]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched.c
[PATCH] sched: run SCHED_NORMAL tasks with real time tasks on SMT siblings
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
58 */
59 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
62
63 /*
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
67 */
68 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
71
72 /*
73 * Some helpers for converting nanosecond timing to jiffy resolution
74 */
75 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
77
78 /*
79 * These are the 'tuning knobs' of the scheduler:
80 *
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
84 */
85 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT 30
88 #define CHILD_PENALTY 95
89 #define PARENT_PENALTY 100
90 #define EXIT_WEIGHT 3
91 #define PRIO_BONUS_RATIO 25
92 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA 2
94 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
103 *
104 * This part scales the interactivity limit depending on niceness.
105 *
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
108 *
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114 *
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
118 *
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
124 */
125
126 #define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
129
130 #define GRANULARITY (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
156
157 /*
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
160 *
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
164 */
165
166 #define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
178
179 /*
180 * These are the runqueue data structures:
181 */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194 * This is the main, per-CPU runqueue data structure.
195 *
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
199 */
200 struct runqueue {
201 spinlock_t lock;
202
203 /*
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
206 */
207 unsigned long nr_running;
208 #ifdef CONFIG_SMP
209 unsigned long cpu_load[3];
210 #endif
211 unsigned long long nr_switches;
212
213 /*
214 * This is part of a global counter where only the total sum
215 * over all CPUs matters. A task can increase this counter on
216 * one CPU and if it got migrated afterwards it may decrease
217 * it on another CPU. Always updated under the runqueue lock:
218 */
219 unsigned long nr_uninterruptible;
220
221 unsigned long expired_timestamp;
222 unsigned long long timestamp_last_tick;
223 task_t *curr, *idle;
224 struct mm_struct *prev_mm;
225 prio_array_t *active, *expired, arrays[2];
226 int best_expired_prio;
227 atomic_t nr_iowait;
228
229 #ifdef CONFIG_SMP
230 struct sched_domain *sd;
231
232 /* For active balancing */
233 int active_balance;
234 int push_cpu;
235
236 task_t *migration_thread;
237 struct list_head migration_queue;
238 #endif
239
240 #ifdef CONFIG_SCHEDSTATS
241 /* latency stats */
242 struct sched_info rq_sched_info;
243
244 /* sys_sched_yield() stats */
245 unsigned long yld_exp_empty;
246 unsigned long yld_act_empty;
247 unsigned long yld_both_empty;
248 unsigned long yld_cnt;
249
250 /* schedule() stats */
251 unsigned long sched_switch;
252 unsigned long sched_cnt;
253 unsigned long sched_goidle;
254
255 /* try_to_wake_up() stats */
256 unsigned long ttwu_cnt;
257 unsigned long ttwu_local;
258 #endif
259 };
260
261 static DEFINE_PER_CPU(struct runqueue, runqueues);
262
263 /*
264 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
265 * See detach_destroy_domains: synchronize_sched for details.
266 *
267 * The domain tree of any CPU may only be accessed from within
268 * preempt-disabled sections.
269 */
270 #define for_each_domain(cpu, domain) \
271 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
272
273 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
274 #define this_rq() (&__get_cpu_var(runqueues))
275 #define task_rq(p) cpu_rq(task_cpu(p))
276 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
277
278 #ifndef prepare_arch_switch
279 # define prepare_arch_switch(next) do { } while (0)
280 #endif
281 #ifndef finish_arch_switch
282 # define finish_arch_switch(prev) do { } while (0)
283 #endif
284
285 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
286 static inline int task_running(runqueue_t *rq, task_t *p)
287 {
288 return rq->curr == p;
289 }
290
291 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
292 {
293 }
294
295 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
296 {
297 spin_unlock_irq(&rq->lock);
298 }
299
300 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
301 static inline int task_running(runqueue_t *rq, task_t *p)
302 {
303 #ifdef CONFIG_SMP
304 return p->oncpu;
305 #else
306 return rq->curr == p;
307 #endif
308 }
309
310 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
311 {
312 #ifdef CONFIG_SMP
313 /*
314 * We can optimise this out completely for !SMP, because the
315 * SMP rebalancing from interrupt is the only thing that cares
316 * here.
317 */
318 next->oncpu = 1;
319 #endif
320 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
321 spin_unlock_irq(&rq->lock);
322 #else
323 spin_unlock(&rq->lock);
324 #endif
325 }
326
327 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
328 {
329 #ifdef CONFIG_SMP
330 /*
331 * After ->oncpu is cleared, the task can be moved to a different CPU.
332 * We must ensure this doesn't happen until the switch is completely
333 * finished.
334 */
335 smp_wmb();
336 prev->oncpu = 0;
337 #endif
338 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
339 local_irq_enable();
340 #endif
341 }
342 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
343
344 /*
345 * task_rq_lock - lock the runqueue a given task resides on and disable
346 * interrupts. Note the ordering: we can safely lookup the task_rq without
347 * explicitly disabling preemption.
348 */
349 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
350 __acquires(rq->lock)
351 {
352 struct runqueue *rq;
353
354 repeat_lock_task:
355 local_irq_save(*flags);
356 rq = task_rq(p);
357 spin_lock(&rq->lock);
358 if (unlikely(rq != task_rq(p))) {
359 spin_unlock_irqrestore(&rq->lock, *flags);
360 goto repeat_lock_task;
361 }
362 return rq;
363 }
364
365 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
366 __releases(rq->lock)
367 {
368 spin_unlock_irqrestore(&rq->lock, *flags);
369 }
370
371 #ifdef CONFIG_SCHEDSTATS
372 /*
373 * bump this up when changing the output format or the meaning of an existing
374 * format, so that tools can adapt (or abort)
375 */
376 #define SCHEDSTAT_VERSION 12
377
378 static int show_schedstat(struct seq_file *seq, void *v)
379 {
380 int cpu;
381
382 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
383 seq_printf(seq, "timestamp %lu\n", jiffies);
384 for_each_online_cpu(cpu) {
385 runqueue_t *rq = cpu_rq(cpu);
386 #ifdef CONFIG_SMP
387 struct sched_domain *sd;
388 int dcnt = 0;
389 #endif
390
391 /* runqueue-specific stats */
392 seq_printf(seq,
393 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
394 cpu, rq->yld_both_empty,
395 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
396 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
397 rq->ttwu_cnt, rq->ttwu_local,
398 rq->rq_sched_info.cpu_time,
399 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
400
401 seq_printf(seq, "\n");
402
403 #ifdef CONFIG_SMP
404 /* domain-specific stats */
405 preempt_disable();
406 for_each_domain(cpu, sd) {
407 enum idle_type itype;
408 char mask_str[NR_CPUS];
409
410 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
411 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
412 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
413 itype++) {
414 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
415 sd->lb_cnt[itype],
416 sd->lb_balanced[itype],
417 sd->lb_failed[itype],
418 sd->lb_imbalance[itype],
419 sd->lb_gained[itype],
420 sd->lb_hot_gained[itype],
421 sd->lb_nobusyq[itype],
422 sd->lb_nobusyg[itype]);
423 }
424 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
425 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
426 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
427 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
428 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
429 }
430 preempt_enable();
431 #endif
432 }
433 return 0;
434 }
435
436 static int schedstat_open(struct inode *inode, struct file *file)
437 {
438 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
439 char *buf = kmalloc(size, GFP_KERNEL);
440 struct seq_file *m;
441 int res;
442
443 if (!buf)
444 return -ENOMEM;
445 res = single_open(file, show_schedstat, NULL);
446 if (!res) {
447 m = file->private_data;
448 m->buf = buf;
449 m->size = size;
450 } else
451 kfree(buf);
452 return res;
453 }
454
455 struct file_operations proc_schedstat_operations = {
456 .open = schedstat_open,
457 .read = seq_read,
458 .llseek = seq_lseek,
459 .release = single_release,
460 };
461
462 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
463 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
464 #else /* !CONFIG_SCHEDSTATS */
465 # define schedstat_inc(rq, field) do { } while (0)
466 # define schedstat_add(rq, field, amt) do { } while (0)
467 #endif
468
469 /*
470 * rq_lock - lock a given runqueue and disable interrupts.
471 */
472 static inline runqueue_t *this_rq_lock(void)
473 __acquires(rq->lock)
474 {
475 runqueue_t *rq;
476
477 local_irq_disable();
478 rq = this_rq();
479 spin_lock(&rq->lock);
480
481 return rq;
482 }
483
484 #ifdef CONFIG_SCHEDSTATS
485 /*
486 * Called when a process is dequeued from the active array and given
487 * the cpu. We should note that with the exception of interactive
488 * tasks, the expired queue will become the active queue after the active
489 * queue is empty, without explicitly dequeuing and requeuing tasks in the
490 * expired queue. (Interactive tasks may be requeued directly to the
491 * active queue, thus delaying tasks in the expired queue from running;
492 * see scheduler_tick()).
493 *
494 * This function is only called from sched_info_arrive(), rather than
495 * dequeue_task(). Even though a task may be queued and dequeued multiple
496 * times as it is shuffled about, we're really interested in knowing how
497 * long it was from the *first* time it was queued to the time that it
498 * finally hit a cpu.
499 */
500 static inline void sched_info_dequeued(task_t *t)
501 {
502 t->sched_info.last_queued = 0;
503 }
504
505 /*
506 * Called when a task finally hits the cpu. We can now calculate how
507 * long it was waiting to run. We also note when it began so that we
508 * can keep stats on how long its timeslice is.
509 */
510 static inline void sched_info_arrive(task_t *t)
511 {
512 unsigned long now = jiffies, diff = 0;
513 struct runqueue *rq = task_rq(t);
514
515 if (t->sched_info.last_queued)
516 diff = now - t->sched_info.last_queued;
517 sched_info_dequeued(t);
518 t->sched_info.run_delay += diff;
519 t->sched_info.last_arrival = now;
520 t->sched_info.pcnt++;
521
522 if (!rq)
523 return;
524
525 rq->rq_sched_info.run_delay += diff;
526 rq->rq_sched_info.pcnt++;
527 }
528
529 /*
530 * Called when a process is queued into either the active or expired
531 * array. The time is noted and later used to determine how long we
532 * had to wait for us to reach the cpu. Since the expired queue will
533 * become the active queue after active queue is empty, without dequeuing
534 * and requeuing any tasks, we are interested in queuing to either. It
535 * is unusual but not impossible for tasks to be dequeued and immediately
536 * requeued in the same or another array: this can happen in sched_yield(),
537 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
538 * to runqueue.
539 *
540 * This function is only called from enqueue_task(), but also only updates
541 * the timestamp if it is already not set. It's assumed that
542 * sched_info_dequeued() will clear that stamp when appropriate.
543 */
544 static inline void sched_info_queued(task_t *t)
545 {
546 if (!t->sched_info.last_queued)
547 t->sched_info.last_queued = jiffies;
548 }
549
550 /*
551 * Called when a process ceases being the active-running process, either
552 * voluntarily or involuntarily. Now we can calculate how long we ran.
553 */
554 static inline void sched_info_depart(task_t *t)
555 {
556 struct runqueue *rq = task_rq(t);
557 unsigned long diff = jiffies - t->sched_info.last_arrival;
558
559 t->sched_info.cpu_time += diff;
560
561 if (rq)
562 rq->rq_sched_info.cpu_time += diff;
563 }
564
565 /*
566 * Called when tasks are switched involuntarily due, typically, to expiring
567 * their time slice. (This may also be called when switching to or from
568 * the idle task.) We are only called when prev != next.
569 */
570 static inline void sched_info_switch(task_t *prev, task_t *next)
571 {
572 struct runqueue *rq = task_rq(prev);
573
574 /*
575 * prev now departs the cpu. It's not interesting to record
576 * stats about how efficient we were at scheduling the idle
577 * process, however.
578 */
579 if (prev != rq->idle)
580 sched_info_depart(prev);
581
582 if (next != rq->idle)
583 sched_info_arrive(next);
584 }
585 #else
586 #define sched_info_queued(t) do { } while (0)
587 #define sched_info_switch(t, next) do { } while (0)
588 #endif /* CONFIG_SCHEDSTATS */
589
590 /*
591 * Adding/removing a task to/from a priority array:
592 */
593 static void dequeue_task(struct task_struct *p, prio_array_t *array)
594 {
595 array->nr_active--;
596 list_del(&p->run_list);
597 if (list_empty(array->queue + p->prio))
598 __clear_bit(p->prio, array->bitmap);
599 }
600
601 static void enqueue_task(struct task_struct *p, prio_array_t *array)
602 {
603 sched_info_queued(p);
604 list_add_tail(&p->run_list, array->queue + p->prio);
605 __set_bit(p->prio, array->bitmap);
606 array->nr_active++;
607 p->array = array;
608 }
609
610 /*
611 * Put task to the end of the run list without the overhead of dequeue
612 * followed by enqueue.
613 */
614 static void requeue_task(struct task_struct *p, prio_array_t *array)
615 {
616 list_move_tail(&p->run_list, array->queue + p->prio);
617 }
618
619 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
620 {
621 list_add(&p->run_list, array->queue + p->prio);
622 __set_bit(p->prio, array->bitmap);
623 array->nr_active++;
624 p->array = array;
625 }
626
627 /*
628 * effective_prio - return the priority that is based on the static
629 * priority but is modified by bonuses/penalties.
630 *
631 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
632 * into the -5 ... 0 ... +5 bonus/penalty range.
633 *
634 * We use 25% of the full 0...39 priority range so that:
635 *
636 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
637 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
638 *
639 * Both properties are important to certain workloads.
640 */
641 static int effective_prio(task_t *p)
642 {
643 int bonus, prio;
644
645 if (rt_task(p))
646 return p->prio;
647
648 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
649
650 prio = p->static_prio - bonus;
651 if (prio < MAX_RT_PRIO)
652 prio = MAX_RT_PRIO;
653 if (prio > MAX_PRIO-1)
654 prio = MAX_PRIO-1;
655 return prio;
656 }
657
658 /*
659 * __activate_task - move a task to the runqueue.
660 */
661 static inline void __activate_task(task_t *p, runqueue_t *rq)
662 {
663 enqueue_task(p, rq->active);
664 rq->nr_running++;
665 }
666
667 /*
668 * __activate_idle_task - move idle task to the _front_ of runqueue.
669 */
670 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
671 {
672 enqueue_task_head(p, rq->active);
673 rq->nr_running++;
674 }
675
676 static int recalc_task_prio(task_t *p, unsigned long long now)
677 {
678 /* Caller must always ensure 'now >= p->timestamp' */
679 unsigned long long __sleep_time = now - p->timestamp;
680 unsigned long sleep_time;
681
682 if (__sleep_time > NS_MAX_SLEEP_AVG)
683 sleep_time = NS_MAX_SLEEP_AVG;
684 else
685 sleep_time = (unsigned long)__sleep_time;
686
687 if (likely(sleep_time > 0)) {
688 /*
689 * User tasks that sleep a long time are categorised as
690 * idle and will get just interactive status to stay active &
691 * prevent them suddenly becoming cpu hogs and starving
692 * other processes.
693 */
694 if (p->mm && p->activated != -1 &&
695 sleep_time > INTERACTIVE_SLEEP(p)) {
696 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
697 DEF_TIMESLICE);
698 } else {
699 /*
700 * The lower the sleep avg a task has the more
701 * rapidly it will rise with sleep time.
702 */
703 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
704
705 /*
706 * Tasks waking from uninterruptible sleep are
707 * limited in their sleep_avg rise as they
708 * are likely to be waiting on I/O
709 */
710 if (p->activated == -1 && p->mm) {
711 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
712 sleep_time = 0;
713 else if (p->sleep_avg + sleep_time >=
714 INTERACTIVE_SLEEP(p)) {
715 p->sleep_avg = INTERACTIVE_SLEEP(p);
716 sleep_time = 0;
717 }
718 }
719
720 /*
721 * This code gives a bonus to interactive tasks.
722 *
723 * The boost works by updating the 'average sleep time'
724 * value here, based on ->timestamp. The more time a
725 * task spends sleeping, the higher the average gets -
726 * and the higher the priority boost gets as well.
727 */
728 p->sleep_avg += sleep_time;
729
730 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
731 p->sleep_avg = NS_MAX_SLEEP_AVG;
732 }
733 }
734
735 return effective_prio(p);
736 }
737
738 /*
739 * activate_task - move a task to the runqueue and do priority recalculation
740 *
741 * Update all the scheduling statistics stuff. (sleep average
742 * calculation, priority modifiers, etc.)
743 */
744 static void activate_task(task_t *p, runqueue_t *rq, int local)
745 {
746 unsigned long long now;
747
748 now = sched_clock();
749 #ifdef CONFIG_SMP
750 if (!local) {
751 /* Compensate for drifting sched_clock */
752 runqueue_t *this_rq = this_rq();
753 now = (now - this_rq->timestamp_last_tick)
754 + rq->timestamp_last_tick;
755 }
756 #endif
757
758 p->prio = recalc_task_prio(p, now);
759
760 /*
761 * This checks to make sure it's not an uninterruptible task
762 * that is now waking up.
763 */
764 if (!p->activated) {
765 /*
766 * Tasks which were woken up by interrupts (ie. hw events)
767 * are most likely of interactive nature. So we give them
768 * the credit of extending their sleep time to the period
769 * of time they spend on the runqueue, waiting for execution
770 * on a CPU, first time around:
771 */
772 if (in_interrupt())
773 p->activated = 2;
774 else {
775 /*
776 * Normal first-time wakeups get a credit too for
777 * on-runqueue time, but it will be weighted down:
778 */
779 p->activated = 1;
780 }
781 }
782 p->timestamp = now;
783
784 __activate_task(p, rq);
785 }
786
787 /*
788 * deactivate_task - remove a task from the runqueue.
789 */
790 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
791 {
792 rq->nr_running--;
793 dequeue_task(p, p->array);
794 p->array = NULL;
795 }
796
797 /*
798 * resched_task - mark a task 'to be rescheduled now'.
799 *
800 * On UP this means the setting of the need_resched flag, on SMP it
801 * might also involve a cross-CPU call to trigger the scheduler on
802 * the target CPU.
803 */
804 #ifdef CONFIG_SMP
805 static void resched_task(task_t *p)
806 {
807 int need_resched, nrpolling;
808
809 assert_spin_locked(&task_rq(p)->lock);
810
811 /* minimise the chance of sending an interrupt to poll_idle() */
812 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
813 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
814 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
815
816 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
817 smp_send_reschedule(task_cpu(p));
818 }
819 #else
820 static inline void resched_task(task_t *p)
821 {
822 set_tsk_need_resched(p);
823 }
824 #endif
825
826 /**
827 * task_curr - is this task currently executing on a CPU?
828 * @p: the task in question.
829 */
830 inline int task_curr(const task_t *p)
831 {
832 return cpu_curr(task_cpu(p)) == p;
833 }
834
835 #ifdef CONFIG_SMP
836 typedef struct {
837 struct list_head list;
838
839 task_t *task;
840 int dest_cpu;
841
842 struct completion done;
843 } migration_req_t;
844
845 /*
846 * The task's runqueue lock must be held.
847 * Returns true if you have to wait for migration thread.
848 */
849 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
850 {
851 runqueue_t *rq = task_rq(p);
852
853 /*
854 * If the task is not on a runqueue (and not running), then
855 * it is sufficient to simply update the task's cpu field.
856 */
857 if (!p->array && !task_running(rq, p)) {
858 set_task_cpu(p, dest_cpu);
859 return 0;
860 }
861
862 init_completion(&req->done);
863 req->task = p;
864 req->dest_cpu = dest_cpu;
865 list_add(&req->list, &rq->migration_queue);
866 return 1;
867 }
868
869 /*
870 * wait_task_inactive - wait for a thread to unschedule.
871 *
872 * The caller must ensure that the task *will* unschedule sometime soon,
873 * else this function might spin for a *long* time. This function can't
874 * be called with interrupts off, or it may introduce deadlock with
875 * smp_call_function() if an IPI is sent by the same process we are
876 * waiting to become inactive.
877 */
878 void wait_task_inactive(task_t * p)
879 {
880 unsigned long flags;
881 runqueue_t *rq;
882 int preempted;
883
884 repeat:
885 rq = task_rq_lock(p, &flags);
886 /* Must be off runqueue entirely, not preempted. */
887 if (unlikely(p->array || task_running(rq, p))) {
888 /* If it's preempted, we yield. It could be a while. */
889 preempted = !task_running(rq, p);
890 task_rq_unlock(rq, &flags);
891 cpu_relax();
892 if (preempted)
893 yield();
894 goto repeat;
895 }
896 task_rq_unlock(rq, &flags);
897 }
898
899 /***
900 * kick_process - kick a running thread to enter/exit the kernel
901 * @p: the to-be-kicked thread
902 *
903 * Cause a process which is running on another CPU to enter
904 * kernel-mode, without any delay. (to get signals handled.)
905 *
906 * NOTE: this function doesnt have to take the runqueue lock,
907 * because all it wants to ensure is that the remote task enters
908 * the kernel. If the IPI races and the task has been migrated
909 * to another CPU then no harm is done and the purpose has been
910 * achieved as well.
911 */
912 void kick_process(task_t *p)
913 {
914 int cpu;
915
916 preempt_disable();
917 cpu = task_cpu(p);
918 if ((cpu != smp_processor_id()) && task_curr(p))
919 smp_send_reschedule(cpu);
920 preempt_enable();
921 }
922
923 /*
924 * Return a low guess at the load of a migration-source cpu.
925 *
926 * We want to under-estimate the load of migration sources, to
927 * balance conservatively.
928 */
929 static inline unsigned long source_load(int cpu, int type)
930 {
931 runqueue_t *rq = cpu_rq(cpu);
932 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
933 if (type == 0)
934 return load_now;
935
936 return min(rq->cpu_load[type-1], load_now);
937 }
938
939 /*
940 * Return a high guess at the load of a migration-target cpu
941 */
942 static inline unsigned long target_load(int cpu, int type)
943 {
944 runqueue_t *rq = cpu_rq(cpu);
945 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
946 if (type == 0)
947 return load_now;
948
949 return max(rq->cpu_load[type-1], load_now);
950 }
951
952 /*
953 * find_idlest_group finds and returns the least busy CPU group within the
954 * domain.
955 */
956 static struct sched_group *
957 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
958 {
959 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
960 unsigned long min_load = ULONG_MAX, this_load = 0;
961 int load_idx = sd->forkexec_idx;
962 int imbalance = 100 + (sd->imbalance_pct-100)/2;
963
964 do {
965 unsigned long load, avg_load;
966 int local_group;
967 int i;
968
969 local_group = cpu_isset(this_cpu, group->cpumask);
970 /* XXX: put a cpus allowed check */
971
972 /* Tally up the load of all CPUs in the group */
973 avg_load = 0;
974
975 for_each_cpu_mask(i, group->cpumask) {
976 /* Bias balancing toward cpus of our domain */
977 if (local_group)
978 load = source_load(i, load_idx);
979 else
980 load = target_load(i, load_idx);
981
982 avg_load += load;
983 }
984
985 /* Adjust by relative CPU power of the group */
986 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
987
988 if (local_group) {
989 this_load = avg_load;
990 this = group;
991 } else if (avg_load < min_load) {
992 min_load = avg_load;
993 idlest = group;
994 }
995 group = group->next;
996 } while (group != sd->groups);
997
998 if (!idlest || 100*this_load < imbalance*min_load)
999 return NULL;
1000 return idlest;
1001 }
1002
1003 /*
1004 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1005 */
1006 static int find_idlest_cpu(struct sched_group *group, int this_cpu)
1007 {
1008 unsigned long load, min_load = ULONG_MAX;
1009 int idlest = -1;
1010 int i;
1011
1012 for_each_cpu_mask(i, group->cpumask) {
1013 load = source_load(i, 0);
1014
1015 if (load < min_load || (load == min_load && i == this_cpu)) {
1016 min_load = load;
1017 idlest = i;
1018 }
1019 }
1020
1021 return idlest;
1022 }
1023
1024 /*
1025 * sched_balance_self: balance the current task (running on cpu) in domains
1026 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1027 * SD_BALANCE_EXEC.
1028 *
1029 * Balance, ie. select the least loaded group.
1030 *
1031 * Returns the target CPU number, or the same CPU if no balancing is needed.
1032 *
1033 * preempt must be disabled.
1034 */
1035 static int sched_balance_self(int cpu, int flag)
1036 {
1037 struct task_struct *t = current;
1038 struct sched_domain *tmp, *sd = NULL;
1039
1040 for_each_domain(cpu, tmp)
1041 if (tmp->flags & flag)
1042 sd = tmp;
1043
1044 while (sd) {
1045 cpumask_t span;
1046 struct sched_group *group;
1047 int new_cpu;
1048 int weight;
1049
1050 span = sd->span;
1051 group = find_idlest_group(sd, t, cpu);
1052 if (!group)
1053 goto nextlevel;
1054
1055 new_cpu = find_idlest_cpu(group, cpu);
1056 if (new_cpu == -1 || new_cpu == cpu)
1057 goto nextlevel;
1058
1059 /* Now try balancing at a lower domain level */
1060 cpu = new_cpu;
1061 nextlevel:
1062 sd = NULL;
1063 weight = cpus_weight(span);
1064 for_each_domain(cpu, tmp) {
1065 if (weight <= cpus_weight(tmp->span))
1066 break;
1067 if (tmp->flags & flag)
1068 sd = tmp;
1069 }
1070 /* while loop will break here if sd == NULL */
1071 }
1072
1073 return cpu;
1074 }
1075
1076 #endif /* CONFIG_SMP */
1077
1078 /*
1079 * wake_idle() will wake a task on an idle cpu if task->cpu is
1080 * not idle and an idle cpu is available. The span of cpus to
1081 * search starts with cpus closest then further out as needed,
1082 * so we always favor a closer, idle cpu.
1083 *
1084 * Returns the CPU we should wake onto.
1085 */
1086 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1087 static int wake_idle(int cpu, task_t *p)
1088 {
1089 cpumask_t tmp;
1090 struct sched_domain *sd;
1091 int i;
1092
1093 if (idle_cpu(cpu))
1094 return cpu;
1095
1096 for_each_domain(cpu, sd) {
1097 if (sd->flags & SD_WAKE_IDLE) {
1098 cpus_and(tmp, sd->span, p->cpus_allowed);
1099 for_each_cpu_mask(i, tmp) {
1100 if (idle_cpu(i))
1101 return i;
1102 }
1103 }
1104 else
1105 break;
1106 }
1107 return cpu;
1108 }
1109 #else
1110 static inline int wake_idle(int cpu, task_t *p)
1111 {
1112 return cpu;
1113 }
1114 #endif
1115
1116 /***
1117 * try_to_wake_up - wake up a thread
1118 * @p: the to-be-woken-up thread
1119 * @state: the mask of task states that can be woken
1120 * @sync: do a synchronous wakeup?
1121 *
1122 * Put it on the run-queue if it's not already there. The "current"
1123 * thread is always on the run-queue (except when the actual
1124 * re-schedule is in progress), and as such you're allowed to do
1125 * the simpler "current->state = TASK_RUNNING" to mark yourself
1126 * runnable without the overhead of this.
1127 *
1128 * returns failure only if the task is already active.
1129 */
1130 static int try_to_wake_up(task_t * p, unsigned int state, int sync)
1131 {
1132 int cpu, this_cpu, success = 0;
1133 unsigned long flags;
1134 long old_state;
1135 runqueue_t *rq;
1136 #ifdef CONFIG_SMP
1137 unsigned long load, this_load;
1138 struct sched_domain *sd, *this_sd = NULL;
1139 int new_cpu;
1140 #endif
1141
1142 rq = task_rq_lock(p, &flags);
1143 old_state = p->state;
1144 if (!(old_state & state))
1145 goto out;
1146
1147 if (p->array)
1148 goto out_running;
1149
1150 cpu = task_cpu(p);
1151 this_cpu = smp_processor_id();
1152
1153 #ifdef CONFIG_SMP
1154 if (unlikely(task_running(rq, p)))
1155 goto out_activate;
1156
1157 new_cpu = cpu;
1158
1159 schedstat_inc(rq, ttwu_cnt);
1160 if (cpu == this_cpu) {
1161 schedstat_inc(rq, ttwu_local);
1162 goto out_set_cpu;
1163 }
1164
1165 for_each_domain(this_cpu, sd) {
1166 if (cpu_isset(cpu, sd->span)) {
1167 schedstat_inc(sd, ttwu_wake_remote);
1168 this_sd = sd;
1169 break;
1170 }
1171 }
1172
1173 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1174 goto out_set_cpu;
1175
1176 /*
1177 * Check for affine wakeup and passive balancing possibilities.
1178 */
1179 if (this_sd) {
1180 int idx = this_sd->wake_idx;
1181 unsigned int imbalance;
1182
1183 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1184
1185 load = source_load(cpu, idx);
1186 this_load = target_load(this_cpu, idx);
1187
1188 new_cpu = this_cpu; /* Wake to this CPU if we can */
1189
1190 if (this_sd->flags & SD_WAKE_AFFINE) {
1191 unsigned long tl = this_load;
1192 /*
1193 * If sync wakeup then subtract the (maximum possible)
1194 * effect of the currently running task from the load
1195 * of the current CPU:
1196 */
1197 if (sync)
1198 tl -= SCHED_LOAD_SCALE;
1199
1200 if ((tl <= load &&
1201 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1202 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1203 /*
1204 * This domain has SD_WAKE_AFFINE and
1205 * p is cache cold in this domain, and
1206 * there is no bad imbalance.
1207 */
1208 schedstat_inc(this_sd, ttwu_move_affine);
1209 goto out_set_cpu;
1210 }
1211 }
1212
1213 /*
1214 * Start passive balancing when half the imbalance_pct
1215 * limit is reached.
1216 */
1217 if (this_sd->flags & SD_WAKE_BALANCE) {
1218 if (imbalance*this_load <= 100*load) {
1219 schedstat_inc(this_sd, ttwu_move_balance);
1220 goto out_set_cpu;
1221 }
1222 }
1223 }
1224
1225 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1226 out_set_cpu:
1227 new_cpu = wake_idle(new_cpu, p);
1228 if (new_cpu != cpu) {
1229 set_task_cpu(p, new_cpu);
1230 task_rq_unlock(rq, &flags);
1231 /* might preempt at this point */
1232 rq = task_rq_lock(p, &flags);
1233 old_state = p->state;
1234 if (!(old_state & state))
1235 goto out;
1236 if (p->array)
1237 goto out_running;
1238
1239 this_cpu = smp_processor_id();
1240 cpu = task_cpu(p);
1241 }
1242
1243 out_activate:
1244 #endif /* CONFIG_SMP */
1245 if (old_state == TASK_UNINTERRUPTIBLE) {
1246 rq->nr_uninterruptible--;
1247 /*
1248 * Tasks on involuntary sleep don't earn
1249 * sleep_avg beyond just interactive state.
1250 */
1251 p->activated = -1;
1252 }
1253
1254 /*
1255 * Sync wakeups (i.e. those types of wakeups where the waker
1256 * has indicated that it will leave the CPU in short order)
1257 * don't trigger a preemption, if the woken up task will run on
1258 * this cpu. (in this case the 'I will reschedule' promise of
1259 * the waker guarantees that the freshly woken up task is going
1260 * to be considered on this CPU.)
1261 */
1262 activate_task(p, rq, cpu == this_cpu);
1263 if (!sync || cpu != this_cpu) {
1264 if (TASK_PREEMPTS_CURR(p, rq))
1265 resched_task(rq->curr);
1266 }
1267 success = 1;
1268
1269 out_running:
1270 p->state = TASK_RUNNING;
1271 out:
1272 task_rq_unlock(rq, &flags);
1273
1274 return success;
1275 }
1276
1277 int fastcall wake_up_process(task_t * p)
1278 {
1279 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1280 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1281 }
1282
1283 EXPORT_SYMBOL(wake_up_process);
1284
1285 int fastcall wake_up_state(task_t *p, unsigned int state)
1286 {
1287 return try_to_wake_up(p, state, 0);
1288 }
1289
1290 /*
1291 * Perform scheduler related setup for a newly forked process p.
1292 * p is forked by current.
1293 */
1294 void fastcall sched_fork(task_t *p, int clone_flags)
1295 {
1296 int cpu = get_cpu();
1297
1298 #ifdef CONFIG_SMP
1299 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1300 #endif
1301 set_task_cpu(p, cpu);
1302
1303 /*
1304 * We mark the process as running here, but have not actually
1305 * inserted it onto the runqueue yet. This guarantees that
1306 * nobody will actually run it, and a signal or other external
1307 * event cannot wake it up and insert it on the runqueue either.
1308 */
1309 p->state = TASK_RUNNING;
1310 INIT_LIST_HEAD(&p->run_list);
1311 p->array = NULL;
1312 #ifdef CONFIG_SCHEDSTATS
1313 memset(&p->sched_info, 0, sizeof(p->sched_info));
1314 #endif
1315 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1316 p->oncpu = 0;
1317 #endif
1318 #ifdef CONFIG_PREEMPT
1319 /* Want to start with kernel preemption disabled. */
1320 p->thread_info->preempt_count = 1;
1321 #endif
1322 /*
1323 * Share the timeslice between parent and child, thus the
1324 * total amount of pending timeslices in the system doesn't change,
1325 * resulting in more scheduling fairness.
1326 */
1327 local_irq_disable();
1328 p->time_slice = (current->time_slice + 1) >> 1;
1329 /*
1330 * The remainder of the first timeslice might be recovered by
1331 * the parent if the child exits early enough.
1332 */
1333 p->first_time_slice = 1;
1334 current->time_slice >>= 1;
1335 p->timestamp = sched_clock();
1336 if (unlikely(!current->time_slice)) {
1337 /*
1338 * This case is rare, it happens when the parent has only
1339 * a single jiffy left from its timeslice. Taking the
1340 * runqueue lock is not a problem.
1341 */
1342 current->time_slice = 1;
1343 scheduler_tick();
1344 }
1345 local_irq_enable();
1346 put_cpu();
1347 }
1348
1349 /*
1350 * wake_up_new_task - wake up a newly created task for the first time.
1351 *
1352 * This function will do some initial scheduler statistics housekeeping
1353 * that must be done for every newly created context, then puts the task
1354 * on the runqueue and wakes it.
1355 */
1356 void fastcall wake_up_new_task(task_t * p, unsigned long clone_flags)
1357 {
1358 unsigned long flags;
1359 int this_cpu, cpu;
1360 runqueue_t *rq, *this_rq;
1361
1362 rq = task_rq_lock(p, &flags);
1363 BUG_ON(p->state != TASK_RUNNING);
1364 this_cpu = smp_processor_id();
1365 cpu = task_cpu(p);
1366
1367 /*
1368 * We decrease the sleep average of forking parents
1369 * and children as well, to keep max-interactive tasks
1370 * from forking tasks that are max-interactive. The parent
1371 * (current) is done further down, under its lock.
1372 */
1373 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1374 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1375
1376 p->prio = effective_prio(p);
1377
1378 if (likely(cpu == this_cpu)) {
1379 if (!(clone_flags & CLONE_VM)) {
1380 /*
1381 * The VM isn't cloned, so we're in a good position to
1382 * do child-runs-first in anticipation of an exec. This
1383 * usually avoids a lot of COW overhead.
1384 */
1385 if (unlikely(!current->array))
1386 __activate_task(p, rq);
1387 else {
1388 p->prio = current->prio;
1389 list_add_tail(&p->run_list, &current->run_list);
1390 p->array = current->array;
1391 p->array->nr_active++;
1392 rq->nr_running++;
1393 }
1394 set_need_resched();
1395 } else
1396 /* Run child last */
1397 __activate_task(p, rq);
1398 /*
1399 * We skip the following code due to cpu == this_cpu
1400 *
1401 * task_rq_unlock(rq, &flags);
1402 * this_rq = task_rq_lock(current, &flags);
1403 */
1404 this_rq = rq;
1405 } else {
1406 this_rq = cpu_rq(this_cpu);
1407
1408 /*
1409 * Not the local CPU - must adjust timestamp. This should
1410 * get optimised away in the !CONFIG_SMP case.
1411 */
1412 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1413 + rq->timestamp_last_tick;
1414 __activate_task(p, rq);
1415 if (TASK_PREEMPTS_CURR(p, rq))
1416 resched_task(rq->curr);
1417
1418 /*
1419 * Parent and child are on different CPUs, now get the
1420 * parent runqueue to update the parent's ->sleep_avg:
1421 */
1422 task_rq_unlock(rq, &flags);
1423 this_rq = task_rq_lock(current, &flags);
1424 }
1425 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1426 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1427 task_rq_unlock(this_rq, &flags);
1428 }
1429
1430 /*
1431 * Potentially available exiting-child timeslices are
1432 * retrieved here - this way the parent does not get
1433 * penalized for creating too many threads.
1434 *
1435 * (this cannot be used to 'generate' timeslices
1436 * artificially, because any timeslice recovered here
1437 * was given away by the parent in the first place.)
1438 */
1439 void fastcall sched_exit(task_t * p)
1440 {
1441 unsigned long flags;
1442 runqueue_t *rq;
1443
1444 /*
1445 * If the child was a (relative-) CPU hog then decrease
1446 * the sleep_avg of the parent as well.
1447 */
1448 rq = task_rq_lock(p->parent, &flags);
1449 if (p->first_time_slice) {
1450 p->parent->time_slice += p->time_slice;
1451 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1452 p->parent->time_slice = task_timeslice(p);
1453 }
1454 if (p->sleep_avg < p->parent->sleep_avg)
1455 p->parent->sleep_avg = p->parent->sleep_avg /
1456 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1457 (EXIT_WEIGHT + 1);
1458 task_rq_unlock(rq, &flags);
1459 }
1460
1461 /**
1462 * prepare_task_switch - prepare to switch tasks
1463 * @rq: the runqueue preparing to switch
1464 * @next: the task we are going to switch to.
1465 *
1466 * This is called with the rq lock held and interrupts off. It must
1467 * be paired with a subsequent finish_task_switch after the context
1468 * switch.
1469 *
1470 * prepare_task_switch sets up locking and calls architecture specific
1471 * hooks.
1472 */
1473 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1474 {
1475 prepare_lock_switch(rq, next);
1476 prepare_arch_switch(next);
1477 }
1478
1479 /**
1480 * finish_task_switch - clean up after a task-switch
1481 * @rq: runqueue associated with task-switch
1482 * @prev: the thread we just switched away from.
1483 *
1484 * finish_task_switch must be called after the context switch, paired
1485 * with a prepare_task_switch call before the context switch.
1486 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1487 * and do any other architecture-specific cleanup actions.
1488 *
1489 * Note that we may have delayed dropping an mm in context_switch(). If
1490 * so, we finish that here outside of the runqueue lock. (Doing it
1491 * with the lock held can cause deadlocks; see schedule() for
1492 * details.)
1493 */
1494 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1495 __releases(rq->lock)
1496 {
1497 struct mm_struct *mm = rq->prev_mm;
1498 unsigned long prev_task_flags;
1499
1500 rq->prev_mm = NULL;
1501
1502 /*
1503 * A task struct has one reference for the use as "current".
1504 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1505 * calls schedule one last time. The schedule call will never return,
1506 * and the scheduled task must drop that reference.
1507 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1508 * still held, otherwise prev could be scheduled on another cpu, die
1509 * there before we look at prev->state, and then the reference would
1510 * be dropped twice.
1511 * Manfred Spraul <manfred@colorfullife.com>
1512 */
1513 prev_task_flags = prev->flags;
1514 #ifdef CONFIG_DEBUG_SPINLOCK
1515 /* this is a valid case when another task releases the spinlock */
1516 rq->lock.owner = current;
1517 #endif
1518 finish_arch_switch(prev);
1519 finish_lock_switch(rq, prev);
1520 if (mm)
1521 mmdrop(mm);
1522 if (unlikely(prev_task_flags & PF_DEAD))
1523 put_task_struct(prev);
1524 }
1525
1526 /**
1527 * schedule_tail - first thing a freshly forked thread must call.
1528 * @prev: the thread we just switched away from.
1529 */
1530 asmlinkage void schedule_tail(task_t *prev)
1531 __releases(rq->lock)
1532 {
1533 runqueue_t *rq = this_rq();
1534 finish_task_switch(rq, prev);
1535 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1536 /* In this case, finish_task_switch does not reenable preemption */
1537 preempt_enable();
1538 #endif
1539 if (current->set_child_tid)
1540 put_user(current->pid, current->set_child_tid);
1541 }
1542
1543 /*
1544 * context_switch - switch to the new MM and the new
1545 * thread's register state.
1546 */
1547 static inline
1548 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1549 {
1550 struct mm_struct *mm = next->mm;
1551 struct mm_struct *oldmm = prev->active_mm;
1552
1553 if (unlikely(!mm)) {
1554 next->active_mm = oldmm;
1555 atomic_inc(&oldmm->mm_count);
1556 enter_lazy_tlb(oldmm, next);
1557 } else
1558 switch_mm(oldmm, mm, next);
1559
1560 if (unlikely(!prev->mm)) {
1561 prev->active_mm = NULL;
1562 WARN_ON(rq->prev_mm);
1563 rq->prev_mm = oldmm;
1564 }
1565
1566 /* Here we just switch the register state and the stack. */
1567 switch_to(prev, next, prev);
1568
1569 return prev;
1570 }
1571
1572 /*
1573 * nr_running, nr_uninterruptible and nr_context_switches:
1574 *
1575 * externally visible scheduler statistics: current number of runnable
1576 * threads, current number of uninterruptible-sleeping threads, total
1577 * number of context switches performed since bootup.
1578 */
1579 unsigned long nr_running(void)
1580 {
1581 unsigned long i, sum = 0;
1582
1583 for_each_online_cpu(i)
1584 sum += cpu_rq(i)->nr_running;
1585
1586 return sum;
1587 }
1588
1589 unsigned long nr_uninterruptible(void)
1590 {
1591 unsigned long i, sum = 0;
1592
1593 for_each_cpu(i)
1594 sum += cpu_rq(i)->nr_uninterruptible;
1595
1596 /*
1597 * Since we read the counters lockless, it might be slightly
1598 * inaccurate. Do not allow it to go below zero though:
1599 */
1600 if (unlikely((long)sum < 0))
1601 sum = 0;
1602
1603 return sum;
1604 }
1605
1606 unsigned long long nr_context_switches(void)
1607 {
1608 unsigned long long i, sum = 0;
1609
1610 for_each_cpu(i)
1611 sum += cpu_rq(i)->nr_switches;
1612
1613 return sum;
1614 }
1615
1616 unsigned long nr_iowait(void)
1617 {
1618 unsigned long i, sum = 0;
1619
1620 for_each_cpu(i)
1621 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1622
1623 return sum;
1624 }
1625
1626 #ifdef CONFIG_SMP
1627
1628 /*
1629 * double_rq_lock - safely lock two runqueues
1630 *
1631 * Note this does not disable interrupts like task_rq_lock,
1632 * you need to do so manually before calling.
1633 */
1634 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1635 __acquires(rq1->lock)
1636 __acquires(rq2->lock)
1637 {
1638 if (rq1 == rq2) {
1639 spin_lock(&rq1->lock);
1640 __acquire(rq2->lock); /* Fake it out ;) */
1641 } else {
1642 if (rq1 < rq2) {
1643 spin_lock(&rq1->lock);
1644 spin_lock(&rq2->lock);
1645 } else {
1646 spin_lock(&rq2->lock);
1647 spin_lock(&rq1->lock);
1648 }
1649 }
1650 }
1651
1652 /*
1653 * double_rq_unlock - safely unlock two runqueues
1654 *
1655 * Note this does not restore interrupts like task_rq_unlock,
1656 * you need to do so manually after calling.
1657 */
1658 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1659 __releases(rq1->lock)
1660 __releases(rq2->lock)
1661 {
1662 spin_unlock(&rq1->lock);
1663 if (rq1 != rq2)
1664 spin_unlock(&rq2->lock);
1665 else
1666 __release(rq2->lock);
1667 }
1668
1669 /*
1670 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1671 */
1672 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1673 __releases(this_rq->lock)
1674 __acquires(busiest->lock)
1675 __acquires(this_rq->lock)
1676 {
1677 if (unlikely(!spin_trylock(&busiest->lock))) {
1678 if (busiest < this_rq) {
1679 spin_unlock(&this_rq->lock);
1680 spin_lock(&busiest->lock);
1681 spin_lock(&this_rq->lock);
1682 } else
1683 spin_lock(&busiest->lock);
1684 }
1685 }
1686
1687 /*
1688 * If dest_cpu is allowed for this process, migrate the task to it.
1689 * This is accomplished by forcing the cpu_allowed mask to only
1690 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1691 * the cpu_allowed mask is restored.
1692 */
1693 static void sched_migrate_task(task_t *p, int dest_cpu)
1694 {
1695 migration_req_t req;
1696 runqueue_t *rq;
1697 unsigned long flags;
1698
1699 rq = task_rq_lock(p, &flags);
1700 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1701 || unlikely(cpu_is_offline(dest_cpu)))
1702 goto out;
1703
1704 /* force the process onto the specified CPU */
1705 if (migrate_task(p, dest_cpu, &req)) {
1706 /* Need to wait for migration thread (might exit: take ref). */
1707 struct task_struct *mt = rq->migration_thread;
1708 get_task_struct(mt);
1709 task_rq_unlock(rq, &flags);
1710 wake_up_process(mt);
1711 put_task_struct(mt);
1712 wait_for_completion(&req.done);
1713 return;
1714 }
1715 out:
1716 task_rq_unlock(rq, &flags);
1717 }
1718
1719 /*
1720 * sched_exec - execve() is a valuable balancing opportunity, because at
1721 * this point the task has the smallest effective memory and cache footprint.
1722 */
1723 void sched_exec(void)
1724 {
1725 int new_cpu, this_cpu = get_cpu();
1726 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1727 put_cpu();
1728 if (new_cpu != this_cpu)
1729 sched_migrate_task(current, new_cpu);
1730 }
1731
1732 /*
1733 * pull_task - move a task from a remote runqueue to the local runqueue.
1734 * Both runqueues must be locked.
1735 */
1736 static inline
1737 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1738 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1739 {
1740 dequeue_task(p, src_array);
1741 src_rq->nr_running--;
1742 set_task_cpu(p, this_cpu);
1743 this_rq->nr_running++;
1744 enqueue_task(p, this_array);
1745 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1746 + this_rq->timestamp_last_tick;
1747 /*
1748 * Note that idle threads have a prio of MAX_PRIO, for this test
1749 * to be always true for them.
1750 */
1751 if (TASK_PREEMPTS_CURR(p, this_rq))
1752 resched_task(this_rq->curr);
1753 }
1754
1755 /*
1756 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1757 */
1758 static inline
1759 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1760 struct sched_domain *sd, enum idle_type idle, int *all_pinned)
1761 {
1762 /*
1763 * We do not migrate tasks that are:
1764 * 1) running (obviously), or
1765 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1766 * 3) are cache-hot on their current CPU.
1767 */
1768 if (!cpu_isset(this_cpu, p->cpus_allowed))
1769 return 0;
1770 *all_pinned = 0;
1771
1772 if (task_running(rq, p))
1773 return 0;
1774
1775 /*
1776 * Aggressive migration if:
1777 * 1) task is cache cold, or
1778 * 2) too many balance attempts have failed.
1779 */
1780
1781 if (sd->nr_balance_failed > sd->cache_nice_tries)
1782 return 1;
1783
1784 if (task_hot(p, rq->timestamp_last_tick, sd))
1785 return 0;
1786 return 1;
1787 }
1788
1789 /*
1790 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1791 * as part of a balancing operation within "domain". Returns the number of
1792 * tasks moved.
1793 *
1794 * Called with both runqueues locked.
1795 */
1796 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1797 unsigned long max_nr_move, struct sched_domain *sd,
1798 enum idle_type idle, int *all_pinned)
1799 {
1800 prio_array_t *array, *dst_array;
1801 struct list_head *head, *curr;
1802 int idx, pulled = 0, pinned = 0;
1803 task_t *tmp;
1804
1805 if (max_nr_move == 0)
1806 goto out;
1807
1808 pinned = 1;
1809
1810 /*
1811 * We first consider expired tasks. Those will likely not be
1812 * executed in the near future, and they are most likely to
1813 * be cache-cold, thus switching CPUs has the least effect
1814 * on them.
1815 */
1816 if (busiest->expired->nr_active) {
1817 array = busiest->expired;
1818 dst_array = this_rq->expired;
1819 } else {
1820 array = busiest->active;
1821 dst_array = this_rq->active;
1822 }
1823
1824 new_array:
1825 /* Start searching at priority 0: */
1826 idx = 0;
1827 skip_bitmap:
1828 if (!idx)
1829 idx = sched_find_first_bit(array->bitmap);
1830 else
1831 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1832 if (idx >= MAX_PRIO) {
1833 if (array == busiest->expired && busiest->active->nr_active) {
1834 array = busiest->active;
1835 dst_array = this_rq->active;
1836 goto new_array;
1837 }
1838 goto out;
1839 }
1840
1841 head = array->queue + idx;
1842 curr = head->prev;
1843 skip_queue:
1844 tmp = list_entry(curr, task_t, run_list);
1845
1846 curr = curr->prev;
1847
1848 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1849 if (curr != head)
1850 goto skip_queue;
1851 idx++;
1852 goto skip_bitmap;
1853 }
1854
1855 #ifdef CONFIG_SCHEDSTATS
1856 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1857 schedstat_inc(sd, lb_hot_gained[idle]);
1858 #endif
1859
1860 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1861 pulled++;
1862
1863 /* We only want to steal up to the prescribed number of tasks. */
1864 if (pulled < max_nr_move) {
1865 if (curr != head)
1866 goto skip_queue;
1867 idx++;
1868 goto skip_bitmap;
1869 }
1870 out:
1871 /*
1872 * Right now, this is the only place pull_task() is called,
1873 * so we can safely collect pull_task() stats here rather than
1874 * inside pull_task().
1875 */
1876 schedstat_add(sd, lb_gained[idle], pulled);
1877
1878 if (all_pinned)
1879 *all_pinned = pinned;
1880 return pulled;
1881 }
1882
1883 /*
1884 * find_busiest_group finds and returns the busiest CPU group within the
1885 * domain. It calculates and returns the number of tasks which should be
1886 * moved to restore balance via the imbalance parameter.
1887 */
1888 static struct sched_group *
1889 find_busiest_group(struct sched_domain *sd, int this_cpu,
1890 unsigned long *imbalance, enum idle_type idle)
1891 {
1892 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1893 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1894 int load_idx;
1895
1896 max_load = this_load = total_load = total_pwr = 0;
1897 if (idle == NOT_IDLE)
1898 load_idx = sd->busy_idx;
1899 else if (idle == NEWLY_IDLE)
1900 load_idx = sd->newidle_idx;
1901 else
1902 load_idx = sd->idle_idx;
1903
1904 do {
1905 unsigned long load;
1906 int local_group;
1907 int i;
1908
1909 local_group = cpu_isset(this_cpu, group->cpumask);
1910
1911 /* Tally up the load of all CPUs in the group */
1912 avg_load = 0;
1913
1914 for_each_cpu_mask(i, group->cpumask) {
1915 /* Bias balancing toward cpus of our domain */
1916 if (local_group)
1917 load = target_load(i, load_idx);
1918 else
1919 load = source_load(i, load_idx);
1920
1921 avg_load += load;
1922 }
1923
1924 total_load += avg_load;
1925 total_pwr += group->cpu_power;
1926
1927 /* Adjust by relative CPU power of the group */
1928 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1929
1930 if (local_group) {
1931 this_load = avg_load;
1932 this = group;
1933 } else if (avg_load > max_load) {
1934 max_load = avg_load;
1935 busiest = group;
1936 }
1937 group = group->next;
1938 } while (group != sd->groups);
1939
1940 if (!busiest || this_load >= max_load)
1941 goto out_balanced;
1942
1943 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1944
1945 if (this_load >= avg_load ||
1946 100*max_load <= sd->imbalance_pct*this_load)
1947 goto out_balanced;
1948
1949 /*
1950 * We're trying to get all the cpus to the average_load, so we don't
1951 * want to push ourselves above the average load, nor do we wish to
1952 * reduce the max loaded cpu below the average load, as either of these
1953 * actions would just result in more rebalancing later, and ping-pong
1954 * tasks around. Thus we look for the minimum possible imbalance.
1955 * Negative imbalances (*we* are more loaded than anyone else) will
1956 * be counted as no imbalance for these purposes -- we can't fix that
1957 * by pulling tasks to us. Be careful of negative numbers as they'll
1958 * appear as very large values with unsigned longs.
1959 */
1960 /* How much load to actually move to equalise the imbalance */
1961 *imbalance = min((max_load - avg_load) * busiest->cpu_power,
1962 (avg_load - this_load) * this->cpu_power)
1963 / SCHED_LOAD_SCALE;
1964
1965 if (*imbalance < SCHED_LOAD_SCALE) {
1966 unsigned long pwr_now = 0, pwr_move = 0;
1967 unsigned long tmp;
1968
1969 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
1970 *imbalance = 1;
1971 return busiest;
1972 }
1973
1974 /*
1975 * OK, we don't have enough imbalance to justify moving tasks,
1976 * however we may be able to increase total CPU power used by
1977 * moving them.
1978 */
1979
1980 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
1981 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
1982 pwr_now /= SCHED_LOAD_SCALE;
1983
1984 /* Amount of load we'd subtract */
1985 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
1986 if (max_load > tmp)
1987 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
1988 max_load - tmp);
1989
1990 /* Amount of load we'd add */
1991 if (max_load*busiest->cpu_power <
1992 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
1993 tmp = max_load*busiest->cpu_power/this->cpu_power;
1994 else
1995 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
1996 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
1997 pwr_move /= SCHED_LOAD_SCALE;
1998
1999 /* Move if we gain throughput */
2000 if (pwr_move <= pwr_now)
2001 goto out_balanced;
2002
2003 *imbalance = 1;
2004 return busiest;
2005 }
2006
2007 /* Get rid of the scaling factor, rounding down as we divide */
2008 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2009 return busiest;
2010
2011 out_balanced:
2012
2013 *imbalance = 0;
2014 return NULL;
2015 }
2016
2017 /*
2018 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2019 */
2020 static runqueue_t *find_busiest_queue(struct sched_group *group)
2021 {
2022 unsigned long load, max_load = 0;
2023 runqueue_t *busiest = NULL;
2024 int i;
2025
2026 for_each_cpu_mask(i, group->cpumask) {
2027 load = source_load(i, 0);
2028
2029 if (load > max_load) {
2030 max_load = load;
2031 busiest = cpu_rq(i);
2032 }
2033 }
2034
2035 return busiest;
2036 }
2037
2038 /*
2039 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2040 * so long as it is large enough.
2041 */
2042 #define MAX_PINNED_INTERVAL 512
2043
2044 /*
2045 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2046 * tasks if there is an imbalance.
2047 *
2048 * Called with this_rq unlocked.
2049 */
2050 static int load_balance(int this_cpu, runqueue_t *this_rq,
2051 struct sched_domain *sd, enum idle_type idle)
2052 {
2053 struct sched_group *group;
2054 runqueue_t *busiest;
2055 unsigned long imbalance;
2056 int nr_moved, all_pinned = 0;
2057 int active_balance = 0;
2058
2059 spin_lock(&this_rq->lock);
2060 schedstat_inc(sd, lb_cnt[idle]);
2061
2062 group = find_busiest_group(sd, this_cpu, &imbalance, idle);
2063 if (!group) {
2064 schedstat_inc(sd, lb_nobusyg[idle]);
2065 goto out_balanced;
2066 }
2067
2068 busiest = find_busiest_queue(group);
2069 if (!busiest) {
2070 schedstat_inc(sd, lb_nobusyq[idle]);
2071 goto out_balanced;
2072 }
2073
2074 BUG_ON(busiest == this_rq);
2075
2076 schedstat_add(sd, lb_imbalance[idle], imbalance);
2077
2078 nr_moved = 0;
2079 if (busiest->nr_running > 1) {
2080 /*
2081 * Attempt to move tasks. If find_busiest_group has found
2082 * an imbalance but busiest->nr_running <= 1, the group is
2083 * still unbalanced. nr_moved simply stays zero, so it is
2084 * correctly treated as an imbalance.
2085 */
2086 double_lock_balance(this_rq, busiest);
2087 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2088 imbalance, sd, idle,
2089 &all_pinned);
2090 spin_unlock(&busiest->lock);
2091
2092 /* All tasks on this runqueue were pinned by CPU affinity */
2093 if (unlikely(all_pinned))
2094 goto out_balanced;
2095 }
2096
2097 spin_unlock(&this_rq->lock);
2098
2099 if (!nr_moved) {
2100 schedstat_inc(sd, lb_failed[idle]);
2101 sd->nr_balance_failed++;
2102
2103 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2104
2105 spin_lock(&busiest->lock);
2106 if (!busiest->active_balance) {
2107 busiest->active_balance = 1;
2108 busiest->push_cpu = this_cpu;
2109 active_balance = 1;
2110 }
2111 spin_unlock(&busiest->lock);
2112 if (active_balance)
2113 wake_up_process(busiest->migration_thread);
2114
2115 /*
2116 * We've kicked active balancing, reset the failure
2117 * counter.
2118 */
2119 sd->nr_balance_failed = sd->cache_nice_tries+1;
2120 }
2121 } else
2122 sd->nr_balance_failed = 0;
2123
2124 if (likely(!active_balance)) {
2125 /* We were unbalanced, so reset the balancing interval */
2126 sd->balance_interval = sd->min_interval;
2127 } else {
2128 /*
2129 * If we've begun active balancing, start to back off. This
2130 * case may not be covered by the all_pinned logic if there
2131 * is only 1 task on the busy runqueue (because we don't call
2132 * move_tasks).
2133 */
2134 if (sd->balance_interval < sd->max_interval)
2135 sd->balance_interval *= 2;
2136 }
2137
2138 return nr_moved;
2139
2140 out_balanced:
2141 spin_unlock(&this_rq->lock);
2142
2143 schedstat_inc(sd, lb_balanced[idle]);
2144
2145 sd->nr_balance_failed = 0;
2146 /* tune up the balancing interval */
2147 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2148 (sd->balance_interval < sd->max_interval))
2149 sd->balance_interval *= 2;
2150
2151 return 0;
2152 }
2153
2154 /*
2155 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2156 * tasks if there is an imbalance.
2157 *
2158 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2159 * this_rq is locked.
2160 */
2161 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2162 struct sched_domain *sd)
2163 {
2164 struct sched_group *group;
2165 runqueue_t *busiest = NULL;
2166 unsigned long imbalance;
2167 int nr_moved = 0;
2168
2169 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2170 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE);
2171 if (!group) {
2172 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2173 goto out_balanced;
2174 }
2175
2176 busiest = find_busiest_queue(group);
2177 if (!busiest) {
2178 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2179 goto out_balanced;
2180 }
2181
2182 BUG_ON(busiest == this_rq);
2183
2184 /* Attempt to move tasks */
2185 double_lock_balance(this_rq, busiest);
2186
2187 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2188 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2189 imbalance, sd, NEWLY_IDLE, NULL);
2190 if (!nr_moved)
2191 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2192 else
2193 sd->nr_balance_failed = 0;
2194
2195 spin_unlock(&busiest->lock);
2196 return nr_moved;
2197
2198 out_balanced:
2199 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2200 sd->nr_balance_failed = 0;
2201 return 0;
2202 }
2203
2204 /*
2205 * idle_balance is called by schedule() if this_cpu is about to become
2206 * idle. Attempts to pull tasks from other CPUs.
2207 */
2208 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2209 {
2210 struct sched_domain *sd;
2211
2212 for_each_domain(this_cpu, sd) {
2213 if (sd->flags & SD_BALANCE_NEWIDLE) {
2214 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2215 /* We've pulled tasks over so stop searching */
2216 break;
2217 }
2218 }
2219 }
2220 }
2221
2222 /*
2223 * active_load_balance is run by migration threads. It pushes running tasks
2224 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2225 * running on each physical CPU where possible, and avoids physical /
2226 * logical imbalances.
2227 *
2228 * Called with busiest_rq locked.
2229 */
2230 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2231 {
2232 struct sched_domain *sd;
2233 runqueue_t *target_rq;
2234 int target_cpu = busiest_rq->push_cpu;
2235
2236 if (busiest_rq->nr_running <= 1)
2237 /* no task to move */
2238 return;
2239
2240 target_rq = cpu_rq(target_cpu);
2241
2242 /*
2243 * This condition is "impossible", if it occurs
2244 * we need to fix it. Originally reported by
2245 * Bjorn Helgaas on a 128-cpu setup.
2246 */
2247 BUG_ON(busiest_rq == target_rq);
2248
2249 /* move a task from busiest_rq to target_rq */
2250 double_lock_balance(busiest_rq, target_rq);
2251
2252 /* Search for an sd spanning us and the target CPU. */
2253 for_each_domain(target_cpu, sd)
2254 if ((sd->flags & SD_LOAD_BALANCE) &&
2255 cpu_isset(busiest_cpu, sd->span))
2256 break;
2257
2258 if (unlikely(sd == NULL))
2259 goto out;
2260
2261 schedstat_inc(sd, alb_cnt);
2262
2263 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2264 schedstat_inc(sd, alb_pushed);
2265 else
2266 schedstat_inc(sd, alb_failed);
2267 out:
2268 spin_unlock(&target_rq->lock);
2269 }
2270
2271 /*
2272 * rebalance_tick will get called every timer tick, on every CPU.
2273 *
2274 * It checks each scheduling domain to see if it is due to be balanced,
2275 * and initiates a balancing operation if so.
2276 *
2277 * Balancing parameters are set up in arch_init_sched_domains.
2278 */
2279
2280 /* Don't have all balancing operations going off at once */
2281 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2282
2283 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2284 enum idle_type idle)
2285 {
2286 unsigned long old_load, this_load;
2287 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2288 struct sched_domain *sd;
2289 int i;
2290
2291 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2292 /* Update our load */
2293 for (i = 0; i < 3; i++) {
2294 unsigned long new_load = this_load;
2295 int scale = 1 << i;
2296 old_load = this_rq->cpu_load[i];
2297 /*
2298 * Round up the averaging division if load is increasing. This
2299 * prevents us from getting stuck on 9 if the load is 10, for
2300 * example.
2301 */
2302 if (new_load > old_load)
2303 new_load += scale-1;
2304 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2305 }
2306
2307 for_each_domain(this_cpu, sd) {
2308 unsigned long interval;
2309
2310 if (!(sd->flags & SD_LOAD_BALANCE))
2311 continue;
2312
2313 interval = sd->balance_interval;
2314 if (idle != SCHED_IDLE)
2315 interval *= sd->busy_factor;
2316
2317 /* scale ms to jiffies */
2318 interval = msecs_to_jiffies(interval);
2319 if (unlikely(!interval))
2320 interval = 1;
2321
2322 if (j - sd->last_balance >= interval) {
2323 if (load_balance(this_cpu, this_rq, sd, idle)) {
2324 /* We've pulled tasks over so no longer idle */
2325 idle = NOT_IDLE;
2326 }
2327 sd->last_balance += interval;
2328 }
2329 }
2330 }
2331 #else
2332 /*
2333 * on UP we do not need to balance between CPUs:
2334 */
2335 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2336 {
2337 }
2338 static inline void idle_balance(int cpu, runqueue_t *rq)
2339 {
2340 }
2341 #endif
2342
2343 static inline int wake_priority_sleeper(runqueue_t *rq)
2344 {
2345 int ret = 0;
2346 #ifdef CONFIG_SCHED_SMT
2347 spin_lock(&rq->lock);
2348 /*
2349 * If an SMT sibling task has been put to sleep for priority
2350 * reasons reschedule the idle task to see if it can now run.
2351 */
2352 if (rq->nr_running) {
2353 resched_task(rq->idle);
2354 ret = 1;
2355 }
2356 spin_unlock(&rq->lock);
2357 #endif
2358 return ret;
2359 }
2360
2361 DEFINE_PER_CPU(struct kernel_stat, kstat);
2362
2363 EXPORT_PER_CPU_SYMBOL(kstat);
2364
2365 /*
2366 * This is called on clock ticks and on context switches.
2367 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2368 */
2369 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2370 unsigned long long now)
2371 {
2372 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2373 p->sched_time += now - last;
2374 }
2375
2376 /*
2377 * Return current->sched_time plus any more ns on the sched_clock
2378 * that have not yet been banked.
2379 */
2380 unsigned long long current_sched_time(const task_t *tsk)
2381 {
2382 unsigned long long ns;
2383 unsigned long flags;
2384 local_irq_save(flags);
2385 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2386 ns = tsk->sched_time + (sched_clock() - ns);
2387 local_irq_restore(flags);
2388 return ns;
2389 }
2390
2391 /*
2392 * We place interactive tasks back into the active array, if possible.
2393 *
2394 * To guarantee that this does not starve expired tasks we ignore the
2395 * interactivity of a task if the first expired task had to wait more
2396 * than a 'reasonable' amount of time. This deadline timeout is
2397 * load-dependent, as the frequency of array switched decreases with
2398 * increasing number of running tasks. We also ignore the interactivity
2399 * if a better static_prio task has expired:
2400 */
2401 #define EXPIRED_STARVING(rq) \
2402 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2403 (jiffies - (rq)->expired_timestamp >= \
2404 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2405 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2406
2407 /*
2408 * Account user cpu time to a process.
2409 * @p: the process that the cpu time gets accounted to
2410 * @hardirq_offset: the offset to subtract from hardirq_count()
2411 * @cputime: the cpu time spent in user space since the last update
2412 */
2413 void account_user_time(struct task_struct *p, cputime_t cputime)
2414 {
2415 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2416 cputime64_t tmp;
2417
2418 p->utime = cputime_add(p->utime, cputime);
2419
2420 /* Add user time to cpustat. */
2421 tmp = cputime_to_cputime64(cputime);
2422 if (TASK_NICE(p) > 0)
2423 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2424 else
2425 cpustat->user = cputime64_add(cpustat->user, tmp);
2426 }
2427
2428 /*
2429 * Account system cpu time to a process.
2430 * @p: the process that the cpu time gets accounted to
2431 * @hardirq_offset: the offset to subtract from hardirq_count()
2432 * @cputime: the cpu time spent in kernel space since the last update
2433 */
2434 void account_system_time(struct task_struct *p, int hardirq_offset,
2435 cputime_t cputime)
2436 {
2437 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2438 runqueue_t *rq = this_rq();
2439 cputime64_t tmp;
2440
2441 p->stime = cputime_add(p->stime, cputime);
2442
2443 /* Add system time to cpustat. */
2444 tmp = cputime_to_cputime64(cputime);
2445 if (hardirq_count() - hardirq_offset)
2446 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2447 else if (softirq_count())
2448 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2449 else if (p != rq->idle)
2450 cpustat->system = cputime64_add(cpustat->system, tmp);
2451 else if (atomic_read(&rq->nr_iowait) > 0)
2452 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2453 else
2454 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2455 /* Account for system time used */
2456 acct_update_integrals(p);
2457 /* Update rss highwater mark */
2458 update_mem_hiwater(p);
2459 }
2460
2461 /*
2462 * Account for involuntary wait time.
2463 * @p: the process from which the cpu time has been stolen
2464 * @steal: the cpu time spent in involuntary wait
2465 */
2466 void account_steal_time(struct task_struct *p, cputime_t steal)
2467 {
2468 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2469 cputime64_t tmp = cputime_to_cputime64(steal);
2470 runqueue_t *rq = this_rq();
2471
2472 if (p == rq->idle) {
2473 p->stime = cputime_add(p->stime, steal);
2474 if (atomic_read(&rq->nr_iowait) > 0)
2475 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2476 else
2477 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2478 } else
2479 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2480 }
2481
2482 /*
2483 * This function gets called by the timer code, with HZ frequency.
2484 * We call it with interrupts disabled.
2485 *
2486 * It also gets called by the fork code, when changing the parent's
2487 * timeslices.
2488 */
2489 void scheduler_tick(void)
2490 {
2491 int cpu = smp_processor_id();
2492 runqueue_t *rq = this_rq();
2493 task_t *p = current;
2494 unsigned long long now = sched_clock();
2495
2496 update_cpu_clock(p, rq, now);
2497
2498 rq->timestamp_last_tick = now;
2499
2500 if (p == rq->idle) {
2501 if (wake_priority_sleeper(rq))
2502 goto out;
2503 rebalance_tick(cpu, rq, SCHED_IDLE);
2504 return;
2505 }
2506
2507 /* Task might have expired already, but not scheduled off yet */
2508 if (p->array != rq->active) {
2509 set_tsk_need_resched(p);
2510 goto out;
2511 }
2512 spin_lock(&rq->lock);
2513 /*
2514 * The task was running during this tick - update the
2515 * time slice counter. Note: we do not update a thread's
2516 * priority until it either goes to sleep or uses up its
2517 * timeslice. This makes it possible for interactive tasks
2518 * to use up their timeslices at their highest priority levels.
2519 */
2520 if (rt_task(p)) {
2521 /*
2522 * RR tasks need a special form of timeslice management.
2523 * FIFO tasks have no timeslices.
2524 */
2525 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2526 p->time_slice = task_timeslice(p);
2527 p->first_time_slice = 0;
2528 set_tsk_need_resched(p);
2529
2530 /* put it at the end of the queue: */
2531 requeue_task(p, rq->active);
2532 }
2533 goto out_unlock;
2534 }
2535 if (!--p->time_slice) {
2536 dequeue_task(p, rq->active);
2537 set_tsk_need_resched(p);
2538 p->prio = effective_prio(p);
2539 p->time_slice = task_timeslice(p);
2540 p->first_time_slice = 0;
2541
2542 if (!rq->expired_timestamp)
2543 rq->expired_timestamp = jiffies;
2544 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2545 enqueue_task(p, rq->expired);
2546 if (p->static_prio < rq->best_expired_prio)
2547 rq->best_expired_prio = p->static_prio;
2548 } else
2549 enqueue_task(p, rq->active);
2550 } else {
2551 /*
2552 * Prevent a too long timeslice allowing a task to monopolize
2553 * the CPU. We do this by splitting up the timeslice into
2554 * smaller pieces.
2555 *
2556 * Note: this does not mean the task's timeslices expire or
2557 * get lost in any way, they just might be preempted by
2558 * another task of equal priority. (one with higher
2559 * priority would have preempted this task already.) We
2560 * requeue this task to the end of the list on this priority
2561 * level, which is in essence a round-robin of tasks with
2562 * equal priority.
2563 *
2564 * This only applies to tasks in the interactive
2565 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2566 */
2567 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2568 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2569 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2570 (p->array == rq->active)) {
2571
2572 requeue_task(p, rq->active);
2573 set_tsk_need_resched(p);
2574 }
2575 }
2576 out_unlock:
2577 spin_unlock(&rq->lock);
2578 out:
2579 rebalance_tick(cpu, rq, NOT_IDLE);
2580 }
2581
2582 #ifdef CONFIG_SCHED_SMT
2583 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2584 {
2585 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2586 if (rq->curr == rq->idle && rq->nr_running)
2587 resched_task(rq->idle);
2588 }
2589
2590 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2591 {
2592 struct sched_domain *tmp, *sd = NULL;
2593 cpumask_t sibling_map;
2594 int i;
2595
2596 for_each_domain(this_cpu, tmp)
2597 if (tmp->flags & SD_SHARE_CPUPOWER)
2598 sd = tmp;
2599
2600 if (!sd)
2601 return;
2602
2603 /*
2604 * Unlock the current runqueue because we have to lock in
2605 * CPU order to avoid deadlocks. Caller knows that we might
2606 * unlock. We keep IRQs disabled.
2607 */
2608 spin_unlock(&this_rq->lock);
2609
2610 sibling_map = sd->span;
2611
2612 for_each_cpu_mask(i, sibling_map)
2613 spin_lock(&cpu_rq(i)->lock);
2614 /*
2615 * We clear this CPU from the mask. This both simplifies the
2616 * inner loop and keps this_rq locked when we exit:
2617 */
2618 cpu_clear(this_cpu, sibling_map);
2619
2620 for_each_cpu_mask(i, sibling_map) {
2621 runqueue_t *smt_rq = cpu_rq(i);
2622
2623 wakeup_busy_runqueue(smt_rq);
2624 }
2625
2626 for_each_cpu_mask(i, sibling_map)
2627 spin_unlock(&cpu_rq(i)->lock);
2628 /*
2629 * We exit with this_cpu's rq still held and IRQs
2630 * still disabled:
2631 */
2632 }
2633
2634 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2635 {
2636 struct sched_domain *tmp, *sd = NULL;
2637 cpumask_t sibling_map;
2638 prio_array_t *array;
2639 int ret = 0, i;
2640 task_t *p;
2641
2642 for_each_domain(this_cpu, tmp)
2643 if (tmp->flags & SD_SHARE_CPUPOWER)
2644 sd = tmp;
2645
2646 if (!sd)
2647 return 0;
2648
2649 /*
2650 * The same locking rules and details apply as for
2651 * wake_sleeping_dependent():
2652 */
2653 spin_unlock(&this_rq->lock);
2654 sibling_map = sd->span;
2655 for_each_cpu_mask(i, sibling_map)
2656 spin_lock(&cpu_rq(i)->lock);
2657 cpu_clear(this_cpu, sibling_map);
2658
2659 /*
2660 * Establish next task to be run - it might have gone away because
2661 * we released the runqueue lock above:
2662 */
2663 if (!this_rq->nr_running)
2664 goto out_unlock;
2665 array = this_rq->active;
2666 if (!array->nr_active)
2667 array = this_rq->expired;
2668 BUG_ON(!array->nr_active);
2669
2670 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2671 task_t, run_list);
2672
2673 for_each_cpu_mask(i, sibling_map) {
2674 runqueue_t *smt_rq = cpu_rq(i);
2675 task_t *smt_curr = smt_rq->curr;
2676
2677 /* Kernel threads do not participate in dependent sleeping */
2678 if (!p->mm || !smt_curr->mm || rt_task(p))
2679 goto check_smt_task;
2680
2681 /*
2682 * If a user task with lower static priority than the
2683 * running task on the SMT sibling is trying to schedule,
2684 * delay it till there is proportionately less timeslice
2685 * left of the sibling task to prevent a lower priority
2686 * task from using an unfair proportion of the
2687 * physical cpu's resources. -ck
2688 */
2689 if (rt_task(smt_curr)) {
2690 /*
2691 * With real time tasks we run non-rt tasks only
2692 * per_cpu_gain% of the time.
2693 */
2694 if ((jiffies % DEF_TIMESLICE) >
2695 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2696 ret = 1;
2697 } else
2698 if (((smt_curr->time_slice * (100 - sd->per_cpu_gain) /
2699 100) > task_timeslice(p)))
2700 ret = 1;
2701
2702 check_smt_task:
2703 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2704 rt_task(smt_curr))
2705 continue;
2706 if (!p->mm) {
2707 wakeup_busy_runqueue(smt_rq);
2708 continue;
2709 }
2710
2711 /*
2712 * Reschedule a lower priority task on the SMT sibling for
2713 * it to be put to sleep, or wake it up if it has been put to
2714 * sleep for priority reasons to see if it should run now.
2715 */
2716 if (rt_task(p)) {
2717 if ((jiffies % DEF_TIMESLICE) >
2718 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2719 resched_task(smt_curr);
2720 } else {
2721 if ((p->time_slice * (100 - sd->per_cpu_gain) / 100) >
2722 task_timeslice(smt_curr))
2723 resched_task(smt_curr);
2724 else
2725 wakeup_busy_runqueue(smt_rq);
2726 }
2727 }
2728 out_unlock:
2729 for_each_cpu_mask(i, sibling_map)
2730 spin_unlock(&cpu_rq(i)->lock);
2731 return ret;
2732 }
2733 #else
2734 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2735 {
2736 }
2737
2738 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2739 {
2740 return 0;
2741 }
2742 #endif
2743
2744 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2745
2746 void fastcall add_preempt_count(int val)
2747 {
2748 /*
2749 * Underflow?
2750 */
2751 BUG_ON((preempt_count() < 0));
2752 preempt_count() += val;
2753 /*
2754 * Spinlock count overflowing soon?
2755 */
2756 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2757 }
2758 EXPORT_SYMBOL(add_preempt_count);
2759
2760 void fastcall sub_preempt_count(int val)
2761 {
2762 /*
2763 * Underflow?
2764 */
2765 BUG_ON(val > preempt_count());
2766 /*
2767 * Is the spinlock portion underflowing?
2768 */
2769 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2770 preempt_count() -= val;
2771 }
2772 EXPORT_SYMBOL(sub_preempt_count);
2773
2774 #endif
2775
2776 /*
2777 * schedule() is the main scheduler function.
2778 */
2779 asmlinkage void __sched schedule(void)
2780 {
2781 long *switch_count;
2782 task_t *prev, *next;
2783 runqueue_t *rq;
2784 prio_array_t *array;
2785 struct list_head *queue;
2786 unsigned long long now;
2787 unsigned long run_time;
2788 int cpu, idx, new_prio;
2789
2790 /*
2791 * Test if we are atomic. Since do_exit() needs to call into
2792 * schedule() atomically, we ignore that path for now.
2793 * Otherwise, whine if we are scheduling when we should not be.
2794 */
2795 if (likely(!current->exit_state)) {
2796 if (unlikely(in_atomic())) {
2797 printk(KERN_ERR "scheduling while atomic: "
2798 "%s/0x%08x/%d\n",
2799 current->comm, preempt_count(), current->pid);
2800 dump_stack();
2801 }
2802 }
2803 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2804
2805 need_resched:
2806 preempt_disable();
2807 prev = current;
2808 release_kernel_lock(prev);
2809 need_resched_nonpreemptible:
2810 rq = this_rq();
2811
2812 /*
2813 * The idle thread is not allowed to schedule!
2814 * Remove this check after it has been exercised a bit.
2815 */
2816 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2817 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2818 dump_stack();
2819 }
2820
2821 schedstat_inc(rq, sched_cnt);
2822 now = sched_clock();
2823 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2824 run_time = now - prev->timestamp;
2825 if (unlikely((long long)(now - prev->timestamp) < 0))
2826 run_time = 0;
2827 } else
2828 run_time = NS_MAX_SLEEP_AVG;
2829
2830 /*
2831 * Tasks charged proportionately less run_time at high sleep_avg to
2832 * delay them losing their interactive status
2833 */
2834 run_time /= (CURRENT_BONUS(prev) ? : 1);
2835
2836 spin_lock_irq(&rq->lock);
2837
2838 if (unlikely(prev->flags & PF_DEAD))
2839 prev->state = EXIT_DEAD;
2840
2841 switch_count = &prev->nivcsw;
2842 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2843 switch_count = &prev->nvcsw;
2844 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2845 unlikely(signal_pending(prev))))
2846 prev->state = TASK_RUNNING;
2847 else {
2848 if (prev->state == TASK_UNINTERRUPTIBLE)
2849 rq->nr_uninterruptible++;
2850 deactivate_task(prev, rq);
2851 }
2852 }
2853
2854 cpu = smp_processor_id();
2855 if (unlikely(!rq->nr_running)) {
2856 go_idle:
2857 idle_balance(cpu, rq);
2858 if (!rq->nr_running) {
2859 next = rq->idle;
2860 rq->expired_timestamp = 0;
2861 wake_sleeping_dependent(cpu, rq);
2862 /*
2863 * wake_sleeping_dependent() might have released
2864 * the runqueue, so break out if we got new
2865 * tasks meanwhile:
2866 */
2867 if (!rq->nr_running)
2868 goto switch_tasks;
2869 }
2870 } else {
2871 if (dependent_sleeper(cpu, rq)) {
2872 next = rq->idle;
2873 goto switch_tasks;
2874 }
2875 /*
2876 * dependent_sleeper() releases and reacquires the runqueue
2877 * lock, hence go into the idle loop if the rq went
2878 * empty meanwhile:
2879 */
2880 if (unlikely(!rq->nr_running))
2881 goto go_idle;
2882 }
2883
2884 array = rq->active;
2885 if (unlikely(!array->nr_active)) {
2886 /*
2887 * Switch the active and expired arrays.
2888 */
2889 schedstat_inc(rq, sched_switch);
2890 rq->active = rq->expired;
2891 rq->expired = array;
2892 array = rq->active;
2893 rq->expired_timestamp = 0;
2894 rq->best_expired_prio = MAX_PRIO;
2895 }
2896
2897 idx = sched_find_first_bit(array->bitmap);
2898 queue = array->queue + idx;
2899 next = list_entry(queue->next, task_t, run_list);
2900
2901 if (!rt_task(next) && next->activated > 0) {
2902 unsigned long long delta = now - next->timestamp;
2903 if (unlikely((long long)(now - next->timestamp) < 0))
2904 delta = 0;
2905
2906 if (next->activated == 1)
2907 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2908
2909 array = next->array;
2910 new_prio = recalc_task_prio(next, next->timestamp + delta);
2911
2912 if (unlikely(next->prio != new_prio)) {
2913 dequeue_task(next, array);
2914 next->prio = new_prio;
2915 enqueue_task(next, array);
2916 } else
2917 requeue_task(next, array);
2918 }
2919 next->activated = 0;
2920 switch_tasks:
2921 if (next == rq->idle)
2922 schedstat_inc(rq, sched_goidle);
2923 prefetch(next);
2924 prefetch_stack(next);
2925 clear_tsk_need_resched(prev);
2926 rcu_qsctr_inc(task_cpu(prev));
2927
2928 update_cpu_clock(prev, rq, now);
2929
2930 prev->sleep_avg -= run_time;
2931 if ((long)prev->sleep_avg <= 0)
2932 prev->sleep_avg = 0;
2933 prev->timestamp = prev->last_ran = now;
2934
2935 sched_info_switch(prev, next);
2936 if (likely(prev != next)) {
2937 next->timestamp = now;
2938 rq->nr_switches++;
2939 rq->curr = next;
2940 ++*switch_count;
2941
2942 prepare_task_switch(rq, next);
2943 prev = context_switch(rq, prev, next);
2944 barrier();
2945 /*
2946 * this_rq must be evaluated again because prev may have moved
2947 * CPUs since it called schedule(), thus the 'rq' on its stack
2948 * frame will be invalid.
2949 */
2950 finish_task_switch(this_rq(), prev);
2951 } else
2952 spin_unlock_irq(&rq->lock);
2953
2954 prev = current;
2955 if (unlikely(reacquire_kernel_lock(prev) < 0))
2956 goto need_resched_nonpreemptible;
2957 preempt_enable_no_resched();
2958 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2959 goto need_resched;
2960 }
2961
2962 EXPORT_SYMBOL(schedule);
2963
2964 #ifdef CONFIG_PREEMPT
2965 /*
2966 * this is is the entry point to schedule() from in-kernel preemption
2967 * off of preempt_enable. Kernel preemptions off return from interrupt
2968 * occur there and call schedule directly.
2969 */
2970 asmlinkage void __sched preempt_schedule(void)
2971 {
2972 struct thread_info *ti = current_thread_info();
2973 #ifdef CONFIG_PREEMPT_BKL
2974 struct task_struct *task = current;
2975 int saved_lock_depth;
2976 #endif
2977 /*
2978 * If there is a non-zero preempt_count or interrupts are disabled,
2979 * we do not want to preempt the current task. Just return..
2980 */
2981 if (unlikely(ti->preempt_count || irqs_disabled()))
2982 return;
2983
2984 need_resched:
2985 add_preempt_count(PREEMPT_ACTIVE);
2986 /*
2987 * We keep the big kernel semaphore locked, but we
2988 * clear ->lock_depth so that schedule() doesnt
2989 * auto-release the semaphore:
2990 */
2991 #ifdef CONFIG_PREEMPT_BKL
2992 saved_lock_depth = task->lock_depth;
2993 task->lock_depth = -1;
2994 #endif
2995 schedule();
2996 #ifdef CONFIG_PREEMPT_BKL
2997 task->lock_depth = saved_lock_depth;
2998 #endif
2999 sub_preempt_count(PREEMPT_ACTIVE);
3000
3001 /* we could miss a preemption opportunity between schedule and now */
3002 barrier();
3003 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3004 goto need_resched;
3005 }
3006
3007 EXPORT_SYMBOL(preempt_schedule);
3008
3009 /*
3010 * this is is the entry point to schedule() from kernel preemption
3011 * off of irq context.
3012 * Note, that this is called and return with irqs disabled. This will
3013 * protect us against recursive calling from irq.
3014 */
3015 asmlinkage void __sched preempt_schedule_irq(void)
3016 {
3017 struct thread_info *ti = current_thread_info();
3018 #ifdef CONFIG_PREEMPT_BKL
3019 struct task_struct *task = current;
3020 int saved_lock_depth;
3021 #endif
3022 /* Catch callers which need to be fixed*/
3023 BUG_ON(ti->preempt_count || !irqs_disabled());
3024
3025 need_resched:
3026 add_preempt_count(PREEMPT_ACTIVE);
3027 /*
3028 * We keep the big kernel semaphore locked, but we
3029 * clear ->lock_depth so that schedule() doesnt
3030 * auto-release the semaphore:
3031 */
3032 #ifdef CONFIG_PREEMPT_BKL
3033 saved_lock_depth = task->lock_depth;
3034 task->lock_depth = -1;
3035 #endif
3036 local_irq_enable();
3037 schedule();
3038 local_irq_disable();
3039 #ifdef CONFIG_PREEMPT_BKL
3040 task->lock_depth = saved_lock_depth;
3041 #endif
3042 sub_preempt_count(PREEMPT_ACTIVE);
3043
3044 /* we could miss a preemption opportunity between schedule and now */
3045 barrier();
3046 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3047 goto need_resched;
3048 }
3049
3050 #endif /* CONFIG_PREEMPT */
3051
3052 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, void *key)
3053 {
3054 task_t *p = curr->private;
3055 return try_to_wake_up(p, mode, sync);
3056 }
3057
3058 EXPORT_SYMBOL(default_wake_function);
3059
3060 /*
3061 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3062 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3063 * number) then we wake all the non-exclusive tasks and one exclusive task.
3064 *
3065 * There are circumstances in which we can try to wake a task which has already
3066 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3067 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3068 */
3069 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3070 int nr_exclusive, int sync, void *key)
3071 {
3072 struct list_head *tmp, *next;
3073
3074 list_for_each_safe(tmp, next, &q->task_list) {
3075 wait_queue_t *curr;
3076 unsigned flags;
3077 curr = list_entry(tmp, wait_queue_t, task_list);
3078 flags = curr->flags;
3079 if (curr->func(curr, mode, sync, key) &&
3080 (flags & WQ_FLAG_EXCLUSIVE) &&
3081 !--nr_exclusive)
3082 break;
3083 }
3084 }
3085
3086 /**
3087 * __wake_up - wake up threads blocked on a waitqueue.
3088 * @q: the waitqueue
3089 * @mode: which threads
3090 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3091 * @key: is directly passed to the wakeup function
3092 */
3093 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3094 int nr_exclusive, void *key)
3095 {
3096 unsigned long flags;
3097
3098 spin_lock_irqsave(&q->lock, flags);
3099 __wake_up_common(q, mode, nr_exclusive, 0, key);
3100 spin_unlock_irqrestore(&q->lock, flags);
3101 }
3102
3103 EXPORT_SYMBOL(__wake_up);
3104
3105 /*
3106 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3107 */
3108 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3109 {
3110 __wake_up_common(q, mode, 1, 0, NULL);
3111 }
3112
3113 /**
3114 * __wake_up_sync - wake up threads blocked on a waitqueue.
3115 * @q: the waitqueue
3116 * @mode: which threads
3117 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3118 *
3119 * The sync wakeup differs that the waker knows that it will schedule
3120 * away soon, so while the target thread will be woken up, it will not
3121 * be migrated to another CPU - ie. the two threads are 'synchronized'
3122 * with each other. This can prevent needless bouncing between CPUs.
3123 *
3124 * On UP it can prevent extra preemption.
3125 */
3126 void fastcall __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3127 {
3128 unsigned long flags;
3129 int sync = 1;
3130
3131 if (unlikely(!q))
3132 return;
3133
3134 if (unlikely(!nr_exclusive))
3135 sync = 0;
3136
3137 spin_lock_irqsave(&q->lock, flags);
3138 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3139 spin_unlock_irqrestore(&q->lock, flags);
3140 }
3141 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3142
3143 void fastcall complete(struct completion *x)
3144 {
3145 unsigned long flags;
3146
3147 spin_lock_irqsave(&x->wait.lock, flags);
3148 x->done++;
3149 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3150 1, 0, NULL);
3151 spin_unlock_irqrestore(&x->wait.lock, flags);
3152 }
3153 EXPORT_SYMBOL(complete);
3154
3155 void fastcall complete_all(struct completion *x)
3156 {
3157 unsigned long flags;
3158
3159 spin_lock_irqsave(&x->wait.lock, flags);
3160 x->done += UINT_MAX/2;
3161 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3162 0, 0, NULL);
3163 spin_unlock_irqrestore(&x->wait.lock, flags);
3164 }
3165 EXPORT_SYMBOL(complete_all);
3166
3167 void fastcall __sched wait_for_completion(struct completion *x)
3168 {
3169 might_sleep();
3170 spin_lock_irq(&x->wait.lock);
3171 if (!x->done) {
3172 DECLARE_WAITQUEUE(wait, current);
3173
3174 wait.flags |= WQ_FLAG_EXCLUSIVE;
3175 __add_wait_queue_tail(&x->wait, &wait);
3176 do {
3177 __set_current_state(TASK_UNINTERRUPTIBLE);
3178 spin_unlock_irq(&x->wait.lock);
3179 schedule();
3180 spin_lock_irq(&x->wait.lock);
3181 } while (!x->done);
3182 __remove_wait_queue(&x->wait, &wait);
3183 }
3184 x->done--;
3185 spin_unlock_irq(&x->wait.lock);
3186 }
3187 EXPORT_SYMBOL(wait_for_completion);
3188
3189 unsigned long fastcall __sched
3190 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3191 {
3192 might_sleep();
3193
3194 spin_lock_irq(&x->wait.lock);
3195 if (!x->done) {
3196 DECLARE_WAITQUEUE(wait, current);
3197
3198 wait.flags |= WQ_FLAG_EXCLUSIVE;
3199 __add_wait_queue_tail(&x->wait, &wait);
3200 do {
3201 __set_current_state(TASK_UNINTERRUPTIBLE);
3202 spin_unlock_irq(&x->wait.lock);
3203 timeout = schedule_timeout(timeout);
3204 spin_lock_irq(&x->wait.lock);
3205 if (!timeout) {
3206 __remove_wait_queue(&x->wait, &wait);
3207 goto out;
3208 }
3209 } while (!x->done);
3210 __remove_wait_queue(&x->wait, &wait);
3211 }
3212 x->done--;
3213 out:
3214 spin_unlock_irq(&x->wait.lock);
3215 return timeout;
3216 }
3217 EXPORT_SYMBOL(wait_for_completion_timeout);
3218
3219 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3220 {
3221 int ret = 0;
3222
3223 might_sleep();
3224
3225 spin_lock_irq(&x->wait.lock);
3226 if (!x->done) {
3227 DECLARE_WAITQUEUE(wait, current);
3228
3229 wait.flags |= WQ_FLAG_EXCLUSIVE;
3230 __add_wait_queue_tail(&x->wait, &wait);
3231 do {
3232 if (signal_pending(current)) {
3233 ret = -ERESTARTSYS;
3234 __remove_wait_queue(&x->wait, &wait);
3235 goto out;
3236 }
3237 __set_current_state(TASK_INTERRUPTIBLE);
3238 spin_unlock_irq(&x->wait.lock);
3239 schedule();
3240 spin_lock_irq(&x->wait.lock);
3241 } while (!x->done);
3242 __remove_wait_queue(&x->wait, &wait);
3243 }
3244 x->done--;
3245 out:
3246 spin_unlock_irq(&x->wait.lock);
3247
3248 return ret;
3249 }
3250 EXPORT_SYMBOL(wait_for_completion_interruptible);
3251
3252 unsigned long fastcall __sched
3253 wait_for_completion_interruptible_timeout(struct completion *x,
3254 unsigned long timeout)
3255 {
3256 might_sleep();
3257
3258 spin_lock_irq(&x->wait.lock);
3259 if (!x->done) {
3260 DECLARE_WAITQUEUE(wait, current);
3261
3262 wait.flags |= WQ_FLAG_EXCLUSIVE;
3263 __add_wait_queue_tail(&x->wait, &wait);
3264 do {
3265 if (signal_pending(current)) {
3266 timeout = -ERESTARTSYS;
3267 __remove_wait_queue(&x->wait, &wait);
3268 goto out;
3269 }
3270 __set_current_state(TASK_INTERRUPTIBLE);
3271 spin_unlock_irq(&x->wait.lock);
3272 timeout = schedule_timeout(timeout);
3273 spin_lock_irq(&x->wait.lock);
3274 if (!timeout) {
3275 __remove_wait_queue(&x->wait, &wait);
3276 goto out;
3277 }
3278 } while (!x->done);
3279 __remove_wait_queue(&x->wait, &wait);
3280 }
3281 x->done--;
3282 out:
3283 spin_unlock_irq(&x->wait.lock);
3284 return timeout;
3285 }
3286 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3287
3288
3289 #define SLEEP_ON_VAR \
3290 unsigned long flags; \
3291 wait_queue_t wait; \
3292 init_waitqueue_entry(&wait, current);
3293
3294 #define SLEEP_ON_HEAD \
3295 spin_lock_irqsave(&q->lock,flags); \
3296 __add_wait_queue(q, &wait); \
3297 spin_unlock(&q->lock);
3298
3299 #define SLEEP_ON_TAIL \
3300 spin_lock_irq(&q->lock); \
3301 __remove_wait_queue(q, &wait); \
3302 spin_unlock_irqrestore(&q->lock, flags);
3303
3304 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3305 {
3306 SLEEP_ON_VAR
3307
3308 current->state = TASK_INTERRUPTIBLE;
3309
3310 SLEEP_ON_HEAD
3311 schedule();
3312 SLEEP_ON_TAIL
3313 }
3314
3315 EXPORT_SYMBOL(interruptible_sleep_on);
3316
3317 long fastcall __sched interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3318 {
3319 SLEEP_ON_VAR
3320
3321 current->state = TASK_INTERRUPTIBLE;
3322
3323 SLEEP_ON_HEAD
3324 timeout = schedule_timeout(timeout);
3325 SLEEP_ON_TAIL
3326
3327 return timeout;
3328 }
3329
3330 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3331
3332 void fastcall __sched sleep_on(wait_queue_head_t *q)
3333 {
3334 SLEEP_ON_VAR
3335
3336 current->state = TASK_UNINTERRUPTIBLE;
3337
3338 SLEEP_ON_HEAD
3339 schedule();
3340 SLEEP_ON_TAIL
3341 }
3342
3343 EXPORT_SYMBOL(sleep_on);
3344
3345 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3346 {
3347 SLEEP_ON_VAR
3348
3349 current->state = TASK_UNINTERRUPTIBLE;
3350
3351 SLEEP_ON_HEAD
3352 timeout = schedule_timeout(timeout);
3353 SLEEP_ON_TAIL
3354
3355 return timeout;
3356 }
3357
3358 EXPORT_SYMBOL(sleep_on_timeout);
3359
3360 void set_user_nice(task_t *p, long nice)
3361 {
3362 unsigned long flags;
3363 prio_array_t *array;
3364 runqueue_t *rq;
3365 int old_prio, new_prio, delta;
3366
3367 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3368 return;
3369 /*
3370 * We have to be careful, if called from sys_setpriority(),
3371 * the task might be in the middle of scheduling on another CPU.
3372 */
3373 rq = task_rq_lock(p, &flags);
3374 /*
3375 * The RT priorities are set via sched_setscheduler(), but we still
3376 * allow the 'normal' nice value to be set - but as expected
3377 * it wont have any effect on scheduling until the task is
3378 * not SCHED_NORMAL:
3379 */
3380 if (rt_task(p)) {
3381 p->static_prio = NICE_TO_PRIO(nice);
3382 goto out_unlock;
3383 }
3384 array = p->array;
3385 if (array)
3386 dequeue_task(p, array);
3387
3388 old_prio = p->prio;
3389 new_prio = NICE_TO_PRIO(nice);
3390 delta = new_prio - old_prio;
3391 p->static_prio = NICE_TO_PRIO(nice);
3392 p->prio += delta;
3393
3394 if (array) {
3395 enqueue_task(p, array);
3396 /*
3397 * If the task increased its priority or is running and
3398 * lowered its priority, then reschedule its CPU:
3399 */
3400 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3401 resched_task(rq->curr);
3402 }
3403 out_unlock:
3404 task_rq_unlock(rq, &flags);
3405 }
3406
3407 EXPORT_SYMBOL(set_user_nice);
3408
3409 /*
3410 * can_nice - check if a task can reduce its nice value
3411 * @p: task
3412 * @nice: nice value
3413 */
3414 int can_nice(const task_t *p, const int nice)
3415 {
3416 /* convert nice value [19,-20] to rlimit style value [1,40] */
3417 int nice_rlim = 20 - nice;
3418 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3419 capable(CAP_SYS_NICE));
3420 }
3421
3422 #ifdef __ARCH_WANT_SYS_NICE
3423
3424 /*
3425 * sys_nice - change the priority of the current process.
3426 * @increment: priority increment
3427 *
3428 * sys_setpriority is a more generic, but much slower function that
3429 * does similar things.
3430 */
3431 asmlinkage long sys_nice(int increment)
3432 {
3433 int retval;
3434 long nice;
3435
3436 /*
3437 * Setpriority might change our priority at the same moment.
3438 * We don't have to worry. Conceptually one call occurs first
3439 * and we have a single winner.
3440 */
3441 if (increment < -40)
3442 increment = -40;
3443 if (increment > 40)
3444 increment = 40;
3445
3446 nice = PRIO_TO_NICE(current->static_prio) + increment;
3447 if (nice < -20)
3448 nice = -20;
3449 if (nice > 19)
3450 nice = 19;
3451
3452 if (increment < 0 && !can_nice(current, nice))
3453 return -EPERM;
3454
3455 retval = security_task_setnice(current, nice);
3456 if (retval)
3457 return retval;
3458
3459 set_user_nice(current, nice);
3460 return 0;
3461 }
3462
3463 #endif
3464
3465 /**
3466 * task_prio - return the priority value of a given task.
3467 * @p: the task in question.
3468 *
3469 * This is the priority value as seen by users in /proc.
3470 * RT tasks are offset by -200. Normal tasks are centered
3471 * around 0, value goes from -16 to +15.
3472 */
3473 int task_prio(const task_t *p)
3474 {
3475 return p->prio - MAX_RT_PRIO;
3476 }
3477
3478 /**
3479 * task_nice - return the nice value of a given task.
3480 * @p: the task in question.
3481 */
3482 int task_nice(const task_t *p)
3483 {
3484 return TASK_NICE(p);
3485 }
3486 EXPORT_SYMBOL_GPL(task_nice);
3487
3488 /**
3489 * idle_cpu - is a given cpu idle currently?
3490 * @cpu: the processor in question.
3491 */
3492 int idle_cpu(int cpu)
3493 {
3494 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3495 }
3496
3497 EXPORT_SYMBOL_GPL(idle_cpu);
3498
3499 /**
3500 * idle_task - return the idle task for a given cpu.
3501 * @cpu: the processor in question.
3502 */
3503 task_t *idle_task(int cpu)
3504 {
3505 return cpu_rq(cpu)->idle;
3506 }
3507
3508 /**
3509 * find_process_by_pid - find a process with a matching PID value.
3510 * @pid: the pid in question.
3511 */
3512 static inline task_t *find_process_by_pid(pid_t pid)
3513 {
3514 return pid ? find_task_by_pid(pid) : current;
3515 }
3516
3517 /* Actually do priority change: must hold rq lock. */
3518 static void __setscheduler(struct task_struct *p, int policy, int prio)
3519 {
3520 BUG_ON(p->array);
3521 p->policy = policy;
3522 p->rt_priority = prio;
3523 if (policy != SCHED_NORMAL)
3524 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3525 else
3526 p->prio = p->static_prio;
3527 }
3528
3529 /**
3530 * sched_setscheduler - change the scheduling policy and/or RT priority of
3531 * a thread.
3532 * @p: the task in question.
3533 * @policy: new policy.
3534 * @param: structure containing the new RT priority.
3535 */
3536 int sched_setscheduler(struct task_struct *p, int policy, struct sched_param *param)
3537 {
3538 int retval;
3539 int oldprio, oldpolicy = -1;
3540 prio_array_t *array;
3541 unsigned long flags;
3542 runqueue_t *rq;
3543
3544 recheck:
3545 /* double check policy once rq lock held */
3546 if (policy < 0)
3547 policy = oldpolicy = p->policy;
3548 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3549 policy != SCHED_NORMAL)
3550 return -EINVAL;
3551 /*
3552 * Valid priorities for SCHED_FIFO and SCHED_RR are
3553 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3554 */
3555 if (param->sched_priority < 0 ||
3556 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3557 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3558 return -EINVAL;
3559 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3560 return -EINVAL;
3561
3562 /*
3563 * Allow unprivileged RT tasks to decrease priority:
3564 */
3565 if (!capable(CAP_SYS_NICE)) {
3566 /* can't change policy */
3567 if (policy != p->policy &&
3568 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3569 return -EPERM;
3570 /* can't increase priority */
3571 if (policy != SCHED_NORMAL &&
3572 param->sched_priority > p->rt_priority &&
3573 param->sched_priority >
3574 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3575 return -EPERM;
3576 /* can't change other user's priorities */
3577 if ((current->euid != p->euid) &&
3578 (current->euid != p->uid))
3579 return -EPERM;
3580 }
3581
3582 retval = security_task_setscheduler(p, policy, param);
3583 if (retval)
3584 return retval;
3585 /*
3586 * To be able to change p->policy safely, the apropriate
3587 * runqueue lock must be held.
3588 */
3589 rq = task_rq_lock(p, &flags);
3590 /* recheck policy now with rq lock held */
3591 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3592 policy = oldpolicy = -1;
3593 task_rq_unlock(rq, &flags);
3594 goto recheck;
3595 }
3596 array = p->array;
3597 if (array)
3598 deactivate_task(p, rq);
3599 oldprio = p->prio;
3600 __setscheduler(p, policy, param->sched_priority);
3601 if (array) {
3602 __activate_task(p, rq);
3603 /*
3604 * Reschedule if we are currently running on this runqueue and
3605 * our priority decreased, or if we are not currently running on
3606 * this runqueue and our priority is higher than the current's
3607 */
3608 if (task_running(rq, p)) {
3609 if (p->prio > oldprio)
3610 resched_task(rq->curr);
3611 } else if (TASK_PREEMPTS_CURR(p, rq))
3612 resched_task(rq->curr);
3613 }
3614 task_rq_unlock(rq, &flags);
3615 return 0;
3616 }
3617 EXPORT_SYMBOL_GPL(sched_setscheduler);
3618
3619 static int do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3620 {
3621 int retval;
3622 struct sched_param lparam;
3623 struct task_struct *p;
3624
3625 if (!param || pid < 0)
3626 return -EINVAL;
3627 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3628 return -EFAULT;
3629 read_lock_irq(&tasklist_lock);
3630 p = find_process_by_pid(pid);
3631 if (!p) {
3632 read_unlock_irq(&tasklist_lock);
3633 return -ESRCH;
3634 }
3635 retval = sched_setscheduler(p, policy, &lparam);
3636 read_unlock_irq(&tasklist_lock);
3637 return retval;
3638 }
3639
3640 /**
3641 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3642 * @pid: the pid in question.
3643 * @policy: new policy.
3644 * @param: structure containing the new RT priority.
3645 */
3646 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3647 struct sched_param __user *param)
3648 {
3649 return do_sched_setscheduler(pid, policy, param);
3650 }
3651
3652 /**
3653 * sys_sched_setparam - set/change the RT priority of a thread
3654 * @pid: the pid in question.
3655 * @param: structure containing the new RT priority.
3656 */
3657 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3658 {
3659 return do_sched_setscheduler(pid, -1, param);
3660 }
3661
3662 /**
3663 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3664 * @pid: the pid in question.
3665 */
3666 asmlinkage long sys_sched_getscheduler(pid_t pid)
3667 {
3668 int retval = -EINVAL;
3669 task_t *p;
3670
3671 if (pid < 0)
3672 goto out_nounlock;
3673
3674 retval = -ESRCH;
3675 read_lock(&tasklist_lock);
3676 p = find_process_by_pid(pid);
3677 if (p) {
3678 retval = security_task_getscheduler(p);
3679 if (!retval)
3680 retval = p->policy;
3681 }
3682 read_unlock(&tasklist_lock);
3683
3684 out_nounlock:
3685 return retval;
3686 }
3687
3688 /**
3689 * sys_sched_getscheduler - get the RT priority of a thread
3690 * @pid: the pid in question.
3691 * @param: structure containing the RT priority.
3692 */
3693 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3694 {
3695 struct sched_param lp;
3696 int retval = -EINVAL;
3697 task_t *p;
3698
3699 if (!param || pid < 0)
3700 goto out_nounlock;
3701
3702 read_lock(&tasklist_lock);
3703 p = find_process_by_pid(pid);
3704 retval = -ESRCH;
3705 if (!p)
3706 goto out_unlock;
3707
3708 retval = security_task_getscheduler(p);
3709 if (retval)
3710 goto out_unlock;
3711
3712 lp.sched_priority = p->rt_priority;
3713 read_unlock(&tasklist_lock);
3714
3715 /*
3716 * This one might sleep, we cannot do it with a spinlock held ...
3717 */
3718 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3719
3720 out_nounlock:
3721 return retval;
3722
3723 out_unlock:
3724 read_unlock(&tasklist_lock);
3725 return retval;
3726 }
3727
3728 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3729 {
3730 task_t *p;
3731 int retval;
3732 cpumask_t cpus_allowed;
3733
3734 lock_cpu_hotplug();
3735 read_lock(&tasklist_lock);
3736
3737 p = find_process_by_pid(pid);
3738 if (!p) {
3739 read_unlock(&tasklist_lock);
3740 unlock_cpu_hotplug();
3741 return -ESRCH;
3742 }
3743
3744 /*
3745 * It is not safe to call set_cpus_allowed with the
3746 * tasklist_lock held. We will bump the task_struct's
3747 * usage count and then drop tasklist_lock.
3748 */
3749 get_task_struct(p);
3750 read_unlock(&tasklist_lock);
3751
3752 retval = -EPERM;
3753 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3754 !capable(CAP_SYS_NICE))
3755 goto out_unlock;
3756
3757 cpus_allowed = cpuset_cpus_allowed(p);
3758 cpus_and(new_mask, new_mask, cpus_allowed);
3759 retval = set_cpus_allowed(p, new_mask);
3760
3761 out_unlock:
3762 put_task_struct(p);
3763 unlock_cpu_hotplug();
3764 return retval;
3765 }
3766
3767 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3768 cpumask_t *new_mask)
3769 {
3770 if (len < sizeof(cpumask_t)) {
3771 memset(new_mask, 0, sizeof(cpumask_t));
3772 } else if (len > sizeof(cpumask_t)) {
3773 len = sizeof(cpumask_t);
3774 }
3775 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3776 }
3777
3778 /**
3779 * sys_sched_setaffinity - set the cpu affinity of a process
3780 * @pid: pid of the process
3781 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3782 * @user_mask_ptr: user-space pointer to the new cpu mask
3783 */
3784 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3785 unsigned long __user *user_mask_ptr)
3786 {
3787 cpumask_t new_mask;
3788 int retval;
3789
3790 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3791 if (retval)
3792 return retval;
3793
3794 return sched_setaffinity(pid, new_mask);
3795 }
3796
3797 /*
3798 * Represents all cpu's present in the system
3799 * In systems capable of hotplug, this map could dynamically grow
3800 * as new cpu's are detected in the system via any platform specific
3801 * method, such as ACPI for e.g.
3802 */
3803
3804 cpumask_t cpu_present_map;
3805 EXPORT_SYMBOL(cpu_present_map);
3806
3807 #ifndef CONFIG_SMP
3808 cpumask_t cpu_online_map = CPU_MASK_ALL;
3809 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3810 #endif
3811
3812 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3813 {
3814 int retval;
3815 task_t *p;
3816
3817 lock_cpu_hotplug();
3818 read_lock(&tasklist_lock);
3819
3820 retval = -ESRCH;
3821 p = find_process_by_pid(pid);
3822 if (!p)
3823 goto out_unlock;
3824
3825 retval = 0;
3826 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3827
3828 out_unlock:
3829 read_unlock(&tasklist_lock);
3830 unlock_cpu_hotplug();
3831 if (retval)
3832 return retval;
3833
3834 return 0;
3835 }
3836
3837 /**
3838 * sys_sched_getaffinity - get the cpu affinity of a process
3839 * @pid: pid of the process
3840 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3841 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3842 */
3843 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3844 unsigned long __user *user_mask_ptr)
3845 {
3846 int ret;
3847 cpumask_t mask;
3848
3849 if (len < sizeof(cpumask_t))
3850 return -EINVAL;
3851
3852 ret = sched_getaffinity(pid, &mask);
3853 if (ret < 0)
3854 return ret;
3855
3856 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3857 return -EFAULT;
3858
3859 return sizeof(cpumask_t);
3860 }
3861
3862 /**
3863 * sys_sched_yield - yield the current processor to other threads.
3864 *
3865 * this function yields the current CPU by moving the calling thread
3866 * to the expired array. If there are no other threads running on this
3867 * CPU then this function will return.
3868 */
3869 asmlinkage long sys_sched_yield(void)
3870 {
3871 runqueue_t *rq = this_rq_lock();
3872 prio_array_t *array = current->array;
3873 prio_array_t *target = rq->expired;
3874
3875 schedstat_inc(rq, yld_cnt);
3876 /*
3877 * We implement yielding by moving the task into the expired
3878 * queue.
3879 *
3880 * (special rule: RT tasks will just roundrobin in the active
3881 * array.)
3882 */
3883 if (rt_task(current))
3884 target = rq->active;
3885
3886 if (current->array->nr_active == 1) {
3887 schedstat_inc(rq, yld_act_empty);
3888 if (!rq->expired->nr_active)
3889 schedstat_inc(rq, yld_both_empty);
3890 } else if (!rq->expired->nr_active)
3891 schedstat_inc(rq, yld_exp_empty);
3892
3893 if (array != target) {
3894 dequeue_task(current, array);
3895 enqueue_task(current, target);
3896 } else
3897 /*
3898 * requeue_task is cheaper so perform that if possible.
3899 */
3900 requeue_task(current, array);
3901
3902 /*
3903 * Since we are going to call schedule() anyway, there's
3904 * no need to preempt or enable interrupts:
3905 */
3906 __release(rq->lock);
3907 _raw_spin_unlock(&rq->lock);
3908 preempt_enable_no_resched();
3909
3910 schedule();
3911
3912 return 0;
3913 }
3914
3915 static inline void __cond_resched(void)
3916 {
3917 /*
3918 * The BKS might be reacquired before we have dropped
3919 * PREEMPT_ACTIVE, which could trigger a second
3920 * cond_resched() call.
3921 */
3922 if (unlikely(preempt_count()))
3923 return;
3924 do {
3925 add_preempt_count(PREEMPT_ACTIVE);
3926 schedule();
3927 sub_preempt_count(PREEMPT_ACTIVE);
3928 } while (need_resched());
3929 }
3930
3931 int __sched cond_resched(void)
3932 {
3933 if (need_resched()) {
3934 __cond_resched();
3935 return 1;
3936 }
3937 return 0;
3938 }
3939
3940 EXPORT_SYMBOL(cond_resched);
3941
3942 /*
3943 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
3944 * call schedule, and on return reacquire the lock.
3945 *
3946 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
3947 * operations here to prevent schedule() from being called twice (once via
3948 * spin_unlock(), once by hand).
3949 */
3950 int cond_resched_lock(spinlock_t * lock)
3951 {
3952 int ret = 0;
3953
3954 if (need_lockbreak(lock)) {
3955 spin_unlock(lock);
3956 cpu_relax();
3957 ret = 1;
3958 spin_lock(lock);
3959 }
3960 if (need_resched()) {
3961 _raw_spin_unlock(lock);
3962 preempt_enable_no_resched();
3963 __cond_resched();
3964 ret = 1;
3965 spin_lock(lock);
3966 }
3967 return ret;
3968 }
3969
3970 EXPORT_SYMBOL(cond_resched_lock);
3971
3972 int __sched cond_resched_softirq(void)
3973 {
3974 BUG_ON(!in_softirq());
3975
3976 if (need_resched()) {
3977 __local_bh_enable();
3978 __cond_resched();
3979 local_bh_disable();
3980 return 1;
3981 }
3982 return 0;
3983 }
3984
3985 EXPORT_SYMBOL(cond_resched_softirq);
3986
3987
3988 /**
3989 * yield - yield the current processor to other threads.
3990 *
3991 * this is a shortcut for kernel-space yielding - it marks the
3992 * thread runnable and calls sys_sched_yield().
3993 */
3994 void __sched yield(void)
3995 {
3996 set_current_state(TASK_RUNNING);
3997 sys_sched_yield();
3998 }
3999
4000 EXPORT_SYMBOL(yield);
4001
4002 /*
4003 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4004 * that process accounting knows that this is a task in IO wait state.
4005 *
4006 * But don't do that if it is a deliberate, throttling IO wait (this task
4007 * has set its backing_dev_info: the queue against which it should throttle)
4008 */
4009 void __sched io_schedule(void)
4010 {
4011 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4012
4013 atomic_inc(&rq->nr_iowait);
4014 schedule();
4015 atomic_dec(&rq->nr_iowait);
4016 }
4017
4018 EXPORT_SYMBOL(io_schedule);
4019
4020 long __sched io_schedule_timeout(long timeout)
4021 {
4022 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4023 long ret;
4024
4025 atomic_inc(&rq->nr_iowait);
4026 ret = schedule_timeout(timeout);
4027 atomic_dec(&rq->nr_iowait);
4028 return ret;
4029 }
4030
4031 /**
4032 * sys_sched_get_priority_max - return maximum RT priority.
4033 * @policy: scheduling class.
4034 *
4035 * this syscall returns the maximum rt_priority that can be used
4036 * by a given scheduling class.
4037 */
4038 asmlinkage long sys_sched_get_priority_max(int policy)
4039 {
4040 int ret = -EINVAL;
4041
4042 switch (policy) {
4043 case SCHED_FIFO:
4044 case SCHED_RR:
4045 ret = MAX_USER_RT_PRIO-1;
4046 break;
4047 case SCHED_NORMAL:
4048 ret = 0;
4049 break;
4050 }
4051 return ret;
4052 }
4053
4054 /**
4055 * sys_sched_get_priority_min - return minimum RT priority.
4056 * @policy: scheduling class.
4057 *
4058 * this syscall returns the minimum rt_priority that can be used
4059 * by a given scheduling class.
4060 */
4061 asmlinkage long sys_sched_get_priority_min(int policy)
4062 {
4063 int ret = -EINVAL;
4064
4065 switch (policy) {
4066 case SCHED_FIFO:
4067 case SCHED_RR:
4068 ret = 1;
4069 break;
4070 case SCHED_NORMAL:
4071 ret = 0;
4072 }
4073 return ret;
4074 }
4075
4076 /**
4077 * sys_sched_rr_get_interval - return the default timeslice of a process.
4078 * @pid: pid of the process.
4079 * @interval: userspace pointer to the timeslice value.
4080 *
4081 * this syscall writes the default timeslice value of a given process
4082 * into the user-space timespec buffer. A value of '0' means infinity.
4083 */
4084 asmlinkage
4085 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4086 {
4087 int retval = -EINVAL;
4088 struct timespec t;
4089 task_t *p;
4090
4091 if (pid < 0)
4092 goto out_nounlock;
4093
4094 retval = -ESRCH;
4095 read_lock(&tasklist_lock);
4096 p = find_process_by_pid(pid);
4097 if (!p)
4098 goto out_unlock;
4099
4100 retval = security_task_getscheduler(p);
4101 if (retval)
4102 goto out_unlock;
4103
4104 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4105 0 : task_timeslice(p), &t);
4106 read_unlock(&tasklist_lock);
4107 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4108 out_nounlock:
4109 return retval;
4110 out_unlock:
4111 read_unlock(&tasklist_lock);
4112 return retval;
4113 }
4114
4115 static inline struct task_struct *eldest_child(struct task_struct *p)
4116 {
4117 if (list_empty(&p->children)) return NULL;
4118 return list_entry(p->children.next,struct task_struct,sibling);
4119 }
4120
4121 static inline struct task_struct *older_sibling(struct task_struct *p)
4122 {
4123 if (p->sibling.prev==&p->parent->children) return NULL;
4124 return list_entry(p->sibling.prev,struct task_struct,sibling);
4125 }
4126
4127 static inline struct task_struct *younger_sibling(struct task_struct *p)
4128 {
4129 if (p->sibling.next==&p->parent->children) return NULL;
4130 return list_entry(p->sibling.next,struct task_struct,sibling);
4131 }
4132
4133 static void show_task(task_t * p)
4134 {
4135 task_t *relative;
4136 unsigned state;
4137 unsigned long free = 0;
4138 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4139
4140 printk("%-13.13s ", p->comm);
4141 state = p->state ? __ffs(p->state) + 1 : 0;
4142 if (state < ARRAY_SIZE(stat_nam))
4143 printk(stat_nam[state]);
4144 else
4145 printk("?");
4146 #if (BITS_PER_LONG == 32)
4147 if (state == TASK_RUNNING)
4148 printk(" running ");
4149 else
4150 printk(" %08lX ", thread_saved_pc(p));
4151 #else
4152 if (state == TASK_RUNNING)
4153 printk(" running task ");
4154 else
4155 printk(" %016lx ", thread_saved_pc(p));
4156 #endif
4157 #ifdef CONFIG_DEBUG_STACK_USAGE
4158 {
4159 unsigned long * n = (unsigned long *) (p->thread_info+1);
4160 while (!*n)
4161 n++;
4162 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4163 }
4164 #endif
4165 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4166 if ((relative = eldest_child(p)))
4167 printk("%5d ", relative->pid);
4168 else
4169 printk(" ");
4170 if ((relative = younger_sibling(p)))
4171 printk("%7d", relative->pid);
4172 else
4173 printk(" ");
4174 if ((relative = older_sibling(p)))
4175 printk(" %5d", relative->pid);
4176 else
4177 printk(" ");
4178 if (!p->mm)
4179 printk(" (L-TLB)\n");
4180 else
4181 printk(" (NOTLB)\n");
4182
4183 if (state != TASK_RUNNING)
4184 show_stack(p, NULL);
4185 }
4186
4187 void show_state(void)
4188 {
4189 task_t *g, *p;
4190
4191 #if (BITS_PER_LONG == 32)
4192 printk("\n"
4193 " sibling\n");
4194 printk(" task PC pid father child younger older\n");
4195 #else
4196 printk("\n"
4197 " sibling\n");
4198 printk(" task PC pid father child younger older\n");
4199 #endif
4200 read_lock(&tasklist_lock);
4201 do_each_thread(g, p) {
4202 /*
4203 * reset the NMI-timeout, listing all files on a slow
4204 * console might take alot of time:
4205 */
4206 touch_nmi_watchdog();
4207 show_task(p);
4208 } while_each_thread(g, p);
4209
4210 read_unlock(&tasklist_lock);
4211 }
4212
4213 /**
4214 * init_idle - set up an idle thread for a given CPU
4215 * @idle: task in question
4216 * @cpu: cpu the idle task belongs to
4217 *
4218 * NOTE: this function does not set the idle thread's NEED_RESCHED
4219 * flag, to make booting more robust.
4220 */
4221 void __devinit init_idle(task_t *idle, int cpu)
4222 {
4223 runqueue_t *rq = cpu_rq(cpu);
4224 unsigned long flags;
4225
4226 idle->sleep_avg = 0;
4227 idle->array = NULL;
4228 idle->prio = MAX_PRIO;
4229 idle->state = TASK_RUNNING;
4230 idle->cpus_allowed = cpumask_of_cpu(cpu);
4231 set_task_cpu(idle, cpu);
4232
4233 spin_lock_irqsave(&rq->lock, flags);
4234 rq->curr = rq->idle = idle;
4235 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4236 idle->oncpu = 1;
4237 #endif
4238 spin_unlock_irqrestore(&rq->lock, flags);
4239
4240 /* Set the preempt count _outside_ the spinlocks! */
4241 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4242 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4243 #else
4244 idle->thread_info->preempt_count = 0;
4245 #endif
4246 }
4247
4248 /*
4249 * In a system that switches off the HZ timer nohz_cpu_mask
4250 * indicates which cpus entered this state. This is used
4251 * in the rcu update to wait only for active cpus. For system
4252 * which do not switch off the HZ timer nohz_cpu_mask should
4253 * always be CPU_MASK_NONE.
4254 */
4255 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4256
4257 #ifdef CONFIG_SMP
4258 /*
4259 * This is how migration works:
4260 *
4261 * 1) we queue a migration_req_t structure in the source CPU's
4262 * runqueue and wake up that CPU's migration thread.
4263 * 2) we down() the locked semaphore => thread blocks.
4264 * 3) migration thread wakes up (implicitly it forces the migrated
4265 * thread off the CPU)
4266 * 4) it gets the migration request and checks whether the migrated
4267 * task is still in the wrong runqueue.
4268 * 5) if it's in the wrong runqueue then the migration thread removes
4269 * it and puts it into the right queue.
4270 * 6) migration thread up()s the semaphore.
4271 * 7) we wake up and the migration is done.
4272 */
4273
4274 /*
4275 * Change a given task's CPU affinity. Migrate the thread to a
4276 * proper CPU and schedule it away if the CPU it's executing on
4277 * is removed from the allowed bitmask.
4278 *
4279 * NOTE: the caller must have a valid reference to the task, the
4280 * task must not exit() & deallocate itself prematurely. The
4281 * call is not atomic; no spinlocks may be held.
4282 */
4283 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4284 {
4285 unsigned long flags;
4286 int ret = 0;
4287 migration_req_t req;
4288 runqueue_t *rq;
4289
4290 rq = task_rq_lock(p, &flags);
4291 if (!cpus_intersects(new_mask, cpu_online_map)) {
4292 ret = -EINVAL;
4293 goto out;
4294 }
4295
4296 p->cpus_allowed = new_mask;
4297 /* Can the task run on the task's current CPU? If so, we're done */
4298 if (cpu_isset(task_cpu(p), new_mask))
4299 goto out;
4300
4301 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4302 /* Need help from migration thread: drop lock and wait. */
4303 task_rq_unlock(rq, &flags);
4304 wake_up_process(rq->migration_thread);
4305 wait_for_completion(&req.done);
4306 tlb_migrate_finish(p->mm);
4307 return 0;
4308 }
4309 out:
4310 task_rq_unlock(rq, &flags);
4311 return ret;
4312 }
4313
4314 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4315
4316 /*
4317 * Move (not current) task off this cpu, onto dest cpu. We're doing
4318 * this because either it can't run here any more (set_cpus_allowed()
4319 * away from this CPU, or CPU going down), or because we're
4320 * attempting to rebalance this task on exec (sched_exec).
4321 *
4322 * So we race with normal scheduler movements, but that's OK, as long
4323 * as the task is no longer on this CPU.
4324 */
4325 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4326 {
4327 runqueue_t *rq_dest, *rq_src;
4328
4329 if (unlikely(cpu_is_offline(dest_cpu)))
4330 return;
4331
4332 rq_src = cpu_rq(src_cpu);
4333 rq_dest = cpu_rq(dest_cpu);
4334
4335 double_rq_lock(rq_src, rq_dest);
4336 /* Already moved. */
4337 if (task_cpu(p) != src_cpu)
4338 goto out;
4339 /* Affinity changed (again). */
4340 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4341 goto out;
4342
4343 set_task_cpu(p, dest_cpu);
4344 if (p->array) {
4345 /*
4346 * Sync timestamp with rq_dest's before activating.
4347 * The same thing could be achieved by doing this step
4348 * afterwards, and pretending it was a local activate.
4349 * This way is cleaner and logically correct.
4350 */
4351 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4352 + rq_dest->timestamp_last_tick;
4353 deactivate_task(p, rq_src);
4354 activate_task(p, rq_dest, 0);
4355 if (TASK_PREEMPTS_CURR(p, rq_dest))
4356 resched_task(rq_dest->curr);
4357 }
4358
4359 out:
4360 double_rq_unlock(rq_src, rq_dest);
4361 }
4362
4363 /*
4364 * migration_thread - this is a highprio system thread that performs
4365 * thread migration by bumping thread off CPU then 'pushing' onto
4366 * another runqueue.
4367 */
4368 static int migration_thread(void * data)
4369 {
4370 runqueue_t *rq;
4371 int cpu = (long)data;
4372
4373 rq = cpu_rq(cpu);
4374 BUG_ON(rq->migration_thread != current);
4375
4376 set_current_state(TASK_INTERRUPTIBLE);
4377 while (!kthread_should_stop()) {
4378 struct list_head *head;
4379 migration_req_t *req;
4380
4381 try_to_freeze();
4382
4383 spin_lock_irq(&rq->lock);
4384
4385 if (cpu_is_offline(cpu)) {
4386 spin_unlock_irq(&rq->lock);
4387 goto wait_to_die;
4388 }
4389
4390 if (rq->active_balance) {
4391 active_load_balance(rq, cpu);
4392 rq->active_balance = 0;
4393 }
4394
4395 head = &rq->migration_queue;
4396
4397 if (list_empty(head)) {
4398 spin_unlock_irq(&rq->lock);
4399 schedule();
4400 set_current_state(TASK_INTERRUPTIBLE);
4401 continue;
4402 }
4403 req = list_entry(head->next, migration_req_t, list);
4404 list_del_init(head->next);
4405
4406 spin_unlock(&rq->lock);
4407 __migrate_task(req->task, cpu, req->dest_cpu);
4408 local_irq_enable();
4409
4410 complete(&req->done);
4411 }
4412 __set_current_state(TASK_RUNNING);
4413 return 0;
4414
4415 wait_to_die:
4416 /* Wait for kthread_stop */
4417 set_current_state(TASK_INTERRUPTIBLE);
4418 while (!kthread_should_stop()) {
4419 schedule();
4420 set_current_state(TASK_INTERRUPTIBLE);
4421 }
4422 __set_current_state(TASK_RUNNING);
4423 return 0;
4424 }
4425
4426 #ifdef CONFIG_HOTPLUG_CPU
4427 /* Figure out where task on dead CPU should go, use force if neccessary. */
4428 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4429 {
4430 int dest_cpu;
4431 cpumask_t mask;
4432
4433 /* On same node? */
4434 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4435 cpus_and(mask, mask, tsk->cpus_allowed);
4436 dest_cpu = any_online_cpu(mask);
4437
4438 /* On any allowed CPU? */
4439 if (dest_cpu == NR_CPUS)
4440 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4441
4442 /* No more Mr. Nice Guy. */
4443 if (dest_cpu == NR_CPUS) {
4444 cpus_setall(tsk->cpus_allowed);
4445 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4446
4447 /*
4448 * Don't tell them about moving exiting tasks or
4449 * kernel threads (both mm NULL), since they never
4450 * leave kernel.
4451 */
4452 if (tsk->mm && printk_ratelimit())
4453 printk(KERN_INFO "process %d (%s) no "
4454 "longer affine to cpu%d\n",
4455 tsk->pid, tsk->comm, dead_cpu);
4456 }
4457 __migrate_task(tsk, dead_cpu, dest_cpu);
4458 }
4459
4460 /*
4461 * While a dead CPU has no uninterruptible tasks queued at this point,
4462 * it might still have a nonzero ->nr_uninterruptible counter, because
4463 * for performance reasons the counter is not stricly tracking tasks to
4464 * their home CPUs. So we just add the counter to another CPU's counter,
4465 * to keep the global sum constant after CPU-down:
4466 */
4467 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4468 {
4469 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4470 unsigned long flags;
4471
4472 local_irq_save(flags);
4473 double_rq_lock(rq_src, rq_dest);
4474 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4475 rq_src->nr_uninterruptible = 0;
4476 double_rq_unlock(rq_src, rq_dest);
4477 local_irq_restore(flags);
4478 }
4479
4480 /* Run through task list and migrate tasks from the dead cpu. */
4481 static void migrate_live_tasks(int src_cpu)
4482 {
4483 struct task_struct *tsk, *t;
4484
4485 write_lock_irq(&tasklist_lock);
4486
4487 do_each_thread(t, tsk) {
4488 if (tsk == current)
4489 continue;
4490
4491 if (task_cpu(tsk) == src_cpu)
4492 move_task_off_dead_cpu(src_cpu, tsk);
4493 } while_each_thread(t, tsk);
4494
4495 write_unlock_irq(&tasklist_lock);
4496 }
4497
4498 /* Schedules idle task to be the next runnable task on current CPU.
4499 * It does so by boosting its priority to highest possible and adding it to
4500 * the _front_ of runqueue. Used by CPU offline code.
4501 */
4502 void sched_idle_next(void)
4503 {
4504 int cpu = smp_processor_id();
4505 runqueue_t *rq = this_rq();
4506 struct task_struct *p = rq->idle;
4507 unsigned long flags;
4508
4509 /* cpu has to be offline */
4510 BUG_ON(cpu_online(cpu));
4511
4512 /* Strictly not necessary since rest of the CPUs are stopped by now
4513 * and interrupts disabled on current cpu.
4514 */
4515 spin_lock_irqsave(&rq->lock, flags);
4516
4517 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4518 /* Add idle task to _front_ of it's priority queue */
4519 __activate_idle_task(p, rq);
4520
4521 spin_unlock_irqrestore(&rq->lock, flags);
4522 }
4523
4524 /* Ensures that the idle task is using init_mm right before its cpu goes
4525 * offline.
4526 */
4527 void idle_task_exit(void)
4528 {
4529 struct mm_struct *mm = current->active_mm;
4530
4531 BUG_ON(cpu_online(smp_processor_id()));
4532
4533 if (mm != &init_mm)
4534 switch_mm(mm, &init_mm, current);
4535 mmdrop(mm);
4536 }
4537
4538 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4539 {
4540 struct runqueue *rq = cpu_rq(dead_cpu);
4541
4542 /* Must be exiting, otherwise would be on tasklist. */
4543 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4544
4545 /* Cannot have done final schedule yet: would have vanished. */
4546 BUG_ON(tsk->flags & PF_DEAD);
4547
4548 get_task_struct(tsk);
4549
4550 /*
4551 * Drop lock around migration; if someone else moves it,
4552 * that's OK. No task can be added to this CPU, so iteration is
4553 * fine.
4554 */
4555 spin_unlock_irq(&rq->lock);
4556 move_task_off_dead_cpu(dead_cpu, tsk);
4557 spin_lock_irq(&rq->lock);
4558
4559 put_task_struct(tsk);
4560 }
4561
4562 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4563 static void migrate_dead_tasks(unsigned int dead_cpu)
4564 {
4565 unsigned arr, i;
4566 struct runqueue *rq = cpu_rq(dead_cpu);
4567
4568 for (arr = 0; arr < 2; arr++) {
4569 for (i = 0; i < MAX_PRIO; i++) {
4570 struct list_head *list = &rq->arrays[arr].queue[i];
4571 while (!list_empty(list))
4572 migrate_dead(dead_cpu,
4573 list_entry(list->next, task_t,
4574 run_list));
4575 }
4576 }
4577 }
4578 #endif /* CONFIG_HOTPLUG_CPU */
4579
4580 /*
4581 * migration_call - callback that gets triggered when a CPU is added.
4582 * Here we can start up the necessary migration thread for the new CPU.
4583 */
4584 static int migration_call(struct notifier_block *nfb, unsigned long action,
4585 void *hcpu)
4586 {
4587 int cpu = (long)hcpu;
4588 struct task_struct *p;
4589 struct runqueue *rq;
4590 unsigned long flags;
4591
4592 switch (action) {
4593 case CPU_UP_PREPARE:
4594 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4595 if (IS_ERR(p))
4596 return NOTIFY_BAD;
4597 p->flags |= PF_NOFREEZE;
4598 kthread_bind(p, cpu);
4599 /* Must be high prio: stop_machine expects to yield to it. */
4600 rq = task_rq_lock(p, &flags);
4601 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4602 task_rq_unlock(rq, &flags);
4603 cpu_rq(cpu)->migration_thread = p;
4604 break;
4605 case CPU_ONLINE:
4606 /* Strictly unneccessary, as first user will wake it. */
4607 wake_up_process(cpu_rq(cpu)->migration_thread);
4608 break;
4609 #ifdef CONFIG_HOTPLUG_CPU
4610 case CPU_UP_CANCELED:
4611 /* Unbind it from offline cpu so it can run. Fall thru. */
4612 kthread_bind(cpu_rq(cpu)->migration_thread,smp_processor_id());
4613 kthread_stop(cpu_rq(cpu)->migration_thread);
4614 cpu_rq(cpu)->migration_thread = NULL;
4615 break;
4616 case CPU_DEAD:
4617 migrate_live_tasks(cpu);
4618 rq = cpu_rq(cpu);
4619 kthread_stop(rq->migration_thread);
4620 rq->migration_thread = NULL;
4621 /* Idle task back to normal (off runqueue, low prio) */
4622 rq = task_rq_lock(rq->idle, &flags);
4623 deactivate_task(rq->idle, rq);
4624 rq->idle->static_prio = MAX_PRIO;
4625 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4626 migrate_dead_tasks(cpu);
4627 task_rq_unlock(rq, &flags);
4628 migrate_nr_uninterruptible(rq);
4629 BUG_ON(rq->nr_running != 0);
4630
4631 /* No need to migrate the tasks: it was best-effort if
4632 * they didn't do lock_cpu_hotplug(). Just wake up
4633 * the requestors. */
4634 spin_lock_irq(&rq->lock);
4635 while (!list_empty(&rq->migration_queue)) {
4636 migration_req_t *req;
4637 req = list_entry(rq->migration_queue.next,
4638 migration_req_t, list);
4639 list_del_init(&req->list);
4640 complete(&req->done);
4641 }
4642 spin_unlock_irq(&rq->lock);
4643 break;
4644 #endif
4645 }
4646 return NOTIFY_OK;
4647 }
4648
4649 /* Register at highest priority so that task migration (migrate_all_tasks)
4650 * happens before everything else.
4651 */
4652 static struct notifier_block __devinitdata migration_notifier = {
4653 .notifier_call = migration_call,
4654 .priority = 10
4655 };
4656
4657 int __init migration_init(void)
4658 {
4659 void *cpu = (void *)(long)smp_processor_id();
4660 /* Start one for boot CPU. */
4661 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4662 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4663 register_cpu_notifier(&migration_notifier);
4664 return 0;
4665 }
4666 #endif
4667
4668 #ifdef CONFIG_SMP
4669 #undef SCHED_DOMAIN_DEBUG
4670 #ifdef SCHED_DOMAIN_DEBUG
4671 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4672 {
4673 int level = 0;
4674
4675 if (!sd) {
4676 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4677 return;
4678 }
4679
4680 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4681
4682 do {
4683 int i;
4684 char str[NR_CPUS];
4685 struct sched_group *group = sd->groups;
4686 cpumask_t groupmask;
4687
4688 cpumask_scnprintf(str, NR_CPUS, sd->span);
4689 cpus_clear(groupmask);
4690
4691 printk(KERN_DEBUG);
4692 for (i = 0; i < level + 1; i++)
4693 printk(" ");
4694 printk("domain %d: ", level);
4695
4696 if (!(sd->flags & SD_LOAD_BALANCE)) {
4697 printk("does not load-balance\n");
4698 if (sd->parent)
4699 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4700 break;
4701 }
4702
4703 printk("span %s\n", str);
4704
4705 if (!cpu_isset(cpu, sd->span))
4706 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4707 if (!cpu_isset(cpu, group->cpumask))
4708 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4709
4710 printk(KERN_DEBUG);
4711 for (i = 0; i < level + 2; i++)
4712 printk(" ");
4713 printk("groups:");
4714 do {
4715 if (!group) {
4716 printk("\n");
4717 printk(KERN_ERR "ERROR: group is NULL\n");
4718 break;
4719 }
4720
4721 if (!group->cpu_power) {
4722 printk("\n");
4723 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4724 }
4725
4726 if (!cpus_weight(group->cpumask)) {
4727 printk("\n");
4728 printk(KERN_ERR "ERROR: empty group\n");
4729 }
4730
4731 if (cpus_intersects(groupmask, group->cpumask)) {
4732 printk("\n");
4733 printk(KERN_ERR "ERROR: repeated CPUs\n");
4734 }
4735
4736 cpus_or(groupmask, groupmask, group->cpumask);
4737
4738 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4739 printk(" %s", str);
4740
4741 group = group->next;
4742 } while (group != sd->groups);
4743 printk("\n");
4744
4745 if (!cpus_equal(sd->span, groupmask))
4746 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4747
4748 level++;
4749 sd = sd->parent;
4750
4751 if (sd) {
4752 if (!cpus_subset(groupmask, sd->span))
4753 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4754 }
4755
4756 } while (sd);
4757 }
4758 #else
4759 #define sched_domain_debug(sd, cpu) {}
4760 #endif
4761
4762 static int sd_degenerate(struct sched_domain *sd)
4763 {
4764 if (cpus_weight(sd->span) == 1)
4765 return 1;
4766
4767 /* Following flags need at least 2 groups */
4768 if (sd->flags & (SD_LOAD_BALANCE |
4769 SD_BALANCE_NEWIDLE |
4770 SD_BALANCE_FORK |
4771 SD_BALANCE_EXEC)) {
4772 if (sd->groups != sd->groups->next)
4773 return 0;
4774 }
4775
4776 /* Following flags don't use groups */
4777 if (sd->flags & (SD_WAKE_IDLE |
4778 SD_WAKE_AFFINE |
4779 SD_WAKE_BALANCE))
4780 return 0;
4781
4782 return 1;
4783 }
4784
4785 static int sd_parent_degenerate(struct sched_domain *sd,
4786 struct sched_domain *parent)
4787 {
4788 unsigned long cflags = sd->flags, pflags = parent->flags;
4789
4790 if (sd_degenerate(parent))
4791 return 1;
4792
4793 if (!cpus_equal(sd->span, parent->span))
4794 return 0;
4795
4796 /* Does parent contain flags not in child? */
4797 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4798 if (cflags & SD_WAKE_AFFINE)
4799 pflags &= ~SD_WAKE_BALANCE;
4800 /* Flags needing groups don't count if only 1 group in parent */
4801 if (parent->groups == parent->groups->next) {
4802 pflags &= ~(SD_LOAD_BALANCE |
4803 SD_BALANCE_NEWIDLE |
4804 SD_BALANCE_FORK |
4805 SD_BALANCE_EXEC);
4806 }
4807 if (~cflags & pflags)
4808 return 0;
4809
4810 return 1;
4811 }
4812
4813 /*
4814 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4815 * hold the hotplug lock.
4816 */
4817 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4818 {
4819 runqueue_t *rq = cpu_rq(cpu);
4820 struct sched_domain *tmp;
4821
4822 /* Remove the sched domains which do not contribute to scheduling. */
4823 for (tmp = sd; tmp; tmp = tmp->parent) {
4824 struct sched_domain *parent = tmp->parent;
4825 if (!parent)
4826 break;
4827 if (sd_parent_degenerate(tmp, parent))
4828 tmp->parent = parent->parent;
4829 }
4830
4831 if (sd && sd_degenerate(sd))
4832 sd = sd->parent;
4833
4834 sched_domain_debug(sd, cpu);
4835
4836 rcu_assign_pointer(rq->sd, sd);
4837 }
4838
4839 /* cpus with isolated domains */
4840 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4841
4842 /* Setup the mask of cpus configured for isolated domains */
4843 static int __init isolated_cpu_setup(char *str)
4844 {
4845 int ints[NR_CPUS], i;
4846
4847 str = get_options(str, ARRAY_SIZE(ints), ints);
4848 cpus_clear(cpu_isolated_map);
4849 for (i = 1; i <= ints[0]; i++)
4850 if (ints[i] < NR_CPUS)
4851 cpu_set(ints[i], cpu_isolated_map);
4852 return 1;
4853 }
4854
4855 __setup ("isolcpus=", isolated_cpu_setup);
4856
4857 /*
4858 * init_sched_build_groups takes an array of groups, the cpumask we wish
4859 * to span, and a pointer to a function which identifies what group a CPU
4860 * belongs to. The return value of group_fn must be a valid index into the
4861 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4862 * keep track of groups covered with a cpumask_t).
4863 *
4864 * init_sched_build_groups will build a circular linked list of the groups
4865 * covered by the given span, and will set each group's ->cpumask correctly,
4866 * and ->cpu_power to 0.
4867 */
4868 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4869 int (*group_fn)(int cpu))
4870 {
4871 struct sched_group *first = NULL, *last = NULL;
4872 cpumask_t covered = CPU_MASK_NONE;
4873 int i;
4874
4875 for_each_cpu_mask(i, span) {
4876 int group = group_fn(i);
4877 struct sched_group *sg = &groups[group];
4878 int j;
4879
4880 if (cpu_isset(i, covered))
4881 continue;
4882
4883 sg->cpumask = CPU_MASK_NONE;
4884 sg->cpu_power = 0;
4885
4886 for_each_cpu_mask(j, span) {
4887 if (group_fn(j) != group)
4888 continue;
4889
4890 cpu_set(j, covered);
4891 cpu_set(j, sg->cpumask);
4892 }
4893 if (!first)
4894 first = sg;
4895 if (last)
4896 last->next = sg;
4897 last = sg;
4898 }
4899 last->next = first;
4900 }
4901
4902 #define SD_NODES_PER_DOMAIN 16
4903
4904 #ifdef CONFIG_NUMA
4905 /**
4906 * find_next_best_node - find the next node to include in a sched_domain
4907 * @node: node whose sched_domain we're building
4908 * @used_nodes: nodes already in the sched_domain
4909 *
4910 * Find the next node to include in a given scheduling domain. Simply
4911 * finds the closest node not already in the @used_nodes map.
4912 *
4913 * Should use nodemask_t.
4914 */
4915 static int find_next_best_node(int node, unsigned long *used_nodes)
4916 {
4917 int i, n, val, min_val, best_node = 0;
4918
4919 min_val = INT_MAX;
4920
4921 for (i = 0; i < MAX_NUMNODES; i++) {
4922 /* Start at @node */
4923 n = (node + i) % MAX_NUMNODES;
4924
4925 if (!nr_cpus_node(n))
4926 continue;
4927
4928 /* Skip already used nodes */
4929 if (test_bit(n, used_nodes))
4930 continue;
4931
4932 /* Simple min distance search */
4933 val = node_distance(node, n);
4934
4935 if (val < min_val) {
4936 min_val = val;
4937 best_node = n;
4938 }
4939 }
4940
4941 set_bit(best_node, used_nodes);
4942 return best_node;
4943 }
4944
4945 /**
4946 * sched_domain_node_span - get a cpumask for a node's sched_domain
4947 * @node: node whose cpumask we're constructing
4948 * @size: number of nodes to include in this span
4949 *
4950 * Given a node, construct a good cpumask for its sched_domain to span. It
4951 * should be one that prevents unnecessary balancing, but also spreads tasks
4952 * out optimally.
4953 */
4954 static cpumask_t sched_domain_node_span(int node)
4955 {
4956 int i;
4957 cpumask_t span, nodemask;
4958 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
4959
4960 cpus_clear(span);
4961 bitmap_zero(used_nodes, MAX_NUMNODES);
4962
4963 nodemask = node_to_cpumask(node);
4964 cpus_or(span, span, nodemask);
4965 set_bit(node, used_nodes);
4966
4967 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
4968 int next_node = find_next_best_node(node, used_nodes);
4969 nodemask = node_to_cpumask(next_node);
4970 cpus_or(span, span, nodemask);
4971 }
4972
4973 return span;
4974 }
4975 #endif
4976
4977 /*
4978 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
4979 * can switch it on easily if needed.
4980 */
4981 #ifdef CONFIG_SCHED_SMT
4982 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
4983 static struct sched_group sched_group_cpus[NR_CPUS];
4984 static int cpu_to_cpu_group(int cpu)
4985 {
4986 return cpu;
4987 }
4988 #endif
4989
4990 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
4991 static struct sched_group sched_group_phys[NR_CPUS];
4992 static int cpu_to_phys_group(int cpu)
4993 {
4994 #ifdef CONFIG_SCHED_SMT
4995 return first_cpu(cpu_sibling_map[cpu]);
4996 #else
4997 return cpu;
4998 #endif
4999 }
5000
5001 #ifdef CONFIG_NUMA
5002 /*
5003 * The init_sched_build_groups can't handle what we want to do with node
5004 * groups, so roll our own. Now each node has its own list of groups which
5005 * gets dynamically allocated.
5006 */
5007 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5008 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5009
5010 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5011 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5012
5013 static int cpu_to_allnodes_group(int cpu)
5014 {
5015 return cpu_to_node(cpu);
5016 }
5017 #endif
5018
5019 /*
5020 * Build sched domains for a given set of cpus and attach the sched domains
5021 * to the individual cpus
5022 */
5023 void build_sched_domains(const cpumask_t *cpu_map)
5024 {
5025 int i;
5026 #ifdef CONFIG_NUMA
5027 struct sched_group **sched_group_nodes = NULL;
5028 struct sched_group *sched_group_allnodes = NULL;
5029
5030 /*
5031 * Allocate the per-node list of sched groups
5032 */
5033 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5034 GFP_ATOMIC);
5035 if (!sched_group_nodes) {
5036 printk(KERN_WARNING "Can not alloc sched group node list\n");
5037 return;
5038 }
5039 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5040 #endif
5041
5042 /*
5043 * Set up domains for cpus specified by the cpu_map.
5044 */
5045 for_each_cpu_mask(i, *cpu_map) {
5046 int group;
5047 struct sched_domain *sd = NULL, *p;
5048 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5049
5050 cpus_and(nodemask, nodemask, *cpu_map);
5051
5052 #ifdef CONFIG_NUMA
5053 if (cpus_weight(*cpu_map)
5054 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5055 if (!sched_group_allnodes) {
5056 sched_group_allnodes
5057 = kmalloc(sizeof(struct sched_group)
5058 * MAX_NUMNODES,
5059 GFP_KERNEL);
5060 if (!sched_group_allnodes) {
5061 printk(KERN_WARNING
5062 "Can not alloc allnodes sched group\n");
5063 break;
5064 }
5065 sched_group_allnodes_bycpu[i]
5066 = sched_group_allnodes;
5067 }
5068 sd = &per_cpu(allnodes_domains, i);
5069 *sd = SD_ALLNODES_INIT;
5070 sd->span = *cpu_map;
5071 group = cpu_to_allnodes_group(i);
5072 sd->groups = &sched_group_allnodes[group];
5073 p = sd;
5074 } else
5075 p = NULL;
5076
5077 sd = &per_cpu(node_domains, i);
5078 *sd = SD_NODE_INIT;
5079 sd->span = sched_domain_node_span(cpu_to_node(i));
5080 sd->parent = p;
5081 cpus_and(sd->span, sd->span, *cpu_map);
5082 #endif
5083
5084 p = sd;
5085 sd = &per_cpu(phys_domains, i);
5086 group = cpu_to_phys_group(i);
5087 *sd = SD_CPU_INIT;
5088 sd->span = nodemask;
5089 sd->parent = p;
5090 sd->groups = &sched_group_phys[group];
5091
5092 #ifdef CONFIG_SCHED_SMT
5093 p = sd;
5094 sd = &per_cpu(cpu_domains, i);
5095 group = cpu_to_cpu_group(i);
5096 *sd = SD_SIBLING_INIT;
5097 sd->span = cpu_sibling_map[i];
5098 cpus_and(sd->span, sd->span, *cpu_map);
5099 sd->parent = p;
5100 sd->groups = &sched_group_cpus[group];
5101 #endif
5102 }
5103
5104 #ifdef CONFIG_SCHED_SMT
5105 /* Set up CPU (sibling) groups */
5106 for_each_cpu_mask(i, *cpu_map) {
5107 cpumask_t this_sibling_map = cpu_sibling_map[i];
5108 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5109 if (i != first_cpu(this_sibling_map))
5110 continue;
5111
5112 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5113 &cpu_to_cpu_group);
5114 }
5115 #endif
5116
5117 /* Set up physical groups */
5118 for (i = 0; i < MAX_NUMNODES; i++) {
5119 cpumask_t nodemask = node_to_cpumask(i);
5120
5121 cpus_and(nodemask, nodemask, *cpu_map);
5122 if (cpus_empty(nodemask))
5123 continue;
5124
5125 init_sched_build_groups(sched_group_phys, nodemask,
5126 &cpu_to_phys_group);
5127 }
5128
5129 #ifdef CONFIG_NUMA
5130 /* Set up node groups */
5131 if (sched_group_allnodes)
5132 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5133 &cpu_to_allnodes_group);
5134
5135 for (i = 0; i < MAX_NUMNODES; i++) {
5136 /* Set up node groups */
5137 struct sched_group *sg, *prev;
5138 cpumask_t nodemask = node_to_cpumask(i);
5139 cpumask_t domainspan;
5140 cpumask_t covered = CPU_MASK_NONE;
5141 int j;
5142
5143 cpus_and(nodemask, nodemask, *cpu_map);
5144 if (cpus_empty(nodemask)) {
5145 sched_group_nodes[i] = NULL;
5146 continue;
5147 }
5148
5149 domainspan = sched_domain_node_span(i);
5150 cpus_and(domainspan, domainspan, *cpu_map);
5151
5152 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5153 sched_group_nodes[i] = sg;
5154 for_each_cpu_mask(j, nodemask) {
5155 struct sched_domain *sd;
5156 sd = &per_cpu(node_domains, j);
5157 sd->groups = sg;
5158 if (sd->groups == NULL) {
5159 /* Turn off balancing if we have no groups */
5160 sd->flags = 0;
5161 }
5162 }
5163 if (!sg) {
5164 printk(KERN_WARNING
5165 "Can not alloc domain group for node %d\n", i);
5166 continue;
5167 }
5168 sg->cpu_power = 0;
5169 sg->cpumask = nodemask;
5170 cpus_or(covered, covered, nodemask);
5171 prev = sg;
5172
5173 for (j = 0; j < MAX_NUMNODES; j++) {
5174 cpumask_t tmp, notcovered;
5175 int n = (i + j) % MAX_NUMNODES;
5176
5177 cpus_complement(notcovered, covered);
5178 cpus_and(tmp, notcovered, *cpu_map);
5179 cpus_and(tmp, tmp, domainspan);
5180 if (cpus_empty(tmp))
5181 break;
5182
5183 nodemask = node_to_cpumask(n);
5184 cpus_and(tmp, tmp, nodemask);
5185 if (cpus_empty(tmp))
5186 continue;
5187
5188 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5189 if (!sg) {
5190 printk(KERN_WARNING
5191 "Can not alloc domain group for node %d\n", j);
5192 break;
5193 }
5194 sg->cpu_power = 0;
5195 sg->cpumask = tmp;
5196 cpus_or(covered, covered, tmp);
5197 prev->next = sg;
5198 prev = sg;
5199 }
5200 prev->next = sched_group_nodes[i];
5201 }
5202 #endif
5203
5204 /* Calculate CPU power for physical packages and nodes */
5205 for_each_cpu_mask(i, *cpu_map) {
5206 int power;
5207 struct sched_domain *sd;
5208 #ifdef CONFIG_SCHED_SMT
5209 sd = &per_cpu(cpu_domains, i);
5210 power = SCHED_LOAD_SCALE;
5211 sd->groups->cpu_power = power;
5212 #endif
5213
5214 sd = &per_cpu(phys_domains, i);
5215 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5216 (cpus_weight(sd->groups->cpumask)-1) / 10;
5217 sd->groups->cpu_power = power;
5218
5219 #ifdef CONFIG_NUMA
5220 sd = &per_cpu(allnodes_domains, i);
5221 if (sd->groups) {
5222 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5223 (cpus_weight(sd->groups->cpumask)-1) / 10;
5224 sd->groups->cpu_power = power;
5225 }
5226 #endif
5227 }
5228
5229 #ifdef CONFIG_NUMA
5230 for (i = 0; i < MAX_NUMNODES; i++) {
5231 struct sched_group *sg = sched_group_nodes[i];
5232 int j;
5233
5234 if (sg == NULL)
5235 continue;
5236 next_sg:
5237 for_each_cpu_mask(j, sg->cpumask) {
5238 struct sched_domain *sd;
5239 int power;
5240
5241 sd = &per_cpu(phys_domains, j);
5242 if (j != first_cpu(sd->groups->cpumask)) {
5243 /*
5244 * Only add "power" once for each
5245 * physical package.
5246 */
5247 continue;
5248 }
5249 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5250 (cpus_weight(sd->groups->cpumask)-1) / 10;
5251
5252 sg->cpu_power += power;
5253 }
5254 sg = sg->next;
5255 if (sg != sched_group_nodes[i])
5256 goto next_sg;
5257 }
5258 #endif
5259
5260 /* Attach the domains */
5261 for_each_cpu_mask(i, *cpu_map) {
5262 struct sched_domain *sd;
5263 #ifdef CONFIG_SCHED_SMT
5264 sd = &per_cpu(cpu_domains, i);
5265 #else
5266 sd = &per_cpu(phys_domains, i);
5267 #endif
5268 cpu_attach_domain(sd, i);
5269 }
5270 }
5271 /*
5272 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5273 */
5274 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5275 {
5276 cpumask_t cpu_default_map;
5277
5278 /*
5279 * Setup mask for cpus without special case scheduling requirements.
5280 * For now this just excludes isolated cpus, but could be used to
5281 * exclude other special cases in the future.
5282 */
5283 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5284
5285 build_sched_domains(&cpu_default_map);
5286 }
5287
5288 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5289 {
5290 #ifdef CONFIG_NUMA
5291 int i;
5292 int cpu;
5293
5294 for_each_cpu_mask(cpu, *cpu_map) {
5295 struct sched_group *sched_group_allnodes
5296 = sched_group_allnodes_bycpu[cpu];
5297 struct sched_group **sched_group_nodes
5298 = sched_group_nodes_bycpu[cpu];
5299
5300 if (sched_group_allnodes) {
5301 kfree(sched_group_allnodes);
5302 sched_group_allnodes_bycpu[cpu] = NULL;
5303 }
5304
5305 if (!sched_group_nodes)
5306 continue;
5307
5308 for (i = 0; i < MAX_NUMNODES; i++) {
5309 cpumask_t nodemask = node_to_cpumask(i);
5310 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5311
5312 cpus_and(nodemask, nodemask, *cpu_map);
5313 if (cpus_empty(nodemask))
5314 continue;
5315
5316 if (sg == NULL)
5317 continue;
5318 sg = sg->next;
5319 next_sg:
5320 oldsg = sg;
5321 sg = sg->next;
5322 kfree(oldsg);
5323 if (oldsg != sched_group_nodes[i])
5324 goto next_sg;
5325 }
5326 kfree(sched_group_nodes);
5327 sched_group_nodes_bycpu[cpu] = NULL;
5328 }
5329 #endif
5330 }
5331
5332 /*
5333 * Detach sched domains from a group of cpus specified in cpu_map
5334 * These cpus will now be attached to the NULL domain
5335 */
5336 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5337 {
5338 int i;
5339
5340 for_each_cpu_mask(i, *cpu_map)
5341 cpu_attach_domain(NULL, i);
5342 synchronize_sched();
5343 arch_destroy_sched_domains(cpu_map);
5344 }
5345
5346 /*
5347 * Partition sched domains as specified by the cpumasks below.
5348 * This attaches all cpus from the cpumasks to the NULL domain,
5349 * waits for a RCU quiescent period, recalculates sched
5350 * domain information and then attaches them back to the
5351 * correct sched domains
5352 * Call with hotplug lock held
5353 */
5354 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5355 {
5356 cpumask_t change_map;
5357
5358 cpus_and(*partition1, *partition1, cpu_online_map);
5359 cpus_and(*partition2, *partition2, cpu_online_map);
5360 cpus_or(change_map, *partition1, *partition2);
5361
5362 /* Detach sched domains from all of the affected cpus */
5363 detach_destroy_domains(&change_map);
5364 if (!cpus_empty(*partition1))
5365 build_sched_domains(partition1);
5366 if (!cpus_empty(*partition2))
5367 build_sched_domains(partition2);
5368 }
5369
5370 #ifdef CONFIG_HOTPLUG_CPU
5371 /*
5372 * Force a reinitialization of the sched domains hierarchy. The domains
5373 * and groups cannot be updated in place without racing with the balancing
5374 * code, so we temporarily attach all running cpus to the NULL domain
5375 * which will prevent rebalancing while the sched domains are recalculated.
5376 */
5377 static int update_sched_domains(struct notifier_block *nfb,
5378 unsigned long action, void *hcpu)
5379 {
5380 switch (action) {
5381 case CPU_UP_PREPARE:
5382 case CPU_DOWN_PREPARE:
5383 detach_destroy_domains(&cpu_online_map);
5384 return NOTIFY_OK;
5385
5386 case CPU_UP_CANCELED:
5387 case CPU_DOWN_FAILED:
5388 case CPU_ONLINE:
5389 case CPU_DEAD:
5390 /*
5391 * Fall through and re-initialise the domains.
5392 */
5393 break;
5394 default:
5395 return NOTIFY_DONE;
5396 }
5397
5398 /* The hotplug lock is already held by cpu_up/cpu_down */
5399 arch_init_sched_domains(&cpu_online_map);
5400
5401 return NOTIFY_OK;
5402 }
5403 #endif
5404
5405 void __init sched_init_smp(void)
5406 {
5407 lock_cpu_hotplug();
5408 arch_init_sched_domains(&cpu_online_map);
5409 unlock_cpu_hotplug();
5410 /* XXX: Theoretical race here - CPU may be hotplugged now */
5411 hotcpu_notifier(update_sched_domains, 0);
5412 }
5413 #else
5414 void __init sched_init_smp(void)
5415 {
5416 }
5417 #endif /* CONFIG_SMP */
5418
5419 int in_sched_functions(unsigned long addr)
5420 {
5421 /* Linker adds these: start and end of __sched functions */
5422 extern char __sched_text_start[], __sched_text_end[];
5423 return in_lock_functions(addr) ||
5424 (addr >= (unsigned long)__sched_text_start
5425 && addr < (unsigned long)__sched_text_end);
5426 }
5427
5428 void __init sched_init(void)
5429 {
5430 runqueue_t *rq;
5431 int i, j, k;
5432
5433 for (i = 0; i < NR_CPUS; i++) {
5434 prio_array_t *array;
5435
5436 rq = cpu_rq(i);
5437 spin_lock_init(&rq->lock);
5438 rq->nr_running = 0;
5439 rq->active = rq->arrays;
5440 rq->expired = rq->arrays + 1;
5441 rq->best_expired_prio = MAX_PRIO;
5442
5443 #ifdef CONFIG_SMP
5444 rq->sd = NULL;
5445 for (j = 1; j < 3; j++)
5446 rq->cpu_load[j] = 0;
5447 rq->active_balance = 0;
5448 rq->push_cpu = 0;
5449 rq->migration_thread = NULL;
5450 INIT_LIST_HEAD(&rq->migration_queue);
5451 #endif
5452 atomic_set(&rq->nr_iowait, 0);
5453
5454 for (j = 0; j < 2; j++) {
5455 array = rq->arrays + j;
5456 for (k = 0; k < MAX_PRIO; k++) {
5457 INIT_LIST_HEAD(array->queue + k);
5458 __clear_bit(k, array->bitmap);
5459 }
5460 // delimiter for bitsearch
5461 __set_bit(MAX_PRIO, array->bitmap);
5462 }
5463 }
5464
5465 /*
5466 * The boot idle thread does lazy MMU switching as well:
5467 */
5468 atomic_inc(&init_mm.mm_count);
5469 enter_lazy_tlb(&init_mm, current);
5470
5471 /*
5472 * Make us the idle thread. Technically, schedule() should not be
5473 * called from this thread, however somewhere below it might be,
5474 * but because we are the idle thread, we just pick up running again
5475 * when this runqueue becomes "idle".
5476 */
5477 init_idle(current, smp_processor_id());
5478 }
5479
5480 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5481 void __might_sleep(char *file, int line)
5482 {
5483 #if defined(in_atomic)
5484 static unsigned long prev_jiffy; /* ratelimiting */
5485
5486 if ((in_atomic() || irqs_disabled()) &&
5487 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5488 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5489 return;
5490 prev_jiffy = jiffies;
5491 printk(KERN_ERR "Debug: sleeping function called from invalid"
5492 " context at %s:%d\n", file, line);
5493 printk("in_atomic():%d, irqs_disabled():%d\n",
5494 in_atomic(), irqs_disabled());
5495 dump_stack();
5496 }
5497 #endif
5498 }
5499 EXPORT_SYMBOL(__might_sleep);
5500 #endif
5501
5502 #ifdef CONFIG_MAGIC_SYSRQ
5503 void normalize_rt_tasks(void)
5504 {
5505 struct task_struct *p;
5506 prio_array_t *array;
5507 unsigned long flags;
5508 runqueue_t *rq;
5509
5510 read_lock_irq(&tasklist_lock);
5511 for_each_process (p) {
5512 if (!rt_task(p))
5513 continue;
5514
5515 rq = task_rq_lock(p, &flags);
5516
5517 array = p->array;
5518 if (array)
5519 deactivate_task(p, task_rq(p));
5520 __setscheduler(p, SCHED_NORMAL, 0);
5521 if (array) {
5522 __activate_task(p, task_rq(p));
5523 resched_task(rq->curr);
5524 }
5525
5526 task_rq_unlock(rq, &flags);
5527 }
5528 read_unlock_irq(&tasklist_lock);
5529 }
5530
5531 #endif /* CONFIG_MAGIC_SYSRQ */