_SMP
1714 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1715 #endif
1716 set_task_cpu(p, cpu);
1717
1718 /*
1719 * Make sure we do not leak PI boosting priority to the child:
1720 */
1721 p->prio = current->normal_prio;
1722 if (!rt_prio(p->prio))
1723 p->sched_class = &fair_sched_class;
1724
1725 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1726 if (likely(sched_info_on()))
1727 memset(&p->sched_info, 0, sizeof(p->sched_info));
1728 #endif
1729 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1730 p->oncpu = 0;
1731 #endif
1732 #ifdef CONFIG_PREEMPT
1733 /* Want to start with kernel preemption disabled. */
1734 task_thread_info(p)->preempt_count = 1;
1735 #endif
1736 put_cpu();
1737 }
1738
1739 /*
1740 * wake_up_new_task - wake up a newly created task for the first time.
1741 *
1742 * This function will do some initial scheduler statistics housekeeping
1743 * that must be done for every newly created context, then puts the task
1744 * on the runqueue and wakes it.
1745 */
1746 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1747 {
1748 unsigned long flags;
1749 struct rq *rq;
1750
1751 rq = task_rq_lock(p, &flags);
1752 BUG_ON(p->state != TASK_RUNNING);
1753 update_rq_clock(rq);
1754
1755 p->prio = effective_prio(p);
1756
1757 if (!p->sched_class->task_new || !current->se.on_rq) {
1758 activate_task(rq, p, 0);
1759 } else {
1760 /*
1761 * Let the scheduling class do new task startup
1762 * management (if any):
1763 */
1764 p->sched_class->task_new(rq, p);
1765 inc_nr_running(p, rq);
1766 }
1767 check_preempt_curr(rq, p);
1768 task_rq_unlock(rq, &flags);
1769 }
1770
1771 #ifdef CONFIG_PREEMPT_NOTIFIERS
1772
1773 /**
1774 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1775 * @notifier: notifier struct to register
1776 */
1777 void preempt_notifier_register(struct preempt_notifier *notifier)
1778 {
1779 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1780 }
1781 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1782
1783 /**
1784 * preempt_notifier_unregister - no longer interested in preemption notifications
1785 * @notifier: notifier struct to unregister
1786 *
1787 * This is safe to call from within a preemption notifier.
1788 */
1789 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1790 {
1791 hlist_del(&notifier->link);
1792 }
1793 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1794
1795 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1796 {
1797 struct preempt_notifier *notifier;
1798 struct hlist_node *node;
1799
1800 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1801 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1802 }
1803
1804 static void
1805 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1806 struct task_struct *next)
1807 {
1808 struct preempt_notifier *notifier;
1809 struct hlist_node *node;
1810
1811 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1812 notifier->ops->sched_out(notifier, next);
1813 }
1814
1815 #else
1816
1817 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1818 {
1819 }
1820
1821 static void
1822 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1823 struct task_struct *next)
1824 {
1825 }
1826
1827 #endif
1828
1829 /**
1830 * prepare_task_switch - prepare to switch tasks
1831 * @rq: the runqueue preparing to switch
1832 * @prev: the current task that is being switched out
1833 * @next: the task we are going to switch to.
1834 *
1835 * This is called with the rq lock held and interrupts off. It must
1836 * be paired with a subsequent finish_task_switch after the context
1837 * switch.
1838 *
1839 * prepare_task_switch sets up locking and calls architecture specific
1840 * hooks.
1841 */
1842 static inline void
1843 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1844 struct task_struct *next)
1845 {
1846 fire_sched_out_preempt_notifiers(prev, next);
1847 prepare_lock_switch(rq, next);
1848 prepare_arch_switch(next);
1849 }
1850
1851 /**
1852 * finish_task_switch - clean up after a task-switch
1853 * @rq: runqueue associated with task-switch
1854 * @prev: the thread we just switched away from.
1855 *
1856 * finish_task_switch must be called after the context switch, paired
1857 * with a prepare_task_switch call before the context switch.
1858 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1859 * and do any other architecture-specific cleanup actions.
1860 *
1861 * Note that we may have delayed dropping an mm in context_switch(). If
1862 * so, we finish that here outside of the runqueue lock. (Doing it
1863 * with the lock held can cause deadlocks; see schedule() for
1864 * details.)
1865 */
1866 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1867 __releases(rq->lock)
1868 {
1869 struct mm_struct *mm = rq->prev_mm;
1870 long prev_state;
1871
1872 rq->prev_mm = NULL;
1873
1874 /*
1875 * A task struct has one reference for the use as "current".
1876 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1877 * schedule one last time. The schedule call will never return, and
1878 * the scheduled task must drop that reference.
1879 * The test for TASK_DEAD must occur while the runqueue locks are
1880 * still held, otherwise prev could be scheduled on another cpu, die
1881 * there before we look at prev->state, and then the reference would
1882 * be dropped twice.
1883 * Manfred Spraul <manfred@colorfullife.com>
1884 */
1885 prev_state = prev->state;
1886 finish_arch_switch(prev);
1887 finish_lock_switch(rq, prev);
1888 fire_sched_in_preempt_notifiers(current);
1889 if (mm)
1890 mmdrop(mm);
1891 if (unlikely(prev_state == TASK_DEAD)) {
1892 /*
1893 * Remove function-return probe instances associated with this
1894 * task and put them back on the free list.
1895 */
1896 kprobe_flush_task(prev);
1897 put_task_struct(prev);
1898 }
1899 }
1900
1901 /**
1902 * schedule_tail - first thing a freshly forked thread must call.
1903 * @prev: the thread we just switched away from.
1904 */
1905 asmlinkage void schedule_tail(struct task_struct *prev)
1906 __releases(rq->lock)
1907 {
1908 struct rq *rq = this_rq();
1909
1910 finish_task_switch(rq, prev);
1911 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1912 /* In this case, finish_task_switch does not reenable preemption */
1913 preempt_enable();
1914 #endif
1915 if (current->set_child_tid)
1916 put_user(task_pid_vnr(current), current->set_child_tid);
1917 }
1918
1919 /*
1920 * context_switch - switch to the new MM and the new
1921 * thread's register state.
1922 */
1923 static inline void
1924 context_switch(struct rq *rq, struct task_struct *prev,
1925 struct task_struct *next)
1926 {
1927 struct mm_struct *mm, *oldmm;
1928
1929 prepare_task_switch(rq, prev, next);
1930 mm = next->mm;
1931 oldmm = prev->active_mm;
1932 /*
1933 * For paravirt, this is coupled with an exit in switch_to to
1934 * combine the page table reload and the switch backend into
1935 * one hypercall.
1936 */
1937 arch_enter_lazy_cpu_mode();
1938
1939 if (unlikely(!mm)) {
1940 next->active_mm = oldmm;
1941 atomic_inc(&oldmm->mm_count);
1942 enter_lazy_tlb(oldmm, next);
1943 } else
1944 switch_mm(oldmm, mm, next);
1945
1946 if (unlikely(!prev->mm)) {
1947 prev->active_mm = NULL;
1948 rq->prev_mm = oldmm;
1949 }
1950 /*
1951 * Since the runqueue lock will be released by the next
1952 * task (which is an invalid locking op but in the case
1953 * of the scheduler it's an obvious special-case), so we
1954 * do an early lockdep release here:
1955 */
1956 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1957 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1958 #endif
1959
1960 /* Here we just switch the register state and the stack. */
1961 switch_to(prev, next, prev);
1962
1963 barrier();
1964 /*
1965 * this_rq must be evaluated again because prev may have moved
1966 * CPUs since it called schedule(), thus the 'rq' on its stack
1967 * frame will be invalid.
1968 */
1969 finish_task_switch(this_rq(), prev);
1970 }
1971
1972 /*
1973 * nr_running, nr_uninterruptible and nr_context_switches:
1974 *
1975 * externally visible scheduler statistics: current number of runnable
1976 * threads, current number of uninterruptible-sleeping threads, total
1977 * number of context switches performed since bootup.
1978 */
1979 unsigned long nr_running(void)
1980 {
1981 unsigned long i, sum = 0;
1982
1983 for_each_online_cpu(i)
1984 sum += cpu_rq(i)->nr_running;
1985
1986 return sum;
1987 }
1988
1989 unsigned long nr_uninterruptible(void)
1990 {
1991 unsigned long i, sum = 0;
1992
1993 for_each_possible_cpu(i)
1994 sum += cpu_rq(i)->nr_uninterruptible;
1995
1996 /*
1997 * Since we read the counters lockless, it might be slightly
1998 * inaccurate. Do not allow it to go below zero though:
1999 */
2000 if (unlikely((long)sum < 0))
2001 sum = 0;
2002
2003 return sum;
2004 }
2005
2006 unsigned long long nr_context_switches(void)
2007 {
2008 int i;
2009 unsigned long long sum = 0;
2010
2011 for_each_possible_cpu(i)
2012 sum += cpu_rq(i)->nr_switches;
2013
2014 return sum;
2015 }
2016
2017 unsigned long nr_iowait(void)
2018 {
2019 unsigned long i, sum = 0;
2020
2021 for_each_possible_cpu(i)
2022 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2023
2024 return sum;
2025 }
2026
2027 unsigned long nr_active(void)
2028 {
2029 unsigned long i, running = 0, uninterruptible = 0;
2030
2031 for_each_online_cpu(i) {
2032 running += cpu_rq(i)->nr_running;
2033 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2034 }
2035
2036 if (unlikely((long)uninterruptible < 0))
2037 uninterruptible = 0;
2038
2039 return running + uninterruptible;
2040 }
2041
2042 /*
2043 * Update rq->cpu_load[] statistics. This function is usually called every
2044 * scheduler tick (TICK_NSEC).
2045 */
2046 static void update_cpu_load(struct rq *this_rq)
2047 {
2048 unsigned long this_load = this_rq->load.weight;
2049 int i, scale;
2050
2051 this_rq->nr_load_updates++;
2052
2053 /* Update our load: */
2054 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2055 unsigned long old_load, new_load;
2056
2057 /* scale is effectively 1 << i now, and >> i divides by scale */
2058
2059 old_load = this_rq->cpu_load[i];
2060 new_load = this_load;
2061 /*
2062 * Round up the averaging division if load is increasing. This
2063 * prevents us from getting stuck on 9 if the load is 10, for
2064 * example.
2065 */
2066 if (new_load > old_load)
2067 new_load += scale-1;
2068 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2069 }
2070 }
2071
2072 #ifdef CONFIG_SMP
2073
2074 /*
2075 * double_rq_lock - safely lock two runqueues
2076 *
2077 * Note this does not disable interrupts like task_rq_lock,
2078 * you need to do so manually before calling.
2079 */
2080 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2081 __acquires(rq1->lock)
2082 __acquires(rq2->lock)
2083 {
2084 BUG_ON(!irqs_disabled());
2085 if (rq1 == rq2) {
2086 spin_lock(&rq1->lock);
2087 __acquire(rq2->lock); /* Fake it out ;) */
2088 } else {
2089 if (rq1 < rq2) {
2090 spin_lock(&rq1->lock);
2091 spin_lock(&rq2->lock);
2092 } else {
2093 spin_lock(&rq2->lock);
2094 spin_lock(&rq1->lock);
2095 }
2096 }
2097 update_rq_clock(rq1);
2098 update_rq_clock(rq2);
2099 }
2100
2101 /*
2102 * double_rq_unlock - safely unlock two runqueues
2103 *
2104 * Note this does not restore interrupts like task_rq_unlock,
2105 * you need to do so manually after calling.
2106 */
2107 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2108 __releases(rq1->lock)
2109 __releases(rq2->lock)
2110 {
2111 spin_unlock(&rq1->lock);
2112 if (rq1 != rq2)
2113 spin_unlock(&rq2->lock);
2114 else
2115 __release(rq2->lock);
2116 }
2117
2118 /*
2119 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2120 */
2121 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2122 __releases(this_rq->lock)
2123 __acquires(busiest->lock)
2124 __acquires(this_rq->lock)
2125 {
2126 if (unlikely(!irqs_disabled())) {
2127 /* printk() doesn't work good under rq->lock */
2128 spin_unlock(&this_rq->lock);
2129 BUG_ON(1);
2130 }
2131 if (unlikely(!spin_trylock(&busiest->lock))) {
2132 if (busiest < this_rq) {
2133 spin_unlock(&this_rq->lock);
2134 spin_lock(&busiest->lock);
2135 spin_lock(&this_rq->lock);
2136 } else
2137 spin_lock(&busiest->lock);
2138 }
2139 }
2140
2141 /*
2142 * If dest_cpu is allowed for this process, migrate the task to it.
2143 * This is accomplished by forcing the cpu_allowed mask to only
2144 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2145 * the cpu_allowed mask is restored.
2146 */
2147 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2148 {
2149 struct migration_req req;
2150 unsigned long flags;
2151 struct rq *rq;
2152
2153 rq = task_rq_lock(p, &flags);
2154 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2155 || unlikely(cpu_is_offline(dest_cpu)))
2156 goto out;
2157
2158 /* force the process onto the specified CPU */
2159 if (migrate_task(p, dest_cpu, &req)) {
2160 /* Need to wait for migration thread (might exit: take ref). */
2161 struct task_struct *mt = rq->migration_thread;
2162
2163 get_task_struct(mt);
2164 task_rq_unlock(rq, &flags);
2165 wake_up_process(mt);
2166 put_task_struct(mt);
2167 wait_for_completion(&req.done);
2168
2169 return;
2170 }
2171 out:
2172 task_rq_unlock(rq, &flags);
2173 }
2174
2175 /*
2176 * sched_exec - execve() is a valuable balancing opportunity, because at
2177 * this point the task has the smallest effective memory and cache footprint.
2178 */
2179 void sched_exec(void)
2180 {
2181 int new_cpu, this_cpu = get_cpu();
2182 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2183 put_cpu();
2184 if (new_cpu != this_cpu)
2185 sched_migrate_task(current, new_cpu);
2186 }
2187
2188 /*
2189 * pull_task - move a task from a remote runqueue to the local runqueue.
2190 * Both runqueues must be locked.
2191 */
2192 static void pull_task(struct rq *src_rq, struct task_struct *p,
2193 struct rq *this_rq, int this_cpu)
2194 {
2195 deactivate_task(src_rq, p, 0);
2196 set_task_cpu(p, this_cpu);
2197 activate_task(this_rq, p, 0);
2198 /*
2199 * Note that idle threads have a prio of MAX_PRIO, for this test
2200 * to be always true for them.
2201 */
2202 check_preempt_curr(this_rq, p);
2203 }
2204
2205 /*
2206 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2207 */
2208 static
2209 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2210 struct sched_domain *sd, enum cpu_idle_type idle,
2211 int *all_pinned)
2212 {
2213 /*
2214 * We do not migrate tasks that are:
2215 * 1) running (obviously), or
2216 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2217 * 3) are cache-hot on their current CPU.
2218 */
2219 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2220 schedstat_inc(p, se.nr_failed_migrations_affine);
2221 return 0;
2222 }
2223 *all_pinned = 0;
2224
2225 if (task_running(rq, p)) {
2226 schedstat_inc(p, se.nr_failed_migrations_running);
2227 return 0;
2228 }
2229
2230 /*
2231 * Aggressive migration if:
2232 * 1) task is cache cold, or
2233 * 2) too many balance attempts have failed.
2234 */
2235
2236 if (!task_hot(p, rq->clock, sd) ||
2237 sd->nr_balance_failed > sd->cache_nice_tries) {
2238 #ifdef CONFIG_SCHEDSTATS
2239 if (task_hot(p, rq->clock, sd)) {
2240 schedstat_inc(sd, lb_hot_gained[idle]);
2241 schedstat_inc(p, se.nr_forced_migrations);
2242 }
2243 #endif
2244 return 1;
2245 }
2246
2247 if (task_hot(p, rq->clock, sd)) {
2248 schedstat_inc(p, se.nr_failed_migrations_hot);
2249 return 0;
2250 }
2251 return 1;
2252 }
2253
2254 static unsigned long
2255 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2256 unsigned long max_load_move, struct sched_domain *sd,
2257 enum cpu_idle_type idle, int *all_pinned,
2258 int *this_best_prio, struct rq_iterator *iterator)
2259 {
2260 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2261 struct task_struct *p;
2262 long rem_load_move = max_load_move;
2263
2264 if (max_load_move == 0)
2265 goto out;
2266
2267 pinned = 1;
2268
2269 /*
2270 * Start the load-balancing iterator:
2271 */
2272 p = iterator->start(iterator->arg);
2273 next:
2274 if (!p || loops++ > sysctl_sched_nr_migrate)
2275 goto out;
2276 /*
2277 * To help distribute high priority tasks across CPUs we don't
2278 * skip a task if it will be the highest priority task (i.e. smallest
2279 * prio value) on its new queue regardless of its load weight
2280 */
2281 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2282 SCHED_LOAD_SCALE_FUZZ;
2283 if ((skip_for_load && p->prio >= *this_best_prio) ||
2284 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2285 p = iterator->next(iterator->arg);
2286 goto next;
2287 }
2288
2289 pull_task(busiest, p, this_rq, this_cpu);
2290 pulled++;
2291 rem_load_move -= p->se.load.weight;
2292
2293 /*
2294 * We only want to steal up to the prescribed amount of weighted load.
2295 */
2296 if (rem_load_move > 0) {
2297 if (p->prio < *this_best_prio)
2298 *this_best_prio = p->prio;
2299 p = iterator->next(iterator->arg);
2300 goto next;
2301 }
2302 out:
2303 /*
2304 * Right now, this is one of only two places pull_task() is called,
2305 * so we can safely collect pull_task() stats here rather than
2306 * inside pull_task().
2307 */
2308 schedstat_add(sd, lb_gained[idle], pulled);
2309
2310 if (all_pinned)
2311 *all_pinned = pinned;
2312
2313 return max_load_move - rem_load_move;
2314 }
2315
2316 /*
2317 * move_tasks tries to move up to max_load_move weighted load from busiest to
2318 * this_rq, as part of a balancing operation within domain "sd".
2319 * Returns 1 if successful and 0 otherwise.
2320 *
2321 * Called with both runqueues locked.
2322 */
2323 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2324 unsigned long max_load_move,
2325 struct sched_domain *sd, enum cpu_idle_type idle,
2326 int *all_pinned)
2327 {
2328 const struct sched_class *class = sched_class_highest;
2329 unsigned long total_load_moved = 0;
2330 int this_best_prio = this_rq->curr->prio;
2331
2332 do {
2333 total_load_moved +=
2334 class->load_balance(this_rq, this_cpu, busiest,
2335 max_load_move - total_load_moved,
2336 sd, idle, all_pinned, &this_best_prio);
2337 class = class->next;
2338 } while (class && max_load_move > total_load_moved);
2339
2340 return total_load_moved > 0;
2341 }
2342
2343 static int
2344 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2345 struct sched_domain *sd, enum cpu_idle_type idle,
2346 struct rq_iterator *iterator)
2347 {
2348 struct task_struct *p = iterator->start(iterator->arg);
2349 int pinned = 0;
2350
2351 while (p) {
2352 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2353 pull_task(busiest, p, this_rq, this_cpu);
2354 /*
2355 * Right now, this is only the second place pull_task()
2356 * is called, so we can safely collect pull_task()
2357 * stats here rather than inside pull_task().
2358 */
2359 schedstat_inc(sd, lb_gained[idle]);
2360
2361 return 1;
2362 }
2363 p = iterator->next(iterator->arg);
2364 }
2365
2366 return 0;
2367 }
2368
2369 /*
2370 * move_one_task tries to move exactly one task from busiest to this_rq, as
2371 * part of active balancing operations within "domain".
2372 * Returns 1 if successful and 0 otherwise.
2373 *
2374 * Called with both runqueues locked.
2375 */
2376 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2377 struct sched_domain *sd, enum cpu_idle_type idle)
2378 {
2379 const struct sched_class *class;
2380
2381 for (class = sched_class_highest; class; class = class->next)
2382 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2383 return 1;
2384
2385 return 0;
2386 }
2387
2388 /*
2389 * find_busiest_group finds and returns the busiest CPU group within the
2390 * domain. It calculates and returns the amount of weighted load which
2391 * should be moved to restore balance via the imbalance parameter.
2392 */
2393 static struct sched_group *
2394 find_busiest_group(struct sched_domain *sd, int this_cpu,
2395 unsigned long *imbalance, enum cpu_idle_type idle,
2396 int *sd_idle, cpumask_t *cpus, int *balance)
2397 {
2398 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2399 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2400 unsigned long max_pull;
2401 unsigned long busiest_load_per_task, busiest_nr_running;
2402 unsigned long this_load_per_task, this_nr_running;
2403 int load_idx, group_imb = 0;
2404 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2405 int power_savings_balance = 1;
2406 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2407 unsigned long min_nr_running = ULONG_MAX;
2408 struct sched_group *group_min = NULL, *group_leader = NULL;
2409 #endif
2410
2411 max_load = this_load = total_load = total_pwr = 0;
2412 busiest_load_per_task = busiest_nr_running = 0;
2413 this_load_per_task = this_nr_running = 0;
2414 if (idle == CPU_NOT_IDLE)
2415 load_idx = sd->busy_idx;
2416 else if (idle == CPU_NEWLY_IDLE)
2417 load_idx = sd->newidle_idx;
2418 else
2419 load_idx = sd->idle_idx;
2420
2421 do {
2422 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2423 int local_group;
2424 int i;
2425 int __group_imb = 0;
2426 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2427 unsigned long sum_nr_running, sum_weighted_load;
2428
2429 local_group = cpu_isset(this_cpu, group->cpumask);
2430
2431 if (local_group)
2432 balance_cpu = first_cpu(group->cpumask);
2433
2434 /* Tally up the load of all CPUs in the group */
2435 sum_weighted_load = sum_nr_running = avg_load = 0;
2436 max_cpu_load = 0;
2437 min_cpu_load = ~0UL;
2438
2439 for_each_cpu_mask(i, group->cpumask) {
2440 struct rq *rq;
2441
2442 if (!cpu_isset(i, *cpus))
2443 continue;
2444
2445 rq = cpu_rq(i);
2446
2447 if (*sd_idle && rq->nr_running)
2448 *sd_idle = 0;
2449
2450 /* Bias balancing toward cpus of our domain */
2451 if (local_group) {
2452 if (idle_cpu(i) && !first_idle_cpu) {
2453 first_idle_cpu = 1;
2454 balance_cpu = i;
2455 }
2456
2457 load = target_load(i, load_idx);
2458 } else {
2459 load = source_load(i, load_idx);
2460 if (load > max_cpu_load)
2461 max_cpu_load = load;
2462 if (min_cpu_load > load)
2463 min_cpu_load = load;
2464 }
2465
2466 avg_load += load;
2467 sum_nr_running += rq->nr_running;
2468 sum_weighted_load += weighted_cpuload(i);
2469 }
2470
2471 /*
2472 * First idle cpu or the first cpu(busiest) in this sched group
2473 * is eligible for doing load balancing at this and above
2474 * domains. In the newly idle case, we will allow all the cpu's
2475 * to do the newly idle load balance.
2476 */
2477 if (idle != CPU_NEWLY_IDLE && local_group &&
2478 balance_cpu != this_cpu && balance) {
2479 *balance = 0;
2480 goto ret;
2481 }
2482
2483 total_load += avg_load;
2484 total_pwr += group->__cpu_power;
2485
2486 /* Adjust by relative CPU power of the group */
2487 avg_load = sg_div_cpu_power(group,
2488 avg_load * SCHED_LOAD_SCALE);
2489
2490 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2491 __group_imb = 1;
2492
2493 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2494
2495 if (local_group) {
2496 this_load = avg_load;
2497 this = group;
2498 this_nr_running = sum_nr_running;
2499 this_load_per_task = sum_weighted_load;
2500 } else if (avg_load > max_load &&
2501 (sum_nr_running > group_capacity || __group_imb)) {
2502 max_load = avg_load;
2503 busiest = group;
2504 busiest_nr_running = sum_nr_running;
2505 busiest_load_per_task = sum_weighted_load;
2506 group_imb = __group_imb;
2507 }
2508
2509 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2510 /*
2511 * Busy processors will not participate in power savings
2512 * balance.
2513 */
2514 if (idle == CPU_NOT_IDLE ||
2515 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2516 goto group_next;
2517
2518 /*
2519 * If the local group is idle or completely loaded
2520 * no need to do power savings balance at this domain
2521 */
2522 if (local_group && (this_nr_running >= group_capacity ||
2523 !this_nr_running))
2524 power_savings_balance = 0;
2525
2526 /*
2527 * If a group is already running at full capacity or idle,
2528 * don't include that group in power savings calculations
2529 */
2530 if (!power_savings_balance || sum_nr_running >= group_capacity
2531 || !sum_nr_running)
2532 goto group_next;
2533
2534 /*
2535 * Calculate the group which has the least non-idle load.
2536 * This is the group from where we need to pick up the load
2537 * for saving power
2538 */
2539 if ((sum_nr_running < min_nr_running) ||
2540 (sum_nr_running == min_nr_running &&
2541 first_cpu(group->cpumask) <
2542 first_cpu(group_min->cpumask))) {
2543 group_min = group;
2544 min_nr_running = sum_nr_running;
2545 min_load_per_task = sum_weighted_load /
2546 sum_nr_running;
2547 }
2548
2549 /*
2550 * Calculate the group which is almost near its
2551 * capacity but still has some space to pick up some load
2552 * from other group and save more power
2553 */
2554 if (sum_nr_running <= group_capacity - 1) {
2555 if (sum_nr_running > leader_nr_running ||
2556 (sum_nr_running == leader_nr_running &&
2557 first_cpu(group->cpumask) >
2558 first_cpu(group_leader->cpumask))) {
2559 group_leader = group;
2560 leader_nr_running = sum_nr_running;
2561 }
2562 }
2563 group_next:
2564 #endif
2565 group = group->next;
2566 } while (group != sd->groups);
2567
2568 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2569 goto out_balanced;
2570
2571 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2572
2573 if (this_load >= avg_load ||
2574 100*max_load <= sd->imbalance_pct*this_load)
2575 goto out_balanced;
2576
2577 busiest_load_per_task /= busiest_nr_running;
2578 if (group_imb)
2579 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2580
2581 /*
2582 * We're trying to get all the cpus to the average_load, so we don't
2583 * want to push ourselves above the average load, nor do we wish to
2584 * reduce the max loaded cpu below the average load, as either of these
2585 * actions would just result in more rebalancing later, and ping-pong
2586 * tasks around. Thus we look for the minimum possible imbalance.
2587 * Negative imbalances (*we* are more loaded than anyone else) will
2588 * be counted as no imbalance for these purposes -- we can't fix that
2589 * by pulling tasks to us. Be careful of negative numbers as they'll
2590 * appear as very large values with unsigned longs.
2591 */
2592 if (max_load <= busiest_load_per_task)
2593 goto out_balanced;
2594
2595 /*
2596 * In the presence of smp nice balancing, certain scenarios can have
2597 * max load less than avg load(as we skip the groups at or below
2598 * its cpu_power, while calculating max_load..)
2599 */
2600 if (max_load < avg_load) {
2601 *imbalance = 0;
2602 goto small_imbalance;
2603 }
2604
2605 /* Don't want to pull so many tasks that a group would go idle */
2606 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2607
2608 /* How much load to actually move to equalise the imbalance */
2609 *imbalance = min(max_pull * busiest->__cpu_power,
2610 (avg_load - this_load) * this->__cpu_power)
2611 / SCHED_LOAD_SCALE;
2612
2613 /*
2614 * if *imbalance is less than the average load per runnable task
2615 * there is no gaurantee that any tasks will be moved so we'll have
2616 * a think about bumping its value to force at least one task to be
2617 * moved
2618 */
2619 if (*imbalance < busiest_load_per_task) {
2620 unsigned long tmp, pwr_now, pwr_move;
2621 unsigned int imbn;
2622
2623 small_imbalance:
2624 pwr_move = pwr_now = 0;
2625 imbn = 2;
2626 if (this_nr_running) {
2627 this_load_per_task /= this_nr_running;
2628 if (busiest_load_per_task > this_load_per_task)
2629 imbn = 1;
2630 } else
2631 this_load_per_task = SCHED_LOAD_SCALE;
2632
2633 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2634 busiest_load_per_task * imbn) {
2635 *imbalance = busiest_load_per_task;
2636 return busiest;
2637 }
2638
2639 /*
2640 * OK, we don't have enough imbalance to justify moving tasks,
2641 * however we may be able to increase total CPU power used by
2642 * moving them.
2643 */
2644
2645 pwr_now += busiest->__cpu_power *
2646 min(busiest_load_per_task, max_load);
2647 pwr_now += this->__cpu_power *
2648 min(this_load_per_task, this_load);
2649 pwr_now /= SCHED_LOAD_SCALE;
2650
2651 /* Amount of load we'd subtract */
2652 tmp = sg_div_cpu_power(busiest,
2653 busiest_load_per_task * SCHED_LOAD_SCALE);
2654 if (max_load > tmp)
2655 pwr_move += busiest->__cpu_power *
2656 min(busiest_load_per_task, max_load - tmp);
2657
2658 /* Amount of load we'd add */
2659 if (max_load * busiest->__cpu_power <
2660 busiest_load_per_task * SCHED_LOAD_SCALE)
2661 tmp = sg_div_cpu_power(this,
2662 max_load * busiest->__cpu_power);
2663 else
2664 tmp = sg_div_cpu_power(this,
2665 busiest_load_per_task * SCHED_LOAD_SCALE);
2666 pwr_move += this->__cpu_power *
2667 min(this_load_per_task, this_load + tmp);
2668 pwr_move /= SCHED_LOAD_SCALE;
2669
2670 /* Move if we gain throughput */
2671 if (pwr_move > pwr_now)
2672 *imbalance = busiest_load_per_task;
2673 }
2674
2675 return busiest;
2676
2677 out_balanced:
2678 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2679 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2680 goto ret;
2681
2682 if (this == group_leader && group_leader != group_min) {
2683 *imbalance = min_load_per_task;
2684 return group_min;
2685 }
2686 #endif
2687 ret:
2688 *imbalance = 0;
2689 return NULL;
2690 }
2691
2692 /*
2693 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2694 */
2695 static struct rq *
2696 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2697 unsigned long imbalance, cpumask_t *cpus)
2698 {
2699 struct rq *busiest = NULL, *rq;
2700 unsigned long max_load = 0;
2701 int i;
2702
2703 for_each_cpu_mask(i, group->cpumask) {
2704 unsigned long wl;
2705
2706 if (!cpu_isset(i, *cpus))
2707 continue;
2708
2709 rq = cpu_rq(i);
2710 wl = weighted_cpuload(i);
2711
2712 if (rq->nr_running == 1 && wl > imbalance)
2713 continue;
2714
2715 if (wl > max_load) {
2716 max_load = wl;
2717 busiest = rq;
2718 }
2719 }
2720
2721 return busiest;
2722 }
2723
2724 /*
2725 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2726 * so long as it is large enough.
2727 */
2728 #define MAX_PINNED_INTERVAL 512
2729
2730 /*
2731 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2732 * tasks if there is an imbalance.
2733 */
2734 static int load_balance(int this_cpu, struct rq *this_rq,
2735 struct sched_domain *sd, enum cpu_idle_type idle,
2736 int *balance)
2737 {
2738 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2739 struct sched_group *group;
2740 unsigned long imbalance;
2741 struct rq *busiest;
2742 cpumask_t cpus = CPU_MASK_ALL;
2743 unsigned long flags;
2744
2745 /*
2746 * When power savings policy is enabled for the parent domain, idle
2747 * sibling can pick up load irrespective of busy siblings. In this case,
2748 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2749 * portraying it as CPU_NOT_IDLE.
2750 */
2751 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2752 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2753 sd_idle = 1;
2754
2755 schedstat_inc(sd, lb_count[idle]);
2756
2757 redo:
2758 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2759 &cpus, balance);
2760
2761 if (*balance == 0)
2762 goto out_balanced;
2763
2764 if (!group) {
2765 schedstat_inc(sd, lb_nobusyg[idle]);
2766 goto out_balanced;
2767 }
2768
2769 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2770 if (!busiest) {
2771 schedstat_inc(sd, lb_nobusyq[idle]);
2772 goto out_balanced;
2773 }
2774
2775 BUG_ON(busiest == this_rq);
2776
2777 schedstat_add(sd, lb_imbalance[idle], imbalance);
2778
2779 ld_moved = 0;
2780 if (busiest->nr_running > 1) {
2781 /*
2782 * Attempt to move tasks. If find_busiest_group has found
2783 * an imbalance but busiest->nr_running <= 1, the group is
2784 * still unbalanced. ld_moved simply stays zero, so it is
2785 * correctly treated as an imbalance.
2786 */
2787 local_irq_save(flags);
2788 double_rq_lock(this_rq, busiest);
2789 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2790 imbalance, sd, idle, &all_pinned);
2791 double_rq_unlock(this_rq, busiest);
2792 local_irq_restore(flags);
2793
2794 /*
2795 * some other cpu did the load balance for us.
2796 */
2797 if (ld_moved && this_cpu != smp_processor_id())
2798 resched_cpu(this_cpu);
2799
2800 /* All tasks on this runqueue were pinned by CPU affinity */
2801 if (unlikely(all_pinned)) {
2802 cpu_clear(cpu_of(busiest), cpus);
2803 if (!cpus_empty(cpus))
2804 goto redo;
2805 goto out_balanced;
2806 }
2807 }
2808
2809 if (!ld_moved) {
2810 schedstat_inc(sd, lb_failed[idle]);
2811 sd->nr_balance_failed++;
2812
2813 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2814
2815 spin_lock_irqsave(&busiest->lock, flags);
2816
2817 /* don't kick the migration_thread, if the curr
2818 * task on busiest cpu can't be moved to this_cpu
2819 */
2820 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2821 spin_unlock_irqrestore(&busiest->lock, flags);
2822 all_pinned = 1;
2823 goto out_one_pinned;
2824 }
2825
2826 if (!busiest->active_balance) {
2827 busiest->active_balance = 1;
2828 busiest->push_cpu = this_cpu;
2829 active_balance = 1;
2830 }
2831 spin_unlock_irqrestore(&busiest->lock, flags);
2832 if (active_balance)
2833 wake_up_process(busiest->migration_thread);
2834
2835 /*
2836 * We've kicked active balancing, reset the failure
2837 * counter.
2838 */
2839 sd->nr_balance_failed = sd->cache_nice_tries+1;
2840 }
2841 } else
2842 sd->nr_balance_failed = 0;
2843
2844 if (likely(!active_balance)) {
2845 /* We were unbalanced, so reset the balancing interval */
2846 sd->balance_interval = sd->min_interval;
2847 } else {
2848 /*
2849 * If we've begun active balancing, start to back off. This
2850 * case may not be covered by the all_pinned logic if there
2851 * is only 1 task on the busy runqueue (because we don't call
2852 * move_tasks).
2853 */
2854 if (sd->balance_interval < sd->max_interval)
2855 sd->balance_interval *= 2;
2856 }
2857
2858 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2859 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2860 return -1;
2861 return ld_moved;
2862
2863 out_balanced:
2864 schedstat_inc(sd, lb_balanced[idle]);
2865
2866 sd->nr_balance_failed = 0;
2867
2868 out_one_pinned:
2869 /* tune up the balancing interval */
2870 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2871 (sd->balance_interval < sd->max_interval))
2872 sd->balance_interval *= 2;
2873
2874 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2875 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2876 return -1;
2877 return 0;
2878 }
2879
2880 /*
2881 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2882 * tasks if there is an imbalance.
2883 *
2884 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2885 * this_rq is locked.
2886 */
2887 static int
2888 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2889 {
2890 struct sched_group *group;
2891 struct rq *busiest = NULL;
2892 unsigned long imbalance;
2893 int ld_moved = 0;
2894 int sd_idle = 0;
2895 int all_pinned = 0;
2896 cpumask_t cpus = CPU_MASK_ALL;
2897
2898 /*
2899 * When power savings policy is enabled for the parent domain, idle
2900 * sibling can pick up load irrespective of busy siblings. In this case,
2901 * let the state of idle sibling percolate up as IDLE, instead of
2902 * portraying it as CPU_NOT_IDLE.
2903 */
2904 if (sd->flags & SD_SHARE_CPUPOWER &&
2905 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2906 sd_idle = 1;
2907
2908 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2909 redo:
2910 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2911 &sd_idle, &cpus, NULL);
2912 if (!group) {
2913 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2914 goto out_balanced;
2915 }
2916
2917 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2918 &cpus);
2919 if (!busiest) {
2920 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2921 goto out_balanced;
2922 }
2923
2924 BUG_ON(busiest == this_rq);
2925
2926 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2927
2928 ld_moved = 0;
2929 if (busiest->nr_running > 1) {
2930 /* Attempt to move tasks */
2931 double_lock_balance(this_rq, busiest);
2932 /* this_rq->clock is already updated */
2933 update_rq_clock(busiest);
2934 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2935 imbalance, sd, CPU_NEWLY_IDLE,
2936 &all_pinned);
2937 spin_unlock(&busiest->lock);
2938
2939 if (unlikely(all_pinned)) {
2940 cpu_clear(cpu_of(busiest), cpus);
2941 if (!cpus_empty(cpus))
2942 goto redo;
2943 }
2944 }
2945
2946 if (!ld_moved) {
2947 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2948 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2949 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2950 return -1;
2951 } else
2952 sd->nr_balance_failed = 0;
2953
2954 return ld_moved;
2955
2956 out_balanced:
2957 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2958 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2959 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2960 return -1;
2961 sd->nr_balance_failed = 0;
2962
2963 return 0;
2964 }
2965
2966 /*
2967 * idle_balance is called by schedule() if this_cpu is about to become
2968 * idle. Attempts to pull tasks from other CPUs.
2969 */
2970 static void idle_balance(int this_cpu, struct rq *this_rq)
2971 {
2972 struct sched_domain *sd;
2973 int pulled_task = -1;
2974 unsigned long next_balance = jiffies + HZ;
2975
2976 for_each_domain(this_cpu, sd) {
2977 unsigned long interval;
2978
2979 if (!(sd->flags & SD_LOAD_BALANCE))
2980 continue;
2981
2982 if (sd->flags & SD_BALANCE_NEWIDLE)
2983 /* If we've pulled tasks over stop searching: */
2984 pulled_task = load_balance_newidle(this_cpu,
2985 this_rq, sd);
2986
2987 interval = msecs_to_jiffies(sd->balance_interval);
2988 if (time_after(next_balance, sd->last_balance + interval))
2989 next_balance = sd->last_balance + interval;
2990 if (pulled_task)
2991 break;
2992 }
2993 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2994 /*
2995 * We are going idle. next_balance may be set based on
2996 * a busy processor. So reset next_balance.
2997 */
2998 this_rq->next_balance = next_balance;
2999 }
3000 }
3001
3002 /*
3003 * active_load_balance is run by migration threads. It pushes running tasks
3004 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3005 * running on each physical CPU where possible, and avoids physical /
3006 * logical imbalances.
3007 *
3008 * Called with busiest_rq locked.
3009 */
3010 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3011 {
3012 int target_cpu = busiest_rq->push_cpu;
3013 struct sched_domain *sd;
3014 struct rq *target_rq;
3015
3016 /* Is there any task to move? */
3017 if (busiest_rq->nr_running <= 1)
3018 return;
3019
3020 target_rq = cpu_rq(target_cpu);
3021
3022 /*
3023 * This condition is "impossible", if it occurs
3024 * we need to fix it. Originally reported by
3025 * Bjorn Helgaas on a 128-cpu setup.
3026 */
3027 BUG_ON(busiest_rq == target_rq);
3028
3029 /* move a task from busiest_rq to target_rq */
3030 double_lock_balance(busiest_rq, target_rq);
3031 update_rq_clock(busiest_rq);
3032 update_rq_clock(target_rq);
3033
3034 /* Search for an sd spanning us and the target CPU. */
3035 for_each_domain(target_cpu, sd) {
3036 if ((sd->flags & SD_LOAD_BALANCE) &&
3037 cpu_isset(busiest_cpu, sd->span))
3038 break;
3039 }
3040
3041 if (likely(sd)) {
3042 schedstat_inc(sd, alb_count);
3043
3044 if (move_one_task(target_rq, target_cpu, busiest_rq,
3045 sd, CPU_IDLE))
3046 schedstat_inc(sd, alb_pushed);
3047 else
3048 schedstat_inc(sd, alb_failed);
3049 }
3050 spin_unlock(&target_rq->lock);
3051 }
3052
3053 #ifdef CONFIG_NO_HZ
3054 static struct {
3055 atomic_t load_balancer;
3056 cpumask_t cpu_mask;
3057 } nohz ____cacheline_aligned = {
3058 .load_balancer = ATOMIC_INIT(-1),
3059 .cpu_mask = CPU_MASK_NONE,
3060 };
3061
3062 /*
3063 * This routine will try to nominate the ilb (idle load balancing)
3064 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3065 * load balancing on behalf of all those cpus. If all the cpus in the system
3066 * go into this tickless mode, then there will be no ilb owner (as there is
3067 * no need for one) and all the cpus will sleep till the next wakeup event
3068 * arrives...
3069 *
3070 * For the ilb owner, tick is not stopped. And this tick will be used
3071 * for idle load balancing. ilb owner will still be part of
3072 * nohz.cpu_mask..
3073 *
3074 * While stopping the tick, this cpu will become the ilb owner if there
3075 * is no other owner. And will be the owner till that cpu becomes busy
3076 * or if all cpus in the system stop their ticks at which point
3077 * there is no need for ilb owner.
3078 *
3079 * When the ilb owner becomes busy, it nominates another owner, during the
3080 * next busy scheduler_tick()
3081 */
3082 int select_nohz_load_balancer(int stop_tick)
3083 {
3084 int cpu = smp_processor_id();
3085
3086 if (stop_tick) {
3087 cpu_set(cpu, nohz.cpu_mask);
3088 cpu_rq(cpu)->in_nohz_recently = 1;
3089
3090 /*
3091 * If we are going offline and still the leader, give up!
3092 */
3093 if (cpu_is_offline(cpu) &&
3094 atomic_read(&nohz.load_balancer) == cpu) {
3095 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3096 BUG();
3097 return 0;
3098 }
3099
3100 /* time for ilb owner also to sleep */
3101 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3102 if (atomic_read(&nohz.load_balancer) == cpu)
3103 atomic_set(&nohz.load_balancer, -1);
3104 return 0;
3105 }
3106
3107 if (atomic_read(&nohz.load_balancer) == -1) {
3108 /* make me the ilb owner */
3109 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3110 return 1;
3111 } else if (atomic_read(&nohz.load_balancer) == cpu)
3112 return 1;
3113 } else {
3114 if (!cpu_isset(cpu, nohz.cpu_mask))
3115 return 0;
3116
3117 cpu_clear(cpu, nohz.cpu_mask);
3118
3119 if (atomic_read(&nohz.load_balancer) == cpu)
3120 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3121 BUG();
3122 }
3123 return 0;
3124 }
3125 #endif
3126
3127 static DEFINE_SPINLOCK(balancing);
3128
3129 /*
3130 * It checks each scheduling domain to see if it is due to be balanced,
3131 * and initiates a balancing operation if so.
3132 *
3133 * Balancing parameters are set up in arch_init_sched_domains.
3134 */
3135 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3136 {
3137 int balance = 1;
3138 struct rq *rq = cpu_rq(cpu);
3139 unsigned long interval;
3140 struct sched_domain *sd;
3141 /* Earliest time when we have to do rebalance again */
3142 unsigned long next_balance = jiffies + 60*HZ;
3143 int update_next_balance = 0;
3144
3145 for_each_domain(cpu, sd) {
3146 if (!(sd->flags & SD_LOAD_BALANCE))
3147 continue;
3148
3149 interval = sd->balance_interval;
3150 if (idle != CPU_IDLE)
3151 interval *= sd->busy_factor;
3152
3153 /* scale ms to jiffies */
3154 interval = msecs_to_jiffies(interval);
3155 if (unlikely(!interval))
3156 interval = 1;
3157 if (interval > HZ*NR_CPUS/10)
3158 interval = HZ*NR_CPUS/10;
3159
3160
3161 if (sd->flags & SD_SERIALIZE) {
3162 if (!spin_trylock(&balancing))
3163 goto out;
3164 }
3165
3166 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3167 if (load_balance(cpu, rq, sd, idle, &balance)) {
3168 /*
3169 * We've pulled tasks over so either we're no
3170 * longer idle, or one of our SMT siblings is
3171 * not idle.
3172 */
3173 idle = CPU_NOT_IDLE;
3174 }
3175 sd->last_balance = jiffies;
3176 }
3177 if (sd->flags & SD_SERIALIZE)
3178 spin_unlock(&balancing);
3179 out:
3180 if (time_after(next_balance, sd->last_balance + interval)) {
3181 next_balance = sd->last_balance + interval;
3182 update_next_balance = 1;
3183 }
3184
3185 /*
3186 * Stop the load balance at this level. There is another
3187 * CPU in our sched group which is doing load balancing more
3188 * actively.
3189 */
3190 if (!balance)
3191 break;
3192 }
3193
3194 /*
3195 * next_balance will be updated only when there is a need.
3196 * When the cpu is attached to null domain for ex, it will not be
3197 * updated.
3198 */
3199 if (likely(update_next_balance))
3200 rq->next_balance = next_balance;
3201 }
3202
3203 /*
3204 * run_rebalance_domains is triggered when needed from the scheduler tick.
3205 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3206 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3207 */
3208 static void run_rebalance_domains(struct softirq_action *h)
3209 {
3210 int this_cpu = smp_processor_id();
3211 struct rq *this_rq = cpu_rq(this_cpu);
3212 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3213 CPU_IDLE : CPU_NOT_IDLE;
3214
3215 rebalance_domains(this_cpu, idle);
3216
3217 #ifdef CONFIG_NO_HZ
3218 /*
3219 * If this cpu is the owner for idle load balancing, then do the
3220 * balancing on behalf of the other idle cpus whose ticks are
3221 * stopped.
3222 */
3223 if (this_rq->idle_at_tick &&
3224 atomic_read(&nohz.load_balancer) == this_cpu) {
3225 cpumask_t cpus = nohz.cpu_mask;
3226 struct rq *rq;
3227 int balance_cpu;
3228
3229 cpu_clear(this_cpu, cpus);
3230 for_each_cpu_mask(balance_cpu, cpus) {
3231 /*
3232 * If this cpu gets work to do, stop the load balancing
3233 * work being done for other cpus. Next load
3234 * balancing owner will pick it up.
3235 */
3236 if (need_resched())
3237 break;
3238
3239 rebalance_domains(balance_cpu, CPU_IDLE);
3240
3241 rq = cpu_rq(balance_cpu);
3242 if (time_after(this_rq->next_balance, rq->next_balance))
3243 this_rq->next_balance = rq->next_balance;
3244 }
3245 }
3246 #endif
3247 }
3248
3249 /*
3250 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3251 *
3252 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3253 * idle load balancing owner or decide to stop the periodic load balancing,
3254 * if the whole system is idle.
3255 */
3256 static inline void trigger_load_balance(struct rq *rq, int cpu)
3257 {
3258 #ifdef CONFIG_NO_HZ
3259 /*
3260 * If we were in the nohz mode recently and busy at the current
3261 * scheduler tick, then check if we need to nominate new idle
3262 * load balancer.
3263 */
3264 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3265 rq->in_nohz_recently = 0;
3266
3267 if (atomic_read(&nohz.load_balancer) == cpu) {
3268 cpu_clear(cpu, nohz.cpu_mask);
3269 atomic_set(&nohz.load_balancer, -1);
3270 }
3271
3272 if (atomic_read(&nohz.load_balancer) == -1) {
3273 /*
3274 * simple selection for now: Nominate the
3275 * first cpu in the nohz list to be the next
3276 * ilb owner.
3277 *
3278 * TBD: Traverse the sched domains and nominate
3279 * the nearest cpu in the nohz.cpu_mask.
3280 */
3281 int ilb = first_cpu(nohz.cpu_mask);
3282
3283 if (ilb != NR_CPUS)
3284 resched_cpu(ilb);
3285 }
3286 }
3287
3288 /*
3289 * If this cpu is idle and doing idle load balancing for all the
3290 * cpus with ticks stopped, is it time for that to stop?
3291 */
3292 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3293 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3294 resched_cpu(cpu);
3295 return;
3296 }
3297
3298 /*
3299 * If this cpu is idle and the idle load balancing is done by
3300 * someone else, then no need raise the SCHED_SOFTIRQ
3301 */
3302 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3303 cpu_isset(cpu, nohz.cpu_mask))
3304 return;
3305 #endif
3306 if (time_after_eq(jiffies, rq->next_balance))
3307 raise_softirq(SCHED_SOFTIRQ);
3308 }
3309
3310 #else /* CONFIG_SMP */
3311
3312 /*
3313 * on UP we do not need to balance between CPUs:
3314 */
3315 static inline void idle_balance(int cpu, struct rq *rq)
3316 {
3317 }
3318
3319 #endif
3320
3321 DEFINE_PER_CPU(struct kernel_stat, kstat);
3322
3323 EXPORT_PER_CPU_SYMBOL(kstat);
3324
3325 /*
3326 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3327 * that have not yet been banked in case the task is currently running.
3328 */
3329 unsigned long long task_sched_runtime(struct task_struct *p)
3330 {
3331 unsigned long flags;
3332 u64 ns, delta_exec;
3333 struct rq *rq;
3334
3335 rq = task_rq_lock(p, &flags);
3336 ns = p->se.sum_exec_runtime;
3337 if (rq->curr == p) {
3338 update_rq_clock(rq);
3339 delta_exec = rq->clock - p->se.exec_start;
3340 if ((s64)delta_exec > 0)
3341 ns += delta_exec;
3342 }
3343 task_rq_unlock(rq, &flags);
3344
3345 return ns;
3346 }
3347
3348 /*
3349 * Account user cpu time to a process.
3350 * @p: the process that the cpu time gets accounted to
3351 * @cputime: the cpu time spent in user space since the last update
3352 */
3353 void account_user_time(struct task_struct *p, cputime_t cputime)
3354 {
3355 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3356 cputime64_t tmp;
3357
3358 p->utime = cputime_add(p->utime, cputime);
3359
3360 /* Add user time to cpustat. */
3361 tmp = cputime_to_cputime64(cputime);
3362 if (TASK_NICE(p) > 0)
3363 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3364 else
3365 cpustat->user = cputime64_add(cpustat->user, tmp);
3366 }
3367
3368 /*
3369 * Account guest cpu time to a process.
3370 * @p: the process that the cpu time gets accounted to
3371 * @cputime: the cpu time spent in virtual machine since the last update
3372 */
3373 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3374 {
3375 cputime64_t tmp;
3376 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3377
3378 tmp = cputime_to_cputime64(cputime);
3379
3380 p->utime = cputime_add(p->utime, cputime);
3381 p->gtime = cputime_add(p->gtime, cputime);
3382
3383 cpustat->user = cputime64_add(cpustat->user, tmp);
3384 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3385 }
3386
3387 /*
3388 * Account scaled user cpu time to a process.
3389 * @p: the process that the cpu time gets accounted to
3390 * @cputime: the cpu time spent in user space since the last update
3391 */
3392 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3393 {
3394 p->utimescaled = cputime_add(p->utimescaled, cputime);
3395 }
3396
3397 /*
3398 * Account system cpu time to a process.
3399 * @p: the process that the cpu time gets accounted to
3400 * @hardirq_offset: the offset to subtract from hardirq_count()
3401 * @cputime: the cpu time spent in kernel space since the last update
3402 */
3403 void account_system_time(struct task_struct *p, int hardirq_offset,
3404 cputime_t cputime)
3405 {
3406 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3407 struct rq *rq = this_rq();
3408 cputime64_t tmp;
3409
3410 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3411 return account_guest_time(p, cputime);
3412
3413 p->stime = cputime_add(p->stime, cputime);
3414
3415 /* Add system time to cpustat. */
3416 tmp = cputime_to_cputime64(cputime);
3417 if (hardirq_count() - hardirq_offset)
3418 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3419 else if (softirq_count())
3420 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3421 else if (p != rq->idle)
3422 cpustat->system = cputime64_add(cpustat->system, tmp);
3423 else if (atomic_read(&rq->nr_iowait) > 0)
3424 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3425 else
3426 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3427 /* Account for system time used */
3428 acct_update_integrals(p);
3429 }
3430
3431 /*
3432 * Account scaled system cpu time to a process.
3433 * @p: the process that the cpu time gets accounted to
3434 * @hardirq_offset: the offset to subtract from hardirq_count()
3435 * @cputime: the cpu time spent in kernel space since the last update
3436 */
3437 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3438 {
3439 p->stimescaled = cputime_add(p->stimescaled, cputime);
3440 }
3441
3442 /*
3443 * Account for involuntary wait time.
3444 * @p: the process from which the cpu time has been stolen
3445 * @steal: the cpu time spent in involuntary wait
3446 */
3447 void account_steal_time(struct task_struct *p, cputime_t steal)
3448 {
3449 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3450 cputime64_t tmp = cputime_to_cputime64(steal);
3451 struct rq *rq = this_rq();
3452
3453 if (p == rq->idle) {
3454 p->stime = cputime_add(p->stime, steal);
3455 if (atomic_read(&rq->nr_iowait) > 0)
3456 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3457 else
3458 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3459 } else
3460 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3461 }
3462
3463 /*
3464 * This function gets called by the timer code, with HZ frequency.
3465 * We call it with interrupts disabled.
3466 *
3467 * It also gets called by the fork code, when changing the parent's
3468 * timeslices.
3469 */
3470 void scheduler_tick(void)
3471 {
3472 int cpu = smp_processor_id();
3473 struct rq *rq = cpu_rq(cpu);
3474 struct task_struct *curr = rq->curr;
3475 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3476
3477 spin_lock(&rq->lock);
3478 __update_rq_clock(rq);
3479 /*
3480 * Let rq->clock advance by at least TICK_NSEC:
3481 */
3482 if (unlikely(rq->clock < next_tick))
3483 rq->clock = next_tick;
3484 rq->tick_timestamp = rq->clock;
3485 update_cpu_load(rq);
3486 if (curr != rq->idle) /* FIXME: needed? */
3487 curr->sched_class->task_tick(rq, curr);
3488 spin_unlock(&rq->lock);
3489
3490 #ifdef CONFIG_SMP
3491 rq->idle_at_tick = idle_cpu(cpu);
3492 trigger_load_balance(rq, cpu);
3493 #endif
3494 }
3495
3496 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3497
3498 void fastcall add_preempt_count(int val)
3499 {
3500 /*
3501 * Underflow?
3502 */
3503 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3504 return;
3505 preempt_count() += val;
3506 /*
3507 * Spinlock count overflowing soon?
3508 */
3509 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3510 PREEMPT_MASK - 10);
3511 }
3512 EXPORT_SYMBOL(add_preempt_count);
3513
3514 void fastcall sub_preempt_count(int val)
3515 {
3516 /*
3517 * Underflow?
3518 */
3519 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3520 return;
3521 /*
3522 * Is the spinlock portion underflowing?
3523 */
3524 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3525 !(preempt_count() & PREEMPT_MASK)))
3526 return;
3527
3528 preempt_count() -= val;
3529 }
3530 EXPORT_SYMBOL(sub_preempt_count);
3531
3532 #endif
3533
3534 /*
3535 * Print scheduling while atomic bug:
3536 */
3537 static noinline void __schedule_bug(struct task_struct *prev)
3538 {
3539 struct pt_regs *regs = get_irq_regs();
3540
3541 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3542 prev->comm, prev->pid, preempt_count());
3543
3544 debug_show_held_locks(prev);
3545 if (irqs_disabled())
3546 print_irqtrace_events(prev);
3547
3548 if (regs)
3549 show_regs(regs);
3550 else
3551 dump_stack();
3552 }
3553
3554 /*
3555 * Various schedule()-time debugging checks and statistics:
3556 */
3557 static inline void schedule_debug(struct task_struct *prev)
3558 {
3559 /*
3560 * Test if we are atomic. Since do_exit() needs to call into
3561 * schedule() atomically, we ignore that path for now.
3562 * Otherwise, whine if we are scheduling when we should not be.
3563 */
3564 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3565 __schedule_bug(prev);
3566
3567 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3568
3569 schedstat_inc(this_rq(), sched_count);
3570 #ifdef CONFIG_SCHEDSTATS
3571 if (unlikely(prev->lock_depth >= 0)) {
3572 schedstat_inc(this_rq(), bkl_count);
3573 schedstat_inc(prev, sched_info.bkl_count);
3574 }
3575 #endif
3576 }
3577
3578 /*
3579 * Pick up the highest-prio task:
3580 */
3581 static inline struct task_struct *
3582 pick_next_task(struct rq *rq, struct task_struct *prev)
3583 {
3584 const struct sched_class *class;
3585 struct task_struct *p;
3586
3587 /*
3588 * Optimization: we know that if all tasks are in
3589 * the fair class we can call that function directly:
3590 */
3591 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3592 p = fair_sched_class.pick_next_task(rq);
3593 if (likely(p))
3594 return p;
3595 }
3596
3597 class = sched_class_highest;
3598 for ( ; ; ) {
3599 p = class->pick_next_task(rq);
3600 if (p)
3601 return p;
3602 /*
3603 * Will never be NULL as the idle class always
3604 * returns a non-NULL p:
3605 */
3606 class = class->next;
3607 }
3608 }
3609
3610 /*
3611 * schedule() is the main scheduler function.
3612 */
3613 asmlinkage void __sched schedule(void)
3614 {
3615 struct task_struct *prev, *next;
3616 long *switch_count;
3617 struct rq *rq;
3618 int cpu;
3619
3620 need_resched:
3621 preempt_disable();
3622 cpu = smp_processor_id();
3623 rq = cpu_rq(cpu);
3624 rcu_qsctr_inc(cpu);
3625 prev = rq->curr;
3626 switch_count = &prev->nivcsw;
3627
3628 release_kernel_lock(prev);
3629 need_resched_nonpreemptible:
3630
3631 schedule_debug(prev);
3632
3633 /*
3634 * Do the rq-clock update outside the rq lock:
3635 */
3636 local_irq_disable();
3637 __update_rq_clock(rq);
3638 spin_lock(&rq->lock);
3639 clear_tsk_need_resched(prev);
3640
3641 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3642 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3643 unlikely(signal_pending(prev)))) {
3644 prev->state = TASK_RUNNING;
3645 } else {
3646 deactivate_task(rq, prev, 1);
3647 }
3648 switch_count = &prev->nvcsw;
3649 }
3650
3651 if (unlikely(!rq->nr_running))
3652 idle_balance(cpu, rq);
3653
3654 prev->sched_class->put_prev_task(rq, prev);
3655 next = pick_next_task(rq, prev);
3656
3657 sched_info_switch(prev, next);
3658
3659 if (likely(prev != next)) {
3660 rq->nr_switches++;
3661 rq->curr = next;
3662 ++*switch_count;
3663
3664 context_switch(rq, prev, next); /* unlocks the rq */
3665 } else
3666 spin_unlock_irq(&rq->lock);
3667
3668 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3669 cpu = smp_processor_id();
3670 rq = cpu_rq(cpu);
3671 goto need_resched_nonpreemptible;
3672 }
3673 preempt_enable_no_resched();
3674 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3675 goto need_resched;
3676 }
3677 EXPORT_SYMBOL(schedule);
3678
3679 #ifdef CONFIG_PREEMPT
3680 /*
3681 * this is the entry point to schedule() from in-kernel preemption
3682 * off of preempt_enable. Kernel preemptions off return from interrupt
3683 * occur there and call schedule directly.
3684 */
3685 asmlinkage void __sched preempt_schedule(void)
3686 {
3687 struct thread_info *ti = current_thread_info();
3688 #ifdef CONFIG_PREEMPT_BKL
3689 struct task_struct *task = current;
3690 int saved_lock_depth;
3691 #endif
3692 /*
3693 * If there is a non-zero preempt_count or interrupts are disabled,
3694 * we do not want to preempt the current task. Just return..
3695 */
3696 if (likely(ti->preempt_count || irqs_disabled()))
3697 return;
3698
3699 do {
3700 add_preempt_count(PREEMPT_ACTIVE);
3701
3702 /*
3703 * We keep the big kernel semaphore locked, but we
3704 * clear ->lock_depth so that schedule() doesnt
3705 * auto-release the semaphore:
3706 */
3707 #ifdef CONFIG_PREEMPT_BKL
3708 saved_lock_depth = task->lock_depth;
3709 task->lock_depth = -1;
3710 #endif
3711 schedule();
3712 #ifdef CONFIG_PREEMPT_BKL
3713 task->lock_depth = saved_lock_depth;
3714 #endif
3715 sub_preempt_count(PREEMPT_ACTIVE);
3716
3717 /*
3718 * Check again in case we missed a preemption opportunity
3719 * between schedule and now.
3720 */
3721 barrier();
3722 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3723 }
3724 EXPORT_SYMBOL(preempt_schedule);
3725
3726 /*
3727 * this is the entry point to schedule() from kernel preemption
3728 * off of irq context.
3729 * Note, that this is called and return with irqs disabled. This will
3730 * protect us against recursive calling from irq.
3731 */
3732 asmlinkage void __sched preempt_schedule_irq(void)
3733 {
3734 struct thread_info *ti = current_thread_info();
3735 #ifdef CONFIG_PREEMPT_BKL
3736 struct task_struct *task = current;
3737 int saved_lock_depth;
3738 #endif
3739 /* Catch callers which need to be fixed */
3740 BUG_ON(ti->preempt_count || !irqs_disabled());
3741
3742 do {
3743 add_preempt_count(PREEMPT_ACTIVE);
3744
3745 /*
3746 * We keep the big kernel semaphore locked, but we
3747 * clear ->lock_depth so that schedule() doesnt
3748 * auto-release the semaphore:
3749 */
3750 #ifdef CONFIG_PREEMPT_BKL
3751 saved_lock_depth = task->lock_depth;
3752 task->lock_depth = -1;
3753 #endif
3754 local_irq_enable();
3755 schedule();
3756 local_irq_disable();
3757 #ifdef CONFIG_PREEMPT_BKL
3758 task->lock_depth = saved_lock_depth;
3759 #endif
3760 sub_preempt_count(PREEMPT_ACTIVE);
3761
3762 /*
3763 * Check again in case we missed a preemption opportunity
3764 * between schedule and now.
3765 */
3766 barrier();
3767 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3768 }
3769
3770 #endif /* CONFIG_PREEMPT */
3771
3772 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3773 void *key)
3774 {
3775 return try_to_wake_up(curr->private, mode, sync);
3776 }
3777 EXPORT_SYMBOL(default_wake_function);
3778
3779 /*
3780 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3781 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3782 * number) then we wake all the non-exclusive tasks and one exclusive task.
3783 *
3784 * There are circumstances in which we can try to wake a task which has already
3785 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3786 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3787 */
3788 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3789 int nr_exclusive, int sync, void *key)
3790 {
3791 wait_queue_t *curr, *next;
3792
3793 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3794 unsigned flags = curr->flags;
3795
3796 if (curr->func(curr, mode, sync, key) &&
3797 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3798 break;
3799 }
3800 }
3801
3802 /**
3803 * __wake_up - wake up threads blocked on a waitqueue.
3804 * @q: the waitqueue
3805 * @mode: which threads
3806 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3807 * @key: is directly passed to the wakeup function
3808 */
3809 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3810 int nr_exclusive, void *key)
3811 {
3812 unsigned long flags;
3813
3814 spin_lock_irqsave(&q->lock, flags);
3815 __wake_up_common(q, mode, nr_exclusive, 0, key);
3816 spin_unlock_irqrestore(&q->lock, flags);
3817 }
3818 EXPORT_SYMBOL(__wake_up);
3819
3820 /*
3821 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3822 */
3823 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3824 {
3825 __wake_up_common(q, mode, 1, 0, NULL);
3826 }
3827
3828 /**
3829 * __wake_up_sync - wake up threads blocked on a waitqueue.
3830 * @q: the waitqueue
3831 * @mode: which threads
3832 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3833 *
3834 * The sync wakeup differs that the waker knows that it will schedule
3835 * away soon, so while the target thread will be woken up, it will not
3836 * be migrated to another CPU - ie. the two threads are 'synchronized'
3837 * with each other. This can prevent needless bouncing between CPUs.
3838 *
3839 * On UP it can prevent extra preemption.
3840 */
3841 void fastcall
3842 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3843 {
3844 unsigned long flags;
3845 int sync = 1;
3846
3847 if (unlikely(!q))
3848 return;
3849
3850 if (unlikely(!nr_exclusive))
3851 sync = 0;
3852
3853 spin_lock_irqsave(&q->lock, flags);
3854 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3855 spin_unlock_irqrestore(&q->lock, flags);
3856 }
3857 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3858
3859 void complete(struct completion *x)
3860 {
3861 unsigned long flags;
3862
3863 spin_lock_irqsave(&x->wait.lock, flags);
3864 x->done++;
3865 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3866 1, 0, NULL);
3867 spin_unlock_irqrestore(&x->wait.lock, flags);
3868 }
3869 EXPORT_SYMBOL(complete);
3870
3871 void complete_all(struct completion *x)
3872 {
3873 unsigned long flags;
3874
3875 spin_lock_irqsave(&x->wait.lock, flags);
3876 x->done += UINT_MAX/2;
3877 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3878 0, 0, NULL);
3879 spin_unlock_irqrestore(&x->wait.lock, flags);
3880 }
3881 EXPORT_SYMBOL(complete_all);
3882
3883 static inline long __sched
3884 do_wait_for_common(struct completion *x, long timeout, int state)
3885 {
3886 if (!x->done) {
3887 DECLARE_WAITQUEUE(wait, current);
3888
3889 wait.flags |= WQ_FLAG_EXCLUSIVE;
3890 __add_wait_queue_tail(&x->wait, &wait);
3891 do {
3892 if (state == TASK_INTERRUPTIBLE &&
3893 signal_pending(current)) {
3894 __remove_wait_queue(&x->wait, &wait);
3895 return -ERESTARTSYS;
3896 }
3897 __set_current_state(state);
3898 spin_unlock_irq(&x->wait.lock);
3899 timeout = schedule_timeout(timeout);
3900 spin_lock_irq(&x->wait.lock);
3901 if (!timeout) {
3902 __remove_wait_queue(&x->wait, &wait);
3903 return timeout;
3904 }
3905 } while (!x->done);
3906 __remove_wait_queue(&x->wait, &wait);
3907 }
3908 x->done--;
3909 return timeout;
3910 }
3911
3912 static long __sched
3913 wait_for_common(struct completion *x, long timeout, int state)
3914 {
3915 might_sleep();
3916
3917 spin_lock_irq(&x->wait.lock);
3918 timeout = do_wait_for_common(x, timeout, state);
3919 spin_unlock_irq(&x->wait.lock);
3920 return timeout;
3921 }
3922
3923 void __sched wait_for_completion(struct completion *x)
3924 {
3925 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3926 }
3927 EXPORT_SYMBOL(wait_for_completion);
3928
3929 unsigned long __sched
3930 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3931 {
3932 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3933 }
3934 EXPORT_SYMBOL(wait_for_completion_timeout);
3935
3936 int __sched wait_for_completion_interruptible(struct completion *x)
3937 {
3938 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3939 if (t == -ERESTARTSYS)
3940 return t;
3941 return 0;
3942 }
3943 EXPORT_SYMBOL(wait_for_completion_interruptible);
3944
3945 unsigned long __sched
3946 wait_for_completion_interruptible_timeout(struct completion *x,
3947 unsigned long timeout)
3948 {
3949 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3950 }
3951 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3952
3953 static long __sched
3954 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3955 {
3956 unsigned long flags;
3957 wait_queue_t wait;
3958
3959 init_waitqueue_entry(&wait, current);
3960
3961 __set_current_state(state);
3962
3963 spin_lock_irqsave(&q->lock, flags);
3964 __add_wait_queue(q, &wait);
3965 spin_unlock(&q->lock);
3966 timeout = schedule_timeout(timeout);
3967 spin_lock_irq(&q->lock);
3968 __remove_wait_queue(q, &wait);
3969 spin_unlock_irqrestore(&q->lock, flags);
3970
3971 return timeout;
3972 }
3973
3974 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3975 {
3976 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3977 }
3978 EXPORT_SYMBOL(interruptible_sleep_on);
3979
3980 long __sched
3981 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3982 {
3983 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3984 }
3985 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3986
3987 void __sched sleep_on(wait_queue_head_t *q)
3988 {
3989 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3990 }
3991 EXPORT_SYMBOL(sleep_on);
3992
3993 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3994 {
3995 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3996 }
3997 EXPORT_SYMBOL(sleep_on_timeout);
3998
3999 #ifdef CONFIG_RT_MUTEXES
4000
4001 /*
4002 * rt_mutex_setprio - set the current priority of a task
4003 * @p: task
4004 * @prio: prio value (kernel-internal form)
4005 *
4006 * This function changes the 'effective' priority of a task. It does
4007 * not touch ->normal_prio like __setscheduler().
4008 *
4009 * Used by the rt_mutex code to implement priority inheritance logic.
4010 */
4011 void rt_mutex_setprio(struct task_struct *p, int prio)
4012 {
4013 unsigned long flags;
4014 int oldprio, on_rq, running;
4015 struct rq *rq;
4016
4017 BUG_ON(prio < 0 || prio > MAX_PRIO);
4018
4019 rq = task_rq_lock(p, &flags);
4020 update_rq_clock(rq);
4021
4022 oldprio = p->prio;
4023 on_rq = p->se.on_rq;
4024 running = task_running(rq, p);
4025 if (on_rq) {
4026 dequeue_task(rq, p, 0);
4027 if (running)
4028 p->sched_class->put_prev_task(rq, p);
4029 }
4030
4031 if (rt_prio(prio))
4032 p->sched_class = &rt_sched_class;
4033 else
4034 p->sched_class = &fair_sched_class;
4035
4036 p->prio = prio;
4037
4038 if (on_rq) {
4039 if (running)
4040 p->sched_class->set_curr_task(rq);
4041 enqueue_task(rq, p, 0);
4042 /*
4043 * Reschedule if we are currently running on this runqueue and
4044 * our priority decreased, or if we are not currently running on
4045 * this runqueue and our priority is higher than the current's
4046 */
4047 if (running) {
4048 if (p->prio > oldprio)
4049 resched_task(rq->curr);
4050 } else {
4051 check_preempt_curr(rq, p);
4052 }
4053 }
4054 task_rq_unlock(rq, &flags);
4055 }
4056
4057 #endif
4058
4059 void set_user_nice(struct task_struct *p, long nice)
4060 {
4061 int old_prio, delta, on_rq;
4062 unsigned long flags;
4063 struct rq *rq;
4064
4065 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4066 return;
4067 /*
4068 * We have to be careful, if called from sys_setpriority(),
4069 * the task might be in the middle of scheduling on another CPU.
4070 */
4071 rq = task_rq_lock(p, &flags);
4072 update_rq_clock(rq);
4073 /*
4074 * The RT priorities are set via sched_setscheduler(), but we still
4075 * allow the 'normal' nice value to be set - but as expected
4076 * it wont have any effect on scheduling until the task is
4077 * SCHED_FIFO/SCHED_RR:
4078 */
4079 if (task_has_rt_policy(p)) {
4080 p->static_prio = NICE_TO_PRIO(nice);
4081 goto out_unlock;
4082 }
4083 on_rq = p->se.on_rq;
4084 if (on_rq) {
4085 dequeue_task(rq, p, 0);
4086 dec_load(rq, p);
4087 }
4088
4089 p->static_prio = NICE_TO_PRIO(nice);
4090 set_load_weight(p);
4091 old_prio = p->prio;
4092 p->prio = effective_prio(p);
4093 delta = p->prio - old_prio;
4094
4095 if (on_rq) {
4096 enqueue_task(rq, p, 0);
4097 inc_load(rq, p);
4098 /*
4099 * If the task increased its priority or is running and
4100 * lowered its priority, then reschedule its CPU:
4101 */
4102 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4103 resched_task(rq->curr);
4104 }
4105 out_unlock:
4106 task_rq_unlock(rq, &flags);
4107 }
4108 EXPORT_SYMBOL(set_user_nice);
4109
4110 /*
4111 * can_nice - check if a task can reduce its nice value
4112 * @p: task
4113 * @nice: nice value
4114 */
4115 int can_nice(const struct task_struct *p, const int nice)
4116 {
4117 /* convert nice value [19,-20] to rlimit style value [1,40] */
4118 int nice_rlim = 20 - nice;
4119
4120 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4121 capable(CAP_SYS_NICE));
4122 }
4123
4124 #ifdef __ARCH_WANT_SYS_NICE
4125
4126 /*
4127 * sys_nice - change the priority of the current process.
4128 * @increment: priority increment
4129 *
4130 * sys_setpriority is a more generic, but much slower function that
4131 * does similar things.
4132 */
4133 asmlinkage long sys_nice(int increment)
4134 {
4135 long nice, retval;
4136
4137 /*
4138 * Setpriority might change our priority at the same moment.
4139 * We don't have to worry. Conceptually one call occurs first
4140 * and we have a single winner.
4141 */
4142 if (increment < -40)
4143 increment = -40;
4144 if (increment > 40)
4145 increment = 40;
4146
4147 nice = PRIO_TO_NICE(current->static_prio) + increment;
4148 if (nice < -20)
4149 nice = -20;
4150 if (nice > 19)
4151 nice = 19;
4152
4153 if (increment < 0 && !can_nice(current, nice))
4154 return -EPERM;
4155
4156 retval = security_task_setnice(current, nice);
4157 if (retval)
4158 return retval;
4159
4160 set_user_nice(current, nice);
4161 return 0;
4162 }
4163
4164 #endif
4165
4166 /**
4167 * task_prio - return the priority value of a given task.
4168 * @p: the task in question.
4169 *
4170 * This is the priority value as seen by users in /proc.
4171 * RT tasks are offset by -200. Normal tasks are centered
4172 * around 0, value goes from -16 to +15.
4173 */
4174 int task_prio(const struct task_struct *p)
4175 {
4176 return p->prio - MAX_RT_PRIO;
4177 }
4178
4179 /**
4180 * task_nice - return the nice value of a given task.
4181 * @p: the task in question.
4182 */
4183 int task_nice(const struct task_struct *p)
4184 {
4185 return TASK_NICE(p);
4186 }
4187 EXPORT_SYMBOL_GPL(task_nice);
4188
4189 /**
4190 * idle_cpu - is a given cpu idle currently?
4191 * @cpu: the processor in question.
4192 */
4193 int idle_cpu(int cpu)
4194 {
4195 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4196 }
4197
4198 /**
4199 * idle_task - return the idle task for a given cpu.
4200 * @cpu: the processor in question.
4201 */
4202 struct task_struct *idle_task(int cpu)
4203 {
4204 return cpu_rq(cpu)->idle;
4205 }
4206
4207 /**
4208 * find_process_by_pid - find a process with a matching PID value.
4209 * @pid: the pid in question.
4210 */
4211 static struct task_struct *find_process_by_pid(pid_t pid)
4212 {
4213 return pid ? find_task_by_vpid(pid) : current;
4214 }
4215
4216 /* Actually do priority change: must hold rq lock. */
4217 static void
4218 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4219 {
4220 BUG_ON(p->se.on_rq);
4221
4222 p->policy = policy;
4223 switch (p->policy) {
4224 case SCHED_NORMAL:
4225 case SCHED_BATCH:
4226 case SCHED_IDLE:
4227 p->sched_class = &fair_sched_class;
4228 break;
4229 case SCHED_FIFO:
4230 case SCHED_RR:
4231 p->sched_class = &rt_sched_class;
4232 break;
4233 }
4234
4235 p->rt_priority = prio;
4236 p->normal_prio = normal_prio(p);
4237 /* we are holding p->pi_lock already */
4238 p->prio = rt_mutex_getprio(p);
4239 set_load_weight(p);
4240 }
4241
4242 /**
4243 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4244 * @p: the task in question.
4245 * @policy: new policy.
4246 * @param: structure containing the new RT priority.
4247 *
4248 * NOTE that the task may be already dead.
4249 */
4250 int sched_setscheduler(struct task_struct *p, int policy,
4251 struct sched_param *param)
4252 {
4253 int retval, oldprio, oldpolicy = -1, on_rq, running;
4254 unsigned long flags;
4255 struct rq *rq;
4256
4257 /* may grab non-irq protected spin_locks */
4258 BUG_ON(in_interrupt());
4259 recheck:
4260 /* double check policy once rq lock held */
4261 if (policy < 0)
4262 policy = oldpolicy = p->policy;
4263 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4264 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4265 policy != SCHED_IDLE)
4266 return -EINVAL;
4267 /*
4268 * Valid priorities for SCHED_FIFO and SCHED_RR are
4269 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4270 * SCHED_BATCH and SCHED_IDLE is 0.
4271 */
4272 if (param->sched_priority < 0 ||
4273 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4274 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4275 return -EINVAL;
4276 if (rt_policy(policy) != (param->sched_priority != 0))
4277 return -EINVAL;
4278
4279 /*
4280 * Allow unprivileged RT tasks to decrease priority:
4281 */
4282 if (!capable(CAP_SYS_NICE)) {
4283 if (rt_policy(policy)) {
4284 unsigned long rlim_rtprio;
4285
4286 if (!lock_task_sighand(p, &flags))
4287 return -ESRCH;
4288 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4289 unlock_task_sighand(p, &flags);
4290
4291 /* can't set/change the rt policy */
4292 if (policy != p->policy && !rlim_rtprio)
4293 return -EPERM;
4294
4295 /* can't increase priority */
4296 if (param->sched_priority > p->rt_priority &&
4297 param->sched_priority > rlim_rtprio)
4298 return -EPERM;
4299 }
4300 /*
4301 * Like positive nice levels, dont allow tasks to
4302 * move out of SCHED_IDLE either:
4303 */
4304 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4305 return -EPERM;
4306
4307 /* can't change other user's priorities */
4308 if ((current->euid != p->euid) &&
4309 (current->euid != p->uid))
4310 return -EPERM;
4311 }
4312
4313 retval = security_task_setscheduler(p, policy, param);
4314 if (retval)
4315 return retval;
4316 /*
4317 * make sure no PI-waiters arrive (or leave) while we are
4318 * changing the priority of the task:
4319 */
4320 spin_lock_irqsave(&p->pi_lock, flags);
4321 /*
4322 * To be able to change p->policy safely, the apropriate
4323 * runqueue lock must be held.
4324 */
4325 rq = __task_rq_lock(p);
4326 /* recheck policy now with rq lock held */
4327 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4328 policy = oldpolicy = -1;
4329 __task_rq_unlock(rq);
4330 spin_unlock_irqrestore(&p->pi_lock, flags);
4331 goto recheck;
4332 }
4333 update_rq_clock(rq);
4334 on_rq = p->se.on_rq;
4335 running = task_running(rq, p);
4336 if (on_rq) {
4337 deactivate_task(rq, p, 0);
4338 if (running)
4339 p->sched_class->put_prev_task(rq, p);
4340 }
4341
4342 oldprio = p->prio;
4343 __setscheduler(rq, p, policy, param->sched_priority);
4344
4345 if (on_rq) {
4346 if (running)
4347 p->sched_class->set_curr_task(rq);
4348 activate_task(rq, p, 0);
4349 /*
4350 * Reschedule if we are currently running on this runqueue and
4351 * our priority decreased, or if we are not currently running on
4352 * this runqueue and our priority is higher than the current's
4353 */
4354 if (running) {
4355 if (p->prio > oldprio)
4356 resched_task(rq->curr);
4357 } else {
4358 check_preempt_curr(rq, p);
4359 }
4360 }
4361 __task_rq_unlock(rq);
4362 spin_unlock_irqrestore(&p->pi_lock, flags);
4363
4364 rt_mutex_adjust_pi(p);
4365
4366 return 0;
4367 }
4368 EXPORT_SYMBOL_GPL(sched_setscheduler);
4369
4370 static int
4371 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4372 {
4373 struct sched_param lparam;
4374 struct task_struct *p;
4375 int retval;
4376
4377 if (!param || pid < 0)
4378 return -EINVAL;
4379 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4380 return -EFAULT;
4381
4382 rcu_read_lock();
4383 retval = -ESRCH;
4384 p = find_process_by_pid(pid);
4385 if (p != NULL)
4386 retval = sched_setscheduler(p, policy, &lparam);
4387 rcu_read_unlock();
4388
4389 return retval;
4390 }
4391
4392 /**
4393 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4394 * @pid: the pid in question.
4395 * @policy: new policy.
4396 * @param: structure containing the new RT priority.
4397 */
4398 asmlinkage long
4399 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4400 {
4401 /* negative values for policy are not valid */
4402 if (policy < 0)
4403 return -EINVAL;
4404
4405 return do_sched_setscheduler(pid, policy, param);
4406 }
4407
4408 /**
4409 * sys_sched_setparam - set/change the RT priority of a thread
4410 * @pid: the pid in question.
4411 * @param: structure containing the new RT priority.
4412 */
4413 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4414 {
4415 return do_sched_setscheduler(pid, -1, param);
4416 }
4417
4418 /**
4419 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4420 * @pid: the pid in question.
4421 */
4422 asmlinkage long sys_sched_getscheduler(pid_t pid)
4423 {
4424 struct task_struct *p;
4425 int retval;
4426
4427 if (pid < 0)
4428 return -EINVAL;
4429
4430 retval = -ESRCH;
4431 read_lock(&tasklist_lock);
4432 p = find_process_by_pid(pid);
4433 if (p) {
4434 retval = security_task_getscheduler(p);
4435 if (!retval)
4436 retval = p->policy;
4437 }
4438 read_unlock(&tasklist_lock);
4439 return retval;
4440 }
4441
4442 /**
4443 * sys_sched_getscheduler - get the RT priority of a thread
4444 * @pid: the pid in question.
4445 * @param: structure containing the RT priority.
4446 */
4447 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4448 {
4449 struct sched_param lp;
4450 struct task_struct *p;
4451 int retval;
4452
4453 if (!param || pid < 0)
4454 return -EINVAL;
4455
4456 read_lock(&tasklist_lock);
4457 p = find_process_by_pid(pid);
4458 retval = -ESRCH;
4459 if (!p)
4460 goto out_unlock;
4461
4462 retval = security_task_getscheduler(p);
4463 if (retval)
4464 goto out_unlock;
4465
4466 lp.sched_priority = p->rt_priority;
4467 read_unlock(&tasklist_lock);
4468
4469 /*
4470 * This one might sleep, we cannot do it with a spinlock held ...
4471 */
4472 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4473
4474 return retval;
4475
4476 out_unlock:
4477 read_unlock(&tasklist_lock);
4478 return retval;
4479 }
4480
4481 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4482 {
4483 cpumask_t cpus_allowed;
4484 struct task_struct *p;
4485 int retval;
4486
4487 mutex_lock(&sched_hotcpu_mutex);
4488 read_lock(&tasklist_lock);
4489
4490 p = find_process_by_pid(pid);
4491 if (!p) {
4492 read_unlock(&tasklist_lock);
4493 mutex_unlock(&sched_hotcpu_mutex);
4494 return -ESRCH;
4495 }
4496
4497 /*
4498 * It is not safe to call set_cpus_allowed with the
4499 * tasklist_lock held. We will bump the task_struct's
4500 * usage count and then drop tasklist_lock.
4501 */
4502 get_task_struct(p);
4503 read_unlock(&tasklist_lock);
4504
4505 retval = -EPERM;
4506 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4507 !capable(CAP_SYS_NICE))
4508 goto out_unlock;
4509
4510 retval = security_task_setscheduler(p, 0, NULL);
4511 if (retval)
4512 goto out_unlock;
4513
4514 cpus_allowed = cpuset_cpus_allowed(p);
4515 cpus_and(new_mask, new_mask, cpus_allowed);
4516 again:
4517 retval = set_cpus_allowed(p, new_mask);
4518
4519 if (!retval) {
4520 cpus_allowed = cpuset_cpus_allowed(p);
4521 if (!cpus_subset(new_mask, cpus_allowed)) {
4522 /*
4523 * We must have raced with a concurrent cpuset
4524 * update. Just reset the cpus_allowed to the
4525 * cpuset's cpus_allowed
4526 */
4527 new_mask = cpus_allowed;
4528 goto again;
4529 }
4530 }
4531 out_unlock:
4532 put_task_struct(p);
4533 mutex_unlock(&sched_hotcpu_mutex);
4534 return retval;
4535 }
4536
4537 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4538 cpumask_t *new_mask)
4539 {
4540 if (len < sizeof(cpumask_t)) {
4541 memset(new_mask, 0, sizeof(cpumask_t));
4542 } else if (len > sizeof(cpumask_t)) {
4543 len = sizeof(cpumask_t);
4544 }
4545 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4546 }
4547
4548 /**
4549 * sys_sched_setaffinity - set the cpu affinity of a process
4550 * @pid: pid of the process
4551 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4552 * @user_mask_ptr: user-space pointer to the new cpu mask
4553 */
4554 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4555 unsigned long __user *user_mask_ptr)
4556 {
4557 cpumask_t new_mask;
4558 int retval;
4559
4560 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4561 if (retval)
4562 return retval;
4563
4564 return sched_setaffinity(pid, new_mask);
4565 }
4566
4567 /*
4568 * Represents all cpu's present in the system
4569 * In systems capable of hotplug, this map could dynamically grow
4570 * as new cpu's are detected in the system via any platform specific
4571 * method, such as ACPI for e.g.
4572 */
4573
4574 cpumask_t cpu_present_map __read_mostly;
4575 EXPORT_SYMBOL(cpu_present_map);
4576
4577 #ifndef CONFIG_SMP
4578 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4579 EXPORT_SYMBOL(cpu_online_map);
4580
4581 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4582 EXPORT_SYMBOL(cpu_possible_map);
4583 #endif
4584
4585 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4586 {
4587 struct task_struct *p;
4588 int retval;
4589
4590 mutex_lock(&sched_hotcpu_mutex);
4591 read_lock(&tasklist_lock);
4592
4593 retval = -ESRCH;
4594 p = find_process_by_pid(pid);
4595 if (!p)
4596 goto out_unlock;
4597
4598 retval = security_task_getscheduler(p);
4599 if (retval)
4600 goto out_unlock;
4601
4602 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4603
4604 out_unlock:
4605 read_unlock(&tasklist_lock);
4606 mutex_unlock(&sched_hotcpu_mutex);
4607
4608 return retval;
4609 }
4610
4611 /**
4612 * sys_sched_getaffinity - get the cpu affinity of a process
4613 * @pid: pid of the process
4614 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4615 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4616 */
4617 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4618 unsigned long __user *user_mask_ptr)
4619 {
4620 int ret;
4621 cpumask_t mask;
4622
4623 if (len < sizeof(cpumask_t))
4624 return -EINVAL;
4625
4626 ret = sched_getaffinity(pid, &mask);
4627 if (ret < 0)
4628 return ret;
4629
4630 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4631 return -EFAULT;
4632
4633 return sizeof(cpumask_t);
4634 }
4635
4636 /**
4637 * sys_sched_yield - yield the current processor to other threads.
4638 *
4639 * This function yields the current CPU to other tasks. If there are no
4640 * other threads running on this CPU then this function will return.
4641 */
4642 asmlinkage long sys_sched_yield(void)
4643 {
4644 struct rq *rq = this_rq_lock();
4645
4646 schedstat_inc(rq, yld_count);
4647 current->sched_class->yield_task(rq);
4648
4649 /*
4650 * Since we are going to call schedule() anyway, there's
4651 * no need to preempt or enable interrupts:
4652 */
4653 __release(rq->lock);
4654 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4655 _raw_spin_unlock(&rq->lock);
4656 preempt_enable_no_resched();
4657
4658 schedule();
4659
4660 return 0;
4661 }
4662
4663 static void __cond_resched(void)
4664 {
4665 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4666 __might_sleep(__FILE__, __LINE__);
4667 #endif
4668 /*
4669 * The BKS might be reacquired before we have dropped
4670 * PREEMPT_ACTIVE, which could trigger a second
4671 * cond_resched() call.
4672 */
4673 do {
4674 add_preempt_count(PREEMPT_ACTIVE);
4675 schedule();
4676 sub_preempt_count(PREEMPT_ACTIVE);
4677 } while (need_resched());
4678 }
4679
4680 int __sched cond_resched(void)
4681 {
4682 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4683 system_state == SYSTEM_RUNNING) {
4684 __cond_resched();
4685 return 1;
4686 }
4687 return 0;
4688 }
4689 EXPORT_SYMBOL(cond_resched);
4690
4691 /*
4692 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4693 * call schedule, and on return reacquire the lock.
4694 *
4695 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4696 * operations here to prevent schedule() from being called twice (once via
4697 * spin_unlock(), once by hand).
4698 */
4699 int cond_resched_lock(spinlock_t *lock)
4700 {
4701 int ret = 0;
4702
4703 if (need_lockbreak(lock)) {
4704 spin_unlock(lock);
4705 cpu_relax();
4706 ret = 1;
4707 spin_lock(lock);
4708 }
4709 if (need_resched() && system_state == SYSTEM_RUNNING) {
4710 spin_release(&lock->dep_map, 1, _THIS_IP_);
4711 _raw_spin_unlock(lock);
4712 preempt_enable_no_resched();
4713 __cond_resched();
4714 ret = 1;
4715 spin_lock(lock);
4716 }
4717 return ret;
4718 }
4719 EXPORT_SYMBOL(cond_resched_lock);
4720
4721 int __sched cond_resched_softirq(void)
4722 {
4723 BUG_ON(!in_softirq());
4724
4725 if (need_resched() && system_state == SYSTEM_RUNNING) {
4726 local_bh_enable();
4727 __cond_resched();
4728 local_bh_disable();
4729 return 1;
4730 }
4731 return 0;
4732 }
4733 EXPORT_SYMBOL(cond_resched_softirq);
4734
4735 /**
4736 * yield - yield the current processor to other threads.
4737 *
4738 * This is a shortcut for kernel-space yielding - it marks the
4739 * thread runnable and calls sys_sched_yield().
4740 */
4741 void __sched yield(void)
4742 {
4743 set_current_state(TASK_RUNNING);
4744 sys_sched_yield();
4745 }
4746 EXPORT_SYMBOL(yield);
4747
4748 /*
4749 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4750 * that process accounting knows that this is a task in IO wait state.
4751 *
4752 * But don't do that if it is a deliberate, throttling IO wait (this task
4753 * has set its backing_dev_info: the queue against which it should throttle)
4754 */
4755 void __sched io_schedule(void)
4756 {
4757 struct rq *rq = &__raw_get_cpu_var(runqueues);
4758
4759 delayacct_blkio_start();
4760 atomic_inc(&rq->nr_iowait);
4761 schedule();
4762 atomic_dec(&rq->nr_iowait);
4763 delayacct_blkio_end();
4764 }
4765 EXPORT_SYMBOL(io_schedule);
4766
4767 long __sched io_schedule_timeout(long timeout)
4768 {
4769 struct rq *rq = &__raw_get_cpu_var(runqueues);
4770 long ret;
4771
4772 delayacct_blkio_start();
4773 atomic_inc(&rq->nr_iowait);
4774 ret = schedule_timeout(timeout);
4775 atomic_dec(&rq->nr_iowait);
4776 delayacct_blkio_end();
4777 return ret;
4778 }
4779
4780 /**
4781 * sys_sched_get_priority_max - return maximum RT priority.
4782 * @policy: scheduling class.
4783 *
4784 * this syscall returns the maximum rt_priority that can be used
4785 * by a given scheduling class.
4786 */
4787 asmlinkage long sys_sched_get_priority_max(int policy)
4788 {
4789 int ret = -EINVAL;
4790
4791 switch (policy) {
4792 case SCHED_FIFO:
4793 case SCHED_RR:
4794 ret = MAX_USER_RT_PRIO-1;
4795 break;
4796 case SCHED_NORMAL:
4797 case SCHED_BATCH:
4798 case SCHED_IDLE:
4799 ret = 0;
4800 break;
4801 }
4802 return ret;
4803 }
4804
4805 /**
4806 * sys_sched_get_priority_min - return minimum RT priority.
4807 * @policy: scheduling class.
4808 *
4809 * this syscall returns the minimum rt_priority that can be used
4810 * by a given scheduling class.
4811 */
4812 asmlinkage long sys_sched_get_priority_min(int policy)
4813 {
4814 int ret = -EINVAL;
4815
4816 switch (policy) {
4817 case SCHED_FIFO:
4818 case SCHED_RR:
4819 ret = 1;
4820 break;
4821 case SCHED_NORMAL:
4822 case SCHED_BATCH:
4823 case SCHED_IDLE:
4824 ret = 0;
4825 }
4826 return ret;
4827 }
4828
4829 /**
4830 * sys_sched_rr_get_interval - return the default timeslice of a process.
4831 * @pid: pid of the process.
4832 * @interval: userspace pointer to the timeslice value.
4833 *
4834 * this syscall writes the default timeslice value of a given process
4835 * into the user-space timespec buffer. A value of '0' means infinity.
4836 */
4837 asmlinkage
4838 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4839 {
4840 struct task_struct *p;
4841 unsigned int time_slice;
4842 int retval;
4843 struct timespec t;
4844
4845 if (pid < 0)
4846 return -EINVAL;
4847
4848 retval = -ESRCH;
4849 read_lock(&tasklist_lock);
4850 p = find_process_by_pid(pid);
4851 if (!p)
4852 goto out_unlock;
4853
4854 retval = security_task_getscheduler(p);
4855 if (retval)
4856 goto out_unlock;
4857
4858 /*
4859 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4860 * tasks that are on an otherwise idle runqueue:
4861 */
4862 time_slice = 0;
4863 if (p->policy == SCHED_RR) {
4864 time_slice = DEF_TIMESLICE;
4865 } else {
4866 struct sched_entity *se = &p->se;
4867 unsigned long flags;
4868 struct rq *rq;
4869
4870 rq = task_rq_lock(p, &flags);
4871 if (rq->cfs.load.weight)
4872 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4873 task_rq_unlock(rq, &flags);
4874 }
4875 read_unlock(&tasklist_lock);
4876 jiffies_to_timespec(time_slice, &t);
4877 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4878 return retval;
4879
4880 out_unlock:
4881 read_unlock(&tasklist_lock);
4882 return retval;
4883 }
4884
4885 static const char stat_nam[] = "RSDTtZX";
4886
4887 static void show_task(struct task_struct *p)
4888 {
4889 unsigned long free = 0;
4890 unsigned state;
4891
4892 state = p->state ? __ffs(p->state) + 1 : 0;
4893 printk(KERN_INFO "%-13.13s %c", p->comm,
4894 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4895 #if BITS_PER_LONG == 32
4896 if (state == TASK_RUNNING)
4897 printk(KERN_CONT " running ");
4898 else
4899 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4900 #else
4901 if (state == TASK_RUNNING)
4902 printk(KERN_CONT " running task ");
4903 else
4904 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4905 #endif
4906 #ifdef CONFIG_DEBUG_STACK_USAGE
4907 {
4908 unsigned long *n = end_of_stack(p);
4909 while (!*n)
4910 n++;
4911 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4912 }
4913 #endif
4914 printk(KERN_CONT "%5lu %5d %6d\n", free,
4915 task_pid_nr(p), task_pid_nr(p->parent));
4916
4917 if (state != TASK_RUNNING)
4918 show_stack(p, NULL);
4919 }
4920
4921 void show_state_filter(unsigned long state_filter)
4922 {
4923 struct task_struct *g, *p;
4924
4925 #if BITS_PER_LONG == 32
4926 printk(KERN_INFO
4927 " task PC stack pid father\n");
4928 #else
4929 printk(KERN_INFO
4930 " task PC stack pid father\n");
4931 #endif
4932 read_lock(&tasklist_lock);
4933 do_each_thread(g, p) {
4934 /*
4935 * reset the NMI-timeout, listing all files on a slow
4936 * console might take alot of time:
4937 */
4938 touch_nmi_watchdog();
4939 if (!state_filter || (p->state & state_filter))
4940 show_task(p);
4941 } while_each_thread(g, p);
4942
4943 touch_all_softlockup_watchdogs();
4944
4945 #ifdef CONFIG_SCHED_DEBUG
4946 sysrq_sched_debug_show();
4947 #endif
4948 read_unlock(&tasklist_lock);
4949 /*
4950 * Only show locks if all tasks are dumped:
4951 */
4952 if (state_filter == -1)
4953 debug_show_all_locks();
4954 }
4955
4956 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4957 {
4958 idle->sched_class = &idle_sched_class;
4959 }
4960
4961 /**
4962 * init_idle - set up an idle thread for a given CPU
4963 * @idle: task in question
4964 * @cpu: cpu the idle task belongs to
4965 *
4966 * NOTE: this function does not set the idle thread's NEED_RESCHED
4967 * flag, to make booting more robust.
4968 */
4969 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4970 {
4971 struct rq *rq = cpu_rq(cpu);
4972 unsigned long flags;
4973
4974 __sched_fork(idle);
4975 idle->se.exec_start = sched_clock();
4976
4977 idle->prio = idle->normal_prio = MAX_PRIO;
4978 idle->cpus_allowed = cpumask_of_cpu(cpu);
4979 __set_task_cpu(idle, cpu);
4980
4981 spin_lock_irqsave(&rq->lock, flags);
4982 rq->curr = rq->idle = idle;
4983 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4984 idle->oncpu = 1;
4985 #endif
4986 spin_unlock_irqrestore(&rq->lock, flags);
4987
4988 /* Set the preempt count _outside_ the spinlocks! */
4989 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4990 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4991 #else
4992 task_thread_info(idle)->preempt_count = 0;
4993 #endif
4994 /*
4995 * The idle tasks have their own, simple scheduling class:
4996 */
4997 idle->sched_class = &idle_sched_class;
4998 }
4999
5000 /*
5001 * In a system that switches off the HZ timer nohz_cpu_mask
5002 * indicates which cpus entered this state. This is used
5003 * in the rcu update to wait only for active cpus. For system
5004 * which do not switch off the HZ timer nohz_cpu_mask should
5005 * always be CPU_MASK_NONE.
5006 */
5007 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5008
5009 /*
5010 * Increase the granularity value when there are more CPUs,
5011 * because with more CPUs the 'effective latency' as visible
5012 * to users decreases. But the relationship is not linear,
5013 * so pick a second-best guess by going with the log2 of the
5014 * number of CPUs.
5015 *
5016 * This idea comes from the SD scheduler of Con Kolivas:
5017 */
5018 static inline void sched_init_granularity(void)
5019 {
5020 unsigned int factor = 1 + ilog2(num_online_cpus());
5021 const unsigned long limit = 200000000;
5022
5023 sysctl_sched_min_granularity *= factor;
5024 if (sysctl_sched_min_granularity > limit)
5025 sysctl_sched_min_granularity = limit;
5026
5027 sysctl_sched_latency *= factor;
5028 if (sysctl_sched_latency > limit)
5029 sysctl_sched_latency = limit;
5030
5031 sysctl_sched_wakeup_granularity *= factor;
5032 sysctl_sched_batch_wakeup_granularity *= factor;
5033 }
5034
5035 #ifdef CONFIG_SMP
5036 /*
5037 * This is how migration works:
5038 *
5039 * 1) we queue a struct migration_req structure in the source CPU's
5040 * runqueue and wake up that CPU's migration thread.
5041 * 2) we down() the locked semaphore => thread blocks.
5042 * 3) migration thread wakes up (implicitly it forces the migrated
5043 * thread off the CPU)
5044 * 4) it gets the migration request and checks whether the migrated
5045 * task is still in the wrong runqueue.
5046 * 5) if it's in the wrong runqueue then the migration thread removes
5047 * it and puts it into the right queue.
5048 * 6) migration thread up()s the semaphore.
5049 * 7) we wake up and the migration is done.
5050 */
5051
5052 /*
5053 * Change a given task's CPU affinity. Migrate the thread to a
5054 * proper CPU and schedule it away if the CPU it's executing on
5055 * is removed from the allowed bitmask.
5056 *
5057 * NOTE: the caller must have a valid reference to the task, the
5058 * task must not exit() & deallocate itself prematurely. The
5059 * call is not atomic; no spinlocks may be held.
5060 */
5061 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5062 {
5063 struct migration_req req;
5064 unsigned long flags;
5065 struct rq *rq;
5066 int ret = 0;
5067
5068 rq = task_rq_lock(p, &flags);
5069 if (!cpus_intersects(new_mask, cpu_online_map)) {
5070 ret = -EINVAL;
5071 goto out;
5072 }
5073
5074 p->cpus_allowed = new_mask;
5075 /* Can the task run on the task's current CPU? If so, we're done */
5076 if (cpu_isset(task_cpu(p), new_mask))
5077 goto out;
5078
5079 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5080 /* Need help from migration thread: drop lock and wait. */
5081 task_rq_unlock(rq, &flags);
5082 wake_up_process(rq->migration_thread);
5083 wait_for_completion(&req.done);
5084 tlb_migrate_finish(p->mm);
5085 return 0;
5086 }
5087 out:
5088 task_rq_unlock(rq, &flags);
5089
5090 return ret;
5091 }
5092 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5093
5094 /*
5095 * Move (not current) task off this cpu, onto dest cpu. We're doing
5096 * this because either it can't run here any more (set_cpus_allowed()
5097 * away from this CPU, or CPU going down), or because we're
5098 * attempting to rebalance this task on exec (sched_exec).
5099 *
5100 * So we race with normal scheduler movements, but that's OK, as long
5101 * as the task is no longer on this CPU.
5102 *
5103 * Returns non-zero if task was successfully migrated.
5104 */
5105 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5106 {
5107 struct rq *rq_dest, *rq_src;
5108 int ret = 0, on_rq;
5109
5110 if (unlikely(cpu_is_offline(dest_cpu)))
5111 return ret;
5112
5113 rq_src = cpu_rq(src_cpu);
5114 rq_dest = cpu_rq(dest_cpu);
5115
5116 double_rq_lock(rq_src, rq_dest);
5117 /* Already moved. */
5118 if (task_cpu(p) != src_cpu)
5119 goto out;
5120 /* Affinity changed (again). */
5121 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5122 goto out;
5123
5124 on_rq = p->se.on_rq;
5125 if (on_rq)
5126 deactivate_task(rq_src, p, 0);
5127
5128 set_task_cpu(p, dest_cpu);
5129 if (on_rq) {
5130 activate_task(rq_dest, p, 0);
5131 check_preempt_curr(rq_dest, p);
5132 }
5133 ret = 1;
5134 out:
5135 double_rq_unlock(rq_src, rq_dest);
5136 return ret;
5137 }
5138
5139 /*
5140 * migration_thread - this is a highprio system thread that performs
5141 * thread migration by bumping thread off CPU then 'pushing' onto
5142 * another runqueue.
5143 */
5144 static int migration_thread(void *data)
5145 {
5146 int cpu = (long)data;
5147 struct rq *rq;
5148
5149 rq = cpu_rq(cpu);
5150 BUG_ON(rq->migration_thread != current);
5151
5152 set_current_state(TASK_INTERRUPTIBLE);
5153 while (!kthread_should_stop()) {
5154 struct migration_req *req;
5155 struct list_head *head;
5156
5157 spin_lock_irq(&rq->lock);
5158
5159 if (cpu_is_offline(cpu)) {
5160 spin_unlock_irq(&rq->lock);
5161 goto wait_to_die;
5162 }
5163
5164 if (rq->active_balance) {
5165 active_load_balance(rq, cpu);
5166 rq->active_balance = 0;
5167 }
5168
5169 head = &rq->migration_queue;
5170
5171 if (list_empty(head)) {
5172 spin_unlock_irq(&rq->lock);
5173 schedule();
5174 set_current_state(TASK_INTERRUPTIBLE);
5175 continue;
5176 }
5177 req = list_entry(head->next, struct migration_req, list);
5178 list_del_init(head->next);
5179
5180 spin_unlock(&rq->lock);
5181 __migrate_task(req->task, cpu, req->dest_cpu);
5182 local_irq_enable();
5183
5184 complete(&req->done);
5185 }
5186 __set_current_state(TASK_RUNNING);
5187 return 0;
5188
5189 wait_to_die:
5190 /* Wait for kthread_stop */
5191 set_current_state(TASK_INTERRUPTIBLE);
5192 while (!kthread_should_stop()) {
5193 schedule();
5194 set_current_state(TASK_INTERRUPTIBLE);
5195 }
5196 __set_current_state(TASK_RUNNING);
5197 return 0;
5198 }
5199
5200 #ifdef CONFIG_HOTPLUG_CPU
5201
5202 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5203 {
5204 int ret;
5205
5206 local_irq_disable();
5207 ret = __migrate_task(p, src_cpu, dest_cpu);
5208 local_irq_enable();
5209 return ret;
5210 }
5211
5212 /*
5213 * Figure out where task on dead CPU should go, use force if necessary.
5214 * NOTE: interrupts should be disabled by the caller
5215 */
5216 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5217 {
5218 unsigned long flags;
5219 cpumask_t mask;
5220 struct rq *rq;
5221 int dest_cpu;
5222
5223 do {
5224 /* On same node? */
5225 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5226 cpus_and(mask, mask, p->cpus_allowed);
5227 dest_cpu = any_online_cpu(mask);
5228
5229 /* On any allowed CPU? */
5230 if (dest_cpu == NR_CPUS)
5231 dest_cpu = any_online_cpu(p->cpus_allowed);
5232
5233 /* No more Mr. Nice Guy. */
5234 if (dest_cpu == NR_CPUS) {
5235 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5236 /*
5237 * Try to stay on the same cpuset, where the
5238 * current cpuset may be a subset of all cpus.
5239 * The cpuset_cpus_allowed_locked() variant of
5240 * cpuset_cpus_allowed() will not block. It must be
5241 * called within calls to cpuset_lock/cpuset_unlock.
5242 */
5243 rq = task_rq_lock(p, &flags);
5244 p->cpus_allowed = cpus_allowed;
5245 dest_cpu = any_online_cpu(p->cpus_allowed);
5246 task_rq_unlock(rq, &flags);
5247
5248 /*
5249 * Don't tell them about moving exiting tasks or
5250 * kernel threads (both mm NULL), since they never
5251 * leave kernel.
5252 */
5253 if (p->mm && printk_ratelimit()) {
5254 printk(KERN_INFO "process %d (%s) no "
5255 "longer affine to cpu%d\n",
5256 task_pid_nr(p), p->comm, dead_cpu);
5257 }
5258 }
5259 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5260 }
5261
5262 /*
5263 * While a dead CPU has no uninterruptible tasks queued at this point,
5264 * it might still have a nonzero ->nr_uninterruptible counter, because
5265 * for performance reasons the counter is not stricly tracking tasks to
5266 * their home CPUs. So we just add the counter to another CPU's counter,
5267 * to keep the global sum constant after CPU-down:
5268 */
5269 static void migrate_nr_uninterruptible(struct rq *rq_src)
5270 {
5271 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5272 unsigned long flags;
5273
5274 local_irq_save(flags);
5275 double_rq_lock(rq_src, rq_dest);
5276 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5277 rq_src->nr_uninterruptible = 0;
5278 double_rq_unlock(rq_src, rq_dest);
5279 local_irq_restore(flags);
5280 }
5281
5282 /* Run through task list and migrate tasks from the dead cpu. */
5283 static void migrate_live_tasks(int src_cpu)
5284 {
5285 struct task_struct *p, *t;
5286
5287 read_lock(&tasklist_lock);
5288
5289 do_each_thread(t, p) {
5290 if (p == current)
5291 continue;
5292
5293 if (task_cpu(p) == src_cpu)
5294 move_task_off_dead_cpu(src_cpu, p);
5295 } while_each_thread(t, p);
5296
5297 read_unlock(&tasklist_lock);
5298 }
5299
5300 /*
5301 * Schedules idle task to be the next runnable task on current CPU.
5302 * It does so by boosting its priority to highest possible.
5303 * Used by CPU offline code.
5304 */
5305 void sched_idle_next(void)
5306 {
5307 int this_cpu = smp_processor_id();
5308 struct rq *rq = cpu_rq(this_cpu);
5309 struct task_struct *p = rq->idle;
5310 unsigned long flags;
5311
5312 /* cpu has to be offline */
5313 BUG_ON(cpu_online(this_cpu));
5314
5315 /*
5316 * Strictly not necessary since rest of the CPUs are stopped by now
5317 * and interrupts disabled on the current cpu.
5318 */
5319 spin_lock_irqsave(&rq->lock, flags);
5320
5321 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5322
5323 update_rq_clock(rq);
5324 activate_task(rq, p, 0);
5325
5326 spin_unlock_irqrestore(&rq->lock, flags);
5327 }
5328
5329 /*
5330 * Ensures that the idle task is using init_mm right before its cpu goes
5331 * offline.
5332 */
5333 void idle_task_exit(void)
5334 {
5335 struct mm_struct *mm = current->active_mm;
5336
5337 BUG_ON(cpu_online(smp_processor_id()));
5338
5339 if (mm != &init_mm)
5340 switch_mm(mm, &init_mm, current);
5341 mmdrop(mm);
5342 }
5343
5344 /* called under rq->lock with disabled interrupts */
5345 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5346 {
5347 struct rq *rq = cpu_rq(dead_cpu);
5348
5349 /* Must be exiting, otherwise would be on tasklist. */
5350 BUG_ON(!p->exit_state);
5351
5352 /* Cannot have done final schedule yet: would have vanished. */
5353 BUG_ON(p->state == TASK_DEAD);
5354
5355 get_task_struct(p);
5356
5357 /*
5358 * Drop lock around migration; if someone else moves it,
5359 * that's OK. No task can be added to this CPU, so iteration is
5360 * fine.
5361 */
5362 spin_unlock_irq(&rq->lock);
5363 move_task_off_dead_cpu(dead_cpu, p);
5364 spin_lock_irq(&rq->lock);
5365
5366 put_task_struct(p);
5367 }
5368
5369 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5370 static void migrate_dead_tasks(unsigned int dead_cpu)
5371 {
5372 struct rq *rq = cpu_rq(dead_cpu);
5373 struct task_struct *next;
5374
5375 for ( ; ; ) {
5376 if (!rq->nr_running)
5377 break;
5378 update_rq_clock(rq);
5379 next = pick_next_task(rq, rq->curr);
5380 if (!next)
5381 break;
5382 migrate_dead(dead_cpu, next);
5383
5384 }
5385 }
5386 #endif /* CONFIG_HOTPLUG_CPU */
5387
5388 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5389
5390 static struct ctl_table sd_ctl_dir[] = {
5391 {
5392 .procname = "sched_domain",
5393 .mode = 0555,
5394 },
5395 {0, },
5396 };
5397
5398 static struct ctl_table sd_ctl_root[] = {
5399 {
5400 .ctl_name = CTL_KERN,
5401 .procname = "kernel",
5402 .mode = 0555,
5403 .child = sd_ctl_dir,
5404 },
5405 {0, },
5406 };
5407
5408 static struct ctl_table *sd_alloc_ctl_entry(int n)
5409 {
5410 struct ctl_table *entry =
5411 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5412
5413 return entry;
5414 }
5415
5416 static void sd_free_ctl_entry(struct ctl_table **tablep)
5417 {
5418 struct ctl_table *entry;
5419
5420 /*
5421 * In the intermediate directories, both the child directory and
5422 * procname are dynamically allocated and could fail but the mode
5423 * will always be set. In the lowest directory the names are
5424 * static strings and all have proc handlers.
5425 */
5426 for (entry = *tablep; entry->mode; entry++) {
5427 if (entry->child)
5428 sd_free_ctl_entry(&entry->child);
5429 if (entry->proc_handler == NULL)
5430 kfree(entry->procname);
5431 }
5432
5433 kfree(*tablep);
5434 *tablep = NULL;
5435 }
5436
5437 static void
5438 set_table_entry(struct ctl_table *entry,
5439 const char *procname, void *data, int maxlen,
5440 mode_t mode, proc_handler *proc_handler)
5441 {
5442 entry->procname = procname;
5443 entry->data = data;
5444 entry->maxlen = maxlen;
5445 entry->mode = mode;
5446 entry->proc_handler = proc_handler;
5447 }
5448
5449 static struct ctl_table *
5450 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5451 {
5452 struct ctl_table *table = sd_alloc_ctl_entry(12);
5453
5454 if (table == NULL)
5455 return NULL;
5456
5457 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5458 sizeof(long), 0644, proc_doulongvec_minmax);
5459 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5460 sizeof(long), 0644, proc_doulongvec_minmax);
5461 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5462 sizeof(int), 0644, proc_dointvec_minmax);
5463 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5464 sizeof(int), 0644, proc_dointvec_minmax);
5465 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5466 sizeof(int), 0644, proc_dointvec_minmax);
5467 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5468 sizeof(int), 0644, proc_dointvec_minmax);
5469 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5470 sizeof(int), 0644, proc_dointvec_minmax);
5471 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5472 sizeof(int), 0644, proc_dointvec_minmax);
5473 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5474 sizeof(int), 0644, proc_dointvec_minmax);
5475 set_table_entry(&table[9], "cache_nice_tries",
5476 &sd->cache_nice_tries,
5477 sizeof(int), 0644, proc_dointvec_minmax);
5478 set_table_entry(&table[10], "flags", &sd->flags,
5479 sizeof(int), 0644, proc_dointvec_minmax);
5480 /* &table[11] is terminator */
5481
5482 return table;
5483 }
5484
5485 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5486 {
5487 struct ctl_table *entry, *table;
5488 struct sched_domain *sd;
5489 int domain_num = 0, i;
5490 char buf[32];
5491
5492 for_each_domain(cpu, sd)
5493 domain_num++;
5494 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5495 if (table == NULL)
5496 return NULL;
5497
5498 i = 0;
5499 for_each_domain(cpu, sd) {
5500 snprintf(buf, 32, "domain%d", i);
5501 entry->procname = kstrdup(buf, GFP_KERNEL);
5502 entry->mode = 0555;
5503 entry->child = sd_alloc_ctl_domain_table(sd);
5504 entry++;
5505 i++;
5506 }
5507 return table;
5508 }
5509
5510 static struct ctl_table_header *sd_sysctl_header;
5511 static void register_sched_domain_sysctl(void)
5512 {
5513 int i, cpu_num = num_online_cpus();
5514 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5515 char buf[32];
5516
5517 WARN_ON(sd_ctl_dir[0].child);
5518 sd_ctl_dir[0].child = entry;
5519
5520 if (entry == NULL)
5521 return;
5522
5523 for_each_online_cpu(i) {
5524 snprintf(buf, 32, "cpu%d", i);
5525 entry->procname = kstrdup(buf, GFP_KERNEL);
5526 entry->mode = 0555;
5527 entry->child = sd_alloc_ctl_cpu_table(i);
5528 entry++;
5529 }
5530
5531 WARN_ON(sd_sysctl_header);
5532 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5533 }
5534
5535 /* may be called multiple times per register */
5536 static void unregister_sched_domain_sysctl(void)
5537 {
5538 if (sd_sysctl_header)
5539 unregister_sysctl_table(sd_sysctl_header);
5540 sd_sysctl_header = NULL;
5541 if (sd_ctl_dir[0].child)
5542 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5543 }
5544 #else
5545 static void register_sched_domain_sysctl(void)
5546 {
5547 }
5548 static void unregister_sched_domain_sysctl(void)
5549 {
5550 }
5551 #endif
5552
5553 /*
5554 * migration_call - callback that gets triggered when a CPU is added.
5555 * Here we can start up the necessary migration thread for the new CPU.
5556 */
5557 static int __cpuinit
5558 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5559 {
5560 struct task_struct *p;
5561 int cpu = (long)hcpu;
5562 unsigned long flags;
5563 struct rq *rq;
5564
5565 switch (action) {
5566 case CPU_LOCK_ACQUIRE:
5567 mutex_lock(&sched_hotcpu_mutex);
5568 break;
5569
5570 case CPU_UP_PREPARE:
5571 case CPU_UP_PREPARE_FROZEN:
5572 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5573 if (IS_ERR(p))
5574 return NOTIFY_BAD;
5575 kthread_bind(p, cpu);
5576 /* Must be high prio: stop_machine expects to yield to it. */
5577 rq = task_rq_lock(p, &flags);
5578 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5579 task_rq_unlock(rq, &flags);
5580 cpu_rq(cpu)->migration_thread = p;
5581 break;
5582
5583 case CPU_ONLINE:
5584 case CPU_ONLINE_FROZEN:
5585 /* Strictly unnecessary, as first user will wake it. */
5586 wake_up_process(cpu_rq(cpu)->migration_thread);
5587 break;
5588
5589 #ifdef CONFIG_HOTPLUG_CPU
5590 case CPU_UP_CANCELED:
5591 case CPU_UP_CANCELED_FROZEN:
5592 if (!cpu_rq(cpu)->migration_thread)
5593 break;
5594 /* Unbind it from offline cpu so it can run. Fall thru. */
5595 kthread_bind(cpu_rq(cpu)->migration_thread,
5596 any_online_cpu(cpu_online_map));
5597 kthread_stop(cpu_rq(cpu)->migration_thread);
5598 cpu_rq(cpu)->migration_thread = NULL;
5599 break;
5600
5601 case CPU_DEAD:
5602 case CPU_DEAD_FROZEN:
5603 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5604 migrate_live_tasks(cpu);
5605 rq = cpu_rq(cpu);
5606 kthread_stop(rq->migration_thread);
5607 rq->migration_thread = NULL;
5608 /* Idle task back to normal (off runqueue, low prio) */
5609 spin_lock_irq(&rq->lock);
5610 update_rq_clock(rq);
5611 deactivate_task(rq, rq->idle, 0);
5612 rq->idle->static_prio = MAX_PRIO;
5613 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5614 rq->idle->sched_class = &idle_sched_class;
5615 migrate_dead_tasks(cpu);
5616 spin_unlock_irq(&rq->lock);
5617 cpuset_unlock();
5618 migrate_nr_uninterruptible(rq);
5619 BUG_ON(rq->nr_running != 0);
5620
5621 /*
5622 * No need to migrate the tasks: it was best-effort if
5623 * they didn't take sched_hotcpu_mutex. Just wake up
5624 * the requestors.
5625 */
5626 spin_lock_irq(&rq->lock);
5627 while (!list_empty(&rq->migration_queue)) {
5628 struct migration_req *req;
5629
5630 req = list_entry(rq->migration_queue.next,
5631 struct migration_req, list);
5632 list_del_init(&req->list);
5633 complete(&req->done);
5634 }
5635 spin_unlock_irq(&rq->lock);
5636 break;
5637 #endif
5638 case CPU_LOCK_RELEASE:
5639 mutex_unlock(&sched_hotcpu_mutex);
5640 break;
5641 }
5642 return NOTIFY_OK;
5643 }
5644
5645 /* Register at highest priority so that task migration (migrate_all_tasks)
5646 * happens before everything else.
5647 */
5648 static struct notifier_block __cpuinitdata migration_notifier = {
5649 .notifier_call = migration_call,
5650 .priority = 10
5651 };
5652
5653 void __init migration_init(void)
5654 {
5655 void *cpu = (void *)(long)smp_processor_id();
5656 int err;
5657
5658 /* Start one for the boot CPU: */
5659 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5660 BUG_ON(err == NOTIFY_BAD);
5661 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5662 register_cpu_notifier(&migration_notifier);
5663 }
5664 #endif
5665
5666 #ifdef CONFIG_SMP
5667
5668 /* Number of possible processor ids */
5669 int nr_cpu_ids __read_mostly = NR_CPUS;
5670 EXPORT_SYMBOL(nr_cpu_ids);
5671
5672 #ifdef CONFIG_SCHED_DEBUG
5673
5674 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5675 {
5676 struct sched_group *group = sd->groups;
5677 cpumask_t groupmask;
5678 char str[NR_CPUS];
5679
5680 cpumask_scnprintf(str, NR_CPUS, sd->span);
5681 cpus_clear(groupmask);
5682
5683 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5684
5685 if (!(sd->flags & SD_LOAD_BALANCE)) {
5686 printk("does not load-balance\n");
5687 if (sd->parent)
5688 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5689 " has parent");
5690 return -1;
5691 }
5692
5693 printk(KERN_CONT "span %s\n", str);
5694
5695 if (!cpu_isset(cpu, sd->span)) {
5696 printk(KERN_ERR "ERROR: domain->span does not contain "
5697 "CPU%d\n", cpu);
5698 }
5699 if (!cpu_isset(cpu, group->cpumask)) {
5700 printk(KERN_ERR "ERROR: domain->groups does not contain"
5701 " CPU%d\n", cpu);
5702 }
5703
5704 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5705 do {
5706 if (!group) {
5707 printk("\n");
5708 printk(KERN_ERR "ERROR: group is NULL\n");
5709 break;
5710 }
5711
5712 if (!group->__cpu_power) {
5713 printk(KERN_CONT "\n");
5714 printk(KERN_ERR "ERROR: domain->cpu_power not "
5715 "set\n");
5716 break;
5717 }
5718
5719 if (!cpus_weight(group->cpumask)) {
5720 printk(KERN_CONT "\n");
5721 printk(KERN_ERR "ERROR: empty group\n");
5722 break;
5723 }
5724
5725 if (cpus_intersects(groupmask, group->cpumask)) {
5726 printk(KERN_CONT "\n");
5727 printk(KERN_ERR "ERROR: repeated CPUs\n");
5728 break;
5729 }
5730
5731 cpus_or(groupmask, groupmask, group->cpumask);
5732
5733 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5734 printk(KERN_CONT " %s", str);
5735
5736 group = group->next;
5737 } while (group != sd->groups);
5738 printk(KERN_CONT "\n");
5739
5740 if (!cpus_equal(sd->span, groupmask))
5741 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5742
5743 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5744 printk(KERN_ERR "ERROR: parent span is not a superset "
5745 "of domain->span\n");
5746 return 0;
5747 }
5748
5749 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5750 {
5751 int level = 0;
5752
5753 if (!sd) {
5754 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5755 return;
5756 }
5757
5758 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5759
5760 for (;;) {
5761 if (sched_domain_debug_one(sd, cpu, level))
5762 break;
5763 level++;
5764 sd = sd->parent;
5765 if (!sd)
5766 break;
5767 }
5768 }
5769 #else
5770 # define sched_domain_debug(sd, cpu) do { } while (0)
5771 #endif
5772
5773 static int sd_degenerate(struct sched_domain *sd)
5774 {
5775 if (cpus_weight(sd->span) == 1)
5776 return 1;
5777
5778 /* Following flags need at least 2 groups */
5779 if (sd->flags & (SD_LOAD_BALANCE |
5780 SD_BALANCE_NEWIDLE |
5781 SD_BALANCE_FORK |
5782 SD_BALANCE_EXEC |
5783 SD_SHARE_CPUPOWER |
5784 SD_SHARE_PKG_RESOURCES)) {
5785 if (sd->groups != sd->groups->next)
5786 return 0;
5787 }
5788
5789 /* Following flags don't use groups */
5790 if (sd->flags & (SD_WAKE_IDLE |
5791 SD_WAKE_AFFINE |
5792 SD_WAKE_BALANCE))
5793 return 0;
5794
5795 return 1;
5796 }
5797
5798 static int
5799 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5800 {
5801 unsigned long cflags = sd->flags, pflags = parent->flags;
5802
5803 if (sd_degenerate(parent))
5804 return 1;
5805
5806 if (!cpus_equal(sd->span, parent->span))
5807 return 0;
5808
5809 /* Does parent contain flags not in child? */
5810 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5811 if (cflags & SD_WAKE_AFFINE)
5812 pflags &= ~SD_WAKE_BALANCE;
5813 /* Flags needing groups don't count if only 1 group in parent */
5814 if (parent->groups == parent->groups->next) {
5815 pflags &= ~(SD_LOAD_BALANCE |
5816 SD_BALANCE_NEWIDLE |
5817 SD_BALANCE_FORK |
5818 SD_BALANCE_EXEC |
5819 SD_SHARE_CPUPOWER |
5820 SD_SHARE_PKG_RESOURCES);
5821 }
5822 if (~cflags & pflags)
5823 return 0;
5824
5825 return 1;
5826 }
5827
5828 /*
5829 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5830 * hold the hotplug lock.
5831 */
5832 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5833 {
5834 struct rq *rq = cpu_rq(cpu);
5835 struct sched_domain *tmp;
5836
5837 /* Remove the sched domains which do not contribute to scheduling. */
5838 for (tmp = sd; tmp; tmp = tmp->parent) {
5839 struct sched_domain *parent = tmp->parent;
5840 if (!parent)
5841 break;
5842 if (sd_parent_degenerate(tmp, parent)) {
5843 tmp->parent = parent->parent;
5844 if (parent->parent)
5845 parent->parent->child = tmp;
5846 }
5847 }
5848
5849 if (sd && sd_degenerate(sd)) {
5850 sd = sd->parent;
5851 if (sd)
5852 sd->child = NULL;
5853 }
5854
5855 sched_domain_debug(sd, cpu);
5856
5857 rcu_assign_pointer(rq->sd, sd);
5858 }
5859
5860 /* cpus with isolated domains */
5861 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5862
5863 /* Setup the mask of cpus configured for isolated domains */
5864 static int __init isolated_cpu_setup(char *str)
5865 {
5866 int ints[NR_CPUS], i;
5867
5868 str = get_options(str, ARRAY_SIZE(ints), ints);
5869 cpus_clear(cpu_isolated_map);
5870 for (i = 1; i <= ints[0]; i++)
5871 if (ints[i] < NR_CPUS)
5872 cpu_set(ints[i], cpu_isolated_map);
5873 return 1;
5874 }
5875
5876 __setup("isolcpus=", isolated_cpu_setup);
5877
5878 /*
5879 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5880 * to a function which identifies what group(along with sched group) a CPU
5881 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5882 * (due to the fact that we keep track of groups covered with a cpumask_t).
5883 *
5884 * init_sched_build_groups will build a circular linked list of the groups
5885 * covered by the given span, and will set each group's ->cpumask correctly,
5886 * and ->cpu_power to 0.
5887 */
5888 static void
5889 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5890 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5891 struct sched_group **sg))
5892 {
5893 struct sched_group *first = NULL, *last = NULL;
5894 cpumask_t covered = CPU_MASK_NONE;
5895 int i;
5896
5897 for_each_cpu_mask(i, span) {
5898 struct sched_group *sg;
5899 int group = group_fn(i, cpu_map, &sg);
5900 int j;
5901
5902 if (cpu_isset(i, covered))
5903 continue;
5904
5905 sg->cpumask = CPU_MASK_NONE;
5906 sg->__cpu_power = 0;
5907
5908 for_each_cpu_mask(j, span) {
5909 if (group_fn(j, cpu_map, NULL) != group)
5910 continue;
5911
5912 cpu_set(j, covered);
5913 cpu_set(j, sg->cpumask);
5914 }
5915 if (!first)
5916 first = sg;
5917 if (last)
5918 last->next = sg;
5919 last = sg;
5920 }
5921 last->next = first;
5922 }
5923
5924 #define SD_NODES_PER_DOMAIN 16
5925
5926 #ifdef CONFIG_NUMA
5927
5928 /**
5929 * find_next_best_node - find the next node to include in a sched_domain
5930 * @node: node whose sched_domain we're building
5931 * @used_nodes: nodes already in the sched_domain
5932 *
5933 * Find the next node to include in a given scheduling domain. Simply
5934 * finds the closest node not already in the @used_nodes map.
5935 *
5936 * Should use nodemask_t.
5937 */
5938 static int find_next_best_node(int node, unsigned long *used_nodes)
5939 {
5940 int i, n, val, min_val, best_node = 0;
5941
5942 min_val = INT_MAX;
5943
5944 for (i = 0; i < MAX_NUMNODES; i++) {
5945 /* Start at @node */
5946 n = (node + i) % MAX_NUMNODES;
5947
5948 if (!nr_cpus_node(n))
5949 continue;
5950
5951 /* Skip already used nodes */
5952 if (test_bit(n, used_nodes))
5953 continue;
5954
5955 /* Simple min distance search */
5956 val = node_distance(node, n);
5957
5958 if (val < min_val) {
5959 min_val = val;
5960 best_node = n;
5961 }
5962 }
5963
5964 set_bit(best_node, used_nodes);
5965 return best_node;
5966 }
5967
5968 /**
5969 * sched_domain_node_span - get a cpumask for a node's sched_domain
5970 * @node: node whose cpumask we're constructing
5971 * @size: number of nodes to include in this span
5972 *
5973 * Given a node, construct a good cpumask for its sched_domain to span. It
5974 * should be one that prevents unnecessary balancing, but also spreads tasks
5975 * out optimally.
5976 */
5977 static cpumask_t sched_domain_node_span(int node)
5978 {
5979 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5980 cpumask_t span, nodemask;
5981 int i;
5982
5983 cpus_clear(span);
5984 bitmap_zero(used_nodes, MAX_NUMNODES);
5985
5986 nodemask = node_to_cpumask(node);
5987 cpus_or(span, span, nodemask);
5988 set_bit(node, used_nodes);
5989
5990 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5991 int next_node = find_next_best_node(node, used_nodes);
5992
5993 nodemask = node_to_cpumask(next_node);
5994 cpus_or(span, span, nodemask);
5995 }
5996
5997 return span;
5998 }
5999 #endif
6000
6001 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6002
6003 /*
6004 * SMT sched-domains:
6005 */
6006 #ifdef CONFIG_SCHED_SMT
6007 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6008 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6009
6010 static int
6011 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6012 {
6013 if (sg)
6014 *sg = &per_cpu(sched_group_cpus, cpu);
6015 return cpu;
6016 }
6017 #endif
6018
6019 /*
6020 * multi-core sched-domains:
6021 */
6022 #ifdef CONFIG_SCHED_MC
6023 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6024 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6025 #endif
6026
6027 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6028 static int
6029 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6030 {
6031 int group;
6032 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6033 cpus_and(mask, mask, *cpu_map);
6034 group = first_cpu(mask);
6035 if (sg)
6036 *sg = &per_cpu(sched_group_core, group);
6037 return group;
6038 }
6039 #elif defined(CONFIG_SCHED_MC)
6040 static int
6041 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6042 {
6043 if (sg)
6044 *sg = &per_cpu(sched_group_core, cpu);
6045 return cpu;
6046 }
6047 #endif
6048
6049 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6050 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6051
6052 static int
6053 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6054 {
6055 int group;
6056 #ifdef CONFIG_SCHED_MC
6057 cpumask_t mask = cpu_coregroup_map(cpu);
6058 cpus_and(mask, mask, *cpu_map);
6059 group = first_cpu(mask);
6060 #elif defined(CONFIG_SCHED_SMT)
6061 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6062 cpus_and(mask, mask, *cpu_map);
6063 group = first_cpu(mask);
6064 #else
6065 group = cpu;
6066 #endif
6067 if (sg)
6068 *sg = &per_cpu(sched_group_phys, group);
6069 return group;
6070 }
6071
6072 #ifdef CONFIG_NUMA
6073 /*
6074 * The init_sched_build_groups can't handle what we want to do with node
6075 * groups, so roll our own. Now each node has its own list of groups which
6076 * gets dynamically allocated.
6077 */
6078 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6079 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6080
6081 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6082 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6083
6084 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6085 struct sched_group **sg)
6086 {
6087 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6088 int group;
6089
6090 cpus_and(nodemask, nodemask, *cpu_map);
6091 group = first_cpu(nodemask);
6092
6093 if (sg)
6094 *sg = &per_cpu(sched_group_allnodes, group);
6095 return group;
6096 }
6097
6098 static void init_numa_sched_groups_power(struct sched_group *group_head)
6099 {
6100 struct sched_group *sg = group_head;
6101 int j;
6102
6103 if (!sg)
6104 return;
6105 do {
6106 for_each_cpu_mask(j, sg->cpumask) {
6107 struct sched_domain *sd;
6108
6109 sd = &per_cpu(phys_domains, j);
6110 if (j != first_cpu(sd->groups->cpumask)) {
6111 /*
6112 * Only add "power" once for each
6113 * physical package.
6114 */
6115 continue;
6116 }
6117
6118 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6119 }
6120 sg = sg->next;
6121 } while (sg != group_head);
6122 }
6123 #endif
6124
6125 #ifdef CONFIG_NUMA
6126 /* Free memory allocated for various sched_group structures */
6127 static void free_sched_groups(const cpumask_t *cpu_map)
6128 {
6129 int cpu, i;
6130
6131 for_each_cpu_mask(cpu, *cpu_map) {
6132 struct sched_group **sched_group_nodes
6133 = sched_group_nodes_bycpu[cpu];
6134
6135 if (!sched_group_nodes)
6136 continue;
6137
6138 for (i = 0; i < MAX_NUMNODES; i++) {
6139 cpumask_t nodemask = node_to_cpumask(i);
6140 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6141
6142 cpus_and(nodemask, nodemask, *cpu_map);
6143 if (cpus_empty(nodemask))
6144 continue;
6145
6146 if (sg == NULL)
6147 continue;
6148 sg = sg->next;
6149 next_sg:
6150 oldsg = sg;
6151 sg = sg->next;
6152 kfree(oldsg);
6153 if (oldsg != sched_group_nodes[i])
6154 goto next_sg;
6155 }
6156 kfree(sched_group_nodes);
6157 sched_group_nodes_bycpu[cpu] = NULL;
6158 }
6159 }
6160 #else
6161 static void free_sched_groups(const cpumask_t *cpu_map)
6162 {
6163 }
6164 #endif
6165
6166 /*
6167 * Initialize sched groups cpu_power.
6168 *
6169 * cpu_power indicates the capacity of sched group, which is used while
6170 * distributing the load between different sched groups in a sched domain.
6171 * Typically cpu_power for all the groups in a sched domain will be same unless
6172 * there are asymmetries in the topology. If there are asymmetries, group
6173 * having more cpu_power will pickup more load compared to the group having
6174 * less cpu_power.
6175 *
6176 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6177 * the maximum number of tasks a group can handle in the presence of other idle
6178 * or lightly loaded groups in the same sched domain.
6179 */
6180 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6181 {
6182 struct sched_domain *child;
6183 struct sched_group *group;
6184
6185 WARN_ON(!sd || !sd->groups);
6186
6187 if (cpu != first_cpu(sd->groups->cpumask))
6188 return;
6189
6190 child = sd->child;
6191
6192 sd->groups->__cpu_power = 0;
6193
6194 /*
6195 * For perf policy, if the groups in child domain share resources
6196 * (for example cores sharing some portions of the cache hierarchy
6197 * or SMT), then set this domain groups cpu_power such that each group
6198 * can handle only one task, when there are other idle groups in the
6199 * same sched domain.
6200 */
6201 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6202 (child->flags &
6203 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6204 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6205 return;
6206 }
6207
6208 /*
6209 * add cpu_power of each child group to this groups cpu_power
6210 */
6211 group = child->groups;
6212 do {
6213 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6214 group = group->next;
6215 } while (group != child->groups);
6216 }
6217
6218 /*
6219 * Build sched domains for a given set of cpus and attach the sched domains
6220 * to the individual cpus
6221 */
6222 static int build_sched_domains(const cpumask_t *cpu_map)
6223 {
6224 int i;
6225 #ifdef CONFIG_NUMA
6226 struct sched_group **sched_group_nodes = NULL;
6227 int sd_allnodes = 0;
6228
6229 /*
6230 * Allocate the per-node list of sched groups
6231 */
6232 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6233 GFP_KERNEL);
6234 if (!sched_group_nodes) {
6235 printk(KERN_WARNING "Can not alloc sched group node list\n");
6236 return -ENOMEM;
6237 }
6238 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6239 #endif
6240
6241 /*
6242 * Set up domains for cpus specified by the cpu_map.
6243 */
6244 for_each_cpu_mask(i, *cpu_map) {
6245 struct sched_domain *sd = NULL, *p;
6246 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6247
6248 cpus_and(nodemask, nodemask, *cpu_map);
6249
6250 #ifdef CONFIG_NUMA
6251 if (cpus_weight(*cpu_map) >
6252 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6253 sd = &per_cpu(allnodes_domains, i);
6254 *sd = SD_ALLNODES_INIT;
6255 sd->span = *cpu_map;
6256 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6257 p = sd;
6258 sd_allnodes = 1;
6259 } else
6260 p = NULL;
6261
6262 sd = &per_cpu(node_domains, i);
6263 *sd = SD_NODE_INIT;
6264 sd->span = sched_domain_node_span(cpu_to_node(i));
6265 sd->parent = p;
6266 if (p)
6267 p->child = sd;
6268 cpus_and(sd->span, sd->span, *cpu_map);
6269 #endif
6270
6271 p = sd;
6272 sd = &per_cpu(phys_domains, i);
6273 *sd = SD_CPU_INIT;
6274 sd->span = nodemask;
6275 sd->parent = p;
6276 if (p)
6277 p->child = sd;
6278 cpu_to_phys_group(i, cpu_map, &sd->groups);
6279
6280 #ifdef CONFIG_SCHED_MC
6281 p = sd;
6282 sd = &per_cpu(core_domains, i);
6283 *sd = SD_MC_INIT;
6284 sd->span = cpu_coregroup_map(i);
6285 cpus_and(sd->span, sd->span, *cpu_map);
6286 sd->parent = p;
6287 p->child = sd;
6288 cpu_to_core_group(i, cpu_map, &sd->groups);
6289 #endif
6290
6291 #ifdef CONFIG_SCHED_SMT
6292 p = sd;
6293 sd = &per_cpu(cpu_domains, i);
6294 *sd = SD_SIBLING_INIT;
6295 sd->span = per_cpu(cpu_sibling_map, i);
6296 cpus_and(sd->span, sd->span, *cpu_map);
6297 sd->parent = p;
6298 p->child = sd;
6299 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6300 #endif
6301 }
6302
6303 #ifdef CONFIG_SCHED_SMT
6304 /* Set up CPU (sibling) groups */
6305 for_each_cpu_mask(i, *cpu_map) {
6306 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6307 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6308 if (i != first_cpu(this_sibling_map))
6309 continue;
6310
6311 init_sched_build_groups(this_sibling_map, cpu_map,
6312 &cpu_to_cpu_group);
6313 }
6314 #endif
6315
6316 #ifdef CONFIG_SCHED_MC
6317 /* Set up multi-core groups */
6318 for_each_cpu_mask(i, *cpu_map) {
6319 cpumask_t this_core_map = cpu_coregroup_map(i);
6320 cpus_and(this_core_map, this_core_map, *cpu_map);
6321 if (i != first_cpu(this_core_map))
6322 continue;
6323 init_sched_build_groups(this_core_map, cpu_map,
6324 &cpu_to_core_group);
6325 }
6326 #endif
6327
6328 /* Set up physical groups */
6329 for (i = 0; i < MAX_NUMNODES; i++) {
6330 cpumask_t nodemask = node_to_cpumask(i);
6331
6332 cpus_and(nodemask, nodemask, *cpu_map);
6333 if (cpus_empty(nodemask))
6334 continue;
6335
6336 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6337 }
6338
6339 #ifdef CONFIG_NUMA
6340 /* Set up node groups */
6341 if (sd_allnodes)
6342 init_sched_build_groups(*cpu_map, cpu_map,
6343 &cpu_to_allnodes_group);
6344
6345 for (i = 0; i < MAX_NUMNODES; i++) {
6346 /* Set up node groups */
6347 struct sched_group *sg, *prev;
6348 cpumask_t nodemask = node_to_cpumask(i);
6349 cpumask_t domainspan;
6350 cpumask_t covered = CPU_MASK_NONE;
6351 int j;
6352
6353 cpus_and(nodemask, nodemask, *cpu_map);
6354 if (cpus_empty(nodemask)) {
6355 sched_group_nodes[i] = NULL;
6356 continue;
6357 }
6358
6359 domainspan = sched_domain_node_span(i);
6360 cpus_and(domainspan, domainspan, *cpu_map);
6361
6362 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6363 if (!sg) {
6364 printk(KERN_WARNING "Can not alloc domain group for "
6365 "node %d\n", i);
6366 goto error;
6367 }
6368 sched_group_nodes[i] = sg;
6369 for_each_cpu_mask(j, nodemask) {
6370 struct sched_domain *sd;
6371
6372 sd = &per_cpu(node_domains, j);
6373 sd->groups = sg;
6374 }
6375 sg->__cpu_power = 0;
6376 sg->cpumask = nodemask;
6377 sg->next = sg;
6378 cpus_or(covered, covered, nodemask);
6379 prev = sg;
6380
6381 for (j = 0; j < MAX_NUMNODES; j++) {
6382 cpumask_t tmp, notcovered;
6383 int n = (i + j) % MAX_NUMNODES;
6384
6385 cpus_complement(notcovered, covered);
6386 cpus_and(tmp, notcovered, *cpu_map);
6387 cpus_and(tmp, tmp, domainspan);
6388 if (cpus_empty(tmp))
6389 break;
6390
6391 nodemask = node_to_cpumask(n);
6392 cpus_and(tmp, tmp, nodemask);
6393 if (cpus_empty(tmp))
6394 continue;
6395
6396 sg = kmalloc_node(sizeof(struct sched_group),
6397 GFP_KERNEL, i);
6398 if (!sg) {
6399 printk(KERN_WARNING
6400 "Can not alloc domain group for node %d\n", j);
6401 goto error;
6402 }
6403 sg->__cpu_power = 0;
6404 sg->cpumask = tmp;
6405 sg->next = prev->next;
6406 cpus_or(covered, covered, tmp);
6407 prev->next = sg;
6408 prev = sg;
6409 }
6410 }
6411 #endif
6412
6413 /* Calculate CPU power for physical packages and nodes */
6414 #ifdef CONFIG_SCHED_SMT
6415 for_each_cpu_mask(i, *cpu_map) {
6416 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6417
6418 init_sched_groups_power(i, sd);
6419 }
6420 #endif
6421 #ifdef CONFIG_SCHED_MC
6422 for_each_cpu_mask(i, *cpu_map) {
6423 struct sched_domain *sd = &per_cpu(core_domains, i);
6424
6425 init_sched_groups_power(i, sd);
6426 }
6427 #endif
6428
6429 for_each_cpu_mask(i, *cpu_map) {
6430 struct sched_domain *sd = &per_cpu(phys_domains, i);
6431
6432 init_sched_groups_power(i, sd);
6433 }
6434
6435 #ifdef CONFIG_NUMA
6436 for (i = 0; i < MAX_NUMNODES; i++)
6437 init_numa_sched_groups_power(sched_group_nodes[i]);
6438
6439 if (sd_allnodes) {
6440 struct sched_group *sg;
6441
6442 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6443 init_numa_sched_groups_power(sg);
6444 }
6445 #endif
6446
6447 /* Attach the domains */
6448 for_each_cpu_mask(i, *cpu_map) {
6449 struct sched_domain *sd;
6450 #ifdef CONFIG_SCHED_SMT
6451 sd = &per_cpu(cpu_domains, i);
6452 #elif defined(CONFIG_SCHED_MC)
6453 sd = &per_cpu(core_domains, i);
6454 #else
6455 sd = &per_cpu(phys_domains, i);
6456 #endif
6457 cpu_attach_domain(sd, i);
6458 }
6459
6460 return 0;
6461
6462 #ifdef CONFIG_NUMA
6463 error:
6464 free_sched_groups(cpu_map);
6465 return -ENOMEM;
6466 #endif
6467 }
6468
6469 static cpumask_t *doms_cur; /* current sched domains */
6470 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6471
6472 /*
6473 * Special case: If a kmalloc of a doms_cur partition (array of
6474 * cpumask_t) fails, then fallback to a single sched domain,
6475 * as determined by the single cpumask_t fallback_doms.
6476 */
6477 static cpumask_t fallback_doms;
6478
6479 /*
6480 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6481 * For now this just excludes isolated cpus, but could be used to
6482 * exclude other special cases in the future.
6483 */
6484 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6485 {
6486 int err;
6487
6488 ndoms_cur = 1;
6489 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6490 if (!doms_cur)
6491 doms_cur = &fallback_doms;
6492 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6493 err = build_sched_domains(doms_cur);
6494 register_sched_domain_sysctl();
6495
6496 return err;
6497 }
6498
6499 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6500 {
6501 free_sched_groups(cpu_map);
6502 }
6503
6504 /*
6505 * Detach sched domains from a group of cpus specified in cpu_map
6506 * These cpus will now be attached to the NULL domain
6507 */
6508 static void detach_destroy_domains(const cpumask_t *cpu_map)
6509 {
6510 int i;
6511
6512 unregister_sched_domain_sysctl();
6513
6514 for_each_cpu_mask(i, *cpu_map)
6515 cpu_attach_domain(NULL, i);
6516 synchronize_sched();
6517 arch_destroy_sched_domains(cpu_map);
6518 }
6519
6520 /*
6521 * Partition sched domains as specified by the 'ndoms_new'
6522 * cpumasks in the array doms_new[] of cpumasks. This compares
6523 * doms_new[] to the current sched domain partitioning, doms_cur[].
6524 * It destroys each deleted domain and builds each new domain.
6525 *
6526 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6527 * The masks don't intersect (don't overlap.) We should setup one
6528 * sched domain for each mask. CPUs not in any of the cpumasks will
6529 * not be load balanced. If the same cpumask appears both in the
6530 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6531 * it as it is.
6532 *
6533 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6534 * ownership of it and will kfree it when done with it. If the caller
6535 * failed the kmalloc call, then it can pass in doms_new == NULL,
6536 * and partition_sched_domains() will fallback to the single partition
6537 * 'fallback_doms'.
6538 *
6539 * Call with hotplug lock held
6540 */
6541 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6542 {
6543 int i, j;
6544
6545 /* always unregister in case we don't destroy any domains */
6546 unregister_sched_domain_sysctl();
6547
6548 if (doms_new == NULL) {
6549 ndoms_new = 1;
6550 doms_new = &fallback_doms;
6551 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6552 }
6553
6554 /* Destroy deleted domains */
6555 for (i = 0; i < ndoms_cur; i++) {
6556 for (j = 0; j < ndoms_new; j++) {
6557 if (cpus_equal(doms_cur[i], doms_new[j]))
6558 goto match1;
6559 }
6560 /* no match - a current sched domain not in new doms_new[] */
6561 detach_destroy_domains(doms_cur + i);
6562 match1:
6563 ;
6564 }
6565
6566 /* Build new domains */
6567 for (i = 0; i < ndoms_new; i++) {
6568 for (j = 0; j < ndoms_cur; j++) {
6569 if (cpus_equal(doms_new[i], doms_cur[j]))
6570 goto match2;
6571 }
6572 /* no match - add a new doms_new */
6573 build_sched_domains(doms_new + i);
6574 match2:
6575 ;
6576 }
6577
6578 /* Remember the new sched domains */
6579 if (doms_cur != &fallback_doms)
6580 kfree(doms_cur);
6581 doms_cur = doms_new;
6582 ndoms_cur = ndoms_new;
6583
6584 register_sched_domain_sysctl();
6585 }
6586
6587 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6588 static int arch_reinit_sched_domains(void)
6589 {
6590 int err;
6591
6592 mutex_lock(&sched_hotcpu_mutex);
6593 detach_destroy_domains(&cpu_online_map);
6594 err = arch_init_sched_domains(&cpu_online_map);
6595 mutex_unlock(&sched_hotcpu_mutex);
6596
6597 return err;
6598 }
6599
6600 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6601 {
6602 int ret;
6603
6604 if (buf[0] != '0' && buf[0] != '1')
6605 return -EINVAL;
6606
6607 if (smt)
6608 sched_smt_power_savings = (buf[0] == '1');
6609 else
6610 sched_mc_power_savings = (buf[0] == '1');
6611
6612 ret = arch_reinit_sched_domains();
6613
6614 return ret ? ret : count;
6615 }
6616
6617 #ifdef CONFIG_SCHED_MC
6618 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6619 {
6620 return sprintf(page, "%u\n", sched_mc_power_savings);
6621 }
6622 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6623 const char *buf, size_t count)
6624 {
6625 return sched_power_savings_store(buf, count, 0);
6626 }
6627 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6628 sched_mc_power_savings_store);
6629 #endif
6630
6631 #ifdef CONFIG_SCHED_SMT
6632 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6633 {
6634 return sprintf(page, "%u\n", sched_smt_power_savings);
6635 }
6636 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6637 const char *buf, size_t count)
6638 {
6639 return sched_power_savings_store(buf, count, 1);
6640 }
6641 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6642 sched_smt_power_savings_store);
6643 #endif
6644
6645 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6646 {
6647 int err = 0;
6648
6649 #ifdef CONFIG_SCHED_SMT
6650 if (smt_capable())
6651 err = sysfs_create_file(&cls->kset.kobj,
6652 &attr_sched_smt_power_savings.attr);
6653 #endif
6654 #ifdef CONFIG_SCHED_MC
6655 if (!err && mc_capable())
6656 err = sysfs_create_file(&cls->kset.kobj,
6657 &attr_sched_mc_power_savings.attr);
6658 #endif
6659 return err;
6660 }
6661 #endif
6662
6663 /*
6664 * Force a reinitialization of the sched domains hierarchy. The domains
6665 * and groups cannot be updated in place without racing with the balancing
6666 * code, so we temporarily attach all running cpus to the NULL domain
6667 * which will prevent rebalancing while the sched domains are recalculated.
6668 */
6669 static int update_sched_domains(struct notifier_block *nfb,
6670 unsigned long action, void *hcpu)
6671 {
6672 switch (action) {
6673 case CPU_UP_PREPARE:
6674 case CPU_UP_PREPARE_FROZEN:
6675 case CPU_DOWN_PREPARE:
6676 case CPU_DOWN_PREPARE_FROZEN:
6677 detach_destroy_domains(&cpu_online_map);
6678 return NOTIFY_OK;
6679
6680 case CPU_UP_CANCELED:
6681 case CPU_UP_CANCELED_FROZEN:
6682 case CPU_DOWN_FAILED:
6683 case CPU_DOWN_FAILED_FROZEN:
6684 case CPU_ONLINE:
6685 case CPU_ONLINE_FROZEN:
6686 case CPU_DEAD:
6687 case CPU_DEAD_FROZEN:
6688 /*
6689 * Fall through and re-initialise the domains.
6690 */
6691 break;
6692 default:
6693 return NOTIFY_DONE;
6694 }
6695
6696 /* The hotplug lock is already held by cpu_up/cpu_down */
6697 arch_init_sched_domains(&cpu_online_map);
6698
6699 return NOTIFY_OK;
6700 }
6701
6702 void __init sched_init_smp(void)
6703 {
6704 cpumask_t non_isolated_cpus;
6705
6706 mutex_lock(&sched_hotcpu_mutex);
6707 arch_init_sched_domains(&cpu_online_map);
6708 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6709 if (cpus_empty(non_isolated_cpus))
6710 cpu_set(smp_processor_id(), non_isolated_cpus);
6711 mutex_unlock(&sched_hotcpu_mutex);
6712 /* XXX: Theoretical race here - CPU may be hotplugged now */
6713 hotcpu_notifier(update_sched_domains, 0);
6714
6715 /* Move init over to a non-isolated CPU */
6716 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6717 BUG();
6718 sched_init_granularity();
6719 }
6720 #else
6721 void __init sched_init_smp(void)
6722 {
6723 sched_init_granularity();
6724 }
6725 #endif /* CONFIG_SMP */
6726
6727 int in_sched_functions(unsigned long addr)
6728 {
6729 return in_lock_functions(addr) ||
6730 (addr >= (unsigned long)__sched_text_start
6731 && addr < (unsigned long)__sched_text_end);
6732 }
6733
6734 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6735 {
6736 cfs_rq->tasks_timeline = RB_ROOT;
6737 #ifdef CONFIG_FAIR_GROUP_SCHED
6738 cfs_rq->rq = rq;
6739 #endif
6740 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6741 }
6742
6743 void __init sched_init(void)
6744 {
6745 int highest_cpu = 0;
6746 int i, j;
6747
6748 for_each_possible_cpu(i) {
6749 struct rt_prio_array *array;
6750 struct rq *rq;
6751
6752 rq = cpu_rq(i);
6753 spin_lock_init(&rq->lock);
6754 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6755 rq->nr_running = 0;
6756 rq->clock = 1;
6757 init_cfs_rq(&rq->cfs, rq);
6758 #ifdef CONFIG_FAIR_GROUP_SCHED
6759 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6760 {
6761 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6762 struct sched_entity *se =
6763 &per_cpu(init_sched_entity, i);
6764
6765 init_cfs_rq_p[i] = cfs_rq;
6766 init_cfs_rq(cfs_rq, rq);
6767 cfs_rq->tg = &init_task_group;
6768 list_add(&cfs_rq->leaf_cfs_rq_list,
6769 &rq->leaf_cfs_rq_list);
6770
6771 init_sched_entity_p[i] = se;
6772 se->cfs_rq = &rq->cfs;
6773 se->my_q = cfs_rq;
6774 se->load.weight = init_task_group_load;
6775 se->load.inv_weight =
6776 div64_64(1ULL<<32, init_task_group_load);
6777 se->parent = NULL;
6778 }
6779 init_task_group.shares = init_task_group_load;
6780 spin_lock_init(&init_task_group.lock);
6781 #endif
6782
6783 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6784 rq->cpu_load[j] = 0;
6785 #ifdef CONFIG_SMP
6786 rq->sd = NULL;
6787 rq->active_balance = 0;
6788 rq->next_balance = jiffies;
6789 rq->push_cpu = 0;
6790 rq->cpu = i;
6791 rq->migration_thread = NULL;
6792 INIT_LIST_HEAD(&rq->migration_queue);
6793 #endif
6794 atomic_set(&rq->nr_iowait, 0);
6795
6796 array = &rq->rt.active;
6797 for (j = 0; j < MAX_RT_PRIO; j++) {
6798 INIT_LIST_HEAD(array->queue + j);
6799 __clear_bit(j, array->bitmap);
6800 }
6801 highest_cpu = i;
6802 /* delimiter for bitsearch: */
6803 __set_bit(MAX_RT_PRIO, array->bitmap);
6804 }
6805
6806 set_load_weight(&init_task);
6807
6808 #ifdef CONFIG_PREEMPT_NOTIFIERS
6809 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6810 #endif
6811
6812 #ifdef CONFIG_SMP
6813 nr_cpu_ids = highest_cpu + 1;
6814 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6815 #endif
6816
6817 #ifdef CONFIG_RT_MUTEXES
6818 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6819 #endif
6820
6821 /*
6822 * The boot idle thread does lazy MMU switching as well:
6823 */
6824 atomic_inc(&init_mm.mm_count);
6825 enter_lazy_tlb(&init_mm, current);
6826
6827 /*
6828 * Make us the idle thread. Technically, schedule() should not be
6829 * called from this thread, however somewhere below it might be,
6830 * but because we are the idle thread, we just pick up running again
6831 * when this runqueue becomes "idle".
6832 */
6833 init_idle(current, smp_processor_id());
6834 /*
6835 * During early bootup we pretend to be a normal task:
6836 */
6837 current->sched_class = &fair_sched_class;
6838 }
6839
6840 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6841 void __might_sleep(char *file, int line)
6842 {
6843 #ifdef in_atomic
6844 static unsigned long prev_jiffy; /* ratelimiting */
6845
6846 if ((in_atomic() || irqs_disabled()) &&
6847 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6848 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6849 return;
6850 prev_jiffy = jiffies;
6851 printk(KERN_ERR "BUG: sleeping function called from invalid"
6852 " context at %s:%d\n", file, line);
6853 printk("in_atomic():%d, irqs_disabled():%d\n",
6854 in_atomic(), irqs_disabled());
6855 debug_show_held_locks(current);
6856 if (irqs_disabled())
6857 print_irqtrace_events(current);
6858 dump_stack();
6859 }
6860 #endif
6861 }
6862 EXPORT_SYMBOL(__might_sleep);
6863 #endif
6864
6865 #ifdef CONFIG_MAGIC_SYSRQ
6866 static void normalize_task(struct rq *rq, struct task_struct *p)
6867 {
6868 int on_rq;
6869 update_rq_clock(rq);
6870 on_rq = p->se.on_rq;
6871 if (on_rq)
6872 deactivate_task(rq, p, 0);
6873 __setscheduler(rq, p, SCHED_NORMAL, 0);
6874 if (on_rq) {
6875 activate_task(rq, p, 0);
6876 resched_task(rq->curr);
6877 }
6878 }
6879
6880 void normalize_rt_tasks(void)
6881 {
6882 struct task_struct *g, *p;
6883 unsigned long flags;
6884 struct rq *rq;
6885
6886 read_lock_irq(&tasklist_lock);
6887 do_each_thread(g, p) {
6888 /*
6889 * Only normalize user tasks:
6890 */
6891 if (!p->mm)
6892 continue;
6893
6894 p->se.exec_start = 0;
6895 #ifdef CONFIG_SCHEDSTATS
6896 p->se.wait_start = 0;
6897 p->se.sleep_start = 0;
6898 p->se.block_start = 0;
6899 #endif
6900 task_rq(p)->clock = 0;
6901
6902 if (!rt_task(p)) {
6903 /*
6904 * Renice negative nice level userspace
6905 * tasks back to 0:
6906 */
6907 if (TASK_NICE(p) < 0 && p->mm)
6908 set_user_nice(p, 0);
6909 continue;
6910 }
6911
6912 spin_lock_irqsave(&p->pi_lock, flags);
6913 rq = __task_rq_lock(p);
6914
6915 normalize_task(rq, p);
6916
6917 __task_rq_unlock(rq);
6918 spin_unlock_irqrestore(&p->pi_lock, flags);
6919 } while_each_thread(g, p);
6920
6921 read_unlock_irq(&tasklist_lock);
6922 }
6923
6924 #endif /* CONFIG_MAGIC_SYSRQ */
6925
6926 #ifdef CONFIG_IA64
6927 /*
6928 * These functions are only useful for the IA64 MCA handling.
6929 *
6930 * They can only be called when the whole system has been
6931 * stopped - every CPU needs to be quiescent, and no scheduling
6932 * activity can take place. Using them for anything else would
6933 * be a serious bug, and as a result, they aren't even visible
6934 * under any other configuration.
6935 */
6936
6937 /**
6938 * curr_task - return the current task for a given cpu.
6939 * @cpu: the processor in question.
6940 *
6941 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6942 */
6943 struct task_struct *curr_task(int cpu)
6944 {
6945 return cpu_curr(cpu);
6946 }
6947
6948 /**
6949 * set_curr_task - set the current task for a given cpu.
6950 * @cpu: the processor in question.
6951 * @p: the task pointer to set.
6952 *
6953 * Description: This function must only be used when non-maskable interrupts
6954 * are serviced on a separate stack. It allows the architecture to switch the
6955 * notion of the current task on a cpu in a non-blocking manner. This function
6956 * must be called with all CPU's synchronized, and interrupts disabled, the
6957 * and caller must save the original value of the current task (see
6958 * curr_task() above) and restore that value before reenabling interrupts and
6959 * re-starting the system.
6960 *
6961 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6962 */
6963 void set_curr_task(int cpu, struct task_struct *p)
6964 {
6965 cpu_curr(cpu) = p;
6966 }
6967
6968 #endif
6969
6970 #ifdef CONFIG_FAIR_GROUP_SCHED
6971
6972 /* allocate runqueue etc for a new task group */
6973 struct task_group *sched_create_group(void)
6974 {
6975 struct task_group *tg;
6976 struct cfs_rq *cfs_rq;
6977 struct sched_entity *se;
6978 struct rq *rq;
6979 int i;
6980
6981 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6982 if (!tg)
6983 return ERR_PTR(-ENOMEM);
6984
6985 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6986 if (!tg->cfs_rq)
6987 goto err;
6988 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6989 if (!tg->se)
6990 goto err;
6991
6992 for_each_possible_cpu(i) {
6993 rq = cpu_rq(i);
6994
6995 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6996 cpu_to_node(i));
6997 if (!cfs_rq)
6998 goto err;
6999
7000 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7001 cpu_to_node(i));
7002 if (!se)
7003 goto err;
7004
7005 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7006 memset(se, 0, sizeof(struct sched_entity));
7007
7008 tg->cfs_rq[i] = cfs_rq;
7009 init_cfs_rq(cfs_rq, rq);
7010 cfs_rq->tg = tg;
7011
7012 tg->se[i] = se;
7013 se->cfs_rq = &rq->cfs;
7014 se->my_q = cfs_rq;
7015 se->load.weight = NICE_0_LOAD;
7016 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7017 se->parent = NULL;
7018 }
7019
7020 for_each_possible_cpu(i) {
7021 rq = cpu_rq(i);
7022 cfs_rq = tg->cfs_rq[i];
7023 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7024 }
7025
7026 tg->shares = NICE_0_LOAD;
7027 spin_lock_init(&tg->lock);
7028
7029 return tg;
7030
7031 err:
7032 for_each_possible_cpu(i) {
7033 if (tg->cfs_rq)
7034 kfree(tg->cfs_rq[i]);
7035 if (tg->se)
7036 kfree(tg->se[i]);
7037 }
7038 kfree(tg->cfs_rq);
7039 kfree(tg->se);
7040 kfree(tg);
7041
7042 return ERR_PTR(-ENOMEM);
7043 }
7044
7045 /* rcu callback to free various structures associated with a task group */
7046 static void free_sched_group(struct rcu_head *rhp)
7047 {
7048 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7049 struct cfs_rq *cfs_rq;
7050 struct sched_entity *se;
7051 int i;
7052
7053 /* now it should be safe to free those cfs_rqs */
7054 for_each_possible_cpu(i) {
7055 cfs_rq = tg->cfs_rq[i];
7056 kfree(cfs_rq);
7057
7058 se = tg->se[i];
7059 kfree(se);
7060 }
7061
7062 kfree(tg->cfs_rq);
7063 kfree(tg->se);
7064 kfree(tg);
7065 }
7066
7067 /* Destroy runqueue etc associated with a task group */
7068 void sched_destroy_group(struct task_group *tg)
7069 {
7070 struct cfs_rq *cfs_rq = NULL;
7071 int i;
7072
7073 for_each_possible_cpu(i) {
7074 cfs_rq = tg->cfs_rq[i];
7075 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7076 }
7077
7078 BUG_ON(!cfs_rq);
7079
7080 /* wait for possible concurrent references to cfs_rqs complete */
7081 call_rcu(&tg->rcu, free_sched_group);
7082 }
7083
7084 /* change task's runqueue when it moves between groups.
7085 * The caller of this function should have put the task in its new group
7086 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7087 * reflect its new group.
7088 */
7089 void sched_move_task(struct task_struct *tsk)
7090 {
7091 int on_rq, running;
7092 unsigned long flags;
7093 struct rq *rq;
7094
7095 rq = task_rq_lock(tsk, &flags);
7096
7097 if (tsk->sched_class != &fair_sched_class) {
7098 set_task_cfs_rq(tsk, task_cpu(tsk));
7099 goto done;
7100 }
7101
7102 update_rq_clock(rq);
7103
7104 running = task_running(rq, tsk);
7105 on_rq = tsk->se.on_rq;
7106
7107 if (on_rq) {
7108 dequeue_task(rq, tsk, 0);
7109 if (unlikely(running))
7110 tsk->sched_class->put_prev_task(rq, tsk);
7111 }
7112
7113 set_task_cfs_rq(tsk, task_cpu(tsk));
7114
7115 if (on_rq) {
7116 if (unlikely(running))
7117 tsk->sched_class->set_curr_task(rq);
7118 enqueue_task(rq, tsk, 0);
7119 }
7120
7121 done:
7122 task_rq_unlock(rq, &flags);
7123 }
7124
7125 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7126 {
7127 struct cfs_rq *cfs_rq = se->cfs_rq;
7128 struct rq *rq = cfs_rq->rq;
7129 int on_rq;
7130
7131 spin_lock_irq(&rq->lock);
7132
7133 on_rq = se->on_rq;
7134 if (on_rq)
7135 dequeue_entity(cfs_rq, se, 0);
7136
7137 se->load.weight = shares;
7138 se->load.inv_weight = div64_64((1ULL<<32), shares);
7139
7140 if (on_rq)
7141 enqueue_entity(cfs_rq, se, 0);
7142
7143 spin_unlock_irq(&rq->lock);
7144 }
7145
7146 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7147 {
7148 int i;
7149
7150 spin_lock(&tg->lock);
7151 if (tg->shares == shares)
7152 goto done;
7153
7154 tg->shares = shares;
7155 for_each_possible_cpu(i)
7156 set_se_shares(tg->se[i], shares);
7157
7158 done:
7159 spin_unlock(&tg->lock);
7160 return 0;
7161 }
7162
7163 unsigned long sched_group_shares(struct task_group *tg)
7164 {
7165 return tg->shares;
7166 }
7167
7168 #endif /* CONFIG_FAIR_GROUP_SCHED */
7169
7170 #ifdef CONFIG_FAIR_CGROUP_SCHED
7171
7172 /* return corresponding task_group object of a cgroup */
7173 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7174 {
7175 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7176 struct task_group, css);
7177 }
7178
7179 static struct cgroup_subsys_state *
7180 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7181 {
7182 struct task_group *tg;
7183
7184 if (!cgrp->parent) {
7185 /* This is early initialization for the top cgroup */
7186 init_task_group.css.cgroup = cgrp;
7187 return &init_task_group.css;
7188 }
7189
7190 /* we support only 1-level deep hierarchical scheduler atm */
7191 if (cgrp->parent->parent)
7192 return ERR_PTR(-EINVAL);
7193
7194 tg = sched_create_group();
7195 if (IS_ERR(tg))
7196 return ERR_PTR(-ENOMEM);
7197
7198 /* Bind the cgroup to task_group object we just created */
7199 tg->css.cgroup = cgrp;
7200
7201 return &tg->css;
7202 }
7203
7204 static void
7205 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7206 {
7207 struct task_group *tg = cgroup_tg(cgrp);
7208
7209 sched_destroy_group(tg);
7210 }
7211
7212 static int
7213 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7214 struct task_struct *tsk)
7215 {
7216 /* We don't support RT-tasks being in separate groups */
7217 if (tsk->sched_class != &fair_sched_class)
7218 return -EINVAL;
7219
7220 return 0;
7221 }
7222
7223 static void
7224 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7225 struct cgroup *old_cont, struct task_struct *tsk)
7226 {
7227 sched_move_task(tsk);
7228 }
7229
7230 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7231 u64 shareval)
7232 {
7233 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7234 }
7235
7236 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7237 {
7238 struct task_group *tg = cgroup_tg(cgrp);
7239
7240 return (u64) tg->shares;
7241 }
7242
7243 static struct cftype cpu_files[] = {
7244 {
7245 .name = "shares",
7246 .read_uint = cpu_shares_read_uint,
7247 .write_uint = cpu_shares_write_uint,
7248 },
7249 };
7250
7251 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7252 {
7253 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7254 }
7255
7256 struct cgroup_subsys cpu_cgroup_subsys = {
7257 .name = "cpu",
7258 .create = cpu_cgroup_create,
7259 .destroy = cpu_cgroup_destroy,
7260 .can_attach = cpu_cgroup_can_attach,
7261 .attach = cpu_cgroup_attach,
7262 .populate = cpu_cgroup_populate,
7263 .subsys_id = cpu_cgroup_subsys_id,
7264 .early_init = 1,
7265 };
7266
7267 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7268
7269 #ifdef CONFIG_CGROUP_CPUACCT
7270
7271 /*
7272 * CPU accounting code for task groups.
7273 *
7274 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7275 * (balbir@in.ibm.com).
7276 */
7277
7278 /* track cpu usage of a group of tasks */
7279 struct cpuacct {
7280 struct cgroup_subsys_state css;
7281 /* cpuusage holds pointer to a u64-type object on every cpu */
7282 u64 *cpuusage;
7283 };
7284
7285 struct cgroup_subsys cpuacct_subsys;
7286
7287 /* return cpu accounting group corresponding to this container */
7288 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7289 {
7290 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7291 struct cpuacct, css);
7292 }
7293
7294 /* return cpu accounting group to which this task belongs */
7295 static inline struct cpuacct *task_ca(struct task_struct *tsk)
7296 {
7297 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7298 struct cpuacct, css);
7299 }
7300
7301 /* create a new cpu accounting group */
7302 static struct cgroup_subsys_state *cpuacct_create(
7303 struct cgroup_subsys *ss, struct cgroup *cont)
7304 {
7305 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7306
7307 if (!ca)
7308 return ERR_PTR(-ENOMEM);
7309
7310 ca->cpuusage = alloc_percpu(u64);
7311 if (!ca->cpuusage) {
7312 kfree(ca);
7313 return ERR_PTR(-ENOMEM);
7314 }
7315
7316 return &ca->css;
7317 }
7318
7319 /* destroy an existing cpu accounting group */
7320 static void
7321 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7322 {
7323 struct cpuacct *ca = cgroup_ca(cont);
7324
7325 free_percpu(ca->cpuusage);
7326 kfree(ca);
7327 }
7328
7329 /* return total cpu usage (in nanoseconds) of a group */
7330 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7331 {
7332 struct cpuacct *ca = cgroup_ca(cont);
7333 u64 totalcpuusage = 0;
7334 int i;
7335
7336 for_each_possible_cpu(i) {
7337 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7338
7339 /*
7340 * Take rq->lock to make 64-bit addition safe on 32-bit
7341 * platforms.
7342 */
7343 spin_lock_irq(&cpu_rq(i)->lock);
7344 totalcpuusage += *cpuusage;
7345 spin_unlock_irq(&cpu_rq(i)->lock);
7346 }
7347
7348 return totalcpuusage;
7349 }
7350
7351 static struct cftype files[] = {
7352 {
7353 .name = "usage",
7354 .read_uint = cpuusage_read,
7355 },
7356 };
7357
7358 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7359 {
7360 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7361 }
7362
7363 /*
7364 * charge this task's execution time to its accounting group.
7365 *
7366 * called with rq->lock held.
7367 */
7368 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7369 {
7370 struct cpuacct *ca;
7371
7372 if (!cpuacct_subsys.active)
7373 return;
7374
7375 ca = task_ca(tsk);
7376 if (ca) {
7377 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7378
7379 *cpuusage += cputime;
7380 }
7381 }
7382
7383 struct cgroup_subsys cpuacct_subsys = {
7384 .name = "cpuacct",
7385 .create = cpuacct_create,
7386 .destroy = cpuacct_destroy,
7387 .populate = cpuacct_populate,
7388 .subsys_id = cpuacct_subsys_id,
7389 };
7390 #endif /* CONFIG_CGROUP_CPUACCT */