]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched.c
f92ce63edfff1ee8475d889a3eb291eb1c38ee5a
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/mm.h>
32 #include <linux/module.h>
33 #include <linux/nmi.h>
34 #include <linux/init.h>
35 #include <linux/uaccess.h>
36 #include <linux/highmem.h>
37 #include <linux/smp_lock.h>
38 #include <asm/mmu_context.h>
39 #include <linux/interrupt.h>
40 #include <linux/capability.h>
41 #include <linux/completion.h>
42 #include <linux/kernel_stat.h>
43 #include <linux/debug_locks.h>
44 #include <linux/perf_event.h>
45 #include <linux/security.h>
46 #include <linux/notifier.h>
47 #include <linux/profile.h>
48 #include <linux/freezer.h>
49 #include <linux/vmalloc.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/pid_namespace.h>
53 #include <linux/smp.h>
54 #include <linux/threads.h>
55 #include <linux/timer.h>
56 #include <linux/rcupdate.h>
57 #include <linux/cpu.h>
58 #include <linux/cpuset.h>
59 #include <linux/percpu.h>
60 #include <linux/kthread.h>
61 #include <linux/proc_fs.h>
62 #include <linux/seq_file.h>
63 #include <linux/sysctl.h>
64 #include <linux/syscalls.h>
65 #include <linux/times.h>
66 #include <linux/tsacct_kern.h>
67 #include <linux/kprobes.h>
68 #include <linux/delayacct.h>
69 #include <linux/unistd.h>
70 #include <linux/pagemap.h>
71 #include <linux/hrtimer.h>
72 #include <linux/tick.h>
73 #include <linux/debugfs.h>
74 #include <linux/ctype.h>
75 #include <linux/ftrace.h>
76
77 #include <asm/tlb.h>
78 #include <asm/irq_regs.h>
79
80 #include "sched_cpupri.h"
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
84
85 /*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94 /*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103 /*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
111 /*
112 * These are the 'tuning knobs' of the scheduler:
113 *
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
116 */
117 #define DEF_TIMESLICE (100 * HZ / 1000)
118
119 /*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122 #define RUNTIME_INF ((u64)~0ULL)
123
124 static inline int rt_policy(int policy)
125 {
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 return 1;
128 return 0;
129 }
130
131 static inline int task_has_rt_policy(struct task_struct *p)
132 {
133 return rt_policy(p->policy);
134 }
135
136 /*
137 * This is the priority-queue data structure of the RT scheduling class:
138 */
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142 };
143
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
150 };
151
152 static struct rt_bandwidth def_rt_bandwidth;
153
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157 {
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 }
176
177 static
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179 {
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
184
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 }
189
190 static inline int rt_bandwidth_enabled(void)
191 {
192 return sysctl_sched_rt_runtime >= 0;
193 }
194
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196 {
197 ktime_t now;
198
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
205 raw_spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
207 unsigned long delta;
208 ktime_t soft, hard;
209
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
221 }
222 raw_spin_unlock(&rt_b->rt_runtime_lock);
223 }
224
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227 {
228 hrtimer_cancel(&rt_b->rt_period_timer);
229 }
230 #endif
231
232 /*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236 static DEFINE_MUTEX(sched_domains_mutex);
237
238 #ifdef CONFIG_GROUP_SCHED
239
240 #include <linux/cgroup.h>
241
242 struct cfs_rq;
243
244 static LIST_HEAD(task_groups);
245
246 /* task group related information */
247 struct task_group {
248 #ifdef CONFIG_CGROUP_SCHED
249 struct cgroup_subsys_state css;
250 #endif
251
252 #ifdef CONFIG_USER_SCHED
253 uid_t uid;
254 #endif
255
256 #ifdef CONFIG_FAIR_GROUP_SCHED
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
262 #endif
263
264 #ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
267
268 struct rt_bandwidth rt_bandwidth;
269 #endif
270
271 struct rcu_head rcu;
272 struct list_head list;
273
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
277 };
278
279 #ifdef CONFIG_USER_SCHED
280
281 /* Helper function to pass uid information to create_sched_user() */
282 void set_tg_uid(struct user_struct *user)
283 {
284 user->tg->uid = user->uid;
285 }
286
287 /*
288 * Root task group.
289 * Every UID task group (including init_task_group aka UID-0) will
290 * be a child to this group.
291 */
292 struct task_group root_task_group;
293
294 #ifdef CONFIG_FAIR_GROUP_SCHED
295 /* Default task group's sched entity on each cpu */
296 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
297 /* Default task group's cfs_rq on each cpu */
298 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
299 #endif /* CONFIG_FAIR_GROUP_SCHED */
300
301 #ifdef CONFIG_RT_GROUP_SCHED
302 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
304 #endif /* CONFIG_RT_GROUP_SCHED */
305 #else /* !CONFIG_USER_SCHED */
306 #define root_task_group init_task_group
307 #endif /* CONFIG_USER_SCHED */
308
309 /* task_group_lock serializes add/remove of task groups and also changes to
310 * a task group's cpu shares.
311 */
312 static DEFINE_SPINLOCK(task_group_lock);
313
314 #ifdef CONFIG_FAIR_GROUP_SCHED
315
316 #ifdef CONFIG_SMP
317 static int root_task_group_empty(void)
318 {
319 return list_empty(&root_task_group.children);
320 }
321 #endif
322
323 #ifdef CONFIG_USER_SCHED
324 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
325 #else /* !CONFIG_USER_SCHED */
326 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
327 #endif /* CONFIG_USER_SCHED */
328
329 /*
330 * A weight of 0 or 1 can cause arithmetics problems.
331 * A weight of a cfs_rq is the sum of weights of which entities
332 * are queued on this cfs_rq, so a weight of a entity should not be
333 * too large, so as the shares value of a task group.
334 * (The default weight is 1024 - so there's no practical
335 * limitation from this.)
336 */
337 #define MIN_SHARES 2
338 #define MAX_SHARES (1UL << 18)
339
340 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
341 #endif
342
343 /* Default task group.
344 * Every task in system belong to this group at bootup.
345 */
346 struct task_group init_task_group;
347
348 /* return group to which a task belongs */
349 static inline struct task_group *task_group(struct task_struct *p)
350 {
351 struct task_group *tg;
352
353 #ifdef CONFIG_USER_SCHED
354 rcu_read_lock();
355 tg = __task_cred(p)->user->tg;
356 rcu_read_unlock();
357 #elif defined(CONFIG_CGROUP_SCHED)
358 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
359 struct task_group, css);
360 #else
361 tg = &init_task_group;
362 #endif
363 return tg;
364 }
365
366 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
367 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
368 {
369 #ifdef CONFIG_FAIR_GROUP_SCHED
370 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
371 p->se.parent = task_group(p)->se[cpu];
372 #endif
373
374 #ifdef CONFIG_RT_GROUP_SCHED
375 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
376 p->rt.parent = task_group(p)->rt_se[cpu];
377 #endif
378 }
379
380 #else
381
382 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
383 static inline struct task_group *task_group(struct task_struct *p)
384 {
385 return NULL;
386 }
387
388 #endif /* CONFIG_GROUP_SCHED */
389
390 /* CFS-related fields in a runqueue */
391 struct cfs_rq {
392 struct load_weight load;
393 unsigned long nr_running;
394
395 u64 exec_clock;
396 u64 min_vruntime;
397
398 struct rb_root tasks_timeline;
399 struct rb_node *rb_leftmost;
400
401 struct list_head tasks;
402 struct list_head *balance_iterator;
403
404 /*
405 * 'curr' points to currently running entity on this cfs_rq.
406 * It is set to NULL otherwise (i.e when none are currently running).
407 */
408 struct sched_entity *curr, *next, *last;
409
410 unsigned int nr_spread_over;
411
412 #ifdef CONFIG_FAIR_GROUP_SCHED
413 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
414
415 /*
416 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
417 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
418 * (like users, containers etc.)
419 *
420 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
421 * list is used during load balance.
422 */
423 struct list_head leaf_cfs_rq_list;
424 struct task_group *tg; /* group that "owns" this runqueue */
425
426 #ifdef CONFIG_SMP
427 /*
428 * the part of load.weight contributed by tasks
429 */
430 unsigned long task_weight;
431
432 /*
433 * h_load = weight * f(tg)
434 *
435 * Where f(tg) is the recursive weight fraction assigned to
436 * this group.
437 */
438 unsigned long h_load;
439
440 /*
441 * this cpu's part of tg->shares
442 */
443 unsigned long shares;
444
445 /*
446 * load.weight at the time we set shares
447 */
448 unsigned long rq_weight;
449 #endif
450 #endif
451 };
452
453 /* Real-Time classes' related field in a runqueue: */
454 struct rt_rq {
455 struct rt_prio_array active;
456 unsigned long rt_nr_running;
457 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
458 struct {
459 int curr; /* highest queued rt task prio */
460 #ifdef CONFIG_SMP
461 int next; /* next highest */
462 #endif
463 } highest_prio;
464 #endif
465 #ifdef CONFIG_SMP
466 unsigned long rt_nr_migratory;
467 unsigned long rt_nr_total;
468 int overloaded;
469 struct plist_head pushable_tasks;
470 #endif
471 int rt_throttled;
472 u64 rt_time;
473 u64 rt_runtime;
474 /* Nests inside the rq lock: */
475 raw_spinlock_t rt_runtime_lock;
476
477 #ifdef CONFIG_RT_GROUP_SCHED
478 unsigned long rt_nr_boosted;
479
480 struct rq *rq;
481 struct list_head leaf_rt_rq_list;
482 struct task_group *tg;
483 struct sched_rt_entity *rt_se;
484 #endif
485 };
486
487 #ifdef CONFIG_SMP
488
489 /*
490 * We add the notion of a root-domain which will be used to define per-domain
491 * variables. Each exclusive cpuset essentially defines an island domain by
492 * fully partitioning the member cpus from any other cpuset. Whenever a new
493 * exclusive cpuset is created, we also create and attach a new root-domain
494 * object.
495 *
496 */
497 struct root_domain {
498 atomic_t refcount;
499 cpumask_var_t span;
500 cpumask_var_t online;
501
502 /*
503 * The "RT overload" flag: it gets set if a CPU has more than
504 * one runnable RT task.
505 */
506 cpumask_var_t rto_mask;
507 atomic_t rto_count;
508 #ifdef CONFIG_SMP
509 struct cpupri cpupri;
510 #endif
511 };
512
513 /*
514 * By default the system creates a single root-domain with all cpus as
515 * members (mimicking the global state we have today).
516 */
517 static struct root_domain def_root_domain;
518
519 #endif
520
521 /*
522 * This is the main, per-CPU runqueue data structure.
523 *
524 * Locking rule: those places that want to lock multiple runqueues
525 * (such as the load balancing or the thread migration code), lock
526 * acquire operations must be ordered by ascending &runqueue.
527 */
528 struct rq {
529 /* runqueue lock: */
530 raw_spinlock_t lock;
531
532 /*
533 * nr_running and cpu_load should be in the same cacheline because
534 * remote CPUs use both these fields when doing load calculation.
535 */
536 unsigned long nr_running;
537 #define CPU_LOAD_IDX_MAX 5
538 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
539 #ifdef CONFIG_NO_HZ
540 unsigned char in_nohz_recently;
541 #endif
542 /* capture load from *all* tasks on this cpu: */
543 struct load_weight load;
544 unsigned long nr_load_updates;
545 u64 nr_switches;
546
547 struct cfs_rq cfs;
548 struct rt_rq rt;
549
550 #ifdef CONFIG_FAIR_GROUP_SCHED
551 /* list of leaf cfs_rq on this cpu: */
552 struct list_head leaf_cfs_rq_list;
553 #endif
554 #ifdef CONFIG_RT_GROUP_SCHED
555 struct list_head leaf_rt_rq_list;
556 #endif
557
558 /*
559 * This is part of a global counter where only the total sum
560 * over all CPUs matters. A task can increase this counter on
561 * one CPU and if it got migrated afterwards it may decrease
562 * it on another CPU. Always updated under the runqueue lock:
563 */
564 unsigned long nr_uninterruptible;
565
566 struct task_struct *curr, *idle;
567 unsigned long next_balance;
568 struct mm_struct *prev_mm;
569
570 u64 clock;
571
572 atomic_t nr_iowait;
573
574 #ifdef CONFIG_SMP
575 struct root_domain *rd;
576 struct sched_domain *sd;
577
578 unsigned char idle_at_tick;
579 /* For active balancing */
580 int post_schedule;
581 int active_balance;
582 int push_cpu;
583 /* cpu of this runqueue: */
584 int cpu;
585 int online;
586
587 unsigned long avg_load_per_task;
588
589 struct task_struct *migration_thread;
590 struct list_head migration_queue;
591
592 u64 rt_avg;
593 u64 age_stamp;
594 u64 idle_stamp;
595 u64 avg_idle;
596 #endif
597
598 /* calc_load related fields */
599 unsigned long calc_load_update;
600 long calc_load_active;
601
602 #ifdef CONFIG_SCHED_HRTICK
603 #ifdef CONFIG_SMP
604 int hrtick_csd_pending;
605 struct call_single_data hrtick_csd;
606 #endif
607 struct hrtimer hrtick_timer;
608 #endif
609
610 #ifdef CONFIG_SCHEDSTATS
611 /* latency stats */
612 struct sched_info rq_sched_info;
613 unsigned long long rq_cpu_time;
614 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
615
616 /* sys_sched_yield() stats */
617 unsigned int yld_count;
618
619 /* schedule() stats */
620 unsigned int sched_switch;
621 unsigned int sched_count;
622 unsigned int sched_goidle;
623
624 /* try_to_wake_up() stats */
625 unsigned int ttwu_count;
626 unsigned int ttwu_local;
627
628 /* BKL stats */
629 unsigned int bkl_count;
630 #endif
631 };
632
633 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
634
635 static inline
636 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
637 {
638 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
639 }
640
641 static inline int cpu_of(struct rq *rq)
642 {
643 #ifdef CONFIG_SMP
644 return rq->cpu;
645 #else
646 return 0;
647 #endif
648 }
649
650 /*
651 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
652 * See detach_destroy_domains: synchronize_sched for details.
653 *
654 * The domain tree of any CPU may only be accessed from within
655 * preempt-disabled sections.
656 */
657 #define for_each_domain(cpu, __sd) \
658 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
659
660 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
661 #define this_rq() (&__get_cpu_var(runqueues))
662 #define task_rq(p) cpu_rq(task_cpu(p))
663 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
664 #define raw_rq() (&__raw_get_cpu_var(runqueues))
665
666 inline void update_rq_clock(struct rq *rq)
667 {
668 rq->clock = sched_clock_cpu(cpu_of(rq));
669 }
670
671 /*
672 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
673 */
674 #ifdef CONFIG_SCHED_DEBUG
675 # define const_debug __read_mostly
676 #else
677 # define const_debug static const
678 #endif
679
680 /**
681 * runqueue_is_locked
682 * @cpu: the processor in question.
683 *
684 * Returns true if the current cpu runqueue is locked.
685 * This interface allows printk to be called with the runqueue lock
686 * held and know whether or not it is OK to wake up the klogd.
687 */
688 int runqueue_is_locked(int cpu)
689 {
690 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
691 }
692
693 /*
694 * Debugging: various feature bits
695 */
696
697 #define SCHED_FEAT(name, enabled) \
698 __SCHED_FEAT_##name ,
699
700 enum {
701 #include "sched_features.h"
702 };
703
704 #undef SCHED_FEAT
705
706 #define SCHED_FEAT(name, enabled) \
707 (1UL << __SCHED_FEAT_##name) * enabled |
708
709 const_debug unsigned int sysctl_sched_features =
710 #include "sched_features.h"
711 0;
712
713 #undef SCHED_FEAT
714
715 #ifdef CONFIG_SCHED_DEBUG
716 #define SCHED_FEAT(name, enabled) \
717 #name ,
718
719 static __read_mostly char *sched_feat_names[] = {
720 #include "sched_features.h"
721 NULL
722 };
723
724 #undef SCHED_FEAT
725
726 static int sched_feat_show(struct seq_file *m, void *v)
727 {
728 int i;
729
730 for (i = 0; sched_feat_names[i]; i++) {
731 if (!(sysctl_sched_features & (1UL << i)))
732 seq_puts(m, "NO_");
733 seq_printf(m, "%s ", sched_feat_names[i]);
734 }
735 seq_puts(m, "\n");
736
737 return 0;
738 }
739
740 static ssize_t
741 sched_feat_write(struct file *filp, const char __user *ubuf,
742 size_t cnt, loff_t *ppos)
743 {
744 char buf[64];
745 char *cmp = buf;
746 int neg = 0;
747 int i;
748
749 if (cnt > 63)
750 cnt = 63;
751
752 if (copy_from_user(&buf, ubuf, cnt))
753 return -EFAULT;
754
755 buf[cnt] = 0;
756
757 if (strncmp(buf, "NO_", 3) == 0) {
758 neg = 1;
759 cmp += 3;
760 }
761
762 for (i = 0; sched_feat_names[i]; i++) {
763 int len = strlen(sched_feat_names[i]);
764
765 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
766 if (neg)
767 sysctl_sched_features &= ~(1UL << i);
768 else
769 sysctl_sched_features |= (1UL << i);
770 break;
771 }
772 }
773
774 if (!sched_feat_names[i])
775 return -EINVAL;
776
777 *ppos += cnt;
778
779 return cnt;
780 }
781
782 static int sched_feat_open(struct inode *inode, struct file *filp)
783 {
784 return single_open(filp, sched_feat_show, NULL);
785 }
786
787 static const struct file_operations sched_feat_fops = {
788 .open = sched_feat_open,
789 .write = sched_feat_write,
790 .read = seq_read,
791 .llseek = seq_lseek,
792 .release = single_release,
793 };
794
795 static __init int sched_init_debug(void)
796 {
797 debugfs_create_file("sched_features", 0644, NULL, NULL,
798 &sched_feat_fops);
799
800 return 0;
801 }
802 late_initcall(sched_init_debug);
803
804 #endif
805
806 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
807
808 /*
809 * Number of tasks to iterate in a single balance run.
810 * Limited because this is done with IRQs disabled.
811 */
812 const_debug unsigned int sysctl_sched_nr_migrate = 32;
813
814 /*
815 * ratelimit for updating the group shares.
816 * default: 0.25ms
817 */
818 unsigned int sysctl_sched_shares_ratelimit = 250000;
819 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
820
821 /*
822 * Inject some fuzzyness into changing the per-cpu group shares
823 * this avoids remote rq-locks at the expense of fairness.
824 * default: 4
825 */
826 unsigned int sysctl_sched_shares_thresh = 4;
827
828 /*
829 * period over which we average the RT time consumption, measured
830 * in ms.
831 *
832 * default: 1s
833 */
834 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
835
836 /*
837 * period over which we measure -rt task cpu usage in us.
838 * default: 1s
839 */
840 unsigned int sysctl_sched_rt_period = 1000000;
841
842 static __read_mostly int scheduler_running;
843
844 /*
845 * part of the period that we allow rt tasks to run in us.
846 * default: 0.95s
847 */
848 int sysctl_sched_rt_runtime = 950000;
849
850 static inline u64 global_rt_period(void)
851 {
852 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
853 }
854
855 static inline u64 global_rt_runtime(void)
856 {
857 if (sysctl_sched_rt_runtime < 0)
858 return RUNTIME_INF;
859
860 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
861 }
862
863 #ifndef prepare_arch_switch
864 # define prepare_arch_switch(next) do { } while (0)
865 #endif
866 #ifndef finish_arch_switch
867 # define finish_arch_switch(prev) do { } while (0)
868 #endif
869
870 static inline int task_current(struct rq *rq, struct task_struct *p)
871 {
872 return rq->curr == p;
873 }
874
875 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
876 static inline int task_running(struct rq *rq, struct task_struct *p)
877 {
878 return task_current(rq, p);
879 }
880
881 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
882 {
883 }
884
885 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
886 {
887 #ifdef CONFIG_DEBUG_SPINLOCK
888 /* this is a valid case when another task releases the spinlock */
889 rq->lock.owner = current;
890 #endif
891 /*
892 * If we are tracking spinlock dependencies then we have to
893 * fix up the runqueue lock - which gets 'carried over' from
894 * prev into current:
895 */
896 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
897
898 raw_spin_unlock_irq(&rq->lock);
899 }
900
901 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
902 static inline int task_running(struct rq *rq, struct task_struct *p)
903 {
904 #ifdef CONFIG_SMP
905 return p->oncpu;
906 #else
907 return task_current(rq, p);
908 #endif
909 }
910
911 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
912 {
913 #ifdef CONFIG_SMP
914 /*
915 * We can optimise this out completely for !SMP, because the
916 * SMP rebalancing from interrupt is the only thing that cares
917 * here.
918 */
919 next->oncpu = 1;
920 #endif
921 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
922 raw_spin_unlock_irq(&rq->lock);
923 #else
924 raw_spin_unlock(&rq->lock);
925 #endif
926 }
927
928 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
929 {
930 #ifdef CONFIG_SMP
931 /*
932 * After ->oncpu is cleared, the task can be moved to a different CPU.
933 * We must ensure this doesn't happen until the switch is completely
934 * finished.
935 */
936 smp_wmb();
937 prev->oncpu = 0;
938 #endif
939 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
940 local_irq_enable();
941 #endif
942 }
943 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
944
945 /*
946 * __task_rq_lock - lock the runqueue a given task resides on.
947 * Must be called interrupts disabled.
948 */
949 static inline struct rq *__task_rq_lock(struct task_struct *p)
950 __acquires(rq->lock)
951 {
952 for (;;) {
953 struct rq *rq = task_rq(p);
954 raw_spin_lock(&rq->lock);
955 if (likely(rq == task_rq(p)))
956 return rq;
957 raw_spin_unlock(&rq->lock);
958 }
959 }
960
961 /*
962 * task_rq_lock - lock the runqueue a given task resides on and disable
963 * interrupts. Note the ordering: we can safely lookup the task_rq without
964 * explicitly disabling preemption.
965 */
966 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
967 __acquires(rq->lock)
968 {
969 struct rq *rq;
970
971 for (;;) {
972 local_irq_save(*flags);
973 rq = task_rq(p);
974 raw_spin_lock(&rq->lock);
975 if (likely(rq == task_rq(p)))
976 return rq;
977 raw_spin_unlock_irqrestore(&rq->lock, *flags);
978 }
979 }
980
981 void task_rq_unlock_wait(struct task_struct *p)
982 {
983 struct rq *rq = task_rq(p);
984
985 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
986 raw_spin_unlock_wait(&rq->lock);
987 }
988
989 static void __task_rq_unlock(struct rq *rq)
990 __releases(rq->lock)
991 {
992 raw_spin_unlock(&rq->lock);
993 }
994
995 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
996 __releases(rq->lock)
997 {
998 raw_spin_unlock_irqrestore(&rq->lock, *flags);
999 }
1000
1001 /*
1002 * this_rq_lock - lock this runqueue and disable interrupts.
1003 */
1004 static struct rq *this_rq_lock(void)
1005 __acquires(rq->lock)
1006 {
1007 struct rq *rq;
1008
1009 local_irq_disable();
1010 rq = this_rq();
1011 raw_spin_lock(&rq->lock);
1012
1013 return rq;
1014 }
1015
1016 #ifdef CONFIG_SCHED_HRTICK
1017 /*
1018 * Use HR-timers to deliver accurate preemption points.
1019 *
1020 * Its all a bit involved since we cannot program an hrt while holding the
1021 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1022 * reschedule event.
1023 *
1024 * When we get rescheduled we reprogram the hrtick_timer outside of the
1025 * rq->lock.
1026 */
1027
1028 /*
1029 * Use hrtick when:
1030 * - enabled by features
1031 * - hrtimer is actually high res
1032 */
1033 static inline int hrtick_enabled(struct rq *rq)
1034 {
1035 if (!sched_feat(HRTICK))
1036 return 0;
1037 if (!cpu_active(cpu_of(rq)))
1038 return 0;
1039 return hrtimer_is_hres_active(&rq->hrtick_timer);
1040 }
1041
1042 static void hrtick_clear(struct rq *rq)
1043 {
1044 if (hrtimer_active(&rq->hrtick_timer))
1045 hrtimer_cancel(&rq->hrtick_timer);
1046 }
1047
1048 /*
1049 * High-resolution timer tick.
1050 * Runs from hardirq context with interrupts disabled.
1051 */
1052 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1053 {
1054 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1055
1056 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1057
1058 raw_spin_lock(&rq->lock);
1059 update_rq_clock(rq);
1060 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1061 raw_spin_unlock(&rq->lock);
1062
1063 return HRTIMER_NORESTART;
1064 }
1065
1066 #ifdef CONFIG_SMP
1067 /*
1068 * called from hardirq (IPI) context
1069 */
1070 static void __hrtick_start(void *arg)
1071 {
1072 struct rq *rq = arg;
1073
1074 raw_spin_lock(&rq->lock);
1075 hrtimer_restart(&rq->hrtick_timer);
1076 rq->hrtick_csd_pending = 0;
1077 raw_spin_unlock(&rq->lock);
1078 }
1079
1080 /*
1081 * Called to set the hrtick timer state.
1082 *
1083 * called with rq->lock held and irqs disabled
1084 */
1085 static void hrtick_start(struct rq *rq, u64 delay)
1086 {
1087 struct hrtimer *timer = &rq->hrtick_timer;
1088 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1089
1090 hrtimer_set_expires(timer, time);
1091
1092 if (rq == this_rq()) {
1093 hrtimer_restart(timer);
1094 } else if (!rq->hrtick_csd_pending) {
1095 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1096 rq->hrtick_csd_pending = 1;
1097 }
1098 }
1099
1100 static int
1101 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1102 {
1103 int cpu = (int)(long)hcpu;
1104
1105 switch (action) {
1106 case CPU_UP_CANCELED:
1107 case CPU_UP_CANCELED_FROZEN:
1108 case CPU_DOWN_PREPARE:
1109 case CPU_DOWN_PREPARE_FROZEN:
1110 case CPU_DEAD:
1111 case CPU_DEAD_FROZEN:
1112 hrtick_clear(cpu_rq(cpu));
1113 return NOTIFY_OK;
1114 }
1115
1116 return NOTIFY_DONE;
1117 }
1118
1119 static __init void init_hrtick(void)
1120 {
1121 hotcpu_notifier(hotplug_hrtick, 0);
1122 }
1123 #else
1124 /*
1125 * Called to set the hrtick timer state.
1126 *
1127 * called with rq->lock held and irqs disabled
1128 */
1129 static void hrtick_start(struct rq *rq, u64 delay)
1130 {
1131 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1132 HRTIMER_MODE_REL_PINNED, 0);
1133 }
1134
1135 static inline void init_hrtick(void)
1136 {
1137 }
1138 #endif /* CONFIG_SMP */
1139
1140 static void init_rq_hrtick(struct rq *rq)
1141 {
1142 #ifdef CONFIG_SMP
1143 rq->hrtick_csd_pending = 0;
1144
1145 rq->hrtick_csd.flags = 0;
1146 rq->hrtick_csd.func = __hrtick_start;
1147 rq->hrtick_csd.info = rq;
1148 #endif
1149
1150 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1151 rq->hrtick_timer.function = hrtick;
1152 }
1153 #else /* CONFIG_SCHED_HRTICK */
1154 static inline void hrtick_clear(struct rq *rq)
1155 {
1156 }
1157
1158 static inline void init_rq_hrtick(struct rq *rq)
1159 {
1160 }
1161
1162 static inline void init_hrtick(void)
1163 {
1164 }
1165 #endif /* CONFIG_SCHED_HRTICK */
1166
1167 /*
1168 * resched_task - mark a task 'to be rescheduled now'.
1169 *
1170 * On UP this means the setting of the need_resched flag, on SMP it
1171 * might also involve a cross-CPU call to trigger the scheduler on
1172 * the target CPU.
1173 */
1174 #ifdef CONFIG_SMP
1175
1176 #ifndef tsk_is_polling
1177 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1178 #endif
1179
1180 static void resched_task(struct task_struct *p)
1181 {
1182 int cpu;
1183
1184 assert_raw_spin_locked(&task_rq(p)->lock);
1185
1186 if (test_tsk_need_resched(p))
1187 return;
1188
1189 set_tsk_need_resched(p);
1190
1191 cpu = task_cpu(p);
1192 if (cpu == smp_processor_id())
1193 return;
1194
1195 /* NEED_RESCHED must be visible before we test polling */
1196 smp_mb();
1197 if (!tsk_is_polling(p))
1198 smp_send_reschedule(cpu);
1199 }
1200
1201 static void resched_cpu(int cpu)
1202 {
1203 struct rq *rq = cpu_rq(cpu);
1204 unsigned long flags;
1205
1206 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1207 return;
1208 resched_task(cpu_curr(cpu));
1209 raw_spin_unlock_irqrestore(&rq->lock, flags);
1210 }
1211
1212 #ifdef CONFIG_NO_HZ
1213 /*
1214 * When add_timer_on() enqueues a timer into the timer wheel of an
1215 * idle CPU then this timer might expire before the next timer event
1216 * which is scheduled to wake up that CPU. In case of a completely
1217 * idle system the next event might even be infinite time into the
1218 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1219 * leaves the inner idle loop so the newly added timer is taken into
1220 * account when the CPU goes back to idle and evaluates the timer
1221 * wheel for the next timer event.
1222 */
1223 void wake_up_idle_cpu(int cpu)
1224 {
1225 struct rq *rq = cpu_rq(cpu);
1226
1227 if (cpu == smp_processor_id())
1228 return;
1229
1230 /*
1231 * This is safe, as this function is called with the timer
1232 * wheel base lock of (cpu) held. When the CPU is on the way
1233 * to idle and has not yet set rq->curr to idle then it will
1234 * be serialized on the timer wheel base lock and take the new
1235 * timer into account automatically.
1236 */
1237 if (rq->curr != rq->idle)
1238 return;
1239
1240 /*
1241 * We can set TIF_RESCHED on the idle task of the other CPU
1242 * lockless. The worst case is that the other CPU runs the
1243 * idle task through an additional NOOP schedule()
1244 */
1245 set_tsk_need_resched(rq->idle);
1246
1247 /* NEED_RESCHED must be visible before we test polling */
1248 smp_mb();
1249 if (!tsk_is_polling(rq->idle))
1250 smp_send_reschedule(cpu);
1251 }
1252 #endif /* CONFIG_NO_HZ */
1253
1254 static u64 sched_avg_period(void)
1255 {
1256 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1257 }
1258
1259 static void sched_avg_update(struct rq *rq)
1260 {
1261 s64 period = sched_avg_period();
1262
1263 while ((s64)(rq->clock - rq->age_stamp) > period) {
1264 rq->age_stamp += period;
1265 rq->rt_avg /= 2;
1266 }
1267 }
1268
1269 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1270 {
1271 rq->rt_avg += rt_delta;
1272 sched_avg_update(rq);
1273 }
1274
1275 #else /* !CONFIG_SMP */
1276 static void resched_task(struct task_struct *p)
1277 {
1278 assert_raw_spin_locked(&task_rq(p)->lock);
1279 set_tsk_need_resched(p);
1280 }
1281
1282 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1283 {
1284 }
1285 #endif /* CONFIG_SMP */
1286
1287 #if BITS_PER_LONG == 32
1288 # define WMULT_CONST (~0UL)
1289 #else
1290 # define WMULT_CONST (1UL << 32)
1291 #endif
1292
1293 #define WMULT_SHIFT 32
1294
1295 /*
1296 * Shift right and round:
1297 */
1298 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1299
1300 /*
1301 * delta *= weight / lw
1302 */
1303 static unsigned long
1304 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1305 struct load_weight *lw)
1306 {
1307 u64 tmp;
1308
1309 if (!lw->inv_weight) {
1310 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1311 lw->inv_weight = 1;
1312 else
1313 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1314 / (lw->weight+1);
1315 }
1316
1317 tmp = (u64)delta_exec * weight;
1318 /*
1319 * Check whether we'd overflow the 64-bit multiplication:
1320 */
1321 if (unlikely(tmp > WMULT_CONST))
1322 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1323 WMULT_SHIFT/2);
1324 else
1325 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1326
1327 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1328 }
1329
1330 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1331 {
1332 lw->weight += inc;
1333 lw->inv_weight = 0;
1334 }
1335
1336 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1337 {
1338 lw->weight -= dec;
1339 lw->inv_weight = 0;
1340 }
1341
1342 /*
1343 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1344 * of tasks with abnormal "nice" values across CPUs the contribution that
1345 * each task makes to its run queue's load is weighted according to its
1346 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1347 * scaled version of the new time slice allocation that they receive on time
1348 * slice expiry etc.
1349 */
1350
1351 #define WEIGHT_IDLEPRIO 3
1352 #define WMULT_IDLEPRIO 1431655765
1353
1354 /*
1355 * Nice levels are multiplicative, with a gentle 10% change for every
1356 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1357 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1358 * that remained on nice 0.
1359 *
1360 * The "10% effect" is relative and cumulative: from _any_ nice level,
1361 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1362 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1363 * If a task goes up by ~10% and another task goes down by ~10% then
1364 * the relative distance between them is ~25%.)
1365 */
1366 static const int prio_to_weight[40] = {
1367 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1368 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1369 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1370 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1371 /* 0 */ 1024, 820, 655, 526, 423,
1372 /* 5 */ 335, 272, 215, 172, 137,
1373 /* 10 */ 110, 87, 70, 56, 45,
1374 /* 15 */ 36, 29, 23, 18, 15,
1375 };
1376
1377 /*
1378 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1379 *
1380 * In cases where the weight does not change often, we can use the
1381 * precalculated inverse to speed up arithmetics by turning divisions
1382 * into multiplications:
1383 */
1384 static const u32 prio_to_wmult[40] = {
1385 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1386 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1387 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1388 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1389 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1390 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1391 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1392 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1393 };
1394
1395 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1396
1397 /*
1398 * runqueue iterator, to support SMP load-balancing between different
1399 * scheduling classes, without having to expose their internal data
1400 * structures to the load-balancing proper:
1401 */
1402 struct rq_iterator {
1403 void *arg;
1404 struct task_struct *(*start)(void *);
1405 struct task_struct *(*next)(void *);
1406 };
1407
1408 #ifdef CONFIG_SMP
1409 static unsigned long
1410 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1411 unsigned long max_load_move, struct sched_domain *sd,
1412 enum cpu_idle_type idle, int *all_pinned,
1413 int *this_best_prio, struct rq_iterator *iterator);
1414
1415 static int
1416 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle,
1418 struct rq_iterator *iterator);
1419 #endif
1420
1421 /* Time spent by the tasks of the cpu accounting group executing in ... */
1422 enum cpuacct_stat_index {
1423 CPUACCT_STAT_USER, /* ... user mode */
1424 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1425
1426 CPUACCT_STAT_NSTATS,
1427 };
1428
1429 #ifdef CONFIG_CGROUP_CPUACCT
1430 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1431 static void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val);
1433 #else
1434 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1435 static inline void cpuacct_update_stats(struct task_struct *tsk,
1436 enum cpuacct_stat_index idx, cputime_t val) {}
1437 #endif
1438
1439 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1440 {
1441 update_load_add(&rq->load, load);
1442 }
1443
1444 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1445 {
1446 update_load_sub(&rq->load, load);
1447 }
1448
1449 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1450 typedef int (*tg_visitor)(struct task_group *, void *);
1451
1452 /*
1453 * Iterate the full tree, calling @down when first entering a node and @up when
1454 * leaving it for the final time.
1455 */
1456 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1457 {
1458 struct task_group *parent, *child;
1459 int ret;
1460
1461 rcu_read_lock();
1462 parent = &root_task_group;
1463 down:
1464 ret = (*down)(parent, data);
1465 if (ret)
1466 goto out_unlock;
1467 list_for_each_entry_rcu(child, &parent->children, siblings) {
1468 parent = child;
1469 goto down;
1470
1471 up:
1472 continue;
1473 }
1474 ret = (*up)(parent, data);
1475 if (ret)
1476 goto out_unlock;
1477
1478 child = parent;
1479 parent = parent->parent;
1480 if (parent)
1481 goto up;
1482 out_unlock:
1483 rcu_read_unlock();
1484
1485 return ret;
1486 }
1487
1488 static int tg_nop(struct task_group *tg, void *data)
1489 {
1490 return 0;
1491 }
1492 #endif
1493
1494 #ifdef CONFIG_SMP
1495 /* Used instead of source_load when we know the type == 0 */
1496 static unsigned long weighted_cpuload(const int cpu)
1497 {
1498 return cpu_rq(cpu)->load.weight;
1499 }
1500
1501 /*
1502 * Return a low guess at the load of a migration-source cpu weighted
1503 * according to the scheduling class and "nice" value.
1504 *
1505 * We want to under-estimate the load of migration sources, to
1506 * balance conservatively.
1507 */
1508 static unsigned long source_load(int cpu, int type)
1509 {
1510 struct rq *rq = cpu_rq(cpu);
1511 unsigned long total = weighted_cpuload(cpu);
1512
1513 if (type == 0 || !sched_feat(LB_BIAS))
1514 return total;
1515
1516 return min(rq->cpu_load[type-1], total);
1517 }
1518
1519 /*
1520 * Return a high guess at the load of a migration-target cpu weighted
1521 * according to the scheduling class and "nice" value.
1522 */
1523 static unsigned long target_load(int cpu, int type)
1524 {
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long total = weighted_cpuload(cpu);
1527
1528 if (type == 0 || !sched_feat(LB_BIAS))
1529 return total;
1530
1531 return max(rq->cpu_load[type-1], total);
1532 }
1533
1534 static struct sched_group *group_of(int cpu)
1535 {
1536 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1537
1538 if (!sd)
1539 return NULL;
1540
1541 return sd->groups;
1542 }
1543
1544 static unsigned long power_of(int cpu)
1545 {
1546 struct sched_group *group = group_of(cpu);
1547
1548 if (!group)
1549 return SCHED_LOAD_SCALE;
1550
1551 return group->cpu_power;
1552 }
1553
1554 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1555
1556 static unsigned long cpu_avg_load_per_task(int cpu)
1557 {
1558 struct rq *rq = cpu_rq(cpu);
1559 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1560
1561 if (nr_running)
1562 rq->avg_load_per_task = rq->load.weight / nr_running;
1563 else
1564 rq->avg_load_per_task = 0;
1565
1566 return rq->avg_load_per_task;
1567 }
1568
1569 #ifdef CONFIG_FAIR_GROUP_SCHED
1570
1571 static __read_mostly unsigned long *update_shares_data;
1572
1573 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1574
1575 /*
1576 * Calculate and set the cpu's group shares.
1577 */
1578 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
1581 unsigned long *usd_rq_weight)
1582 {
1583 unsigned long shares, rq_weight;
1584 int boost = 0;
1585
1586 rq_weight = usd_rq_weight[cpu];
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1590 }
1591
1592 /*
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
1596 */
1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1599
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
1604
1605 raw_spin_lock_irqsave(&rq->lock, flags);
1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1608 __set_se_shares(tg->se[cpu], shares);
1609 raw_spin_unlock_irqrestore(&rq->lock, flags);
1610 }
1611 }
1612
1613 /*
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
1617 */
1618 static int tg_shares_up(struct task_group *tg, void *data)
1619 {
1620 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1621 unsigned long *usd_rq_weight;
1622 struct sched_domain *sd = data;
1623 unsigned long flags;
1624 int i;
1625
1626 if (!tg->se[0])
1627 return 0;
1628
1629 local_irq_save(flags);
1630 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1631
1632 for_each_cpu(i, sched_domain_span(sd)) {
1633 weight = tg->cfs_rq[i]->load.weight;
1634 usd_rq_weight[i] = weight;
1635
1636 rq_weight += weight;
1637 /*
1638 * If there are currently no tasks on the cpu pretend there
1639 * is one of average load so that when a new task gets to
1640 * run here it will not get delayed by group starvation.
1641 */
1642 if (!weight)
1643 weight = NICE_0_LOAD;
1644
1645 sum_weight += weight;
1646 shares += tg->cfs_rq[i]->shares;
1647 }
1648
1649 if (!rq_weight)
1650 rq_weight = sum_weight;
1651
1652 if ((!shares && rq_weight) || shares > tg->shares)
1653 shares = tg->shares;
1654
1655 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1656 shares = tg->shares;
1657
1658 for_each_cpu(i, sched_domain_span(sd))
1659 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1660
1661 local_irq_restore(flags);
1662
1663 return 0;
1664 }
1665
1666 /*
1667 * Compute the cpu's hierarchical load factor for each task group.
1668 * This needs to be done in a top-down fashion because the load of a child
1669 * group is a fraction of its parents load.
1670 */
1671 static int tg_load_down(struct task_group *tg, void *data)
1672 {
1673 unsigned long load;
1674 long cpu = (long)data;
1675
1676 if (!tg->parent) {
1677 load = cpu_rq(cpu)->load.weight;
1678 } else {
1679 load = tg->parent->cfs_rq[cpu]->h_load;
1680 load *= tg->cfs_rq[cpu]->shares;
1681 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1682 }
1683
1684 tg->cfs_rq[cpu]->h_load = load;
1685
1686 return 0;
1687 }
1688
1689 static void update_shares(struct sched_domain *sd)
1690 {
1691 s64 elapsed;
1692 u64 now;
1693
1694 if (root_task_group_empty())
1695 return;
1696
1697 now = cpu_clock(raw_smp_processor_id());
1698 elapsed = now - sd->last_update;
1699
1700 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1701 sd->last_update = now;
1702 walk_tg_tree(tg_nop, tg_shares_up, sd);
1703 }
1704 }
1705
1706 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1707 {
1708 if (root_task_group_empty())
1709 return;
1710
1711 raw_spin_unlock(&rq->lock);
1712 update_shares(sd);
1713 raw_spin_lock(&rq->lock);
1714 }
1715
1716 static void update_h_load(long cpu)
1717 {
1718 if (root_task_group_empty())
1719 return;
1720
1721 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1722 }
1723
1724 #else
1725
1726 static inline void update_shares(struct sched_domain *sd)
1727 {
1728 }
1729
1730 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1731 {
1732 }
1733
1734 #endif
1735
1736 #ifdef CONFIG_PREEMPT
1737
1738 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1739
1740 /*
1741 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1742 * way at the expense of forcing extra atomic operations in all
1743 * invocations. This assures that the double_lock is acquired using the
1744 * same underlying policy as the spinlock_t on this architecture, which
1745 * reduces latency compared to the unfair variant below. However, it
1746 * also adds more overhead and therefore may reduce throughput.
1747 */
1748 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 __releases(this_rq->lock)
1750 __acquires(busiest->lock)
1751 __acquires(this_rq->lock)
1752 {
1753 raw_spin_unlock(&this_rq->lock);
1754 double_rq_lock(this_rq, busiest);
1755
1756 return 1;
1757 }
1758
1759 #else
1760 /*
1761 * Unfair double_lock_balance: Optimizes throughput at the expense of
1762 * latency by eliminating extra atomic operations when the locks are
1763 * already in proper order on entry. This favors lower cpu-ids and will
1764 * grant the double lock to lower cpus over higher ids under contention,
1765 * regardless of entry order into the function.
1766 */
1767 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1768 __releases(this_rq->lock)
1769 __acquires(busiest->lock)
1770 __acquires(this_rq->lock)
1771 {
1772 int ret = 0;
1773
1774 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1775 if (busiest < this_rq) {
1776 raw_spin_unlock(&this_rq->lock);
1777 raw_spin_lock(&busiest->lock);
1778 raw_spin_lock_nested(&this_rq->lock,
1779 SINGLE_DEPTH_NESTING);
1780 ret = 1;
1781 } else
1782 raw_spin_lock_nested(&busiest->lock,
1783 SINGLE_DEPTH_NESTING);
1784 }
1785 return ret;
1786 }
1787
1788 #endif /* CONFIG_PREEMPT */
1789
1790 /*
1791 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1792 */
1793 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1794 {
1795 if (unlikely(!irqs_disabled())) {
1796 /* printk() doesn't work good under rq->lock */
1797 raw_spin_unlock(&this_rq->lock);
1798 BUG_ON(1);
1799 }
1800
1801 return _double_lock_balance(this_rq, busiest);
1802 }
1803
1804 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1805 __releases(busiest->lock)
1806 {
1807 raw_spin_unlock(&busiest->lock);
1808 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1809 }
1810 #endif
1811
1812 #ifdef CONFIG_FAIR_GROUP_SCHED
1813 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1814 {
1815 #ifdef CONFIG_SMP
1816 cfs_rq->shares = shares;
1817 #endif
1818 }
1819 #endif
1820
1821 static void calc_load_account_active(struct rq *this_rq);
1822 static void update_sysctl(void);
1823 static int get_update_sysctl_factor(void);
1824
1825 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1826 {
1827 set_task_rq(p, cpu);
1828 #ifdef CONFIG_SMP
1829 /*
1830 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1831 * successfuly executed on another CPU. We must ensure that updates of
1832 * per-task data have been completed by this moment.
1833 */
1834 smp_wmb();
1835 task_thread_info(p)->cpu = cpu;
1836 #endif
1837 }
1838
1839 #include "sched_stats.h"
1840 #include "sched_idletask.c"
1841 #include "sched_fair.c"
1842 #include "sched_rt.c"
1843 #ifdef CONFIG_SCHED_DEBUG
1844 # include "sched_debug.c"
1845 #endif
1846
1847 #define sched_class_highest (&rt_sched_class)
1848 #define for_each_class(class) \
1849 for (class = sched_class_highest; class; class = class->next)
1850
1851 static void inc_nr_running(struct rq *rq)
1852 {
1853 rq->nr_running++;
1854 }
1855
1856 static void dec_nr_running(struct rq *rq)
1857 {
1858 rq->nr_running--;
1859 }
1860
1861 static void set_load_weight(struct task_struct *p)
1862 {
1863 if (task_has_rt_policy(p)) {
1864 p->se.load.weight = prio_to_weight[0] * 2;
1865 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1866 return;
1867 }
1868
1869 /*
1870 * SCHED_IDLE tasks get minimal weight:
1871 */
1872 if (p->policy == SCHED_IDLE) {
1873 p->se.load.weight = WEIGHT_IDLEPRIO;
1874 p->se.load.inv_weight = WMULT_IDLEPRIO;
1875 return;
1876 }
1877
1878 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1879 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1880 }
1881
1882 static void update_avg(u64 *avg, u64 sample)
1883 {
1884 s64 diff = sample - *avg;
1885 *avg += diff >> 3;
1886 }
1887
1888 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1889 {
1890 if (wakeup)
1891 p->se.start_runtime = p->se.sum_exec_runtime;
1892
1893 sched_info_queued(p);
1894 p->sched_class->enqueue_task(rq, p, wakeup);
1895 p->se.on_rq = 1;
1896 }
1897
1898 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1899 {
1900 if (sleep) {
1901 if (p->se.last_wakeup) {
1902 update_avg(&p->se.avg_overlap,
1903 p->se.sum_exec_runtime - p->se.last_wakeup);
1904 p->se.last_wakeup = 0;
1905 } else {
1906 update_avg(&p->se.avg_wakeup,
1907 sysctl_sched_wakeup_granularity);
1908 }
1909 }
1910
1911 sched_info_dequeued(p);
1912 p->sched_class->dequeue_task(rq, p, sleep);
1913 p->se.on_rq = 0;
1914 }
1915
1916 /*
1917 * __normal_prio - return the priority that is based on the static prio
1918 */
1919 static inline int __normal_prio(struct task_struct *p)
1920 {
1921 return p->static_prio;
1922 }
1923
1924 /*
1925 * Calculate the expected normal priority: i.e. priority
1926 * without taking RT-inheritance into account. Might be
1927 * boosted by interactivity modifiers. Changes upon fork,
1928 * setprio syscalls, and whenever the interactivity
1929 * estimator recalculates.
1930 */
1931 static inline int normal_prio(struct task_struct *p)
1932 {
1933 int prio;
1934
1935 if (task_has_rt_policy(p))
1936 prio = MAX_RT_PRIO-1 - p->rt_priority;
1937 else
1938 prio = __normal_prio(p);
1939 return prio;
1940 }
1941
1942 /*
1943 * Calculate the current priority, i.e. the priority
1944 * taken into account by the scheduler. This value might
1945 * be boosted by RT tasks, or might be boosted by
1946 * interactivity modifiers. Will be RT if the task got
1947 * RT-boosted. If not then it returns p->normal_prio.
1948 */
1949 static int effective_prio(struct task_struct *p)
1950 {
1951 p->normal_prio = normal_prio(p);
1952 /*
1953 * If we are RT tasks or we were boosted to RT priority,
1954 * keep the priority unchanged. Otherwise, update priority
1955 * to the normal priority:
1956 */
1957 if (!rt_prio(p->prio))
1958 return p->normal_prio;
1959 return p->prio;
1960 }
1961
1962 /*
1963 * activate_task - move a task to the runqueue.
1964 */
1965 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1966 {
1967 if (task_contributes_to_load(p))
1968 rq->nr_uninterruptible--;
1969
1970 enqueue_task(rq, p, wakeup);
1971 inc_nr_running(rq);
1972 }
1973
1974 /*
1975 * deactivate_task - remove a task from the runqueue.
1976 */
1977 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1978 {
1979 if (task_contributes_to_load(p))
1980 rq->nr_uninterruptible++;
1981
1982 dequeue_task(rq, p, sleep);
1983 dec_nr_running(rq);
1984 }
1985
1986 /**
1987 * task_curr - is this task currently executing on a CPU?
1988 * @p: the task in question.
1989 */
1990 inline int task_curr(const struct task_struct *p)
1991 {
1992 return cpu_curr(task_cpu(p)) == p;
1993 }
1994
1995 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1996 const struct sched_class *prev_class,
1997 int oldprio, int running)
1998 {
1999 if (prev_class != p->sched_class) {
2000 if (prev_class->switched_from)
2001 prev_class->switched_from(rq, p, running);
2002 p->sched_class->switched_to(rq, p, running);
2003 } else
2004 p->sched_class->prio_changed(rq, p, oldprio, running);
2005 }
2006
2007 #ifdef CONFIG_SMP
2008 /*
2009 * Is this task likely cache-hot:
2010 */
2011 static int
2012 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2013 {
2014 s64 delta;
2015
2016 if (p->sched_class != &fair_sched_class)
2017 return 0;
2018
2019 /*
2020 * Buddy candidates are cache hot:
2021 */
2022 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2023 (&p->se == cfs_rq_of(&p->se)->next ||
2024 &p->se == cfs_rq_of(&p->se)->last))
2025 return 1;
2026
2027 if (sysctl_sched_migration_cost == -1)
2028 return 1;
2029 if (sysctl_sched_migration_cost == 0)
2030 return 0;
2031
2032 delta = now - p->se.exec_start;
2033
2034 return delta < (s64)sysctl_sched_migration_cost;
2035 }
2036
2037
2038 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2039 {
2040 int old_cpu = task_cpu(p);
2041
2042 #ifdef CONFIG_SCHED_DEBUG
2043 /*
2044 * We should never call set_task_cpu() on a blocked task,
2045 * ttwu() will sort out the placement.
2046 */
2047 WARN_ON(p->state != TASK_RUNNING && p->state != TASK_WAKING);
2048 #endif
2049
2050 trace_sched_migrate_task(p, new_cpu);
2051
2052 if (old_cpu != new_cpu) {
2053 p->se.nr_migrations++;
2054 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2055 1, 1, NULL, 0);
2056 }
2057
2058 __set_task_cpu(p, new_cpu);
2059 }
2060
2061 struct migration_req {
2062 struct list_head list;
2063
2064 struct task_struct *task;
2065 int dest_cpu;
2066
2067 struct completion done;
2068 };
2069
2070 /*
2071 * The task's runqueue lock must be held.
2072 * Returns true if you have to wait for migration thread.
2073 */
2074 static int
2075 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2076 {
2077 struct rq *rq = task_rq(p);
2078
2079 /*
2080 * If the task is not on a runqueue (and not running), then
2081 * the next wake-up will properly place the task.
2082 */
2083 if (!p->se.on_rq && !task_running(rq, p))
2084 return 0;
2085
2086 init_completion(&req->done);
2087 req->task = p;
2088 req->dest_cpu = dest_cpu;
2089 list_add(&req->list, &rq->migration_queue);
2090
2091 return 1;
2092 }
2093
2094 /*
2095 * wait_task_context_switch - wait for a thread to complete at least one
2096 * context switch.
2097 *
2098 * @p must not be current.
2099 */
2100 void wait_task_context_switch(struct task_struct *p)
2101 {
2102 unsigned long nvcsw, nivcsw, flags;
2103 int running;
2104 struct rq *rq;
2105
2106 nvcsw = p->nvcsw;
2107 nivcsw = p->nivcsw;
2108 for (;;) {
2109 /*
2110 * The runqueue is assigned before the actual context
2111 * switch. We need to take the runqueue lock.
2112 *
2113 * We could check initially without the lock but it is
2114 * very likely that we need to take the lock in every
2115 * iteration.
2116 */
2117 rq = task_rq_lock(p, &flags);
2118 running = task_running(rq, p);
2119 task_rq_unlock(rq, &flags);
2120
2121 if (likely(!running))
2122 break;
2123 /*
2124 * The switch count is incremented before the actual
2125 * context switch. We thus wait for two switches to be
2126 * sure at least one completed.
2127 */
2128 if ((p->nvcsw - nvcsw) > 1)
2129 break;
2130 if ((p->nivcsw - nivcsw) > 1)
2131 break;
2132
2133 cpu_relax();
2134 }
2135 }
2136
2137 /*
2138 * wait_task_inactive - wait for a thread to unschedule.
2139 *
2140 * If @match_state is nonzero, it's the @p->state value just checked and
2141 * not expected to change. If it changes, i.e. @p might have woken up,
2142 * then return zero. When we succeed in waiting for @p to be off its CPU,
2143 * we return a positive number (its total switch count). If a second call
2144 * a short while later returns the same number, the caller can be sure that
2145 * @p has remained unscheduled the whole time.
2146 *
2147 * The caller must ensure that the task *will* unschedule sometime soon,
2148 * else this function might spin for a *long* time. This function can't
2149 * be called with interrupts off, or it may introduce deadlock with
2150 * smp_call_function() if an IPI is sent by the same process we are
2151 * waiting to become inactive.
2152 */
2153 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2154 {
2155 unsigned long flags;
2156 int running, on_rq;
2157 unsigned long ncsw;
2158 struct rq *rq;
2159
2160 for (;;) {
2161 /*
2162 * We do the initial early heuristics without holding
2163 * any task-queue locks at all. We'll only try to get
2164 * the runqueue lock when things look like they will
2165 * work out!
2166 */
2167 rq = task_rq(p);
2168
2169 /*
2170 * If the task is actively running on another CPU
2171 * still, just relax and busy-wait without holding
2172 * any locks.
2173 *
2174 * NOTE! Since we don't hold any locks, it's not
2175 * even sure that "rq" stays as the right runqueue!
2176 * But we don't care, since "task_running()" will
2177 * return false if the runqueue has changed and p
2178 * is actually now running somewhere else!
2179 */
2180 while (task_running(rq, p)) {
2181 if (match_state && unlikely(p->state != match_state))
2182 return 0;
2183 cpu_relax();
2184 }
2185
2186 /*
2187 * Ok, time to look more closely! We need the rq
2188 * lock now, to be *sure*. If we're wrong, we'll
2189 * just go back and repeat.
2190 */
2191 rq = task_rq_lock(p, &flags);
2192 trace_sched_wait_task(rq, p);
2193 running = task_running(rq, p);
2194 on_rq = p->se.on_rq;
2195 ncsw = 0;
2196 if (!match_state || p->state == match_state)
2197 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2198 task_rq_unlock(rq, &flags);
2199
2200 /*
2201 * If it changed from the expected state, bail out now.
2202 */
2203 if (unlikely(!ncsw))
2204 break;
2205
2206 /*
2207 * Was it really running after all now that we
2208 * checked with the proper locks actually held?
2209 *
2210 * Oops. Go back and try again..
2211 */
2212 if (unlikely(running)) {
2213 cpu_relax();
2214 continue;
2215 }
2216
2217 /*
2218 * It's not enough that it's not actively running,
2219 * it must be off the runqueue _entirely_, and not
2220 * preempted!
2221 *
2222 * So if it was still runnable (but just not actively
2223 * running right now), it's preempted, and we should
2224 * yield - it could be a while.
2225 */
2226 if (unlikely(on_rq)) {
2227 schedule_timeout_uninterruptible(1);
2228 continue;
2229 }
2230
2231 /*
2232 * Ahh, all good. It wasn't running, and it wasn't
2233 * runnable, which means that it will never become
2234 * running in the future either. We're all done!
2235 */
2236 break;
2237 }
2238
2239 return ncsw;
2240 }
2241
2242 /***
2243 * kick_process - kick a running thread to enter/exit the kernel
2244 * @p: the to-be-kicked thread
2245 *
2246 * Cause a process which is running on another CPU to enter
2247 * kernel-mode, without any delay. (to get signals handled.)
2248 *
2249 * NOTE: this function doesnt have to take the runqueue lock,
2250 * because all it wants to ensure is that the remote task enters
2251 * the kernel. If the IPI races and the task has been migrated
2252 * to another CPU then no harm is done and the purpose has been
2253 * achieved as well.
2254 */
2255 void kick_process(struct task_struct *p)
2256 {
2257 int cpu;
2258
2259 preempt_disable();
2260 cpu = task_cpu(p);
2261 if ((cpu != smp_processor_id()) && task_curr(p))
2262 smp_send_reschedule(cpu);
2263 preempt_enable();
2264 }
2265 EXPORT_SYMBOL_GPL(kick_process);
2266 #endif /* CONFIG_SMP */
2267
2268 /**
2269 * task_oncpu_function_call - call a function on the cpu on which a task runs
2270 * @p: the task to evaluate
2271 * @func: the function to be called
2272 * @info: the function call argument
2273 *
2274 * Calls the function @func when the task is currently running. This might
2275 * be on the current CPU, which just calls the function directly
2276 */
2277 void task_oncpu_function_call(struct task_struct *p,
2278 void (*func) (void *info), void *info)
2279 {
2280 int cpu;
2281
2282 preempt_disable();
2283 cpu = task_cpu(p);
2284 if (task_curr(p))
2285 smp_call_function_single(cpu, func, info, 1);
2286 preempt_enable();
2287 }
2288
2289 #ifdef CONFIG_SMP
2290 static int select_fallback_rq(int cpu, struct task_struct *p)
2291 {
2292 int dest_cpu;
2293 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2294
2295 /* Look for allowed, online CPU in same node. */
2296 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2297 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2298 return dest_cpu;
2299
2300 /* Any allowed, online CPU? */
2301 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2302 if (dest_cpu < nr_cpu_ids)
2303 return dest_cpu;
2304
2305 /* No more Mr. Nice Guy. */
2306 if (dest_cpu >= nr_cpu_ids) {
2307 rcu_read_lock();
2308 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2309 rcu_read_unlock();
2310 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2311
2312 /*
2313 * Don't tell them about moving exiting tasks or
2314 * kernel threads (both mm NULL), since they never
2315 * leave kernel.
2316 */
2317 if (p->mm && printk_ratelimit()) {
2318 printk(KERN_INFO "process %d (%s) no "
2319 "longer affine to cpu%d\n",
2320 task_pid_nr(p), p->comm, cpu);
2321 }
2322 }
2323
2324 return dest_cpu;
2325 }
2326
2327 /*
2328 * Called from:
2329 *
2330 * - fork, @p is stable because it isn't on the tasklist yet
2331 *
2332 * - exec, @p is unstable, retry loop
2333 *
2334 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2335 * we should be good.
2336 */
2337 static inline
2338 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2339 {
2340 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2341
2342 /*
2343 * In order not to call set_task_cpu() on a blocking task we need
2344 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2345 * cpu.
2346 *
2347 * Since this is common to all placement strategies, this lives here.
2348 *
2349 * [ this allows ->select_task() to simply return task_cpu(p) and
2350 * not worry about this generic constraint ]
2351 */
2352 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2353 !cpu_active(cpu)))
2354 cpu = select_fallback_rq(task_cpu(p), p);
2355
2356 return cpu;
2357 }
2358 #endif
2359
2360 /***
2361 * try_to_wake_up - wake up a thread
2362 * @p: the to-be-woken-up thread
2363 * @state: the mask of task states that can be woken
2364 * @sync: do a synchronous wakeup?
2365 *
2366 * Put it on the run-queue if it's not already there. The "current"
2367 * thread is always on the run-queue (except when the actual
2368 * re-schedule is in progress), and as such you're allowed to do
2369 * the simpler "current->state = TASK_RUNNING" to mark yourself
2370 * runnable without the overhead of this.
2371 *
2372 * returns failure only if the task is already active.
2373 */
2374 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2375 int wake_flags)
2376 {
2377 int cpu, orig_cpu, this_cpu, success = 0;
2378 unsigned long flags;
2379 struct rq *rq, *orig_rq;
2380
2381 if (!sched_feat(SYNC_WAKEUPS))
2382 wake_flags &= ~WF_SYNC;
2383
2384 this_cpu = get_cpu();
2385
2386 smp_wmb();
2387 rq = orig_rq = task_rq_lock(p, &flags);
2388 update_rq_clock(rq);
2389 if (!(p->state & state))
2390 goto out;
2391
2392 if (p->se.on_rq)
2393 goto out_running;
2394
2395 cpu = task_cpu(p);
2396 orig_cpu = cpu;
2397
2398 #ifdef CONFIG_SMP
2399 if (unlikely(task_running(rq, p)))
2400 goto out_activate;
2401
2402 /*
2403 * In order to handle concurrent wakeups and release the rq->lock
2404 * we put the task in TASK_WAKING state.
2405 *
2406 * First fix up the nr_uninterruptible count:
2407 */
2408 if (task_contributes_to_load(p))
2409 rq->nr_uninterruptible--;
2410 p->state = TASK_WAKING;
2411
2412 if (p->sched_class->task_waking)
2413 p->sched_class->task_waking(rq, p);
2414
2415 __task_rq_unlock(rq);
2416
2417 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2418 if (cpu != orig_cpu)
2419 set_task_cpu(p, cpu);
2420
2421 rq = __task_rq_lock(p);
2422 update_rq_clock(rq);
2423
2424 WARN_ON(p->state != TASK_WAKING);
2425 cpu = task_cpu(p);
2426
2427 #ifdef CONFIG_SCHEDSTATS
2428 schedstat_inc(rq, ttwu_count);
2429 if (cpu == this_cpu)
2430 schedstat_inc(rq, ttwu_local);
2431 else {
2432 struct sched_domain *sd;
2433 for_each_domain(this_cpu, sd) {
2434 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2435 schedstat_inc(sd, ttwu_wake_remote);
2436 break;
2437 }
2438 }
2439 }
2440 #endif /* CONFIG_SCHEDSTATS */
2441
2442 out_activate:
2443 #endif /* CONFIG_SMP */
2444 schedstat_inc(p, se.nr_wakeups);
2445 if (wake_flags & WF_SYNC)
2446 schedstat_inc(p, se.nr_wakeups_sync);
2447 if (orig_cpu != cpu)
2448 schedstat_inc(p, se.nr_wakeups_migrate);
2449 if (cpu == this_cpu)
2450 schedstat_inc(p, se.nr_wakeups_local);
2451 else
2452 schedstat_inc(p, se.nr_wakeups_remote);
2453 activate_task(rq, p, 1);
2454 success = 1;
2455
2456 /*
2457 * Only attribute actual wakeups done by this task.
2458 */
2459 if (!in_interrupt()) {
2460 struct sched_entity *se = &current->se;
2461 u64 sample = se->sum_exec_runtime;
2462
2463 if (se->last_wakeup)
2464 sample -= se->last_wakeup;
2465 else
2466 sample -= se->start_runtime;
2467 update_avg(&se->avg_wakeup, sample);
2468
2469 se->last_wakeup = se->sum_exec_runtime;
2470 }
2471
2472 out_running:
2473 trace_sched_wakeup(rq, p, success);
2474 check_preempt_curr(rq, p, wake_flags);
2475
2476 p->state = TASK_RUNNING;
2477 #ifdef CONFIG_SMP
2478 if (p->sched_class->task_woken)
2479 p->sched_class->task_woken(rq, p);
2480
2481 if (unlikely(rq->idle_stamp)) {
2482 u64 delta = rq->clock - rq->idle_stamp;
2483 u64 max = 2*sysctl_sched_migration_cost;
2484
2485 if (delta > max)
2486 rq->avg_idle = max;
2487 else
2488 update_avg(&rq->avg_idle, delta);
2489 rq->idle_stamp = 0;
2490 }
2491 #endif
2492 out:
2493 task_rq_unlock(rq, &flags);
2494 put_cpu();
2495
2496 return success;
2497 }
2498
2499 /**
2500 * wake_up_process - Wake up a specific process
2501 * @p: The process to be woken up.
2502 *
2503 * Attempt to wake up the nominated process and move it to the set of runnable
2504 * processes. Returns 1 if the process was woken up, 0 if it was already
2505 * running.
2506 *
2507 * It may be assumed that this function implies a write memory barrier before
2508 * changing the task state if and only if any tasks are woken up.
2509 */
2510 int wake_up_process(struct task_struct *p)
2511 {
2512 return try_to_wake_up(p, TASK_ALL, 0);
2513 }
2514 EXPORT_SYMBOL(wake_up_process);
2515
2516 int wake_up_state(struct task_struct *p, unsigned int state)
2517 {
2518 return try_to_wake_up(p, state, 0);
2519 }
2520
2521 /*
2522 * Perform scheduler related setup for a newly forked process p.
2523 * p is forked by current.
2524 *
2525 * __sched_fork() is basic setup used by init_idle() too:
2526 */
2527 static void __sched_fork(struct task_struct *p)
2528 {
2529 p->se.exec_start = 0;
2530 p->se.sum_exec_runtime = 0;
2531 p->se.prev_sum_exec_runtime = 0;
2532 p->se.nr_migrations = 0;
2533 p->se.last_wakeup = 0;
2534 p->se.avg_overlap = 0;
2535 p->se.start_runtime = 0;
2536 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2537
2538 #ifdef CONFIG_SCHEDSTATS
2539 p->se.wait_start = 0;
2540 p->se.wait_max = 0;
2541 p->se.wait_count = 0;
2542 p->se.wait_sum = 0;
2543
2544 p->se.sleep_start = 0;
2545 p->se.sleep_max = 0;
2546 p->se.sum_sleep_runtime = 0;
2547
2548 p->se.block_start = 0;
2549 p->se.block_max = 0;
2550 p->se.exec_max = 0;
2551 p->se.slice_max = 0;
2552
2553 p->se.nr_migrations_cold = 0;
2554 p->se.nr_failed_migrations_affine = 0;
2555 p->se.nr_failed_migrations_running = 0;
2556 p->se.nr_failed_migrations_hot = 0;
2557 p->se.nr_forced_migrations = 0;
2558
2559 p->se.nr_wakeups = 0;
2560 p->se.nr_wakeups_sync = 0;
2561 p->se.nr_wakeups_migrate = 0;
2562 p->se.nr_wakeups_local = 0;
2563 p->se.nr_wakeups_remote = 0;
2564 p->se.nr_wakeups_affine = 0;
2565 p->se.nr_wakeups_affine_attempts = 0;
2566 p->se.nr_wakeups_passive = 0;
2567 p->se.nr_wakeups_idle = 0;
2568
2569 #endif
2570
2571 INIT_LIST_HEAD(&p->rt.run_list);
2572 p->se.on_rq = 0;
2573 INIT_LIST_HEAD(&p->se.group_node);
2574
2575 #ifdef CONFIG_PREEMPT_NOTIFIERS
2576 INIT_HLIST_HEAD(&p->preempt_notifiers);
2577 #endif
2578 }
2579
2580 /*
2581 * fork()/clone()-time setup:
2582 */
2583 void sched_fork(struct task_struct *p, int clone_flags)
2584 {
2585 int cpu = get_cpu();
2586
2587 __sched_fork(p);
2588 /*
2589 * We mark the process as waking here. This guarantees that
2590 * nobody will actually run it, and a signal or other external
2591 * event cannot wake it up and insert it on the runqueue either.
2592 */
2593 p->state = TASK_WAKING;
2594
2595 /*
2596 * Revert to default priority/policy on fork if requested.
2597 */
2598 if (unlikely(p->sched_reset_on_fork)) {
2599 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2600 p->policy = SCHED_NORMAL;
2601 p->normal_prio = p->static_prio;
2602 }
2603
2604 if (PRIO_TO_NICE(p->static_prio) < 0) {
2605 p->static_prio = NICE_TO_PRIO(0);
2606 p->normal_prio = p->static_prio;
2607 set_load_weight(p);
2608 }
2609
2610 /*
2611 * We don't need the reset flag anymore after the fork. It has
2612 * fulfilled its duty:
2613 */
2614 p->sched_reset_on_fork = 0;
2615 }
2616
2617 /*
2618 * Make sure we do not leak PI boosting priority to the child.
2619 */
2620 p->prio = current->normal_prio;
2621
2622 if (!rt_prio(p->prio))
2623 p->sched_class = &fair_sched_class;
2624
2625 if (p->sched_class->task_fork)
2626 p->sched_class->task_fork(p);
2627
2628 #ifdef CONFIG_SMP
2629 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2630 #endif
2631 set_task_cpu(p, cpu);
2632
2633 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2634 if (likely(sched_info_on()))
2635 memset(&p->sched_info, 0, sizeof(p->sched_info));
2636 #endif
2637 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2638 p->oncpu = 0;
2639 #endif
2640 #ifdef CONFIG_PREEMPT
2641 /* Want to start with kernel preemption disabled. */
2642 task_thread_info(p)->preempt_count = 1;
2643 #endif
2644 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2645
2646 put_cpu();
2647 }
2648
2649 /*
2650 * wake_up_new_task - wake up a newly created task for the first time.
2651 *
2652 * This function will do some initial scheduler statistics housekeeping
2653 * that must be done for every newly created context, then puts the task
2654 * on the runqueue and wakes it.
2655 */
2656 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2657 {
2658 unsigned long flags;
2659 struct rq *rq;
2660
2661 rq = task_rq_lock(p, &flags);
2662 BUG_ON(p->state != TASK_WAKING);
2663 p->state = TASK_RUNNING;
2664 update_rq_clock(rq);
2665 activate_task(rq, p, 0);
2666 trace_sched_wakeup_new(rq, p, 1);
2667 check_preempt_curr(rq, p, WF_FORK);
2668 #ifdef CONFIG_SMP
2669 if (p->sched_class->task_woken)
2670 p->sched_class->task_woken(rq, p);
2671 #endif
2672 task_rq_unlock(rq, &flags);
2673 }
2674
2675 #ifdef CONFIG_PREEMPT_NOTIFIERS
2676
2677 /**
2678 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2679 * @notifier: notifier struct to register
2680 */
2681 void preempt_notifier_register(struct preempt_notifier *notifier)
2682 {
2683 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2684 }
2685 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2686
2687 /**
2688 * preempt_notifier_unregister - no longer interested in preemption notifications
2689 * @notifier: notifier struct to unregister
2690 *
2691 * This is safe to call from within a preemption notifier.
2692 */
2693 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2694 {
2695 hlist_del(&notifier->link);
2696 }
2697 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2698
2699 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2700 {
2701 struct preempt_notifier *notifier;
2702 struct hlist_node *node;
2703
2704 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2705 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2706 }
2707
2708 static void
2709 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2710 struct task_struct *next)
2711 {
2712 struct preempt_notifier *notifier;
2713 struct hlist_node *node;
2714
2715 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2716 notifier->ops->sched_out(notifier, next);
2717 }
2718
2719 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2720
2721 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2722 {
2723 }
2724
2725 static void
2726 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2727 struct task_struct *next)
2728 {
2729 }
2730
2731 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2732
2733 /**
2734 * prepare_task_switch - prepare to switch tasks
2735 * @rq: the runqueue preparing to switch
2736 * @prev: the current task that is being switched out
2737 * @next: the task we are going to switch to.
2738 *
2739 * This is called with the rq lock held and interrupts off. It must
2740 * be paired with a subsequent finish_task_switch after the context
2741 * switch.
2742 *
2743 * prepare_task_switch sets up locking and calls architecture specific
2744 * hooks.
2745 */
2746 static inline void
2747 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2748 struct task_struct *next)
2749 {
2750 fire_sched_out_preempt_notifiers(prev, next);
2751 prepare_lock_switch(rq, next);
2752 prepare_arch_switch(next);
2753 }
2754
2755 /**
2756 * finish_task_switch - clean up after a task-switch
2757 * @rq: runqueue associated with task-switch
2758 * @prev: the thread we just switched away from.
2759 *
2760 * finish_task_switch must be called after the context switch, paired
2761 * with a prepare_task_switch call before the context switch.
2762 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2763 * and do any other architecture-specific cleanup actions.
2764 *
2765 * Note that we may have delayed dropping an mm in context_switch(). If
2766 * so, we finish that here outside of the runqueue lock. (Doing it
2767 * with the lock held can cause deadlocks; see schedule() for
2768 * details.)
2769 */
2770 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2771 __releases(rq->lock)
2772 {
2773 struct mm_struct *mm = rq->prev_mm;
2774 long prev_state;
2775
2776 rq->prev_mm = NULL;
2777
2778 /*
2779 * A task struct has one reference for the use as "current".
2780 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2781 * schedule one last time. The schedule call will never return, and
2782 * the scheduled task must drop that reference.
2783 * The test for TASK_DEAD must occur while the runqueue locks are
2784 * still held, otherwise prev could be scheduled on another cpu, die
2785 * there before we look at prev->state, and then the reference would
2786 * be dropped twice.
2787 * Manfred Spraul <manfred@colorfullife.com>
2788 */
2789 prev_state = prev->state;
2790 finish_arch_switch(prev);
2791 perf_event_task_sched_in(current, cpu_of(rq));
2792 finish_lock_switch(rq, prev);
2793
2794 fire_sched_in_preempt_notifiers(current);
2795 if (mm)
2796 mmdrop(mm);
2797 if (unlikely(prev_state == TASK_DEAD)) {
2798 /*
2799 * Remove function-return probe instances associated with this
2800 * task and put them back on the free list.
2801 */
2802 kprobe_flush_task(prev);
2803 put_task_struct(prev);
2804 }
2805 }
2806
2807 #ifdef CONFIG_SMP
2808
2809 /* assumes rq->lock is held */
2810 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2811 {
2812 if (prev->sched_class->pre_schedule)
2813 prev->sched_class->pre_schedule(rq, prev);
2814 }
2815
2816 /* rq->lock is NOT held, but preemption is disabled */
2817 static inline void post_schedule(struct rq *rq)
2818 {
2819 if (rq->post_schedule) {
2820 unsigned long flags;
2821
2822 raw_spin_lock_irqsave(&rq->lock, flags);
2823 if (rq->curr->sched_class->post_schedule)
2824 rq->curr->sched_class->post_schedule(rq);
2825 raw_spin_unlock_irqrestore(&rq->lock, flags);
2826
2827 rq->post_schedule = 0;
2828 }
2829 }
2830
2831 #else
2832
2833 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2834 {
2835 }
2836
2837 static inline void post_schedule(struct rq *rq)
2838 {
2839 }
2840
2841 #endif
2842
2843 /**
2844 * schedule_tail - first thing a freshly forked thread must call.
2845 * @prev: the thread we just switched away from.
2846 */
2847 asmlinkage void schedule_tail(struct task_struct *prev)
2848 __releases(rq->lock)
2849 {
2850 struct rq *rq = this_rq();
2851
2852 finish_task_switch(rq, prev);
2853
2854 /*
2855 * FIXME: do we need to worry about rq being invalidated by the
2856 * task_switch?
2857 */
2858 post_schedule(rq);
2859
2860 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2861 /* In this case, finish_task_switch does not reenable preemption */
2862 preempt_enable();
2863 #endif
2864 if (current->set_child_tid)
2865 put_user(task_pid_vnr(current), current->set_child_tid);
2866 }
2867
2868 /*
2869 * context_switch - switch to the new MM and the new
2870 * thread's register state.
2871 */
2872 static inline void
2873 context_switch(struct rq *rq, struct task_struct *prev,
2874 struct task_struct *next)
2875 {
2876 struct mm_struct *mm, *oldmm;
2877
2878 prepare_task_switch(rq, prev, next);
2879 trace_sched_switch(rq, prev, next);
2880 mm = next->mm;
2881 oldmm = prev->active_mm;
2882 /*
2883 * For paravirt, this is coupled with an exit in switch_to to
2884 * combine the page table reload and the switch backend into
2885 * one hypercall.
2886 */
2887 arch_start_context_switch(prev);
2888
2889 if (likely(!mm)) {
2890 next->active_mm = oldmm;
2891 atomic_inc(&oldmm->mm_count);
2892 enter_lazy_tlb(oldmm, next);
2893 } else
2894 switch_mm(oldmm, mm, next);
2895
2896 if (likely(!prev->mm)) {
2897 prev->active_mm = NULL;
2898 rq->prev_mm = oldmm;
2899 }
2900 /*
2901 * Since the runqueue lock will be released by the next
2902 * task (which is an invalid locking op but in the case
2903 * of the scheduler it's an obvious special-case), so we
2904 * do an early lockdep release here:
2905 */
2906 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2907 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2908 #endif
2909
2910 /* Here we just switch the register state and the stack. */
2911 switch_to(prev, next, prev);
2912
2913 barrier();
2914 /*
2915 * this_rq must be evaluated again because prev may have moved
2916 * CPUs since it called schedule(), thus the 'rq' on its stack
2917 * frame will be invalid.
2918 */
2919 finish_task_switch(this_rq(), prev);
2920 }
2921
2922 /*
2923 * nr_running, nr_uninterruptible and nr_context_switches:
2924 *
2925 * externally visible scheduler statistics: current number of runnable
2926 * threads, current number of uninterruptible-sleeping threads, total
2927 * number of context switches performed since bootup.
2928 */
2929 unsigned long nr_running(void)
2930 {
2931 unsigned long i, sum = 0;
2932
2933 for_each_online_cpu(i)
2934 sum += cpu_rq(i)->nr_running;
2935
2936 return sum;
2937 }
2938
2939 unsigned long nr_uninterruptible(void)
2940 {
2941 unsigned long i, sum = 0;
2942
2943 for_each_possible_cpu(i)
2944 sum += cpu_rq(i)->nr_uninterruptible;
2945
2946 /*
2947 * Since we read the counters lockless, it might be slightly
2948 * inaccurate. Do not allow it to go below zero though:
2949 */
2950 if (unlikely((long)sum < 0))
2951 sum = 0;
2952
2953 return sum;
2954 }
2955
2956 unsigned long long nr_context_switches(void)
2957 {
2958 int i;
2959 unsigned long long sum = 0;
2960
2961 for_each_possible_cpu(i)
2962 sum += cpu_rq(i)->nr_switches;
2963
2964 return sum;
2965 }
2966
2967 unsigned long nr_iowait(void)
2968 {
2969 unsigned long i, sum = 0;
2970
2971 for_each_possible_cpu(i)
2972 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2973
2974 return sum;
2975 }
2976
2977 unsigned long nr_iowait_cpu(void)
2978 {
2979 struct rq *this = this_rq();
2980 return atomic_read(&this->nr_iowait);
2981 }
2982
2983 unsigned long this_cpu_load(void)
2984 {
2985 struct rq *this = this_rq();
2986 return this->cpu_load[0];
2987 }
2988
2989
2990 /* Variables and functions for calc_load */
2991 static atomic_long_t calc_load_tasks;
2992 static unsigned long calc_load_update;
2993 unsigned long avenrun[3];
2994 EXPORT_SYMBOL(avenrun);
2995
2996 /**
2997 * get_avenrun - get the load average array
2998 * @loads: pointer to dest load array
2999 * @offset: offset to add
3000 * @shift: shift count to shift the result left
3001 *
3002 * These values are estimates at best, so no need for locking.
3003 */
3004 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3005 {
3006 loads[0] = (avenrun[0] + offset) << shift;
3007 loads[1] = (avenrun[1] + offset) << shift;
3008 loads[2] = (avenrun[2] + offset) << shift;
3009 }
3010
3011 static unsigned long
3012 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3013 {
3014 load *= exp;
3015 load += active * (FIXED_1 - exp);
3016 return load >> FSHIFT;
3017 }
3018
3019 /*
3020 * calc_load - update the avenrun load estimates 10 ticks after the
3021 * CPUs have updated calc_load_tasks.
3022 */
3023 void calc_global_load(void)
3024 {
3025 unsigned long upd = calc_load_update + 10;
3026 long active;
3027
3028 if (time_before(jiffies, upd))
3029 return;
3030
3031 active = atomic_long_read(&calc_load_tasks);
3032 active = active > 0 ? active * FIXED_1 : 0;
3033
3034 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3035 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3036 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3037
3038 calc_load_update += LOAD_FREQ;
3039 }
3040
3041 /*
3042 * Either called from update_cpu_load() or from a cpu going idle
3043 */
3044 static void calc_load_account_active(struct rq *this_rq)
3045 {
3046 long nr_active, delta;
3047
3048 nr_active = this_rq->nr_running;
3049 nr_active += (long) this_rq->nr_uninterruptible;
3050
3051 if (nr_active != this_rq->calc_load_active) {
3052 delta = nr_active - this_rq->calc_load_active;
3053 this_rq->calc_load_active = nr_active;
3054 atomic_long_add(delta, &calc_load_tasks);
3055 }
3056 }
3057
3058 /*
3059 * Update rq->cpu_load[] statistics. This function is usually called every
3060 * scheduler tick (TICK_NSEC).
3061 */
3062 static void update_cpu_load(struct rq *this_rq)
3063 {
3064 unsigned long this_load = this_rq->load.weight;
3065 int i, scale;
3066
3067 this_rq->nr_load_updates++;
3068
3069 /* Update our load: */
3070 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3071 unsigned long old_load, new_load;
3072
3073 /* scale is effectively 1 << i now, and >> i divides by scale */
3074
3075 old_load = this_rq->cpu_load[i];
3076 new_load = this_load;
3077 /*
3078 * Round up the averaging division if load is increasing. This
3079 * prevents us from getting stuck on 9 if the load is 10, for
3080 * example.
3081 */
3082 if (new_load > old_load)
3083 new_load += scale-1;
3084 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3085 }
3086
3087 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3088 this_rq->calc_load_update += LOAD_FREQ;
3089 calc_load_account_active(this_rq);
3090 }
3091 }
3092
3093 #ifdef CONFIG_SMP
3094
3095 /*
3096 * double_rq_lock - safely lock two runqueues
3097 *
3098 * Note this does not disable interrupts like task_rq_lock,
3099 * you need to do so manually before calling.
3100 */
3101 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3102 __acquires(rq1->lock)
3103 __acquires(rq2->lock)
3104 {
3105 BUG_ON(!irqs_disabled());
3106 if (rq1 == rq2) {
3107 raw_spin_lock(&rq1->lock);
3108 __acquire(rq2->lock); /* Fake it out ;) */
3109 } else {
3110 if (rq1 < rq2) {
3111 raw_spin_lock(&rq1->lock);
3112 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3113 } else {
3114 raw_spin_lock(&rq2->lock);
3115 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3116 }
3117 }
3118 update_rq_clock(rq1);
3119 update_rq_clock(rq2);
3120 }
3121
3122 /*
3123 * double_rq_unlock - safely unlock two runqueues
3124 *
3125 * Note this does not restore interrupts like task_rq_unlock,
3126 * you need to do so manually after calling.
3127 */
3128 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3129 __releases(rq1->lock)
3130 __releases(rq2->lock)
3131 {
3132 raw_spin_unlock(&rq1->lock);
3133 if (rq1 != rq2)
3134 raw_spin_unlock(&rq2->lock);
3135 else
3136 __release(rq2->lock);
3137 }
3138
3139 /*
3140 * sched_exec - execve() is a valuable balancing opportunity, because at
3141 * this point the task has the smallest effective memory and cache footprint.
3142 */
3143 void sched_exec(void)
3144 {
3145 struct task_struct *p = current;
3146 struct migration_req req;
3147 int dest_cpu, this_cpu;
3148 unsigned long flags;
3149 struct rq *rq;
3150
3151 again:
3152 this_cpu = get_cpu();
3153 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3154 if (dest_cpu == this_cpu) {
3155 put_cpu();
3156 return;
3157 }
3158
3159 rq = task_rq_lock(p, &flags);
3160 put_cpu();
3161
3162 /*
3163 * select_task_rq() can race against ->cpus_allowed
3164 */
3165 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3166 || unlikely(!cpu_active(dest_cpu))) {
3167 task_rq_unlock(rq, &flags);
3168 goto again;
3169 }
3170
3171 /* force the process onto the specified CPU */
3172 if (migrate_task(p, dest_cpu, &req)) {
3173 /* Need to wait for migration thread (might exit: take ref). */
3174 struct task_struct *mt = rq->migration_thread;
3175
3176 get_task_struct(mt);
3177 task_rq_unlock(rq, &flags);
3178 wake_up_process(mt);
3179 put_task_struct(mt);
3180 wait_for_completion(&req.done);
3181
3182 return;
3183 }
3184 task_rq_unlock(rq, &flags);
3185 }
3186
3187 /*
3188 * pull_task - move a task from a remote runqueue to the local runqueue.
3189 * Both runqueues must be locked.
3190 */
3191 static void pull_task(struct rq *src_rq, struct task_struct *p,
3192 struct rq *this_rq, int this_cpu)
3193 {
3194 deactivate_task(src_rq, p, 0);
3195 set_task_cpu(p, this_cpu);
3196 activate_task(this_rq, p, 0);
3197 check_preempt_curr(this_rq, p, 0);
3198 }
3199
3200 /*
3201 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3202 */
3203 static
3204 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3205 struct sched_domain *sd, enum cpu_idle_type idle,
3206 int *all_pinned)
3207 {
3208 int tsk_cache_hot = 0;
3209 /*
3210 * We do not migrate tasks that are:
3211 * 1) running (obviously), or
3212 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3213 * 3) are cache-hot on their current CPU.
3214 */
3215 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3216 schedstat_inc(p, se.nr_failed_migrations_affine);
3217 return 0;
3218 }
3219 *all_pinned = 0;
3220
3221 if (task_running(rq, p)) {
3222 schedstat_inc(p, se.nr_failed_migrations_running);
3223 return 0;
3224 }
3225
3226 /*
3227 * Aggressive migration if:
3228 * 1) task is cache cold, or
3229 * 2) too many balance attempts have failed.
3230 */
3231
3232 tsk_cache_hot = task_hot(p, rq->clock, sd);
3233 if (!tsk_cache_hot ||
3234 sd->nr_balance_failed > sd->cache_nice_tries) {
3235 #ifdef CONFIG_SCHEDSTATS
3236 if (tsk_cache_hot) {
3237 schedstat_inc(sd, lb_hot_gained[idle]);
3238 schedstat_inc(p, se.nr_forced_migrations);
3239 }
3240 #endif
3241 return 1;
3242 }
3243
3244 if (tsk_cache_hot) {
3245 schedstat_inc(p, se.nr_failed_migrations_hot);
3246 return 0;
3247 }
3248 return 1;
3249 }
3250
3251 static unsigned long
3252 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3253 unsigned long max_load_move, struct sched_domain *sd,
3254 enum cpu_idle_type idle, int *all_pinned,
3255 int *this_best_prio, struct rq_iterator *iterator)
3256 {
3257 int loops = 0, pulled = 0, pinned = 0;
3258 struct task_struct *p;
3259 long rem_load_move = max_load_move;
3260
3261 if (max_load_move == 0)
3262 goto out;
3263
3264 pinned = 1;
3265
3266 /*
3267 * Start the load-balancing iterator:
3268 */
3269 p = iterator->start(iterator->arg);
3270 next:
3271 if (!p || loops++ > sysctl_sched_nr_migrate)
3272 goto out;
3273
3274 if ((p->se.load.weight >> 1) > rem_load_move ||
3275 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3276 p = iterator->next(iterator->arg);
3277 goto next;
3278 }
3279
3280 pull_task(busiest, p, this_rq, this_cpu);
3281 pulled++;
3282 rem_load_move -= p->se.load.weight;
3283
3284 #ifdef CONFIG_PREEMPT
3285 /*
3286 * NEWIDLE balancing is a source of latency, so preemptible kernels
3287 * will stop after the first task is pulled to minimize the critical
3288 * section.
3289 */
3290 if (idle == CPU_NEWLY_IDLE)
3291 goto out;
3292 #endif
3293
3294 /*
3295 * We only want to steal up to the prescribed amount of weighted load.
3296 */
3297 if (rem_load_move > 0) {
3298 if (p->prio < *this_best_prio)
3299 *this_best_prio = p->prio;
3300 p = iterator->next(iterator->arg);
3301 goto next;
3302 }
3303 out:
3304 /*
3305 * Right now, this is one of only two places pull_task() is called,
3306 * so we can safely collect pull_task() stats here rather than
3307 * inside pull_task().
3308 */
3309 schedstat_add(sd, lb_gained[idle], pulled);
3310
3311 if (all_pinned)
3312 *all_pinned = pinned;
3313
3314 return max_load_move - rem_load_move;
3315 }
3316
3317 /*
3318 * move_tasks tries to move up to max_load_move weighted load from busiest to
3319 * this_rq, as part of a balancing operation within domain "sd".
3320 * Returns 1 if successful and 0 otherwise.
3321 *
3322 * Called with both runqueues locked.
3323 */
3324 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3325 unsigned long max_load_move,
3326 struct sched_domain *sd, enum cpu_idle_type idle,
3327 int *all_pinned)
3328 {
3329 const struct sched_class *class = sched_class_highest;
3330 unsigned long total_load_moved = 0;
3331 int this_best_prio = this_rq->curr->prio;
3332
3333 do {
3334 total_load_moved +=
3335 class->load_balance(this_rq, this_cpu, busiest,
3336 max_load_move - total_load_moved,
3337 sd, idle, all_pinned, &this_best_prio);
3338 class = class->next;
3339
3340 #ifdef CONFIG_PREEMPT
3341 /*
3342 * NEWIDLE balancing is a source of latency, so preemptible
3343 * kernels will stop after the first task is pulled to minimize
3344 * the critical section.
3345 */
3346 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3347 break;
3348 #endif
3349 } while (class && max_load_move > total_load_moved);
3350
3351 return total_load_moved > 0;
3352 }
3353
3354 static int
3355 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3356 struct sched_domain *sd, enum cpu_idle_type idle,
3357 struct rq_iterator *iterator)
3358 {
3359 struct task_struct *p = iterator->start(iterator->arg);
3360 int pinned = 0;
3361
3362 while (p) {
3363 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3364 pull_task(busiest, p, this_rq, this_cpu);
3365 /*
3366 * Right now, this is only the second place pull_task()
3367 * is called, so we can safely collect pull_task()
3368 * stats here rather than inside pull_task().
3369 */
3370 schedstat_inc(sd, lb_gained[idle]);
3371
3372 return 1;
3373 }
3374 p = iterator->next(iterator->arg);
3375 }
3376
3377 return 0;
3378 }
3379
3380 /*
3381 * move_one_task tries to move exactly one task from busiest to this_rq, as
3382 * part of active balancing operations within "domain".
3383 * Returns 1 if successful and 0 otherwise.
3384 *
3385 * Called with both runqueues locked.
3386 */
3387 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3388 struct sched_domain *sd, enum cpu_idle_type idle)
3389 {
3390 const struct sched_class *class;
3391
3392 for_each_class(class) {
3393 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3394 return 1;
3395 }
3396
3397 return 0;
3398 }
3399 /********** Helpers for find_busiest_group ************************/
3400 /*
3401 * sd_lb_stats - Structure to store the statistics of a sched_domain
3402 * during load balancing.
3403 */
3404 struct sd_lb_stats {
3405 struct sched_group *busiest; /* Busiest group in this sd */
3406 struct sched_group *this; /* Local group in this sd */
3407 unsigned long total_load; /* Total load of all groups in sd */
3408 unsigned long total_pwr; /* Total power of all groups in sd */
3409 unsigned long avg_load; /* Average load across all groups in sd */
3410
3411 /** Statistics of this group */
3412 unsigned long this_load;
3413 unsigned long this_load_per_task;
3414 unsigned long this_nr_running;
3415
3416 /* Statistics of the busiest group */
3417 unsigned long max_load;
3418 unsigned long busiest_load_per_task;
3419 unsigned long busiest_nr_running;
3420
3421 int group_imb; /* Is there imbalance in this sd */
3422 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3423 int power_savings_balance; /* Is powersave balance needed for this sd */
3424 struct sched_group *group_min; /* Least loaded group in sd */
3425 struct sched_group *group_leader; /* Group which relieves group_min */
3426 unsigned long min_load_per_task; /* load_per_task in group_min */
3427 unsigned long leader_nr_running; /* Nr running of group_leader */
3428 unsigned long min_nr_running; /* Nr running of group_min */
3429 #endif
3430 };
3431
3432 /*
3433 * sg_lb_stats - stats of a sched_group required for load_balancing
3434 */
3435 struct sg_lb_stats {
3436 unsigned long avg_load; /*Avg load across the CPUs of the group */
3437 unsigned long group_load; /* Total load over the CPUs of the group */
3438 unsigned long sum_nr_running; /* Nr tasks running in the group */
3439 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3440 unsigned long group_capacity;
3441 int group_imb; /* Is there an imbalance in the group ? */
3442 };
3443
3444 /**
3445 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3446 * @group: The group whose first cpu is to be returned.
3447 */
3448 static inline unsigned int group_first_cpu(struct sched_group *group)
3449 {
3450 return cpumask_first(sched_group_cpus(group));
3451 }
3452
3453 /**
3454 * get_sd_load_idx - Obtain the load index for a given sched domain.
3455 * @sd: The sched_domain whose load_idx is to be obtained.
3456 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3457 */
3458 static inline int get_sd_load_idx(struct sched_domain *sd,
3459 enum cpu_idle_type idle)
3460 {
3461 int load_idx;
3462
3463 switch (idle) {
3464 case CPU_NOT_IDLE:
3465 load_idx = sd->busy_idx;
3466 break;
3467
3468 case CPU_NEWLY_IDLE:
3469 load_idx = sd->newidle_idx;
3470 break;
3471 default:
3472 load_idx = sd->idle_idx;
3473 break;
3474 }
3475
3476 return load_idx;
3477 }
3478
3479
3480 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3481 /**
3482 * init_sd_power_savings_stats - Initialize power savings statistics for
3483 * the given sched_domain, during load balancing.
3484 *
3485 * @sd: Sched domain whose power-savings statistics are to be initialized.
3486 * @sds: Variable containing the statistics for sd.
3487 * @idle: Idle status of the CPU at which we're performing load-balancing.
3488 */
3489 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3490 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3491 {
3492 /*
3493 * Busy processors will not participate in power savings
3494 * balance.
3495 */
3496 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3497 sds->power_savings_balance = 0;
3498 else {
3499 sds->power_savings_balance = 1;
3500 sds->min_nr_running = ULONG_MAX;
3501 sds->leader_nr_running = 0;
3502 }
3503 }
3504
3505 /**
3506 * update_sd_power_savings_stats - Update the power saving stats for a
3507 * sched_domain while performing load balancing.
3508 *
3509 * @group: sched_group belonging to the sched_domain under consideration.
3510 * @sds: Variable containing the statistics of the sched_domain
3511 * @local_group: Does group contain the CPU for which we're performing
3512 * load balancing ?
3513 * @sgs: Variable containing the statistics of the group.
3514 */
3515 static inline void update_sd_power_savings_stats(struct sched_group *group,
3516 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3517 {
3518
3519 if (!sds->power_savings_balance)
3520 return;
3521
3522 /*
3523 * If the local group is idle or completely loaded
3524 * no need to do power savings balance at this domain
3525 */
3526 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3527 !sds->this_nr_running))
3528 sds->power_savings_balance = 0;
3529
3530 /*
3531 * If a group is already running at full capacity or idle,
3532 * don't include that group in power savings calculations
3533 */
3534 if (!sds->power_savings_balance ||
3535 sgs->sum_nr_running >= sgs->group_capacity ||
3536 !sgs->sum_nr_running)
3537 return;
3538
3539 /*
3540 * Calculate the group which has the least non-idle load.
3541 * This is the group from where we need to pick up the load
3542 * for saving power
3543 */
3544 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3545 (sgs->sum_nr_running == sds->min_nr_running &&
3546 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3547 sds->group_min = group;
3548 sds->min_nr_running = sgs->sum_nr_running;
3549 sds->min_load_per_task = sgs->sum_weighted_load /
3550 sgs->sum_nr_running;
3551 }
3552
3553 /*
3554 * Calculate the group which is almost near its
3555 * capacity but still has some space to pick up some load
3556 * from other group and save more power
3557 */
3558 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3559 return;
3560
3561 if (sgs->sum_nr_running > sds->leader_nr_running ||
3562 (sgs->sum_nr_running == sds->leader_nr_running &&
3563 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3564 sds->group_leader = group;
3565 sds->leader_nr_running = sgs->sum_nr_running;
3566 }
3567 }
3568
3569 /**
3570 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3571 * @sds: Variable containing the statistics of the sched_domain
3572 * under consideration.
3573 * @this_cpu: Cpu at which we're currently performing load-balancing.
3574 * @imbalance: Variable to store the imbalance.
3575 *
3576 * Description:
3577 * Check if we have potential to perform some power-savings balance.
3578 * If yes, set the busiest group to be the least loaded group in the
3579 * sched_domain, so that it's CPUs can be put to idle.
3580 *
3581 * Returns 1 if there is potential to perform power-savings balance.
3582 * Else returns 0.
3583 */
3584 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3585 int this_cpu, unsigned long *imbalance)
3586 {
3587 if (!sds->power_savings_balance)
3588 return 0;
3589
3590 if (sds->this != sds->group_leader ||
3591 sds->group_leader == sds->group_min)
3592 return 0;
3593
3594 *imbalance = sds->min_load_per_task;
3595 sds->busiest = sds->group_min;
3596
3597 return 1;
3598
3599 }
3600 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3601 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3602 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3603 {
3604 return;
3605 }
3606
3607 static inline void update_sd_power_savings_stats(struct sched_group *group,
3608 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3609 {
3610 return;
3611 }
3612
3613 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3614 int this_cpu, unsigned long *imbalance)
3615 {
3616 return 0;
3617 }
3618 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3619
3620
3621 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3622 {
3623 return SCHED_LOAD_SCALE;
3624 }
3625
3626 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3627 {
3628 return default_scale_freq_power(sd, cpu);
3629 }
3630
3631 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3632 {
3633 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3634 unsigned long smt_gain = sd->smt_gain;
3635
3636 smt_gain /= weight;
3637
3638 return smt_gain;
3639 }
3640
3641 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3642 {
3643 return default_scale_smt_power(sd, cpu);
3644 }
3645
3646 unsigned long scale_rt_power(int cpu)
3647 {
3648 struct rq *rq = cpu_rq(cpu);
3649 u64 total, available;
3650
3651 sched_avg_update(rq);
3652
3653 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3654 available = total - rq->rt_avg;
3655
3656 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3657 total = SCHED_LOAD_SCALE;
3658
3659 total >>= SCHED_LOAD_SHIFT;
3660
3661 return div_u64(available, total);
3662 }
3663
3664 static void update_cpu_power(struct sched_domain *sd, int cpu)
3665 {
3666 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3667 unsigned long power = SCHED_LOAD_SCALE;
3668 struct sched_group *sdg = sd->groups;
3669
3670 if (sched_feat(ARCH_POWER))
3671 power *= arch_scale_freq_power(sd, cpu);
3672 else
3673 power *= default_scale_freq_power(sd, cpu);
3674
3675 power >>= SCHED_LOAD_SHIFT;
3676
3677 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3678 if (sched_feat(ARCH_POWER))
3679 power *= arch_scale_smt_power(sd, cpu);
3680 else
3681 power *= default_scale_smt_power(sd, cpu);
3682
3683 power >>= SCHED_LOAD_SHIFT;
3684 }
3685
3686 power *= scale_rt_power(cpu);
3687 power >>= SCHED_LOAD_SHIFT;
3688
3689 if (!power)
3690 power = 1;
3691
3692 sdg->cpu_power = power;
3693 }
3694
3695 static void update_group_power(struct sched_domain *sd, int cpu)
3696 {
3697 struct sched_domain *child = sd->child;
3698 struct sched_group *group, *sdg = sd->groups;
3699 unsigned long power;
3700
3701 if (!child) {
3702 update_cpu_power(sd, cpu);
3703 return;
3704 }
3705
3706 power = 0;
3707
3708 group = child->groups;
3709 do {
3710 power += group->cpu_power;
3711 group = group->next;
3712 } while (group != child->groups);
3713
3714 sdg->cpu_power = power;
3715 }
3716
3717 /**
3718 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3719 * @sd: The sched_domain whose statistics are to be updated.
3720 * @group: sched_group whose statistics are to be updated.
3721 * @this_cpu: Cpu for which load balance is currently performed.
3722 * @idle: Idle status of this_cpu
3723 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3724 * @sd_idle: Idle status of the sched_domain containing group.
3725 * @local_group: Does group contain this_cpu.
3726 * @cpus: Set of cpus considered for load balancing.
3727 * @balance: Should we balance.
3728 * @sgs: variable to hold the statistics for this group.
3729 */
3730 static inline void update_sg_lb_stats(struct sched_domain *sd,
3731 struct sched_group *group, int this_cpu,
3732 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3733 int local_group, const struct cpumask *cpus,
3734 int *balance, struct sg_lb_stats *sgs)
3735 {
3736 unsigned long load, max_cpu_load, min_cpu_load;
3737 int i;
3738 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3739 unsigned long sum_avg_load_per_task;
3740 unsigned long avg_load_per_task;
3741
3742 if (local_group) {
3743 balance_cpu = group_first_cpu(group);
3744 if (balance_cpu == this_cpu)
3745 update_group_power(sd, this_cpu);
3746 }
3747
3748 /* Tally up the load of all CPUs in the group */
3749 sum_avg_load_per_task = avg_load_per_task = 0;
3750 max_cpu_load = 0;
3751 min_cpu_load = ~0UL;
3752
3753 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3754 struct rq *rq = cpu_rq(i);
3755
3756 if (*sd_idle && rq->nr_running)
3757 *sd_idle = 0;
3758
3759 /* Bias balancing toward cpus of our domain */
3760 if (local_group) {
3761 if (idle_cpu(i) && !first_idle_cpu) {
3762 first_idle_cpu = 1;
3763 balance_cpu = i;
3764 }
3765
3766 load = target_load(i, load_idx);
3767 } else {
3768 load = source_load(i, load_idx);
3769 if (load > max_cpu_load)
3770 max_cpu_load = load;
3771 if (min_cpu_load > load)
3772 min_cpu_load = load;
3773 }
3774
3775 sgs->group_load += load;
3776 sgs->sum_nr_running += rq->nr_running;
3777 sgs->sum_weighted_load += weighted_cpuload(i);
3778
3779 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3780 }
3781
3782 /*
3783 * First idle cpu or the first cpu(busiest) in this sched group
3784 * is eligible for doing load balancing at this and above
3785 * domains. In the newly idle case, we will allow all the cpu's
3786 * to do the newly idle load balance.
3787 */
3788 if (idle != CPU_NEWLY_IDLE && local_group &&
3789 balance_cpu != this_cpu && balance) {
3790 *balance = 0;
3791 return;
3792 }
3793
3794 /* Adjust by relative CPU power of the group */
3795 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3796
3797
3798 /*
3799 * Consider the group unbalanced when the imbalance is larger
3800 * than the average weight of two tasks.
3801 *
3802 * APZ: with cgroup the avg task weight can vary wildly and
3803 * might not be a suitable number - should we keep a
3804 * normalized nr_running number somewhere that negates
3805 * the hierarchy?
3806 */
3807 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3808 group->cpu_power;
3809
3810 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3811 sgs->group_imb = 1;
3812
3813 sgs->group_capacity =
3814 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3815 }
3816
3817 /**
3818 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3819 * @sd: sched_domain whose statistics are to be updated.
3820 * @this_cpu: Cpu for which load balance is currently performed.
3821 * @idle: Idle status of this_cpu
3822 * @sd_idle: Idle status of the sched_domain containing group.
3823 * @cpus: Set of cpus considered for load balancing.
3824 * @balance: Should we balance.
3825 * @sds: variable to hold the statistics for this sched_domain.
3826 */
3827 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3828 enum cpu_idle_type idle, int *sd_idle,
3829 const struct cpumask *cpus, int *balance,
3830 struct sd_lb_stats *sds)
3831 {
3832 struct sched_domain *child = sd->child;
3833 struct sched_group *group = sd->groups;
3834 struct sg_lb_stats sgs;
3835 int load_idx, prefer_sibling = 0;
3836
3837 if (child && child->flags & SD_PREFER_SIBLING)
3838 prefer_sibling = 1;
3839
3840 init_sd_power_savings_stats(sd, sds, idle);
3841 load_idx = get_sd_load_idx(sd, idle);
3842
3843 do {
3844 int local_group;
3845
3846 local_group = cpumask_test_cpu(this_cpu,
3847 sched_group_cpus(group));
3848 memset(&sgs, 0, sizeof(sgs));
3849 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3850 local_group, cpus, balance, &sgs);
3851
3852 if (local_group && balance && !(*balance))
3853 return;
3854
3855 sds->total_load += sgs.group_load;
3856 sds->total_pwr += group->cpu_power;
3857
3858 /*
3859 * In case the child domain prefers tasks go to siblings
3860 * first, lower the group capacity to one so that we'll try
3861 * and move all the excess tasks away.
3862 */
3863 if (prefer_sibling)
3864 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3865
3866 if (local_group) {
3867 sds->this_load = sgs.avg_load;
3868 sds->this = group;
3869 sds->this_nr_running = sgs.sum_nr_running;
3870 sds->this_load_per_task = sgs.sum_weighted_load;
3871 } else if (sgs.avg_load > sds->max_load &&
3872 (sgs.sum_nr_running > sgs.group_capacity ||
3873 sgs.group_imb)) {
3874 sds->max_load = sgs.avg_load;
3875 sds->busiest = group;
3876 sds->busiest_nr_running = sgs.sum_nr_running;
3877 sds->busiest_load_per_task = sgs.sum_weighted_load;
3878 sds->group_imb = sgs.group_imb;
3879 }
3880
3881 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3882 group = group->next;
3883 } while (group != sd->groups);
3884 }
3885
3886 /**
3887 * fix_small_imbalance - Calculate the minor imbalance that exists
3888 * amongst the groups of a sched_domain, during
3889 * load balancing.
3890 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3891 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3892 * @imbalance: Variable to store the imbalance.
3893 */
3894 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3895 int this_cpu, unsigned long *imbalance)
3896 {
3897 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3898 unsigned int imbn = 2;
3899
3900 if (sds->this_nr_running) {
3901 sds->this_load_per_task /= sds->this_nr_running;
3902 if (sds->busiest_load_per_task >
3903 sds->this_load_per_task)
3904 imbn = 1;
3905 } else
3906 sds->this_load_per_task =
3907 cpu_avg_load_per_task(this_cpu);
3908
3909 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3910 sds->busiest_load_per_task * imbn) {
3911 *imbalance = sds->busiest_load_per_task;
3912 return;
3913 }
3914
3915 /*
3916 * OK, we don't have enough imbalance to justify moving tasks,
3917 * however we may be able to increase total CPU power used by
3918 * moving them.
3919 */
3920
3921 pwr_now += sds->busiest->cpu_power *
3922 min(sds->busiest_load_per_task, sds->max_load);
3923 pwr_now += sds->this->cpu_power *
3924 min(sds->this_load_per_task, sds->this_load);
3925 pwr_now /= SCHED_LOAD_SCALE;
3926
3927 /* Amount of load we'd subtract */
3928 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3929 sds->busiest->cpu_power;
3930 if (sds->max_load > tmp)
3931 pwr_move += sds->busiest->cpu_power *
3932 min(sds->busiest_load_per_task, sds->max_load - tmp);
3933
3934 /* Amount of load we'd add */
3935 if (sds->max_load * sds->busiest->cpu_power <
3936 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3937 tmp = (sds->max_load * sds->busiest->cpu_power) /
3938 sds->this->cpu_power;
3939 else
3940 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3941 sds->this->cpu_power;
3942 pwr_move += sds->this->cpu_power *
3943 min(sds->this_load_per_task, sds->this_load + tmp);
3944 pwr_move /= SCHED_LOAD_SCALE;
3945
3946 /* Move if we gain throughput */
3947 if (pwr_move > pwr_now)
3948 *imbalance = sds->busiest_load_per_task;
3949 }
3950
3951 /**
3952 * calculate_imbalance - Calculate the amount of imbalance present within the
3953 * groups of a given sched_domain during load balance.
3954 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3955 * @this_cpu: Cpu for which currently load balance is being performed.
3956 * @imbalance: The variable to store the imbalance.
3957 */
3958 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3959 unsigned long *imbalance)
3960 {
3961 unsigned long max_pull;
3962 /*
3963 * In the presence of smp nice balancing, certain scenarios can have
3964 * max load less than avg load(as we skip the groups at or below
3965 * its cpu_power, while calculating max_load..)
3966 */
3967 if (sds->max_load < sds->avg_load) {
3968 *imbalance = 0;
3969 return fix_small_imbalance(sds, this_cpu, imbalance);
3970 }
3971
3972 /* Don't want to pull so many tasks that a group would go idle */
3973 max_pull = min(sds->max_load - sds->avg_load,
3974 sds->max_load - sds->busiest_load_per_task);
3975
3976 /* How much load to actually move to equalise the imbalance */
3977 *imbalance = min(max_pull * sds->busiest->cpu_power,
3978 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3979 / SCHED_LOAD_SCALE;
3980
3981 /*
3982 * if *imbalance is less than the average load per runnable task
3983 * there is no gaurantee that any tasks will be moved so we'll have
3984 * a think about bumping its value to force at least one task to be
3985 * moved
3986 */
3987 if (*imbalance < sds->busiest_load_per_task)
3988 return fix_small_imbalance(sds, this_cpu, imbalance);
3989
3990 }
3991 /******* find_busiest_group() helpers end here *********************/
3992
3993 /**
3994 * find_busiest_group - Returns the busiest group within the sched_domain
3995 * if there is an imbalance. If there isn't an imbalance, and
3996 * the user has opted for power-savings, it returns a group whose
3997 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3998 * such a group exists.
3999 *
4000 * Also calculates the amount of weighted load which should be moved
4001 * to restore balance.
4002 *
4003 * @sd: The sched_domain whose busiest group is to be returned.
4004 * @this_cpu: The cpu for which load balancing is currently being performed.
4005 * @imbalance: Variable which stores amount of weighted load which should
4006 * be moved to restore balance/put a group to idle.
4007 * @idle: The idle status of this_cpu.
4008 * @sd_idle: The idleness of sd
4009 * @cpus: The set of CPUs under consideration for load-balancing.
4010 * @balance: Pointer to a variable indicating if this_cpu
4011 * is the appropriate cpu to perform load balancing at this_level.
4012 *
4013 * Returns: - the busiest group if imbalance exists.
4014 * - If no imbalance and user has opted for power-savings balance,
4015 * return the least loaded group whose CPUs can be
4016 * put to idle by rebalancing its tasks onto our group.
4017 */
4018 static struct sched_group *
4019 find_busiest_group(struct sched_domain *sd, int this_cpu,
4020 unsigned long *imbalance, enum cpu_idle_type idle,
4021 int *sd_idle, const struct cpumask *cpus, int *balance)
4022 {
4023 struct sd_lb_stats sds;
4024
4025 memset(&sds, 0, sizeof(sds));
4026
4027 /*
4028 * Compute the various statistics relavent for load balancing at
4029 * this level.
4030 */
4031 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4032 balance, &sds);
4033
4034 /* Cases where imbalance does not exist from POV of this_cpu */
4035 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4036 * at this level.
4037 * 2) There is no busy sibling group to pull from.
4038 * 3) This group is the busiest group.
4039 * 4) This group is more busy than the avg busieness at this
4040 * sched_domain.
4041 * 5) The imbalance is within the specified limit.
4042 * 6) Any rebalance would lead to ping-pong
4043 */
4044 if (balance && !(*balance))
4045 goto ret;
4046
4047 if (!sds.busiest || sds.busiest_nr_running == 0)
4048 goto out_balanced;
4049
4050 if (sds.this_load >= sds.max_load)
4051 goto out_balanced;
4052
4053 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4054
4055 if (sds.this_load >= sds.avg_load)
4056 goto out_balanced;
4057
4058 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4059 goto out_balanced;
4060
4061 sds.busiest_load_per_task /= sds.busiest_nr_running;
4062 if (sds.group_imb)
4063 sds.busiest_load_per_task =
4064 min(sds.busiest_load_per_task, sds.avg_load);
4065
4066 /*
4067 * We're trying to get all the cpus to the average_load, so we don't
4068 * want to push ourselves above the average load, nor do we wish to
4069 * reduce the max loaded cpu below the average load, as either of these
4070 * actions would just result in more rebalancing later, and ping-pong
4071 * tasks around. Thus we look for the minimum possible imbalance.
4072 * Negative imbalances (*we* are more loaded than anyone else) will
4073 * be counted as no imbalance for these purposes -- we can't fix that
4074 * by pulling tasks to us. Be careful of negative numbers as they'll
4075 * appear as very large values with unsigned longs.
4076 */
4077 if (sds.max_load <= sds.busiest_load_per_task)
4078 goto out_balanced;
4079
4080 /* Looks like there is an imbalance. Compute it */
4081 calculate_imbalance(&sds, this_cpu, imbalance);
4082 return sds.busiest;
4083
4084 out_balanced:
4085 /*
4086 * There is no obvious imbalance. But check if we can do some balancing
4087 * to save power.
4088 */
4089 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4090 return sds.busiest;
4091 ret:
4092 *imbalance = 0;
4093 return NULL;
4094 }
4095
4096 /*
4097 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4098 */
4099 static struct rq *
4100 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4101 unsigned long imbalance, const struct cpumask *cpus)
4102 {
4103 struct rq *busiest = NULL, *rq;
4104 unsigned long max_load = 0;
4105 int i;
4106
4107 for_each_cpu(i, sched_group_cpus(group)) {
4108 unsigned long power = power_of(i);
4109 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4110 unsigned long wl;
4111
4112 if (!cpumask_test_cpu(i, cpus))
4113 continue;
4114
4115 rq = cpu_rq(i);
4116 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4117 wl /= power;
4118
4119 if (capacity && rq->nr_running == 1 && wl > imbalance)
4120 continue;
4121
4122 if (wl > max_load) {
4123 max_load = wl;
4124 busiest = rq;
4125 }
4126 }
4127
4128 return busiest;
4129 }
4130
4131 /*
4132 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4133 * so long as it is large enough.
4134 */
4135 #define MAX_PINNED_INTERVAL 512
4136
4137 /* Working cpumask for load_balance and load_balance_newidle. */
4138 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4139
4140 /*
4141 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4142 * tasks if there is an imbalance.
4143 */
4144 static int load_balance(int this_cpu, struct rq *this_rq,
4145 struct sched_domain *sd, enum cpu_idle_type idle,
4146 int *balance)
4147 {
4148 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4149 struct sched_group *group;
4150 unsigned long imbalance;
4151 struct rq *busiest;
4152 unsigned long flags;
4153 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4154
4155 cpumask_copy(cpus, cpu_active_mask);
4156
4157 /*
4158 * When power savings policy is enabled for the parent domain, idle
4159 * sibling can pick up load irrespective of busy siblings. In this case,
4160 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4161 * portraying it as CPU_NOT_IDLE.
4162 */
4163 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4164 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4165 sd_idle = 1;
4166
4167 schedstat_inc(sd, lb_count[idle]);
4168
4169 redo:
4170 update_shares(sd);
4171 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4172 cpus, balance);
4173
4174 if (*balance == 0)
4175 goto out_balanced;
4176
4177 if (!group) {
4178 schedstat_inc(sd, lb_nobusyg[idle]);
4179 goto out_balanced;
4180 }
4181
4182 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4183 if (!busiest) {
4184 schedstat_inc(sd, lb_nobusyq[idle]);
4185 goto out_balanced;
4186 }
4187
4188 BUG_ON(busiest == this_rq);
4189
4190 schedstat_add(sd, lb_imbalance[idle], imbalance);
4191
4192 ld_moved = 0;
4193 if (busiest->nr_running > 1) {
4194 /*
4195 * Attempt to move tasks. If find_busiest_group has found
4196 * an imbalance but busiest->nr_running <= 1, the group is
4197 * still unbalanced. ld_moved simply stays zero, so it is
4198 * correctly treated as an imbalance.
4199 */
4200 local_irq_save(flags);
4201 double_rq_lock(this_rq, busiest);
4202 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4203 imbalance, sd, idle, &all_pinned);
4204 double_rq_unlock(this_rq, busiest);
4205 local_irq_restore(flags);
4206
4207 /*
4208 * some other cpu did the load balance for us.
4209 */
4210 if (ld_moved && this_cpu != smp_processor_id())
4211 resched_cpu(this_cpu);
4212
4213 /* All tasks on this runqueue were pinned by CPU affinity */
4214 if (unlikely(all_pinned)) {
4215 cpumask_clear_cpu(cpu_of(busiest), cpus);
4216 if (!cpumask_empty(cpus))
4217 goto redo;
4218 goto out_balanced;
4219 }
4220 }
4221
4222 if (!ld_moved) {
4223 schedstat_inc(sd, lb_failed[idle]);
4224 sd->nr_balance_failed++;
4225
4226 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4227
4228 raw_spin_lock_irqsave(&busiest->lock, flags);
4229
4230 /* don't kick the migration_thread, if the curr
4231 * task on busiest cpu can't be moved to this_cpu
4232 */
4233 if (!cpumask_test_cpu(this_cpu,
4234 &busiest->curr->cpus_allowed)) {
4235 raw_spin_unlock_irqrestore(&busiest->lock,
4236 flags);
4237 all_pinned = 1;
4238 goto out_one_pinned;
4239 }
4240
4241 if (!busiest->active_balance) {
4242 busiest->active_balance = 1;
4243 busiest->push_cpu = this_cpu;
4244 active_balance = 1;
4245 }
4246 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4247 if (active_balance)
4248 wake_up_process(busiest->migration_thread);
4249
4250 /*
4251 * We've kicked active balancing, reset the failure
4252 * counter.
4253 */
4254 sd->nr_balance_failed = sd->cache_nice_tries+1;
4255 }
4256 } else
4257 sd->nr_balance_failed = 0;
4258
4259 if (likely(!active_balance)) {
4260 /* We were unbalanced, so reset the balancing interval */
4261 sd->balance_interval = sd->min_interval;
4262 } else {
4263 /*
4264 * If we've begun active balancing, start to back off. This
4265 * case may not be covered by the all_pinned logic if there
4266 * is only 1 task on the busy runqueue (because we don't call
4267 * move_tasks).
4268 */
4269 if (sd->balance_interval < sd->max_interval)
4270 sd->balance_interval *= 2;
4271 }
4272
4273 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4274 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4275 ld_moved = -1;
4276
4277 goto out;
4278
4279 out_balanced:
4280 schedstat_inc(sd, lb_balanced[idle]);
4281
4282 sd->nr_balance_failed = 0;
4283
4284 out_one_pinned:
4285 /* tune up the balancing interval */
4286 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4287 (sd->balance_interval < sd->max_interval))
4288 sd->balance_interval *= 2;
4289
4290 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4291 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4292 ld_moved = -1;
4293 else
4294 ld_moved = 0;
4295 out:
4296 if (ld_moved)
4297 update_shares(sd);
4298 return ld_moved;
4299 }
4300
4301 /*
4302 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4303 * tasks if there is an imbalance.
4304 *
4305 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4306 * this_rq is locked.
4307 */
4308 static int
4309 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4310 {
4311 struct sched_group *group;
4312 struct rq *busiest = NULL;
4313 unsigned long imbalance;
4314 int ld_moved = 0;
4315 int sd_idle = 0;
4316 int all_pinned = 0;
4317 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4318
4319 cpumask_copy(cpus, cpu_active_mask);
4320
4321 /*
4322 * When power savings policy is enabled for the parent domain, idle
4323 * sibling can pick up load irrespective of busy siblings. In this case,
4324 * let the state of idle sibling percolate up as IDLE, instead of
4325 * portraying it as CPU_NOT_IDLE.
4326 */
4327 if (sd->flags & SD_SHARE_CPUPOWER &&
4328 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4329 sd_idle = 1;
4330
4331 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4332 redo:
4333 update_shares_locked(this_rq, sd);
4334 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4335 &sd_idle, cpus, NULL);
4336 if (!group) {
4337 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4338 goto out_balanced;
4339 }
4340
4341 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4342 if (!busiest) {
4343 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4344 goto out_balanced;
4345 }
4346
4347 BUG_ON(busiest == this_rq);
4348
4349 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4350
4351 ld_moved = 0;
4352 if (busiest->nr_running > 1) {
4353 /* Attempt to move tasks */
4354 double_lock_balance(this_rq, busiest);
4355 /* this_rq->clock is already updated */
4356 update_rq_clock(busiest);
4357 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4358 imbalance, sd, CPU_NEWLY_IDLE,
4359 &all_pinned);
4360 double_unlock_balance(this_rq, busiest);
4361
4362 if (unlikely(all_pinned)) {
4363 cpumask_clear_cpu(cpu_of(busiest), cpus);
4364 if (!cpumask_empty(cpus))
4365 goto redo;
4366 }
4367 }
4368
4369 if (!ld_moved) {
4370 int active_balance = 0;
4371
4372 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4373 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4374 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4375 return -1;
4376
4377 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4378 return -1;
4379
4380 if (sd->nr_balance_failed++ < 2)
4381 return -1;
4382
4383 /*
4384 * The only task running in a non-idle cpu can be moved to this
4385 * cpu in an attempt to completely freeup the other CPU
4386 * package. The same method used to move task in load_balance()
4387 * have been extended for load_balance_newidle() to speedup
4388 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4389 *
4390 * The package power saving logic comes from
4391 * find_busiest_group(). If there are no imbalance, then
4392 * f_b_g() will return NULL. However when sched_mc={1,2} then
4393 * f_b_g() will select a group from which a running task may be
4394 * pulled to this cpu in order to make the other package idle.
4395 * If there is no opportunity to make a package idle and if
4396 * there are no imbalance, then f_b_g() will return NULL and no
4397 * action will be taken in load_balance_newidle().
4398 *
4399 * Under normal task pull operation due to imbalance, there
4400 * will be more than one task in the source run queue and
4401 * move_tasks() will succeed. ld_moved will be true and this
4402 * active balance code will not be triggered.
4403 */
4404
4405 /* Lock busiest in correct order while this_rq is held */
4406 double_lock_balance(this_rq, busiest);
4407
4408 /*
4409 * don't kick the migration_thread, if the curr
4410 * task on busiest cpu can't be moved to this_cpu
4411 */
4412 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4413 double_unlock_balance(this_rq, busiest);
4414 all_pinned = 1;
4415 return ld_moved;
4416 }
4417
4418 if (!busiest->active_balance) {
4419 busiest->active_balance = 1;
4420 busiest->push_cpu = this_cpu;
4421 active_balance = 1;
4422 }
4423
4424 double_unlock_balance(this_rq, busiest);
4425 /*
4426 * Should not call ttwu while holding a rq->lock
4427 */
4428 raw_spin_unlock(&this_rq->lock);
4429 if (active_balance)
4430 wake_up_process(busiest->migration_thread);
4431 raw_spin_lock(&this_rq->lock);
4432
4433 } else
4434 sd->nr_balance_failed = 0;
4435
4436 update_shares_locked(this_rq, sd);
4437 return ld_moved;
4438
4439 out_balanced:
4440 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4441 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4442 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4443 return -1;
4444 sd->nr_balance_failed = 0;
4445
4446 return 0;
4447 }
4448
4449 /*
4450 * idle_balance is called by schedule() if this_cpu is about to become
4451 * idle. Attempts to pull tasks from other CPUs.
4452 */
4453 static void idle_balance(int this_cpu, struct rq *this_rq)
4454 {
4455 struct sched_domain *sd;
4456 int pulled_task = 0;
4457 unsigned long next_balance = jiffies + HZ;
4458
4459 this_rq->idle_stamp = this_rq->clock;
4460
4461 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4462 return;
4463
4464 for_each_domain(this_cpu, sd) {
4465 unsigned long interval;
4466
4467 if (!(sd->flags & SD_LOAD_BALANCE))
4468 continue;
4469
4470 if (sd->flags & SD_BALANCE_NEWIDLE)
4471 /* If we've pulled tasks over stop searching: */
4472 pulled_task = load_balance_newidle(this_cpu, this_rq,
4473 sd);
4474
4475 interval = msecs_to_jiffies(sd->balance_interval);
4476 if (time_after(next_balance, sd->last_balance + interval))
4477 next_balance = sd->last_balance + interval;
4478 if (pulled_task) {
4479 this_rq->idle_stamp = 0;
4480 break;
4481 }
4482 }
4483 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4484 /*
4485 * We are going idle. next_balance may be set based on
4486 * a busy processor. So reset next_balance.
4487 */
4488 this_rq->next_balance = next_balance;
4489 }
4490 }
4491
4492 /*
4493 * active_load_balance is run by migration threads. It pushes running tasks
4494 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4495 * running on each physical CPU where possible, and avoids physical /
4496 * logical imbalances.
4497 *
4498 * Called with busiest_rq locked.
4499 */
4500 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4501 {
4502 int target_cpu = busiest_rq->push_cpu;
4503 struct sched_domain *sd;
4504 struct rq *target_rq;
4505
4506 /* Is there any task to move? */
4507 if (busiest_rq->nr_running <= 1)
4508 return;
4509
4510 target_rq = cpu_rq(target_cpu);
4511
4512 /*
4513 * This condition is "impossible", if it occurs
4514 * we need to fix it. Originally reported by
4515 * Bjorn Helgaas on a 128-cpu setup.
4516 */
4517 BUG_ON(busiest_rq == target_rq);
4518
4519 /* move a task from busiest_rq to target_rq */
4520 double_lock_balance(busiest_rq, target_rq);
4521 update_rq_clock(busiest_rq);
4522 update_rq_clock(target_rq);
4523
4524 /* Search for an sd spanning us and the target CPU. */
4525 for_each_domain(target_cpu, sd) {
4526 if ((sd->flags & SD_LOAD_BALANCE) &&
4527 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4528 break;
4529 }
4530
4531 if (likely(sd)) {
4532 schedstat_inc(sd, alb_count);
4533
4534 if (move_one_task(target_rq, target_cpu, busiest_rq,
4535 sd, CPU_IDLE))
4536 schedstat_inc(sd, alb_pushed);
4537 else
4538 schedstat_inc(sd, alb_failed);
4539 }
4540 double_unlock_balance(busiest_rq, target_rq);
4541 }
4542
4543 #ifdef CONFIG_NO_HZ
4544 static struct {
4545 atomic_t load_balancer;
4546 cpumask_var_t cpu_mask;
4547 cpumask_var_t ilb_grp_nohz_mask;
4548 } nohz ____cacheline_aligned = {
4549 .load_balancer = ATOMIC_INIT(-1),
4550 };
4551
4552 int get_nohz_load_balancer(void)
4553 {
4554 return atomic_read(&nohz.load_balancer);
4555 }
4556
4557 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4558 /**
4559 * lowest_flag_domain - Return lowest sched_domain containing flag.
4560 * @cpu: The cpu whose lowest level of sched domain is to
4561 * be returned.
4562 * @flag: The flag to check for the lowest sched_domain
4563 * for the given cpu.
4564 *
4565 * Returns the lowest sched_domain of a cpu which contains the given flag.
4566 */
4567 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4568 {
4569 struct sched_domain *sd;
4570
4571 for_each_domain(cpu, sd)
4572 if (sd && (sd->flags & flag))
4573 break;
4574
4575 return sd;
4576 }
4577
4578 /**
4579 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4580 * @cpu: The cpu whose domains we're iterating over.
4581 * @sd: variable holding the value of the power_savings_sd
4582 * for cpu.
4583 * @flag: The flag to filter the sched_domains to be iterated.
4584 *
4585 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4586 * set, starting from the lowest sched_domain to the highest.
4587 */
4588 #define for_each_flag_domain(cpu, sd, flag) \
4589 for (sd = lowest_flag_domain(cpu, flag); \
4590 (sd && (sd->flags & flag)); sd = sd->parent)
4591
4592 /**
4593 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4594 * @ilb_group: group to be checked for semi-idleness
4595 *
4596 * Returns: 1 if the group is semi-idle. 0 otherwise.
4597 *
4598 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4599 * and atleast one non-idle CPU. This helper function checks if the given
4600 * sched_group is semi-idle or not.
4601 */
4602 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4603 {
4604 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4605 sched_group_cpus(ilb_group));
4606
4607 /*
4608 * A sched_group is semi-idle when it has atleast one busy cpu
4609 * and atleast one idle cpu.
4610 */
4611 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4612 return 0;
4613
4614 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4615 return 0;
4616
4617 return 1;
4618 }
4619 /**
4620 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4621 * @cpu: The cpu which is nominating a new idle_load_balancer.
4622 *
4623 * Returns: Returns the id of the idle load balancer if it exists,
4624 * Else, returns >= nr_cpu_ids.
4625 *
4626 * This algorithm picks the idle load balancer such that it belongs to a
4627 * semi-idle powersavings sched_domain. The idea is to try and avoid
4628 * completely idle packages/cores just for the purpose of idle load balancing
4629 * when there are other idle cpu's which are better suited for that job.
4630 */
4631 static int find_new_ilb(int cpu)
4632 {
4633 struct sched_domain *sd;
4634 struct sched_group *ilb_group;
4635
4636 /*
4637 * Have idle load balancer selection from semi-idle packages only
4638 * when power-aware load balancing is enabled
4639 */
4640 if (!(sched_smt_power_savings || sched_mc_power_savings))
4641 goto out_done;
4642
4643 /*
4644 * Optimize for the case when we have no idle CPUs or only one
4645 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4646 */
4647 if (cpumask_weight(nohz.cpu_mask) < 2)
4648 goto out_done;
4649
4650 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4651 ilb_group = sd->groups;
4652
4653 do {
4654 if (is_semi_idle_group(ilb_group))
4655 return cpumask_first(nohz.ilb_grp_nohz_mask);
4656
4657 ilb_group = ilb_group->next;
4658
4659 } while (ilb_group != sd->groups);
4660 }
4661
4662 out_done:
4663 return cpumask_first(nohz.cpu_mask);
4664 }
4665 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4666 static inline int find_new_ilb(int call_cpu)
4667 {
4668 return cpumask_first(nohz.cpu_mask);
4669 }
4670 #endif
4671
4672 /*
4673 * This routine will try to nominate the ilb (idle load balancing)
4674 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4675 * load balancing on behalf of all those cpus. If all the cpus in the system
4676 * go into this tickless mode, then there will be no ilb owner (as there is
4677 * no need for one) and all the cpus will sleep till the next wakeup event
4678 * arrives...
4679 *
4680 * For the ilb owner, tick is not stopped. And this tick will be used
4681 * for idle load balancing. ilb owner will still be part of
4682 * nohz.cpu_mask..
4683 *
4684 * While stopping the tick, this cpu will become the ilb owner if there
4685 * is no other owner. And will be the owner till that cpu becomes busy
4686 * or if all cpus in the system stop their ticks at which point
4687 * there is no need for ilb owner.
4688 *
4689 * When the ilb owner becomes busy, it nominates another owner, during the
4690 * next busy scheduler_tick()
4691 */
4692 int select_nohz_load_balancer(int stop_tick)
4693 {
4694 int cpu = smp_processor_id();
4695
4696 if (stop_tick) {
4697 cpu_rq(cpu)->in_nohz_recently = 1;
4698
4699 if (!cpu_active(cpu)) {
4700 if (atomic_read(&nohz.load_balancer) != cpu)
4701 return 0;
4702
4703 /*
4704 * If we are going offline and still the leader,
4705 * give up!
4706 */
4707 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4708 BUG();
4709
4710 return 0;
4711 }
4712
4713 cpumask_set_cpu(cpu, nohz.cpu_mask);
4714
4715 /* time for ilb owner also to sleep */
4716 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4717 if (atomic_read(&nohz.load_balancer) == cpu)
4718 atomic_set(&nohz.load_balancer, -1);
4719 return 0;
4720 }
4721
4722 if (atomic_read(&nohz.load_balancer) == -1) {
4723 /* make me the ilb owner */
4724 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4725 return 1;
4726 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4727 int new_ilb;
4728
4729 if (!(sched_smt_power_savings ||
4730 sched_mc_power_savings))
4731 return 1;
4732 /*
4733 * Check to see if there is a more power-efficient
4734 * ilb.
4735 */
4736 new_ilb = find_new_ilb(cpu);
4737 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4738 atomic_set(&nohz.load_balancer, -1);
4739 resched_cpu(new_ilb);
4740 return 0;
4741 }
4742 return 1;
4743 }
4744 } else {
4745 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4746 return 0;
4747
4748 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4749
4750 if (atomic_read(&nohz.load_balancer) == cpu)
4751 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4752 BUG();
4753 }
4754 return 0;
4755 }
4756 #endif
4757
4758 static DEFINE_SPINLOCK(balancing);
4759
4760 /*
4761 * It checks each scheduling domain to see if it is due to be balanced,
4762 * and initiates a balancing operation if so.
4763 *
4764 * Balancing parameters are set up in arch_init_sched_domains.
4765 */
4766 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4767 {
4768 int balance = 1;
4769 struct rq *rq = cpu_rq(cpu);
4770 unsigned long interval;
4771 struct sched_domain *sd;
4772 /* Earliest time when we have to do rebalance again */
4773 unsigned long next_balance = jiffies + 60*HZ;
4774 int update_next_balance = 0;
4775 int need_serialize;
4776
4777 for_each_domain(cpu, sd) {
4778 if (!(sd->flags & SD_LOAD_BALANCE))
4779 continue;
4780
4781 interval = sd->balance_interval;
4782 if (idle != CPU_IDLE)
4783 interval *= sd->busy_factor;
4784
4785 /* scale ms to jiffies */
4786 interval = msecs_to_jiffies(interval);
4787 if (unlikely(!interval))
4788 interval = 1;
4789 if (interval > HZ*NR_CPUS/10)
4790 interval = HZ*NR_CPUS/10;
4791
4792 need_serialize = sd->flags & SD_SERIALIZE;
4793
4794 if (need_serialize) {
4795 if (!spin_trylock(&balancing))
4796 goto out;
4797 }
4798
4799 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4800 if (load_balance(cpu, rq, sd, idle, &balance)) {
4801 /*
4802 * We've pulled tasks over so either we're no
4803 * longer idle, or one of our SMT siblings is
4804 * not idle.
4805 */
4806 idle = CPU_NOT_IDLE;
4807 }
4808 sd->last_balance = jiffies;
4809 }
4810 if (need_serialize)
4811 spin_unlock(&balancing);
4812 out:
4813 if (time_after(next_balance, sd->last_balance + interval)) {
4814 next_balance = sd->last_balance + interval;
4815 update_next_balance = 1;
4816 }
4817
4818 /*
4819 * Stop the load balance at this level. There is another
4820 * CPU in our sched group which is doing load balancing more
4821 * actively.
4822 */
4823 if (!balance)
4824 break;
4825 }
4826
4827 /*
4828 * next_balance will be updated only when there is a need.
4829 * When the cpu is attached to null domain for ex, it will not be
4830 * updated.
4831 */
4832 if (likely(update_next_balance))
4833 rq->next_balance = next_balance;
4834 }
4835
4836 /*
4837 * run_rebalance_domains is triggered when needed from the scheduler tick.
4838 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4839 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4840 */
4841 static void run_rebalance_domains(struct softirq_action *h)
4842 {
4843 int this_cpu = smp_processor_id();
4844 struct rq *this_rq = cpu_rq(this_cpu);
4845 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4846 CPU_IDLE : CPU_NOT_IDLE;
4847
4848 rebalance_domains(this_cpu, idle);
4849
4850 #ifdef CONFIG_NO_HZ
4851 /*
4852 * If this cpu is the owner for idle load balancing, then do the
4853 * balancing on behalf of the other idle cpus whose ticks are
4854 * stopped.
4855 */
4856 if (this_rq->idle_at_tick &&
4857 atomic_read(&nohz.load_balancer) == this_cpu) {
4858 struct rq *rq;
4859 int balance_cpu;
4860
4861 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4862 if (balance_cpu == this_cpu)
4863 continue;
4864
4865 /*
4866 * If this cpu gets work to do, stop the load balancing
4867 * work being done for other cpus. Next load
4868 * balancing owner will pick it up.
4869 */
4870 if (need_resched())
4871 break;
4872
4873 rebalance_domains(balance_cpu, CPU_IDLE);
4874
4875 rq = cpu_rq(balance_cpu);
4876 if (time_after(this_rq->next_balance, rq->next_balance))
4877 this_rq->next_balance = rq->next_balance;
4878 }
4879 }
4880 #endif
4881 }
4882
4883 static inline int on_null_domain(int cpu)
4884 {
4885 return !rcu_dereference(cpu_rq(cpu)->sd);
4886 }
4887
4888 /*
4889 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4890 *
4891 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4892 * idle load balancing owner or decide to stop the periodic load balancing,
4893 * if the whole system is idle.
4894 */
4895 static inline void trigger_load_balance(struct rq *rq, int cpu)
4896 {
4897 #ifdef CONFIG_NO_HZ
4898 /*
4899 * If we were in the nohz mode recently and busy at the current
4900 * scheduler tick, then check if we need to nominate new idle
4901 * load balancer.
4902 */
4903 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4904 rq->in_nohz_recently = 0;
4905
4906 if (atomic_read(&nohz.load_balancer) == cpu) {
4907 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4908 atomic_set(&nohz.load_balancer, -1);
4909 }
4910
4911 if (atomic_read(&nohz.load_balancer) == -1) {
4912 int ilb = find_new_ilb(cpu);
4913
4914 if (ilb < nr_cpu_ids)
4915 resched_cpu(ilb);
4916 }
4917 }
4918
4919 /*
4920 * If this cpu is idle and doing idle load balancing for all the
4921 * cpus with ticks stopped, is it time for that to stop?
4922 */
4923 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4924 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4925 resched_cpu(cpu);
4926 return;
4927 }
4928
4929 /*
4930 * If this cpu is idle and the idle load balancing is done by
4931 * someone else, then no need raise the SCHED_SOFTIRQ
4932 */
4933 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4934 cpumask_test_cpu(cpu, nohz.cpu_mask))
4935 return;
4936 #endif
4937 /* Don't need to rebalance while attached to NULL domain */
4938 if (time_after_eq(jiffies, rq->next_balance) &&
4939 likely(!on_null_domain(cpu)))
4940 raise_softirq(SCHED_SOFTIRQ);
4941 }
4942
4943 #else /* CONFIG_SMP */
4944
4945 /*
4946 * on UP we do not need to balance between CPUs:
4947 */
4948 static inline void idle_balance(int cpu, struct rq *rq)
4949 {
4950 }
4951
4952 #endif
4953
4954 DEFINE_PER_CPU(struct kernel_stat, kstat);
4955
4956 EXPORT_PER_CPU_SYMBOL(kstat);
4957
4958 /*
4959 * Return any ns on the sched_clock that have not yet been accounted in
4960 * @p in case that task is currently running.
4961 *
4962 * Called with task_rq_lock() held on @rq.
4963 */
4964 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4965 {
4966 u64 ns = 0;
4967
4968 if (task_current(rq, p)) {
4969 update_rq_clock(rq);
4970 ns = rq->clock - p->se.exec_start;
4971 if ((s64)ns < 0)
4972 ns = 0;
4973 }
4974
4975 return ns;
4976 }
4977
4978 unsigned long long task_delta_exec(struct task_struct *p)
4979 {
4980 unsigned long flags;
4981 struct rq *rq;
4982 u64 ns = 0;
4983
4984 rq = task_rq_lock(p, &flags);
4985 ns = do_task_delta_exec(p, rq);
4986 task_rq_unlock(rq, &flags);
4987
4988 return ns;
4989 }
4990
4991 /*
4992 * Return accounted runtime for the task.
4993 * In case the task is currently running, return the runtime plus current's
4994 * pending runtime that have not been accounted yet.
4995 */
4996 unsigned long long task_sched_runtime(struct task_struct *p)
4997 {
4998 unsigned long flags;
4999 struct rq *rq;
5000 u64 ns = 0;
5001
5002 rq = task_rq_lock(p, &flags);
5003 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5004 task_rq_unlock(rq, &flags);
5005
5006 return ns;
5007 }
5008
5009 /*
5010 * Return sum_exec_runtime for the thread group.
5011 * In case the task is currently running, return the sum plus current's
5012 * pending runtime that have not been accounted yet.
5013 *
5014 * Note that the thread group might have other running tasks as well,
5015 * so the return value not includes other pending runtime that other
5016 * running tasks might have.
5017 */
5018 unsigned long long thread_group_sched_runtime(struct task_struct *p)
5019 {
5020 struct task_cputime totals;
5021 unsigned long flags;
5022 struct rq *rq;
5023 u64 ns;
5024
5025 rq = task_rq_lock(p, &flags);
5026 thread_group_cputime(p, &totals);
5027 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5028 task_rq_unlock(rq, &flags);
5029
5030 return ns;
5031 }
5032
5033 /*
5034 * Account user cpu time to a process.
5035 * @p: the process that the cpu time gets accounted to
5036 * @cputime: the cpu time spent in user space since the last update
5037 * @cputime_scaled: cputime scaled by cpu frequency
5038 */
5039 void account_user_time(struct task_struct *p, cputime_t cputime,
5040 cputime_t cputime_scaled)
5041 {
5042 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5043 cputime64_t tmp;
5044
5045 /* Add user time to process. */
5046 p->utime = cputime_add(p->utime, cputime);
5047 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5048 account_group_user_time(p, cputime);
5049
5050 /* Add user time to cpustat. */
5051 tmp = cputime_to_cputime64(cputime);
5052 if (TASK_NICE(p) > 0)
5053 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5054 else
5055 cpustat->user = cputime64_add(cpustat->user, tmp);
5056
5057 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5058 /* Account for user time used */
5059 acct_update_integrals(p);
5060 }
5061
5062 /*
5063 * Account guest cpu time to a process.
5064 * @p: the process that the cpu time gets accounted to
5065 * @cputime: the cpu time spent in virtual machine since the last update
5066 * @cputime_scaled: cputime scaled by cpu frequency
5067 */
5068 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5069 cputime_t cputime_scaled)
5070 {
5071 cputime64_t tmp;
5072 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5073
5074 tmp = cputime_to_cputime64(cputime);
5075
5076 /* Add guest time to process. */
5077 p->utime = cputime_add(p->utime, cputime);
5078 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5079 account_group_user_time(p, cputime);
5080 p->gtime = cputime_add(p->gtime, cputime);
5081
5082 /* Add guest time to cpustat. */
5083 if (TASK_NICE(p) > 0) {
5084 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5085 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5086 } else {
5087 cpustat->user = cputime64_add(cpustat->user, tmp);
5088 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5089 }
5090 }
5091
5092 /*
5093 * Account system cpu time to a process.
5094 * @p: the process that the cpu time gets accounted to
5095 * @hardirq_offset: the offset to subtract from hardirq_count()
5096 * @cputime: the cpu time spent in kernel space since the last update
5097 * @cputime_scaled: cputime scaled by cpu frequency
5098 */
5099 void account_system_time(struct task_struct *p, int hardirq_offset,
5100 cputime_t cputime, cputime_t cputime_scaled)
5101 {
5102 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5103 cputime64_t tmp;
5104
5105 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5106 account_guest_time(p, cputime, cputime_scaled);
5107 return;
5108 }
5109
5110 /* Add system time to process. */
5111 p->stime = cputime_add(p->stime, cputime);
5112 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5113 account_group_system_time(p, cputime);
5114
5115 /* Add system time to cpustat. */
5116 tmp = cputime_to_cputime64(cputime);
5117 if (hardirq_count() - hardirq_offset)
5118 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5119 else if (softirq_count())
5120 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5121 else
5122 cpustat->system = cputime64_add(cpustat->system, tmp);
5123
5124 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5125
5126 /* Account for system time used */
5127 acct_update_integrals(p);
5128 }
5129
5130 /*
5131 * Account for involuntary wait time.
5132 * @steal: the cpu time spent in involuntary wait
5133 */
5134 void account_steal_time(cputime_t cputime)
5135 {
5136 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5137 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5138
5139 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5140 }
5141
5142 /*
5143 * Account for idle time.
5144 * @cputime: the cpu time spent in idle wait
5145 */
5146 void account_idle_time(cputime_t cputime)
5147 {
5148 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5149 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5150 struct rq *rq = this_rq();
5151
5152 if (atomic_read(&rq->nr_iowait) > 0)
5153 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5154 else
5155 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5156 }
5157
5158 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5159
5160 /*
5161 * Account a single tick of cpu time.
5162 * @p: the process that the cpu time gets accounted to
5163 * @user_tick: indicates if the tick is a user or a system tick
5164 */
5165 void account_process_tick(struct task_struct *p, int user_tick)
5166 {
5167 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5168 struct rq *rq = this_rq();
5169
5170 if (user_tick)
5171 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5172 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5173 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5174 one_jiffy_scaled);
5175 else
5176 account_idle_time(cputime_one_jiffy);
5177 }
5178
5179 /*
5180 * Account multiple ticks of steal time.
5181 * @p: the process from which the cpu time has been stolen
5182 * @ticks: number of stolen ticks
5183 */
5184 void account_steal_ticks(unsigned long ticks)
5185 {
5186 account_steal_time(jiffies_to_cputime(ticks));
5187 }
5188
5189 /*
5190 * Account multiple ticks of idle time.
5191 * @ticks: number of stolen ticks
5192 */
5193 void account_idle_ticks(unsigned long ticks)
5194 {
5195 account_idle_time(jiffies_to_cputime(ticks));
5196 }
5197
5198 #endif
5199
5200 /*
5201 * Use precise platform statistics if available:
5202 */
5203 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5204 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5205 {
5206 *ut = p->utime;
5207 *st = p->stime;
5208 }
5209
5210 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5211 {
5212 struct task_cputime cputime;
5213
5214 thread_group_cputime(p, &cputime);
5215
5216 *ut = cputime.utime;
5217 *st = cputime.stime;
5218 }
5219 #else
5220
5221 #ifndef nsecs_to_cputime
5222 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5223 #endif
5224
5225 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5226 {
5227 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5228
5229 /*
5230 * Use CFS's precise accounting:
5231 */
5232 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5233
5234 if (total) {
5235 u64 temp;
5236
5237 temp = (u64)(rtime * utime);
5238 do_div(temp, total);
5239 utime = (cputime_t)temp;
5240 } else
5241 utime = rtime;
5242
5243 /*
5244 * Compare with previous values, to keep monotonicity:
5245 */
5246 p->prev_utime = max(p->prev_utime, utime);
5247 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5248
5249 *ut = p->prev_utime;
5250 *st = p->prev_stime;
5251 }
5252
5253 /*
5254 * Must be called with siglock held.
5255 */
5256 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5257 {
5258 struct signal_struct *sig = p->signal;
5259 struct task_cputime cputime;
5260 cputime_t rtime, utime, total;
5261
5262 thread_group_cputime(p, &cputime);
5263
5264 total = cputime_add(cputime.utime, cputime.stime);
5265 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5266
5267 if (total) {
5268 u64 temp;
5269
5270 temp = (u64)(rtime * cputime.utime);
5271 do_div(temp, total);
5272 utime = (cputime_t)temp;
5273 } else
5274 utime = rtime;
5275
5276 sig->prev_utime = max(sig->prev_utime, utime);
5277 sig->prev_stime = max(sig->prev_stime,
5278 cputime_sub(rtime, sig->prev_utime));
5279
5280 *ut = sig->prev_utime;
5281 *st = sig->prev_stime;
5282 }
5283 #endif
5284
5285 /*
5286 * This function gets called by the timer code, with HZ frequency.
5287 * We call it with interrupts disabled.
5288 *
5289 * It also gets called by the fork code, when changing the parent's
5290 * timeslices.
5291 */
5292 void scheduler_tick(void)
5293 {
5294 int cpu = smp_processor_id();
5295 struct rq *rq = cpu_rq(cpu);
5296 struct task_struct *curr = rq->curr;
5297
5298 sched_clock_tick();
5299
5300 raw_spin_lock(&rq->lock);
5301 update_rq_clock(rq);
5302 update_cpu_load(rq);
5303 curr->sched_class->task_tick(rq, curr, 0);
5304 raw_spin_unlock(&rq->lock);
5305
5306 perf_event_task_tick(curr, cpu);
5307
5308 #ifdef CONFIG_SMP
5309 rq->idle_at_tick = idle_cpu(cpu);
5310 trigger_load_balance(rq, cpu);
5311 #endif
5312 }
5313
5314 notrace unsigned long get_parent_ip(unsigned long addr)
5315 {
5316 if (in_lock_functions(addr)) {
5317 addr = CALLER_ADDR2;
5318 if (in_lock_functions(addr))
5319 addr = CALLER_ADDR3;
5320 }
5321 return addr;
5322 }
5323
5324 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5325 defined(CONFIG_PREEMPT_TRACER))
5326
5327 void __kprobes add_preempt_count(int val)
5328 {
5329 #ifdef CONFIG_DEBUG_PREEMPT
5330 /*
5331 * Underflow?
5332 */
5333 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5334 return;
5335 #endif
5336 preempt_count() += val;
5337 #ifdef CONFIG_DEBUG_PREEMPT
5338 /*
5339 * Spinlock count overflowing soon?
5340 */
5341 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5342 PREEMPT_MASK - 10);
5343 #endif
5344 if (preempt_count() == val)
5345 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5346 }
5347 EXPORT_SYMBOL(add_preempt_count);
5348
5349 void __kprobes sub_preempt_count(int val)
5350 {
5351 #ifdef CONFIG_DEBUG_PREEMPT
5352 /*
5353 * Underflow?
5354 */
5355 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5356 return;
5357 /*
5358 * Is the spinlock portion underflowing?
5359 */
5360 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5361 !(preempt_count() & PREEMPT_MASK)))
5362 return;
5363 #endif
5364
5365 if (preempt_count() == val)
5366 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5367 preempt_count() -= val;
5368 }
5369 EXPORT_SYMBOL(sub_preempt_count);
5370
5371 #endif
5372
5373 /*
5374 * Print scheduling while atomic bug:
5375 */
5376 static noinline void __schedule_bug(struct task_struct *prev)
5377 {
5378 struct pt_regs *regs = get_irq_regs();
5379
5380 pr_err("BUG: scheduling while atomic: %s/%d/0x%08x\n",
5381 prev->comm, prev->pid, preempt_count());
5382
5383 debug_show_held_locks(prev);
5384 print_modules();
5385 if (irqs_disabled())
5386 print_irqtrace_events(prev);
5387
5388 if (regs)
5389 show_regs(regs);
5390 else
5391 dump_stack();
5392 }
5393
5394 /*
5395 * Various schedule()-time debugging checks and statistics:
5396 */
5397 static inline void schedule_debug(struct task_struct *prev)
5398 {
5399 /*
5400 * Test if we are atomic. Since do_exit() needs to call into
5401 * schedule() atomically, we ignore that path for now.
5402 * Otherwise, whine if we are scheduling when we should not be.
5403 */
5404 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5405 __schedule_bug(prev);
5406
5407 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5408
5409 schedstat_inc(this_rq(), sched_count);
5410 #ifdef CONFIG_SCHEDSTATS
5411 if (unlikely(prev->lock_depth >= 0)) {
5412 schedstat_inc(this_rq(), bkl_count);
5413 schedstat_inc(prev, sched_info.bkl_count);
5414 }
5415 #endif
5416 }
5417
5418 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5419 {
5420 if (prev->state == TASK_RUNNING) {
5421 u64 runtime = prev->se.sum_exec_runtime;
5422
5423 runtime -= prev->se.prev_sum_exec_runtime;
5424 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5425
5426 /*
5427 * In order to avoid avg_overlap growing stale when we are
5428 * indeed overlapping and hence not getting put to sleep, grow
5429 * the avg_overlap on preemption.
5430 *
5431 * We use the average preemption runtime because that
5432 * correlates to the amount of cache footprint a task can
5433 * build up.
5434 */
5435 update_avg(&prev->se.avg_overlap, runtime);
5436 }
5437 prev->sched_class->put_prev_task(rq, prev);
5438 }
5439
5440 /*
5441 * Pick up the highest-prio task:
5442 */
5443 static inline struct task_struct *
5444 pick_next_task(struct rq *rq)
5445 {
5446 const struct sched_class *class;
5447 struct task_struct *p;
5448
5449 /*
5450 * Optimization: we know that if all tasks are in
5451 * the fair class we can call that function directly:
5452 */
5453 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5454 p = fair_sched_class.pick_next_task(rq);
5455 if (likely(p))
5456 return p;
5457 }
5458
5459 class = sched_class_highest;
5460 for ( ; ; ) {
5461 p = class->pick_next_task(rq);
5462 if (p)
5463 return p;
5464 /*
5465 * Will never be NULL as the idle class always
5466 * returns a non-NULL p:
5467 */
5468 class = class->next;
5469 }
5470 }
5471
5472 /*
5473 * schedule() is the main scheduler function.
5474 */
5475 asmlinkage void __sched schedule(void)
5476 {
5477 struct task_struct *prev, *next;
5478 unsigned long *switch_count;
5479 struct rq *rq;
5480 int cpu;
5481
5482 need_resched:
5483 preempt_disable();
5484 cpu = smp_processor_id();
5485 rq = cpu_rq(cpu);
5486 rcu_sched_qs(cpu);
5487 prev = rq->curr;
5488 switch_count = &prev->nivcsw;
5489
5490 release_kernel_lock(prev);
5491 need_resched_nonpreemptible:
5492
5493 schedule_debug(prev);
5494
5495 if (sched_feat(HRTICK))
5496 hrtick_clear(rq);
5497
5498 raw_spin_lock_irq(&rq->lock);
5499 update_rq_clock(rq);
5500 clear_tsk_need_resched(prev);
5501
5502 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5503 if (unlikely(signal_pending_state(prev->state, prev)))
5504 prev->state = TASK_RUNNING;
5505 else
5506 deactivate_task(rq, prev, 1);
5507 switch_count = &prev->nvcsw;
5508 }
5509
5510 pre_schedule(rq, prev);
5511
5512 if (unlikely(!rq->nr_running))
5513 idle_balance(cpu, rq);
5514
5515 put_prev_task(rq, prev);
5516 next = pick_next_task(rq);
5517
5518 if (likely(prev != next)) {
5519 sched_info_switch(prev, next);
5520 perf_event_task_sched_out(prev, next, cpu);
5521
5522 rq->nr_switches++;
5523 rq->curr = next;
5524 ++*switch_count;
5525
5526 context_switch(rq, prev, next); /* unlocks the rq */
5527 /*
5528 * the context switch might have flipped the stack from under
5529 * us, hence refresh the local variables.
5530 */
5531 cpu = smp_processor_id();
5532 rq = cpu_rq(cpu);
5533 } else
5534 raw_spin_unlock_irq(&rq->lock);
5535
5536 post_schedule(rq);
5537
5538 if (unlikely(reacquire_kernel_lock(current) < 0))
5539 goto need_resched_nonpreemptible;
5540
5541 preempt_enable_no_resched();
5542 if (need_resched())
5543 goto need_resched;
5544 }
5545 EXPORT_SYMBOL(schedule);
5546
5547 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5548 /*
5549 * Look out! "owner" is an entirely speculative pointer
5550 * access and not reliable.
5551 */
5552 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5553 {
5554 unsigned int cpu;
5555 struct rq *rq;
5556
5557 if (!sched_feat(OWNER_SPIN))
5558 return 0;
5559
5560 #ifdef CONFIG_DEBUG_PAGEALLOC
5561 /*
5562 * Need to access the cpu field knowing that
5563 * DEBUG_PAGEALLOC could have unmapped it if
5564 * the mutex owner just released it and exited.
5565 */
5566 if (probe_kernel_address(&owner->cpu, cpu))
5567 goto out;
5568 #else
5569 cpu = owner->cpu;
5570 #endif
5571
5572 /*
5573 * Even if the access succeeded (likely case),
5574 * the cpu field may no longer be valid.
5575 */
5576 if (cpu >= nr_cpumask_bits)
5577 goto out;
5578
5579 /*
5580 * We need to validate that we can do a
5581 * get_cpu() and that we have the percpu area.
5582 */
5583 if (!cpu_online(cpu))
5584 goto out;
5585
5586 rq = cpu_rq(cpu);
5587
5588 for (;;) {
5589 /*
5590 * Owner changed, break to re-assess state.
5591 */
5592 if (lock->owner != owner)
5593 break;
5594
5595 /*
5596 * Is that owner really running on that cpu?
5597 */
5598 if (task_thread_info(rq->curr) != owner || need_resched())
5599 return 0;
5600
5601 cpu_relax();
5602 }
5603 out:
5604 return 1;
5605 }
5606 #endif
5607
5608 #ifdef CONFIG_PREEMPT
5609 /*
5610 * this is the entry point to schedule() from in-kernel preemption
5611 * off of preempt_enable. Kernel preemptions off return from interrupt
5612 * occur there and call schedule directly.
5613 */
5614 asmlinkage void __sched preempt_schedule(void)
5615 {
5616 struct thread_info *ti = current_thread_info();
5617
5618 /*
5619 * If there is a non-zero preempt_count or interrupts are disabled,
5620 * we do not want to preempt the current task. Just return..
5621 */
5622 if (likely(ti->preempt_count || irqs_disabled()))
5623 return;
5624
5625 do {
5626 add_preempt_count(PREEMPT_ACTIVE);
5627 schedule();
5628 sub_preempt_count(PREEMPT_ACTIVE);
5629
5630 /*
5631 * Check again in case we missed a preemption opportunity
5632 * between schedule and now.
5633 */
5634 barrier();
5635 } while (need_resched());
5636 }
5637 EXPORT_SYMBOL(preempt_schedule);
5638
5639 /*
5640 * this is the entry point to schedule() from kernel preemption
5641 * off of irq context.
5642 * Note, that this is called and return with irqs disabled. This will
5643 * protect us against recursive calling from irq.
5644 */
5645 asmlinkage void __sched preempt_schedule_irq(void)
5646 {
5647 struct thread_info *ti = current_thread_info();
5648
5649 /* Catch callers which need to be fixed */
5650 BUG_ON(ti->preempt_count || !irqs_disabled());
5651
5652 do {
5653 add_preempt_count(PREEMPT_ACTIVE);
5654 local_irq_enable();
5655 schedule();
5656 local_irq_disable();
5657 sub_preempt_count(PREEMPT_ACTIVE);
5658
5659 /*
5660 * Check again in case we missed a preemption opportunity
5661 * between schedule and now.
5662 */
5663 barrier();
5664 } while (need_resched());
5665 }
5666
5667 #endif /* CONFIG_PREEMPT */
5668
5669 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5670 void *key)
5671 {
5672 return try_to_wake_up(curr->private, mode, wake_flags);
5673 }
5674 EXPORT_SYMBOL(default_wake_function);
5675
5676 /*
5677 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5678 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5679 * number) then we wake all the non-exclusive tasks and one exclusive task.
5680 *
5681 * There are circumstances in which we can try to wake a task which has already
5682 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5683 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5684 */
5685 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5686 int nr_exclusive, int wake_flags, void *key)
5687 {
5688 wait_queue_t *curr, *next;
5689
5690 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5691 unsigned flags = curr->flags;
5692
5693 if (curr->func(curr, mode, wake_flags, key) &&
5694 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5695 break;
5696 }
5697 }
5698
5699 /**
5700 * __wake_up - wake up threads blocked on a waitqueue.
5701 * @q: the waitqueue
5702 * @mode: which threads
5703 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5704 * @key: is directly passed to the wakeup function
5705 *
5706 * It may be assumed that this function implies a write memory barrier before
5707 * changing the task state if and only if any tasks are woken up.
5708 */
5709 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5710 int nr_exclusive, void *key)
5711 {
5712 unsigned long flags;
5713
5714 spin_lock_irqsave(&q->lock, flags);
5715 __wake_up_common(q, mode, nr_exclusive, 0, key);
5716 spin_unlock_irqrestore(&q->lock, flags);
5717 }
5718 EXPORT_SYMBOL(__wake_up);
5719
5720 /*
5721 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5722 */
5723 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5724 {
5725 __wake_up_common(q, mode, 1, 0, NULL);
5726 }
5727
5728 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5729 {
5730 __wake_up_common(q, mode, 1, 0, key);
5731 }
5732
5733 /**
5734 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5735 * @q: the waitqueue
5736 * @mode: which threads
5737 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5738 * @key: opaque value to be passed to wakeup targets
5739 *
5740 * The sync wakeup differs that the waker knows that it will schedule
5741 * away soon, so while the target thread will be woken up, it will not
5742 * be migrated to another CPU - ie. the two threads are 'synchronized'
5743 * with each other. This can prevent needless bouncing between CPUs.
5744 *
5745 * On UP it can prevent extra preemption.
5746 *
5747 * It may be assumed that this function implies a write memory barrier before
5748 * changing the task state if and only if any tasks are woken up.
5749 */
5750 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5751 int nr_exclusive, void *key)
5752 {
5753 unsigned long flags;
5754 int wake_flags = WF_SYNC;
5755
5756 if (unlikely(!q))
5757 return;
5758
5759 if (unlikely(!nr_exclusive))
5760 wake_flags = 0;
5761
5762 spin_lock_irqsave(&q->lock, flags);
5763 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5764 spin_unlock_irqrestore(&q->lock, flags);
5765 }
5766 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5767
5768 /*
5769 * __wake_up_sync - see __wake_up_sync_key()
5770 */
5771 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5772 {
5773 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5774 }
5775 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5776
5777 /**
5778 * complete: - signals a single thread waiting on this completion
5779 * @x: holds the state of this particular completion
5780 *
5781 * This will wake up a single thread waiting on this completion. Threads will be
5782 * awakened in the same order in which they were queued.
5783 *
5784 * See also complete_all(), wait_for_completion() and related routines.
5785 *
5786 * It may be assumed that this function implies a write memory barrier before
5787 * changing the task state if and only if any tasks are woken up.
5788 */
5789 void complete(struct completion *x)
5790 {
5791 unsigned long flags;
5792
5793 spin_lock_irqsave(&x->wait.lock, flags);
5794 x->done++;
5795 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5796 spin_unlock_irqrestore(&x->wait.lock, flags);
5797 }
5798 EXPORT_SYMBOL(complete);
5799
5800 /**
5801 * complete_all: - signals all threads waiting on this completion
5802 * @x: holds the state of this particular completion
5803 *
5804 * This will wake up all threads waiting on this particular completion event.
5805 *
5806 * It may be assumed that this function implies a write memory barrier before
5807 * changing the task state if and only if any tasks are woken up.
5808 */
5809 void complete_all(struct completion *x)
5810 {
5811 unsigned long flags;
5812
5813 spin_lock_irqsave(&x->wait.lock, flags);
5814 x->done += UINT_MAX/2;
5815 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5816 spin_unlock_irqrestore(&x->wait.lock, flags);
5817 }
5818 EXPORT_SYMBOL(complete_all);
5819
5820 static inline long __sched
5821 do_wait_for_common(struct completion *x, long timeout, int state)
5822 {
5823 if (!x->done) {
5824 DECLARE_WAITQUEUE(wait, current);
5825
5826 wait.flags |= WQ_FLAG_EXCLUSIVE;
5827 __add_wait_queue_tail(&x->wait, &wait);
5828 do {
5829 if (signal_pending_state(state, current)) {
5830 timeout = -ERESTARTSYS;
5831 break;
5832 }
5833 __set_current_state(state);
5834 spin_unlock_irq(&x->wait.lock);
5835 timeout = schedule_timeout(timeout);
5836 spin_lock_irq(&x->wait.lock);
5837 } while (!x->done && timeout);
5838 __remove_wait_queue(&x->wait, &wait);
5839 if (!x->done)
5840 return timeout;
5841 }
5842 x->done--;
5843 return timeout ?: 1;
5844 }
5845
5846 static long __sched
5847 wait_for_common(struct completion *x, long timeout, int state)
5848 {
5849 might_sleep();
5850
5851 spin_lock_irq(&x->wait.lock);
5852 timeout = do_wait_for_common(x, timeout, state);
5853 spin_unlock_irq(&x->wait.lock);
5854 return timeout;
5855 }
5856
5857 /**
5858 * wait_for_completion: - waits for completion of a task
5859 * @x: holds the state of this particular completion
5860 *
5861 * This waits to be signaled for completion of a specific task. It is NOT
5862 * interruptible and there is no timeout.
5863 *
5864 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5865 * and interrupt capability. Also see complete().
5866 */
5867 void __sched wait_for_completion(struct completion *x)
5868 {
5869 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5870 }
5871 EXPORT_SYMBOL(wait_for_completion);
5872
5873 /**
5874 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5875 * @x: holds the state of this particular completion
5876 * @timeout: timeout value in jiffies
5877 *
5878 * This waits for either a completion of a specific task to be signaled or for a
5879 * specified timeout to expire. The timeout is in jiffies. It is not
5880 * interruptible.
5881 */
5882 unsigned long __sched
5883 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5884 {
5885 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5886 }
5887 EXPORT_SYMBOL(wait_for_completion_timeout);
5888
5889 /**
5890 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5891 * @x: holds the state of this particular completion
5892 *
5893 * This waits for completion of a specific task to be signaled. It is
5894 * interruptible.
5895 */
5896 int __sched wait_for_completion_interruptible(struct completion *x)
5897 {
5898 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5899 if (t == -ERESTARTSYS)
5900 return t;
5901 return 0;
5902 }
5903 EXPORT_SYMBOL(wait_for_completion_interruptible);
5904
5905 /**
5906 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5907 * @x: holds the state of this particular completion
5908 * @timeout: timeout value in jiffies
5909 *
5910 * This waits for either a completion of a specific task to be signaled or for a
5911 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5912 */
5913 unsigned long __sched
5914 wait_for_completion_interruptible_timeout(struct completion *x,
5915 unsigned long timeout)
5916 {
5917 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5918 }
5919 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5920
5921 /**
5922 * wait_for_completion_killable: - waits for completion of a task (killable)
5923 * @x: holds the state of this particular completion
5924 *
5925 * This waits to be signaled for completion of a specific task. It can be
5926 * interrupted by a kill signal.
5927 */
5928 int __sched wait_for_completion_killable(struct completion *x)
5929 {
5930 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5931 if (t == -ERESTARTSYS)
5932 return t;
5933 return 0;
5934 }
5935 EXPORT_SYMBOL(wait_for_completion_killable);
5936
5937 /**
5938 * try_wait_for_completion - try to decrement a completion without blocking
5939 * @x: completion structure
5940 *
5941 * Returns: 0 if a decrement cannot be done without blocking
5942 * 1 if a decrement succeeded.
5943 *
5944 * If a completion is being used as a counting completion,
5945 * attempt to decrement the counter without blocking. This
5946 * enables us to avoid waiting if the resource the completion
5947 * is protecting is not available.
5948 */
5949 bool try_wait_for_completion(struct completion *x)
5950 {
5951 unsigned long flags;
5952 int ret = 1;
5953
5954 spin_lock_irqsave(&x->wait.lock, flags);
5955 if (!x->done)
5956 ret = 0;
5957 else
5958 x->done--;
5959 spin_unlock_irqrestore(&x->wait.lock, flags);
5960 return ret;
5961 }
5962 EXPORT_SYMBOL(try_wait_for_completion);
5963
5964 /**
5965 * completion_done - Test to see if a completion has any waiters
5966 * @x: completion structure
5967 *
5968 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5969 * 1 if there are no waiters.
5970 *
5971 */
5972 bool completion_done(struct completion *x)
5973 {
5974 unsigned long flags;
5975 int ret = 1;
5976
5977 spin_lock_irqsave(&x->wait.lock, flags);
5978 if (!x->done)
5979 ret = 0;
5980 spin_unlock_irqrestore(&x->wait.lock, flags);
5981 return ret;
5982 }
5983 EXPORT_SYMBOL(completion_done);
5984
5985 static long __sched
5986 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5987 {
5988 unsigned long flags;
5989 wait_queue_t wait;
5990
5991 init_waitqueue_entry(&wait, current);
5992
5993 __set_current_state(state);
5994
5995 spin_lock_irqsave(&q->lock, flags);
5996 __add_wait_queue(q, &wait);
5997 spin_unlock(&q->lock);
5998 timeout = schedule_timeout(timeout);
5999 spin_lock_irq(&q->lock);
6000 __remove_wait_queue(q, &wait);
6001 spin_unlock_irqrestore(&q->lock, flags);
6002
6003 return timeout;
6004 }
6005
6006 void __sched interruptible_sleep_on(wait_queue_head_t *q)
6007 {
6008 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6009 }
6010 EXPORT_SYMBOL(interruptible_sleep_on);
6011
6012 long __sched
6013 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
6014 {
6015 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
6016 }
6017 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6018
6019 void __sched sleep_on(wait_queue_head_t *q)
6020 {
6021 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6022 }
6023 EXPORT_SYMBOL(sleep_on);
6024
6025 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
6026 {
6027 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
6028 }
6029 EXPORT_SYMBOL(sleep_on_timeout);
6030
6031 #ifdef CONFIG_RT_MUTEXES
6032
6033 /*
6034 * rt_mutex_setprio - set the current priority of a task
6035 * @p: task
6036 * @prio: prio value (kernel-internal form)
6037 *
6038 * This function changes the 'effective' priority of a task. It does
6039 * not touch ->normal_prio like __setscheduler().
6040 *
6041 * Used by the rt_mutex code to implement priority inheritance logic.
6042 */
6043 void rt_mutex_setprio(struct task_struct *p, int prio)
6044 {
6045 unsigned long flags;
6046 int oldprio, on_rq, running;
6047 struct rq *rq;
6048 const struct sched_class *prev_class = p->sched_class;
6049
6050 BUG_ON(prio < 0 || prio > MAX_PRIO);
6051
6052 rq = task_rq_lock(p, &flags);
6053 update_rq_clock(rq);
6054
6055 oldprio = p->prio;
6056 on_rq = p->se.on_rq;
6057 running = task_current(rq, p);
6058 if (on_rq)
6059 dequeue_task(rq, p, 0);
6060 if (running)
6061 p->sched_class->put_prev_task(rq, p);
6062
6063 if (rt_prio(prio))
6064 p->sched_class = &rt_sched_class;
6065 else
6066 p->sched_class = &fair_sched_class;
6067
6068 p->prio = prio;
6069
6070 if (running)
6071 p->sched_class->set_curr_task(rq);
6072 if (on_rq) {
6073 enqueue_task(rq, p, 0);
6074
6075 check_class_changed(rq, p, prev_class, oldprio, running);
6076 }
6077 task_rq_unlock(rq, &flags);
6078 }
6079
6080 #endif
6081
6082 void set_user_nice(struct task_struct *p, long nice)
6083 {
6084 int old_prio, delta, on_rq;
6085 unsigned long flags;
6086 struct rq *rq;
6087
6088 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6089 return;
6090 /*
6091 * We have to be careful, if called from sys_setpriority(),
6092 * the task might be in the middle of scheduling on another CPU.
6093 */
6094 rq = task_rq_lock(p, &flags);
6095 update_rq_clock(rq);
6096 /*
6097 * The RT priorities are set via sched_setscheduler(), but we still
6098 * allow the 'normal' nice value to be set - but as expected
6099 * it wont have any effect on scheduling until the task is
6100 * SCHED_FIFO/SCHED_RR:
6101 */
6102 if (task_has_rt_policy(p)) {
6103 p->static_prio = NICE_TO_PRIO(nice);
6104 goto out_unlock;
6105 }
6106 on_rq = p->se.on_rq;
6107 if (on_rq)
6108 dequeue_task(rq, p, 0);
6109
6110 p->static_prio = NICE_TO_PRIO(nice);
6111 set_load_weight(p);
6112 old_prio = p->prio;
6113 p->prio = effective_prio(p);
6114 delta = p->prio - old_prio;
6115
6116 if (on_rq) {
6117 enqueue_task(rq, p, 0);
6118 /*
6119 * If the task increased its priority or is running and
6120 * lowered its priority, then reschedule its CPU:
6121 */
6122 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6123 resched_task(rq->curr);
6124 }
6125 out_unlock:
6126 task_rq_unlock(rq, &flags);
6127 }
6128 EXPORT_SYMBOL(set_user_nice);
6129
6130 /*
6131 * can_nice - check if a task can reduce its nice value
6132 * @p: task
6133 * @nice: nice value
6134 */
6135 int can_nice(const struct task_struct *p, const int nice)
6136 {
6137 /* convert nice value [19,-20] to rlimit style value [1,40] */
6138 int nice_rlim = 20 - nice;
6139
6140 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6141 capable(CAP_SYS_NICE));
6142 }
6143
6144 #ifdef __ARCH_WANT_SYS_NICE
6145
6146 /*
6147 * sys_nice - change the priority of the current process.
6148 * @increment: priority increment
6149 *
6150 * sys_setpriority is a more generic, but much slower function that
6151 * does similar things.
6152 */
6153 SYSCALL_DEFINE1(nice, int, increment)
6154 {
6155 long nice, retval;
6156
6157 /*
6158 * Setpriority might change our priority at the same moment.
6159 * We don't have to worry. Conceptually one call occurs first
6160 * and we have a single winner.
6161 */
6162 if (increment < -40)
6163 increment = -40;
6164 if (increment > 40)
6165 increment = 40;
6166
6167 nice = TASK_NICE(current) + increment;
6168 if (nice < -20)
6169 nice = -20;
6170 if (nice > 19)
6171 nice = 19;
6172
6173 if (increment < 0 && !can_nice(current, nice))
6174 return -EPERM;
6175
6176 retval = security_task_setnice(current, nice);
6177 if (retval)
6178 return retval;
6179
6180 set_user_nice(current, nice);
6181 return 0;
6182 }
6183
6184 #endif
6185
6186 /**
6187 * task_prio - return the priority value of a given task.
6188 * @p: the task in question.
6189 *
6190 * This is the priority value as seen by users in /proc.
6191 * RT tasks are offset by -200. Normal tasks are centered
6192 * around 0, value goes from -16 to +15.
6193 */
6194 int task_prio(const struct task_struct *p)
6195 {
6196 return p->prio - MAX_RT_PRIO;
6197 }
6198
6199 /**
6200 * task_nice - return the nice value of a given task.
6201 * @p: the task in question.
6202 */
6203 int task_nice(const struct task_struct *p)
6204 {
6205 return TASK_NICE(p);
6206 }
6207 EXPORT_SYMBOL(task_nice);
6208
6209 /**
6210 * idle_cpu - is a given cpu idle currently?
6211 * @cpu: the processor in question.
6212 */
6213 int idle_cpu(int cpu)
6214 {
6215 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6216 }
6217
6218 /**
6219 * idle_task - return the idle task for a given cpu.
6220 * @cpu: the processor in question.
6221 */
6222 struct task_struct *idle_task(int cpu)
6223 {
6224 return cpu_rq(cpu)->idle;
6225 }
6226
6227 /**
6228 * find_process_by_pid - find a process with a matching PID value.
6229 * @pid: the pid in question.
6230 */
6231 static struct task_struct *find_process_by_pid(pid_t pid)
6232 {
6233 return pid ? find_task_by_vpid(pid) : current;
6234 }
6235
6236 /* Actually do priority change: must hold rq lock. */
6237 static void
6238 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6239 {
6240 BUG_ON(p->se.on_rq);
6241
6242 p->policy = policy;
6243 p->rt_priority = prio;
6244 p->normal_prio = normal_prio(p);
6245 /* we are holding p->pi_lock already */
6246 p->prio = rt_mutex_getprio(p);
6247 if (rt_prio(p->prio))
6248 p->sched_class = &rt_sched_class;
6249 else
6250 p->sched_class = &fair_sched_class;
6251 set_load_weight(p);
6252 }
6253
6254 /*
6255 * check the target process has a UID that matches the current process's
6256 */
6257 static bool check_same_owner(struct task_struct *p)
6258 {
6259 const struct cred *cred = current_cred(), *pcred;
6260 bool match;
6261
6262 rcu_read_lock();
6263 pcred = __task_cred(p);
6264 match = (cred->euid == pcred->euid ||
6265 cred->euid == pcred->uid);
6266 rcu_read_unlock();
6267 return match;
6268 }
6269
6270 static int __sched_setscheduler(struct task_struct *p, int policy,
6271 struct sched_param *param, bool user)
6272 {
6273 int retval, oldprio, oldpolicy = -1, on_rq, running;
6274 unsigned long flags;
6275 const struct sched_class *prev_class = p->sched_class;
6276 struct rq *rq;
6277 int reset_on_fork;
6278
6279 /* may grab non-irq protected spin_locks */
6280 BUG_ON(in_interrupt());
6281 recheck:
6282 /* double check policy once rq lock held */
6283 if (policy < 0) {
6284 reset_on_fork = p->sched_reset_on_fork;
6285 policy = oldpolicy = p->policy;
6286 } else {
6287 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6288 policy &= ~SCHED_RESET_ON_FORK;
6289
6290 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6291 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6292 policy != SCHED_IDLE)
6293 return -EINVAL;
6294 }
6295
6296 /*
6297 * Valid priorities for SCHED_FIFO and SCHED_RR are
6298 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6299 * SCHED_BATCH and SCHED_IDLE is 0.
6300 */
6301 if (param->sched_priority < 0 ||
6302 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6303 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6304 return -EINVAL;
6305 if (rt_policy(policy) != (param->sched_priority != 0))
6306 return -EINVAL;
6307
6308 /*
6309 * Allow unprivileged RT tasks to decrease priority:
6310 */
6311 if (user && !capable(CAP_SYS_NICE)) {
6312 if (rt_policy(policy)) {
6313 unsigned long rlim_rtprio;
6314
6315 if (!lock_task_sighand(p, &flags))
6316 return -ESRCH;
6317 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6318 unlock_task_sighand(p, &flags);
6319
6320 /* can't set/change the rt policy */
6321 if (policy != p->policy && !rlim_rtprio)
6322 return -EPERM;
6323
6324 /* can't increase priority */
6325 if (param->sched_priority > p->rt_priority &&
6326 param->sched_priority > rlim_rtprio)
6327 return -EPERM;
6328 }
6329 /*
6330 * Like positive nice levels, dont allow tasks to
6331 * move out of SCHED_IDLE either:
6332 */
6333 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6334 return -EPERM;
6335
6336 /* can't change other user's priorities */
6337 if (!check_same_owner(p))
6338 return -EPERM;
6339
6340 /* Normal users shall not reset the sched_reset_on_fork flag */
6341 if (p->sched_reset_on_fork && !reset_on_fork)
6342 return -EPERM;
6343 }
6344
6345 if (user) {
6346 #ifdef CONFIG_RT_GROUP_SCHED
6347 /*
6348 * Do not allow realtime tasks into groups that have no runtime
6349 * assigned.
6350 */
6351 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6352 task_group(p)->rt_bandwidth.rt_runtime == 0)
6353 return -EPERM;
6354 #endif
6355
6356 retval = security_task_setscheduler(p, policy, param);
6357 if (retval)
6358 return retval;
6359 }
6360
6361 /*
6362 * make sure no PI-waiters arrive (or leave) while we are
6363 * changing the priority of the task:
6364 */
6365 raw_spin_lock_irqsave(&p->pi_lock, flags);
6366 /*
6367 * To be able to change p->policy safely, the apropriate
6368 * runqueue lock must be held.
6369 */
6370 rq = __task_rq_lock(p);
6371 /* recheck policy now with rq lock held */
6372 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6373 policy = oldpolicy = -1;
6374 __task_rq_unlock(rq);
6375 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6376 goto recheck;
6377 }
6378 update_rq_clock(rq);
6379 on_rq = p->se.on_rq;
6380 running = task_current(rq, p);
6381 if (on_rq)
6382 deactivate_task(rq, p, 0);
6383 if (running)
6384 p->sched_class->put_prev_task(rq, p);
6385
6386 p->sched_reset_on_fork = reset_on_fork;
6387
6388 oldprio = p->prio;
6389 __setscheduler(rq, p, policy, param->sched_priority);
6390
6391 if (running)
6392 p->sched_class->set_curr_task(rq);
6393 if (on_rq) {
6394 activate_task(rq, p, 0);
6395
6396 check_class_changed(rq, p, prev_class, oldprio, running);
6397 }
6398 __task_rq_unlock(rq);
6399 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6400
6401 rt_mutex_adjust_pi(p);
6402
6403 return 0;
6404 }
6405
6406 /**
6407 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6408 * @p: the task in question.
6409 * @policy: new policy.
6410 * @param: structure containing the new RT priority.
6411 *
6412 * NOTE that the task may be already dead.
6413 */
6414 int sched_setscheduler(struct task_struct *p, int policy,
6415 struct sched_param *param)
6416 {
6417 return __sched_setscheduler(p, policy, param, true);
6418 }
6419 EXPORT_SYMBOL_GPL(sched_setscheduler);
6420
6421 /**
6422 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6423 * @p: the task in question.
6424 * @policy: new policy.
6425 * @param: structure containing the new RT priority.
6426 *
6427 * Just like sched_setscheduler, only don't bother checking if the
6428 * current context has permission. For example, this is needed in
6429 * stop_machine(): we create temporary high priority worker threads,
6430 * but our caller might not have that capability.
6431 */
6432 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6433 struct sched_param *param)
6434 {
6435 return __sched_setscheduler(p, policy, param, false);
6436 }
6437
6438 static int
6439 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6440 {
6441 struct sched_param lparam;
6442 struct task_struct *p;
6443 int retval;
6444
6445 if (!param || pid < 0)
6446 return -EINVAL;
6447 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6448 return -EFAULT;
6449
6450 rcu_read_lock();
6451 retval = -ESRCH;
6452 p = find_process_by_pid(pid);
6453 if (p != NULL)
6454 retval = sched_setscheduler(p, policy, &lparam);
6455 rcu_read_unlock();
6456
6457 return retval;
6458 }
6459
6460 /**
6461 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6462 * @pid: the pid in question.
6463 * @policy: new policy.
6464 * @param: structure containing the new RT priority.
6465 */
6466 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6467 struct sched_param __user *, param)
6468 {
6469 /* negative values for policy are not valid */
6470 if (policy < 0)
6471 return -EINVAL;
6472
6473 return do_sched_setscheduler(pid, policy, param);
6474 }
6475
6476 /**
6477 * sys_sched_setparam - set/change the RT priority of a thread
6478 * @pid: the pid in question.
6479 * @param: structure containing the new RT priority.
6480 */
6481 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6482 {
6483 return do_sched_setscheduler(pid, -1, param);
6484 }
6485
6486 /**
6487 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6488 * @pid: the pid in question.
6489 */
6490 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6491 {
6492 struct task_struct *p;
6493 int retval;
6494
6495 if (pid < 0)
6496 return -EINVAL;
6497
6498 retval = -ESRCH;
6499 rcu_read_lock();
6500 p = find_process_by_pid(pid);
6501 if (p) {
6502 retval = security_task_getscheduler(p);
6503 if (!retval)
6504 retval = p->policy
6505 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6506 }
6507 rcu_read_unlock();
6508 return retval;
6509 }
6510
6511 /**
6512 * sys_sched_getparam - get the RT priority of a thread
6513 * @pid: the pid in question.
6514 * @param: structure containing the RT priority.
6515 */
6516 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6517 {
6518 struct sched_param lp;
6519 struct task_struct *p;
6520 int retval;
6521
6522 if (!param || pid < 0)
6523 return -EINVAL;
6524
6525 rcu_read_lock();
6526 p = find_process_by_pid(pid);
6527 retval = -ESRCH;
6528 if (!p)
6529 goto out_unlock;
6530
6531 retval = security_task_getscheduler(p);
6532 if (retval)
6533 goto out_unlock;
6534
6535 lp.sched_priority = p->rt_priority;
6536 rcu_read_unlock();
6537
6538 /*
6539 * This one might sleep, we cannot do it with a spinlock held ...
6540 */
6541 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6542
6543 return retval;
6544
6545 out_unlock:
6546 rcu_read_unlock();
6547 return retval;
6548 }
6549
6550 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6551 {
6552 cpumask_var_t cpus_allowed, new_mask;
6553 struct task_struct *p;
6554 int retval;
6555
6556 get_online_cpus();
6557 rcu_read_lock();
6558
6559 p = find_process_by_pid(pid);
6560 if (!p) {
6561 rcu_read_unlock();
6562 put_online_cpus();
6563 return -ESRCH;
6564 }
6565
6566 /* Prevent p going away */
6567 get_task_struct(p);
6568 rcu_read_unlock();
6569
6570 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6571 retval = -ENOMEM;
6572 goto out_put_task;
6573 }
6574 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6575 retval = -ENOMEM;
6576 goto out_free_cpus_allowed;
6577 }
6578 retval = -EPERM;
6579 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6580 goto out_unlock;
6581
6582 retval = security_task_setscheduler(p, 0, NULL);
6583 if (retval)
6584 goto out_unlock;
6585
6586 cpuset_cpus_allowed(p, cpus_allowed);
6587 cpumask_and(new_mask, in_mask, cpus_allowed);
6588 again:
6589 retval = set_cpus_allowed_ptr(p, new_mask);
6590
6591 if (!retval) {
6592 cpuset_cpus_allowed(p, cpus_allowed);
6593 if (!cpumask_subset(new_mask, cpus_allowed)) {
6594 /*
6595 * We must have raced with a concurrent cpuset
6596 * update. Just reset the cpus_allowed to the
6597 * cpuset's cpus_allowed
6598 */
6599 cpumask_copy(new_mask, cpus_allowed);
6600 goto again;
6601 }
6602 }
6603 out_unlock:
6604 free_cpumask_var(new_mask);
6605 out_free_cpus_allowed:
6606 free_cpumask_var(cpus_allowed);
6607 out_put_task:
6608 put_task_struct(p);
6609 put_online_cpus();
6610 return retval;
6611 }
6612
6613 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6614 struct cpumask *new_mask)
6615 {
6616 if (len < cpumask_size())
6617 cpumask_clear(new_mask);
6618 else if (len > cpumask_size())
6619 len = cpumask_size();
6620
6621 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6622 }
6623
6624 /**
6625 * sys_sched_setaffinity - set the cpu affinity of a process
6626 * @pid: pid of the process
6627 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6628 * @user_mask_ptr: user-space pointer to the new cpu mask
6629 */
6630 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6631 unsigned long __user *, user_mask_ptr)
6632 {
6633 cpumask_var_t new_mask;
6634 int retval;
6635
6636 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6637 return -ENOMEM;
6638
6639 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6640 if (retval == 0)
6641 retval = sched_setaffinity(pid, new_mask);
6642 free_cpumask_var(new_mask);
6643 return retval;
6644 }
6645
6646 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6647 {
6648 struct task_struct *p;
6649 unsigned long flags;
6650 struct rq *rq;
6651 int retval;
6652
6653 get_online_cpus();
6654 rcu_read_lock();
6655
6656 retval = -ESRCH;
6657 p = find_process_by_pid(pid);
6658 if (!p)
6659 goto out_unlock;
6660
6661 retval = security_task_getscheduler(p);
6662 if (retval)
6663 goto out_unlock;
6664
6665 rq = task_rq_lock(p, &flags);
6666 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6667 task_rq_unlock(rq, &flags);
6668
6669 out_unlock:
6670 rcu_read_unlock();
6671 put_online_cpus();
6672
6673 return retval;
6674 }
6675
6676 /**
6677 * sys_sched_getaffinity - get the cpu affinity of a process
6678 * @pid: pid of the process
6679 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6680 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6681 */
6682 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6683 unsigned long __user *, user_mask_ptr)
6684 {
6685 int ret;
6686 cpumask_var_t mask;
6687
6688 if (len < cpumask_size())
6689 return -EINVAL;
6690
6691 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6692 return -ENOMEM;
6693
6694 ret = sched_getaffinity(pid, mask);
6695 if (ret == 0) {
6696 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6697 ret = -EFAULT;
6698 else
6699 ret = cpumask_size();
6700 }
6701 free_cpumask_var(mask);
6702
6703 return ret;
6704 }
6705
6706 /**
6707 * sys_sched_yield - yield the current processor to other threads.
6708 *
6709 * This function yields the current CPU to other tasks. If there are no
6710 * other threads running on this CPU then this function will return.
6711 */
6712 SYSCALL_DEFINE0(sched_yield)
6713 {
6714 struct rq *rq = this_rq_lock();
6715
6716 schedstat_inc(rq, yld_count);
6717 current->sched_class->yield_task(rq);
6718
6719 /*
6720 * Since we are going to call schedule() anyway, there's
6721 * no need to preempt or enable interrupts:
6722 */
6723 __release(rq->lock);
6724 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6725 do_raw_spin_unlock(&rq->lock);
6726 preempt_enable_no_resched();
6727
6728 schedule();
6729
6730 return 0;
6731 }
6732
6733 static inline int should_resched(void)
6734 {
6735 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6736 }
6737
6738 static void __cond_resched(void)
6739 {
6740 add_preempt_count(PREEMPT_ACTIVE);
6741 schedule();
6742 sub_preempt_count(PREEMPT_ACTIVE);
6743 }
6744
6745 int __sched _cond_resched(void)
6746 {
6747 if (should_resched()) {
6748 __cond_resched();
6749 return 1;
6750 }
6751 return 0;
6752 }
6753 EXPORT_SYMBOL(_cond_resched);
6754
6755 /*
6756 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6757 * call schedule, and on return reacquire the lock.
6758 *
6759 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6760 * operations here to prevent schedule() from being called twice (once via
6761 * spin_unlock(), once by hand).
6762 */
6763 int __cond_resched_lock(spinlock_t *lock)
6764 {
6765 int resched = should_resched();
6766 int ret = 0;
6767
6768 lockdep_assert_held(lock);
6769
6770 if (spin_needbreak(lock) || resched) {
6771 spin_unlock(lock);
6772 if (resched)
6773 __cond_resched();
6774 else
6775 cpu_relax();
6776 ret = 1;
6777 spin_lock(lock);
6778 }
6779 return ret;
6780 }
6781 EXPORT_SYMBOL(__cond_resched_lock);
6782
6783 int __sched __cond_resched_softirq(void)
6784 {
6785 BUG_ON(!in_softirq());
6786
6787 if (should_resched()) {
6788 local_bh_enable();
6789 __cond_resched();
6790 local_bh_disable();
6791 return 1;
6792 }
6793 return 0;
6794 }
6795 EXPORT_SYMBOL(__cond_resched_softirq);
6796
6797 /**
6798 * yield - yield the current processor to other threads.
6799 *
6800 * This is a shortcut for kernel-space yielding - it marks the
6801 * thread runnable and calls sys_sched_yield().
6802 */
6803 void __sched yield(void)
6804 {
6805 set_current_state(TASK_RUNNING);
6806 sys_sched_yield();
6807 }
6808 EXPORT_SYMBOL(yield);
6809
6810 /*
6811 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6812 * that process accounting knows that this is a task in IO wait state.
6813 */
6814 void __sched io_schedule(void)
6815 {
6816 struct rq *rq = raw_rq();
6817
6818 delayacct_blkio_start();
6819 atomic_inc(&rq->nr_iowait);
6820 current->in_iowait = 1;
6821 schedule();
6822 current->in_iowait = 0;
6823 atomic_dec(&rq->nr_iowait);
6824 delayacct_blkio_end();
6825 }
6826 EXPORT_SYMBOL(io_schedule);
6827
6828 long __sched io_schedule_timeout(long timeout)
6829 {
6830 struct rq *rq = raw_rq();
6831 long ret;
6832
6833 delayacct_blkio_start();
6834 atomic_inc(&rq->nr_iowait);
6835 current->in_iowait = 1;
6836 ret = schedule_timeout(timeout);
6837 current->in_iowait = 0;
6838 atomic_dec(&rq->nr_iowait);
6839 delayacct_blkio_end();
6840 return ret;
6841 }
6842
6843 /**
6844 * sys_sched_get_priority_max - return maximum RT priority.
6845 * @policy: scheduling class.
6846 *
6847 * this syscall returns the maximum rt_priority that can be used
6848 * by a given scheduling class.
6849 */
6850 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6851 {
6852 int ret = -EINVAL;
6853
6854 switch (policy) {
6855 case SCHED_FIFO:
6856 case SCHED_RR:
6857 ret = MAX_USER_RT_PRIO-1;
6858 break;
6859 case SCHED_NORMAL:
6860 case SCHED_BATCH:
6861 case SCHED_IDLE:
6862 ret = 0;
6863 break;
6864 }
6865 return ret;
6866 }
6867
6868 /**
6869 * sys_sched_get_priority_min - return minimum RT priority.
6870 * @policy: scheduling class.
6871 *
6872 * this syscall returns the minimum rt_priority that can be used
6873 * by a given scheduling class.
6874 */
6875 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6876 {
6877 int ret = -EINVAL;
6878
6879 switch (policy) {
6880 case SCHED_FIFO:
6881 case SCHED_RR:
6882 ret = 1;
6883 break;
6884 case SCHED_NORMAL:
6885 case SCHED_BATCH:
6886 case SCHED_IDLE:
6887 ret = 0;
6888 }
6889 return ret;
6890 }
6891
6892 /**
6893 * sys_sched_rr_get_interval - return the default timeslice of a process.
6894 * @pid: pid of the process.
6895 * @interval: userspace pointer to the timeslice value.
6896 *
6897 * this syscall writes the default timeslice value of a given process
6898 * into the user-space timespec buffer. A value of '0' means infinity.
6899 */
6900 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6901 struct timespec __user *, interval)
6902 {
6903 struct task_struct *p;
6904 unsigned int time_slice;
6905 unsigned long flags;
6906 struct rq *rq;
6907 int retval;
6908 struct timespec t;
6909
6910 if (pid < 0)
6911 return -EINVAL;
6912
6913 retval = -ESRCH;
6914 rcu_read_lock();
6915 p = find_process_by_pid(pid);
6916 if (!p)
6917 goto out_unlock;
6918
6919 retval = security_task_getscheduler(p);
6920 if (retval)
6921 goto out_unlock;
6922
6923 rq = task_rq_lock(p, &flags);
6924 time_slice = p->sched_class->get_rr_interval(rq, p);
6925 task_rq_unlock(rq, &flags);
6926
6927 rcu_read_unlock();
6928 jiffies_to_timespec(time_slice, &t);
6929 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6930 return retval;
6931
6932 out_unlock:
6933 rcu_read_unlock();
6934 return retval;
6935 }
6936
6937 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6938
6939 void sched_show_task(struct task_struct *p)
6940 {
6941 unsigned long free = 0;
6942 unsigned state;
6943
6944 state = p->state ? __ffs(p->state) + 1 : 0;
6945 pr_info("%-13.13s %c", p->comm,
6946 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6947 #if BITS_PER_LONG == 32
6948 if (state == TASK_RUNNING)
6949 pr_cont(" running ");
6950 else
6951 pr_cont(" %08lx ", thread_saved_pc(p));
6952 #else
6953 if (state == TASK_RUNNING)
6954 pr_cont(" running task ");
6955 else
6956 pr_cont(" %016lx ", thread_saved_pc(p));
6957 #endif
6958 #ifdef CONFIG_DEBUG_STACK_USAGE
6959 free = stack_not_used(p);
6960 #endif
6961 pr_cont("%5lu %5d %6d 0x%08lx\n", free,
6962 task_pid_nr(p), task_pid_nr(p->real_parent),
6963 (unsigned long)task_thread_info(p)->flags);
6964
6965 show_stack(p, NULL);
6966 }
6967
6968 void show_state_filter(unsigned long state_filter)
6969 {
6970 struct task_struct *g, *p;
6971
6972 #if BITS_PER_LONG == 32
6973 pr_info(" task PC stack pid father\n");
6974 #else
6975 pr_info(" task PC stack pid father\n");
6976 #endif
6977 read_lock(&tasklist_lock);
6978 do_each_thread(g, p) {
6979 /*
6980 * reset the NMI-timeout, listing all files on a slow
6981 * console might take alot of time:
6982 */
6983 touch_nmi_watchdog();
6984 if (!state_filter || (p->state & state_filter))
6985 sched_show_task(p);
6986 } while_each_thread(g, p);
6987
6988 touch_all_softlockup_watchdogs();
6989
6990 #ifdef CONFIG_SCHED_DEBUG
6991 sysrq_sched_debug_show();
6992 #endif
6993 read_unlock(&tasklist_lock);
6994 /*
6995 * Only show locks if all tasks are dumped:
6996 */
6997 if (!state_filter)
6998 debug_show_all_locks();
6999 }
7000
7001 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7002 {
7003 idle->sched_class = &idle_sched_class;
7004 }
7005
7006 /**
7007 * init_idle - set up an idle thread for a given CPU
7008 * @idle: task in question
7009 * @cpu: cpu the idle task belongs to
7010 *
7011 * NOTE: this function does not set the idle thread's NEED_RESCHED
7012 * flag, to make booting more robust.
7013 */
7014 void __cpuinit init_idle(struct task_struct *idle, int cpu)
7015 {
7016 struct rq *rq = cpu_rq(cpu);
7017 unsigned long flags;
7018
7019 raw_spin_lock_irqsave(&rq->lock, flags);
7020
7021 __sched_fork(idle);
7022 idle->state = TASK_RUNNING;
7023 idle->se.exec_start = sched_clock();
7024
7025 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
7026 __set_task_cpu(idle, cpu);
7027
7028 rq->curr = rq->idle = idle;
7029 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7030 idle->oncpu = 1;
7031 #endif
7032 raw_spin_unlock_irqrestore(&rq->lock, flags);
7033
7034 /* Set the preempt count _outside_ the spinlocks! */
7035 #if defined(CONFIG_PREEMPT)
7036 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7037 #else
7038 task_thread_info(idle)->preempt_count = 0;
7039 #endif
7040 /*
7041 * The idle tasks have their own, simple scheduling class:
7042 */
7043 idle->sched_class = &idle_sched_class;
7044 ftrace_graph_init_task(idle);
7045 }
7046
7047 /*
7048 * In a system that switches off the HZ timer nohz_cpu_mask
7049 * indicates which cpus entered this state. This is used
7050 * in the rcu update to wait only for active cpus. For system
7051 * which do not switch off the HZ timer nohz_cpu_mask should
7052 * always be CPU_BITS_NONE.
7053 */
7054 cpumask_var_t nohz_cpu_mask;
7055
7056 /*
7057 * Increase the granularity value when there are more CPUs,
7058 * because with more CPUs the 'effective latency' as visible
7059 * to users decreases. But the relationship is not linear,
7060 * so pick a second-best guess by going with the log2 of the
7061 * number of CPUs.
7062 *
7063 * This idea comes from the SD scheduler of Con Kolivas:
7064 */
7065 static int get_update_sysctl_factor(void)
7066 {
7067 unsigned int cpus = min_t(int, num_online_cpus(), 8);
7068 unsigned int factor;
7069
7070 switch (sysctl_sched_tunable_scaling) {
7071 case SCHED_TUNABLESCALING_NONE:
7072 factor = 1;
7073 break;
7074 case SCHED_TUNABLESCALING_LINEAR:
7075 factor = cpus;
7076 break;
7077 case SCHED_TUNABLESCALING_LOG:
7078 default:
7079 factor = 1 + ilog2(cpus);
7080 break;
7081 }
7082
7083 return factor;
7084 }
7085
7086 static void update_sysctl(void)
7087 {
7088 unsigned int factor = get_update_sysctl_factor();
7089
7090 #define SET_SYSCTL(name) \
7091 (sysctl_##name = (factor) * normalized_sysctl_##name)
7092 SET_SYSCTL(sched_min_granularity);
7093 SET_SYSCTL(sched_latency);
7094 SET_SYSCTL(sched_wakeup_granularity);
7095 SET_SYSCTL(sched_shares_ratelimit);
7096 #undef SET_SYSCTL
7097 }
7098
7099 static inline void sched_init_granularity(void)
7100 {
7101 update_sysctl();
7102 }
7103
7104 #ifdef CONFIG_SMP
7105 /*
7106 * This is how migration works:
7107 *
7108 * 1) we queue a struct migration_req structure in the source CPU's
7109 * runqueue and wake up that CPU's migration thread.
7110 * 2) we down() the locked semaphore => thread blocks.
7111 * 3) migration thread wakes up (implicitly it forces the migrated
7112 * thread off the CPU)
7113 * 4) it gets the migration request and checks whether the migrated
7114 * task is still in the wrong runqueue.
7115 * 5) if it's in the wrong runqueue then the migration thread removes
7116 * it and puts it into the right queue.
7117 * 6) migration thread up()s the semaphore.
7118 * 7) we wake up and the migration is done.
7119 */
7120
7121 /*
7122 * Change a given task's CPU affinity. Migrate the thread to a
7123 * proper CPU and schedule it away if the CPU it's executing on
7124 * is removed from the allowed bitmask.
7125 *
7126 * NOTE: the caller must have a valid reference to the task, the
7127 * task must not exit() & deallocate itself prematurely. The
7128 * call is not atomic; no spinlocks may be held.
7129 */
7130 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7131 {
7132 struct migration_req req;
7133 unsigned long flags;
7134 struct rq *rq;
7135 int ret = 0;
7136
7137 /*
7138 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7139 * the ->cpus_allowed mask from under waking tasks, which would be
7140 * possible when we change rq->lock in ttwu(), so synchronize against
7141 * TASK_WAKING to avoid that.
7142 */
7143 again:
7144 while (p->state == TASK_WAKING)
7145 cpu_relax();
7146
7147 rq = task_rq_lock(p, &flags);
7148
7149 if (p->state == TASK_WAKING) {
7150 task_rq_unlock(rq, &flags);
7151 goto again;
7152 }
7153
7154 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7155 ret = -EINVAL;
7156 goto out;
7157 }
7158
7159 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7160 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7161 ret = -EINVAL;
7162 goto out;
7163 }
7164
7165 if (p->sched_class->set_cpus_allowed)
7166 p->sched_class->set_cpus_allowed(p, new_mask);
7167 else {
7168 cpumask_copy(&p->cpus_allowed, new_mask);
7169 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7170 }
7171
7172 /* Can the task run on the task's current CPU? If so, we're done */
7173 if (cpumask_test_cpu(task_cpu(p), new_mask))
7174 goto out;
7175
7176 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7177 /* Need help from migration thread: drop lock and wait. */
7178 struct task_struct *mt = rq->migration_thread;
7179
7180 get_task_struct(mt);
7181 task_rq_unlock(rq, &flags);
7182 wake_up_process(rq->migration_thread);
7183 put_task_struct(mt);
7184 wait_for_completion(&req.done);
7185 tlb_migrate_finish(p->mm);
7186 return 0;
7187 }
7188 out:
7189 task_rq_unlock(rq, &flags);
7190
7191 return ret;
7192 }
7193 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7194
7195 /*
7196 * Move (not current) task off this cpu, onto dest cpu. We're doing
7197 * this because either it can't run here any more (set_cpus_allowed()
7198 * away from this CPU, or CPU going down), or because we're
7199 * attempting to rebalance this task on exec (sched_exec).
7200 *
7201 * So we race with normal scheduler movements, but that's OK, as long
7202 * as the task is no longer on this CPU.
7203 *
7204 * Returns non-zero if task was successfully migrated.
7205 */
7206 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7207 {
7208 struct rq *rq_dest, *rq_src;
7209 int ret = 0;
7210
7211 if (unlikely(!cpu_active(dest_cpu)))
7212 return ret;
7213
7214 rq_src = cpu_rq(src_cpu);
7215 rq_dest = cpu_rq(dest_cpu);
7216
7217 double_rq_lock(rq_src, rq_dest);
7218 /* Already moved. */
7219 if (task_cpu(p) != src_cpu)
7220 goto done;
7221 /* Affinity changed (again). */
7222 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7223 goto fail;
7224
7225 /*
7226 * If we're not on a rq, the next wake-up will ensure we're
7227 * placed properly.
7228 */
7229 if (p->se.on_rq) {
7230 deactivate_task(rq_src, p, 0);
7231 set_task_cpu(p, dest_cpu);
7232 activate_task(rq_dest, p, 0);
7233 check_preempt_curr(rq_dest, p, 0);
7234 }
7235 done:
7236 ret = 1;
7237 fail:
7238 double_rq_unlock(rq_src, rq_dest);
7239 return ret;
7240 }
7241
7242 #define RCU_MIGRATION_IDLE 0
7243 #define RCU_MIGRATION_NEED_QS 1
7244 #define RCU_MIGRATION_GOT_QS 2
7245 #define RCU_MIGRATION_MUST_SYNC 3
7246
7247 /*
7248 * migration_thread - this is a highprio system thread that performs
7249 * thread migration by bumping thread off CPU then 'pushing' onto
7250 * another runqueue.
7251 */
7252 static int migration_thread(void *data)
7253 {
7254 int badcpu;
7255 int cpu = (long)data;
7256 struct rq *rq;
7257
7258 rq = cpu_rq(cpu);
7259 BUG_ON(rq->migration_thread != current);
7260
7261 set_current_state(TASK_INTERRUPTIBLE);
7262 while (!kthread_should_stop()) {
7263 struct migration_req *req;
7264 struct list_head *head;
7265
7266 raw_spin_lock_irq(&rq->lock);
7267
7268 if (cpu_is_offline(cpu)) {
7269 raw_spin_unlock_irq(&rq->lock);
7270 break;
7271 }
7272
7273 if (rq->active_balance) {
7274 active_load_balance(rq, cpu);
7275 rq->active_balance = 0;
7276 }
7277
7278 head = &rq->migration_queue;
7279
7280 if (list_empty(head)) {
7281 raw_spin_unlock_irq(&rq->lock);
7282 schedule();
7283 set_current_state(TASK_INTERRUPTIBLE);
7284 continue;
7285 }
7286 req = list_entry(head->next, struct migration_req, list);
7287 list_del_init(head->next);
7288
7289 if (req->task != NULL) {
7290 raw_spin_unlock(&rq->lock);
7291 __migrate_task(req->task, cpu, req->dest_cpu);
7292 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7293 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7294 raw_spin_unlock(&rq->lock);
7295 } else {
7296 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7297 raw_spin_unlock(&rq->lock);
7298 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7299 }
7300 local_irq_enable();
7301
7302 complete(&req->done);
7303 }
7304 __set_current_state(TASK_RUNNING);
7305
7306 return 0;
7307 }
7308
7309 #ifdef CONFIG_HOTPLUG_CPU
7310
7311 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7312 {
7313 int ret;
7314
7315 local_irq_disable();
7316 ret = __migrate_task(p, src_cpu, dest_cpu);
7317 local_irq_enable();
7318 return ret;
7319 }
7320
7321 /*
7322 * Figure out where task on dead CPU should go, use force if necessary.
7323 */
7324 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7325 {
7326 int dest_cpu;
7327
7328 again:
7329 dest_cpu = select_fallback_rq(dead_cpu, p);
7330
7331 /* It can have affinity changed while we were choosing. */
7332 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7333 goto again;
7334 }
7335
7336 /*
7337 * While a dead CPU has no uninterruptible tasks queued at this point,
7338 * it might still have a nonzero ->nr_uninterruptible counter, because
7339 * for performance reasons the counter is not stricly tracking tasks to
7340 * their home CPUs. So we just add the counter to another CPU's counter,
7341 * to keep the global sum constant after CPU-down:
7342 */
7343 static void migrate_nr_uninterruptible(struct rq *rq_src)
7344 {
7345 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7346 unsigned long flags;
7347
7348 local_irq_save(flags);
7349 double_rq_lock(rq_src, rq_dest);
7350 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7351 rq_src->nr_uninterruptible = 0;
7352 double_rq_unlock(rq_src, rq_dest);
7353 local_irq_restore(flags);
7354 }
7355
7356 /* Run through task list and migrate tasks from the dead cpu. */
7357 static void migrate_live_tasks(int src_cpu)
7358 {
7359 struct task_struct *p, *t;
7360
7361 read_lock(&tasklist_lock);
7362
7363 do_each_thread(t, p) {
7364 if (p == current)
7365 continue;
7366
7367 if (task_cpu(p) == src_cpu)
7368 move_task_off_dead_cpu(src_cpu, p);
7369 } while_each_thread(t, p);
7370
7371 read_unlock(&tasklist_lock);
7372 }
7373
7374 /*
7375 * Schedules idle task to be the next runnable task on current CPU.
7376 * It does so by boosting its priority to highest possible.
7377 * Used by CPU offline code.
7378 */
7379 void sched_idle_next(void)
7380 {
7381 int this_cpu = smp_processor_id();
7382 struct rq *rq = cpu_rq(this_cpu);
7383 struct task_struct *p = rq->idle;
7384 unsigned long flags;
7385
7386 /* cpu has to be offline */
7387 BUG_ON(cpu_online(this_cpu));
7388
7389 /*
7390 * Strictly not necessary since rest of the CPUs are stopped by now
7391 * and interrupts disabled on the current cpu.
7392 */
7393 raw_spin_lock_irqsave(&rq->lock, flags);
7394
7395 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7396
7397 update_rq_clock(rq);
7398 activate_task(rq, p, 0);
7399
7400 raw_spin_unlock_irqrestore(&rq->lock, flags);
7401 }
7402
7403 /*
7404 * Ensures that the idle task is using init_mm right before its cpu goes
7405 * offline.
7406 */
7407 void idle_task_exit(void)
7408 {
7409 struct mm_struct *mm = current->active_mm;
7410
7411 BUG_ON(cpu_online(smp_processor_id()));
7412
7413 if (mm != &init_mm)
7414 switch_mm(mm, &init_mm, current);
7415 mmdrop(mm);
7416 }
7417
7418 /* called under rq->lock with disabled interrupts */
7419 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7420 {
7421 struct rq *rq = cpu_rq(dead_cpu);
7422
7423 /* Must be exiting, otherwise would be on tasklist. */
7424 BUG_ON(!p->exit_state);
7425
7426 /* Cannot have done final schedule yet: would have vanished. */
7427 BUG_ON(p->state == TASK_DEAD);
7428
7429 get_task_struct(p);
7430
7431 /*
7432 * Drop lock around migration; if someone else moves it,
7433 * that's OK. No task can be added to this CPU, so iteration is
7434 * fine.
7435 */
7436 raw_spin_unlock_irq(&rq->lock);
7437 move_task_off_dead_cpu(dead_cpu, p);
7438 raw_spin_lock_irq(&rq->lock);
7439
7440 put_task_struct(p);
7441 }
7442
7443 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7444 static void migrate_dead_tasks(unsigned int dead_cpu)
7445 {
7446 struct rq *rq = cpu_rq(dead_cpu);
7447 struct task_struct *next;
7448
7449 for ( ; ; ) {
7450 if (!rq->nr_running)
7451 break;
7452 update_rq_clock(rq);
7453 next = pick_next_task(rq);
7454 if (!next)
7455 break;
7456 next->sched_class->put_prev_task(rq, next);
7457 migrate_dead(dead_cpu, next);
7458
7459 }
7460 }
7461
7462 /*
7463 * remove the tasks which were accounted by rq from calc_load_tasks.
7464 */
7465 static void calc_global_load_remove(struct rq *rq)
7466 {
7467 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7468 rq->calc_load_active = 0;
7469 }
7470 #endif /* CONFIG_HOTPLUG_CPU */
7471
7472 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7473
7474 static struct ctl_table sd_ctl_dir[] = {
7475 {
7476 .procname = "sched_domain",
7477 .mode = 0555,
7478 },
7479 {}
7480 };
7481
7482 static struct ctl_table sd_ctl_root[] = {
7483 {
7484 .procname = "kernel",
7485 .mode = 0555,
7486 .child = sd_ctl_dir,
7487 },
7488 {}
7489 };
7490
7491 static struct ctl_table *sd_alloc_ctl_entry(int n)
7492 {
7493 struct ctl_table *entry =
7494 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7495
7496 return entry;
7497 }
7498
7499 static void sd_free_ctl_entry(struct ctl_table **tablep)
7500 {
7501 struct ctl_table *entry;
7502
7503 /*
7504 * In the intermediate directories, both the child directory and
7505 * procname are dynamically allocated and could fail but the mode
7506 * will always be set. In the lowest directory the names are
7507 * static strings and all have proc handlers.
7508 */
7509 for (entry = *tablep; entry->mode; entry++) {
7510 if (entry->child)
7511 sd_free_ctl_entry(&entry->child);
7512 if (entry->proc_handler == NULL)
7513 kfree(entry->procname);
7514 }
7515
7516 kfree(*tablep);
7517 *tablep = NULL;
7518 }
7519
7520 static void
7521 set_table_entry(struct ctl_table *entry,
7522 const char *procname, void *data, int maxlen,
7523 mode_t mode, proc_handler *proc_handler)
7524 {
7525 entry->procname = procname;
7526 entry->data = data;
7527 entry->maxlen = maxlen;
7528 entry->mode = mode;
7529 entry->proc_handler = proc_handler;
7530 }
7531
7532 static struct ctl_table *
7533 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7534 {
7535 struct ctl_table *table = sd_alloc_ctl_entry(13);
7536
7537 if (table == NULL)
7538 return NULL;
7539
7540 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7541 sizeof(long), 0644, proc_doulongvec_minmax);
7542 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7543 sizeof(long), 0644, proc_doulongvec_minmax);
7544 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7545 sizeof(int), 0644, proc_dointvec_minmax);
7546 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7547 sizeof(int), 0644, proc_dointvec_minmax);
7548 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7549 sizeof(int), 0644, proc_dointvec_minmax);
7550 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7551 sizeof(int), 0644, proc_dointvec_minmax);
7552 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7553 sizeof(int), 0644, proc_dointvec_minmax);
7554 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7555 sizeof(int), 0644, proc_dointvec_minmax);
7556 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7557 sizeof(int), 0644, proc_dointvec_minmax);
7558 set_table_entry(&table[9], "cache_nice_tries",
7559 &sd->cache_nice_tries,
7560 sizeof(int), 0644, proc_dointvec_minmax);
7561 set_table_entry(&table[10], "flags", &sd->flags,
7562 sizeof(int), 0644, proc_dointvec_minmax);
7563 set_table_entry(&table[11], "name", sd->name,
7564 CORENAME_MAX_SIZE, 0444, proc_dostring);
7565 /* &table[12] is terminator */
7566
7567 return table;
7568 }
7569
7570 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7571 {
7572 struct ctl_table *entry, *table;
7573 struct sched_domain *sd;
7574 int domain_num = 0, i;
7575 char buf[32];
7576
7577 for_each_domain(cpu, sd)
7578 domain_num++;
7579 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7580 if (table == NULL)
7581 return NULL;
7582
7583 i = 0;
7584 for_each_domain(cpu, sd) {
7585 snprintf(buf, 32, "domain%d", i);
7586 entry->procname = kstrdup(buf, GFP_KERNEL);
7587 entry->mode = 0555;
7588 entry->child = sd_alloc_ctl_domain_table(sd);
7589 entry++;
7590 i++;
7591 }
7592 return table;
7593 }
7594
7595 static struct ctl_table_header *sd_sysctl_header;
7596 static void register_sched_domain_sysctl(void)
7597 {
7598 int i, cpu_num = num_possible_cpus();
7599 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7600 char buf[32];
7601
7602 WARN_ON(sd_ctl_dir[0].child);
7603 sd_ctl_dir[0].child = entry;
7604
7605 if (entry == NULL)
7606 return;
7607
7608 for_each_possible_cpu(i) {
7609 snprintf(buf, 32, "cpu%d", i);
7610 entry->procname = kstrdup(buf, GFP_KERNEL);
7611 entry->mode = 0555;
7612 entry->child = sd_alloc_ctl_cpu_table(i);
7613 entry++;
7614 }
7615
7616 WARN_ON(sd_sysctl_header);
7617 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7618 }
7619
7620 /* may be called multiple times per register */
7621 static void unregister_sched_domain_sysctl(void)
7622 {
7623 if (sd_sysctl_header)
7624 unregister_sysctl_table(sd_sysctl_header);
7625 sd_sysctl_header = NULL;
7626 if (sd_ctl_dir[0].child)
7627 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7628 }
7629 #else
7630 static void register_sched_domain_sysctl(void)
7631 {
7632 }
7633 static void unregister_sched_domain_sysctl(void)
7634 {
7635 }
7636 #endif
7637
7638 static void set_rq_online(struct rq *rq)
7639 {
7640 if (!rq->online) {
7641 const struct sched_class *class;
7642
7643 cpumask_set_cpu(rq->cpu, rq->rd->online);
7644 rq->online = 1;
7645
7646 for_each_class(class) {
7647 if (class->rq_online)
7648 class->rq_online(rq);
7649 }
7650 }
7651 }
7652
7653 static void set_rq_offline(struct rq *rq)
7654 {
7655 if (rq->online) {
7656 const struct sched_class *class;
7657
7658 for_each_class(class) {
7659 if (class->rq_offline)
7660 class->rq_offline(rq);
7661 }
7662
7663 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7664 rq->online = 0;
7665 }
7666 }
7667
7668 /*
7669 * migration_call - callback that gets triggered when a CPU is added.
7670 * Here we can start up the necessary migration thread for the new CPU.
7671 */
7672 static int __cpuinit
7673 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7674 {
7675 struct task_struct *p;
7676 int cpu = (long)hcpu;
7677 unsigned long flags;
7678 struct rq *rq;
7679
7680 switch (action) {
7681
7682 case CPU_UP_PREPARE:
7683 case CPU_UP_PREPARE_FROZEN:
7684 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7685 if (IS_ERR(p))
7686 return NOTIFY_BAD;
7687 kthread_bind(p, cpu);
7688 /* Must be high prio: stop_machine expects to yield to it. */
7689 rq = task_rq_lock(p, &flags);
7690 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7691 task_rq_unlock(rq, &flags);
7692 get_task_struct(p);
7693 cpu_rq(cpu)->migration_thread = p;
7694 rq->calc_load_update = calc_load_update;
7695 break;
7696
7697 case CPU_ONLINE:
7698 case CPU_ONLINE_FROZEN:
7699 /* Strictly unnecessary, as first user will wake it. */
7700 wake_up_process(cpu_rq(cpu)->migration_thread);
7701
7702 /* Update our root-domain */
7703 rq = cpu_rq(cpu);
7704 raw_spin_lock_irqsave(&rq->lock, flags);
7705 if (rq->rd) {
7706 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7707
7708 set_rq_online(rq);
7709 }
7710 raw_spin_unlock_irqrestore(&rq->lock, flags);
7711 break;
7712
7713 #ifdef CONFIG_HOTPLUG_CPU
7714 case CPU_UP_CANCELED:
7715 case CPU_UP_CANCELED_FROZEN:
7716 if (!cpu_rq(cpu)->migration_thread)
7717 break;
7718 /* Unbind it from offline cpu so it can run. Fall thru. */
7719 kthread_bind(cpu_rq(cpu)->migration_thread,
7720 cpumask_any(cpu_online_mask));
7721 kthread_stop(cpu_rq(cpu)->migration_thread);
7722 put_task_struct(cpu_rq(cpu)->migration_thread);
7723 cpu_rq(cpu)->migration_thread = NULL;
7724 break;
7725
7726 case CPU_DEAD:
7727 case CPU_DEAD_FROZEN:
7728 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7729 migrate_live_tasks(cpu);
7730 rq = cpu_rq(cpu);
7731 kthread_stop(rq->migration_thread);
7732 put_task_struct(rq->migration_thread);
7733 rq->migration_thread = NULL;
7734 /* Idle task back to normal (off runqueue, low prio) */
7735 raw_spin_lock_irq(&rq->lock);
7736 update_rq_clock(rq);
7737 deactivate_task(rq, rq->idle, 0);
7738 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7739 rq->idle->sched_class = &idle_sched_class;
7740 migrate_dead_tasks(cpu);
7741 raw_spin_unlock_irq(&rq->lock);
7742 cpuset_unlock();
7743 migrate_nr_uninterruptible(rq);
7744 BUG_ON(rq->nr_running != 0);
7745 calc_global_load_remove(rq);
7746 /*
7747 * No need to migrate the tasks: it was best-effort if
7748 * they didn't take sched_hotcpu_mutex. Just wake up
7749 * the requestors.
7750 */
7751 raw_spin_lock_irq(&rq->lock);
7752 while (!list_empty(&rq->migration_queue)) {
7753 struct migration_req *req;
7754
7755 req = list_entry(rq->migration_queue.next,
7756 struct migration_req, list);
7757 list_del_init(&req->list);
7758 raw_spin_unlock_irq(&rq->lock);
7759 complete(&req->done);
7760 raw_spin_lock_irq(&rq->lock);
7761 }
7762 raw_spin_unlock_irq(&rq->lock);
7763 break;
7764
7765 case CPU_DYING:
7766 case CPU_DYING_FROZEN:
7767 /* Update our root-domain */
7768 rq = cpu_rq(cpu);
7769 raw_spin_lock_irqsave(&rq->lock, flags);
7770 if (rq->rd) {
7771 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7772 set_rq_offline(rq);
7773 }
7774 raw_spin_unlock_irqrestore(&rq->lock, flags);
7775 break;
7776 #endif
7777 }
7778 return NOTIFY_OK;
7779 }
7780
7781 /*
7782 * Register at high priority so that task migration (migrate_all_tasks)
7783 * happens before everything else. This has to be lower priority than
7784 * the notifier in the perf_event subsystem, though.
7785 */
7786 static struct notifier_block __cpuinitdata migration_notifier = {
7787 .notifier_call = migration_call,
7788 .priority = 10
7789 };
7790
7791 static int __init migration_init(void)
7792 {
7793 void *cpu = (void *)(long)smp_processor_id();
7794 int err;
7795
7796 /* Start one for the boot CPU: */
7797 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7798 BUG_ON(err == NOTIFY_BAD);
7799 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7800 register_cpu_notifier(&migration_notifier);
7801
7802 return 0;
7803 }
7804 early_initcall(migration_init);
7805 #endif
7806
7807 #ifdef CONFIG_SMP
7808
7809 #ifdef CONFIG_SCHED_DEBUG
7810
7811 static __read_mostly int sched_domain_debug_enabled;
7812
7813 static int __init sched_domain_debug_setup(char *str)
7814 {
7815 sched_domain_debug_enabled = 1;
7816
7817 return 0;
7818 }
7819 early_param("sched_debug", sched_domain_debug_setup);
7820
7821 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7822 struct cpumask *groupmask)
7823 {
7824 struct sched_group *group = sd->groups;
7825 char str[256];
7826
7827 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7828 cpumask_clear(groupmask);
7829
7830 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7831
7832 if (!(sd->flags & SD_LOAD_BALANCE)) {
7833 pr_cont("does not load-balance\n");
7834 if (sd->parent)
7835 pr_err("ERROR: !SD_LOAD_BALANCE domain has parent\n");
7836 return -1;
7837 }
7838
7839 pr_cont("span %s level %s\n", str, sd->name);
7840
7841 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7842 pr_err("ERROR: domain->span does not contain CPU%d\n", cpu);
7843 }
7844 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7845 pr_err("ERROR: domain->groups does not contain CPU%d\n", cpu);
7846 }
7847
7848 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7849 do {
7850 if (!group) {
7851 pr_cont("\n");
7852 pr_err("ERROR: group is NULL\n");
7853 break;
7854 }
7855
7856 if (!group->cpu_power) {
7857 pr_cont("\n");
7858 pr_err("ERROR: domain->cpu_power not set\n");
7859 break;
7860 }
7861
7862 if (!cpumask_weight(sched_group_cpus(group))) {
7863 pr_cont("\n");
7864 pr_err("ERROR: empty group\n");
7865 break;
7866 }
7867
7868 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7869 pr_cont("\n");
7870 pr_err("ERROR: repeated CPUs\n");
7871 break;
7872 }
7873
7874 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7875
7876 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7877
7878 pr_cont(" %s", str);
7879 if (group->cpu_power != SCHED_LOAD_SCALE) {
7880 pr_cont(" (cpu_power = %d)", group->cpu_power);
7881 }
7882
7883 group = group->next;
7884 } while (group != sd->groups);
7885 pr_cont("\n");
7886
7887 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7888 pr_err("ERROR: groups don't span domain->span\n");
7889
7890 if (sd->parent &&
7891 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7892 pr_err("ERROR: parent span is not a superset of domain->span\n");
7893 return 0;
7894 }
7895
7896 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7897 {
7898 cpumask_var_t groupmask;
7899 int level = 0;
7900
7901 if (!sched_domain_debug_enabled)
7902 return;
7903
7904 if (!sd) {
7905 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7906 return;
7907 }
7908
7909 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7910
7911 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7912 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7913 return;
7914 }
7915
7916 for (;;) {
7917 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7918 break;
7919 level++;
7920 sd = sd->parent;
7921 if (!sd)
7922 break;
7923 }
7924 free_cpumask_var(groupmask);
7925 }
7926 #else /* !CONFIG_SCHED_DEBUG */
7927 # define sched_domain_debug(sd, cpu) do { } while (0)
7928 #endif /* CONFIG_SCHED_DEBUG */
7929
7930 static int sd_degenerate(struct sched_domain *sd)
7931 {
7932 if (cpumask_weight(sched_domain_span(sd)) == 1)
7933 return 1;
7934
7935 /* Following flags need at least 2 groups */
7936 if (sd->flags & (SD_LOAD_BALANCE |
7937 SD_BALANCE_NEWIDLE |
7938 SD_BALANCE_FORK |
7939 SD_BALANCE_EXEC |
7940 SD_SHARE_CPUPOWER |
7941 SD_SHARE_PKG_RESOURCES)) {
7942 if (sd->groups != sd->groups->next)
7943 return 0;
7944 }
7945
7946 /* Following flags don't use groups */
7947 if (sd->flags & (SD_WAKE_AFFINE))
7948 return 0;
7949
7950 return 1;
7951 }
7952
7953 static int
7954 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7955 {
7956 unsigned long cflags = sd->flags, pflags = parent->flags;
7957
7958 if (sd_degenerate(parent))
7959 return 1;
7960
7961 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7962 return 0;
7963
7964 /* Flags needing groups don't count if only 1 group in parent */
7965 if (parent->groups == parent->groups->next) {
7966 pflags &= ~(SD_LOAD_BALANCE |
7967 SD_BALANCE_NEWIDLE |
7968 SD_BALANCE_FORK |
7969 SD_BALANCE_EXEC |
7970 SD_SHARE_CPUPOWER |
7971 SD_SHARE_PKG_RESOURCES);
7972 if (nr_node_ids == 1)
7973 pflags &= ~SD_SERIALIZE;
7974 }
7975 if (~cflags & pflags)
7976 return 0;
7977
7978 return 1;
7979 }
7980
7981 static void free_rootdomain(struct root_domain *rd)
7982 {
7983 synchronize_sched();
7984
7985 cpupri_cleanup(&rd->cpupri);
7986
7987 free_cpumask_var(rd->rto_mask);
7988 free_cpumask_var(rd->online);
7989 free_cpumask_var(rd->span);
7990 kfree(rd);
7991 }
7992
7993 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7994 {
7995 struct root_domain *old_rd = NULL;
7996 unsigned long flags;
7997
7998 raw_spin_lock_irqsave(&rq->lock, flags);
7999
8000 if (rq->rd) {
8001 old_rd = rq->rd;
8002
8003 if (cpumask_test_cpu(rq->cpu, old_rd->online))
8004 set_rq_offline(rq);
8005
8006 cpumask_clear_cpu(rq->cpu, old_rd->span);
8007
8008 /*
8009 * If we dont want to free the old_rt yet then
8010 * set old_rd to NULL to skip the freeing later
8011 * in this function:
8012 */
8013 if (!atomic_dec_and_test(&old_rd->refcount))
8014 old_rd = NULL;
8015 }
8016
8017 atomic_inc(&rd->refcount);
8018 rq->rd = rd;
8019
8020 cpumask_set_cpu(rq->cpu, rd->span);
8021 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8022 set_rq_online(rq);
8023
8024 raw_spin_unlock_irqrestore(&rq->lock, flags);
8025
8026 if (old_rd)
8027 free_rootdomain(old_rd);
8028 }
8029
8030 static int init_rootdomain(struct root_domain *rd, bool bootmem)
8031 {
8032 gfp_t gfp = GFP_KERNEL;
8033
8034 memset(rd, 0, sizeof(*rd));
8035
8036 if (bootmem)
8037 gfp = GFP_NOWAIT;
8038
8039 if (!alloc_cpumask_var(&rd->span, gfp))
8040 goto out;
8041 if (!alloc_cpumask_var(&rd->online, gfp))
8042 goto free_span;
8043 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8044 goto free_online;
8045
8046 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8047 goto free_rto_mask;
8048 return 0;
8049
8050 free_rto_mask:
8051 free_cpumask_var(rd->rto_mask);
8052 free_online:
8053 free_cpumask_var(rd->online);
8054 free_span:
8055 free_cpumask_var(rd->span);
8056 out:
8057 return -ENOMEM;
8058 }
8059
8060 static void init_defrootdomain(void)
8061 {
8062 init_rootdomain(&def_root_domain, true);
8063
8064 atomic_set(&def_root_domain.refcount, 1);
8065 }
8066
8067 static struct root_domain *alloc_rootdomain(void)
8068 {
8069 struct root_domain *rd;
8070
8071 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8072 if (!rd)
8073 return NULL;
8074
8075 if (init_rootdomain(rd, false) != 0) {
8076 kfree(rd);
8077 return NULL;
8078 }
8079
8080 return rd;
8081 }
8082
8083 /*
8084 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8085 * hold the hotplug lock.
8086 */
8087 static void
8088 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8089 {
8090 struct rq *rq = cpu_rq(cpu);
8091 struct sched_domain *tmp;
8092
8093 /* Remove the sched domains which do not contribute to scheduling. */
8094 for (tmp = sd; tmp; ) {
8095 struct sched_domain *parent = tmp->parent;
8096 if (!parent)
8097 break;
8098
8099 if (sd_parent_degenerate(tmp, parent)) {
8100 tmp->parent = parent->parent;
8101 if (parent->parent)
8102 parent->parent->child = tmp;
8103 } else
8104 tmp = tmp->parent;
8105 }
8106
8107 if (sd && sd_degenerate(sd)) {
8108 sd = sd->parent;
8109 if (sd)
8110 sd->child = NULL;
8111 }
8112
8113 sched_domain_debug(sd, cpu);
8114
8115 rq_attach_root(rq, rd);
8116 rcu_assign_pointer(rq->sd, sd);
8117 }
8118
8119 /* cpus with isolated domains */
8120 static cpumask_var_t cpu_isolated_map;
8121
8122 /* Setup the mask of cpus configured for isolated domains */
8123 static int __init isolated_cpu_setup(char *str)
8124 {
8125 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8126 cpulist_parse(str, cpu_isolated_map);
8127 return 1;
8128 }
8129
8130 __setup("isolcpus=", isolated_cpu_setup);
8131
8132 /*
8133 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8134 * to a function which identifies what group(along with sched group) a CPU
8135 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8136 * (due to the fact that we keep track of groups covered with a struct cpumask).
8137 *
8138 * init_sched_build_groups will build a circular linked list of the groups
8139 * covered by the given span, and will set each group's ->cpumask correctly,
8140 * and ->cpu_power to 0.
8141 */
8142 static void
8143 init_sched_build_groups(const struct cpumask *span,
8144 const struct cpumask *cpu_map,
8145 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8146 struct sched_group **sg,
8147 struct cpumask *tmpmask),
8148 struct cpumask *covered, struct cpumask *tmpmask)
8149 {
8150 struct sched_group *first = NULL, *last = NULL;
8151 int i;
8152
8153 cpumask_clear(covered);
8154
8155 for_each_cpu(i, span) {
8156 struct sched_group *sg;
8157 int group = group_fn(i, cpu_map, &sg, tmpmask);
8158 int j;
8159
8160 if (cpumask_test_cpu(i, covered))
8161 continue;
8162
8163 cpumask_clear(sched_group_cpus(sg));
8164 sg->cpu_power = 0;
8165
8166 for_each_cpu(j, span) {
8167 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8168 continue;
8169
8170 cpumask_set_cpu(j, covered);
8171 cpumask_set_cpu(j, sched_group_cpus(sg));
8172 }
8173 if (!first)
8174 first = sg;
8175 if (last)
8176 last->next = sg;
8177 last = sg;
8178 }
8179 last->next = first;
8180 }
8181
8182 #define SD_NODES_PER_DOMAIN 16
8183
8184 #ifdef CONFIG_NUMA
8185
8186 /**
8187 * find_next_best_node - find the next node to include in a sched_domain
8188 * @node: node whose sched_domain we're building
8189 * @used_nodes: nodes already in the sched_domain
8190 *
8191 * Find the next node to include in a given scheduling domain. Simply
8192 * finds the closest node not already in the @used_nodes map.
8193 *
8194 * Should use nodemask_t.
8195 */
8196 static int find_next_best_node(int node, nodemask_t *used_nodes)
8197 {
8198 int i, n, val, min_val, best_node = 0;
8199
8200 min_val = INT_MAX;
8201
8202 for (i = 0; i < nr_node_ids; i++) {
8203 /* Start at @node */
8204 n = (node + i) % nr_node_ids;
8205
8206 if (!nr_cpus_node(n))
8207 continue;
8208
8209 /* Skip already used nodes */
8210 if (node_isset(n, *used_nodes))
8211 continue;
8212
8213 /* Simple min distance search */
8214 val = node_distance(node, n);
8215
8216 if (val < min_val) {
8217 min_val = val;
8218 best_node = n;
8219 }
8220 }
8221
8222 node_set(best_node, *used_nodes);
8223 return best_node;
8224 }
8225
8226 /**
8227 * sched_domain_node_span - get a cpumask for a node's sched_domain
8228 * @node: node whose cpumask we're constructing
8229 * @span: resulting cpumask
8230 *
8231 * Given a node, construct a good cpumask for its sched_domain to span. It
8232 * should be one that prevents unnecessary balancing, but also spreads tasks
8233 * out optimally.
8234 */
8235 static void sched_domain_node_span(int node, struct cpumask *span)
8236 {
8237 nodemask_t used_nodes;
8238 int i;
8239
8240 cpumask_clear(span);
8241 nodes_clear(used_nodes);
8242
8243 cpumask_or(span, span, cpumask_of_node(node));
8244 node_set(node, used_nodes);
8245
8246 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8247 int next_node = find_next_best_node(node, &used_nodes);
8248
8249 cpumask_or(span, span, cpumask_of_node(next_node));
8250 }
8251 }
8252 #endif /* CONFIG_NUMA */
8253
8254 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8255
8256 /*
8257 * The cpus mask in sched_group and sched_domain hangs off the end.
8258 *
8259 * ( See the the comments in include/linux/sched.h:struct sched_group
8260 * and struct sched_domain. )
8261 */
8262 struct static_sched_group {
8263 struct sched_group sg;
8264 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8265 };
8266
8267 struct static_sched_domain {
8268 struct sched_domain sd;
8269 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8270 };
8271
8272 struct s_data {
8273 #ifdef CONFIG_NUMA
8274 int sd_allnodes;
8275 cpumask_var_t domainspan;
8276 cpumask_var_t covered;
8277 cpumask_var_t notcovered;
8278 #endif
8279 cpumask_var_t nodemask;
8280 cpumask_var_t this_sibling_map;
8281 cpumask_var_t this_core_map;
8282 cpumask_var_t send_covered;
8283 cpumask_var_t tmpmask;
8284 struct sched_group **sched_group_nodes;
8285 struct root_domain *rd;
8286 };
8287
8288 enum s_alloc {
8289 sa_sched_groups = 0,
8290 sa_rootdomain,
8291 sa_tmpmask,
8292 sa_send_covered,
8293 sa_this_core_map,
8294 sa_this_sibling_map,
8295 sa_nodemask,
8296 sa_sched_group_nodes,
8297 #ifdef CONFIG_NUMA
8298 sa_notcovered,
8299 sa_covered,
8300 sa_domainspan,
8301 #endif
8302 sa_none,
8303 };
8304
8305 /*
8306 * SMT sched-domains:
8307 */
8308 #ifdef CONFIG_SCHED_SMT
8309 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8310 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
8311
8312 static int
8313 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8314 struct sched_group **sg, struct cpumask *unused)
8315 {
8316 if (sg)
8317 *sg = &per_cpu(sched_groups, cpu).sg;
8318 return cpu;
8319 }
8320 #endif /* CONFIG_SCHED_SMT */
8321
8322 /*
8323 * multi-core sched-domains:
8324 */
8325 #ifdef CONFIG_SCHED_MC
8326 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8327 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8328 #endif /* CONFIG_SCHED_MC */
8329
8330 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8331 static int
8332 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8333 struct sched_group **sg, struct cpumask *mask)
8334 {
8335 int group;
8336
8337 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8338 group = cpumask_first(mask);
8339 if (sg)
8340 *sg = &per_cpu(sched_group_core, group).sg;
8341 return group;
8342 }
8343 #elif defined(CONFIG_SCHED_MC)
8344 static int
8345 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8346 struct sched_group **sg, struct cpumask *unused)
8347 {
8348 if (sg)
8349 *sg = &per_cpu(sched_group_core, cpu).sg;
8350 return cpu;
8351 }
8352 #endif
8353
8354 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8355 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8356
8357 static int
8358 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8359 struct sched_group **sg, struct cpumask *mask)
8360 {
8361 int group;
8362 #ifdef CONFIG_SCHED_MC
8363 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8364 group = cpumask_first(mask);
8365 #elif defined(CONFIG_SCHED_SMT)
8366 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8367 group = cpumask_first(mask);
8368 #else
8369 group = cpu;
8370 #endif
8371 if (sg)
8372 *sg = &per_cpu(sched_group_phys, group).sg;
8373 return group;
8374 }
8375
8376 #ifdef CONFIG_NUMA
8377 /*
8378 * The init_sched_build_groups can't handle what we want to do with node
8379 * groups, so roll our own. Now each node has its own list of groups which
8380 * gets dynamically allocated.
8381 */
8382 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8383 static struct sched_group ***sched_group_nodes_bycpu;
8384
8385 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8386 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8387
8388 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8389 struct sched_group **sg,
8390 struct cpumask *nodemask)
8391 {
8392 int group;
8393
8394 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8395 group = cpumask_first(nodemask);
8396
8397 if (sg)
8398 *sg = &per_cpu(sched_group_allnodes, group).sg;
8399 return group;
8400 }
8401
8402 static void init_numa_sched_groups_power(struct sched_group *group_head)
8403 {
8404 struct sched_group *sg = group_head;
8405 int j;
8406
8407 if (!sg)
8408 return;
8409 do {
8410 for_each_cpu(j, sched_group_cpus(sg)) {
8411 struct sched_domain *sd;
8412
8413 sd = &per_cpu(phys_domains, j).sd;
8414 if (j != group_first_cpu(sd->groups)) {
8415 /*
8416 * Only add "power" once for each
8417 * physical package.
8418 */
8419 continue;
8420 }
8421
8422 sg->cpu_power += sd->groups->cpu_power;
8423 }
8424 sg = sg->next;
8425 } while (sg != group_head);
8426 }
8427
8428 static int build_numa_sched_groups(struct s_data *d,
8429 const struct cpumask *cpu_map, int num)
8430 {
8431 struct sched_domain *sd;
8432 struct sched_group *sg, *prev;
8433 int n, j;
8434
8435 cpumask_clear(d->covered);
8436 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8437 if (cpumask_empty(d->nodemask)) {
8438 d->sched_group_nodes[num] = NULL;
8439 goto out;
8440 }
8441
8442 sched_domain_node_span(num, d->domainspan);
8443 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8444
8445 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8446 GFP_KERNEL, num);
8447 if (!sg) {
8448 pr_warning("Can not alloc domain group for node %d\n", num);
8449 return -ENOMEM;
8450 }
8451 d->sched_group_nodes[num] = sg;
8452
8453 for_each_cpu(j, d->nodemask) {
8454 sd = &per_cpu(node_domains, j).sd;
8455 sd->groups = sg;
8456 }
8457
8458 sg->cpu_power = 0;
8459 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8460 sg->next = sg;
8461 cpumask_or(d->covered, d->covered, d->nodemask);
8462
8463 prev = sg;
8464 for (j = 0; j < nr_node_ids; j++) {
8465 n = (num + j) % nr_node_ids;
8466 cpumask_complement(d->notcovered, d->covered);
8467 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8468 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8469 if (cpumask_empty(d->tmpmask))
8470 break;
8471 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8472 if (cpumask_empty(d->tmpmask))
8473 continue;
8474 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8475 GFP_KERNEL, num);
8476 if (!sg) {
8477 pr_warning("Can not alloc domain group for node %d\n",
8478 j);
8479 return -ENOMEM;
8480 }
8481 sg->cpu_power = 0;
8482 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8483 sg->next = prev->next;
8484 cpumask_or(d->covered, d->covered, d->tmpmask);
8485 prev->next = sg;
8486 prev = sg;
8487 }
8488 out:
8489 return 0;
8490 }
8491 #endif /* CONFIG_NUMA */
8492
8493 #ifdef CONFIG_NUMA
8494 /* Free memory allocated for various sched_group structures */
8495 static void free_sched_groups(const struct cpumask *cpu_map,
8496 struct cpumask *nodemask)
8497 {
8498 int cpu, i;
8499
8500 for_each_cpu(cpu, cpu_map) {
8501 struct sched_group **sched_group_nodes
8502 = sched_group_nodes_bycpu[cpu];
8503
8504 if (!sched_group_nodes)
8505 continue;
8506
8507 for (i = 0; i < nr_node_ids; i++) {
8508 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8509
8510 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8511 if (cpumask_empty(nodemask))
8512 continue;
8513
8514 if (sg == NULL)
8515 continue;
8516 sg = sg->next;
8517 next_sg:
8518 oldsg = sg;
8519 sg = sg->next;
8520 kfree(oldsg);
8521 if (oldsg != sched_group_nodes[i])
8522 goto next_sg;
8523 }
8524 kfree(sched_group_nodes);
8525 sched_group_nodes_bycpu[cpu] = NULL;
8526 }
8527 }
8528 #else /* !CONFIG_NUMA */
8529 static void free_sched_groups(const struct cpumask *cpu_map,
8530 struct cpumask *nodemask)
8531 {
8532 }
8533 #endif /* CONFIG_NUMA */
8534
8535 /*
8536 * Initialize sched groups cpu_power.
8537 *
8538 * cpu_power indicates the capacity of sched group, which is used while
8539 * distributing the load between different sched groups in a sched domain.
8540 * Typically cpu_power for all the groups in a sched domain will be same unless
8541 * there are asymmetries in the topology. If there are asymmetries, group
8542 * having more cpu_power will pickup more load compared to the group having
8543 * less cpu_power.
8544 */
8545 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8546 {
8547 struct sched_domain *child;
8548 struct sched_group *group;
8549 long power;
8550 int weight;
8551
8552 WARN_ON(!sd || !sd->groups);
8553
8554 if (cpu != group_first_cpu(sd->groups))
8555 return;
8556
8557 child = sd->child;
8558
8559 sd->groups->cpu_power = 0;
8560
8561 if (!child) {
8562 power = SCHED_LOAD_SCALE;
8563 weight = cpumask_weight(sched_domain_span(sd));
8564 /*
8565 * SMT siblings share the power of a single core.
8566 * Usually multiple threads get a better yield out of
8567 * that one core than a single thread would have,
8568 * reflect that in sd->smt_gain.
8569 */
8570 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8571 power *= sd->smt_gain;
8572 power /= weight;
8573 power >>= SCHED_LOAD_SHIFT;
8574 }
8575 sd->groups->cpu_power += power;
8576 return;
8577 }
8578
8579 /*
8580 * Add cpu_power of each child group to this groups cpu_power.
8581 */
8582 group = child->groups;
8583 do {
8584 sd->groups->cpu_power += group->cpu_power;
8585 group = group->next;
8586 } while (group != child->groups);
8587 }
8588
8589 /*
8590 * Initializers for schedule domains
8591 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8592 */
8593
8594 #ifdef CONFIG_SCHED_DEBUG
8595 # define SD_INIT_NAME(sd, type) sd->name = #type
8596 #else
8597 # define SD_INIT_NAME(sd, type) do { } while (0)
8598 #endif
8599
8600 #define SD_INIT(sd, type) sd_init_##type(sd)
8601
8602 #define SD_INIT_FUNC(type) \
8603 static noinline void sd_init_##type(struct sched_domain *sd) \
8604 { \
8605 memset(sd, 0, sizeof(*sd)); \
8606 *sd = SD_##type##_INIT; \
8607 sd->level = SD_LV_##type; \
8608 SD_INIT_NAME(sd, type); \
8609 }
8610
8611 SD_INIT_FUNC(CPU)
8612 #ifdef CONFIG_NUMA
8613 SD_INIT_FUNC(ALLNODES)
8614 SD_INIT_FUNC(NODE)
8615 #endif
8616 #ifdef CONFIG_SCHED_SMT
8617 SD_INIT_FUNC(SIBLING)
8618 #endif
8619 #ifdef CONFIG_SCHED_MC
8620 SD_INIT_FUNC(MC)
8621 #endif
8622
8623 static int default_relax_domain_level = -1;
8624
8625 static int __init setup_relax_domain_level(char *str)
8626 {
8627 unsigned long val;
8628
8629 val = simple_strtoul(str, NULL, 0);
8630 if (val < SD_LV_MAX)
8631 default_relax_domain_level = val;
8632
8633 return 1;
8634 }
8635 __setup("relax_domain_level=", setup_relax_domain_level);
8636
8637 static void set_domain_attribute(struct sched_domain *sd,
8638 struct sched_domain_attr *attr)
8639 {
8640 int request;
8641
8642 if (!attr || attr->relax_domain_level < 0) {
8643 if (default_relax_domain_level < 0)
8644 return;
8645 else
8646 request = default_relax_domain_level;
8647 } else
8648 request = attr->relax_domain_level;
8649 if (request < sd->level) {
8650 /* turn off idle balance on this domain */
8651 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8652 } else {
8653 /* turn on idle balance on this domain */
8654 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8655 }
8656 }
8657
8658 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8659 const struct cpumask *cpu_map)
8660 {
8661 switch (what) {
8662 case sa_sched_groups:
8663 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8664 d->sched_group_nodes = NULL;
8665 case sa_rootdomain:
8666 free_rootdomain(d->rd); /* fall through */
8667 case sa_tmpmask:
8668 free_cpumask_var(d->tmpmask); /* fall through */
8669 case sa_send_covered:
8670 free_cpumask_var(d->send_covered); /* fall through */
8671 case sa_this_core_map:
8672 free_cpumask_var(d->this_core_map); /* fall through */
8673 case sa_this_sibling_map:
8674 free_cpumask_var(d->this_sibling_map); /* fall through */
8675 case sa_nodemask:
8676 free_cpumask_var(d->nodemask); /* fall through */
8677 case sa_sched_group_nodes:
8678 #ifdef CONFIG_NUMA
8679 kfree(d->sched_group_nodes); /* fall through */
8680 case sa_notcovered:
8681 free_cpumask_var(d->notcovered); /* fall through */
8682 case sa_covered:
8683 free_cpumask_var(d->covered); /* fall through */
8684 case sa_domainspan:
8685 free_cpumask_var(d->domainspan); /* fall through */
8686 #endif
8687 case sa_none:
8688 break;
8689 }
8690 }
8691
8692 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8693 const struct cpumask *cpu_map)
8694 {
8695 #ifdef CONFIG_NUMA
8696 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8697 return sa_none;
8698 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8699 return sa_domainspan;
8700 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8701 return sa_covered;
8702 /* Allocate the per-node list of sched groups */
8703 d->sched_group_nodes = kcalloc(nr_node_ids,
8704 sizeof(struct sched_group *), GFP_KERNEL);
8705 if (!d->sched_group_nodes) {
8706 pr_warning("Can not alloc sched group node list\n");
8707 return sa_notcovered;
8708 }
8709 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8710 #endif
8711 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8712 return sa_sched_group_nodes;
8713 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8714 return sa_nodemask;
8715 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8716 return sa_this_sibling_map;
8717 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8718 return sa_this_core_map;
8719 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8720 return sa_send_covered;
8721 d->rd = alloc_rootdomain();
8722 if (!d->rd) {
8723 pr_warning("Cannot alloc root domain\n");
8724 return sa_tmpmask;
8725 }
8726 return sa_rootdomain;
8727 }
8728
8729 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8730 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8731 {
8732 struct sched_domain *sd = NULL;
8733 #ifdef CONFIG_NUMA
8734 struct sched_domain *parent;
8735
8736 d->sd_allnodes = 0;
8737 if (cpumask_weight(cpu_map) >
8738 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8739 sd = &per_cpu(allnodes_domains, i).sd;
8740 SD_INIT(sd, ALLNODES);
8741 set_domain_attribute(sd, attr);
8742 cpumask_copy(sched_domain_span(sd), cpu_map);
8743 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8744 d->sd_allnodes = 1;
8745 }
8746 parent = sd;
8747
8748 sd = &per_cpu(node_domains, i).sd;
8749 SD_INIT(sd, NODE);
8750 set_domain_attribute(sd, attr);
8751 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8752 sd->parent = parent;
8753 if (parent)
8754 parent->child = sd;
8755 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8756 #endif
8757 return sd;
8758 }
8759
8760 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8761 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8762 struct sched_domain *parent, int i)
8763 {
8764 struct sched_domain *sd;
8765 sd = &per_cpu(phys_domains, i).sd;
8766 SD_INIT(sd, CPU);
8767 set_domain_attribute(sd, attr);
8768 cpumask_copy(sched_domain_span(sd), d->nodemask);
8769 sd->parent = parent;
8770 if (parent)
8771 parent->child = sd;
8772 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8773 return sd;
8774 }
8775
8776 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8777 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8778 struct sched_domain *parent, int i)
8779 {
8780 struct sched_domain *sd = parent;
8781 #ifdef CONFIG_SCHED_MC
8782 sd = &per_cpu(core_domains, i).sd;
8783 SD_INIT(sd, MC);
8784 set_domain_attribute(sd, attr);
8785 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8786 sd->parent = parent;
8787 parent->child = sd;
8788 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8789 #endif
8790 return sd;
8791 }
8792
8793 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8794 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8795 struct sched_domain *parent, int i)
8796 {
8797 struct sched_domain *sd = parent;
8798 #ifdef CONFIG_SCHED_SMT
8799 sd = &per_cpu(cpu_domains, i).sd;
8800 SD_INIT(sd, SIBLING);
8801 set_domain_attribute(sd, attr);
8802 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8803 sd->parent = parent;
8804 parent->child = sd;
8805 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8806 #endif
8807 return sd;
8808 }
8809
8810 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8811 const struct cpumask *cpu_map, int cpu)
8812 {
8813 switch (l) {
8814 #ifdef CONFIG_SCHED_SMT
8815 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8816 cpumask_and(d->this_sibling_map, cpu_map,
8817 topology_thread_cpumask(cpu));
8818 if (cpu == cpumask_first(d->this_sibling_map))
8819 init_sched_build_groups(d->this_sibling_map, cpu_map,
8820 &cpu_to_cpu_group,
8821 d->send_covered, d->tmpmask);
8822 break;
8823 #endif
8824 #ifdef CONFIG_SCHED_MC
8825 case SD_LV_MC: /* set up multi-core groups */
8826 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8827 if (cpu == cpumask_first(d->this_core_map))
8828 init_sched_build_groups(d->this_core_map, cpu_map,
8829 &cpu_to_core_group,
8830 d->send_covered, d->tmpmask);
8831 break;
8832 #endif
8833 case SD_LV_CPU: /* set up physical groups */
8834 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8835 if (!cpumask_empty(d->nodemask))
8836 init_sched_build_groups(d->nodemask, cpu_map,
8837 &cpu_to_phys_group,
8838 d->send_covered, d->tmpmask);
8839 break;
8840 #ifdef CONFIG_NUMA
8841 case SD_LV_ALLNODES:
8842 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8843 d->send_covered, d->tmpmask);
8844 break;
8845 #endif
8846 default:
8847 break;
8848 }
8849 }
8850
8851 /*
8852 * Build sched domains for a given set of cpus and attach the sched domains
8853 * to the individual cpus
8854 */
8855 static int __build_sched_domains(const struct cpumask *cpu_map,
8856 struct sched_domain_attr *attr)
8857 {
8858 enum s_alloc alloc_state = sa_none;
8859 struct s_data d;
8860 struct sched_domain *sd;
8861 int i;
8862 #ifdef CONFIG_NUMA
8863 d.sd_allnodes = 0;
8864 #endif
8865
8866 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8867 if (alloc_state != sa_rootdomain)
8868 goto error;
8869 alloc_state = sa_sched_groups;
8870
8871 /*
8872 * Set up domains for cpus specified by the cpu_map.
8873 */
8874 for_each_cpu(i, cpu_map) {
8875 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8876 cpu_map);
8877
8878 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8879 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8880 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8881 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8882 }
8883
8884 for_each_cpu(i, cpu_map) {
8885 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8886 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8887 }
8888
8889 /* Set up physical groups */
8890 for (i = 0; i < nr_node_ids; i++)
8891 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8892
8893 #ifdef CONFIG_NUMA
8894 /* Set up node groups */
8895 if (d.sd_allnodes)
8896 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8897
8898 for (i = 0; i < nr_node_ids; i++)
8899 if (build_numa_sched_groups(&d, cpu_map, i))
8900 goto error;
8901 #endif
8902
8903 /* Calculate CPU power for physical packages and nodes */
8904 #ifdef CONFIG_SCHED_SMT
8905 for_each_cpu(i, cpu_map) {
8906 sd = &per_cpu(cpu_domains, i).sd;
8907 init_sched_groups_power(i, sd);
8908 }
8909 #endif
8910 #ifdef CONFIG_SCHED_MC
8911 for_each_cpu(i, cpu_map) {
8912 sd = &per_cpu(core_domains, i).sd;
8913 init_sched_groups_power(i, sd);
8914 }
8915 #endif
8916
8917 for_each_cpu(i, cpu_map) {
8918 sd = &per_cpu(phys_domains, i).sd;
8919 init_sched_groups_power(i, sd);
8920 }
8921
8922 #ifdef CONFIG_NUMA
8923 for (i = 0; i < nr_node_ids; i++)
8924 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8925
8926 if (d.sd_allnodes) {
8927 struct sched_group *sg;
8928
8929 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8930 d.tmpmask);
8931 init_numa_sched_groups_power(sg);
8932 }
8933 #endif
8934
8935 /* Attach the domains */
8936 for_each_cpu(i, cpu_map) {
8937 #ifdef CONFIG_SCHED_SMT
8938 sd = &per_cpu(cpu_domains, i).sd;
8939 #elif defined(CONFIG_SCHED_MC)
8940 sd = &per_cpu(core_domains, i).sd;
8941 #else
8942 sd = &per_cpu(phys_domains, i).sd;
8943 #endif
8944 cpu_attach_domain(sd, d.rd, i);
8945 }
8946
8947 d.sched_group_nodes = NULL; /* don't free this we still need it */
8948 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8949 return 0;
8950
8951 error:
8952 __free_domain_allocs(&d, alloc_state, cpu_map);
8953 return -ENOMEM;
8954 }
8955
8956 static int build_sched_domains(const struct cpumask *cpu_map)
8957 {
8958 return __build_sched_domains(cpu_map, NULL);
8959 }
8960
8961 static cpumask_var_t *doms_cur; /* current sched domains */
8962 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8963 static struct sched_domain_attr *dattr_cur;
8964 /* attribues of custom domains in 'doms_cur' */
8965
8966 /*
8967 * Special case: If a kmalloc of a doms_cur partition (array of
8968 * cpumask) fails, then fallback to a single sched domain,
8969 * as determined by the single cpumask fallback_doms.
8970 */
8971 static cpumask_var_t fallback_doms;
8972
8973 /*
8974 * arch_update_cpu_topology lets virtualized architectures update the
8975 * cpu core maps. It is supposed to return 1 if the topology changed
8976 * or 0 if it stayed the same.
8977 */
8978 int __attribute__((weak)) arch_update_cpu_topology(void)
8979 {
8980 return 0;
8981 }
8982
8983 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8984 {
8985 int i;
8986 cpumask_var_t *doms;
8987
8988 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8989 if (!doms)
8990 return NULL;
8991 for (i = 0; i < ndoms; i++) {
8992 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8993 free_sched_domains(doms, i);
8994 return NULL;
8995 }
8996 }
8997 return doms;
8998 }
8999
9000 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
9001 {
9002 unsigned int i;
9003 for (i = 0; i < ndoms; i++)
9004 free_cpumask_var(doms[i]);
9005 kfree(doms);
9006 }
9007
9008 /*
9009 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
9010 * For now this just excludes isolated cpus, but could be used to
9011 * exclude other special cases in the future.
9012 */
9013 static int arch_init_sched_domains(const struct cpumask *cpu_map)
9014 {
9015 int err;
9016
9017 arch_update_cpu_topology();
9018 ndoms_cur = 1;
9019 doms_cur = alloc_sched_domains(ndoms_cur);
9020 if (!doms_cur)
9021 doms_cur = &fallback_doms;
9022 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
9023 dattr_cur = NULL;
9024 err = build_sched_domains(doms_cur[0]);
9025 register_sched_domain_sysctl();
9026
9027 return err;
9028 }
9029
9030 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9031 struct cpumask *tmpmask)
9032 {
9033 free_sched_groups(cpu_map, tmpmask);
9034 }
9035
9036 /*
9037 * Detach sched domains from a group of cpus specified in cpu_map
9038 * These cpus will now be attached to the NULL domain
9039 */
9040 static void detach_destroy_domains(const struct cpumask *cpu_map)
9041 {
9042 /* Save because hotplug lock held. */
9043 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9044 int i;
9045
9046 for_each_cpu(i, cpu_map)
9047 cpu_attach_domain(NULL, &def_root_domain, i);
9048 synchronize_sched();
9049 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9050 }
9051
9052 /* handle null as "default" */
9053 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9054 struct sched_domain_attr *new, int idx_new)
9055 {
9056 struct sched_domain_attr tmp;
9057
9058 /* fast path */
9059 if (!new && !cur)
9060 return 1;
9061
9062 tmp = SD_ATTR_INIT;
9063 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9064 new ? (new + idx_new) : &tmp,
9065 sizeof(struct sched_domain_attr));
9066 }
9067
9068 /*
9069 * Partition sched domains as specified by the 'ndoms_new'
9070 * cpumasks in the array doms_new[] of cpumasks. This compares
9071 * doms_new[] to the current sched domain partitioning, doms_cur[].
9072 * It destroys each deleted domain and builds each new domain.
9073 *
9074 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
9075 * The masks don't intersect (don't overlap.) We should setup one
9076 * sched domain for each mask. CPUs not in any of the cpumasks will
9077 * not be load balanced. If the same cpumask appears both in the
9078 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9079 * it as it is.
9080 *
9081 * The passed in 'doms_new' should be allocated using
9082 * alloc_sched_domains. This routine takes ownership of it and will
9083 * free_sched_domains it when done with it. If the caller failed the
9084 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9085 * and partition_sched_domains() will fallback to the single partition
9086 * 'fallback_doms', it also forces the domains to be rebuilt.
9087 *
9088 * If doms_new == NULL it will be replaced with cpu_online_mask.
9089 * ndoms_new == 0 is a special case for destroying existing domains,
9090 * and it will not create the default domain.
9091 *
9092 * Call with hotplug lock held
9093 */
9094 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9095 struct sched_domain_attr *dattr_new)
9096 {
9097 int i, j, n;
9098 int new_topology;
9099
9100 mutex_lock(&sched_domains_mutex);
9101
9102 /* always unregister in case we don't destroy any domains */
9103 unregister_sched_domain_sysctl();
9104
9105 /* Let architecture update cpu core mappings. */
9106 new_topology = arch_update_cpu_topology();
9107
9108 n = doms_new ? ndoms_new : 0;
9109
9110 /* Destroy deleted domains */
9111 for (i = 0; i < ndoms_cur; i++) {
9112 for (j = 0; j < n && !new_topology; j++) {
9113 if (cpumask_equal(doms_cur[i], doms_new[j])
9114 && dattrs_equal(dattr_cur, i, dattr_new, j))
9115 goto match1;
9116 }
9117 /* no match - a current sched domain not in new doms_new[] */
9118 detach_destroy_domains(doms_cur[i]);
9119 match1:
9120 ;
9121 }
9122
9123 if (doms_new == NULL) {
9124 ndoms_cur = 0;
9125 doms_new = &fallback_doms;
9126 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9127 WARN_ON_ONCE(dattr_new);
9128 }
9129
9130 /* Build new domains */
9131 for (i = 0; i < ndoms_new; i++) {
9132 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9133 if (cpumask_equal(doms_new[i], doms_cur[j])
9134 && dattrs_equal(dattr_new, i, dattr_cur, j))
9135 goto match2;
9136 }
9137 /* no match - add a new doms_new */
9138 __build_sched_domains(doms_new[i],
9139 dattr_new ? dattr_new + i : NULL);
9140 match2:
9141 ;
9142 }
9143
9144 /* Remember the new sched domains */
9145 if (doms_cur != &fallback_doms)
9146 free_sched_domains(doms_cur, ndoms_cur);
9147 kfree(dattr_cur); /* kfree(NULL) is safe */
9148 doms_cur = doms_new;
9149 dattr_cur = dattr_new;
9150 ndoms_cur = ndoms_new;
9151
9152 register_sched_domain_sysctl();
9153
9154 mutex_unlock(&sched_domains_mutex);
9155 }
9156
9157 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9158 static void arch_reinit_sched_domains(void)
9159 {
9160 get_online_cpus();
9161
9162 /* Destroy domains first to force the rebuild */
9163 partition_sched_domains(0, NULL, NULL);
9164
9165 rebuild_sched_domains();
9166 put_online_cpus();
9167 }
9168
9169 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9170 {
9171 unsigned int level = 0;
9172
9173 if (sscanf(buf, "%u", &level) != 1)
9174 return -EINVAL;
9175
9176 /*
9177 * level is always be positive so don't check for
9178 * level < POWERSAVINGS_BALANCE_NONE which is 0
9179 * What happens on 0 or 1 byte write,
9180 * need to check for count as well?
9181 */
9182
9183 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9184 return -EINVAL;
9185
9186 if (smt)
9187 sched_smt_power_savings = level;
9188 else
9189 sched_mc_power_savings = level;
9190
9191 arch_reinit_sched_domains();
9192
9193 return count;
9194 }
9195
9196 #ifdef CONFIG_SCHED_MC
9197 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9198 char *page)
9199 {
9200 return sprintf(page, "%u\n", sched_mc_power_savings);
9201 }
9202 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9203 const char *buf, size_t count)
9204 {
9205 return sched_power_savings_store(buf, count, 0);
9206 }
9207 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9208 sched_mc_power_savings_show,
9209 sched_mc_power_savings_store);
9210 #endif
9211
9212 #ifdef CONFIG_SCHED_SMT
9213 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9214 char *page)
9215 {
9216 return sprintf(page, "%u\n", sched_smt_power_savings);
9217 }
9218 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9219 const char *buf, size_t count)
9220 {
9221 return sched_power_savings_store(buf, count, 1);
9222 }
9223 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9224 sched_smt_power_savings_show,
9225 sched_smt_power_savings_store);
9226 #endif
9227
9228 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9229 {
9230 int err = 0;
9231
9232 #ifdef CONFIG_SCHED_SMT
9233 if (smt_capable())
9234 err = sysfs_create_file(&cls->kset.kobj,
9235 &attr_sched_smt_power_savings.attr);
9236 #endif
9237 #ifdef CONFIG_SCHED_MC
9238 if (!err && mc_capable())
9239 err = sysfs_create_file(&cls->kset.kobj,
9240 &attr_sched_mc_power_savings.attr);
9241 #endif
9242 return err;
9243 }
9244 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9245
9246 #ifndef CONFIG_CPUSETS
9247 /*
9248 * Add online and remove offline CPUs from the scheduler domains.
9249 * When cpusets are enabled they take over this function.
9250 */
9251 static int update_sched_domains(struct notifier_block *nfb,
9252 unsigned long action, void *hcpu)
9253 {
9254 switch (action) {
9255 case CPU_ONLINE:
9256 case CPU_ONLINE_FROZEN:
9257 case CPU_DOWN_PREPARE:
9258 case CPU_DOWN_PREPARE_FROZEN:
9259 case CPU_DOWN_FAILED:
9260 case CPU_DOWN_FAILED_FROZEN:
9261 partition_sched_domains(1, NULL, NULL);
9262 return NOTIFY_OK;
9263
9264 default:
9265 return NOTIFY_DONE;
9266 }
9267 }
9268 #endif
9269
9270 static int update_runtime(struct notifier_block *nfb,
9271 unsigned long action, void *hcpu)
9272 {
9273 int cpu = (int)(long)hcpu;
9274
9275 switch (action) {
9276 case CPU_DOWN_PREPARE:
9277 case CPU_DOWN_PREPARE_FROZEN:
9278 disable_runtime(cpu_rq(cpu));
9279 return NOTIFY_OK;
9280
9281 case CPU_DOWN_FAILED:
9282 case CPU_DOWN_FAILED_FROZEN:
9283 case CPU_ONLINE:
9284 case CPU_ONLINE_FROZEN:
9285 enable_runtime(cpu_rq(cpu));
9286 return NOTIFY_OK;
9287
9288 default:
9289 return NOTIFY_DONE;
9290 }
9291 }
9292
9293 void __init sched_init_smp(void)
9294 {
9295 cpumask_var_t non_isolated_cpus;
9296
9297 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9298 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9299
9300 #if defined(CONFIG_NUMA)
9301 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9302 GFP_KERNEL);
9303 BUG_ON(sched_group_nodes_bycpu == NULL);
9304 #endif
9305 get_online_cpus();
9306 mutex_lock(&sched_domains_mutex);
9307 arch_init_sched_domains(cpu_active_mask);
9308 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9309 if (cpumask_empty(non_isolated_cpus))
9310 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9311 mutex_unlock(&sched_domains_mutex);
9312 put_online_cpus();
9313
9314 #ifndef CONFIG_CPUSETS
9315 /* XXX: Theoretical race here - CPU may be hotplugged now */
9316 hotcpu_notifier(update_sched_domains, 0);
9317 #endif
9318
9319 /* RT runtime code needs to handle some hotplug events */
9320 hotcpu_notifier(update_runtime, 0);
9321
9322 init_hrtick();
9323
9324 /* Move init over to a non-isolated CPU */
9325 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9326 BUG();
9327 sched_init_granularity();
9328 free_cpumask_var(non_isolated_cpus);
9329
9330 init_sched_rt_class();
9331 }
9332 #else
9333 void __init sched_init_smp(void)
9334 {
9335 sched_init_granularity();
9336 }
9337 #endif /* CONFIG_SMP */
9338
9339 const_debug unsigned int sysctl_timer_migration = 1;
9340
9341 int in_sched_functions(unsigned long addr)
9342 {
9343 return in_lock_functions(addr) ||
9344 (addr >= (unsigned long)__sched_text_start
9345 && addr < (unsigned long)__sched_text_end);
9346 }
9347
9348 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9349 {
9350 cfs_rq->tasks_timeline = RB_ROOT;
9351 INIT_LIST_HEAD(&cfs_rq->tasks);
9352 #ifdef CONFIG_FAIR_GROUP_SCHED
9353 cfs_rq->rq = rq;
9354 #endif
9355 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9356 }
9357
9358 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9359 {
9360 struct rt_prio_array *array;
9361 int i;
9362
9363 array = &rt_rq->active;
9364 for (i = 0; i < MAX_RT_PRIO; i++) {
9365 INIT_LIST_HEAD(array->queue + i);
9366 __clear_bit(i, array->bitmap);
9367 }
9368 /* delimiter for bitsearch: */
9369 __set_bit(MAX_RT_PRIO, array->bitmap);
9370
9371 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9372 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9373 #ifdef CONFIG_SMP
9374 rt_rq->highest_prio.next = MAX_RT_PRIO;
9375 #endif
9376 #endif
9377 #ifdef CONFIG_SMP
9378 rt_rq->rt_nr_migratory = 0;
9379 rt_rq->overloaded = 0;
9380 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
9381 #endif
9382
9383 rt_rq->rt_time = 0;
9384 rt_rq->rt_throttled = 0;
9385 rt_rq->rt_runtime = 0;
9386 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
9387
9388 #ifdef CONFIG_RT_GROUP_SCHED
9389 rt_rq->rt_nr_boosted = 0;
9390 rt_rq->rq = rq;
9391 #endif
9392 }
9393
9394 #ifdef CONFIG_FAIR_GROUP_SCHED
9395 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9396 struct sched_entity *se, int cpu, int add,
9397 struct sched_entity *parent)
9398 {
9399 struct rq *rq = cpu_rq(cpu);
9400 tg->cfs_rq[cpu] = cfs_rq;
9401 init_cfs_rq(cfs_rq, rq);
9402 cfs_rq->tg = tg;
9403 if (add)
9404 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9405
9406 tg->se[cpu] = se;
9407 /* se could be NULL for init_task_group */
9408 if (!se)
9409 return;
9410
9411 if (!parent)
9412 se->cfs_rq = &rq->cfs;
9413 else
9414 se->cfs_rq = parent->my_q;
9415
9416 se->my_q = cfs_rq;
9417 se->load.weight = tg->shares;
9418 se->load.inv_weight = 0;
9419 se->parent = parent;
9420 }
9421 #endif
9422
9423 #ifdef CONFIG_RT_GROUP_SCHED
9424 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9425 struct sched_rt_entity *rt_se, int cpu, int add,
9426 struct sched_rt_entity *parent)
9427 {
9428 struct rq *rq = cpu_rq(cpu);
9429
9430 tg->rt_rq[cpu] = rt_rq;
9431 init_rt_rq(rt_rq, rq);
9432 rt_rq->tg = tg;
9433 rt_rq->rt_se = rt_se;
9434 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9435 if (add)
9436 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9437
9438 tg->rt_se[cpu] = rt_se;
9439 if (!rt_se)
9440 return;
9441
9442 if (!parent)
9443 rt_se->rt_rq = &rq->rt;
9444 else
9445 rt_se->rt_rq = parent->my_q;
9446
9447 rt_se->my_q = rt_rq;
9448 rt_se->parent = parent;
9449 INIT_LIST_HEAD(&rt_se->run_list);
9450 }
9451 #endif
9452
9453 void __init sched_init(void)
9454 {
9455 int i, j;
9456 unsigned long alloc_size = 0, ptr;
9457
9458 #ifdef CONFIG_FAIR_GROUP_SCHED
9459 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9460 #endif
9461 #ifdef CONFIG_RT_GROUP_SCHED
9462 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9463 #endif
9464 #ifdef CONFIG_USER_SCHED
9465 alloc_size *= 2;
9466 #endif
9467 #ifdef CONFIG_CPUMASK_OFFSTACK
9468 alloc_size += num_possible_cpus() * cpumask_size();
9469 #endif
9470 if (alloc_size) {
9471 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9472
9473 #ifdef CONFIG_FAIR_GROUP_SCHED
9474 init_task_group.se = (struct sched_entity **)ptr;
9475 ptr += nr_cpu_ids * sizeof(void **);
9476
9477 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9478 ptr += nr_cpu_ids * sizeof(void **);
9479
9480 #ifdef CONFIG_USER_SCHED
9481 root_task_group.se = (struct sched_entity **)ptr;
9482 ptr += nr_cpu_ids * sizeof(void **);
9483
9484 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9485 ptr += nr_cpu_ids * sizeof(void **);
9486 #endif /* CONFIG_USER_SCHED */
9487 #endif /* CONFIG_FAIR_GROUP_SCHED */
9488 #ifdef CONFIG_RT_GROUP_SCHED
9489 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9490 ptr += nr_cpu_ids * sizeof(void **);
9491
9492 init_task_group.rt_rq = (struct rt_rq **)ptr;
9493 ptr += nr_cpu_ids * sizeof(void **);
9494
9495 #ifdef CONFIG_USER_SCHED
9496 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9497 ptr += nr_cpu_ids * sizeof(void **);
9498
9499 root_task_group.rt_rq = (struct rt_rq **)ptr;
9500 ptr += nr_cpu_ids * sizeof(void **);
9501 #endif /* CONFIG_USER_SCHED */
9502 #endif /* CONFIG_RT_GROUP_SCHED */
9503 #ifdef CONFIG_CPUMASK_OFFSTACK
9504 for_each_possible_cpu(i) {
9505 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9506 ptr += cpumask_size();
9507 }
9508 #endif /* CONFIG_CPUMASK_OFFSTACK */
9509 }
9510
9511 #ifdef CONFIG_SMP
9512 init_defrootdomain();
9513 #endif
9514
9515 init_rt_bandwidth(&def_rt_bandwidth,
9516 global_rt_period(), global_rt_runtime());
9517
9518 #ifdef CONFIG_RT_GROUP_SCHED
9519 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9520 global_rt_period(), global_rt_runtime());
9521 #ifdef CONFIG_USER_SCHED
9522 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9523 global_rt_period(), RUNTIME_INF);
9524 #endif /* CONFIG_USER_SCHED */
9525 #endif /* CONFIG_RT_GROUP_SCHED */
9526
9527 #ifdef CONFIG_GROUP_SCHED
9528 list_add(&init_task_group.list, &task_groups);
9529 INIT_LIST_HEAD(&init_task_group.children);
9530
9531 #ifdef CONFIG_USER_SCHED
9532 INIT_LIST_HEAD(&root_task_group.children);
9533 init_task_group.parent = &root_task_group;
9534 list_add(&init_task_group.siblings, &root_task_group.children);
9535 #endif /* CONFIG_USER_SCHED */
9536 #endif /* CONFIG_GROUP_SCHED */
9537
9538 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9539 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9540 __alignof__(unsigned long));
9541 #endif
9542 for_each_possible_cpu(i) {
9543 struct rq *rq;
9544
9545 rq = cpu_rq(i);
9546 raw_spin_lock_init(&rq->lock);
9547 rq->nr_running = 0;
9548 rq->calc_load_active = 0;
9549 rq->calc_load_update = jiffies + LOAD_FREQ;
9550 init_cfs_rq(&rq->cfs, rq);
9551 init_rt_rq(&rq->rt, rq);
9552 #ifdef CONFIG_FAIR_GROUP_SCHED
9553 init_task_group.shares = init_task_group_load;
9554 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9555 #ifdef CONFIG_CGROUP_SCHED
9556 /*
9557 * How much cpu bandwidth does init_task_group get?
9558 *
9559 * In case of task-groups formed thr' the cgroup filesystem, it
9560 * gets 100% of the cpu resources in the system. This overall
9561 * system cpu resource is divided among the tasks of
9562 * init_task_group and its child task-groups in a fair manner,
9563 * based on each entity's (task or task-group's) weight
9564 * (se->load.weight).
9565 *
9566 * In other words, if init_task_group has 10 tasks of weight
9567 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9568 * then A0's share of the cpu resource is:
9569 *
9570 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9571 *
9572 * We achieve this by letting init_task_group's tasks sit
9573 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9574 */
9575 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9576 #elif defined CONFIG_USER_SCHED
9577 root_task_group.shares = NICE_0_LOAD;
9578 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9579 /*
9580 * In case of task-groups formed thr' the user id of tasks,
9581 * init_task_group represents tasks belonging to root user.
9582 * Hence it forms a sibling of all subsequent groups formed.
9583 * In this case, init_task_group gets only a fraction of overall
9584 * system cpu resource, based on the weight assigned to root
9585 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9586 * by letting tasks of init_task_group sit in a separate cfs_rq
9587 * (init_tg_cfs_rq) and having one entity represent this group of
9588 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9589 */
9590 init_tg_cfs_entry(&init_task_group,
9591 &per_cpu(init_tg_cfs_rq, i),
9592 &per_cpu(init_sched_entity, i), i, 1,
9593 root_task_group.se[i]);
9594
9595 #endif
9596 #endif /* CONFIG_FAIR_GROUP_SCHED */
9597
9598 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9599 #ifdef CONFIG_RT_GROUP_SCHED
9600 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9601 #ifdef CONFIG_CGROUP_SCHED
9602 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9603 #elif defined CONFIG_USER_SCHED
9604 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9605 init_tg_rt_entry(&init_task_group,
9606 &per_cpu(init_rt_rq_var, i),
9607 &per_cpu(init_sched_rt_entity, i), i, 1,
9608 root_task_group.rt_se[i]);
9609 #endif
9610 #endif
9611
9612 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9613 rq->cpu_load[j] = 0;
9614 #ifdef CONFIG_SMP
9615 rq->sd = NULL;
9616 rq->rd = NULL;
9617 rq->post_schedule = 0;
9618 rq->active_balance = 0;
9619 rq->next_balance = jiffies;
9620 rq->push_cpu = 0;
9621 rq->cpu = i;
9622 rq->online = 0;
9623 rq->migration_thread = NULL;
9624 rq->idle_stamp = 0;
9625 rq->avg_idle = 2*sysctl_sched_migration_cost;
9626 INIT_LIST_HEAD(&rq->migration_queue);
9627 rq_attach_root(rq, &def_root_domain);
9628 #endif
9629 init_rq_hrtick(rq);
9630 atomic_set(&rq->nr_iowait, 0);
9631 }
9632
9633 set_load_weight(&init_task);
9634
9635 #ifdef CONFIG_PREEMPT_NOTIFIERS
9636 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9637 #endif
9638
9639 #ifdef CONFIG_SMP
9640 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9641 #endif
9642
9643 #ifdef CONFIG_RT_MUTEXES
9644 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
9645 #endif
9646
9647 /*
9648 * The boot idle thread does lazy MMU switching as well:
9649 */
9650 atomic_inc(&init_mm.mm_count);
9651 enter_lazy_tlb(&init_mm, current);
9652
9653 /*
9654 * Make us the idle thread. Technically, schedule() should not be
9655 * called from this thread, however somewhere below it might be,
9656 * but because we are the idle thread, we just pick up running again
9657 * when this runqueue becomes "idle".
9658 */
9659 init_idle(current, smp_processor_id());
9660
9661 calc_load_update = jiffies + LOAD_FREQ;
9662
9663 /*
9664 * During early bootup we pretend to be a normal task:
9665 */
9666 current->sched_class = &fair_sched_class;
9667
9668 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9669 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9670 #ifdef CONFIG_SMP
9671 #ifdef CONFIG_NO_HZ
9672 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9673 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9674 #endif
9675 /* May be allocated at isolcpus cmdline parse time */
9676 if (cpu_isolated_map == NULL)
9677 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9678 #endif /* SMP */
9679
9680 perf_event_init();
9681
9682 scheduler_running = 1;
9683 }
9684
9685 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9686 static inline int preempt_count_equals(int preempt_offset)
9687 {
9688 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9689
9690 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9691 }
9692
9693 void __might_sleep(char *file, int line, int preempt_offset)
9694 {
9695 #ifdef in_atomic
9696 static unsigned long prev_jiffy; /* ratelimiting */
9697
9698 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9699 system_state != SYSTEM_RUNNING || oops_in_progress)
9700 return;
9701 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9702 return;
9703 prev_jiffy = jiffies;
9704
9705 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9706 file, line);
9707 pr_err("in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9708 in_atomic(), irqs_disabled(),
9709 current->pid, current->comm);
9710
9711 debug_show_held_locks(current);
9712 if (irqs_disabled())
9713 print_irqtrace_events(current);
9714 dump_stack();
9715 #endif
9716 }
9717 EXPORT_SYMBOL(__might_sleep);
9718 #endif
9719
9720 #ifdef CONFIG_MAGIC_SYSRQ
9721 static void normalize_task(struct rq *rq, struct task_struct *p)
9722 {
9723 int on_rq;
9724
9725 update_rq_clock(rq);
9726 on_rq = p->se.on_rq;
9727 if (on_rq)
9728 deactivate_task(rq, p, 0);
9729 __setscheduler(rq, p, SCHED_NORMAL, 0);
9730 if (on_rq) {
9731 activate_task(rq, p, 0);
9732 resched_task(rq->curr);
9733 }
9734 }
9735
9736 void normalize_rt_tasks(void)
9737 {
9738 struct task_struct *g, *p;
9739 unsigned long flags;
9740 struct rq *rq;
9741
9742 read_lock_irqsave(&tasklist_lock, flags);
9743 do_each_thread(g, p) {
9744 /*
9745 * Only normalize user tasks:
9746 */
9747 if (!p->mm)
9748 continue;
9749
9750 p->se.exec_start = 0;
9751 #ifdef CONFIG_SCHEDSTATS
9752 p->se.wait_start = 0;
9753 p->se.sleep_start = 0;
9754 p->se.block_start = 0;
9755 #endif
9756
9757 if (!rt_task(p)) {
9758 /*
9759 * Renice negative nice level userspace
9760 * tasks back to 0:
9761 */
9762 if (TASK_NICE(p) < 0 && p->mm)
9763 set_user_nice(p, 0);
9764 continue;
9765 }
9766
9767 raw_spin_lock(&p->pi_lock);
9768 rq = __task_rq_lock(p);
9769
9770 normalize_task(rq, p);
9771
9772 __task_rq_unlock(rq);
9773 raw_spin_unlock(&p->pi_lock);
9774 } while_each_thread(g, p);
9775
9776 read_unlock_irqrestore(&tasklist_lock, flags);
9777 }
9778
9779 #endif /* CONFIG_MAGIC_SYSRQ */
9780
9781 #ifdef CONFIG_IA64
9782 /*
9783 * These functions are only useful for the IA64 MCA handling.
9784 *
9785 * They can only be called when the whole system has been
9786 * stopped - every CPU needs to be quiescent, and no scheduling
9787 * activity can take place. Using them for anything else would
9788 * be a serious bug, and as a result, they aren't even visible
9789 * under any other configuration.
9790 */
9791
9792 /**
9793 * curr_task - return the current task for a given cpu.
9794 * @cpu: the processor in question.
9795 *
9796 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9797 */
9798 struct task_struct *curr_task(int cpu)
9799 {
9800 return cpu_curr(cpu);
9801 }
9802
9803 /**
9804 * set_curr_task - set the current task for a given cpu.
9805 * @cpu: the processor in question.
9806 * @p: the task pointer to set.
9807 *
9808 * Description: This function must only be used when non-maskable interrupts
9809 * are serviced on a separate stack. It allows the architecture to switch the
9810 * notion of the current task on a cpu in a non-blocking manner. This function
9811 * must be called with all CPU's synchronized, and interrupts disabled, the
9812 * and caller must save the original value of the current task (see
9813 * curr_task() above) and restore that value before reenabling interrupts and
9814 * re-starting the system.
9815 *
9816 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9817 */
9818 void set_curr_task(int cpu, struct task_struct *p)
9819 {
9820 cpu_curr(cpu) = p;
9821 }
9822
9823 #endif
9824
9825 #ifdef CONFIG_FAIR_GROUP_SCHED
9826 static void free_fair_sched_group(struct task_group *tg)
9827 {
9828 int i;
9829
9830 for_each_possible_cpu(i) {
9831 if (tg->cfs_rq)
9832 kfree(tg->cfs_rq[i]);
9833 if (tg->se)
9834 kfree(tg->se[i]);
9835 }
9836
9837 kfree(tg->cfs_rq);
9838 kfree(tg->se);
9839 }
9840
9841 static
9842 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9843 {
9844 struct cfs_rq *cfs_rq;
9845 struct sched_entity *se;
9846 struct rq *rq;
9847 int i;
9848
9849 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9850 if (!tg->cfs_rq)
9851 goto err;
9852 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9853 if (!tg->se)
9854 goto err;
9855
9856 tg->shares = NICE_0_LOAD;
9857
9858 for_each_possible_cpu(i) {
9859 rq = cpu_rq(i);
9860
9861 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9862 GFP_KERNEL, cpu_to_node(i));
9863 if (!cfs_rq)
9864 goto err;
9865
9866 se = kzalloc_node(sizeof(struct sched_entity),
9867 GFP_KERNEL, cpu_to_node(i));
9868 if (!se)
9869 goto err_free_rq;
9870
9871 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9872 }
9873
9874 return 1;
9875
9876 err_free_rq:
9877 kfree(cfs_rq);
9878 err:
9879 return 0;
9880 }
9881
9882 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9883 {
9884 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9885 &cpu_rq(cpu)->leaf_cfs_rq_list);
9886 }
9887
9888 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9889 {
9890 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9891 }
9892 #else /* !CONFG_FAIR_GROUP_SCHED */
9893 static inline void free_fair_sched_group(struct task_group *tg)
9894 {
9895 }
9896
9897 static inline
9898 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9899 {
9900 return 1;
9901 }
9902
9903 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9904 {
9905 }
9906
9907 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9908 {
9909 }
9910 #endif /* CONFIG_FAIR_GROUP_SCHED */
9911
9912 #ifdef CONFIG_RT_GROUP_SCHED
9913 static void free_rt_sched_group(struct task_group *tg)
9914 {
9915 int i;
9916
9917 destroy_rt_bandwidth(&tg->rt_bandwidth);
9918
9919 for_each_possible_cpu(i) {
9920 if (tg->rt_rq)
9921 kfree(tg->rt_rq[i]);
9922 if (tg->rt_se)
9923 kfree(tg->rt_se[i]);
9924 }
9925
9926 kfree(tg->rt_rq);
9927 kfree(tg->rt_se);
9928 }
9929
9930 static
9931 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9932 {
9933 struct rt_rq *rt_rq;
9934 struct sched_rt_entity *rt_se;
9935 struct rq *rq;
9936 int i;
9937
9938 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9939 if (!tg->rt_rq)
9940 goto err;
9941 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9942 if (!tg->rt_se)
9943 goto err;
9944
9945 init_rt_bandwidth(&tg->rt_bandwidth,
9946 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9947
9948 for_each_possible_cpu(i) {
9949 rq = cpu_rq(i);
9950
9951 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9952 GFP_KERNEL, cpu_to_node(i));
9953 if (!rt_rq)
9954 goto err;
9955
9956 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9957 GFP_KERNEL, cpu_to_node(i));
9958 if (!rt_se)
9959 goto err_free_rq;
9960
9961 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9962 }
9963
9964 return 1;
9965
9966 err_free_rq:
9967 kfree(rt_rq);
9968 err:
9969 return 0;
9970 }
9971
9972 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9973 {
9974 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9975 &cpu_rq(cpu)->leaf_rt_rq_list);
9976 }
9977
9978 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9979 {
9980 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9981 }
9982 #else /* !CONFIG_RT_GROUP_SCHED */
9983 static inline void free_rt_sched_group(struct task_group *tg)
9984 {
9985 }
9986
9987 static inline
9988 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9989 {
9990 return 1;
9991 }
9992
9993 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9994 {
9995 }
9996
9997 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9998 {
9999 }
10000 #endif /* CONFIG_RT_GROUP_SCHED */
10001
10002 #ifdef CONFIG_GROUP_SCHED
10003 static void free_sched_group(struct task_group *tg)
10004 {
10005 free_fair_sched_group(tg);
10006 free_rt_sched_group(tg);
10007 kfree(tg);
10008 }
10009
10010 /* allocate runqueue etc for a new task group */
10011 struct task_group *sched_create_group(struct task_group *parent)
10012 {
10013 struct task_group *tg;
10014 unsigned long flags;
10015 int i;
10016
10017 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10018 if (!tg)
10019 return ERR_PTR(-ENOMEM);
10020
10021 if (!alloc_fair_sched_group(tg, parent))
10022 goto err;
10023
10024 if (!alloc_rt_sched_group(tg, parent))
10025 goto err;
10026
10027 spin_lock_irqsave(&task_group_lock, flags);
10028 for_each_possible_cpu(i) {
10029 register_fair_sched_group(tg, i);
10030 register_rt_sched_group(tg, i);
10031 }
10032 list_add_rcu(&tg->list, &task_groups);
10033
10034 WARN_ON(!parent); /* root should already exist */
10035
10036 tg->parent = parent;
10037 INIT_LIST_HEAD(&tg->children);
10038 list_add_rcu(&tg->siblings, &parent->children);
10039 spin_unlock_irqrestore(&task_group_lock, flags);
10040
10041 return tg;
10042
10043 err:
10044 free_sched_group(tg);
10045 return ERR_PTR(-ENOMEM);
10046 }
10047
10048 /* rcu callback to free various structures associated with a task group */
10049 static void free_sched_group_rcu(struct rcu_head *rhp)
10050 {
10051 /* now it should be safe to free those cfs_rqs */
10052 free_sched_group(container_of(rhp, struct task_group, rcu));
10053 }
10054
10055 /* Destroy runqueue etc associated with a task group */
10056 void sched_destroy_group(struct task_group *tg)
10057 {
10058 unsigned long flags;
10059 int i;
10060
10061 spin_lock_irqsave(&task_group_lock, flags);
10062 for_each_possible_cpu(i) {
10063 unregister_fair_sched_group(tg, i);
10064 unregister_rt_sched_group(tg, i);
10065 }
10066 list_del_rcu(&tg->list);
10067 list_del_rcu(&tg->siblings);
10068 spin_unlock_irqrestore(&task_group_lock, flags);
10069
10070 /* wait for possible concurrent references to cfs_rqs complete */
10071 call_rcu(&tg->rcu, free_sched_group_rcu);
10072 }
10073
10074 /* change task's runqueue when it moves between groups.
10075 * The caller of this function should have put the task in its new group
10076 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10077 * reflect its new group.
10078 */
10079 void sched_move_task(struct task_struct *tsk)
10080 {
10081 int on_rq, running;
10082 unsigned long flags;
10083 struct rq *rq;
10084
10085 rq = task_rq_lock(tsk, &flags);
10086
10087 update_rq_clock(rq);
10088
10089 running = task_current(rq, tsk);
10090 on_rq = tsk->se.on_rq;
10091
10092 if (on_rq)
10093 dequeue_task(rq, tsk, 0);
10094 if (unlikely(running))
10095 tsk->sched_class->put_prev_task(rq, tsk);
10096
10097 set_task_rq(tsk, task_cpu(tsk));
10098
10099 #ifdef CONFIG_FAIR_GROUP_SCHED
10100 if (tsk->sched_class->moved_group)
10101 tsk->sched_class->moved_group(tsk, on_rq);
10102 #endif
10103
10104 if (unlikely(running))
10105 tsk->sched_class->set_curr_task(rq);
10106 if (on_rq)
10107 enqueue_task(rq, tsk, 0);
10108
10109 task_rq_unlock(rq, &flags);
10110 }
10111 #endif /* CONFIG_GROUP_SCHED */
10112
10113 #ifdef CONFIG_FAIR_GROUP_SCHED
10114 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10115 {
10116 struct cfs_rq *cfs_rq = se->cfs_rq;
10117 int on_rq;
10118
10119 on_rq = se->on_rq;
10120 if (on_rq)
10121 dequeue_entity(cfs_rq, se, 0);
10122
10123 se->load.weight = shares;
10124 se->load.inv_weight = 0;
10125
10126 if (on_rq)
10127 enqueue_entity(cfs_rq, se, 0);
10128 }
10129
10130 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10131 {
10132 struct cfs_rq *cfs_rq = se->cfs_rq;
10133 struct rq *rq = cfs_rq->rq;
10134 unsigned long flags;
10135
10136 raw_spin_lock_irqsave(&rq->lock, flags);
10137 __set_se_shares(se, shares);
10138 raw_spin_unlock_irqrestore(&rq->lock, flags);
10139 }
10140
10141 static DEFINE_MUTEX(shares_mutex);
10142
10143 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10144 {
10145 int i;
10146 unsigned long flags;
10147
10148 /*
10149 * We can't change the weight of the root cgroup.
10150 */
10151 if (!tg->se[0])
10152 return -EINVAL;
10153
10154 if (shares < MIN_SHARES)
10155 shares = MIN_SHARES;
10156 else if (shares > MAX_SHARES)
10157 shares = MAX_SHARES;
10158
10159 mutex_lock(&shares_mutex);
10160 if (tg->shares == shares)
10161 goto done;
10162
10163 spin_lock_irqsave(&task_group_lock, flags);
10164 for_each_possible_cpu(i)
10165 unregister_fair_sched_group(tg, i);
10166 list_del_rcu(&tg->siblings);
10167 spin_unlock_irqrestore(&task_group_lock, flags);
10168
10169 /* wait for any ongoing reference to this group to finish */
10170 synchronize_sched();
10171
10172 /*
10173 * Now we are free to modify the group's share on each cpu
10174 * w/o tripping rebalance_share or load_balance_fair.
10175 */
10176 tg->shares = shares;
10177 for_each_possible_cpu(i) {
10178 /*
10179 * force a rebalance
10180 */
10181 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10182 set_se_shares(tg->se[i], shares);
10183 }
10184
10185 /*
10186 * Enable load balance activity on this group, by inserting it back on
10187 * each cpu's rq->leaf_cfs_rq_list.
10188 */
10189 spin_lock_irqsave(&task_group_lock, flags);
10190 for_each_possible_cpu(i)
10191 register_fair_sched_group(tg, i);
10192 list_add_rcu(&tg->siblings, &tg->parent->children);
10193 spin_unlock_irqrestore(&task_group_lock, flags);
10194 done:
10195 mutex_unlock(&shares_mutex);
10196 return 0;
10197 }
10198
10199 unsigned long sched_group_shares(struct task_group *tg)
10200 {
10201 return tg->shares;
10202 }
10203 #endif
10204
10205 #ifdef CONFIG_RT_GROUP_SCHED
10206 /*
10207 * Ensure that the real time constraints are schedulable.
10208 */
10209 static DEFINE_MUTEX(rt_constraints_mutex);
10210
10211 static unsigned long to_ratio(u64 period, u64 runtime)
10212 {
10213 if (runtime == RUNTIME_INF)
10214 return 1ULL << 20;
10215
10216 return div64_u64(runtime << 20, period);
10217 }
10218
10219 /* Must be called with tasklist_lock held */
10220 static inline int tg_has_rt_tasks(struct task_group *tg)
10221 {
10222 struct task_struct *g, *p;
10223
10224 do_each_thread(g, p) {
10225 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10226 return 1;
10227 } while_each_thread(g, p);
10228
10229 return 0;
10230 }
10231
10232 struct rt_schedulable_data {
10233 struct task_group *tg;
10234 u64 rt_period;
10235 u64 rt_runtime;
10236 };
10237
10238 static int tg_schedulable(struct task_group *tg, void *data)
10239 {
10240 struct rt_schedulable_data *d = data;
10241 struct task_group *child;
10242 unsigned long total, sum = 0;
10243 u64 period, runtime;
10244
10245 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10246 runtime = tg->rt_bandwidth.rt_runtime;
10247
10248 if (tg == d->tg) {
10249 period = d->rt_period;
10250 runtime = d->rt_runtime;
10251 }
10252
10253 #ifdef CONFIG_USER_SCHED
10254 if (tg == &root_task_group) {
10255 period = global_rt_period();
10256 runtime = global_rt_runtime();
10257 }
10258 #endif
10259
10260 /*
10261 * Cannot have more runtime than the period.
10262 */
10263 if (runtime > period && runtime != RUNTIME_INF)
10264 return -EINVAL;
10265
10266 /*
10267 * Ensure we don't starve existing RT tasks.
10268 */
10269 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10270 return -EBUSY;
10271
10272 total = to_ratio(period, runtime);
10273
10274 /*
10275 * Nobody can have more than the global setting allows.
10276 */
10277 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10278 return -EINVAL;
10279
10280 /*
10281 * The sum of our children's runtime should not exceed our own.
10282 */
10283 list_for_each_entry_rcu(child, &tg->children, siblings) {
10284 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10285 runtime = child->rt_bandwidth.rt_runtime;
10286
10287 if (child == d->tg) {
10288 period = d->rt_period;
10289 runtime = d->rt_runtime;
10290 }
10291
10292 sum += to_ratio(period, runtime);
10293 }
10294
10295 if (sum > total)
10296 return -EINVAL;
10297
10298 return 0;
10299 }
10300
10301 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10302 {
10303 struct rt_schedulable_data data = {
10304 .tg = tg,
10305 .rt_period = period,
10306 .rt_runtime = runtime,
10307 };
10308
10309 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10310 }
10311
10312 static int tg_set_bandwidth(struct task_group *tg,
10313 u64 rt_period, u64 rt_runtime)
10314 {
10315 int i, err = 0;
10316
10317 mutex_lock(&rt_constraints_mutex);
10318 read_lock(&tasklist_lock);
10319 err = __rt_schedulable(tg, rt_period, rt_runtime);
10320 if (err)
10321 goto unlock;
10322
10323 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10324 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10325 tg->rt_bandwidth.rt_runtime = rt_runtime;
10326
10327 for_each_possible_cpu(i) {
10328 struct rt_rq *rt_rq = tg->rt_rq[i];
10329
10330 raw_spin_lock(&rt_rq->rt_runtime_lock);
10331 rt_rq->rt_runtime = rt_runtime;
10332 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10333 }
10334 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10335 unlock:
10336 read_unlock(&tasklist_lock);
10337 mutex_unlock(&rt_constraints_mutex);
10338
10339 return err;
10340 }
10341
10342 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10343 {
10344 u64 rt_runtime, rt_period;
10345
10346 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10347 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10348 if (rt_runtime_us < 0)
10349 rt_runtime = RUNTIME_INF;
10350
10351 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10352 }
10353
10354 long sched_group_rt_runtime(struct task_group *tg)
10355 {
10356 u64 rt_runtime_us;
10357
10358 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10359 return -1;
10360
10361 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10362 do_div(rt_runtime_us, NSEC_PER_USEC);
10363 return rt_runtime_us;
10364 }
10365
10366 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10367 {
10368 u64 rt_runtime, rt_period;
10369
10370 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10371 rt_runtime = tg->rt_bandwidth.rt_runtime;
10372
10373 if (rt_period == 0)
10374 return -EINVAL;
10375
10376 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10377 }
10378
10379 long sched_group_rt_period(struct task_group *tg)
10380 {
10381 u64 rt_period_us;
10382
10383 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10384 do_div(rt_period_us, NSEC_PER_USEC);
10385 return rt_period_us;
10386 }
10387
10388 static int sched_rt_global_constraints(void)
10389 {
10390 u64 runtime, period;
10391 int ret = 0;
10392
10393 if (sysctl_sched_rt_period <= 0)
10394 return -EINVAL;
10395
10396 runtime = global_rt_runtime();
10397 period = global_rt_period();
10398
10399 /*
10400 * Sanity check on the sysctl variables.
10401 */
10402 if (runtime > period && runtime != RUNTIME_INF)
10403 return -EINVAL;
10404
10405 mutex_lock(&rt_constraints_mutex);
10406 read_lock(&tasklist_lock);
10407 ret = __rt_schedulable(NULL, 0, 0);
10408 read_unlock(&tasklist_lock);
10409 mutex_unlock(&rt_constraints_mutex);
10410
10411 return ret;
10412 }
10413
10414 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10415 {
10416 /* Don't accept realtime tasks when there is no way for them to run */
10417 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10418 return 0;
10419
10420 return 1;
10421 }
10422
10423 #else /* !CONFIG_RT_GROUP_SCHED */
10424 static int sched_rt_global_constraints(void)
10425 {
10426 unsigned long flags;
10427 int i;
10428
10429 if (sysctl_sched_rt_period <= 0)
10430 return -EINVAL;
10431
10432 /*
10433 * There's always some RT tasks in the root group
10434 * -- migration, kstopmachine etc..
10435 */
10436 if (sysctl_sched_rt_runtime == 0)
10437 return -EBUSY;
10438
10439 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10440 for_each_possible_cpu(i) {
10441 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10442
10443 raw_spin_lock(&rt_rq->rt_runtime_lock);
10444 rt_rq->rt_runtime = global_rt_runtime();
10445 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10446 }
10447 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10448
10449 return 0;
10450 }
10451 #endif /* CONFIG_RT_GROUP_SCHED */
10452
10453 int sched_rt_handler(struct ctl_table *table, int write,
10454 void __user *buffer, size_t *lenp,
10455 loff_t *ppos)
10456 {
10457 int ret;
10458 int old_period, old_runtime;
10459 static DEFINE_MUTEX(mutex);
10460
10461 mutex_lock(&mutex);
10462 old_period = sysctl_sched_rt_period;
10463 old_runtime = sysctl_sched_rt_runtime;
10464
10465 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10466
10467 if (!ret && write) {
10468 ret = sched_rt_global_constraints();
10469 if (ret) {
10470 sysctl_sched_rt_period = old_period;
10471 sysctl_sched_rt_runtime = old_runtime;
10472 } else {
10473 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10474 def_rt_bandwidth.rt_period =
10475 ns_to_ktime(global_rt_period());
10476 }
10477 }
10478 mutex_unlock(&mutex);
10479
10480 return ret;
10481 }
10482
10483 #ifdef CONFIG_CGROUP_SCHED
10484
10485 /* return corresponding task_group object of a cgroup */
10486 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10487 {
10488 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10489 struct task_group, css);
10490 }
10491
10492 static struct cgroup_subsys_state *
10493 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10494 {
10495 struct task_group *tg, *parent;
10496
10497 if (!cgrp->parent) {
10498 /* This is early initialization for the top cgroup */
10499 return &init_task_group.css;
10500 }
10501
10502 parent = cgroup_tg(cgrp->parent);
10503 tg = sched_create_group(parent);
10504 if (IS_ERR(tg))
10505 return ERR_PTR(-ENOMEM);
10506
10507 return &tg->css;
10508 }
10509
10510 static void
10511 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10512 {
10513 struct task_group *tg = cgroup_tg(cgrp);
10514
10515 sched_destroy_group(tg);
10516 }
10517
10518 static int
10519 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10520 {
10521 #ifdef CONFIG_RT_GROUP_SCHED
10522 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10523 return -EINVAL;
10524 #else
10525 /* We don't support RT-tasks being in separate groups */
10526 if (tsk->sched_class != &fair_sched_class)
10527 return -EINVAL;
10528 #endif
10529 return 0;
10530 }
10531
10532 static int
10533 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10534 struct task_struct *tsk, bool threadgroup)
10535 {
10536 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10537 if (retval)
10538 return retval;
10539 if (threadgroup) {
10540 struct task_struct *c;
10541 rcu_read_lock();
10542 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10543 retval = cpu_cgroup_can_attach_task(cgrp, c);
10544 if (retval) {
10545 rcu_read_unlock();
10546 return retval;
10547 }
10548 }
10549 rcu_read_unlock();
10550 }
10551 return 0;
10552 }
10553
10554 static void
10555 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10556 struct cgroup *old_cont, struct task_struct *tsk,
10557 bool threadgroup)
10558 {
10559 sched_move_task(tsk);
10560 if (threadgroup) {
10561 struct task_struct *c;
10562 rcu_read_lock();
10563 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10564 sched_move_task(c);
10565 }
10566 rcu_read_unlock();
10567 }
10568 }
10569
10570 #ifdef CONFIG_FAIR_GROUP_SCHED
10571 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10572 u64 shareval)
10573 {
10574 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10575 }
10576
10577 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10578 {
10579 struct task_group *tg = cgroup_tg(cgrp);
10580
10581 return (u64) tg->shares;
10582 }
10583 #endif /* CONFIG_FAIR_GROUP_SCHED */
10584
10585 #ifdef CONFIG_RT_GROUP_SCHED
10586 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10587 s64 val)
10588 {
10589 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10590 }
10591
10592 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10593 {
10594 return sched_group_rt_runtime(cgroup_tg(cgrp));
10595 }
10596
10597 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10598 u64 rt_period_us)
10599 {
10600 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10601 }
10602
10603 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10604 {
10605 return sched_group_rt_period(cgroup_tg(cgrp));
10606 }
10607 #endif /* CONFIG_RT_GROUP_SCHED */
10608
10609 static struct cftype cpu_files[] = {
10610 #ifdef CONFIG_FAIR_GROUP_SCHED
10611 {
10612 .name = "shares",
10613 .read_u64 = cpu_shares_read_u64,
10614 .write_u64 = cpu_shares_write_u64,
10615 },
10616 #endif
10617 #ifdef CONFIG_RT_GROUP_SCHED
10618 {
10619 .name = "rt_runtime_us",
10620 .read_s64 = cpu_rt_runtime_read,
10621 .write_s64 = cpu_rt_runtime_write,
10622 },
10623 {
10624 .name = "rt_period_us",
10625 .read_u64 = cpu_rt_period_read_uint,
10626 .write_u64 = cpu_rt_period_write_uint,
10627 },
10628 #endif
10629 };
10630
10631 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10632 {
10633 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10634 }
10635
10636 struct cgroup_subsys cpu_cgroup_subsys = {
10637 .name = "cpu",
10638 .create = cpu_cgroup_create,
10639 .destroy = cpu_cgroup_destroy,
10640 .can_attach = cpu_cgroup_can_attach,
10641 .attach = cpu_cgroup_attach,
10642 .populate = cpu_cgroup_populate,
10643 .subsys_id = cpu_cgroup_subsys_id,
10644 .early_init = 1,
10645 };
10646
10647 #endif /* CONFIG_CGROUP_SCHED */
10648
10649 #ifdef CONFIG_CGROUP_CPUACCT
10650
10651 /*
10652 * CPU accounting code for task groups.
10653 *
10654 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10655 * (balbir@in.ibm.com).
10656 */
10657
10658 /* track cpu usage of a group of tasks and its child groups */
10659 struct cpuacct {
10660 struct cgroup_subsys_state css;
10661 /* cpuusage holds pointer to a u64-type object on every cpu */
10662 u64 *cpuusage;
10663 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10664 struct cpuacct *parent;
10665 };
10666
10667 struct cgroup_subsys cpuacct_subsys;
10668
10669 /* return cpu accounting group corresponding to this container */
10670 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10671 {
10672 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10673 struct cpuacct, css);
10674 }
10675
10676 /* return cpu accounting group to which this task belongs */
10677 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10678 {
10679 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10680 struct cpuacct, css);
10681 }
10682
10683 /* create a new cpu accounting group */
10684 static struct cgroup_subsys_state *cpuacct_create(
10685 struct cgroup_subsys *ss, struct cgroup *cgrp)
10686 {
10687 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10688 int i;
10689
10690 if (!ca)
10691 goto out;
10692
10693 ca->cpuusage = alloc_percpu(u64);
10694 if (!ca->cpuusage)
10695 goto out_free_ca;
10696
10697 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10698 if (percpu_counter_init(&ca->cpustat[i], 0))
10699 goto out_free_counters;
10700
10701 if (cgrp->parent)
10702 ca->parent = cgroup_ca(cgrp->parent);
10703
10704 return &ca->css;
10705
10706 out_free_counters:
10707 while (--i >= 0)
10708 percpu_counter_destroy(&ca->cpustat[i]);
10709 free_percpu(ca->cpuusage);
10710 out_free_ca:
10711 kfree(ca);
10712 out:
10713 return ERR_PTR(-ENOMEM);
10714 }
10715
10716 /* destroy an existing cpu accounting group */
10717 static void
10718 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10719 {
10720 struct cpuacct *ca = cgroup_ca(cgrp);
10721 int i;
10722
10723 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10724 percpu_counter_destroy(&ca->cpustat[i]);
10725 free_percpu(ca->cpuusage);
10726 kfree(ca);
10727 }
10728
10729 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10730 {
10731 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10732 u64 data;
10733
10734 #ifndef CONFIG_64BIT
10735 /*
10736 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10737 */
10738 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10739 data = *cpuusage;
10740 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10741 #else
10742 data = *cpuusage;
10743 #endif
10744
10745 return data;
10746 }
10747
10748 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10749 {
10750 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10751
10752 #ifndef CONFIG_64BIT
10753 /*
10754 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10755 */
10756 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10757 *cpuusage = val;
10758 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10759 #else
10760 *cpuusage = val;
10761 #endif
10762 }
10763
10764 /* return total cpu usage (in nanoseconds) of a group */
10765 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10766 {
10767 struct cpuacct *ca = cgroup_ca(cgrp);
10768 u64 totalcpuusage = 0;
10769 int i;
10770
10771 for_each_present_cpu(i)
10772 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10773
10774 return totalcpuusage;
10775 }
10776
10777 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10778 u64 reset)
10779 {
10780 struct cpuacct *ca = cgroup_ca(cgrp);
10781 int err = 0;
10782 int i;
10783
10784 if (reset) {
10785 err = -EINVAL;
10786 goto out;
10787 }
10788
10789 for_each_present_cpu(i)
10790 cpuacct_cpuusage_write(ca, i, 0);
10791
10792 out:
10793 return err;
10794 }
10795
10796 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10797 struct seq_file *m)
10798 {
10799 struct cpuacct *ca = cgroup_ca(cgroup);
10800 u64 percpu;
10801 int i;
10802
10803 for_each_present_cpu(i) {
10804 percpu = cpuacct_cpuusage_read(ca, i);
10805 seq_printf(m, "%llu ", (unsigned long long) percpu);
10806 }
10807 seq_printf(m, "\n");
10808 return 0;
10809 }
10810
10811 static const char *cpuacct_stat_desc[] = {
10812 [CPUACCT_STAT_USER] = "user",
10813 [CPUACCT_STAT_SYSTEM] = "system",
10814 };
10815
10816 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10817 struct cgroup_map_cb *cb)
10818 {
10819 struct cpuacct *ca = cgroup_ca(cgrp);
10820 int i;
10821
10822 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10823 s64 val = percpu_counter_read(&ca->cpustat[i]);
10824 val = cputime64_to_clock_t(val);
10825 cb->fill(cb, cpuacct_stat_desc[i], val);
10826 }
10827 return 0;
10828 }
10829
10830 static struct cftype files[] = {
10831 {
10832 .name = "usage",
10833 .read_u64 = cpuusage_read,
10834 .write_u64 = cpuusage_write,
10835 },
10836 {
10837 .name = "usage_percpu",
10838 .read_seq_string = cpuacct_percpu_seq_read,
10839 },
10840 {
10841 .name = "stat",
10842 .read_map = cpuacct_stats_show,
10843 },
10844 };
10845
10846 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10847 {
10848 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10849 }
10850
10851 /*
10852 * charge this task's execution time to its accounting group.
10853 *
10854 * called with rq->lock held.
10855 */
10856 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10857 {
10858 struct cpuacct *ca;
10859 int cpu;
10860
10861 if (unlikely(!cpuacct_subsys.active))
10862 return;
10863
10864 cpu = task_cpu(tsk);
10865
10866 rcu_read_lock();
10867
10868 ca = task_ca(tsk);
10869
10870 for (; ca; ca = ca->parent) {
10871 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10872 *cpuusage += cputime;
10873 }
10874
10875 rcu_read_unlock();
10876 }
10877
10878 /*
10879 * Charge the system/user time to the task's accounting group.
10880 */
10881 static void cpuacct_update_stats(struct task_struct *tsk,
10882 enum cpuacct_stat_index idx, cputime_t val)
10883 {
10884 struct cpuacct *ca;
10885
10886 if (unlikely(!cpuacct_subsys.active))
10887 return;
10888
10889 rcu_read_lock();
10890 ca = task_ca(tsk);
10891
10892 do {
10893 percpu_counter_add(&ca->cpustat[idx], val);
10894 ca = ca->parent;
10895 } while (ca);
10896 rcu_read_unlock();
10897 }
10898
10899 struct cgroup_subsys cpuacct_subsys = {
10900 .name = "cpuacct",
10901 .create = cpuacct_create,
10902 .destroy = cpuacct_destroy,
10903 .populate = cpuacct_populate,
10904 .subsys_id = cpuacct_subsys_id,
10905 };
10906 #endif /* CONFIG_CGROUP_CPUACCT */
10907
10908 #ifndef CONFIG_SMP
10909
10910 int rcu_expedited_torture_stats(char *page)
10911 {
10912 return 0;
10913 }
10914 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10915
10916 void synchronize_sched_expedited(void)
10917 {
10918 }
10919 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10920
10921 #else /* #ifndef CONFIG_SMP */
10922
10923 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10924 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10925
10926 #define RCU_EXPEDITED_STATE_POST -2
10927 #define RCU_EXPEDITED_STATE_IDLE -1
10928
10929 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10930
10931 int rcu_expedited_torture_stats(char *page)
10932 {
10933 int cnt = 0;
10934 int cpu;
10935
10936 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10937 for_each_online_cpu(cpu) {
10938 cnt += sprintf(&page[cnt], " %d:%d",
10939 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10940 }
10941 cnt += sprintf(&page[cnt], "\n");
10942 return cnt;
10943 }
10944 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10945
10946 static long synchronize_sched_expedited_count;
10947
10948 /*
10949 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10950 * approach to force grace period to end quickly. This consumes
10951 * significant time on all CPUs, and is thus not recommended for
10952 * any sort of common-case code.
10953 *
10954 * Note that it is illegal to call this function while holding any
10955 * lock that is acquired by a CPU-hotplug notifier. Failing to
10956 * observe this restriction will result in deadlock.
10957 */
10958 void synchronize_sched_expedited(void)
10959 {
10960 int cpu;
10961 unsigned long flags;
10962 bool need_full_sync = 0;
10963 struct rq *rq;
10964 struct migration_req *req;
10965 long snap;
10966 int trycount = 0;
10967
10968 smp_mb(); /* ensure prior mod happens before capturing snap. */
10969 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10970 get_online_cpus();
10971 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10972 put_online_cpus();
10973 if (trycount++ < 10)
10974 udelay(trycount * num_online_cpus());
10975 else {
10976 synchronize_sched();
10977 return;
10978 }
10979 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10980 smp_mb(); /* ensure test happens before caller kfree */
10981 return;
10982 }
10983 get_online_cpus();
10984 }
10985 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10986 for_each_online_cpu(cpu) {
10987 rq = cpu_rq(cpu);
10988 req = &per_cpu(rcu_migration_req, cpu);
10989 init_completion(&req->done);
10990 req->task = NULL;
10991 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10992 raw_spin_lock_irqsave(&rq->lock, flags);
10993 list_add(&req->list, &rq->migration_queue);
10994 raw_spin_unlock_irqrestore(&rq->lock, flags);
10995 wake_up_process(rq->migration_thread);
10996 }
10997 for_each_online_cpu(cpu) {
10998 rcu_expedited_state = cpu;
10999 req = &per_cpu(rcu_migration_req, cpu);
11000 rq = cpu_rq(cpu);
11001 wait_for_completion(&req->done);
11002 raw_spin_lock_irqsave(&rq->lock, flags);
11003 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11004 need_full_sync = 1;
11005 req->dest_cpu = RCU_MIGRATION_IDLE;
11006 raw_spin_unlock_irqrestore(&rq->lock, flags);
11007 }
11008 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11009 synchronize_sched_expedited_count++;
11010 mutex_unlock(&rcu_sched_expedited_mutex);
11011 put_online_cpus();
11012 if (need_full_sync)
11013 synchronize_sched();
11014 }
11015 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11016
11017 #endif /* #else #ifndef CONFIG_SMP */