]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched.c
ring-buffer: prevent false positive warning
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75 #include <trace/sched.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 /*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91 /*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100 /*
101 * Helpers for converting nanosecond timing to jiffy resolution
102 */
103 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
104
105 #define NICE_0_LOAD SCHED_LOAD_SCALE
106 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
108 /*
109 * These are the 'tuning knobs' of the scheduler:
110 *
111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
112 * Timeslices get refilled after they expire.
113 */
114 #define DEF_TIMESLICE (100 * HZ / 1000)
115
116 /*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119 #define RUNTIME_INF ((u64)~0ULL)
120
121 DEFINE_TRACE(sched_wait_task);
122 DEFINE_TRACE(sched_wakeup);
123 DEFINE_TRACE(sched_wakeup_new);
124 DEFINE_TRACE(sched_switch);
125 DEFINE_TRACE(sched_migrate_task);
126
127 #ifdef CONFIG_SMP
128 /*
129 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
130 * Since cpu_power is a 'constant', we can use a reciprocal divide.
131 */
132 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
133 {
134 return reciprocal_divide(load, sg->reciprocal_cpu_power);
135 }
136
137 /*
138 * Each time a sched group cpu_power is changed,
139 * we must compute its reciprocal value
140 */
141 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
142 {
143 sg->__cpu_power += val;
144 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
145 }
146 #endif
147
148 static inline int rt_policy(int policy)
149 {
150 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
151 return 1;
152 return 0;
153 }
154
155 static inline int task_has_rt_policy(struct task_struct *p)
156 {
157 return rt_policy(p->policy);
158 }
159
160 /*
161 * This is the priority-queue data structure of the RT scheduling class:
162 */
163 struct rt_prio_array {
164 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
165 struct list_head queue[MAX_RT_PRIO];
166 };
167
168 struct rt_bandwidth {
169 /* nests inside the rq lock: */
170 spinlock_t rt_runtime_lock;
171 ktime_t rt_period;
172 u64 rt_runtime;
173 struct hrtimer rt_period_timer;
174 };
175
176 static struct rt_bandwidth def_rt_bandwidth;
177
178 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
179
180 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
181 {
182 struct rt_bandwidth *rt_b =
183 container_of(timer, struct rt_bandwidth, rt_period_timer);
184 ktime_t now;
185 int overrun;
186 int idle = 0;
187
188 for (;;) {
189 now = hrtimer_cb_get_time(timer);
190 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
191
192 if (!overrun)
193 break;
194
195 idle = do_sched_rt_period_timer(rt_b, overrun);
196 }
197
198 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
199 }
200
201 static
202 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
203 {
204 rt_b->rt_period = ns_to_ktime(period);
205 rt_b->rt_runtime = runtime;
206
207 spin_lock_init(&rt_b->rt_runtime_lock);
208
209 hrtimer_init(&rt_b->rt_period_timer,
210 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
211 rt_b->rt_period_timer.function = sched_rt_period_timer;
212 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED;
213 }
214
215 static inline int rt_bandwidth_enabled(void)
216 {
217 return sysctl_sched_rt_runtime >= 0;
218 }
219
220 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
221 {
222 ktime_t now;
223
224 if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF)
225 return;
226
227 if (hrtimer_active(&rt_b->rt_period_timer))
228 return;
229
230 spin_lock(&rt_b->rt_runtime_lock);
231 for (;;) {
232 if (hrtimer_active(&rt_b->rt_period_timer))
233 break;
234
235 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
236 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
237 hrtimer_start_expires(&rt_b->rt_period_timer,
238 HRTIMER_MODE_ABS);
239 }
240 spin_unlock(&rt_b->rt_runtime_lock);
241 }
242
243 #ifdef CONFIG_RT_GROUP_SCHED
244 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
245 {
246 hrtimer_cancel(&rt_b->rt_period_timer);
247 }
248 #endif
249
250 /*
251 * sched_domains_mutex serializes calls to arch_init_sched_domains,
252 * detach_destroy_domains and partition_sched_domains.
253 */
254 static DEFINE_MUTEX(sched_domains_mutex);
255
256 #ifdef CONFIG_GROUP_SCHED
257
258 #include <linux/cgroup.h>
259
260 struct cfs_rq;
261
262 static LIST_HEAD(task_groups);
263
264 /* task group related information */
265 struct task_group {
266 #ifdef CONFIG_CGROUP_SCHED
267 struct cgroup_subsys_state css;
268 #endif
269
270 #ifdef CONFIG_FAIR_GROUP_SCHED
271 /* schedulable entities of this group on each cpu */
272 struct sched_entity **se;
273 /* runqueue "owned" by this group on each cpu */
274 struct cfs_rq **cfs_rq;
275 unsigned long shares;
276 #endif
277
278 #ifdef CONFIG_RT_GROUP_SCHED
279 struct sched_rt_entity **rt_se;
280 struct rt_rq **rt_rq;
281
282 struct rt_bandwidth rt_bandwidth;
283 #endif
284
285 struct rcu_head rcu;
286 struct list_head list;
287
288 struct task_group *parent;
289 struct list_head siblings;
290 struct list_head children;
291 };
292
293 #ifdef CONFIG_USER_SCHED
294
295 /*
296 * Root task group.
297 * Every UID task group (including init_task_group aka UID-0) will
298 * be a child to this group.
299 */
300 struct task_group root_task_group;
301
302 #ifdef CONFIG_FAIR_GROUP_SCHED
303 /* Default task group's sched entity on each cpu */
304 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
305 /* Default task group's cfs_rq on each cpu */
306 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
307 #endif /* CONFIG_FAIR_GROUP_SCHED */
308
309 #ifdef CONFIG_RT_GROUP_SCHED
310 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
311 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
312 #endif /* CONFIG_RT_GROUP_SCHED */
313 #else /* !CONFIG_USER_SCHED */
314 #define root_task_group init_task_group
315 #endif /* CONFIG_USER_SCHED */
316
317 /* task_group_lock serializes add/remove of task groups and also changes to
318 * a task group's cpu shares.
319 */
320 static DEFINE_SPINLOCK(task_group_lock);
321
322 #ifdef CONFIG_FAIR_GROUP_SCHED
323 #ifdef CONFIG_USER_SCHED
324 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
325 #else /* !CONFIG_USER_SCHED */
326 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
327 #endif /* CONFIG_USER_SCHED */
328
329 /*
330 * A weight of 0 or 1 can cause arithmetics problems.
331 * A weight of a cfs_rq is the sum of weights of which entities
332 * are queued on this cfs_rq, so a weight of a entity should not be
333 * too large, so as the shares value of a task group.
334 * (The default weight is 1024 - so there's no practical
335 * limitation from this.)
336 */
337 #define MIN_SHARES 2
338 #define MAX_SHARES (1UL << 18)
339
340 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
341 #endif
342
343 /* Default task group.
344 * Every task in system belong to this group at bootup.
345 */
346 struct task_group init_task_group;
347
348 /* return group to which a task belongs */
349 static inline struct task_group *task_group(struct task_struct *p)
350 {
351 struct task_group *tg;
352
353 #ifdef CONFIG_USER_SCHED
354 tg = p->user->tg;
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
358 #else
359 tg = &init_task_group;
360 #endif
361 return tg;
362 }
363
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
366 {
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
370 #endif
371
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
375 #endif
376 }
377
378 #else
379
380 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 static inline struct task_group *task_group(struct task_struct *p)
382 {
383 return NULL;
384 }
385
386 #endif /* CONFIG_GROUP_SCHED */
387
388 /* CFS-related fields in a runqueue */
389 struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
393 u64 exec_clock;
394 u64 min_vruntime;
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
406 struct sched_entity *curr, *next, *last;
407
408 unsigned int nr_spread_over;
409
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
423
424 #ifdef CONFIG_SMP
425 /*
426 * the part of load.weight contributed by tasks
427 */
428 unsigned long task_weight;
429
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
437
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
447 #endif
448 #endif
449 };
450
451 /* Real-Time classes' related field in a runqueue: */
452 struct rt_rq {
453 struct rt_prio_array active;
454 unsigned long rt_nr_running;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 int highest_prio; /* highest queued rt task prio */
457 #endif
458 #ifdef CONFIG_SMP
459 unsigned long rt_nr_migratory;
460 int overloaded;
461 #endif
462 int rt_throttled;
463 u64 rt_time;
464 u64 rt_runtime;
465 /* Nests inside the rq lock: */
466 spinlock_t rt_runtime_lock;
467
468 #ifdef CONFIG_RT_GROUP_SCHED
469 unsigned long rt_nr_boosted;
470
471 struct rq *rq;
472 struct list_head leaf_rt_rq_list;
473 struct task_group *tg;
474 struct sched_rt_entity *rt_se;
475 #endif
476 };
477
478 #ifdef CONFIG_SMP
479
480 /*
481 * We add the notion of a root-domain which will be used to define per-domain
482 * variables. Each exclusive cpuset essentially defines an island domain by
483 * fully partitioning the member cpus from any other cpuset. Whenever a new
484 * exclusive cpuset is created, we also create and attach a new root-domain
485 * object.
486 *
487 */
488 struct root_domain {
489 atomic_t refcount;
490 cpumask_t span;
491 cpumask_t online;
492
493 /*
494 * The "RT overload" flag: it gets set if a CPU has more than
495 * one runnable RT task.
496 */
497 cpumask_t rto_mask;
498 atomic_t rto_count;
499 #ifdef CONFIG_SMP
500 struct cpupri cpupri;
501 #endif
502 };
503
504 /*
505 * By default the system creates a single root-domain with all cpus as
506 * members (mimicking the global state we have today).
507 */
508 static struct root_domain def_root_domain;
509
510 #endif
511
512 /*
513 * This is the main, per-CPU runqueue data structure.
514 *
515 * Locking rule: those places that want to lock multiple runqueues
516 * (such as the load balancing or the thread migration code), lock
517 * acquire operations must be ordered by ascending &runqueue.
518 */
519 struct rq {
520 /* runqueue lock: */
521 spinlock_t lock;
522
523 /*
524 * nr_running and cpu_load should be in the same cacheline because
525 * remote CPUs use both these fields when doing load calculation.
526 */
527 unsigned long nr_running;
528 #define CPU_LOAD_IDX_MAX 5
529 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
530 unsigned char idle_at_tick;
531 #ifdef CONFIG_NO_HZ
532 unsigned long last_tick_seen;
533 unsigned char in_nohz_recently;
534 #endif
535 /* capture load from *all* tasks on this cpu: */
536 struct load_weight load;
537 unsigned long nr_load_updates;
538 u64 nr_switches;
539
540 struct cfs_rq cfs;
541 struct rt_rq rt;
542
543 #ifdef CONFIG_FAIR_GROUP_SCHED
544 /* list of leaf cfs_rq on this cpu: */
545 struct list_head leaf_cfs_rq_list;
546 #endif
547 #ifdef CONFIG_RT_GROUP_SCHED
548 struct list_head leaf_rt_rq_list;
549 #endif
550
551 /*
552 * This is part of a global counter where only the total sum
553 * over all CPUs matters. A task can increase this counter on
554 * one CPU and if it got migrated afterwards it may decrease
555 * it on another CPU. Always updated under the runqueue lock:
556 */
557 unsigned long nr_uninterruptible;
558
559 struct task_struct *curr, *idle;
560 unsigned long next_balance;
561 struct mm_struct *prev_mm;
562
563 u64 clock;
564
565 atomic_t nr_iowait;
566
567 #ifdef CONFIG_SMP
568 struct root_domain *rd;
569 struct sched_domain *sd;
570
571 /* For active balancing */
572 int active_balance;
573 int push_cpu;
574 /* cpu of this runqueue: */
575 int cpu;
576 int online;
577
578 unsigned long avg_load_per_task;
579
580 struct task_struct *migration_thread;
581 struct list_head migration_queue;
582 #endif
583
584 #ifdef CONFIG_SCHED_HRTICK
585 #ifdef CONFIG_SMP
586 int hrtick_csd_pending;
587 struct call_single_data hrtick_csd;
588 #endif
589 struct hrtimer hrtick_timer;
590 #endif
591
592 #ifdef CONFIG_SCHEDSTATS
593 /* latency stats */
594 struct sched_info rq_sched_info;
595
596 /* sys_sched_yield() stats */
597 unsigned int yld_exp_empty;
598 unsigned int yld_act_empty;
599 unsigned int yld_both_empty;
600 unsigned int yld_count;
601
602 /* schedule() stats */
603 unsigned int sched_switch;
604 unsigned int sched_count;
605 unsigned int sched_goidle;
606
607 /* try_to_wake_up() stats */
608 unsigned int ttwu_count;
609 unsigned int ttwu_local;
610
611 /* BKL stats */
612 unsigned int bkl_count;
613 #endif
614 };
615
616 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
617
618 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
619 {
620 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
621 }
622
623 static inline int cpu_of(struct rq *rq)
624 {
625 #ifdef CONFIG_SMP
626 return rq->cpu;
627 #else
628 return 0;
629 #endif
630 }
631
632 /*
633 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
634 * See detach_destroy_domains: synchronize_sched for details.
635 *
636 * The domain tree of any CPU may only be accessed from within
637 * preempt-disabled sections.
638 */
639 #define for_each_domain(cpu, __sd) \
640 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
641
642 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
643 #define this_rq() (&__get_cpu_var(runqueues))
644 #define task_rq(p) cpu_rq(task_cpu(p))
645 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
646
647 static inline void update_rq_clock(struct rq *rq)
648 {
649 rq->clock = sched_clock_cpu(cpu_of(rq));
650 }
651
652 /*
653 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
654 */
655 #ifdef CONFIG_SCHED_DEBUG
656 # define const_debug __read_mostly
657 #else
658 # define const_debug static const
659 #endif
660
661 /**
662 * runqueue_is_locked
663 *
664 * Returns true if the current cpu runqueue is locked.
665 * This interface allows printk to be called with the runqueue lock
666 * held and know whether or not it is OK to wake up the klogd.
667 */
668 int runqueue_is_locked(void)
669 {
670 int cpu = get_cpu();
671 struct rq *rq = cpu_rq(cpu);
672 int ret;
673
674 ret = spin_is_locked(&rq->lock);
675 put_cpu();
676 return ret;
677 }
678
679 /*
680 * Debugging: various feature bits
681 */
682
683 #define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
685
686 enum {
687 #include "sched_features.h"
688 };
689
690 #undef SCHED_FEAT
691
692 #define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
694
695 const_debug unsigned int sysctl_sched_features =
696 #include "sched_features.h"
697 0;
698
699 #undef SCHED_FEAT
700
701 #ifdef CONFIG_SCHED_DEBUG
702 #define SCHED_FEAT(name, enabled) \
703 #name ,
704
705 static __read_mostly char *sched_feat_names[] = {
706 #include "sched_features.h"
707 NULL
708 };
709
710 #undef SCHED_FEAT
711
712 static int sched_feat_open(struct inode *inode, struct file *filp)
713 {
714 filp->private_data = inode->i_private;
715 return 0;
716 }
717
718 static ssize_t
719 sched_feat_read(struct file *filp, char __user *ubuf,
720 size_t cnt, loff_t *ppos)
721 {
722 char *buf;
723 int r = 0;
724 int len = 0;
725 int i;
726
727 for (i = 0; sched_feat_names[i]; i++) {
728 len += strlen(sched_feat_names[i]);
729 len += 4;
730 }
731
732 buf = kmalloc(len + 2, GFP_KERNEL);
733 if (!buf)
734 return -ENOMEM;
735
736 for (i = 0; sched_feat_names[i]; i++) {
737 if (sysctl_sched_features & (1UL << i))
738 r += sprintf(buf + r, "%s ", sched_feat_names[i]);
739 else
740 r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]);
741 }
742
743 r += sprintf(buf + r, "\n");
744 WARN_ON(r >= len + 2);
745
746 r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
747
748 kfree(buf);
749
750 return r;
751 }
752
753 static ssize_t
754 sched_feat_write(struct file *filp, const char __user *ubuf,
755 size_t cnt, loff_t *ppos)
756 {
757 char buf[64];
758 char *cmp = buf;
759 int neg = 0;
760 int i;
761
762 if (cnt > 63)
763 cnt = 63;
764
765 if (copy_from_user(&buf, ubuf, cnt))
766 return -EFAULT;
767
768 buf[cnt] = 0;
769
770 if (strncmp(buf, "NO_", 3) == 0) {
771 neg = 1;
772 cmp += 3;
773 }
774
775 for (i = 0; sched_feat_names[i]; i++) {
776 int len = strlen(sched_feat_names[i]);
777
778 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
779 if (neg)
780 sysctl_sched_features &= ~(1UL << i);
781 else
782 sysctl_sched_features |= (1UL << i);
783 break;
784 }
785 }
786
787 if (!sched_feat_names[i])
788 return -EINVAL;
789
790 filp->f_pos += cnt;
791
792 return cnt;
793 }
794
795 static struct file_operations sched_feat_fops = {
796 .open = sched_feat_open,
797 .read = sched_feat_read,
798 .write = sched_feat_write,
799 };
800
801 static __init int sched_init_debug(void)
802 {
803 debugfs_create_file("sched_features", 0644, NULL, NULL,
804 &sched_feat_fops);
805
806 return 0;
807 }
808 late_initcall(sched_init_debug);
809
810 #endif
811
812 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
813
814 /*
815 * Number of tasks to iterate in a single balance run.
816 * Limited because this is done with IRQs disabled.
817 */
818 const_debug unsigned int sysctl_sched_nr_migrate = 32;
819
820 /*
821 * ratelimit for updating the group shares.
822 * default: 0.25ms
823 */
824 unsigned int sysctl_sched_shares_ratelimit = 250000;
825
826 /*
827 * Inject some fuzzyness into changing the per-cpu group shares
828 * this avoids remote rq-locks at the expense of fairness.
829 * default: 4
830 */
831 unsigned int sysctl_sched_shares_thresh = 4;
832
833 /*
834 * period over which we measure -rt task cpu usage in us.
835 * default: 1s
836 */
837 unsigned int sysctl_sched_rt_period = 1000000;
838
839 static __read_mostly int scheduler_running;
840
841 /*
842 * part of the period that we allow rt tasks to run in us.
843 * default: 0.95s
844 */
845 int sysctl_sched_rt_runtime = 950000;
846
847 static inline u64 global_rt_period(void)
848 {
849 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
850 }
851
852 static inline u64 global_rt_runtime(void)
853 {
854 if (sysctl_sched_rt_runtime < 0)
855 return RUNTIME_INF;
856
857 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
858 }
859
860 #ifndef prepare_arch_switch
861 # define prepare_arch_switch(next) do { } while (0)
862 #endif
863 #ifndef finish_arch_switch
864 # define finish_arch_switch(prev) do { } while (0)
865 #endif
866
867 static inline int task_current(struct rq *rq, struct task_struct *p)
868 {
869 return rq->curr == p;
870 }
871
872 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
873 static inline int task_running(struct rq *rq, struct task_struct *p)
874 {
875 return task_current(rq, p);
876 }
877
878 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
879 {
880 }
881
882 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
883 {
884 #ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887 #endif
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
895 spin_unlock_irq(&rq->lock);
896 }
897
898 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
899 static inline int task_running(struct rq *rq, struct task_struct *p)
900 {
901 #ifdef CONFIG_SMP
902 return p->oncpu;
903 #else
904 return task_current(rq, p);
905 #endif
906 }
907
908 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
909 {
910 #ifdef CONFIG_SMP
911 /*
912 * We can optimise this out completely for !SMP, because the
913 * SMP rebalancing from interrupt is the only thing that cares
914 * here.
915 */
916 next->oncpu = 1;
917 #endif
918 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 spin_unlock_irq(&rq->lock);
920 #else
921 spin_unlock(&rq->lock);
922 #endif
923 }
924
925 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
926 {
927 #ifdef CONFIG_SMP
928 /*
929 * After ->oncpu is cleared, the task can be moved to a different CPU.
930 * We must ensure this doesn't happen until the switch is completely
931 * finished.
932 */
933 smp_wmb();
934 prev->oncpu = 0;
935 #endif
936 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 local_irq_enable();
938 #endif
939 }
940 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
941
942 /*
943 * __task_rq_lock - lock the runqueue a given task resides on.
944 * Must be called interrupts disabled.
945 */
946 static inline struct rq *__task_rq_lock(struct task_struct *p)
947 __acquires(rq->lock)
948 {
949 for (;;) {
950 struct rq *rq = task_rq(p);
951 spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p)))
953 return rq;
954 spin_unlock(&rq->lock);
955 }
956 }
957
958 /*
959 * task_rq_lock - lock the runqueue a given task resides on and disable
960 * interrupts. Note the ordering: we can safely lookup the task_rq without
961 * explicitly disabling preemption.
962 */
963 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
964 __acquires(rq->lock)
965 {
966 struct rq *rq;
967
968 for (;;) {
969 local_irq_save(*flags);
970 rq = task_rq(p);
971 spin_lock(&rq->lock);
972 if (likely(rq == task_rq(p)))
973 return rq;
974 spin_unlock_irqrestore(&rq->lock, *flags);
975 }
976 }
977
978 void task_rq_unlock_wait(struct task_struct *p)
979 {
980 struct rq *rq = task_rq(p);
981
982 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
983 spin_unlock_wait(&rq->lock);
984 }
985
986 static void __task_rq_unlock(struct rq *rq)
987 __releases(rq->lock)
988 {
989 spin_unlock(&rq->lock);
990 }
991
992 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
993 __releases(rq->lock)
994 {
995 spin_unlock_irqrestore(&rq->lock, *flags);
996 }
997
998 /*
999 * this_rq_lock - lock this runqueue and disable interrupts.
1000 */
1001 static struct rq *this_rq_lock(void)
1002 __acquires(rq->lock)
1003 {
1004 struct rq *rq;
1005
1006 local_irq_disable();
1007 rq = this_rq();
1008 spin_lock(&rq->lock);
1009
1010 return rq;
1011 }
1012
1013 #ifdef CONFIG_SCHED_HRTICK
1014 /*
1015 * Use HR-timers to deliver accurate preemption points.
1016 *
1017 * Its all a bit involved since we cannot program an hrt while holding the
1018 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1019 * reschedule event.
1020 *
1021 * When we get rescheduled we reprogram the hrtick_timer outside of the
1022 * rq->lock.
1023 */
1024
1025 /*
1026 * Use hrtick when:
1027 * - enabled by features
1028 * - hrtimer is actually high res
1029 */
1030 static inline int hrtick_enabled(struct rq *rq)
1031 {
1032 if (!sched_feat(HRTICK))
1033 return 0;
1034 if (!cpu_active(cpu_of(rq)))
1035 return 0;
1036 return hrtimer_is_hres_active(&rq->hrtick_timer);
1037 }
1038
1039 static void hrtick_clear(struct rq *rq)
1040 {
1041 if (hrtimer_active(&rq->hrtick_timer))
1042 hrtimer_cancel(&rq->hrtick_timer);
1043 }
1044
1045 /*
1046 * High-resolution timer tick.
1047 * Runs from hardirq context with interrupts disabled.
1048 */
1049 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1050 {
1051 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1052
1053 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1054
1055 spin_lock(&rq->lock);
1056 update_rq_clock(rq);
1057 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1058 spin_unlock(&rq->lock);
1059
1060 return HRTIMER_NORESTART;
1061 }
1062
1063 #ifdef CONFIG_SMP
1064 /*
1065 * called from hardirq (IPI) context
1066 */
1067 static void __hrtick_start(void *arg)
1068 {
1069 struct rq *rq = arg;
1070
1071 spin_lock(&rq->lock);
1072 hrtimer_restart(&rq->hrtick_timer);
1073 rq->hrtick_csd_pending = 0;
1074 spin_unlock(&rq->lock);
1075 }
1076
1077 /*
1078 * Called to set the hrtick timer state.
1079 *
1080 * called with rq->lock held and irqs disabled
1081 */
1082 static void hrtick_start(struct rq *rq, u64 delay)
1083 {
1084 struct hrtimer *timer = &rq->hrtick_timer;
1085 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1086
1087 hrtimer_set_expires(timer, time);
1088
1089 if (rq == this_rq()) {
1090 hrtimer_restart(timer);
1091 } else if (!rq->hrtick_csd_pending) {
1092 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1093 rq->hrtick_csd_pending = 1;
1094 }
1095 }
1096
1097 static int
1098 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1099 {
1100 int cpu = (int)(long)hcpu;
1101
1102 switch (action) {
1103 case CPU_UP_CANCELED:
1104 case CPU_UP_CANCELED_FROZEN:
1105 case CPU_DOWN_PREPARE:
1106 case CPU_DOWN_PREPARE_FROZEN:
1107 case CPU_DEAD:
1108 case CPU_DEAD_FROZEN:
1109 hrtick_clear(cpu_rq(cpu));
1110 return NOTIFY_OK;
1111 }
1112
1113 return NOTIFY_DONE;
1114 }
1115
1116 static __init void init_hrtick(void)
1117 {
1118 hotcpu_notifier(hotplug_hrtick, 0);
1119 }
1120 #else
1121 /*
1122 * Called to set the hrtick timer state.
1123 *
1124 * called with rq->lock held and irqs disabled
1125 */
1126 static void hrtick_start(struct rq *rq, u64 delay)
1127 {
1128 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1129 }
1130
1131 static inline void init_hrtick(void)
1132 {
1133 }
1134 #endif /* CONFIG_SMP */
1135
1136 static void init_rq_hrtick(struct rq *rq)
1137 {
1138 #ifdef CONFIG_SMP
1139 rq->hrtick_csd_pending = 0;
1140
1141 rq->hrtick_csd.flags = 0;
1142 rq->hrtick_csd.func = __hrtick_start;
1143 rq->hrtick_csd.info = rq;
1144 #endif
1145
1146 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1147 rq->hrtick_timer.function = hrtick;
1148 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU;
1149 }
1150 #else /* CONFIG_SCHED_HRTICK */
1151 static inline void hrtick_clear(struct rq *rq)
1152 {
1153 }
1154
1155 static inline void init_rq_hrtick(struct rq *rq)
1156 {
1157 }
1158
1159 static inline void init_hrtick(void)
1160 {
1161 }
1162 #endif /* CONFIG_SCHED_HRTICK */
1163
1164 /*
1165 * resched_task - mark a task 'to be rescheduled now'.
1166 *
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1169 * the target CPU.
1170 */
1171 #ifdef CONFIG_SMP
1172
1173 #ifndef tsk_is_polling
1174 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1175 #endif
1176
1177 static void resched_task(struct task_struct *p)
1178 {
1179 int cpu;
1180
1181 assert_spin_locked(&task_rq(p)->lock);
1182
1183 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1184 return;
1185
1186 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1187
1188 cpu = task_cpu(p);
1189 if (cpu == smp_processor_id())
1190 return;
1191
1192 /* NEED_RESCHED must be visible before we test polling */
1193 smp_mb();
1194 if (!tsk_is_polling(p))
1195 smp_send_reschedule(cpu);
1196 }
1197
1198 static void resched_cpu(int cpu)
1199 {
1200 struct rq *rq = cpu_rq(cpu);
1201 unsigned long flags;
1202
1203 if (!spin_trylock_irqsave(&rq->lock, flags))
1204 return;
1205 resched_task(cpu_curr(cpu));
1206 spin_unlock_irqrestore(&rq->lock, flags);
1207 }
1208
1209 #ifdef CONFIG_NO_HZ
1210 /*
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1219 */
1220 void wake_up_idle_cpu(int cpu)
1221 {
1222 struct rq *rq = cpu_rq(cpu);
1223
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /*
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1233 */
1234 if (rq->curr != rq->idle)
1235 return;
1236
1237 /*
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1241 */
1242 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1243
1244 /* NEED_RESCHED must be visible before we test polling */
1245 smp_mb();
1246 if (!tsk_is_polling(rq->idle))
1247 smp_send_reschedule(cpu);
1248 }
1249 #endif /* CONFIG_NO_HZ */
1250
1251 #else /* !CONFIG_SMP */
1252 static void resched_task(struct task_struct *p)
1253 {
1254 assert_spin_locked(&task_rq(p)->lock);
1255 set_tsk_need_resched(p);
1256 }
1257 #endif /* CONFIG_SMP */
1258
1259 #if BITS_PER_LONG == 32
1260 # define WMULT_CONST (~0UL)
1261 #else
1262 # define WMULT_CONST (1UL << 32)
1263 #endif
1264
1265 #define WMULT_SHIFT 32
1266
1267 /*
1268 * Shift right and round:
1269 */
1270 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1271
1272 /*
1273 * delta *= weight / lw
1274 */
1275 static unsigned long
1276 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1277 struct load_weight *lw)
1278 {
1279 u64 tmp;
1280
1281 if (!lw->inv_weight) {
1282 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1283 lw->inv_weight = 1;
1284 else
1285 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1286 / (lw->weight+1);
1287 }
1288
1289 tmp = (u64)delta_exec * weight;
1290 /*
1291 * Check whether we'd overflow the 64-bit multiplication:
1292 */
1293 if (unlikely(tmp > WMULT_CONST))
1294 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1295 WMULT_SHIFT/2);
1296 else
1297 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1298
1299 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1300 }
1301
1302 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1303 {
1304 lw->weight += inc;
1305 lw->inv_weight = 0;
1306 }
1307
1308 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1309 {
1310 lw->weight -= dec;
1311 lw->inv_weight = 0;
1312 }
1313
1314 /*
1315 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1316 * of tasks with abnormal "nice" values across CPUs the contribution that
1317 * each task makes to its run queue's load is weighted according to its
1318 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1319 * scaled version of the new time slice allocation that they receive on time
1320 * slice expiry etc.
1321 */
1322
1323 #define WEIGHT_IDLEPRIO 2
1324 #define WMULT_IDLEPRIO (1 << 31)
1325
1326 /*
1327 * Nice levels are multiplicative, with a gentle 10% change for every
1328 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1329 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1330 * that remained on nice 0.
1331 *
1332 * The "10% effect" is relative and cumulative: from _any_ nice level,
1333 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1334 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1335 * If a task goes up by ~10% and another task goes down by ~10% then
1336 * the relative distance between them is ~25%.)
1337 */
1338 static const int prio_to_weight[40] = {
1339 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1340 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1341 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1342 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1343 /* 0 */ 1024, 820, 655, 526, 423,
1344 /* 5 */ 335, 272, 215, 172, 137,
1345 /* 10 */ 110, 87, 70, 56, 45,
1346 /* 15 */ 36, 29, 23, 18, 15,
1347 };
1348
1349 /*
1350 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1351 *
1352 * In cases where the weight does not change often, we can use the
1353 * precalculated inverse to speed up arithmetics by turning divisions
1354 * into multiplications:
1355 */
1356 static const u32 prio_to_wmult[40] = {
1357 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1358 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1359 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1360 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1361 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1362 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1363 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1364 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1365 };
1366
1367 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1368
1369 /*
1370 * runqueue iterator, to support SMP load-balancing between different
1371 * scheduling classes, without having to expose their internal data
1372 * structures to the load-balancing proper:
1373 */
1374 struct rq_iterator {
1375 void *arg;
1376 struct task_struct *(*start)(void *);
1377 struct task_struct *(*next)(void *);
1378 };
1379
1380 #ifdef CONFIG_SMP
1381 static unsigned long
1382 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 unsigned long max_load_move, struct sched_domain *sd,
1384 enum cpu_idle_type idle, int *all_pinned,
1385 int *this_best_prio, struct rq_iterator *iterator);
1386
1387 static int
1388 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1389 struct sched_domain *sd, enum cpu_idle_type idle,
1390 struct rq_iterator *iterator);
1391 #endif
1392
1393 #ifdef CONFIG_CGROUP_CPUACCT
1394 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1395 #else
1396 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1397 #endif
1398
1399 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1400 {
1401 update_load_add(&rq->load, load);
1402 }
1403
1404 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1405 {
1406 update_load_sub(&rq->load, load);
1407 }
1408
1409 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1410 typedef int (*tg_visitor)(struct task_group *, void *);
1411
1412 /*
1413 * Iterate the full tree, calling @down when first entering a node and @up when
1414 * leaving it for the final time.
1415 */
1416 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1417 {
1418 struct task_group *parent, *child;
1419 int ret;
1420
1421 rcu_read_lock();
1422 parent = &root_task_group;
1423 down:
1424 ret = (*down)(parent, data);
1425 if (ret)
1426 goto out_unlock;
1427 list_for_each_entry_rcu(child, &parent->children, siblings) {
1428 parent = child;
1429 goto down;
1430
1431 up:
1432 continue;
1433 }
1434 ret = (*up)(parent, data);
1435 if (ret)
1436 goto out_unlock;
1437
1438 child = parent;
1439 parent = parent->parent;
1440 if (parent)
1441 goto up;
1442 out_unlock:
1443 rcu_read_unlock();
1444
1445 return ret;
1446 }
1447
1448 static int tg_nop(struct task_group *tg, void *data)
1449 {
1450 return 0;
1451 }
1452 #endif
1453
1454 #ifdef CONFIG_SMP
1455 static unsigned long source_load(int cpu, int type);
1456 static unsigned long target_load(int cpu, int type);
1457 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1458
1459 static unsigned long cpu_avg_load_per_task(int cpu)
1460 {
1461 struct rq *rq = cpu_rq(cpu);
1462 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1463
1464 if (nr_running)
1465 rq->avg_load_per_task = rq->load.weight / nr_running;
1466 else
1467 rq->avg_load_per_task = 0;
1468
1469 return rq->avg_load_per_task;
1470 }
1471
1472 #ifdef CONFIG_FAIR_GROUP_SCHED
1473
1474 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1475
1476 /*
1477 * Calculate and set the cpu's group shares.
1478 */
1479 static void
1480 update_group_shares_cpu(struct task_group *tg, int cpu,
1481 unsigned long sd_shares, unsigned long sd_rq_weight)
1482 {
1483 int boost = 0;
1484 unsigned long shares;
1485 unsigned long rq_weight;
1486
1487 if (!tg->se[cpu])
1488 return;
1489
1490 rq_weight = tg->cfs_rq[cpu]->load.weight;
1491
1492 /*
1493 * If there are currently no tasks on the cpu pretend there is one of
1494 * average load so that when a new task gets to run here it will not
1495 * get delayed by group starvation.
1496 */
1497 if (!rq_weight) {
1498 boost = 1;
1499 rq_weight = NICE_0_LOAD;
1500 }
1501
1502 if (unlikely(rq_weight > sd_rq_weight))
1503 rq_weight = sd_rq_weight;
1504
1505 /*
1506 * \Sum shares * rq_weight
1507 * shares = -----------------------
1508 * \Sum rq_weight
1509 *
1510 */
1511 shares = (sd_shares * rq_weight) / (sd_rq_weight + 1);
1512 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1513
1514 if (abs(shares - tg->se[cpu]->load.weight) >
1515 sysctl_sched_shares_thresh) {
1516 struct rq *rq = cpu_rq(cpu);
1517 unsigned long flags;
1518
1519 spin_lock_irqsave(&rq->lock, flags);
1520 /*
1521 * record the actual number of shares, not the boosted amount.
1522 */
1523 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1524 tg->cfs_rq[cpu]->rq_weight = rq_weight;
1525
1526 __set_se_shares(tg->se[cpu], shares);
1527 spin_unlock_irqrestore(&rq->lock, flags);
1528 }
1529 }
1530
1531 /*
1532 * Re-compute the task group their per cpu shares over the given domain.
1533 * This needs to be done in a bottom-up fashion because the rq weight of a
1534 * parent group depends on the shares of its child groups.
1535 */
1536 static int tg_shares_up(struct task_group *tg, void *data)
1537 {
1538 unsigned long rq_weight = 0;
1539 unsigned long shares = 0;
1540 struct sched_domain *sd = data;
1541 int i;
1542
1543 for_each_cpu_mask(i, sd->span) {
1544 rq_weight += tg->cfs_rq[i]->load.weight;
1545 shares += tg->cfs_rq[i]->shares;
1546 }
1547
1548 if ((!shares && rq_weight) || shares > tg->shares)
1549 shares = tg->shares;
1550
1551 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1552 shares = tg->shares;
1553
1554 if (!rq_weight)
1555 rq_weight = cpus_weight(sd->span) * NICE_0_LOAD;
1556
1557 for_each_cpu_mask(i, sd->span)
1558 update_group_shares_cpu(tg, i, shares, rq_weight);
1559
1560 return 0;
1561 }
1562
1563 /*
1564 * Compute the cpu's hierarchical load factor for each task group.
1565 * This needs to be done in a top-down fashion because the load of a child
1566 * group is a fraction of its parents load.
1567 */
1568 static int tg_load_down(struct task_group *tg, void *data)
1569 {
1570 unsigned long load;
1571 long cpu = (long)data;
1572
1573 if (!tg->parent) {
1574 load = cpu_rq(cpu)->load.weight;
1575 } else {
1576 load = tg->parent->cfs_rq[cpu]->h_load;
1577 load *= tg->cfs_rq[cpu]->shares;
1578 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1579 }
1580
1581 tg->cfs_rq[cpu]->h_load = load;
1582
1583 return 0;
1584 }
1585
1586 static void update_shares(struct sched_domain *sd)
1587 {
1588 u64 now = cpu_clock(raw_smp_processor_id());
1589 s64 elapsed = now - sd->last_update;
1590
1591 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1592 sd->last_update = now;
1593 walk_tg_tree(tg_nop, tg_shares_up, sd);
1594 }
1595 }
1596
1597 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1598 {
1599 spin_unlock(&rq->lock);
1600 update_shares(sd);
1601 spin_lock(&rq->lock);
1602 }
1603
1604 static void update_h_load(long cpu)
1605 {
1606 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1607 }
1608
1609 #else
1610
1611 static inline void update_shares(struct sched_domain *sd)
1612 {
1613 }
1614
1615 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1616 {
1617 }
1618
1619 #endif
1620
1621 #endif
1622
1623 #ifdef CONFIG_FAIR_GROUP_SCHED
1624 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1625 {
1626 #ifdef CONFIG_SMP
1627 cfs_rq->shares = shares;
1628 #endif
1629 }
1630 #endif
1631
1632 #include "sched_stats.h"
1633 #include "sched_idletask.c"
1634 #include "sched_fair.c"
1635 #include "sched_rt.c"
1636 #ifdef CONFIG_SCHED_DEBUG
1637 # include "sched_debug.c"
1638 #endif
1639
1640 #define sched_class_highest (&rt_sched_class)
1641 #define for_each_class(class) \
1642 for (class = sched_class_highest; class; class = class->next)
1643
1644 static void inc_nr_running(struct rq *rq)
1645 {
1646 rq->nr_running++;
1647 }
1648
1649 static void dec_nr_running(struct rq *rq)
1650 {
1651 rq->nr_running--;
1652 }
1653
1654 static void set_load_weight(struct task_struct *p)
1655 {
1656 if (task_has_rt_policy(p)) {
1657 p->se.load.weight = prio_to_weight[0] * 2;
1658 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1659 return;
1660 }
1661
1662 /*
1663 * SCHED_IDLE tasks get minimal weight:
1664 */
1665 if (p->policy == SCHED_IDLE) {
1666 p->se.load.weight = WEIGHT_IDLEPRIO;
1667 p->se.load.inv_weight = WMULT_IDLEPRIO;
1668 return;
1669 }
1670
1671 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1672 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1673 }
1674
1675 static void update_avg(u64 *avg, u64 sample)
1676 {
1677 s64 diff = sample - *avg;
1678 *avg += diff >> 3;
1679 }
1680
1681 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1682 {
1683 sched_info_queued(p);
1684 p->sched_class->enqueue_task(rq, p, wakeup);
1685 p->se.on_rq = 1;
1686 }
1687
1688 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1689 {
1690 if (sleep && p->se.last_wakeup) {
1691 update_avg(&p->se.avg_overlap,
1692 p->se.sum_exec_runtime - p->se.last_wakeup);
1693 p->se.last_wakeup = 0;
1694 }
1695
1696 sched_info_dequeued(p);
1697 p->sched_class->dequeue_task(rq, p, sleep);
1698 p->se.on_rq = 0;
1699 }
1700
1701 /*
1702 * __normal_prio - return the priority that is based on the static prio
1703 */
1704 static inline int __normal_prio(struct task_struct *p)
1705 {
1706 return p->static_prio;
1707 }
1708
1709 /*
1710 * Calculate the expected normal priority: i.e. priority
1711 * without taking RT-inheritance into account. Might be
1712 * boosted by interactivity modifiers. Changes upon fork,
1713 * setprio syscalls, and whenever the interactivity
1714 * estimator recalculates.
1715 */
1716 static inline int normal_prio(struct task_struct *p)
1717 {
1718 int prio;
1719
1720 if (task_has_rt_policy(p))
1721 prio = MAX_RT_PRIO-1 - p->rt_priority;
1722 else
1723 prio = __normal_prio(p);
1724 return prio;
1725 }
1726
1727 /*
1728 * Calculate the current priority, i.e. the priority
1729 * taken into account by the scheduler. This value might
1730 * be boosted by RT tasks, or might be boosted by
1731 * interactivity modifiers. Will be RT if the task got
1732 * RT-boosted. If not then it returns p->normal_prio.
1733 */
1734 static int effective_prio(struct task_struct *p)
1735 {
1736 p->normal_prio = normal_prio(p);
1737 /*
1738 * If we are RT tasks or we were boosted to RT priority,
1739 * keep the priority unchanged. Otherwise, update priority
1740 * to the normal priority:
1741 */
1742 if (!rt_prio(p->prio))
1743 return p->normal_prio;
1744 return p->prio;
1745 }
1746
1747 /*
1748 * activate_task - move a task to the runqueue.
1749 */
1750 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1751 {
1752 if (task_contributes_to_load(p))
1753 rq->nr_uninterruptible--;
1754
1755 enqueue_task(rq, p, wakeup);
1756 inc_nr_running(rq);
1757 }
1758
1759 /*
1760 * deactivate_task - remove a task from the runqueue.
1761 */
1762 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1763 {
1764 if (task_contributes_to_load(p))
1765 rq->nr_uninterruptible++;
1766
1767 dequeue_task(rq, p, sleep);
1768 dec_nr_running(rq);
1769 }
1770
1771 /**
1772 * task_curr - is this task currently executing on a CPU?
1773 * @p: the task in question.
1774 */
1775 inline int task_curr(const struct task_struct *p)
1776 {
1777 return cpu_curr(task_cpu(p)) == p;
1778 }
1779
1780 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1781 {
1782 set_task_rq(p, cpu);
1783 #ifdef CONFIG_SMP
1784 /*
1785 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1786 * successfuly executed on another CPU. We must ensure that updates of
1787 * per-task data have been completed by this moment.
1788 */
1789 smp_wmb();
1790 task_thread_info(p)->cpu = cpu;
1791 #endif
1792 }
1793
1794 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1795 const struct sched_class *prev_class,
1796 int oldprio, int running)
1797 {
1798 if (prev_class != p->sched_class) {
1799 if (prev_class->switched_from)
1800 prev_class->switched_from(rq, p, running);
1801 p->sched_class->switched_to(rq, p, running);
1802 } else
1803 p->sched_class->prio_changed(rq, p, oldprio, running);
1804 }
1805
1806 #ifdef CONFIG_SMP
1807
1808 /* Used instead of source_load when we know the type == 0 */
1809 static unsigned long weighted_cpuload(const int cpu)
1810 {
1811 return cpu_rq(cpu)->load.weight;
1812 }
1813
1814 /*
1815 * Is this task likely cache-hot:
1816 */
1817 static int
1818 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1819 {
1820 s64 delta;
1821
1822 /*
1823 * Buddy candidates are cache hot:
1824 */
1825 if (sched_feat(CACHE_HOT_BUDDY) &&
1826 (&p->se == cfs_rq_of(&p->se)->next ||
1827 &p->se == cfs_rq_of(&p->se)->last))
1828 return 1;
1829
1830 if (p->sched_class != &fair_sched_class)
1831 return 0;
1832
1833 if (sysctl_sched_migration_cost == -1)
1834 return 1;
1835 if (sysctl_sched_migration_cost == 0)
1836 return 0;
1837
1838 delta = now - p->se.exec_start;
1839
1840 return delta < (s64)sysctl_sched_migration_cost;
1841 }
1842
1843
1844 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1845 {
1846 int old_cpu = task_cpu(p);
1847 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1848 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1849 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1850 u64 clock_offset;
1851
1852 clock_offset = old_rq->clock - new_rq->clock;
1853
1854 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1855
1856 #ifdef CONFIG_SCHEDSTATS
1857 if (p->se.wait_start)
1858 p->se.wait_start -= clock_offset;
1859 if (p->se.sleep_start)
1860 p->se.sleep_start -= clock_offset;
1861 if (p->se.block_start)
1862 p->se.block_start -= clock_offset;
1863 if (old_cpu != new_cpu) {
1864 schedstat_inc(p, se.nr_migrations);
1865 if (task_hot(p, old_rq->clock, NULL))
1866 schedstat_inc(p, se.nr_forced2_migrations);
1867 }
1868 #endif
1869 p->se.vruntime -= old_cfsrq->min_vruntime -
1870 new_cfsrq->min_vruntime;
1871
1872 __set_task_cpu(p, new_cpu);
1873 }
1874
1875 struct migration_req {
1876 struct list_head list;
1877
1878 struct task_struct *task;
1879 int dest_cpu;
1880
1881 struct completion done;
1882 };
1883
1884 /*
1885 * The task's runqueue lock must be held.
1886 * Returns true if you have to wait for migration thread.
1887 */
1888 static int
1889 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1890 {
1891 struct rq *rq = task_rq(p);
1892
1893 /*
1894 * If the task is not on a runqueue (and not running), then
1895 * it is sufficient to simply update the task's cpu field.
1896 */
1897 if (!p->se.on_rq && !task_running(rq, p)) {
1898 set_task_cpu(p, dest_cpu);
1899 return 0;
1900 }
1901
1902 init_completion(&req->done);
1903 req->task = p;
1904 req->dest_cpu = dest_cpu;
1905 list_add(&req->list, &rq->migration_queue);
1906
1907 return 1;
1908 }
1909
1910 /*
1911 * wait_task_inactive - wait for a thread to unschedule.
1912 *
1913 * If @match_state is nonzero, it's the @p->state value just checked and
1914 * not expected to change. If it changes, i.e. @p might have woken up,
1915 * then return zero. When we succeed in waiting for @p to be off its CPU,
1916 * we return a positive number (its total switch count). If a second call
1917 * a short while later returns the same number, the caller can be sure that
1918 * @p has remained unscheduled the whole time.
1919 *
1920 * The caller must ensure that the task *will* unschedule sometime soon,
1921 * else this function might spin for a *long* time. This function can't
1922 * be called with interrupts off, or it may introduce deadlock with
1923 * smp_call_function() if an IPI is sent by the same process we are
1924 * waiting to become inactive.
1925 */
1926 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1927 {
1928 unsigned long flags;
1929 int running, on_rq;
1930 unsigned long ncsw;
1931 struct rq *rq;
1932
1933 for (;;) {
1934 /*
1935 * We do the initial early heuristics without holding
1936 * any task-queue locks at all. We'll only try to get
1937 * the runqueue lock when things look like they will
1938 * work out!
1939 */
1940 rq = task_rq(p);
1941
1942 /*
1943 * If the task is actively running on another CPU
1944 * still, just relax and busy-wait without holding
1945 * any locks.
1946 *
1947 * NOTE! Since we don't hold any locks, it's not
1948 * even sure that "rq" stays as the right runqueue!
1949 * But we don't care, since "task_running()" will
1950 * return false if the runqueue has changed and p
1951 * is actually now running somewhere else!
1952 */
1953 while (task_running(rq, p)) {
1954 if (match_state && unlikely(p->state != match_state))
1955 return 0;
1956 cpu_relax();
1957 }
1958
1959 /*
1960 * Ok, time to look more closely! We need the rq
1961 * lock now, to be *sure*. If we're wrong, we'll
1962 * just go back and repeat.
1963 */
1964 rq = task_rq_lock(p, &flags);
1965 trace_sched_wait_task(rq, p);
1966 running = task_running(rq, p);
1967 on_rq = p->se.on_rq;
1968 ncsw = 0;
1969 if (!match_state || p->state == match_state)
1970 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
1971 task_rq_unlock(rq, &flags);
1972
1973 /*
1974 * If it changed from the expected state, bail out now.
1975 */
1976 if (unlikely(!ncsw))
1977 break;
1978
1979 /*
1980 * Was it really running after all now that we
1981 * checked with the proper locks actually held?
1982 *
1983 * Oops. Go back and try again..
1984 */
1985 if (unlikely(running)) {
1986 cpu_relax();
1987 continue;
1988 }
1989
1990 /*
1991 * It's not enough that it's not actively running,
1992 * it must be off the runqueue _entirely_, and not
1993 * preempted!
1994 *
1995 * So if it wa still runnable (but just not actively
1996 * running right now), it's preempted, and we should
1997 * yield - it could be a while.
1998 */
1999 if (unlikely(on_rq)) {
2000 schedule_timeout_uninterruptible(1);
2001 continue;
2002 }
2003
2004 /*
2005 * Ahh, all good. It wasn't running, and it wasn't
2006 * runnable, which means that it will never become
2007 * running in the future either. We're all done!
2008 */
2009 break;
2010 }
2011
2012 return ncsw;
2013 }
2014
2015 /***
2016 * kick_process - kick a running thread to enter/exit the kernel
2017 * @p: the to-be-kicked thread
2018 *
2019 * Cause a process which is running on another CPU to enter
2020 * kernel-mode, without any delay. (to get signals handled.)
2021 *
2022 * NOTE: this function doesnt have to take the runqueue lock,
2023 * because all it wants to ensure is that the remote task enters
2024 * the kernel. If the IPI races and the task has been migrated
2025 * to another CPU then no harm is done and the purpose has been
2026 * achieved as well.
2027 */
2028 void kick_process(struct task_struct *p)
2029 {
2030 int cpu;
2031
2032 preempt_disable();
2033 cpu = task_cpu(p);
2034 if ((cpu != smp_processor_id()) && task_curr(p))
2035 smp_send_reschedule(cpu);
2036 preempt_enable();
2037 }
2038
2039 /*
2040 * Return a low guess at the load of a migration-source cpu weighted
2041 * according to the scheduling class and "nice" value.
2042 *
2043 * We want to under-estimate the load of migration sources, to
2044 * balance conservatively.
2045 */
2046 static unsigned long source_load(int cpu, int type)
2047 {
2048 struct rq *rq = cpu_rq(cpu);
2049 unsigned long total = weighted_cpuload(cpu);
2050
2051 if (type == 0 || !sched_feat(LB_BIAS))
2052 return total;
2053
2054 return min(rq->cpu_load[type-1], total);
2055 }
2056
2057 /*
2058 * Return a high guess at the load of a migration-target cpu weighted
2059 * according to the scheduling class and "nice" value.
2060 */
2061 static unsigned long target_load(int cpu, int type)
2062 {
2063 struct rq *rq = cpu_rq(cpu);
2064 unsigned long total = weighted_cpuload(cpu);
2065
2066 if (type == 0 || !sched_feat(LB_BIAS))
2067 return total;
2068
2069 return max(rq->cpu_load[type-1], total);
2070 }
2071
2072 /*
2073 * find_idlest_group finds and returns the least busy CPU group within the
2074 * domain.
2075 */
2076 static struct sched_group *
2077 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2078 {
2079 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2080 unsigned long min_load = ULONG_MAX, this_load = 0;
2081 int load_idx = sd->forkexec_idx;
2082 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2083
2084 do {
2085 unsigned long load, avg_load;
2086 int local_group;
2087 int i;
2088
2089 /* Skip over this group if it has no CPUs allowed */
2090 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
2091 continue;
2092
2093 local_group = cpu_isset(this_cpu, group->cpumask);
2094
2095 /* Tally up the load of all CPUs in the group */
2096 avg_load = 0;
2097
2098 for_each_cpu_mask_nr(i, group->cpumask) {
2099 /* Bias balancing toward cpus of our domain */
2100 if (local_group)
2101 load = source_load(i, load_idx);
2102 else
2103 load = target_load(i, load_idx);
2104
2105 avg_load += load;
2106 }
2107
2108 /* Adjust by relative CPU power of the group */
2109 avg_load = sg_div_cpu_power(group,
2110 avg_load * SCHED_LOAD_SCALE);
2111
2112 if (local_group) {
2113 this_load = avg_load;
2114 this = group;
2115 } else if (avg_load < min_load) {
2116 min_load = avg_load;
2117 idlest = group;
2118 }
2119 } while (group = group->next, group != sd->groups);
2120
2121 if (!idlest || 100*this_load < imbalance*min_load)
2122 return NULL;
2123 return idlest;
2124 }
2125
2126 /*
2127 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2128 */
2129 static int
2130 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
2131 cpumask_t *tmp)
2132 {
2133 unsigned long load, min_load = ULONG_MAX;
2134 int idlest = -1;
2135 int i;
2136
2137 /* Traverse only the allowed CPUs */
2138 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
2139
2140 for_each_cpu_mask_nr(i, *tmp) {
2141 load = weighted_cpuload(i);
2142
2143 if (load < min_load || (load == min_load && i == this_cpu)) {
2144 min_load = load;
2145 idlest = i;
2146 }
2147 }
2148
2149 return idlest;
2150 }
2151
2152 /*
2153 * sched_balance_self: balance the current task (running on cpu) in domains
2154 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2155 * SD_BALANCE_EXEC.
2156 *
2157 * Balance, ie. select the least loaded group.
2158 *
2159 * Returns the target CPU number, or the same CPU if no balancing is needed.
2160 *
2161 * preempt must be disabled.
2162 */
2163 static int sched_balance_self(int cpu, int flag)
2164 {
2165 struct task_struct *t = current;
2166 struct sched_domain *tmp, *sd = NULL;
2167
2168 for_each_domain(cpu, tmp) {
2169 /*
2170 * If power savings logic is enabled for a domain, stop there.
2171 */
2172 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2173 break;
2174 if (tmp->flags & flag)
2175 sd = tmp;
2176 }
2177
2178 if (sd)
2179 update_shares(sd);
2180
2181 while (sd) {
2182 cpumask_t span, tmpmask;
2183 struct sched_group *group;
2184 int new_cpu, weight;
2185
2186 if (!(sd->flags & flag)) {
2187 sd = sd->child;
2188 continue;
2189 }
2190
2191 span = sd->span;
2192 group = find_idlest_group(sd, t, cpu);
2193 if (!group) {
2194 sd = sd->child;
2195 continue;
2196 }
2197
2198 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
2199 if (new_cpu == -1 || new_cpu == cpu) {
2200 /* Now try balancing at a lower domain level of cpu */
2201 sd = sd->child;
2202 continue;
2203 }
2204
2205 /* Now try balancing at a lower domain level of new_cpu */
2206 cpu = new_cpu;
2207 sd = NULL;
2208 weight = cpus_weight(span);
2209 for_each_domain(cpu, tmp) {
2210 if (weight <= cpus_weight(tmp->span))
2211 break;
2212 if (tmp->flags & flag)
2213 sd = tmp;
2214 }
2215 /* while loop will break here if sd == NULL */
2216 }
2217
2218 return cpu;
2219 }
2220
2221 #endif /* CONFIG_SMP */
2222
2223 /***
2224 * try_to_wake_up - wake up a thread
2225 * @p: the to-be-woken-up thread
2226 * @state: the mask of task states that can be woken
2227 * @sync: do a synchronous wakeup?
2228 *
2229 * Put it on the run-queue if it's not already there. The "current"
2230 * thread is always on the run-queue (except when the actual
2231 * re-schedule is in progress), and as such you're allowed to do
2232 * the simpler "current->state = TASK_RUNNING" to mark yourself
2233 * runnable without the overhead of this.
2234 *
2235 * returns failure only if the task is already active.
2236 */
2237 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2238 {
2239 int cpu, orig_cpu, this_cpu, success = 0;
2240 unsigned long flags;
2241 long old_state;
2242 struct rq *rq;
2243
2244 if (!sched_feat(SYNC_WAKEUPS))
2245 sync = 0;
2246
2247 #ifdef CONFIG_SMP
2248 if (sched_feat(LB_WAKEUP_UPDATE)) {
2249 struct sched_domain *sd;
2250
2251 this_cpu = raw_smp_processor_id();
2252 cpu = task_cpu(p);
2253
2254 for_each_domain(this_cpu, sd) {
2255 if (cpu_isset(cpu, sd->span)) {
2256 update_shares(sd);
2257 break;
2258 }
2259 }
2260 }
2261 #endif
2262
2263 smp_wmb();
2264 rq = task_rq_lock(p, &flags);
2265 old_state = p->state;
2266 if (!(old_state & state))
2267 goto out;
2268
2269 if (p->se.on_rq)
2270 goto out_running;
2271
2272 cpu = task_cpu(p);
2273 orig_cpu = cpu;
2274 this_cpu = smp_processor_id();
2275
2276 #ifdef CONFIG_SMP
2277 if (unlikely(task_running(rq, p)))
2278 goto out_activate;
2279
2280 cpu = p->sched_class->select_task_rq(p, sync);
2281 if (cpu != orig_cpu) {
2282 set_task_cpu(p, cpu);
2283 task_rq_unlock(rq, &flags);
2284 /* might preempt at this point */
2285 rq = task_rq_lock(p, &flags);
2286 old_state = p->state;
2287 if (!(old_state & state))
2288 goto out;
2289 if (p->se.on_rq)
2290 goto out_running;
2291
2292 this_cpu = smp_processor_id();
2293 cpu = task_cpu(p);
2294 }
2295
2296 #ifdef CONFIG_SCHEDSTATS
2297 schedstat_inc(rq, ttwu_count);
2298 if (cpu == this_cpu)
2299 schedstat_inc(rq, ttwu_local);
2300 else {
2301 struct sched_domain *sd;
2302 for_each_domain(this_cpu, sd) {
2303 if (cpu_isset(cpu, sd->span)) {
2304 schedstat_inc(sd, ttwu_wake_remote);
2305 break;
2306 }
2307 }
2308 }
2309 #endif /* CONFIG_SCHEDSTATS */
2310
2311 out_activate:
2312 #endif /* CONFIG_SMP */
2313 schedstat_inc(p, se.nr_wakeups);
2314 if (sync)
2315 schedstat_inc(p, se.nr_wakeups_sync);
2316 if (orig_cpu != cpu)
2317 schedstat_inc(p, se.nr_wakeups_migrate);
2318 if (cpu == this_cpu)
2319 schedstat_inc(p, se.nr_wakeups_local);
2320 else
2321 schedstat_inc(p, se.nr_wakeups_remote);
2322 update_rq_clock(rq);
2323 activate_task(rq, p, 1);
2324 success = 1;
2325
2326 out_running:
2327 trace_sched_wakeup(rq, p);
2328 check_preempt_curr(rq, p, sync);
2329
2330 p->state = TASK_RUNNING;
2331 #ifdef CONFIG_SMP
2332 if (p->sched_class->task_wake_up)
2333 p->sched_class->task_wake_up(rq, p);
2334 #endif
2335 out:
2336 current->se.last_wakeup = current->se.sum_exec_runtime;
2337
2338 task_rq_unlock(rq, &flags);
2339
2340 return success;
2341 }
2342
2343 int wake_up_process(struct task_struct *p)
2344 {
2345 return try_to_wake_up(p, TASK_ALL, 0);
2346 }
2347 EXPORT_SYMBOL(wake_up_process);
2348
2349 int wake_up_state(struct task_struct *p, unsigned int state)
2350 {
2351 return try_to_wake_up(p, state, 0);
2352 }
2353
2354 /*
2355 * Perform scheduler related setup for a newly forked process p.
2356 * p is forked by current.
2357 *
2358 * __sched_fork() is basic setup used by init_idle() too:
2359 */
2360 static void __sched_fork(struct task_struct *p)
2361 {
2362 p->se.exec_start = 0;
2363 p->se.sum_exec_runtime = 0;
2364 p->se.prev_sum_exec_runtime = 0;
2365 p->se.last_wakeup = 0;
2366 p->se.avg_overlap = 0;
2367
2368 #ifdef CONFIG_SCHEDSTATS
2369 p->se.wait_start = 0;
2370 p->se.sum_sleep_runtime = 0;
2371 p->se.sleep_start = 0;
2372 p->se.block_start = 0;
2373 p->se.sleep_max = 0;
2374 p->se.block_max = 0;
2375 p->se.exec_max = 0;
2376 p->se.slice_max = 0;
2377 p->se.wait_max = 0;
2378 #endif
2379
2380 INIT_LIST_HEAD(&p->rt.run_list);
2381 p->se.on_rq = 0;
2382 INIT_LIST_HEAD(&p->se.group_node);
2383
2384 #ifdef CONFIG_PREEMPT_NOTIFIERS
2385 INIT_HLIST_HEAD(&p->preempt_notifiers);
2386 #endif
2387
2388 /*
2389 * We mark the process as running here, but have not actually
2390 * inserted it onto the runqueue yet. This guarantees that
2391 * nobody will actually run it, and a signal or other external
2392 * event cannot wake it up and insert it on the runqueue either.
2393 */
2394 p->state = TASK_RUNNING;
2395 }
2396
2397 /*
2398 * fork()/clone()-time setup:
2399 */
2400 void sched_fork(struct task_struct *p, int clone_flags)
2401 {
2402 int cpu = get_cpu();
2403
2404 __sched_fork(p);
2405
2406 #ifdef CONFIG_SMP
2407 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2408 #endif
2409 set_task_cpu(p, cpu);
2410
2411 /*
2412 * Make sure we do not leak PI boosting priority to the child:
2413 */
2414 p->prio = current->normal_prio;
2415 if (!rt_prio(p->prio))
2416 p->sched_class = &fair_sched_class;
2417
2418 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2419 if (likely(sched_info_on()))
2420 memset(&p->sched_info, 0, sizeof(p->sched_info));
2421 #endif
2422 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2423 p->oncpu = 0;
2424 #endif
2425 #ifdef CONFIG_PREEMPT
2426 /* Want to start with kernel preemption disabled. */
2427 task_thread_info(p)->preempt_count = 1;
2428 #endif
2429 put_cpu();
2430 }
2431
2432 /*
2433 * wake_up_new_task - wake up a newly created task for the first time.
2434 *
2435 * This function will do some initial scheduler statistics housekeeping
2436 * that must be done for every newly created context, then puts the task
2437 * on the runqueue and wakes it.
2438 */
2439 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2440 {
2441 unsigned long flags;
2442 struct rq *rq;
2443
2444 rq = task_rq_lock(p, &flags);
2445 BUG_ON(p->state != TASK_RUNNING);
2446 update_rq_clock(rq);
2447
2448 p->prio = effective_prio(p);
2449
2450 if (!p->sched_class->task_new || !current->se.on_rq) {
2451 activate_task(rq, p, 0);
2452 } else {
2453 /*
2454 * Let the scheduling class do new task startup
2455 * management (if any):
2456 */
2457 p->sched_class->task_new(rq, p);
2458 inc_nr_running(rq);
2459 }
2460 trace_sched_wakeup_new(rq, p, 1);
2461 check_preempt_curr(rq, p, 0);
2462 #ifdef CONFIG_SMP
2463 if (p->sched_class->task_wake_up)
2464 p->sched_class->task_wake_up(rq, p);
2465 #endif
2466 task_rq_unlock(rq, &flags);
2467 }
2468
2469 #ifdef CONFIG_PREEMPT_NOTIFIERS
2470
2471 /**
2472 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2473 * @notifier: notifier struct to register
2474 */
2475 void preempt_notifier_register(struct preempt_notifier *notifier)
2476 {
2477 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2478 }
2479 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2480
2481 /**
2482 * preempt_notifier_unregister - no longer interested in preemption notifications
2483 * @notifier: notifier struct to unregister
2484 *
2485 * This is safe to call from within a preemption notifier.
2486 */
2487 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2488 {
2489 hlist_del(&notifier->link);
2490 }
2491 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2492
2493 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2494 {
2495 struct preempt_notifier *notifier;
2496 struct hlist_node *node;
2497
2498 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2499 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2500 }
2501
2502 static void
2503 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2504 struct task_struct *next)
2505 {
2506 struct preempt_notifier *notifier;
2507 struct hlist_node *node;
2508
2509 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2510 notifier->ops->sched_out(notifier, next);
2511 }
2512
2513 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2514
2515 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2516 {
2517 }
2518
2519 static void
2520 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2521 struct task_struct *next)
2522 {
2523 }
2524
2525 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2526
2527 /**
2528 * prepare_task_switch - prepare to switch tasks
2529 * @rq: the runqueue preparing to switch
2530 * @prev: the current task that is being switched out
2531 * @next: the task we are going to switch to.
2532 *
2533 * This is called with the rq lock held and interrupts off. It must
2534 * be paired with a subsequent finish_task_switch after the context
2535 * switch.
2536 *
2537 * prepare_task_switch sets up locking and calls architecture specific
2538 * hooks.
2539 */
2540 static inline void
2541 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2542 struct task_struct *next)
2543 {
2544 fire_sched_out_preempt_notifiers(prev, next);
2545 prepare_lock_switch(rq, next);
2546 prepare_arch_switch(next);
2547 }
2548
2549 /**
2550 * finish_task_switch - clean up after a task-switch
2551 * @rq: runqueue associated with task-switch
2552 * @prev: the thread we just switched away from.
2553 *
2554 * finish_task_switch must be called after the context switch, paired
2555 * with a prepare_task_switch call before the context switch.
2556 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2557 * and do any other architecture-specific cleanup actions.
2558 *
2559 * Note that we may have delayed dropping an mm in context_switch(). If
2560 * so, we finish that here outside of the runqueue lock. (Doing it
2561 * with the lock held can cause deadlocks; see schedule() for
2562 * details.)
2563 */
2564 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2565 __releases(rq->lock)
2566 {
2567 struct mm_struct *mm = rq->prev_mm;
2568 long prev_state;
2569
2570 rq->prev_mm = NULL;
2571
2572 /*
2573 * A task struct has one reference for the use as "current".
2574 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2575 * schedule one last time. The schedule call will never return, and
2576 * the scheduled task must drop that reference.
2577 * The test for TASK_DEAD must occur while the runqueue locks are
2578 * still held, otherwise prev could be scheduled on another cpu, die
2579 * there before we look at prev->state, and then the reference would
2580 * be dropped twice.
2581 * Manfred Spraul <manfred@colorfullife.com>
2582 */
2583 prev_state = prev->state;
2584 finish_arch_switch(prev);
2585 finish_lock_switch(rq, prev);
2586 #ifdef CONFIG_SMP
2587 if (current->sched_class->post_schedule)
2588 current->sched_class->post_schedule(rq);
2589 #endif
2590
2591 fire_sched_in_preempt_notifiers(current);
2592 if (mm)
2593 mmdrop(mm);
2594 if (unlikely(prev_state == TASK_DEAD)) {
2595 /*
2596 * Remove function-return probe instances associated with this
2597 * task and put them back on the free list.
2598 */
2599 kprobe_flush_task(prev);
2600 put_task_struct(prev);
2601 }
2602 }
2603
2604 /**
2605 * schedule_tail - first thing a freshly forked thread must call.
2606 * @prev: the thread we just switched away from.
2607 */
2608 asmlinkage void schedule_tail(struct task_struct *prev)
2609 __releases(rq->lock)
2610 {
2611 struct rq *rq = this_rq();
2612
2613 finish_task_switch(rq, prev);
2614 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2615 /* In this case, finish_task_switch does not reenable preemption */
2616 preempt_enable();
2617 #endif
2618 if (current->set_child_tid)
2619 put_user(task_pid_vnr(current), current->set_child_tid);
2620 }
2621
2622 /*
2623 * context_switch - switch to the new MM and the new
2624 * thread's register state.
2625 */
2626 static inline void
2627 context_switch(struct rq *rq, struct task_struct *prev,
2628 struct task_struct *next)
2629 {
2630 struct mm_struct *mm, *oldmm;
2631
2632 prepare_task_switch(rq, prev, next);
2633 trace_sched_switch(rq, prev, next);
2634 mm = next->mm;
2635 oldmm = prev->active_mm;
2636 /*
2637 * For paravirt, this is coupled with an exit in switch_to to
2638 * combine the page table reload and the switch backend into
2639 * one hypercall.
2640 */
2641 arch_enter_lazy_cpu_mode();
2642
2643 if (unlikely(!mm)) {
2644 next->active_mm = oldmm;
2645 atomic_inc(&oldmm->mm_count);
2646 enter_lazy_tlb(oldmm, next);
2647 } else
2648 switch_mm(oldmm, mm, next);
2649
2650 if (unlikely(!prev->mm)) {
2651 prev->active_mm = NULL;
2652 rq->prev_mm = oldmm;
2653 }
2654 /*
2655 * Since the runqueue lock will be released by the next
2656 * task (which is an invalid locking op but in the case
2657 * of the scheduler it's an obvious special-case), so we
2658 * do an early lockdep release here:
2659 */
2660 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2661 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2662 #endif
2663
2664 /* Here we just switch the register state and the stack. */
2665 switch_to(prev, next, prev);
2666
2667 barrier();
2668 /*
2669 * this_rq must be evaluated again because prev may have moved
2670 * CPUs since it called schedule(), thus the 'rq' on its stack
2671 * frame will be invalid.
2672 */
2673 finish_task_switch(this_rq(), prev);
2674 }
2675
2676 /*
2677 * nr_running, nr_uninterruptible and nr_context_switches:
2678 *
2679 * externally visible scheduler statistics: current number of runnable
2680 * threads, current number of uninterruptible-sleeping threads, total
2681 * number of context switches performed since bootup.
2682 */
2683 unsigned long nr_running(void)
2684 {
2685 unsigned long i, sum = 0;
2686
2687 for_each_online_cpu(i)
2688 sum += cpu_rq(i)->nr_running;
2689
2690 return sum;
2691 }
2692
2693 unsigned long nr_uninterruptible(void)
2694 {
2695 unsigned long i, sum = 0;
2696
2697 for_each_possible_cpu(i)
2698 sum += cpu_rq(i)->nr_uninterruptible;
2699
2700 /*
2701 * Since we read the counters lockless, it might be slightly
2702 * inaccurate. Do not allow it to go below zero though:
2703 */
2704 if (unlikely((long)sum < 0))
2705 sum = 0;
2706
2707 return sum;
2708 }
2709
2710 unsigned long long nr_context_switches(void)
2711 {
2712 int i;
2713 unsigned long long sum = 0;
2714
2715 for_each_possible_cpu(i)
2716 sum += cpu_rq(i)->nr_switches;
2717
2718 return sum;
2719 }
2720
2721 unsigned long nr_iowait(void)
2722 {
2723 unsigned long i, sum = 0;
2724
2725 for_each_possible_cpu(i)
2726 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2727
2728 return sum;
2729 }
2730
2731 unsigned long nr_active(void)
2732 {
2733 unsigned long i, running = 0, uninterruptible = 0;
2734
2735 for_each_online_cpu(i) {
2736 running += cpu_rq(i)->nr_running;
2737 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2738 }
2739
2740 if (unlikely((long)uninterruptible < 0))
2741 uninterruptible = 0;
2742
2743 return running + uninterruptible;
2744 }
2745
2746 /*
2747 * Update rq->cpu_load[] statistics. This function is usually called every
2748 * scheduler tick (TICK_NSEC).
2749 */
2750 static void update_cpu_load(struct rq *this_rq)
2751 {
2752 unsigned long this_load = this_rq->load.weight;
2753 int i, scale;
2754
2755 this_rq->nr_load_updates++;
2756
2757 /* Update our load: */
2758 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2759 unsigned long old_load, new_load;
2760
2761 /* scale is effectively 1 << i now, and >> i divides by scale */
2762
2763 old_load = this_rq->cpu_load[i];
2764 new_load = this_load;
2765 /*
2766 * Round up the averaging division if load is increasing. This
2767 * prevents us from getting stuck on 9 if the load is 10, for
2768 * example.
2769 */
2770 if (new_load > old_load)
2771 new_load += scale-1;
2772 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2773 }
2774 }
2775
2776 #ifdef CONFIG_SMP
2777
2778 /*
2779 * double_rq_lock - safely lock two runqueues
2780 *
2781 * Note this does not disable interrupts like task_rq_lock,
2782 * you need to do so manually before calling.
2783 */
2784 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2785 __acquires(rq1->lock)
2786 __acquires(rq2->lock)
2787 {
2788 BUG_ON(!irqs_disabled());
2789 if (rq1 == rq2) {
2790 spin_lock(&rq1->lock);
2791 __acquire(rq2->lock); /* Fake it out ;) */
2792 } else {
2793 if (rq1 < rq2) {
2794 spin_lock(&rq1->lock);
2795 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2796 } else {
2797 spin_lock(&rq2->lock);
2798 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2799 }
2800 }
2801 update_rq_clock(rq1);
2802 update_rq_clock(rq2);
2803 }
2804
2805 /*
2806 * double_rq_unlock - safely unlock two runqueues
2807 *
2808 * Note this does not restore interrupts like task_rq_unlock,
2809 * you need to do so manually after calling.
2810 */
2811 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2812 __releases(rq1->lock)
2813 __releases(rq2->lock)
2814 {
2815 spin_unlock(&rq1->lock);
2816 if (rq1 != rq2)
2817 spin_unlock(&rq2->lock);
2818 else
2819 __release(rq2->lock);
2820 }
2821
2822 /*
2823 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2824 */
2825 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2826 __releases(this_rq->lock)
2827 __acquires(busiest->lock)
2828 __acquires(this_rq->lock)
2829 {
2830 int ret = 0;
2831
2832 if (unlikely(!irqs_disabled())) {
2833 /* printk() doesn't work good under rq->lock */
2834 spin_unlock(&this_rq->lock);
2835 BUG_ON(1);
2836 }
2837 if (unlikely(!spin_trylock(&busiest->lock))) {
2838 if (busiest < this_rq) {
2839 spin_unlock(&this_rq->lock);
2840 spin_lock(&busiest->lock);
2841 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
2842 ret = 1;
2843 } else
2844 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
2845 }
2846 return ret;
2847 }
2848
2849 static void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2850 __releases(busiest->lock)
2851 {
2852 spin_unlock(&busiest->lock);
2853 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
2854 }
2855
2856 /*
2857 * If dest_cpu is allowed for this process, migrate the task to it.
2858 * This is accomplished by forcing the cpu_allowed mask to only
2859 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2860 * the cpu_allowed mask is restored.
2861 */
2862 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2863 {
2864 struct migration_req req;
2865 unsigned long flags;
2866 struct rq *rq;
2867
2868 rq = task_rq_lock(p, &flags);
2869 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2870 || unlikely(!cpu_active(dest_cpu)))
2871 goto out;
2872
2873 /* force the process onto the specified CPU */
2874 if (migrate_task(p, dest_cpu, &req)) {
2875 /* Need to wait for migration thread (might exit: take ref). */
2876 struct task_struct *mt = rq->migration_thread;
2877
2878 get_task_struct(mt);
2879 task_rq_unlock(rq, &flags);
2880 wake_up_process(mt);
2881 put_task_struct(mt);
2882 wait_for_completion(&req.done);
2883
2884 return;
2885 }
2886 out:
2887 task_rq_unlock(rq, &flags);
2888 }
2889
2890 /*
2891 * sched_exec - execve() is a valuable balancing opportunity, because at
2892 * this point the task has the smallest effective memory and cache footprint.
2893 */
2894 void sched_exec(void)
2895 {
2896 int new_cpu, this_cpu = get_cpu();
2897 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2898 put_cpu();
2899 if (new_cpu != this_cpu)
2900 sched_migrate_task(current, new_cpu);
2901 }
2902
2903 /*
2904 * pull_task - move a task from a remote runqueue to the local runqueue.
2905 * Both runqueues must be locked.
2906 */
2907 static void pull_task(struct rq *src_rq, struct task_struct *p,
2908 struct rq *this_rq, int this_cpu)
2909 {
2910 deactivate_task(src_rq, p, 0);
2911 set_task_cpu(p, this_cpu);
2912 activate_task(this_rq, p, 0);
2913 /*
2914 * Note that idle threads have a prio of MAX_PRIO, for this test
2915 * to be always true for them.
2916 */
2917 check_preempt_curr(this_rq, p, 0);
2918 }
2919
2920 /*
2921 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2922 */
2923 static
2924 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2925 struct sched_domain *sd, enum cpu_idle_type idle,
2926 int *all_pinned)
2927 {
2928 /*
2929 * We do not migrate tasks that are:
2930 * 1) running (obviously), or
2931 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2932 * 3) are cache-hot on their current CPU.
2933 */
2934 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2935 schedstat_inc(p, se.nr_failed_migrations_affine);
2936 return 0;
2937 }
2938 *all_pinned = 0;
2939
2940 if (task_running(rq, p)) {
2941 schedstat_inc(p, se.nr_failed_migrations_running);
2942 return 0;
2943 }
2944
2945 /*
2946 * Aggressive migration if:
2947 * 1) task is cache cold, or
2948 * 2) too many balance attempts have failed.
2949 */
2950
2951 if (!task_hot(p, rq->clock, sd) ||
2952 sd->nr_balance_failed > sd->cache_nice_tries) {
2953 #ifdef CONFIG_SCHEDSTATS
2954 if (task_hot(p, rq->clock, sd)) {
2955 schedstat_inc(sd, lb_hot_gained[idle]);
2956 schedstat_inc(p, se.nr_forced_migrations);
2957 }
2958 #endif
2959 return 1;
2960 }
2961
2962 if (task_hot(p, rq->clock, sd)) {
2963 schedstat_inc(p, se.nr_failed_migrations_hot);
2964 return 0;
2965 }
2966 return 1;
2967 }
2968
2969 static unsigned long
2970 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2971 unsigned long max_load_move, struct sched_domain *sd,
2972 enum cpu_idle_type idle, int *all_pinned,
2973 int *this_best_prio, struct rq_iterator *iterator)
2974 {
2975 int loops = 0, pulled = 0, pinned = 0;
2976 struct task_struct *p;
2977 long rem_load_move = max_load_move;
2978
2979 if (max_load_move == 0)
2980 goto out;
2981
2982 pinned = 1;
2983
2984 /*
2985 * Start the load-balancing iterator:
2986 */
2987 p = iterator->start(iterator->arg);
2988 next:
2989 if (!p || loops++ > sysctl_sched_nr_migrate)
2990 goto out;
2991
2992 if ((p->se.load.weight >> 1) > rem_load_move ||
2993 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2994 p = iterator->next(iterator->arg);
2995 goto next;
2996 }
2997
2998 pull_task(busiest, p, this_rq, this_cpu);
2999 pulled++;
3000 rem_load_move -= p->se.load.weight;
3001
3002 /*
3003 * We only want to steal up to the prescribed amount of weighted load.
3004 */
3005 if (rem_load_move > 0) {
3006 if (p->prio < *this_best_prio)
3007 *this_best_prio = p->prio;
3008 p = iterator->next(iterator->arg);
3009 goto next;
3010 }
3011 out:
3012 /*
3013 * Right now, this is one of only two places pull_task() is called,
3014 * so we can safely collect pull_task() stats here rather than
3015 * inside pull_task().
3016 */
3017 schedstat_add(sd, lb_gained[idle], pulled);
3018
3019 if (all_pinned)
3020 *all_pinned = pinned;
3021
3022 return max_load_move - rem_load_move;
3023 }
3024
3025 /*
3026 * move_tasks tries to move up to max_load_move weighted load from busiest to
3027 * this_rq, as part of a balancing operation within domain "sd".
3028 * Returns 1 if successful and 0 otherwise.
3029 *
3030 * Called with both runqueues locked.
3031 */
3032 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3033 unsigned long max_load_move,
3034 struct sched_domain *sd, enum cpu_idle_type idle,
3035 int *all_pinned)
3036 {
3037 const struct sched_class *class = sched_class_highest;
3038 unsigned long total_load_moved = 0;
3039 int this_best_prio = this_rq->curr->prio;
3040
3041 do {
3042 total_load_moved +=
3043 class->load_balance(this_rq, this_cpu, busiest,
3044 max_load_move - total_load_moved,
3045 sd, idle, all_pinned, &this_best_prio);
3046 class = class->next;
3047
3048 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3049 break;
3050
3051 } while (class && max_load_move > total_load_moved);
3052
3053 return total_load_moved > 0;
3054 }
3055
3056 static int
3057 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3058 struct sched_domain *sd, enum cpu_idle_type idle,
3059 struct rq_iterator *iterator)
3060 {
3061 struct task_struct *p = iterator->start(iterator->arg);
3062 int pinned = 0;
3063
3064 while (p) {
3065 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3066 pull_task(busiest, p, this_rq, this_cpu);
3067 /*
3068 * Right now, this is only the second place pull_task()
3069 * is called, so we can safely collect pull_task()
3070 * stats here rather than inside pull_task().
3071 */
3072 schedstat_inc(sd, lb_gained[idle]);
3073
3074 return 1;
3075 }
3076 p = iterator->next(iterator->arg);
3077 }
3078
3079 return 0;
3080 }
3081
3082 /*
3083 * move_one_task tries to move exactly one task from busiest to this_rq, as
3084 * part of active balancing operations within "domain".
3085 * Returns 1 if successful and 0 otherwise.
3086 *
3087 * Called with both runqueues locked.
3088 */
3089 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3090 struct sched_domain *sd, enum cpu_idle_type idle)
3091 {
3092 const struct sched_class *class;
3093
3094 for (class = sched_class_highest; class; class = class->next)
3095 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3096 return 1;
3097
3098 return 0;
3099 }
3100
3101 /*
3102 * find_busiest_group finds and returns the busiest CPU group within the
3103 * domain. It calculates and returns the amount of weighted load which
3104 * should be moved to restore balance via the imbalance parameter.
3105 */
3106 static struct sched_group *
3107 find_busiest_group(struct sched_domain *sd, int this_cpu,
3108 unsigned long *imbalance, enum cpu_idle_type idle,
3109 int *sd_idle, const cpumask_t *cpus, int *balance)
3110 {
3111 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3112 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
3113 unsigned long max_pull;
3114 unsigned long busiest_load_per_task, busiest_nr_running;
3115 unsigned long this_load_per_task, this_nr_running;
3116 int load_idx, group_imb = 0;
3117 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3118 int power_savings_balance = 1;
3119 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3120 unsigned long min_nr_running = ULONG_MAX;
3121 struct sched_group *group_min = NULL, *group_leader = NULL;
3122 #endif
3123
3124 max_load = this_load = total_load = total_pwr = 0;
3125 busiest_load_per_task = busiest_nr_running = 0;
3126 this_load_per_task = this_nr_running = 0;
3127
3128 if (idle == CPU_NOT_IDLE)
3129 load_idx = sd->busy_idx;
3130 else if (idle == CPU_NEWLY_IDLE)
3131 load_idx = sd->newidle_idx;
3132 else
3133 load_idx = sd->idle_idx;
3134
3135 do {
3136 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
3137 int local_group;
3138 int i;
3139 int __group_imb = 0;
3140 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3141 unsigned long sum_nr_running, sum_weighted_load;
3142 unsigned long sum_avg_load_per_task;
3143 unsigned long avg_load_per_task;
3144
3145 local_group = cpu_isset(this_cpu, group->cpumask);
3146
3147 if (local_group)
3148 balance_cpu = first_cpu(group->cpumask);
3149
3150 /* Tally up the load of all CPUs in the group */
3151 sum_weighted_load = sum_nr_running = avg_load = 0;
3152 sum_avg_load_per_task = avg_load_per_task = 0;
3153
3154 max_cpu_load = 0;
3155 min_cpu_load = ~0UL;
3156
3157 for_each_cpu_mask_nr(i, group->cpumask) {
3158 struct rq *rq;
3159
3160 if (!cpu_isset(i, *cpus))
3161 continue;
3162
3163 rq = cpu_rq(i);
3164
3165 if (*sd_idle && rq->nr_running)
3166 *sd_idle = 0;
3167
3168 /* Bias balancing toward cpus of our domain */
3169 if (local_group) {
3170 if (idle_cpu(i) && !first_idle_cpu) {
3171 first_idle_cpu = 1;
3172 balance_cpu = i;
3173 }
3174
3175 load = target_load(i, load_idx);
3176 } else {
3177 load = source_load(i, load_idx);
3178 if (load > max_cpu_load)
3179 max_cpu_load = load;
3180 if (min_cpu_load > load)
3181 min_cpu_load = load;
3182 }
3183
3184 avg_load += load;
3185 sum_nr_running += rq->nr_running;
3186 sum_weighted_load += weighted_cpuload(i);
3187
3188 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3189 }
3190
3191 /*
3192 * First idle cpu or the first cpu(busiest) in this sched group
3193 * is eligible for doing load balancing at this and above
3194 * domains. In the newly idle case, we will allow all the cpu's
3195 * to do the newly idle load balance.
3196 */
3197 if (idle != CPU_NEWLY_IDLE && local_group &&
3198 balance_cpu != this_cpu && balance) {
3199 *balance = 0;
3200 goto ret;
3201 }
3202
3203 total_load += avg_load;
3204 total_pwr += group->__cpu_power;
3205
3206 /* Adjust by relative CPU power of the group */
3207 avg_load = sg_div_cpu_power(group,
3208 avg_load * SCHED_LOAD_SCALE);
3209
3210
3211 /*
3212 * Consider the group unbalanced when the imbalance is larger
3213 * than the average weight of two tasks.
3214 *
3215 * APZ: with cgroup the avg task weight can vary wildly and
3216 * might not be a suitable number - should we keep a
3217 * normalized nr_running number somewhere that negates
3218 * the hierarchy?
3219 */
3220 avg_load_per_task = sg_div_cpu_power(group,
3221 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3222
3223 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3224 __group_imb = 1;
3225
3226 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3227
3228 if (local_group) {
3229 this_load = avg_load;
3230 this = group;
3231 this_nr_running = sum_nr_running;
3232 this_load_per_task = sum_weighted_load;
3233 } else if (avg_load > max_load &&
3234 (sum_nr_running > group_capacity || __group_imb)) {
3235 max_load = avg_load;
3236 busiest = group;
3237 busiest_nr_running = sum_nr_running;
3238 busiest_load_per_task = sum_weighted_load;
3239 group_imb = __group_imb;
3240 }
3241
3242 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3243 /*
3244 * Busy processors will not participate in power savings
3245 * balance.
3246 */
3247 if (idle == CPU_NOT_IDLE ||
3248 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3249 goto group_next;
3250
3251 /*
3252 * If the local group is idle or completely loaded
3253 * no need to do power savings balance at this domain
3254 */
3255 if (local_group && (this_nr_running >= group_capacity ||
3256 !this_nr_running))
3257 power_savings_balance = 0;
3258
3259 /*
3260 * If a group is already running at full capacity or idle,
3261 * don't include that group in power savings calculations
3262 */
3263 if (!power_savings_balance || sum_nr_running >= group_capacity
3264 || !sum_nr_running)
3265 goto group_next;
3266
3267 /*
3268 * Calculate the group which has the least non-idle load.
3269 * This is the group from where we need to pick up the load
3270 * for saving power
3271 */
3272 if ((sum_nr_running < min_nr_running) ||
3273 (sum_nr_running == min_nr_running &&
3274 first_cpu(group->cpumask) <
3275 first_cpu(group_min->cpumask))) {
3276 group_min = group;
3277 min_nr_running = sum_nr_running;
3278 min_load_per_task = sum_weighted_load /
3279 sum_nr_running;
3280 }
3281
3282 /*
3283 * Calculate the group which is almost near its
3284 * capacity but still has some space to pick up some load
3285 * from other group and save more power
3286 */
3287 if (sum_nr_running <= group_capacity - 1) {
3288 if (sum_nr_running > leader_nr_running ||
3289 (sum_nr_running == leader_nr_running &&
3290 first_cpu(group->cpumask) >
3291 first_cpu(group_leader->cpumask))) {
3292 group_leader = group;
3293 leader_nr_running = sum_nr_running;
3294 }
3295 }
3296 group_next:
3297 #endif
3298 group = group->next;
3299 } while (group != sd->groups);
3300
3301 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3302 goto out_balanced;
3303
3304 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3305
3306 if (this_load >= avg_load ||
3307 100*max_load <= sd->imbalance_pct*this_load)
3308 goto out_balanced;
3309
3310 busiest_load_per_task /= busiest_nr_running;
3311 if (group_imb)
3312 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3313
3314 /*
3315 * We're trying to get all the cpus to the average_load, so we don't
3316 * want to push ourselves above the average load, nor do we wish to
3317 * reduce the max loaded cpu below the average load, as either of these
3318 * actions would just result in more rebalancing later, and ping-pong
3319 * tasks around. Thus we look for the minimum possible imbalance.
3320 * Negative imbalances (*we* are more loaded than anyone else) will
3321 * be counted as no imbalance for these purposes -- we can't fix that
3322 * by pulling tasks to us. Be careful of negative numbers as they'll
3323 * appear as very large values with unsigned longs.
3324 */
3325 if (max_load <= busiest_load_per_task)
3326 goto out_balanced;
3327
3328 /*
3329 * In the presence of smp nice balancing, certain scenarios can have
3330 * max load less than avg load(as we skip the groups at or below
3331 * its cpu_power, while calculating max_load..)
3332 */
3333 if (max_load < avg_load) {
3334 *imbalance = 0;
3335 goto small_imbalance;
3336 }
3337
3338 /* Don't want to pull so many tasks that a group would go idle */
3339 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3340
3341 /* How much load to actually move to equalise the imbalance */
3342 *imbalance = min(max_pull * busiest->__cpu_power,
3343 (avg_load - this_load) * this->__cpu_power)
3344 / SCHED_LOAD_SCALE;
3345
3346 /*
3347 * if *imbalance is less than the average load per runnable task
3348 * there is no gaurantee that any tasks will be moved so we'll have
3349 * a think about bumping its value to force at least one task to be
3350 * moved
3351 */
3352 if (*imbalance < busiest_load_per_task) {
3353 unsigned long tmp, pwr_now, pwr_move;
3354 unsigned int imbn;
3355
3356 small_imbalance:
3357 pwr_move = pwr_now = 0;
3358 imbn = 2;
3359 if (this_nr_running) {
3360 this_load_per_task /= this_nr_running;
3361 if (busiest_load_per_task > this_load_per_task)
3362 imbn = 1;
3363 } else
3364 this_load_per_task = cpu_avg_load_per_task(this_cpu);
3365
3366 if (max_load - this_load + busiest_load_per_task >=
3367 busiest_load_per_task * imbn) {
3368 *imbalance = busiest_load_per_task;
3369 return busiest;
3370 }
3371
3372 /*
3373 * OK, we don't have enough imbalance to justify moving tasks,
3374 * however we may be able to increase total CPU power used by
3375 * moving them.
3376 */
3377
3378 pwr_now += busiest->__cpu_power *
3379 min(busiest_load_per_task, max_load);
3380 pwr_now += this->__cpu_power *
3381 min(this_load_per_task, this_load);
3382 pwr_now /= SCHED_LOAD_SCALE;
3383
3384 /* Amount of load we'd subtract */
3385 tmp = sg_div_cpu_power(busiest,
3386 busiest_load_per_task * SCHED_LOAD_SCALE);
3387 if (max_load > tmp)
3388 pwr_move += busiest->__cpu_power *
3389 min(busiest_load_per_task, max_load - tmp);
3390
3391 /* Amount of load we'd add */
3392 if (max_load * busiest->__cpu_power <
3393 busiest_load_per_task * SCHED_LOAD_SCALE)
3394 tmp = sg_div_cpu_power(this,
3395 max_load * busiest->__cpu_power);
3396 else
3397 tmp = sg_div_cpu_power(this,
3398 busiest_load_per_task * SCHED_LOAD_SCALE);
3399 pwr_move += this->__cpu_power *
3400 min(this_load_per_task, this_load + tmp);
3401 pwr_move /= SCHED_LOAD_SCALE;
3402
3403 /* Move if we gain throughput */
3404 if (pwr_move > pwr_now)
3405 *imbalance = busiest_load_per_task;
3406 }
3407
3408 return busiest;
3409
3410 out_balanced:
3411 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3412 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3413 goto ret;
3414
3415 if (this == group_leader && group_leader != group_min) {
3416 *imbalance = min_load_per_task;
3417 return group_min;
3418 }
3419 #endif
3420 ret:
3421 *imbalance = 0;
3422 return NULL;
3423 }
3424
3425 /*
3426 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3427 */
3428 static struct rq *
3429 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3430 unsigned long imbalance, const cpumask_t *cpus)
3431 {
3432 struct rq *busiest = NULL, *rq;
3433 unsigned long max_load = 0;
3434 int i;
3435
3436 for_each_cpu_mask_nr(i, group->cpumask) {
3437 unsigned long wl;
3438
3439 if (!cpu_isset(i, *cpus))
3440 continue;
3441
3442 rq = cpu_rq(i);
3443 wl = weighted_cpuload(i);
3444
3445 if (rq->nr_running == 1 && wl > imbalance)
3446 continue;
3447
3448 if (wl > max_load) {
3449 max_load = wl;
3450 busiest = rq;
3451 }
3452 }
3453
3454 return busiest;
3455 }
3456
3457 /*
3458 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3459 * so long as it is large enough.
3460 */
3461 #define MAX_PINNED_INTERVAL 512
3462
3463 /*
3464 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3465 * tasks if there is an imbalance.
3466 */
3467 static int load_balance(int this_cpu, struct rq *this_rq,
3468 struct sched_domain *sd, enum cpu_idle_type idle,
3469 int *balance, cpumask_t *cpus)
3470 {
3471 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3472 struct sched_group *group;
3473 unsigned long imbalance;
3474 struct rq *busiest;
3475 unsigned long flags;
3476
3477 cpus_setall(*cpus);
3478
3479 /*
3480 * When power savings policy is enabled for the parent domain, idle
3481 * sibling can pick up load irrespective of busy siblings. In this case,
3482 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3483 * portraying it as CPU_NOT_IDLE.
3484 */
3485 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3486 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3487 sd_idle = 1;
3488
3489 schedstat_inc(sd, lb_count[idle]);
3490
3491 redo:
3492 update_shares(sd);
3493 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3494 cpus, balance);
3495
3496 if (*balance == 0)
3497 goto out_balanced;
3498
3499 if (!group) {
3500 schedstat_inc(sd, lb_nobusyg[idle]);
3501 goto out_balanced;
3502 }
3503
3504 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3505 if (!busiest) {
3506 schedstat_inc(sd, lb_nobusyq[idle]);
3507 goto out_balanced;
3508 }
3509
3510 BUG_ON(busiest == this_rq);
3511
3512 schedstat_add(sd, lb_imbalance[idle], imbalance);
3513
3514 ld_moved = 0;
3515 if (busiest->nr_running > 1) {
3516 /*
3517 * Attempt to move tasks. If find_busiest_group has found
3518 * an imbalance but busiest->nr_running <= 1, the group is
3519 * still unbalanced. ld_moved simply stays zero, so it is
3520 * correctly treated as an imbalance.
3521 */
3522 local_irq_save(flags);
3523 double_rq_lock(this_rq, busiest);
3524 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3525 imbalance, sd, idle, &all_pinned);
3526 double_rq_unlock(this_rq, busiest);
3527 local_irq_restore(flags);
3528
3529 /*
3530 * some other cpu did the load balance for us.
3531 */
3532 if (ld_moved && this_cpu != smp_processor_id())
3533 resched_cpu(this_cpu);
3534
3535 /* All tasks on this runqueue were pinned by CPU affinity */
3536 if (unlikely(all_pinned)) {
3537 cpu_clear(cpu_of(busiest), *cpus);
3538 if (!cpus_empty(*cpus))
3539 goto redo;
3540 goto out_balanced;
3541 }
3542 }
3543
3544 if (!ld_moved) {
3545 schedstat_inc(sd, lb_failed[idle]);
3546 sd->nr_balance_failed++;
3547
3548 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3549
3550 spin_lock_irqsave(&busiest->lock, flags);
3551
3552 /* don't kick the migration_thread, if the curr
3553 * task on busiest cpu can't be moved to this_cpu
3554 */
3555 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3556 spin_unlock_irqrestore(&busiest->lock, flags);
3557 all_pinned = 1;
3558 goto out_one_pinned;
3559 }
3560
3561 if (!busiest->active_balance) {
3562 busiest->active_balance = 1;
3563 busiest->push_cpu = this_cpu;
3564 active_balance = 1;
3565 }
3566 spin_unlock_irqrestore(&busiest->lock, flags);
3567 if (active_balance)
3568 wake_up_process(busiest->migration_thread);
3569
3570 /*
3571 * We've kicked active balancing, reset the failure
3572 * counter.
3573 */
3574 sd->nr_balance_failed = sd->cache_nice_tries+1;
3575 }
3576 } else
3577 sd->nr_balance_failed = 0;
3578
3579 if (likely(!active_balance)) {
3580 /* We were unbalanced, so reset the balancing interval */
3581 sd->balance_interval = sd->min_interval;
3582 } else {
3583 /*
3584 * If we've begun active balancing, start to back off. This
3585 * case may not be covered by the all_pinned logic if there
3586 * is only 1 task on the busy runqueue (because we don't call
3587 * move_tasks).
3588 */
3589 if (sd->balance_interval < sd->max_interval)
3590 sd->balance_interval *= 2;
3591 }
3592
3593 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3594 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3595 ld_moved = -1;
3596
3597 goto out;
3598
3599 out_balanced:
3600 schedstat_inc(sd, lb_balanced[idle]);
3601
3602 sd->nr_balance_failed = 0;
3603
3604 out_one_pinned:
3605 /* tune up the balancing interval */
3606 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3607 (sd->balance_interval < sd->max_interval))
3608 sd->balance_interval *= 2;
3609
3610 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3611 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3612 ld_moved = -1;
3613 else
3614 ld_moved = 0;
3615 out:
3616 if (ld_moved)
3617 update_shares(sd);
3618 return ld_moved;
3619 }
3620
3621 /*
3622 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3623 * tasks if there is an imbalance.
3624 *
3625 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3626 * this_rq is locked.
3627 */
3628 static int
3629 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3630 cpumask_t *cpus)
3631 {
3632 struct sched_group *group;
3633 struct rq *busiest = NULL;
3634 unsigned long imbalance;
3635 int ld_moved = 0;
3636 int sd_idle = 0;
3637 int all_pinned = 0;
3638
3639 cpus_setall(*cpus);
3640
3641 /*
3642 * When power savings policy is enabled for the parent domain, idle
3643 * sibling can pick up load irrespective of busy siblings. In this case,
3644 * let the state of idle sibling percolate up as IDLE, instead of
3645 * portraying it as CPU_NOT_IDLE.
3646 */
3647 if (sd->flags & SD_SHARE_CPUPOWER &&
3648 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3649 sd_idle = 1;
3650
3651 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3652 redo:
3653 update_shares_locked(this_rq, sd);
3654 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3655 &sd_idle, cpus, NULL);
3656 if (!group) {
3657 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3658 goto out_balanced;
3659 }
3660
3661 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3662 if (!busiest) {
3663 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3664 goto out_balanced;
3665 }
3666
3667 BUG_ON(busiest == this_rq);
3668
3669 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3670
3671 ld_moved = 0;
3672 if (busiest->nr_running > 1) {
3673 /* Attempt to move tasks */
3674 double_lock_balance(this_rq, busiest);
3675 /* this_rq->clock is already updated */
3676 update_rq_clock(busiest);
3677 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3678 imbalance, sd, CPU_NEWLY_IDLE,
3679 &all_pinned);
3680 double_unlock_balance(this_rq, busiest);
3681
3682 if (unlikely(all_pinned)) {
3683 cpu_clear(cpu_of(busiest), *cpus);
3684 if (!cpus_empty(*cpus))
3685 goto redo;
3686 }
3687 }
3688
3689 if (!ld_moved) {
3690 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3691 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3692 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3693 return -1;
3694 } else
3695 sd->nr_balance_failed = 0;
3696
3697 update_shares_locked(this_rq, sd);
3698 return ld_moved;
3699
3700 out_balanced:
3701 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3702 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3703 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3704 return -1;
3705 sd->nr_balance_failed = 0;
3706
3707 return 0;
3708 }
3709
3710 /*
3711 * idle_balance is called by schedule() if this_cpu is about to become
3712 * idle. Attempts to pull tasks from other CPUs.
3713 */
3714 static void idle_balance(int this_cpu, struct rq *this_rq)
3715 {
3716 struct sched_domain *sd;
3717 int pulled_task = -1;
3718 unsigned long next_balance = jiffies + HZ;
3719 cpumask_t tmpmask;
3720
3721 for_each_domain(this_cpu, sd) {
3722 unsigned long interval;
3723
3724 if (!(sd->flags & SD_LOAD_BALANCE))
3725 continue;
3726
3727 if (sd->flags & SD_BALANCE_NEWIDLE)
3728 /* If we've pulled tasks over stop searching: */
3729 pulled_task = load_balance_newidle(this_cpu, this_rq,
3730 sd, &tmpmask);
3731
3732 interval = msecs_to_jiffies(sd->balance_interval);
3733 if (time_after(next_balance, sd->last_balance + interval))
3734 next_balance = sd->last_balance + interval;
3735 if (pulled_task)
3736 break;
3737 }
3738 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3739 /*
3740 * We are going idle. next_balance may be set based on
3741 * a busy processor. So reset next_balance.
3742 */
3743 this_rq->next_balance = next_balance;
3744 }
3745 }
3746
3747 /*
3748 * active_load_balance is run by migration threads. It pushes running tasks
3749 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3750 * running on each physical CPU where possible, and avoids physical /
3751 * logical imbalances.
3752 *
3753 * Called with busiest_rq locked.
3754 */
3755 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3756 {
3757 int target_cpu = busiest_rq->push_cpu;
3758 struct sched_domain *sd;
3759 struct rq *target_rq;
3760
3761 /* Is there any task to move? */
3762 if (busiest_rq->nr_running <= 1)
3763 return;
3764
3765 target_rq = cpu_rq(target_cpu);
3766
3767 /*
3768 * This condition is "impossible", if it occurs
3769 * we need to fix it. Originally reported by
3770 * Bjorn Helgaas on a 128-cpu setup.
3771 */
3772 BUG_ON(busiest_rq == target_rq);
3773
3774 /* move a task from busiest_rq to target_rq */
3775 double_lock_balance(busiest_rq, target_rq);
3776 update_rq_clock(busiest_rq);
3777 update_rq_clock(target_rq);
3778
3779 /* Search for an sd spanning us and the target CPU. */
3780 for_each_domain(target_cpu, sd) {
3781 if ((sd->flags & SD_LOAD_BALANCE) &&
3782 cpu_isset(busiest_cpu, sd->span))
3783 break;
3784 }
3785
3786 if (likely(sd)) {
3787 schedstat_inc(sd, alb_count);
3788
3789 if (move_one_task(target_rq, target_cpu, busiest_rq,
3790 sd, CPU_IDLE))
3791 schedstat_inc(sd, alb_pushed);
3792 else
3793 schedstat_inc(sd, alb_failed);
3794 }
3795 double_unlock_balance(busiest_rq, target_rq);
3796 }
3797
3798 #ifdef CONFIG_NO_HZ
3799 static struct {
3800 atomic_t load_balancer;
3801 cpumask_t cpu_mask;
3802 } nohz ____cacheline_aligned = {
3803 .load_balancer = ATOMIC_INIT(-1),
3804 .cpu_mask = CPU_MASK_NONE,
3805 };
3806
3807 /*
3808 * This routine will try to nominate the ilb (idle load balancing)
3809 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3810 * load balancing on behalf of all those cpus. If all the cpus in the system
3811 * go into this tickless mode, then there will be no ilb owner (as there is
3812 * no need for one) and all the cpus will sleep till the next wakeup event
3813 * arrives...
3814 *
3815 * For the ilb owner, tick is not stopped. And this tick will be used
3816 * for idle load balancing. ilb owner will still be part of
3817 * nohz.cpu_mask..
3818 *
3819 * While stopping the tick, this cpu will become the ilb owner if there
3820 * is no other owner. And will be the owner till that cpu becomes busy
3821 * or if all cpus in the system stop their ticks at which point
3822 * there is no need for ilb owner.
3823 *
3824 * When the ilb owner becomes busy, it nominates another owner, during the
3825 * next busy scheduler_tick()
3826 */
3827 int select_nohz_load_balancer(int stop_tick)
3828 {
3829 int cpu = smp_processor_id();
3830
3831 if (stop_tick) {
3832 cpu_set(cpu, nohz.cpu_mask);
3833 cpu_rq(cpu)->in_nohz_recently = 1;
3834
3835 /*
3836 * If we are going offline and still the leader, give up!
3837 */
3838 if (!cpu_active(cpu) &&
3839 atomic_read(&nohz.load_balancer) == cpu) {
3840 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3841 BUG();
3842 return 0;
3843 }
3844
3845 /* time for ilb owner also to sleep */
3846 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3847 if (atomic_read(&nohz.load_balancer) == cpu)
3848 atomic_set(&nohz.load_balancer, -1);
3849 return 0;
3850 }
3851
3852 if (atomic_read(&nohz.load_balancer) == -1) {
3853 /* make me the ilb owner */
3854 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3855 return 1;
3856 } else if (atomic_read(&nohz.load_balancer) == cpu)
3857 return 1;
3858 } else {
3859 if (!cpu_isset(cpu, nohz.cpu_mask))
3860 return 0;
3861
3862 cpu_clear(cpu, nohz.cpu_mask);
3863
3864 if (atomic_read(&nohz.load_balancer) == cpu)
3865 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3866 BUG();
3867 }
3868 return 0;
3869 }
3870 #endif
3871
3872 static DEFINE_SPINLOCK(balancing);
3873
3874 /*
3875 * It checks each scheduling domain to see if it is due to be balanced,
3876 * and initiates a balancing operation if so.
3877 *
3878 * Balancing parameters are set up in arch_init_sched_domains.
3879 */
3880 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3881 {
3882 int balance = 1;
3883 struct rq *rq = cpu_rq(cpu);
3884 unsigned long interval;
3885 struct sched_domain *sd;
3886 /* Earliest time when we have to do rebalance again */
3887 unsigned long next_balance = jiffies + 60*HZ;
3888 int update_next_balance = 0;
3889 int need_serialize;
3890 cpumask_t tmp;
3891
3892 for_each_domain(cpu, sd) {
3893 if (!(sd->flags & SD_LOAD_BALANCE))
3894 continue;
3895
3896 interval = sd->balance_interval;
3897 if (idle != CPU_IDLE)
3898 interval *= sd->busy_factor;
3899
3900 /* scale ms to jiffies */
3901 interval = msecs_to_jiffies(interval);
3902 if (unlikely(!interval))
3903 interval = 1;
3904 if (interval > HZ*NR_CPUS/10)
3905 interval = HZ*NR_CPUS/10;
3906
3907 need_serialize = sd->flags & SD_SERIALIZE;
3908
3909 if (need_serialize) {
3910 if (!spin_trylock(&balancing))
3911 goto out;
3912 }
3913
3914 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3915 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3916 /*
3917 * We've pulled tasks over so either we're no
3918 * longer idle, or one of our SMT siblings is
3919 * not idle.
3920 */
3921 idle = CPU_NOT_IDLE;
3922 }
3923 sd->last_balance = jiffies;
3924 }
3925 if (need_serialize)
3926 spin_unlock(&balancing);
3927 out:
3928 if (time_after(next_balance, sd->last_balance + interval)) {
3929 next_balance = sd->last_balance + interval;
3930 update_next_balance = 1;
3931 }
3932
3933 /*
3934 * Stop the load balance at this level. There is another
3935 * CPU in our sched group which is doing load balancing more
3936 * actively.
3937 */
3938 if (!balance)
3939 break;
3940 }
3941
3942 /*
3943 * next_balance will be updated only when there is a need.
3944 * When the cpu is attached to null domain for ex, it will not be
3945 * updated.
3946 */
3947 if (likely(update_next_balance))
3948 rq->next_balance = next_balance;
3949 }
3950
3951 /*
3952 * run_rebalance_domains is triggered when needed from the scheduler tick.
3953 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3954 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3955 */
3956 static void run_rebalance_domains(struct softirq_action *h)
3957 {
3958 int this_cpu = smp_processor_id();
3959 struct rq *this_rq = cpu_rq(this_cpu);
3960 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3961 CPU_IDLE : CPU_NOT_IDLE;
3962
3963 rebalance_domains(this_cpu, idle);
3964
3965 #ifdef CONFIG_NO_HZ
3966 /*
3967 * If this cpu is the owner for idle load balancing, then do the
3968 * balancing on behalf of the other idle cpus whose ticks are
3969 * stopped.
3970 */
3971 if (this_rq->idle_at_tick &&
3972 atomic_read(&nohz.load_balancer) == this_cpu) {
3973 cpumask_t cpus = nohz.cpu_mask;
3974 struct rq *rq;
3975 int balance_cpu;
3976
3977 cpu_clear(this_cpu, cpus);
3978 for_each_cpu_mask_nr(balance_cpu, cpus) {
3979 /*
3980 * If this cpu gets work to do, stop the load balancing
3981 * work being done for other cpus. Next load
3982 * balancing owner will pick it up.
3983 */
3984 if (need_resched())
3985 break;
3986
3987 rebalance_domains(balance_cpu, CPU_IDLE);
3988
3989 rq = cpu_rq(balance_cpu);
3990 if (time_after(this_rq->next_balance, rq->next_balance))
3991 this_rq->next_balance = rq->next_balance;
3992 }
3993 }
3994 #endif
3995 }
3996
3997 /*
3998 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3999 *
4000 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4001 * idle load balancing owner or decide to stop the periodic load balancing,
4002 * if the whole system is idle.
4003 */
4004 static inline void trigger_load_balance(struct rq *rq, int cpu)
4005 {
4006 #ifdef CONFIG_NO_HZ
4007 /*
4008 * If we were in the nohz mode recently and busy at the current
4009 * scheduler tick, then check if we need to nominate new idle
4010 * load balancer.
4011 */
4012 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4013 rq->in_nohz_recently = 0;
4014
4015 if (atomic_read(&nohz.load_balancer) == cpu) {
4016 cpu_clear(cpu, nohz.cpu_mask);
4017 atomic_set(&nohz.load_balancer, -1);
4018 }
4019
4020 if (atomic_read(&nohz.load_balancer) == -1) {
4021 /*
4022 * simple selection for now: Nominate the
4023 * first cpu in the nohz list to be the next
4024 * ilb owner.
4025 *
4026 * TBD: Traverse the sched domains and nominate
4027 * the nearest cpu in the nohz.cpu_mask.
4028 */
4029 int ilb = first_cpu(nohz.cpu_mask);
4030
4031 if (ilb < nr_cpu_ids)
4032 resched_cpu(ilb);
4033 }
4034 }
4035
4036 /*
4037 * If this cpu is idle and doing idle load balancing for all the
4038 * cpus with ticks stopped, is it time for that to stop?
4039 */
4040 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4041 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
4042 resched_cpu(cpu);
4043 return;
4044 }
4045
4046 /*
4047 * If this cpu is idle and the idle load balancing is done by
4048 * someone else, then no need raise the SCHED_SOFTIRQ
4049 */
4050 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4051 cpu_isset(cpu, nohz.cpu_mask))
4052 return;
4053 #endif
4054 if (time_after_eq(jiffies, rq->next_balance))
4055 raise_softirq(SCHED_SOFTIRQ);
4056 }
4057
4058 #else /* CONFIG_SMP */
4059
4060 /*
4061 * on UP we do not need to balance between CPUs:
4062 */
4063 static inline void idle_balance(int cpu, struct rq *rq)
4064 {
4065 }
4066
4067 #endif
4068
4069 DEFINE_PER_CPU(struct kernel_stat, kstat);
4070
4071 EXPORT_PER_CPU_SYMBOL(kstat);
4072
4073 /*
4074 * Return any ns on the sched_clock that have not yet been banked in
4075 * @p in case that task is currently running.
4076 */
4077 unsigned long long task_delta_exec(struct task_struct *p)
4078 {
4079 unsigned long flags;
4080 struct rq *rq;
4081 u64 ns = 0;
4082
4083 rq = task_rq_lock(p, &flags);
4084
4085 if (task_current(rq, p)) {
4086 u64 delta_exec;
4087
4088 update_rq_clock(rq);
4089 delta_exec = rq->clock - p->se.exec_start;
4090 if ((s64)delta_exec > 0)
4091 ns = delta_exec;
4092 }
4093
4094 task_rq_unlock(rq, &flags);
4095
4096 return ns;
4097 }
4098
4099 /*
4100 * Account user cpu time to a process.
4101 * @p: the process that the cpu time gets accounted to
4102 * @cputime: the cpu time spent in user space since the last update
4103 */
4104 void account_user_time(struct task_struct *p, cputime_t cputime)
4105 {
4106 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4107 cputime64_t tmp;
4108
4109 p->utime = cputime_add(p->utime, cputime);
4110 account_group_user_time(p, cputime);
4111
4112 /* Add user time to cpustat. */
4113 tmp = cputime_to_cputime64(cputime);
4114 if (TASK_NICE(p) > 0)
4115 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4116 else
4117 cpustat->user = cputime64_add(cpustat->user, tmp);
4118 /* Account for user time used */
4119 acct_update_integrals(p);
4120 }
4121
4122 /*
4123 * Account guest cpu time to a process.
4124 * @p: the process that the cpu time gets accounted to
4125 * @cputime: the cpu time spent in virtual machine since the last update
4126 */
4127 static void account_guest_time(struct task_struct *p, cputime_t cputime)
4128 {
4129 cputime64_t tmp;
4130 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4131
4132 tmp = cputime_to_cputime64(cputime);
4133
4134 p->utime = cputime_add(p->utime, cputime);
4135 account_group_user_time(p, cputime);
4136 p->gtime = cputime_add(p->gtime, cputime);
4137
4138 cpustat->user = cputime64_add(cpustat->user, tmp);
4139 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4140 }
4141
4142 /*
4143 * Account scaled user cpu time to a process.
4144 * @p: the process that the cpu time gets accounted to
4145 * @cputime: the cpu time spent in user space since the last update
4146 */
4147 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
4148 {
4149 p->utimescaled = cputime_add(p->utimescaled, cputime);
4150 }
4151
4152 /*
4153 * Account system cpu time to a process.
4154 * @p: the process that the cpu time gets accounted to
4155 * @hardirq_offset: the offset to subtract from hardirq_count()
4156 * @cputime: the cpu time spent in kernel space since the last update
4157 */
4158 void account_system_time(struct task_struct *p, int hardirq_offset,
4159 cputime_t cputime)
4160 {
4161 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4162 struct rq *rq = this_rq();
4163 cputime64_t tmp;
4164
4165 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4166 account_guest_time(p, cputime);
4167 return;
4168 }
4169
4170 p->stime = cputime_add(p->stime, cputime);
4171 account_group_system_time(p, cputime);
4172
4173 /* Add system time to cpustat. */
4174 tmp = cputime_to_cputime64(cputime);
4175 if (hardirq_count() - hardirq_offset)
4176 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4177 else if (softirq_count())
4178 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4179 else if (p != rq->idle)
4180 cpustat->system = cputime64_add(cpustat->system, tmp);
4181 else if (atomic_read(&rq->nr_iowait) > 0)
4182 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4183 else
4184 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4185 /* Account for system time used */
4186 acct_update_integrals(p);
4187 }
4188
4189 /*
4190 * Account scaled system cpu time to a process.
4191 * @p: the process that the cpu time gets accounted to
4192 * @hardirq_offset: the offset to subtract from hardirq_count()
4193 * @cputime: the cpu time spent in kernel space since the last update
4194 */
4195 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
4196 {
4197 p->stimescaled = cputime_add(p->stimescaled, cputime);
4198 }
4199
4200 /*
4201 * Account for involuntary wait time.
4202 * @p: the process from which the cpu time has been stolen
4203 * @steal: the cpu time spent in involuntary wait
4204 */
4205 void account_steal_time(struct task_struct *p, cputime_t steal)
4206 {
4207 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4208 cputime64_t tmp = cputime_to_cputime64(steal);
4209 struct rq *rq = this_rq();
4210
4211 if (p == rq->idle) {
4212 p->stime = cputime_add(p->stime, steal);
4213 account_group_system_time(p, steal);
4214 if (atomic_read(&rq->nr_iowait) > 0)
4215 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
4216 else
4217 cpustat->idle = cputime64_add(cpustat->idle, tmp);
4218 } else
4219 cpustat->steal = cputime64_add(cpustat->steal, tmp);
4220 }
4221
4222 /*
4223 * Use precise platform statistics if available:
4224 */
4225 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4226 cputime_t task_utime(struct task_struct *p)
4227 {
4228 return p->utime;
4229 }
4230
4231 cputime_t task_stime(struct task_struct *p)
4232 {
4233 return p->stime;
4234 }
4235 #else
4236 cputime_t task_utime(struct task_struct *p)
4237 {
4238 clock_t utime = cputime_to_clock_t(p->utime),
4239 total = utime + cputime_to_clock_t(p->stime);
4240 u64 temp;
4241
4242 /*
4243 * Use CFS's precise accounting:
4244 */
4245 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4246
4247 if (total) {
4248 temp *= utime;
4249 do_div(temp, total);
4250 }
4251 utime = (clock_t)temp;
4252
4253 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4254 return p->prev_utime;
4255 }
4256
4257 cputime_t task_stime(struct task_struct *p)
4258 {
4259 clock_t stime;
4260
4261 /*
4262 * Use CFS's precise accounting. (we subtract utime from
4263 * the total, to make sure the total observed by userspace
4264 * grows monotonically - apps rely on that):
4265 */
4266 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4267 cputime_to_clock_t(task_utime(p));
4268
4269 if (stime >= 0)
4270 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4271
4272 return p->prev_stime;
4273 }
4274 #endif
4275
4276 inline cputime_t task_gtime(struct task_struct *p)
4277 {
4278 return p->gtime;
4279 }
4280
4281 /*
4282 * This function gets called by the timer code, with HZ frequency.
4283 * We call it with interrupts disabled.
4284 *
4285 * It also gets called by the fork code, when changing the parent's
4286 * timeslices.
4287 */
4288 void scheduler_tick(void)
4289 {
4290 int cpu = smp_processor_id();
4291 struct rq *rq = cpu_rq(cpu);
4292 struct task_struct *curr = rq->curr;
4293
4294 sched_clock_tick();
4295
4296 spin_lock(&rq->lock);
4297 update_rq_clock(rq);
4298 update_cpu_load(rq);
4299 curr->sched_class->task_tick(rq, curr, 0);
4300 spin_unlock(&rq->lock);
4301
4302 #ifdef CONFIG_SMP
4303 rq->idle_at_tick = idle_cpu(cpu);
4304 trigger_load_balance(rq, cpu);
4305 #endif
4306 }
4307
4308 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4309 defined(CONFIG_PREEMPT_TRACER))
4310
4311 static inline unsigned long get_parent_ip(unsigned long addr)
4312 {
4313 if (in_lock_functions(addr)) {
4314 addr = CALLER_ADDR2;
4315 if (in_lock_functions(addr))
4316 addr = CALLER_ADDR3;
4317 }
4318 return addr;
4319 }
4320
4321 void __kprobes add_preempt_count(int val)
4322 {
4323 #ifdef CONFIG_DEBUG_PREEMPT
4324 /*
4325 * Underflow?
4326 */
4327 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4328 return;
4329 #endif
4330 preempt_count() += val;
4331 #ifdef CONFIG_DEBUG_PREEMPT
4332 /*
4333 * Spinlock count overflowing soon?
4334 */
4335 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4336 PREEMPT_MASK - 10);
4337 #endif
4338 if (preempt_count() == val)
4339 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4340 }
4341 EXPORT_SYMBOL(add_preempt_count);
4342
4343 void __kprobes sub_preempt_count(int val)
4344 {
4345 #ifdef CONFIG_DEBUG_PREEMPT
4346 /*
4347 * Underflow?
4348 */
4349 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4350 return;
4351 /*
4352 * Is the spinlock portion underflowing?
4353 */
4354 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4355 !(preempt_count() & PREEMPT_MASK)))
4356 return;
4357 #endif
4358
4359 if (preempt_count() == val)
4360 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4361 preempt_count() -= val;
4362 }
4363 EXPORT_SYMBOL(sub_preempt_count);
4364
4365 #endif
4366
4367 /*
4368 * Print scheduling while atomic bug:
4369 */
4370 static noinline void __schedule_bug(struct task_struct *prev)
4371 {
4372 struct pt_regs *regs = get_irq_regs();
4373
4374 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4375 prev->comm, prev->pid, preempt_count());
4376
4377 debug_show_held_locks(prev);
4378 print_modules();
4379 if (irqs_disabled())
4380 print_irqtrace_events(prev);
4381
4382 if (regs)
4383 show_regs(regs);
4384 else
4385 dump_stack();
4386 }
4387
4388 /*
4389 * Various schedule()-time debugging checks and statistics:
4390 */
4391 static inline void schedule_debug(struct task_struct *prev)
4392 {
4393 /*
4394 * Test if we are atomic. Since do_exit() needs to call into
4395 * schedule() atomically, we ignore that path for now.
4396 * Otherwise, whine if we are scheduling when we should not be.
4397 */
4398 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4399 __schedule_bug(prev);
4400
4401 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4402
4403 schedstat_inc(this_rq(), sched_count);
4404 #ifdef CONFIG_SCHEDSTATS
4405 if (unlikely(prev->lock_depth >= 0)) {
4406 schedstat_inc(this_rq(), bkl_count);
4407 schedstat_inc(prev, sched_info.bkl_count);
4408 }
4409 #endif
4410 }
4411
4412 /*
4413 * Pick up the highest-prio task:
4414 */
4415 static inline struct task_struct *
4416 pick_next_task(struct rq *rq, struct task_struct *prev)
4417 {
4418 const struct sched_class *class;
4419 struct task_struct *p;
4420
4421 /*
4422 * Optimization: we know that if all tasks are in
4423 * the fair class we can call that function directly:
4424 */
4425 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4426 p = fair_sched_class.pick_next_task(rq);
4427 if (likely(p))
4428 return p;
4429 }
4430
4431 class = sched_class_highest;
4432 for ( ; ; ) {
4433 p = class->pick_next_task(rq);
4434 if (p)
4435 return p;
4436 /*
4437 * Will never be NULL as the idle class always
4438 * returns a non-NULL p:
4439 */
4440 class = class->next;
4441 }
4442 }
4443
4444 /*
4445 * schedule() is the main scheduler function.
4446 */
4447 asmlinkage void __sched schedule(void)
4448 {
4449 struct task_struct *prev, *next;
4450 unsigned long *switch_count;
4451 struct rq *rq;
4452 int cpu;
4453
4454 need_resched:
4455 preempt_disable();
4456 cpu = smp_processor_id();
4457 rq = cpu_rq(cpu);
4458 rcu_qsctr_inc(cpu);
4459 prev = rq->curr;
4460 switch_count = &prev->nivcsw;
4461
4462 release_kernel_lock(prev);
4463 need_resched_nonpreemptible:
4464
4465 schedule_debug(prev);
4466
4467 if (sched_feat(HRTICK))
4468 hrtick_clear(rq);
4469
4470 spin_lock_irq(&rq->lock);
4471 update_rq_clock(rq);
4472 clear_tsk_need_resched(prev);
4473
4474 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4475 if (unlikely(signal_pending_state(prev->state, prev)))
4476 prev->state = TASK_RUNNING;
4477 else
4478 deactivate_task(rq, prev, 1);
4479 switch_count = &prev->nvcsw;
4480 }
4481
4482 #ifdef CONFIG_SMP
4483 if (prev->sched_class->pre_schedule)
4484 prev->sched_class->pre_schedule(rq, prev);
4485 #endif
4486
4487 if (unlikely(!rq->nr_running))
4488 idle_balance(cpu, rq);
4489
4490 prev->sched_class->put_prev_task(rq, prev);
4491 next = pick_next_task(rq, prev);
4492
4493 if (likely(prev != next)) {
4494 sched_info_switch(prev, next);
4495
4496 rq->nr_switches++;
4497 rq->curr = next;
4498 ++*switch_count;
4499
4500 context_switch(rq, prev, next); /* unlocks the rq */
4501 /*
4502 * the context switch might have flipped the stack from under
4503 * us, hence refresh the local variables.
4504 */
4505 cpu = smp_processor_id();
4506 rq = cpu_rq(cpu);
4507 } else
4508 spin_unlock_irq(&rq->lock);
4509
4510 if (unlikely(reacquire_kernel_lock(current) < 0))
4511 goto need_resched_nonpreemptible;
4512
4513 preempt_enable_no_resched();
4514 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4515 goto need_resched;
4516 }
4517 EXPORT_SYMBOL(schedule);
4518
4519 #ifdef CONFIG_PREEMPT
4520 /*
4521 * this is the entry point to schedule() from in-kernel preemption
4522 * off of preempt_enable. Kernel preemptions off return from interrupt
4523 * occur there and call schedule directly.
4524 */
4525 asmlinkage void __sched preempt_schedule(void)
4526 {
4527 struct thread_info *ti = current_thread_info();
4528
4529 /*
4530 * If there is a non-zero preempt_count or interrupts are disabled,
4531 * we do not want to preempt the current task. Just return..
4532 */
4533 if (likely(ti->preempt_count || irqs_disabled()))
4534 return;
4535
4536 do {
4537 add_preempt_count(PREEMPT_ACTIVE);
4538 schedule();
4539 sub_preempt_count(PREEMPT_ACTIVE);
4540
4541 /*
4542 * Check again in case we missed a preemption opportunity
4543 * between schedule and now.
4544 */
4545 barrier();
4546 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4547 }
4548 EXPORT_SYMBOL(preempt_schedule);
4549
4550 /*
4551 * this is the entry point to schedule() from kernel preemption
4552 * off of irq context.
4553 * Note, that this is called and return with irqs disabled. This will
4554 * protect us against recursive calling from irq.
4555 */
4556 asmlinkage void __sched preempt_schedule_irq(void)
4557 {
4558 struct thread_info *ti = current_thread_info();
4559
4560 /* Catch callers which need to be fixed */
4561 BUG_ON(ti->preempt_count || !irqs_disabled());
4562
4563 do {
4564 add_preempt_count(PREEMPT_ACTIVE);
4565 local_irq_enable();
4566 schedule();
4567 local_irq_disable();
4568 sub_preempt_count(PREEMPT_ACTIVE);
4569
4570 /*
4571 * Check again in case we missed a preemption opportunity
4572 * between schedule and now.
4573 */
4574 barrier();
4575 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4576 }
4577
4578 #endif /* CONFIG_PREEMPT */
4579
4580 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4581 void *key)
4582 {
4583 return try_to_wake_up(curr->private, mode, sync);
4584 }
4585 EXPORT_SYMBOL(default_wake_function);
4586
4587 /*
4588 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4589 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4590 * number) then we wake all the non-exclusive tasks and one exclusive task.
4591 *
4592 * There are circumstances in which we can try to wake a task which has already
4593 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4594 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4595 */
4596 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4597 int nr_exclusive, int sync, void *key)
4598 {
4599 wait_queue_t *curr, *next;
4600
4601 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4602 unsigned flags = curr->flags;
4603
4604 if (curr->func(curr, mode, sync, key) &&
4605 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4606 break;
4607 }
4608 }
4609
4610 /**
4611 * __wake_up - wake up threads blocked on a waitqueue.
4612 * @q: the waitqueue
4613 * @mode: which threads
4614 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4615 * @key: is directly passed to the wakeup function
4616 */
4617 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4618 int nr_exclusive, void *key)
4619 {
4620 unsigned long flags;
4621
4622 spin_lock_irqsave(&q->lock, flags);
4623 __wake_up_common(q, mode, nr_exclusive, 0, key);
4624 spin_unlock_irqrestore(&q->lock, flags);
4625 }
4626 EXPORT_SYMBOL(__wake_up);
4627
4628 /*
4629 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4630 */
4631 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4632 {
4633 __wake_up_common(q, mode, 1, 0, NULL);
4634 }
4635
4636 /**
4637 * __wake_up_sync - wake up threads blocked on a waitqueue.
4638 * @q: the waitqueue
4639 * @mode: which threads
4640 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4641 *
4642 * The sync wakeup differs that the waker knows that it will schedule
4643 * away soon, so while the target thread will be woken up, it will not
4644 * be migrated to another CPU - ie. the two threads are 'synchronized'
4645 * with each other. This can prevent needless bouncing between CPUs.
4646 *
4647 * On UP it can prevent extra preemption.
4648 */
4649 void
4650 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4651 {
4652 unsigned long flags;
4653 int sync = 1;
4654
4655 if (unlikely(!q))
4656 return;
4657
4658 if (unlikely(!nr_exclusive))
4659 sync = 0;
4660
4661 spin_lock_irqsave(&q->lock, flags);
4662 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4663 spin_unlock_irqrestore(&q->lock, flags);
4664 }
4665 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4666
4667 /**
4668 * complete: - signals a single thread waiting on this completion
4669 * @x: holds the state of this particular completion
4670 *
4671 * This will wake up a single thread waiting on this completion. Threads will be
4672 * awakened in the same order in which they were queued.
4673 *
4674 * See also complete_all(), wait_for_completion() and related routines.
4675 */
4676 void complete(struct completion *x)
4677 {
4678 unsigned long flags;
4679
4680 spin_lock_irqsave(&x->wait.lock, flags);
4681 x->done++;
4682 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4683 spin_unlock_irqrestore(&x->wait.lock, flags);
4684 }
4685 EXPORT_SYMBOL(complete);
4686
4687 /**
4688 * complete_all: - signals all threads waiting on this completion
4689 * @x: holds the state of this particular completion
4690 *
4691 * This will wake up all threads waiting on this particular completion event.
4692 */
4693 void complete_all(struct completion *x)
4694 {
4695 unsigned long flags;
4696
4697 spin_lock_irqsave(&x->wait.lock, flags);
4698 x->done += UINT_MAX/2;
4699 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4700 spin_unlock_irqrestore(&x->wait.lock, flags);
4701 }
4702 EXPORT_SYMBOL(complete_all);
4703
4704 static inline long __sched
4705 do_wait_for_common(struct completion *x, long timeout, int state)
4706 {
4707 if (!x->done) {
4708 DECLARE_WAITQUEUE(wait, current);
4709
4710 wait.flags |= WQ_FLAG_EXCLUSIVE;
4711 __add_wait_queue_tail(&x->wait, &wait);
4712 do {
4713 if (signal_pending_state(state, current)) {
4714 timeout = -ERESTARTSYS;
4715 break;
4716 }
4717 __set_current_state(state);
4718 spin_unlock_irq(&x->wait.lock);
4719 timeout = schedule_timeout(timeout);
4720 spin_lock_irq(&x->wait.lock);
4721 } while (!x->done && timeout);
4722 __remove_wait_queue(&x->wait, &wait);
4723 if (!x->done)
4724 return timeout;
4725 }
4726 x->done--;
4727 return timeout ?: 1;
4728 }
4729
4730 static long __sched
4731 wait_for_common(struct completion *x, long timeout, int state)
4732 {
4733 might_sleep();
4734
4735 spin_lock_irq(&x->wait.lock);
4736 timeout = do_wait_for_common(x, timeout, state);
4737 spin_unlock_irq(&x->wait.lock);
4738 return timeout;
4739 }
4740
4741 /**
4742 * wait_for_completion: - waits for completion of a task
4743 * @x: holds the state of this particular completion
4744 *
4745 * This waits to be signaled for completion of a specific task. It is NOT
4746 * interruptible and there is no timeout.
4747 *
4748 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4749 * and interrupt capability. Also see complete().
4750 */
4751 void __sched wait_for_completion(struct completion *x)
4752 {
4753 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4754 }
4755 EXPORT_SYMBOL(wait_for_completion);
4756
4757 /**
4758 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4759 * @x: holds the state of this particular completion
4760 * @timeout: timeout value in jiffies
4761 *
4762 * This waits for either a completion of a specific task to be signaled or for a
4763 * specified timeout to expire. The timeout is in jiffies. It is not
4764 * interruptible.
4765 */
4766 unsigned long __sched
4767 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4768 {
4769 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4770 }
4771 EXPORT_SYMBOL(wait_for_completion_timeout);
4772
4773 /**
4774 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4775 * @x: holds the state of this particular completion
4776 *
4777 * This waits for completion of a specific task to be signaled. It is
4778 * interruptible.
4779 */
4780 int __sched wait_for_completion_interruptible(struct completion *x)
4781 {
4782 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4783 if (t == -ERESTARTSYS)
4784 return t;
4785 return 0;
4786 }
4787 EXPORT_SYMBOL(wait_for_completion_interruptible);
4788
4789 /**
4790 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4791 * @x: holds the state of this particular completion
4792 * @timeout: timeout value in jiffies
4793 *
4794 * This waits for either a completion of a specific task to be signaled or for a
4795 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4796 */
4797 unsigned long __sched
4798 wait_for_completion_interruptible_timeout(struct completion *x,
4799 unsigned long timeout)
4800 {
4801 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4802 }
4803 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4804
4805 /**
4806 * wait_for_completion_killable: - waits for completion of a task (killable)
4807 * @x: holds the state of this particular completion
4808 *
4809 * This waits to be signaled for completion of a specific task. It can be
4810 * interrupted by a kill signal.
4811 */
4812 int __sched wait_for_completion_killable(struct completion *x)
4813 {
4814 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4815 if (t == -ERESTARTSYS)
4816 return t;
4817 return 0;
4818 }
4819 EXPORT_SYMBOL(wait_for_completion_killable);
4820
4821 /**
4822 * try_wait_for_completion - try to decrement a completion without blocking
4823 * @x: completion structure
4824 *
4825 * Returns: 0 if a decrement cannot be done without blocking
4826 * 1 if a decrement succeeded.
4827 *
4828 * If a completion is being used as a counting completion,
4829 * attempt to decrement the counter without blocking. This
4830 * enables us to avoid waiting if the resource the completion
4831 * is protecting is not available.
4832 */
4833 bool try_wait_for_completion(struct completion *x)
4834 {
4835 int ret = 1;
4836
4837 spin_lock_irq(&x->wait.lock);
4838 if (!x->done)
4839 ret = 0;
4840 else
4841 x->done--;
4842 spin_unlock_irq(&x->wait.lock);
4843 return ret;
4844 }
4845 EXPORT_SYMBOL(try_wait_for_completion);
4846
4847 /**
4848 * completion_done - Test to see if a completion has any waiters
4849 * @x: completion structure
4850 *
4851 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4852 * 1 if there are no waiters.
4853 *
4854 */
4855 bool completion_done(struct completion *x)
4856 {
4857 int ret = 1;
4858
4859 spin_lock_irq(&x->wait.lock);
4860 if (!x->done)
4861 ret = 0;
4862 spin_unlock_irq(&x->wait.lock);
4863 return ret;
4864 }
4865 EXPORT_SYMBOL(completion_done);
4866
4867 static long __sched
4868 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4869 {
4870 unsigned long flags;
4871 wait_queue_t wait;
4872
4873 init_waitqueue_entry(&wait, current);
4874
4875 __set_current_state(state);
4876
4877 spin_lock_irqsave(&q->lock, flags);
4878 __add_wait_queue(q, &wait);
4879 spin_unlock(&q->lock);
4880 timeout = schedule_timeout(timeout);
4881 spin_lock_irq(&q->lock);
4882 __remove_wait_queue(q, &wait);
4883 spin_unlock_irqrestore(&q->lock, flags);
4884
4885 return timeout;
4886 }
4887
4888 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4889 {
4890 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4891 }
4892 EXPORT_SYMBOL(interruptible_sleep_on);
4893
4894 long __sched
4895 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4896 {
4897 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4898 }
4899 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4900
4901 void __sched sleep_on(wait_queue_head_t *q)
4902 {
4903 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4904 }
4905 EXPORT_SYMBOL(sleep_on);
4906
4907 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4908 {
4909 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4910 }
4911 EXPORT_SYMBOL(sleep_on_timeout);
4912
4913 #ifdef CONFIG_RT_MUTEXES
4914
4915 /*
4916 * rt_mutex_setprio - set the current priority of a task
4917 * @p: task
4918 * @prio: prio value (kernel-internal form)
4919 *
4920 * This function changes the 'effective' priority of a task. It does
4921 * not touch ->normal_prio like __setscheduler().
4922 *
4923 * Used by the rt_mutex code to implement priority inheritance logic.
4924 */
4925 void rt_mutex_setprio(struct task_struct *p, int prio)
4926 {
4927 unsigned long flags;
4928 int oldprio, on_rq, running;
4929 struct rq *rq;
4930 const struct sched_class *prev_class = p->sched_class;
4931
4932 BUG_ON(prio < 0 || prio > MAX_PRIO);
4933
4934 rq = task_rq_lock(p, &flags);
4935 update_rq_clock(rq);
4936
4937 oldprio = p->prio;
4938 on_rq = p->se.on_rq;
4939 running = task_current(rq, p);
4940 if (on_rq)
4941 dequeue_task(rq, p, 0);
4942 if (running)
4943 p->sched_class->put_prev_task(rq, p);
4944
4945 if (rt_prio(prio))
4946 p->sched_class = &rt_sched_class;
4947 else
4948 p->sched_class = &fair_sched_class;
4949
4950 p->prio = prio;
4951
4952 if (running)
4953 p->sched_class->set_curr_task(rq);
4954 if (on_rq) {
4955 enqueue_task(rq, p, 0);
4956
4957 check_class_changed(rq, p, prev_class, oldprio, running);
4958 }
4959 task_rq_unlock(rq, &flags);
4960 }
4961
4962 #endif
4963
4964 void set_user_nice(struct task_struct *p, long nice)
4965 {
4966 int old_prio, delta, on_rq;
4967 unsigned long flags;
4968 struct rq *rq;
4969
4970 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4971 return;
4972 /*
4973 * We have to be careful, if called from sys_setpriority(),
4974 * the task might be in the middle of scheduling on another CPU.
4975 */
4976 rq = task_rq_lock(p, &flags);
4977 update_rq_clock(rq);
4978 /*
4979 * The RT priorities are set via sched_setscheduler(), but we still
4980 * allow the 'normal' nice value to be set - but as expected
4981 * it wont have any effect on scheduling until the task is
4982 * SCHED_FIFO/SCHED_RR:
4983 */
4984 if (task_has_rt_policy(p)) {
4985 p->static_prio = NICE_TO_PRIO(nice);
4986 goto out_unlock;
4987 }
4988 on_rq = p->se.on_rq;
4989 if (on_rq)
4990 dequeue_task(rq, p, 0);
4991
4992 p->static_prio = NICE_TO_PRIO(nice);
4993 set_load_weight(p);
4994 old_prio = p->prio;
4995 p->prio = effective_prio(p);
4996 delta = p->prio - old_prio;
4997
4998 if (on_rq) {
4999 enqueue_task(rq, p, 0);
5000 /*
5001 * If the task increased its priority or is running and
5002 * lowered its priority, then reschedule its CPU:
5003 */
5004 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5005 resched_task(rq->curr);
5006 }
5007 out_unlock:
5008 task_rq_unlock(rq, &flags);
5009 }
5010 EXPORT_SYMBOL(set_user_nice);
5011
5012 /*
5013 * can_nice - check if a task can reduce its nice value
5014 * @p: task
5015 * @nice: nice value
5016 */
5017 int can_nice(const struct task_struct *p, const int nice)
5018 {
5019 /* convert nice value [19,-20] to rlimit style value [1,40] */
5020 int nice_rlim = 20 - nice;
5021
5022 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5023 capable(CAP_SYS_NICE));
5024 }
5025
5026 #ifdef __ARCH_WANT_SYS_NICE
5027
5028 /*
5029 * sys_nice - change the priority of the current process.
5030 * @increment: priority increment
5031 *
5032 * sys_setpriority is a more generic, but much slower function that
5033 * does similar things.
5034 */
5035 asmlinkage long sys_nice(int increment)
5036 {
5037 long nice, retval;
5038
5039 /*
5040 * Setpriority might change our priority at the same moment.
5041 * We don't have to worry. Conceptually one call occurs first
5042 * and we have a single winner.
5043 */
5044 if (increment < -40)
5045 increment = -40;
5046 if (increment > 40)
5047 increment = 40;
5048
5049 nice = PRIO_TO_NICE(current->static_prio) + increment;
5050 if (nice < -20)
5051 nice = -20;
5052 if (nice > 19)
5053 nice = 19;
5054
5055 if (increment < 0 && !can_nice(current, nice))
5056 return -EPERM;
5057
5058 retval = security_task_setnice(current, nice);
5059 if (retval)
5060 return retval;
5061
5062 set_user_nice(current, nice);
5063 return 0;
5064 }
5065
5066 #endif
5067
5068 /**
5069 * task_prio - return the priority value of a given task.
5070 * @p: the task in question.
5071 *
5072 * This is the priority value as seen by users in /proc.
5073 * RT tasks are offset by -200. Normal tasks are centered
5074 * around 0, value goes from -16 to +15.
5075 */
5076 int task_prio(const struct task_struct *p)
5077 {
5078 return p->prio - MAX_RT_PRIO;
5079 }
5080
5081 /**
5082 * task_nice - return the nice value of a given task.
5083 * @p: the task in question.
5084 */
5085 int task_nice(const struct task_struct *p)
5086 {
5087 return TASK_NICE(p);
5088 }
5089 EXPORT_SYMBOL(task_nice);
5090
5091 /**
5092 * idle_cpu - is a given cpu idle currently?
5093 * @cpu: the processor in question.
5094 */
5095 int idle_cpu(int cpu)
5096 {
5097 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5098 }
5099
5100 /**
5101 * idle_task - return the idle task for a given cpu.
5102 * @cpu: the processor in question.
5103 */
5104 struct task_struct *idle_task(int cpu)
5105 {
5106 return cpu_rq(cpu)->idle;
5107 }
5108
5109 /**
5110 * find_process_by_pid - find a process with a matching PID value.
5111 * @pid: the pid in question.
5112 */
5113 static struct task_struct *find_process_by_pid(pid_t pid)
5114 {
5115 return pid ? find_task_by_vpid(pid) : current;
5116 }
5117
5118 /* Actually do priority change: must hold rq lock. */
5119 static void
5120 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5121 {
5122 BUG_ON(p->se.on_rq);
5123
5124 p->policy = policy;
5125 switch (p->policy) {
5126 case SCHED_NORMAL:
5127 case SCHED_BATCH:
5128 case SCHED_IDLE:
5129 p->sched_class = &fair_sched_class;
5130 break;
5131 case SCHED_FIFO:
5132 case SCHED_RR:
5133 p->sched_class = &rt_sched_class;
5134 break;
5135 }
5136
5137 p->rt_priority = prio;
5138 p->normal_prio = normal_prio(p);
5139 /* we are holding p->pi_lock already */
5140 p->prio = rt_mutex_getprio(p);
5141 set_load_weight(p);
5142 }
5143
5144 static int __sched_setscheduler(struct task_struct *p, int policy,
5145 struct sched_param *param, bool user)
5146 {
5147 int retval, oldprio, oldpolicy = -1, on_rq, running;
5148 unsigned long flags;
5149 const struct sched_class *prev_class = p->sched_class;
5150 struct rq *rq;
5151
5152 /* may grab non-irq protected spin_locks */
5153 BUG_ON(in_interrupt());
5154 recheck:
5155 /* double check policy once rq lock held */
5156 if (policy < 0)
5157 policy = oldpolicy = p->policy;
5158 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5159 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5160 policy != SCHED_IDLE)
5161 return -EINVAL;
5162 /*
5163 * Valid priorities for SCHED_FIFO and SCHED_RR are
5164 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5165 * SCHED_BATCH and SCHED_IDLE is 0.
5166 */
5167 if (param->sched_priority < 0 ||
5168 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5169 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5170 return -EINVAL;
5171 if (rt_policy(policy) != (param->sched_priority != 0))
5172 return -EINVAL;
5173
5174 /*
5175 * Allow unprivileged RT tasks to decrease priority:
5176 */
5177 if (user && !capable(CAP_SYS_NICE)) {
5178 if (rt_policy(policy)) {
5179 unsigned long rlim_rtprio;
5180
5181 if (!lock_task_sighand(p, &flags))
5182 return -ESRCH;
5183 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5184 unlock_task_sighand(p, &flags);
5185
5186 /* can't set/change the rt policy */
5187 if (policy != p->policy && !rlim_rtprio)
5188 return -EPERM;
5189
5190 /* can't increase priority */
5191 if (param->sched_priority > p->rt_priority &&
5192 param->sched_priority > rlim_rtprio)
5193 return -EPERM;
5194 }
5195 /*
5196 * Like positive nice levels, dont allow tasks to
5197 * move out of SCHED_IDLE either:
5198 */
5199 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5200 return -EPERM;
5201
5202 /* can't change other user's priorities */
5203 if ((current->euid != p->euid) &&
5204 (current->euid != p->uid))
5205 return -EPERM;
5206 }
5207
5208 if (user) {
5209 #ifdef CONFIG_RT_GROUP_SCHED
5210 /*
5211 * Do not allow realtime tasks into groups that have no runtime
5212 * assigned.
5213 */
5214 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5215 task_group(p)->rt_bandwidth.rt_runtime == 0)
5216 return -EPERM;
5217 #endif
5218
5219 retval = security_task_setscheduler(p, policy, param);
5220 if (retval)
5221 return retval;
5222 }
5223
5224 /*
5225 * make sure no PI-waiters arrive (or leave) while we are
5226 * changing the priority of the task:
5227 */
5228 spin_lock_irqsave(&p->pi_lock, flags);
5229 /*
5230 * To be able to change p->policy safely, the apropriate
5231 * runqueue lock must be held.
5232 */
5233 rq = __task_rq_lock(p);
5234 /* recheck policy now with rq lock held */
5235 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5236 policy = oldpolicy = -1;
5237 __task_rq_unlock(rq);
5238 spin_unlock_irqrestore(&p->pi_lock, flags);
5239 goto recheck;
5240 }
5241 update_rq_clock(rq);
5242 on_rq = p->se.on_rq;
5243 running = task_current(rq, p);
5244 if (on_rq)
5245 deactivate_task(rq, p, 0);
5246 if (running)
5247 p->sched_class->put_prev_task(rq, p);
5248
5249 oldprio = p->prio;
5250 __setscheduler(rq, p, policy, param->sched_priority);
5251
5252 if (running)
5253 p->sched_class->set_curr_task(rq);
5254 if (on_rq) {
5255 activate_task(rq, p, 0);
5256
5257 check_class_changed(rq, p, prev_class, oldprio, running);
5258 }
5259 __task_rq_unlock(rq);
5260 spin_unlock_irqrestore(&p->pi_lock, flags);
5261
5262 rt_mutex_adjust_pi(p);
5263
5264 return 0;
5265 }
5266
5267 /**
5268 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5269 * @p: the task in question.
5270 * @policy: new policy.
5271 * @param: structure containing the new RT priority.
5272 *
5273 * NOTE that the task may be already dead.
5274 */
5275 int sched_setscheduler(struct task_struct *p, int policy,
5276 struct sched_param *param)
5277 {
5278 return __sched_setscheduler(p, policy, param, true);
5279 }
5280 EXPORT_SYMBOL_GPL(sched_setscheduler);
5281
5282 /**
5283 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5284 * @p: the task in question.
5285 * @policy: new policy.
5286 * @param: structure containing the new RT priority.
5287 *
5288 * Just like sched_setscheduler, only don't bother checking if the
5289 * current context has permission. For example, this is needed in
5290 * stop_machine(): we create temporary high priority worker threads,
5291 * but our caller might not have that capability.
5292 */
5293 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5294 struct sched_param *param)
5295 {
5296 return __sched_setscheduler(p, policy, param, false);
5297 }
5298
5299 static int
5300 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5301 {
5302 struct sched_param lparam;
5303 struct task_struct *p;
5304 int retval;
5305
5306 if (!param || pid < 0)
5307 return -EINVAL;
5308 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5309 return -EFAULT;
5310
5311 rcu_read_lock();
5312 retval = -ESRCH;
5313 p = find_process_by_pid(pid);
5314 if (p != NULL)
5315 retval = sched_setscheduler(p, policy, &lparam);
5316 rcu_read_unlock();
5317
5318 return retval;
5319 }
5320
5321 /**
5322 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5323 * @pid: the pid in question.
5324 * @policy: new policy.
5325 * @param: structure containing the new RT priority.
5326 */
5327 asmlinkage long
5328 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5329 {
5330 /* negative values for policy are not valid */
5331 if (policy < 0)
5332 return -EINVAL;
5333
5334 return do_sched_setscheduler(pid, policy, param);
5335 }
5336
5337 /**
5338 * sys_sched_setparam - set/change the RT priority of a thread
5339 * @pid: the pid in question.
5340 * @param: structure containing the new RT priority.
5341 */
5342 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
5343 {
5344 return do_sched_setscheduler(pid, -1, param);
5345 }
5346
5347 /**
5348 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5349 * @pid: the pid in question.
5350 */
5351 asmlinkage long sys_sched_getscheduler(pid_t pid)
5352 {
5353 struct task_struct *p;
5354 int retval;
5355
5356 if (pid < 0)
5357 return -EINVAL;
5358
5359 retval = -ESRCH;
5360 read_lock(&tasklist_lock);
5361 p = find_process_by_pid(pid);
5362 if (p) {
5363 retval = security_task_getscheduler(p);
5364 if (!retval)
5365 retval = p->policy;
5366 }
5367 read_unlock(&tasklist_lock);
5368 return retval;
5369 }
5370
5371 /**
5372 * sys_sched_getscheduler - get the RT priority of a thread
5373 * @pid: the pid in question.
5374 * @param: structure containing the RT priority.
5375 */
5376 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
5377 {
5378 struct sched_param lp;
5379 struct task_struct *p;
5380 int retval;
5381
5382 if (!param || pid < 0)
5383 return -EINVAL;
5384
5385 read_lock(&tasklist_lock);
5386 p = find_process_by_pid(pid);
5387 retval = -ESRCH;
5388 if (!p)
5389 goto out_unlock;
5390
5391 retval = security_task_getscheduler(p);
5392 if (retval)
5393 goto out_unlock;
5394
5395 lp.sched_priority = p->rt_priority;
5396 read_unlock(&tasklist_lock);
5397
5398 /*
5399 * This one might sleep, we cannot do it with a spinlock held ...
5400 */
5401 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5402
5403 return retval;
5404
5405 out_unlock:
5406 read_unlock(&tasklist_lock);
5407 return retval;
5408 }
5409
5410 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
5411 {
5412 cpumask_t cpus_allowed;
5413 cpumask_t new_mask = *in_mask;
5414 struct task_struct *p;
5415 int retval;
5416
5417 get_online_cpus();
5418 read_lock(&tasklist_lock);
5419
5420 p = find_process_by_pid(pid);
5421 if (!p) {
5422 read_unlock(&tasklist_lock);
5423 put_online_cpus();
5424 return -ESRCH;
5425 }
5426
5427 /*
5428 * It is not safe to call set_cpus_allowed with the
5429 * tasklist_lock held. We will bump the task_struct's
5430 * usage count and then drop tasklist_lock.
5431 */
5432 get_task_struct(p);
5433 read_unlock(&tasklist_lock);
5434
5435 retval = -EPERM;
5436 if ((current->euid != p->euid) && (current->euid != p->uid) &&
5437 !capable(CAP_SYS_NICE))
5438 goto out_unlock;
5439
5440 retval = security_task_setscheduler(p, 0, NULL);
5441 if (retval)
5442 goto out_unlock;
5443
5444 cpuset_cpus_allowed(p, &cpus_allowed);
5445 cpus_and(new_mask, new_mask, cpus_allowed);
5446 again:
5447 retval = set_cpus_allowed_ptr(p, &new_mask);
5448
5449 if (!retval) {
5450 cpuset_cpus_allowed(p, &cpus_allowed);
5451 if (!cpus_subset(new_mask, cpus_allowed)) {
5452 /*
5453 * We must have raced with a concurrent cpuset
5454 * update. Just reset the cpus_allowed to the
5455 * cpuset's cpus_allowed
5456 */
5457 new_mask = cpus_allowed;
5458 goto again;
5459 }
5460 }
5461 out_unlock:
5462 put_task_struct(p);
5463 put_online_cpus();
5464 return retval;
5465 }
5466
5467 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5468 cpumask_t *new_mask)
5469 {
5470 if (len < sizeof(cpumask_t)) {
5471 memset(new_mask, 0, sizeof(cpumask_t));
5472 } else if (len > sizeof(cpumask_t)) {
5473 len = sizeof(cpumask_t);
5474 }
5475 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5476 }
5477
5478 /**
5479 * sys_sched_setaffinity - set the cpu affinity of a process
5480 * @pid: pid of the process
5481 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5482 * @user_mask_ptr: user-space pointer to the new cpu mask
5483 */
5484 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5485 unsigned long __user *user_mask_ptr)
5486 {
5487 cpumask_t new_mask;
5488 int retval;
5489
5490 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5491 if (retval)
5492 return retval;
5493
5494 return sched_setaffinity(pid, &new_mask);
5495 }
5496
5497 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5498 {
5499 struct task_struct *p;
5500 int retval;
5501
5502 get_online_cpus();
5503 read_lock(&tasklist_lock);
5504
5505 retval = -ESRCH;
5506 p = find_process_by_pid(pid);
5507 if (!p)
5508 goto out_unlock;
5509
5510 retval = security_task_getscheduler(p);
5511 if (retval)
5512 goto out_unlock;
5513
5514 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5515
5516 out_unlock:
5517 read_unlock(&tasklist_lock);
5518 put_online_cpus();
5519
5520 return retval;
5521 }
5522
5523 /**
5524 * sys_sched_getaffinity - get the cpu affinity of a process
5525 * @pid: pid of the process
5526 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5527 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5528 */
5529 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5530 unsigned long __user *user_mask_ptr)
5531 {
5532 int ret;
5533 cpumask_t mask;
5534
5535 if (len < sizeof(cpumask_t))
5536 return -EINVAL;
5537
5538 ret = sched_getaffinity(pid, &mask);
5539 if (ret < 0)
5540 return ret;
5541
5542 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5543 return -EFAULT;
5544
5545 return sizeof(cpumask_t);
5546 }
5547
5548 /**
5549 * sys_sched_yield - yield the current processor to other threads.
5550 *
5551 * This function yields the current CPU to other tasks. If there are no
5552 * other threads running on this CPU then this function will return.
5553 */
5554 asmlinkage long sys_sched_yield(void)
5555 {
5556 struct rq *rq = this_rq_lock();
5557
5558 schedstat_inc(rq, yld_count);
5559 current->sched_class->yield_task(rq);
5560
5561 /*
5562 * Since we are going to call schedule() anyway, there's
5563 * no need to preempt or enable interrupts:
5564 */
5565 __release(rq->lock);
5566 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5567 _raw_spin_unlock(&rq->lock);
5568 preempt_enable_no_resched();
5569
5570 schedule();
5571
5572 return 0;
5573 }
5574
5575 static void __cond_resched(void)
5576 {
5577 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5578 __might_sleep(__FILE__, __LINE__);
5579 #endif
5580 /*
5581 * The BKS might be reacquired before we have dropped
5582 * PREEMPT_ACTIVE, which could trigger a second
5583 * cond_resched() call.
5584 */
5585 do {
5586 add_preempt_count(PREEMPT_ACTIVE);
5587 schedule();
5588 sub_preempt_count(PREEMPT_ACTIVE);
5589 } while (need_resched());
5590 }
5591
5592 int __sched _cond_resched(void)
5593 {
5594 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5595 system_state == SYSTEM_RUNNING) {
5596 __cond_resched();
5597 return 1;
5598 }
5599 return 0;
5600 }
5601 EXPORT_SYMBOL(_cond_resched);
5602
5603 /*
5604 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5605 * call schedule, and on return reacquire the lock.
5606 *
5607 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5608 * operations here to prevent schedule() from being called twice (once via
5609 * spin_unlock(), once by hand).
5610 */
5611 int cond_resched_lock(spinlock_t *lock)
5612 {
5613 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5614 int ret = 0;
5615
5616 if (spin_needbreak(lock) || resched) {
5617 spin_unlock(lock);
5618 if (resched && need_resched())
5619 __cond_resched();
5620 else
5621 cpu_relax();
5622 ret = 1;
5623 spin_lock(lock);
5624 }
5625 return ret;
5626 }
5627 EXPORT_SYMBOL(cond_resched_lock);
5628
5629 int __sched cond_resched_softirq(void)
5630 {
5631 BUG_ON(!in_softirq());
5632
5633 if (need_resched() && system_state == SYSTEM_RUNNING) {
5634 local_bh_enable();
5635 __cond_resched();
5636 local_bh_disable();
5637 return 1;
5638 }
5639 return 0;
5640 }
5641 EXPORT_SYMBOL(cond_resched_softirq);
5642
5643 /**
5644 * yield - yield the current processor to other threads.
5645 *
5646 * This is a shortcut for kernel-space yielding - it marks the
5647 * thread runnable and calls sys_sched_yield().
5648 */
5649 void __sched yield(void)
5650 {
5651 set_current_state(TASK_RUNNING);
5652 sys_sched_yield();
5653 }
5654 EXPORT_SYMBOL(yield);
5655
5656 /*
5657 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5658 * that process accounting knows that this is a task in IO wait state.
5659 *
5660 * But don't do that if it is a deliberate, throttling IO wait (this task
5661 * has set its backing_dev_info: the queue against which it should throttle)
5662 */
5663 void __sched io_schedule(void)
5664 {
5665 struct rq *rq = &__raw_get_cpu_var(runqueues);
5666
5667 delayacct_blkio_start();
5668 atomic_inc(&rq->nr_iowait);
5669 schedule();
5670 atomic_dec(&rq->nr_iowait);
5671 delayacct_blkio_end();
5672 }
5673 EXPORT_SYMBOL(io_schedule);
5674
5675 long __sched io_schedule_timeout(long timeout)
5676 {
5677 struct rq *rq = &__raw_get_cpu_var(runqueues);
5678 long ret;
5679
5680 delayacct_blkio_start();
5681 atomic_inc(&rq->nr_iowait);
5682 ret = schedule_timeout(timeout);
5683 atomic_dec(&rq->nr_iowait);
5684 delayacct_blkio_end();
5685 return ret;
5686 }
5687
5688 /**
5689 * sys_sched_get_priority_max - return maximum RT priority.
5690 * @policy: scheduling class.
5691 *
5692 * this syscall returns the maximum rt_priority that can be used
5693 * by a given scheduling class.
5694 */
5695 asmlinkage long sys_sched_get_priority_max(int policy)
5696 {
5697 int ret = -EINVAL;
5698
5699 switch (policy) {
5700 case SCHED_FIFO:
5701 case SCHED_RR:
5702 ret = MAX_USER_RT_PRIO-1;
5703 break;
5704 case SCHED_NORMAL:
5705 case SCHED_BATCH:
5706 case SCHED_IDLE:
5707 ret = 0;
5708 break;
5709 }
5710 return ret;
5711 }
5712
5713 /**
5714 * sys_sched_get_priority_min - return minimum RT priority.
5715 * @policy: scheduling class.
5716 *
5717 * this syscall returns the minimum rt_priority that can be used
5718 * by a given scheduling class.
5719 */
5720 asmlinkage long sys_sched_get_priority_min(int policy)
5721 {
5722 int ret = -EINVAL;
5723
5724 switch (policy) {
5725 case SCHED_FIFO:
5726 case SCHED_RR:
5727 ret = 1;
5728 break;
5729 case SCHED_NORMAL:
5730 case SCHED_BATCH:
5731 case SCHED_IDLE:
5732 ret = 0;
5733 }
5734 return ret;
5735 }
5736
5737 /**
5738 * sys_sched_rr_get_interval - return the default timeslice of a process.
5739 * @pid: pid of the process.
5740 * @interval: userspace pointer to the timeslice value.
5741 *
5742 * this syscall writes the default timeslice value of a given process
5743 * into the user-space timespec buffer. A value of '0' means infinity.
5744 */
5745 asmlinkage
5746 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5747 {
5748 struct task_struct *p;
5749 unsigned int time_slice;
5750 int retval;
5751 struct timespec t;
5752
5753 if (pid < 0)
5754 return -EINVAL;
5755
5756 retval = -ESRCH;
5757 read_lock(&tasklist_lock);
5758 p = find_process_by_pid(pid);
5759 if (!p)
5760 goto out_unlock;
5761
5762 retval = security_task_getscheduler(p);
5763 if (retval)
5764 goto out_unlock;
5765
5766 /*
5767 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5768 * tasks that are on an otherwise idle runqueue:
5769 */
5770 time_slice = 0;
5771 if (p->policy == SCHED_RR) {
5772 time_slice = DEF_TIMESLICE;
5773 } else if (p->policy != SCHED_FIFO) {
5774 struct sched_entity *se = &p->se;
5775 unsigned long flags;
5776 struct rq *rq;
5777
5778 rq = task_rq_lock(p, &flags);
5779 if (rq->cfs.load.weight)
5780 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5781 task_rq_unlock(rq, &flags);
5782 }
5783 read_unlock(&tasklist_lock);
5784 jiffies_to_timespec(time_slice, &t);
5785 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5786 return retval;
5787
5788 out_unlock:
5789 read_unlock(&tasklist_lock);
5790 return retval;
5791 }
5792
5793 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5794
5795 void sched_show_task(struct task_struct *p)
5796 {
5797 unsigned long free = 0;
5798 unsigned state;
5799
5800 state = p->state ? __ffs(p->state) + 1 : 0;
5801 printk(KERN_INFO "%-13.13s %c", p->comm,
5802 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5803 #if BITS_PER_LONG == 32
5804 if (state == TASK_RUNNING)
5805 printk(KERN_CONT " running ");
5806 else
5807 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5808 #else
5809 if (state == TASK_RUNNING)
5810 printk(KERN_CONT " running task ");
5811 else
5812 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5813 #endif
5814 #ifdef CONFIG_DEBUG_STACK_USAGE
5815 {
5816 unsigned long *n = end_of_stack(p);
5817 while (!*n)
5818 n++;
5819 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5820 }
5821 #endif
5822 printk(KERN_CONT "%5lu %5d %6d\n", free,
5823 task_pid_nr(p), task_pid_nr(p->real_parent));
5824
5825 show_stack(p, NULL);
5826 }
5827
5828 void show_state_filter(unsigned long state_filter)
5829 {
5830 struct task_struct *g, *p;
5831
5832 #if BITS_PER_LONG == 32
5833 printk(KERN_INFO
5834 " task PC stack pid father\n");
5835 #else
5836 printk(KERN_INFO
5837 " task PC stack pid father\n");
5838 #endif
5839 read_lock(&tasklist_lock);
5840 do_each_thread(g, p) {
5841 /*
5842 * reset the NMI-timeout, listing all files on a slow
5843 * console might take alot of time:
5844 */
5845 touch_nmi_watchdog();
5846 if (!state_filter || (p->state & state_filter))
5847 sched_show_task(p);
5848 } while_each_thread(g, p);
5849
5850 touch_all_softlockup_watchdogs();
5851
5852 #ifdef CONFIG_SCHED_DEBUG
5853 sysrq_sched_debug_show();
5854 #endif
5855 read_unlock(&tasklist_lock);
5856 /*
5857 * Only show locks if all tasks are dumped:
5858 */
5859 if (state_filter == -1)
5860 debug_show_all_locks();
5861 }
5862
5863 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5864 {
5865 idle->sched_class = &idle_sched_class;
5866 }
5867
5868 /**
5869 * init_idle - set up an idle thread for a given CPU
5870 * @idle: task in question
5871 * @cpu: cpu the idle task belongs to
5872 *
5873 * NOTE: this function does not set the idle thread's NEED_RESCHED
5874 * flag, to make booting more robust.
5875 */
5876 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5877 {
5878 struct rq *rq = cpu_rq(cpu);
5879 unsigned long flags;
5880
5881 spin_lock_irqsave(&rq->lock, flags);
5882
5883 __sched_fork(idle);
5884 idle->se.exec_start = sched_clock();
5885
5886 idle->prio = idle->normal_prio = MAX_PRIO;
5887 idle->cpus_allowed = cpumask_of_cpu(cpu);
5888 __set_task_cpu(idle, cpu);
5889
5890 rq->curr = rq->idle = idle;
5891 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5892 idle->oncpu = 1;
5893 #endif
5894 spin_unlock_irqrestore(&rq->lock, flags);
5895
5896 /* Set the preempt count _outside_ the spinlocks! */
5897 #if defined(CONFIG_PREEMPT)
5898 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5899 #else
5900 task_thread_info(idle)->preempt_count = 0;
5901 #endif
5902 /*
5903 * The idle tasks have their own, simple scheduling class:
5904 */
5905 idle->sched_class = &idle_sched_class;
5906 ftrace_graph_init_task(idle);
5907 }
5908
5909 /*
5910 * In a system that switches off the HZ timer nohz_cpu_mask
5911 * indicates which cpus entered this state. This is used
5912 * in the rcu update to wait only for active cpus. For system
5913 * which do not switch off the HZ timer nohz_cpu_mask should
5914 * always be CPU_MASK_NONE.
5915 */
5916 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5917
5918 /*
5919 * Increase the granularity value when there are more CPUs,
5920 * because with more CPUs the 'effective latency' as visible
5921 * to users decreases. But the relationship is not linear,
5922 * so pick a second-best guess by going with the log2 of the
5923 * number of CPUs.
5924 *
5925 * This idea comes from the SD scheduler of Con Kolivas:
5926 */
5927 static inline void sched_init_granularity(void)
5928 {
5929 unsigned int factor = 1 + ilog2(num_online_cpus());
5930 const unsigned long limit = 200000000;
5931
5932 sysctl_sched_min_granularity *= factor;
5933 if (sysctl_sched_min_granularity > limit)
5934 sysctl_sched_min_granularity = limit;
5935
5936 sysctl_sched_latency *= factor;
5937 if (sysctl_sched_latency > limit)
5938 sysctl_sched_latency = limit;
5939
5940 sysctl_sched_wakeup_granularity *= factor;
5941
5942 sysctl_sched_shares_ratelimit *= factor;
5943 }
5944
5945 #ifdef CONFIG_SMP
5946 /*
5947 * This is how migration works:
5948 *
5949 * 1) we queue a struct migration_req structure in the source CPU's
5950 * runqueue and wake up that CPU's migration thread.
5951 * 2) we down() the locked semaphore => thread blocks.
5952 * 3) migration thread wakes up (implicitly it forces the migrated
5953 * thread off the CPU)
5954 * 4) it gets the migration request and checks whether the migrated
5955 * task is still in the wrong runqueue.
5956 * 5) if it's in the wrong runqueue then the migration thread removes
5957 * it and puts it into the right queue.
5958 * 6) migration thread up()s the semaphore.
5959 * 7) we wake up and the migration is done.
5960 */
5961
5962 /*
5963 * Change a given task's CPU affinity. Migrate the thread to a
5964 * proper CPU and schedule it away if the CPU it's executing on
5965 * is removed from the allowed bitmask.
5966 *
5967 * NOTE: the caller must have a valid reference to the task, the
5968 * task must not exit() & deallocate itself prematurely. The
5969 * call is not atomic; no spinlocks may be held.
5970 */
5971 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5972 {
5973 struct migration_req req;
5974 unsigned long flags;
5975 struct rq *rq;
5976 int ret = 0;
5977
5978 rq = task_rq_lock(p, &flags);
5979 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5980 ret = -EINVAL;
5981 goto out;
5982 }
5983
5984 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5985 !cpus_equal(p->cpus_allowed, *new_mask))) {
5986 ret = -EINVAL;
5987 goto out;
5988 }
5989
5990 if (p->sched_class->set_cpus_allowed)
5991 p->sched_class->set_cpus_allowed(p, new_mask);
5992 else {
5993 p->cpus_allowed = *new_mask;
5994 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5995 }
5996
5997 /* Can the task run on the task's current CPU? If so, we're done */
5998 if (cpu_isset(task_cpu(p), *new_mask))
5999 goto out;
6000
6001 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
6002 /* Need help from migration thread: drop lock and wait. */
6003 task_rq_unlock(rq, &flags);
6004 wake_up_process(rq->migration_thread);
6005 wait_for_completion(&req.done);
6006 tlb_migrate_finish(p->mm);
6007 return 0;
6008 }
6009 out:
6010 task_rq_unlock(rq, &flags);
6011
6012 return ret;
6013 }
6014 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6015
6016 /*
6017 * Move (not current) task off this cpu, onto dest cpu. We're doing
6018 * this because either it can't run here any more (set_cpus_allowed()
6019 * away from this CPU, or CPU going down), or because we're
6020 * attempting to rebalance this task on exec (sched_exec).
6021 *
6022 * So we race with normal scheduler movements, but that's OK, as long
6023 * as the task is no longer on this CPU.
6024 *
6025 * Returns non-zero if task was successfully migrated.
6026 */
6027 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6028 {
6029 struct rq *rq_dest, *rq_src;
6030 int ret = 0, on_rq;
6031
6032 if (unlikely(!cpu_active(dest_cpu)))
6033 return ret;
6034
6035 rq_src = cpu_rq(src_cpu);
6036 rq_dest = cpu_rq(dest_cpu);
6037
6038 double_rq_lock(rq_src, rq_dest);
6039 /* Already moved. */
6040 if (task_cpu(p) != src_cpu)
6041 goto done;
6042 /* Affinity changed (again). */
6043 if (!cpu_isset(dest_cpu, p->cpus_allowed))
6044 goto fail;
6045
6046 on_rq = p->se.on_rq;
6047 if (on_rq)
6048 deactivate_task(rq_src, p, 0);
6049
6050 set_task_cpu(p, dest_cpu);
6051 if (on_rq) {
6052 activate_task(rq_dest, p, 0);
6053 check_preempt_curr(rq_dest, p, 0);
6054 }
6055 done:
6056 ret = 1;
6057 fail:
6058 double_rq_unlock(rq_src, rq_dest);
6059 return ret;
6060 }
6061
6062 /*
6063 * migration_thread - this is a highprio system thread that performs
6064 * thread migration by bumping thread off CPU then 'pushing' onto
6065 * another runqueue.
6066 */
6067 static int migration_thread(void *data)
6068 {
6069 int cpu = (long)data;
6070 struct rq *rq;
6071
6072 rq = cpu_rq(cpu);
6073 BUG_ON(rq->migration_thread != current);
6074
6075 set_current_state(TASK_INTERRUPTIBLE);
6076 while (!kthread_should_stop()) {
6077 struct migration_req *req;
6078 struct list_head *head;
6079
6080 spin_lock_irq(&rq->lock);
6081
6082 if (cpu_is_offline(cpu)) {
6083 spin_unlock_irq(&rq->lock);
6084 goto wait_to_die;
6085 }
6086
6087 if (rq->active_balance) {
6088 active_load_balance(rq, cpu);
6089 rq->active_balance = 0;
6090 }
6091
6092 head = &rq->migration_queue;
6093
6094 if (list_empty(head)) {
6095 spin_unlock_irq(&rq->lock);
6096 schedule();
6097 set_current_state(TASK_INTERRUPTIBLE);
6098 continue;
6099 }
6100 req = list_entry(head->next, struct migration_req, list);
6101 list_del_init(head->next);
6102
6103 spin_unlock(&rq->lock);
6104 __migrate_task(req->task, cpu, req->dest_cpu);
6105 local_irq_enable();
6106
6107 complete(&req->done);
6108 }
6109 __set_current_state(TASK_RUNNING);
6110 return 0;
6111
6112 wait_to_die:
6113 /* Wait for kthread_stop */
6114 set_current_state(TASK_INTERRUPTIBLE);
6115 while (!kthread_should_stop()) {
6116 schedule();
6117 set_current_state(TASK_INTERRUPTIBLE);
6118 }
6119 __set_current_state(TASK_RUNNING);
6120 return 0;
6121 }
6122
6123 #ifdef CONFIG_HOTPLUG_CPU
6124
6125 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6126 {
6127 int ret;
6128
6129 local_irq_disable();
6130 ret = __migrate_task(p, src_cpu, dest_cpu);
6131 local_irq_enable();
6132 return ret;
6133 }
6134
6135 /*
6136 * Figure out where task on dead CPU should go, use force if necessary.
6137 * NOTE: interrupts should be disabled by the caller
6138 */
6139 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6140 {
6141 unsigned long flags;
6142 cpumask_t mask;
6143 struct rq *rq;
6144 int dest_cpu;
6145
6146 do {
6147 /* On same node? */
6148 mask = node_to_cpumask(cpu_to_node(dead_cpu));
6149 cpus_and(mask, mask, p->cpus_allowed);
6150 dest_cpu = any_online_cpu(mask);
6151
6152 /* On any allowed CPU? */
6153 if (dest_cpu >= nr_cpu_ids)
6154 dest_cpu = any_online_cpu(p->cpus_allowed);
6155
6156 /* No more Mr. Nice Guy. */
6157 if (dest_cpu >= nr_cpu_ids) {
6158 cpumask_t cpus_allowed;
6159
6160 cpuset_cpus_allowed_locked(p, &cpus_allowed);
6161 /*
6162 * Try to stay on the same cpuset, where the
6163 * current cpuset may be a subset of all cpus.
6164 * The cpuset_cpus_allowed_locked() variant of
6165 * cpuset_cpus_allowed() will not block. It must be
6166 * called within calls to cpuset_lock/cpuset_unlock.
6167 */
6168 rq = task_rq_lock(p, &flags);
6169 p->cpus_allowed = cpus_allowed;
6170 dest_cpu = any_online_cpu(p->cpus_allowed);
6171 task_rq_unlock(rq, &flags);
6172
6173 /*
6174 * Don't tell them about moving exiting tasks or
6175 * kernel threads (both mm NULL), since they never
6176 * leave kernel.
6177 */
6178 if (p->mm && printk_ratelimit()) {
6179 printk(KERN_INFO "process %d (%s) no "
6180 "longer affine to cpu%d\n",
6181 task_pid_nr(p), p->comm, dead_cpu);
6182 }
6183 }
6184 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
6185 }
6186
6187 /*
6188 * While a dead CPU has no uninterruptible tasks queued at this point,
6189 * it might still have a nonzero ->nr_uninterruptible counter, because
6190 * for performance reasons the counter is not stricly tracking tasks to
6191 * their home CPUs. So we just add the counter to another CPU's counter,
6192 * to keep the global sum constant after CPU-down:
6193 */
6194 static void migrate_nr_uninterruptible(struct rq *rq_src)
6195 {
6196 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
6197 unsigned long flags;
6198
6199 local_irq_save(flags);
6200 double_rq_lock(rq_src, rq_dest);
6201 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6202 rq_src->nr_uninterruptible = 0;
6203 double_rq_unlock(rq_src, rq_dest);
6204 local_irq_restore(flags);
6205 }
6206
6207 /* Run through task list and migrate tasks from the dead cpu. */
6208 static void migrate_live_tasks(int src_cpu)
6209 {
6210 struct task_struct *p, *t;
6211
6212 read_lock(&tasklist_lock);
6213
6214 do_each_thread(t, p) {
6215 if (p == current)
6216 continue;
6217
6218 if (task_cpu(p) == src_cpu)
6219 move_task_off_dead_cpu(src_cpu, p);
6220 } while_each_thread(t, p);
6221
6222 read_unlock(&tasklist_lock);
6223 }
6224
6225 /*
6226 * Schedules idle task to be the next runnable task on current CPU.
6227 * It does so by boosting its priority to highest possible.
6228 * Used by CPU offline code.
6229 */
6230 void sched_idle_next(void)
6231 {
6232 int this_cpu = smp_processor_id();
6233 struct rq *rq = cpu_rq(this_cpu);
6234 struct task_struct *p = rq->idle;
6235 unsigned long flags;
6236
6237 /* cpu has to be offline */
6238 BUG_ON(cpu_online(this_cpu));
6239
6240 /*
6241 * Strictly not necessary since rest of the CPUs are stopped by now
6242 * and interrupts disabled on the current cpu.
6243 */
6244 spin_lock_irqsave(&rq->lock, flags);
6245
6246 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6247
6248 update_rq_clock(rq);
6249 activate_task(rq, p, 0);
6250
6251 spin_unlock_irqrestore(&rq->lock, flags);
6252 }
6253
6254 /*
6255 * Ensures that the idle task is using init_mm right before its cpu goes
6256 * offline.
6257 */
6258 void idle_task_exit(void)
6259 {
6260 struct mm_struct *mm = current->active_mm;
6261
6262 BUG_ON(cpu_online(smp_processor_id()));
6263
6264 if (mm != &init_mm)
6265 switch_mm(mm, &init_mm, current);
6266 mmdrop(mm);
6267 }
6268
6269 /* called under rq->lock with disabled interrupts */
6270 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6271 {
6272 struct rq *rq = cpu_rq(dead_cpu);
6273
6274 /* Must be exiting, otherwise would be on tasklist. */
6275 BUG_ON(!p->exit_state);
6276
6277 /* Cannot have done final schedule yet: would have vanished. */
6278 BUG_ON(p->state == TASK_DEAD);
6279
6280 get_task_struct(p);
6281
6282 /*
6283 * Drop lock around migration; if someone else moves it,
6284 * that's OK. No task can be added to this CPU, so iteration is
6285 * fine.
6286 */
6287 spin_unlock_irq(&rq->lock);
6288 move_task_off_dead_cpu(dead_cpu, p);
6289 spin_lock_irq(&rq->lock);
6290
6291 put_task_struct(p);
6292 }
6293
6294 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6295 static void migrate_dead_tasks(unsigned int dead_cpu)
6296 {
6297 struct rq *rq = cpu_rq(dead_cpu);
6298 struct task_struct *next;
6299
6300 for ( ; ; ) {
6301 if (!rq->nr_running)
6302 break;
6303 update_rq_clock(rq);
6304 next = pick_next_task(rq, rq->curr);
6305 if (!next)
6306 break;
6307 next->sched_class->put_prev_task(rq, next);
6308 migrate_dead(dead_cpu, next);
6309
6310 }
6311 }
6312 #endif /* CONFIG_HOTPLUG_CPU */
6313
6314 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6315
6316 static struct ctl_table sd_ctl_dir[] = {
6317 {
6318 .procname = "sched_domain",
6319 .mode = 0555,
6320 },
6321 {0, },
6322 };
6323
6324 static struct ctl_table sd_ctl_root[] = {
6325 {
6326 .ctl_name = CTL_KERN,
6327 .procname = "kernel",
6328 .mode = 0555,
6329 .child = sd_ctl_dir,
6330 },
6331 {0, },
6332 };
6333
6334 static struct ctl_table *sd_alloc_ctl_entry(int n)
6335 {
6336 struct ctl_table *entry =
6337 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6338
6339 return entry;
6340 }
6341
6342 static void sd_free_ctl_entry(struct ctl_table **tablep)
6343 {
6344 struct ctl_table *entry;
6345
6346 /*
6347 * In the intermediate directories, both the child directory and
6348 * procname are dynamically allocated and could fail but the mode
6349 * will always be set. In the lowest directory the names are
6350 * static strings and all have proc handlers.
6351 */
6352 for (entry = *tablep; entry->mode; entry++) {
6353 if (entry->child)
6354 sd_free_ctl_entry(&entry->child);
6355 if (entry->proc_handler == NULL)
6356 kfree(entry->procname);
6357 }
6358
6359 kfree(*tablep);
6360 *tablep = NULL;
6361 }
6362
6363 static void
6364 set_table_entry(struct ctl_table *entry,
6365 const char *procname, void *data, int maxlen,
6366 mode_t mode, proc_handler *proc_handler)
6367 {
6368 entry->procname = procname;
6369 entry->data = data;
6370 entry->maxlen = maxlen;
6371 entry->mode = mode;
6372 entry->proc_handler = proc_handler;
6373 }
6374
6375 static struct ctl_table *
6376 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6377 {
6378 struct ctl_table *table = sd_alloc_ctl_entry(13);
6379
6380 if (table == NULL)
6381 return NULL;
6382
6383 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6384 sizeof(long), 0644, proc_doulongvec_minmax);
6385 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6386 sizeof(long), 0644, proc_doulongvec_minmax);
6387 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6388 sizeof(int), 0644, proc_dointvec_minmax);
6389 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6390 sizeof(int), 0644, proc_dointvec_minmax);
6391 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6392 sizeof(int), 0644, proc_dointvec_minmax);
6393 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6394 sizeof(int), 0644, proc_dointvec_minmax);
6395 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6396 sizeof(int), 0644, proc_dointvec_minmax);
6397 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6398 sizeof(int), 0644, proc_dointvec_minmax);
6399 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6400 sizeof(int), 0644, proc_dointvec_minmax);
6401 set_table_entry(&table[9], "cache_nice_tries",
6402 &sd->cache_nice_tries,
6403 sizeof(int), 0644, proc_dointvec_minmax);
6404 set_table_entry(&table[10], "flags", &sd->flags,
6405 sizeof(int), 0644, proc_dointvec_minmax);
6406 set_table_entry(&table[11], "name", sd->name,
6407 CORENAME_MAX_SIZE, 0444, proc_dostring);
6408 /* &table[12] is terminator */
6409
6410 return table;
6411 }
6412
6413 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6414 {
6415 struct ctl_table *entry, *table;
6416 struct sched_domain *sd;
6417 int domain_num = 0, i;
6418 char buf[32];
6419
6420 for_each_domain(cpu, sd)
6421 domain_num++;
6422 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6423 if (table == NULL)
6424 return NULL;
6425
6426 i = 0;
6427 for_each_domain(cpu, sd) {
6428 snprintf(buf, 32, "domain%d", i);
6429 entry->procname = kstrdup(buf, GFP_KERNEL);
6430 entry->mode = 0555;
6431 entry->child = sd_alloc_ctl_domain_table(sd);
6432 entry++;
6433 i++;
6434 }
6435 return table;
6436 }
6437
6438 static struct ctl_table_header *sd_sysctl_header;
6439 static void register_sched_domain_sysctl(void)
6440 {
6441 int i, cpu_num = num_online_cpus();
6442 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6443 char buf[32];
6444
6445 WARN_ON(sd_ctl_dir[0].child);
6446 sd_ctl_dir[0].child = entry;
6447
6448 if (entry == NULL)
6449 return;
6450
6451 for_each_online_cpu(i) {
6452 snprintf(buf, 32, "cpu%d", i);
6453 entry->procname = kstrdup(buf, GFP_KERNEL);
6454 entry->mode = 0555;
6455 entry->child = sd_alloc_ctl_cpu_table(i);
6456 entry++;
6457 }
6458
6459 WARN_ON(sd_sysctl_header);
6460 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6461 }
6462
6463 /* may be called multiple times per register */
6464 static void unregister_sched_domain_sysctl(void)
6465 {
6466 if (sd_sysctl_header)
6467 unregister_sysctl_table(sd_sysctl_header);
6468 sd_sysctl_header = NULL;
6469 if (sd_ctl_dir[0].child)
6470 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6471 }
6472 #else
6473 static void register_sched_domain_sysctl(void)
6474 {
6475 }
6476 static void unregister_sched_domain_sysctl(void)
6477 {
6478 }
6479 #endif
6480
6481 static void set_rq_online(struct rq *rq)
6482 {
6483 if (!rq->online) {
6484 const struct sched_class *class;
6485
6486 cpu_set(rq->cpu, rq->rd->online);
6487 rq->online = 1;
6488
6489 for_each_class(class) {
6490 if (class->rq_online)
6491 class->rq_online(rq);
6492 }
6493 }
6494 }
6495
6496 static void set_rq_offline(struct rq *rq)
6497 {
6498 if (rq->online) {
6499 const struct sched_class *class;
6500
6501 for_each_class(class) {
6502 if (class->rq_offline)
6503 class->rq_offline(rq);
6504 }
6505
6506 cpu_clear(rq->cpu, rq->rd->online);
6507 rq->online = 0;
6508 }
6509 }
6510
6511 /*
6512 * migration_call - callback that gets triggered when a CPU is added.
6513 * Here we can start up the necessary migration thread for the new CPU.
6514 */
6515 static int __cpuinit
6516 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6517 {
6518 struct task_struct *p;
6519 int cpu = (long)hcpu;
6520 unsigned long flags;
6521 struct rq *rq;
6522
6523 switch (action) {
6524
6525 case CPU_UP_PREPARE:
6526 case CPU_UP_PREPARE_FROZEN:
6527 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6528 if (IS_ERR(p))
6529 return NOTIFY_BAD;
6530 kthread_bind(p, cpu);
6531 /* Must be high prio: stop_machine expects to yield to it. */
6532 rq = task_rq_lock(p, &flags);
6533 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6534 task_rq_unlock(rq, &flags);
6535 cpu_rq(cpu)->migration_thread = p;
6536 break;
6537
6538 case CPU_ONLINE:
6539 case CPU_ONLINE_FROZEN:
6540 /* Strictly unnecessary, as first user will wake it. */
6541 wake_up_process(cpu_rq(cpu)->migration_thread);
6542
6543 /* Update our root-domain */
6544 rq = cpu_rq(cpu);
6545 spin_lock_irqsave(&rq->lock, flags);
6546 if (rq->rd) {
6547 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6548
6549 set_rq_online(rq);
6550 }
6551 spin_unlock_irqrestore(&rq->lock, flags);
6552 break;
6553
6554 #ifdef CONFIG_HOTPLUG_CPU
6555 case CPU_UP_CANCELED:
6556 case CPU_UP_CANCELED_FROZEN:
6557 if (!cpu_rq(cpu)->migration_thread)
6558 break;
6559 /* Unbind it from offline cpu so it can run. Fall thru. */
6560 kthread_bind(cpu_rq(cpu)->migration_thread,
6561 any_online_cpu(cpu_online_map));
6562 kthread_stop(cpu_rq(cpu)->migration_thread);
6563 cpu_rq(cpu)->migration_thread = NULL;
6564 break;
6565
6566 case CPU_DEAD:
6567 case CPU_DEAD_FROZEN:
6568 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6569 migrate_live_tasks(cpu);
6570 rq = cpu_rq(cpu);
6571 kthread_stop(rq->migration_thread);
6572 rq->migration_thread = NULL;
6573 /* Idle task back to normal (off runqueue, low prio) */
6574 spin_lock_irq(&rq->lock);
6575 update_rq_clock(rq);
6576 deactivate_task(rq, rq->idle, 0);
6577 rq->idle->static_prio = MAX_PRIO;
6578 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6579 rq->idle->sched_class = &idle_sched_class;
6580 migrate_dead_tasks(cpu);
6581 spin_unlock_irq(&rq->lock);
6582 cpuset_unlock();
6583 migrate_nr_uninterruptible(rq);
6584 BUG_ON(rq->nr_running != 0);
6585
6586 /*
6587 * No need to migrate the tasks: it was best-effort if
6588 * they didn't take sched_hotcpu_mutex. Just wake up
6589 * the requestors.
6590 */
6591 spin_lock_irq(&rq->lock);
6592 while (!list_empty(&rq->migration_queue)) {
6593 struct migration_req *req;
6594
6595 req = list_entry(rq->migration_queue.next,
6596 struct migration_req, list);
6597 list_del_init(&req->list);
6598 spin_unlock_irq(&rq->lock);
6599 complete(&req->done);
6600 spin_lock_irq(&rq->lock);
6601 }
6602 spin_unlock_irq(&rq->lock);
6603 break;
6604
6605 case CPU_DYING:
6606 case CPU_DYING_FROZEN:
6607 /* Update our root-domain */
6608 rq = cpu_rq(cpu);
6609 spin_lock_irqsave(&rq->lock, flags);
6610 if (rq->rd) {
6611 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6612 set_rq_offline(rq);
6613 }
6614 spin_unlock_irqrestore(&rq->lock, flags);
6615 break;
6616 #endif
6617 }
6618 return NOTIFY_OK;
6619 }
6620
6621 /* Register at highest priority so that task migration (migrate_all_tasks)
6622 * happens before everything else.
6623 */
6624 static struct notifier_block __cpuinitdata migration_notifier = {
6625 .notifier_call = migration_call,
6626 .priority = 10
6627 };
6628
6629 static int __init migration_init(void)
6630 {
6631 void *cpu = (void *)(long)smp_processor_id();
6632 int err;
6633
6634 /* Start one for the boot CPU: */
6635 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6636 BUG_ON(err == NOTIFY_BAD);
6637 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6638 register_cpu_notifier(&migration_notifier);
6639
6640 return err;
6641 }
6642 early_initcall(migration_init);
6643 #endif
6644
6645 #ifdef CONFIG_SMP
6646
6647 #ifdef CONFIG_SCHED_DEBUG
6648
6649 static inline const char *sd_level_to_string(enum sched_domain_level lvl)
6650 {
6651 switch (lvl) {
6652 case SD_LV_NONE:
6653 return "NONE";
6654 case SD_LV_SIBLING:
6655 return "SIBLING";
6656 case SD_LV_MC:
6657 return "MC";
6658 case SD_LV_CPU:
6659 return "CPU";
6660 case SD_LV_NODE:
6661 return "NODE";
6662 case SD_LV_ALLNODES:
6663 return "ALLNODES";
6664 case SD_LV_MAX:
6665 return "MAX";
6666
6667 }
6668 return "MAX";
6669 }
6670
6671 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6672 cpumask_t *groupmask)
6673 {
6674 struct sched_group *group = sd->groups;
6675 char str[256];
6676
6677 cpulist_scnprintf(str, sizeof(str), sd->span);
6678 cpus_clear(*groupmask);
6679
6680 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6681
6682 if (!(sd->flags & SD_LOAD_BALANCE)) {
6683 printk("does not load-balance\n");
6684 if (sd->parent)
6685 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6686 " has parent");
6687 return -1;
6688 }
6689
6690 printk(KERN_CONT "span %s level %s\n",
6691 str, sd_level_to_string(sd->level));
6692
6693 if (!cpu_isset(cpu, sd->span)) {
6694 printk(KERN_ERR "ERROR: domain->span does not contain "
6695 "CPU%d\n", cpu);
6696 }
6697 if (!cpu_isset(cpu, group->cpumask)) {
6698 printk(KERN_ERR "ERROR: domain->groups does not contain"
6699 " CPU%d\n", cpu);
6700 }
6701
6702 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6703 do {
6704 if (!group) {
6705 printk("\n");
6706 printk(KERN_ERR "ERROR: group is NULL\n");
6707 break;
6708 }
6709
6710 if (!group->__cpu_power) {
6711 printk(KERN_CONT "\n");
6712 printk(KERN_ERR "ERROR: domain->cpu_power not "
6713 "set\n");
6714 break;
6715 }
6716
6717 if (!cpus_weight(group->cpumask)) {
6718 printk(KERN_CONT "\n");
6719 printk(KERN_ERR "ERROR: empty group\n");
6720 break;
6721 }
6722
6723 if (cpus_intersects(*groupmask, group->cpumask)) {
6724 printk(KERN_CONT "\n");
6725 printk(KERN_ERR "ERROR: repeated CPUs\n");
6726 break;
6727 }
6728
6729 cpus_or(*groupmask, *groupmask, group->cpumask);
6730
6731 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6732 printk(KERN_CONT " %s", str);
6733
6734 group = group->next;
6735 } while (group != sd->groups);
6736 printk(KERN_CONT "\n");
6737
6738 if (!cpus_equal(sd->span, *groupmask))
6739 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6740
6741 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6742 printk(KERN_ERR "ERROR: parent span is not a superset "
6743 "of domain->span\n");
6744 return 0;
6745 }
6746
6747 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6748 {
6749 cpumask_t *groupmask;
6750 int level = 0;
6751
6752 if (!sd) {
6753 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6754 return;
6755 }
6756
6757 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6758
6759 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6760 if (!groupmask) {
6761 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6762 return;
6763 }
6764
6765 for (;;) {
6766 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6767 break;
6768 level++;
6769 sd = sd->parent;
6770 if (!sd)
6771 break;
6772 }
6773 kfree(groupmask);
6774 }
6775 #else /* !CONFIG_SCHED_DEBUG */
6776 # define sched_domain_debug(sd, cpu) do { } while (0)
6777 #endif /* CONFIG_SCHED_DEBUG */
6778
6779 static int sd_degenerate(struct sched_domain *sd)
6780 {
6781 if (cpus_weight(sd->span) == 1)
6782 return 1;
6783
6784 /* Following flags need at least 2 groups */
6785 if (sd->flags & (SD_LOAD_BALANCE |
6786 SD_BALANCE_NEWIDLE |
6787 SD_BALANCE_FORK |
6788 SD_BALANCE_EXEC |
6789 SD_SHARE_CPUPOWER |
6790 SD_SHARE_PKG_RESOURCES)) {
6791 if (sd->groups != sd->groups->next)
6792 return 0;
6793 }
6794
6795 /* Following flags don't use groups */
6796 if (sd->flags & (SD_WAKE_IDLE |
6797 SD_WAKE_AFFINE |
6798 SD_WAKE_BALANCE))
6799 return 0;
6800
6801 return 1;
6802 }
6803
6804 static int
6805 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6806 {
6807 unsigned long cflags = sd->flags, pflags = parent->flags;
6808
6809 if (sd_degenerate(parent))
6810 return 1;
6811
6812 if (!cpus_equal(sd->span, parent->span))
6813 return 0;
6814
6815 /* Does parent contain flags not in child? */
6816 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6817 if (cflags & SD_WAKE_AFFINE)
6818 pflags &= ~SD_WAKE_BALANCE;
6819 /* Flags needing groups don't count if only 1 group in parent */
6820 if (parent->groups == parent->groups->next) {
6821 pflags &= ~(SD_LOAD_BALANCE |
6822 SD_BALANCE_NEWIDLE |
6823 SD_BALANCE_FORK |
6824 SD_BALANCE_EXEC |
6825 SD_SHARE_CPUPOWER |
6826 SD_SHARE_PKG_RESOURCES);
6827 }
6828 if (~cflags & pflags)
6829 return 0;
6830
6831 return 1;
6832 }
6833
6834 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6835 {
6836 unsigned long flags;
6837
6838 spin_lock_irqsave(&rq->lock, flags);
6839
6840 if (rq->rd) {
6841 struct root_domain *old_rd = rq->rd;
6842
6843 if (cpu_isset(rq->cpu, old_rd->online))
6844 set_rq_offline(rq);
6845
6846 cpu_clear(rq->cpu, old_rd->span);
6847
6848 if (atomic_dec_and_test(&old_rd->refcount))
6849 kfree(old_rd);
6850 }
6851
6852 atomic_inc(&rd->refcount);
6853 rq->rd = rd;
6854
6855 cpu_set(rq->cpu, rd->span);
6856 if (cpu_isset(rq->cpu, cpu_online_map))
6857 set_rq_online(rq);
6858
6859 spin_unlock_irqrestore(&rq->lock, flags);
6860 }
6861
6862 static void init_rootdomain(struct root_domain *rd)
6863 {
6864 memset(rd, 0, sizeof(*rd));
6865
6866 cpus_clear(rd->span);
6867 cpus_clear(rd->online);
6868
6869 cpupri_init(&rd->cpupri);
6870 }
6871
6872 static void init_defrootdomain(void)
6873 {
6874 init_rootdomain(&def_root_domain);
6875 atomic_set(&def_root_domain.refcount, 1);
6876 }
6877
6878 static struct root_domain *alloc_rootdomain(void)
6879 {
6880 struct root_domain *rd;
6881
6882 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6883 if (!rd)
6884 return NULL;
6885
6886 init_rootdomain(rd);
6887
6888 return rd;
6889 }
6890
6891 /*
6892 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6893 * hold the hotplug lock.
6894 */
6895 static void
6896 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6897 {
6898 struct rq *rq = cpu_rq(cpu);
6899 struct sched_domain *tmp;
6900
6901 /* Remove the sched domains which do not contribute to scheduling. */
6902 for (tmp = sd; tmp; ) {
6903 struct sched_domain *parent = tmp->parent;
6904 if (!parent)
6905 break;
6906
6907 if (sd_parent_degenerate(tmp, parent)) {
6908 tmp->parent = parent->parent;
6909 if (parent->parent)
6910 parent->parent->child = tmp;
6911 } else
6912 tmp = tmp->parent;
6913 }
6914
6915 if (sd && sd_degenerate(sd)) {
6916 sd = sd->parent;
6917 if (sd)
6918 sd->child = NULL;
6919 }
6920
6921 sched_domain_debug(sd, cpu);
6922
6923 rq_attach_root(rq, rd);
6924 rcu_assign_pointer(rq->sd, sd);
6925 }
6926
6927 /* cpus with isolated domains */
6928 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6929
6930 /* Setup the mask of cpus configured for isolated domains */
6931 static int __init isolated_cpu_setup(char *str)
6932 {
6933 static int __initdata ints[NR_CPUS];
6934 int i;
6935
6936 str = get_options(str, ARRAY_SIZE(ints), ints);
6937 cpus_clear(cpu_isolated_map);
6938 for (i = 1; i <= ints[0]; i++)
6939 if (ints[i] < NR_CPUS)
6940 cpu_set(ints[i], cpu_isolated_map);
6941 return 1;
6942 }
6943
6944 __setup("isolcpus=", isolated_cpu_setup);
6945
6946 /*
6947 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6948 * to a function which identifies what group(along with sched group) a CPU
6949 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6950 * (due to the fact that we keep track of groups covered with a cpumask_t).
6951 *
6952 * init_sched_build_groups will build a circular linked list of the groups
6953 * covered by the given span, and will set each group's ->cpumask correctly,
6954 * and ->cpu_power to 0.
6955 */
6956 static void
6957 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6958 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6959 struct sched_group **sg,
6960 cpumask_t *tmpmask),
6961 cpumask_t *covered, cpumask_t *tmpmask)
6962 {
6963 struct sched_group *first = NULL, *last = NULL;
6964 int i;
6965
6966 cpus_clear(*covered);
6967
6968 for_each_cpu_mask_nr(i, *span) {
6969 struct sched_group *sg;
6970 int group = group_fn(i, cpu_map, &sg, tmpmask);
6971 int j;
6972
6973 if (cpu_isset(i, *covered))
6974 continue;
6975
6976 cpus_clear(sg->cpumask);
6977 sg->__cpu_power = 0;
6978
6979 for_each_cpu_mask_nr(j, *span) {
6980 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6981 continue;
6982
6983 cpu_set(j, *covered);
6984 cpu_set(j, sg->cpumask);
6985 }
6986 if (!first)
6987 first = sg;
6988 if (last)
6989 last->next = sg;
6990 last = sg;
6991 }
6992 last->next = first;
6993 }
6994
6995 #define SD_NODES_PER_DOMAIN 16
6996
6997 #ifdef CONFIG_NUMA
6998
6999 /**
7000 * find_next_best_node - find the next node to include in a sched_domain
7001 * @node: node whose sched_domain we're building
7002 * @used_nodes: nodes already in the sched_domain
7003 *
7004 * Find the next node to include in a given scheduling domain. Simply
7005 * finds the closest node not already in the @used_nodes map.
7006 *
7007 * Should use nodemask_t.
7008 */
7009 static int find_next_best_node(int node, nodemask_t *used_nodes)
7010 {
7011 int i, n, val, min_val, best_node = 0;
7012
7013 min_val = INT_MAX;
7014
7015 for (i = 0; i < nr_node_ids; i++) {
7016 /* Start at @node */
7017 n = (node + i) % nr_node_ids;
7018
7019 if (!nr_cpus_node(n))
7020 continue;
7021
7022 /* Skip already used nodes */
7023 if (node_isset(n, *used_nodes))
7024 continue;
7025
7026 /* Simple min distance search */
7027 val = node_distance(node, n);
7028
7029 if (val < min_val) {
7030 min_val = val;
7031 best_node = n;
7032 }
7033 }
7034
7035 node_set(best_node, *used_nodes);
7036 return best_node;
7037 }
7038
7039 /**
7040 * sched_domain_node_span - get a cpumask for a node's sched_domain
7041 * @node: node whose cpumask we're constructing
7042 * @span: resulting cpumask
7043 *
7044 * Given a node, construct a good cpumask for its sched_domain to span. It
7045 * should be one that prevents unnecessary balancing, but also spreads tasks
7046 * out optimally.
7047 */
7048 static void sched_domain_node_span(int node, cpumask_t *span)
7049 {
7050 nodemask_t used_nodes;
7051 node_to_cpumask_ptr(nodemask, node);
7052 int i;
7053
7054 cpus_clear(*span);
7055 nodes_clear(used_nodes);
7056
7057 cpus_or(*span, *span, *nodemask);
7058 node_set(node, used_nodes);
7059
7060 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7061 int next_node = find_next_best_node(node, &used_nodes);
7062
7063 node_to_cpumask_ptr_next(nodemask, next_node);
7064 cpus_or(*span, *span, *nodemask);
7065 }
7066 }
7067 #endif /* CONFIG_NUMA */
7068
7069 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7070
7071 /*
7072 * SMT sched-domains:
7073 */
7074 #ifdef CONFIG_SCHED_SMT
7075 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
7076 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
7077
7078 static int
7079 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7080 cpumask_t *unused)
7081 {
7082 if (sg)
7083 *sg = &per_cpu(sched_group_cpus, cpu);
7084 return cpu;
7085 }
7086 #endif /* CONFIG_SCHED_SMT */
7087
7088 /*
7089 * multi-core sched-domains:
7090 */
7091 #ifdef CONFIG_SCHED_MC
7092 static DEFINE_PER_CPU(struct sched_domain, core_domains);
7093 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
7094 #endif /* CONFIG_SCHED_MC */
7095
7096 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7097 static int
7098 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7099 cpumask_t *mask)
7100 {
7101 int group;
7102
7103 *mask = per_cpu(cpu_sibling_map, cpu);
7104 cpus_and(*mask, *mask, *cpu_map);
7105 group = first_cpu(*mask);
7106 if (sg)
7107 *sg = &per_cpu(sched_group_core, group);
7108 return group;
7109 }
7110 #elif defined(CONFIG_SCHED_MC)
7111 static int
7112 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7113 cpumask_t *unused)
7114 {
7115 if (sg)
7116 *sg = &per_cpu(sched_group_core, cpu);
7117 return cpu;
7118 }
7119 #endif
7120
7121 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
7122 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
7123
7124 static int
7125 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
7126 cpumask_t *mask)
7127 {
7128 int group;
7129 #ifdef CONFIG_SCHED_MC
7130 *mask = cpu_coregroup_map(cpu);
7131 cpus_and(*mask, *mask, *cpu_map);
7132 group = first_cpu(*mask);
7133 #elif defined(CONFIG_SCHED_SMT)
7134 *mask = per_cpu(cpu_sibling_map, cpu);
7135 cpus_and(*mask, *mask, *cpu_map);
7136 group = first_cpu(*mask);
7137 #else
7138 group = cpu;
7139 #endif
7140 if (sg)
7141 *sg = &per_cpu(sched_group_phys, group);
7142 return group;
7143 }
7144
7145 #ifdef CONFIG_NUMA
7146 /*
7147 * The init_sched_build_groups can't handle what we want to do with node
7148 * groups, so roll our own. Now each node has its own list of groups which
7149 * gets dynamically allocated.
7150 */
7151 static DEFINE_PER_CPU(struct sched_domain, node_domains);
7152 static struct sched_group ***sched_group_nodes_bycpu;
7153
7154 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
7155 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
7156
7157 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
7158 struct sched_group **sg, cpumask_t *nodemask)
7159 {
7160 int group;
7161
7162 *nodemask = node_to_cpumask(cpu_to_node(cpu));
7163 cpus_and(*nodemask, *nodemask, *cpu_map);
7164 group = first_cpu(*nodemask);
7165
7166 if (sg)
7167 *sg = &per_cpu(sched_group_allnodes, group);
7168 return group;
7169 }
7170
7171 static void init_numa_sched_groups_power(struct sched_group *group_head)
7172 {
7173 struct sched_group *sg = group_head;
7174 int j;
7175
7176 if (!sg)
7177 return;
7178 do {
7179 for_each_cpu_mask_nr(j, sg->cpumask) {
7180 struct sched_domain *sd;
7181
7182 sd = &per_cpu(phys_domains, j);
7183 if (j != first_cpu(sd->groups->cpumask)) {
7184 /*
7185 * Only add "power" once for each
7186 * physical package.
7187 */
7188 continue;
7189 }
7190
7191 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7192 }
7193 sg = sg->next;
7194 } while (sg != group_head);
7195 }
7196 #endif /* CONFIG_NUMA */
7197
7198 #ifdef CONFIG_NUMA
7199 /* Free memory allocated for various sched_group structures */
7200 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7201 {
7202 int cpu, i;
7203
7204 for_each_cpu_mask_nr(cpu, *cpu_map) {
7205 struct sched_group **sched_group_nodes
7206 = sched_group_nodes_bycpu[cpu];
7207
7208 if (!sched_group_nodes)
7209 continue;
7210
7211 for (i = 0; i < nr_node_ids; i++) {
7212 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7213
7214 *nodemask = node_to_cpumask(i);
7215 cpus_and(*nodemask, *nodemask, *cpu_map);
7216 if (cpus_empty(*nodemask))
7217 continue;
7218
7219 if (sg == NULL)
7220 continue;
7221 sg = sg->next;
7222 next_sg:
7223 oldsg = sg;
7224 sg = sg->next;
7225 kfree(oldsg);
7226 if (oldsg != sched_group_nodes[i])
7227 goto next_sg;
7228 }
7229 kfree(sched_group_nodes);
7230 sched_group_nodes_bycpu[cpu] = NULL;
7231 }
7232 }
7233 #else /* !CONFIG_NUMA */
7234 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
7235 {
7236 }
7237 #endif /* CONFIG_NUMA */
7238
7239 /*
7240 * Initialize sched groups cpu_power.
7241 *
7242 * cpu_power indicates the capacity of sched group, which is used while
7243 * distributing the load between different sched groups in a sched domain.
7244 * Typically cpu_power for all the groups in a sched domain will be same unless
7245 * there are asymmetries in the topology. If there are asymmetries, group
7246 * having more cpu_power will pickup more load compared to the group having
7247 * less cpu_power.
7248 *
7249 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7250 * the maximum number of tasks a group can handle in the presence of other idle
7251 * or lightly loaded groups in the same sched domain.
7252 */
7253 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7254 {
7255 struct sched_domain *child;
7256 struct sched_group *group;
7257
7258 WARN_ON(!sd || !sd->groups);
7259
7260 if (cpu != first_cpu(sd->groups->cpumask))
7261 return;
7262
7263 child = sd->child;
7264
7265 sd->groups->__cpu_power = 0;
7266
7267 /*
7268 * For perf policy, if the groups in child domain share resources
7269 * (for example cores sharing some portions of the cache hierarchy
7270 * or SMT), then set this domain groups cpu_power such that each group
7271 * can handle only one task, when there are other idle groups in the
7272 * same sched domain.
7273 */
7274 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7275 (child->flags &
7276 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7277 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7278 return;
7279 }
7280
7281 /*
7282 * add cpu_power of each child group to this groups cpu_power
7283 */
7284 group = child->groups;
7285 do {
7286 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7287 group = group->next;
7288 } while (group != child->groups);
7289 }
7290
7291 /*
7292 * Initializers for schedule domains
7293 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7294 */
7295
7296 #ifdef CONFIG_SCHED_DEBUG
7297 # define SD_INIT_NAME(sd, type) sd->name = #type
7298 #else
7299 # define SD_INIT_NAME(sd, type) do { } while (0)
7300 #endif
7301
7302 #define SD_INIT(sd, type) sd_init_##type(sd)
7303
7304 #define SD_INIT_FUNC(type) \
7305 static noinline void sd_init_##type(struct sched_domain *sd) \
7306 { \
7307 memset(sd, 0, sizeof(*sd)); \
7308 *sd = SD_##type##_INIT; \
7309 sd->level = SD_LV_##type; \
7310 SD_INIT_NAME(sd, type); \
7311 }
7312
7313 SD_INIT_FUNC(CPU)
7314 #ifdef CONFIG_NUMA
7315 SD_INIT_FUNC(ALLNODES)
7316 SD_INIT_FUNC(NODE)
7317 #endif
7318 #ifdef CONFIG_SCHED_SMT
7319 SD_INIT_FUNC(SIBLING)
7320 #endif
7321 #ifdef CONFIG_SCHED_MC
7322 SD_INIT_FUNC(MC)
7323 #endif
7324
7325 /*
7326 * To minimize stack usage kmalloc room for cpumasks and share the
7327 * space as the usage in build_sched_domains() dictates. Used only
7328 * if the amount of space is significant.
7329 */
7330 struct allmasks {
7331 cpumask_t tmpmask; /* make this one first */
7332 union {
7333 cpumask_t nodemask;
7334 cpumask_t this_sibling_map;
7335 cpumask_t this_core_map;
7336 };
7337 cpumask_t send_covered;
7338
7339 #ifdef CONFIG_NUMA
7340 cpumask_t domainspan;
7341 cpumask_t covered;
7342 cpumask_t notcovered;
7343 #endif
7344 };
7345
7346 #if NR_CPUS > 128
7347 #define SCHED_CPUMASK_ALLOC 1
7348 #define SCHED_CPUMASK_FREE(v) kfree(v)
7349 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
7350 #else
7351 #define SCHED_CPUMASK_ALLOC 0
7352 #define SCHED_CPUMASK_FREE(v)
7353 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
7354 #endif
7355
7356 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
7357 ((unsigned long)(a) + offsetof(struct allmasks, v))
7358
7359 static int default_relax_domain_level = -1;
7360
7361 static int __init setup_relax_domain_level(char *str)
7362 {
7363 unsigned long val;
7364
7365 val = simple_strtoul(str, NULL, 0);
7366 if (val < SD_LV_MAX)
7367 default_relax_domain_level = val;
7368
7369 return 1;
7370 }
7371 __setup("relax_domain_level=", setup_relax_domain_level);
7372
7373 static void set_domain_attribute(struct sched_domain *sd,
7374 struct sched_domain_attr *attr)
7375 {
7376 int request;
7377
7378 if (!attr || attr->relax_domain_level < 0) {
7379 if (default_relax_domain_level < 0)
7380 return;
7381 else
7382 request = default_relax_domain_level;
7383 } else
7384 request = attr->relax_domain_level;
7385 if (request < sd->level) {
7386 /* turn off idle balance on this domain */
7387 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7388 } else {
7389 /* turn on idle balance on this domain */
7390 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7391 }
7392 }
7393
7394 /*
7395 * Build sched domains for a given set of cpus and attach the sched domains
7396 * to the individual cpus
7397 */
7398 static int __build_sched_domains(const cpumask_t *cpu_map,
7399 struct sched_domain_attr *attr)
7400 {
7401 int i;
7402 struct root_domain *rd;
7403 SCHED_CPUMASK_DECLARE(allmasks);
7404 cpumask_t *tmpmask;
7405 #ifdef CONFIG_NUMA
7406 struct sched_group **sched_group_nodes = NULL;
7407 int sd_allnodes = 0;
7408
7409 /*
7410 * Allocate the per-node list of sched groups
7411 */
7412 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
7413 GFP_KERNEL);
7414 if (!sched_group_nodes) {
7415 printk(KERN_WARNING "Can not alloc sched group node list\n");
7416 return -ENOMEM;
7417 }
7418 #endif
7419
7420 rd = alloc_rootdomain();
7421 if (!rd) {
7422 printk(KERN_WARNING "Cannot alloc root domain\n");
7423 #ifdef CONFIG_NUMA
7424 kfree(sched_group_nodes);
7425 #endif
7426 return -ENOMEM;
7427 }
7428
7429 #if SCHED_CPUMASK_ALLOC
7430 /* get space for all scratch cpumask variables */
7431 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
7432 if (!allmasks) {
7433 printk(KERN_WARNING "Cannot alloc cpumask array\n");
7434 kfree(rd);
7435 #ifdef CONFIG_NUMA
7436 kfree(sched_group_nodes);
7437 #endif
7438 return -ENOMEM;
7439 }
7440 #endif
7441 tmpmask = (cpumask_t *)allmasks;
7442
7443
7444 #ifdef CONFIG_NUMA
7445 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
7446 #endif
7447
7448 /*
7449 * Set up domains for cpus specified by the cpu_map.
7450 */
7451 for_each_cpu_mask_nr(i, *cpu_map) {
7452 struct sched_domain *sd = NULL, *p;
7453 SCHED_CPUMASK_VAR(nodemask, allmasks);
7454
7455 *nodemask = node_to_cpumask(cpu_to_node(i));
7456 cpus_and(*nodemask, *nodemask, *cpu_map);
7457
7458 #ifdef CONFIG_NUMA
7459 if (cpus_weight(*cpu_map) >
7460 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
7461 sd = &per_cpu(allnodes_domains, i);
7462 SD_INIT(sd, ALLNODES);
7463 set_domain_attribute(sd, attr);
7464 sd->span = *cpu_map;
7465 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
7466 p = sd;
7467 sd_allnodes = 1;
7468 } else
7469 p = NULL;
7470
7471 sd = &per_cpu(node_domains, i);
7472 SD_INIT(sd, NODE);
7473 set_domain_attribute(sd, attr);
7474 sched_domain_node_span(cpu_to_node(i), &sd->span);
7475 sd->parent = p;
7476 if (p)
7477 p->child = sd;
7478 cpus_and(sd->span, sd->span, *cpu_map);
7479 #endif
7480
7481 p = sd;
7482 sd = &per_cpu(phys_domains, i);
7483 SD_INIT(sd, CPU);
7484 set_domain_attribute(sd, attr);
7485 sd->span = *nodemask;
7486 sd->parent = p;
7487 if (p)
7488 p->child = sd;
7489 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
7490
7491 #ifdef CONFIG_SCHED_MC
7492 p = sd;
7493 sd = &per_cpu(core_domains, i);
7494 SD_INIT(sd, MC);
7495 set_domain_attribute(sd, attr);
7496 sd->span = cpu_coregroup_map(i);
7497 cpus_and(sd->span, sd->span, *cpu_map);
7498 sd->parent = p;
7499 p->child = sd;
7500 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
7501 #endif
7502
7503 #ifdef CONFIG_SCHED_SMT
7504 p = sd;
7505 sd = &per_cpu(cpu_domains, i);
7506 SD_INIT(sd, SIBLING);
7507 set_domain_attribute(sd, attr);
7508 sd->span = per_cpu(cpu_sibling_map, i);
7509 cpus_and(sd->span, sd->span, *cpu_map);
7510 sd->parent = p;
7511 p->child = sd;
7512 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
7513 #endif
7514 }
7515
7516 #ifdef CONFIG_SCHED_SMT
7517 /* Set up CPU (sibling) groups */
7518 for_each_cpu_mask_nr(i, *cpu_map) {
7519 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
7520 SCHED_CPUMASK_VAR(send_covered, allmasks);
7521
7522 *this_sibling_map = per_cpu(cpu_sibling_map, i);
7523 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
7524 if (i != first_cpu(*this_sibling_map))
7525 continue;
7526
7527 init_sched_build_groups(this_sibling_map, cpu_map,
7528 &cpu_to_cpu_group,
7529 send_covered, tmpmask);
7530 }
7531 #endif
7532
7533 #ifdef CONFIG_SCHED_MC
7534 /* Set up multi-core groups */
7535 for_each_cpu_mask_nr(i, *cpu_map) {
7536 SCHED_CPUMASK_VAR(this_core_map, allmasks);
7537 SCHED_CPUMASK_VAR(send_covered, allmasks);
7538
7539 *this_core_map = cpu_coregroup_map(i);
7540 cpus_and(*this_core_map, *this_core_map, *cpu_map);
7541 if (i != first_cpu(*this_core_map))
7542 continue;
7543
7544 init_sched_build_groups(this_core_map, cpu_map,
7545 &cpu_to_core_group,
7546 send_covered, tmpmask);
7547 }
7548 #endif
7549
7550 /* Set up physical groups */
7551 for (i = 0; i < nr_node_ids; i++) {
7552 SCHED_CPUMASK_VAR(nodemask, allmasks);
7553 SCHED_CPUMASK_VAR(send_covered, allmasks);
7554
7555 *nodemask = node_to_cpumask(i);
7556 cpus_and(*nodemask, *nodemask, *cpu_map);
7557 if (cpus_empty(*nodemask))
7558 continue;
7559
7560 init_sched_build_groups(nodemask, cpu_map,
7561 &cpu_to_phys_group,
7562 send_covered, tmpmask);
7563 }
7564
7565 #ifdef CONFIG_NUMA
7566 /* Set up node groups */
7567 if (sd_allnodes) {
7568 SCHED_CPUMASK_VAR(send_covered, allmasks);
7569
7570 init_sched_build_groups(cpu_map, cpu_map,
7571 &cpu_to_allnodes_group,
7572 send_covered, tmpmask);
7573 }
7574
7575 for (i = 0; i < nr_node_ids; i++) {
7576 /* Set up node groups */
7577 struct sched_group *sg, *prev;
7578 SCHED_CPUMASK_VAR(nodemask, allmasks);
7579 SCHED_CPUMASK_VAR(domainspan, allmasks);
7580 SCHED_CPUMASK_VAR(covered, allmasks);
7581 int j;
7582
7583 *nodemask = node_to_cpumask(i);
7584 cpus_clear(*covered);
7585
7586 cpus_and(*nodemask, *nodemask, *cpu_map);
7587 if (cpus_empty(*nodemask)) {
7588 sched_group_nodes[i] = NULL;
7589 continue;
7590 }
7591
7592 sched_domain_node_span(i, domainspan);
7593 cpus_and(*domainspan, *domainspan, *cpu_map);
7594
7595 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7596 if (!sg) {
7597 printk(KERN_WARNING "Can not alloc domain group for "
7598 "node %d\n", i);
7599 goto error;
7600 }
7601 sched_group_nodes[i] = sg;
7602 for_each_cpu_mask_nr(j, *nodemask) {
7603 struct sched_domain *sd;
7604
7605 sd = &per_cpu(node_domains, j);
7606 sd->groups = sg;
7607 }
7608 sg->__cpu_power = 0;
7609 sg->cpumask = *nodemask;
7610 sg->next = sg;
7611 cpus_or(*covered, *covered, *nodemask);
7612 prev = sg;
7613
7614 for (j = 0; j < nr_node_ids; j++) {
7615 SCHED_CPUMASK_VAR(notcovered, allmasks);
7616 int n = (i + j) % nr_node_ids;
7617 node_to_cpumask_ptr(pnodemask, n);
7618
7619 cpus_complement(*notcovered, *covered);
7620 cpus_and(*tmpmask, *notcovered, *cpu_map);
7621 cpus_and(*tmpmask, *tmpmask, *domainspan);
7622 if (cpus_empty(*tmpmask))
7623 break;
7624
7625 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7626 if (cpus_empty(*tmpmask))
7627 continue;
7628
7629 sg = kmalloc_node(sizeof(struct sched_group),
7630 GFP_KERNEL, i);
7631 if (!sg) {
7632 printk(KERN_WARNING
7633 "Can not alloc domain group for node %d\n", j);
7634 goto error;
7635 }
7636 sg->__cpu_power = 0;
7637 sg->cpumask = *tmpmask;
7638 sg->next = prev->next;
7639 cpus_or(*covered, *covered, *tmpmask);
7640 prev->next = sg;
7641 prev = sg;
7642 }
7643 }
7644 #endif
7645
7646 /* Calculate CPU power for physical packages and nodes */
7647 #ifdef CONFIG_SCHED_SMT
7648 for_each_cpu_mask_nr(i, *cpu_map) {
7649 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7650
7651 init_sched_groups_power(i, sd);
7652 }
7653 #endif
7654 #ifdef CONFIG_SCHED_MC
7655 for_each_cpu_mask_nr(i, *cpu_map) {
7656 struct sched_domain *sd = &per_cpu(core_domains, i);
7657
7658 init_sched_groups_power(i, sd);
7659 }
7660 #endif
7661
7662 for_each_cpu_mask_nr(i, *cpu_map) {
7663 struct sched_domain *sd = &per_cpu(phys_domains, i);
7664
7665 init_sched_groups_power(i, sd);
7666 }
7667
7668 #ifdef CONFIG_NUMA
7669 for (i = 0; i < nr_node_ids; i++)
7670 init_numa_sched_groups_power(sched_group_nodes[i]);
7671
7672 if (sd_allnodes) {
7673 struct sched_group *sg;
7674
7675 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7676 tmpmask);
7677 init_numa_sched_groups_power(sg);
7678 }
7679 #endif
7680
7681 /* Attach the domains */
7682 for_each_cpu_mask_nr(i, *cpu_map) {
7683 struct sched_domain *sd;
7684 #ifdef CONFIG_SCHED_SMT
7685 sd = &per_cpu(cpu_domains, i);
7686 #elif defined(CONFIG_SCHED_MC)
7687 sd = &per_cpu(core_domains, i);
7688 #else
7689 sd = &per_cpu(phys_domains, i);
7690 #endif
7691 cpu_attach_domain(sd, rd, i);
7692 }
7693
7694 SCHED_CPUMASK_FREE((void *)allmasks);
7695 return 0;
7696
7697 #ifdef CONFIG_NUMA
7698 error:
7699 free_sched_groups(cpu_map, tmpmask);
7700 SCHED_CPUMASK_FREE((void *)allmasks);
7701 kfree(rd);
7702 return -ENOMEM;
7703 #endif
7704 }
7705
7706 static int build_sched_domains(const cpumask_t *cpu_map)
7707 {
7708 return __build_sched_domains(cpu_map, NULL);
7709 }
7710
7711 static cpumask_t *doms_cur; /* current sched domains */
7712 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7713 static struct sched_domain_attr *dattr_cur;
7714 /* attribues of custom domains in 'doms_cur' */
7715
7716 /*
7717 * Special case: If a kmalloc of a doms_cur partition (array of
7718 * cpumask_t) fails, then fallback to a single sched domain,
7719 * as determined by the single cpumask_t fallback_doms.
7720 */
7721 static cpumask_t fallback_doms;
7722
7723 void __attribute__((weak)) arch_update_cpu_topology(void)
7724 {
7725 }
7726
7727 /*
7728 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7729 * For now this just excludes isolated cpus, but could be used to
7730 * exclude other special cases in the future.
7731 */
7732 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7733 {
7734 int err;
7735
7736 arch_update_cpu_topology();
7737 ndoms_cur = 1;
7738 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7739 if (!doms_cur)
7740 doms_cur = &fallback_doms;
7741 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7742 dattr_cur = NULL;
7743 err = build_sched_domains(doms_cur);
7744 register_sched_domain_sysctl();
7745
7746 return err;
7747 }
7748
7749 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7750 cpumask_t *tmpmask)
7751 {
7752 free_sched_groups(cpu_map, tmpmask);
7753 }
7754
7755 /*
7756 * Detach sched domains from a group of cpus specified in cpu_map
7757 * These cpus will now be attached to the NULL domain
7758 */
7759 static void detach_destroy_domains(const cpumask_t *cpu_map)
7760 {
7761 cpumask_t tmpmask;
7762 int i;
7763
7764 unregister_sched_domain_sysctl();
7765
7766 for_each_cpu_mask_nr(i, *cpu_map)
7767 cpu_attach_domain(NULL, &def_root_domain, i);
7768 synchronize_sched();
7769 arch_destroy_sched_domains(cpu_map, &tmpmask);
7770 }
7771
7772 /* handle null as "default" */
7773 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7774 struct sched_domain_attr *new, int idx_new)
7775 {
7776 struct sched_domain_attr tmp;
7777
7778 /* fast path */
7779 if (!new && !cur)
7780 return 1;
7781
7782 tmp = SD_ATTR_INIT;
7783 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7784 new ? (new + idx_new) : &tmp,
7785 sizeof(struct sched_domain_attr));
7786 }
7787
7788 /*
7789 * Partition sched domains as specified by the 'ndoms_new'
7790 * cpumasks in the array doms_new[] of cpumasks. This compares
7791 * doms_new[] to the current sched domain partitioning, doms_cur[].
7792 * It destroys each deleted domain and builds each new domain.
7793 *
7794 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7795 * The masks don't intersect (don't overlap.) We should setup one
7796 * sched domain for each mask. CPUs not in any of the cpumasks will
7797 * not be load balanced. If the same cpumask appears both in the
7798 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7799 * it as it is.
7800 *
7801 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7802 * ownership of it and will kfree it when done with it. If the caller
7803 * failed the kmalloc call, then it can pass in doms_new == NULL &&
7804 * ndoms_new == 1, and partition_sched_domains() will fallback to
7805 * the single partition 'fallback_doms', it also forces the domains
7806 * to be rebuilt.
7807 *
7808 * If doms_new == NULL it will be replaced with cpu_online_map.
7809 * ndoms_new == 0 is a special case for destroying existing domains,
7810 * and it will not create the default domain.
7811 *
7812 * Call with hotplug lock held
7813 */
7814 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new,
7815 struct sched_domain_attr *dattr_new)
7816 {
7817 int i, j, n;
7818
7819 mutex_lock(&sched_domains_mutex);
7820
7821 /* always unregister in case we don't destroy any domains */
7822 unregister_sched_domain_sysctl();
7823
7824 n = doms_new ? ndoms_new : 0;
7825
7826 /* Destroy deleted domains */
7827 for (i = 0; i < ndoms_cur; i++) {
7828 for (j = 0; j < n; j++) {
7829 if (cpus_equal(doms_cur[i], doms_new[j])
7830 && dattrs_equal(dattr_cur, i, dattr_new, j))
7831 goto match1;
7832 }
7833 /* no match - a current sched domain not in new doms_new[] */
7834 detach_destroy_domains(doms_cur + i);
7835 match1:
7836 ;
7837 }
7838
7839 if (doms_new == NULL) {
7840 ndoms_cur = 0;
7841 doms_new = &fallback_doms;
7842 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7843 dattr_new = NULL;
7844 }
7845
7846 /* Build new domains */
7847 for (i = 0; i < ndoms_new; i++) {
7848 for (j = 0; j < ndoms_cur; j++) {
7849 if (cpus_equal(doms_new[i], doms_cur[j])
7850 && dattrs_equal(dattr_new, i, dattr_cur, j))
7851 goto match2;
7852 }
7853 /* no match - add a new doms_new */
7854 __build_sched_domains(doms_new + i,
7855 dattr_new ? dattr_new + i : NULL);
7856 match2:
7857 ;
7858 }
7859
7860 /* Remember the new sched domains */
7861 if (doms_cur != &fallback_doms)
7862 kfree(doms_cur);
7863 kfree(dattr_cur); /* kfree(NULL) is safe */
7864 doms_cur = doms_new;
7865 dattr_cur = dattr_new;
7866 ndoms_cur = ndoms_new;
7867
7868 register_sched_domain_sysctl();
7869
7870 mutex_unlock(&sched_domains_mutex);
7871 }
7872
7873 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7874 int arch_reinit_sched_domains(void)
7875 {
7876 get_online_cpus();
7877
7878 /* Destroy domains first to force the rebuild */
7879 partition_sched_domains(0, NULL, NULL);
7880
7881 rebuild_sched_domains();
7882 put_online_cpus();
7883
7884 return 0;
7885 }
7886
7887 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7888 {
7889 int ret;
7890
7891 if (buf[0] != '0' && buf[0] != '1')
7892 return -EINVAL;
7893
7894 if (smt)
7895 sched_smt_power_savings = (buf[0] == '1');
7896 else
7897 sched_mc_power_savings = (buf[0] == '1');
7898
7899 ret = arch_reinit_sched_domains();
7900
7901 return ret ? ret : count;
7902 }
7903
7904 #ifdef CONFIG_SCHED_MC
7905 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7906 char *page)
7907 {
7908 return sprintf(page, "%u\n", sched_mc_power_savings);
7909 }
7910 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7911 const char *buf, size_t count)
7912 {
7913 return sched_power_savings_store(buf, count, 0);
7914 }
7915 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7916 sched_mc_power_savings_show,
7917 sched_mc_power_savings_store);
7918 #endif
7919
7920 #ifdef CONFIG_SCHED_SMT
7921 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7922 char *page)
7923 {
7924 return sprintf(page, "%u\n", sched_smt_power_savings);
7925 }
7926 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7927 const char *buf, size_t count)
7928 {
7929 return sched_power_savings_store(buf, count, 1);
7930 }
7931 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7932 sched_smt_power_savings_show,
7933 sched_smt_power_savings_store);
7934 #endif
7935
7936 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7937 {
7938 int err = 0;
7939
7940 #ifdef CONFIG_SCHED_SMT
7941 if (smt_capable())
7942 err = sysfs_create_file(&cls->kset.kobj,
7943 &attr_sched_smt_power_savings.attr);
7944 #endif
7945 #ifdef CONFIG_SCHED_MC
7946 if (!err && mc_capable())
7947 err = sysfs_create_file(&cls->kset.kobj,
7948 &attr_sched_mc_power_savings.attr);
7949 #endif
7950 return err;
7951 }
7952 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7953
7954 #ifndef CONFIG_CPUSETS
7955 /*
7956 * Add online and remove offline CPUs from the scheduler domains.
7957 * When cpusets are enabled they take over this function.
7958 */
7959 static int update_sched_domains(struct notifier_block *nfb,
7960 unsigned long action, void *hcpu)
7961 {
7962 switch (action) {
7963 case CPU_ONLINE:
7964 case CPU_ONLINE_FROZEN:
7965 case CPU_DEAD:
7966 case CPU_DEAD_FROZEN:
7967 partition_sched_domains(1, NULL, NULL);
7968 return NOTIFY_OK;
7969
7970 default:
7971 return NOTIFY_DONE;
7972 }
7973 }
7974 #endif
7975
7976 static int update_runtime(struct notifier_block *nfb,
7977 unsigned long action, void *hcpu)
7978 {
7979 int cpu = (int)(long)hcpu;
7980
7981 switch (action) {
7982 case CPU_DOWN_PREPARE:
7983 case CPU_DOWN_PREPARE_FROZEN:
7984 disable_runtime(cpu_rq(cpu));
7985 return NOTIFY_OK;
7986
7987 case CPU_DOWN_FAILED:
7988 case CPU_DOWN_FAILED_FROZEN:
7989 case CPU_ONLINE:
7990 case CPU_ONLINE_FROZEN:
7991 enable_runtime(cpu_rq(cpu));
7992 return NOTIFY_OK;
7993
7994 default:
7995 return NOTIFY_DONE;
7996 }
7997 }
7998
7999 void __init sched_init_smp(void)
8000 {
8001 cpumask_t non_isolated_cpus;
8002
8003 #if defined(CONFIG_NUMA)
8004 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8005 GFP_KERNEL);
8006 BUG_ON(sched_group_nodes_bycpu == NULL);
8007 #endif
8008 get_online_cpus();
8009 mutex_lock(&sched_domains_mutex);
8010 arch_init_sched_domains(&cpu_online_map);
8011 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
8012 if (cpus_empty(non_isolated_cpus))
8013 cpu_set(smp_processor_id(), non_isolated_cpus);
8014 mutex_unlock(&sched_domains_mutex);
8015 put_online_cpus();
8016
8017 #ifndef CONFIG_CPUSETS
8018 /* XXX: Theoretical race here - CPU may be hotplugged now */
8019 hotcpu_notifier(update_sched_domains, 0);
8020 #endif
8021
8022 /* RT runtime code needs to handle some hotplug events */
8023 hotcpu_notifier(update_runtime, 0);
8024
8025 init_hrtick();
8026
8027 /* Move init over to a non-isolated CPU */
8028 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
8029 BUG();
8030 sched_init_granularity();
8031 }
8032 #else
8033 void __init sched_init_smp(void)
8034 {
8035 sched_init_granularity();
8036 }
8037 #endif /* CONFIG_SMP */
8038
8039 int in_sched_functions(unsigned long addr)
8040 {
8041 return in_lock_functions(addr) ||
8042 (addr >= (unsigned long)__sched_text_start
8043 && addr < (unsigned long)__sched_text_end);
8044 }
8045
8046 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8047 {
8048 cfs_rq->tasks_timeline = RB_ROOT;
8049 INIT_LIST_HEAD(&cfs_rq->tasks);
8050 #ifdef CONFIG_FAIR_GROUP_SCHED
8051 cfs_rq->rq = rq;
8052 #endif
8053 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8054 }
8055
8056 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8057 {
8058 struct rt_prio_array *array;
8059 int i;
8060
8061 array = &rt_rq->active;
8062 for (i = 0; i < MAX_RT_PRIO; i++) {
8063 INIT_LIST_HEAD(array->queue + i);
8064 __clear_bit(i, array->bitmap);
8065 }
8066 /* delimiter for bitsearch: */
8067 __set_bit(MAX_RT_PRIO, array->bitmap);
8068
8069 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8070 rt_rq->highest_prio = MAX_RT_PRIO;
8071 #endif
8072 #ifdef CONFIG_SMP
8073 rt_rq->rt_nr_migratory = 0;
8074 rt_rq->overloaded = 0;
8075 #endif
8076
8077 rt_rq->rt_time = 0;
8078 rt_rq->rt_throttled = 0;
8079 rt_rq->rt_runtime = 0;
8080 spin_lock_init(&rt_rq->rt_runtime_lock);
8081
8082 #ifdef CONFIG_RT_GROUP_SCHED
8083 rt_rq->rt_nr_boosted = 0;
8084 rt_rq->rq = rq;
8085 #endif
8086 }
8087
8088 #ifdef CONFIG_FAIR_GROUP_SCHED
8089 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8090 struct sched_entity *se, int cpu, int add,
8091 struct sched_entity *parent)
8092 {
8093 struct rq *rq = cpu_rq(cpu);
8094 tg->cfs_rq[cpu] = cfs_rq;
8095 init_cfs_rq(cfs_rq, rq);
8096 cfs_rq->tg = tg;
8097 if (add)
8098 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8099
8100 tg->se[cpu] = se;
8101 /* se could be NULL for init_task_group */
8102 if (!se)
8103 return;
8104
8105 if (!parent)
8106 se->cfs_rq = &rq->cfs;
8107 else
8108 se->cfs_rq = parent->my_q;
8109
8110 se->my_q = cfs_rq;
8111 se->load.weight = tg->shares;
8112 se->load.inv_weight = 0;
8113 se->parent = parent;
8114 }
8115 #endif
8116
8117 #ifdef CONFIG_RT_GROUP_SCHED
8118 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8119 struct sched_rt_entity *rt_se, int cpu, int add,
8120 struct sched_rt_entity *parent)
8121 {
8122 struct rq *rq = cpu_rq(cpu);
8123
8124 tg->rt_rq[cpu] = rt_rq;
8125 init_rt_rq(rt_rq, rq);
8126 rt_rq->tg = tg;
8127 rt_rq->rt_se = rt_se;
8128 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8129 if (add)
8130 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8131
8132 tg->rt_se[cpu] = rt_se;
8133 if (!rt_se)
8134 return;
8135
8136 if (!parent)
8137 rt_se->rt_rq = &rq->rt;
8138 else
8139 rt_se->rt_rq = parent->my_q;
8140
8141 rt_se->my_q = rt_rq;
8142 rt_se->parent = parent;
8143 INIT_LIST_HEAD(&rt_se->run_list);
8144 }
8145 #endif
8146
8147 void __init sched_init(void)
8148 {
8149 int i, j;
8150 unsigned long alloc_size = 0, ptr;
8151
8152 #ifdef CONFIG_FAIR_GROUP_SCHED
8153 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8154 #endif
8155 #ifdef CONFIG_RT_GROUP_SCHED
8156 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8157 #endif
8158 #ifdef CONFIG_USER_SCHED
8159 alloc_size *= 2;
8160 #endif
8161 /*
8162 * As sched_init() is called before page_alloc is setup,
8163 * we use alloc_bootmem().
8164 */
8165 if (alloc_size) {
8166 ptr = (unsigned long)alloc_bootmem(alloc_size);
8167
8168 #ifdef CONFIG_FAIR_GROUP_SCHED
8169 init_task_group.se = (struct sched_entity **)ptr;
8170 ptr += nr_cpu_ids * sizeof(void **);
8171
8172 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8173 ptr += nr_cpu_ids * sizeof(void **);
8174
8175 #ifdef CONFIG_USER_SCHED
8176 root_task_group.se = (struct sched_entity **)ptr;
8177 ptr += nr_cpu_ids * sizeof(void **);
8178
8179 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8180 ptr += nr_cpu_ids * sizeof(void **);
8181 #endif /* CONFIG_USER_SCHED */
8182 #endif /* CONFIG_FAIR_GROUP_SCHED */
8183 #ifdef CONFIG_RT_GROUP_SCHED
8184 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8185 ptr += nr_cpu_ids * sizeof(void **);
8186
8187 init_task_group.rt_rq = (struct rt_rq **)ptr;
8188 ptr += nr_cpu_ids * sizeof(void **);
8189
8190 #ifdef CONFIG_USER_SCHED
8191 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8192 ptr += nr_cpu_ids * sizeof(void **);
8193
8194 root_task_group.rt_rq = (struct rt_rq **)ptr;
8195 ptr += nr_cpu_ids * sizeof(void **);
8196 #endif /* CONFIG_USER_SCHED */
8197 #endif /* CONFIG_RT_GROUP_SCHED */
8198 }
8199
8200 #ifdef CONFIG_SMP
8201 init_defrootdomain();
8202 #endif
8203
8204 init_rt_bandwidth(&def_rt_bandwidth,
8205 global_rt_period(), global_rt_runtime());
8206
8207 #ifdef CONFIG_RT_GROUP_SCHED
8208 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8209 global_rt_period(), global_rt_runtime());
8210 #ifdef CONFIG_USER_SCHED
8211 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8212 global_rt_period(), RUNTIME_INF);
8213 #endif /* CONFIG_USER_SCHED */
8214 #endif /* CONFIG_RT_GROUP_SCHED */
8215
8216 #ifdef CONFIG_GROUP_SCHED
8217 list_add(&init_task_group.list, &task_groups);
8218 INIT_LIST_HEAD(&init_task_group.children);
8219
8220 #ifdef CONFIG_USER_SCHED
8221 INIT_LIST_HEAD(&root_task_group.children);
8222 init_task_group.parent = &root_task_group;
8223 list_add(&init_task_group.siblings, &root_task_group.children);
8224 #endif /* CONFIG_USER_SCHED */
8225 #endif /* CONFIG_GROUP_SCHED */
8226
8227 for_each_possible_cpu(i) {
8228 struct rq *rq;
8229
8230 rq = cpu_rq(i);
8231 spin_lock_init(&rq->lock);
8232 rq->nr_running = 0;
8233 init_cfs_rq(&rq->cfs, rq);
8234 init_rt_rq(&rq->rt, rq);
8235 #ifdef CONFIG_FAIR_GROUP_SCHED
8236 init_task_group.shares = init_task_group_load;
8237 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8238 #ifdef CONFIG_CGROUP_SCHED
8239 /*
8240 * How much cpu bandwidth does init_task_group get?
8241 *
8242 * In case of task-groups formed thr' the cgroup filesystem, it
8243 * gets 100% of the cpu resources in the system. This overall
8244 * system cpu resource is divided among the tasks of
8245 * init_task_group and its child task-groups in a fair manner,
8246 * based on each entity's (task or task-group's) weight
8247 * (se->load.weight).
8248 *
8249 * In other words, if init_task_group has 10 tasks of weight
8250 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8251 * then A0's share of the cpu resource is:
8252 *
8253 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8254 *
8255 * We achieve this by letting init_task_group's tasks sit
8256 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8257 */
8258 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8259 #elif defined CONFIG_USER_SCHED
8260 root_task_group.shares = NICE_0_LOAD;
8261 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8262 /*
8263 * In case of task-groups formed thr' the user id of tasks,
8264 * init_task_group represents tasks belonging to root user.
8265 * Hence it forms a sibling of all subsequent groups formed.
8266 * In this case, init_task_group gets only a fraction of overall
8267 * system cpu resource, based on the weight assigned to root
8268 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8269 * by letting tasks of init_task_group sit in a separate cfs_rq
8270 * (init_cfs_rq) and having one entity represent this group of
8271 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8272 */
8273 init_tg_cfs_entry(&init_task_group,
8274 &per_cpu(init_cfs_rq, i),
8275 &per_cpu(init_sched_entity, i), i, 1,
8276 root_task_group.se[i]);
8277
8278 #endif
8279 #endif /* CONFIG_FAIR_GROUP_SCHED */
8280
8281 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8282 #ifdef CONFIG_RT_GROUP_SCHED
8283 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8284 #ifdef CONFIG_CGROUP_SCHED
8285 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8286 #elif defined CONFIG_USER_SCHED
8287 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8288 init_tg_rt_entry(&init_task_group,
8289 &per_cpu(init_rt_rq, i),
8290 &per_cpu(init_sched_rt_entity, i), i, 1,
8291 root_task_group.rt_se[i]);
8292 #endif
8293 #endif
8294
8295 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8296 rq->cpu_load[j] = 0;
8297 #ifdef CONFIG_SMP
8298 rq->sd = NULL;
8299 rq->rd = NULL;
8300 rq->active_balance = 0;
8301 rq->next_balance = jiffies;
8302 rq->push_cpu = 0;
8303 rq->cpu = i;
8304 rq->online = 0;
8305 rq->migration_thread = NULL;
8306 INIT_LIST_HEAD(&rq->migration_queue);
8307 rq_attach_root(rq, &def_root_domain);
8308 #endif
8309 init_rq_hrtick(rq);
8310 atomic_set(&rq->nr_iowait, 0);
8311 }
8312
8313 set_load_weight(&init_task);
8314
8315 #ifdef CONFIG_PREEMPT_NOTIFIERS
8316 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8317 #endif
8318
8319 #ifdef CONFIG_SMP
8320 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8321 #endif
8322
8323 #ifdef CONFIG_RT_MUTEXES
8324 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8325 #endif
8326
8327 /*
8328 * The boot idle thread does lazy MMU switching as well:
8329 */
8330 atomic_inc(&init_mm.mm_count);
8331 enter_lazy_tlb(&init_mm, current);
8332
8333 /*
8334 * Make us the idle thread. Technically, schedule() should not be
8335 * called from this thread, however somewhere below it might be,
8336 * but because we are the idle thread, we just pick up running again
8337 * when this runqueue becomes "idle".
8338 */
8339 init_idle(current, smp_processor_id());
8340 /*
8341 * During early bootup we pretend to be a normal task:
8342 */
8343 current->sched_class = &fair_sched_class;
8344
8345 scheduler_running = 1;
8346 }
8347
8348 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8349 void __might_sleep(char *file, int line)
8350 {
8351 #ifdef in_atomic
8352 static unsigned long prev_jiffy; /* ratelimiting */
8353
8354 if ((!in_atomic() && !irqs_disabled()) ||
8355 system_state != SYSTEM_RUNNING || oops_in_progress)
8356 return;
8357 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8358 return;
8359 prev_jiffy = jiffies;
8360
8361 printk(KERN_ERR
8362 "BUG: sleeping function called from invalid context at %s:%d\n",
8363 file, line);
8364 printk(KERN_ERR
8365 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8366 in_atomic(), irqs_disabled(),
8367 current->pid, current->comm);
8368
8369 debug_show_held_locks(current);
8370 if (irqs_disabled())
8371 print_irqtrace_events(current);
8372 dump_stack();
8373 #endif
8374 }
8375 EXPORT_SYMBOL(__might_sleep);
8376 #endif
8377
8378 #ifdef CONFIG_MAGIC_SYSRQ
8379 static void normalize_task(struct rq *rq, struct task_struct *p)
8380 {
8381 int on_rq;
8382
8383 update_rq_clock(rq);
8384 on_rq = p->se.on_rq;
8385 if (on_rq)
8386 deactivate_task(rq, p, 0);
8387 __setscheduler(rq, p, SCHED_NORMAL, 0);
8388 if (on_rq) {
8389 activate_task(rq, p, 0);
8390 resched_task(rq->curr);
8391 }
8392 }
8393
8394 void normalize_rt_tasks(void)
8395 {
8396 struct task_struct *g, *p;
8397 unsigned long flags;
8398 struct rq *rq;
8399
8400 read_lock_irqsave(&tasklist_lock, flags);
8401 do_each_thread(g, p) {
8402 /*
8403 * Only normalize user tasks:
8404 */
8405 if (!p->mm)
8406 continue;
8407
8408 p->se.exec_start = 0;
8409 #ifdef CONFIG_SCHEDSTATS
8410 p->se.wait_start = 0;
8411 p->se.sleep_start = 0;
8412 p->se.block_start = 0;
8413 #endif
8414
8415 if (!rt_task(p)) {
8416 /*
8417 * Renice negative nice level userspace
8418 * tasks back to 0:
8419 */
8420 if (TASK_NICE(p) < 0 && p->mm)
8421 set_user_nice(p, 0);
8422 continue;
8423 }
8424
8425 spin_lock(&p->pi_lock);
8426 rq = __task_rq_lock(p);
8427
8428 normalize_task(rq, p);
8429
8430 __task_rq_unlock(rq);
8431 spin_unlock(&p->pi_lock);
8432 } while_each_thread(g, p);
8433
8434 read_unlock_irqrestore(&tasklist_lock, flags);
8435 }
8436
8437 #endif /* CONFIG_MAGIC_SYSRQ */
8438
8439 #ifdef CONFIG_IA64
8440 /*
8441 * These functions are only useful for the IA64 MCA handling.
8442 *
8443 * They can only be called when the whole system has been
8444 * stopped - every CPU needs to be quiescent, and no scheduling
8445 * activity can take place. Using them for anything else would
8446 * be a serious bug, and as a result, they aren't even visible
8447 * under any other configuration.
8448 */
8449
8450 /**
8451 * curr_task - return the current task for a given cpu.
8452 * @cpu: the processor in question.
8453 *
8454 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8455 */
8456 struct task_struct *curr_task(int cpu)
8457 {
8458 return cpu_curr(cpu);
8459 }
8460
8461 /**
8462 * set_curr_task - set the current task for a given cpu.
8463 * @cpu: the processor in question.
8464 * @p: the task pointer to set.
8465 *
8466 * Description: This function must only be used when non-maskable interrupts
8467 * are serviced on a separate stack. It allows the architecture to switch the
8468 * notion of the current task on a cpu in a non-blocking manner. This function
8469 * must be called with all CPU's synchronized, and interrupts disabled, the
8470 * and caller must save the original value of the current task (see
8471 * curr_task() above) and restore that value before reenabling interrupts and
8472 * re-starting the system.
8473 *
8474 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8475 */
8476 void set_curr_task(int cpu, struct task_struct *p)
8477 {
8478 cpu_curr(cpu) = p;
8479 }
8480
8481 #endif
8482
8483 #ifdef CONFIG_FAIR_GROUP_SCHED
8484 static void free_fair_sched_group(struct task_group *tg)
8485 {
8486 int i;
8487
8488 for_each_possible_cpu(i) {
8489 if (tg->cfs_rq)
8490 kfree(tg->cfs_rq[i]);
8491 if (tg->se)
8492 kfree(tg->se[i]);
8493 }
8494
8495 kfree(tg->cfs_rq);
8496 kfree(tg->se);
8497 }
8498
8499 static
8500 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8501 {
8502 struct cfs_rq *cfs_rq;
8503 struct sched_entity *se, *parent_se;
8504 struct rq *rq;
8505 int i;
8506
8507 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8508 if (!tg->cfs_rq)
8509 goto err;
8510 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8511 if (!tg->se)
8512 goto err;
8513
8514 tg->shares = NICE_0_LOAD;
8515
8516 for_each_possible_cpu(i) {
8517 rq = cpu_rq(i);
8518
8519 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
8520 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8521 if (!cfs_rq)
8522 goto err;
8523
8524 se = kmalloc_node(sizeof(struct sched_entity),
8525 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8526 if (!se)
8527 goto err;
8528
8529 parent_se = parent ? parent->se[i] : NULL;
8530 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
8531 }
8532
8533 return 1;
8534
8535 err:
8536 return 0;
8537 }
8538
8539 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8540 {
8541 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8542 &cpu_rq(cpu)->leaf_cfs_rq_list);
8543 }
8544
8545 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8546 {
8547 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8548 }
8549 #else /* !CONFG_FAIR_GROUP_SCHED */
8550 static inline void free_fair_sched_group(struct task_group *tg)
8551 {
8552 }
8553
8554 static inline
8555 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8556 {
8557 return 1;
8558 }
8559
8560 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8561 {
8562 }
8563
8564 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8565 {
8566 }
8567 #endif /* CONFIG_FAIR_GROUP_SCHED */
8568
8569 #ifdef CONFIG_RT_GROUP_SCHED
8570 static void free_rt_sched_group(struct task_group *tg)
8571 {
8572 int i;
8573
8574 destroy_rt_bandwidth(&tg->rt_bandwidth);
8575
8576 for_each_possible_cpu(i) {
8577 if (tg->rt_rq)
8578 kfree(tg->rt_rq[i]);
8579 if (tg->rt_se)
8580 kfree(tg->rt_se[i]);
8581 }
8582
8583 kfree(tg->rt_rq);
8584 kfree(tg->rt_se);
8585 }
8586
8587 static
8588 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8589 {
8590 struct rt_rq *rt_rq;
8591 struct sched_rt_entity *rt_se, *parent_se;
8592 struct rq *rq;
8593 int i;
8594
8595 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8596 if (!tg->rt_rq)
8597 goto err;
8598 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8599 if (!tg->rt_se)
8600 goto err;
8601
8602 init_rt_bandwidth(&tg->rt_bandwidth,
8603 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8604
8605 for_each_possible_cpu(i) {
8606 rq = cpu_rq(i);
8607
8608 rt_rq = kmalloc_node(sizeof(struct rt_rq),
8609 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8610 if (!rt_rq)
8611 goto err;
8612
8613 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
8614 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
8615 if (!rt_se)
8616 goto err;
8617
8618 parent_se = parent ? parent->rt_se[i] : NULL;
8619 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
8620 }
8621
8622 return 1;
8623
8624 err:
8625 return 0;
8626 }
8627
8628 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8629 {
8630 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8631 &cpu_rq(cpu)->leaf_rt_rq_list);
8632 }
8633
8634 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8635 {
8636 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8637 }
8638 #else /* !CONFIG_RT_GROUP_SCHED */
8639 static inline void free_rt_sched_group(struct task_group *tg)
8640 {
8641 }
8642
8643 static inline
8644 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8645 {
8646 return 1;
8647 }
8648
8649 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8650 {
8651 }
8652
8653 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8654 {
8655 }
8656 #endif /* CONFIG_RT_GROUP_SCHED */
8657
8658 #ifdef CONFIG_GROUP_SCHED
8659 static void free_sched_group(struct task_group *tg)
8660 {
8661 free_fair_sched_group(tg);
8662 free_rt_sched_group(tg);
8663 kfree(tg);
8664 }
8665
8666 /* allocate runqueue etc for a new task group */
8667 struct task_group *sched_create_group(struct task_group *parent)
8668 {
8669 struct task_group *tg;
8670 unsigned long flags;
8671 int i;
8672
8673 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8674 if (!tg)
8675 return ERR_PTR(-ENOMEM);
8676
8677 if (!alloc_fair_sched_group(tg, parent))
8678 goto err;
8679
8680 if (!alloc_rt_sched_group(tg, parent))
8681 goto err;
8682
8683 spin_lock_irqsave(&task_group_lock, flags);
8684 for_each_possible_cpu(i) {
8685 register_fair_sched_group(tg, i);
8686 register_rt_sched_group(tg, i);
8687 }
8688 list_add_rcu(&tg->list, &task_groups);
8689
8690 WARN_ON(!parent); /* root should already exist */
8691
8692 tg->parent = parent;
8693 INIT_LIST_HEAD(&tg->children);
8694 list_add_rcu(&tg->siblings, &parent->children);
8695 spin_unlock_irqrestore(&task_group_lock, flags);
8696
8697 return tg;
8698
8699 err:
8700 free_sched_group(tg);
8701 return ERR_PTR(-ENOMEM);
8702 }
8703
8704 /* rcu callback to free various structures associated with a task group */
8705 static void free_sched_group_rcu(struct rcu_head *rhp)
8706 {
8707 /* now it should be safe to free those cfs_rqs */
8708 free_sched_group(container_of(rhp, struct task_group, rcu));
8709 }
8710
8711 /* Destroy runqueue etc associated with a task group */
8712 void sched_destroy_group(struct task_group *tg)
8713 {
8714 unsigned long flags;
8715 int i;
8716
8717 spin_lock_irqsave(&task_group_lock, flags);
8718 for_each_possible_cpu(i) {
8719 unregister_fair_sched_group(tg, i);
8720 unregister_rt_sched_group(tg, i);
8721 }
8722 list_del_rcu(&tg->list);
8723 list_del_rcu(&tg->siblings);
8724 spin_unlock_irqrestore(&task_group_lock, flags);
8725
8726 /* wait for possible concurrent references to cfs_rqs complete */
8727 call_rcu(&tg->rcu, free_sched_group_rcu);
8728 }
8729
8730 /* change task's runqueue when it moves between groups.
8731 * The caller of this function should have put the task in its new group
8732 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8733 * reflect its new group.
8734 */
8735 void sched_move_task(struct task_struct *tsk)
8736 {
8737 int on_rq, running;
8738 unsigned long flags;
8739 struct rq *rq;
8740
8741 rq = task_rq_lock(tsk, &flags);
8742
8743 update_rq_clock(rq);
8744
8745 running = task_current(rq, tsk);
8746 on_rq = tsk->se.on_rq;
8747
8748 if (on_rq)
8749 dequeue_task(rq, tsk, 0);
8750 if (unlikely(running))
8751 tsk->sched_class->put_prev_task(rq, tsk);
8752
8753 set_task_rq(tsk, task_cpu(tsk));
8754
8755 #ifdef CONFIG_FAIR_GROUP_SCHED
8756 if (tsk->sched_class->moved_group)
8757 tsk->sched_class->moved_group(tsk);
8758 #endif
8759
8760 if (unlikely(running))
8761 tsk->sched_class->set_curr_task(rq);
8762 if (on_rq)
8763 enqueue_task(rq, tsk, 0);
8764
8765 task_rq_unlock(rq, &flags);
8766 }
8767 #endif /* CONFIG_GROUP_SCHED */
8768
8769 #ifdef CONFIG_FAIR_GROUP_SCHED
8770 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8771 {
8772 struct cfs_rq *cfs_rq = se->cfs_rq;
8773 int on_rq;
8774
8775 on_rq = se->on_rq;
8776 if (on_rq)
8777 dequeue_entity(cfs_rq, se, 0);
8778
8779 se->load.weight = shares;
8780 se->load.inv_weight = 0;
8781
8782 if (on_rq)
8783 enqueue_entity(cfs_rq, se, 0);
8784 }
8785
8786 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8787 {
8788 struct cfs_rq *cfs_rq = se->cfs_rq;
8789 struct rq *rq = cfs_rq->rq;
8790 unsigned long flags;
8791
8792 spin_lock_irqsave(&rq->lock, flags);
8793 __set_se_shares(se, shares);
8794 spin_unlock_irqrestore(&rq->lock, flags);
8795 }
8796
8797 static DEFINE_MUTEX(shares_mutex);
8798
8799 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8800 {
8801 int i;
8802 unsigned long flags;
8803
8804 /*
8805 * We can't change the weight of the root cgroup.
8806 */
8807 if (!tg->se[0])
8808 return -EINVAL;
8809
8810 if (shares < MIN_SHARES)
8811 shares = MIN_SHARES;
8812 else if (shares > MAX_SHARES)
8813 shares = MAX_SHARES;
8814
8815 mutex_lock(&shares_mutex);
8816 if (tg->shares == shares)
8817 goto done;
8818
8819 spin_lock_irqsave(&task_group_lock, flags);
8820 for_each_possible_cpu(i)
8821 unregister_fair_sched_group(tg, i);
8822 list_del_rcu(&tg->siblings);
8823 spin_unlock_irqrestore(&task_group_lock, flags);
8824
8825 /* wait for any ongoing reference to this group to finish */
8826 synchronize_sched();
8827
8828 /*
8829 * Now we are free to modify the group's share on each cpu
8830 * w/o tripping rebalance_share or load_balance_fair.
8831 */
8832 tg->shares = shares;
8833 for_each_possible_cpu(i) {
8834 /*
8835 * force a rebalance
8836 */
8837 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8838 set_se_shares(tg->se[i], shares);
8839 }
8840
8841 /*
8842 * Enable load balance activity on this group, by inserting it back on
8843 * each cpu's rq->leaf_cfs_rq_list.
8844 */
8845 spin_lock_irqsave(&task_group_lock, flags);
8846 for_each_possible_cpu(i)
8847 register_fair_sched_group(tg, i);
8848 list_add_rcu(&tg->siblings, &tg->parent->children);
8849 spin_unlock_irqrestore(&task_group_lock, flags);
8850 done:
8851 mutex_unlock(&shares_mutex);
8852 return 0;
8853 }
8854
8855 unsigned long sched_group_shares(struct task_group *tg)
8856 {
8857 return tg->shares;
8858 }
8859 #endif
8860
8861 #ifdef CONFIG_RT_GROUP_SCHED
8862 /*
8863 * Ensure that the real time constraints are schedulable.
8864 */
8865 static DEFINE_MUTEX(rt_constraints_mutex);
8866
8867 static unsigned long to_ratio(u64 period, u64 runtime)
8868 {
8869 if (runtime == RUNTIME_INF)
8870 return 1ULL << 20;
8871
8872 return div64_u64(runtime << 20, period);
8873 }
8874
8875 /* Must be called with tasklist_lock held */
8876 static inline int tg_has_rt_tasks(struct task_group *tg)
8877 {
8878 struct task_struct *g, *p;
8879
8880 do_each_thread(g, p) {
8881 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8882 return 1;
8883 } while_each_thread(g, p);
8884
8885 return 0;
8886 }
8887
8888 struct rt_schedulable_data {
8889 struct task_group *tg;
8890 u64 rt_period;
8891 u64 rt_runtime;
8892 };
8893
8894 static int tg_schedulable(struct task_group *tg, void *data)
8895 {
8896 struct rt_schedulable_data *d = data;
8897 struct task_group *child;
8898 unsigned long total, sum = 0;
8899 u64 period, runtime;
8900
8901 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8902 runtime = tg->rt_bandwidth.rt_runtime;
8903
8904 if (tg == d->tg) {
8905 period = d->rt_period;
8906 runtime = d->rt_runtime;
8907 }
8908
8909 /*
8910 * Cannot have more runtime than the period.
8911 */
8912 if (runtime > period && runtime != RUNTIME_INF)
8913 return -EINVAL;
8914
8915 /*
8916 * Ensure we don't starve existing RT tasks.
8917 */
8918 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8919 return -EBUSY;
8920
8921 total = to_ratio(period, runtime);
8922
8923 /*
8924 * Nobody can have more than the global setting allows.
8925 */
8926 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8927 return -EINVAL;
8928
8929 /*
8930 * The sum of our children's runtime should not exceed our own.
8931 */
8932 list_for_each_entry_rcu(child, &tg->children, siblings) {
8933 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8934 runtime = child->rt_bandwidth.rt_runtime;
8935
8936 if (child == d->tg) {
8937 period = d->rt_period;
8938 runtime = d->rt_runtime;
8939 }
8940
8941 sum += to_ratio(period, runtime);
8942 }
8943
8944 if (sum > total)
8945 return -EINVAL;
8946
8947 return 0;
8948 }
8949
8950 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8951 {
8952 struct rt_schedulable_data data = {
8953 .tg = tg,
8954 .rt_period = period,
8955 .rt_runtime = runtime,
8956 };
8957
8958 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8959 }
8960
8961 static int tg_set_bandwidth(struct task_group *tg,
8962 u64 rt_period, u64 rt_runtime)
8963 {
8964 int i, err = 0;
8965
8966 mutex_lock(&rt_constraints_mutex);
8967 read_lock(&tasklist_lock);
8968 err = __rt_schedulable(tg, rt_period, rt_runtime);
8969 if (err)
8970 goto unlock;
8971
8972 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8973 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8974 tg->rt_bandwidth.rt_runtime = rt_runtime;
8975
8976 for_each_possible_cpu(i) {
8977 struct rt_rq *rt_rq = tg->rt_rq[i];
8978
8979 spin_lock(&rt_rq->rt_runtime_lock);
8980 rt_rq->rt_runtime = rt_runtime;
8981 spin_unlock(&rt_rq->rt_runtime_lock);
8982 }
8983 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8984 unlock:
8985 read_unlock(&tasklist_lock);
8986 mutex_unlock(&rt_constraints_mutex);
8987
8988 return err;
8989 }
8990
8991 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8992 {
8993 u64 rt_runtime, rt_period;
8994
8995 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8996 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8997 if (rt_runtime_us < 0)
8998 rt_runtime = RUNTIME_INF;
8999
9000 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9001 }
9002
9003 long sched_group_rt_runtime(struct task_group *tg)
9004 {
9005 u64 rt_runtime_us;
9006
9007 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9008 return -1;
9009
9010 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9011 do_div(rt_runtime_us, NSEC_PER_USEC);
9012 return rt_runtime_us;
9013 }
9014
9015 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9016 {
9017 u64 rt_runtime, rt_period;
9018
9019 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9020 rt_runtime = tg->rt_bandwidth.rt_runtime;
9021
9022 if (rt_period == 0)
9023 return -EINVAL;
9024
9025 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9026 }
9027
9028 long sched_group_rt_period(struct task_group *tg)
9029 {
9030 u64 rt_period_us;
9031
9032 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9033 do_div(rt_period_us, NSEC_PER_USEC);
9034 return rt_period_us;
9035 }
9036
9037 static int sched_rt_global_constraints(void)
9038 {
9039 u64 runtime, period;
9040 int ret = 0;
9041
9042 if (sysctl_sched_rt_period <= 0)
9043 return -EINVAL;
9044
9045 runtime = global_rt_runtime();
9046 period = global_rt_period();
9047
9048 /*
9049 * Sanity check on the sysctl variables.
9050 */
9051 if (runtime > period && runtime != RUNTIME_INF)
9052 return -EINVAL;
9053
9054 mutex_lock(&rt_constraints_mutex);
9055 read_lock(&tasklist_lock);
9056 ret = __rt_schedulable(NULL, 0, 0);
9057 read_unlock(&tasklist_lock);
9058 mutex_unlock(&rt_constraints_mutex);
9059
9060 return ret;
9061 }
9062 #else /* !CONFIG_RT_GROUP_SCHED */
9063 static int sched_rt_global_constraints(void)
9064 {
9065 unsigned long flags;
9066 int i;
9067
9068 if (sysctl_sched_rt_period <= 0)
9069 return -EINVAL;
9070
9071 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9072 for_each_possible_cpu(i) {
9073 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9074
9075 spin_lock(&rt_rq->rt_runtime_lock);
9076 rt_rq->rt_runtime = global_rt_runtime();
9077 spin_unlock(&rt_rq->rt_runtime_lock);
9078 }
9079 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9080
9081 return 0;
9082 }
9083 #endif /* CONFIG_RT_GROUP_SCHED */
9084
9085 int sched_rt_handler(struct ctl_table *table, int write,
9086 struct file *filp, void __user *buffer, size_t *lenp,
9087 loff_t *ppos)
9088 {
9089 int ret;
9090 int old_period, old_runtime;
9091 static DEFINE_MUTEX(mutex);
9092
9093 mutex_lock(&mutex);
9094 old_period = sysctl_sched_rt_period;
9095 old_runtime = sysctl_sched_rt_runtime;
9096
9097 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9098
9099 if (!ret && write) {
9100 ret = sched_rt_global_constraints();
9101 if (ret) {
9102 sysctl_sched_rt_period = old_period;
9103 sysctl_sched_rt_runtime = old_runtime;
9104 } else {
9105 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9106 def_rt_bandwidth.rt_period =
9107 ns_to_ktime(global_rt_period());
9108 }
9109 }
9110 mutex_unlock(&mutex);
9111
9112 return ret;
9113 }
9114
9115 #ifdef CONFIG_CGROUP_SCHED
9116
9117 /* return corresponding task_group object of a cgroup */
9118 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9119 {
9120 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9121 struct task_group, css);
9122 }
9123
9124 static struct cgroup_subsys_state *
9125 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9126 {
9127 struct task_group *tg, *parent;
9128
9129 if (!cgrp->parent) {
9130 /* This is early initialization for the top cgroup */
9131 return &init_task_group.css;
9132 }
9133
9134 parent = cgroup_tg(cgrp->parent);
9135 tg = sched_create_group(parent);
9136 if (IS_ERR(tg))
9137 return ERR_PTR(-ENOMEM);
9138
9139 return &tg->css;
9140 }
9141
9142 static void
9143 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9144 {
9145 struct task_group *tg = cgroup_tg(cgrp);
9146
9147 sched_destroy_group(tg);
9148 }
9149
9150 static int
9151 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9152 struct task_struct *tsk)
9153 {
9154 #ifdef CONFIG_RT_GROUP_SCHED
9155 /* Don't accept realtime tasks when there is no way for them to run */
9156 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
9157 return -EINVAL;
9158 #else
9159 /* We don't support RT-tasks being in separate groups */
9160 if (tsk->sched_class != &fair_sched_class)
9161 return -EINVAL;
9162 #endif
9163
9164 return 0;
9165 }
9166
9167 static void
9168 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9169 struct cgroup *old_cont, struct task_struct *tsk)
9170 {
9171 sched_move_task(tsk);
9172 }
9173
9174 #ifdef CONFIG_FAIR_GROUP_SCHED
9175 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9176 u64 shareval)
9177 {
9178 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9179 }
9180
9181 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9182 {
9183 struct task_group *tg = cgroup_tg(cgrp);
9184
9185 return (u64) tg->shares;
9186 }
9187 #endif /* CONFIG_FAIR_GROUP_SCHED */
9188
9189 #ifdef CONFIG_RT_GROUP_SCHED
9190 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9191 s64 val)
9192 {
9193 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9194 }
9195
9196 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9197 {
9198 return sched_group_rt_runtime(cgroup_tg(cgrp));
9199 }
9200
9201 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9202 u64 rt_period_us)
9203 {
9204 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9205 }
9206
9207 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9208 {
9209 return sched_group_rt_period(cgroup_tg(cgrp));
9210 }
9211 #endif /* CONFIG_RT_GROUP_SCHED */
9212
9213 static struct cftype cpu_files[] = {
9214 #ifdef CONFIG_FAIR_GROUP_SCHED
9215 {
9216 .name = "shares",
9217 .read_u64 = cpu_shares_read_u64,
9218 .write_u64 = cpu_shares_write_u64,
9219 },
9220 #endif
9221 #ifdef CONFIG_RT_GROUP_SCHED
9222 {
9223 .name = "rt_runtime_us",
9224 .read_s64 = cpu_rt_runtime_read,
9225 .write_s64 = cpu_rt_runtime_write,
9226 },
9227 {
9228 .name = "rt_period_us",
9229 .read_u64 = cpu_rt_period_read_uint,
9230 .write_u64 = cpu_rt_period_write_uint,
9231 },
9232 #endif
9233 };
9234
9235 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9236 {
9237 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9238 }
9239
9240 struct cgroup_subsys cpu_cgroup_subsys = {
9241 .name = "cpu",
9242 .create = cpu_cgroup_create,
9243 .destroy = cpu_cgroup_destroy,
9244 .can_attach = cpu_cgroup_can_attach,
9245 .attach = cpu_cgroup_attach,
9246 .populate = cpu_cgroup_populate,
9247 .subsys_id = cpu_cgroup_subsys_id,
9248 .early_init = 1,
9249 };
9250
9251 #endif /* CONFIG_CGROUP_SCHED */
9252
9253 #ifdef CONFIG_CGROUP_CPUACCT
9254
9255 /*
9256 * CPU accounting code for task groups.
9257 *
9258 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9259 * (balbir@in.ibm.com).
9260 */
9261
9262 /* track cpu usage of a group of tasks */
9263 struct cpuacct {
9264 struct cgroup_subsys_state css;
9265 /* cpuusage holds pointer to a u64-type object on every cpu */
9266 u64 *cpuusage;
9267 };
9268
9269 struct cgroup_subsys cpuacct_subsys;
9270
9271 /* return cpu accounting group corresponding to this container */
9272 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9273 {
9274 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9275 struct cpuacct, css);
9276 }
9277
9278 /* return cpu accounting group to which this task belongs */
9279 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9280 {
9281 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9282 struct cpuacct, css);
9283 }
9284
9285 /* create a new cpu accounting group */
9286 static struct cgroup_subsys_state *cpuacct_create(
9287 struct cgroup_subsys *ss, struct cgroup *cgrp)
9288 {
9289 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9290
9291 if (!ca)
9292 return ERR_PTR(-ENOMEM);
9293
9294 ca->cpuusage = alloc_percpu(u64);
9295 if (!ca->cpuusage) {
9296 kfree(ca);
9297 return ERR_PTR(-ENOMEM);
9298 }
9299
9300 return &ca->css;
9301 }
9302
9303 /* destroy an existing cpu accounting group */
9304 static void
9305 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9306 {
9307 struct cpuacct *ca = cgroup_ca(cgrp);
9308
9309 free_percpu(ca->cpuusage);
9310 kfree(ca);
9311 }
9312
9313 /* return total cpu usage (in nanoseconds) of a group */
9314 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9315 {
9316 struct cpuacct *ca = cgroup_ca(cgrp);
9317 u64 totalcpuusage = 0;
9318 int i;
9319
9320 for_each_possible_cpu(i) {
9321 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9322
9323 /*
9324 * Take rq->lock to make 64-bit addition safe on 32-bit
9325 * platforms.
9326 */
9327 spin_lock_irq(&cpu_rq(i)->lock);
9328 totalcpuusage += *cpuusage;
9329 spin_unlock_irq(&cpu_rq(i)->lock);
9330 }
9331
9332 return totalcpuusage;
9333 }
9334
9335 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9336 u64 reset)
9337 {
9338 struct cpuacct *ca = cgroup_ca(cgrp);
9339 int err = 0;
9340 int i;
9341
9342 if (reset) {
9343 err = -EINVAL;
9344 goto out;
9345 }
9346
9347 for_each_possible_cpu(i) {
9348 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
9349
9350 spin_lock_irq(&cpu_rq(i)->lock);
9351 *cpuusage = 0;
9352 spin_unlock_irq(&cpu_rq(i)->lock);
9353 }
9354 out:
9355 return err;
9356 }
9357
9358 static struct cftype files[] = {
9359 {
9360 .name = "usage",
9361 .read_u64 = cpuusage_read,
9362 .write_u64 = cpuusage_write,
9363 },
9364 };
9365
9366 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9367 {
9368 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9369 }
9370
9371 /*
9372 * charge this task's execution time to its accounting group.
9373 *
9374 * called with rq->lock held.
9375 */
9376 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9377 {
9378 struct cpuacct *ca;
9379
9380 if (!cpuacct_subsys.active)
9381 return;
9382
9383 ca = task_ca(tsk);
9384 if (ca) {
9385 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
9386
9387 *cpuusage += cputime;
9388 }
9389 }
9390
9391 struct cgroup_subsys cpuacct_subsys = {
9392 .name = "cpuacct",
9393 .create = cpuacct_create,
9394 .destroy = cpuacct_destroy,
9395 .populate = cpuacct_populate,
9396 .subsys_id = cpuacct_subsys_id,
9397 };
9398 #endif /* CONFIG_CGROUP_CPUACCT */