]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched.c
sched: remove HZ dependency from the granularity default
[mirror_ubuntu-kernels.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64
65 #include <asm/tlb.h>
66
67 /*
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72 unsigned long long __attribute__((weak)) sched_clock(void)
73 {
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75 }
76
77 /*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86 /*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95 /*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
101 #define NICE_0_LOAD SCHED_LOAD_SCALE
102 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
104 /*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112 #define DEF_TIMESLICE (100 * HZ / 1000)
113
114 #ifdef CONFIG_SMP
115 /*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120 {
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122 }
123
124 /*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129 {
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132 }
133 #endif
134
135 #define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
137
138 /*
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
141 */
142 static unsigned int static_prio_timeslice(int static_prio)
143 {
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
151 }
152
153 static inline int rt_policy(int policy)
154 {
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158 }
159
160 static inline int task_has_rt_policy(struct task_struct *p)
161 {
162 return rt_policy(p->policy);
163 }
164
165 /*
166 * This is the priority-queue data structure of the RT scheduling class:
167 */
168 struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171 };
172
173 struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177 };
178
179 /* CFS-related fields in a runqueue */
180 struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193 #ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208 #endif
209 };
210
211 /* Real-Time classes' related field in a runqueue: */
212 struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216 };
217
218 /*
219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
225 struct rq {
226 spinlock_t lock; /* runqueue lock */
227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235 unsigned char idle_at_tick;
236 #ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238 #endif
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244 #ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
246 #endif
247 struct rt_rq rt;
248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
257 struct task_struct *curr, *idle;
258 unsigned long next_balance;
259 struct mm_struct *prev_mm;
260
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
265 u64 idle_clock;
266 unsigned int clock_deep_idle_events;
267 u64 tick_timestamp;
268
269 atomic_t nr_iowait;
270
271 #ifdef CONFIG_SMP
272 struct sched_domain *sd;
273
274 /* For active balancing */
275 int active_balance;
276 int push_cpu;
277 int cpu; /* cpu of this runqueue */
278
279 struct task_struct *migration_thread;
280 struct list_head migration_queue;
281 #endif
282
283 #ifdef CONFIG_SCHEDSTATS
284 /* latency stats */
285 struct sched_info rq_sched_info;
286
287 /* sys_sched_yield() stats */
288 unsigned long yld_exp_empty;
289 unsigned long yld_act_empty;
290 unsigned long yld_both_empty;
291 unsigned long yld_cnt;
292
293 /* schedule() stats */
294 unsigned long sched_switch;
295 unsigned long sched_cnt;
296 unsigned long sched_goidle;
297
298 /* try_to_wake_up() stats */
299 unsigned long ttwu_cnt;
300 unsigned long ttwu_local;
301 #endif
302 struct lock_class_key rq_lock_key;
303 };
304
305 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
306 static DEFINE_MUTEX(sched_hotcpu_mutex);
307
308 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
309 {
310 rq->curr->sched_class->check_preempt_curr(rq, p);
311 }
312
313 static inline int cpu_of(struct rq *rq)
314 {
315 #ifdef CONFIG_SMP
316 return rq->cpu;
317 #else
318 return 0;
319 #endif
320 }
321
322 /*
323 * Update the per-runqueue clock, as finegrained as the platform can give
324 * us, but without assuming monotonicity, etc.:
325 */
326 static void __update_rq_clock(struct rq *rq)
327 {
328 u64 prev_raw = rq->prev_clock_raw;
329 u64 now = sched_clock();
330 s64 delta = now - prev_raw;
331 u64 clock = rq->clock;
332
333 #ifdef CONFIG_SCHED_DEBUG
334 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
335 #endif
336 /*
337 * Protect against sched_clock() occasionally going backwards:
338 */
339 if (unlikely(delta < 0)) {
340 clock++;
341 rq->clock_warps++;
342 } else {
343 /*
344 * Catch too large forward jumps too:
345 */
346 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
347 if (clock < rq->tick_timestamp + TICK_NSEC)
348 clock = rq->tick_timestamp + TICK_NSEC;
349 else
350 clock++;
351 rq->clock_overflows++;
352 } else {
353 if (unlikely(delta > rq->clock_max_delta))
354 rq->clock_max_delta = delta;
355 clock += delta;
356 }
357 }
358
359 rq->prev_clock_raw = now;
360 rq->clock = clock;
361 }
362
363 static void update_rq_clock(struct rq *rq)
364 {
365 if (likely(smp_processor_id() == cpu_of(rq)))
366 __update_rq_clock(rq);
367 }
368
369 /*
370 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
371 * See detach_destroy_domains: synchronize_sched for details.
372 *
373 * The domain tree of any CPU may only be accessed from within
374 * preempt-disabled sections.
375 */
376 #define for_each_domain(cpu, __sd) \
377 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
378
379 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
380 #define this_rq() (&__get_cpu_var(runqueues))
381 #define task_rq(p) cpu_rq(task_cpu(p))
382 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
383
384 /*
385 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
386 * clock constructed from sched_clock():
387 */
388 unsigned long long cpu_clock(int cpu)
389 {
390 unsigned long long now;
391 unsigned long flags;
392 struct rq *rq;
393
394 local_irq_save(flags);
395 rq = cpu_rq(cpu);
396 update_rq_clock(rq);
397 now = rq->clock;
398 local_irq_restore(flags);
399
400 return now;
401 }
402
403 #ifdef CONFIG_FAIR_GROUP_SCHED
404 /* Change a task's ->cfs_rq if it moves across CPUs */
405 static inline void set_task_cfs_rq(struct task_struct *p)
406 {
407 p->se.cfs_rq = &task_rq(p)->cfs;
408 }
409 #else
410 static inline void set_task_cfs_rq(struct task_struct *p)
411 {
412 }
413 #endif
414
415 #ifndef prepare_arch_switch
416 # define prepare_arch_switch(next) do { } while (0)
417 #endif
418 #ifndef finish_arch_switch
419 # define finish_arch_switch(prev) do { } while (0)
420 #endif
421
422 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
423 static inline int task_running(struct rq *rq, struct task_struct *p)
424 {
425 return rq->curr == p;
426 }
427
428 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
429 {
430 }
431
432 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
433 {
434 #ifdef CONFIG_DEBUG_SPINLOCK
435 /* this is a valid case when another task releases the spinlock */
436 rq->lock.owner = current;
437 #endif
438 /*
439 * If we are tracking spinlock dependencies then we have to
440 * fix up the runqueue lock - which gets 'carried over' from
441 * prev into current:
442 */
443 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
444
445 spin_unlock_irq(&rq->lock);
446 }
447
448 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
449 static inline int task_running(struct rq *rq, struct task_struct *p)
450 {
451 #ifdef CONFIG_SMP
452 return p->oncpu;
453 #else
454 return rq->curr == p;
455 #endif
456 }
457
458 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
459 {
460 #ifdef CONFIG_SMP
461 /*
462 * We can optimise this out completely for !SMP, because the
463 * SMP rebalancing from interrupt is the only thing that cares
464 * here.
465 */
466 next->oncpu = 1;
467 #endif
468 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
469 spin_unlock_irq(&rq->lock);
470 #else
471 spin_unlock(&rq->lock);
472 #endif
473 }
474
475 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
476 {
477 #ifdef CONFIG_SMP
478 /*
479 * After ->oncpu is cleared, the task can be moved to a different CPU.
480 * We must ensure this doesn't happen until the switch is completely
481 * finished.
482 */
483 smp_wmb();
484 prev->oncpu = 0;
485 #endif
486 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
487 local_irq_enable();
488 #endif
489 }
490 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
491
492 /*
493 * __task_rq_lock - lock the runqueue a given task resides on.
494 * Must be called interrupts disabled.
495 */
496 static inline struct rq *__task_rq_lock(struct task_struct *p)
497 __acquires(rq->lock)
498 {
499 struct rq *rq;
500
501 repeat_lock_task:
502 rq = task_rq(p);
503 spin_lock(&rq->lock);
504 if (unlikely(rq != task_rq(p))) {
505 spin_unlock(&rq->lock);
506 goto repeat_lock_task;
507 }
508 return rq;
509 }
510
511 /*
512 * task_rq_lock - lock the runqueue a given task resides on and disable
513 * interrupts. Note the ordering: we can safely lookup the task_rq without
514 * explicitly disabling preemption.
515 */
516 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
517 __acquires(rq->lock)
518 {
519 struct rq *rq;
520
521 repeat_lock_task:
522 local_irq_save(*flags);
523 rq = task_rq(p);
524 spin_lock(&rq->lock);
525 if (unlikely(rq != task_rq(p))) {
526 spin_unlock_irqrestore(&rq->lock, *flags);
527 goto repeat_lock_task;
528 }
529 return rq;
530 }
531
532 static inline void __task_rq_unlock(struct rq *rq)
533 __releases(rq->lock)
534 {
535 spin_unlock(&rq->lock);
536 }
537
538 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
539 __releases(rq->lock)
540 {
541 spin_unlock_irqrestore(&rq->lock, *flags);
542 }
543
544 /*
545 * this_rq_lock - lock this runqueue and disable interrupts.
546 */
547 static inline struct rq *this_rq_lock(void)
548 __acquires(rq->lock)
549 {
550 struct rq *rq;
551
552 local_irq_disable();
553 rq = this_rq();
554 spin_lock(&rq->lock);
555
556 return rq;
557 }
558
559 /*
560 * We are going deep-idle (irqs are disabled):
561 */
562 void sched_clock_idle_sleep_event(void)
563 {
564 struct rq *rq = cpu_rq(smp_processor_id());
565
566 spin_lock(&rq->lock);
567 __update_rq_clock(rq);
568 spin_unlock(&rq->lock);
569 rq->clock_deep_idle_events++;
570 }
571 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
572
573 /*
574 * We just idled delta nanoseconds (called with irqs disabled):
575 */
576 void sched_clock_idle_wakeup_event(u64 delta_ns)
577 {
578 struct rq *rq = cpu_rq(smp_processor_id());
579 u64 now = sched_clock();
580
581 rq->idle_clock += delta_ns;
582 /*
583 * Override the previous timestamp and ignore all
584 * sched_clock() deltas that occured while we idled,
585 * and use the PM-provided delta_ns to advance the
586 * rq clock:
587 */
588 spin_lock(&rq->lock);
589 rq->prev_clock_raw = now;
590 rq->clock += delta_ns;
591 spin_unlock(&rq->lock);
592 }
593 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
594
595 /*
596 * resched_task - mark a task 'to be rescheduled now'.
597 *
598 * On UP this means the setting of the need_resched flag, on SMP it
599 * might also involve a cross-CPU call to trigger the scheduler on
600 * the target CPU.
601 */
602 #ifdef CONFIG_SMP
603
604 #ifndef tsk_is_polling
605 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
606 #endif
607
608 static void resched_task(struct task_struct *p)
609 {
610 int cpu;
611
612 assert_spin_locked(&task_rq(p)->lock);
613
614 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
615 return;
616
617 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
618
619 cpu = task_cpu(p);
620 if (cpu == smp_processor_id())
621 return;
622
623 /* NEED_RESCHED must be visible before we test polling */
624 smp_mb();
625 if (!tsk_is_polling(p))
626 smp_send_reschedule(cpu);
627 }
628
629 static void resched_cpu(int cpu)
630 {
631 struct rq *rq = cpu_rq(cpu);
632 unsigned long flags;
633
634 if (!spin_trylock_irqsave(&rq->lock, flags))
635 return;
636 resched_task(cpu_curr(cpu));
637 spin_unlock_irqrestore(&rq->lock, flags);
638 }
639 #else
640 static inline void resched_task(struct task_struct *p)
641 {
642 assert_spin_locked(&task_rq(p)->lock);
643 set_tsk_need_resched(p);
644 }
645 #endif
646
647 static u64 div64_likely32(u64 divident, unsigned long divisor)
648 {
649 #if BITS_PER_LONG == 32
650 if (likely(divident <= 0xffffffffULL))
651 return (u32)divident / divisor;
652 do_div(divident, divisor);
653
654 return divident;
655 #else
656 return divident / divisor;
657 #endif
658 }
659
660 #if BITS_PER_LONG == 32
661 # define WMULT_CONST (~0UL)
662 #else
663 # define WMULT_CONST (1UL << 32)
664 #endif
665
666 #define WMULT_SHIFT 32
667
668 /*
669 * Shift right and round:
670 */
671 #define RSR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
672
673 static unsigned long
674 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
675 struct load_weight *lw)
676 {
677 u64 tmp;
678
679 if (unlikely(!lw->inv_weight))
680 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
681
682 tmp = (u64)delta_exec * weight;
683 /*
684 * Check whether we'd overflow the 64-bit multiplication:
685 */
686 if (unlikely(tmp > WMULT_CONST))
687 tmp = RSR(RSR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
688 WMULT_SHIFT/2);
689 else
690 tmp = RSR(tmp * lw->inv_weight, WMULT_SHIFT);
691
692 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
693 }
694
695 static inline unsigned long
696 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
697 {
698 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
699 }
700
701 static void update_load_add(struct load_weight *lw, unsigned long inc)
702 {
703 lw->weight += inc;
704 lw->inv_weight = 0;
705 }
706
707 static void update_load_sub(struct load_weight *lw, unsigned long dec)
708 {
709 lw->weight -= dec;
710 lw->inv_weight = 0;
711 }
712
713 /*
714 * To aid in avoiding the subversion of "niceness" due to uneven distribution
715 * of tasks with abnormal "nice" values across CPUs the contribution that
716 * each task makes to its run queue's load is weighted according to its
717 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
718 * scaled version of the new time slice allocation that they receive on time
719 * slice expiry etc.
720 */
721
722 #define WEIGHT_IDLEPRIO 2
723 #define WMULT_IDLEPRIO (1 << 31)
724
725 /*
726 * Nice levels are multiplicative, with a gentle 10% change for every
727 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
728 * nice 1, it will get ~10% less CPU time than another CPU-bound task
729 * that remained on nice 0.
730 *
731 * The "10% effect" is relative and cumulative: from _any_ nice level,
732 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
733 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
734 * If a task goes up by ~10% and another task goes down by ~10% then
735 * the relative distance between them is ~25%.)
736 */
737 static const int prio_to_weight[40] = {
738 /* -20 */ 88761, 71755, 56483, 46273, 36291,
739 /* -15 */ 29154, 23254, 18705, 14949, 11916,
740 /* -10 */ 9548, 7620, 6100, 4904, 3906,
741 /* -5 */ 3121, 2501, 1991, 1586, 1277,
742 /* 0 */ 1024, 820, 655, 526, 423,
743 /* 5 */ 335, 272, 215, 172, 137,
744 /* 10 */ 110, 87, 70, 56, 45,
745 /* 15 */ 36, 29, 23, 18, 15,
746 };
747
748 /*
749 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
750 *
751 * In cases where the weight does not change often, we can use the
752 * precalculated inverse to speed up arithmetics by turning divisions
753 * into multiplications:
754 */
755 static const u32 prio_to_wmult[40] = {
756 /* -20 */ 48388, 59856, 76040, 92818, 118348,
757 /* -15 */ 147320, 184698, 229616, 287308, 360437,
758 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
759 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
760 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
761 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
762 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
763 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
764 };
765
766 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
767
768 /*
769 * runqueue iterator, to support SMP load-balancing between different
770 * scheduling classes, without having to expose their internal data
771 * structures to the load-balancing proper:
772 */
773 struct rq_iterator {
774 void *arg;
775 struct task_struct *(*start)(void *);
776 struct task_struct *(*next)(void *);
777 };
778
779 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
780 unsigned long max_nr_move, unsigned long max_load_move,
781 struct sched_domain *sd, enum cpu_idle_type idle,
782 int *all_pinned, unsigned long *load_moved,
783 int *this_best_prio, struct rq_iterator *iterator);
784
785 #include "sched_stats.h"
786 #include "sched_rt.c"
787 #include "sched_fair.c"
788 #include "sched_idletask.c"
789 #ifdef CONFIG_SCHED_DEBUG
790 # include "sched_debug.c"
791 #endif
792
793 #define sched_class_highest (&rt_sched_class)
794
795 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
796 {
797 if (rq->curr != rq->idle && ls->load.weight) {
798 ls->delta_exec += ls->delta_stat;
799 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
800 ls->delta_stat = 0;
801 }
802 }
803
804 /*
805 * Update delta_exec, delta_fair fields for rq.
806 *
807 * delta_fair clock advances at a rate inversely proportional to
808 * total load (rq->ls.load.weight) on the runqueue, while
809 * delta_exec advances at the same rate as wall-clock (provided
810 * cpu is not idle).
811 *
812 * delta_exec / delta_fair is a measure of the (smoothened) load on this
813 * runqueue over any given interval. This (smoothened) load is used
814 * during load balance.
815 *
816 * This function is called /before/ updating rq->ls.load
817 * and when switching tasks.
818 */
819 static void update_curr_load(struct rq *rq)
820 {
821 struct load_stat *ls = &rq->ls;
822 u64 start;
823
824 start = ls->load_update_start;
825 ls->load_update_start = rq->clock;
826 ls->delta_stat += rq->clock - start;
827 /*
828 * Stagger updates to ls->delta_fair. Very frequent updates
829 * can be expensive.
830 */
831 if (ls->delta_stat >= sysctl_sched_stat_granularity)
832 __update_curr_load(rq, ls);
833 }
834
835 static inline void inc_load(struct rq *rq, const struct task_struct *p)
836 {
837 update_curr_load(rq);
838 update_load_add(&rq->ls.load, p->se.load.weight);
839 }
840
841 static inline void dec_load(struct rq *rq, const struct task_struct *p)
842 {
843 update_curr_load(rq);
844 update_load_sub(&rq->ls.load, p->se.load.weight);
845 }
846
847 static void inc_nr_running(struct task_struct *p, struct rq *rq)
848 {
849 rq->nr_running++;
850 inc_load(rq, p);
851 }
852
853 static void dec_nr_running(struct task_struct *p, struct rq *rq)
854 {
855 rq->nr_running--;
856 dec_load(rq, p);
857 }
858
859 static void set_load_weight(struct task_struct *p)
860 {
861 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
862 p->se.wait_runtime = 0;
863
864 if (task_has_rt_policy(p)) {
865 p->se.load.weight = prio_to_weight[0] * 2;
866 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
867 return;
868 }
869
870 /*
871 * SCHED_IDLE tasks get minimal weight:
872 */
873 if (p->policy == SCHED_IDLE) {
874 p->se.load.weight = WEIGHT_IDLEPRIO;
875 p->se.load.inv_weight = WMULT_IDLEPRIO;
876 return;
877 }
878
879 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
880 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
881 }
882
883 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
884 {
885 sched_info_queued(p);
886 p->sched_class->enqueue_task(rq, p, wakeup);
887 p->se.on_rq = 1;
888 }
889
890 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
891 {
892 p->sched_class->dequeue_task(rq, p, sleep);
893 p->se.on_rq = 0;
894 }
895
896 /*
897 * __normal_prio - return the priority that is based on the static prio
898 */
899 static inline int __normal_prio(struct task_struct *p)
900 {
901 return p->static_prio;
902 }
903
904 /*
905 * Calculate the expected normal priority: i.e. priority
906 * without taking RT-inheritance into account. Might be
907 * boosted by interactivity modifiers. Changes upon fork,
908 * setprio syscalls, and whenever the interactivity
909 * estimator recalculates.
910 */
911 static inline int normal_prio(struct task_struct *p)
912 {
913 int prio;
914
915 if (task_has_rt_policy(p))
916 prio = MAX_RT_PRIO-1 - p->rt_priority;
917 else
918 prio = __normal_prio(p);
919 return prio;
920 }
921
922 /*
923 * Calculate the current priority, i.e. the priority
924 * taken into account by the scheduler. This value might
925 * be boosted by RT tasks, or might be boosted by
926 * interactivity modifiers. Will be RT if the task got
927 * RT-boosted. If not then it returns p->normal_prio.
928 */
929 static int effective_prio(struct task_struct *p)
930 {
931 p->normal_prio = normal_prio(p);
932 /*
933 * If we are RT tasks or we were boosted to RT priority,
934 * keep the priority unchanged. Otherwise, update priority
935 * to the normal priority:
936 */
937 if (!rt_prio(p->prio))
938 return p->normal_prio;
939 return p->prio;
940 }
941
942 /*
943 * activate_task - move a task to the runqueue.
944 */
945 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
946 {
947 if (p->state == TASK_UNINTERRUPTIBLE)
948 rq->nr_uninterruptible--;
949
950 enqueue_task(rq, p, wakeup);
951 inc_nr_running(p, rq);
952 }
953
954 /*
955 * activate_idle_task - move idle task to the _front_ of runqueue.
956 */
957 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
958 {
959 update_rq_clock(rq);
960
961 if (p->state == TASK_UNINTERRUPTIBLE)
962 rq->nr_uninterruptible--;
963
964 enqueue_task(rq, p, 0);
965 inc_nr_running(p, rq);
966 }
967
968 /*
969 * deactivate_task - remove a task from the runqueue.
970 */
971 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
972 {
973 if (p->state == TASK_UNINTERRUPTIBLE)
974 rq->nr_uninterruptible++;
975
976 dequeue_task(rq, p, sleep);
977 dec_nr_running(p, rq);
978 }
979
980 /**
981 * task_curr - is this task currently executing on a CPU?
982 * @p: the task in question.
983 */
984 inline int task_curr(const struct task_struct *p)
985 {
986 return cpu_curr(task_cpu(p)) == p;
987 }
988
989 /* Used instead of source_load when we know the type == 0 */
990 unsigned long weighted_cpuload(const int cpu)
991 {
992 return cpu_rq(cpu)->ls.load.weight;
993 }
994
995 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
996 {
997 #ifdef CONFIG_SMP
998 task_thread_info(p)->cpu = cpu;
999 set_task_cfs_rq(p);
1000 #endif
1001 }
1002
1003 #ifdef CONFIG_SMP
1004
1005 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1006 {
1007 int old_cpu = task_cpu(p);
1008 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1009 u64 clock_offset, fair_clock_offset;
1010
1011 clock_offset = old_rq->clock - new_rq->clock;
1012 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
1013
1014 if (p->se.wait_start_fair)
1015 p->se.wait_start_fair -= fair_clock_offset;
1016 if (p->se.sleep_start_fair)
1017 p->se.sleep_start_fair -= fair_clock_offset;
1018
1019 #ifdef CONFIG_SCHEDSTATS
1020 if (p->se.wait_start)
1021 p->se.wait_start -= clock_offset;
1022 if (p->se.sleep_start)
1023 p->se.sleep_start -= clock_offset;
1024 if (p->se.block_start)
1025 p->se.block_start -= clock_offset;
1026 #endif
1027
1028 __set_task_cpu(p, new_cpu);
1029 }
1030
1031 struct migration_req {
1032 struct list_head list;
1033
1034 struct task_struct *task;
1035 int dest_cpu;
1036
1037 struct completion done;
1038 };
1039
1040 /*
1041 * The task's runqueue lock must be held.
1042 * Returns true if you have to wait for migration thread.
1043 */
1044 static int
1045 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1046 {
1047 struct rq *rq = task_rq(p);
1048
1049 /*
1050 * If the task is not on a runqueue (and not running), then
1051 * it is sufficient to simply update the task's cpu field.
1052 */
1053 if (!p->se.on_rq && !task_running(rq, p)) {
1054 set_task_cpu(p, dest_cpu);
1055 return 0;
1056 }
1057
1058 init_completion(&req->done);
1059 req->task = p;
1060 req->dest_cpu = dest_cpu;
1061 list_add(&req->list, &rq->migration_queue);
1062
1063 return 1;
1064 }
1065
1066 /*
1067 * wait_task_inactive - wait for a thread to unschedule.
1068 *
1069 * The caller must ensure that the task *will* unschedule sometime soon,
1070 * else this function might spin for a *long* time. This function can't
1071 * be called with interrupts off, or it may introduce deadlock with
1072 * smp_call_function() if an IPI is sent by the same process we are
1073 * waiting to become inactive.
1074 */
1075 void wait_task_inactive(struct task_struct *p)
1076 {
1077 unsigned long flags;
1078 int running, on_rq;
1079 struct rq *rq;
1080
1081 repeat:
1082 /*
1083 * We do the initial early heuristics without holding
1084 * any task-queue locks at all. We'll only try to get
1085 * the runqueue lock when things look like they will
1086 * work out!
1087 */
1088 rq = task_rq(p);
1089
1090 /*
1091 * If the task is actively running on another CPU
1092 * still, just relax and busy-wait without holding
1093 * any locks.
1094 *
1095 * NOTE! Since we don't hold any locks, it's not
1096 * even sure that "rq" stays as the right runqueue!
1097 * But we don't care, since "task_running()" will
1098 * return false if the runqueue has changed and p
1099 * is actually now running somewhere else!
1100 */
1101 while (task_running(rq, p))
1102 cpu_relax();
1103
1104 /*
1105 * Ok, time to look more closely! We need the rq
1106 * lock now, to be *sure*. If we're wrong, we'll
1107 * just go back and repeat.
1108 */
1109 rq = task_rq_lock(p, &flags);
1110 running = task_running(rq, p);
1111 on_rq = p->se.on_rq;
1112 task_rq_unlock(rq, &flags);
1113
1114 /*
1115 * Was it really running after all now that we
1116 * checked with the proper locks actually held?
1117 *
1118 * Oops. Go back and try again..
1119 */
1120 if (unlikely(running)) {
1121 cpu_relax();
1122 goto repeat;
1123 }
1124
1125 /*
1126 * It's not enough that it's not actively running,
1127 * it must be off the runqueue _entirely_, and not
1128 * preempted!
1129 *
1130 * So if it wa still runnable (but just not actively
1131 * running right now), it's preempted, and we should
1132 * yield - it could be a while.
1133 */
1134 if (unlikely(on_rq)) {
1135 yield();
1136 goto repeat;
1137 }
1138
1139 /*
1140 * Ahh, all good. It wasn't running, and it wasn't
1141 * runnable, which means that it will never become
1142 * running in the future either. We're all done!
1143 */
1144 }
1145
1146 /***
1147 * kick_process - kick a running thread to enter/exit the kernel
1148 * @p: the to-be-kicked thread
1149 *
1150 * Cause a process which is running on another CPU to enter
1151 * kernel-mode, without any delay. (to get signals handled.)
1152 *
1153 * NOTE: this function doesnt have to take the runqueue lock,
1154 * because all it wants to ensure is that the remote task enters
1155 * the kernel. If the IPI races and the task has been migrated
1156 * to another CPU then no harm is done and the purpose has been
1157 * achieved as well.
1158 */
1159 void kick_process(struct task_struct *p)
1160 {
1161 int cpu;
1162
1163 preempt_disable();
1164 cpu = task_cpu(p);
1165 if ((cpu != smp_processor_id()) && task_curr(p))
1166 smp_send_reschedule(cpu);
1167 preempt_enable();
1168 }
1169
1170 /*
1171 * Return a low guess at the load of a migration-source cpu weighted
1172 * according to the scheduling class and "nice" value.
1173 *
1174 * We want to under-estimate the load of migration sources, to
1175 * balance conservatively.
1176 */
1177 static inline unsigned long source_load(int cpu, int type)
1178 {
1179 struct rq *rq = cpu_rq(cpu);
1180 unsigned long total = weighted_cpuload(cpu);
1181
1182 if (type == 0)
1183 return total;
1184
1185 return min(rq->cpu_load[type-1], total);
1186 }
1187
1188 /*
1189 * Return a high guess at the load of a migration-target cpu weighted
1190 * according to the scheduling class and "nice" value.
1191 */
1192 static inline unsigned long target_load(int cpu, int type)
1193 {
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long total = weighted_cpuload(cpu);
1196
1197 if (type == 0)
1198 return total;
1199
1200 return max(rq->cpu_load[type-1], total);
1201 }
1202
1203 /*
1204 * Return the average load per task on the cpu's run queue
1205 */
1206 static inline unsigned long cpu_avg_load_per_task(int cpu)
1207 {
1208 struct rq *rq = cpu_rq(cpu);
1209 unsigned long total = weighted_cpuload(cpu);
1210 unsigned long n = rq->nr_running;
1211
1212 return n ? total / n : SCHED_LOAD_SCALE;
1213 }
1214
1215 /*
1216 * find_idlest_group finds and returns the least busy CPU group within the
1217 * domain.
1218 */
1219 static struct sched_group *
1220 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1221 {
1222 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1223 unsigned long min_load = ULONG_MAX, this_load = 0;
1224 int load_idx = sd->forkexec_idx;
1225 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1226
1227 do {
1228 unsigned long load, avg_load;
1229 int local_group;
1230 int i;
1231
1232 /* Skip over this group if it has no CPUs allowed */
1233 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1234 goto nextgroup;
1235
1236 local_group = cpu_isset(this_cpu, group->cpumask);
1237
1238 /* Tally up the load of all CPUs in the group */
1239 avg_load = 0;
1240
1241 for_each_cpu_mask(i, group->cpumask) {
1242 /* Bias balancing toward cpus of our domain */
1243 if (local_group)
1244 load = source_load(i, load_idx);
1245 else
1246 load = target_load(i, load_idx);
1247
1248 avg_load += load;
1249 }
1250
1251 /* Adjust by relative CPU power of the group */
1252 avg_load = sg_div_cpu_power(group,
1253 avg_load * SCHED_LOAD_SCALE);
1254
1255 if (local_group) {
1256 this_load = avg_load;
1257 this = group;
1258 } else if (avg_load < min_load) {
1259 min_load = avg_load;
1260 idlest = group;
1261 }
1262 nextgroup:
1263 group = group->next;
1264 } while (group != sd->groups);
1265
1266 if (!idlest || 100*this_load < imbalance*min_load)
1267 return NULL;
1268 return idlest;
1269 }
1270
1271 /*
1272 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1273 */
1274 static int
1275 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1276 {
1277 cpumask_t tmp;
1278 unsigned long load, min_load = ULONG_MAX;
1279 int idlest = -1;
1280 int i;
1281
1282 /* Traverse only the allowed CPUs */
1283 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1284
1285 for_each_cpu_mask(i, tmp) {
1286 load = weighted_cpuload(i);
1287
1288 if (load < min_load || (load == min_load && i == this_cpu)) {
1289 min_load = load;
1290 idlest = i;
1291 }
1292 }
1293
1294 return idlest;
1295 }
1296
1297 /*
1298 * sched_balance_self: balance the current task (running on cpu) in domains
1299 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1300 * SD_BALANCE_EXEC.
1301 *
1302 * Balance, ie. select the least loaded group.
1303 *
1304 * Returns the target CPU number, or the same CPU if no balancing is needed.
1305 *
1306 * preempt must be disabled.
1307 */
1308 static int sched_balance_self(int cpu, int flag)
1309 {
1310 struct task_struct *t = current;
1311 struct sched_domain *tmp, *sd = NULL;
1312
1313 for_each_domain(cpu, tmp) {
1314 /*
1315 * If power savings logic is enabled for a domain, stop there.
1316 */
1317 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1318 break;
1319 if (tmp->flags & flag)
1320 sd = tmp;
1321 }
1322
1323 while (sd) {
1324 cpumask_t span;
1325 struct sched_group *group;
1326 int new_cpu, weight;
1327
1328 if (!(sd->flags & flag)) {
1329 sd = sd->child;
1330 continue;
1331 }
1332
1333 span = sd->span;
1334 group = find_idlest_group(sd, t, cpu);
1335 if (!group) {
1336 sd = sd->child;
1337 continue;
1338 }
1339
1340 new_cpu = find_idlest_cpu(group, t, cpu);
1341 if (new_cpu == -1 || new_cpu == cpu) {
1342 /* Now try balancing at a lower domain level of cpu */
1343 sd = sd->child;
1344 continue;
1345 }
1346
1347 /* Now try balancing at a lower domain level of new_cpu */
1348 cpu = new_cpu;
1349 sd = NULL;
1350 weight = cpus_weight(span);
1351 for_each_domain(cpu, tmp) {
1352 if (weight <= cpus_weight(tmp->span))
1353 break;
1354 if (tmp->flags & flag)
1355 sd = tmp;
1356 }
1357 /* while loop will break here if sd == NULL */
1358 }
1359
1360 return cpu;
1361 }
1362
1363 #endif /* CONFIG_SMP */
1364
1365 /*
1366 * wake_idle() will wake a task on an idle cpu if task->cpu is
1367 * not idle and an idle cpu is available. The span of cpus to
1368 * search starts with cpus closest then further out as needed,
1369 * so we always favor a closer, idle cpu.
1370 *
1371 * Returns the CPU we should wake onto.
1372 */
1373 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1374 static int wake_idle(int cpu, struct task_struct *p)
1375 {
1376 cpumask_t tmp;
1377 struct sched_domain *sd;
1378 int i;
1379
1380 /*
1381 * If it is idle, then it is the best cpu to run this task.
1382 *
1383 * This cpu is also the best, if it has more than one task already.
1384 * Siblings must be also busy(in most cases) as they didn't already
1385 * pickup the extra load from this cpu and hence we need not check
1386 * sibling runqueue info. This will avoid the checks and cache miss
1387 * penalities associated with that.
1388 */
1389 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1390 return cpu;
1391
1392 for_each_domain(cpu, sd) {
1393 if (sd->flags & SD_WAKE_IDLE) {
1394 cpus_and(tmp, sd->span, p->cpus_allowed);
1395 for_each_cpu_mask(i, tmp) {
1396 if (idle_cpu(i))
1397 return i;
1398 }
1399 } else {
1400 break;
1401 }
1402 }
1403 return cpu;
1404 }
1405 #else
1406 static inline int wake_idle(int cpu, struct task_struct *p)
1407 {
1408 return cpu;
1409 }
1410 #endif
1411
1412 /***
1413 * try_to_wake_up - wake up a thread
1414 * @p: the to-be-woken-up thread
1415 * @state: the mask of task states that can be woken
1416 * @sync: do a synchronous wakeup?
1417 *
1418 * Put it on the run-queue if it's not already there. The "current"
1419 * thread is always on the run-queue (except when the actual
1420 * re-schedule is in progress), and as such you're allowed to do
1421 * the simpler "current->state = TASK_RUNNING" to mark yourself
1422 * runnable without the overhead of this.
1423 *
1424 * returns failure only if the task is already active.
1425 */
1426 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1427 {
1428 int cpu, this_cpu, success = 0;
1429 unsigned long flags;
1430 long old_state;
1431 struct rq *rq;
1432 #ifdef CONFIG_SMP
1433 struct sched_domain *sd, *this_sd = NULL;
1434 unsigned long load, this_load;
1435 int new_cpu;
1436 #endif
1437
1438 rq = task_rq_lock(p, &flags);
1439 old_state = p->state;
1440 if (!(old_state & state))
1441 goto out;
1442
1443 if (p->se.on_rq)
1444 goto out_running;
1445
1446 cpu = task_cpu(p);
1447 this_cpu = smp_processor_id();
1448
1449 #ifdef CONFIG_SMP
1450 if (unlikely(task_running(rq, p)))
1451 goto out_activate;
1452
1453 new_cpu = cpu;
1454
1455 schedstat_inc(rq, ttwu_cnt);
1456 if (cpu == this_cpu) {
1457 schedstat_inc(rq, ttwu_local);
1458 goto out_set_cpu;
1459 }
1460
1461 for_each_domain(this_cpu, sd) {
1462 if (cpu_isset(cpu, sd->span)) {
1463 schedstat_inc(sd, ttwu_wake_remote);
1464 this_sd = sd;
1465 break;
1466 }
1467 }
1468
1469 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1470 goto out_set_cpu;
1471
1472 /*
1473 * Check for affine wakeup and passive balancing possibilities.
1474 */
1475 if (this_sd) {
1476 int idx = this_sd->wake_idx;
1477 unsigned int imbalance;
1478
1479 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1480
1481 load = source_load(cpu, idx);
1482 this_load = target_load(this_cpu, idx);
1483
1484 new_cpu = this_cpu; /* Wake to this CPU if we can */
1485
1486 if (this_sd->flags & SD_WAKE_AFFINE) {
1487 unsigned long tl = this_load;
1488 unsigned long tl_per_task;
1489
1490 tl_per_task = cpu_avg_load_per_task(this_cpu);
1491
1492 /*
1493 * If sync wakeup then subtract the (maximum possible)
1494 * effect of the currently running task from the load
1495 * of the current CPU:
1496 */
1497 if (sync)
1498 tl -= current->se.load.weight;
1499
1500 if ((tl <= load &&
1501 tl + target_load(cpu, idx) <= tl_per_task) ||
1502 100*(tl + p->se.load.weight) <= imbalance*load) {
1503 /*
1504 * This domain has SD_WAKE_AFFINE and
1505 * p is cache cold in this domain, and
1506 * there is no bad imbalance.
1507 */
1508 schedstat_inc(this_sd, ttwu_move_affine);
1509 goto out_set_cpu;
1510 }
1511 }
1512
1513 /*
1514 * Start passive balancing when half the imbalance_pct
1515 * limit is reached.
1516 */
1517 if (this_sd->flags & SD_WAKE_BALANCE) {
1518 if (imbalance*this_load <= 100*load) {
1519 schedstat_inc(this_sd, ttwu_move_balance);
1520 goto out_set_cpu;
1521 }
1522 }
1523 }
1524
1525 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1526 out_set_cpu:
1527 new_cpu = wake_idle(new_cpu, p);
1528 if (new_cpu != cpu) {
1529 set_task_cpu(p, new_cpu);
1530 task_rq_unlock(rq, &flags);
1531 /* might preempt at this point */
1532 rq = task_rq_lock(p, &flags);
1533 old_state = p->state;
1534 if (!(old_state & state))
1535 goto out;
1536 if (p->se.on_rq)
1537 goto out_running;
1538
1539 this_cpu = smp_processor_id();
1540 cpu = task_cpu(p);
1541 }
1542
1543 out_activate:
1544 #endif /* CONFIG_SMP */
1545 update_rq_clock(rq);
1546 activate_task(rq, p, 1);
1547 /*
1548 * Sync wakeups (i.e. those types of wakeups where the waker
1549 * has indicated that it will leave the CPU in short order)
1550 * don't trigger a preemption, if the woken up task will run on
1551 * this cpu. (in this case the 'I will reschedule' promise of
1552 * the waker guarantees that the freshly woken up task is going
1553 * to be considered on this CPU.)
1554 */
1555 if (!sync || cpu != this_cpu)
1556 check_preempt_curr(rq, p);
1557 success = 1;
1558
1559 out_running:
1560 p->state = TASK_RUNNING;
1561 out:
1562 task_rq_unlock(rq, &flags);
1563
1564 return success;
1565 }
1566
1567 int fastcall wake_up_process(struct task_struct *p)
1568 {
1569 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1570 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1571 }
1572 EXPORT_SYMBOL(wake_up_process);
1573
1574 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1575 {
1576 return try_to_wake_up(p, state, 0);
1577 }
1578
1579 /*
1580 * Perform scheduler related setup for a newly forked process p.
1581 * p is forked by current.
1582 *
1583 * __sched_fork() is basic setup used by init_idle() too:
1584 */
1585 static void __sched_fork(struct task_struct *p)
1586 {
1587 p->se.wait_start_fair = 0;
1588 p->se.exec_start = 0;
1589 p->se.sum_exec_runtime = 0;
1590 p->se.delta_exec = 0;
1591 p->se.delta_fair_run = 0;
1592 p->se.delta_fair_sleep = 0;
1593 p->se.wait_runtime = 0;
1594 p->se.sleep_start_fair = 0;
1595
1596 #ifdef CONFIG_SCHEDSTATS
1597 p->se.wait_start = 0;
1598 p->se.sum_wait_runtime = 0;
1599 p->se.sum_sleep_runtime = 0;
1600 p->se.sleep_start = 0;
1601 p->se.block_start = 0;
1602 p->se.sleep_max = 0;
1603 p->se.block_max = 0;
1604 p->se.exec_max = 0;
1605 p->se.wait_max = 0;
1606 p->se.wait_runtime_overruns = 0;
1607 p->se.wait_runtime_underruns = 0;
1608 #endif
1609
1610 INIT_LIST_HEAD(&p->run_list);
1611 p->se.on_rq = 0;
1612
1613 #ifdef CONFIG_PREEMPT_NOTIFIERS
1614 INIT_HLIST_HEAD(&p->preempt_notifiers);
1615 #endif
1616
1617 /*
1618 * We mark the process as running here, but have not actually
1619 * inserted it onto the runqueue yet. This guarantees that
1620 * nobody will actually run it, and a signal or other external
1621 * event cannot wake it up and insert it on the runqueue either.
1622 */
1623 p->state = TASK_RUNNING;
1624 }
1625
1626 /*
1627 * fork()/clone()-time setup:
1628 */
1629 void sched_fork(struct task_struct *p, int clone_flags)
1630 {
1631 int cpu = get_cpu();
1632
1633 __sched_fork(p);
1634
1635 #ifdef CONFIG_SMP
1636 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1637 #endif
1638 __set_task_cpu(p, cpu);
1639
1640 /*
1641 * Make sure we do not leak PI boosting priority to the child:
1642 */
1643 p->prio = current->normal_prio;
1644
1645 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1646 if (likely(sched_info_on()))
1647 memset(&p->sched_info, 0, sizeof(p->sched_info));
1648 #endif
1649 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1650 p->oncpu = 0;
1651 #endif
1652 #ifdef CONFIG_PREEMPT
1653 /* Want to start with kernel preemption disabled. */
1654 task_thread_info(p)->preempt_count = 1;
1655 #endif
1656 put_cpu();
1657 }
1658
1659 /*
1660 * After fork, child runs first. (default) If set to 0 then
1661 * parent will (try to) run first.
1662 */
1663 unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1664
1665 /*
1666 * wake_up_new_task - wake up a newly created task for the first time.
1667 *
1668 * This function will do some initial scheduler statistics housekeeping
1669 * that must be done for every newly created context, then puts the task
1670 * on the runqueue and wakes it.
1671 */
1672 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1673 {
1674 unsigned long flags;
1675 struct rq *rq;
1676 int this_cpu;
1677
1678 rq = task_rq_lock(p, &flags);
1679 BUG_ON(p->state != TASK_RUNNING);
1680 this_cpu = smp_processor_id(); /* parent's CPU */
1681 update_rq_clock(rq);
1682
1683 p->prio = effective_prio(p);
1684
1685 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1686 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1687 !current->se.on_rq) {
1688
1689 activate_task(rq, p, 0);
1690 } else {
1691 /*
1692 * Let the scheduling class do new task startup
1693 * management (if any):
1694 */
1695 p->sched_class->task_new(rq, p);
1696 inc_nr_running(p, rq);
1697 }
1698 check_preempt_curr(rq, p);
1699 task_rq_unlock(rq, &flags);
1700 }
1701
1702 #ifdef CONFIG_PREEMPT_NOTIFIERS
1703
1704 /**
1705 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1706 * @notifier: notifier struct to register
1707 */
1708 void preempt_notifier_register(struct preempt_notifier *notifier)
1709 {
1710 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1711 }
1712 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1713
1714 /**
1715 * preempt_notifier_unregister - no longer interested in preemption notifications
1716 * @notifier: notifier struct to unregister
1717 *
1718 * This is safe to call from within a preemption notifier.
1719 */
1720 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1721 {
1722 hlist_del(&notifier->link);
1723 }
1724 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1725
1726 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1727 {
1728 struct preempt_notifier *notifier;
1729 struct hlist_node *node;
1730
1731 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1732 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1733 }
1734
1735 static void
1736 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1737 struct task_struct *next)
1738 {
1739 struct preempt_notifier *notifier;
1740 struct hlist_node *node;
1741
1742 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1743 notifier->ops->sched_out(notifier, next);
1744 }
1745
1746 #else
1747
1748 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1749 {
1750 }
1751
1752 static void
1753 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1754 struct task_struct *next)
1755 {
1756 }
1757
1758 #endif
1759
1760 /**
1761 * prepare_task_switch - prepare to switch tasks
1762 * @rq: the runqueue preparing to switch
1763 * @prev: the current task that is being switched out
1764 * @next: the task we are going to switch to.
1765 *
1766 * This is called with the rq lock held and interrupts off. It must
1767 * be paired with a subsequent finish_task_switch after the context
1768 * switch.
1769 *
1770 * prepare_task_switch sets up locking and calls architecture specific
1771 * hooks.
1772 */
1773 static inline void
1774 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1775 struct task_struct *next)
1776 {
1777 fire_sched_out_preempt_notifiers(prev, next);
1778 prepare_lock_switch(rq, next);
1779 prepare_arch_switch(next);
1780 }
1781
1782 /**
1783 * finish_task_switch - clean up after a task-switch
1784 * @rq: runqueue associated with task-switch
1785 * @prev: the thread we just switched away from.
1786 *
1787 * finish_task_switch must be called after the context switch, paired
1788 * with a prepare_task_switch call before the context switch.
1789 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1790 * and do any other architecture-specific cleanup actions.
1791 *
1792 * Note that we may have delayed dropping an mm in context_switch(). If
1793 * so, we finish that here outside of the runqueue lock. (Doing it
1794 * with the lock held can cause deadlocks; see schedule() for
1795 * details.)
1796 */
1797 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1798 __releases(rq->lock)
1799 {
1800 struct mm_struct *mm = rq->prev_mm;
1801 long prev_state;
1802
1803 rq->prev_mm = NULL;
1804
1805 /*
1806 * A task struct has one reference for the use as "current".
1807 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1808 * schedule one last time. The schedule call will never return, and
1809 * the scheduled task must drop that reference.
1810 * The test for TASK_DEAD must occur while the runqueue locks are
1811 * still held, otherwise prev could be scheduled on another cpu, die
1812 * there before we look at prev->state, and then the reference would
1813 * be dropped twice.
1814 * Manfred Spraul <manfred@colorfullife.com>
1815 */
1816 prev_state = prev->state;
1817 finish_arch_switch(prev);
1818 finish_lock_switch(rq, prev);
1819 fire_sched_in_preempt_notifiers(current);
1820 if (mm)
1821 mmdrop(mm);
1822 if (unlikely(prev_state == TASK_DEAD)) {
1823 /*
1824 * Remove function-return probe instances associated with this
1825 * task and put them back on the free list.
1826 */
1827 kprobe_flush_task(prev);
1828 put_task_struct(prev);
1829 }
1830 }
1831
1832 /**
1833 * schedule_tail - first thing a freshly forked thread must call.
1834 * @prev: the thread we just switched away from.
1835 */
1836 asmlinkage void schedule_tail(struct task_struct *prev)
1837 __releases(rq->lock)
1838 {
1839 struct rq *rq = this_rq();
1840
1841 finish_task_switch(rq, prev);
1842 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1843 /* In this case, finish_task_switch does not reenable preemption */
1844 preempt_enable();
1845 #endif
1846 if (current->set_child_tid)
1847 put_user(current->pid, current->set_child_tid);
1848 }
1849
1850 /*
1851 * context_switch - switch to the new MM and the new
1852 * thread's register state.
1853 */
1854 static inline void
1855 context_switch(struct rq *rq, struct task_struct *prev,
1856 struct task_struct *next)
1857 {
1858 struct mm_struct *mm, *oldmm;
1859
1860 prepare_task_switch(rq, prev, next);
1861 mm = next->mm;
1862 oldmm = prev->active_mm;
1863 /*
1864 * For paravirt, this is coupled with an exit in switch_to to
1865 * combine the page table reload and the switch backend into
1866 * one hypercall.
1867 */
1868 arch_enter_lazy_cpu_mode();
1869
1870 if (unlikely(!mm)) {
1871 next->active_mm = oldmm;
1872 atomic_inc(&oldmm->mm_count);
1873 enter_lazy_tlb(oldmm, next);
1874 } else
1875 switch_mm(oldmm, mm, next);
1876
1877 if (unlikely(!prev->mm)) {
1878 prev->active_mm = NULL;
1879 rq->prev_mm = oldmm;
1880 }
1881 /*
1882 * Since the runqueue lock will be released by the next
1883 * task (which is an invalid locking op but in the case
1884 * of the scheduler it's an obvious special-case), so we
1885 * do an early lockdep release here:
1886 */
1887 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1888 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1889 #endif
1890
1891 /* Here we just switch the register state and the stack. */
1892 switch_to(prev, next, prev);
1893
1894 barrier();
1895 /*
1896 * this_rq must be evaluated again because prev may have moved
1897 * CPUs since it called schedule(), thus the 'rq' on its stack
1898 * frame will be invalid.
1899 */
1900 finish_task_switch(this_rq(), prev);
1901 }
1902
1903 /*
1904 * nr_running, nr_uninterruptible and nr_context_switches:
1905 *
1906 * externally visible scheduler statistics: current number of runnable
1907 * threads, current number of uninterruptible-sleeping threads, total
1908 * number of context switches performed since bootup.
1909 */
1910 unsigned long nr_running(void)
1911 {
1912 unsigned long i, sum = 0;
1913
1914 for_each_online_cpu(i)
1915 sum += cpu_rq(i)->nr_running;
1916
1917 return sum;
1918 }
1919
1920 unsigned long nr_uninterruptible(void)
1921 {
1922 unsigned long i, sum = 0;
1923
1924 for_each_possible_cpu(i)
1925 sum += cpu_rq(i)->nr_uninterruptible;
1926
1927 /*
1928 * Since we read the counters lockless, it might be slightly
1929 * inaccurate. Do not allow it to go below zero though:
1930 */
1931 if (unlikely((long)sum < 0))
1932 sum = 0;
1933
1934 return sum;
1935 }
1936
1937 unsigned long long nr_context_switches(void)
1938 {
1939 int i;
1940 unsigned long long sum = 0;
1941
1942 for_each_possible_cpu(i)
1943 sum += cpu_rq(i)->nr_switches;
1944
1945 return sum;
1946 }
1947
1948 unsigned long nr_iowait(void)
1949 {
1950 unsigned long i, sum = 0;
1951
1952 for_each_possible_cpu(i)
1953 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1954
1955 return sum;
1956 }
1957
1958 unsigned long nr_active(void)
1959 {
1960 unsigned long i, running = 0, uninterruptible = 0;
1961
1962 for_each_online_cpu(i) {
1963 running += cpu_rq(i)->nr_running;
1964 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1965 }
1966
1967 if (unlikely((long)uninterruptible < 0))
1968 uninterruptible = 0;
1969
1970 return running + uninterruptible;
1971 }
1972
1973 /*
1974 * Update rq->cpu_load[] statistics. This function is usually called every
1975 * scheduler tick (TICK_NSEC).
1976 */
1977 static void update_cpu_load(struct rq *this_rq)
1978 {
1979 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1980 unsigned long total_load = this_rq->ls.load.weight;
1981 unsigned long this_load = total_load;
1982 struct load_stat *ls = &this_rq->ls;
1983 int i, scale;
1984
1985 this_rq->nr_load_updates++;
1986 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1987 goto do_avg;
1988
1989 /* Update delta_fair/delta_exec fields first */
1990 update_curr_load(this_rq);
1991
1992 fair_delta64 = ls->delta_fair + 1;
1993 ls->delta_fair = 0;
1994
1995 exec_delta64 = ls->delta_exec + 1;
1996 ls->delta_exec = 0;
1997
1998 sample_interval64 = this_rq->clock - ls->load_update_last;
1999 ls->load_update_last = this_rq->clock;
2000
2001 if ((s64)sample_interval64 < (s64)TICK_NSEC)
2002 sample_interval64 = TICK_NSEC;
2003
2004 if (exec_delta64 > sample_interval64)
2005 exec_delta64 = sample_interval64;
2006
2007 idle_delta64 = sample_interval64 - exec_delta64;
2008
2009 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
2010 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
2011
2012 this_load = (unsigned long)tmp64;
2013
2014 do_avg:
2015
2016 /* Update our load: */
2017 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2018 unsigned long old_load, new_load;
2019
2020 /* scale is effectively 1 << i now, and >> i divides by scale */
2021
2022 old_load = this_rq->cpu_load[i];
2023 new_load = this_load;
2024
2025 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2026 }
2027 }
2028
2029 #ifdef CONFIG_SMP
2030
2031 /*
2032 * double_rq_lock - safely lock two runqueues
2033 *
2034 * Note this does not disable interrupts like task_rq_lock,
2035 * you need to do so manually before calling.
2036 */
2037 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2038 __acquires(rq1->lock)
2039 __acquires(rq2->lock)
2040 {
2041 BUG_ON(!irqs_disabled());
2042 if (rq1 == rq2) {
2043 spin_lock(&rq1->lock);
2044 __acquire(rq2->lock); /* Fake it out ;) */
2045 } else {
2046 if (rq1 < rq2) {
2047 spin_lock(&rq1->lock);
2048 spin_lock(&rq2->lock);
2049 } else {
2050 spin_lock(&rq2->lock);
2051 spin_lock(&rq1->lock);
2052 }
2053 }
2054 update_rq_clock(rq1);
2055 update_rq_clock(rq2);
2056 }
2057
2058 /*
2059 * double_rq_unlock - safely unlock two runqueues
2060 *
2061 * Note this does not restore interrupts like task_rq_unlock,
2062 * you need to do so manually after calling.
2063 */
2064 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2065 __releases(rq1->lock)
2066 __releases(rq2->lock)
2067 {
2068 spin_unlock(&rq1->lock);
2069 if (rq1 != rq2)
2070 spin_unlock(&rq2->lock);
2071 else
2072 __release(rq2->lock);
2073 }
2074
2075 /*
2076 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2077 */
2078 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2079 __releases(this_rq->lock)
2080 __acquires(busiest->lock)
2081 __acquires(this_rq->lock)
2082 {
2083 if (unlikely(!irqs_disabled())) {
2084 /* printk() doesn't work good under rq->lock */
2085 spin_unlock(&this_rq->lock);
2086 BUG_ON(1);
2087 }
2088 if (unlikely(!spin_trylock(&busiest->lock))) {
2089 if (busiest < this_rq) {
2090 spin_unlock(&this_rq->lock);
2091 spin_lock(&busiest->lock);
2092 spin_lock(&this_rq->lock);
2093 } else
2094 spin_lock(&busiest->lock);
2095 }
2096 }
2097
2098 /*
2099 * If dest_cpu is allowed for this process, migrate the task to it.
2100 * This is accomplished by forcing the cpu_allowed mask to only
2101 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2102 * the cpu_allowed mask is restored.
2103 */
2104 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2105 {
2106 struct migration_req req;
2107 unsigned long flags;
2108 struct rq *rq;
2109
2110 rq = task_rq_lock(p, &flags);
2111 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2112 || unlikely(cpu_is_offline(dest_cpu)))
2113 goto out;
2114
2115 /* force the process onto the specified CPU */
2116 if (migrate_task(p, dest_cpu, &req)) {
2117 /* Need to wait for migration thread (might exit: take ref). */
2118 struct task_struct *mt = rq->migration_thread;
2119
2120 get_task_struct(mt);
2121 task_rq_unlock(rq, &flags);
2122 wake_up_process(mt);
2123 put_task_struct(mt);
2124 wait_for_completion(&req.done);
2125
2126 return;
2127 }
2128 out:
2129 task_rq_unlock(rq, &flags);
2130 }
2131
2132 /*
2133 * sched_exec - execve() is a valuable balancing opportunity, because at
2134 * this point the task has the smallest effective memory and cache footprint.
2135 */
2136 void sched_exec(void)
2137 {
2138 int new_cpu, this_cpu = get_cpu();
2139 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2140 put_cpu();
2141 if (new_cpu != this_cpu)
2142 sched_migrate_task(current, new_cpu);
2143 }
2144
2145 /*
2146 * pull_task - move a task from a remote runqueue to the local runqueue.
2147 * Both runqueues must be locked.
2148 */
2149 static void pull_task(struct rq *src_rq, struct task_struct *p,
2150 struct rq *this_rq, int this_cpu)
2151 {
2152 deactivate_task(src_rq, p, 0);
2153 set_task_cpu(p, this_cpu);
2154 activate_task(this_rq, p, 0);
2155 /*
2156 * Note that idle threads have a prio of MAX_PRIO, for this test
2157 * to be always true for them.
2158 */
2159 check_preempt_curr(this_rq, p);
2160 }
2161
2162 /*
2163 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2164 */
2165 static
2166 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2167 struct sched_domain *sd, enum cpu_idle_type idle,
2168 int *all_pinned)
2169 {
2170 /*
2171 * We do not migrate tasks that are:
2172 * 1) running (obviously), or
2173 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2174 * 3) are cache-hot on their current CPU.
2175 */
2176 if (!cpu_isset(this_cpu, p->cpus_allowed))
2177 return 0;
2178 *all_pinned = 0;
2179
2180 if (task_running(rq, p))
2181 return 0;
2182
2183 /*
2184 * Aggressive migration if too many balance attempts have failed:
2185 */
2186 if (sd->nr_balance_failed > sd->cache_nice_tries)
2187 return 1;
2188
2189 return 1;
2190 }
2191
2192 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2193 unsigned long max_nr_move, unsigned long max_load_move,
2194 struct sched_domain *sd, enum cpu_idle_type idle,
2195 int *all_pinned, unsigned long *load_moved,
2196 int *this_best_prio, struct rq_iterator *iterator)
2197 {
2198 int pulled = 0, pinned = 0, skip_for_load;
2199 struct task_struct *p;
2200 long rem_load_move = max_load_move;
2201
2202 if (max_nr_move == 0 || max_load_move == 0)
2203 goto out;
2204
2205 pinned = 1;
2206
2207 /*
2208 * Start the load-balancing iterator:
2209 */
2210 p = iterator->start(iterator->arg);
2211 next:
2212 if (!p)
2213 goto out;
2214 /*
2215 * To help distribute high priority tasks accross CPUs we don't
2216 * skip a task if it will be the highest priority task (i.e. smallest
2217 * prio value) on its new queue regardless of its load weight
2218 */
2219 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2220 SCHED_LOAD_SCALE_FUZZ;
2221 if ((skip_for_load && p->prio >= *this_best_prio) ||
2222 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2223 p = iterator->next(iterator->arg);
2224 goto next;
2225 }
2226
2227 pull_task(busiest, p, this_rq, this_cpu);
2228 pulled++;
2229 rem_load_move -= p->se.load.weight;
2230
2231 /*
2232 * We only want to steal up to the prescribed number of tasks
2233 * and the prescribed amount of weighted load.
2234 */
2235 if (pulled < max_nr_move && rem_load_move > 0) {
2236 if (p->prio < *this_best_prio)
2237 *this_best_prio = p->prio;
2238 p = iterator->next(iterator->arg);
2239 goto next;
2240 }
2241 out:
2242 /*
2243 * Right now, this is the only place pull_task() is called,
2244 * so we can safely collect pull_task() stats here rather than
2245 * inside pull_task().
2246 */
2247 schedstat_add(sd, lb_gained[idle], pulled);
2248
2249 if (all_pinned)
2250 *all_pinned = pinned;
2251 *load_moved = max_load_move - rem_load_move;
2252 return pulled;
2253 }
2254
2255 /*
2256 * move_tasks tries to move up to max_load_move weighted load from busiest to
2257 * this_rq, as part of a balancing operation within domain "sd".
2258 * Returns 1 if successful and 0 otherwise.
2259 *
2260 * Called with both runqueues locked.
2261 */
2262 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2263 unsigned long max_load_move,
2264 struct sched_domain *sd, enum cpu_idle_type idle,
2265 int *all_pinned)
2266 {
2267 struct sched_class *class = sched_class_highest;
2268 unsigned long total_load_moved = 0;
2269 int this_best_prio = this_rq->curr->prio;
2270
2271 do {
2272 total_load_moved +=
2273 class->load_balance(this_rq, this_cpu, busiest,
2274 ULONG_MAX, max_load_move - total_load_moved,
2275 sd, idle, all_pinned, &this_best_prio);
2276 class = class->next;
2277 } while (class && max_load_move > total_load_moved);
2278
2279 return total_load_moved > 0;
2280 }
2281
2282 /*
2283 * move_one_task tries to move exactly one task from busiest to this_rq, as
2284 * part of active balancing operations within "domain".
2285 * Returns 1 if successful and 0 otherwise.
2286 *
2287 * Called with both runqueues locked.
2288 */
2289 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2290 struct sched_domain *sd, enum cpu_idle_type idle)
2291 {
2292 struct sched_class *class;
2293 int this_best_prio = MAX_PRIO;
2294
2295 for (class = sched_class_highest; class; class = class->next)
2296 if (class->load_balance(this_rq, this_cpu, busiest,
2297 1, ULONG_MAX, sd, idle, NULL,
2298 &this_best_prio))
2299 return 1;
2300
2301 return 0;
2302 }
2303
2304 /*
2305 * find_busiest_group finds and returns the busiest CPU group within the
2306 * domain. It calculates and returns the amount of weighted load which
2307 * should be moved to restore balance via the imbalance parameter.
2308 */
2309 static struct sched_group *
2310 find_busiest_group(struct sched_domain *sd, int this_cpu,
2311 unsigned long *imbalance, enum cpu_idle_type idle,
2312 int *sd_idle, cpumask_t *cpus, int *balance)
2313 {
2314 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2315 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2316 unsigned long max_pull;
2317 unsigned long busiest_load_per_task, busiest_nr_running;
2318 unsigned long this_load_per_task, this_nr_running;
2319 int load_idx;
2320 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2321 int power_savings_balance = 1;
2322 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2323 unsigned long min_nr_running = ULONG_MAX;
2324 struct sched_group *group_min = NULL, *group_leader = NULL;
2325 #endif
2326
2327 max_load = this_load = total_load = total_pwr = 0;
2328 busiest_load_per_task = busiest_nr_running = 0;
2329 this_load_per_task = this_nr_running = 0;
2330 if (idle == CPU_NOT_IDLE)
2331 load_idx = sd->busy_idx;
2332 else if (idle == CPU_NEWLY_IDLE)
2333 load_idx = sd->newidle_idx;
2334 else
2335 load_idx = sd->idle_idx;
2336
2337 do {
2338 unsigned long load, group_capacity;
2339 int local_group;
2340 int i;
2341 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2342 unsigned long sum_nr_running, sum_weighted_load;
2343
2344 local_group = cpu_isset(this_cpu, group->cpumask);
2345
2346 if (local_group)
2347 balance_cpu = first_cpu(group->cpumask);
2348
2349 /* Tally up the load of all CPUs in the group */
2350 sum_weighted_load = sum_nr_running = avg_load = 0;
2351
2352 for_each_cpu_mask(i, group->cpumask) {
2353 struct rq *rq;
2354
2355 if (!cpu_isset(i, *cpus))
2356 continue;
2357
2358 rq = cpu_rq(i);
2359
2360 if (*sd_idle && rq->nr_running)
2361 *sd_idle = 0;
2362
2363 /* Bias balancing toward cpus of our domain */
2364 if (local_group) {
2365 if (idle_cpu(i) && !first_idle_cpu) {
2366 first_idle_cpu = 1;
2367 balance_cpu = i;
2368 }
2369
2370 load = target_load(i, load_idx);
2371 } else
2372 load = source_load(i, load_idx);
2373
2374 avg_load += load;
2375 sum_nr_running += rq->nr_running;
2376 sum_weighted_load += weighted_cpuload(i);
2377 }
2378
2379 /*
2380 * First idle cpu or the first cpu(busiest) in this sched group
2381 * is eligible for doing load balancing at this and above
2382 * domains. In the newly idle case, we will allow all the cpu's
2383 * to do the newly idle load balance.
2384 */
2385 if (idle != CPU_NEWLY_IDLE && local_group &&
2386 balance_cpu != this_cpu && balance) {
2387 *balance = 0;
2388 goto ret;
2389 }
2390
2391 total_load += avg_load;
2392 total_pwr += group->__cpu_power;
2393
2394 /* Adjust by relative CPU power of the group */
2395 avg_load = sg_div_cpu_power(group,
2396 avg_load * SCHED_LOAD_SCALE);
2397
2398 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2399
2400 if (local_group) {
2401 this_load = avg_load;
2402 this = group;
2403 this_nr_running = sum_nr_running;
2404 this_load_per_task = sum_weighted_load;
2405 } else if (avg_load > max_load &&
2406 sum_nr_running > group_capacity) {
2407 max_load = avg_load;
2408 busiest = group;
2409 busiest_nr_running = sum_nr_running;
2410 busiest_load_per_task = sum_weighted_load;
2411 }
2412
2413 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2414 /*
2415 * Busy processors will not participate in power savings
2416 * balance.
2417 */
2418 if (idle == CPU_NOT_IDLE ||
2419 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2420 goto group_next;
2421
2422 /*
2423 * If the local group is idle or completely loaded
2424 * no need to do power savings balance at this domain
2425 */
2426 if (local_group && (this_nr_running >= group_capacity ||
2427 !this_nr_running))
2428 power_savings_balance = 0;
2429
2430 /*
2431 * If a group is already running at full capacity or idle,
2432 * don't include that group in power savings calculations
2433 */
2434 if (!power_savings_balance || sum_nr_running >= group_capacity
2435 || !sum_nr_running)
2436 goto group_next;
2437
2438 /*
2439 * Calculate the group which has the least non-idle load.
2440 * This is the group from where we need to pick up the load
2441 * for saving power
2442 */
2443 if ((sum_nr_running < min_nr_running) ||
2444 (sum_nr_running == min_nr_running &&
2445 first_cpu(group->cpumask) <
2446 first_cpu(group_min->cpumask))) {
2447 group_min = group;
2448 min_nr_running = sum_nr_running;
2449 min_load_per_task = sum_weighted_load /
2450 sum_nr_running;
2451 }
2452
2453 /*
2454 * Calculate the group which is almost near its
2455 * capacity but still has some space to pick up some load
2456 * from other group and save more power
2457 */
2458 if (sum_nr_running <= group_capacity - 1) {
2459 if (sum_nr_running > leader_nr_running ||
2460 (sum_nr_running == leader_nr_running &&
2461 first_cpu(group->cpumask) >
2462 first_cpu(group_leader->cpumask))) {
2463 group_leader = group;
2464 leader_nr_running = sum_nr_running;
2465 }
2466 }
2467 group_next:
2468 #endif
2469 group = group->next;
2470 } while (group != sd->groups);
2471
2472 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2473 goto out_balanced;
2474
2475 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2476
2477 if (this_load >= avg_load ||
2478 100*max_load <= sd->imbalance_pct*this_load)
2479 goto out_balanced;
2480
2481 busiest_load_per_task /= busiest_nr_running;
2482 /*
2483 * We're trying to get all the cpus to the average_load, so we don't
2484 * want to push ourselves above the average load, nor do we wish to
2485 * reduce the max loaded cpu below the average load, as either of these
2486 * actions would just result in more rebalancing later, and ping-pong
2487 * tasks around. Thus we look for the minimum possible imbalance.
2488 * Negative imbalances (*we* are more loaded than anyone else) will
2489 * be counted as no imbalance for these purposes -- we can't fix that
2490 * by pulling tasks to us. Be careful of negative numbers as they'll
2491 * appear as very large values with unsigned longs.
2492 */
2493 if (max_load <= busiest_load_per_task)
2494 goto out_balanced;
2495
2496 /*
2497 * In the presence of smp nice balancing, certain scenarios can have
2498 * max load less than avg load(as we skip the groups at or below
2499 * its cpu_power, while calculating max_load..)
2500 */
2501 if (max_load < avg_load) {
2502 *imbalance = 0;
2503 goto small_imbalance;
2504 }
2505
2506 /* Don't want to pull so many tasks that a group would go idle */
2507 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2508
2509 /* How much load to actually move to equalise the imbalance */
2510 *imbalance = min(max_pull * busiest->__cpu_power,
2511 (avg_load - this_load) * this->__cpu_power)
2512 / SCHED_LOAD_SCALE;
2513
2514 /*
2515 * if *imbalance is less than the average load per runnable task
2516 * there is no gaurantee that any tasks will be moved so we'll have
2517 * a think about bumping its value to force at least one task to be
2518 * moved
2519 */
2520 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task) {
2521 unsigned long tmp, pwr_now, pwr_move;
2522 unsigned int imbn;
2523
2524 small_imbalance:
2525 pwr_move = pwr_now = 0;
2526 imbn = 2;
2527 if (this_nr_running) {
2528 this_load_per_task /= this_nr_running;
2529 if (busiest_load_per_task > this_load_per_task)
2530 imbn = 1;
2531 } else
2532 this_load_per_task = SCHED_LOAD_SCALE;
2533
2534 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2535 busiest_load_per_task * imbn) {
2536 *imbalance = busiest_load_per_task;
2537 return busiest;
2538 }
2539
2540 /*
2541 * OK, we don't have enough imbalance to justify moving tasks,
2542 * however we may be able to increase total CPU power used by
2543 * moving them.
2544 */
2545
2546 pwr_now += busiest->__cpu_power *
2547 min(busiest_load_per_task, max_load);
2548 pwr_now += this->__cpu_power *
2549 min(this_load_per_task, this_load);
2550 pwr_now /= SCHED_LOAD_SCALE;
2551
2552 /* Amount of load we'd subtract */
2553 tmp = sg_div_cpu_power(busiest,
2554 busiest_load_per_task * SCHED_LOAD_SCALE);
2555 if (max_load > tmp)
2556 pwr_move += busiest->__cpu_power *
2557 min(busiest_load_per_task, max_load - tmp);
2558
2559 /* Amount of load we'd add */
2560 if (max_load * busiest->__cpu_power <
2561 busiest_load_per_task * SCHED_LOAD_SCALE)
2562 tmp = sg_div_cpu_power(this,
2563 max_load * busiest->__cpu_power);
2564 else
2565 tmp = sg_div_cpu_power(this,
2566 busiest_load_per_task * SCHED_LOAD_SCALE);
2567 pwr_move += this->__cpu_power *
2568 min(this_load_per_task, this_load + tmp);
2569 pwr_move /= SCHED_LOAD_SCALE;
2570
2571 /* Move if we gain throughput */
2572 if (pwr_move <= pwr_now)
2573 goto out_balanced;
2574
2575 *imbalance = busiest_load_per_task;
2576 }
2577
2578 return busiest;
2579
2580 out_balanced:
2581 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2582 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2583 goto ret;
2584
2585 if (this == group_leader && group_leader != group_min) {
2586 *imbalance = min_load_per_task;
2587 return group_min;
2588 }
2589 #endif
2590 ret:
2591 *imbalance = 0;
2592 return NULL;
2593 }
2594
2595 /*
2596 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2597 */
2598 static struct rq *
2599 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2600 unsigned long imbalance, cpumask_t *cpus)
2601 {
2602 struct rq *busiest = NULL, *rq;
2603 unsigned long max_load = 0;
2604 int i;
2605
2606 for_each_cpu_mask(i, group->cpumask) {
2607 unsigned long wl;
2608
2609 if (!cpu_isset(i, *cpus))
2610 continue;
2611
2612 rq = cpu_rq(i);
2613 wl = weighted_cpuload(i);
2614
2615 if (rq->nr_running == 1 && wl > imbalance)
2616 continue;
2617
2618 if (wl > max_load) {
2619 max_load = wl;
2620 busiest = rq;
2621 }
2622 }
2623
2624 return busiest;
2625 }
2626
2627 /*
2628 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2629 * so long as it is large enough.
2630 */
2631 #define MAX_PINNED_INTERVAL 512
2632
2633 /*
2634 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2635 * tasks if there is an imbalance.
2636 */
2637 static int load_balance(int this_cpu, struct rq *this_rq,
2638 struct sched_domain *sd, enum cpu_idle_type idle,
2639 int *balance)
2640 {
2641 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2642 struct sched_group *group;
2643 unsigned long imbalance;
2644 struct rq *busiest;
2645 cpumask_t cpus = CPU_MASK_ALL;
2646 unsigned long flags;
2647
2648 /*
2649 * When power savings policy is enabled for the parent domain, idle
2650 * sibling can pick up load irrespective of busy siblings. In this case,
2651 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2652 * portraying it as CPU_NOT_IDLE.
2653 */
2654 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2655 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2656 sd_idle = 1;
2657
2658 schedstat_inc(sd, lb_cnt[idle]);
2659
2660 redo:
2661 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2662 &cpus, balance);
2663
2664 if (*balance == 0)
2665 goto out_balanced;
2666
2667 if (!group) {
2668 schedstat_inc(sd, lb_nobusyg[idle]);
2669 goto out_balanced;
2670 }
2671
2672 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2673 if (!busiest) {
2674 schedstat_inc(sd, lb_nobusyq[idle]);
2675 goto out_balanced;
2676 }
2677
2678 BUG_ON(busiest == this_rq);
2679
2680 schedstat_add(sd, lb_imbalance[idle], imbalance);
2681
2682 ld_moved = 0;
2683 if (busiest->nr_running > 1) {
2684 /*
2685 * Attempt to move tasks. If find_busiest_group has found
2686 * an imbalance but busiest->nr_running <= 1, the group is
2687 * still unbalanced. ld_moved simply stays zero, so it is
2688 * correctly treated as an imbalance.
2689 */
2690 local_irq_save(flags);
2691 double_rq_lock(this_rq, busiest);
2692 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2693 imbalance, sd, idle, &all_pinned);
2694 double_rq_unlock(this_rq, busiest);
2695 local_irq_restore(flags);
2696
2697 /*
2698 * some other cpu did the load balance for us.
2699 */
2700 if (ld_moved && this_cpu != smp_processor_id())
2701 resched_cpu(this_cpu);
2702
2703 /* All tasks on this runqueue were pinned by CPU affinity */
2704 if (unlikely(all_pinned)) {
2705 cpu_clear(cpu_of(busiest), cpus);
2706 if (!cpus_empty(cpus))
2707 goto redo;
2708 goto out_balanced;
2709 }
2710 }
2711
2712 if (!ld_moved) {
2713 schedstat_inc(sd, lb_failed[idle]);
2714 sd->nr_balance_failed++;
2715
2716 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2717
2718 spin_lock_irqsave(&busiest->lock, flags);
2719
2720 /* don't kick the migration_thread, if the curr
2721 * task on busiest cpu can't be moved to this_cpu
2722 */
2723 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2724 spin_unlock_irqrestore(&busiest->lock, flags);
2725 all_pinned = 1;
2726 goto out_one_pinned;
2727 }
2728
2729 if (!busiest->active_balance) {
2730 busiest->active_balance = 1;
2731 busiest->push_cpu = this_cpu;
2732 active_balance = 1;
2733 }
2734 spin_unlock_irqrestore(&busiest->lock, flags);
2735 if (active_balance)
2736 wake_up_process(busiest->migration_thread);
2737
2738 /*
2739 * We've kicked active balancing, reset the failure
2740 * counter.
2741 */
2742 sd->nr_balance_failed = sd->cache_nice_tries+1;
2743 }
2744 } else
2745 sd->nr_balance_failed = 0;
2746
2747 if (likely(!active_balance)) {
2748 /* We were unbalanced, so reset the balancing interval */
2749 sd->balance_interval = sd->min_interval;
2750 } else {
2751 /*
2752 * If we've begun active balancing, start to back off. This
2753 * case may not be covered by the all_pinned logic if there
2754 * is only 1 task on the busy runqueue (because we don't call
2755 * move_tasks).
2756 */
2757 if (sd->balance_interval < sd->max_interval)
2758 sd->balance_interval *= 2;
2759 }
2760
2761 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2762 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2763 return -1;
2764 return ld_moved;
2765
2766 out_balanced:
2767 schedstat_inc(sd, lb_balanced[idle]);
2768
2769 sd->nr_balance_failed = 0;
2770
2771 out_one_pinned:
2772 /* tune up the balancing interval */
2773 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2774 (sd->balance_interval < sd->max_interval))
2775 sd->balance_interval *= 2;
2776
2777 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2778 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2779 return -1;
2780 return 0;
2781 }
2782
2783 /*
2784 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2785 * tasks if there is an imbalance.
2786 *
2787 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2788 * this_rq is locked.
2789 */
2790 static int
2791 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2792 {
2793 struct sched_group *group;
2794 struct rq *busiest = NULL;
2795 unsigned long imbalance;
2796 int ld_moved = 0;
2797 int sd_idle = 0;
2798 int all_pinned = 0;
2799 cpumask_t cpus = CPU_MASK_ALL;
2800
2801 /*
2802 * When power savings policy is enabled for the parent domain, idle
2803 * sibling can pick up load irrespective of busy siblings. In this case,
2804 * let the state of idle sibling percolate up as IDLE, instead of
2805 * portraying it as CPU_NOT_IDLE.
2806 */
2807 if (sd->flags & SD_SHARE_CPUPOWER &&
2808 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2809 sd_idle = 1;
2810
2811 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2812 redo:
2813 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2814 &sd_idle, &cpus, NULL);
2815 if (!group) {
2816 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2817 goto out_balanced;
2818 }
2819
2820 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2821 &cpus);
2822 if (!busiest) {
2823 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2824 goto out_balanced;
2825 }
2826
2827 BUG_ON(busiest == this_rq);
2828
2829 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2830
2831 ld_moved = 0;
2832 if (busiest->nr_running > 1) {
2833 /* Attempt to move tasks */
2834 double_lock_balance(this_rq, busiest);
2835 /* this_rq->clock is already updated */
2836 update_rq_clock(busiest);
2837 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2838 imbalance, sd, CPU_NEWLY_IDLE,
2839 &all_pinned);
2840 spin_unlock(&busiest->lock);
2841
2842 if (unlikely(all_pinned)) {
2843 cpu_clear(cpu_of(busiest), cpus);
2844 if (!cpus_empty(cpus))
2845 goto redo;
2846 }
2847 }
2848
2849 if (!ld_moved) {
2850 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2851 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2852 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2853 return -1;
2854 } else
2855 sd->nr_balance_failed = 0;
2856
2857 return ld_moved;
2858
2859 out_balanced:
2860 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2861 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2862 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2863 return -1;
2864 sd->nr_balance_failed = 0;
2865
2866 return 0;
2867 }
2868
2869 /*
2870 * idle_balance is called by schedule() if this_cpu is about to become
2871 * idle. Attempts to pull tasks from other CPUs.
2872 */
2873 static void idle_balance(int this_cpu, struct rq *this_rq)
2874 {
2875 struct sched_domain *sd;
2876 int pulled_task = -1;
2877 unsigned long next_balance = jiffies + HZ;
2878
2879 for_each_domain(this_cpu, sd) {
2880 unsigned long interval;
2881
2882 if (!(sd->flags & SD_LOAD_BALANCE))
2883 continue;
2884
2885 if (sd->flags & SD_BALANCE_NEWIDLE)
2886 /* If we've pulled tasks over stop searching: */
2887 pulled_task = load_balance_newidle(this_cpu,
2888 this_rq, sd);
2889
2890 interval = msecs_to_jiffies(sd->balance_interval);
2891 if (time_after(next_balance, sd->last_balance + interval))
2892 next_balance = sd->last_balance + interval;
2893 if (pulled_task)
2894 break;
2895 }
2896 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2897 /*
2898 * We are going idle. next_balance may be set based on
2899 * a busy processor. So reset next_balance.
2900 */
2901 this_rq->next_balance = next_balance;
2902 }
2903 }
2904
2905 /*
2906 * active_load_balance is run by migration threads. It pushes running tasks
2907 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2908 * running on each physical CPU where possible, and avoids physical /
2909 * logical imbalances.
2910 *
2911 * Called with busiest_rq locked.
2912 */
2913 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2914 {
2915 int target_cpu = busiest_rq->push_cpu;
2916 struct sched_domain *sd;
2917 struct rq *target_rq;
2918
2919 /* Is there any task to move? */
2920 if (busiest_rq->nr_running <= 1)
2921 return;
2922
2923 target_rq = cpu_rq(target_cpu);
2924
2925 /*
2926 * This condition is "impossible", if it occurs
2927 * we need to fix it. Originally reported by
2928 * Bjorn Helgaas on a 128-cpu setup.
2929 */
2930 BUG_ON(busiest_rq == target_rq);
2931
2932 /* move a task from busiest_rq to target_rq */
2933 double_lock_balance(busiest_rq, target_rq);
2934 update_rq_clock(busiest_rq);
2935 update_rq_clock(target_rq);
2936
2937 /* Search for an sd spanning us and the target CPU. */
2938 for_each_domain(target_cpu, sd) {
2939 if ((sd->flags & SD_LOAD_BALANCE) &&
2940 cpu_isset(busiest_cpu, sd->span))
2941 break;
2942 }
2943
2944 if (likely(sd)) {
2945 schedstat_inc(sd, alb_cnt);
2946
2947 if (move_one_task(target_rq, target_cpu, busiest_rq,
2948 sd, CPU_IDLE))
2949 schedstat_inc(sd, alb_pushed);
2950 else
2951 schedstat_inc(sd, alb_failed);
2952 }
2953 spin_unlock(&target_rq->lock);
2954 }
2955
2956 #ifdef CONFIG_NO_HZ
2957 static struct {
2958 atomic_t load_balancer;
2959 cpumask_t cpu_mask;
2960 } nohz ____cacheline_aligned = {
2961 .load_balancer = ATOMIC_INIT(-1),
2962 .cpu_mask = CPU_MASK_NONE,
2963 };
2964
2965 /*
2966 * This routine will try to nominate the ilb (idle load balancing)
2967 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2968 * load balancing on behalf of all those cpus. If all the cpus in the system
2969 * go into this tickless mode, then there will be no ilb owner (as there is
2970 * no need for one) and all the cpus will sleep till the next wakeup event
2971 * arrives...
2972 *
2973 * For the ilb owner, tick is not stopped. And this tick will be used
2974 * for idle load balancing. ilb owner will still be part of
2975 * nohz.cpu_mask..
2976 *
2977 * While stopping the tick, this cpu will become the ilb owner if there
2978 * is no other owner. And will be the owner till that cpu becomes busy
2979 * or if all cpus in the system stop their ticks at which point
2980 * there is no need for ilb owner.
2981 *
2982 * When the ilb owner becomes busy, it nominates another owner, during the
2983 * next busy scheduler_tick()
2984 */
2985 int select_nohz_load_balancer(int stop_tick)
2986 {
2987 int cpu = smp_processor_id();
2988
2989 if (stop_tick) {
2990 cpu_set(cpu, nohz.cpu_mask);
2991 cpu_rq(cpu)->in_nohz_recently = 1;
2992
2993 /*
2994 * If we are going offline and still the leader, give up!
2995 */
2996 if (cpu_is_offline(cpu) &&
2997 atomic_read(&nohz.load_balancer) == cpu) {
2998 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2999 BUG();
3000 return 0;
3001 }
3002
3003 /* time for ilb owner also to sleep */
3004 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3005 if (atomic_read(&nohz.load_balancer) == cpu)
3006 atomic_set(&nohz.load_balancer, -1);
3007 return 0;
3008 }
3009
3010 if (atomic_read(&nohz.load_balancer) == -1) {
3011 /* make me the ilb owner */
3012 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3013 return 1;
3014 } else if (atomic_read(&nohz.load_balancer) == cpu)
3015 return 1;
3016 } else {
3017 if (!cpu_isset(cpu, nohz.cpu_mask))
3018 return 0;
3019
3020 cpu_clear(cpu, nohz.cpu_mask);
3021
3022 if (atomic_read(&nohz.load_balancer) == cpu)
3023 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3024 BUG();
3025 }
3026 return 0;
3027 }
3028 #endif
3029
3030 static DEFINE_SPINLOCK(balancing);
3031
3032 /*
3033 * It checks each scheduling domain to see if it is due to be balanced,
3034 * and initiates a balancing operation if so.
3035 *
3036 * Balancing parameters are set up in arch_init_sched_domains.
3037 */
3038 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3039 {
3040 int balance = 1;
3041 struct rq *rq = cpu_rq(cpu);
3042 unsigned long interval;
3043 struct sched_domain *sd;
3044 /* Earliest time when we have to do rebalance again */
3045 unsigned long next_balance = jiffies + 60*HZ;
3046 int update_next_balance = 0;
3047
3048 for_each_domain(cpu, sd) {
3049 if (!(sd->flags & SD_LOAD_BALANCE))
3050 continue;
3051
3052 interval = sd->balance_interval;
3053 if (idle != CPU_IDLE)
3054 interval *= sd->busy_factor;
3055
3056 /* scale ms to jiffies */
3057 interval = msecs_to_jiffies(interval);
3058 if (unlikely(!interval))
3059 interval = 1;
3060 if (interval > HZ*NR_CPUS/10)
3061 interval = HZ*NR_CPUS/10;
3062
3063
3064 if (sd->flags & SD_SERIALIZE) {
3065 if (!spin_trylock(&balancing))
3066 goto out;
3067 }
3068
3069 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3070 if (load_balance(cpu, rq, sd, idle, &balance)) {
3071 /*
3072 * We've pulled tasks over so either we're no
3073 * longer idle, or one of our SMT siblings is
3074 * not idle.
3075 */
3076 idle = CPU_NOT_IDLE;
3077 }
3078 sd->last_balance = jiffies;
3079 }
3080 if (sd->flags & SD_SERIALIZE)
3081 spin_unlock(&balancing);
3082 out:
3083 if (time_after(next_balance, sd->last_balance + interval)) {
3084 next_balance = sd->last_balance + interval;
3085 update_next_balance = 1;
3086 }
3087
3088 /*
3089 * Stop the load balance at this level. There is another
3090 * CPU in our sched group which is doing load balancing more
3091 * actively.
3092 */
3093 if (!balance)
3094 break;
3095 }
3096
3097 /*
3098 * next_balance will be updated only when there is a need.
3099 * When the cpu is attached to null domain for ex, it will not be
3100 * updated.
3101 */
3102 if (likely(update_next_balance))
3103 rq->next_balance = next_balance;
3104 }
3105
3106 /*
3107 * run_rebalance_domains is triggered when needed from the scheduler tick.
3108 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3109 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3110 */
3111 static void run_rebalance_domains(struct softirq_action *h)
3112 {
3113 int this_cpu = smp_processor_id();
3114 struct rq *this_rq = cpu_rq(this_cpu);
3115 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3116 CPU_IDLE : CPU_NOT_IDLE;
3117
3118 rebalance_domains(this_cpu, idle);
3119
3120 #ifdef CONFIG_NO_HZ
3121 /*
3122 * If this cpu is the owner for idle load balancing, then do the
3123 * balancing on behalf of the other idle cpus whose ticks are
3124 * stopped.
3125 */
3126 if (this_rq->idle_at_tick &&
3127 atomic_read(&nohz.load_balancer) == this_cpu) {
3128 cpumask_t cpus = nohz.cpu_mask;
3129 struct rq *rq;
3130 int balance_cpu;
3131
3132 cpu_clear(this_cpu, cpus);
3133 for_each_cpu_mask(balance_cpu, cpus) {
3134 /*
3135 * If this cpu gets work to do, stop the load balancing
3136 * work being done for other cpus. Next load
3137 * balancing owner will pick it up.
3138 */
3139 if (need_resched())
3140 break;
3141
3142 rebalance_domains(balance_cpu, CPU_IDLE);
3143
3144 rq = cpu_rq(balance_cpu);
3145 if (time_after(this_rq->next_balance, rq->next_balance))
3146 this_rq->next_balance = rq->next_balance;
3147 }
3148 }
3149 #endif
3150 }
3151
3152 /*
3153 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3154 *
3155 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3156 * idle load balancing owner or decide to stop the periodic load balancing,
3157 * if the whole system is idle.
3158 */
3159 static inline void trigger_load_balance(struct rq *rq, int cpu)
3160 {
3161 #ifdef CONFIG_NO_HZ
3162 /*
3163 * If we were in the nohz mode recently and busy at the current
3164 * scheduler tick, then check if we need to nominate new idle
3165 * load balancer.
3166 */
3167 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3168 rq->in_nohz_recently = 0;
3169
3170 if (atomic_read(&nohz.load_balancer) == cpu) {
3171 cpu_clear(cpu, nohz.cpu_mask);
3172 atomic_set(&nohz.load_balancer, -1);
3173 }
3174
3175 if (atomic_read(&nohz.load_balancer) == -1) {
3176 /*
3177 * simple selection for now: Nominate the
3178 * first cpu in the nohz list to be the next
3179 * ilb owner.
3180 *
3181 * TBD: Traverse the sched domains and nominate
3182 * the nearest cpu in the nohz.cpu_mask.
3183 */
3184 int ilb = first_cpu(nohz.cpu_mask);
3185
3186 if (ilb != NR_CPUS)
3187 resched_cpu(ilb);
3188 }
3189 }
3190
3191 /*
3192 * If this cpu is idle and doing idle load balancing for all the
3193 * cpus with ticks stopped, is it time for that to stop?
3194 */
3195 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3196 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3197 resched_cpu(cpu);
3198 return;
3199 }
3200
3201 /*
3202 * If this cpu is idle and the idle load balancing is done by
3203 * someone else, then no need raise the SCHED_SOFTIRQ
3204 */
3205 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3206 cpu_isset(cpu, nohz.cpu_mask))
3207 return;
3208 #endif
3209 if (time_after_eq(jiffies, rq->next_balance))
3210 raise_softirq(SCHED_SOFTIRQ);
3211 }
3212
3213 #else /* CONFIG_SMP */
3214
3215 /*
3216 * on UP we do not need to balance between CPUs:
3217 */
3218 static inline void idle_balance(int cpu, struct rq *rq)
3219 {
3220 }
3221
3222 /* Avoid "used but not defined" warning on UP */
3223 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3224 unsigned long max_nr_move, unsigned long max_load_move,
3225 struct sched_domain *sd, enum cpu_idle_type idle,
3226 int *all_pinned, unsigned long *load_moved,
3227 int *this_best_prio, struct rq_iterator *iterator)
3228 {
3229 *load_moved = 0;
3230
3231 return 0;
3232 }
3233
3234 #endif
3235
3236 DEFINE_PER_CPU(struct kernel_stat, kstat);
3237
3238 EXPORT_PER_CPU_SYMBOL(kstat);
3239
3240 /*
3241 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3242 * that have not yet been banked in case the task is currently running.
3243 */
3244 unsigned long long task_sched_runtime(struct task_struct *p)
3245 {
3246 unsigned long flags;
3247 u64 ns, delta_exec;
3248 struct rq *rq;
3249
3250 rq = task_rq_lock(p, &flags);
3251 ns = p->se.sum_exec_runtime;
3252 if (rq->curr == p) {
3253 update_rq_clock(rq);
3254 delta_exec = rq->clock - p->se.exec_start;
3255 if ((s64)delta_exec > 0)
3256 ns += delta_exec;
3257 }
3258 task_rq_unlock(rq, &flags);
3259
3260 return ns;
3261 }
3262
3263 /*
3264 * Account user cpu time to a process.
3265 * @p: the process that the cpu time gets accounted to
3266 * @hardirq_offset: the offset to subtract from hardirq_count()
3267 * @cputime: the cpu time spent in user space since the last update
3268 */
3269 void account_user_time(struct task_struct *p, cputime_t cputime)
3270 {
3271 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3272 cputime64_t tmp;
3273
3274 p->utime = cputime_add(p->utime, cputime);
3275
3276 /* Add user time to cpustat. */
3277 tmp = cputime_to_cputime64(cputime);
3278 if (TASK_NICE(p) > 0)
3279 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3280 else
3281 cpustat->user = cputime64_add(cpustat->user, tmp);
3282 }
3283
3284 /*
3285 * Account system cpu time to a process.
3286 * @p: the process that the cpu time gets accounted to
3287 * @hardirq_offset: the offset to subtract from hardirq_count()
3288 * @cputime: the cpu time spent in kernel space since the last update
3289 */
3290 void account_system_time(struct task_struct *p, int hardirq_offset,
3291 cputime_t cputime)
3292 {
3293 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3294 struct rq *rq = this_rq();
3295 cputime64_t tmp;
3296
3297 p->stime = cputime_add(p->stime, cputime);
3298
3299 /* Add system time to cpustat. */
3300 tmp = cputime_to_cputime64(cputime);
3301 if (hardirq_count() - hardirq_offset)
3302 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3303 else if (softirq_count())
3304 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3305 else if (p != rq->idle)
3306 cpustat->system = cputime64_add(cpustat->system, tmp);
3307 else if (atomic_read(&rq->nr_iowait) > 0)
3308 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3309 else
3310 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3311 /* Account for system time used */
3312 acct_update_integrals(p);
3313 }
3314
3315 /*
3316 * Account for involuntary wait time.
3317 * @p: the process from which the cpu time has been stolen
3318 * @steal: the cpu time spent in involuntary wait
3319 */
3320 void account_steal_time(struct task_struct *p, cputime_t steal)
3321 {
3322 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3323 cputime64_t tmp = cputime_to_cputime64(steal);
3324 struct rq *rq = this_rq();
3325
3326 if (p == rq->idle) {
3327 p->stime = cputime_add(p->stime, steal);
3328 if (atomic_read(&rq->nr_iowait) > 0)
3329 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3330 else
3331 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3332 } else
3333 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3334 }
3335
3336 /*
3337 * This function gets called by the timer code, with HZ frequency.
3338 * We call it with interrupts disabled.
3339 *
3340 * It also gets called by the fork code, when changing the parent's
3341 * timeslices.
3342 */
3343 void scheduler_tick(void)
3344 {
3345 int cpu = smp_processor_id();
3346 struct rq *rq = cpu_rq(cpu);
3347 struct task_struct *curr = rq->curr;
3348 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3349
3350 spin_lock(&rq->lock);
3351 __update_rq_clock(rq);
3352 /*
3353 * Let rq->clock advance by at least TICK_NSEC:
3354 */
3355 if (unlikely(rq->clock < next_tick))
3356 rq->clock = next_tick;
3357 rq->tick_timestamp = rq->clock;
3358 update_cpu_load(rq);
3359 if (curr != rq->idle) /* FIXME: needed? */
3360 curr->sched_class->task_tick(rq, curr);
3361 spin_unlock(&rq->lock);
3362
3363 #ifdef CONFIG_SMP
3364 rq->idle_at_tick = idle_cpu(cpu);
3365 trigger_load_balance(rq, cpu);
3366 #endif
3367 }
3368
3369 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3370
3371 void fastcall add_preempt_count(int val)
3372 {
3373 /*
3374 * Underflow?
3375 */
3376 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3377 return;
3378 preempt_count() += val;
3379 /*
3380 * Spinlock count overflowing soon?
3381 */
3382 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3383 PREEMPT_MASK - 10);
3384 }
3385 EXPORT_SYMBOL(add_preempt_count);
3386
3387 void fastcall sub_preempt_count(int val)
3388 {
3389 /*
3390 * Underflow?
3391 */
3392 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3393 return;
3394 /*
3395 * Is the spinlock portion underflowing?
3396 */
3397 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3398 !(preempt_count() & PREEMPT_MASK)))
3399 return;
3400
3401 preempt_count() -= val;
3402 }
3403 EXPORT_SYMBOL(sub_preempt_count);
3404
3405 #endif
3406
3407 /*
3408 * Print scheduling while atomic bug:
3409 */
3410 static noinline void __schedule_bug(struct task_struct *prev)
3411 {
3412 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3413 prev->comm, preempt_count(), prev->pid);
3414 debug_show_held_locks(prev);
3415 if (irqs_disabled())
3416 print_irqtrace_events(prev);
3417 dump_stack();
3418 }
3419
3420 /*
3421 * Various schedule()-time debugging checks and statistics:
3422 */
3423 static inline void schedule_debug(struct task_struct *prev)
3424 {
3425 /*
3426 * Test if we are atomic. Since do_exit() needs to call into
3427 * schedule() atomically, we ignore that path for now.
3428 * Otherwise, whine if we are scheduling when we should not be.
3429 */
3430 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3431 __schedule_bug(prev);
3432
3433 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3434
3435 schedstat_inc(this_rq(), sched_cnt);
3436 }
3437
3438 /*
3439 * Pick up the highest-prio task:
3440 */
3441 static inline struct task_struct *
3442 pick_next_task(struct rq *rq, struct task_struct *prev)
3443 {
3444 struct sched_class *class;
3445 struct task_struct *p;
3446
3447 /*
3448 * Optimization: we know that if all tasks are in
3449 * the fair class we can call that function directly:
3450 */
3451 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3452 p = fair_sched_class.pick_next_task(rq);
3453 if (likely(p))
3454 return p;
3455 }
3456
3457 class = sched_class_highest;
3458 for ( ; ; ) {
3459 p = class->pick_next_task(rq);
3460 if (p)
3461 return p;
3462 /*
3463 * Will never be NULL as the idle class always
3464 * returns a non-NULL p:
3465 */
3466 class = class->next;
3467 }
3468 }
3469
3470 /*
3471 * schedule() is the main scheduler function.
3472 */
3473 asmlinkage void __sched schedule(void)
3474 {
3475 struct task_struct *prev, *next;
3476 long *switch_count;
3477 struct rq *rq;
3478 int cpu;
3479
3480 need_resched:
3481 preempt_disable();
3482 cpu = smp_processor_id();
3483 rq = cpu_rq(cpu);
3484 rcu_qsctr_inc(cpu);
3485 prev = rq->curr;
3486 switch_count = &prev->nivcsw;
3487
3488 release_kernel_lock(prev);
3489 need_resched_nonpreemptible:
3490
3491 schedule_debug(prev);
3492
3493 spin_lock_irq(&rq->lock);
3494 clear_tsk_need_resched(prev);
3495 __update_rq_clock(rq);
3496
3497 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3498 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3499 unlikely(signal_pending(prev)))) {
3500 prev->state = TASK_RUNNING;
3501 } else {
3502 deactivate_task(rq, prev, 1);
3503 }
3504 switch_count = &prev->nvcsw;
3505 }
3506
3507 if (unlikely(!rq->nr_running))
3508 idle_balance(cpu, rq);
3509
3510 prev->sched_class->put_prev_task(rq, prev);
3511 next = pick_next_task(rq, prev);
3512
3513 sched_info_switch(prev, next);
3514
3515 if (likely(prev != next)) {
3516 rq->nr_switches++;
3517 rq->curr = next;
3518 ++*switch_count;
3519
3520 context_switch(rq, prev, next); /* unlocks the rq */
3521 } else
3522 spin_unlock_irq(&rq->lock);
3523
3524 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3525 cpu = smp_processor_id();
3526 rq = cpu_rq(cpu);
3527 goto need_resched_nonpreemptible;
3528 }
3529 preempt_enable_no_resched();
3530 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3531 goto need_resched;
3532 }
3533 EXPORT_SYMBOL(schedule);
3534
3535 #ifdef CONFIG_PREEMPT
3536 /*
3537 * this is the entry point to schedule() from in-kernel preemption
3538 * off of preempt_enable. Kernel preemptions off return from interrupt
3539 * occur there and call schedule directly.
3540 */
3541 asmlinkage void __sched preempt_schedule(void)
3542 {
3543 struct thread_info *ti = current_thread_info();
3544 #ifdef CONFIG_PREEMPT_BKL
3545 struct task_struct *task = current;
3546 int saved_lock_depth;
3547 #endif
3548 /*
3549 * If there is a non-zero preempt_count or interrupts are disabled,
3550 * we do not want to preempt the current task. Just return..
3551 */
3552 if (likely(ti->preempt_count || irqs_disabled()))
3553 return;
3554
3555 need_resched:
3556 add_preempt_count(PREEMPT_ACTIVE);
3557 /*
3558 * We keep the big kernel semaphore locked, but we
3559 * clear ->lock_depth so that schedule() doesnt
3560 * auto-release the semaphore:
3561 */
3562 #ifdef CONFIG_PREEMPT_BKL
3563 saved_lock_depth = task->lock_depth;
3564 task->lock_depth = -1;
3565 #endif
3566 schedule();
3567 #ifdef CONFIG_PREEMPT_BKL
3568 task->lock_depth = saved_lock_depth;
3569 #endif
3570 sub_preempt_count(PREEMPT_ACTIVE);
3571
3572 /* we could miss a preemption opportunity between schedule and now */
3573 barrier();
3574 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3575 goto need_resched;
3576 }
3577 EXPORT_SYMBOL(preempt_schedule);
3578
3579 /*
3580 * this is the entry point to schedule() from kernel preemption
3581 * off of irq context.
3582 * Note, that this is called and return with irqs disabled. This will
3583 * protect us against recursive calling from irq.
3584 */
3585 asmlinkage void __sched preempt_schedule_irq(void)
3586 {
3587 struct thread_info *ti = current_thread_info();
3588 #ifdef CONFIG_PREEMPT_BKL
3589 struct task_struct *task = current;
3590 int saved_lock_depth;
3591 #endif
3592 /* Catch callers which need to be fixed */
3593 BUG_ON(ti->preempt_count || !irqs_disabled());
3594
3595 need_resched:
3596 add_preempt_count(PREEMPT_ACTIVE);
3597 /*
3598 * We keep the big kernel semaphore locked, but we
3599 * clear ->lock_depth so that schedule() doesnt
3600 * auto-release the semaphore:
3601 */
3602 #ifdef CONFIG_PREEMPT_BKL
3603 saved_lock_depth = task->lock_depth;
3604 task->lock_depth = -1;
3605 #endif
3606 local_irq_enable();
3607 schedule();
3608 local_irq_disable();
3609 #ifdef CONFIG_PREEMPT_BKL
3610 task->lock_depth = saved_lock_depth;
3611 #endif
3612 sub_preempt_count(PREEMPT_ACTIVE);
3613
3614 /* we could miss a preemption opportunity between schedule and now */
3615 barrier();
3616 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3617 goto need_resched;
3618 }
3619
3620 #endif /* CONFIG_PREEMPT */
3621
3622 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3623 void *key)
3624 {
3625 return try_to_wake_up(curr->private, mode, sync);
3626 }
3627 EXPORT_SYMBOL(default_wake_function);
3628
3629 /*
3630 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3631 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3632 * number) then we wake all the non-exclusive tasks and one exclusive task.
3633 *
3634 * There are circumstances in which we can try to wake a task which has already
3635 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3636 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3637 */
3638 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3639 int nr_exclusive, int sync, void *key)
3640 {
3641 struct list_head *tmp, *next;
3642
3643 list_for_each_safe(tmp, next, &q->task_list) {
3644 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3645 unsigned flags = curr->flags;
3646
3647 if (curr->func(curr, mode, sync, key) &&
3648 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3649 break;
3650 }
3651 }
3652
3653 /**
3654 * __wake_up - wake up threads blocked on a waitqueue.
3655 * @q: the waitqueue
3656 * @mode: which threads
3657 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3658 * @key: is directly passed to the wakeup function
3659 */
3660 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3661 int nr_exclusive, void *key)
3662 {
3663 unsigned long flags;
3664
3665 spin_lock_irqsave(&q->lock, flags);
3666 __wake_up_common(q, mode, nr_exclusive, 0, key);
3667 spin_unlock_irqrestore(&q->lock, flags);
3668 }
3669 EXPORT_SYMBOL(__wake_up);
3670
3671 /*
3672 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3673 */
3674 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3675 {
3676 __wake_up_common(q, mode, 1, 0, NULL);
3677 }
3678
3679 /**
3680 * __wake_up_sync - wake up threads blocked on a waitqueue.
3681 * @q: the waitqueue
3682 * @mode: which threads
3683 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3684 *
3685 * The sync wakeup differs that the waker knows that it will schedule
3686 * away soon, so while the target thread will be woken up, it will not
3687 * be migrated to another CPU - ie. the two threads are 'synchronized'
3688 * with each other. This can prevent needless bouncing between CPUs.
3689 *
3690 * On UP it can prevent extra preemption.
3691 */
3692 void fastcall
3693 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3694 {
3695 unsigned long flags;
3696 int sync = 1;
3697
3698 if (unlikely(!q))
3699 return;
3700
3701 if (unlikely(!nr_exclusive))
3702 sync = 0;
3703
3704 spin_lock_irqsave(&q->lock, flags);
3705 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3706 spin_unlock_irqrestore(&q->lock, flags);
3707 }
3708 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3709
3710 void fastcall complete(struct completion *x)
3711 {
3712 unsigned long flags;
3713
3714 spin_lock_irqsave(&x->wait.lock, flags);
3715 x->done++;
3716 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3717 1, 0, NULL);
3718 spin_unlock_irqrestore(&x->wait.lock, flags);
3719 }
3720 EXPORT_SYMBOL(complete);
3721
3722 void fastcall complete_all(struct completion *x)
3723 {
3724 unsigned long flags;
3725
3726 spin_lock_irqsave(&x->wait.lock, flags);
3727 x->done += UINT_MAX/2;
3728 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3729 0, 0, NULL);
3730 spin_unlock_irqrestore(&x->wait.lock, flags);
3731 }
3732 EXPORT_SYMBOL(complete_all);
3733
3734 void fastcall __sched wait_for_completion(struct completion *x)
3735 {
3736 might_sleep();
3737
3738 spin_lock_irq(&x->wait.lock);
3739 if (!x->done) {
3740 DECLARE_WAITQUEUE(wait, current);
3741
3742 wait.flags |= WQ_FLAG_EXCLUSIVE;
3743 __add_wait_queue_tail(&x->wait, &wait);
3744 do {
3745 __set_current_state(TASK_UNINTERRUPTIBLE);
3746 spin_unlock_irq(&x->wait.lock);
3747 schedule();
3748 spin_lock_irq(&x->wait.lock);
3749 } while (!x->done);
3750 __remove_wait_queue(&x->wait, &wait);
3751 }
3752 x->done--;
3753 spin_unlock_irq(&x->wait.lock);
3754 }
3755 EXPORT_SYMBOL(wait_for_completion);
3756
3757 unsigned long fastcall __sched
3758 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3759 {
3760 might_sleep();
3761
3762 spin_lock_irq(&x->wait.lock);
3763 if (!x->done) {
3764 DECLARE_WAITQUEUE(wait, current);
3765
3766 wait.flags |= WQ_FLAG_EXCLUSIVE;
3767 __add_wait_queue_tail(&x->wait, &wait);
3768 do {
3769 __set_current_state(TASK_UNINTERRUPTIBLE);
3770 spin_unlock_irq(&x->wait.lock);
3771 timeout = schedule_timeout(timeout);
3772 spin_lock_irq(&x->wait.lock);
3773 if (!timeout) {
3774 __remove_wait_queue(&x->wait, &wait);
3775 goto out;
3776 }
3777 } while (!x->done);
3778 __remove_wait_queue(&x->wait, &wait);
3779 }
3780 x->done--;
3781 out:
3782 spin_unlock_irq(&x->wait.lock);
3783 return timeout;
3784 }
3785 EXPORT_SYMBOL(wait_for_completion_timeout);
3786
3787 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3788 {
3789 int ret = 0;
3790
3791 might_sleep();
3792
3793 spin_lock_irq(&x->wait.lock);
3794 if (!x->done) {
3795 DECLARE_WAITQUEUE(wait, current);
3796
3797 wait.flags |= WQ_FLAG_EXCLUSIVE;
3798 __add_wait_queue_tail(&x->wait, &wait);
3799 do {
3800 if (signal_pending(current)) {
3801 ret = -ERESTARTSYS;
3802 __remove_wait_queue(&x->wait, &wait);
3803 goto out;
3804 }
3805 __set_current_state(TASK_INTERRUPTIBLE);
3806 spin_unlock_irq(&x->wait.lock);
3807 schedule();
3808 spin_lock_irq(&x->wait.lock);
3809 } while (!x->done);
3810 __remove_wait_queue(&x->wait, &wait);
3811 }
3812 x->done--;
3813 out:
3814 spin_unlock_irq(&x->wait.lock);
3815
3816 return ret;
3817 }
3818 EXPORT_SYMBOL(wait_for_completion_interruptible);
3819
3820 unsigned long fastcall __sched
3821 wait_for_completion_interruptible_timeout(struct completion *x,
3822 unsigned long timeout)
3823 {
3824 might_sleep();
3825
3826 spin_lock_irq(&x->wait.lock);
3827 if (!x->done) {
3828 DECLARE_WAITQUEUE(wait, current);
3829
3830 wait.flags |= WQ_FLAG_EXCLUSIVE;
3831 __add_wait_queue_tail(&x->wait, &wait);
3832 do {
3833 if (signal_pending(current)) {
3834 timeout = -ERESTARTSYS;
3835 __remove_wait_queue(&x->wait, &wait);
3836 goto out;
3837 }
3838 __set_current_state(TASK_INTERRUPTIBLE);
3839 spin_unlock_irq(&x->wait.lock);
3840 timeout = schedule_timeout(timeout);
3841 spin_lock_irq(&x->wait.lock);
3842 if (!timeout) {
3843 __remove_wait_queue(&x->wait, &wait);
3844 goto out;
3845 }
3846 } while (!x->done);
3847 __remove_wait_queue(&x->wait, &wait);
3848 }
3849 x->done--;
3850 out:
3851 spin_unlock_irq(&x->wait.lock);
3852 return timeout;
3853 }
3854 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3855
3856 static inline void
3857 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3858 {
3859 spin_lock_irqsave(&q->lock, *flags);
3860 __add_wait_queue(q, wait);
3861 spin_unlock(&q->lock);
3862 }
3863
3864 static inline void
3865 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3866 {
3867 spin_lock_irq(&q->lock);
3868 __remove_wait_queue(q, wait);
3869 spin_unlock_irqrestore(&q->lock, *flags);
3870 }
3871
3872 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3873 {
3874 unsigned long flags;
3875 wait_queue_t wait;
3876
3877 init_waitqueue_entry(&wait, current);
3878
3879 current->state = TASK_INTERRUPTIBLE;
3880
3881 sleep_on_head(q, &wait, &flags);
3882 schedule();
3883 sleep_on_tail(q, &wait, &flags);
3884 }
3885 EXPORT_SYMBOL(interruptible_sleep_on);
3886
3887 long __sched
3888 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3889 {
3890 unsigned long flags;
3891 wait_queue_t wait;
3892
3893 init_waitqueue_entry(&wait, current);
3894
3895 current->state = TASK_INTERRUPTIBLE;
3896
3897 sleep_on_head(q, &wait, &flags);
3898 timeout = schedule_timeout(timeout);
3899 sleep_on_tail(q, &wait, &flags);
3900
3901 return timeout;
3902 }
3903 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3904
3905 void __sched sleep_on(wait_queue_head_t *q)
3906 {
3907 unsigned long flags;
3908 wait_queue_t wait;
3909
3910 init_waitqueue_entry(&wait, current);
3911
3912 current->state = TASK_UNINTERRUPTIBLE;
3913
3914 sleep_on_head(q, &wait, &flags);
3915 schedule();
3916 sleep_on_tail(q, &wait, &flags);
3917 }
3918 EXPORT_SYMBOL(sleep_on);
3919
3920 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3921 {
3922 unsigned long flags;
3923 wait_queue_t wait;
3924
3925 init_waitqueue_entry(&wait, current);
3926
3927 current->state = TASK_UNINTERRUPTIBLE;
3928
3929 sleep_on_head(q, &wait, &flags);
3930 timeout = schedule_timeout(timeout);
3931 sleep_on_tail(q, &wait, &flags);
3932
3933 return timeout;
3934 }
3935 EXPORT_SYMBOL(sleep_on_timeout);
3936
3937 #ifdef CONFIG_RT_MUTEXES
3938
3939 /*
3940 * rt_mutex_setprio - set the current priority of a task
3941 * @p: task
3942 * @prio: prio value (kernel-internal form)
3943 *
3944 * This function changes the 'effective' priority of a task. It does
3945 * not touch ->normal_prio like __setscheduler().
3946 *
3947 * Used by the rt_mutex code to implement priority inheritance logic.
3948 */
3949 void rt_mutex_setprio(struct task_struct *p, int prio)
3950 {
3951 unsigned long flags;
3952 int oldprio, on_rq;
3953 struct rq *rq;
3954
3955 BUG_ON(prio < 0 || prio > MAX_PRIO);
3956
3957 rq = task_rq_lock(p, &flags);
3958 update_rq_clock(rq);
3959
3960 oldprio = p->prio;
3961 on_rq = p->se.on_rq;
3962 if (on_rq)
3963 dequeue_task(rq, p, 0);
3964
3965 if (rt_prio(prio))
3966 p->sched_class = &rt_sched_class;
3967 else
3968 p->sched_class = &fair_sched_class;
3969
3970 p->prio = prio;
3971
3972 if (on_rq) {
3973 enqueue_task(rq, p, 0);
3974 /*
3975 * Reschedule if we are currently running on this runqueue and
3976 * our priority decreased, or if we are not currently running on
3977 * this runqueue and our priority is higher than the current's
3978 */
3979 if (task_running(rq, p)) {
3980 if (p->prio > oldprio)
3981 resched_task(rq->curr);
3982 } else {
3983 check_preempt_curr(rq, p);
3984 }
3985 }
3986 task_rq_unlock(rq, &flags);
3987 }
3988
3989 #endif
3990
3991 void set_user_nice(struct task_struct *p, long nice)
3992 {
3993 int old_prio, delta, on_rq;
3994 unsigned long flags;
3995 struct rq *rq;
3996
3997 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3998 return;
3999 /*
4000 * We have to be careful, if called from sys_setpriority(),
4001 * the task might be in the middle of scheduling on another CPU.
4002 */
4003 rq = task_rq_lock(p, &flags);
4004 update_rq_clock(rq);
4005 /*
4006 * The RT priorities are set via sched_setscheduler(), but we still
4007 * allow the 'normal' nice value to be set - but as expected
4008 * it wont have any effect on scheduling until the task is
4009 * SCHED_FIFO/SCHED_RR:
4010 */
4011 if (task_has_rt_policy(p)) {
4012 p->static_prio = NICE_TO_PRIO(nice);
4013 goto out_unlock;
4014 }
4015 on_rq = p->se.on_rq;
4016 if (on_rq) {
4017 dequeue_task(rq, p, 0);
4018 dec_load(rq, p);
4019 }
4020
4021 p->static_prio = NICE_TO_PRIO(nice);
4022 set_load_weight(p);
4023 old_prio = p->prio;
4024 p->prio = effective_prio(p);
4025 delta = p->prio - old_prio;
4026
4027 if (on_rq) {
4028 enqueue_task(rq, p, 0);
4029 inc_load(rq, p);
4030 /*
4031 * If the task increased its priority or is running and
4032 * lowered its priority, then reschedule its CPU:
4033 */
4034 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4035 resched_task(rq->curr);
4036 }
4037 out_unlock:
4038 task_rq_unlock(rq, &flags);
4039 }
4040 EXPORT_SYMBOL(set_user_nice);
4041
4042 /*
4043 * can_nice - check if a task can reduce its nice value
4044 * @p: task
4045 * @nice: nice value
4046 */
4047 int can_nice(const struct task_struct *p, const int nice)
4048 {
4049 /* convert nice value [19,-20] to rlimit style value [1,40] */
4050 int nice_rlim = 20 - nice;
4051
4052 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4053 capable(CAP_SYS_NICE));
4054 }
4055
4056 #ifdef __ARCH_WANT_SYS_NICE
4057
4058 /*
4059 * sys_nice - change the priority of the current process.
4060 * @increment: priority increment
4061 *
4062 * sys_setpriority is a more generic, but much slower function that
4063 * does similar things.
4064 */
4065 asmlinkage long sys_nice(int increment)
4066 {
4067 long nice, retval;
4068
4069 /*
4070 * Setpriority might change our priority at the same moment.
4071 * We don't have to worry. Conceptually one call occurs first
4072 * and we have a single winner.
4073 */
4074 if (increment < -40)
4075 increment = -40;
4076 if (increment > 40)
4077 increment = 40;
4078
4079 nice = PRIO_TO_NICE(current->static_prio) + increment;
4080 if (nice < -20)
4081 nice = -20;
4082 if (nice > 19)
4083 nice = 19;
4084
4085 if (increment < 0 && !can_nice(current, nice))
4086 return -EPERM;
4087
4088 retval = security_task_setnice(current, nice);
4089 if (retval)
4090 return retval;
4091
4092 set_user_nice(current, nice);
4093 return 0;
4094 }
4095
4096 #endif
4097
4098 /**
4099 * task_prio - return the priority value of a given task.
4100 * @p: the task in question.
4101 *
4102 * This is the priority value as seen by users in /proc.
4103 * RT tasks are offset by -200. Normal tasks are centered
4104 * around 0, value goes from -16 to +15.
4105 */
4106 int task_prio(const struct task_struct *p)
4107 {
4108 return p->prio - MAX_RT_PRIO;
4109 }
4110
4111 /**
4112 * task_nice - return the nice value of a given task.
4113 * @p: the task in question.
4114 */
4115 int task_nice(const struct task_struct *p)
4116 {
4117 return TASK_NICE(p);
4118 }
4119 EXPORT_SYMBOL_GPL(task_nice);
4120
4121 /**
4122 * idle_cpu - is a given cpu idle currently?
4123 * @cpu: the processor in question.
4124 */
4125 int idle_cpu(int cpu)
4126 {
4127 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4128 }
4129
4130 /**
4131 * idle_task - return the idle task for a given cpu.
4132 * @cpu: the processor in question.
4133 */
4134 struct task_struct *idle_task(int cpu)
4135 {
4136 return cpu_rq(cpu)->idle;
4137 }
4138
4139 /**
4140 * find_process_by_pid - find a process with a matching PID value.
4141 * @pid: the pid in question.
4142 */
4143 static inline struct task_struct *find_process_by_pid(pid_t pid)
4144 {
4145 return pid ? find_task_by_pid(pid) : current;
4146 }
4147
4148 /* Actually do priority change: must hold rq lock. */
4149 static void
4150 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4151 {
4152 BUG_ON(p->se.on_rq);
4153
4154 p->policy = policy;
4155 switch (p->policy) {
4156 case SCHED_NORMAL:
4157 case SCHED_BATCH:
4158 case SCHED_IDLE:
4159 p->sched_class = &fair_sched_class;
4160 break;
4161 case SCHED_FIFO:
4162 case SCHED_RR:
4163 p->sched_class = &rt_sched_class;
4164 break;
4165 }
4166
4167 p->rt_priority = prio;
4168 p->normal_prio = normal_prio(p);
4169 /* we are holding p->pi_lock already */
4170 p->prio = rt_mutex_getprio(p);
4171 set_load_weight(p);
4172 }
4173
4174 /**
4175 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4176 * @p: the task in question.
4177 * @policy: new policy.
4178 * @param: structure containing the new RT priority.
4179 *
4180 * NOTE that the task may be already dead.
4181 */
4182 int sched_setscheduler(struct task_struct *p, int policy,
4183 struct sched_param *param)
4184 {
4185 int retval, oldprio, oldpolicy = -1, on_rq;
4186 unsigned long flags;
4187 struct rq *rq;
4188
4189 /* may grab non-irq protected spin_locks */
4190 BUG_ON(in_interrupt());
4191 recheck:
4192 /* double check policy once rq lock held */
4193 if (policy < 0)
4194 policy = oldpolicy = p->policy;
4195 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4196 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4197 policy != SCHED_IDLE)
4198 return -EINVAL;
4199 /*
4200 * Valid priorities for SCHED_FIFO and SCHED_RR are
4201 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4202 * SCHED_BATCH and SCHED_IDLE is 0.
4203 */
4204 if (param->sched_priority < 0 ||
4205 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4206 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4207 return -EINVAL;
4208 if (rt_policy(policy) != (param->sched_priority != 0))
4209 return -EINVAL;
4210
4211 /*
4212 * Allow unprivileged RT tasks to decrease priority:
4213 */
4214 if (!capable(CAP_SYS_NICE)) {
4215 if (rt_policy(policy)) {
4216 unsigned long rlim_rtprio;
4217
4218 if (!lock_task_sighand(p, &flags))
4219 return -ESRCH;
4220 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4221 unlock_task_sighand(p, &flags);
4222
4223 /* can't set/change the rt policy */
4224 if (policy != p->policy && !rlim_rtprio)
4225 return -EPERM;
4226
4227 /* can't increase priority */
4228 if (param->sched_priority > p->rt_priority &&
4229 param->sched_priority > rlim_rtprio)
4230 return -EPERM;
4231 }
4232 /*
4233 * Like positive nice levels, dont allow tasks to
4234 * move out of SCHED_IDLE either:
4235 */
4236 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4237 return -EPERM;
4238
4239 /* can't change other user's priorities */
4240 if ((current->euid != p->euid) &&
4241 (current->euid != p->uid))
4242 return -EPERM;
4243 }
4244
4245 retval = security_task_setscheduler(p, policy, param);
4246 if (retval)
4247 return retval;
4248 /*
4249 * make sure no PI-waiters arrive (or leave) while we are
4250 * changing the priority of the task:
4251 */
4252 spin_lock_irqsave(&p->pi_lock, flags);
4253 /*
4254 * To be able to change p->policy safely, the apropriate
4255 * runqueue lock must be held.
4256 */
4257 rq = __task_rq_lock(p);
4258 /* recheck policy now with rq lock held */
4259 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4260 policy = oldpolicy = -1;
4261 __task_rq_unlock(rq);
4262 spin_unlock_irqrestore(&p->pi_lock, flags);
4263 goto recheck;
4264 }
4265 update_rq_clock(rq);
4266 on_rq = p->se.on_rq;
4267 if (on_rq)
4268 deactivate_task(rq, p, 0);
4269 oldprio = p->prio;
4270 __setscheduler(rq, p, policy, param->sched_priority);
4271 if (on_rq) {
4272 activate_task(rq, p, 0);
4273 /*
4274 * Reschedule if we are currently running on this runqueue and
4275 * our priority decreased, or if we are not currently running on
4276 * this runqueue and our priority is higher than the current's
4277 */
4278 if (task_running(rq, p)) {
4279 if (p->prio > oldprio)
4280 resched_task(rq->curr);
4281 } else {
4282 check_preempt_curr(rq, p);
4283 }
4284 }
4285 __task_rq_unlock(rq);
4286 spin_unlock_irqrestore(&p->pi_lock, flags);
4287
4288 rt_mutex_adjust_pi(p);
4289
4290 return 0;
4291 }
4292 EXPORT_SYMBOL_GPL(sched_setscheduler);
4293
4294 static int
4295 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4296 {
4297 struct sched_param lparam;
4298 struct task_struct *p;
4299 int retval;
4300
4301 if (!param || pid < 0)
4302 return -EINVAL;
4303 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4304 return -EFAULT;
4305
4306 rcu_read_lock();
4307 retval = -ESRCH;
4308 p = find_process_by_pid(pid);
4309 if (p != NULL)
4310 retval = sched_setscheduler(p, policy, &lparam);
4311 rcu_read_unlock();
4312
4313 return retval;
4314 }
4315
4316 /**
4317 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4318 * @pid: the pid in question.
4319 * @policy: new policy.
4320 * @param: structure containing the new RT priority.
4321 */
4322 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4323 struct sched_param __user *param)
4324 {
4325 /* negative values for policy are not valid */
4326 if (policy < 0)
4327 return -EINVAL;
4328
4329 return do_sched_setscheduler(pid, policy, param);
4330 }
4331
4332 /**
4333 * sys_sched_setparam - set/change the RT priority of a thread
4334 * @pid: the pid in question.
4335 * @param: structure containing the new RT priority.
4336 */
4337 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4338 {
4339 return do_sched_setscheduler(pid, -1, param);
4340 }
4341
4342 /**
4343 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4344 * @pid: the pid in question.
4345 */
4346 asmlinkage long sys_sched_getscheduler(pid_t pid)
4347 {
4348 struct task_struct *p;
4349 int retval = -EINVAL;
4350
4351 if (pid < 0)
4352 goto out_nounlock;
4353
4354 retval = -ESRCH;
4355 read_lock(&tasklist_lock);
4356 p = find_process_by_pid(pid);
4357 if (p) {
4358 retval = security_task_getscheduler(p);
4359 if (!retval)
4360 retval = p->policy;
4361 }
4362 read_unlock(&tasklist_lock);
4363
4364 out_nounlock:
4365 return retval;
4366 }
4367
4368 /**
4369 * sys_sched_getscheduler - get the RT priority of a thread
4370 * @pid: the pid in question.
4371 * @param: structure containing the RT priority.
4372 */
4373 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4374 {
4375 struct sched_param lp;
4376 struct task_struct *p;
4377 int retval = -EINVAL;
4378
4379 if (!param || pid < 0)
4380 goto out_nounlock;
4381
4382 read_lock(&tasklist_lock);
4383 p = find_process_by_pid(pid);
4384 retval = -ESRCH;
4385 if (!p)
4386 goto out_unlock;
4387
4388 retval = security_task_getscheduler(p);
4389 if (retval)
4390 goto out_unlock;
4391
4392 lp.sched_priority = p->rt_priority;
4393 read_unlock(&tasklist_lock);
4394
4395 /*
4396 * This one might sleep, we cannot do it with a spinlock held ...
4397 */
4398 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4399
4400 out_nounlock:
4401 return retval;
4402
4403 out_unlock:
4404 read_unlock(&tasklist_lock);
4405 return retval;
4406 }
4407
4408 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4409 {
4410 cpumask_t cpus_allowed;
4411 struct task_struct *p;
4412 int retval;
4413
4414 mutex_lock(&sched_hotcpu_mutex);
4415 read_lock(&tasklist_lock);
4416
4417 p = find_process_by_pid(pid);
4418 if (!p) {
4419 read_unlock(&tasklist_lock);
4420 mutex_unlock(&sched_hotcpu_mutex);
4421 return -ESRCH;
4422 }
4423
4424 /*
4425 * It is not safe to call set_cpus_allowed with the
4426 * tasklist_lock held. We will bump the task_struct's
4427 * usage count and then drop tasklist_lock.
4428 */
4429 get_task_struct(p);
4430 read_unlock(&tasklist_lock);
4431
4432 retval = -EPERM;
4433 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4434 !capable(CAP_SYS_NICE))
4435 goto out_unlock;
4436
4437 retval = security_task_setscheduler(p, 0, NULL);
4438 if (retval)
4439 goto out_unlock;
4440
4441 cpus_allowed = cpuset_cpus_allowed(p);
4442 cpus_and(new_mask, new_mask, cpus_allowed);
4443 retval = set_cpus_allowed(p, new_mask);
4444
4445 out_unlock:
4446 put_task_struct(p);
4447 mutex_unlock(&sched_hotcpu_mutex);
4448 return retval;
4449 }
4450
4451 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4452 cpumask_t *new_mask)
4453 {
4454 if (len < sizeof(cpumask_t)) {
4455 memset(new_mask, 0, sizeof(cpumask_t));
4456 } else if (len > sizeof(cpumask_t)) {
4457 len = sizeof(cpumask_t);
4458 }
4459 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4460 }
4461
4462 /**
4463 * sys_sched_setaffinity - set the cpu affinity of a process
4464 * @pid: pid of the process
4465 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4466 * @user_mask_ptr: user-space pointer to the new cpu mask
4467 */
4468 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4469 unsigned long __user *user_mask_ptr)
4470 {
4471 cpumask_t new_mask;
4472 int retval;
4473
4474 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4475 if (retval)
4476 return retval;
4477
4478 return sched_setaffinity(pid, new_mask);
4479 }
4480
4481 /*
4482 * Represents all cpu's present in the system
4483 * In systems capable of hotplug, this map could dynamically grow
4484 * as new cpu's are detected in the system via any platform specific
4485 * method, such as ACPI for e.g.
4486 */
4487
4488 cpumask_t cpu_present_map __read_mostly;
4489 EXPORT_SYMBOL(cpu_present_map);
4490
4491 #ifndef CONFIG_SMP
4492 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4493 EXPORT_SYMBOL(cpu_online_map);
4494
4495 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4496 EXPORT_SYMBOL(cpu_possible_map);
4497 #endif
4498
4499 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4500 {
4501 struct task_struct *p;
4502 int retval;
4503
4504 mutex_lock(&sched_hotcpu_mutex);
4505 read_lock(&tasklist_lock);
4506
4507 retval = -ESRCH;
4508 p = find_process_by_pid(pid);
4509 if (!p)
4510 goto out_unlock;
4511
4512 retval = security_task_getscheduler(p);
4513 if (retval)
4514 goto out_unlock;
4515
4516 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4517
4518 out_unlock:
4519 read_unlock(&tasklist_lock);
4520 mutex_unlock(&sched_hotcpu_mutex);
4521
4522 return retval;
4523 }
4524
4525 /**
4526 * sys_sched_getaffinity - get the cpu affinity of a process
4527 * @pid: pid of the process
4528 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4529 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4530 */
4531 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4532 unsigned long __user *user_mask_ptr)
4533 {
4534 int ret;
4535 cpumask_t mask;
4536
4537 if (len < sizeof(cpumask_t))
4538 return -EINVAL;
4539
4540 ret = sched_getaffinity(pid, &mask);
4541 if (ret < 0)
4542 return ret;
4543
4544 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4545 return -EFAULT;
4546
4547 return sizeof(cpumask_t);
4548 }
4549
4550 /**
4551 * sys_sched_yield - yield the current processor to other threads.
4552 *
4553 * This function yields the current CPU to other tasks. If there are no
4554 * other threads running on this CPU then this function will return.
4555 */
4556 asmlinkage long sys_sched_yield(void)
4557 {
4558 struct rq *rq = this_rq_lock();
4559
4560 schedstat_inc(rq, yld_cnt);
4561 if (unlikely(rq->nr_running == 1))
4562 schedstat_inc(rq, yld_act_empty);
4563 else
4564 current->sched_class->yield_task(rq, current);
4565
4566 /*
4567 * Since we are going to call schedule() anyway, there's
4568 * no need to preempt or enable interrupts:
4569 */
4570 __release(rq->lock);
4571 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4572 _raw_spin_unlock(&rq->lock);
4573 preempt_enable_no_resched();
4574
4575 schedule();
4576
4577 return 0;
4578 }
4579
4580 static void __cond_resched(void)
4581 {
4582 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4583 __might_sleep(__FILE__, __LINE__);
4584 #endif
4585 /*
4586 * The BKS might be reacquired before we have dropped
4587 * PREEMPT_ACTIVE, which could trigger a second
4588 * cond_resched() call.
4589 */
4590 do {
4591 add_preempt_count(PREEMPT_ACTIVE);
4592 schedule();
4593 sub_preempt_count(PREEMPT_ACTIVE);
4594 } while (need_resched());
4595 }
4596
4597 int __sched cond_resched(void)
4598 {
4599 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4600 system_state == SYSTEM_RUNNING) {
4601 __cond_resched();
4602 return 1;
4603 }
4604 return 0;
4605 }
4606 EXPORT_SYMBOL(cond_resched);
4607
4608 /*
4609 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4610 * call schedule, and on return reacquire the lock.
4611 *
4612 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4613 * operations here to prevent schedule() from being called twice (once via
4614 * spin_unlock(), once by hand).
4615 */
4616 int cond_resched_lock(spinlock_t *lock)
4617 {
4618 int ret = 0;
4619
4620 if (need_lockbreak(lock)) {
4621 spin_unlock(lock);
4622 cpu_relax();
4623 ret = 1;
4624 spin_lock(lock);
4625 }
4626 if (need_resched() && system_state == SYSTEM_RUNNING) {
4627 spin_release(&lock->dep_map, 1, _THIS_IP_);
4628 _raw_spin_unlock(lock);
4629 preempt_enable_no_resched();
4630 __cond_resched();
4631 ret = 1;
4632 spin_lock(lock);
4633 }
4634 return ret;
4635 }
4636 EXPORT_SYMBOL(cond_resched_lock);
4637
4638 int __sched cond_resched_softirq(void)
4639 {
4640 BUG_ON(!in_softirq());
4641
4642 if (need_resched() && system_state == SYSTEM_RUNNING) {
4643 local_bh_enable();
4644 __cond_resched();
4645 local_bh_disable();
4646 return 1;
4647 }
4648 return 0;
4649 }
4650 EXPORT_SYMBOL(cond_resched_softirq);
4651
4652 /**
4653 * yield - yield the current processor to other threads.
4654 *
4655 * This is a shortcut for kernel-space yielding - it marks the
4656 * thread runnable and calls sys_sched_yield().
4657 */
4658 void __sched yield(void)
4659 {
4660 set_current_state(TASK_RUNNING);
4661 sys_sched_yield();
4662 }
4663 EXPORT_SYMBOL(yield);
4664
4665 /*
4666 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4667 * that process accounting knows that this is a task in IO wait state.
4668 *
4669 * But don't do that if it is a deliberate, throttling IO wait (this task
4670 * has set its backing_dev_info: the queue against which it should throttle)
4671 */
4672 void __sched io_schedule(void)
4673 {
4674 struct rq *rq = &__raw_get_cpu_var(runqueues);
4675
4676 delayacct_blkio_start();
4677 atomic_inc(&rq->nr_iowait);
4678 schedule();
4679 atomic_dec(&rq->nr_iowait);
4680 delayacct_blkio_end();
4681 }
4682 EXPORT_SYMBOL(io_schedule);
4683
4684 long __sched io_schedule_timeout(long timeout)
4685 {
4686 struct rq *rq = &__raw_get_cpu_var(runqueues);
4687 long ret;
4688
4689 delayacct_blkio_start();
4690 atomic_inc(&rq->nr_iowait);
4691 ret = schedule_timeout(timeout);
4692 atomic_dec(&rq->nr_iowait);
4693 delayacct_blkio_end();
4694 return ret;
4695 }
4696
4697 /**
4698 * sys_sched_get_priority_max - return maximum RT priority.
4699 * @policy: scheduling class.
4700 *
4701 * this syscall returns the maximum rt_priority that can be used
4702 * by a given scheduling class.
4703 */
4704 asmlinkage long sys_sched_get_priority_max(int policy)
4705 {
4706 int ret = -EINVAL;
4707
4708 switch (policy) {
4709 case SCHED_FIFO:
4710 case SCHED_RR:
4711 ret = MAX_USER_RT_PRIO-1;
4712 break;
4713 case SCHED_NORMAL:
4714 case SCHED_BATCH:
4715 case SCHED_IDLE:
4716 ret = 0;
4717 break;
4718 }
4719 return ret;
4720 }
4721
4722 /**
4723 * sys_sched_get_priority_min - return minimum RT priority.
4724 * @policy: scheduling class.
4725 *
4726 * this syscall returns the minimum rt_priority that can be used
4727 * by a given scheduling class.
4728 */
4729 asmlinkage long sys_sched_get_priority_min(int policy)
4730 {
4731 int ret = -EINVAL;
4732
4733 switch (policy) {
4734 case SCHED_FIFO:
4735 case SCHED_RR:
4736 ret = 1;
4737 break;
4738 case SCHED_NORMAL:
4739 case SCHED_BATCH:
4740 case SCHED_IDLE:
4741 ret = 0;
4742 }
4743 return ret;
4744 }
4745
4746 /**
4747 * sys_sched_rr_get_interval - return the default timeslice of a process.
4748 * @pid: pid of the process.
4749 * @interval: userspace pointer to the timeslice value.
4750 *
4751 * this syscall writes the default timeslice value of a given process
4752 * into the user-space timespec buffer. A value of '0' means infinity.
4753 */
4754 asmlinkage
4755 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4756 {
4757 struct task_struct *p;
4758 int retval = -EINVAL;
4759 struct timespec t;
4760
4761 if (pid < 0)
4762 goto out_nounlock;
4763
4764 retval = -ESRCH;
4765 read_lock(&tasklist_lock);
4766 p = find_process_by_pid(pid);
4767 if (!p)
4768 goto out_unlock;
4769
4770 retval = security_task_getscheduler(p);
4771 if (retval)
4772 goto out_unlock;
4773
4774 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4775 0 : static_prio_timeslice(p->static_prio), &t);
4776 read_unlock(&tasklist_lock);
4777 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4778 out_nounlock:
4779 return retval;
4780 out_unlock:
4781 read_unlock(&tasklist_lock);
4782 return retval;
4783 }
4784
4785 static const char stat_nam[] = "RSDTtZX";
4786
4787 static void show_task(struct task_struct *p)
4788 {
4789 unsigned long free = 0;
4790 unsigned state;
4791
4792 state = p->state ? __ffs(p->state) + 1 : 0;
4793 printk("%-13.13s %c", p->comm,
4794 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4795 #if BITS_PER_LONG == 32
4796 if (state == TASK_RUNNING)
4797 printk(" running ");
4798 else
4799 printk(" %08lx ", thread_saved_pc(p));
4800 #else
4801 if (state == TASK_RUNNING)
4802 printk(" running task ");
4803 else
4804 printk(" %016lx ", thread_saved_pc(p));
4805 #endif
4806 #ifdef CONFIG_DEBUG_STACK_USAGE
4807 {
4808 unsigned long *n = end_of_stack(p);
4809 while (!*n)
4810 n++;
4811 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4812 }
4813 #endif
4814 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4815
4816 if (state != TASK_RUNNING)
4817 show_stack(p, NULL);
4818 }
4819
4820 void show_state_filter(unsigned long state_filter)
4821 {
4822 struct task_struct *g, *p;
4823
4824 #if BITS_PER_LONG == 32
4825 printk(KERN_INFO
4826 " task PC stack pid father\n");
4827 #else
4828 printk(KERN_INFO
4829 " task PC stack pid father\n");
4830 #endif
4831 read_lock(&tasklist_lock);
4832 do_each_thread(g, p) {
4833 /*
4834 * reset the NMI-timeout, listing all files on a slow
4835 * console might take alot of time:
4836 */
4837 touch_nmi_watchdog();
4838 if (!state_filter || (p->state & state_filter))
4839 show_task(p);
4840 } while_each_thread(g, p);
4841
4842 touch_all_softlockup_watchdogs();
4843
4844 #ifdef CONFIG_SCHED_DEBUG
4845 sysrq_sched_debug_show();
4846 #endif
4847 read_unlock(&tasklist_lock);
4848 /*
4849 * Only show locks if all tasks are dumped:
4850 */
4851 if (state_filter == -1)
4852 debug_show_all_locks();
4853 }
4854
4855 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4856 {
4857 idle->sched_class = &idle_sched_class;
4858 }
4859
4860 /**
4861 * init_idle - set up an idle thread for a given CPU
4862 * @idle: task in question
4863 * @cpu: cpu the idle task belongs to
4864 *
4865 * NOTE: this function does not set the idle thread's NEED_RESCHED
4866 * flag, to make booting more robust.
4867 */
4868 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4869 {
4870 struct rq *rq = cpu_rq(cpu);
4871 unsigned long flags;
4872
4873 __sched_fork(idle);
4874 idle->se.exec_start = sched_clock();
4875
4876 idle->prio = idle->normal_prio = MAX_PRIO;
4877 idle->cpus_allowed = cpumask_of_cpu(cpu);
4878 __set_task_cpu(idle, cpu);
4879
4880 spin_lock_irqsave(&rq->lock, flags);
4881 rq->curr = rq->idle = idle;
4882 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4883 idle->oncpu = 1;
4884 #endif
4885 spin_unlock_irqrestore(&rq->lock, flags);
4886
4887 /* Set the preempt count _outside_ the spinlocks! */
4888 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4889 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4890 #else
4891 task_thread_info(idle)->preempt_count = 0;
4892 #endif
4893 /*
4894 * The idle tasks have their own, simple scheduling class:
4895 */
4896 idle->sched_class = &idle_sched_class;
4897 }
4898
4899 /*
4900 * In a system that switches off the HZ timer nohz_cpu_mask
4901 * indicates which cpus entered this state. This is used
4902 * in the rcu update to wait only for active cpus. For system
4903 * which do not switch off the HZ timer nohz_cpu_mask should
4904 * always be CPU_MASK_NONE.
4905 */
4906 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4907
4908 /*
4909 * Increase the granularity value when there are more CPUs,
4910 * because with more CPUs the 'effective latency' as visible
4911 * to users decreases. But the relationship is not linear,
4912 * so pick a second-best guess by going with the log2 of the
4913 * number of CPUs.
4914 *
4915 * This idea comes from the SD scheduler of Con Kolivas:
4916 */
4917 static inline void sched_init_granularity(void)
4918 {
4919 unsigned int factor = 1 + ilog2(num_online_cpus());
4920 const unsigned long gran_limit = 100000000;
4921
4922 sysctl_sched_granularity *= factor;
4923 if (sysctl_sched_granularity > gran_limit)
4924 sysctl_sched_granularity = gran_limit;
4925
4926 sysctl_sched_runtime_limit = sysctl_sched_granularity * 5;
4927 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4928 }
4929
4930 #ifdef CONFIG_SMP
4931 /*
4932 * This is how migration works:
4933 *
4934 * 1) we queue a struct migration_req structure in the source CPU's
4935 * runqueue and wake up that CPU's migration thread.
4936 * 2) we down() the locked semaphore => thread blocks.
4937 * 3) migration thread wakes up (implicitly it forces the migrated
4938 * thread off the CPU)
4939 * 4) it gets the migration request and checks whether the migrated
4940 * task is still in the wrong runqueue.
4941 * 5) if it's in the wrong runqueue then the migration thread removes
4942 * it and puts it into the right queue.
4943 * 6) migration thread up()s the semaphore.
4944 * 7) we wake up and the migration is done.
4945 */
4946
4947 /*
4948 * Change a given task's CPU affinity. Migrate the thread to a
4949 * proper CPU and schedule it away if the CPU it's executing on
4950 * is removed from the allowed bitmask.
4951 *
4952 * NOTE: the caller must have a valid reference to the task, the
4953 * task must not exit() & deallocate itself prematurely. The
4954 * call is not atomic; no spinlocks may be held.
4955 */
4956 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4957 {
4958 struct migration_req req;
4959 unsigned long flags;
4960 struct rq *rq;
4961 int ret = 0;
4962
4963 rq = task_rq_lock(p, &flags);
4964 if (!cpus_intersects(new_mask, cpu_online_map)) {
4965 ret = -EINVAL;
4966 goto out;
4967 }
4968
4969 p->cpus_allowed = new_mask;
4970 /* Can the task run on the task's current CPU? If so, we're done */
4971 if (cpu_isset(task_cpu(p), new_mask))
4972 goto out;
4973
4974 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4975 /* Need help from migration thread: drop lock and wait. */
4976 task_rq_unlock(rq, &flags);
4977 wake_up_process(rq->migration_thread);
4978 wait_for_completion(&req.done);
4979 tlb_migrate_finish(p->mm);
4980 return 0;
4981 }
4982 out:
4983 task_rq_unlock(rq, &flags);
4984
4985 return ret;
4986 }
4987 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4988
4989 /*
4990 * Move (not current) task off this cpu, onto dest cpu. We're doing
4991 * this because either it can't run here any more (set_cpus_allowed()
4992 * away from this CPU, or CPU going down), or because we're
4993 * attempting to rebalance this task on exec (sched_exec).
4994 *
4995 * So we race with normal scheduler movements, but that's OK, as long
4996 * as the task is no longer on this CPU.
4997 *
4998 * Returns non-zero if task was successfully migrated.
4999 */
5000 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5001 {
5002 struct rq *rq_dest, *rq_src;
5003 int ret = 0, on_rq;
5004
5005 if (unlikely(cpu_is_offline(dest_cpu)))
5006 return ret;
5007
5008 rq_src = cpu_rq(src_cpu);
5009 rq_dest = cpu_rq(dest_cpu);
5010
5011 double_rq_lock(rq_src, rq_dest);
5012 /* Already moved. */
5013 if (task_cpu(p) != src_cpu)
5014 goto out;
5015 /* Affinity changed (again). */
5016 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5017 goto out;
5018
5019 on_rq = p->se.on_rq;
5020 if (on_rq)
5021 deactivate_task(rq_src, p, 0);
5022
5023 set_task_cpu(p, dest_cpu);
5024 if (on_rq) {
5025 activate_task(rq_dest, p, 0);
5026 check_preempt_curr(rq_dest, p);
5027 }
5028 ret = 1;
5029 out:
5030 double_rq_unlock(rq_src, rq_dest);
5031 return ret;
5032 }
5033
5034 /*
5035 * migration_thread - this is a highprio system thread that performs
5036 * thread migration by bumping thread off CPU then 'pushing' onto
5037 * another runqueue.
5038 */
5039 static int migration_thread(void *data)
5040 {
5041 int cpu = (long)data;
5042 struct rq *rq;
5043
5044 rq = cpu_rq(cpu);
5045 BUG_ON(rq->migration_thread != current);
5046
5047 set_current_state(TASK_INTERRUPTIBLE);
5048 while (!kthread_should_stop()) {
5049 struct migration_req *req;
5050 struct list_head *head;
5051
5052 spin_lock_irq(&rq->lock);
5053
5054 if (cpu_is_offline(cpu)) {
5055 spin_unlock_irq(&rq->lock);
5056 goto wait_to_die;
5057 }
5058
5059 if (rq->active_balance) {
5060 active_load_balance(rq, cpu);
5061 rq->active_balance = 0;
5062 }
5063
5064 head = &rq->migration_queue;
5065
5066 if (list_empty(head)) {
5067 spin_unlock_irq(&rq->lock);
5068 schedule();
5069 set_current_state(TASK_INTERRUPTIBLE);
5070 continue;
5071 }
5072 req = list_entry(head->next, struct migration_req, list);
5073 list_del_init(head->next);
5074
5075 spin_unlock(&rq->lock);
5076 __migrate_task(req->task, cpu, req->dest_cpu);
5077 local_irq_enable();
5078
5079 complete(&req->done);
5080 }
5081 __set_current_state(TASK_RUNNING);
5082 return 0;
5083
5084 wait_to_die:
5085 /* Wait for kthread_stop */
5086 set_current_state(TASK_INTERRUPTIBLE);
5087 while (!kthread_should_stop()) {
5088 schedule();
5089 set_current_state(TASK_INTERRUPTIBLE);
5090 }
5091 __set_current_state(TASK_RUNNING);
5092 return 0;
5093 }
5094
5095 #ifdef CONFIG_HOTPLUG_CPU
5096 /*
5097 * Figure out where task on dead CPU should go, use force if neccessary.
5098 * NOTE: interrupts should be disabled by the caller
5099 */
5100 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5101 {
5102 unsigned long flags;
5103 cpumask_t mask;
5104 struct rq *rq;
5105 int dest_cpu;
5106
5107 restart:
5108 /* On same node? */
5109 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5110 cpus_and(mask, mask, p->cpus_allowed);
5111 dest_cpu = any_online_cpu(mask);
5112
5113 /* On any allowed CPU? */
5114 if (dest_cpu == NR_CPUS)
5115 dest_cpu = any_online_cpu(p->cpus_allowed);
5116
5117 /* No more Mr. Nice Guy. */
5118 if (dest_cpu == NR_CPUS) {
5119 rq = task_rq_lock(p, &flags);
5120 cpus_setall(p->cpus_allowed);
5121 dest_cpu = any_online_cpu(p->cpus_allowed);
5122 task_rq_unlock(rq, &flags);
5123
5124 /*
5125 * Don't tell them about moving exiting tasks or
5126 * kernel threads (both mm NULL), since they never
5127 * leave kernel.
5128 */
5129 if (p->mm && printk_ratelimit())
5130 printk(KERN_INFO "process %d (%s) no "
5131 "longer affine to cpu%d\n",
5132 p->pid, p->comm, dead_cpu);
5133 }
5134 if (!__migrate_task(p, dead_cpu, dest_cpu))
5135 goto restart;
5136 }
5137
5138 /*
5139 * While a dead CPU has no uninterruptible tasks queued at this point,
5140 * it might still have a nonzero ->nr_uninterruptible counter, because
5141 * for performance reasons the counter is not stricly tracking tasks to
5142 * their home CPUs. So we just add the counter to another CPU's counter,
5143 * to keep the global sum constant after CPU-down:
5144 */
5145 static void migrate_nr_uninterruptible(struct rq *rq_src)
5146 {
5147 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5148 unsigned long flags;
5149
5150 local_irq_save(flags);
5151 double_rq_lock(rq_src, rq_dest);
5152 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5153 rq_src->nr_uninterruptible = 0;
5154 double_rq_unlock(rq_src, rq_dest);
5155 local_irq_restore(flags);
5156 }
5157
5158 /* Run through task list and migrate tasks from the dead cpu. */
5159 static void migrate_live_tasks(int src_cpu)
5160 {
5161 struct task_struct *p, *t;
5162
5163 write_lock_irq(&tasklist_lock);
5164
5165 do_each_thread(t, p) {
5166 if (p == current)
5167 continue;
5168
5169 if (task_cpu(p) == src_cpu)
5170 move_task_off_dead_cpu(src_cpu, p);
5171 } while_each_thread(t, p);
5172
5173 write_unlock_irq(&tasklist_lock);
5174 }
5175
5176 /*
5177 * Schedules idle task to be the next runnable task on current CPU.
5178 * It does so by boosting its priority to highest possible and adding it to
5179 * the _front_ of the runqueue. Used by CPU offline code.
5180 */
5181 void sched_idle_next(void)
5182 {
5183 int this_cpu = smp_processor_id();
5184 struct rq *rq = cpu_rq(this_cpu);
5185 struct task_struct *p = rq->idle;
5186 unsigned long flags;
5187
5188 /* cpu has to be offline */
5189 BUG_ON(cpu_online(this_cpu));
5190
5191 /*
5192 * Strictly not necessary since rest of the CPUs are stopped by now
5193 * and interrupts disabled on the current cpu.
5194 */
5195 spin_lock_irqsave(&rq->lock, flags);
5196
5197 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5198
5199 /* Add idle task to the _front_ of its priority queue: */
5200 activate_idle_task(p, rq);
5201
5202 spin_unlock_irqrestore(&rq->lock, flags);
5203 }
5204
5205 /*
5206 * Ensures that the idle task is using init_mm right before its cpu goes
5207 * offline.
5208 */
5209 void idle_task_exit(void)
5210 {
5211 struct mm_struct *mm = current->active_mm;
5212
5213 BUG_ON(cpu_online(smp_processor_id()));
5214
5215 if (mm != &init_mm)
5216 switch_mm(mm, &init_mm, current);
5217 mmdrop(mm);
5218 }
5219
5220 /* called under rq->lock with disabled interrupts */
5221 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5222 {
5223 struct rq *rq = cpu_rq(dead_cpu);
5224
5225 /* Must be exiting, otherwise would be on tasklist. */
5226 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5227
5228 /* Cannot have done final schedule yet: would have vanished. */
5229 BUG_ON(p->state == TASK_DEAD);
5230
5231 get_task_struct(p);
5232
5233 /*
5234 * Drop lock around migration; if someone else moves it,
5235 * that's OK. No task can be added to this CPU, so iteration is
5236 * fine.
5237 * NOTE: interrupts should be left disabled --dev@
5238 */
5239 spin_unlock(&rq->lock);
5240 move_task_off_dead_cpu(dead_cpu, p);
5241 spin_lock(&rq->lock);
5242
5243 put_task_struct(p);
5244 }
5245
5246 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5247 static void migrate_dead_tasks(unsigned int dead_cpu)
5248 {
5249 struct rq *rq = cpu_rq(dead_cpu);
5250 struct task_struct *next;
5251
5252 for ( ; ; ) {
5253 if (!rq->nr_running)
5254 break;
5255 update_rq_clock(rq);
5256 next = pick_next_task(rq, rq->curr);
5257 if (!next)
5258 break;
5259 migrate_dead(dead_cpu, next);
5260
5261 }
5262 }
5263 #endif /* CONFIG_HOTPLUG_CPU */
5264
5265 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5266
5267 static struct ctl_table sd_ctl_dir[] = {
5268 {
5269 .procname = "sched_domain",
5270 .mode = 0555,
5271 },
5272 {0,},
5273 };
5274
5275 static struct ctl_table sd_ctl_root[] = {
5276 {
5277 .ctl_name = CTL_KERN,
5278 .procname = "kernel",
5279 .mode = 0555,
5280 .child = sd_ctl_dir,
5281 },
5282 {0,},
5283 };
5284
5285 static struct ctl_table *sd_alloc_ctl_entry(int n)
5286 {
5287 struct ctl_table *entry =
5288 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5289
5290 BUG_ON(!entry);
5291 memset(entry, 0, n * sizeof(struct ctl_table));
5292
5293 return entry;
5294 }
5295
5296 static void
5297 set_table_entry(struct ctl_table *entry,
5298 const char *procname, void *data, int maxlen,
5299 mode_t mode, proc_handler *proc_handler)
5300 {
5301 entry->procname = procname;
5302 entry->data = data;
5303 entry->maxlen = maxlen;
5304 entry->mode = mode;
5305 entry->proc_handler = proc_handler;
5306 }
5307
5308 static struct ctl_table *
5309 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5310 {
5311 struct ctl_table *table = sd_alloc_ctl_entry(14);
5312
5313 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5314 sizeof(long), 0644, proc_doulongvec_minmax);
5315 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5316 sizeof(long), 0644, proc_doulongvec_minmax);
5317 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5318 sizeof(int), 0644, proc_dointvec_minmax);
5319 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5320 sizeof(int), 0644, proc_dointvec_minmax);
5321 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5322 sizeof(int), 0644, proc_dointvec_minmax);
5323 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5324 sizeof(int), 0644, proc_dointvec_minmax);
5325 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5326 sizeof(int), 0644, proc_dointvec_minmax);
5327 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5328 sizeof(int), 0644, proc_dointvec_minmax);
5329 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5330 sizeof(int), 0644, proc_dointvec_minmax);
5331 set_table_entry(&table[10], "cache_nice_tries",
5332 &sd->cache_nice_tries,
5333 sizeof(int), 0644, proc_dointvec_minmax);
5334 set_table_entry(&table[12], "flags", &sd->flags,
5335 sizeof(int), 0644, proc_dointvec_minmax);
5336
5337 return table;
5338 }
5339
5340 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5341 {
5342 struct ctl_table *entry, *table;
5343 struct sched_domain *sd;
5344 int domain_num = 0, i;
5345 char buf[32];
5346
5347 for_each_domain(cpu, sd)
5348 domain_num++;
5349 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5350
5351 i = 0;
5352 for_each_domain(cpu, sd) {
5353 snprintf(buf, 32, "domain%d", i);
5354 entry->procname = kstrdup(buf, GFP_KERNEL);
5355 entry->mode = 0555;
5356 entry->child = sd_alloc_ctl_domain_table(sd);
5357 entry++;
5358 i++;
5359 }
5360 return table;
5361 }
5362
5363 static struct ctl_table_header *sd_sysctl_header;
5364 static void init_sched_domain_sysctl(void)
5365 {
5366 int i, cpu_num = num_online_cpus();
5367 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5368 char buf[32];
5369
5370 sd_ctl_dir[0].child = entry;
5371
5372 for (i = 0; i < cpu_num; i++, entry++) {
5373 snprintf(buf, 32, "cpu%d", i);
5374 entry->procname = kstrdup(buf, GFP_KERNEL);
5375 entry->mode = 0555;
5376 entry->child = sd_alloc_ctl_cpu_table(i);
5377 }
5378 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5379 }
5380 #else
5381 static void init_sched_domain_sysctl(void)
5382 {
5383 }
5384 #endif
5385
5386 /*
5387 * migration_call - callback that gets triggered when a CPU is added.
5388 * Here we can start up the necessary migration thread for the new CPU.
5389 */
5390 static int __cpuinit
5391 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5392 {
5393 struct task_struct *p;
5394 int cpu = (long)hcpu;
5395 unsigned long flags;
5396 struct rq *rq;
5397
5398 switch (action) {
5399 case CPU_LOCK_ACQUIRE:
5400 mutex_lock(&sched_hotcpu_mutex);
5401 break;
5402
5403 case CPU_UP_PREPARE:
5404 case CPU_UP_PREPARE_FROZEN:
5405 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5406 if (IS_ERR(p))
5407 return NOTIFY_BAD;
5408 kthread_bind(p, cpu);
5409 /* Must be high prio: stop_machine expects to yield to it. */
5410 rq = task_rq_lock(p, &flags);
5411 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5412 task_rq_unlock(rq, &flags);
5413 cpu_rq(cpu)->migration_thread = p;
5414 break;
5415
5416 case CPU_ONLINE:
5417 case CPU_ONLINE_FROZEN:
5418 /* Strictly unneccessary, as first user will wake it. */
5419 wake_up_process(cpu_rq(cpu)->migration_thread);
5420 break;
5421
5422 #ifdef CONFIG_HOTPLUG_CPU
5423 case CPU_UP_CANCELED:
5424 case CPU_UP_CANCELED_FROZEN:
5425 if (!cpu_rq(cpu)->migration_thread)
5426 break;
5427 /* Unbind it from offline cpu so it can run. Fall thru. */
5428 kthread_bind(cpu_rq(cpu)->migration_thread,
5429 any_online_cpu(cpu_online_map));
5430 kthread_stop(cpu_rq(cpu)->migration_thread);
5431 cpu_rq(cpu)->migration_thread = NULL;
5432 break;
5433
5434 case CPU_DEAD:
5435 case CPU_DEAD_FROZEN:
5436 migrate_live_tasks(cpu);
5437 rq = cpu_rq(cpu);
5438 kthread_stop(rq->migration_thread);
5439 rq->migration_thread = NULL;
5440 /* Idle task back to normal (off runqueue, low prio) */
5441 rq = task_rq_lock(rq->idle, &flags);
5442 update_rq_clock(rq);
5443 deactivate_task(rq, rq->idle, 0);
5444 rq->idle->static_prio = MAX_PRIO;
5445 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5446 rq->idle->sched_class = &idle_sched_class;
5447 migrate_dead_tasks(cpu);
5448 task_rq_unlock(rq, &flags);
5449 migrate_nr_uninterruptible(rq);
5450 BUG_ON(rq->nr_running != 0);
5451
5452 /* No need to migrate the tasks: it was best-effort if
5453 * they didn't take sched_hotcpu_mutex. Just wake up
5454 * the requestors. */
5455 spin_lock_irq(&rq->lock);
5456 while (!list_empty(&rq->migration_queue)) {
5457 struct migration_req *req;
5458
5459 req = list_entry(rq->migration_queue.next,
5460 struct migration_req, list);
5461 list_del_init(&req->list);
5462 complete(&req->done);
5463 }
5464 spin_unlock_irq(&rq->lock);
5465 break;
5466 #endif
5467 case CPU_LOCK_RELEASE:
5468 mutex_unlock(&sched_hotcpu_mutex);
5469 break;
5470 }
5471 return NOTIFY_OK;
5472 }
5473
5474 /* Register at highest priority so that task migration (migrate_all_tasks)
5475 * happens before everything else.
5476 */
5477 static struct notifier_block __cpuinitdata migration_notifier = {
5478 .notifier_call = migration_call,
5479 .priority = 10
5480 };
5481
5482 int __init migration_init(void)
5483 {
5484 void *cpu = (void *)(long)smp_processor_id();
5485 int err;
5486
5487 /* Start one for the boot CPU: */
5488 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5489 BUG_ON(err == NOTIFY_BAD);
5490 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5491 register_cpu_notifier(&migration_notifier);
5492
5493 return 0;
5494 }
5495 #endif
5496
5497 #ifdef CONFIG_SMP
5498
5499 /* Number of possible processor ids */
5500 int nr_cpu_ids __read_mostly = NR_CPUS;
5501 EXPORT_SYMBOL(nr_cpu_ids);
5502
5503 #undef SCHED_DOMAIN_DEBUG
5504 #ifdef SCHED_DOMAIN_DEBUG
5505 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5506 {
5507 int level = 0;
5508
5509 if (!sd) {
5510 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5511 return;
5512 }
5513
5514 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5515
5516 do {
5517 int i;
5518 char str[NR_CPUS];
5519 struct sched_group *group = sd->groups;
5520 cpumask_t groupmask;
5521
5522 cpumask_scnprintf(str, NR_CPUS, sd->span);
5523 cpus_clear(groupmask);
5524
5525 printk(KERN_DEBUG);
5526 for (i = 0; i < level + 1; i++)
5527 printk(" ");
5528 printk("domain %d: ", level);
5529
5530 if (!(sd->flags & SD_LOAD_BALANCE)) {
5531 printk("does not load-balance\n");
5532 if (sd->parent)
5533 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5534 " has parent");
5535 break;
5536 }
5537
5538 printk("span %s\n", str);
5539
5540 if (!cpu_isset(cpu, sd->span))
5541 printk(KERN_ERR "ERROR: domain->span does not contain "
5542 "CPU%d\n", cpu);
5543 if (!cpu_isset(cpu, group->cpumask))
5544 printk(KERN_ERR "ERROR: domain->groups does not contain"
5545 " CPU%d\n", cpu);
5546
5547 printk(KERN_DEBUG);
5548 for (i = 0; i < level + 2; i++)
5549 printk(" ");
5550 printk("groups:");
5551 do {
5552 if (!group) {
5553 printk("\n");
5554 printk(KERN_ERR "ERROR: group is NULL\n");
5555 break;
5556 }
5557
5558 if (!group->__cpu_power) {
5559 printk("\n");
5560 printk(KERN_ERR "ERROR: domain->cpu_power not "
5561 "set\n");
5562 }
5563
5564 if (!cpus_weight(group->cpumask)) {
5565 printk("\n");
5566 printk(KERN_ERR "ERROR: empty group\n");
5567 }
5568
5569 if (cpus_intersects(groupmask, group->cpumask)) {
5570 printk("\n");
5571 printk(KERN_ERR "ERROR: repeated CPUs\n");
5572 }
5573
5574 cpus_or(groupmask, groupmask, group->cpumask);
5575
5576 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5577 printk(" %s", str);
5578
5579 group = group->next;
5580 } while (group != sd->groups);
5581 printk("\n");
5582
5583 if (!cpus_equal(sd->span, groupmask))
5584 printk(KERN_ERR "ERROR: groups don't span "
5585 "domain->span\n");
5586
5587 level++;
5588 sd = sd->parent;
5589 if (!sd)
5590 continue;
5591
5592 if (!cpus_subset(groupmask, sd->span))
5593 printk(KERN_ERR "ERROR: parent span is not a superset "
5594 "of domain->span\n");
5595
5596 } while (sd);
5597 }
5598 #else
5599 # define sched_domain_debug(sd, cpu) do { } while (0)
5600 #endif
5601
5602 static int sd_degenerate(struct sched_domain *sd)
5603 {
5604 if (cpus_weight(sd->span) == 1)
5605 return 1;
5606
5607 /* Following flags need at least 2 groups */
5608 if (sd->flags & (SD_LOAD_BALANCE |
5609 SD_BALANCE_NEWIDLE |
5610 SD_BALANCE_FORK |
5611 SD_BALANCE_EXEC |
5612 SD_SHARE_CPUPOWER |
5613 SD_SHARE_PKG_RESOURCES)) {
5614 if (sd->groups != sd->groups->next)
5615 return 0;
5616 }
5617
5618 /* Following flags don't use groups */
5619 if (sd->flags & (SD_WAKE_IDLE |
5620 SD_WAKE_AFFINE |
5621 SD_WAKE_BALANCE))
5622 return 0;
5623
5624 return 1;
5625 }
5626
5627 static int
5628 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5629 {
5630 unsigned long cflags = sd->flags, pflags = parent->flags;
5631
5632 if (sd_degenerate(parent))
5633 return 1;
5634
5635 if (!cpus_equal(sd->span, parent->span))
5636 return 0;
5637
5638 /* Does parent contain flags not in child? */
5639 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5640 if (cflags & SD_WAKE_AFFINE)
5641 pflags &= ~SD_WAKE_BALANCE;
5642 /* Flags needing groups don't count if only 1 group in parent */
5643 if (parent->groups == parent->groups->next) {
5644 pflags &= ~(SD_LOAD_BALANCE |
5645 SD_BALANCE_NEWIDLE |
5646 SD_BALANCE_FORK |
5647 SD_BALANCE_EXEC |
5648 SD_SHARE_CPUPOWER |
5649 SD_SHARE_PKG_RESOURCES);
5650 }
5651 if (~cflags & pflags)
5652 return 0;
5653
5654 return 1;
5655 }
5656
5657 /*
5658 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5659 * hold the hotplug lock.
5660 */
5661 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5662 {
5663 struct rq *rq = cpu_rq(cpu);
5664 struct sched_domain *tmp;
5665
5666 /* Remove the sched domains which do not contribute to scheduling. */
5667 for (tmp = sd; tmp; tmp = tmp->parent) {
5668 struct sched_domain *parent = tmp->parent;
5669 if (!parent)
5670 break;
5671 if (sd_parent_degenerate(tmp, parent)) {
5672 tmp->parent = parent->parent;
5673 if (parent->parent)
5674 parent->parent->child = tmp;
5675 }
5676 }
5677
5678 if (sd && sd_degenerate(sd)) {
5679 sd = sd->parent;
5680 if (sd)
5681 sd->child = NULL;
5682 }
5683
5684 sched_domain_debug(sd, cpu);
5685
5686 rcu_assign_pointer(rq->sd, sd);
5687 }
5688
5689 /* cpus with isolated domains */
5690 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5691
5692 /* Setup the mask of cpus configured for isolated domains */
5693 static int __init isolated_cpu_setup(char *str)
5694 {
5695 int ints[NR_CPUS], i;
5696
5697 str = get_options(str, ARRAY_SIZE(ints), ints);
5698 cpus_clear(cpu_isolated_map);
5699 for (i = 1; i <= ints[0]; i++)
5700 if (ints[i] < NR_CPUS)
5701 cpu_set(ints[i], cpu_isolated_map);
5702 return 1;
5703 }
5704
5705 __setup ("isolcpus=", isolated_cpu_setup);
5706
5707 /*
5708 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5709 * to a function which identifies what group(along with sched group) a CPU
5710 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5711 * (due to the fact that we keep track of groups covered with a cpumask_t).
5712 *
5713 * init_sched_build_groups will build a circular linked list of the groups
5714 * covered by the given span, and will set each group's ->cpumask correctly,
5715 * and ->cpu_power to 0.
5716 */
5717 static void
5718 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5719 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5720 struct sched_group **sg))
5721 {
5722 struct sched_group *first = NULL, *last = NULL;
5723 cpumask_t covered = CPU_MASK_NONE;
5724 int i;
5725
5726 for_each_cpu_mask(i, span) {
5727 struct sched_group *sg;
5728 int group = group_fn(i, cpu_map, &sg);
5729 int j;
5730
5731 if (cpu_isset(i, covered))
5732 continue;
5733
5734 sg->cpumask = CPU_MASK_NONE;
5735 sg->__cpu_power = 0;
5736
5737 for_each_cpu_mask(j, span) {
5738 if (group_fn(j, cpu_map, NULL) != group)
5739 continue;
5740
5741 cpu_set(j, covered);
5742 cpu_set(j, sg->cpumask);
5743 }
5744 if (!first)
5745 first = sg;
5746 if (last)
5747 last->next = sg;
5748 last = sg;
5749 }
5750 last->next = first;
5751 }
5752
5753 #define SD_NODES_PER_DOMAIN 16
5754
5755 #ifdef CONFIG_NUMA
5756
5757 /**
5758 * find_next_best_node - find the next node to include in a sched_domain
5759 * @node: node whose sched_domain we're building
5760 * @used_nodes: nodes already in the sched_domain
5761 *
5762 * Find the next node to include in a given scheduling domain. Simply
5763 * finds the closest node not already in the @used_nodes map.
5764 *
5765 * Should use nodemask_t.
5766 */
5767 static int find_next_best_node(int node, unsigned long *used_nodes)
5768 {
5769 int i, n, val, min_val, best_node = 0;
5770
5771 min_val = INT_MAX;
5772
5773 for (i = 0; i < MAX_NUMNODES; i++) {
5774 /* Start at @node */
5775 n = (node + i) % MAX_NUMNODES;
5776
5777 if (!nr_cpus_node(n))
5778 continue;
5779
5780 /* Skip already used nodes */
5781 if (test_bit(n, used_nodes))
5782 continue;
5783
5784 /* Simple min distance search */
5785 val = node_distance(node, n);
5786
5787 if (val < min_val) {
5788 min_val = val;
5789 best_node = n;
5790 }
5791 }
5792
5793 set_bit(best_node, used_nodes);
5794 return best_node;
5795 }
5796
5797 /**
5798 * sched_domain_node_span - get a cpumask for a node's sched_domain
5799 * @node: node whose cpumask we're constructing
5800 * @size: number of nodes to include in this span
5801 *
5802 * Given a node, construct a good cpumask for its sched_domain to span. It
5803 * should be one that prevents unnecessary balancing, but also spreads tasks
5804 * out optimally.
5805 */
5806 static cpumask_t sched_domain_node_span(int node)
5807 {
5808 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5809 cpumask_t span, nodemask;
5810 int i;
5811
5812 cpus_clear(span);
5813 bitmap_zero(used_nodes, MAX_NUMNODES);
5814
5815 nodemask = node_to_cpumask(node);
5816 cpus_or(span, span, nodemask);
5817 set_bit(node, used_nodes);
5818
5819 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5820 int next_node = find_next_best_node(node, used_nodes);
5821
5822 nodemask = node_to_cpumask(next_node);
5823 cpus_or(span, span, nodemask);
5824 }
5825
5826 return span;
5827 }
5828 #endif
5829
5830 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5831
5832 /*
5833 * SMT sched-domains:
5834 */
5835 #ifdef CONFIG_SCHED_SMT
5836 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5837 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5838
5839 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5840 struct sched_group **sg)
5841 {
5842 if (sg)
5843 *sg = &per_cpu(sched_group_cpus, cpu);
5844 return cpu;
5845 }
5846 #endif
5847
5848 /*
5849 * multi-core sched-domains:
5850 */
5851 #ifdef CONFIG_SCHED_MC
5852 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5853 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5854 #endif
5855
5856 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5857 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5858 struct sched_group **sg)
5859 {
5860 int group;
5861 cpumask_t mask = cpu_sibling_map[cpu];
5862 cpus_and(mask, mask, *cpu_map);
5863 group = first_cpu(mask);
5864 if (sg)
5865 *sg = &per_cpu(sched_group_core, group);
5866 return group;
5867 }
5868 #elif defined(CONFIG_SCHED_MC)
5869 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5870 struct sched_group **sg)
5871 {
5872 if (sg)
5873 *sg = &per_cpu(sched_group_core, cpu);
5874 return cpu;
5875 }
5876 #endif
5877
5878 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5879 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5880
5881 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5882 struct sched_group **sg)
5883 {
5884 int group;
5885 #ifdef CONFIG_SCHED_MC
5886 cpumask_t mask = cpu_coregroup_map(cpu);
5887 cpus_and(mask, mask, *cpu_map);
5888 group = first_cpu(mask);
5889 #elif defined(CONFIG_SCHED_SMT)
5890 cpumask_t mask = cpu_sibling_map[cpu];
5891 cpus_and(mask, mask, *cpu_map);
5892 group = first_cpu(mask);
5893 #else
5894 group = cpu;
5895 #endif
5896 if (sg)
5897 *sg = &per_cpu(sched_group_phys, group);
5898 return group;
5899 }
5900
5901 #ifdef CONFIG_NUMA
5902 /*
5903 * The init_sched_build_groups can't handle what we want to do with node
5904 * groups, so roll our own. Now each node has its own list of groups which
5905 * gets dynamically allocated.
5906 */
5907 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5908 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5909
5910 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5911 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5912
5913 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5914 struct sched_group **sg)
5915 {
5916 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5917 int group;
5918
5919 cpus_and(nodemask, nodemask, *cpu_map);
5920 group = first_cpu(nodemask);
5921
5922 if (sg)
5923 *sg = &per_cpu(sched_group_allnodes, group);
5924 return group;
5925 }
5926
5927 static void init_numa_sched_groups_power(struct sched_group *group_head)
5928 {
5929 struct sched_group *sg = group_head;
5930 int j;
5931
5932 if (!sg)
5933 return;
5934 next_sg:
5935 for_each_cpu_mask(j, sg->cpumask) {
5936 struct sched_domain *sd;
5937
5938 sd = &per_cpu(phys_domains, j);
5939 if (j != first_cpu(sd->groups->cpumask)) {
5940 /*
5941 * Only add "power" once for each
5942 * physical package.
5943 */
5944 continue;
5945 }
5946
5947 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5948 }
5949 sg = sg->next;
5950 if (sg != group_head)
5951 goto next_sg;
5952 }
5953 #endif
5954
5955 #ifdef CONFIG_NUMA
5956 /* Free memory allocated for various sched_group structures */
5957 static void free_sched_groups(const cpumask_t *cpu_map)
5958 {
5959 int cpu, i;
5960
5961 for_each_cpu_mask(cpu, *cpu_map) {
5962 struct sched_group **sched_group_nodes
5963 = sched_group_nodes_bycpu[cpu];
5964
5965 if (!sched_group_nodes)
5966 continue;
5967
5968 for (i = 0; i < MAX_NUMNODES; i++) {
5969 cpumask_t nodemask = node_to_cpumask(i);
5970 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5971
5972 cpus_and(nodemask, nodemask, *cpu_map);
5973 if (cpus_empty(nodemask))
5974 continue;
5975
5976 if (sg == NULL)
5977 continue;
5978 sg = sg->next;
5979 next_sg:
5980 oldsg = sg;
5981 sg = sg->next;
5982 kfree(oldsg);
5983 if (oldsg != sched_group_nodes[i])
5984 goto next_sg;
5985 }
5986 kfree(sched_group_nodes);
5987 sched_group_nodes_bycpu[cpu] = NULL;
5988 }
5989 }
5990 #else
5991 static void free_sched_groups(const cpumask_t *cpu_map)
5992 {
5993 }
5994 #endif
5995
5996 /*
5997 * Initialize sched groups cpu_power.
5998 *
5999 * cpu_power indicates the capacity of sched group, which is used while
6000 * distributing the load between different sched groups in a sched domain.
6001 * Typically cpu_power for all the groups in a sched domain will be same unless
6002 * there are asymmetries in the topology. If there are asymmetries, group
6003 * having more cpu_power will pickup more load compared to the group having
6004 * less cpu_power.
6005 *
6006 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6007 * the maximum number of tasks a group can handle in the presence of other idle
6008 * or lightly loaded groups in the same sched domain.
6009 */
6010 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6011 {
6012 struct sched_domain *child;
6013 struct sched_group *group;
6014
6015 WARN_ON(!sd || !sd->groups);
6016
6017 if (cpu != first_cpu(sd->groups->cpumask))
6018 return;
6019
6020 child = sd->child;
6021
6022 sd->groups->__cpu_power = 0;
6023
6024 /*
6025 * For perf policy, if the groups in child domain share resources
6026 * (for example cores sharing some portions of the cache hierarchy
6027 * or SMT), then set this domain groups cpu_power such that each group
6028 * can handle only one task, when there are other idle groups in the
6029 * same sched domain.
6030 */
6031 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6032 (child->flags &
6033 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6034 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6035 return;
6036 }
6037
6038 /*
6039 * add cpu_power of each child group to this groups cpu_power
6040 */
6041 group = child->groups;
6042 do {
6043 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6044 group = group->next;
6045 } while (group != child->groups);
6046 }
6047
6048 /*
6049 * Build sched domains for a given set of cpus and attach the sched domains
6050 * to the individual cpus
6051 */
6052 static int build_sched_domains(const cpumask_t *cpu_map)
6053 {
6054 int i;
6055 #ifdef CONFIG_NUMA
6056 struct sched_group **sched_group_nodes = NULL;
6057 int sd_allnodes = 0;
6058
6059 /*
6060 * Allocate the per-node list of sched groups
6061 */
6062 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6063 GFP_KERNEL);
6064 if (!sched_group_nodes) {
6065 printk(KERN_WARNING "Can not alloc sched group node list\n");
6066 return -ENOMEM;
6067 }
6068 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6069 #endif
6070
6071 /*
6072 * Set up domains for cpus specified by the cpu_map.
6073 */
6074 for_each_cpu_mask(i, *cpu_map) {
6075 struct sched_domain *sd = NULL, *p;
6076 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6077
6078 cpus_and(nodemask, nodemask, *cpu_map);
6079
6080 #ifdef CONFIG_NUMA
6081 if (cpus_weight(*cpu_map) >
6082 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6083 sd = &per_cpu(allnodes_domains, i);
6084 *sd = SD_ALLNODES_INIT;
6085 sd->span = *cpu_map;
6086 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6087 p = sd;
6088 sd_allnodes = 1;
6089 } else
6090 p = NULL;
6091
6092 sd = &per_cpu(node_domains, i);
6093 *sd = SD_NODE_INIT;
6094 sd->span = sched_domain_node_span(cpu_to_node(i));
6095 sd->parent = p;
6096 if (p)
6097 p->child = sd;
6098 cpus_and(sd->span, sd->span, *cpu_map);
6099 #endif
6100
6101 p = sd;
6102 sd = &per_cpu(phys_domains, i);
6103 *sd = SD_CPU_INIT;
6104 sd->span = nodemask;
6105 sd->parent = p;
6106 if (p)
6107 p->child = sd;
6108 cpu_to_phys_group(i, cpu_map, &sd->groups);
6109
6110 #ifdef CONFIG_SCHED_MC
6111 p = sd;
6112 sd = &per_cpu(core_domains, i);
6113 *sd = SD_MC_INIT;
6114 sd->span = cpu_coregroup_map(i);
6115 cpus_and(sd->span, sd->span, *cpu_map);
6116 sd->parent = p;
6117 p->child = sd;
6118 cpu_to_core_group(i, cpu_map, &sd->groups);
6119 #endif
6120
6121 #ifdef CONFIG_SCHED_SMT
6122 p = sd;
6123 sd = &per_cpu(cpu_domains, i);
6124 *sd = SD_SIBLING_INIT;
6125 sd->span = cpu_sibling_map[i];
6126 cpus_and(sd->span, sd->span, *cpu_map);
6127 sd->parent = p;
6128 p->child = sd;
6129 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6130 #endif
6131 }
6132
6133 #ifdef CONFIG_SCHED_SMT
6134 /* Set up CPU (sibling) groups */
6135 for_each_cpu_mask(i, *cpu_map) {
6136 cpumask_t this_sibling_map = cpu_sibling_map[i];
6137 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6138 if (i != first_cpu(this_sibling_map))
6139 continue;
6140
6141 init_sched_build_groups(this_sibling_map, cpu_map,
6142 &cpu_to_cpu_group);
6143 }
6144 #endif
6145
6146 #ifdef CONFIG_SCHED_MC
6147 /* Set up multi-core groups */
6148 for_each_cpu_mask(i, *cpu_map) {
6149 cpumask_t this_core_map = cpu_coregroup_map(i);
6150 cpus_and(this_core_map, this_core_map, *cpu_map);
6151 if (i != first_cpu(this_core_map))
6152 continue;
6153 init_sched_build_groups(this_core_map, cpu_map,
6154 &cpu_to_core_group);
6155 }
6156 #endif
6157
6158 /* Set up physical groups */
6159 for (i = 0; i < MAX_NUMNODES; i++) {
6160 cpumask_t nodemask = node_to_cpumask(i);
6161
6162 cpus_and(nodemask, nodemask, *cpu_map);
6163 if (cpus_empty(nodemask))
6164 continue;
6165
6166 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6167 }
6168
6169 #ifdef CONFIG_NUMA
6170 /* Set up node groups */
6171 if (sd_allnodes)
6172 init_sched_build_groups(*cpu_map, cpu_map,
6173 &cpu_to_allnodes_group);
6174
6175 for (i = 0; i < MAX_NUMNODES; i++) {
6176 /* Set up node groups */
6177 struct sched_group *sg, *prev;
6178 cpumask_t nodemask = node_to_cpumask(i);
6179 cpumask_t domainspan;
6180 cpumask_t covered = CPU_MASK_NONE;
6181 int j;
6182
6183 cpus_and(nodemask, nodemask, *cpu_map);
6184 if (cpus_empty(nodemask)) {
6185 sched_group_nodes[i] = NULL;
6186 continue;
6187 }
6188
6189 domainspan = sched_domain_node_span(i);
6190 cpus_and(domainspan, domainspan, *cpu_map);
6191
6192 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6193 if (!sg) {
6194 printk(KERN_WARNING "Can not alloc domain group for "
6195 "node %d\n", i);
6196 goto error;
6197 }
6198 sched_group_nodes[i] = sg;
6199 for_each_cpu_mask(j, nodemask) {
6200 struct sched_domain *sd;
6201
6202 sd = &per_cpu(node_domains, j);
6203 sd->groups = sg;
6204 }
6205 sg->__cpu_power = 0;
6206 sg->cpumask = nodemask;
6207 sg->next = sg;
6208 cpus_or(covered, covered, nodemask);
6209 prev = sg;
6210
6211 for (j = 0; j < MAX_NUMNODES; j++) {
6212 cpumask_t tmp, notcovered;
6213 int n = (i + j) % MAX_NUMNODES;
6214
6215 cpus_complement(notcovered, covered);
6216 cpus_and(tmp, notcovered, *cpu_map);
6217 cpus_and(tmp, tmp, domainspan);
6218 if (cpus_empty(tmp))
6219 break;
6220
6221 nodemask = node_to_cpumask(n);
6222 cpus_and(tmp, tmp, nodemask);
6223 if (cpus_empty(tmp))
6224 continue;
6225
6226 sg = kmalloc_node(sizeof(struct sched_group),
6227 GFP_KERNEL, i);
6228 if (!sg) {
6229 printk(KERN_WARNING
6230 "Can not alloc domain group for node %d\n", j);
6231 goto error;
6232 }
6233 sg->__cpu_power = 0;
6234 sg->cpumask = tmp;
6235 sg->next = prev->next;
6236 cpus_or(covered, covered, tmp);
6237 prev->next = sg;
6238 prev = sg;
6239 }
6240 }
6241 #endif
6242
6243 /* Calculate CPU power for physical packages and nodes */
6244 #ifdef CONFIG_SCHED_SMT
6245 for_each_cpu_mask(i, *cpu_map) {
6246 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6247
6248 init_sched_groups_power(i, sd);
6249 }
6250 #endif
6251 #ifdef CONFIG_SCHED_MC
6252 for_each_cpu_mask(i, *cpu_map) {
6253 struct sched_domain *sd = &per_cpu(core_domains, i);
6254
6255 init_sched_groups_power(i, sd);
6256 }
6257 #endif
6258
6259 for_each_cpu_mask(i, *cpu_map) {
6260 struct sched_domain *sd = &per_cpu(phys_domains, i);
6261
6262 init_sched_groups_power(i, sd);
6263 }
6264
6265 #ifdef CONFIG_NUMA
6266 for (i = 0; i < MAX_NUMNODES; i++)
6267 init_numa_sched_groups_power(sched_group_nodes[i]);
6268
6269 if (sd_allnodes) {
6270 struct sched_group *sg;
6271
6272 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6273 init_numa_sched_groups_power(sg);
6274 }
6275 #endif
6276
6277 /* Attach the domains */
6278 for_each_cpu_mask(i, *cpu_map) {
6279 struct sched_domain *sd;
6280 #ifdef CONFIG_SCHED_SMT
6281 sd = &per_cpu(cpu_domains, i);
6282 #elif defined(CONFIG_SCHED_MC)
6283 sd = &per_cpu(core_domains, i);
6284 #else
6285 sd = &per_cpu(phys_domains, i);
6286 #endif
6287 cpu_attach_domain(sd, i);
6288 }
6289
6290 return 0;
6291
6292 #ifdef CONFIG_NUMA
6293 error:
6294 free_sched_groups(cpu_map);
6295 return -ENOMEM;
6296 #endif
6297 }
6298 /*
6299 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6300 */
6301 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6302 {
6303 cpumask_t cpu_default_map;
6304 int err;
6305
6306 /*
6307 * Setup mask for cpus without special case scheduling requirements.
6308 * For now this just excludes isolated cpus, but could be used to
6309 * exclude other special cases in the future.
6310 */
6311 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6312
6313 err = build_sched_domains(&cpu_default_map);
6314
6315 return err;
6316 }
6317
6318 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6319 {
6320 free_sched_groups(cpu_map);
6321 }
6322
6323 /*
6324 * Detach sched domains from a group of cpus specified in cpu_map
6325 * These cpus will now be attached to the NULL domain
6326 */
6327 static void detach_destroy_domains(const cpumask_t *cpu_map)
6328 {
6329 int i;
6330
6331 for_each_cpu_mask(i, *cpu_map)
6332 cpu_attach_domain(NULL, i);
6333 synchronize_sched();
6334 arch_destroy_sched_domains(cpu_map);
6335 }
6336
6337 /*
6338 * Partition sched domains as specified by the cpumasks below.
6339 * This attaches all cpus from the cpumasks to the NULL domain,
6340 * waits for a RCU quiescent period, recalculates sched
6341 * domain information and then attaches them back to the
6342 * correct sched domains
6343 * Call with hotplug lock held
6344 */
6345 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6346 {
6347 cpumask_t change_map;
6348 int err = 0;
6349
6350 cpus_and(*partition1, *partition1, cpu_online_map);
6351 cpus_and(*partition2, *partition2, cpu_online_map);
6352 cpus_or(change_map, *partition1, *partition2);
6353
6354 /* Detach sched domains from all of the affected cpus */
6355 detach_destroy_domains(&change_map);
6356 if (!cpus_empty(*partition1))
6357 err = build_sched_domains(partition1);
6358 if (!err && !cpus_empty(*partition2))
6359 err = build_sched_domains(partition2);
6360
6361 return err;
6362 }
6363
6364 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6365 static int arch_reinit_sched_domains(void)
6366 {
6367 int err;
6368
6369 mutex_lock(&sched_hotcpu_mutex);
6370 detach_destroy_domains(&cpu_online_map);
6371 err = arch_init_sched_domains(&cpu_online_map);
6372 mutex_unlock(&sched_hotcpu_mutex);
6373
6374 return err;
6375 }
6376
6377 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6378 {
6379 int ret;
6380
6381 if (buf[0] != '0' && buf[0] != '1')
6382 return -EINVAL;
6383
6384 if (smt)
6385 sched_smt_power_savings = (buf[0] == '1');
6386 else
6387 sched_mc_power_savings = (buf[0] == '1');
6388
6389 ret = arch_reinit_sched_domains();
6390
6391 return ret ? ret : count;
6392 }
6393
6394 #ifdef CONFIG_SCHED_MC
6395 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6396 {
6397 return sprintf(page, "%u\n", sched_mc_power_savings);
6398 }
6399 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6400 const char *buf, size_t count)
6401 {
6402 return sched_power_savings_store(buf, count, 0);
6403 }
6404 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6405 sched_mc_power_savings_store);
6406 #endif
6407
6408 #ifdef CONFIG_SCHED_SMT
6409 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6410 {
6411 return sprintf(page, "%u\n", sched_smt_power_savings);
6412 }
6413 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6414 const char *buf, size_t count)
6415 {
6416 return sched_power_savings_store(buf, count, 1);
6417 }
6418 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6419 sched_smt_power_savings_store);
6420 #endif
6421
6422 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6423 {
6424 int err = 0;
6425
6426 #ifdef CONFIG_SCHED_SMT
6427 if (smt_capable())
6428 err = sysfs_create_file(&cls->kset.kobj,
6429 &attr_sched_smt_power_savings.attr);
6430 #endif
6431 #ifdef CONFIG_SCHED_MC
6432 if (!err && mc_capable())
6433 err = sysfs_create_file(&cls->kset.kobj,
6434 &attr_sched_mc_power_savings.attr);
6435 #endif
6436 return err;
6437 }
6438 #endif
6439
6440 /*
6441 * Force a reinitialization of the sched domains hierarchy. The domains
6442 * and groups cannot be updated in place without racing with the balancing
6443 * code, so we temporarily attach all running cpus to the NULL domain
6444 * which will prevent rebalancing while the sched domains are recalculated.
6445 */
6446 static int update_sched_domains(struct notifier_block *nfb,
6447 unsigned long action, void *hcpu)
6448 {
6449 switch (action) {
6450 case CPU_UP_PREPARE:
6451 case CPU_UP_PREPARE_FROZEN:
6452 case CPU_DOWN_PREPARE:
6453 case CPU_DOWN_PREPARE_FROZEN:
6454 detach_destroy_domains(&cpu_online_map);
6455 return NOTIFY_OK;
6456
6457 case CPU_UP_CANCELED:
6458 case CPU_UP_CANCELED_FROZEN:
6459 case CPU_DOWN_FAILED:
6460 case CPU_DOWN_FAILED_FROZEN:
6461 case CPU_ONLINE:
6462 case CPU_ONLINE_FROZEN:
6463 case CPU_DEAD:
6464 case CPU_DEAD_FROZEN:
6465 /*
6466 * Fall through and re-initialise the domains.
6467 */
6468 break;
6469 default:
6470 return NOTIFY_DONE;
6471 }
6472
6473 /* The hotplug lock is already held by cpu_up/cpu_down */
6474 arch_init_sched_domains(&cpu_online_map);
6475
6476 return NOTIFY_OK;
6477 }
6478
6479 void __init sched_init_smp(void)
6480 {
6481 cpumask_t non_isolated_cpus;
6482
6483 mutex_lock(&sched_hotcpu_mutex);
6484 arch_init_sched_domains(&cpu_online_map);
6485 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6486 if (cpus_empty(non_isolated_cpus))
6487 cpu_set(smp_processor_id(), non_isolated_cpus);
6488 mutex_unlock(&sched_hotcpu_mutex);
6489 /* XXX: Theoretical race here - CPU may be hotplugged now */
6490 hotcpu_notifier(update_sched_domains, 0);
6491
6492 init_sched_domain_sysctl();
6493
6494 /* Move init over to a non-isolated CPU */
6495 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6496 BUG();
6497 sched_init_granularity();
6498 }
6499 #else
6500 void __init sched_init_smp(void)
6501 {
6502 sched_init_granularity();
6503 }
6504 #endif /* CONFIG_SMP */
6505
6506 int in_sched_functions(unsigned long addr)
6507 {
6508 /* Linker adds these: start and end of __sched functions */
6509 extern char __sched_text_start[], __sched_text_end[];
6510
6511 return in_lock_functions(addr) ||
6512 (addr >= (unsigned long)__sched_text_start
6513 && addr < (unsigned long)__sched_text_end);
6514 }
6515
6516 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6517 {
6518 cfs_rq->tasks_timeline = RB_ROOT;
6519 cfs_rq->fair_clock = 1;
6520 #ifdef CONFIG_FAIR_GROUP_SCHED
6521 cfs_rq->rq = rq;
6522 #endif
6523 }
6524
6525 void __init sched_init(void)
6526 {
6527 u64 now = sched_clock();
6528 int highest_cpu = 0;
6529 int i, j;
6530
6531 /*
6532 * Link up the scheduling class hierarchy:
6533 */
6534 rt_sched_class.next = &fair_sched_class;
6535 fair_sched_class.next = &idle_sched_class;
6536 idle_sched_class.next = NULL;
6537
6538 for_each_possible_cpu(i) {
6539 struct rt_prio_array *array;
6540 struct rq *rq;
6541
6542 rq = cpu_rq(i);
6543 spin_lock_init(&rq->lock);
6544 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6545 rq->nr_running = 0;
6546 rq->clock = 1;
6547 init_cfs_rq(&rq->cfs, rq);
6548 #ifdef CONFIG_FAIR_GROUP_SCHED
6549 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6550 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6551 #endif
6552 rq->ls.load_update_last = now;
6553 rq->ls.load_update_start = now;
6554
6555 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6556 rq->cpu_load[j] = 0;
6557 #ifdef CONFIG_SMP
6558 rq->sd = NULL;
6559 rq->active_balance = 0;
6560 rq->next_balance = jiffies;
6561 rq->push_cpu = 0;
6562 rq->cpu = i;
6563 rq->migration_thread = NULL;
6564 INIT_LIST_HEAD(&rq->migration_queue);
6565 #endif
6566 atomic_set(&rq->nr_iowait, 0);
6567
6568 array = &rq->rt.active;
6569 for (j = 0; j < MAX_RT_PRIO; j++) {
6570 INIT_LIST_HEAD(array->queue + j);
6571 __clear_bit(j, array->bitmap);
6572 }
6573 highest_cpu = i;
6574 /* delimiter for bitsearch: */
6575 __set_bit(MAX_RT_PRIO, array->bitmap);
6576 }
6577
6578 set_load_weight(&init_task);
6579
6580 #ifdef CONFIG_PREEMPT_NOTIFIERS
6581 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6582 #endif
6583
6584 #ifdef CONFIG_SMP
6585 nr_cpu_ids = highest_cpu + 1;
6586 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6587 #endif
6588
6589 #ifdef CONFIG_RT_MUTEXES
6590 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6591 #endif
6592
6593 /*
6594 * The boot idle thread does lazy MMU switching as well:
6595 */
6596 atomic_inc(&init_mm.mm_count);
6597 enter_lazy_tlb(&init_mm, current);
6598
6599 /*
6600 * Make us the idle thread. Technically, schedule() should not be
6601 * called from this thread, however somewhere below it might be,
6602 * but because we are the idle thread, we just pick up running again
6603 * when this runqueue becomes "idle".
6604 */
6605 init_idle(current, smp_processor_id());
6606 /*
6607 * During early bootup we pretend to be a normal task:
6608 */
6609 current->sched_class = &fair_sched_class;
6610 }
6611
6612 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6613 void __might_sleep(char *file, int line)
6614 {
6615 #ifdef in_atomic
6616 static unsigned long prev_jiffy; /* ratelimiting */
6617
6618 if ((in_atomic() || irqs_disabled()) &&
6619 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6620 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6621 return;
6622 prev_jiffy = jiffies;
6623 printk(KERN_ERR "BUG: sleeping function called from invalid"
6624 " context at %s:%d\n", file, line);
6625 printk("in_atomic():%d, irqs_disabled():%d\n",
6626 in_atomic(), irqs_disabled());
6627 debug_show_held_locks(current);
6628 if (irqs_disabled())
6629 print_irqtrace_events(current);
6630 dump_stack();
6631 }
6632 #endif
6633 }
6634 EXPORT_SYMBOL(__might_sleep);
6635 #endif
6636
6637 #ifdef CONFIG_MAGIC_SYSRQ
6638 void normalize_rt_tasks(void)
6639 {
6640 struct task_struct *g, *p;
6641 unsigned long flags;
6642 struct rq *rq;
6643 int on_rq;
6644
6645 read_lock_irq(&tasklist_lock);
6646 do_each_thread(g, p) {
6647 p->se.fair_key = 0;
6648 p->se.wait_runtime = 0;
6649 p->se.exec_start = 0;
6650 p->se.wait_start_fair = 0;
6651 p->se.sleep_start_fair = 0;
6652 #ifdef CONFIG_SCHEDSTATS
6653 p->se.wait_start = 0;
6654 p->se.sleep_start = 0;
6655 p->se.block_start = 0;
6656 #endif
6657 task_rq(p)->cfs.fair_clock = 0;
6658 task_rq(p)->clock = 0;
6659
6660 if (!rt_task(p)) {
6661 /*
6662 * Renice negative nice level userspace
6663 * tasks back to 0:
6664 */
6665 if (TASK_NICE(p) < 0 && p->mm)
6666 set_user_nice(p, 0);
6667 continue;
6668 }
6669
6670 spin_lock_irqsave(&p->pi_lock, flags);
6671 rq = __task_rq_lock(p);
6672 #ifdef CONFIG_SMP
6673 /*
6674 * Do not touch the migration thread:
6675 */
6676 if (p == rq->migration_thread)
6677 goto out_unlock;
6678 #endif
6679
6680 update_rq_clock(rq);
6681 on_rq = p->se.on_rq;
6682 if (on_rq)
6683 deactivate_task(rq, p, 0);
6684 __setscheduler(rq, p, SCHED_NORMAL, 0);
6685 if (on_rq) {
6686 activate_task(rq, p, 0);
6687 resched_task(rq->curr);
6688 }
6689 #ifdef CONFIG_SMP
6690 out_unlock:
6691 #endif
6692 __task_rq_unlock(rq);
6693 spin_unlock_irqrestore(&p->pi_lock, flags);
6694 } while_each_thread(g, p);
6695
6696 read_unlock_irq(&tasklist_lock);
6697 }
6698
6699 #endif /* CONFIG_MAGIC_SYSRQ */
6700
6701 #ifdef CONFIG_IA64
6702 /*
6703 * These functions are only useful for the IA64 MCA handling.
6704 *
6705 * They can only be called when the whole system has been
6706 * stopped - every CPU needs to be quiescent, and no scheduling
6707 * activity can take place. Using them for anything else would
6708 * be a serious bug, and as a result, they aren't even visible
6709 * under any other configuration.
6710 */
6711
6712 /**
6713 * curr_task - return the current task for a given cpu.
6714 * @cpu: the processor in question.
6715 *
6716 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6717 */
6718 struct task_struct *curr_task(int cpu)
6719 {
6720 return cpu_curr(cpu);
6721 }
6722
6723 /**
6724 * set_curr_task - set the current task for a given cpu.
6725 * @cpu: the processor in question.
6726 * @p: the task pointer to set.
6727 *
6728 * Description: This function must only be used when non-maskable interrupts
6729 * are serviced on a separate stack. It allows the architecture to switch the
6730 * notion of the current task on a cpu in a non-blocking manner. This function
6731 * must be called with all CPU's synchronized, and interrupts disabled, the
6732 * and caller must save the original value of the current task (see
6733 * curr_task() above) and restore that value before reenabling interrupts and
6734 * re-starting the system.
6735 *
6736 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6737 */
6738 void set_curr_task(int cpu, struct task_struct *p)
6739 {
6740 cpu_curr(cpu) = p;
6741 }
6742
6743 #endif