]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched.c
tracing: create automated trace defines
[mirror_ubuntu-zesty-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/reciprocal_div.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/bootmem.h>
72 #include <linux/debugfs.h>
73 #include <linux/ctype.h>
74 #include <linux/ftrace.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/sched.h>
83
84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93 /*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102 /*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
110 /*
111 * These are the 'tuning knobs' of the scheduler:
112 *
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
115 */
116 #define DEF_TIMESLICE (100 * HZ / 1000)
117
118 /*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121 #define RUNTIME_INF ((u64)~0ULL)
122
123 #ifdef CONFIG_SMP
124
125 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
126
127 /*
128 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
129 * Since cpu_power is a 'constant', we can use a reciprocal divide.
130 */
131 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
132 {
133 return reciprocal_divide(load, sg->reciprocal_cpu_power);
134 }
135
136 /*
137 * Each time a sched group cpu_power is changed,
138 * we must compute its reciprocal value
139 */
140 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
141 {
142 sg->__cpu_power += val;
143 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
144 }
145 #endif
146
147 static inline int rt_policy(int policy)
148 {
149 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
150 return 1;
151 return 0;
152 }
153
154 static inline int task_has_rt_policy(struct task_struct *p)
155 {
156 return rt_policy(p->policy);
157 }
158
159 /*
160 * This is the priority-queue data structure of the RT scheduling class:
161 */
162 struct rt_prio_array {
163 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
164 struct list_head queue[MAX_RT_PRIO];
165 };
166
167 struct rt_bandwidth {
168 /* nests inside the rq lock: */
169 spinlock_t rt_runtime_lock;
170 ktime_t rt_period;
171 u64 rt_runtime;
172 struct hrtimer rt_period_timer;
173 };
174
175 static struct rt_bandwidth def_rt_bandwidth;
176
177 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
178
179 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
180 {
181 struct rt_bandwidth *rt_b =
182 container_of(timer, struct rt_bandwidth, rt_period_timer);
183 ktime_t now;
184 int overrun;
185 int idle = 0;
186
187 for (;;) {
188 now = hrtimer_cb_get_time(timer);
189 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
190
191 if (!overrun)
192 break;
193
194 idle = do_sched_rt_period_timer(rt_b, overrun);
195 }
196
197 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
198 }
199
200 static
201 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
202 {
203 rt_b->rt_period = ns_to_ktime(period);
204 rt_b->rt_runtime = runtime;
205
206 spin_lock_init(&rt_b->rt_runtime_lock);
207
208 hrtimer_init(&rt_b->rt_period_timer,
209 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
210 rt_b->rt_period_timer.function = sched_rt_period_timer;
211 }
212
213 static inline int rt_bandwidth_enabled(void)
214 {
215 return sysctl_sched_rt_runtime >= 0;
216 }
217
218 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
219 {
220 ktime_t now;
221
222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 return;
224
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
227
228 spin_lock(&rt_b->rt_runtime_lock);
229 for (;;) {
230 unsigned long delta;
231 ktime_t soft, hard;
232
233 if (hrtimer_active(&rt_b->rt_period_timer))
234 break;
235
236 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
237 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
238
239 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
240 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
241 delta = ktime_to_ns(ktime_sub(hard, soft));
242 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
243 HRTIMER_MODE_ABS, 0);
244 }
245 spin_unlock(&rt_b->rt_runtime_lock);
246 }
247
248 #ifdef CONFIG_RT_GROUP_SCHED
249 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
250 {
251 hrtimer_cancel(&rt_b->rt_period_timer);
252 }
253 #endif
254
255 /*
256 * sched_domains_mutex serializes calls to arch_init_sched_domains,
257 * detach_destroy_domains and partition_sched_domains.
258 */
259 static DEFINE_MUTEX(sched_domains_mutex);
260
261 #ifdef CONFIG_GROUP_SCHED
262
263 #include <linux/cgroup.h>
264
265 struct cfs_rq;
266
267 static LIST_HEAD(task_groups);
268
269 /* task group related information */
270 struct task_group {
271 #ifdef CONFIG_CGROUP_SCHED
272 struct cgroup_subsys_state css;
273 #endif
274
275 #ifdef CONFIG_USER_SCHED
276 uid_t uid;
277 #endif
278
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280 /* schedulable entities of this group on each cpu */
281 struct sched_entity **se;
282 /* runqueue "owned" by this group on each cpu */
283 struct cfs_rq **cfs_rq;
284 unsigned long shares;
285 #endif
286
287 #ifdef CONFIG_RT_GROUP_SCHED
288 struct sched_rt_entity **rt_se;
289 struct rt_rq **rt_rq;
290
291 struct rt_bandwidth rt_bandwidth;
292 #endif
293
294 struct rcu_head rcu;
295 struct list_head list;
296
297 struct task_group *parent;
298 struct list_head siblings;
299 struct list_head children;
300 };
301
302 #ifdef CONFIG_USER_SCHED
303
304 /* Helper function to pass uid information to create_sched_user() */
305 void set_tg_uid(struct user_struct *user)
306 {
307 user->tg->uid = user->uid;
308 }
309
310 /*
311 * Root task group.
312 * Every UID task group (including init_task_group aka UID-0) will
313 * be a child to this group.
314 */
315 struct task_group root_task_group;
316
317 #ifdef CONFIG_FAIR_GROUP_SCHED
318 /* Default task group's sched entity on each cpu */
319 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
320 /* Default task group's cfs_rq on each cpu */
321 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
322 #endif /* CONFIG_FAIR_GROUP_SCHED */
323
324 #ifdef CONFIG_RT_GROUP_SCHED
325 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
326 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
327 #endif /* CONFIG_RT_GROUP_SCHED */
328 #else /* !CONFIG_USER_SCHED */
329 #define root_task_group init_task_group
330 #endif /* CONFIG_USER_SCHED */
331
332 /* task_group_lock serializes add/remove of task groups and also changes to
333 * a task group's cpu shares.
334 */
335 static DEFINE_SPINLOCK(task_group_lock);
336
337 #ifdef CONFIG_SMP
338 static int root_task_group_empty(void)
339 {
340 return list_empty(&root_task_group.children);
341 }
342 #endif
343
344 #ifdef CONFIG_FAIR_GROUP_SCHED
345 #ifdef CONFIG_USER_SCHED
346 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
347 #else /* !CONFIG_USER_SCHED */
348 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
349 #endif /* CONFIG_USER_SCHED */
350
351 /*
352 * A weight of 0 or 1 can cause arithmetics problems.
353 * A weight of a cfs_rq is the sum of weights of which entities
354 * are queued on this cfs_rq, so a weight of a entity should not be
355 * too large, so as the shares value of a task group.
356 * (The default weight is 1024 - so there's no practical
357 * limitation from this.)
358 */
359 #define MIN_SHARES 2
360 #define MAX_SHARES (1UL << 18)
361
362 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
363 #endif
364
365 /* Default task group.
366 * Every task in system belong to this group at bootup.
367 */
368 struct task_group init_task_group;
369
370 /* return group to which a task belongs */
371 static inline struct task_group *task_group(struct task_struct *p)
372 {
373 struct task_group *tg;
374
375 #ifdef CONFIG_USER_SCHED
376 rcu_read_lock();
377 tg = __task_cred(p)->user->tg;
378 rcu_read_unlock();
379 #elif defined(CONFIG_CGROUP_SCHED)
380 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
381 struct task_group, css);
382 #else
383 tg = &init_task_group;
384 #endif
385 return tg;
386 }
387
388 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
389 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
390 {
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
393 p->se.parent = task_group(p)->se[cpu];
394 #endif
395
396 #ifdef CONFIG_RT_GROUP_SCHED
397 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
398 p->rt.parent = task_group(p)->rt_se[cpu];
399 #endif
400 }
401
402 #else
403
404 #ifdef CONFIG_SMP
405 static int root_task_group_empty(void)
406 {
407 return 1;
408 }
409 #endif
410
411 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
412 static inline struct task_group *task_group(struct task_struct *p)
413 {
414 return NULL;
415 }
416
417 #endif /* CONFIG_GROUP_SCHED */
418
419 /* CFS-related fields in a runqueue */
420 struct cfs_rq {
421 struct load_weight load;
422 unsigned long nr_running;
423
424 u64 exec_clock;
425 u64 min_vruntime;
426
427 struct rb_root tasks_timeline;
428 struct rb_node *rb_leftmost;
429
430 struct list_head tasks;
431 struct list_head *balance_iterator;
432
433 /*
434 * 'curr' points to currently running entity on this cfs_rq.
435 * It is set to NULL otherwise (i.e when none are currently running).
436 */
437 struct sched_entity *curr, *next, *last;
438
439 unsigned int nr_spread_over;
440
441 #ifdef CONFIG_FAIR_GROUP_SCHED
442 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
443
444 /*
445 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
446 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
447 * (like users, containers etc.)
448 *
449 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
450 * list is used during load balance.
451 */
452 struct list_head leaf_cfs_rq_list;
453 struct task_group *tg; /* group that "owns" this runqueue */
454
455 #ifdef CONFIG_SMP
456 /*
457 * the part of load.weight contributed by tasks
458 */
459 unsigned long task_weight;
460
461 /*
462 * h_load = weight * f(tg)
463 *
464 * Where f(tg) is the recursive weight fraction assigned to
465 * this group.
466 */
467 unsigned long h_load;
468
469 /*
470 * this cpu's part of tg->shares
471 */
472 unsigned long shares;
473
474 /*
475 * load.weight at the time we set shares
476 */
477 unsigned long rq_weight;
478 #endif
479 #endif
480 };
481
482 /* Real-Time classes' related field in a runqueue: */
483 struct rt_rq {
484 struct rt_prio_array active;
485 unsigned long rt_nr_running;
486 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
487 struct {
488 int curr; /* highest queued rt task prio */
489 #ifdef CONFIG_SMP
490 int next; /* next highest */
491 #endif
492 } highest_prio;
493 #endif
494 #ifdef CONFIG_SMP
495 unsigned long rt_nr_migratory;
496 int overloaded;
497 struct plist_head pushable_tasks;
498 #endif
499 int rt_throttled;
500 u64 rt_time;
501 u64 rt_runtime;
502 /* Nests inside the rq lock: */
503 spinlock_t rt_runtime_lock;
504
505 #ifdef CONFIG_RT_GROUP_SCHED
506 unsigned long rt_nr_boosted;
507
508 struct rq *rq;
509 struct list_head leaf_rt_rq_list;
510 struct task_group *tg;
511 struct sched_rt_entity *rt_se;
512 #endif
513 };
514
515 #ifdef CONFIG_SMP
516
517 /*
518 * We add the notion of a root-domain which will be used to define per-domain
519 * variables. Each exclusive cpuset essentially defines an island domain by
520 * fully partitioning the member cpus from any other cpuset. Whenever a new
521 * exclusive cpuset is created, we also create and attach a new root-domain
522 * object.
523 *
524 */
525 struct root_domain {
526 atomic_t refcount;
527 cpumask_var_t span;
528 cpumask_var_t online;
529
530 /*
531 * The "RT overload" flag: it gets set if a CPU has more than
532 * one runnable RT task.
533 */
534 cpumask_var_t rto_mask;
535 atomic_t rto_count;
536 #ifdef CONFIG_SMP
537 struct cpupri cpupri;
538 #endif
539 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
540 /*
541 * Preferred wake up cpu nominated by sched_mc balance that will be
542 * used when most cpus are idle in the system indicating overall very
543 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
544 */
545 unsigned int sched_mc_preferred_wakeup_cpu;
546 #endif
547 };
548
549 /*
550 * By default the system creates a single root-domain with all cpus as
551 * members (mimicking the global state we have today).
552 */
553 static struct root_domain def_root_domain;
554
555 #endif
556
557 /*
558 * This is the main, per-CPU runqueue data structure.
559 *
560 * Locking rule: those places that want to lock multiple runqueues
561 * (such as the load balancing or the thread migration code), lock
562 * acquire operations must be ordered by ascending &runqueue.
563 */
564 struct rq {
565 /* runqueue lock: */
566 spinlock_t lock;
567
568 /*
569 * nr_running and cpu_load should be in the same cacheline because
570 * remote CPUs use both these fields when doing load calculation.
571 */
572 unsigned long nr_running;
573 #define CPU_LOAD_IDX_MAX 5
574 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
575 #ifdef CONFIG_NO_HZ
576 unsigned long last_tick_seen;
577 unsigned char in_nohz_recently;
578 #endif
579 /* capture load from *all* tasks on this cpu: */
580 struct load_weight load;
581 unsigned long nr_load_updates;
582 u64 nr_switches;
583
584 struct cfs_rq cfs;
585 struct rt_rq rt;
586
587 #ifdef CONFIG_FAIR_GROUP_SCHED
588 /* list of leaf cfs_rq on this cpu: */
589 struct list_head leaf_cfs_rq_list;
590 #endif
591 #ifdef CONFIG_RT_GROUP_SCHED
592 struct list_head leaf_rt_rq_list;
593 #endif
594
595 /*
596 * This is part of a global counter where only the total sum
597 * over all CPUs matters. A task can increase this counter on
598 * one CPU and if it got migrated afterwards it may decrease
599 * it on another CPU. Always updated under the runqueue lock:
600 */
601 unsigned long nr_uninterruptible;
602
603 struct task_struct *curr, *idle;
604 unsigned long next_balance;
605 struct mm_struct *prev_mm;
606
607 u64 clock;
608
609 atomic_t nr_iowait;
610
611 #ifdef CONFIG_SMP
612 struct root_domain *rd;
613 struct sched_domain *sd;
614
615 unsigned char idle_at_tick;
616 /* For active balancing */
617 int active_balance;
618 int push_cpu;
619 /* cpu of this runqueue: */
620 int cpu;
621 int online;
622
623 unsigned long avg_load_per_task;
624
625 struct task_struct *migration_thread;
626 struct list_head migration_queue;
627 #endif
628
629 #ifdef CONFIG_SCHED_HRTICK
630 #ifdef CONFIG_SMP
631 int hrtick_csd_pending;
632 struct call_single_data hrtick_csd;
633 #endif
634 struct hrtimer hrtick_timer;
635 #endif
636
637 #ifdef CONFIG_SCHEDSTATS
638 /* latency stats */
639 struct sched_info rq_sched_info;
640 unsigned long long rq_cpu_time;
641 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
642
643 /* sys_sched_yield() stats */
644 unsigned int yld_count;
645
646 /* schedule() stats */
647 unsigned int sched_switch;
648 unsigned int sched_count;
649 unsigned int sched_goidle;
650
651 /* try_to_wake_up() stats */
652 unsigned int ttwu_count;
653 unsigned int ttwu_local;
654
655 /* BKL stats */
656 unsigned int bkl_count;
657 #endif
658 };
659
660 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
661
662 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
663 {
664 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
665 }
666
667 static inline int cpu_of(struct rq *rq)
668 {
669 #ifdef CONFIG_SMP
670 return rq->cpu;
671 #else
672 return 0;
673 #endif
674 }
675
676 /*
677 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
678 * See detach_destroy_domains: synchronize_sched for details.
679 *
680 * The domain tree of any CPU may only be accessed from within
681 * preempt-disabled sections.
682 */
683 #define for_each_domain(cpu, __sd) \
684 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
685
686 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
687 #define this_rq() (&__get_cpu_var(runqueues))
688 #define task_rq(p) cpu_rq(task_cpu(p))
689 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
690
691 static inline void update_rq_clock(struct rq *rq)
692 {
693 rq->clock = sched_clock_cpu(cpu_of(rq));
694 }
695
696 /*
697 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
698 */
699 #ifdef CONFIG_SCHED_DEBUG
700 # define const_debug __read_mostly
701 #else
702 # define const_debug static const
703 #endif
704
705 /**
706 * runqueue_is_locked
707 *
708 * Returns true if the current cpu runqueue is locked.
709 * This interface allows printk to be called with the runqueue lock
710 * held and know whether or not it is OK to wake up the klogd.
711 */
712 int runqueue_is_locked(void)
713 {
714 int cpu = get_cpu();
715 struct rq *rq = cpu_rq(cpu);
716 int ret;
717
718 ret = spin_is_locked(&rq->lock);
719 put_cpu();
720 return ret;
721 }
722
723 /*
724 * Debugging: various feature bits
725 */
726
727 #define SCHED_FEAT(name, enabled) \
728 __SCHED_FEAT_##name ,
729
730 enum {
731 #include "sched_features.h"
732 };
733
734 #undef SCHED_FEAT
735
736 #define SCHED_FEAT(name, enabled) \
737 (1UL << __SCHED_FEAT_##name) * enabled |
738
739 const_debug unsigned int sysctl_sched_features =
740 #include "sched_features.h"
741 0;
742
743 #undef SCHED_FEAT
744
745 #ifdef CONFIG_SCHED_DEBUG
746 #define SCHED_FEAT(name, enabled) \
747 #name ,
748
749 static __read_mostly char *sched_feat_names[] = {
750 #include "sched_features.h"
751 NULL
752 };
753
754 #undef SCHED_FEAT
755
756 static int sched_feat_show(struct seq_file *m, void *v)
757 {
758 int i;
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 if (!(sysctl_sched_features & (1UL << i)))
762 seq_puts(m, "NO_");
763 seq_printf(m, "%s ", sched_feat_names[i]);
764 }
765 seq_puts(m, "\n");
766
767 return 0;
768 }
769
770 static ssize_t
771 sched_feat_write(struct file *filp, const char __user *ubuf,
772 size_t cnt, loff_t *ppos)
773 {
774 char buf[64];
775 char *cmp = buf;
776 int neg = 0;
777 int i;
778
779 if (cnt > 63)
780 cnt = 63;
781
782 if (copy_from_user(&buf, ubuf, cnt))
783 return -EFAULT;
784
785 buf[cnt] = 0;
786
787 if (strncmp(buf, "NO_", 3) == 0) {
788 neg = 1;
789 cmp += 3;
790 }
791
792 for (i = 0; sched_feat_names[i]; i++) {
793 int len = strlen(sched_feat_names[i]);
794
795 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
796 if (neg)
797 sysctl_sched_features &= ~(1UL << i);
798 else
799 sysctl_sched_features |= (1UL << i);
800 break;
801 }
802 }
803
804 if (!sched_feat_names[i])
805 return -EINVAL;
806
807 filp->f_pos += cnt;
808
809 return cnt;
810 }
811
812 static int sched_feat_open(struct inode *inode, struct file *filp)
813 {
814 return single_open(filp, sched_feat_show, NULL);
815 }
816
817 static struct file_operations sched_feat_fops = {
818 .open = sched_feat_open,
819 .write = sched_feat_write,
820 .read = seq_read,
821 .llseek = seq_lseek,
822 .release = single_release,
823 };
824
825 static __init int sched_init_debug(void)
826 {
827 debugfs_create_file("sched_features", 0644, NULL, NULL,
828 &sched_feat_fops);
829
830 return 0;
831 }
832 late_initcall(sched_init_debug);
833
834 #endif
835
836 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
837
838 /*
839 * Number of tasks to iterate in a single balance run.
840 * Limited because this is done with IRQs disabled.
841 */
842 const_debug unsigned int sysctl_sched_nr_migrate = 32;
843
844 /*
845 * ratelimit for updating the group shares.
846 * default: 0.25ms
847 */
848 unsigned int sysctl_sched_shares_ratelimit = 250000;
849
850 /*
851 * Inject some fuzzyness into changing the per-cpu group shares
852 * this avoids remote rq-locks at the expense of fairness.
853 * default: 4
854 */
855 unsigned int sysctl_sched_shares_thresh = 4;
856
857 /*
858 * period over which we measure -rt task cpu usage in us.
859 * default: 1s
860 */
861 unsigned int sysctl_sched_rt_period = 1000000;
862
863 static __read_mostly int scheduler_running;
864
865 /*
866 * part of the period that we allow rt tasks to run in us.
867 * default: 0.95s
868 */
869 int sysctl_sched_rt_runtime = 950000;
870
871 static inline u64 global_rt_period(void)
872 {
873 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
874 }
875
876 static inline u64 global_rt_runtime(void)
877 {
878 if (sysctl_sched_rt_runtime < 0)
879 return RUNTIME_INF;
880
881 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
882 }
883
884 #ifndef prepare_arch_switch
885 # define prepare_arch_switch(next) do { } while (0)
886 #endif
887 #ifndef finish_arch_switch
888 # define finish_arch_switch(prev) do { } while (0)
889 #endif
890
891 static inline int task_current(struct rq *rq, struct task_struct *p)
892 {
893 return rq->curr == p;
894 }
895
896 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
897 static inline int task_running(struct rq *rq, struct task_struct *p)
898 {
899 return task_current(rq, p);
900 }
901
902 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
903 {
904 }
905
906 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
907 {
908 #ifdef CONFIG_DEBUG_SPINLOCK
909 /* this is a valid case when another task releases the spinlock */
910 rq->lock.owner = current;
911 #endif
912 /*
913 * If we are tracking spinlock dependencies then we have to
914 * fix up the runqueue lock - which gets 'carried over' from
915 * prev into current:
916 */
917 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
918
919 spin_unlock_irq(&rq->lock);
920 }
921
922 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
923 static inline int task_running(struct rq *rq, struct task_struct *p)
924 {
925 #ifdef CONFIG_SMP
926 return p->oncpu;
927 #else
928 return task_current(rq, p);
929 #endif
930 }
931
932 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
933 {
934 #ifdef CONFIG_SMP
935 /*
936 * We can optimise this out completely for !SMP, because the
937 * SMP rebalancing from interrupt is the only thing that cares
938 * here.
939 */
940 next->oncpu = 1;
941 #endif
942 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
943 spin_unlock_irq(&rq->lock);
944 #else
945 spin_unlock(&rq->lock);
946 #endif
947 }
948
949 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
950 {
951 #ifdef CONFIG_SMP
952 /*
953 * After ->oncpu is cleared, the task can be moved to a different CPU.
954 * We must ensure this doesn't happen until the switch is completely
955 * finished.
956 */
957 smp_wmb();
958 prev->oncpu = 0;
959 #endif
960 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
961 local_irq_enable();
962 #endif
963 }
964 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
965
966 /*
967 * __task_rq_lock - lock the runqueue a given task resides on.
968 * Must be called interrupts disabled.
969 */
970 static inline struct rq *__task_rq_lock(struct task_struct *p)
971 __acquires(rq->lock)
972 {
973 for (;;) {
974 struct rq *rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
978 spin_unlock(&rq->lock);
979 }
980 }
981
982 /*
983 * task_rq_lock - lock the runqueue a given task resides on and disable
984 * interrupts. Note the ordering: we can safely lookup the task_rq without
985 * explicitly disabling preemption.
986 */
987 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
988 __acquires(rq->lock)
989 {
990 struct rq *rq;
991
992 for (;;) {
993 local_irq_save(*flags);
994 rq = task_rq(p);
995 spin_lock(&rq->lock);
996 if (likely(rq == task_rq(p)))
997 return rq;
998 spin_unlock_irqrestore(&rq->lock, *flags);
999 }
1000 }
1001
1002 void task_rq_unlock_wait(struct task_struct *p)
1003 {
1004 struct rq *rq = task_rq(p);
1005
1006 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1007 spin_unlock_wait(&rq->lock);
1008 }
1009
1010 static void __task_rq_unlock(struct rq *rq)
1011 __releases(rq->lock)
1012 {
1013 spin_unlock(&rq->lock);
1014 }
1015
1016 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1017 __releases(rq->lock)
1018 {
1019 spin_unlock_irqrestore(&rq->lock, *flags);
1020 }
1021
1022 /*
1023 * this_rq_lock - lock this runqueue and disable interrupts.
1024 */
1025 static struct rq *this_rq_lock(void)
1026 __acquires(rq->lock)
1027 {
1028 struct rq *rq;
1029
1030 local_irq_disable();
1031 rq = this_rq();
1032 spin_lock(&rq->lock);
1033
1034 return rq;
1035 }
1036
1037 #ifdef CONFIG_SCHED_HRTICK
1038 /*
1039 * Use HR-timers to deliver accurate preemption points.
1040 *
1041 * Its all a bit involved since we cannot program an hrt while holding the
1042 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1043 * reschedule event.
1044 *
1045 * When we get rescheduled we reprogram the hrtick_timer outside of the
1046 * rq->lock.
1047 */
1048
1049 /*
1050 * Use hrtick when:
1051 * - enabled by features
1052 * - hrtimer is actually high res
1053 */
1054 static inline int hrtick_enabled(struct rq *rq)
1055 {
1056 if (!sched_feat(HRTICK))
1057 return 0;
1058 if (!cpu_active(cpu_of(rq)))
1059 return 0;
1060 return hrtimer_is_hres_active(&rq->hrtick_timer);
1061 }
1062
1063 static void hrtick_clear(struct rq *rq)
1064 {
1065 if (hrtimer_active(&rq->hrtick_timer))
1066 hrtimer_cancel(&rq->hrtick_timer);
1067 }
1068
1069 /*
1070 * High-resolution timer tick.
1071 * Runs from hardirq context with interrupts disabled.
1072 */
1073 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1074 {
1075 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1076
1077 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1078
1079 spin_lock(&rq->lock);
1080 update_rq_clock(rq);
1081 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1082 spin_unlock(&rq->lock);
1083
1084 return HRTIMER_NORESTART;
1085 }
1086
1087 #ifdef CONFIG_SMP
1088 /*
1089 * called from hardirq (IPI) context
1090 */
1091 static void __hrtick_start(void *arg)
1092 {
1093 struct rq *rq = arg;
1094
1095 spin_lock(&rq->lock);
1096 hrtimer_restart(&rq->hrtick_timer);
1097 rq->hrtick_csd_pending = 0;
1098 spin_unlock(&rq->lock);
1099 }
1100
1101 /*
1102 * Called to set the hrtick timer state.
1103 *
1104 * called with rq->lock held and irqs disabled
1105 */
1106 static void hrtick_start(struct rq *rq, u64 delay)
1107 {
1108 struct hrtimer *timer = &rq->hrtick_timer;
1109 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1110
1111 hrtimer_set_expires(timer, time);
1112
1113 if (rq == this_rq()) {
1114 hrtimer_restart(timer);
1115 } else if (!rq->hrtick_csd_pending) {
1116 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1117 rq->hrtick_csd_pending = 1;
1118 }
1119 }
1120
1121 static int
1122 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1123 {
1124 int cpu = (int)(long)hcpu;
1125
1126 switch (action) {
1127 case CPU_UP_CANCELED:
1128 case CPU_UP_CANCELED_FROZEN:
1129 case CPU_DOWN_PREPARE:
1130 case CPU_DOWN_PREPARE_FROZEN:
1131 case CPU_DEAD:
1132 case CPU_DEAD_FROZEN:
1133 hrtick_clear(cpu_rq(cpu));
1134 return NOTIFY_OK;
1135 }
1136
1137 return NOTIFY_DONE;
1138 }
1139
1140 static __init void init_hrtick(void)
1141 {
1142 hotcpu_notifier(hotplug_hrtick, 0);
1143 }
1144 #else
1145 /*
1146 * Called to set the hrtick timer state.
1147 *
1148 * called with rq->lock held and irqs disabled
1149 */
1150 static void hrtick_start(struct rq *rq, u64 delay)
1151 {
1152 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1153 HRTIMER_MODE_REL, 0);
1154 }
1155
1156 static inline void init_hrtick(void)
1157 {
1158 }
1159 #endif /* CONFIG_SMP */
1160
1161 static void init_rq_hrtick(struct rq *rq)
1162 {
1163 #ifdef CONFIG_SMP
1164 rq->hrtick_csd_pending = 0;
1165
1166 rq->hrtick_csd.flags = 0;
1167 rq->hrtick_csd.func = __hrtick_start;
1168 rq->hrtick_csd.info = rq;
1169 #endif
1170
1171 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1172 rq->hrtick_timer.function = hrtick;
1173 }
1174 #else /* CONFIG_SCHED_HRTICK */
1175 static inline void hrtick_clear(struct rq *rq)
1176 {
1177 }
1178
1179 static inline void init_rq_hrtick(struct rq *rq)
1180 {
1181 }
1182
1183 static inline void init_hrtick(void)
1184 {
1185 }
1186 #endif /* CONFIG_SCHED_HRTICK */
1187
1188 /*
1189 * resched_task - mark a task 'to be rescheduled now'.
1190 *
1191 * On UP this means the setting of the need_resched flag, on SMP it
1192 * might also involve a cross-CPU call to trigger the scheduler on
1193 * the target CPU.
1194 */
1195 #ifdef CONFIG_SMP
1196
1197 #ifndef tsk_is_polling
1198 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1199 #endif
1200
1201 static void resched_task(struct task_struct *p)
1202 {
1203 int cpu;
1204
1205 assert_spin_locked(&task_rq(p)->lock);
1206
1207 if (test_tsk_need_resched(p))
1208 return;
1209
1210 set_tsk_need_resched(p);
1211
1212 cpu = task_cpu(p);
1213 if (cpu == smp_processor_id())
1214 return;
1215
1216 /* NEED_RESCHED must be visible before we test polling */
1217 smp_mb();
1218 if (!tsk_is_polling(p))
1219 smp_send_reschedule(cpu);
1220 }
1221
1222 static void resched_cpu(int cpu)
1223 {
1224 struct rq *rq = cpu_rq(cpu);
1225 unsigned long flags;
1226
1227 if (!spin_trylock_irqsave(&rq->lock, flags))
1228 return;
1229 resched_task(cpu_curr(cpu));
1230 spin_unlock_irqrestore(&rq->lock, flags);
1231 }
1232
1233 #ifdef CONFIG_NO_HZ
1234 /*
1235 * When add_timer_on() enqueues a timer into the timer wheel of an
1236 * idle CPU then this timer might expire before the next timer event
1237 * which is scheduled to wake up that CPU. In case of a completely
1238 * idle system the next event might even be infinite time into the
1239 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1240 * leaves the inner idle loop so the newly added timer is taken into
1241 * account when the CPU goes back to idle and evaluates the timer
1242 * wheel for the next timer event.
1243 */
1244 void wake_up_idle_cpu(int cpu)
1245 {
1246 struct rq *rq = cpu_rq(cpu);
1247
1248 if (cpu == smp_processor_id())
1249 return;
1250
1251 /*
1252 * This is safe, as this function is called with the timer
1253 * wheel base lock of (cpu) held. When the CPU is on the way
1254 * to idle and has not yet set rq->curr to idle then it will
1255 * be serialized on the timer wheel base lock and take the new
1256 * timer into account automatically.
1257 */
1258 if (rq->curr != rq->idle)
1259 return;
1260
1261 /*
1262 * We can set TIF_RESCHED on the idle task of the other CPU
1263 * lockless. The worst case is that the other CPU runs the
1264 * idle task through an additional NOOP schedule()
1265 */
1266 set_tsk_need_resched(rq->idle);
1267
1268 /* NEED_RESCHED must be visible before we test polling */
1269 smp_mb();
1270 if (!tsk_is_polling(rq->idle))
1271 smp_send_reschedule(cpu);
1272 }
1273 #endif /* CONFIG_NO_HZ */
1274
1275 #else /* !CONFIG_SMP */
1276 static void resched_task(struct task_struct *p)
1277 {
1278 assert_spin_locked(&task_rq(p)->lock);
1279 set_tsk_need_resched(p);
1280 }
1281 #endif /* CONFIG_SMP */
1282
1283 #if BITS_PER_LONG == 32
1284 # define WMULT_CONST (~0UL)
1285 #else
1286 # define WMULT_CONST (1UL << 32)
1287 #endif
1288
1289 #define WMULT_SHIFT 32
1290
1291 /*
1292 * Shift right and round:
1293 */
1294 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1295
1296 /*
1297 * delta *= weight / lw
1298 */
1299 static unsigned long
1300 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1301 struct load_weight *lw)
1302 {
1303 u64 tmp;
1304
1305 if (!lw->inv_weight) {
1306 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1307 lw->inv_weight = 1;
1308 else
1309 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1310 / (lw->weight+1);
1311 }
1312
1313 tmp = (u64)delta_exec * weight;
1314 /*
1315 * Check whether we'd overflow the 64-bit multiplication:
1316 */
1317 if (unlikely(tmp > WMULT_CONST))
1318 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1319 WMULT_SHIFT/2);
1320 else
1321 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1322
1323 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1324 }
1325
1326 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1327 {
1328 lw->weight += inc;
1329 lw->inv_weight = 0;
1330 }
1331
1332 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1333 {
1334 lw->weight -= dec;
1335 lw->inv_weight = 0;
1336 }
1337
1338 /*
1339 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1340 * of tasks with abnormal "nice" values across CPUs the contribution that
1341 * each task makes to its run queue's load is weighted according to its
1342 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1343 * scaled version of the new time slice allocation that they receive on time
1344 * slice expiry etc.
1345 */
1346
1347 #define WEIGHT_IDLEPRIO 3
1348 #define WMULT_IDLEPRIO 1431655765
1349
1350 /*
1351 * Nice levels are multiplicative, with a gentle 10% change for every
1352 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1353 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1354 * that remained on nice 0.
1355 *
1356 * The "10% effect" is relative and cumulative: from _any_ nice level,
1357 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1358 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1359 * If a task goes up by ~10% and another task goes down by ~10% then
1360 * the relative distance between them is ~25%.)
1361 */
1362 static const int prio_to_weight[40] = {
1363 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1364 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1365 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1366 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1367 /* 0 */ 1024, 820, 655, 526, 423,
1368 /* 5 */ 335, 272, 215, 172, 137,
1369 /* 10 */ 110, 87, 70, 56, 45,
1370 /* 15 */ 36, 29, 23, 18, 15,
1371 };
1372
1373 /*
1374 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1375 *
1376 * In cases where the weight does not change often, we can use the
1377 * precalculated inverse to speed up arithmetics by turning divisions
1378 * into multiplications:
1379 */
1380 static const u32 prio_to_wmult[40] = {
1381 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1382 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1383 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1384 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1385 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1386 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1387 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1388 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1389 };
1390
1391 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1392
1393 /*
1394 * runqueue iterator, to support SMP load-balancing between different
1395 * scheduling classes, without having to expose their internal data
1396 * structures to the load-balancing proper:
1397 */
1398 struct rq_iterator {
1399 void *arg;
1400 struct task_struct *(*start)(void *);
1401 struct task_struct *(*next)(void *);
1402 };
1403
1404 #ifdef CONFIG_SMP
1405 static unsigned long
1406 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1407 unsigned long max_load_move, struct sched_domain *sd,
1408 enum cpu_idle_type idle, int *all_pinned,
1409 int *this_best_prio, struct rq_iterator *iterator);
1410
1411 static int
1412 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1413 struct sched_domain *sd, enum cpu_idle_type idle,
1414 struct rq_iterator *iterator);
1415 #endif
1416
1417 /* Time spent by the tasks of the cpu accounting group executing in ... */
1418 enum cpuacct_stat_index {
1419 CPUACCT_STAT_USER, /* ... user mode */
1420 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1421
1422 CPUACCT_STAT_NSTATS,
1423 };
1424
1425 #ifdef CONFIG_CGROUP_CPUACCT
1426 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1427 static void cpuacct_update_stats(struct task_struct *tsk,
1428 enum cpuacct_stat_index idx, cputime_t val);
1429 #else
1430 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1431 static inline void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val) {}
1433 #endif
1434
1435 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1436 {
1437 update_load_add(&rq->load, load);
1438 }
1439
1440 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1441 {
1442 update_load_sub(&rq->load, load);
1443 }
1444
1445 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1446 typedef int (*tg_visitor)(struct task_group *, void *);
1447
1448 /*
1449 * Iterate the full tree, calling @down when first entering a node and @up when
1450 * leaving it for the final time.
1451 */
1452 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1453 {
1454 struct task_group *parent, *child;
1455 int ret;
1456
1457 rcu_read_lock();
1458 parent = &root_task_group;
1459 down:
1460 ret = (*down)(parent, data);
1461 if (ret)
1462 goto out_unlock;
1463 list_for_each_entry_rcu(child, &parent->children, siblings) {
1464 parent = child;
1465 goto down;
1466
1467 up:
1468 continue;
1469 }
1470 ret = (*up)(parent, data);
1471 if (ret)
1472 goto out_unlock;
1473
1474 child = parent;
1475 parent = parent->parent;
1476 if (parent)
1477 goto up;
1478 out_unlock:
1479 rcu_read_unlock();
1480
1481 return ret;
1482 }
1483
1484 static int tg_nop(struct task_group *tg, void *data)
1485 {
1486 return 0;
1487 }
1488 #endif
1489
1490 #ifdef CONFIG_SMP
1491 static unsigned long source_load(int cpu, int type);
1492 static unsigned long target_load(int cpu, int type);
1493 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1494
1495 static unsigned long cpu_avg_load_per_task(int cpu)
1496 {
1497 struct rq *rq = cpu_rq(cpu);
1498 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1499
1500 if (nr_running)
1501 rq->avg_load_per_task = rq->load.weight / nr_running;
1502 else
1503 rq->avg_load_per_task = 0;
1504
1505 return rq->avg_load_per_task;
1506 }
1507
1508 #ifdef CONFIG_FAIR_GROUP_SCHED
1509
1510 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1511
1512 /*
1513 * Calculate and set the cpu's group shares.
1514 */
1515 static void
1516 update_group_shares_cpu(struct task_group *tg, int cpu,
1517 unsigned long sd_shares, unsigned long sd_rq_weight)
1518 {
1519 unsigned long shares;
1520 unsigned long rq_weight;
1521
1522 if (!tg->se[cpu])
1523 return;
1524
1525 rq_weight = tg->cfs_rq[cpu]->rq_weight;
1526
1527 /*
1528 * \Sum shares * rq_weight
1529 * shares = -----------------------
1530 * \Sum rq_weight
1531 *
1532 */
1533 shares = (sd_shares * rq_weight) / sd_rq_weight;
1534 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1535
1536 if (abs(shares - tg->se[cpu]->load.weight) >
1537 sysctl_sched_shares_thresh) {
1538 struct rq *rq = cpu_rq(cpu);
1539 unsigned long flags;
1540
1541 spin_lock_irqsave(&rq->lock, flags);
1542 tg->cfs_rq[cpu]->shares = shares;
1543
1544 __set_se_shares(tg->se[cpu], shares);
1545 spin_unlock_irqrestore(&rq->lock, flags);
1546 }
1547 }
1548
1549 /*
1550 * Re-compute the task group their per cpu shares over the given domain.
1551 * This needs to be done in a bottom-up fashion because the rq weight of a
1552 * parent group depends on the shares of its child groups.
1553 */
1554 static int tg_shares_up(struct task_group *tg, void *data)
1555 {
1556 unsigned long weight, rq_weight = 0;
1557 unsigned long shares = 0;
1558 struct sched_domain *sd = data;
1559 int i;
1560
1561 for_each_cpu(i, sched_domain_span(sd)) {
1562 /*
1563 * If there are currently no tasks on the cpu pretend there
1564 * is one of average load so that when a new task gets to
1565 * run here it will not get delayed by group starvation.
1566 */
1567 weight = tg->cfs_rq[i]->load.weight;
1568 if (!weight)
1569 weight = NICE_0_LOAD;
1570
1571 tg->cfs_rq[i]->rq_weight = weight;
1572 rq_weight += weight;
1573 shares += tg->cfs_rq[i]->shares;
1574 }
1575
1576 if ((!shares && rq_weight) || shares > tg->shares)
1577 shares = tg->shares;
1578
1579 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1580 shares = tg->shares;
1581
1582 for_each_cpu(i, sched_domain_span(sd))
1583 update_group_shares_cpu(tg, i, shares, rq_weight);
1584
1585 return 0;
1586 }
1587
1588 /*
1589 * Compute the cpu's hierarchical load factor for each task group.
1590 * This needs to be done in a top-down fashion because the load of a child
1591 * group is a fraction of its parents load.
1592 */
1593 static int tg_load_down(struct task_group *tg, void *data)
1594 {
1595 unsigned long load;
1596 long cpu = (long)data;
1597
1598 if (!tg->parent) {
1599 load = cpu_rq(cpu)->load.weight;
1600 } else {
1601 load = tg->parent->cfs_rq[cpu]->h_load;
1602 load *= tg->cfs_rq[cpu]->shares;
1603 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1604 }
1605
1606 tg->cfs_rq[cpu]->h_load = load;
1607
1608 return 0;
1609 }
1610
1611 static void update_shares(struct sched_domain *sd)
1612 {
1613 u64 now = cpu_clock(raw_smp_processor_id());
1614 s64 elapsed = now - sd->last_update;
1615
1616 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1617 sd->last_update = now;
1618 walk_tg_tree(tg_nop, tg_shares_up, sd);
1619 }
1620 }
1621
1622 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1623 {
1624 spin_unlock(&rq->lock);
1625 update_shares(sd);
1626 spin_lock(&rq->lock);
1627 }
1628
1629 static void update_h_load(long cpu)
1630 {
1631 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1632 }
1633
1634 #else
1635
1636 static inline void update_shares(struct sched_domain *sd)
1637 {
1638 }
1639
1640 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1641 {
1642 }
1643
1644 #endif
1645
1646 #ifdef CONFIG_PREEMPT
1647
1648 /*
1649 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1650 * way at the expense of forcing extra atomic operations in all
1651 * invocations. This assures that the double_lock is acquired using the
1652 * same underlying policy as the spinlock_t on this architecture, which
1653 * reduces latency compared to the unfair variant below. However, it
1654 * also adds more overhead and therefore may reduce throughput.
1655 */
1656 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1657 __releases(this_rq->lock)
1658 __acquires(busiest->lock)
1659 __acquires(this_rq->lock)
1660 {
1661 spin_unlock(&this_rq->lock);
1662 double_rq_lock(this_rq, busiest);
1663
1664 return 1;
1665 }
1666
1667 #else
1668 /*
1669 * Unfair double_lock_balance: Optimizes throughput at the expense of
1670 * latency by eliminating extra atomic operations when the locks are
1671 * already in proper order on entry. This favors lower cpu-ids and will
1672 * grant the double lock to lower cpus over higher ids under contention,
1673 * regardless of entry order into the function.
1674 */
1675 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1676 __releases(this_rq->lock)
1677 __acquires(busiest->lock)
1678 __acquires(this_rq->lock)
1679 {
1680 int ret = 0;
1681
1682 if (unlikely(!spin_trylock(&busiest->lock))) {
1683 if (busiest < this_rq) {
1684 spin_unlock(&this_rq->lock);
1685 spin_lock(&busiest->lock);
1686 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1687 ret = 1;
1688 } else
1689 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1690 }
1691 return ret;
1692 }
1693
1694 #endif /* CONFIG_PREEMPT */
1695
1696 /*
1697 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1698 */
1699 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1700 {
1701 if (unlikely(!irqs_disabled())) {
1702 /* printk() doesn't work good under rq->lock */
1703 spin_unlock(&this_rq->lock);
1704 BUG_ON(1);
1705 }
1706
1707 return _double_lock_balance(this_rq, busiest);
1708 }
1709
1710 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1711 __releases(busiest->lock)
1712 {
1713 spin_unlock(&busiest->lock);
1714 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1715 }
1716 #endif
1717
1718 #ifdef CONFIG_FAIR_GROUP_SCHED
1719 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1720 {
1721 #ifdef CONFIG_SMP
1722 cfs_rq->shares = shares;
1723 #endif
1724 }
1725 #endif
1726
1727 #include "sched_stats.h"
1728 #include "sched_idletask.c"
1729 #include "sched_fair.c"
1730 #include "sched_rt.c"
1731 #ifdef CONFIG_SCHED_DEBUG
1732 # include "sched_debug.c"
1733 #endif
1734
1735 #define sched_class_highest (&rt_sched_class)
1736 #define for_each_class(class) \
1737 for (class = sched_class_highest; class; class = class->next)
1738
1739 static void inc_nr_running(struct rq *rq)
1740 {
1741 rq->nr_running++;
1742 }
1743
1744 static void dec_nr_running(struct rq *rq)
1745 {
1746 rq->nr_running--;
1747 }
1748
1749 static void set_load_weight(struct task_struct *p)
1750 {
1751 if (task_has_rt_policy(p)) {
1752 p->se.load.weight = prio_to_weight[0] * 2;
1753 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1754 return;
1755 }
1756
1757 /*
1758 * SCHED_IDLE tasks get minimal weight:
1759 */
1760 if (p->policy == SCHED_IDLE) {
1761 p->se.load.weight = WEIGHT_IDLEPRIO;
1762 p->se.load.inv_weight = WMULT_IDLEPRIO;
1763 return;
1764 }
1765
1766 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1767 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1768 }
1769
1770 static void update_avg(u64 *avg, u64 sample)
1771 {
1772 s64 diff = sample - *avg;
1773 *avg += diff >> 3;
1774 }
1775
1776 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1777 {
1778 if (wakeup)
1779 p->se.start_runtime = p->se.sum_exec_runtime;
1780
1781 sched_info_queued(p);
1782 p->sched_class->enqueue_task(rq, p, wakeup);
1783 p->se.on_rq = 1;
1784 }
1785
1786 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1787 {
1788 if (sleep) {
1789 if (p->se.last_wakeup) {
1790 update_avg(&p->se.avg_overlap,
1791 p->se.sum_exec_runtime - p->se.last_wakeup);
1792 p->se.last_wakeup = 0;
1793 } else {
1794 update_avg(&p->se.avg_wakeup,
1795 sysctl_sched_wakeup_granularity);
1796 }
1797 }
1798
1799 sched_info_dequeued(p);
1800 p->sched_class->dequeue_task(rq, p, sleep);
1801 p->se.on_rq = 0;
1802 }
1803
1804 /*
1805 * __normal_prio - return the priority that is based on the static prio
1806 */
1807 static inline int __normal_prio(struct task_struct *p)
1808 {
1809 return p->static_prio;
1810 }
1811
1812 /*
1813 * Calculate the expected normal priority: i.e. priority
1814 * without taking RT-inheritance into account. Might be
1815 * boosted by interactivity modifiers. Changes upon fork,
1816 * setprio syscalls, and whenever the interactivity
1817 * estimator recalculates.
1818 */
1819 static inline int normal_prio(struct task_struct *p)
1820 {
1821 int prio;
1822
1823 if (task_has_rt_policy(p))
1824 prio = MAX_RT_PRIO-1 - p->rt_priority;
1825 else
1826 prio = __normal_prio(p);
1827 return prio;
1828 }
1829
1830 /*
1831 * Calculate the current priority, i.e. the priority
1832 * taken into account by the scheduler. This value might
1833 * be boosted by RT tasks, or might be boosted by
1834 * interactivity modifiers. Will be RT if the task got
1835 * RT-boosted. If not then it returns p->normal_prio.
1836 */
1837 static int effective_prio(struct task_struct *p)
1838 {
1839 p->normal_prio = normal_prio(p);
1840 /*
1841 * If we are RT tasks or we were boosted to RT priority,
1842 * keep the priority unchanged. Otherwise, update priority
1843 * to the normal priority:
1844 */
1845 if (!rt_prio(p->prio))
1846 return p->normal_prio;
1847 return p->prio;
1848 }
1849
1850 /*
1851 * activate_task - move a task to the runqueue.
1852 */
1853 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1854 {
1855 if (task_contributes_to_load(p))
1856 rq->nr_uninterruptible--;
1857
1858 enqueue_task(rq, p, wakeup);
1859 inc_nr_running(rq);
1860 }
1861
1862 /*
1863 * deactivate_task - remove a task from the runqueue.
1864 */
1865 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1866 {
1867 if (task_contributes_to_load(p))
1868 rq->nr_uninterruptible++;
1869
1870 dequeue_task(rq, p, sleep);
1871 dec_nr_running(rq);
1872 }
1873
1874 /**
1875 * task_curr - is this task currently executing on a CPU?
1876 * @p: the task in question.
1877 */
1878 inline int task_curr(const struct task_struct *p)
1879 {
1880 return cpu_curr(task_cpu(p)) == p;
1881 }
1882
1883 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1884 {
1885 set_task_rq(p, cpu);
1886 #ifdef CONFIG_SMP
1887 /*
1888 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1889 * successfuly executed on another CPU. We must ensure that updates of
1890 * per-task data have been completed by this moment.
1891 */
1892 smp_wmb();
1893 task_thread_info(p)->cpu = cpu;
1894 #endif
1895 }
1896
1897 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1898 const struct sched_class *prev_class,
1899 int oldprio, int running)
1900 {
1901 if (prev_class != p->sched_class) {
1902 if (prev_class->switched_from)
1903 prev_class->switched_from(rq, p, running);
1904 p->sched_class->switched_to(rq, p, running);
1905 } else
1906 p->sched_class->prio_changed(rq, p, oldprio, running);
1907 }
1908
1909 #ifdef CONFIG_SMP
1910
1911 /* Used instead of source_load when we know the type == 0 */
1912 static unsigned long weighted_cpuload(const int cpu)
1913 {
1914 return cpu_rq(cpu)->load.weight;
1915 }
1916
1917 /*
1918 * Is this task likely cache-hot:
1919 */
1920 static int
1921 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1922 {
1923 s64 delta;
1924
1925 /*
1926 * Buddy candidates are cache hot:
1927 */
1928 if (sched_feat(CACHE_HOT_BUDDY) &&
1929 (&p->se == cfs_rq_of(&p->se)->next ||
1930 &p->se == cfs_rq_of(&p->se)->last))
1931 return 1;
1932
1933 if (p->sched_class != &fair_sched_class)
1934 return 0;
1935
1936 if (sysctl_sched_migration_cost == -1)
1937 return 1;
1938 if (sysctl_sched_migration_cost == 0)
1939 return 0;
1940
1941 delta = now - p->se.exec_start;
1942
1943 return delta < (s64)sysctl_sched_migration_cost;
1944 }
1945
1946
1947 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1948 {
1949 int old_cpu = task_cpu(p);
1950 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1951 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1952 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1953 u64 clock_offset;
1954
1955 clock_offset = old_rq->clock - new_rq->clock;
1956
1957 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1958
1959 #ifdef CONFIG_SCHEDSTATS
1960 if (p->se.wait_start)
1961 p->se.wait_start -= clock_offset;
1962 if (p->se.sleep_start)
1963 p->se.sleep_start -= clock_offset;
1964 if (p->se.block_start)
1965 p->se.block_start -= clock_offset;
1966 if (old_cpu != new_cpu) {
1967 schedstat_inc(p, se.nr_migrations);
1968 if (task_hot(p, old_rq->clock, NULL))
1969 schedstat_inc(p, se.nr_forced2_migrations);
1970 }
1971 #endif
1972 p->se.vruntime -= old_cfsrq->min_vruntime -
1973 new_cfsrq->min_vruntime;
1974
1975 __set_task_cpu(p, new_cpu);
1976 }
1977
1978 struct migration_req {
1979 struct list_head list;
1980
1981 struct task_struct *task;
1982 int dest_cpu;
1983
1984 struct completion done;
1985 };
1986
1987 /*
1988 * The task's runqueue lock must be held.
1989 * Returns true if you have to wait for migration thread.
1990 */
1991 static int
1992 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1993 {
1994 struct rq *rq = task_rq(p);
1995
1996 /*
1997 * If the task is not on a runqueue (and not running), then
1998 * it is sufficient to simply update the task's cpu field.
1999 */
2000 if (!p->se.on_rq && !task_running(rq, p)) {
2001 set_task_cpu(p, dest_cpu);
2002 return 0;
2003 }
2004
2005 init_completion(&req->done);
2006 req->task = p;
2007 req->dest_cpu = dest_cpu;
2008 list_add(&req->list, &rq->migration_queue);
2009
2010 return 1;
2011 }
2012
2013 /*
2014 * wait_task_inactive - wait for a thread to unschedule.
2015 *
2016 * If @match_state is nonzero, it's the @p->state value just checked and
2017 * not expected to change. If it changes, i.e. @p might have woken up,
2018 * then return zero. When we succeed in waiting for @p to be off its CPU,
2019 * we return a positive number (its total switch count). If a second call
2020 * a short while later returns the same number, the caller can be sure that
2021 * @p has remained unscheduled the whole time.
2022 *
2023 * The caller must ensure that the task *will* unschedule sometime soon,
2024 * else this function might spin for a *long* time. This function can't
2025 * be called with interrupts off, or it may introduce deadlock with
2026 * smp_call_function() if an IPI is sent by the same process we are
2027 * waiting to become inactive.
2028 */
2029 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2030 {
2031 unsigned long flags;
2032 int running, on_rq;
2033 unsigned long ncsw;
2034 struct rq *rq;
2035
2036 for (;;) {
2037 /*
2038 * We do the initial early heuristics without holding
2039 * any task-queue locks at all. We'll only try to get
2040 * the runqueue lock when things look like they will
2041 * work out!
2042 */
2043 rq = task_rq(p);
2044
2045 /*
2046 * If the task is actively running on another CPU
2047 * still, just relax and busy-wait without holding
2048 * any locks.
2049 *
2050 * NOTE! Since we don't hold any locks, it's not
2051 * even sure that "rq" stays as the right runqueue!
2052 * But we don't care, since "task_running()" will
2053 * return false if the runqueue has changed and p
2054 * is actually now running somewhere else!
2055 */
2056 while (task_running(rq, p)) {
2057 if (match_state && unlikely(p->state != match_state))
2058 return 0;
2059 cpu_relax();
2060 }
2061
2062 /*
2063 * Ok, time to look more closely! We need the rq
2064 * lock now, to be *sure*. If we're wrong, we'll
2065 * just go back and repeat.
2066 */
2067 rq = task_rq_lock(p, &flags);
2068 trace_sched_wait_task(rq, p);
2069 running = task_running(rq, p);
2070 on_rq = p->se.on_rq;
2071 ncsw = 0;
2072 if (!match_state || p->state == match_state)
2073 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2074 task_rq_unlock(rq, &flags);
2075
2076 /*
2077 * If it changed from the expected state, bail out now.
2078 */
2079 if (unlikely(!ncsw))
2080 break;
2081
2082 /*
2083 * Was it really running after all now that we
2084 * checked with the proper locks actually held?
2085 *
2086 * Oops. Go back and try again..
2087 */
2088 if (unlikely(running)) {
2089 cpu_relax();
2090 continue;
2091 }
2092
2093 /*
2094 * It's not enough that it's not actively running,
2095 * it must be off the runqueue _entirely_, and not
2096 * preempted!
2097 *
2098 * So if it was still runnable (but just not actively
2099 * running right now), it's preempted, and we should
2100 * yield - it could be a while.
2101 */
2102 if (unlikely(on_rq)) {
2103 schedule_timeout_uninterruptible(1);
2104 continue;
2105 }
2106
2107 /*
2108 * Ahh, all good. It wasn't running, and it wasn't
2109 * runnable, which means that it will never become
2110 * running in the future either. We're all done!
2111 */
2112 break;
2113 }
2114
2115 return ncsw;
2116 }
2117
2118 /***
2119 * kick_process - kick a running thread to enter/exit the kernel
2120 * @p: the to-be-kicked thread
2121 *
2122 * Cause a process which is running on another CPU to enter
2123 * kernel-mode, without any delay. (to get signals handled.)
2124 *
2125 * NOTE: this function doesnt have to take the runqueue lock,
2126 * because all it wants to ensure is that the remote task enters
2127 * the kernel. If the IPI races and the task has been migrated
2128 * to another CPU then no harm is done and the purpose has been
2129 * achieved as well.
2130 */
2131 void kick_process(struct task_struct *p)
2132 {
2133 int cpu;
2134
2135 preempt_disable();
2136 cpu = task_cpu(p);
2137 if ((cpu != smp_processor_id()) && task_curr(p))
2138 smp_send_reschedule(cpu);
2139 preempt_enable();
2140 }
2141
2142 /*
2143 * Return a low guess at the load of a migration-source cpu weighted
2144 * according to the scheduling class and "nice" value.
2145 *
2146 * We want to under-estimate the load of migration sources, to
2147 * balance conservatively.
2148 */
2149 static unsigned long source_load(int cpu, int type)
2150 {
2151 struct rq *rq = cpu_rq(cpu);
2152 unsigned long total = weighted_cpuload(cpu);
2153
2154 if (type == 0 || !sched_feat(LB_BIAS))
2155 return total;
2156
2157 return min(rq->cpu_load[type-1], total);
2158 }
2159
2160 /*
2161 * Return a high guess at the load of a migration-target cpu weighted
2162 * according to the scheduling class and "nice" value.
2163 */
2164 static unsigned long target_load(int cpu, int type)
2165 {
2166 struct rq *rq = cpu_rq(cpu);
2167 unsigned long total = weighted_cpuload(cpu);
2168
2169 if (type == 0 || !sched_feat(LB_BIAS))
2170 return total;
2171
2172 return max(rq->cpu_load[type-1], total);
2173 }
2174
2175 /*
2176 * find_idlest_group finds and returns the least busy CPU group within the
2177 * domain.
2178 */
2179 static struct sched_group *
2180 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2181 {
2182 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2183 unsigned long min_load = ULONG_MAX, this_load = 0;
2184 int load_idx = sd->forkexec_idx;
2185 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2186
2187 do {
2188 unsigned long load, avg_load;
2189 int local_group;
2190 int i;
2191
2192 /* Skip over this group if it has no CPUs allowed */
2193 if (!cpumask_intersects(sched_group_cpus(group),
2194 &p->cpus_allowed))
2195 continue;
2196
2197 local_group = cpumask_test_cpu(this_cpu,
2198 sched_group_cpus(group));
2199
2200 /* Tally up the load of all CPUs in the group */
2201 avg_load = 0;
2202
2203 for_each_cpu(i, sched_group_cpus(group)) {
2204 /* Bias balancing toward cpus of our domain */
2205 if (local_group)
2206 load = source_load(i, load_idx);
2207 else
2208 load = target_load(i, load_idx);
2209
2210 avg_load += load;
2211 }
2212
2213 /* Adjust by relative CPU power of the group */
2214 avg_load = sg_div_cpu_power(group,
2215 avg_load * SCHED_LOAD_SCALE);
2216
2217 if (local_group) {
2218 this_load = avg_load;
2219 this = group;
2220 } else if (avg_load < min_load) {
2221 min_load = avg_load;
2222 idlest = group;
2223 }
2224 } while (group = group->next, group != sd->groups);
2225
2226 if (!idlest || 100*this_load < imbalance*min_load)
2227 return NULL;
2228 return idlest;
2229 }
2230
2231 /*
2232 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2233 */
2234 static int
2235 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2236 {
2237 unsigned long load, min_load = ULONG_MAX;
2238 int idlest = -1;
2239 int i;
2240
2241 /* Traverse only the allowed CPUs */
2242 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2243 load = weighted_cpuload(i);
2244
2245 if (load < min_load || (load == min_load && i == this_cpu)) {
2246 min_load = load;
2247 idlest = i;
2248 }
2249 }
2250
2251 return idlest;
2252 }
2253
2254 /*
2255 * sched_balance_self: balance the current task (running on cpu) in domains
2256 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2257 * SD_BALANCE_EXEC.
2258 *
2259 * Balance, ie. select the least loaded group.
2260 *
2261 * Returns the target CPU number, or the same CPU if no balancing is needed.
2262 *
2263 * preempt must be disabled.
2264 */
2265 static int sched_balance_self(int cpu, int flag)
2266 {
2267 struct task_struct *t = current;
2268 struct sched_domain *tmp, *sd = NULL;
2269
2270 for_each_domain(cpu, tmp) {
2271 /*
2272 * If power savings logic is enabled for a domain, stop there.
2273 */
2274 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2275 break;
2276 if (tmp->flags & flag)
2277 sd = tmp;
2278 }
2279
2280 if (sd)
2281 update_shares(sd);
2282
2283 while (sd) {
2284 struct sched_group *group;
2285 int new_cpu, weight;
2286
2287 if (!(sd->flags & flag)) {
2288 sd = sd->child;
2289 continue;
2290 }
2291
2292 group = find_idlest_group(sd, t, cpu);
2293 if (!group) {
2294 sd = sd->child;
2295 continue;
2296 }
2297
2298 new_cpu = find_idlest_cpu(group, t, cpu);
2299 if (new_cpu == -1 || new_cpu == cpu) {
2300 /* Now try balancing at a lower domain level of cpu */
2301 sd = sd->child;
2302 continue;
2303 }
2304
2305 /* Now try balancing at a lower domain level of new_cpu */
2306 cpu = new_cpu;
2307 weight = cpumask_weight(sched_domain_span(sd));
2308 sd = NULL;
2309 for_each_domain(cpu, tmp) {
2310 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2311 break;
2312 if (tmp->flags & flag)
2313 sd = tmp;
2314 }
2315 /* while loop will break here if sd == NULL */
2316 }
2317
2318 return cpu;
2319 }
2320
2321 #endif /* CONFIG_SMP */
2322
2323 /***
2324 * try_to_wake_up - wake up a thread
2325 * @p: the to-be-woken-up thread
2326 * @state: the mask of task states that can be woken
2327 * @sync: do a synchronous wakeup?
2328 *
2329 * Put it on the run-queue if it's not already there. The "current"
2330 * thread is always on the run-queue (except when the actual
2331 * re-schedule is in progress), and as such you're allowed to do
2332 * the simpler "current->state = TASK_RUNNING" to mark yourself
2333 * runnable without the overhead of this.
2334 *
2335 * returns failure only if the task is already active.
2336 */
2337 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2338 {
2339 int cpu, orig_cpu, this_cpu, success = 0;
2340 unsigned long flags;
2341 long old_state;
2342 struct rq *rq;
2343
2344 if (!sched_feat(SYNC_WAKEUPS))
2345 sync = 0;
2346
2347 #ifdef CONFIG_SMP
2348 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2349 struct sched_domain *sd;
2350
2351 this_cpu = raw_smp_processor_id();
2352 cpu = task_cpu(p);
2353
2354 for_each_domain(this_cpu, sd) {
2355 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2356 update_shares(sd);
2357 break;
2358 }
2359 }
2360 }
2361 #endif
2362
2363 smp_wmb();
2364 rq = task_rq_lock(p, &flags);
2365 update_rq_clock(rq);
2366 old_state = p->state;
2367 if (!(old_state & state))
2368 goto out;
2369
2370 if (p->se.on_rq)
2371 goto out_running;
2372
2373 cpu = task_cpu(p);
2374 orig_cpu = cpu;
2375 this_cpu = smp_processor_id();
2376
2377 #ifdef CONFIG_SMP
2378 if (unlikely(task_running(rq, p)))
2379 goto out_activate;
2380
2381 cpu = p->sched_class->select_task_rq(p, sync);
2382 if (cpu != orig_cpu) {
2383 set_task_cpu(p, cpu);
2384 task_rq_unlock(rq, &flags);
2385 /* might preempt at this point */
2386 rq = task_rq_lock(p, &flags);
2387 old_state = p->state;
2388 if (!(old_state & state))
2389 goto out;
2390 if (p->se.on_rq)
2391 goto out_running;
2392
2393 this_cpu = smp_processor_id();
2394 cpu = task_cpu(p);
2395 }
2396
2397 #ifdef CONFIG_SCHEDSTATS
2398 schedstat_inc(rq, ttwu_count);
2399 if (cpu == this_cpu)
2400 schedstat_inc(rq, ttwu_local);
2401 else {
2402 struct sched_domain *sd;
2403 for_each_domain(this_cpu, sd) {
2404 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2405 schedstat_inc(sd, ttwu_wake_remote);
2406 break;
2407 }
2408 }
2409 }
2410 #endif /* CONFIG_SCHEDSTATS */
2411
2412 out_activate:
2413 #endif /* CONFIG_SMP */
2414 schedstat_inc(p, se.nr_wakeups);
2415 if (sync)
2416 schedstat_inc(p, se.nr_wakeups_sync);
2417 if (orig_cpu != cpu)
2418 schedstat_inc(p, se.nr_wakeups_migrate);
2419 if (cpu == this_cpu)
2420 schedstat_inc(p, se.nr_wakeups_local);
2421 else
2422 schedstat_inc(p, se.nr_wakeups_remote);
2423 activate_task(rq, p, 1);
2424 success = 1;
2425
2426 /*
2427 * Only attribute actual wakeups done by this task.
2428 */
2429 if (!in_interrupt()) {
2430 struct sched_entity *se = &current->se;
2431 u64 sample = se->sum_exec_runtime;
2432
2433 if (se->last_wakeup)
2434 sample -= se->last_wakeup;
2435 else
2436 sample -= se->start_runtime;
2437 update_avg(&se->avg_wakeup, sample);
2438
2439 se->last_wakeup = se->sum_exec_runtime;
2440 }
2441
2442 out_running:
2443 trace_sched_wakeup(rq, p, success);
2444 check_preempt_curr(rq, p, sync);
2445
2446 p->state = TASK_RUNNING;
2447 #ifdef CONFIG_SMP
2448 if (p->sched_class->task_wake_up)
2449 p->sched_class->task_wake_up(rq, p);
2450 #endif
2451 out:
2452 task_rq_unlock(rq, &flags);
2453
2454 return success;
2455 }
2456
2457 int wake_up_process(struct task_struct *p)
2458 {
2459 return try_to_wake_up(p, TASK_ALL, 0);
2460 }
2461 EXPORT_SYMBOL(wake_up_process);
2462
2463 int wake_up_state(struct task_struct *p, unsigned int state)
2464 {
2465 return try_to_wake_up(p, state, 0);
2466 }
2467
2468 /*
2469 * Perform scheduler related setup for a newly forked process p.
2470 * p is forked by current.
2471 *
2472 * __sched_fork() is basic setup used by init_idle() too:
2473 */
2474 static void __sched_fork(struct task_struct *p)
2475 {
2476 p->se.exec_start = 0;
2477 p->se.sum_exec_runtime = 0;
2478 p->se.prev_sum_exec_runtime = 0;
2479 p->se.last_wakeup = 0;
2480 p->se.avg_overlap = 0;
2481 p->se.start_runtime = 0;
2482 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2483
2484 #ifdef CONFIG_SCHEDSTATS
2485 p->se.wait_start = 0;
2486 p->se.sum_sleep_runtime = 0;
2487 p->se.sleep_start = 0;
2488 p->se.block_start = 0;
2489 p->se.sleep_max = 0;
2490 p->se.block_max = 0;
2491 p->se.exec_max = 0;
2492 p->se.slice_max = 0;
2493 p->se.wait_max = 0;
2494 #endif
2495
2496 INIT_LIST_HEAD(&p->rt.run_list);
2497 p->se.on_rq = 0;
2498 INIT_LIST_HEAD(&p->se.group_node);
2499
2500 #ifdef CONFIG_PREEMPT_NOTIFIERS
2501 INIT_HLIST_HEAD(&p->preempt_notifiers);
2502 #endif
2503
2504 /*
2505 * We mark the process as running here, but have not actually
2506 * inserted it onto the runqueue yet. This guarantees that
2507 * nobody will actually run it, and a signal or other external
2508 * event cannot wake it up and insert it on the runqueue either.
2509 */
2510 p->state = TASK_RUNNING;
2511 }
2512
2513 /*
2514 * fork()/clone()-time setup:
2515 */
2516 void sched_fork(struct task_struct *p, int clone_flags)
2517 {
2518 int cpu = get_cpu();
2519
2520 __sched_fork(p);
2521
2522 #ifdef CONFIG_SMP
2523 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2524 #endif
2525 set_task_cpu(p, cpu);
2526
2527 /*
2528 * Make sure we do not leak PI boosting priority to the child:
2529 */
2530 p->prio = current->normal_prio;
2531 if (!rt_prio(p->prio))
2532 p->sched_class = &fair_sched_class;
2533
2534 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2535 if (likely(sched_info_on()))
2536 memset(&p->sched_info, 0, sizeof(p->sched_info));
2537 #endif
2538 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2539 p->oncpu = 0;
2540 #endif
2541 #ifdef CONFIG_PREEMPT
2542 /* Want to start with kernel preemption disabled. */
2543 task_thread_info(p)->preempt_count = 1;
2544 #endif
2545 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2546
2547 put_cpu();
2548 }
2549
2550 /*
2551 * wake_up_new_task - wake up a newly created task for the first time.
2552 *
2553 * This function will do some initial scheduler statistics housekeeping
2554 * that must be done for every newly created context, then puts the task
2555 * on the runqueue and wakes it.
2556 */
2557 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2558 {
2559 unsigned long flags;
2560 struct rq *rq;
2561
2562 rq = task_rq_lock(p, &flags);
2563 BUG_ON(p->state != TASK_RUNNING);
2564 update_rq_clock(rq);
2565
2566 p->prio = effective_prio(p);
2567
2568 if (!p->sched_class->task_new || !current->se.on_rq) {
2569 activate_task(rq, p, 0);
2570 } else {
2571 /*
2572 * Let the scheduling class do new task startup
2573 * management (if any):
2574 */
2575 p->sched_class->task_new(rq, p);
2576 inc_nr_running(rq);
2577 }
2578 trace_sched_wakeup_new(rq, p, 1);
2579 check_preempt_curr(rq, p, 0);
2580 #ifdef CONFIG_SMP
2581 if (p->sched_class->task_wake_up)
2582 p->sched_class->task_wake_up(rq, p);
2583 #endif
2584 task_rq_unlock(rq, &flags);
2585 }
2586
2587 #ifdef CONFIG_PREEMPT_NOTIFIERS
2588
2589 /**
2590 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2591 * @notifier: notifier struct to register
2592 */
2593 void preempt_notifier_register(struct preempt_notifier *notifier)
2594 {
2595 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2596 }
2597 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2598
2599 /**
2600 * preempt_notifier_unregister - no longer interested in preemption notifications
2601 * @notifier: notifier struct to unregister
2602 *
2603 * This is safe to call from within a preemption notifier.
2604 */
2605 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2606 {
2607 hlist_del(&notifier->link);
2608 }
2609 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2610
2611 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2612 {
2613 struct preempt_notifier *notifier;
2614 struct hlist_node *node;
2615
2616 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2617 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2618 }
2619
2620 static void
2621 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2622 struct task_struct *next)
2623 {
2624 struct preempt_notifier *notifier;
2625 struct hlist_node *node;
2626
2627 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2628 notifier->ops->sched_out(notifier, next);
2629 }
2630
2631 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2632
2633 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2634 {
2635 }
2636
2637 static void
2638 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2639 struct task_struct *next)
2640 {
2641 }
2642
2643 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2644
2645 /**
2646 * prepare_task_switch - prepare to switch tasks
2647 * @rq: the runqueue preparing to switch
2648 * @prev: the current task that is being switched out
2649 * @next: the task we are going to switch to.
2650 *
2651 * This is called with the rq lock held and interrupts off. It must
2652 * be paired with a subsequent finish_task_switch after the context
2653 * switch.
2654 *
2655 * prepare_task_switch sets up locking and calls architecture specific
2656 * hooks.
2657 */
2658 static inline void
2659 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2660 struct task_struct *next)
2661 {
2662 fire_sched_out_preempt_notifiers(prev, next);
2663 prepare_lock_switch(rq, next);
2664 prepare_arch_switch(next);
2665 }
2666
2667 /**
2668 * finish_task_switch - clean up after a task-switch
2669 * @rq: runqueue associated with task-switch
2670 * @prev: the thread we just switched away from.
2671 *
2672 * finish_task_switch must be called after the context switch, paired
2673 * with a prepare_task_switch call before the context switch.
2674 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2675 * and do any other architecture-specific cleanup actions.
2676 *
2677 * Note that we may have delayed dropping an mm in context_switch(). If
2678 * so, we finish that here outside of the runqueue lock. (Doing it
2679 * with the lock held can cause deadlocks; see schedule() for
2680 * details.)
2681 */
2682 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2683 __releases(rq->lock)
2684 {
2685 struct mm_struct *mm = rq->prev_mm;
2686 long prev_state;
2687 #ifdef CONFIG_SMP
2688 int post_schedule = 0;
2689
2690 if (current->sched_class->needs_post_schedule)
2691 post_schedule = current->sched_class->needs_post_schedule(rq);
2692 #endif
2693
2694 rq->prev_mm = NULL;
2695
2696 /*
2697 * A task struct has one reference for the use as "current".
2698 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2699 * schedule one last time. The schedule call will never return, and
2700 * the scheduled task must drop that reference.
2701 * The test for TASK_DEAD must occur while the runqueue locks are
2702 * still held, otherwise prev could be scheduled on another cpu, die
2703 * there before we look at prev->state, and then the reference would
2704 * be dropped twice.
2705 * Manfred Spraul <manfred@colorfullife.com>
2706 */
2707 prev_state = prev->state;
2708 finish_arch_switch(prev);
2709 finish_lock_switch(rq, prev);
2710 #ifdef CONFIG_SMP
2711 if (post_schedule)
2712 current->sched_class->post_schedule(rq);
2713 #endif
2714
2715 fire_sched_in_preempt_notifiers(current);
2716 if (mm)
2717 mmdrop(mm);
2718 if (unlikely(prev_state == TASK_DEAD)) {
2719 /*
2720 * Remove function-return probe instances associated with this
2721 * task and put them back on the free list.
2722 */
2723 kprobe_flush_task(prev);
2724 put_task_struct(prev);
2725 }
2726 }
2727
2728 /**
2729 * schedule_tail - first thing a freshly forked thread must call.
2730 * @prev: the thread we just switched away from.
2731 */
2732 asmlinkage void schedule_tail(struct task_struct *prev)
2733 __releases(rq->lock)
2734 {
2735 struct rq *rq = this_rq();
2736
2737 finish_task_switch(rq, prev);
2738 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2739 /* In this case, finish_task_switch does not reenable preemption */
2740 preempt_enable();
2741 #endif
2742 if (current->set_child_tid)
2743 put_user(task_pid_vnr(current), current->set_child_tid);
2744 }
2745
2746 /*
2747 * context_switch - switch to the new MM and the new
2748 * thread's register state.
2749 */
2750 static inline void
2751 context_switch(struct rq *rq, struct task_struct *prev,
2752 struct task_struct *next)
2753 {
2754 struct mm_struct *mm, *oldmm;
2755
2756 prepare_task_switch(rq, prev, next);
2757 trace_sched_switch(rq, prev, next);
2758 mm = next->mm;
2759 oldmm = prev->active_mm;
2760 /*
2761 * For paravirt, this is coupled with an exit in switch_to to
2762 * combine the page table reload and the switch backend into
2763 * one hypercall.
2764 */
2765 arch_enter_lazy_cpu_mode();
2766
2767 if (unlikely(!mm)) {
2768 next->active_mm = oldmm;
2769 atomic_inc(&oldmm->mm_count);
2770 enter_lazy_tlb(oldmm, next);
2771 } else
2772 switch_mm(oldmm, mm, next);
2773
2774 if (unlikely(!prev->mm)) {
2775 prev->active_mm = NULL;
2776 rq->prev_mm = oldmm;
2777 }
2778 /*
2779 * Since the runqueue lock will be released by the next
2780 * task (which is an invalid locking op but in the case
2781 * of the scheduler it's an obvious special-case), so we
2782 * do an early lockdep release here:
2783 */
2784 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2785 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2786 #endif
2787
2788 /* Here we just switch the register state and the stack. */
2789 switch_to(prev, next, prev);
2790
2791 barrier();
2792 /*
2793 * this_rq must be evaluated again because prev may have moved
2794 * CPUs since it called schedule(), thus the 'rq' on its stack
2795 * frame will be invalid.
2796 */
2797 finish_task_switch(this_rq(), prev);
2798 }
2799
2800 /*
2801 * nr_running, nr_uninterruptible and nr_context_switches:
2802 *
2803 * externally visible scheduler statistics: current number of runnable
2804 * threads, current number of uninterruptible-sleeping threads, total
2805 * number of context switches performed since bootup.
2806 */
2807 unsigned long nr_running(void)
2808 {
2809 unsigned long i, sum = 0;
2810
2811 for_each_online_cpu(i)
2812 sum += cpu_rq(i)->nr_running;
2813
2814 return sum;
2815 }
2816
2817 unsigned long nr_uninterruptible(void)
2818 {
2819 unsigned long i, sum = 0;
2820
2821 for_each_possible_cpu(i)
2822 sum += cpu_rq(i)->nr_uninterruptible;
2823
2824 /*
2825 * Since we read the counters lockless, it might be slightly
2826 * inaccurate. Do not allow it to go below zero though:
2827 */
2828 if (unlikely((long)sum < 0))
2829 sum = 0;
2830
2831 return sum;
2832 }
2833
2834 unsigned long long nr_context_switches(void)
2835 {
2836 int i;
2837 unsigned long long sum = 0;
2838
2839 for_each_possible_cpu(i)
2840 sum += cpu_rq(i)->nr_switches;
2841
2842 return sum;
2843 }
2844
2845 unsigned long nr_iowait(void)
2846 {
2847 unsigned long i, sum = 0;
2848
2849 for_each_possible_cpu(i)
2850 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2851
2852 return sum;
2853 }
2854
2855 unsigned long nr_active(void)
2856 {
2857 unsigned long i, running = 0, uninterruptible = 0;
2858
2859 for_each_online_cpu(i) {
2860 running += cpu_rq(i)->nr_running;
2861 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2862 }
2863
2864 if (unlikely((long)uninterruptible < 0))
2865 uninterruptible = 0;
2866
2867 return running + uninterruptible;
2868 }
2869
2870 /*
2871 * Update rq->cpu_load[] statistics. This function is usually called every
2872 * scheduler tick (TICK_NSEC).
2873 */
2874 static void update_cpu_load(struct rq *this_rq)
2875 {
2876 unsigned long this_load = this_rq->load.weight;
2877 int i, scale;
2878
2879 this_rq->nr_load_updates++;
2880
2881 /* Update our load: */
2882 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2883 unsigned long old_load, new_load;
2884
2885 /* scale is effectively 1 << i now, and >> i divides by scale */
2886
2887 old_load = this_rq->cpu_load[i];
2888 new_load = this_load;
2889 /*
2890 * Round up the averaging division if load is increasing. This
2891 * prevents us from getting stuck on 9 if the load is 10, for
2892 * example.
2893 */
2894 if (new_load > old_load)
2895 new_load += scale-1;
2896 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2897 }
2898 }
2899
2900 #ifdef CONFIG_SMP
2901
2902 /*
2903 * double_rq_lock - safely lock two runqueues
2904 *
2905 * Note this does not disable interrupts like task_rq_lock,
2906 * you need to do so manually before calling.
2907 */
2908 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2909 __acquires(rq1->lock)
2910 __acquires(rq2->lock)
2911 {
2912 BUG_ON(!irqs_disabled());
2913 if (rq1 == rq2) {
2914 spin_lock(&rq1->lock);
2915 __acquire(rq2->lock); /* Fake it out ;) */
2916 } else {
2917 if (rq1 < rq2) {
2918 spin_lock(&rq1->lock);
2919 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
2920 } else {
2921 spin_lock(&rq2->lock);
2922 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2923 }
2924 }
2925 update_rq_clock(rq1);
2926 update_rq_clock(rq2);
2927 }
2928
2929 /*
2930 * double_rq_unlock - safely unlock two runqueues
2931 *
2932 * Note this does not restore interrupts like task_rq_unlock,
2933 * you need to do so manually after calling.
2934 */
2935 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2936 __releases(rq1->lock)
2937 __releases(rq2->lock)
2938 {
2939 spin_unlock(&rq1->lock);
2940 if (rq1 != rq2)
2941 spin_unlock(&rq2->lock);
2942 else
2943 __release(rq2->lock);
2944 }
2945
2946 /*
2947 * If dest_cpu is allowed for this process, migrate the task to it.
2948 * This is accomplished by forcing the cpu_allowed mask to only
2949 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2950 * the cpu_allowed mask is restored.
2951 */
2952 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2953 {
2954 struct migration_req req;
2955 unsigned long flags;
2956 struct rq *rq;
2957
2958 rq = task_rq_lock(p, &flags);
2959 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
2960 || unlikely(!cpu_active(dest_cpu)))
2961 goto out;
2962
2963 /* force the process onto the specified CPU */
2964 if (migrate_task(p, dest_cpu, &req)) {
2965 /* Need to wait for migration thread (might exit: take ref). */
2966 struct task_struct *mt = rq->migration_thread;
2967
2968 get_task_struct(mt);
2969 task_rq_unlock(rq, &flags);
2970 wake_up_process(mt);
2971 put_task_struct(mt);
2972 wait_for_completion(&req.done);
2973
2974 return;
2975 }
2976 out:
2977 task_rq_unlock(rq, &flags);
2978 }
2979
2980 /*
2981 * sched_exec - execve() is a valuable balancing opportunity, because at
2982 * this point the task has the smallest effective memory and cache footprint.
2983 */
2984 void sched_exec(void)
2985 {
2986 int new_cpu, this_cpu = get_cpu();
2987 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2988 put_cpu();
2989 if (new_cpu != this_cpu)
2990 sched_migrate_task(current, new_cpu);
2991 }
2992
2993 /*
2994 * pull_task - move a task from a remote runqueue to the local runqueue.
2995 * Both runqueues must be locked.
2996 */
2997 static void pull_task(struct rq *src_rq, struct task_struct *p,
2998 struct rq *this_rq, int this_cpu)
2999 {
3000 deactivate_task(src_rq, p, 0);
3001 set_task_cpu(p, this_cpu);
3002 activate_task(this_rq, p, 0);
3003 /*
3004 * Note that idle threads have a prio of MAX_PRIO, for this test
3005 * to be always true for them.
3006 */
3007 check_preempt_curr(this_rq, p, 0);
3008 }
3009
3010 /*
3011 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3012 */
3013 static
3014 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3015 struct sched_domain *sd, enum cpu_idle_type idle,
3016 int *all_pinned)
3017 {
3018 int tsk_cache_hot = 0;
3019 /*
3020 * We do not migrate tasks that are:
3021 * 1) running (obviously), or
3022 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3023 * 3) are cache-hot on their current CPU.
3024 */
3025 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3026 schedstat_inc(p, se.nr_failed_migrations_affine);
3027 return 0;
3028 }
3029 *all_pinned = 0;
3030
3031 if (task_running(rq, p)) {
3032 schedstat_inc(p, se.nr_failed_migrations_running);
3033 return 0;
3034 }
3035
3036 /*
3037 * Aggressive migration if:
3038 * 1) task is cache cold, or
3039 * 2) too many balance attempts have failed.
3040 */
3041
3042 tsk_cache_hot = task_hot(p, rq->clock, sd);
3043 if (!tsk_cache_hot ||
3044 sd->nr_balance_failed > sd->cache_nice_tries) {
3045 #ifdef CONFIG_SCHEDSTATS
3046 if (tsk_cache_hot) {
3047 schedstat_inc(sd, lb_hot_gained[idle]);
3048 schedstat_inc(p, se.nr_forced_migrations);
3049 }
3050 #endif
3051 return 1;
3052 }
3053
3054 if (tsk_cache_hot) {
3055 schedstat_inc(p, se.nr_failed_migrations_hot);
3056 return 0;
3057 }
3058 return 1;
3059 }
3060
3061 static unsigned long
3062 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3063 unsigned long max_load_move, struct sched_domain *sd,
3064 enum cpu_idle_type idle, int *all_pinned,
3065 int *this_best_prio, struct rq_iterator *iterator)
3066 {
3067 int loops = 0, pulled = 0, pinned = 0;
3068 struct task_struct *p;
3069 long rem_load_move = max_load_move;
3070
3071 if (max_load_move == 0)
3072 goto out;
3073
3074 pinned = 1;
3075
3076 /*
3077 * Start the load-balancing iterator:
3078 */
3079 p = iterator->start(iterator->arg);
3080 next:
3081 if (!p || loops++ > sysctl_sched_nr_migrate)
3082 goto out;
3083
3084 if ((p->se.load.weight >> 1) > rem_load_move ||
3085 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3086 p = iterator->next(iterator->arg);
3087 goto next;
3088 }
3089
3090 pull_task(busiest, p, this_rq, this_cpu);
3091 pulled++;
3092 rem_load_move -= p->se.load.weight;
3093
3094 #ifdef CONFIG_PREEMPT
3095 /*
3096 * NEWIDLE balancing is a source of latency, so preemptible kernels
3097 * will stop after the first task is pulled to minimize the critical
3098 * section.
3099 */
3100 if (idle == CPU_NEWLY_IDLE)
3101 goto out;
3102 #endif
3103
3104 /*
3105 * We only want to steal up to the prescribed amount of weighted load.
3106 */
3107 if (rem_load_move > 0) {
3108 if (p->prio < *this_best_prio)
3109 *this_best_prio = p->prio;
3110 p = iterator->next(iterator->arg);
3111 goto next;
3112 }
3113 out:
3114 /*
3115 * Right now, this is one of only two places pull_task() is called,
3116 * so we can safely collect pull_task() stats here rather than
3117 * inside pull_task().
3118 */
3119 schedstat_add(sd, lb_gained[idle], pulled);
3120
3121 if (all_pinned)
3122 *all_pinned = pinned;
3123
3124 return max_load_move - rem_load_move;
3125 }
3126
3127 /*
3128 * move_tasks tries to move up to max_load_move weighted load from busiest to
3129 * this_rq, as part of a balancing operation within domain "sd".
3130 * Returns 1 if successful and 0 otherwise.
3131 *
3132 * Called with both runqueues locked.
3133 */
3134 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3135 unsigned long max_load_move,
3136 struct sched_domain *sd, enum cpu_idle_type idle,
3137 int *all_pinned)
3138 {
3139 const struct sched_class *class = sched_class_highest;
3140 unsigned long total_load_moved = 0;
3141 int this_best_prio = this_rq->curr->prio;
3142
3143 do {
3144 total_load_moved +=
3145 class->load_balance(this_rq, this_cpu, busiest,
3146 max_load_move - total_load_moved,
3147 sd, idle, all_pinned, &this_best_prio);
3148 class = class->next;
3149
3150 #ifdef CONFIG_PREEMPT
3151 /*
3152 * NEWIDLE balancing is a source of latency, so preemptible
3153 * kernels will stop after the first task is pulled to minimize
3154 * the critical section.
3155 */
3156 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3157 break;
3158 #endif
3159 } while (class && max_load_move > total_load_moved);
3160
3161 return total_load_moved > 0;
3162 }
3163
3164 static int
3165 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3166 struct sched_domain *sd, enum cpu_idle_type idle,
3167 struct rq_iterator *iterator)
3168 {
3169 struct task_struct *p = iterator->start(iterator->arg);
3170 int pinned = 0;
3171
3172 while (p) {
3173 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3174 pull_task(busiest, p, this_rq, this_cpu);
3175 /*
3176 * Right now, this is only the second place pull_task()
3177 * is called, so we can safely collect pull_task()
3178 * stats here rather than inside pull_task().
3179 */
3180 schedstat_inc(sd, lb_gained[idle]);
3181
3182 return 1;
3183 }
3184 p = iterator->next(iterator->arg);
3185 }
3186
3187 return 0;
3188 }
3189
3190 /*
3191 * move_one_task tries to move exactly one task from busiest to this_rq, as
3192 * part of active balancing operations within "domain".
3193 * Returns 1 if successful and 0 otherwise.
3194 *
3195 * Called with both runqueues locked.
3196 */
3197 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3198 struct sched_domain *sd, enum cpu_idle_type idle)
3199 {
3200 const struct sched_class *class;
3201
3202 for (class = sched_class_highest; class; class = class->next)
3203 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3204 return 1;
3205
3206 return 0;
3207 }
3208 /********** Helpers for find_busiest_group ************************/
3209 /*
3210 * sd_lb_stats - Structure to store the statistics of a sched_domain
3211 * during load balancing.
3212 */
3213 struct sd_lb_stats {
3214 struct sched_group *busiest; /* Busiest group in this sd */
3215 struct sched_group *this; /* Local group in this sd */
3216 unsigned long total_load; /* Total load of all groups in sd */
3217 unsigned long total_pwr; /* Total power of all groups in sd */
3218 unsigned long avg_load; /* Average load across all groups in sd */
3219
3220 /** Statistics of this group */
3221 unsigned long this_load;
3222 unsigned long this_load_per_task;
3223 unsigned long this_nr_running;
3224
3225 /* Statistics of the busiest group */
3226 unsigned long max_load;
3227 unsigned long busiest_load_per_task;
3228 unsigned long busiest_nr_running;
3229
3230 int group_imb; /* Is there imbalance in this sd */
3231 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3232 int power_savings_balance; /* Is powersave balance needed for this sd */
3233 struct sched_group *group_min; /* Least loaded group in sd */
3234 struct sched_group *group_leader; /* Group which relieves group_min */
3235 unsigned long min_load_per_task; /* load_per_task in group_min */
3236 unsigned long leader_nr_running; /* Nr running of group_leader */
3237 unsigned long min_nr_running; /* Nr running of group_min */
3238 #endif
3239 };
3240
3241 /*
3242 * sg_lb_stats - stats of a sched_group required for load_balancing
3243 */
3244 struct sg_lb_stats {
3245 unsigned long avg_load; /*Avg load across the CPUs of the group */
3246 unsigned long group_load; /* Total load over the CPUs of the group */
3247 unsigned long sum_nr_running; /* Nr tasks running in the group */
3248 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3249 unsigned long group_capacity;
3250 int group_imb; /* Is there an imbalance in the group ? */
3251 };
3252
3253 /**
3254 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3255 * @group: The group whose first cpu is to be returned.
3256 */
3257 static inline unsigned int group_first_cpu(struct sched_group *group)
3258 {
3259 return cpumask_first(sched_group_cpus(group));
3260 }
3261
3262 /**
3263 * get_sd_load_idx - Obtain the load index for a given sched domain.
3264 * @sd: The sched_domain whose load_idx is to be obtained.
3265 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3266 */
3267 static inline int get_sd_load_idx(struct sched_domain *sd,
3268 enum cpu_idle_type idle)
3269 {
3270 int load_idx;
3271
3272 switch (idle) {
3273 case CPU_NOT_IDLE:
3274 load_idx = sd->busy_idx;
3275 break;
3276
3277 case CPU_NEWLY_IDLE:
3278 load_idx = sd->newidle_idx;
3279 break;
3280 default:
3281 load_idx = sd->idle_idx;
3282 break;
3283 }
3284
3285 return load_idx;
3286 }
3287
3288
3289 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3290 /**
3291 * init_sd_power_savings_stats - Initialize power savings statistics for
3292 * the given sched_domain, during load balancing.
3293 *
3294 * @sd: Sched domain whose power-savings statistics are to be initialized.
3295 * @sds: Variable containing the statistics for sd.
3296 * @idle: Idle status of the CPU at which we're performing load-balancing.
3297 */
3298 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3299 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3300 {
3301 /*
3302 * Busy processors will not participate in power savings
3303 * balance.
3304 */
3305 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3306 sds->power_savings_balance = 0;
3307 else {
3308 sds->power_savings_balance = 1;
3309 sds->min_nr_running = ULONG_MAX;
3310 sds->leader_nr_running = 0;
3311 }
3312 }
3313
3314 /**
3315 * update_sd_power_savings_stats - Update the power saving stats for a
3316 * sched_domain while performing load balancing.
3317 *
3318 * @group: sched_group belonging to the sched_domain under consideration.
3319 * @sds: Variable containing the statistics of the sched_domain
3320 * @local_group: Does group contain the CPU for which we're performing
3321 * load balancing ?
3322 * @sgs: Variable containing the statistics of the group.
3323 */
3324 static inline void update_sd_power_savings_stats(struct sched_group *group,
3325 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3326 {
3327
3328 if (!sds->power_savings_balance)
3329 return;
3330
3331 /*
3332 * If the local group is idle or completely loaded
3333 * no need to do power savings balance at this domain
3334 */
3335 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3336 !sds->this_nr_running))
3337 sds->power_savings_balance = 0;
3338
3339 /*
3340 * If a group is already running at full capacity or idle,
3341 * don't include that group in power savings calculations
3342 */
3343 if (!sds->power_savings_balance ||
3344 sgs->sum_nr_running >= sgs->group_capacity ||
3345 !sgs->sum_nr_running)
3346 return;
3347
3348 /*
3349 * Calculate the group which has the least non-idle load.
3350 * This is the group from where we need to pick up the load
3351 * for saving power
3352 */
3353 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3354 (sgs->sum_nr_running == sds->min_nr_running &&
3355 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3356 sds->group_min = group;
3357 sds->min_nr_running = sgs->sum_nr_running;
3358 sds->min_load_per_task = sgs->sum_weighted_load /
3359 sgs->sum_nr_running;
3360 }
3361
3362 /*
3363 * Calculate the group which is almost near its
3364 * capacity but still has some space to pick up some load
3365 * from other group and save more power
3366 */
3367 if (sgs->sum_nr_running > sgs->group_capacity - 1)
3368 return;
3369
3370 if (sgs->sum_nr_running > sds->leader_nr_running ||
3371 (sgs->sum_nr_running == sds->leader_nr_running &&
3372 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3373 sds->group_leader = group;
3374 sds->leader_nr_running = sgs->sum_nr_running;
3375 }
3376 }
3377
3378 /**
3379 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3380 * @sds: Variable containing the statistics of the sched_domain
3381 * under consideration.
3382 * @this_cpu: Cpu at which we're currently performing load-balancing.
3383 * @imbalance: Variable to store the imbalance.
3384 *
3385 * Description:
3386 * Check if we have potential to perform some power-savings balance.
3387 * If yes, set the busiest group to be the least loaded group in the
3388 * sched_domain, so that it's CPUs can be put to idle.
3389 *
3390 * Returns 1 if there is potential to perform power-savings balance.
3391 * Else returns 0.
3392 */
3393 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3394 int this_cpu, unsigned long *imbalance)
3395 {
3396 if (!sds->power_savings_balance)
3397 return 0;
3398
3399 if (sds->this != sds->group_leader ||
3400 sds->group_leader == sds->group_min)
3401 return 0;
3402
3403 *imbalance = sds->min_load_per_task;
3404 sds->busiest = sds->group_min;
3405
3406 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3407 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3408 group_first_cpu(sds->group_leader);
3409 }
3410
3411 return 1;
3412
3413 }
3414 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3415 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3416 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3417 {
3418 return;
3419 }
3420
3421 static inline void update_sd_power_savings_stats(struct sched_group *group,
3422 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3423 {
3424 return;
3425 }
3426
3427 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3428 int this_cpu, unsigned long *imbalance)
3429 {
3430 return 0;
3431 }
3432 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3433
3434
3435 /**
3436 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3437 * @group: sched_group whose statistics are to be updated.
3438 * @this_cpu: Cpu for which load balance is currently performed.
3439 * @idle: Idle status of this_cpu
3440 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3441 * @sd_idle: Idle status of the sched_domain containing group.
3442 * @local_group: Does group contain this_cpu.
3443 * @cpus: Set of cpus considered for load balancing.
3444 * @balance: Should we balance.
3445 * @sgs: variable to hold the statistics for this group.
3446 */
3447 static inline void update_sg_lb_stats(struct sched_group *group, int this_cpu,
3448 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3449 int local_group, const struct cpumask *cpus,
3450 int *balance, struct sg_lb_stats *sgs)
3451 {
3452 unsigned long load, max_cpu_load, min_cpu_load;
3453 int i;
3454 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3455 unsigned long sum_avg_load_per_task;
3456 unsigned long avg_load_per_task;
3457
3458 if (local_group)
3459 balance_cpu = group_first_cpu(group);
3460
3461 /* Tally up the load of all CPUs in the group */
3462 sum_avg_load_per_task = avg_load_per_task = 0;
3463 max_cpu_load = 0;
3464 min_cpu_load = ~0UL;
3465
3466 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3467 struct rq *rq = cpu_rq(i);
3468
3469 if (*sd_idle && rq->nr_running)
3470 *sd_idle = 0;
3471
3472 /* Bias balancing toward cpus of our domain */
3473 if (local_group) {
3474 if (idle_cpu(i) && !first_idle_cpu) {
3475 first_idle_cpu = 1;
3476 balance_cpu = i;
3477 }
3478
3479 load = target_load(i, load_idx);
3480 } else {
3481 load = source_load(i, load_idx);
3482 if (load > max_cpu_load)
3483 max_cpu_load = load;
3484 if (min_cpu_load > load)
3485 min_cpu_load = load;
3486 }
3487
3488 sgs->group_load += load;
3489 sgs->sum_nr_running += rq->nr_running;
3490 sgs->sum_weighted_load += weighted_cpuload(i);
3491
3492 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3493 }
3494
3495 /*
3496 * First idle cpu or the first cpu(busiest) in this sched group
3497 * is eligible for doing load balancing at this and above
3498 * domains. In the newly idle case, we will allow all the cpu's
3499 * to do the newly idle load balance.
3500 */
3501 if (idle != CPU_NEWLY_IDLE && local_group &&
3502 balance_cpu != this_cpu && balance) {
3503 *balance = 0;
3504 return;
3505 }
3506
3507 /* Adjust by relative CPU power of the group */
3508 sgs->avg_load = sg_div_cpu_power(group,
3509 sgs->group_load * SCHED_LOAD_SCALE);
3510
3511
3512 /*
3513 * Consider the group unbalanced when the imbalance is larger
3514 * than the average weight of two tasks.
3515 *
3516 * APZ: with cgroup the avg task weight can vary wildly and
3517 * might not be a suitable number - should we keep a
3518 * normalized nr_running number somewhere that negates
3519 * the hierarchy?
3520 */
3521 avg_load_per_task = sg_div_cpu_power(group,
3522 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3523
3524 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3525 sgs->group_imb = 1;
3526
3527 sgs->group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
3528
3529 }
3530
3531 /**
3532 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3533 * @sd: sched_domain whose statistics are to be updated.
3534 * @this_cpu: Cpu for which load balance is currently performed.
3535 * @idle: Idle status of this_cpu
3536 * @sd_idle: Idle status of the sched_domain containing group.
3537 * @cpus: Set of cpus considered for load balancing.
3538 * @balance: Should we balance.
3539 * @sds: variable to hold the statistics for this sched_domain.
3540 */
3541 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3542 enum cpu_idle_type idle, int *sd_idle,
3543 const struct cpumask *cpus, int *balance,
3544 struct sd_lb_stats *sds)
3545 {
3546 struct sched_group *group = sd->groups;
3547 struct sg_lb_stats sgs;
3548 int load_idx;
3549
3550 init_sd_power_savings_stats(sd, sds, idle);
3551 load_idx = get_sd_load_idx(sd, idle);
3552
3553 do {
3554 int local_group;
3555
3556 local_group = cpumask_test_cpu(this_cpu,
3557 sched_group_cpus(group));
3558 memset(&sgs, 0, sizeof(sgs));
3559 update_sg_lb_stats(group, this_cpu, idle, load_idx, sd_idle,
3560 local_group, cpus, balance, &sgs);
3561
3562 if (local_group && balance && !(*balance))
3563 return;
3564
3565 sds->total_load += sgs.group_load;
3566 sds->total_pwr += group->__cpu_power;
3567
3568 if (local_group) {
3569 sds->this_load = sgs.avg_load;
3570 sds->this = group;
3571 sds->this_nr_running = sgs.sum_nr_running;
3572 sds->this_load_per_task = sgs.sum_weighted_load;
3573 } else if (sgs.avg_load > sds->max_load &&
3574 (sgs.sum_nr_running > sgs.group_capacity ||
3575 sgs.group_imb)) {
3576 sds->max_load = sgs.avg_load;
3577 sds->busiest = group;
3578 sds->busiest_nr_running = sgs.sum_nr_running;
3579 sds->busiest_load_per_task = sgs.sum_weighted_load;
3580 sds->group_imb = sgs.group_imb;
3581 }
3582
3583 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3584 group = group->next;
3585 } while (group != sd->groups);
3586
3587 }
3588
3589 /**
3590 * fix_small_imbalance - Calculate the minor imbalance that exists
3591 * amongst the groups of a sched_domain, during
3592 * load balancing.
3593 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3594 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3595 * @imbalance: Variable to store the imbalance.
3596 */
3597 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3598 int this_cpu, unsigned long *imbalance)
3599 {
3600 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3601 unsigned int imbn = 2;
3602
3603 if (sds->this_nr_running) {
3604 sds->this_load_per_task /= sds->this_nr_running;
3605 if (sds->busiest_load_per_task >
3606 sds->this_load_per_task)
3607 imbn = 1;
3608 } else
3609 sds->this_load_per_task =
3610 cpu_avg_load_per_task(this_cpu);
3611
3612 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3613 sds->busiest_load_per_task * imbn) {
3614 *imbalance = sds->busiest_load_per_task;
3615 return;
3616 }
3617
3618 /*
3619 * OK, we don't have enough imbalance to justify moving tasks,
3620 * however we may be able to increase total CPU power used by
3621 * moving them.
3622 */
3623
3624 pwr_now += sds->busiest->__cpu_power *
3625 min(sds->busiest_load_per_task, sds->max_load);
3626 pwr_now += sds->this->__cpu_power *
3627 min(sds->this_load_per_task, sds->this_load);
3628 pwr_now /= SCHED_LOAD_SCALE;
3629
3630 /* Amount of load we'd subtract */
3631 tmp = sg_div_cpu_power(sds->busiest,
3632 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3633 if (sds->max_load > tmp)
3634 pwr_move += sds->busiest->__cpu_power *
3635 min(sds->busiest_load_per_task, sds->max_load - tmp);
3636
3637 /* Amount of load we'd add */
3638 if (sds->max_load * sds->busiest->__cpu_power <
3639 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3640 tmp = sg_div_cpu_power(sds->this,
3641 sds->max_load * sds->busiest->__cpu_power);
3642 else
3643 tmp = sg_div_cpu_power(sds->this,
3644 sds->busiest_load_per_task * SCHED_LOAD_SCALE);
3645 pwr_move += sds->this->__cpu_power *
3646 min(sds->this_load_per_task, sds->this_load + tmp);
3647 pwr_move /= SCHED_LOAD_SCALE;
3648
3649 /* Move if we gain throughput */
3650 if (pwr_move > pwr_now)
3651 *imbalance = sds->busiest_load_per_task;
3652 }
3653
3654 /**
3655 * calculate_imbalance - Calculate the amount of imbalance present within the
3656 * groups of a given sched_domain during load balance.
3657 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3658 * @this_cpu: Cpu for which currently load balance is being performed.
3659 * @imbalance: The variable to store the imbalance.
3660 */
3661 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3662 unsigned long *imbalance)
3663 {
3664 unsigned long max_pull;
3665 /*
3666 * In the presence of smp nice balancing, certain scenarios can have
3667 * max load less than avg load(as we skip the groups at or below
3668 * its cpu_power, while calculating max_load..)
3669 */
3670 if (sds->max_load < sds->avg_load) {
3671 *imbalance = 0;
3672 return fix_small_imbalance(sds, this_cpu, imbalance);
3673 }
3674
3675 /* Don't want to pull so many tasks that a group would go idle */
3676 max_pull = min(sds->max_load - sds->avg_load,
3677 sds->max_load - sds->busiest_load_per_task);
3678
3679 /* How much load to actually move to equalise the imbalance */
3680 *imbalance = min(max_pull * sds->busiest->__cpu_power,
3681 (sds->avg_load - sds->this_load) * sds->this->__cpu_power)
3682 / SCHED_LOAD_SCALE;
3683
3684 /*
3685 * if *imbalance is less than the average load per runnable task
3686 * there is no gaurantee that any tasks will be moved so we'll have
3687 * a think about bumping its value to force at least one task to be
3688 * moved
3689 */
3690 if (*imbalance < sds->busiest_load_per_task)
3691 return fix_small_imbalance(sds, this_cpu, imbalance);
3692
3693 }
3694 /******* find_busiest_group() helpers end here *********************/
3695
3696 /**
3697 * find_busiest_group - Returns the busiest group within the sched_domain
3698 * if there is an imbalance. If there isn't an imbalance, and
3699 * the user has opted for power-savings, it returns a group whose
3700 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3701 * such a group exists.
3702 *
3703 * Also calculates the amount of weighted load which should be moved
3704 * to restore balance.
3705 *
3706 * @sd: The sched_domain whose busiest group is to be returned.
3707 * @this_cpu: The cpu for which load balancing is currently being performed.
3708 * @imbalance: Variable which stores amount of weighted load which should
3709 * be moved to restore balance/put a group to idle.
3710 * @idle: The idle status of this_cpu.
3711 * @sd_idle: The idleness of sd
3712 * @cpus: The set of CPUs under consideration for load-balancing.
3713 * @balance: Pointer to a variable indicating if this_cpu
3714 * is the appropriate cpu to perform load balancing at this_level.
3715 *
3716 * Returns: - the busiest group if imbalance exists.
3717 * - If no imbalance and user has opted for power-savings balance,
3718 * return the least loaded group whose CPUs can be
3719 * put to idle by rebalancing its tasks onto our group.
3720 */
3721 static struct sched_group *
3722 find_busiest_group(struct sched_domain *sd, int this_cpu,
3723 unsigned long *imbalance, enum cpu_idle_type idle,
3724 int *sd_idle, const struct cpumask *cpus, int *balance)
3725 {
3726 struct sd_lb_stats sds;
3727
3728 memset(&sds, 0, sizeof(sds));
3729
3730 /*
3731 * Compute the various statistics relavent for load balancing at
3732 * this level.
3733 */
3734 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3735 balance, &sds);
3736
3737 /* Cases where imbalance does not exist from POV of this_cpu */
3738 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3739 * at this level.
3740 * 2) There is no busy sibling group to pull from.
3741 * 3) This group is the busiest group.
3742 * 4) This group is more busy than the avg busieness at this
3743 * sched_domain.
3744 * 5) The imbalance is within the specified limit.
3745 * 6) Any rebalance would lead to ping-pong
3746 */
3747 if (balance && !(*balance))
3748 goto ret;
3749
3750 if (!sds.busiest || sds.busiest_nr_running == 0)
3751 goto out_balanced;
3752
3753 if (sds.this_load >= sds.max_load)
3754 goto out_balanced;
3755
3756 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
3757
3758 if (sds.this_load >= sds.avg_load)
3759 goto out_balanced;
3760
3761 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3762 goto out_balanced;
3763
3764 sds.busiest_load_per_task /= sds.busiest_nr_running;
3765 if (sds.group_imb)
3766 sds.busiest_load_per_task =
3767 min(sds.busiest_load_per_task, sds.avg_load);
3768
3769 /*
3770 * We're trying to get all the cpus to the average_load, so we don't
3771 * want to push ourselves above the average load, nor do we wish to
3772 * reduce the max loaded cpu below the average load, as either of these
3773 * actions would just result in more rebalancing later, and ping-pong
3774 * tasks around. Thus we look for the minimum possible imbalance.
3775 * Negative imbalances (*we* are more loaded than anyone else) will
3776 * be counted as no imbalance for these purposes -- we can't fix that
3777 * by pulling tasks to us. Be careful of negative numbers as they'll
3778 * appear as very large values with unsigned longs.
3779 */
3780 if (sds.max_load <= sds.busiest_load_per_task)
3781 goto out_balanced;
3782
3783 /* Looks like there is an imbalance. Compute it */
3784 calculate_imbalance(&sds, this_cpu, imbalance);
3785 return sds.busiest;
3786
3787 out_balanced:
3788 /*
3789 * There is no obvious imbalance. But check if we can do some balancing
3790 * to save power.
3791 */
3792 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3793 return sds.busiest;
3794 ret:
3795 *imbalance = 0;
3796 return NULL;
3797 }
3798
3799 /*
3800 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3801 */
3802 static struct rq *
3803 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3804 unsigned long imbalance, const struct cpumask *cpus)
3805 {
3806 struct rq *busiest = NULL, *rq;
3807 unsigned long max_load = 0;
3808 int i;
3809
3810 for_each_cpu(i, sched_group_cpus(group)) {
3811 unsigned long wl;
3812
3813 if (!cpumask_test_cpu(i, cpus))
3814 continue;
3815
3816 rq = cpu_rq(i);
3817 wl = weighted_cpuload(i);
3818
3819 if (rq->nr_running == 1 && wl > imbalance)
3820 continue;
3821
3822 if (wl > max_load) {
3823 max_load = wl;
3824 busiest = rq;
3825 }
3826 }
3827
3828 return busiest;
3829 }
3830
3831 /*
3832 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3833 * so long as it is large enough.
3834 */
3835 #define MAX_PINNED_INTERVAL 512
3836
3837 /* Working cpumask for load_balance and load_balance_newidle. */
3838 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3839
3840 /*
3841 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3842 * tasks if there is an imbalance.
3843 */
3844 static int load_balance(int this_cpu, struct rq *this_rq,
3845 struct sched_domain *sd, enum cpu_idle_type idle,
3846 int *balance)
3847 {
3848 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3849 struct sched_group *group;
3850 unsigned long imbalance;
3851 struct rq *busiest;
3852 unsigned long flags;
3853 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3854
3855 cpumask_setall(cpus);
3856
3857 /*
3858 * When power savings policy is enabled for the parent domain, idle
3859 * sibling can pick up load irrespective of busy siblings. In this case,
3860 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3861 * portraying it as CPU_NOT_IDLE.
3862 */
3863 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3864 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3865 sd_idle = 1;
3866
3867 schedstat_inc(sd, lb_count[idle]);
3868
3869 redo:
3870 update_shares(sd);
3871 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3872 cpus, balance);
3873
3874 if (*balance == 0)
3875 goto out_balanced;
3876
3877 if (!group) {
3878 schedstat_inc(sd, lb_nobusyg[idle]);
3879 goto out_balanced;
3880 }
3881
3882 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3883 if (!busiest) {
3884 schedstat_inc(sd, lb_nobusyq[idle]);
3885 goto out_balanced;
3886 }
3887
3888 BUG_ON(busiest == this_rq);
3889
3890 schedstat_add(sd, lb_imbalance[idle], imbalance);
3891
3892 ld_moved = 0;
3893 if (busiest->nr_running > 1) {
3894 /*
3895 * Attempt to move tasks. If find_busiest_group has found
3896 * an imbalance but busiest->nr_running <= 1, the group is
3897 * still unbalanced. ld_moved simply stays zero, so it is
3898 * correctly treated as an imbalance.
3899 */
3900 local_irq_save(flags);
3901 double_rq_lock(this_rq, busiest);
3902 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3903 imbalance, sd, idle, &all_pinned);
3904 double_rq_unlock(this_rq, busiest);
3905 local_irq_restore(flags);
3906
3907 /*
3908 * some other cpu did the load balance for us.
3909 */
3910 if (ld_moved && this_cpu != smp_processor_id())
3911 resched_cpu(this_cpu);
3912
3913 /* All tasks on this runqueue were pinned by CPU affinity */
3914 if (unlikely(all_pinned)) {
3915 cpumask_clear_cpu(cpu_of(busiest), cpus);
3916 if (!cpumask_empty(cpus))
3917 goto redo;
3918 goto out_balanced;
3919 }
3920 }
3921
3922 if (!ld_moved) {
3923 schedstat_inc(sd, lb_failed[idle]);
3924 sd->nr_balance_failed++;
3925
3926 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3927
3928 spin_lock_irqsave(&busiest->lock, flags);
3929
3930 /* don't kick the migration_thread, if the curr
3931 * task on busiest cpu can't be moved to this_cpu
3932 */
3933 if (!cpumask_test_cpu(this_cpu,
3934 &busiest->curr->cpus_allowed)) {
3935 spin_unlock_irqrestore(&busiest->lock, flags);
3936 all_pinned = 1;
3937 goto out_one_pinned;
3938 }
3939
3940 if (!busiest->active_balance) {
3941 busiest->active_balance = 1;
3942 busiest->push_cpu = this_cpu;
3943 active_balance = 1;
3944 }
3945 spin_unlock_irqrestore(&busiest->lock, flags);
3946 if (active_balance)
3947 wake_up_process(busiest->migration_thread);
3948
3949 /*
3950 * We've kicked active balancing, reset the failure
3951 * counter.
3952 */
3953 sd->nr_balance_failed = sd->cache_nice_tries+1;
3954 }
3955 } else
3956 sd->nr_balance_failed = 0;
3957
3958 if (likely(!active_balance)) {
3959 /* We were unbalanced, so reset the balancing interval */
3960 sd->balance_interval = sd->min_interval;
3961 } else {
3962 /*
3963 * If we've begun active balancing, start to back off. This
3964 * case may not be covered by the all_pinned logic if there
3965 * is only 1 task on the busy runqueue (because we don't call
3966 * move_tasks).
3967 */
3968 if (sd->balance_interval < sd->max_interval)
3969 sd->balance_interval *= 2;
3970 }
3971
3972 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3973 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3974 ld_moved = -1;
3975
3976 goto out;
3977
3978 out_balanced:
3979 schedstat_inc(sd, lb_balanced[idle]);
3980
3981 sd->nr_balance_failed = 0;
3982
3983 out_one_pinned:
3984 /* tune up the balancing interval */
3985 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3986 (sd->balance_interval < sd->max_interval))
3987 sd->balance_interval *= 2;
3988
3989 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3990 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3991 ld_moved = -1;
3992 else
3993 ld_moved = 0;
3994 out:
3995 if (ld_moved)
3996 update_shares(sd);
3997 return ld_moved;
3998 }
3999
4000 /*
4001 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4002 * tasks if there is an imbalance.
4003 *
4004 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4005 * this_rq is locked.
4006 */
4007 static int
4008 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4009 {
4010 struct sched_group *group;
4011 struct rq *busiest = NULL;
4012 unsigned long imbalance;
4013 int ld_moved = 0;
4014 int sd_idle = 0;
4015 int all_pinned = 0;
4016 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4017
4018 cpumask_setall(cpus);
4019
4020 /*
4021 * When power savings policy is enabled for the parent domain, idle
4022 * sibling can pick up load irrespective of busy siblings. In this case,
4023 * let the state of idle sibling percolate up as IDLE, instead of
4024 * portraying it as CPU_NOT_IDLE.
4025 */
4026 if (sd->flags & SD_SHARE_CPUPOWER &&
4027 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4028 sd_idle = 1;
4029
4030 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4031 redo:
4032 update_shares_locked(this_rq, sd);
4033 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4034 &sd_idle, cpus, NULL);
4035 if (!group) {
4036 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4037 goto out_balanced;
4038 }
4039
4040 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4041 if (!busiest) {
4042 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4043 goto out_balanced;
4044 }
4045
4046 BUG_ON(busiest == this_rq);
4047
4048 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4049
4050 ld_moved = 0;
4051 if (busiest->nr_running > 1) {
4052 /* Attempt to move tasks */
4053 double_lock_balance(this_rq, busiest);
4054 /* this_rq->clock is already updated */
4055 update_rq_clock(busiest);
4056 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4057 imbalance, sd, CPU_NEWLY_IDLE,
4058 &all_pinned);
4059 double_unlock_balance(this_rq, busiest);
4060
4061 if (unlikely(all_pinned)) {
4062 cpumask_clear_cpu(cpu_of(busiest), cpus);
4063 if (!cpumask_empty(cpus))
4064 goto redo;
4065 }
4066 }
4067
4068 if (!ld_moved) {
4069 int active_balance = 0;
4070
4071 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4072 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4073 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4074 return -1;
4075
4076 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4077 return -1;
4078
4079 if (sd->nr_balance_failed++ < 2)
4080 return -1;
4081
4082 /*
4083 * The only task running in a non-idle cpu can be moved to this
4084 * cpu in an attempt to completely freeup the other CPU
4085 * package. The same method used to move task in load_balance()
4086 * have been extended for load_balance_newidle() to speedup
4087 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4088 *
4089 * The package power saving logic comes from
4090 * find_busiest_group(). If there are no imbalance, then
4091 * f_b_g() will return NULL. However when sched_mc={1,2} then
4092 * f_b_g() will select a group from which a running task may be
4093 * pulled to this cpu in order to make the other package idle.
4094 * If there is no opportunity to make a package idle and if
4095 * there are no imbalance, then f_b_g() will return NULL and no
4096 * action will be taken in load_balance_newidle().
4097 *
4098 * Under normal task pull operation due to imbalance, there
4099 * will be more than one task in the source run queue and
4100 * move_tasks() will succeed. ld_moved will be true and this
4101 * active balance code will not be triggered.
4102 */
4103
4104 /* Lock busiest in correct order while this_rq is held */
4105 double_lock_balance(this_rq, busiest);
4106
4107 /*
4108 * don't kick the migration_thread, if the curr
4109 * task on busiest cpu can't be moved to this_cpu
4110 */
4111 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4112 double_unlock_balance(this_rq, busiest);
4113 all_pinned = 1;
4114 return ld_moved;
4115 }
4116
4117 if (!busiest->active_balance) {
4118 busiest->active_balance = 1;
4119 busiest->push_cpu = this_cpu;
4120 active_balance = 1;
4121 }
4122
4123 double_unlock_balance(this_rq, busiest);
4124 /*
4125 * Should not call ttwu while holding a rq->lock
4126 */
4127 spin_unlock(&this_rq->lock);
4128 if (active_balance)
4129 wake_up_process(busiest->migration_thread);
4130 spin_lock(&this_rq->lock);
4131
4132 } else
4133 sd->nr_balance_failed = 0;
4134
4135 update_shares_locked(this_rq, sd);
4136 return ld_moved;
4137
4138 out_balanced:
4139 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4140 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4141 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4142 return -1;
4143 sd->nr_balance_failed = 0;
4144
4145 return 0;
4146 }
4147
4148 /*
4149 * idle_balance is called by schedule() if this_cpu is about to become
4150 * idle. Attempts to pull tasks from other CPUs.
4151 */
4152 static void idle_balance(int this_cpu, struct rq *this_rq)
4153 {
4154 struct sched_domain *sd;
4155 int pulled_task = 0;
4156 unsigned long next_balance = jiffies + HZ;
4157
4158 for_each_domain(this_cpu, sd) {
4159 unsigned long interval;
4160
4161 if (!(sd->flags & SD_LOAD_BALANCE))
4162 continue;
4163
4164 if (sd->flags & SD_BALANCE_NEWIDLE)
4165 /* If we've pulled tasks over stop searching: */
4166 pulled_task = load_balance_newidle(this_cpu, this_rq,
4167 sd);
4168
4169 interval = msecs_to_jiffies(sd->balance_interval);
4170 if (time_after(next_balance, sd->last_balance + interval))
4171 next_balance = sd->last_balance + interval;
4172 if (pulled_task)
4173 break;
4174 }
4175 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4176 /*
4177 * We are going idle. next_balance may be set based on
4178 * a busy processor. So reset next_balance.
4179 */
4180 this_rq->next_balance = next_balance;
4181 }
4182 }
4183
4184 /*
4185 * active_load_balance is run by migration threads. It pushes running tasks
4186 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4187 * running on each physical CPU where possible, and avoids physical /
4188 * logical imbalances.
4189 *
4190 * Called with busiest_rq locked.
4191 */
4192 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4193 {
4194 int target_cpu = busiest_rq->push_cpu;
4195 struct sched_domain *sd;
4196 struct rq *target_rq;
4197
4198 /* Is there any task to move? */
4199 if (busiest_rq->nr_running <= 1)
4200 return;
4201
4202 target_rq = cpu_rq(target_cpu);
4203
4204 /*
4205 * This condition is "impossible", if it occurs
4206 * we need to fix it. Originally reported by
4207 * Bjorn Helgaas on a 128-cpu setup.
4208 */
4209 BUG_ON(busiest_rq == target_rq);
4210
4211 /* move a task from busiest_rq to target_rq */
4212 double_lock_balance(busiest_rq, target_rq);
4213 update_rq_clock(busiest_rq);
4214 update_rq_clock(target_rq);
4215
4216 /* Search for an sd spanning us and the target CPU. */
4217 for_each_domain(target_cpu, sd) {
4218 if ((sd->flags & SD_LOAD_BALANCE) &&
4219 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4220 break;
4221 }
4222
4223 if (likely(sd)) {
4224 schedstat_inc(sd, alb_count);
4225
4226 if (move_one_task(target_rq, target_cpu, busiest_rq,
4227 sd, CPU_IDLE))
4228 schedstat_inc(sd, alb_pushed);
4229 else
4230 schedstat_inc(sd, alb_failed);
4231 }
4232 double_unlock_balance(busiest_rq, target_rq);
4233 }
4234
4235 #ifdef CONFIG_NO_HZ
4236 static struct {
4237 atomic_t load_balancer;
4238 cpumask_var_t cpu_mask;
4239 } nohz ____cacheline_aligned = {
4240 .load_balancer = ATOMIC_INIT(-1),
4241 };
4242
4243 /*
4244 * This routine will try to nominate the ilb (idle load balancing)
4245 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4246 * load balancing on behalf of all those cpus. If all the cpus in the system
4247 * go into this tickless mode, then there will be no ilb owner (as there is
4248 * no need for one) and all the cpus will sleep till the next wakeup event
4249 * arrives...
4250 *
4251 * For the ilb owner, tick is not stopped. And this tick will be used
4252 * for idle load balancing. ilb owner will still be part of
4253 * nohz.cpu_mask..
4254 *
4255 * While stopping the tick, this cpu will become the ilb owner if there
4256 * is no other owner. And will be the owner till that cpu becomes busy
4257 * or if all cpus in the system stop their ticks at which point
4258 * there is no need for ilb owner.
4259 *
4260 * When the ilb owner becomes busy, it nominates another owner, during the
4261 * next busy scheduler_tick()
4262 */
4263 int select_nohz_load_balancer(int stop_tick)
4264 {
4265 int cpu = smp_processor_id();
4266
4267 if (stop_tick) {
4268 cpu_rq(cpu)->in_nohz_recently = 1;
4269
4270 if (!cpu_active(cpu)) {
4271 if (atomic_read(&nohz.load_balancer) != cpu)
4272 return 0;
4273
4274 /*
4275 * If we are going offline and still the leader,
4276 * give up!
4277 */
4278 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4279 BUG();
4280
4281 return 0;
4282 }
4283
4284 cpumask_set_cpu(cpu, nohz.cpu_mask);
4285
4286 /* time for ilb owner also to sleep */
4287 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4288 if (atomic_read(&nohz.load_balancer) == cpu)
4289 atomic_set(&nohz.load_balancer, -1);
4290 return 0;
4291 }
4292
4293 if (atomic_read(&nohz.load_balancer) == -1) {
4294 /* make me the ilb owner */
4295 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4296 return 1;
4297 } else if (atomic_read(&nohz.load_balancer) == cpu)
4298 return 1;
4299 } else {
4300 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4301 return 0;
4302
4303 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4304
4305 if (atomic_read(&nohz.load_balancer) == cpu)
4306 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4307 BUG();
4308 }
4309 return 0;
4310 }
4311 #endif
4312
4313 static DEFINE_SPINLOCK(balancing);
4314
4315 /*
4316 * It checks each scheduling domain to see if it is due to be balanced,
4317 * and initiates a balancing operation if so.
4318 *
4319 * Balancing parameters are set up in arch_init_sched_domains.
4320 */
4321 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4322 {
4323 int balance = 1;
4324 struct rq *rq = cpu_rq(cpu);
4325 unsigned long interval;
4326 struct sched_domain *sd;
4327 /* Earliest time when we have to do rebalance again */
4328 unsigned long next_balance = jiffies + 60*HZ;
4329 int update_next_balance = 0;
4330 int need_serialize;
4331
4332 for_each_domain(cpu, sd) {
4333 if (!(sd->flags & SD_LOAD_BALANCE))
4334 continue;
4335
4336 interval = sd->balance_interval;
4337 if (idle != CPU_IDLE)
4338 interval *= sd->busy_factor;
4339
4340 /* scale ms to jiffies */
4341 interval = msecs_to_jiffies(interval);
4342 if (unlikely(!interval))
4343 interval = 1;
4344 if (interval > HZ*NR_CPUS/10)
4345 interval = HZ*NR_CPUS/10;
4346
4347 need_serialize = sd->flags & SD_SERIALIZE;
4348
4349 if (need_serialize) {
4350 if (!spin_trylock(&balancing))
4351 goto out;
4352 }
4353
4354 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4355 if (load_balance(cpu, rq, sd, idle, &balance)) {
4356 /*
4357 * We've pulled tasks over so either we're no
4358 * longer idle, or one of our SMT siblings is
4359 * not idle.
4360 */
4361 idle = CPU_NOT_IDLE;
4362 }
4363 sd->last_balance = jiffies;
4364 }
4365 if (need_serialize)
4366 spin_unlock(&balancing);
4367 out:
4368 if (time_after(next_balance, sd->last_balance + interval)) {
4369 next_balance = sd->last_balance + interval;
4370 update_next_balance = 1;
4371 }
4372
4373 /*
4374 * Stop the load balance at this level. There is another
4375 * CPU in our sched group which is doing load balancing more
4376 * actively.
4377 */
4378 if (!balance)
4379 break;
4380 }
4381
4382 /*
4383 * next_balance will be updated only when there is a need.
4384 * When the cpu is attached to null domain for ex, it will not be
4385 * updated.
4386 */
4387 if (likely(update_next_balance))
4388 rq->next_balance = next_balance;
4389 }
4390
4391 /*
4392 * run_rebalance_domains is triggered when needed from the scheduler tick.
4393 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4394 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4395 */
4396 static void run_rebalance_domains(struct softirq_action *h)
4397 {
4398 int this_cpu = smp_processor_id();
4399 struct rq *this_rq = cpu_rq(this_cpu);
4400 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4401 CPU_IDLE : CPU_NOT_IDLE;
4402
4403 rebalance_domains(this_cpu, idle);
4404
4405 #ifdef CONFIG_NO_HZ
4406 /*
4407 * If this cpu is the owner for idle load balancing, then do the
4408 * balancing on behalf of the other idle cpus whose ticks are
4409 * stopped.
4410 */
4411 if (this_rq->idle_at_tick &&
4412 atomic_read(&nohz.load_balancer) == this_cpu) {
4413 struct rq *rq;
4414 int balance_cpu;
4415
4416 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4417 if (balance_cpu == this_cpu)
4418 continue;
4419
4420 /*
4421 * If this cpu gets work to do, stop the load balancing
4422 * work being done for other cpus. Next load
4423 * balancing owner will pick it up.
4424 */
4425 if (need_resched())
4426 break;
4427
4428 rebalance_domains(balance_cpu, CPU_IDLE);
4429
4430 rq = cpu_rq(balance_cpu);
4431 if (time_after(this_rq->next_balance, rq->next_balance))
4432 this_rq->next_balance = rq->next_balance;
4433 }
4434 }
4435 #endif
4436 }
4437
4438 static inline int on_null_domain(int cpu)
4439 {
4440 return !rcu_dereference(cpu_rq(cpu)->sd);
4441 }
4442
4443 /*
4444 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4445 *
4446 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4447 * idle load balancing owner or decide to stop the periodic load balancing,
4448 * if the whole system is idle.
4449 */
4450 static inline void trigger_load_balance(struct rq *rq, int cpu)
4451 {
4452 #ifdef CONFIG_NO_HZ
4453 /*
4454 * If we were in the nohz mode recently and busy at the current
4455 * scheduler tick, then check if we need to nominate new idle
4456 * load balancer.
4457 */
4458 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4459 rq->in_nohz_recently = 0;
4460
4461 if (atomic_read(&nohz.load_balancer) == cpu) {
4462 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4463 atomic_set(&nohz.load_balancer, -1);
4464 }
4465
4466 if (atomic_read(&nohz.load_balancer) == -1) {
4467 /*
4468 * simple selection for now: Nominate the
4469 * first cpu in the nohz list to be the next
4470 * ilb owner.
4471 *
4472 * TBD: Traverse the sched domains and nominate
4473 * the nearest cpu in the nohz.cpu_mask.
4474 */
4475 int ilb = cpumask_first(nohz.cpu_mask);
4476
4477 if (ilb < nr_cpu_ids)
4478 resched_cpu(ilb);
4479 }
4480 }
4481
4482 /*
4483 * If this cpu is idle and doing idle load balancing for all the
4484 * cpus with ticks stopped, is it time for that to stop?
4485 */
4486 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4487 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4488 resched_cpu(cpu);
4489 return;
4490 }
4491
4492 /*
4493 * If this cpu is idle and the idle load balancing is done by
4494 * someone else, then no need raise the SCHED_SOFTIRQ
4495 */
4496 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4497 cpumask_test_cpu(cpu, nohz.cpu_mask))
4498 return;
4499 #endif
4500 /* Don't need to rebalance while attached to NULL domain */
4501 if (time_after_eq(jiffies, rq->next_balance) &&
4502 likely(!on_null_domain(cpu)))
4503 raise_softirq(SCHED_SOFTIRQ);
4504 }
4505
4506 #else /* CONFIG_SMP */
4507
4508 /*
4509 * on UP we do not need to balance between CPUs:
4510 */
4511 static inline void idle_balance(int cpu, struct rq *rq)
4512 {
4513 }
4514
4515 #endif
4516
4517 DEFINE_PER_CPU(struct kernel_stat, kstat);
4518
4519 EXPORT_PER_CPU_SYMBOL(kstat);
4520
4521 /*
4522 * Return any ns on the sched_clock that have not yet been accounted in
4523 * @p in case that task is currently running.
4524 *
4525 * Called with task_rq_lock() held on @rq.
4526 */
4527 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4528 {
4529 u64 ns = 0;
4530
4531 if (task_current(rq, p)) {
4532 update_rq_clock(rq);
4533 ns = rq->clock - p->se.exec_start;
4534 if ((s64)ns < 0)
4535 ns = 0;
4536 }
4537
4538 return ns;
4539 }
4540
4541 unsigned long long task_delta_exec(struct task_struct *p)
4542 {
4543 unsigned long flags;
4544 struct rq *rq;
4545 u64 ns = 0;
4546
4547 rq = task_rq_lock(p, &flags);
4548 ns = do_task_delta_exec(p, rq);
4549 task_rq_unlock(rq, &flags);
4550
4551 return ns;
4552 }
4553
4554 /*
4555 * Return accounted runtime for the task.
4556 * In case the task is currently running, return the runtime plus current's
4557 * pending runtime that have not been accounted yet.
4558 */
4559 unsigned long long task_sched_runtime(struct task_struct *p)
4560 {
4561 unsigned long flags;
4562 struct rq *rq;
4563 u64 ns = 0;
4564
4565 rq = task_rq_lock(p, &flags);
4566 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4567 task_rq_unlock(rq, &flags);
4568
4569 return ns;
4570 }
4571
4572 /*
4573 * Return sum_exec_runtime for the thread group.
4574 * In case the task is currently running, return the sum plus current's
4575 * pending runtime that have not been accounted yet.
4576 *
4577 * Note that the thread group might have other running tasks as well,
4578 * so the return value not includes other pending runtime that other
4579 * running tasks might have.
4580 */
4581 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4582 {
4583 struct task_cputime totals;
4584 unsigned long flags;
4585 struct rq *rq;
4586 u64 ns;
4587
4588 rq = task_rq_lock(p, &flags);
4589 thread_group_cputime(p, &totals);
4590 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4591 task_rq_unlock(rq, &flags);
4592
4593 return ns;
4594 }
4595
4596 /*
4597 * Account user cpu time to a process.
4598 * @p: the process that the cpu time gets accounted to
4599 * @cputime: the cpu time spent in user space since the last update
4600 * @cputime_scaled: cputime scaled by cpu frequency
4601 */
4602 void account_user_time(struct task_struct *p, cputime_t cputime,
4603 cputime_t cputime_scaled)
4604 {
4605 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4606 cputime64_t tmp;
4607
4608 /* Add user time to process. */
4609 p->utime = cputime_add(p->utime, cputime);
4610 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4611 account_group_user_time(p, cputime);
4612
4613 /* Add user time to cpustat. */
4614 tmp = cputime_to_cputime64(cputime);
4615 if (TASK_NICE(p) > 0)
4616 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4617 else
4618 cpustat->user = cputime64_add(cpustat->user, tmp);
4619
4620 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
4621 /* Account for user time used */
4622 acct_update_integrals(p);
4623 }
4624
4625 /*
4626 * Account guest cpu time to a process.
4627 * @p: the process that the cpu time gets accounted to
4628 * @cputime: the cpu time spent in virtual machine since the last update
4629 * @cputime_scaled: cputime scaled by cpu frequency
4630 */
4631 static void account_guest_time(struct task_struct *p, cputime_t cputime,
4632 cputime_t cputime_scaled)
4633 {
4634 cputime64_t tmp;
4635 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4636
4637 tmp = cputime_to_cputime64(cputime);
4638
4639 /* Add guest time to process. */
4640 p->utime = cputime_add(p->utime, cputime);
4641 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4642 account_group_user_time(p, cputime);
4643 p->gtime = cputime_add(p->gtime, cputime);
4644
4645 /* Add guest time to cpustat. */
4646 cpustat->user = cputime64_add(cpustat->user, tmp);
4647 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4648 }
4649
4650 /*
4651 * Account system cpu time to a process.
4652 * @p: the process that the cpu time gets accounted to
4653 * @hardirq_offset: the offset to subtract from hardirq_count()
4654 * @cputime: the cpu time spent in kernel space since the last update
4655 * @cputime_scaled: cputime scaled by cpu frequency
4656 */
4657 void account_system_time(struct task_struct *p, int hardirq_offset,
4658 cputime_t cputime, cputime_t cputime_scaled)
4659 {
4660 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4661 cputime64_t tmp;
4662
4663 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
4664 account_guest_time(p, cputime, cputime_scaled);
4665 return;
4666 }
4667
4668 /* Add system time to process. */
4669 p->stime = cputime_add(p->stime, cputime);
4670 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
4671 account_group_system_time(p, cputime);
4672
4673 /* Add system time to cpustat. */
4674 tmp = cputime_to_cputime64(cputime);
4675 if (hardirq_count() - hardirq_offset)
4676 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4677 else if (softirq_count())
4678 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4679 else
4680 cpustat->system = cputime64_add(cpustat->system, tmp);
4681
4682 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
4683
4684 /* Account for system time used */
4685 acct_update_integrals(p);
4686 }
4687
4688 /*
4689 * Account for involuntary wait time.
4690 * @steal: the cpu time spent in involuntary wait
4691 */
4692 void account_steal_time(cputime_t cputime)
4693 {
4694 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4695 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4696
4697 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
4698 }
4699
4700 /*
4701 * Account for idle time.
4702 * @cputime: the cpu time spent in idle wait
4703 */
4704 void account_idle_time(cputime_t cputime)
4705 {
4706 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4707 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4708 struct rq *rq = this_rq();
4709
4710 if (atomic_read(&rq->nr_iowait) > 0)
4711 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4712 else
4713 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4714 }
4715
4716 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4717
4718 /*
4719 * Account a single tick of cpu time.
4720 * @p: the process that the cpu time gets accounted to
4721 * @user_tick: indicates if the tick is a user or a system tick
4722 */
4723 void account_process_tick(struct task_struct *p, int user_tick)
4724 {
4725 cputime_t one_jiffy = jiffies_to_cputime(1);
4726 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4727 struct rq *rq = this_rq();
4728
4729 if (user_tick)
4730 account_user_time(p, one_jiffy, one_jiffy_scaled);
4731 else if (p != rq->idle)
4732 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4733 one_jiffy_scaled);
4734 else
4735 account_idle_time(one_jiffy);
4736 }
4737
4738 /*
4739 * Account multiple ticks of steal time.
4740 * @p: the process from which the cpu time has been stolen
4741 * @ticks: number of stolen ticks
4742 */
4743 void account_steal_ticks(unsigned long ticks)
4744 {
4745 account_steal_time(jiffies_to_cputime(ticks));
4746 }
4747
4748 /*
4749 * Account multiple ticks of idle time.
4750 * @ticks: number of stolen ticks
4751 */
4752 void account_idle_ticks(unsigned long ticks)
4753 {
4754 account_idle_time(jiffies_to_cputime(ticks));
4755 }
4756
4757 #endif
4758
4759 /*
4760 * Use precise platform statistics if available:
4761 */
4762 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4763 cputime_t task_utime(struct task_struct *p)
4764 {
4765 return p->utime;
4766 }
4767
4768 cputime_t task_stime(struct task_struct *p)
4769 {
4770 return p->stime;
4771 }
4772 #else
4773 cputime_t task_utime(struct task_struct *p)
4774 {
4775 clock_t utime = cputime_to_clock_t(p->utime),
4776 total = utime + cputime_to_clock_t(p->stime);
4777 u64 temp;
4778
4779 /*
4780 * Use CFS's precise accounting:
4781 */
4782 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4783
4784 if (total) {
4785 temp *= utime;
4786 do_div(temp, total);
4787 }
4788 utime = (clock_t)temp;
4789
4790 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4791 return p->prev_utime;
4792 }
4793
4794 cputime_t task_stime(struct task_struct *p)
4795 {
4796 clock_t stime;
4797
4798 /*
4799 * Use CFS's precise accounting. (we subtract utime from
4800 * the total, to make sure the total observed by userspace
4801 * grows monotonically - apps rely on that):
4802 */
4803 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4804 cputime_to_clock_t(task_utime(p));
4805
4806 if (stime >= 0)
4807 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4808
4809 return p->prev_stime;
4810 }
4811 #endif
4812
4813 inline cputime_t task_gtime(struct task_struct *p)
4814 {
4815 return p->gtime;
4816 }
4817
4818 /*
4819 * This function gets called by the timer code, with HZ frequency.
4820 * We call it with interrupts disabled.
4821 *
4822 * It also gets called by the fork code, when changing the parent's
4823 * timeslices.
4824 */
4825 void scheduler_tick(void)
4826 {
4827 int cpu = smp_processor_id();
4828 struct rq *rq = cpu_rq(cpu);
4829 struct task_struct *curr = rq->curr;
4830
4831 sched_clock_tick();
4832
4833 spin_lock(&rq->lock);
4834 update_rq_clock(rq);
4835 update_cpu_load(rq);
4836 curr->sched_class->task_tick(rq, curr, 0);
4837 spin_unlock(&rq->lock);
4838
4839 #ifdef CONFIG_SMP
4840 rq->idle_at_tick = idle_cpu(cpu);
4841 trigger_load_balance(rq, cpu);
4842 #endif
4843 }
4844
4845 unsigned long get_parent_ip(unsigned long addr)
4846 {
4847 if (in_lock_functions(addr)) {
4848 addr = CALLER_ADDR2;
4849 if (in_lock_functions(addr))
4850 addr = CALLER_ADDR3;
4851 }
4852 return addr;
4853 }
4854
4855 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4856 defined(CONFIG_PREEMPT_TRACER))
4857
4858 void __kprobes add_preempt_count(int val)
4859 {
4860 #ifdef CONFIG_DEBUG_PREEMPT
4861 /*
4862 * Underflow?
4863 */
4864 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4865 return;
4866 #endif
4867 preempt_count() += val;
4868 #ifdef CONFIG_DEBUG_PREEMPT
4869 /*
4870 * Spinlock count overflowing soon?
4871 */
4872 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4873 PREEMPT_MASK - 10);
4874 #endif
4875 if (preempt_count() == val)
4876 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4877 }
4878 EXPORT_SYMBOL(add_preempt_count);
4879
4880 void __kprobes sub_preempt_count(int val)
4881 {
4882 #ifdef CONFIG_DEBUG_PREEMPT
4883 /*
4884 * Underflow?
4885 */
4886 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4887 return;
4888 /*
4889 * Is the spinlock portion underflowing?
4890 */
4891 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4892 !(preempt_count() & PREEMPT_MASK)))
4893 return;
4894 #endif
4895
4896 if (preempt_count() == val)
4897 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4898 preempt_count() -= val;
4899 }
4900 EXPORT_SYMBOL(sub_preempt_count);
4901
4902 #endif
4903
4904 /*
4905 * Print scheduling while atomic bug:
4906 */
4907 static noinline void __schedule_bug(struct task_struct *prev)
4908 {
4909 struct pt_regs *regs = get_irq_regs();
4910
4911 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4912 prev->comm, prev->pid, preempt_count());
4913
4914 debug_show_held_locks(prev);
4915 print_modules();
4916 if (irqs_disabled())
4917 print_irqtrace_events(prev);
4918
4919 if (regs)
4920 show_regs(regs);
4921 else
4922 dump_stack();
4923 }
4924
4925 /*
4926 * Various schedule()-time debugging checks and statistics:
4927 */
4928 static inline void schedule_debug(struct task_struct *prev)
4929 {
4930 /*
4931 * Test if we are atomic. Since do_exit() needs to call into
4932 * schedule() atomically, we ignore that path for now.
4933 * Otherwise, whine if we are scheduling when we should not be.
4934 */
4935 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4936 __schedule_bug(prev);
4937
4938 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4939
4940 schedstat_inc(this_rq(), sched_count);
4941 #ifdef CONFIG_SCHEDSTATS
4942 if (unlikely(prev->lock_depth >= 0)) {
4943 schedstat_inc(this_rq(), bkl_count);
4944 schedstat_inc(prev, sched_info.bkl_count);
4945 }
4946 #endif
4947 }
4948
4949 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4950 {
4951 if (prev->state == TASK_RUNNING) {
4952 u64 runtime = prev->se.sum_exec_runtime;
4953
4954 runtime -= prev->se.prev_sum_exec_runtime;
4955 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
4956
4957 /*
4958 * In order to avoid avg_overlap growing stale when we are
4959 * indeed overlapping and hence not getting put to sleep, grow
4960 * the avg_overlap on preemption.
4961 *
4962 * We use the average preemption runtime because that
4963 * correlates to the amount of cache footprint a task can
4964 * build up.
4965 */
4966 update_avg(&prev->se.avg_overlap, runtime);
4967 }
4968 prev->sched_class->put_prev_task(rq, prev);
4969 }
4970
4971 /*
4972 * Pick up the highest-prio task:
4973 */
4974 static inline struct task_struct *
4975 pick_next_task(struct rq *rq)
4976 {
4977 const struct sched_class *class;
4978 struct task_struct *p;
4979
4980 /*
4981 * Optimization: we know that if all tasks are in
4982 * the fair class we can call that function directly:
4983 */
4984 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4985 p = fair_sched_class.pick_next_task(rq);
4986 if (likely(p))
4987 return p;
4988 }
4989
4990 class = sched_class_highest;
4991 for ( ; ; ) {
4992 p = class->pick_next_task(rq);
4993 if (p)
4994 return p;
4995 /*
4996 * Will never be NULL as the idle class always
4997 * returns a non-NULL p:
4998 */
4999 class = class->next;
5000 }
5001 }
5002
5003 /*
5004 * schedule() is the main scheduler function.
5005 */
5006 asmlinkage void __sched __schedule(void)
5007 {
5008 struct task_struct *prev, *next;
5009 unsigned long *switch_count;
5010 struct rq *rq;
5011 int cpu;
5012
5013 cpu = smp_processor_id();
5014 rq = cpu_rq(cpu);
5015 rcu_qsctr_inc(cpu);
5016 prev = rq->curr;
5017 switch_count = &prev->nivcsw;
5018
5019 release_kernel_lock(prev);
5020 need_resched_nonpreemptible:
5021
5022 schedule_debug(prev);
5023
5024 if (sched_feat(HRTICK))
5025 hrtick_clear(rq);
5026
5027 spin_lock_irq(&rq->lock);
5028 update_rq_clock(rq);
5029 clear_tsk_need_resched(prev);
5030
5031 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5032 if (unlikely(signal_pending_state(prev->state, prev)))
5033 prev->state = TASK_RUNNING;
5034 else
5035 deactivate_task(rq, prev, 1);
5036 switch_count = &prev->nvcsw;
5037 }
5038
5039 #ifdef CONFIG_SMP
5040 if (prev->sched_class->pre_schedule)
5041 prev->sched_class->pre_schedule(rq, prev);
5042 #endif
5043
5044 if (unlikely(!rq->nr_running))
5045 idle_balance(cpu, rq);
5046
5047 put_prev_task(rq, prev);
5048 next = pick_next_task(rq);
5049
5050 if (likely(prev != next)) {
5051 sched_info_switch(prev, next);
5052
5053 rq->nr_switches++;
5054 rq->curr = next;
5055 ++*switch_count;
5056
5057 context_switch(rq, prev, next); /* unlocks the rq */
5058 /*
5059 * the context switch might have flipped the stack from under
5060 * us, hence refresh the local variables.
5061 */
5062 cpu = smp_processor_id();
5063 rq = cpu_rq(cpu);
5064 } else
5065 spin_unlock_irq(&rq->lock);
5066
5067 if (unlikely(reacquire_kernel_lock(current) < 0))
5068 goto need_resched_nonpreemptible;
5069 }
5070
5071 asmlinkage void __sched schedule(void)
5072 {
5073 need_resched:
5074 preempt_disable();
5075 __schedule();
5076 preempt_enable_no_resched();
5077 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
5078 goto need_resched;
5079 }
5080 EXPORT_SYMBOL(schedule);
5081
5082 #ifdef CONFIG_SMP
5083 /*
5084 * Look out! "owner" is an entirely speculative pointer
5085 * access and not reliable.
5086 */
5087 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5088 {
5089 unsigned int cpu;
5090 struct rq *rq;
5091
5092 if (!sched_feat(OWNER_SPIN))
5093 return 0;
5094
5095 #ifdef CONFIG_DEBUG_PAGEALLOC
5096 /*
5097 * Need to access the cpu field knowing that
5098 * DEBUG_PAGEALLOC could have unmapped it if
5099 * the mutex owner just released it and exited.
5100 */
5101 if (probe_kernel_address(&owner->cpu, cpu))
5102 goto out;
5103 #else
5104 cpu = owner->cpu;
5105 #endif
5106
5107 /*
5108 * Even if the access succeeded (likely case),
5109 * the cpu field may no longer be valid.
5110 */
5111 if (cpu >= nr_cpumask_bits)
5112 goto out;
5113
5114 /*
5115 * We need to validate that we can do a
5116 * get_cpu() and that we have the percpu area.
5117 */
5118 if (!cpu_online(cpu))
5119 goto out;
5120
5121 rq = cpu_rq(cpu);
5122
5123 for (;;) {
5124 /*
5125 * Owner changed, break to re-assess state.
5126 */
5127 if (lock->owner != owner)
5128 break;
5129
5130 /*
5131 * Is that owner really running on that cpu?
5132 */
5133 if (task_thread_info(rq->curr) != owner || need_resched())
5134 return 0;
5135
5136 cpu_relax();
5137 }
5138 out:
5139 return 1;
5140 }
5141 #endif
5142
5143 #ifdef CONFIG_PREEMPT
5144 /*
5145 * this is the entry point to schedule() from in-kernel preemption
5146 * off of preempt_enable. Kernel preemptions off return from interrupt
5147 * occur there and call schedule directly.
5148 */
5149 asmlinkage void __sched preempt_schedule(void)
5150 {
5151 struct thread_info *ti = current_thread_info();
5152
5153 /*
5154 * If there is a non-zero preempt_count or interrupts are disabled,
5155 * we do not want to preempt the current task. Just return..
5156 */
5157 if (likely(ti->preempt_count || irqs_disabled()))
5158 return;
5159
5160 do {
5161 add_preempt_count(PREEMPT_ACTIVE);
5162 schedule();
5163 sub_preempt_count(PREEMPT_ACTIVE);
5164
5165 /*
5166 * Check again in case we missed a preemption opportunity
5167 * between schedule and now.
5168 */
5169 barrier();
5170 } while (need_resched());
5171 }
5172 EXPORT_SYMBOL(preempt_schedule);
5173
5174 /*
5175 * this is the entry point to schedule() from kernel preemption
5176 * off of irq context.
5177 * Note, that this is called and return with irqs disabled. This will
5178 * protect us against recursive calling from irq.
5179 */
5180 asmlinkage void __sched preempt_schedule_irq(void)
5181 {
5182 struct thread_info *ti = current_thread_info();
5183
5184 /* Catch callers which need to be fixed */
5185 BUG_ON(ti->preempt_count || !irqs_disabled());
5186
5187 do {
5188 add_preempt_count(PREEMPT_ACTIVE);
5189 local_irq_enable();
5190 schedule();
5191 local_irq_disable();
5192 sub_preempt_count(PREEMPT_ACTIVE);
5193
5194 /*
5195 * Check again in case we missed a preemption opportunity
5196 * between schedule and now.
5197 */
5198 barrier();
5199 } while (need_resched());
5200 }
5201
5202 #endif /* CONFIG_PREEMPT */
5203
5204 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5205 void *key)
5206 {
5207 return try_to_wake_up(curr->private, mode, sync);
5208 }
5209 EXPORT_SYMBOL(default_wake_function);
5210
5211 /*
5212 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5213 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5214 * number) then we wake all the non-exclusive tasks and one exclusive task.
5215 *
5216 * There are circumstances in which we can try to wake a task which has already
5217 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5218 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5219 */
5220 void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5221 int nr_exclusive, int sync, void *key)
5222 {
5223 wait_queue_t *curr, *next;
5224
5225 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5226 unsigned flags = curr->flags;
5227
5228 if (curr->func(curr, mode, sync, key) &&
5229 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5230 break;
5231 }
5232 }
5233
5234 /**
5235 * __wake_up - wake up threads blocked on a waitqueue.
5236 * @q: the waitqueue
5237 * @mode: which threads
5238 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5239 * @key: is directly passed to the wakeup function
5240 */
5241 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5242 int nr_exclusive, void *key)
5243 {
5244 unsigned long flags;
5245
5246 spin_lock_irqsave(&q->lock, flags);
5247 __wake_up_common(q, mode, nr_exclusive, 0, key);
5248 spin_unlock_irqrestore(&q->lock, flags);
5249 }
5250 EXPORT_SYMBOL(__wake_up);
5251
5252 /*
5253 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5254 */
5255 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5256 {
5257 __wake_up_common(q, mode, 1, 0, NULL);
5258 }
5259
5260 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5261 {
5262 __wake_up_common(q, mode, 1, 0, key);
5263 }
5264
5265 /**
5266 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5267 * @q: the waitqueue
5268 * @mode: which threads
5269 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5270 * @key: opaque value to be passed to wakeup targets
5271 *
5272 * The sync wakeup differs that the waker knows that it will schedule
5273 * away soon, so while the target thread will be woken up, it will not
5274 * be migrated to another CPU - ie. the two threads are 'synchronized'
5275 * with each other. This can prevent needless bouncing between CPUs.
5276 *
5277 * On UP it can prevent extra preemption.
5278 */
5279 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5280 int nr_exclusive, void *key)
5281 {
5282 unsigned long flags;
5283 int sync = 1;
5284
5285 if (unlikely(!q))
5286 return;
5287
5288 if (unlikely(!nr_exclusive))
5289 sync = 0;
5290
5291 spin_lock_irqsave(&q->lock, flags);
5292 __wake_up_common(q, mode, nr_exclusive, sync, key);
5293 spin_unlock_irqrestore(&q->lock, flags);
5294 }
5295 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5296
5297 /*
5298 * __wake_up_sync - see __wake_up_sync_key()
5299 */
5300 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5301 {
5302 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5303 }
5304 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5305
5306 /**
5307 * complete: - signals a single thread waiting on this completion
5308 * @x: holds the state of this particular completion
5309 *
5310 * This will wake up a single thread waiting on this completion. Threads will be
5311 * awakened in the same order in which they were queued.
5312 *
5313 * See also complete_all(), wait_for_completion() and related routines.
5314 */
5315 void complete(struct completion *x)
5316 {
5317 unsigned long flags;
5318
5319 spin_lock_irqsave(&x->wait.lock, flags);
5320 x->done++;
5321 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5322 spin_unlock_irqrestore(&x->wait.lock, flags);
5323 }
5324 EXPORT_SYMBOL(complete);
5325
5326 /**
5327 * complete_all: - signals all threads waiting on this completion
5328 * @x: holds the state of this particular completion
5329 *
5330 * This will wake up all threads waiting on this particular completion event.
5331 */
5332 void complete_all(struct completion *x)
5333 {
5334 unsigned long flags;
5335
5336 spin_lock_irqsave(&x->wait.lock, flags);
5337 x->done += UINT_MAX/2;
5338 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5339 spin_unlock_irqrestore(&x->wait.lock, flags);
5340 }
5341 EXPORT_SYMBOL(complete_all);
5342
5343 static inline long __sched
5344 do_wait_for_common(struct completion *x, long timeout, int state)
5345 {
5346 if (!x->done) {
5347 DECLARE_WAITQUEUE(wait, current);
5348
5349 wait.flags |= WQ_FLAG_EXCLUSIVE;
5350 __add_wait_queue_tail(&x->wait, &wait);
5351 do {
5352 if (signal_pending_state(state, current)) {
5353 timeout = -ERESTARTSYS;
5354 break;
5355 }
5356 __set_current_state(state);
5357 spin_unlock_irq(&x->wait.lock);
5358 timeout = schedule_timeout(timeout);
5359 spin_lock_irq(&x->wait.lock);
5360 } while (!x->done && timeout);
5361 __remove_wait_queue(&x->wait, &wait);
5362 if (!x->done)
5363 return timeout;
5364 }
5365 x->done--;
5366 return timeout ?: 1;
5367 }
5368
5369 static long __sched
5370 wait_for_common(struct completion *x, long timeout, int state)
5371 {
5372 might_sleep();
5373
5374 spin_lock_irq(&x->wait.lock);
5375 timeout = do_wait_for_common(x, timeout, state);
5376 spin_unlock_irq(&x->wait.lock);
5377 return timeout;
5378 }
5379
5380 /**
5381 * wait_for_completion: - waits for completion of a task
5382 * @x: holds the state of this particular completion
5383 *
5384 * This waits to be signaled for completion of a specific task. It is NOT
5385 * interruptible and there is no timeout.
5386 *
5387 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5388 * and interrupt capability. Also see complete().
5389 */
5390 void __sched wait_for_completion(struct completion *x)
5391 {
5392 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5393 }
5394 EXPORT_SYMBOL(wait_for_completion);
5395
5396 /**
5397 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5398 * @x: holds the state of this particular completion
5399 * @timeout: timeout value in jiffies
5400 *
5401 * This waits for either a completion of a specific task to be signaled or for a
5402 * specified timeout to expire. The timeout is in jiffies. It is not
5403 * interruptible.
5404 */
5405 unsigned long __sched
5406 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5407 {
5408 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5409 }
5410 EXPORT_SYMBOL(wait_for_completion_timeout);
5411
5412 /**
5413 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5414 * @x: holds the state of this particular completion
5415 *
5416 * This waits for completion of a specific task to be signaled. It is
5417 * interruptible.
5418 */
5419 int __sched wait_for_completion_interruptible(struct completion *x)
5420 {
5421 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5422 if (t == -ERESTARTSYS)
5423 return t;
5424 return 0;
5425 }
5426 EXPORT_SYMBOL(wait_for_completion_interruptible);
5427
5428 /**
5429 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5430 * @x: holds the state of this particular completion
5431 * @timeout: timeout value in jiffies
5432 *
5433 * This waits for either a completion of a specific task to be signaled or for a
5434 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5435 */
5436 unsigned long __sched
5437 wait_for_completion_interruptible_timeout(struct completion *x,
5438 unsigned long timeout)
5439 {
5440 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5441 }
5442 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5443
5444 /**
5445 * wait_for_completion_killable: - waits for completion of a task (killable)
5446 * @x: holds the state of this particular completion
5447 *
5448 * This waits to be signaled for completion of a specific task. It can be
5449 * interrupted by a kill signal.
5450 */
5451 int __sched wait_for_completion_killable(struct completion *x)
5452 {
5453 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5454 if (t == -ERESTARTSYS)
5455 return t;
5456 return 0;
5457 }
5458 EXPORT_SYMBOL(wait_for_completion_killable);
5459
5460 /**
5461 * try_wait_for_completion - try to decrement a completion without blocking
5462 * @x: completion structure
5463 *
5464 * Returns: 0 if a decrement cannot be done without blocking
5465 * 1 if a decrement succeeded.
5466 *
5467 * If a completion is being used as a counting completion,
5468 * attempt to decrement the counter without blocking. This
5469 * enables us to avoid waiting if the resource the completion
5470 * is protecting is not available.
5471 */
5472 bool try_wait_for_completion(struct completion *x)
5473 {
5474 int ret = 1;
5475
5476 spin_lock_irq(&x->wait.lock);
5477 if (!x->done)
5478 ret = 0;
5479 else
5480 x->done--;
5481 spin_unlock_irq(&x->wait.lock);
5482 return ret;
5483 }
5484 EXPORT_SYMBOL(try_wait_for_completion);
5485
5486 /**
5487 * completion_done - Test to see if a completion has any waiters
5488 * @x: completion structure
5489 *
5490 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5491 * 1 if there are no waiters.
5492 *
5493 */
5494 bool completion_done(struct completion *x)
5495 {
5496 int ret = 1;
5497
5498 spin_lock_irq(&x->wait.lock);
5499 if (!x->done)
5500 ret = 0;
5501 spin_unlock_irq(&x->wait.lock);
5502 return ret;
5503 }
5504 EXPORT_SYMBOL(completion_done);
5505
5506 static long __sched
5507 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5508 {
5509 unsigned long flags;
5510 wait_queue_t wait;
5511
5512 init_waitqueue_entry(&wait, current);
5513
5514 __set_current_state(state);
5515
5516 spin_lock_irqsave(&q->lock, flags);
5517 __add_wait_queue(q, &wait);
5518 spin_unlock(&q->lock);
5519 timeout = schedule_timeout(timeout);
5520 spin_lock_irq(&q->lock);
5521 __remove_wait_queue(q, &wait);
5522 spin_unlock_irqrestore(&q->lock, flags);
5523
5524 return timeout;
5525 }
5526
5527 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5528 {
5529 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5530 }
5531 EXPORT_SYMBOL(interruptible_sleep_on);
5532
5533 long __sched
5534 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5535 {
5536 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5537 }
5538 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5539
5540 void __sched sleep_on(wait_queue_head_t *q)
5541 {
5542 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5543 }
5544 EXPORT_SYMBOL(sleep_on);
5545
5546 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5547 {
5548 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5549 }
5550 EXPORT_SYMBOL(sleep_on_timeout);
5551
5552 #ifdef CONFIG_RT_MUTEXES
5553
5554 /*
5555 * rt_mutex_setprio - set the current priority of a task
5556 * @p: task
5557 * @prio: prio value (kernel-internal form)
5558 *
5559 * This function changes the 'effective' priority of a task. It does
5560 * not touch ->normal_prio like __setscheduler().
5561 *
5562 * Used by the rt_mutex code to implement priority inheritance logic.
5563 */
5564 void rt_mutex_setprio(struct task_struct *p, int prio)
5565 {
5566 unsigned long flags;
5567 int oldprio, on_rq, running;
5568 struct rq *rq;
5569 const struct sched_class *prev_class = p->sched_class;
5570
5571 BUG_ON(prio < 0 || prio > MAX_PRIO);
5572
5573 rq = task_rq_lock(p, &flags);
5574 update_rq_clock(rq);
5575
5576 oldprio = p->prio;
5577 on_rq = p->se.on_rq;
5578 running = task_current(rq, p);
5579 if (on_rq)
5580 dequeue_task(rq, p, 0);
5581 if (running)
5582 p->sched_class->put_prev_task(rq, p);
5583
5584 if (rt_prio(prio))
5585 p->sched_class = &rt_sched_class;
5586 else
5587 p->sched_class = &fair_sched_class;
5588
5589 p->prio = prio;
5590
5591 if (running)
5592 p->sched_class->set_curr_task(rq);
5593 if (on_rq) {
5594 enqueue_task(rq, p, 0);
5595
5596 check_class_changed(rq, p, prev_class, oldprio, running);
5597 }
5598 task_rq_unlock(rq, &flags);
5599 }
5600
5601 #endif
5602
5603 void set_user_nice(struct task_struct *p, long nice)
5604 {
5605 int old_prio, delta, on_rq;
5606 unsigned long flags;
5607 struct rq *rq;
5608
5609 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5610 return;
5611 /*
5612 * We have to be careful, if called from sys_setpriority(),
5613 * the task might be in the middle of scheduling on another CPU.
5614 */
5615 rq = task_rq_lock(p, &flags);
5616 update_rq_clock(rq);
5617 /*
5618 * The RT priorities are set via sched_setscheduler(), but we still
5619 * allow the 'normal' nice value to be set - but as expected
5620 * it wont have any effect on scheduling until the task is
5621 * SCHED_FIFO/SCHED_RR:
5622 */
5623 if (task_has_rt_policy(p)) {
5624 p->static_prio = NICE_TO_PRIO(nice);
5625 goto out_unlock;
5626 }
5627 on_rq = p->se.on_rq;
5628 if (on_rq)
5629 dequeue_task(rq, p, 0);
5630
5631 p->static_prio = NICE_TO_PRIO(nice);
5632 set_load_weight(p);
5633 old_prio = p->prio;
5634 p->prio = effective_prio(p);
5635 delta = p->prio - old_prio;
5636
5637 if (on_rq) {
5638 enqueue_task(rq, p, 0);
5639 /*
5640 * If the task increased its priority or is running and
5641 * lowered its priority, then reschedule its CPU:
5642 */
5643 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5644 resched_task(rq->curr);
5645 }
5646 out_unlock:
5647 task_rq_unlock(rq, &flags);
5648 }
5649 EXPORT_SYMBOL(set_user_nice);
5650
5651 /*
5652 * can_nice - check if a task can reduce its nice value
5653 * @p: task
5654 * @nice: nice value
5655 */
5656 int can_nice(const struct task_struct *p, const int nice)
5657 {
5658 /* convert nice value [19,-20] to rlimit style value [1,40] */
5659 int nice_rlim = 20 - nice;
5660
5661 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5662 capable(CAP_SYS_NICE));
5663 }
5664
5665 #ifdef __ARCH_WANT_SYS_NICE
5666
5667 /*
5668 * sys_nice - change the priority of the current process.
5669 * @increment: priority increment
5670 *
5671 * sys_setpriority is a more generic, but much slower function that
5672 * does similar things.
5673 */
5674 SYSCALL_DEFINE1(nice, int, increment)
5675 {
5676 long nice, retval;
5677
5678 /*
5679 * Setpriority might change our priority at the same moment.
5680 * We don't have to worry. Conceptually one call occurs first
5681 * and we have a single winner.
5682 */
5683 if (increment < -40)
5684 increment = -40;
5685 if (increment > 40)
5686 increment = 40;
5687
5688 nice = TASK_NICE(current) + increment;
5689 if (nice < -20)
5690 nice = -20;
5691 if (nice > 19)
5692 nice = 19;
5693
5694 if (increment < 0 && !can_nice(current, nice))
5695 return -EPERM;
5696
5697 retval = security_task_setnice(current, nice);
5698 if (retval)
5699 return retval;
5700
5701 set_user_nice(current, nice);
5702 return 0;
5703 }
5704
5705 #endif
5706
5707 /**
5708 * task_prio - return the priority value of a given task.
5709 * @p: the task in question.
5710 *
5711 * This is the priority value as seen by users in /proc.
5712 * RT tasks are offset by -200. Normal tasks are centered
5713 * around 0, value goes from -16 to +15.
5714 */
5715 int task_prio(const struct task_struct *p)
5716 {
5717 return p->prio - MAX_RT_PRIO;
5718 }
5719
5720 /**
5721 * task_nice - return the nice value of a given task.
5722 * @p: the task in question.
5723 */
5724 int task_nice(const struct task_struct *p)
5725 {
5726 return TASK_NICE(p);
5727 }
5728 EXPORT_SYMBOL(task_nice);
5729
5730 /**
5731 * idle_cpu - is a given cpu idle currently?
5732 * @cpu: the processor in question.
5733 */
5734 int idle_cpu(int cpu)
5735 {
5736 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5737 }
5738
5739 /**
5740 * idle_task - return the idle task for a given cpu.
5741 * @cpu: the processor in question.
5742 */
5743 struct task_struct *idle_task(int cpu)
5744 {
5745 return cpu_rq(cpu)->idle;
5746 }
5747
5748 /**
5749 * find_process_by_pid - find a process with a matching PID value.
5750 * @pid: the pid in question.
5751 */
5752 static struct task_struct *find_process_by_pid(pid_t pid)
5753 {
5754 return pid ? find_task_by_vpid(pid) : current;
5755 }
5756
5757 /* Actually do priority change: must hold rq lock. */
5758 static void
5759 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5760 {
5761 BUG_ON(p->se.on_rq);
5762
5763 p->policy = policy;
5764 switch (p->policy) {
5765 case SCHED_NORMAL:
5766 case SCHED_BATCH:
5767 case SCHED_IDLE:
5768 p->sched_class = &fair_sched_class;
5769 break;
5770 case SCHED_FIFO:
5771 case SCHED_RR:
5772 p->sched_class = &rt_sched_class;
5773 break;
5774 }
5775
5776 p->rt_priority = prio;
5777 p->normal_prio = normal_prio(p);
5778 /* we are holding p->pi_lock already */
5779 p->prio = rt_mutex_getprio(p);
5780 set_load_weight(p);
5781 }
5782
5783 /*
5784 * check the target process has a UID that matches the current process's
5785 */
5786 static bool check_same_owner(struct task_struct *p)
5787 {
5788 const struct cred *cred = current_cred(), *pcred;
5789 bool match;
5790
5791 rcu_read_lock();
5792 pcred = __task_cred(p);
5793 match = (cred->euid == pcred->euid ||
5794 cred->euid == pcred->uid);
5795 rcu_read_unlock();
5796 return match;
5797 }
5798
5799 static int __sched_setscheduler(struct task_struct *p, int policy,
5800 struct sched_param *param, bool user)
5801 {
5802 int retval, oldprio, oldpolicy = -1, on_rq, running;
5803 unsigned long flags;
5804 const struct sched_class *prev_class = p->sched_class;
5805 struct rq *rq;
5806
5807 /* may grab non-irq protected spin_locks */
5808 BUG_ON(in_interrupt());
5809 recheck:
5810 /* double check policy once rq lock held */
5811 if (policy < 0)
5812 policy = oldpolicy = p->policy;
5813 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
5814 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5815 policy != SCHED_IDLE)
5816 return -EINVAL;
5817 /*
5818 * Valid priorities for SCHED_FIFO and SCHED_RR are
5819 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5820 * SCHED_BATCH and SCHED_IDLE is 0.
5821 */
5822 if (param->sched_priority < 0 ||
5823 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5824 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5825 return -EINVAL;
5826 if (rt_policy(policy) != (param->sched_priority != 0))
5827 return -EINVAL;
5828
5829 /*
5830 * Allow unprivileged RT tasks to decrease priority:
5831 */
5832 if (user && !capable(CAP_SYS_NICE)) {
5833 if (rt_policy(policy)) {
5834 unsigned long rlim_rtprio;
5835
5836 if (!lock_task_sighand(p, &flags))
5837 return -ESRCH;
5838 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5839 unlock_task_sighand(p, &flags);
5840
5841 /* can't set/change the rt policy */
5842 if (policy != p->policy && !rlim_rtprio)
5843 return -EPERM;
5844
5845 /* can't increase priority */
5846 if (param->sched_priority > p->rt_priority &&
5847 param->sched_priority > rlim_rtprio)
5848 return -EPERM;
5849 }
5850 /*
5851 * Like positive nice levels, dont allow tasks to
5852 * move out of SCHED_IDLE either:
5853 */
5854 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5855 return -EPERM;
5856
5857 /* can't change other user's priorities */
5858 if (!check_same_owner(p))
5859 return -EPERM;
5860 }
5861
5862 if (user) {
5863 #ifdef CONFIG_RT_GROUP_SCHED
5864 /*
5865 * Do not allow realtime tasks into groups that have no runtime
5866 * assigned.
5867 */
5868 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5869 task_group(p)->rt_bandwidth.rt_runtime == 0)
5870 return -EPERM;
5871 #endif
5872
5873 retval = security_task_setscheduler(p, policy, param);
5874 if (retval)
5875 return retval;
5876 }
5877
5878 /*
5879 * make sure no PI-waiters arrive (or leave) while we are
5880 * changing the priority of the task:
5881 */
5882 spin_lock_irqsave(&p->pi_lock, flags);
5883 /*
5884 * To be able to change p->policy safely, the apropriate
5885 * runqueue lock must be held.
5886 */
5887 rq = __task_rq_lock(p);
5888 /* recheck policy now with rq lock held */
5889 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5890 policy = oldpolicy = -1;
5891 __task_rq_unlock(rq);
5892 spin_unlock_irqrestore(&p->pi_lock, flags);
5893 goto recheck;
5894 }
5895 update_rq_clock(rq);
5896 on_rq = p->se.on_rq;
5897 running = task_current(rq, p);
5898 if (on_rq)
5899 deactivate_task(rq, p, 0);
5900 if (running)
5901 p->sched_class->put_prev_task(rq, p);
5902
5903 oldprio = p->prio;
5904 __setscheduler(rq, p, policy, param->sched_priority);
5905
5906 if (running)
5907 p->sched_class->set_curr_task(rq);
5908 if (on_rq) {
5909 activate_task(rq, p, 0);
5910
5911 check_class_changed(rq, p, prev_class, oldprio, running);
5912 }
5913 __task_rq_unlock(rq);
5914 spin_unlock_irqrestore(&p->pi_lock, flags);
5915
5916 rt_mutex_adjust_pi(p);
5917
5918 return 0;
5919 }
5920
5921 /**
5922 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5923 * @p: the task in question.
5924 * @policy: new policy.
5925 * @param: structure containing the new RT priority.
5926 *
5927 * NOTE that the task may be already dead.
5928 */
5929 int sched_setscheduler(struct task_struct *p, int policy,
5930 struct sched_param *param)
5931 {
5932 return __sched_setscheduler(p, policy, param, true);
5933 }
5934 EXPORT_SYMBOL_GPL(sched_setscheduler);
5935
5936 /**
5937 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5938 * @p: the task in question.
5939 * @policy: new policy.
5940 * @param: structure containing the new RT priority.
5941 *
5942 * Just like sched_setscheduler, only don't bother checking if the
5943 * current context has permission. For example, this is needed in
5944 * stop_machine(): we create temporary high priority worker threads,
5945 * but our caller might not have that capability.
5946 */
5947 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5948 struct sched_param *param)
5949 {
5950 return __sched_setscheduler(p, policy, param, false);
5951 }
5952
5953 static int
5954 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5955 {
5956 struct sched_param lparam;
5957 struct task_struct *p;
5958 int retval;
5959
5960 if (!param || pid < 0)
5961 return -EINVAL;
5962 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5963 return -EFAULT;
5964
5965 rcu_read_lock();
5966 retval = -ESRCH;
5967 p = find_process_by_pid(pid);
5968 if (p != NULL)
5969 retval = sched_setscheduler(p, policy, &lparam);
5970 rcu_read_unlock();
5971
5972 return retval;
5973 }
5974
5975 /**
5976 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5977 * @pid: the pid in question.
5978 * @policy: new policy.
5979 * @param: structure containing the new RT priority.
5980 */
5981 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5982 struct sched_param __user *, param)
5983 {
5984 /* negative values for policy are not valid */
5985 if (policy < 0)
5986 return -EINVAL;
5987
5988 return do_sched_setscheduler(pid, policy, param);
5989 }
5990
5991 /**
5992 * sys_sched_setparam - set/change the RT priority of a thread
5993 * @pid: the pid in question.
5994 * @param: structure containing the new RT priority.
5995 */
5996 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5997 {
5998 return do_sched_setscheduler(pid, -1, param);
5999 }
6000
6001 /**
6002 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6003 * @pid: the pid in question.
6004 */
6005 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6006 {
6007 struct task_struct *p;
6008 int retval;
6009
6010 if (pid < 0)
6011 return -EINVAL;
6012
6013 retval = -ESRCH;
6014 read_lock(&tasklist_lock);
6015 p = find_process_by_pid(pid);
6016 if (p) {
6017 retval = security_task_getscheduler(p);
6018 if (!retval)
6019 retval = p->policy;
6020 }
6021 read_unlock(&tasklist_lock);
6022 return retval;
6023 }
6024
6025 /**
6026 * sys_sched_getscheduler - get the RT priority of a thread
6027 * @pid: the pid in question.
6028 * @param: structure containing the RT priority.
6029 */
6030 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6031 {
6032 struct sched_param lp;
6033 struct task_struct *p;
6034 int retval;
6035
6036 if (!param || pid < 0)
6037 return -EINVAL;
6038
6039 read_lock(&tasklist_lock);
6040 p = find_process_by_pid(pid);
6041 retval = -ESRCH;
6042 if (!p)
6043 goto out_unlock;
6044
6045 retval = security_task_getscheduler(p);
6046 if (retval)
6047 goto out_unlock;
6048
6049 lp.sched_priority = p->rt_priority;
6050 read_unlock(&tasklist_lock);
6051
6052 /*
6053 * This one might sleep, we cannot do it with a spinlock held ...
6054 */
6055 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6056
6057 return retval;
6058
6059 out_unlock:
6060 read_unlock(&tasklist_lock);
6061 return retval;
6062 }
6063
6064 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6065 {
6066 cpumask_var_t cpus_allowed, new_mask;
6067 struct task_struct *p;
6068 int retval;
6069
6070 get_online_cpus();
6071 read_lock(&tasklist_lock);
6072
6073 p = find_process_by_pid(pid);
6074 if (!p) {
6075 read_unlock(&tasklist_lock);
6076 put_online_cpus();
6077 return -ESRCH;
6078 }
6079
6080 /*
6081 * It is not safe to call set_cpus_allowed with the
6082 * tasklist_lock held. We will bump the task_struct's
6083 * usage count and then drop tasklist_lock.
6084 */
6085 get_task_struct(p);
6086 read_unlock(&tasklist_lock);
6087
6088 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6089 retval = -ENOMEM;
6090 goto out_put_task;
6091 }
6092 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6093 retval = -ENOMEM;
6094 goto out_free_cpus_allowed;
6095 }
6096 retval = -EPERM;
6097 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6098 goto out_unlock;
6099
6100 retval = security_task_setscheduler(p, 0, NULL);
6101 if (retval)
6102 goto out_unlock;
6103
6104 cpuset_cpus_allowed(p, cpus_allowed);
6105 cpumask_and(new_mask, in_mask, cpus_allowed);
6106 again:
6107 retval = set_cpus_allowed_ptr(p, new_mask);
6108
6109 if (!retval) {
6110 cpuset_cpus_allowed(p, cpus_allowed);
6111 if (!cpumask_subset(new_mask, cpus_allowed)) {
6112 /*
6113 * We must have raced with a concurrent cpuset
6114 * update. Just reset the cpus_allowed to the
6115 * cpuset's cpus_allowed
6116 */
6117 cpumask_copy(new_mask, cpus_allowed);
6118 goto again;
6119 }
6120 }
6121 out_unlock:
6122 free_cpumask_var(new_mask);
6123 out_free_cpus_allowed:
6124 free_cpumask_var(cpus_allowed);
6125 out_put_task:
6126 put_task_struct(p);
6127 put_online_cpus();
6128 return retval;
6129 }
6130
6131 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6132 struct cpumask *new_mask)
6133 {
6134 if (len < cpumask_size())
6135 cpumask_clear(new_mask);
6136 else if (len > cpumask_size())
6137 len = cpumask_size();
6138
6139 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6140 }
6141
6142 /**
6143 * sys_sched_setaffinity - set the cpu affinity of a process
6144 * @pid: pid of the process
6145 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6146 * @user_mask_ptr: user-space pointer to the new cpu mask
6147 */
6148 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6149 unsigned long __user *, user_mask_ptr)
6150 {
6151 cpumask_var_t new_mask;
6152 int retval;
6153
6154 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6155 return -ENOMEM;
6156
6157 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6158 if (retval == 0)
6159 retval = sched_setaffinity(pid, new_mask);
6160 free_cpumask_var(new_mask);
6161 return retval;
6162 }
6163
6164 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6165 {
6166 struct task_struct *p;
6167 int retval;
6168
6169 get_online_cpus();
6170 read_lock(&tasklist_lock);
6171
6172 retval = -ESRCH;
6173 p = find_process_by_pid(pid);
6174 if (!p)
6175 goto out_unlock;
6176
6177 retval = security_task_getscheduler(p);
6178 if (retval)
6179 goto out_unlock;
6180
6181 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6182
6183 out_unlock:
6184 read_unlock(&tasklist_lock);
6185 put_online_cpus();
6186
6187 return retval;
6188 }
6189
6190 /**
6191 * sys_sched_getaffinity - get the cpu affinity of a process
6192 * @pid: pid of the process
6193 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6194 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6195 */
6196 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6197 unsigned long __user *, user_mask_ptr)
6198 {
6199 int ret;
6200 cpumask_var_t mask;
6201
6202 if (len < cpumask_size())
6203 return -EINVAL;
6204
6205 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6206 return -ENOMEM;
6207
6208 ret = sched_getaffinity(pid, mask);
6209 if (ret == 0) {
6210 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6211 ret = -EFAULT;
6212 else
6213 ret = cpumask_size();
6214 }
6215 free_cpumask_var(mask);
6216
6217 return ret;
6218 }
6219
6220 /**
6221 * sys_sched_yield - yield the current processor to other threads.
6222 *
6223 * This function yields the current CPU to other tasks. If there are no
6224 * other threads running on this CPU then this function will return.
6225 */
6226 SYSCALL_DEFINE0(sched_yield)
6227 {
6228 struct rq *rq = this_rq_lock();
6229
6230 schedstat_inc(rq, yld_count);
6231 current->sched_class->yield_task(rq);
6232
6233 /*
6234 * Since we are going to call schedule() anyway, there's
6235 * no need to preempt or enable interrupts:
6236 */
6237 __release(rq->lock);
6238 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6239 _raw_spin_unlock(&rq->lock);
6240 preempt_enable_no_resched();
6241
6242 schedule();
6243
6244 return 0;
6245 }
6246
6247 static void __cond_resched(void)
6248 {
6249 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6250 __might_sleep(__FILE__, __LINE__);
6251 #endif
6252 /*
6253 * The BKS might be reacquired before we have dropped
6254 * PREEMPT_ACTIVE, which could trigger a second
6255 * cond_resched() call.
6256 */
6257 do {
6258 add_preempt_count(PREEMPT_ACTIVE);
6259 schedule();
6260 sub_preempt_count(PREEMPT_ACTIVE);
6261 } while (need_resched());
6262 }
6263
6264 int __sched _cond_resched(void)
6265 {
6266 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
6267 system_state == SYSTEM_RUNNING) {
6268 __cond_resched();
6269 return 1;
6270 }
6271 return 0;
6272 }
6273 EXPORT_SYMBOL(_cond_resched);
6274
6275 /*
6276 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
6277 * call schedule, and on return reacquire the lock.
6278 *
6279 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6280 * operations here to prevent schedule() from being called twice (once via
6281 * spin_unlock(), once by hand).
6282 */
6283 int cond_resched_lock(spinlock_t *lock)
6284 {
6285 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6286 int ret = 0;
6287
6288 if (spin_needbreak(lock) || resched) {
6289 spin_unlock(lock);
6290 if (resched && need_resched())
6291 __cond_resched();
6292 else
6293 cpu_relax();
6294 ret = 1;
6295 spin_lock(lock);
6296 }
6297 return ret;
6298 }
6299 EXPORT_SYMBOL(cond_resched_lock);
6300
6301 int __sched cond_resched_softirq(void)
6302 {
6303 BUG_ON(!in_softirq());
6304
6305 if (need_resched() && system_state == SYSTEM_RUNNING) {
6306 local_bh_enable();
6307 __cond_resched();
6308 local_bh_disable();
6309 return 1;
6310 }
6311 return 0;
6312 }
6313 EXPORT_SYMBOL(cond_resched_softirq);
6314
6315 /**
6316 * yield - yield the current processor to other threads.
6317 *
6318 * This is a shortcut for kernel-space yielding - it marks the
6319 * thread runnable and calls sys_sched_yield().
6320 */
6321 void __sched yield(void)
6322 {
6323 set_current_state(TASK_RUNNING);
6324 sys_sched_yield();
6325 }
6326 EXPORT_SYMBOL(yield);
6327
6328 /*
6329 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6330 * that process accounting knows that this is a task in IO wait state.
6331 *
6332 * But don't do that if it is a deliberate, throttling IO wait (this task
6333 * has set its backing_dev_info: the queue against which it should throttle)
6334 */
6335 void __sched io_schedule(void)
6336 {
6337 struct rq *rq = &__raw_get_cpu_var(runqueues);
6338
6339 delayacct_blkio_start();
6340 atomic_inc(&rq->nr_iowait);
6341 schedule();
6342 atomic_dec(&rq->nr_iowait);
6343 delayacct_blkio_end();
6344 }
6345 EXPORT_SYMBOL(io_schedule);
6346
6347 long __sched io_schedule_timeout(long timeout)
6348 {
6349 struct rq *rq = &__raw_get_cpu_var(runqueues);
6350 long ret;
6351
6352 delayacct_blkio_start();
6353 atomic_inc(&rq->nr_iowait);
6354 ret = schedule_timeout(timeout);
6355 atomic_dec(&rq->nr_iowait);
6356 delayacct_blkio_end();
6357 return ret;
6358 }
6359
6360 /**
6361 * sys_sched_get_priority_max - return maximum RT priority.
6362 * @policy: scheduling class.
6363 *
6364 * this syscall returns the maximum rt_priority that can be used
6365 * by a given scheduling class.
6366 */
6367 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6368 {
6369 int ret = -EINVAL;
6370
6371 switch (policy) {
6372 case SCHED_FIFO:
6373 case SCHED_RR:
6374 ret = MAX_USER_RT_PRIO-1;
6375 break;
6376 case SCHED_NORMAL:
6377 case SCHED_BATCH:
6378 case SCHED_IDLE:
6379 ret = 0;
6380 break;
6381 }
6382 return ret;
6383 }
6384
6385 /**
6386 * sys_sched_get_priority_min - return minimum RT priority.
6387 * @policy: scheduling class.
6388 *
6389 * this syscall returns the minimum rt_priority that can be used
6390 * by a given scheduling class.
6391 */
6392 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6393 {
6394 int ret = -EINVAL;
6395
6396 switch (policy) {
6397 case SCHED_FIFO:
6398 case SCHED_RR:
6399 ret = 1;
6400 break;
6401 case SCHED_NORMAL:
6402 case SCHED_BATCH:
6403 case SCHED_IDLE:
6404 ret = 0;
6405 }
6406 return ret;
6407 }
6408
6409 /**
6410 * sys_sched_rr_get_interval - return the default timeslice of a process.
6411 * @pid: pid of the process.
6412 * @interval: userspace pointer to the timeslice value.
6413 *
6414 * this syscall writes the default timeslice value of a given process
6415 * into the user-space timespec buffer. A value of '0' means infinity.
6416 */
6417 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6418 struct timespec __user *, interval)
6419 {
6420 struct task_struct *p;
6421 unsigned int time_slice;
6422 int retval;
6423 struct timespec t;
6424
6425 if (pid < 0)
6426 return -EINVAL;
6427
6428 retval = -ESRCH;
6429 read_lock(&tasklist_lock);
6430 p = find_process_by_pid(pid);
6431 if (!p)
6432 goto out_unlock;
6433
6434 retval = security_task_getscheduler(p);
6435 if (retval)
6436 goto out_unlock;
6437
6438 /*
6439 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6440 * tasks that are on an otherwise idle runqueue:
6441 */
6442 time_slice = 0;
6443 if (p->policy == SCHED_RR) {
6444 time_slice = DEF_TIMESLICE;
6445 } else if (p->policy != SCHED_FIFO) {
6446 struct sched_entity *se = &p->se;
6447 unsigned long flags;
6448 struct rq *rq;
6449
6450 rq = task_rq_lock(p, &flags);
6451 if (rq->cfs.load.weight)
6452 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6453 task_rq_unlock(rq, &flags);
6454 }
6455 read_unlock(&tasklist_lock);
6456 jiffies_to_timespec(time_slice, &t);
6457 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6458 return retval;
6459
6460 out_unlock:
6461 read_unlock(&tasklist_lock);
6462 return retval;
6463 }
6464
6465 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6466
6467 void sched_show_task(struct task_struct *p)
6468 {
6469 unsigned long free = 0;
6470 unsigned state;
6471
6472 state = p->state ? __ffs(p->state) + 1 : 0;
6473 printk(KERN_INFO "%-13.13s %c", p->comm,
6474 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6475 #if BITS_PER_LONG == 32
6476 if (state == TASK_RUNNING)
6477 printk(KERN_CONT " running ");
6478 else
6479 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6480 #else
6481 if (state == TASK_RUNNING)
6482 printk(KERN_CONT " running task ");
6483 else
6484 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6485 #endif
6486 #ifdef CONFIG_DEBUG_STACK_USAGE
6487 free = stack_not_used(p);
6488 #endif
6489 printk(KERN_CONT "%5lu %5d %6d\n", free,
6490 task_pid_nr(p), task_pid_nr(p->real_parent));
6491
6492 show_stack(p, NULL);
6493 }
6494
6495 void show_state_filter(unsigned long state_filter)
6496 {
6497 struct task_struct *g, *p;
6498
6499 #if BITS_PER_LONG == 32
6500 printk(KERN_INFO
6501 " task PC stack pid father\n");
6502 #else
6503 printk(KERN_INFO
6504 " task PC stack pid father\n");
6505 #endif
6506 read_lock(&tasklist_lock);
6507 do_each_thread(g, p) {
6508 /*
6509 * reset the NMI-timeout, listing all files on a slow
6510 * console might take alot of time:
6511 */
6512 touch_nmi_watchdog();
6513 if (!state_filter || (p->state & state_filter))
6514 sched_show_task(p);
6515 } while_each_thread(g, p);
6516
6517 touch_all_softlockup_watchdogs();
6518
6519 #ifdef CONFIG_SCHED_DEBUG
6520 sysrq_sched_debug_show();
6521 #endif
6522 read_unlock(&tasklist_lock);
6523 /*
6524 * Only show locks if all tasks are dumped:
6525 */
6526 if (state_filter == -1)
6527 debug_show_all_locks();
6528 }
6529
6530 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6531 {
6532 idle->sched_class = &idle_sched_class;
6533 }
6534
6535 /**
6536 * init_idle - set up an idle thread for a given CPU
6537 * @idle: task in question
6538 * @cpu: cpu the idle task belongs to
6539 *
6540 * NOTE: this function does not set the idle thread's NEED_RESCHED
6541 * flag, to make booting more robust.
6542 */
6543 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6544 {
6545 struct rq *rq = cpu_rq(cpu);
6546 unsigned long flags;
6547
6548 spin_lock_irqsave(&rq->lock, flags);
6549
6550 __sched_fork(idle);
6551 idle->se.exec_start = sched_clock();
6552
6553 idle->prio = idle->normal_prio = MAX_PRIO;
6554 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6555 __set_task_cpu(idle, cpu);
6556
6557 rq->curr = rq->idle = idle;
6558 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6559 idle->oncpu = 1;
6560 #endif
6561 spin_unlock_irqrestore(&rq->lock, flags);
6562
6563 /* Set the preempt count _outside_ the spinlocks! */
6564 #if defined(CONFIG_PREEMPT)
6565 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6566 #else
6567 task_thread_info(idle)->preempt_count = 0;
6568 #endif
6569 /*
6570 * The idle tasks have their own, simple scheduling class:
6571 */
6572 idle->sched_class = &idle_sched_class;
6573 ftrace_graph_init_task(idle);
6574 }
6575
6576 /*
6577 * In a system that switches off the HZ timer nohz_cpu_mask
6578 * indicates which cpus entered this state. This is used
6579 * in the rcu update to wait only for active cpus. For system
6580 * which do not switch off the HZ timer nohz_cpu_mask should
6581 * always be CPU_BITS_NONE.
6582 */
6583 cpumask_var_t nohz_cpu_mask;
6584
6585 /*
6586 * Increase the granularity value when there are more CPUs,
6587 * because with more CPUs the 'effective latency' as visible
6588 * to users decreases. But the relationship is not linear,
6589 * so pick a second-best guess by going with the log2 of the
6590 * number of CPUs.
6591 *
6592 * This idea comes from the SD scheduler of Con Kolivas:
6593 */
6594 static inline void sched_init_granularity(void)
6595 {
6596 unsigned int factor = 1 + ilog2(num_online_cpus());
6597 const unsigned long limit = 200000000;
6598
6599 sysctl_sched_min_granularity *= factor;
6600 if (sysctl_sched_min_granularity > limit)
6601 sysctl_sched_min_granularity = limit;
6602
6603 sysctl_sched_latency *= factor;
6604 if (sysctl_sched_latency > limit)
6605 sysctl_sched_latency = limit;
6606
6607 sysctl_sched_wakeup_granularity *= factor;
6608
6609 sysctl_sched_shares_ratelimit *= factor;
6610 }
6611
6612 #ifdef CONFIG_SMP
6613 /*
6614 * This is how migration works:
6615 *
6616 * 1) we queue a struct migration_req structure in the source CPU's
6617 * runqueue and wake up that CPU's migration thread.
6618 * 2) we down() the locked semaphore => thread blocks.
6619 * 3) migration thread wakes up (implicitly it forces the migrated
6620 * thread off the CPU)
6621 * 4) it gets the migration request and checks whether the migrated
6622 * task is still in the wrong runqueue.
6623 * 5) if it's in the wrong runqueue then the migration thread removes
6624 * it and puts it into the right queue.
6625 * 6) migration thread up()s the semaphore.
6626 * 7) we wake up and the migration is done.
6627 */
6628
6629 /*
6630 * Change a given task's CPU affinity. Migrate the thread to a
6631 * proper CPU and schedule it away if the CPU it's executing on
6632 * is removed from the allowed bitmask.
6633 *
6634 * NOTE: the caller must have a valid reference to the task, the
6635 * task must not exit() & deallocate itself prematurely. The
6636 * call is not atomic; no spinlocks may be held.
6637 */
6638 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6639 {
6640 struct migration_req req;
6641 unsigned long flags;
6642 struct rq *rq;
6643 int ret = 0;
6644
6645 rq = task_rq_lock(p, &flags);
6646 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
6647 ret = -EINVAL;
6648 goto out;
6649 }
6650
6651 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
6652 !cpumask_equal(&p->cpus_allowed, new_mask))) {
6653 ret = -EINVAL;
6654 goto out;
6655 }
6656
6657 if (p->sched_class->set_cpus_allowed)
6658 p->sched_class->set_cpus_allowed(p, new_mask);
6659 else {
6660 cpumask_copy(&p->cpus_allowed, new_mask);
6661 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6662 }
6663
6664 /* Can the task run on the task's current CPU? If so, we're done */
6665 if (cpumask_test_cpu(task_cpu(p), new_mask))
6666 goto out;
6667
6668 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
6669 /* Need help from migration thread: drop lock and wait. */
6670 task_rq_unlock(rq, &flags);
6671 wake_up_process(rq->migration_thread);
6672 wait_for_completion(&req.done);
6673 tlb_migrate_finish(p->mm);
6674 return 0;
6675 }
6676 out:
6677 task_rq_unlock(rq, &flags);
6678
6679 return ret;
6680 }
6681 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6682
6683 /*
6684 * Move (not current) task off this cpu, onto dest cpu. We're doing
6685 * this because either it can't run here any more (set_cpus_allowed()
6686 * away from this CPU, or CPU going down), or because we're
6687 * attempting to rebalance this task on exec (sched_exec).
6688 *
6689 * So we race with normal scheduler movements, but that's OK, as long
6690 * as the task is no longer on this CPU.
6691 *
6692 * Returns non-zero if task was successfully migrated.
6693 */
6694 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6695 {
6696 struct rq *rq_dest, *rq_src;
6697 int ret = 0, on_rq;
6698
6699 if (unlikely(!cpu_active(dest_cpu)))
6700 return ret;
6701
6702 rq_src = cpu_rq(src_cpu);
6703 rq_dest = cpu_rq(dest_cpu);
6704
6705 double_rq_lock(rq_src, rq_dest);
6706 /* Already moved. */
6707 if (task_cpu(p) != src_cpu)
6708 goto done;
6709 /* Affinity changed (again). */
6710 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6711 goto fail;
6712
6713 on_rq = p->se.on_rq;
6714 if (on_rq)
6715 deactivate_task(rq_src, p, 0);
6716
6717 set_task_cpu(p, dest_cpu);
6718 if (on_rq) {
6719 activate_task(rq_dest, p, 0);
6720 check_preempt_curr(rq_dest, p, 0);
6721 }
6722 done:
6723 ret = 1;
6724 fail:
6725 double_rq_unlock(rq_src, rq_dest);
6726 return ret;
6727 }
6728
6729 /*
6730 * migration_thread - this is a highprio system thread that performs
6731 * thread migration by bumping thread off CPU then 'pushing' onto
6732 * another runqueue.
6733 */
6734 static int migration_thread(void *data)
6735 {
6736 int cpu = (long)data;
6737 struct rq *rq;
6738
6739 rq = cpu_rq(cpu);
6740 BUG_ON(rq->migration_thread != current);
6741
6742 set_current_state(TASK_INTERRUPTIBLE);
6743 while (!kthread_should_stop()) {
6744 struct migration_req *req;
6745 struct list_head *head;
6746
6747 spin_lock_irq(&rq->lock);
6748
6749 if (cpu_is_offline(cpu)) {
6750 spin_unlock_irq(&rq->lock);
6751 goto wait_to_die;
6752 }
6753
6754 if (rq->active_balance) {
6755 active_load_balance(rq, cpu);
6756 rq->active_balance = 0;
6757 }
6758
6759 head = &rq->migration_queue;
6760
6761 if (list_empty(head)) {
6762 spin_unlock_irq(&rq->lock);
6763 schedule();
6764 set_current_state(TASK_INTERRUPTIBLE);
6765 continue;
6766 }
6767 req = list_entry(head->next, struct migration_req, list);
6768 list_del_init(head->next);
6769
6770 spin_unlock(&rq->lock);
6771 __migrate_task(req->task, cpu, req->dest_cpu);
6772 local_irq_enable();
6773
6774 complete(&req->done);
6775 }
6776 __set_current_state(TASK_RUNNING);
6777 return 0;
6778
6779 wait_to_die:
6780 /* Wait for kthread_stop */
6781 set_current_state(TASK_INTERRUPTIBLE);
6782 while (!kthread_should_stop()) {
6783 schedule();
6784 set_current_state(TASK_INTERRUPTIBLE);
6785 }
6786 __set_current_state(TASK_RUNNING);
6787 return 0;
6788 }
6789
6790 #ifdef CONFIG_HOTPLUG_CPU
6791
6792 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6793 {
6794 int ret;
6795
6796 local_irq_disable();
6797 ret = __migrate_task(p, src_cpu, dest_cpu);
6798 local_irq_enable();
6799 return ret;
6800 }
6801
6802 /*
6803 * Figure out where task on dead CPU should go, use force if necessary.
6804 */
6805 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
6806 {
6807 int dest_cpu;
6808 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
6809
6810 again:
6811 /* Look for allowed, online CPU in same node. */
6812 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6813 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6814 goto move;
6815
6816 /* Any allowed, online CPU? */
6817 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6818 if (dest_cpu < nr_cpu_ids)
6819 goto move;
6820
6821 /* No more Mr. Nice Guy. */
6822 if (dest_cpu >= nr_cpu_ids) {
6823 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6824 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
6825
6826 /*
6827 * Don't tell them about moving exiting tasks or
6828 * kernel threads (both mm NULL), since they never
6829 * leave kernel.
6830 */
6831 if (p->mm && printk_ratelimit()) {
6832 printk(KERN_INFO "process %d (%s) no "
6833 "longer affine to cpu%d\n",
6834 task_pid_nr(p), p->comm, dead_cpu);
6835 }
6836 }
6837
6838 move:
6839 /* It can have affinity changed while we were choosing. */
6840 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6841 goto again;
6842 }
6843
6844 /*
6845 * While a dead CPU has no uninterruptible tasks queued at this point,
6846 * it might still have a nonzero ->nr_uninterruptible counter, because
6847 * for performance reasons the counter is not stricly tracking tasks to
6848 * their home CPUs. So we just add the counter to another CPU's counter,
6849 * to keep the global sum constant after CPU-down:
6850 */
6851 static void migrate_nr_uninterruptible(struct rq *rq_src)
6852 {
6853 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
6854 unsigned long flags;
6855
6856 local_irq_save(flags);
6857 double_rq_lock(rq_src, rq_dest);
6858 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6859 rq_src->nr_uninterruptible = 0;
6860 double_rq_unlock(rq_src, rq_dest);
6861 local_irq_restore(flags);
6862 }
6863
6864 /* Run through task list and migrate tasks from the dead cpu. */
6865 static void migrate_live_tasks(int src_cpu)
6866 {
6867 struct task_struct *p, *t;
6868
6869 read_lock(&tasklist_lock);
6870
6871 do_each_thread(t, p) {
6872 if (p == current)
6873 continue;
6874
6875 if (task_cpu(p) == src_cpu)
6876 move_task_off_dead_cpu(src_cpu, p);
6877 } while_each_thread(t, p);
6878
6879 read_unlock(&tasklist_lock);
6880 }
6881
6882 /*
6883 * Schedules idle task to be the next runnable task on current CPU.
6884 * It does so by boosting its priority to highest possible.
6885 * Used by CPU offline code.
6886 */
6887 void sched_idle_next(void)
6888 {
6889 int this_cpu = smp_processor_id();
6890 struct rq *rq = cpu_rq(this_cpu);
6891 struct task_struct *p = rq->idle;
6892 unsigned long flags;
6893
6894 /* cpu has to be offline */
6895 BUG_ON(cpu_online(this_cpu));
6896
6897 /*
6898 * Strictly not necessary since rest of the CPUs are stopped by now
6899 * and interrupts disabled on the current cpu.
6900 */
6901 spin_lock_irqsave(&rq->lock, flags);
6902
6903 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6904
6905 update_rq_clock(rq);
6906 activate_task(rq, p, 0);
6907
6908 spin_unlock_irqrestore(&rq->lock, flags);
6909 }
6910
6911 /*
6912 * Ensures that the idle task is using init_mm right before its cpu goes
6913 * offline.
6914 */
6915 void idle_task_exit(void)
6916 {
6917 struct mm_struct *mm = current->active_mm;
6918
6919 BUG_ON(cpu_online(smp_processor_id()));
6920
6921 if (mm != &init_mm)
6922 switch_mm(mm, &init_mm, current);
6923 mmdrop(mm);
6924 }
6925
6926 /* called under rq->lock with disabled interrupts */
6927 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
6928 {
6929 struct rq *rq = cpu_rq(dead_cpu);
6930
6931 /* Must be exiting, otherwise would be on tasklist. */
6932 BUG_ON(!p->exit_state);
6933
6934 /* Cannot have done final schedule yet: would have vanished. */
6935 BUG_ON(p->state == TASK_DEAD);
6936
6937 get_task_struct(p);
6938
6939 /*
6940 * Drop lock around migration; if someone else moves it,
6941 * that's OK. No task can be added to this CPU, so iteration is
6942 * fine.
6943 */
6944 spin_unlock_irq(&rq->lock);
6945 move_task_off_dead_cpu(dead_cpu, p);
6946 spin_lock_irq(&rq->lock);
6947
6948 put_task_struct(p);
6949 }
6950
6951 /* release_task() removes task from tasklist, so we won't find dead tasks. */
6952 static void migrate_dead_tasks(unsigned int dead_cpu)
6953 {
6954 struct rq *rq = cpu_rq(dead_cpu);
6955 struct task_struct *next;
6956
6957 for ( ; ; ) {
6958 if (!rq->nr_running)
6959 break;
6960 update_rq_clock(rq);
6961 next = pick_next_task(rq);
6962 if (!next)
6963 break;
6964 next->sched_class->put_prev_task(rq, next);
6965 migrate_dead(dead_cpu, next);
6966
6967 }
6968 }
6969 #endif /* CONFIG_HOTPLUG_CPU */
6970
6971 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6972
6973 static struct ctl_table sd_ctl_dir[] = {
6974 {
6975 .procname = "sched_domain",
6976 .mode = 0555,
6977 },
6978 {0, },
6979 };
6980
6981 static struct ctl_table sd_ctl_root[] = {
6982 {
6983 .ctl_name = CTL_KERN,
6984 .procname = "kernel",
6985 .mode = 0555,
6986 .child = sd_ctl_dir,
6987 },
6988 {0, },
6989 };
6990
6991 static struct ctl_table *sd_alloc_ctl_entry(int n)
6992 {
6993 struct ctl_table *entry =
6994 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6995
6996 return entry;
6997 }
6998
6999 static void sd_free_ctl_entry(struct ctl_table **tablep)
7000 {
7001 struct ctl_table *entry;
7002
7003 /*
7004 * In the intermediate directories, both the child directory and
7005 * procname are dynamically allocated and could fail but the mode
7006 * will always be set. In the lowest directory the names are
7007 * static strings and all have proc handlers.
7008 */
7009 for (entry = *tablep; entry->mode; entry++) {
7010 if (entry->child)
7011 sd_free_ctl_entry(&entry->child);
7012 if (entry->proc_handler == NULL)
7013 kfree(entry->procname);
7014 }
7015
7016 kfree(*tablep);
7017 *tablep = NULL;
7018 }
7019
7020 static void
7021 set_table_entry(struct ctl_table *entry,
7022 const char *procname, void *data, int maxlen,
7023 mode_t mode, proc_handler *proc_handler)
7024 {
7025 entry->procname = procname;
7026 entry->data = data;
7027 entry->maxlen = maxlen;
7028 entry->mode = mode;
7029 entry->proc_handler = proc_handler;
7030 }
7031
7032 static struct ctl_table *
7033 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7034 {
7035 struct ctl_table *table = sd_alloc_ctl_entry(13);
7036
7037 if (table == NULL)
7038 return NULL;
7039
7040 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7041 sizeof(long), 0644, proc_doulongvec_minmax);
7042 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7043 sizeof(long), 0644, proc_doulongvec_minmax);
7044 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7045 sizeof(int), 0644, proc_dointvec_minmax);
7046 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7047 sizeof(int), 0644, proc_dointvec_minmax);
7048 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7049 sizeof(int), 0644, proc_dointvec_minmax);
7050 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7051 sizeof(int), 0644, proc_dointvec_minmax);
7052 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7053 sizeof(int), 0644, proc_dointvec_minmax);
7054 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7055 sizeof(int), 0644, proc_dointvec_minmax);
7056 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7057 sizeof(int), 0644, proc_dointvec_minmax);
7058 set_table_entry(&table[9], "cache_nice_tries",
7059 &sd->cache_nice_tries,
7060 sizeof(int), 0644, proc_dointvec_minmax);
7061 set_table_entry(&table[10], "flags", &sd->flags,
7062 sizeof(int), 0644, proc_dointvec_minmax);
7063 set_table_entry(&table[11], "name", sd->name,
7064 CORENAME_MAX_SIZE, 0444, proc_dostring);
7065 /* &table[12] is terminator */
7066
7067 return table;
7068 }
7069
7070 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7071 {
7072 struct ctl_table *entry, *table;
7073 struct sched_domain *sd;
7074 int domain_num = 0, i;
7075 char buf[32];
7076
7077 for_each_domain(cpu, sd)
7078 domain_num++;
7079 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7080 if (table == NULL)
7081 return NULL;
7082
7083 i = 0;
7084 for_each_domain(cpu, sd) {
7085 snprintf(buf, 32, "domain%d", i);
7086 entry->procname = kstrdup(buf, GFP_KERNEL);
7087 entry->mode = 0555;
7088 entry->child = sd_alloc_ctl_domain_table(sd);
7089 entry++;
7090 i++;
7091 }
7092 return table;
7093 }
7094
7095 static struct ctl_table_header *sd_sysctl_header;
7096 static void register_sched_domain_sysctl(void)
7097 {
7098 int i, cpu_num = num_online_cpus();
7099 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7100 char buf[32];
7101
7102 WARN_ON(sd_ctl_dir[0].child);
7103 sd_ctl_dir[0].child = entry;
7104
7105 if (entry == NULL)
7106 return;
7107
7108 for_each_online_cpu(i) {
7109 snprintf(buf, 32, "cpu%d", i);
7110 entry->procname = kstrdup(buf, GFP_KERNEL);
7111 entry->mode = 0555;
7112 entry->child = sd_alloc_ctl_cpu_table(i);
7113 entry++;
7114 }
7115
7116 WARN_ON(sd_sysctl_header);
7117 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7118 }
7119
7120 /* may be called multiple times per register */
7121 static void unregister_sched_domain_sysctl(void)
7122 {
7123 if (sd_sysctl_header)
7124 unregister_sysctl_table(sd_sysctl_header);
7125 sd_sysctl_header = NULL;
7126 if (sd_ctl_dir[0].child)
7127 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7128 }
7129 #else
7130 static void register_sched_domain_sysctl(void)
7131 {
7132 }
7133 static void unregister_sched_domain_sysctl(void)
7134 {
7135 }
7136 #endif
7137
7138 static void set_rq_online(struct rq *rq)
7139 {
7140 if (!rq->online) {
7141 const struct sched_class *class;
7142
7143 cpumask_set_cpu(rq->cpu, rq->rd->online);
7144 rq->online = 1;
7145
7146 for_each_class(class) {
7147 if (class->rq_online)
7148 class->rq_online(rq);
7149 }
7150 }
7151 }
7152
7153 static void set_rq_offline(struct rq *rq)
7154 {
7155 if (rq->online) {
7156 const struct sched_class *class;
7157
7158 for_each_class(class) {
7159 if (class->rq_offline)
7160 class->rq_offline(rq);
7161 }
7162
7163 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7164 rq->online = 0;
7165 }
7166 }
7167
7168 /*
7169 * migration_call - callback that gets triggered when a CPU is added.
7170 * Here we can start up the necessary migration thread for the new CPU.
7171 */
7172 static int __cpuinit
7173 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7174 {
7175 struct task_struct *p;
7176 int cpu = (long)hcpu;
7177 unsigned long flags;
7178 struct rq *rq;
7179
7180 switch (action) {
7181
7182 case CPU_UP_PREPARE:
7183 case CPU_UP_PREPARE_FROZEN:
7184 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7185 if (IS_ERR(p))
7186 return NOTIFY_BAD;
7187 kthread_bind(p, cpu);
7188 /* Must be high prio: stop_machine expects to yield to it. */
7189 rq = task_rq_lock(p, &flags);
7190 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7191 task_rq_unlock(rq, &flags);
7192 cpu_rq(cpu)->migration_thread = p;
7193 break;
7194
7195 case CPU_ONLINE:
7196 case CPU_ONLINE_FROZEN:
7197 /* Strictly unnecessary, as first user will wake it. */
7198 wake_up_process(cpu_rq(cpu)->migration_thread);
7199
7200 /* Update our root-domain */
7201 rq = cpu_rq(cpu);
7202 spin_lock_irqsave(&rq->lock, flags);
7203 if (rq->rd) {
7204 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7205
7206 set_rq_online(rq);
7207 }
7208 spin_unlock_irqrestore(&rq->lock, flags);
7209 break;
7210
7211 #ifdef CONFIG_HOTPLUG_CPU
7212 case CPU_UP_CANCELED:
7213 case CPU_UP_CANCELED_FROZEN:
7214 if (!cpu_rq(cpu)->migration_thread)
7215 break;
7216 /* Unbind it from offline cpu so it can run. Fall thru. */
7217 kthread_bind(cpu_rq(cpu)->migration_thread,
7218 cpumask_any(cpu_online_mask));
7219 kthread_stop(cpu_rq(cpu)->migration_thread);
7220 cpu_rq(cpu)->migration_thread = NULL;
7221 break;
7222
7223 case CPU_DEAD:
7224 case CPU_DEAD_FROZEN:
7225 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7226 migrate_live_tasks(cpu);
7227 rq = cpu_rq(cpu);
7228 kthread_stop(rq->migration_thread);
7229 rq->migration_thread = NULL;
7230 /* Idle task back to normal (off runqueue, low prio) */
7231 spin_lock_irq(&rq->lock);
7232 update_rq_clock(rq);
7233 deactivate_task(rq, rq->idle, 0);
7234 rq->idle->static_prio = MAX_PRIO;
7235 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7236 rq->idle->sched_class = &idle_sched_class;
7237 migrate_dead_tasks(cpu);
7238 spin_unlock_irq(&rq->lock);
7239 cpuset_unlock();
7240 migrate_nr_uninterruptible(rq);
7241 BUG_ON(rq->nr_running != 0);
7242
7243 /*
7244 * No need to migrate the tasks: it was best-effort if
7245 * they didn't take sched_hotcpu_mutex. Just wake up
7246 * the requestors.
7247 */
7248 spin_lock_irq(&rq->lock);
7249 while (!list_empty(&rq->migration_queue)) {
7250 struct migration_req *req;
7251
7252 req = list_entry(rq->migration_queue.next,
7253 struct migration_req, list);
7254 list_del_init(&req->list);
7255 spin_unlock_irq(&rq->lock);
7256 complete(&req->done);
7257 spin_lock_irq(&rq->lock);
7258 }
7259 spin_unlock_irq(&rq->lock);
7260 break;
7261
7262 case CPU_DYING:
7263 case CPU_DYING_FROZEN:
7264 /* Update our root-domain */
7265 rq = cpu_rq(cpu);
7266 spin_lock_irqsave(&rq->lock, flags);
7267 if (rq->rd) {
7268 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7269 set_rq_offline(rq);
7270 }
7271 spin_unlock_irqrestore(&rq->lock, flags);
7272 break;
7273 #endif
7274 }
7275 return NOTIFY_OK;
7276 }
7277
7278 /* Register at highest priority so that task migration (migrate_all_tasks)
7279 * happens before everything else.
7280 */
7281 static struct notifier_block __cpuinitdata migration_notifier = {
7282 .notifier_call = migration_call,
7283 .priority = 10
7284 };
7285
7286 static int __init migration_init(void)
7287 {
7288 void *cpu = (void *)(long)smp_processor_id();
7289 int err;
7290
7291 /* Start one for the boot CPU: */
7292 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7293 BUG_ON(err == NOTIFY_BAD);
7294 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7295 register_cpu_notifier(&migration_notifier);
7296
7297 return err;
7298 }
7299 early_initcall(migration_init);
7300 #endif
7301
7302 #ifdef CONFIG_SMP
7303
7304 #ifdef CONFIG_SCHED_DEBUG
7305
7306 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7307 struct cpumask *groupmask)
7308 {
7309 struct sched_group *group = sd->groups;
7310 char str[256];
7311
7312 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7313 cpumask_clear(groupmask);
7314
7315 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7316
7317 if (!(sd->flags & SD_LOAD_BALANCE)) {
7318 printk("does not load-balance\n");
7319 if (sd->parent)
7320 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7321 " has parent");
7322 return -1;
7323 }
7324
7325 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7326
7327 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7328 printk(KERN_ERR "ERROR: domain->span does not contain "
7329 "CPU%d\n", cpu);
7330 }
7331 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7332 printk(KERN_ERR "ERROR: domain->groups does not contain"
7333 " CPU%d\n", cpu);
7334 }
7335
7336 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7337 do {
7338 if (!group) {
7339 printk("\n");
7340 printk(KERN_ERR "ERROR: group is NULL\n");
7341 break;
7342 }
7343
7344 if (!group->__cpu_power) {
7345 printk(KERN_CONT "\n");
7346 printk(KERN_ERR "ERROR: domain->cpu_power not "
7347 "set\n");
7348 break;
7349 }
7350
7351 if (!cpumask_weight(sched_group_cpus(group))) {
7352 printk(KERN_CONT "\n");
7353 printk(KERN_ERR "ERROR: empty group\n");
7354 break;
7355 }
7356
7357 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7358 printk(KERN_CONT "\n");
7359 printk(KERN_ERR "ERROR: repeated CPUs\n");
7360 break;
7361 }
7362
7363 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7364
7365 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7366 printk(KERN_CONT " %s (__cpu_power = %d)", str,
7367 group->__cpu_power);
7368
7369 group = group->next;
7370 } while (group != sd->groups);
7371 printk(KERN_CONT "\n");
7372
7373 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7374 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7375
7376 if (sd->parent &&
7377 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7378 printk(KERN_ERR "ERROR: parent span is not a superset "
7379 "of domain->span\n");
7380 return 0;
7381 }
7382
7383 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7384 {
7385 cpumask_var_t groupmask;
7386 int level = 0;
7387
7388 if (!sd) {
7389 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7390 return;
7391 }
7392
7393 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7394
7395 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7396 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7397 return;
7398 }
7399
7400 for (;;) {
7401 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7402 break;
7403 level++;
7404 sd = sd->parent;
7405 if (!sd)
7406 break;
7407 }
7408 free_cpumask_var(groupmask);
7409 }
7410 #else /* !CONFIG_SCHED_DEBUG */
7411 # define sched_domain_debug(sd, cpu) do { } while (0)
7412 #endif /* CONFIG_SCHED_DEBUG */
7413
7414 static int sd_degenerate(struct sched_domain *sd)
7415 {
7416 if (cpumask_weight(sched_domain_span(sd)) == 1)
7417 return 1;
7418
7419 /* Following flags need at least 2 groups */
7420 if (sd->flags & (SD_LOAD_BALANCE |
7421 SD_BALANCE_NEWIDLE |
7422 SD_BALANCE_FORK |
7423 SD_BALANCE_EXEC |
7424 SD_SHARE_CPUPOWER |
7425 SD_SHARE_PKG_RESOURCES)) {
7426 if (sd->groups != sd->groups->next)
7427 return 0;
7428 }
7429
7430 /* Following flags don't use groups */
7431 if (sd->flags & (SD_WAKE_IDLE |
7432 SD_WAKE_AFFINE |
7433 SD_WAKE_BALANCE))
7434 return 0;
7435
7436 return 1;
7437 }
7438
7439 static int
7440 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7441 {
7442 unsigned long cflags = sd->flags, pflags = parent->flags;
7443
7444 if (sd_degenerate(parent))
7445 return 1;
7446
7447 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7448 return 0;
7449
7450 /* Does parent contain flags not in child? */
7451 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7452 if (cflags & SD_WAKE_AFFINE)
7453 pflags &= ~SD_WAKE_BALANCE;
7454 /* Flags needing groups don't count if only 1 group in parent */
7455 if (parent->groups == parent->groups->next) {
7456 pflags &= ~(SD_LOAD_BALANCE |
7457 SD_BALANCE_NEWIDLE |
7458 SD_BALANCE_FORK |
7459 SD_BALANCE_EXEC |
7460 SD_SHARE_CPUPOWER |
7461 SD_SHARE_PKG_RESOURCES);
7462 if (nr_node_ids == 1)
7463 pflags &= ~SD_SERIALIZE;
7464 }
7465 if (~cflags & pflags)
7466 return 0;
7467
7468 return 1;
7469 }
7470
7471 static void free_rootdomain(struct root_domain *rd)
7472 {
7473 cpupri_cleanup(&rd->cpupri);
7474
7475 free_cpumask_var(rd->rto_mask);
7476 free_cpumask_var(rd->online);
7477 free_cpumask_var(rd->span);
7478 kfree(rd);
7479 }
7480
7481 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7482 {
7483 struct root_domain *old_rd = NULL;
7484 unsigned long flags;
7485
7486 spin_lock_irqsave(&rq->lock, flags);
7487
7488 if (rq->rd) {
7489 old_rd = rq->rd;
7490
7491 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7492 set_rq_offline(rq);
7493
7494 cpumask_clear_cpu(rq->cpu, old_rd->span);
7495
7496 /*
7497 * If we dont want to free the old_rt yet then
7498 * set old_rd to NULL to skip the freeing later
7499 * in this function:
7500 */
7501 if (!atomic_dec_and_test(&old_rd->refcount))
7502 old_rd = NULL;
7503 }
7504
7505 atomic_inc(&rd->refcount);
7506 rq->rd = rd;
7507
7508 cpumask_set_cpu(rq->cpu, rd->span);
7509 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
7510 set_rq_online(rq);
7511
7512 spin_unlock_irqrestore(&rq->lock, flags);
7513
7514 if (old_rd)
7515 free_rootdomain(old_rd);
7516 }
7517
7518 static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
7519 {
7520 memset(rd, 0, sizeof(*rd));
7521
7522 if (bootmem) {
7523 alloc_bootmem_cpumask_var(&def_root_domain.span);
7524 alloc_bootmem_cpumask_var(&def_root_domain.online);
7525 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
7526 cpupri_init(&rd->cpupri, true);
7527 return 0;
7528 }
7529
7530 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
7531 goto out;
7532 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7533 goto free_span;
7534 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7535 goto free_online;
7536
7537 if (cpupri_init(&rd->cpupri, false) != 0)
7538 goto free_rto_mask;
7539 return 0;
7540
7541 free_rto_mask:
7542 free_cpumask_var(rd->rto_mask);
7543 free_online:
7544 free_cpumask_var(rd->online);
7545 free_span:
7546 free_cpumask_var(rd->span);
7547 out:
7548 return -ENOMEM;
7549 }
7550
7551 static void init_defrootdomain(void)
7552 {
7553 init_rootdomain(&def_root_domain, true);
7554
7555 atomic_set(&def_root_domain.refcount, 1);
7556 }
7557
7558 static struct root_domain *alloc_rootdomain(void)
7559 {
7560 struct root_domain *rd;
7561
7562 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7563 if (!rd)
7564 return NULL;
7565
7566 if (init_rootdomain(rd, false) != 0) {
7567 kfree(rd);
7568 return NULL;
7569 }
7570
7571 return rd;
7572 }
7573
7574 /*
7575 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7576 * hold the hotplug lock.
7577 */
7578 static void
7579 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7580 {
7581 struct rq *rq = cpu_rq(cpu);
7582 struct sched_domain *tmp;
7583
7584 /* Remove the sched domains which do not contribute to scheduling. */
7585 for (tmp = sd; tmp; ) {
7586 struct sched_domain *parent = tmp->parent;
7587 if (!parent)
7588 break;
7589
7590 if (sd_parent_degenerate(tmp, parent)) {
7591 tmp->parent = parent->parent;
7592 if (parent->parent)
7593 parent->parent->child = tmp;
7594 } else
7595 tmp = tmp->parent;
7596 }
7597
7598 if (sd && sd_degenerate(sd)) {
7599 sd = sd->parent;
7600 if (sd)
7601 sd->child = NULL;
7602 }
7603
7604 sched_domain_debug(sd, cpu);
7605
7606 rq_attach_root(rq, rd);
7607 rcu_assign_pointer(rq->sd, sd);
7608 }
7609
7610 /* cpus with isolated domains */
7611 static cpumask_var_t cpu_isolated_map;
7612
7613 /* Setup the mask of cpus configured for isolated domains */
7614 static int __init isolated_cpu_setup(char *str)
7615 {
7616 cpulist_parse(str, cpu_isolated_map);
7617 return 1;
7618 }
7619
7620 __setup("isolcpus=", isolated_cpu_setup);
7621
7622 /*
7623 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7624 * to a function which identifies what group(along with sched group) a CPU
7625 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7626 * (due to the fact that we keep track of groups covered with a struct cpumask).
7627 *
7628 * init_sched_build_groups will build a circular linked list of the groups
7629 * covered by the given span, and will set each group's ->cpumask correctly,
7630 * and ->cpu_power to 0.
7631 */
7632 static void
7633 init_sched_build_groups(const struct cpumask *span,
7634 const struct cpumask *cpu_map,
7635 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7636 struct sched_group **sg,
7637 struct cpumask *tmpmask),
7638 struct cpumask *covered, struct cpumask *tmpmask)
7639 {
7640 struct sched_group *first = NULL, *last = NULL;
7641 int i;
7642
7643 cpumask_clear(covered);
7644
7645 for_each_cpu(i, span) {
7646 struct sched_group *sg;
7647 int group = group_fn(i, cpu_map, &sg, tmpmask);
7648 int j;
7649
7650 if (cpumask_test_cpu(i, covered))
7651 continue;
7652
7653 cpumask_clear(sched_group_cpus(sg));
7654 sg->__cpu_power = 0;
7655
7656 for_each_cpu(j, span) {
7657 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
7658 continue;
7659
7660 cpumask_set_cpu(j, covered);
7661 cpumask_set_cpu(j, sched_group_cpus(sg));
7662 }
7663 if (!first)
7664 first = sg;
7665 if (last)
7666 last->next = sg;
7667 last = sg;
7668 }
7669 last->next = first;
7670 }
7671
7672 #define SD_NODES_PER_DOMAIN 16
7673
7674 #ifdef CONFIG_NUMA
7675
7676 /**
7677 * find_next_best_node - find the next node to include in a sched_domain
7678 * @node: node whose sched_domain we're building
7679 * @used_nodes: nodes already in the sched_domain
7680 *
7681 * Find the next node to include in a given scheduling domain. Simply
7682 * finds the closest node not already in the @used_nodes map.
7683 *
7684 * Should use nodemask_t.
7685 */
7686 static int find_next_best_node(int node, nodemask_t *used_nodes)
7687 {
7688 int i, n, val, min_val, best_node = 0;
7689
7690 min_val = INT_MAX;
7691
7692 for (i = 0; i < nr_node_ids; i++) {
7693 /* Start at @node */
7694 n = (node + i) % nr_node_ids;
7695
7696 if (!nr_cpus_node(n))
7697 continue;
7698
7699 /* Skip already used nodes */
7700 if (node_isset(n, *used_nodes))
7701 continue;
7702
7703 /* Simple min distance search */
7704 val = node_distance(node, n);
7705
7706 if (val < min_val) {
7707 min_val = val;
7708 best_node = n;
7709 }
7710 }
7711
7712 node_set(best_node, *used_nodes);
7713 return best_node;
7714 }
7715
7716 /**
7717 * sched_domain_node_span - get a cpumask for a node's sched_domain
7718 * @node: node whose cpumask we're constructing
7719 * @span: resulting cpumask
7720 *
7721 * Given a node, construct a good cpumask for its sched_domain to span. It
7722 * should be one that prevents unnecessary balancing, but also spreads tasks
7723 * out optimally.
7724 */
7725 static void sched_domain_node_span(int node, struct cpumask *span)
7726 {
7727 nodemask_t used_nodes;
7728 int i;
7729
7730 cpumask_clear(span);
7731 nodes_clear(used_nodes);
7732
7733 cpumask_or(span, span, cpumask_of_node(node));
7734 node_set(node, used_nodes);
7735
7736 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7737 int next_node = find_next_best_node(node, &used_nodes);
7738
7739 cpumask_or(span, span, cpumask_of_node(next_node));
7740 }
7741 }
7742 #endif /* CONFIG_NUMA */
7743
7744 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7745
7746 /*
7747 * The cpus mask in sched_group and sched_domain hangs off the end.
7748 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7749 * for nr_cpu_ids < CONFIG_NR_CPUS.
7750 */
7751 struct static_sched_group {
7752 struct sched_group sg;
7753 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7754 };
7755
7756 struct static_sched_domain {
7757 struct sched_domain sd;
7758 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7759 };
7760
7761 /*
7762 * SMT sched-domains:
7763 */
7764 #ifdef CONFIG_SCHED_SMT
7765 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7766 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
7767
7768 static int
7769 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7770 struct sched_group **sg, struct cpumask *unused)
7771 {
7772 if (sg)
7773 *sg = &per_cpu(sched_group_cpus, cpu).sg;
7774 return cpu;
7775 }
7776 #endif /* CONFIG_SCHED_SMT */
7777
7778 /*
7779 * multi-core sched-domains:
7780 */
7781 #ifdef CONFIG_SCHED_MC
7782 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7783 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
7784 #endif /* CONFIG_SCHED_MC */
7785
7786 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
7787 static int
7788 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7789 struct sched_group **sg, struct cpumask *mask)
7790 {
7791 int group;
7792
7793 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7794 group = cpumask_first(mask);
7795 if (sg)
7796 *sg = &per_cpu(sched_group_core, group).sg;
7797 return group;
7798 }
7799 #elif defined(CONFIG_SCHED_MC)
7800 static int
7801 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7802 struct sched_group **sg, struct cpumask *unused)
7803 {
7804 if (sg)
7805 *sg = &per_cpu(sched_group_core, cpu).sg;
7806 return cpu;
7807 }
7808 #endif
7809
7810 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7811 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
7812
7813 static int
7814 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7815 struct sched_group **sg, struct cpumask *mask)
7816 {
7817 int group;
7818 #ifdef CONFIG_SCHED_MC
7819 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
7820 group = cpumask_first(mask);
7821 #elif defined(CONFIG_SCHED_SMT)
7822 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
7823 group = cpumask_first(mask);
7824 #else
7825 group = cpu;
7826 #endif
7827 if (sg)
7828 *sg = &per_cpu(sched_group_phys, group).sg;
7829 return group;
7830 }
7831
7832 #ifdef CONFIG_NUMA
7833 /*
7834 * The init_sched_build_groups can't handle what we want to do with node
7835 * groups, so roll our own. Now each node has its own list of groups which
7836 * gets dynamically allocated.
7837 */
7838 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
7839 static struct sched_group ***sched_group_nodes_bycpu;
7840
7841 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
7842 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
7843
7844 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7845 struct sched_group **sg,
7846 struct cpumask *nodemask)
7847 {
7848 int group;
7849
7850 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
7851 group = cpumask_first(nodemask);
7852
7853 if (sg)
7854 *sg = &per_cpu(sched_group_allnodes, group).sg;
7855 return group;
7856 }
7857
7858 static void init_numa_sched_groups_power(struct sched_group *group_head)
7859 {
7860 struct sched_group *sg = group_head;
7861 int j;
7862
7863 if (!sg)
7864 return;
7865 do {
7866 for_each_cpu(j, sched_group_cpus(sg)) {
7867 struct sched_domain *sd;
7868
7869 sd = &per_cpu(phys_domains, j).sd;
7870 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
7871 /*
7872 * Only add "power" once for each
7873 * physical package.
7874 */
7875 continue;
7876 }
7877
7878 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7879 }
7880 sg = sg->next;
7881 } while (sg != group_head);
7882 }
7883 #endif /* CONFIG_NUMA */
7884
7885 #ifdef CONFIG_NUMA
7886 /* Free memory allocated for various sched_group structures */
7887 static void free_sched_groups(const struct cpumask *cpu_map,
7888 struct cpumask *nodemask)
7889 {
7890 int cpu, i;
7891
7892 for_each_cpu(cpu, cpu_map) {
7893 struct sched_group **sched_group_nodes
7894 = sched_group_nodes_bycpu[cpu];
7895
7896 if (!sched_group_nodes)
7897 continue;
7898
7899 for (i = 0; i < nr_node_ids; i++) {
7900 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7901
7902 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7903 if (cpumask_empty(nodemask))
7904 continue;
7905
7906 if (sg == NULL)
7907 continue;
7908 sg = sg->next;
7909 next_sg:
7910 oldsg = sg;
7911 sg = sg->next;
7912 kfree(oldsg);
7913 if (oldsg != sched_group_nodes[i])
7914 goto next_sg;
7915 }
7916 kfree(sched_group_nodes);
7917 sched_group_nodes_bycpu[cpu] = NULL;
7918 }
7919 }
7920 #else /* !CONFIG_NUMA */
7921 static void free_sched_groups(const struct cpumask *cpu_map,
7922 struct cpumask *nodemask)
7923 {
7924 }
7925 #endif /* CONFIG_NUMA */
7926
7927 /*
7928 * Initialize sched groups cpu_power.
7929 *
7930 * cpu_power indicates the capacity of sched group, which is used while
7931 * distributing the load between different sched groups in a sched domain.
7932 * Typically cpu_power for all the groups in a sched domain will be same unless
7933 * there are asymmetries in the topology. If there are asymmetries, group
7934 * having more cpu_power will pickup more load compared to the group having
7935 * less cpu_power.
7936 *
7937 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7938 * the maximum number of tasks a group can handle in the presence of other idle
7939 * or lightly loaded groups in the same sched domain.
7940 */
7941 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7942 {
7943 struct sched_domain *child;
7944 struct sched_group *group;
7945
7946 WARN_ON(!sd || !sd->groups);
7947
7948 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
7949 return;
7950
7951 child = sd->child;
7952
7953 sd->groups->__cpu_power = 0;
7954
7955 /*
7956 * For perf policy, if the groups in child domain share resources
7957 * (for example cores sharing some portions of the cache hierarchy
7958 * or SMT), then set this domain groups cpu_power such that each group
7959 * can handle only one task, when there are other idle groups in the
7960 * same sched domain.
7961 */
7962 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7963 (child->flags &
7964 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
7965 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
7966 return;
7967 }
7968
7969 /*
7970 * add cpu_power of each child group to this groups cpu_power
7971 */
7972 group = child->groups;
7973 do {
7974 sg_inc_cpu_power(sd->groups, group->__cpu_power);
7975 group = group->next;
7976 } while (group != child->groups);
7977 }
7978
7979 /*
7980 * Initializers for schedule domains
7981 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7982 */
7983
7984 #ifdef CONFIG_SCHED_DEBUG
7985 # define SD_INIT_NAME(sd, type) sd->name = #type
7986 #else
7987 # define SD_INIT_NAME(sd, type) do { } while (0)
7988 #endif
7989
7990 #define SD_INIT(sd, type) sd_init_##type(sd)
7991
7992 #define SD_INIT_FUNC(type) \
7993 static noinline void sd_init_##type(struct sched_domain *sd) \
7994 { \
7995 memset(sd, 0, sizeof(*sd)); \
7996 *sd = SD_##type##_INIT; \
7997 sd->level = SD_LV_##type; \
7998 SD_INIT_NAME(sd, type); \
7999 }
8000
8001 SD_INIT_FUNC(CPU)
8002 #ifdef CONFIG_NUMA
8003 SD_INIT_FUNC(ALLNODES)
8004 SD_INIT_FUNC(NODE)
8005 #endif
8006 #ifdef CONFIG_SCHED_SMT
8007 SD_INIT_FUNC(SIBLING)
8008 #endif
8009 #ifdef CONFIG_SCHED_MC
8010 SD_INIT_FUNC(MC)
8011 #endif
8012
8013 static int default_relax_domain_level = -1;
8014
8015 static int __init setup_relax_domain_level(char *str)
8016 {
8017 unsigned long val;
8018
8019 val = simple_strtoul(str, NULL, 0);
8020 if (val < SD_LV_MAX)
8021 default_relax_domain_level = val;
8022
8023 return 1;
8024 }
8025 __setup("relax_domain_level=", setup_relax_domain_level);
8026
8027 static void set_domain_attribute(struct sched_domain *sd,
8028 struct sched_domain_attr *attr)
8029 {
8030 int request;
8031
8032 if (!attr || attr->relax_domain_level < 0) {
8033 if (default_relax_domain_level < 0)
8034 return;
8035 else
8036 request = default_relax_domain_level;
8037 } else
8038 request = attr->relax_domain_level;
8039 if (request < sd->level) {
8040 /* turn off idle balance on this domain */
8041 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8042 } else {
8043 /* turn on idle balance on this domain */
8044 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8045 }
8046 }
8047
8048 /*
8049 * Build sched domains for a given set of cpus and attach the sched domains
8050 * to the individual cpus
8051 */
8052 static int __build_sched_domains(const struct cpumask *cpu_map,
8053 struct sched_domain_attr *attr)
8054 {
8055 int i, err = -ENOMEM;
8056 struct root_domain *rd;
8057 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
8058 tmpmask;
8059 #ifdef CONFIG_NUMA
8060 cpumask_var_t domainspan, covered, notcovered;
8061 struct sched_group **sched_group_nodes = NULL;
8062 int sd_allnodes = 0;
8063
8064 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
8065 goto out;
8066 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
8067 goto free_domainspan;
8068 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
8069 goto free_covered;
8070 #endif
8071
8072 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
8073 goto free_notcovered;
8074 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
8075 goto free_nodemask;
8076 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
8077 goto free_this_sibling_map;
8078 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
8079 goto free_this_core_map;
8080 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
8081 goto free_send_covered;
8082
8083 #ifdef CONFIG_NUMA
8084 /*
8085 * Allocate the per-node list of sched groups
8086 */
8087 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
8088 GFP_KERNEL);
8089 if (!sched_group_nodes) {
8090 printk(KERN_WARNING "Can not alloc sched group node list\n");
8091 goto free_tmpmask;
8092 }
8093 #endif
8094
8095 rd = alloc_rootdomain();
8096 if (!rd) {
8097 printk(KERN_WARNING "Cannot alloc root domain\n");
8098 goto free_sched_groups;
8099 }
8100
8101 #ifdef CONFIG_NUMA
8102 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
8103 #endif
8104
8105 /*
8106 * Set up domains for cpus specified by the cpu_map.
8107 */
8108 for_each_cpu(i, cpu_map) {
8109 struct sched_domain *sd = NULL, *p;
8110
8111 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
8112
8113 #ifdef CONFIG_NUMA
8114 if (cpumask_weight(cpu_map) >
8115 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
8116 sd = &per_cpu(allnodes_domains, i).sd;
8117 SD_INIT(sd, ALLNODES);
8118 set_domain_attribute(sd, attr);
8119 cpumask_copy(sched_domain_span(sd), cpu_map);
8120 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
8121 p = sd;
8122 sd_allnodes = 1;
8123 } else
8124 p = NULL;
8125
8126 sd = &per_cpu(node_domains, i).sd;
8127 SD_INIT(sd, NODE);
8128 set_domain_attribute(sd, attr);
8129 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8130 sd->parent = p;
8131 if (p)
8132 p->child = sd;
8133 cpumask_and(sched_domain_span(sd),
8134 sched_domain_span(sd), cpu_map);
8135 #endif
8136
8137 p = sd;
8138 sd = &per_cpu(phys_domains, i).sd;
8139 SD_INIT(sd, CPU);
8140 set_domain_attribute(sd, attr);
8141 cpumask_copy(sched_domain_span(sd), nodemask);
8142 sd->parent = p;
8143 if (p)
8144 p->child = sd;
8145 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
8146
8147 #ifdef CONFIG_SCHED_MC
8148 p = sd;
8149 sd = &per_cpu(core_domains, i).sd;
8150 SD_INIT(sd, MC);
8151 set_domain_attribute(sd, attr);
8152 cpumask_and(sched_domain_span(sd), cpu_map,
8153 cpu_coregroup_mask(i));
8154 sd->parent = p;
8155 p->child = sd;
8156 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
8157 #endif
8158
8159 #ifdef CONFIG_SCHED_SMT
8160 p = sd;
8161 sd = &per_cpu(cpu_domains, i).sd;
8162 SD_INIT(sd, SIBLING);
8163 set_domain_attribute(sd, attr);
8164 cpumask_and(sched_domain_span(sd),
8165 topology_thread_cpumask(i), cpu_map);
8166 sd->parent = p;
8167 p->child = sd;
8168 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
8169 #endif
8170 }
8171
8172 #ifdef CONFIG_SCHED_SMT
8173 /* Set up CPU (sibling) groups */
8174 for_each_cpu(i, cpu_map) {
8175 cpumask_and(this_sibling_map,
8176 topology_thread_cpumask(i), cpu_map);
8177 if (i != cpumask_first(this_sibling_map))
8178 continue;
8179
8180 init_sched_build_groups(this_sibling_map, cpu_map,
8181 &cpu_to_cpu_group,
8182 send_covered, tmpmask);
8183 }
8184 #endif
8185
8186 #ifdef CONFIG_SCHED_MC
8187 /* Set up multi-core groups */
8188 for_each_cpu(i, cpu_map) {
8189 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
8190 if (i != cpumask_first(this_core_map))
8191 continue;
8192
8193 init_sched_build_groups(this_core_map, cpu_map,
8194 &cpu_to_core_group,
8195 send_covered, tmpmask);
8196 }
8197 #endif
8198
8199 /* Set up physical groups */
8200 for (i = 0; i < nr_node_ids; i++) {
8201 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8202 if (cpumask_empty(nodemask))
8203 continue;
8204
8205 init_sched_build_groups(nodemask, cpu_map,
8206 &cpu_to_phys_group,
8207 send_covered, tmpmask);
8208 }
8209
8210 #ifdef CONFIG_NUMA
8211 /* Set up node groups */
8212 if (sd_allnodes) {
8213 init_sched_build_groups(cpu_map, cpu_map,
8214 &cpu_to_allnodes_group,
8215 send_covered, tmpmask);
8216 }
8217
8218 for (i = 0; i < nr_node_ids; i++) {
8219 /* Set up node groups */
8220 struct sched_group *sg, *prev;
8221 int j;
8222
8223 cpumask_clear(covered);
8224 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8225 if (cpumask_empty(nodemask)) {
8226 sched_group_nodes[i] = NULL;
8227 continue;
8228 }
8229
8230 sched_domain_node_span(i, domainspan);
8231 cpumask_and(domainspan, domainspan, cpu_map);
8232
8233 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8234 GFP_KERNEL, i);
8235 if (!sg) {
8236 printk(KERN_WARNING "Can not alloc domain group for "
8237 "node %d\n", i);
8238 goto error;
8239 }
8240 sched_group_nodes[i] = sg;
8241 for_each_cpu(j, nodemask) {
8242 struct sched_domain *sd;
8243
8244 sd = &per_cpu(node_domains, j).sd;
8245 sd->groups = sg;
8246 }
8247 sg->__cpu_power = 0;
8248 cpumask_copy(sched_group_cpus(sg), nodemask);
8249 sg->next = sg;
8250 cpumask_or(covered, covered, nodemask);
8251 prev = sg;
8252
8253 for (j = 0; j < nr_node_ids; j++) {
8254 int n = (i + j) % nr_node_ids;
8255
8256 cpumask_complement(notcovered, covered);
8257 cpumask_and(tmpmask, notcovered, cpu_map);
8258 cpumask_and(tmpmask, tmpmask, domainspan);
8259 if (cpumask_empty(tmpmask))
8260 break;
8261
8262 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
8263 if (cpumask_empty(tmpmask))
8264 continue;
8265
8266 sg = kmalloc_node(sizeof(struct sched_group) +
8267 cpumask_size(),
8268 GFP_KERNEL, i);
8269 if (!sg) {
8270 printk(KERN_WARNING
8271 "Can not alloc domain group for node %d\n", j);
8272 goto error;
8273 }
8274 sg->__cpu_power = 0;
8275 cpumask_copy(sched_group_cpus(sg), tmpmask);
8276 sg->next = prev->next;
8277 cpumask_or(covered, covered, tmpmask);
8278 prev->next = sg;
8279 prev = sg;
8280 }
8281 }
8282 #endif
8283
8284 /* Calculate CPU power for physical packages and nodes */
8285 #ifdef CONFIG_SCHED_SMT
8286 for_each_cpu(i, cpu_map) {
8287 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
8288
8289 init_sched_groups_power(i, sd);
8290 }
8291 #endif
8292 #ifdef CONFIG_SCHED_MC
8293 for_each_cpu(i, cpu_map) {
8294 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
8295
8296 init_sched_groups_power(i, sd);
8297 }
8298 #endif
8299
8300 for_each_cpu(i, cpu_map) {
8301 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
8302
8303 init_sched_groups_power(i, sd);
8304 }
8305
8306 #ifdef CONFIG_NUMA
8307 for (i = 0; i < nr_node_ids; i++)
8308 init_numa_sched_groups_power(sched_group_nodes[i]);
8309
8310 if (sd_allnodes) {
8311 struct sched_group *sg;
8312
8313 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8314 tmpmask);
8315 init_numa_sched_groups_power(sg);
8316 }
8317 #endif
8318
8319 /* Attach the domains */
8320 for_each_cpu(i, cpu_map) {
8321 struct sched_domain *sd;
8322 #ifdef CONFIG_SCHED_SMT
8323 sd = &per_cpu(cpu_domains, i).sd;
8324 #elif defined(CONFIG_SCHED_MC)
8325 sd = &per_cpu(core_domains, i).sd;
8326 #else
8327 sd = &per_cpu(phys_domains, i).sd;
8328 #endif
8329 cpu_attach_domain(sd, rd, i);
8330 }
8331
8332 err = 0;
8333
8334 free_tmpmask:
8335 free_cpumask_var(tmpmask);
8336 free_send_covered:
8337 free_cpumask_var(send_covered);
8338 free_this_core_map:
8339 free_cpumask_var(this_core_map);
8340 free_this_sibling_map:
8341 free_cpumask_var(this_sibling_map);
8342 free_nodemask:
8343 free_cpumask_var(nodemask);
8344 free_notcovered:
8345 #ifdef CONFIG_NUMA
8346 free_cpumask_var(notcovered);
8347 free_covered:
8348 free_cpumask_var(covered);
8349 free_domainspan:
8350 free_cpumask_var(domainspan);
8351 out:
8352 #endif
8353 return err;
8354
8355 free_sched_groups:
8356 #ifdef CONFIG_NUMA
8357 kfree(sched_group_nodes);
8358 #endif
8359 goto free_tmpmask;
8360
8361 #ifdef CONFIG_NUMA
8362 error:
8363 free_sched_groups(cpu_map, tmpmask);
8364 free_rootdomain(rd);
8365 goto free_tmpmask;
8366 #endif
8367 }
8368
8369 static int build_sched_domains(const struct cpumask *cpu_map)
8370 {
8371 return __build_sched_domains(cpu_map, NULL);
8372 }
8373
8374 static struct cpumask *doms_cur; /* current sched domains */
8375 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8376 static struct sched_domain_attr *dattr_cur;
8377 /* attribues of custom domains in 'doms_cur' */
8378
8379 /*
8380 * Special case: If a kmalloc of a doms_cur partition (array of
8381 * cpumask) fails, then fallback to a single sched domain,
8382 * as determined by the single cpumask fallback_doms.
8383 */
8384 static cpumask_var_t fallback_doms;
8385
8386 /*
8387 * arch_update_cpu_topology lets virtualized architectures update the
8388 * cpu core maps. It is supposed to return 1 if the topology changed
8389 * or 0 if it stayed the same.
8390 */
8391 int __attribute__((weak)) arch_update_cpu_topology(void)
8392 {
8393 return 0;
8394 }
8395
8396 /*
8397 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8398 * For now this just excludes isolated cpus, but could be used to
8399 * exclude other special cases in the future.
8400 */
8401 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8402 {
8403 int err;
8404
8405 arch_update_cpu_topology();
8406 ndoms_cur = 1;
8407 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
8408 if (!doms_cur)
8409 doms_cur = fallback_doms;
8410 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
8411 dattr_cur = NULL;
8412 err = build_sched_domains(doms_cur);
8413 register_sched_domain_sysctl();
8414
8415 return err;
8416 }
8417
8418 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8419 struct cpumask *tmpmask)
8420 {
8421 free_sched_groups(cpu_map, tmpmask);
8422 }
8423
8424 /*
8425 * Detach sched domains from a group of cpus specified in cpu_map
8426 * These cpus will now be attached to the NULL domain
8427 */
8428 static void detach_destroy_domains(const struct cpumask *cpu_map)
8429 {
8430 /* Save because hotplug lock held. */
8431 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8432 int i;
8433
8434 for_each_cpu(i, cpu_map)
8435 cpu_attach_domain(NULL, &def_root_domain, i);
8436 synchronize_sched();
8437 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8438 }
8439
8440 /* handle null as "default" */
8441 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8442 struct sched_domain_attr *new, int idx_new)
8443 {
8444 struct sched_domain_attr tmp;
8445
8446 /* fast path */
8447 if (!new && !cur)
8448 return 1;
8449
8450 tmp = SD_ATTR_INIT;
8451 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8452 new ? (new + idx_new) : &tmp,
8453 sizeof(struct sched_domain_attr));
8454 }
8455
8456 /*
8457 * Partition sched domains as specified by the 'ndoms_new'
8458 * cpumasks in the array doms_new[] of cpumasks. This compares
8459 * doms_new[] to the current sched domain partitioning, doms_cur[].
8460 * It destroys each deleted domain and builds each new domain.
8461 *
8462 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
8463 * The masks don't intersect (don't overlap.) We should setup one
8464 * sched domain for each mask. CPUs not in any of the cpumasks will
8465 * not be load balanced. If the same cpumask appears both in the
8466 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8467 * it as it is.
8468 *
8469 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8470 * ownership of it and will kfree it when done with it. If the caller
8471 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8472 * ndoms_new == 1, and partition_sched_domains() will fallback to
8473 * the single partition 'fallback_doms', it also forces the domains
8474 * to be rebuilt.
8475 *
8476 * If doms_new == NULL it will be replaced with cpu_online_mask.
8477 * ndoms_new == 0 is a special case for destroying existing domains,
8478 * and it will not create the default domain.
8479 *
8480 * Call with hotplug lock held
8481 */
8482 /* FIXME: Change to struct cpumask *doms_new[] */
8483 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
8484 struct sched_domain_attr *dattr_new)
8485 {
8486 int i, j, n;
8487 int new_topology;
8488
8489 mutex_lock(&sched_domains_mutex);
8490
8491 /* always unregister in case we don't destroy any domains */
8492 unregister_sched_domain_sysctl();
8493
8494 /* Let architecture update cpu core mappings. */
8495 new_topology = arch_update_cpu_topology();
8496
8497 n = doms_new ? ndoms_new : 0;
8498
8499 /* Destroy deleted domains */
8500 for (i = 0; i < ndoms_cur; i++) {
8501 for (j = 0; j < n && !new_topology; j++) {
8502 if (cpumask_equal(&doms_cur[i], &doms_new[j])
8503 && dattrs_equal(dattr_cur, i, dattr_new, j))
8504 goto match1;
8505 }
8506 /* no match - a current sched domain not in new doms_new[] */
8507 detach_destroy_domains(doms_cur + i);
8508 match1:
8509 ;
8510 }
8511
8512 if (doms_new == NULL) {
8513 ndoms_cur = 0;
8514 doms_new = fallback_doms;
8515 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
8516 WARN_ON_ONCE(dattr_new);
8517 }
8518
8519 /* Build new domains */
8520 for (i = 0; i < ndoms_new; i++) {
8521 for (j = 0; j < ndoms_cur && !new_topology; j++) {
8522 if (cpumask_equal(&doms_new[i], &doms_cur[j])
8523 && dattrs_equal(dattr_new, i, dattr_cur, j))
8524 goto match2;
8525 }
8526 /* no match - add a new doms_new */
8527 __build_sched_domains(doms_new + i,
8528 dattr_new ? dattr_new + i : NULL);
8529 match2:
8530 ;
8531 }
8532
8533 /* Remember the new sched domains */
8534 if (doms_cur != fallback_doms)
8535 kfree(doms_cur);
8536 kfree(dattr_cur); /* kfree(NULL) is safe */
8537 doms_cur = doms_new;
8538 dattr_cur = dattr_new;
8539 ndoms_cur = ndoms_new;
8540
8541 register_sched_domain_sysctl();
8542
8543 mutex_unlock(&sched_domains_mutex);
8544 }
8545
8546 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
8547 static void arch_reinit_sched_domains(void)
8548 {
8549 get_online_cpus();
8550
8551 /* Destroy domains first to force the rebuild */
8552 partition_sched_domains(0, NULL, NULL);
8553
8554 rebuild_sched_domains();
8555 put_online_cpus();
8556 }
8557
8558 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8559 {
8560 unsigned int level = 0;
8561
8562 if (sscanf(buf, "%u", &level) != 1)
8563 return -EINVAL;
8564
8565 /*
8566 * level is always be positive so don't check for
8567 * level < POWERSAVINGS_BALANCE_NONE which is 0
8568 * What happens on 0 or 1 byte write,
8569 * need to check for count as well?
8570 */
8571
8572 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
8573 return -EINVAL;
8574
8575 if (smt)
8576 sched_smt_power_savings = level;
8577 else
8578 sched_mc_power_savings = level;
8579
8580 arch_reinit_sched_domains();
8581
8582 return count;
8583 }
8584
8585 #ifdef CONFIG_SCHED_MC
8586 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8587 char *page)
8588 {
8589 return sprintf(page, "%u\n", sched_mc_power_savings);
8590 }
8591 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
8592 const char *buf, size_t count)
8593 {
8594 return sched_power_savings_store(buf, count, 0);
8595 }
8596 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8597 sched_mc_power_savings_show,
8598 sched_mc_power_savings_store);
8599 #endif
8600
8601 #ifdef CONFIG_SCHED_SMT
8602 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8603 char *page)
8604 {
8605 return sprintf(page, "%u\n", sched_smt_power_savings);
8606 }
8607 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
8608 const char *buf, size_t count)
8609 {
8610 return sched_power_savings_store(buf, count, 1);
8611 }
8612 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8613 sched_smt_power_savings_show,
8614 sched_smt_power_savings_store);
8615 #endif
8616
8617 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
8618 {
8619 int err = 0;
8620
8621 #ifdef CONFIG_SCHED_SMT
8622 if (smt_capable())
8623 err = sysfs_create_file(&cls->kset.kobj,
8624 &attr_sched_smt_power_savings.attr);
8625 #endif
8626 #ifdef CONFIG_SCHED_MC
8627 if (!err && mc_capable())
8628 err = sysfs_create_file(&cls->kset.kobj,
8629 &attr_sched_mc_power_savings.attr);
8630 #endif
8631 return err;
8632 }
8633 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8634
8635 #ifndef CONFIG_CPUSETS
8636 /*
8637 * Add online and remove offline CPUs from the scheduler domains.
8638 * When cpusets are enabled they take over this function.
8639 */
8640 static int update_sched_domains(struct notifier_block *nfb,
8641 unsigned long action, void *hcpu)
8642 {
8643 switch (action) {
8644 case CPU_ONLINE:
8645 case CPU_ONLINE_FROZEN:
8646 case CPU_DEAD:
8647 case CPU_DEAD_FROZEN:
8648 partition_sched_domains(1, NULL, NULL);
8649 return NOTIFY_OK;
8650
8651 default:
8652 return NOTIFY_DONE;
8653 }
8654 }
8655 #endif
8656
8657 static int update_runtime(struct notifier_block *nfb,
8658 unsigned long action, void *hcpu)
8659 {
8660 int cpu = (int)(long)hcpu;
8661
8662 switch (action) {
8663 case CPU_DOWN_PREPARE:
8664 case CPU_DOWN_PREPARE_FROZEN:
8665 disable_runtime(cpu_rq(cpu));
8666 return NOTIFY_OK;
8667
8668 case CPU_DOWN_FAILED:
8669 case CPU_DOWN_FAILED_FROZEN:
8670 case CPU_ONLINE:
8671 case CPU_ONLINE_FROZEN:
8672 enable_runtime(cpu_rq(cpu));
8673 return NOTIFY_OK;
8674
8675 default:
8676 return NOTIFY_DONE;
8677 }
8678 }
8679
8680 void __init sched_init_smp(void)
8681 {
8682 cpumask_var_t non_isolated_cpus;
8683
8684 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8685
8686 #if defined(CONFIG_NUMA)
8687 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8688 GFP_KERNEL);
8689 BUG_ON(sched_group_nodes_bycpu == NULL);
8690 #endif
8691 get_online_cpus();
8692 mutex_lock(&sched_domains_mutex);
8693 arch_init_sched_domains(cpu_online_mask);
8694 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8695 if (cpumask_empty(non_isolated_cpus))
8696 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8697 mutex_unlock(&sched_domains_mutex);
8698 put_online_cpus();
8699
8700 #ifndef CONFIG_CPUSETS
8701 /* XXX: Theoretical race here - CPU may be hotplugged now */
8702 hotcpu_notifier(update_sched_domains, 0);
8703 #endif
8704
8705 /* RT runtime code needs to handle some hotplug events */
8706 hotcpu_notifier(update_runtime, 0);
8707
8708 init_hrtick();
8709
8710 /* Move init over to a non-isolated CPU */
8711 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8712 BUG();
8713 sched_init_granularity();
8714 free_cpumask_var(non_isolated_cpus);
8715
8716 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8717 init_sched_rt_class();
8718 }
8719 #else
8720 void __init sched_init_smp(void)
8721 {
8722 sched_init_granularity();
8723 }
8724 #endif /* CONFIG_SMP */
8725
8726 int in_sched_functions(unsigned long addr)
8727 {
8728 return in_lock_functions(addr) ||
8729 (addr >= (unsigned long)__sched_text_start
8730 && addr < (unsigned long)__sched_text_end);
8731 }
8732
8733 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
8734 {
8735 cfs_rq->tasks_timeline = RB_ROOT;
8736 INIT_LIST_HEAD(&cfs_rq->tasks);
8737 #ifdef CONFIG_FAIR_GROUP_SCHED
8738 cfs_rq->rq = rq;
8739 #endif
8740 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8741 }
8742
8743 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8744 {
8745 struct rt_prio_array *array;
8746 int i;
8747
8748 array = &rt_rq->active;
8749 for (i = 0; i < MAX_RT_PRIO; i++) {
8750 INIT_LIST_HEAD(array->queue + i);
8751 __clear_bit(i, array->bitmap);
8752 }
8753 /* delimiter for bitsearch: */
8754 __set_bit(MAX_RT_PRIO, array->bitmap);
8755
8756 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8757 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8758 #ifdef CONFIG_SMP
8759 rt_rq->highest_prio.next = MAX_RT_PRIO;
8760 #endif
8761 #endif
8762 #ifdef CONFIG_SMP
8763 rt_rq->rt_nr_migratory = 0;
8764 rt_rq->overloaded = 0;
8765 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
8766 #endif
8767
8768 rt_rq->rt_time = 0;
8769 rt_rq->rt_throttled = 0;
8770 rt_rq->rt_runtime = 0;
8771 spin_lock_init(&rt_rq->rt_runtime_lock);
8772
8773 #ifdef CONFIG_RT_GROUP_SCHED
8774 rt_rq->rt_nr_boosted = 0;
8775 rt_rq->rq = rq;
8776 #endif
8777 }
8778
8779 #ifdef CONFIG_FAIR_GROUP_SCHED
8780 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8781 struct sched_entity *se, int cpu, int add,
8782 struct sched_entity *parent)
8783 {
8784 struct rq *rq = cpu_rq(cpu);
8785 tg->cfs_rq[cpu] = cfs_rq;
8786 init_cfs_rq(cfs_rq, rq);
8787 cfs_rq->tg = tg;
8788 if (add)
8789 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8790
8791 tg->se[cpu] = se;
8792 /* se could be NULL for init_task_group */
8793 if (!se)
8794 return;
8795
8796 if (!parent)
8797 se->cfs_rq = &rq->cfs;
8798 else
8799 se->cfs_rq = parent->my_q;
8800
8801 se->my_q = cfs_rq;
8802 se->load.weight = tg->shares;
8803 se->load.inv_weight = 0;
8804 se->parent = parent;
8805 }
8806 #endif
8807
8808 #ifdef CONFIG_RT_GROUP_SCHED
8809 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8810 struct sched_rt_entity *rt_se, int cpu, int add,
8811 struct sched_rt_entity *parent)
8812 {
8813 struct rq *rq = cpu_rq(cpu);
8814
8815 tg->rt_rq[cpu] = rt_rq;
8816 init_rt_rq(rt_rq, rq);
8817 rt_rq->tg = tg;
8818 rt_rq->rt_se = rt_se;
8819 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8820 if (add)
8821 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8822
8823 tg->rt_se[cpu] = rt_se;
8824 if (!rt_se)
8825 return;
8826
8827 if (!parent)
8828 rt_se->rt_rq = &rq->rt;
8829 else
8830 rt_se->rt_rq = parent->my_q;
8831
8832 rt_se->my_q = rt_rq;
8833 rt_se->parent = parent;
8834 INIT_LIST_HEAD(&rt_se->run_list);
8835 }
8836 #endif
8837
8838 void __init sched_init(void)
8839 {
8840 int i, j;
8841 unsigned long alloc_size = 0, ptr;
8842
8843 #ifdef CONFIG_FAIR_GROUP_SCHED
8844 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8845 #endif
8846 #ifdef CONFIG_RT_GROUP_SCHED
8847 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8848 #endif
8849 #ifdef CONFIG_USER_SCHED
8850 alloc_size *= 2;
8851 #endif
8852 #ifdef CONFIG_CPUMASK_OFFSTACK
8853 alloc_size += num_possible_cpus() * cpumask_size();
8854 #endif
8855 /*
8856 * As sched_init() is called before page_alloc is setup,
8857 * we use alloc_bootmem().
8858 */
8859 if (alloc_size) {
8860 ptr = (unsigned long)alloc_bootmem(alloc_size);
8861
8862 #ifdef CONFIG_FAIR_GROUP_SCHED
8863 init_task_group.se = (struct sched_entity **)ptr;
8864 ptr += nr_cpu_ids * sizeof(void **);
8865
8866 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8867 ptr += nr_cpu_ids * sizeof(void **);
8868
8869 #ifdef CONFIG_USER_SCHED
8870 root_task_group.se = (struct sched_entity **)ptr;
8871 ptr += nr_cpu_ids * sizeof(void **);
8872
8873 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8874 ptr += nr_cpu_ids * sizeof(void **);
8875 #endif /* CONFIG_USER_SCHED */
8876 #endif /* CONFIG_FAIR_GROUP_SCHED */
8877 #ifdef CONFIG_RT_GROUP_SCHED
8878 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8879 ptr += nr_cpu_ids * sizeof(void **);
8880
8881 init_task_group.rt_rq = (struct rt_rq **)ptr;
8882 ptr += nr_cpu_ids * sizeof(void **);
8883
8884 #ifdef CONFIG_USER_SCHED
8885 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8886 ptr += nr_cpu_ids * sizeof(void **);
8887
8888 root_task_group.rt_rq = (struct rt_rq **)ptr;
8889 ptr += nr_cpu_ids * sizeof(void **);
8890 #endif /* CONFIG_USER_SCHED */
8891 #endif /* CONFIG_RT_GROUP_SCHED */
8892 #ifdef CONFIG_CPUMASK_OFFSTACK
8893 for_each_possible_cpu(i) {
8894 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8895 ptr += cpumask_size();
8896 }
8897 #endif /* CONFIG_CPUMASK_OFFSTACK */
8898 }
8899
8900 #ifdef CONFIG_SMP
8901 init_defrootdomain();
8902 #endif
8903
8904 init_rt_bandwidth(&def_rt_bandwidth,
8905 global_rt_period(), global_rt_runtime());
8906
8907 #ifdef CONFIG_RT_GROUP_SCHED
8908 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8909 global_rt_period(), global_rt_runtime());
8910 #ifdef CONFIG_USER_SCHED
8911 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8912 global_rt_period(), RUNTIME_INF);
8913 #endif /* CONFIG_USER_SCHED */
8914 #endif /* CONFIG_RT_GROUP_SCHED */
8915
8916 #ifdef CONFIG_GROUP_SCHED
8917 list_add(&init_task_group.list, &task_groups);
8918 INIT_LIST_HEAD(&init_task_group.children);
8919
8920 #ifdef CONFIG_USER_SCHED
8921 INIT_LIST_HEAD(&root_task_group.children);
8922 init_task_group.parent = &root_task_group;
8923 list_add(&init_task_group.siblings, &root_task_group.children);
8924 #endif /* CONFIG_USER_SCHED */
8925 #endif /* CONFIG_GROUP_SCHED */
8926
8927 for_each_possible_cpu(i) {
8928 struct rq *rq;
8929
8930 rq = cpu_rq(i);
8931 spin_lock_init(&rq->lock);
8932 rq->nr_running = 0;
8933 init_cfs_rq(&rq->cfs, rq);
8934 init_rt_rq(&rq->rt, rq);
8935 #ifdef CONFIG_FAIR_GROUP_SCHED
8936 init_task_group.shares = init_task_group_load;
8937 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8938 #ifdef CONFIG_CGROUP_SCHED
8939 /*
8940 * How much cpu bandwidth does init_task_group get?
8941 *
8942 * In case of task-groups formed thr' the cgroup filesystem, it
8943 * gets 100% of the cpu resources in the system. This overall
8944 * system cpu resource is divided among the tasks of
8945 * init_task_group and its child task-groups in a fair manner,
8946 * based on each entity's (task or task-group's) weight
8947 * (se->load.weight).
8948 *
8949 * In other words, if init_task_group has 10 tasks of weight
8950 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8951 * then A0's share of the cpu resource is:
8952 *
8953 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8954 *
8955 * We achieve this by letting init_task_group's tasks sit
8956 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8957 */
8958 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
8959 #elif defined CONFIG_USER_SCHED
8960 root_task_group.shares = NICE_0_LOAD;
8961 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
8962 /*
8963 * In case of task-groups formed thr' the user id of tasks,
8964 * init_task_group represents tasks belonging to root user.
8965 * Hence it forms a sibling of all subsequent groups formed.
8966 * In this case, init_task_group gets only a fraction of overall
8967 * system cpu resource, based on the weight assigned to root
8968 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8969 * by letting tasks of init_task_group sit in a separate cfs_rq
8970 * (init_cfs_rq) and having one entity represent this group of
8971 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8972 */
8973 init_tg_cfs_entry(&init_task_group,
8974 &per_cpu(init_cfs_rq, i),
8975 &per_cpu(init_sched_entity, i), i, 1,
8976 root_task_group.se[i]);
8977
8978 #endif
8979 #endif /* CONFIG_FAIR_GROUP_SCHED */
8980
8981 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8982 #ifdef CONFIG_RT_GROUP_SCHED
8983 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8984 #ifdef CONFIG_CGROUP_SCHED
8985 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
8986 #elif defined CONFIG_USER_SCHED
8987 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
8988 init_tg_rt_entry(&init_task_group,
8989 &per_cpu(init_rt_rq, i),
8990 &per_cpu(init_sched_rt_entity, i), i, 1,
8991 root_task_group.rt_se[i]);
8992 #endif
8993 #endif
8994
8995 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8996 rq->cpu_load[j] = 0;
8997 #ifdef CONFIG_SMP
8998 rq->sd = NULL;
8999 rq->rd = NULL;
9000 rq->active_balance = 0;
9001 rq->next_balance = jiffies;
9002 rq->push_cpu = 0;
9003 rq->cpu = i;
9004 rq->online = 0;
9005 rq->migration_thread = NULL;
9006 INIT_LIST_HEAD(&rq->migration_queue);
9007 rq_attach_root(rq, &def_root_domain);
9008 #endif
9009 init_rq_hrtick(rq);
9010 atomic_set(&rq->nr_iowait, 0);
9011 }
9012
9013 set_load_weight(&init_task);
9014
9015 #ifdef CONFIG_PREEMPT_NOTIFIERS
9016 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9017 #endif
9018
9019 #ifdef CONFIG_SMP
9020 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9021 #endif
9022
9023 #ifdef CONFIG_RT_MUTEXES
9024 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9025 #endif
9026
9027 /*
9028 * The boot idle thread does lazy MMU switching as well:
9029 */
9030 atomic_inc(&init_mm.mm_count);
9031 enter_lazy_tlb(&init_mm, current);
9032
9033 /*
9034 * Make us the idle thread. Technically, schedule() should not be
9035 * called from this thread, however somewhere below it might be,
9036 * but because we are the idle thread, we just pick up running again
9037 * when this runqueue becomes "idle".
9038 */
9039 init_idle(current, smp_processor_id());
9040 /*
9041 * During early bootup we pretend to be a normal task:
9042 */
9043 current->sched_class = &fair_sched_class;
9044
9045 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9046 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
9047 #ifdef CONFIG_SMP
9048 #ifdef CONFIG_NO_HZ
9049 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
9050 #endif
9051 alloc_bootmem_cpumask_var(&cpu_isolated_map);
9052 #endif /* SMP */
9053
9054 scheduler_running = 1;
9055 }
9056
9057 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9058 void __might_sleep(char *file, int line)
9059 {
9060 #ifdef in_atomic
9061 static unsigned long prev_jiffy; /* ratelimiting */
9062
9063 if ((!in_atomic() && !irqs_disabled()) ||
9064 system_state != SYSTEM_RUNNING || oops_in_progress)
9065 return;
9066 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9067 return;
9068 prev_jiffy = jiffies;
9069
9070 printk(KERN_ERR
9071 "BUG: sleeping function called from invalid context at %s:%d\n",
9072 file, line);
9073 printk(KERN_ERR
9074 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9075 in_atomic(), irqs_disabled(),
9076 current->pid, current->comm);
9077
9078 debug_show_held_locks(current);
9079 if (irqs_disabled())
9080 print_irqtrace_events(current);
9081 dump_stack();
9082 #endif
9083 }
9084 EXPORT_SYMBOL(__might_sleep);
9085 #endif
9086
9087 #ifdef CONFIG_MAGIC_SYSRQ
9088 static void normalize_task(struct rq *rq, struct task_struct *p)
9089 {
9090 int on_rq;
9091
9092 update_rq_clock(rq);
9093 on_rq = p->se.on_rq;
9094 if (on_rq)
9095 deactivate_task(rq, p, 0);
9096 __setscheduler(rq, p, SCHED_NORMAL, 0);
9097 if (on_rq) {
9098 activate_task(rq, p, 0);
9099 resched_task(rq->curr);
9100 }
9101 }
9102
9103 void normalize_rt_tasks(void)
9104 {
9105 struct task_struct *g, *p;
9106 unsigned long flags;
9107 struct rq *rq;
9108
9109 read_lock_irqsave(&tasklist_lock, flags);
9110 do_each_thread(g, p) {
9111 /*
9112 * Only normalize user tasks:
9113 */
9114 if (!p->mm)
9115 continue;
9116
9117 p->se.exec_start = 0;
9118 #ifdef CONFIG_SCHEDSTATS
9119 p->se.wait_start = 0;
9120 p->se.sleep_start = 0;
9121 p->se.block_start = 0;
9122 #endif
9123
9124 if (!rt_task(p)) {
9125 /*
9126 * Renice negative nice level userspace
9127 * tasks back to 0:
9128 */
9129 if (TASK_NICE(p) < 0 && p->mm)
9130 set_user_nice(p, 0);
9131 continue;
9132 }
9133
9134 spin_lock(&p->pi_lock);
9135 rq = __task_rq_lock(p);
9136
9137 normalize_task(rq, p);
9138
9139 __task_rq_unlock(rq);
9140 spin_unlock(&p->pi_lock);
9141 } while_each_thread(g, p);
9142
9143 read_unlock_irqrestore(&tasklist_lock, flags);
9144 }
9145
9146 #endif /* CONFIG_MAGIC_SYSRQ */
9147
9148 #ifdef CONFIG_IA64
9149 /*
9150 * These functions are only useful for the IA64 MCA handling.
9151 *
9152 * They can only be called when the whole system has been
9153 * stopped - every CPU needs to be quiescent, and no scheduling
9154 * activity can take place. Using them for anything else would
9155 * be a serious bug, and as a result, they aren't even visible
9156 * under any other configuration.
9157 */
9158
9159 /**
9160 * curr_task - return the current task for a given cpu.
9161 * @cpu: the processor in question.
9162 *
9163 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9164 */
9165 struct task_struct *curr_task(int cpu)
9166 {
9167 return cpu_curr(cpu);
9168 }
9169
9170 /**
9171 * set_curr_task - set the current task for a given cpu.
9172 * @cpu: the processor in question.
9173 * @p: the task pointer to set.
9174 *
9175 * Description: This function must only be used when non-maskable interrupts
9176 * are serviced on a separate stack. It allows the architecture to switch the
9177 * notion of the current task on a cpu in a non-blocking manner. This function
9178 * must be called with all CPU's synchronized, and interrupts disabled, the
9179 * and caller must save the original value of the current task (see
9180 * curr_task() above) and restore that value before reenabling interrupts and
9181 * re-starting the system.
9182 *
9183 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9184 */
9185 void set_curr_task(int cpu, struct task_struct *p)
9186 {
9187 cpu_curr(cpu) = p;
9188 }
9189
9190 #endif
9191
9192 #ifdef CONFIG_FAIR_GROUP_SCHED
9193 static void free_fair_sched_group(struct task_group *tg)
9194 {
9195 int i;
9196
9197 for_each_possible_cpu(i) {
9198 if (tg->cfs_rq)
9199 kfree(tg->cfs_rq[i]);
9200 if (tg->se)
9201 kfree(tg->se[i]);
9202 }
9203
9204 kfree(tg->cfs_rq);
9205 kfree(tg->se);
9206 }
9207
9208 static
9209 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9210 {
9211 struct cfs_rq *cfs_rq;
9212 struct sched_entity *se;
9213 struct rq *rq;
9214 int i;
9215
9216 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9217 if (!tg->cfs_rq)
9218 goto err;
9219 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9220 if (!tg->se)
9221 goto err;
9222
9223 tg->shares = NICE_0_LOAD;
9224
9225 for_each_possible_cpu(i) {
9226 rq = cpu_rq(i);
9227
9228 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9229 GFP_KERNEL, cpu_to_node(i));
9230 if (!cfs_rq)
9231 goto err;
9232
9233 se = kzalloc_node(sizeof(struct sched_entity),
9234 GFP_KERNEL, cpu_to_node(i));
9235 if (!se)
9236 goto err;
9237
9238 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9239 }
9240
9241 return 1;
9242
9243 err:
9244 return 0;
9245 }
9246
9247 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9248 {
9249 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9250 &cpu_rq(cpu)->leaf_cfs_rq_list);
9251 }
9252
9253 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9254 {
9255 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9256 }
9257 #else /* !CONFG_FAIR_GROUP_SCHED */
9258 static inline void free_fair_sched_group(struct task_group *tg)
9259 {
9260 }
9261
9262 static inline
9263 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9264 {
9265 return 1;
9266 }
9267
9268 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9269 {
9270 }
9271
9272 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9273 {
9274 }
9275 #endif /* CONFIG_FAIR_GROUP_SCHED */
9276
9277 #ifdef CONFIG_RT_GROUP_SCHED
9278 static void free_rt_sched_group(struct task_group *tg)
9279 {
9280 int i;
9281
9282 destroy_rt_bandwidth(&tg->rt_bandwidth);
9283
9284 for_each_possible_cpu(i) {
9285 if (tg->rt_rq)
9286 kfree(tg->rt_rq[i]);
9287 if (tg->rt_se)
9288 kfree(tg->rt_se[i]);
9289 }
9290
9291 kfree(tg->rt_rq);
9292 kfree(tg->rt_se);
9293 }
9294
9295 static
9296 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9297 {
9298 struct rt_rq *rt_rq;
9299 struct sched_rt_entity *rt_se;
9300 struct rq *rq;
9301 int i;
9302
9303 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9304 if (!tg->rt_rq)
9305 goto err;
9306 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9307 if (!tg->rt_se)
9308 goto err;
9309
9310 init_rt_bandwidth(&tg->rt_bandwidth,
9311 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9312
9313 for_each_possible_cpu(i) {
9314 rq = cpu_rq(i);
9315
9316 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9317 GFP_KERNEL, cpu_to_node(i));
9318 if (!rt_rq)
9319 goto err;
9320
9321 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9322 GFP_KERNEL, cpu_to_node(i));
9323 if (!rt_se)
9324 goto err;
9325
9326 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9327 }
9328
9329 return 1;
9330
9331 err:
9332 return 0;
9333 }
9334
9335 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9336 {
9337 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9338 &cpu_rq(cpu)->leaf_rt_rq_list);
9339 }
9340
9341 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9342 {
9343 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9344 }
9345 #else /* !CONFIG_RT_GROUP_SCHED */
9346 static inline void free_rt_sched_group(struct task_group *tg)
9347 {
9348 }
9349
9350 static inline
9351 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9352 {
9353 return 1;
9354 }
9355
9356 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9357 {
9358 }
9359
9360 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9361 {
9362 }
9363 #endif /* CONFIG_RT_GROUP_SCHED */
9364
9365 #ifdef CONFIG_GROUP_SCHED
9366 static void free_sched_group(struct task_group *tg)
9367 {
9368 free_fair_sched_group(tg);
9369 free_rt_sched_group(tg);
9370 kfree(tg);
9371 }
9372
9373 /* allocate runqueue etc for a new task group */
9374 struct task_group *sched_create_group(struct task_group *parent)
9375 {
9376 struct task_group *tg;
9377 unsigned long flags;
9378 int i;
9379
9380 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9381 if (!tg)
9382 return ERR_PTR(-ENOMEM);
9383
9384 if (!alloc_fair_sched_group(tg, parent))
9385 goto err;
9386
9387 if (!alloc_rt_sched_group(tg, parent))
9388 goto err;
9389
9390 spin_lock_irqsave(&task_group_lock, flags);
9391 for_each_possible_cpu(i) {
9392 register_fair_sched_group(tg, i);
9393 register_rt_sched_group(tg, i);
9394 }
9395 list_add_rcu(&tg->list, &task_groups);
9396
9397 WARN_ON(!parent); /* root should already exist */
9398
9399 tg->parent = parent;
9400 INIT_LIST_HEAD(&tg->children);
9401 list_add_rcu(&tg->siblings, &parent->children);
9402 spin_unlock_irqrestore(&task_group_lock, flags);
9403
9404 return tg;
9405
9406 err:
9407 free_sched_group(tg);
9408 return ERR_PTR(-ENOMEM);
9409 }
9410
9411 /* rcu callback to free various structures associated with a task group */
9412 static void free_sched_group_rcu(struct rcu_head *rhp)
9413 {
9414 /* now it should be safe to free those cfs_rqs */
9415 free_sched_group(container_of(rhp, struct task_group, rcu));
9416 }
9417
9418 /* Destroy runqueue etc associated with a task group */
9419 void sched_destroy_group(struct task_group *tg)
9420 {
9421 unsigned long flags;
9422 int i;
9423
9424 spin_lock_irqsave(&task_group_lock, flags);
9425 for_each_possible_cpu(i) {
9426 unregister_fair_sched_group(tg, i);
9427 unregister_rt_sched_group(tg, i);
9428 }
9429 list_del_rcu(&tg->list);
9430 list_del_rcu(&tg->siblings);
9431 spin_unlock_irqrestore(&task_group_lock, flags);
9432
9433 /* wait for possible concurrent references to cfs_rqs complete */
9434 call_rcu(&tg->rcu, free_sched_group_rcu);
9435 }
9436
9437 /* change task's runqueue when it moves between groups.
9438 * The caller of this function should have put the task in its new group
9439 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9440 * reflect its new group.
9441 */
9442 void sched_move_task(struct task_struct *tsk)
9443 {
9444 int on_rq, running;
9445 unsigned long flags;
9446 struct rq *rq;
9447
9448 rq = task_rq_lock(tsk, &flags);
9449
9450 update_rq_clock(rq);
9451
9452 running = task_current(rq, tsk);
9453 on_rq = tsk->se.on_rq;
9454
9455 if (on_rq)
9456 dequeue_task(rq, tsk, 0);
9457 if (unlikely(running))
9458 tsk->sched_class->put_prev_task(rq, tsk);
9459
9460 set_task_rq(tsk, task_cpu(tsk));
9461
9462 #ifdef CONFIG_FAIR_GROUP_SCHED
9463 if (tsk->sched_class->moved_group)
9464 tsk->sched_class->moved_group(tsk);
9465 #endif
9466
9467 if (unlikely(running))
9468 tsk->sched_class->set_curr_task(rq);
9469 if (on_rq)
9470 enqueue_task(rq, tsk, 0);
9471
9472 task_rq_unlock(rq, &flags);
9473 }
9474 #endif /* CONFIG_GROUP_SCHED */
9475
9476 #ifdef CONFIG_FAIR_GROUP_SCHED
9477 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
9478 {
9479 struct cfs_rq *cfs_rq = se->cfs_rq;
9480 int on_rq;
9481
9482 on_rq = se->on_rq;
9483 if (on_rq)
9484 dequeue_entity(cfs_rq, se, 0);
9485
9486 se->load.weight = shares;
9487 se->load.inv_weight = 0;
9488
9489 if (on_rq)
9490 enqueue_entity(cfs_rq, se, 0);
9491 }
9492
9493 static void set_se_shares(struct sched_entity *se, unsigned long shares)
9494 {
9495 struct cfs_rq *cfs_rq = se->cfs_rq;
9496 struct rq *rq = cfs_rq->rq;
9497 unsigned long flags;
9498
9499 spin_lock_irqsave(&rq->lock, flags);
9500 __set_se_shares(se, shares);
9501 spin_unlock_irqrestore(&rq->lock, flags);
9502 }
9503
9504 static DEFINE_MUTEX(shares_mutex);
9505
9506 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
9507 {
9508 int i;
9509 unsigned long flags;
9510
9511 /*
9512 * We can't change the weight of the root cgroup.
9513 */
9514 if (!tg->se[0])
9515 return -EINVAL;
9516
9517 if (shares < MIN_SHARES)
9518 shares = MIN_SHARES;
9519 else if (shares > MAX_SHARES)
9520 shares = MAX_SHARES;
9521
9522 mutex_lock(&shares_mutex);
9523 if (tg->shares == shares)
9524 goto done;
9525
9526 spin_lock_irqsave(&task_group_lock, flags);
9527 for_each_possible_cpu(i)
9528 unregister_fair_sched_group(tg, i);
9529 list_del_rcu(&tg->siblings);
9530 spin_unlock_irqrestore(&task_group_lock, flags);
9531
9532 /* wait for any ongoing reference to this group to finish */
9533 synchronize_sched();
9534
9535 /*
9536 * Now we are free to modify the group's share on each cpu
9537 * w/o tripping rebalance_share or load_balance_fair.
9538 */
9539 tg->shares = shares;
9540 for_each_possible_cpu(i) {
9541 /*
9542 * force a rebalance
9543 */
9544 cfs_rq_set_shares(tg->cfs_rq[i], 0);
9545 set_se_shares(tg->se[i], shares);
9546 }
9547
9548 /*
9549 * Enable load balance activity on this group, by inserting it back on
9550 * each cpu's rq->leaf_cfs_rq_list.
9551 */
9552 spin_lock_irqsave(&task_group_lock, flags);
9553 for_each_possible_cpu(i)
9554 register_fair_sched_group(tg, i);
9555 list_add_rcu(&tg->siblings, &tg->parent->children);
9556 spin_unlock_irqrestore(&task_group_lock, flags);
9557 done:
9558 mutex_unlock(&shares_mutex);
9559 return 0;
9560 }
9561
9562 unsigned long sched_group_shares(struct task_group *tg)
9563 {
9564 return tg->shares;
9565 }
9566 #endif
9567
9568 #ifdef CONFIG_RT_GROUP_SCHED
9569 /*
9570 * Ensure that the real time constraints are schedulable.
9571 */
9572 static DEFINE_MUTEX(rt_constraints_mutex);
9573
9574 static unsigned long to_ratio(u64 period, u64 runtime)
9575 {
9576 if (runtime == RUNTIME_INF)
9577 return 1ULL << 20;
9578
9579 return div64_u64(runtime << 20, period);
9580 }
9581
9582 /* Must be called with tasklist_lock held */
9583 static inline int tg_has_rt_tasks(struct task_group *tg)
9584 {
9585 struct task_struct *g, *p;
9586
9587 do_each_thread(g, p) {
9588 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9589 return 1;
9590 } while_each_thread(g, p);
9591
9592 return 0;
9593 }
9594
9595 struct rt_schedulable_data {
9596 struct task_group *tg;
9597 u64 rt_period;
9598 u64 rt_runtime;
9599 };
9600
9601 static int tg_schedulable(struct task_group *tg, void *data)
9602 {
9603 struct rt_schedulable_data *d = data;
9604 struct task_group *child;
9605 unsigned long total, sum = 0;
9606 u64 period, runtime;
9607
9608 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9609 runtime = tg->rt_bandwidth.rt_runtime;
9610
9611 if (tg == d->tg) {
9612 period = d->rt_period;
9613 runtime = d->rt_runtime;
9614 }
9615
9616 #ifdef CONFIG_USER_SCHED
9617 if (tg == &root_task_group) {
9618 period = global_rt_period();
9619 runtime = global_rt_runtime();
9620 }
9621 #endif
9622
9623 /*
9624 * Cannot have more runtime than the period.
9625 */
9626 if (runtime > period && runtime != RUNTIME_INF)
9627 return -EINVAL;
9628
9629 /*
9630 * Ensure we don't starve existing RT tasks.
9631 */
9632 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9633 return -EBUSY;
9634
9635 total = to_ratio(period, runtime);
9636
9637 /*
9638 * Nobody can have more than the global setting allows.
9639 */
9640 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9641 return -EINVAL;
9642
9643 /*
9644 * The sum of our children's runtime should not exceed our own.
9645 */
9646 list_for_each_entry_rcu(child, &tg->children, siblings) {
9647 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9648 runtime = child->rt_bandwidth.rt_runtime;
9649
9650 if (child == d->tg) {
9651 period = d->rt_period;
9652 runtime = d->rt_runtime;
9653 }
9654
9655 sum += to_ratio(period, runtime);
9656 }
9657
9658 if (sum > total)
9659 return -EINVAL;
9660
9661 return 0;
9662 }
9663
9664 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
9665 {
9666 struct rt_schedulable_data data = {
9667 .tg = tg,
9668 .rt_period = period,
9669 .rt_runtime = runtime,
9670 };
9671
9672 return walk_tg_tree(tg_schedulable, tg_nop, &data);
9673 }
9674
9675 static int tg_set_bandwidth(struct task_group *tg,
9676 u64 rt_period, u64 rt_runtime)
9677 {
9678 int i, err = 0;
9679
9680 mutex_lock(&rt_constraints_mutex);
9681 read_lock(&tasklist_lock);
9682 err = __rt_schedulable(tg, rt_period, rt_runtime);
9683 if (err)
9684 goto unlock;
9685
9686 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9687 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9688 tg->rt_bandwidth.rt_runtime = rt_runtime;
9689
9690 for_each_possible_cpu(i) {
9691 struct rt_rq *rt_rq = tg->rt_rq[i];
9692
9693 spin_lock(&rt_rq->rt_runtime_lock);
9694 rt_rq->rt_runtime = rt_runtime;
9695 spin_unlock(&rt_rq->rt_runtime_lock);
9696 }
9697 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9698 unlock:
9699 read_unlock(&tasklist_lock);
9700 mutex_unlock(&rt_constraints_mutex);
9701
9702 return err;
9703 }
9704
9705 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9706 {
9707 u64 rt_runtime, rt_period;
9708
9709 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9710 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9711 if (rt_runtime_us < 0)
9712 rt_runtime = RUNTIME_INF;
9713
9714 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9715 }
9716
9717 long sched_group_rt_runtime(struct task_group *tg)
9718 {
9719 u64 rt_runtime_us;
9720
9721 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9722 return -1;
9723
9724 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9725 do_div(rt_runtime_us, NSEC_PER_USEC);
9726 return rt_runtime_us;
9727 }
9728
9729 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9730 {
9731 u64 rt_runtime, rt_period;
9732
9733 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9734 rt_runtime = tg->rt_bandwidth.rt_runtime;
9735
9736 if (rt_period == 0)
9737 return -EINVAL;
9738
9739 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9740 }
9741
9742 long sched_group_rt_period(struct task_group *tg)
9743 {
9744 u64 rt_period_us;
9745
9746 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9747 do_div(rt_period_us, NSEC_PER_USEC);
9748 return rt_period_us;
9749 }
9750
9751 static int sched_rt_global_constraints(void)
9752 {
9753 u64 runtime, period;
9754 int ret = 0;
9755
9756 if (sysctl_sched_rt_period <= 0)
9757 return -EINVAL;
9758
9759 runtime = global_rt_runtime();
9760 period = global_rt_period();
9761
9762 /*
9763 * Sanity check on the sysctl variables.
9764 */
9765 if (runtime > period && runtime != RUNTIME_INF)
9766 return -EINVAL;
9767
9768 mutex_lock(&rt_constraints_mutex);
9769 read_lock(&tasklist_lock);
9770 ret = __rt_schedulable(NULL, 0, 0);
9771 read_unlock(&tasklist_lock);
9772 mutex_unlock(&rt_constraints_mutex);
9773
9774 return ret;
9775 }
9776
9777 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9778 {
9779 /* Don't accept realtime tasks when there is no way for them to run */
9780 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9781 return 0;
9782
9783 return 1;
9784 }
9785
9786 #else /* !CONFIG_RT_GROUP_SCHED */
9787 static int sched_rt_global_constraints(void)
9788 {
9789 unsigned long flags;
9790 int i;
9791
9792 if (sysctl_sched_rt_period <= 0)
9793 return -EINVAL;
9794
9795 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9796 for_each_possible_cpu(i) {
9797 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9798
9799 spin_lock(&rt_rq->rt_runtime_lock);
9800 rt_rq->rt_runtime = global_rt_runtime();
9801 spin_unlock(&rt_rq->rt_runtime_lock);
9802 }
9803 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9804
9805 return 0;
9806 }
9807 #endif /* CONFIG_RT_GROUP_SCHED */
9808
9809 int sched_rt_handler(struct ctl_table *table, int write,
9810 struct file *filp, void __user *buffer, size_t *lenp,
9811 loff_t *ppos)
9812 {
9813 int ret;
9814 int old_period, old_runtime;
9815 static DEFINE_MUTEX(mutex);
9816
9817 mutex_lock(&mutex);
9818 old_period = sysctl_sched_rt_period;
9819 old_runtime = sysctl_sched_rt_runtime;
9820
9821 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9822
9823 if (!ret && write) {
9824 ret = sched_rt_global_constraints();
9825 if (ret) {
9826 sysctl_sched_rt_period = old_period;
9827 sysctl_sched_rt_runtime = old_runtime;
9828 } else {
9829 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9830 def_rt_bandwidth.rt_period =
9831 ns_to_ktime(global_rt_period());
9832 }
9833 }
9834 mutex_unlock(&mutex);
9835
9836 return ret;
9837 }
9838
9839 #ifdef CONFIG_CGROUP_SCHED
9840
9841 /* return corresponding task_group object of a cgroup */
9842 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9843 {
9844 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9845 struct task_group, css);
9846 }
9847
9848 static struct cgroup_subsys_state *
9849 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9850 {
9851 struct task_group *tg, *parent;
9852
9853 if (!cgrp->parent) {
9854 /* This is early initialization for the top cgroup */
9855 return &init_task_group.css;
9856 }
9857
9858 parent = cgroup_tg(cgrp->parent);
9859 tg = sched_create_group(parent);
9860 if (IS_ERR(tg))
9861 return ERR_PTR(-ENOMEM);
9862
9863 return &tg->css;
9864 }
9865
9866 static void
9867 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9868 {
9869 struct task_group *tg = cgroup_tg(cgrp);
9870
9871 sched_destroy_group(tg);
9872 }
9873
9874 static int
9875 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9876 struct task_struct *tsk)
9877 {
9878 #ifdef CONFIG_RT_GROUP_SCHED
9879 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9880 return -EINVAL;
9881 #else
9882 /* We don't support RT-tasks being in separate groups */
9883 if (tsk->sched_class != &fair_sched_class)
9884 return -EINVAL;
9885 #endif
9886
9887 return 0;
9888 }
9889
9890 static void
9891 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9892 struct cgroup *old_cont, struct task_struct *tsk)
9893 {
9894 sched_move_task(tsk);
9895 }
9896
9897 #ifdef CONFIG_FAIR_GROUP_SCHED
9898 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9899 u64 shareval)
9900 {
9901 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9902 }
9903
9904 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9905 {
9906 struct task_group *tg = cgroup_tg(cgrp);
9907
9908 return (u64) tg->shares;
9909 }
9910 #endif /* CONFIG_FAIR_GROUP_SCHED */
9911
9912 #ifdef CONFIG_RT_GROUP_SCHED
9913 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9914 s64 val)
9915 {
9916 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9917 }
9918
9919 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9920 {
9921 return sched_group_rt_runtime(cgroup_tg(cgrp));
9922 }
9923
9924 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9925 u64 rt_period_us)
9926 {
9927 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9928 }
9929
9930 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9931 {
9932 return sched_group_rt_period(cgroup_tg(cgrp));
9933 }
9934 #endif /* CONFIG_RT_GROUP_SCHED */
9935
9936 static struct cftype cpu_files[] = {
9937 #ifdef CONFIG_FAIR_GROUP_SCHED
9938 {
9939 .name = "shares",
9940 .read_u64 = cpu_shares_read_u64,
9941 .write_u64 = cpu_shares_write_u64,
9942 },
9943 #endif
9944 #ifdef CONFIG_RT_GROUP_SCHED
9945 {
9946 .name = "rt_runtime_us",
9947 .read_s64 = cpu_rt_runtime_read,
9948 .write_s64 = cpu_rt_runtime_write,
9949 },
9950 {
9951 .name = "rt_period_us",
9952 .read_u64 = cpu_rt_period_read_uint,
9953 .write_u64 = cpu_rt_period_write_uint,
9954 },
9955 #endif
9956 };
9957
9958 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9959 {
9960 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9961 }
9962
9963 struct cgroup_subsys cpu_cgroup_subsys = {
9964 .name = "cpu",
9965 .create = cpu_cgroup_create,
9966 .destroy = cpu_cgroup_destroy,
9967 .can_attach = cpu_cgroup_can_attach,
9968 .attach = cpu_cgroup_attach,
9969 .populate = cpu_cgroup_populate,
9970 .subsys_id = cpu_cgroup_subsys_id,
9971 .early_init = 1,
9972 };
9973
9974 #endif /* CONFIG_CGROUP_SCHED */
9975
9976 #ifdef CONFIG_CGROUP_CPUACCT
9977
9978 /*
9979 * CPU accounting code for task groups.
9980 *
9981 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9982 * (balbir@in.ibm.com).
9983 */
9984
9985 /* track cpu usage of a group of tasks and its child groups */
9986 struct cpuacct {
9987 struct cgroup_subsys_state css;
9988 /* cpuusage holds pointer to a u64-type object on every cpu */
9989 u64 *cpuusage;
9990 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9991 struct cpuacct *parent;
9992 };
9993
9994 struct cgroup_subsys cpuacct_subsys;
9995
9996 /* return cpu accounting group corresponding to this container */
9997 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9998 {
9999 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10000 struct cpuacct, css);
10001 }
10002
10003 /* return cpu accounting group to which this task belongs */
10004 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10005 {
10006 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10007 struct cpuacct, css);
10008 }
10009
10010 /* create a new cpu accounting group */
10011 static struct cgroup_subsys_state *cpuacct_create(
10012 struct cgroup_subsys *ss, struct cgroup *cgrp)
10013 {
10014 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10015 int i;
10016
10017 if (!ca)
10018 goto out;
10019
10020 ca->cpuusage = alloc_percpu(u64);
10021 if (!ca->cpuusage)
10022 goto out_free_ca;
10023
10024 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10025 if (percpu_counter_init(&ca->cpustat[i], 0))
10026 goto out_free_counters;
10027
10028 if (cgrp->parent)
10029 ca->parent = cgroup_ca(cgrp->parent);
10030
10031 return &ca->css;
10032
10033 out_free_counters:
10034 while (--i >= 0)
10035 percpu_counter_destroy(&ca->cpustat[i]);
10036 free_percpu(ca->cpuusage);
10037 out_free_ca:
10038 kfree(ca);
10039 out:
10040 return ERR_PTR(-ENOMEM);
10041 }
10042
10043 /* destroy an existing cpu accounting group */
10044 static void
10045 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10046 {
10047 struct cpuacct *ca = cgroup_ca(cgrp);
10048 int i;
10049
10050 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10051 percpu_counter_destroy(&ca->cpustat[i]);
10052 free_percpu(ca->cpuusage);
10053 kfree(ca);
10054 }
10055
10056 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10057 {
10058 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10059 u64 data;
10060
10061 #ifndef CONFIG_64BIT
10062 /*
10063 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10064 */
10065 spin_lock_irq(&cpu_rq(cpu)->lock);
10066 data = *cpuusage;
10067 spin_unlock_irq(&cpu_rq(cpu)->lock);
10068 #else
10069 data = *cpuusage;
10070 #endif
10071
10072 return data;
10073 }
10074
10075 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10076 {
10077 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10078
10079 #ifndef CONFIG_64BIT
10080 /*
10081 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10082 */
10083 spin_lock_irq(&cpu_rq(cpu)->lock);
10084 *cpuusage = val;
10085 spin_unlock_irq(&cpu_rq(cpu)->lock);
10086 #else
10087 *cpuusage = val;
10088 #endif
10089 }
10090
10091 /* return total cpu usage (in nanoseconds) of a group */
10092 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10093 {
10094 struct cpuacct *ca = cgroup_ca(cgrp);
10095 u64 totalcpuusage = 0;
10096 int i;
10097
10098 for_each_present_cpu(i)
10099 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10100
10101 return totalcpuusage;
10102 }
10103
10104 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10105 u64 reset)
10106 {
10107 struct cpuacct *ca = cgroup_ca(cgrp);
10108 int err = 0;
10109 int i;
10110
10111 if (reset) {
10112 err = -EINVAL;
10113 goto out;
10114 }
10115
10116 for_each_present_cpu(i)
10117 cpuacct_cpuusage_write(ca, i, 0);
10118
10119 out:
10120 return err;
10121 }
10122
10123 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10124 struct seq_file *m)
10125 {
10126 struct cpuacct *ca = cgroup_ca(cgroup);
10127 u64 percpu;
10128 int i;
10129
10130 for_each_present_cpu(i) {
10131 percpu = cpuacct_cpuusage_read(ca, i);
10132 seq_printf(m, "%llu ", (unsigned long long) percpu);
10133 }
10134 seq_printf(m, "\n");
10135 return 0;
10136 }
10137
10138 static const char *cpuacct_stat_desc[] = {
10139 [CPUACCT_STAT_USER] = "user",
10140 [CPUACCT_STAT_SYSTEM] = "system",
10141 };
10142
10143 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10144 struct cgroup_map_cb *cb)
10145 {
10146 struct cpuacct *ca = cgroup_ca(cgrp);
10147 int i;
10148
10149 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10150 s64 val = percpu_counter_read(&ca->cpustat[i]);
10151 val = cputime64_to_clock_t(val);
10152 cb->fill(cb, cpuacct_stat_desc[i], val);
10153 }
10154 return 0;
10155 }
10156
10157 static struct cftype files[] = {
10158 {
10159 .name = "usage",
10160 .read_u64 = cpuusage_read,
10161 .write_u64 = cpuusage_write,
10162 },
10163 {
10164 .name = "usage_percpu",
10165 .read_seq_string = cpuacct_percpu_seq_read,
10166 },
10167 {
10168 .name = "stat",
10169 .read_map = cpuacct_stats_show,
10170 },
10171 };
10172
10173 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10174 {
10175 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10176 }
10177
10178 /*
10179 * charge this task's execution time to its accounting group.
10180 *
10181 * called with rq->lock held.
10182 */
10183 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10184 {
10185 struct cpuacct *ca;
10186 int cpu;
10187
10188 if (unlikely(!cpuacct_subsys.active))
10189 return;
10190
10191 cpu = task_cpu(tsk);
10192
10193 rcu_read_lock();
10194
10195 ca = task_ca(tsk);
10196
10197 for (; ca; ca = ca->parent) {
10198 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10199 *cpuusage += cputime;
10200 }
10201
10202 rcu_read_unlock();
10203 }
10204
10205 /*
10206 * Charge the system/user time to the task's accounting group.
10207 */
10208 static void cpuacct_update_stats(struct task_struct *tsk,
10209 enum cpuacct_stat_index idx, cputime_t val)
10210 {
10211 struct cpuacct *ca;
10212
10213 if (unlikely(!cpuacct_subsys.active))
10214 return;
10215
10216 rcu_read_lock();
10217 ca = task_ca(tsk);
10218
10219 do {
10220 percpu_counter_add(&ca->cpustat[idx], val);
10221 ca = ca->parent;
10222 } while (ca);
10223 rcu_read_unlock();
10224 }
10225
10226 struct cgroup_subsys cpuacct_subsys = {
10227 .name = "cpuacct",
10228 .create = cpuacct_create,
10229 .destroy = cpuacct_destroy,
10230 .populate = cpuacct_populate,
10231 .subsys_id = cpuacct_subsys_id,
10232 };
10233 #endif /* CONFIG_CGROUP_CPUACCT */