]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched.c
Merge branch 'devel-stable' of master.kernel.org:/home/rmk/linux-2.6-arm
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78 #include <asm/mutex.h>
79
80 #include "sched_cpupri.h"
81 #include "workqueue_sched.h"
82 #include "sched_autogroup.h"
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/sched.h>
86
87 /*
88 * Convert user-nice values [ -20 ... 0 ... 19 ]
89 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 * and back.
91 */
92 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
93 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
94 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95
96 /*
97 * 'User priority' is the nice value converted to something we
98 * can work with better when scaling various scheduler parameters,
99 * it's a [ 0 ... 39 ] range.
100 */
101 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
102 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
103 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104
105 /*
106 * Helpers for converting nanosecond timing to jiffy resolution
107 */
108 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
109
110 #define NICE_0_LOAD SCHED_LOAD_SCALE
111 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112
113 /*
114 * These are the 'tuning knobs' of the scheduler:
115 *
116 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
117 * Timeslices get refilled after they expire.
118 */
119 #define DEF_TIMESLICE (100 * HZ / 1000)
120
121 /*
122 * single value that denotes runtime == period, ie unlimited time.
123 */
124 #define RUNTIME_INF ((u64)~0ULL)
125
126 static inline int rt_policy(int policy)
127 {
128 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
129 return 1;
130 return 0;
131 }
132
133 static inline int task_has_rt_policy(struct task_struct *p)
134 {
135 return rt_policy(p->policy);
136 }
137
138 /*
139 * This is the priority-queue data structure of the RT scheduling class:
140 */
141 struct rt_prio_array {
142 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
143 struct list_head queue[MAX_RT_PRIO];
144 };
145
146 struct rt_bandwidth {
147 /* nests inside the rq lock: */
148 raw_spinlock_t rt_runtime_lock;
149 ktime_t rt_period;
150 u64 rt_runtime;
151 struct hrtimer rt_period_timer;
152 };
153
154 static struct rt_bandwidth def_rt_bandwidth;
155
156 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
157
158 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
159 {
160 struct rt_bandwidth *rt_b =
161 container_of(timer, struct rt_bandwidth, rt_period_timer);
162 ktime_t now;
163 int overrun;
164 int idle = 0;
165
166 for (;;) {
167 now = hrtimer_cb_get_time(timer);
168 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
169
170 if (!overrun)
171 break;
172
173 idle = do_sched_rt_period_timer(rt_b, overrun);
174 }
175
176 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177 }
178
179 static
180 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
181 {
182 rt_b->rt_period = ns_to_ktime(period);
183 rt_b->rt_runtime = runtime;
184
185 raw_spin_lock_init(&rt_b->rt_runtime_lock);
186
187 hrtimer_init(&rt_b->rt_period_timer,
188 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
189 rt_b->rt_period_timer.function = sched_rt_period_timer;
190 }
191
192 static inline int rt_bandwidth_enabled(void)
193 {
194 return sysctl_sched_rt_runtime >= 0;
195 }
196
197 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
198 {
199 ktime_t now;
200
201 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
202 return;
203
204 if (hrtimer_active(&rt_b->rt_period_timer))
205 return;
206
207 raw_spin_lock(&rt_b->rt_runtime_lock);
208 for (;;) {
209 unsigned long delta;
210 ktime_t soft, hard;
211
212 if (hrtimer_active(&rt_b->rt_period_timer))
213 break;
214
215 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
216 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
217
218 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
219 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
220 delta = ktime_to_ns(ktime_sub(hard, soft));
221 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
222 HRTIMER_MODE_ABS_PINNED, 0);
223 }
224 raw_spin_unlock(&rt_b->rt_runtime_lock);
225 }
226
227 #ifdef CONFIG_RT_GROUP_SCHED
228 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
229 {
230 hrtimer_cancel(&rt_b->rt_period_timer);
231 }
232 #endif
233
234 /*
235 * sched_domains_mutex serializes calls to arch_init_sched_domains,
236 * detach_destroy_domains and partition_sched_domains.
237 */
238 static DEFINE_MUTEX(sched_domains_mutex);
239
240 #ifdef CONFIG_CGROUP_SCHED
241
242 #include <linux/cgroup.h>
243
244 struct cfs_rq;
245
246 static LIST_HEAD(task_groups);
247
248 /* task group related information */
249 struct task_group {
250 struct cgroup_subsys_state css;
251
252 #ifdef CONFIG_FAIR_GROUP_SCHED
253 /* schedulable entities of this group on each cpu */
254 struct sched_entity **se;
255 /* runqueue "owned" by this group on each cpu */
256 struct cfs_rq **cfs_rq;
257 unsigned long shares;
258
259 atomic_t load_weight;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275
276 #ifdef CONFIG_SCHED_AUTOGROUP
277 struct autogroup *autogroup;
278 #endif
279 };
280
281 /* task_group_lock serializes the addition/removal of task groups */
282 static DEFINE_SPINLOCK(task_group_lock);
283
284 #ifdef CONFIG_FAIR_GROUP_SCHED
285
286 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
287
288 /*
289 * A weight of 0 or 1 can cause arithmetics problems.
290 * A weight of a cfs_rq is the sum of weights of which entities
291 * are queued on this cfs_rq, so a weight of a entity should not be
292 * too large, so as the shares value of a task group.
293 * (The default weight is 1024 - so there's no practical
294 * limitation from this.)
295 */
296 #define MIN_SHARES 2
297 #define MAX_SHARES (1UL << 18)
298
299 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
300 #endif
301
302 /* Default task group.
303 * Every task in system belong to this group at bootup.
304 */
305 struct task_group root_task_group;
306
307 #endif /* CONFIG_CGROUP_SCHED */
308
309 /* CFS-related fields in a runqueue */
310 struct cfs_rq {
311 struct load_weight load;
312 unsigned long nr_running;
313
314 u64 exec_clock;
315 u64 min_vruntime;
316
317 struct rb_root tasks_timeline;
318 struct rb_node *rb_leftmost;
319
320 struct list_head tasks;
321 struct list_head *balance_iterator;
322
323 /*
324 * 'curr' points to currently running entity on this cfs_rq.
325 * It is set to NULL otherwise (i.e when none are currently running).
326 */
327 struct sched_entity *curr, *next, *last;
328
329 unsigned int nr_spread_over;
330
331 #ifdef CONFIG_FAIR_GROUP_SCHED
332 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
333
334 /*
335 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
336 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
337 * (like users, containers etc.)
338 *
339 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
340 * list is used during load balance.
341 */
342 int on_list;
343 struct list_head leaf_cfs_rq_list;
344 struct task_group *tg; /* group that "owns" this runqueue */
345
346 #ifdef CONFIG_SMP
347 /*
348 * the part of load.weight contributed by tasks
349 */
350 unsigned long task_weight;
351
352 /*
353 * h_load = weight * f(tg)
354 *
355 * Where f(tg) is the recursive weight fraction assigned to
356 * this group.
357 */
358 unsigned long h_load;
359
360 /*
361 * Maintaining per-cpu shares distribution for group scheduling
362 *
363 * load_stamp is the last time we updated the load average
364 * load_last is the last time we updated the load average and saw load
365 * load_unacc_exec_time is currently unaccounted execution time
366 */
367 u64 load_avg;
368 u64 load_period;
369 u64 load_stamp, load_last, load_unacc_exec_time;
370
371 unsigned long load_contribution;
372 #endif
373 #endif
374 };
375
376 /* Real-Time classes' related field in a runqueue: */
377 struct rt_rq {
378 struct rt_prio_array active;
379 unsigned long rt_nr_running;
380 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
381 struct {
382 int curr; /* highest queued rt task prio */
383 #ifdef CONFIG_SMP
384 int next; /* next highest */
385 #endif
386 } highest_prio;
387 #endif
388 #ifdef CONFIG_SMP
389 unsigned long rt_nr_migratory;
390 unsigned long rt_nr_total;
391 int overloaded;
392 struct plist_head pushable_tasks;
393 #endif
394 int rt_throttled;
395 u64 rt_time;
396 u64 rt_runtime;
397 /* Nests inside the rq lock: */
398 raw_spinlock_t rt_runtime_lock;
399
400 #ifdef CONFIG_RT_GROUP_SCHED
401 unsigned long rt_nr_boosted;
402
403 struct rq *rq;
404 struct list_head leaf_rt_rq_list;
405 struct task_group *tg;
406 #endif
407 };
408
409 #ifdef CONFIG_SMP
410
411 /*
412 * We add the notion of a root-domain which will be used to define per-domain
413 * variables. Each exclusive cpuset essentially defines an island domain by
414 * fully partitioning the member cpus from any other cpuset. Whenever a new
415 * exclusive cpuset is created, we also create and attach a new root-domain
416 * object.
417 *
418 */
419 struct root_domain {
420 atomic_t refcount;
421 cpumask_var_t span;
422 cpumask_var_t online;
423
424 /*
425 * The "RT overload" flag: it gets set if a CPU has more than
426 * one runnable RT task.
427 */
428 cpumask_var_t rto_mask;
429 atomic_t rto_count;
430 struct cpupri cpupri;
431 };
432
433 /*
434 * By default the system creates a single root-domain with all cpus as
435 * members (mimicking the global state we have today).
436 */
437 static struct root_domain def_root_domain;
438
439 #endif /* CONFIG_SMP */
440
441 /*
442 * This is the main, per-CPU runqueue data structure.
443 *
444 * Locking rule: those places that want to lock multiple runqueues
445 * (such as the load balancing or the thread migration code), lock
446 * acquire operations must be ordered by ascending &runqueue.
447 */
448 struct rq {
449 /* runqueue lock: */
450 raw_spinlock_t lock;
451
452 /*
453 * nr_running and cpu_load should be in the same cacheline because
454 * remote CPUs use both these fields when doing load calculation.
455 */
456 unsigned long nr_running;
457 #define CPU_LOAD_IDX_MAX 5
458 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
459 unsigned long last_load_update_tick;
460 #ifdef CONFIG_NO_HZ
461 u64 nohz_stamp;
462 unsigned char nohz_balance_kick;
463 #endif
464 unsigned int skip_clock_update;
465
466 /* capture load from *all* tasks on this cpu: */
467 struct load_weight load;
468 unsigned long nr_load_updates;
469 u64 nr_switches;
470
471 struct cfs_rq cfs;
472 struct rt_rq rt;
473
474 #ifdef CONFIG_FAIR_GROUP_SCHED
475 /* list of leaf cfs_rq on this cpu: */
476 struct list_head leaf_cfs_rq_list;
477 #endif
478 #ifdef CONFIG_RT_GROUP_SCHED
479 struct list_head leaf_rt_rq_list;
480 #endif
481
482 /*
483 * This is part of a global counter where only the total sum
484 * over all CPUs matters. A task can increase this counter on
485 * one CPU and if it got migrated afterwards it may decrease
486 * it on another CPU. Always updated under the runqueue lock:
487 */
488 unsigned long nr_uninterruptible;
489
490 struct task_struct *curr, *idle, *stop;
491 unsigned long next_balance;
492 struct mm_struct *prev_mm;
493
494 u64 clock;
495 u64 clock_task;
496
497 atomic_t nr_iowait;
498
499 #ifdef CONFIG_SMP
500 struct root_domain *rd;
501 struct sched_domain *sd;
502
503 unsigned long cpu_power;
504
505 unsigned char idle_at_tick;
506 /* For active balancing */
507 int post_schedule;
508 int active_balance;
509 int push_cpu;
510 struct cpu_stop_work active_balance_work;
511 /* cpu of this runqueue: */
512 int cpu;
513 int online;
514
515 unsigned long avg_load_per_task;
516
517 u64 rt_avg;
518 u64 age_stamp;
519 u64 idle_stamp;
520 u64 avg_idle;
521 #endif
522
523 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
524 u64 prev_irq_time;
525 #endif
526
527 /* calc_load related fields */
528 unsigned long calc_load_update;
529 long calc_load_active;
530
531 #ifdef CONFIG_SCHED_HRTICK
532 #ifdef CONFIG_SMP
533 int hrtick_csd_pending;
534 struct call_single_data hrtick_csd;
535 #endif
536 struct hrtimer hrtick_timer;
537 #endif
538
539 #ifdef CONFIG_SCHEDSTATS
540 /* latency stats */
541 struct sched_info rq_sched_info;
542 unsigned long long rq_cpu_time;
543 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
544
545 /* sys_sched_yield() stats */
546 unsigned int yld_count;
547
548 /* schedule() stats */
549 unsigned int sched_switch;
550 unsigned int sched_count;
551 unsigned int sched_goidle;
552
553 /* try_to_wake_up() stats */
554 unsigned int ttwu_count;
555 unsigned int ttwu_local;
556
557 /* BKL stats */
558 unsigned int bkl_count;
559 #endif
560 };
561
562 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
563
564
565 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
566
567 static inline int cpu_of(struct rq *rq)
568 {
569 #ifdef CONFIG_SMP
570 return rq->cpu;
571 #else
572 return 0;
573 #endif
574 }
575
576 #define rcu_dereference_check_sched_domain(p) \
577 rcu_dereference_check((p), \
578 rcu_read_lock_sched_held() || \
579 lockdep_is_held(&sched_domains_mutex))
580
581 /*
582 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
583 * See detach_destroy_domains: synchronize_sched for details.
584 *
585 * The domain tree of any CPU may only be accessed from within
586 * preempt-disabled sections.
587 */
588 #define for_each_domain(cpu, __sd) \
589 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
590
591 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
592 #define this_rq() (&__get_cpu_var(runqueues))
593 #define task_rq(p) cpu_rq(task_cpu(p))
594 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
595 #define raw_rq() (&__raw_get_cpu_var(runqueues))
596
597 #ifdef CONFIG_CGROUP_SCHED
598
599 /*
600 * Return the group to which this tasks belongs.
601 *
602 * We use task_subsys_state_check() and extend the RCU verification
603 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
604 * holds that lock for each task it moves into the cgroup. Therefore
605 * by holding that lock, we pin the task to the current cgroup.
606 */
607 static inline struct task_group *task_group(struct task_struct *p)
608 {
609 struct task_group *tg;
610 struct cgroup_subsys_state *css;
611
612 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
613 lockdep_is_held(&task_rq(p)->lock));
614 tg = container_of(css, struct task_group, css);
615
616 return autogroup_task_group(p, tg);
617 }
618
619 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
620 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
621 {
622 #ifdef CONFIG_FAIR_GROUP_SCHED
623 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
624 p->se.parent = task_group(p)->se[cpu];
625 #endif
626
627 #ifdef CONFIG_RT_GROUP_SCHED
628 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
629 p->rt.parent = task_group(p)->rt_se[cpu];
630 #endif
631 }
632
633 #else /* CONFIG_CGROUP_SCHED */
634
635 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
636 static inline struct task_group *task_group(struct task_struct *p)
637 {
638 return NULL;
639 }
640
641 #endif /* CONFIG_CGROUP_SCHED */
642
643 static void update_rq_clock_task(struct rq *rq, s64 delta);
644
645 static void update_rq_clock(struct rq *rq)
646 {
647 s64 delta;
648
649 if (rq->skip_clock_update)
650 return;
651
652 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
653 rq->clock += delta;
654 update_rq_clock_task(rq, delta);
655 }
656
657 /*
658 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
659 */
660 #ifdef CONFIG_SCHED_DEBUG
661 # define const_debug __read_mostly
662 #else
663 # define const_debug static const
664 #endif
665
666 /**
667 * runqueue_is_locked
668 * @cpu: the processor in question.
669 *
670 * Returns true if the current cpu runqueue is locked.
671 * This interface allows printk to be called with the runqueue lock
672 * held and know whether or not it is OK to wake up the klogd.
673 */
674 int runqueue_is_locked(int cpu)
675 {
676 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
677 }
678
679 /*
680 * Debugging: various feature bits
681 */
682
683 #define SCHED_FEAT(name, enabled) \
684 __SCHED_FEAT_##name ,
685
686 enum {
687 #include "sched_features.h"
688 };
689
690 #undef SCHED_FEAT
691
692 #define SCHED_FEAT(name, enabled) \
693 (1UL << __SCHED_FEAT_##name) * enabled |
694
695 const_debug unsigned int sysctl_sched_features =
696 #include "sched_features.h"
697 0;
698
699 #undef SCHED_FEAT
700
701 #ifdef CONFIG_SCHED_DEBUG
702 #define SCHED_FEAT(name, enabled) \
703 #name ,
704
705 static __read_mostly char *sched_feat_names[] = {
706 #include "sched_features.h"
707 NULL
708 };
709
710 #undef SCHED_FEAT
711
712 static int sched_feat_show(struct seq_file *m, void *v)
713 {
714 int i;
715
716 for (i = 0; sched_feat_names[i]; i++) {
717 if (!(sysctl_sched_features & (1UL << i)))
718 seq_puts(m, "NO_");
719 seq_printf(m, "%s ", sched_feat_names[i]);
720 }
721 seq_puts(m, "\n");
722
723 return 0;
724 }
725
726 static ssize_t
727 sched_feat_write(struct file *filp, const char __user *ubuf,
728 size_t cnt, loff_t *ppos)
729 {
730 char buf[64];
731 char *cmp;
732 int neg = 0;
733 int i;
734
735 if (cnt > 63)
736 cnt = 63;
737
738 if (copy_from_user(&buf, ubuf, cnt))
739 return -EFAULT;
740
741 buf[cnt] = 0;
742 cmp = strstrip(buf);
743
744 if (strncmp(cmp, "NO_", 3) == 0) {
745 neg = 1;
746 cmp += 3;
747 }
748
749 for (i = 0; sched_feat_names[i]; i++) {
750 if (strcmp(cmp, sched_feat_names[i]) == 0) {
751 if (neg)
752 sysctl_sched_features &= ~(1UL << i);
753 else
754 sysctl_sched_features |= (1UL << i);
755 break;
756 }
757 }
758
759 if (!sched_feat_names[i])
760 return -EINVAL;
761
762 *ppos += cnt;
763
764 return cnt;
765 }
766
767 static int sched_feat_open(struct inode *inode, struct file *filp)
768 {
769 return single_open(filp, sched_feat_show, NULL);
770 }
771
772 static const struct file_operations sched_feat_fops = {
773 .open = sched_feat_open,
774 .write = sched_feat_write,
775 .read = seq_read,
776 .llseek = seq_lseek,
777 .release = single_release,
778 };
779
780 static __init int sched_init_debug(void)
781 {
782 debugfs_create_file("sched_features", 0644, NULL, NULL,
783 &sched_feat_fops);
784
785 return 0;
786 }
787 late_initcall(sched_init_debug);
788
789 #endif
790
791 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
792
793 /*
794 * Number of tasks to iterate in a single balance run.
795 * Limited because this is done with IRQs disabled.
796 */
797 const_debug unsigned int sysctl_sched_nr_migrate = 32;
798
799 /*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
807 /*
808 * period over which we measure -rt task cpu usage in us.
809 * default: 1s
810 */
811 unsigned int sysctl_sched_rt_period = 1000000;
812
813 static __read_mostly int scheduler_running;
814
815 /*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819 int sysctl_sched_rt_runtime = 950000;
820
821 static inline u64 global_rt_period(void)
822 {
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824 }
825
826 static inline u64 global_rt_runtime(void)
827 {
828 if (sysctl_sched_rt_runtime < 0)
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832 }
833
834 #ifndef prepare_arch_switch
835 # define prepare_arch_switch(next) do { } while (0)
836 #endif
837 #ifndef finish_arch_switch
838 # define finish_arch_switch(prev) do { } while (0)
839 #endif
840
841 static inline int task_current(struct rq *rq, struct task_struct *p)
842 {
843 return rq->curr == p;
844 }
845
846 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
847 static inline int task_running(struct rq *rq, struct task_struct *p)
848 {
849 return task_current(rq, p);
850 }
851
852 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 {
854 }
855
856 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857 {
858 #ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861 #endif
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
869 raw_spin_unlock_irq(&rq->lock);
870 }
871
872 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
873 static inline int task_running(struct rq *rq, struct task_struct *p)
874 {
875 #ifdef CONFIG_SMP
876 return p->oncpu;
877 #else
878 return task_current(rq, p);
879 #endif
880 }
881
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 {
884 #ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891 #endif
892 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893 raw_spin_unlock_irq(&rq->lock);
894 #else
895 raw_spin_unlock(&rq->lock);
896 #endif
897 }
898
899 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 {
901 #ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909 #endif
910 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
912 #endif
913 }
914 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
915
916 /*
917 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
918 * against ttwu().
919 */
920 static inline int task_is_waking(struct task_struct *p)
921 {
922 return unlikely(p->state == TASK_WAKING);
923 }
924
925 /*
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
928 */
929 static inline struct rq *__task_rq_lock(struct task_struct *p)
930 __acquires(rq->lock)
931 {
932 struct rq *rq;
933
934 for (;;) {
935 rq = task_rq(p);
936 raw_spin_lock(&rq->lock);
937 if (likely(rq == task_rq(p)))
938 return rq;
939 raw_spin_unlock(&rq->lock);
940 }
941 }
942
943 /*
944 * task_rq_lock - lock the runqueue a given task resides on and disable
945 * interrupts. Note the ordering: we can safely lookup the task_rq without
946 * explicitly disabling preemption.
947 */
948 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
949 __acquires(rq->lock)
950 {
951 struct rq *rq;
952
953 for (;;) {
954 local_irq_save(*flags);
955 rq = task_rq(p);
956 raw_spin_lock(&rq->lock);
957 if (likely(rq == task_rq(p)))
958 return rq;
959 raw_spin_unlock_irqrestore(&rq->lock, *flags);
960 }
961 }
962
963 static void __task_rq_unlock(struct rq *rq)
964 __releases(rq->lock)
965 {
966 raw_spin_unlock(&rq->lock);
967 }
968
969 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
970 __releases(rq->lock)
971 {
972 raw_spin_unlock_irqrestore(&rq->lock, *flags);
973 }
974
975 /*
976 * this_rq_lock - lock this runqueue and disable interrupts.
977 */
978 static struct rq *this_rq_lock(void)
979 __acquires(rq->lock)
980 {
981 struct rq *rq;
982
983 local_irq_disable();
984 rq = this_rq();
985 raw_spin_lock(&rq->lock);
986
987 return rq;
988 }
989
990 #ifdef CONFIG_SCHED_HRTICK
991 /*
992 * Use HR-timers to deliver accurate preemption points.
993 *
994 * Its all a bit involved since we cannot program an hrt while holding the
995 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
996 * reschedule event.
997 *
998 * When we get rescheduled we reprogram the hrtick_timer outside of the
999 * rq->lock.
1000 */
1001
1002 /*
1003 * Use hrtick when:
1004 * - enabled by features
1005 * - hrtimer is actually high res
1006 */
1007 static inline int hrtick_enabled(struct rq *rq)
1008 {
1009 if (!sched_feat(HRTICK))
1010 return 0;
1011 if (!cpu_active(cpu_of(rq)))
1012 return 0;
1013 return hrtimer_is_hres_active(&rq->hrtick_timer);
1014 }
1015
1016 static void hrtick_clear(struct rq *rq)
1017 {
1018 if (hrtimer_active(&rq->hrtick_timer))
1019 hrtimer_cancel(&rq->hrtick_timer);
1020 }
1021
1022 /*
1023 * High-resolution timer tick.
1024 * Runs from hardirq context with interrupts disabled.
1025 */
1026 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1027 {
1028 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1029
1030 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1031
1032 raw_spin_lock(&rq->lock);
1033 update_rq_clock(rq);
1034 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1035 raw_spin_unlock(&rq->lock);
1036
1037 return HRTIMER_NORESTART;
1038 }
1039
1040 #ifdef CONFIG_SMP
1041 /*
1042 * called from hardirq (IPI) context
1043 */
1044 static void __hrtick_start(void *arg)
1045 {
1046 struct rq *rq = arg;
1047
1048 raw_spin_lock(&rq->lock);
1049 hrtimer_restart(&rq->hrtick_timer);
1050 rq->hrtick_csd_pending = 0;
1051 raw_spin_unlock(&rq->lock);
1052 }
1053
1054 /*
1055 * Called to set the hrtick timer state.
1056 *
1057 * called with rq->lock held and irqs disabled
1058 */
1059 static void hrtick_start(struct rq *rq, u64 delay)
1060 {
1061 struct hrtimer *timer = &rq->hrtick_timer;
1062 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1063
1064 hrtimer_set_expires(timer, time);
1065
1066 if (rq == this_rq()) {
1067 hrtimer_restart(timer);
1068 } else if (!rq->hrtick_csd_pending) {
1069 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1070 rq->hrtick_csd_pending = 1;
1071 }
1072 }
1073
1074 static int
1075 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1076 {
1077 int cpu = (int)(long)hcpu;
1078
1079 switch (action) {
1080 case CPU_UP_CANCELED:
1081 case CPU_UP_CANCELED_FROZEN:
1082 case CPU_DOWN_PREPARE:
1083 case CPU_DOWN_PREPARE_FROZEN:
1084 case CPU_DEAD:
1085 case CPU_DEAD_FROZEN:
1086 hrtick_clear(cpu_rq(cpu));
1087 return NOTIFY_OK;
1088 }
1089
1090 return NOTIFY_DONE;
1091 }
1092
1093 static __init void init_hrtick(void)
1094 {
1095 hotcpu_notifier(hotplug_hrtick, 0);
1096 }
1097 #else
1098 /*
1099 * Called to set the hrtick timer state.
1100 *
1101 * called with rq->lock held and irqs disabled
1102 */
1103 static void hrtick_start(struct rq *rq, u64 delay)
1104 {
1105 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1106 HRTIMER_MODE_REL_PINNED, 0);
1107 }
1108
1109 static inline void init_hrtick(void)
1110 {
1111 }
1112 #endif /* CONFIG_SMP */
1113
1114 static void init_rq_hrtick(struct rq *rq)
1115 {
1116 #ifdef CONFIG_SMP
1117 rq->hrtick_csd_pending = 0;
1118
1119 rq->hrtick_csd.flags = 0;
1120 rq->hrtick_csd.func = __hrtick_start;
1121 rq->hrtick_csd.info = rq;
1122 #endif
1123
1124 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1125 rq->hrtick_timer.function = hrtick;
1126 }
1127 #else /* CONFIG_SCHED_HRTICK */
1128 static inline void hrtick_clear(struct rq *rq)
1129 {
1130 }
1131
1132 static inline void init_rq_hrtick(struct rq *rq)
1133 {
1134 }
1135
1136 static inline void init_hrtick(void)
1137 {
1138 }
1139 #endif /* CONFIG_SCHED_HRTICK */
1140
1141 /*
1142 * resched_task - mark a task 'to be rescheduled now'.
1143 *
1144 * On UP this means the setting of the need_resched flag, on SMP it
1145 * might also involve a cross-CPU call to trigger the scheduler on
1146 * the target CPU.
1147 */
1148 #ifdef CONFIG_SMP
1149
1150 #ifndef tsk_is_polling
1151 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1152 #endif
1153
1154 static void resched_task(struct task_struct *p)
1155 {
1156 int cpu;
1157
1158 assert_raw_spin_locked(&task_rq(p)->lock);
1159
1160 if (test_tsk_need_resched(p))
1161 return;
1162
1163 set_tsk_need_resched(p);
1164
1165 cpu = task_cpu(p);
1166 if (cpu == smp_processor_id())
1167 return;
1168
1169 /* NEED_RESCHED must be visible before we test polling */
1170 smp_mb();
1171 if (!tsk_is_polling(p))
1172 smp_send_reschedule(cpu);
1173 }
1174
1175 static void resched_cpu(int cpu)
1176 {
1177 struct rq *rq = cpu_rq(cpu);
1178 unsigned long flags;
1179
1180 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1181 return;
1182 resched_task(cpu_curr(cpu));
1183 raw_spin_unlock_irqrestore(&rq->lock, flags);
1184 }
1185
1186 #ifdef CONFIG_NO_HZ
1187 /*
1188 * In the semi idle case, use the nearest busy cpu for migrating timers
1189 * from an idle cpu. This is good for power-savings.
1190 *
1191 * We don't do similar optimization for completely idle system, as
1192 * selecting an idle cpu will add more delays to the timers than intended
1193 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1194 */
1195 int get_nohz_timer_target(void)
1196 {
1197 int cpu = smp_processor_id();
1198 int i;
1199 struct sched_domain *sd;
1200
1201 for_each_domain(cpu, sd) {
1202 for_each_cpu(i, sched_domain_span(sd))
1203 if (!idle_cpu(i))
1204 return i;
1205 }
1206 return cpu;
1207 }
1208 /*
1209 * When add_timer_on() enqueues a timer into the timer wheel of an
1210 * idle CPU then this timer might expire before the next timer event
1211 * which is scheduled to wake up that CPU. In case of a completely
1212 * idle system the next event might even be infinite time into the
1213 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1214 * leaves the inner idle loop so the newly added timer is taken into
1215 * account when the CPU goes back to idle and evaluates the timer
1216 * wheel for the next timer event.
1217 */
1218 void wake_up_idle_cpu(int cpu)
1219 {
1220 struct rq *rq = cpu_rq(cpu);
1221
1222 if (cpu == smp_processor_id())
1223 return;
1224
1225 /*
1226 * This is safe, as this function is called with the timer
1227 * wheel base lock of (cpu) held. When the CPU is on the way
1228 * to idle and has not yet set rq->curr to idle then it will
1229 * be serialized on the timer wheel base lock and take the new
1230 * timer into account automatically.
1231 */
1232 if (rq->curr != rq->idle)
1233 return;
1234
1235 /*
1236 * We can set TIF_RESCHED on the idle task of the other CPU
1237 * lockless. The worst case is that the other CPU runs the
1238 * idle task through an additional NOOP schedule()
1239 */
1240 set_tsk_need_resched(rq->idle);
1241
1242 /* NEED_RESCHED must be visible before we test polling */
1243 smp_mb();
1244 if (!tsk_is_polling(rq->idle))
1245 smp_send_reschedule(cpu);
1246 }
1247
1248 #endif /* CONFIG_NO_HZ */
1249
1250 static u64 sched_avg_period(void)
1251 {
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253 }
1254
1255 static void sched_avg_update(struct rq *rq)
1256 {
1257 s64 period = sched_avg_period();
1258
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
1260 /*
1261 * Inline assembly required to prevent the compiler
1262 * optimising this loop into a divmod call.
1263 * See __iter_div_u64_rem() for another example of this.
1264 */
1265 asm("" : "+rm" (rq->age_stamp));
1266 rq->age_stamp += period;
1267 rq->rt_avg /= 2;
1268 }
1269 }
1270
1271 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1272 {
1273 rq->rt_avg += rt_delta;
1274 sched_avg_update(rq);
1275 }
1276
1277 #else /* !CONFIG_SMP */
1278 static void resched_task(struct task_struct *p)
1279 {
1280 assert_raw_spin_locked(&task_rq(p)->lock);
1281 set_tsk_need_resched(p);
1282 }
1283
1284 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285 {
1286 }
1287
1288 static void sched_avg_update(struct rq *rq)
1289 {
1290 }
1291 #endif /* CONFIG_SMP */
1292
1293 #if BITS_PER_LONG == 32
1294 # define WMULT_CONST (~0UL)
1295 #else
1296 # define WMULT_CONST (1UL << 32)
1297 #endif
1298
1299 #define WMULT_SHIFT 32
1300
1301 /*
1302 * Shift right and round:
1303 */
1304 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1305
1306 /*
1307 * delta *= weight / lw
1308 */
1309 static unsigned long
1310 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1311 struct load_weight *lw)
1312 {
1313 u64 tmp;
1314
1315 if (!lw->inv_weight) {
1316 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1317 lw->inv_weight = 1;
1318 else
1319 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1320 / (lw->weight+1);
1321 }
1322
1323 tmp = (u64)delta_exec * weight;
1324 /*
1325 * Check whether we'd overflow the 64-bit multiplication:
1326 */
1327 if (unlikely(tmp > WMULT_CONST))
1328 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1329 WMULT_SHIFT/2);
1330 else
1331 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1332
1333 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1334 }
1335
1336 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1337 {
1338 lw->weight += inc;
1339 lw->inv_weight = 0;
1340 }
1341
1342 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1343 {
1344 lw->weight -= dec;
1345 lw->inv_weight = 0;
1346 }
1347
1348 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1349 {
1350 lw->weight = w;
1351 lw->inv_weight = 0;
1352 }
1353
1354 /*
1355 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1356 * of tasks with abnormal "nice" values across CPUs the contribution that
1357 * each task makes to its run queue's load is weighted according to its
1358 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1359 * scaled version of the new time slice allocation that they receive on time
1360 * slice expiry etc.
1361 */
1362
1363 #define WEIGHT_IDLEPRIO 3
1364 #define WMULT_IDLEPRIO 1431655765
1365
1366 /*
1367 * Nice levels are multiplicative, with a gentle 10% change for every
1368 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1369 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1370 * that remained on nice 0.
1371 *
1372 * The "10% effect" is relative and cumulative: from _any_ nice level,
1373 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1374 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1375 * If a task goes up by ~10% and another task goes down by ~10% then
1376 * the relative distance between them is ~25%.)
1377 */
1378 static const int prio_to_weight[40] = {
1379 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1380 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1381 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1382 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1383 /* 0 */ 1024, 820, 655, 526, 423,
1384 /* 5 */ 335, 272, 215, 172, 137,
1385 /* 10 */ 110, 87, 70, 56, 45,
1386 /* 15 */ 36, 29, 23, 18, 15,
1387 };
1388
1389 /*
1390 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1391 *
1392 * In cases where the weight does not change often, we can use the
1393 * precalculated inverse to speed up arithmetics by turning divisions
1394 * into multiplications:
1395 */
1396 static const u32 prio_to_wmult[40] = {
1397 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1398 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1399 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1400 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1401 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1402 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1403 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1404 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1405 };
1406
1407 /* Time spent by the tasks of the cpu accounting group executing in ... */
1408 enum cpuacct_stat_index {
1409 CPUACCT_STAT_USER, /* ... user mode */
1410 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1411
1412 CPUACCT_STAT_NSTATS,
1413 };
1414
1415 #ifdef CONFIG_CGROUP_CPUACCT
1416 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1417 static void cpuacct_update_stats(struct task_struct *tsk,
1418 enum cpuacct_stat_index idx, cputime_t val);
1419 #else
1420 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1421 static inline void cpuacct_update_stats(struct task_struct *tsk,
1422 enum cpuacct_stat_index idx, cputime_t val) {}
1423 #endif
1424
1425 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1426 {
1427 update_load_add(&rq->load, load);
1428 }
1429
1430 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1431 {
1432 update_load_sub(&rq->load, load);
1433 }
1434
1435 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1436 typedef int (*tg_visitor)(struct task_group *, void *);
1437
1438 /*
1439 * Iterate the full tree, calling @down when first entering a node and @up when
1440 * leaving it for the final time.
1441 */
1442 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1443 {
1444 struct task_group *parent, *child;
1445 int ret;
1446
1447 rcu_read_lock();
1448 parent = &root_task_group;
1449 down:
1450 ret = (*down)(parent, data);
1451 if (ret)
1452 goto out_unlock;
1453 list_for_each_entry_rcu(child, &parent->children, siblings) {
1454 parent = child;
1455 goto down;
1456
1457 up:
1458 continue;
1459 }
1460 ret = (*up)(parent, data);
1461 if (ret)
1462 goto out_unlock;
1463
1464 child = parent;
1465 parent = parent->parent;
1466 if (parent)
1467 goto up;
1468 out_unlock:
1469 rcu_read_unlock();
1470
1471 return ret;
1472 }
1473
1474 static int tg_nop(struct task_group *tg, void *data)
1475 {
1476 return 0;
1477 }
1478 #endif
1479
1480 #ifdef CONFIG_SMP
1481 /* Used instead of source_load when we know the type == 0 */
1482 static unsigned long weighted_cpuload(const int cpu)
1483 {
1484 return cpu_rq(cpu)->load.weight;
1485 }
1486
1487 /*
1488 * Return a low guess at the load of a migration-source cpu weighted
1489 * according to the scheduling class and "nice" value.
1490 *
1491 * We want to under-estimate the load of migration sources, to
1492 * balance conservatively.
1493 */
1494 static unsigned long source_load(int cpu, int type)
1495 {
1496 struct rq *rq = cpu_rq(cpu);
1497 unsigned long total = weighted_cpuload(cpu);
1498
1499 if (type == 0 || !sched_feat(LB_BIAS))
1500 return total;
1501
1502 return min(rq->cpu_load[type-1], total);
1503 }
1504
1505 /*
1506 * Return a high guess at the load of a migration-target cpu weighted
1507 * according to the scheduling class and "nice" value.
1508 */
1509 static unsigned long target_load(int cpu, int type)
1510 {
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long total = weighted_cpuload(cpu);
1513
1514 if (type == 0 || !sched_feat(LB_BIAS))
1515 return total;
1516
1517 return max(rq->cpu_load[type-1], total);
1518 }
1519
1520 static unsigned long power_of(int cpu)
1521 {
1522 return cpu_rq(cpu)->cpu_power;
1523 }
1524
1525 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1526
1527 static unsigned long cpu_avg_load_per_task(int cpu)
1528 {
1529 struct rq *rq = cpu_rq(cpu);
1530 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1531
1532 if (nr_running)
1533 rq->avg_load_per_task = rq->load.weight / nr_running;
1534 else
1535 rq->avg_load_per_task = 0;
1536
1537 return rq->avg_load_per_task;
1538 }
1539
1540 #ifdef CONFIG_FAIR_GROUP_SCHED
1541
1542 /*
1543 * Compute the cpu's hierarchical load factor for each task group.
1544 * This needs to be done in a top-down fashion because the load of a child
1545 * group is a fraction of its parents load.
1546 */
1547 static int tg_load_down(struct task_group *tg, void *data)
1548 {
1549 unsigned long load;
1550 long cpu = (long)data;
1551
1552 if (!tg->parent) {
1553 load = cpu_rq(cpu)->load.weight;
1554 } else {
1555 load = tg->parent->cfs_rq[cpu]->h_load;
1556 load *= tg->se[cpu]->load.weight;
1557 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1558 }
1559
1560 tg->cfs_rq[cpu]->h_load = load;
1561
1562 return 0;
1563 }
1564
1565 static void update_h_load(long cpu)
1566 {
1567 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1568 }
1569
1570 #endif
1571
1572 #ifdef CONFIG_PREEMPT
1573
1574 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1575
1576 /*
1577 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1578 * way at the expense of forcing extra atomic operations in all
1579 * invocations. This assures that the double_lock is acquired using the
1580 * same underlying policy as the spinlock_t on this architecture, which
1581 * reduces latency compared to the unfair variant below. However, it
1582 * also adds more overhead and therefore may reduce throughput.
1583 */
1584 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1585 __releases(this_rq->lock)
1586 __acquires(busiest->lock)
1587 __acquires(this_rq->lock)
1588 {
1589 raw_spin_unlock(&this_rq->lock);
1590 double_rq_lock(this_rq, busiest);
1591
1592 return 1;
1593 }
1594
1595 #else
1596 /*
1597 * Unfair double_lock_balance: Optimizes throughput at the expense of
1598 * latency by eliminating extra atomic operations when the locks are
1599 * already in proper order on entry. This favors lower cpu-ids and will
1600 * grant the double lock to lower cpus over higher ids under contention,
1601 * regardless of entry order into the function.
1602 */
1603 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1604 __releases(this_rq->lock)
1605 __acquires(busiest->lock)
1606 __acquires(this_rq->lock)
1607 {
1608 int ret = 0;
1609
1610 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1611 if (busiest < this_rq) {
1612 raw_spin_unlock(&this_rq->lock);
1613 raw_spin_lock(&busiest->lock);
1614 raw_spin_lock_nested(&this_rq->lock,
1615 SINGLE_DEPTH_NESTING);
1616 ret = 1;
1617 } else
1618 raw_spin_lock_nested(&busiest->lock,
1619 SINGLE_DEPTH_NESTING);
1620 }
1621 return ret;
1622 }
1623
1624 #endif /* CONFIG_PREEMPT */
1625
1626 /*
1627 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1628 */
1629 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1630 {
1631 if (unlikely(!irqs_disabled())) {
1632 /* printk() doesn't work good under rq->lock */
1633 raw_spin_unlock(&this_rq->lock);
1634 BUG_ON(1);
1635 }
1636
1637 return _double_lock_balance(this_rq, busiest);
1638 }
1639
1640 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1641 __releases(busiest->lock)
1642 {
1643 raw_spin_unlock(&busiest->lock);
1644 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1645 }
1646
1647 /*
1648 * double_rq_lock - safely lock two runqueues
1649 *
1650 * Note this does not disable interrupts like task_rq_lock,
1651 * you need to do so manually before calling.
1652 */
1653 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1654 __acquires(rq1->lock)
1655 __acquires(rq2->lock)
1656 {
1657 BUG_ON(!irqs_disabled());
1658 if (rq1 == rq2) {
1659 raw_spin_lock(&rq1->lock);
1660 __acquire(rq2->lock); /* Fake it out ;) */
1661 } else {
1662 if (rq1 < rq2) {
1663 raw_spin_lock(&rq1->lock);
1664 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1665 } else {
1666 raw_spin_lock(&rq2->lock);
1667 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1668 }
1669 }
1670 }
1671
1672 /*
1673 * double_rq_unlock - safely unlock two runqueues
1674 *
1675 * Note this does not restore interrupts like task_rq_unlock,
1676 * you need to do so manually after calling.
1677 */
1678 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1679 __releases(rq1->lock)
1680 __releases(rq2->lock)
1681 {
1682 raw_spin_unlock(&rq1->lock);
1683 if (rq1 != rq2)
1684 raw_spin_unlock(&rq2->lock);
1685 else
1686 __release(rq2->lock);
1687 }
1688
1689 #endif
1690
1691 static void calc_load_account_idle(struct rq *this_rq);
1692 static void update_sysctl(void);
1693 static int get_update_sysctl_factor(void);
1694 static void update_cpu_load(struct rq *this_rq);
1695
1696 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1697 {
1698 set_task_rq(p, cpu);
1699 #ifdef CONFIG_SMP
1700 /*
1701 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1702 * successfuly executed on another CPU. We must ensure that updates of
1703 * per-task data have been completed by this moment.
1704 */
1705 smp_wmb();
1706 task_thread_info(p)->cpu = cpu;
1707 #endif
1708 }
1709
1710 static const struct sched_class rt_sched_class;
1711
1712 #define sched_class_highest (&stop_sched_class)
1713 #define for_each_class(class) \
1714 for (class = sched_class_highest; class; class = class->next)
1715
1716 #include "sched_stats.h"
1717
1718 static void inc_nr_running(struct rq *rq)
1719 {
1720 rq->nr_running++;
1721 }
1722
1723 static void dec_nr_running(struct rq *rq)
1724 {
1725 rq->nr_running--;
1726 }
1727
1728 static void set_load_weight(struct task_struct *p)
1729 {
1730 /*
1731 * SCHED_IDLE tasks get minimal weight:
1732 */
1733 if (p->policy == SCHED_IDLE) {
1734 p->se.load.weight = WEIGHT_IDLEPRIO;
1735 p->se.load.inv_weight = WMULT_IDLEPRIO;
1736 return;
1737 }
1738
1739 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1740 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1741 }
1742
1743 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1744 {
1745 update_rq_clock(rq);
1746 sched_info_queued(p);
1747 p->sched_class->enqueue_task(rq, p, flags);
1748 p->se.on_rq = 1;
1749 }
1750
1751 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1752 {
1753 update_rq_clock(rq);
1754 sched_info_dequeued(p);
1755 p->sched_class->dequeue_task(rq, p, flags);
1756 p->se.on_rq = 0;
1757 }
1758
1759 /*
1760 * activate_task - move a task to the runqueue.
1761 */
1762 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1763 {
1764 if (task_contributes_to_load(p))
1765 rq->nr_uninterruptible--;
1766
1767 enqueue_task(rq, p, flags);
1768 inc_nr_running(rq);
1769 }
1770
1771 /*
1772 * deactivate_task - remove a task from the runqueue.
1773 */
1774 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1775 {
1776 if (task_contributes_to_load(p))
1777 rq->nr_uninterruptible++;
1778
1779 dequeue_task(rq, p, flags);
1780 dec_nr_running(rq);
1781 }
1782
1783 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1784
1785 /*
1786 * There are no locks covering percpu hardirq/softirq time.
1787 * They are only modified in account_system_vtime, on corresponding CPU
1788 * with interrupts disabled. So, writes are safe.
1789 * They are read and saved off onto struct rq in update_rq_clock().
1790 * This may result in other CPU reading this CPU's irq time and can
1791 * race with irq/account_system_vtime on this CPU. We would either get old
1792 * or new value with a side effect of accounting a slice of irq time to wrong
1793 * task when irq is in progress while we read rq->clock. That is a worthy
1794 * compromise in place of having locks on each irq in account_system_time.
1795 */
1796 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1797 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1798
1799 static DEFINE_PER_CPU(u64, irq_start_time);
1800 static int sched_clock_irqtime;
1801
1802 void enable_sched_clock_irqtime(void)
1803 {
1804 sched_clock_irqtime = 1;
1805 }
1806
1807 void disable_sched_clock_irqtime(void)
1808 {
1809 sched_clock_irqtime = 0;
1810 }
1811
1812 #ifndef CONFIG_64BIT
1813 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1814
1815 static inline void irq_time_write_begin(void)
1816 {
1817 __this_cpu_inc(irq_time_seq.sequence);
1818 smp_wmb();
1819 }
1820
1821 static inline void irq_time_write_end(void)
1822 {
1823 smp_wmb();
1824 __this_cpu_inc(irq_time_seq.sequence);
1825 }
1826
1827 static inline u64 irq_time_read(int cpu)
1828 {
1829 u64 irq_time;
1830 unsigned seq;
1831
1832 do {
1833 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1834 irq_time = per_cpu(cpu_softirq_time, cpu) +
1835 per_cpu(cpu_hardirq_time, cpu);
1836 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1837
1838 return irq_time;
1839 }
1840 #else /* CONFIG_64BIT */
1841 static inline void irq_time_write_begin(void)
1842 {
1843 }
1844
1845 static inline void irq_time_write_end(void)
1846 {
1847 }
1848
1849 static inline u64 irq_time_read(int cpu)
1850 {
1851 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1852 }
1853 #endif /* CONFIG_64BIT */
1854
1855 /*
1856 * Called before incrementing preempt_count on {soft,}irq_enter
1857 * and before decrementing preempt_count on {soft,}irq_exit.
1858 */
1859 void account_system_vtime(struct task_struct *curr)
1860 {
1861 unsigned long flags;
1862 s64 delta;
1863 int cpu;
1864
1865 if (!sched_clock_irqtime)
1866 return;
1867
1868 local_irq_save(flags);
1869
1870 cpu = smp_processor_id();
1871 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1872 __this_cpu_add(irq_start_time, delta);
1873
1874 irq_time_write_begin();
1875 /*
1876 * We do not account for softirq time from ksoftirqd here.
1877 * We want to continue accounting softirq time to ksoftirqd thread
1878 * in that case, so as not to confuse scheduler with a special task
1879 * that do not consume any time, but still wants to run.
1880 */
1881 if (hardirq_count())
1882 __this_cpu_add(cpu_hardirq_time, delta);
1883 else if (in_serving_softirq() && !(curr->flags & PF_KSOFTIRQD))
1884 __this_cpu_add(cpu_softirq_time, delta);
1885
1886 irq_time_write_end();
1887 local_irq_restore(flags);
1888 }
1889 EXPORT_SYMBOL_GPL(account_system_vtime);
1890
1891 static void update_rq_clock_task(struct rq *rq, s64 delta)
1892 {
1893 s64 irq_delta;
1894
1895 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1896
1897 /*
1898 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1899 * this case when a previous update_rq_clock() happened inside a
1900 * {soft,}irq region.
1901 *
1902 * When this happens, we stop ->clock_task and only update the
1903 * prev_irq_time stamp to account for the part that fit, so that a next
1904 * update will consume the rest. This ensures ->clock_task is
1905 * monotonic.
1906 *
1907 * It does however cause some slight miss-attribution of {soft,}irq
1908 * time, a more accurate solution would be to update the irq_time using
1909 * the current rq->clock timestamp, except that would require using
1910 * atomic ops.
1911 */
1912 if (irq_delta > delta)
1913 irq_delta = delta;
1914
1915 rq->prev_irq_time += irq_delta;
1916 delta -= irq_delta;
1917 rq->clock_task += delta;
1918
1919 if (irq_delta && sched_feat(NONIRQ_POWER))
1920 sched_rt_avg_update(rq, irq_delta);
1921 }
1922
1923 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
1924
1925 static void update_rq_clock_task(struct rq *rq, s64 delta)
1926 {
1927 rq->clock_task += delta;
1928 }
1929
1930 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1931
1932 #include "sched_idletask.c"
1933 #include "sched_fair.c"
1934 #include "sched_rt.c"
1935 #include "sched_autogroup.c"
1936 #include "sched_stoptask.c"
1937 #ifdef CONFIG_SCHED_DEBUG
1938 # include "sched_debug.c"
1939 #endif
1940
1941 void sched_set_stop_task(int cpu, struct task_struct *stop)
1942 {
1943 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1944 struct task_struct *old_stop = cpu_rq(cpu)->stop;
1945
1946 if (stop) {
1947 /*
1948 * Make it appear like a SCHED_FIFO task, its something
1949 * userspace knows about and won't get confused about.
1950 *
1951 * Also, it will make PI more or less work without too
1952 * much confusion -- but then, stop work should not
1953 * rely on PI working anyway.
1954 */
1955 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
1956
1957 stop->sched_class = &stop_sched_class;
1958 }
1959
1960 cpu_rq(cpu)->stop = stop;
1961
1962 if (old_stop) {
1963 /*
1964 * Reset it back to a normal scheduling class so that
1965 * it can die in pieces.
1966 */
1967 old_stop->sched_class = &rt_sched_class;
1968 }
1969 }
1970
1971 /*
1972 * __normal_prio - return the priority that is based on the static prio
1973 */
1974 static inline int __normal_prio(struct task_struct *p)
1975 {
1976 return p->static_prio;
1977 }
1978
1979 /*
1980 * Calculate the expected normal priority: i.e. priority
1981 * without taking RT-inheritance into account. Might be
1982 * boosted by interactivity modifiers. Changes upon fork,
1983 * setprio syscalls, and whenever the interactivity
1984 * estimator recalculates.
1985 */
1986 static inline int normal_prio(struct task_struct *p)
1987 {
1988 int prio;
1989
1990 if (task_has_rt_policy(p))
1991 prio = MAX_RT_PRIO-1 - p->rt_priority;
1992 else
1993 prio = __normal_prio(p);
1994 return prio;
1995 }
1996
1997 /*
1998 * Calculate the current priority, i.e. the priority
1999 * taken into account by the scheduler. This value might
2000 * be boosted by RT tasks, or might be boosted by
2001 * interactivity modifiers. Will be RT if the task got
2002 * RT-boosted. If not then it returns p->normal_prio.
2003 */
2004 static int effective_prio(struct task_struct *p)
2005 {
2006 p->normal_prio = normal_prio(p);
2007 /*
2008 * If we are RT tasks or we were boosted to RT priority,
2009 * keep the priority unchanged. Otherwise, update priority
2010 * to the normal priority:
2011 */
2012 if (!rt_prio(p->prio))
2013 return p->normal_prio;
2014 return p->prio;
2015 }
2016
2017 /**
2018 * task_curr - is this task currently executing on a CPU?
2019 * @p: the task in question.
2020 */
2021 inline int task_curr(const struct task_struct *p)
2022 {
2023 return cpu_curr(task_cpu(p)) == p;
2024 }
2025
2026 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2027 const struct sched_class *prev_class,
2028 int oldprio, int running)
2029 {
2030 if (prev_class != p->sched_class) {
2031 if (prev_class->switched_from)
2032 prev_class->switched_from(rq, p, running);
2033 p->sched_class->switched_to(rq, p, running);
2034 } else
2035 p->sched_class->prio_changed(rq, p, oldprio, running);
2036 }
2037
2038 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2039 {
2040 const struct sched_class *class;
2041
2042 if (p->sched_class == rq->curr->sched_class) {
2043 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2044 } else {
2045 for_each_class(class) {
2046 if (class == rq->curr->sched_class)
2047 break;
2048 if (class == p->sched_class) {
2049 resched_task(rq->curr);
2050 break;
2051 }
2052 }
2053 }
2054
2055 /*
2056 * A queue event has occurred, and we're going to schedule. In
2057 * this case, we can save a useless back to back clock update.
2058 */
2059 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2060 rq->skip_clock_update = 1;
2061 }
2062
2063 #ifdef CONFIG_SMP
2064 /*
2065 * Is this task likely cache-hot:
2066 */
2067 static int
2068 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2069 {
2070 s64 delta;
2071
2072 if (p->sched_class != &fair_sched_class)
2073 return 0;
2074
2075 if (unlikely(p->policy == SCHED_IDLE))
2076 return 0;
2077
2078 /*
2079 * Buddy candidates are cache hot:
2080 */
2081 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2082 (&p->se == cfs_rq_of(&p->se)->next ||
2083 &p->se == cfs_rq_of(&p->se)->last))
2084 return 1;
2085
2086 if (sysctl_sched_migration_cost == -1)
2087 return 1;
2088 if (sysctl_sched_migration_cost == 0)
2089 return 0;
2090
2091 delta = now - p->se.exec_start;
2092
2093 return delta < (s64)sysctl_sched_migration_cost;
2094 }
2095
2096 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2097 {
2098 #ifdef CONFIG_SCHED_DEBUG
2099 /*
2100 * We should never call set_task_cpu() on a blocked task,
2101 * ttwu() will sort out the placement.
2102 */
2103 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2104 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2105 #endif
2106
2107 trace_sched_migrate_task(p, new_cpu);
2108
2109 if (task_cpu(p) != new_cpu) {
2110 p->se.nr_migrations++;
2111 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2112 }
2113
2114 __set_task_cpu(p, new_cpu);
2115 }
2116
2117 struct migration_arg {
2118 struct task_struct *task;
2119 int dest_cpu;
2120 };
2121
2122 static int migration_cpu_stop(void *data);
2123
2124 /*
2125 * The task's runqueue lock must be held.
2126 * Returns true if you have to wait for migration thread.
2127 */
2128 static bool migrate_task(struct task_struct *p, struct rq *rq)
2129 {
2130 /*
2131 * If the task is not on a runqueue (and not running), then
2132 * the next wake-up will properly place the task.
2133 */
2134 return p->se.on_rq || task_running(rq, p);
2135 }
2136
2137 /*
2138 * wait_task_inactive - wait for a thread to unschedule.
2139 *
2140 * If @match_state is nonzero, it's the @p->state value just checked and
2141 * not expected to change. If it changes, i.e. @p might have woken up,
2142 * then return zero. When we succeed in waiting for @p to be off its CPU,
2143 * we return a positive number (its total switch count). If a second call
2144 * a short while later returns the same number, the caller can be sure that
2145 * @p has remained unscheduled the whole time.
2146 *
2147 * The caller must ensure that the task *will* unschedule sometime soon,
2148 * else this function might spin for a *long* time. This function can't
2149 * be called with interrupts off, or it may introduce deadlock with
2150 * smp_call_function() if an IPI is sent by the same process we are
2151 * waiting to become inactive.
2152 */
2153 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2154 {
2155 unsigned long flags;
2156 int running, on_rq;
2157 unsigned long ncsw;
2158 struct rq *rq;
2159
2160 for (;;) {
2161 /*
2162 * We do the initial early heuristics without holding
2163 * any task-queue locks at all. We'll only try to get
2164 * the runqueue lock when things look like they will
2165 * work out!
2166 */
2167 rq = task_rq(p);
2168
2169 /*
2170 * If the task is actively running on another CPU
2171 * still, just relax and busy-wait without holding
2172 * any locks.
2173 *
2174 * NOTE! Since we don't hold any locks, it's not
2175 * even sure that "rq" stays as the right runqueue!
2176 * But we don't care, since "task_running()" will
2177 * return false if the runqueue has changed and p
2178 * is actually now running somewhere else!
2179 */
2180 while (task_running(rq, p)) {
2181 if (match_state && unlikely(p->state != match_state))
2182 return 0;
2183 cpu_relax();
2184 }
2185
2186 /*
2187 * Ok, time to look more closely! We need the rq
2188 * lock now, to be *sure*. If we're wrong, we'll
2189 * just go back and repeat.
2190 */
2191 rq = task_rq_lock(p, &flags);
2192 trace_sched_wait_task(p);
2193 running = task_running(rq, p);
2194 on_rq = p->se.on_rq;
2195 ncsw = 0;
2196 if (!match_state || p->state == match_state)
2197 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2198 task_rq_unlock(rq, &flags);
2199
2200 /*
2201 * If it changed from the expected state, bail out now.
2202 */
2203 if (unlikely(!ncsw))
2204 break;
2205
2206 /*
2207 * Was it really running after all now that we
2208 * checked with the proper locks actually held?
2209 *
2210 * Oops. Go back and try again..
2211 */
2212 if (unlikely(running)) {
2213 cpu_relax();
2214 continue;
2215 }
2216
2217 /*
2218 * It's not enough that it's not actively running,
2219 * it must be off the runqueue _entirely_, and not
2220 * preempted!
2221 *
2222 * So if it was still runnable (but just not actively
2223 * running right now), it's preempted, and we should
2224 * yield - it could be a while.
2225 */
2226 if (unlikely(on_rq)) {
2227 schedule_timeout_uninterruptible(1);
2228 continue;
2229 }
2230
2231 /*
2232 * Ahh, all good. It wasn't running, and it wasn't
2233 * runnable, which means that it will never become
2234 * running in the future either. We're all done!
2235 */
2236 break;
2237 }
2238
2239 return ncsw;
2240 }
2241
2242 /***
2243 * kick_process - kick a running thread to enter/exit the kernel
2244 * @p: the to-be-kicked thread
2245 *
2246 * Cause a process which is running on another CPU to enter
2247 * kernel-mode, without any delay. (to get signals handled.)
2248 *
2249 * NOTE: this function doesnt have to take the runqueue lock,
2250 * because all it wants to ensure is that the remote task enters
2251 * the kernel. If the IPI races and the task has been migrated
2252 * to another CPU then no harm is done and the purpose has been
2253 * achieved as well.
2254 */
2255 void kick_process(struct task_struct *p)
2256 {
2257 int cpu;
2258
2259 preempt_disable();
2260 cpu = task_cpu(p);
2261 if ((cpu != smp_processor_id()) && task_curr(p))
2262 smp_send_reschedule(cpu);
2263 preempt_enable();
2264 }
2265 EXPORT_SYMBOL_GPL(kick_process);
2266 #endif /* CONFIG_SMP */
2267
2268 /**
2269 * task_oncpu_function_call - call a function on the cpu on which a task runs
2270 * @p: the task to evaluate
2271 * @func: the function to be called
2272 * @info: the function call argument
2273 *
2274 * Calls the function @func when the task is currently running. This might
2275 * be on the current CPU, which just calls the function directly
2276 */
2277 void task_oncpu_function_call(struct task_struct *p,
2278 void (*func) (void *info), void *info)
2279 {
2280 int cpu;
2281
2282 preempt_disable();
2283 cpu = task_cpu(p);
2284 if (task_curr(p))
2285 smp_call_function_single(cpu, func, info, 1);
2286 preempt_enable();
2287 }
2288
2289 #ifdef CONFIG_SMP
2290 /*
2291 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2292 */
2293 static int select_fallback_rq(int cpu, struct task_struct *p)
2294 {
2295 int dest_cpu;
2296 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2297
2298 /* Look for allowed, online CPU in same node. */
2299 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2300 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2301 return dest_cpu;
2302
2303 /* Any allowed, online CPU? */
2304 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2305 if (dest_cpu < nr_cpu_ids)
2306 return dest_cpu;
2307
2308 /* No more Mr. Nice Guy. */
2309 dest_cpu = cpuset_cpus_allowed_fallback(p);
2310 /*
2311 * Don't tell them about moving exiting tasks or
2312 * kernel threads (both mm NULL), since they never
2313 * leave kernel.
2314 */
2315 if (p->mm && printk_ratelimit()) {
2316 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2317 task_pid_nr(p), p->comm, cpu);
2318 }
2319
2320 return dest_cpu;
2321 }
2322
2323 /*
2324 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2325 */
2326 static inline
2327 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2328 {
2329 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2330
2331 /*
2332 * In order not to call set_task_cpu() on a blocking task we need
2333 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2334 * cpu.
2335 *
2336 * Since this is common to all placement strategies, this lives here.
2337 *
2338 * [ this allows ->select_task() to simply return task_cpu(p) and
2339 * not worry about this generic constraint ]
2340 */
2341 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2342 !cpu_online(cpu)))
2343 cpu = select_fallback_rq(task_cpu(p), p);
2344
2345 return cpu;
2346 }
2347
2348 static void update_avg(u64 *avg, u64 sample)
2349 {
2350 s64 diff = sample - *avg;
2351 *avg += diff >> 3;
2352 }
2353 #endif
2354
2355 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2356 bool is_sync, bool is_migrate, bool is_local,
2357 unsigned long en_flags)
2358 {
2359 schedstat_inc(p, se.statistics.nr_wakeups);
2360 if (is_sync)
2361 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2362 if (is_migrate)
2363 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2364 if (is_local)
2365 schedstat_inc(p, se.statistics.nr_wakeups_local);
2366 else
2367 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2368
2369 activate_task(rq, p, en_flags);
2370 }
2371
2372 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2373 int wake_flags, bool success)
2374 {
2375 trace_sched_wakeup(p, success);
2376 check_preempt_curr(rq, p, wake_flags);
2377
2378 p->state = TASK_RUNNING;
2379 #ifdef CONFIG_SMP
2380 if (p->sched_class->task_woken)
2381 p->sched_class->task_woken(rq, p);
2382
2383 if (unlikely(rq->idle_stamp)) {
2384 u64 delta = rq->clock - rq->idle_stamp;
2385 u64 max = 2*sysctl_sched_migration_cost;
2386
2387 if (delta > max)
2388 rq->avg_idle = max;
2389 else
2390 update_avg(&rq->avg_idle, delta);
2391 rq->idle_stamp = 0;
2392 }
2393 #endif
2394 /* if a worker is waking up, notify workqueue */
2395 if ((p->flags & PF_WQ_WORKER) && success)
2396 wq_worker_waking_up(p, cpu_of(rq));
2397 }
2398
2399 /**
2400 * try_to_wake_up - wake up a thread
2401 * @p: the thread to be awakened
2402 * @state: the mask of task states that can be woken
2403 * @wake_flags: wake modifier flags (WF_*)
2404 *
2405 * Put it on the run-queue if it's not already there. The "current"
2406 * thread is always on the run-queue (except when the actual
2407 * re-schedule is in progress), and as such you're allowed to do
2408 * the simpler "current->state = TASK_RUNNING" to mark yourself
2409 * runnable without the overhead of this.
2410 *
2411 * Returns %true if @p was woken up, %false if it was already running
2412 * or @state didn't match @p's state.
2413 */
2414 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2415 int wake_flags)
2416 {
2417 int cpu, orig_cpu, this_cpu, success = 0;
2418 unsigned long flags;
2419 unsigned long en_flags = ENQUEUE_WAKEUP;
2420 struct rq *rq;
2421
2422 this_cpu = get_cpu();
2423
2424 smp_wmb();
2425 rq = task_rq_lock(p, &flags);
2426 if (!(p->state & state))
2427 goto out;
2428
2429 if (p->se.on_rq)
2430 goto out_running;
2431
2432 cpu = task_cpu(p);
2433 orig_cpu = cpu;
2434
2435 #ifdef CONFIG_SMP
2436 if (unlikely(task_running(rq, p)))
2437 goto out_activate;
2438
2439 /*
2440 * In order to handle concurrent wakeups and release the rq->lock
2441 * we put the task in TASK_WAKING state.
2442 *
2443 * First fix up the nr_uninterruptible count:
2444 */
2445 if (task_contributes_to_load(p)) {
2446 if (likely(cpu_online(orig_cpu)))
2447 rq->nr_uninterruptible--;
2448 else
2449 this_rq()->nr_uninterruptible--;
2450 }
2451 p->state = TASK_WAKING;
2452
2453 if (p->sched_class->task_waking) {
2454 p->sched_class->task_waking(rq, p);
2455 en_flags |= ENQUEUE_WAKING;
2456 }
2457
2458 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2459 if (cpu != orig_cpu)
2460 set_task_cpu(p, cpu);
2461 __task_rq_unlock(rq);
2462
2463 rq = cpu_rq(cpu);
2464 raw_spin_lock(&rq->lock);
2465
2466 /*
2467 * We migrated the task without holding either rq->lock, however
2468 * since the task is not on the task list itself, nobody else
2469 * will try and migrate the task, hence the rq should match the
2470 * cpu we just moved it to.
2471 */
2472 WARN_ON(task_cpu(p) != cpu);
2473 WARN_ON(p->state != TASK_WAKING);
2474
2475 #ifdef CONFIG_SCHEDSTATS
2476 schedstat_inc(rq, ttwu_count);
2477 if (cpu == this_cpu)
2478 schedstat_inc(rq, ttwu_local);
2479 else {
2480 struct sched_domain *sd;
2481 for_each_domain(this_cpu, sd) {
2482 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2483 schedstat_inc(sd, ttwu_wake_remote);
2484 break;
2485 }
2486 }
2487 }
2488 #endif /* CONFIG_SCHEDSTATS */
2489
2490 out_activate:
2491 #endif /* CONFIG_SMP */
2492 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2493 cpu == this_cpu, en_flags);
2494 success = 1;
2495 out_running:
2496 ttwu_post_activation(p, rq, wake_flags, success);
2497 out:
2498 task_rq_unlock(rq, &flags);
2499 put_cpu();
2500
2501 return success;
2502 }
2503
2504 /**
2505 * try_to_wake_up_local - try to wake up a local task with rq lock held
2506 * @p: the thread to be awakened
2507 *
2508 * Put @p on the run-queue if it's not already there. The caller must
2509 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2510 * the current task. this_rq() stays locked over invocation.
2511 */
2512 static void try_to_wake_up_local(struct task_struct *p)
2513 {
2514 struct rq *rq = task_rq(p);
2515 bool success = false;
2516
2517 BUG_ON(rq != this_rq());
2518 BUG_ON(p == current);
2519 lockdep_assert_held(&rq->lock);
2520
2521 if (!(p->state & TASK_NORMAL))
2522 return;
2523
2524 if (!p->se.on_rq) {
2525 if (likely(!task_running(rq, p))) {
2526 schedstat_inc(rq, ttwu_count);
2527 schedstat_inc(rq, ttwu_local);
2528 }
2529 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2530 success = true;
2531 }
2532 ttwu_post_activation(p, rq, 0, success);
2533 }
2534
2535 /**
2536 * wake_up_process - Wake up a specific process
2537 * @p: The process to be woken up.
2538 *
2539 * Attempt to wake up the nominated process and move it to the set of runnable
2540 * processes. Returns 1 if the process was woken up, 0 if it was already
2541 * running.
2542 *
2543 * It may be assumed that this function implies a write memory barrier before
2544 * changing the task state if and only if any tasks are woken up.
2545 */
2546 int wake_up_process(struct task_struct *p)
2547 {
2548 return try_to_wake_up(p, TASK_ALL, 0);
2549 }
2550 EXPORT_SYMBOL(wake_up_process);
2551
2552 int wake_up_state(struct task_struct *p, unsigned int state)
2553 {
2554 return try_to_wake_up(p, state, 0);
2555 }
2556
2557 /*
2558 * Perform scheduler related setup for a newly forked process p.
2559 * p is forked by current.
2560 *
2561 * __sched_fork() is basic setup used by init_idle() too:
2562 */
2563 static void __sched_fork(struct task_struct *p)
2564 {
2565 p->se.exec_start = 0;
2566 p->se.sum_exec_runtime = 0;
2567 p->se.prev_sum_exec_runtime = 0;
2568 p->se.nr_migrations = 0;
2569
2570 #ifdef CONFIG_SCHEDSTATS
2571 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2572 #endif
2573
2574 INIT_LIST_HEAD(&p->rt.run_list);
2575 p->se.on_rq = 0;
2576 INIT_LIST_HEAD(&p->se.group_node);
2577
2578 #ifdef CONFIG_PREEMPT_NOTIFIERS
2579 INIT_HLIST_HEAD(&p->preempt_notifiers);
2580 #endif
2581 }
2582
2583 /*
2584 * fork()/clone()-time setup:
2585 */
2586 void sched_fork(struct task_struct *p, int clone_flags)
2587 {
2588 int cpu = get_cpu();
2589
2590 __sched_fork(p);
2591 /*
2592 * We mark the process as running here. This guarantees that
2593 * nobody will actually run it, and a signal or other external
2594 * event cannot wake it up and insert it on the runqueue either.
2595 */
2596 p->state = TASK_RUNNING;
2597
2598 /*
2599 * Revert to default priority/policy on fork if requested.
2600 */
2601 if (unlikely(p->sched_reset_on_fork)) {
2602 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2603 p->policy = SCHED_NORMAL;
2604 p->normal_prio = p->static_prio;
2605 }
2606
2607 if (PRIO_TO_NICE(p->static_prio) < 0) {
2608 p->static_prio = NICE_TO_PRIO(0);
2609 p->normal_prio = p->static_prio;
2610 set_load_weight(p);
2611 }
2612
2613 /*
2614 * We don't need the reset flag anymore after the fork. It has
2615 * fulfilled its duty:
2616 */
2617 p->sched_reset_on_fork = 0;
2618 }
2619
2620 /*
2621 * Make sure we do not leak PI boosting priority to the child.
2622 */
2623 p->prio = current->normal_prio;
2624
2625 if (!rt_prio(p->prio))
2626 p->sched_class = &fair_sched_class;
2627
2628 if (p->sched_class->task_fork)
2629 p->sched_class->task_fork(p);
2630
2631 /*
2632 * The child is not yet in the pid-hash so no cgroup attach races,
2633 * and the cgroup is pinned to this child due to cgroup_fork()
2634 * is ran before sched_fork().
2635 *
2636 * Silence PROVE_RCU.
2637 */
2638 rcu_read_lock();
2639 set_task_cpu(p, cpu);
2640 rcu_read_unlock();
2641
2642 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2643 if (likely(sched_info_on()))
2644 memset(&p->sched_info, 0, sizeof(p->sched_info));
2645 #endif
2646 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2647 p->oncpu = 0;
2648 #endif
2649 #ifdef CONFIG_PREEMPT
2650 /* Want to start with kernel preemption disabled. */
2651 task_thread_info(p)->preempt_count = 1;
2652 #endif
2653 #ifdef CONFIG_SMP
2654 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2655 #endif
2656
2657 put_cpu();
2658 }
2659
2660 /*
2661 * wake_up_new_task - wake up a newly created task for the first time.
2662 *
2663 * This function will do some initial scheduler statistics housekeeping
2664 * that must be done for every newly created context, then puts the task
2665 * on the runqueue and wakes it.
2666 */
2667 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2668 {
2669 unsigned long flags;
2670 struct rq *rq;
2671 int cpu __maybe_unused = get_cpu();
2672
2673 #ifdef CONFIG_SMP
2674 rq = task_rq_lock(p, &flags);
2675 p->state = TASK_WAKING;
2676
2677 /*
2678 * Fork balancing, do it here and not earlier because:
2679 * - cpus_allowed can change in the fork path
2680 * - any previously selected cpu might disappear through hotplug
2681 *
2682 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2683 * without people poking at ->cpus_allowed.
2684 */
2685 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2686 set_task_cpu(p, cpu);
2687
2688 p->state = TASK_RUNNING;
2689 task_rq_unlock(rq, &flags);
2690 #endif
2691
2692 rq = task_rq_lock(p, &flags);
2693 activate_task(rq, p, 0);
2694 trace_sched_wakeup_new(p, 1);
2695 check_preempt_curr(rq, p, WF_FORK);
2696 #ifdef CONFIG_SMP
2697 if (p->sched_class->task_woken)
2698 p->sched_class->task_woken(rq, p);
2699 #endif
2700 task_rq_unlock(rq, &flags);
2701 put_cpu();
2702 }
2703
2704 #ifdef CONFIG_PREEMPT_NOTIFIERS
2705
2706 /**
2707 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2708 * @notifier: notifier struct to register
2709 */
2710 void preempt_notifier_register(struct preempt_notifier *notifier)
2711 {
2712 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2713 }
2714 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2715
2716 /**
2717 * preempt_notifier_unregister - no longer interested in preemption notifications
2718 * @notifier: notifier struct to unregister
2719 *
2720 * This is safe to call from within a preemption notifier.
2721 */
2722 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2723 {
2724 hlist_del(&notifier->link);
2725 }
2726 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2727
2728 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2729 {
2730 struct preempt_notifier *notifier;
2731 struct hlist_node *node;
2732
2733 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2734 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2735 }
2736
2737 static void
2738 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2739 struct task_struct *next)
2740 {
2741 struct preempt_notifier *notifier;
2742 struct hlist_node *node;
2743
2744 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2745 notifier->ops->sched_out(notifier, next);
2746 }
2747
2748 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2749
2750 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2751 {
2752 }
2753
2754 static void
2755 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2756 struct task_struct *next)
2757 {
2758 }
2759
2760 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2761
2762 /**
2763 * prepare_task_switch - prepare to switch tasks
2764 * @rq: the runqueue preparing to switch
2765 * @prev: the current task that is being switched out
2766 * @next: the task we are going to switch to.
2767 *
2768 * This is called with the rq lock held and interrupts off. It must
2769 * be paired with a subsequent finish_task_switch after the context
2770 * switch.
2771 *
2772 * prepare_task_switch sets up locking and calls architecture specific
2773 * hooks.
2774 */
2775 static inline void
2776 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2777 struct task_struct *next)
2778 {
2779 fire_sched_out_preempt_notifiers(prev, next);
2780 prepare_lock_switch(rq, next);
2781 prepare_arch_switch(next);
2782 }
2783
2784 /**
2785 * finish_task_switch - clean up after a task-switch
2786 * @rq: runqueue associated with task-switch
2787 * @prev: the thread we just switched away from.
2788 *
2789 * finish_task_switch must be called after the context switch, paired
2790 * with a prepare_task_switch call before the context switch.
2791 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2792 * and do any other architecture-specific cleanup actions.
2793 *
2794 * Note that we may have delayed dropping an mm in context_switch(). If
2795 * so, we finish that here outside of the runqueue lock. (Doing it
2796 * with the lock held can cause deadlocks; see schedule() for
2797 * details.)
2798 */
2799 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2800 __releases(rq->lock)
2801 {
2802 struct mm_struct *mm = rq->prev_mm;
2803 long prev_state;
2804
2805 rq->prev_mm = NULL;
2806
2807 /*
2808 * A task struct has one reference for the use as "current".
2809 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2810 * schedule one last time. The schedule call will never return, and
2811 * the scheduled task must drop that reference.
2812 * The test for TASK_DEAD must occur while the runqueue locks are
2813 * still held, otherwise prev could be scheduled on another cpu, die
2814 * there before we look at prev->state, and then the reference would
2815 * be dropped twice.
2816 * Manfred Spraul <manfred@colorfullife.com>
2817 */
2818 prev_state = prev->state;
2819 finish_arch_switch(prev);
2820 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2821 local_irq_disable();
2822 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2823 perf_event_task_sched_in(current);
2824 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2825 local_irq_enable();
2826 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2827 finish_lock_switch(rq, prev);
2828
2829 fire_sched_in_preempt_notifiers(current);
2830 if (mm)
2831 mmdrop(mm);
2832 if (unlikely(prev_state == TASK_DEAD)) {
2833 /*
2834 * Remove function-return probe instances associated with this
2835 * task and put them back on the free list.
2836 */
2837 kprobe_flush_task(prev);
2838 put_task_struct(prev);
2839 }
2840 }
2841
2842 #ifdef CONFIG_SMP
2843
2844 /* assumes rq->lock is held */
2845 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2846 {
2847 if (prev->sched_class->pre_schedule)
2848 prev->sched_class->pre_schedule(rq, prev);
2849 }
2850
2851 /* rq->lock is NOT held, but preemption is disabled */
2852 static inline void post_schedule(struct rq *rq)
2853 {
2854 if (rq->post_schedule) {
2855 unsigned long flags;
2856
2857 raw_spin_lock_irqsave(&rq->lock, flags);
2858 if (rq->curr->sched_class->post_schedule)
2859 rq->curr->sched_class->post_schedule(rq);
2860 raw_spin_unlock_irqrestore(&rq->lock, flags);
2861
2862 rq->post_schedule = 0;
2863 }
2864 }
2865
2866 #else
2867
2868 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2869 {
2870 }
2871
2872 static inline void post_schedule(struct rq *rq)
2873 {
2874 }
2875
2876 #endif
2877
2878 /**
2879 * schedule_tail - first thing a freshly forked thread must call.
2880 * @prev: the thread we just switched away from.
2881 */
2882 asmlinkage void schedule_tail(struct task_struct *prev)
2883 __releases(rq->lock)
2884 {
2885 struct rq *rq = this_rq();
2886
2887 finish_task_switch(rq, prev);
2888
2889 /*
2890 * FIXME: do we need to worry about rq being invalidated by the
2891 * task_switch?
2892 */
2893 post_schedule(rq);
2894
2895 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2896 /* In this case, finish_task_switch does not reenable preemption */
2897 preempt_enable();
2898 #endif
2899 if (current->set_child_tid)
2900 put_user(task_pid_vnr(current), current->set_child_tid);
2901 }
2902
2903 /*
2904 * context_switch - switch to the new MM and the new
2905 * thread's register state.
2906 */
2907 static inline void
2908 context_switch(struct rq *rq, struct task_struct *prev,
2909 struct task_struct *next)
2910 {
2911 struct mm_struct *mm, *oldmm;
2912
2913 prepare_task_switch(rq, prev, next);
2914 trace_sched_switch(prev, next);
2915 mm = next->mm;
2916 oldmm = prev->active_mm;
2917 /*
2918 * For paravirt, this is coupled with an exit in switch_to to
2919 * combine the page table reload and the switch backend into
2920 * one hypercall.
2921 */
2922 arch_start_context_switch(prev);
2923
2924 if (!mm) {
2925 next->active_mm = oldmm;
2926 atomic_inc(&oldmm->mm_count);
2927 enter_lazy_tlb(oldmm, next);
2928 } else
2929 switch_mm(oldmm, mm, next);
2930
2931 if (!prev->mm) {
2932 prev->active_mm = NULL;
2933 rq->prev_mm = oldmm;
2934 }
2935 /*
2936 * Since the runqueue lock will be released by the next
2937 * task (which is an invalid locking op but in the case
2938 * of the scheduler it's an obvious special-case), so we
2939 * do an early lockdep release here:
2940 */
2941 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2942 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2943 #endif
2944
2945 /* Here we just switch the register state and the stack. */
2946 switch_to(prev, next, prev);
2947
2948 barrier();
2949 /*
2950 * this_rq must be evaluated again because prev may have moved
2951 * CPUs since it called schedule(), thus the 'rq' on its stack
2952 * frame will be invalid.
2953 */
2954 finish_task_switch(this_rq(), prev);
2955 }
2956
2957 /*
2958 * nr_running, nr_uninterruptible and nr_context_switches:
2959 *
2960 * externally visible scheduler statistics: current number of runnable
2961 * threads, current number of uninterruptible-sleeping threads, total
2962 * number of context switches performed since bootup.
2963 */
2964 unsigned long nr_running(void)
2965 {
2966 unsigned long i, sum = 0;
2967
2968 for_each_online_cpu(i)
2969 sum += cpu_rq(i)->nr_running;
2970
2971 return sum;
2972 }
2973
2974 unsigned long nr_uninterruptible(void)
2975 {
2976 unsigned long i, sum = 0;
2977
2978 for_each_possible_cpu(i)
2979 sum += cpu_rq(i)->nr_uninterruptible;
2980
2981 /*
2982 * Since we read the counters lockless, it might be slightly
2983 * inaccurate. Do not allow it to go below zero though:
2984 */
2985 if (unlikely((long)sum < 0))
2986 sum = 0;
2987
2988 return sum;
2989 }
2990
2991 unsigned long long nr_context_switches(void)
2992 {
2993 int i;
2994 unsigned long long sum = 0;
2995
2996 for_each_possible_cpu(i)
2997 sum += cpu_rq(i)->nr_switches;
2998
2999 return sum;
3000 }
3001
3002 unsigned long nr_iowait(void)
3003 {
3004 unsigned long i, sum = 0;
3005
3006 for_each_possible_cpu(i)
3007 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3008
3009 return sum;
3010 }
3011
3012 unsigned long nr_iowait_cpu(int cpu)
3013 {
3014 struct rq *this = cpu_rq(cpu);
3015 return atomic_read(&this->nr_iowait);
3016 }
3017
3018 unsigned long this_cpu_load(void)
3019 {
3020 struct rq *this = this_rq();
3021 return this->cpu_load[0];
3022 }
3023
3024
3025 /* Variables and functions for calc_load */
3026 static atomic_long_t calc_load_tasks;
3027 static unsigned long calc_load_update;
3028 unsigned long avenrun[3];
3029 EXPORT_SYMBOL(avenrun);
3030
3031 static long calc_load_fold_active(struct rq *this_rq)
3032 {
3033 long nr_active, delta = 0;
3034
3035 nr_active = this_rq->nr_running;
3036 nr_active += (long) this_rq->nr_uninterruptible;
3037
3038 if (nr_active != this_rq->calc_load_active) {
3039 delta = nr_active - this_rq->calc_load_active;
3040 this_rq->calc_load_active = nr_active;
3041 }
3042
3043 return delta;
3044 }
3045
3046 static unsigned long
3047 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3048 {
3049 load *= exp;
3050 load += active * (FIXED_1 - exp);
3051 load += 1UL << (FSHIFT - 1);
3052 return load >> FSHIFT;
3053 }
3054
3055 #ifdef CONFIG_NO_HZ
3056 /*
3057 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3058 *
3059 * When making the ILB scale, we should try to pull this in as well.
3060 */
3061 static atomic_long_t calc_load_tasks_idle;
3062
3063 static void calc_load_account_idle(struct rq *this_rq)
3064 {
3065 long delta;
3066
3067 delta = calc_load_fold_active(this_rq);
3068 if (delta)
3069 atomic_long_add(delta, &calc_load_tasks_idle);
3070 }
3071
3072 static long calc_load_fold_idle(void)
3073 {
3074 long delta = 0;
3075
3076 /*
3077 * Its got a race, we don't care...
3078 */
3079 if (atomic_long_read(&calc_load_tasks_idle))
3080 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3081
3082 return delta;
3083 }
3084
3085 /**
3086 * fixed_power_int - compute: x^n, in O(log n) time
3087 *
3088 * @x: base of the power
3089 * @frac_bits: fractional bits of @x
3090 * @n: power to raise @x to.
3091 *
3092 * By exploiting the relation between the definition of the natural power
3093 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3094 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3095 * (where: n_i \elem {0, 1}, the binary vector representing n),
3096 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3097 * of course trivially computable in O(log_2 n), the length of our binary
3098 * vector.
3099 */
3100 static unsigned long
3101 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3102 {
3103 unsigned long result = 1UL << frac_bits;
3104
3105 if (n) for (;;) {
3106 if (n & 1) {
3107 result *= x;
3108 result += 1UL << (frac_bits - 1);
3109 result >>= frac_bits;
3110 }
3111 n >>= 1;
3112 if (!n)
3113 break;
3114 x *= x;
3115 x += 1UL << (frac_bits - 1);
3116 x >>= frac_bits;
3117 }
3118
3119 return result;
3120 }
3121
3122 /*
3123 * a1 = a0 * e + a * (1 - e)
3124 *
3125 * a2 = a1 * e + a * (1 - e)
3126 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3127 * = a0 * e^2 + a * (1 - e) * (1 + e)
3128 *
3129 * a3 = a2 * e + a * (1 - e)
3130 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3131 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3132 *
3133 * ...
3134 *
3135 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3136 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3137 * = a0 * e^n + a * (1 - e^n)
3138 *
3139 * [1] application of the geometric series:
3140 *
3141 * n 1 - x^(n+1)
3142 * S_n := \Sum x^i = -------------
3143 * i=0 1 - x
3144 */
3145 static unsigned long
3146 calc_load_n(unsigned long load, unsigned long exp,
3147 unsigned long active, unsigned int n)
3148 {
3149
3150 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3151 }
3152
3153 /*
3154 * NO_HZ can leave us missing all per-cpu ticks calling
3155 * calc_load_account_active(), but since an idle CPU folds its delta into
3156 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3157 * in the pending idle delta if our idle period crossed a load cycle boundary.
3158 *
3159 * Once we've updated the global active value, we need to apply the exponential
3160 * weights adjusted to the number of cycles missed.
3161 */
3162 static void calc_global_nohz(unsigned long ticks)
3163 {
3164 long delta, active, n;
3165
3166 if (time_before(jiffies, calc_load_update))
3167 return;
3168
3169 /*
3170 * If we crossed a calc_load_update boundary, make sure to fold
3171 * any pending idle changes, the respective CPUs might have
3172 * missed the tick driven calc_load_account_active() update
3173 * due to NO_HZ.
3174 */
3175 delta = calc_load_fold_idle();
3176 if (delta)
3177 atomic_long_add(delta, &calc_load_tasks);
3178
3179 /*
3180 * If we were idle for multiple load cycles, apply them.
3181 */
3182 if (ticks >= LOAD_FREQ) {
3183 n = ticks / LOAD_FREQ;
3184
3185 active = atomic_long_read(&calc_load_tasks);
3186 active = active > 0 ? active * FIXED_1 : 0;
3187
3188 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3189 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3190 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3191
3192 calc_load_update += n * LOAD_FREQ;
3193 }
3194
3195 /*
3196 * Its possible the remainder of the above division also crosses
3197 * a LOAD_FREQ period, the regular check in calc_global_load()
3198 * which comes after this will take care of that.
3199 *
3200 * Consider us being 11 ticks before a cycle completion, and us
3201 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3202 * age us 4 cycles, and the test in calc_global_load() will
3203 * pick up the final one.
3204 */
3205 }
3206 #else
3207 static void calc_load_account_idle(struct rq *this_rq)
3208 {
3209 }
3210
3211 static inline long calc_load_fold_idle(void)
3212 {
3213 return 0;
3214 }
3215
3216 static void calc_global_nohz(unsigned long ticks)
3217 {
3218 }
3219 #endif
3220
3221 /**
3222 * get_avenrun - get the load average array
3223 * @loads: pointer to dest load array
3224 * @offset: offset to add
3225 * @shift: shift count to shift the result left
3226 *
3227 * These values are estimates at best, so no need for locking.
3228 */
3229 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3230 {
3231 loads[0] = (avenrun[0] + offset) << shift;
3232 loads[1] = (avenrun[1] + offset) << shift;
3233 loads[2] = (avenrun[2] + offset) << shift;
3234 }
3235
3236 /*
3237 * calc_load - update the avenrun load estimates 10 ticks after the
3238 * CPUs have updated calc_load_tasks.
3239 */
3240 void calc_global_load(unsigned long ticks)
3241 {
3242 long active;
3243
3244 calc_global_nohz(ticks);
3245
3246 if (time_before(jiffies, calc_load_update + 10))
3247 return;
3248
3249 active = atomic_long_read(&calc_load_tasks);
3250 active = active > 0 ? active * FIXED_1 : 0;
3251
3252 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3253 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3254 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3255
3256 calc_load_update += LOAD_FREQ;
3257 }
3258
3259 /*
3260 * Called from update_cpu_load() to periodically update this CPU's
3261 * active count.
3262 */
3263 static void calc_load_account_active(struct rq *this_rq)
3264 {
3265 long delta;
3266
3267 if (time_before(jiffies, this_rq->calc_load_update))
3268 return;
3269
3270 delta = calc_load_fold_active(this_rq);
3271 delta += calc_load_fold_idle();
3272 if (delta)
3273 atomic_long_add(delta, &calc_load_tasks);
3274
3275 this_rq->calc_load_update += LOAD_FREQ;
3276 }
3277
3278 /*
3279 * The exact cpuload at various idx values, calculated at every tick would be
3280 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3281 *
3282 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3283 * on nth tick when cpu may be busy, then we have:
3284 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3285 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3286 *
3287 * decay_load_missed() below does efficient calculation of
3288 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3289 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3290 *
3291 * The calculation is approximated on a 128 point scale.
3292 * degrade_zero_ticks is the number of ticks after which load at any
3293 * particular idx is approximated to be zero.
3294 * degrade_factor is a precomputed table, a row for each load idx.
3295 * Each column corresponds to degradation factor for a power of two ticks,
3296 * based on 128 point scale.
3297 * Example:
3298 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3299 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3300 *
3301 * With this power of 2 load factors, we can degrade the load n times
3302 * by looking at 1 bits in n and doing as many mult/shift instead of
3303 * n mult/shifts needed by the exact degradation.
3304 */
3305 #define DEGRADE_SHIFT 7
3306 static const unsigned char
3307 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3308 static const unsigned char
3309 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3310 {0, 0, 0, 0, 0, 0, 0, 0},
3311 {64, 32, 8, 0, 0, 0, 0, 0},
3312 {96, 72, 40, 12, 1, 0, 0},
3313 {112, 98, 75, 43, 15, 1, 0},
3314 {120, 112, 98, 76, 45, 16, 2} };
3315
3316 /*
3317 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3318 * would be when CPU is idle and so we just decay the old load without
3319 * adding any new load.
3320 */
3321 static unsigned long
3322 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3323 {
3324 int j = 0;
3325
3326 if (!missed_updates)
3327 return load;
3328
3329 if (missed_updates >= degrade_zero_ticks[idx])
3330 return 0;
3331
3332 if (idx == 1)
3333 return load >> missed_updates;
3334
3335 while (missed_updates) {
3336 if (missed_updates % 2)
3337 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3338
3339 missed_updates >>= 1;
3340 j++;
3341 }
3342 return load;
3343 }
3344
3345 /*
3346 * Update rq->cpu_load[] statistics. This function is usually called every
3347 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3348 * every tick. We fix it up based on jiffies.
3349 */
3350 static void update_cpu_load(struct rq *this_rq)
3351 {
3352 unsigned long this_load = this_rq->load.weight;
3353 unsigned long curr_jiffies = jiffies;
3354 unsigned long pending_updates;
3355 int i, scale;
3356
3357 this_rq->nr_load_updates++;
3358
3359 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3360 if (curr_jiffies == this_rq->last_load_update_tick)
3361 return;
3362
3363 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3364 this_rq->last_load_update_tick = curr_jiffies;
3365
3366 /* Update our load: */
3367 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3368 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3369 unsigned long old_load, new_load;
3370
3371 /* scale is effectively 1 << i now, and >> i divides by scale */
3372
3373 old_load = this_rq->cpu_load[i];
3374 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3375 new_load = this_load;
3376 /*
3377 * Round up the averaging division if load is increasing. This
3378 * prevents us from getting stuck on 9 if the load is 10, for
3379 * example.
3380 */
3381 if (new_load > old_load)
3382 new_load += scale - 1;
3383
3384 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3385 }
3386
3387 sched_avg_update(this_rq);
3388 }
3389
3390 static void update_cpu_load_active(struct rq *this_rq)
3391 {
3392 update_cpu_load(this_rq);
3393
3394 calc_load_account_active(this_rq);
3395 }
3396
3397 #ifdef CONFIG_SMP
3398
3399 /*
3400 * sched_exec - execve() is a valuable balancing opportunity, because at
3401 * this point the task has the smallest effective memory and cache footprint.
3402 */
3403 void sched_exec(void)
3404 {
3405 struct task_struct *p = current;
3406 unsigned long flags;
3407 struct rq *rq;
3408 int dest_cpu;
3409
3410 rq = task_rq_lock(p, &flags);
3411 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3412 if (dest_cpu == smp_processor_id())
3413 goto unlock;
3414
3415 /*
3416 * select_task_rq() can race against ->cpus_allowed
3417 */
3418 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3419 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3420 struct migration_arg arg = { p, dest_cpu };
3421
3422 task_rq_unlock(rq, &flags);
3423 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3424 return;
3425 }
3426 unlock:
3427 task_rq_unlock(rq, &flags);
3428 }
3429
3430 #endif
3431
3432 DEFINE_PER_CPU(struct kernel_stat, kstat);
3433
3434 EXPORT_PER_CPU_SYMBOL(kstat);
3435
3436 /*
3437 * Return any ns on the sched_clock that have not yet been accounted in
3438 * @p in case that task is currently running.
3439 *
3440 * Called with task_rq_lock() held on @rq.
3441 */
3442 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3443 {
3444 u64 ns = 0;
3445
3446 if (task_current(rq, p)) {
3447 update_rq_clock(rq);
3448 ns = rq->clock_task - p->se.exec_start;
3449 if ((s64)ns < 0)
3450 ns = 0;
3451 }
3452
3453 return ns;
3454 }
3455
3456 unsigned long long task_delta_exec(struct task_struct *p)
3457 {
3458 unsigned long flags;
3459 struct rq *rq;
3460 u64 ns = 0;
3461
3462 rq = task_rq_lock(p, &flags);
3463 ns = do_task_delta_exec(p, rq);
3464 task_rq_unlock(rq, &flags);
3465
3466 return ns;
3467 }
3468
3469 /*
3470 * Return accounted runtime for the task.
3471 * In case the task is currently running, return the runtime plus current's
3472 * pending runtime that have not been accounted yet.
3473 */
3474 unsigned long long task_sched_runtime(struct task_struct *p)
3475 {
3476 unsigned long flags;
3477 struct rq *rq;
3478 u64 ns = 0;
3479
3480 rq = task_rq_lock(p, &flags);
3481 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3482 task_rq_unlock(rq, &flags);
3483
3484 return ns;
3485 }
3486
3487 /*
3488 * Return sum_exec_runtime for the thread group.
3489 * In case the task is currently running, return the sum plus current's
3490 * pending runtime that have not been accounted yet.
3491 *
3492 * Note that the thread group might have other running tasks as well,
3493 * so the return value not includes other pending runtime that other
3494 * running tasks might have.
3495 */
3496 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3497 {
3498 struct task_cputime totals;
3499 unsigned long flags;
3500 struct rq *rq;
3501 u64 ns;
3502
3503 rq = task_rq_lock(p, &flags);
3504 thread_group_cputime(p, &totals);
3505 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3506 task_rq_unlock(rq, &flags);
3507
3508 return ns;
3509 }
3510
3511 /*
3512 * Account user cpu time to a process.
3513 * @p: the process that the cpu time gets accounted to
3514 * @cputime: the cpu time spent in user space since the last update
3515 * @cputime_scaled: cputime scaled by cpu frequency
3516 */
3517 void account_user_time(struct task_struct *p, cputime_t cputime,
3518 cputime_t cputime_scaled)
3519 {
3520 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3521 cputime64_t tmp;
3522
3523 /* Add user time to process. */
3524 p->utime = cputime_add(p->utime, cputime);
3525 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3526 account_group_user_time(p, cputime);
3527
3528 /* Add user time to cpustat. */
3529 tmp = cputime_to_cputime64(cputime);
3530 if (TASK_NICE(p) > 0)
3531 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3532 else
3533 cpustat->user = cputime64_add(cpustat->user, tmp);
3534
3535 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3536 /* Account for user time used */
3537 acct_update_integrals(p);
3538 }
3539
3540 /*
3541 * Account guest cpu time to a process.
3542 * @p: the process that the cpu time gets accounted to
3543 * @cputime: the cpu time spent in virtual machine since the last update
3544 * @cputime_scaled: cputime scaled by cpu frequency
3545 */
3546 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3547 cputime_t cputime_scaled)
3548 {
3549 cputime64_t tmp;
3550 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3551
3552 tmp = cputime_to_cputime64(cputime);
3553
3554 /* Add guest time to process. */
3555 p->utime = cputime_add(p->utime, cputime);
3556 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3557 account_group_user_time(p, cputime);
3558 p->gtime = cputime_add(p->gtime, cputime);
3559
3560 /* Add guest time to cpustat. */
3561 if (TASK_NICE(p) > 0) {
3562 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3563 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3564 } else {
3565 cpustat->user = cputime64_add(cpustat->user, tmp);
3566 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3567 }
3568 }
3569
3570 /*
3571 * Account system cpu time to a process.
3572 * @p: the process that the cpu time gets accounted to
3573 * @hardirq_offset: the offset to subtract from hardirq_count()
3574 * @cputime: the cpu time spent in kernel space since the last update
3575 * @cputime_scaled: cputime scaled by cpu frequency
3576 */
3577 void account_system_time(struct task_struct *p, int hardirq_offset,
3578 cputime_t cputime, cputime_t cputime_scaled)
3579 {
3580 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3581 cputime64_t tmp;
3582
3583 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3584 account_guest_time(p, cputime, cputime_scaled);
3585 return;
3586 }
3587
3588 /* Add system time to process. */
3589 p->stime = cputime_add(p->stime, cputime);
3590 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3591 account_group_system_time(p, cputime);
3592
3593 /* Add system time to cpustat. */
3594 tmp = cputime_to_cputime64(cputime);
3595 if (hardirq_count() - hardirq_offset)
3596 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3597 else if (in_serving_softirq())
3598 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3599 else
3600 cpustat->system = cputime64_add(cpustat->system, tmp);
3601
3602 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3603
3604 /* Account for system time used */
3605 acct_update_integrals(p);
3606 }
3607
3608 /*
3609 * Account for involuntary wait time.
3610 * @steal: the cpu time spent in involuntary wait
3611 */
3612 void account_steal_time(cputime_t cputime)
3613 {
3614 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3615 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3616
3617 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3618 }
3619
3620 /*
3621 * Account for idle time.
3622 * @cputime: the cpu time spent in idle wait
3623 */
3624 void account_idle_time(cputime_t cputime)
3625 {
3626 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3627 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3628 struct rq *rq = this_rq();
3629
3630 if (atomic_read(&rq->nr_iowait) > 0)
3631 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3632 else
3633 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3634 }
3635
3636 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3637
3638 /*
3639 * Account a single tick of cpu time.
3640 * @p: the process that the cpu time gets accounted to
3641 * @user_tick: indicates if the tick is a user or a system tick
3642 */
3643 void account_process_tick(struct task_struct *p, int user_tick)
3644 {
3645 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3646 struct rq *rq = this_rq();
3647
3648 if (user_tick)
3649 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3650 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3651 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3652 one_jiffy_scaled);
3653 else
3654 account_idle_time(cputime_one_jiffy);
3655 }
3656
3657 /*
3658 * Account multiple ticks of steal time.
3659 * @p: the process from which the cpu time has been stolen
3660 * @ticks: number of stolen ticks
3661 */
3662 void account_steal_ticks(unsigned long ticks)
3663 {
3664 account_steal_time(jiffies_to_cputime(ticks));
3665 }
3666
3667 /*
3668 * Account multiple ticks of idle time.
3669 * @ticks: number of stolen ticks
3670 */
3671 void account_idle_ticks(unsigned long ticks)
3672 {
3673 account_idle_time(jiffies_to_cputime(ticks));
3674 }
3675
3676 #endif
3677
3678 /*
3679 * Use precise platform statistics if available:
3680 */
3681 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3682 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3683 {
3684 *ut = p->utime;
3685 *st = p->stime;
3686 }
3687
3688 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3689 {
3690 struct task_cputime cputime;
3691
3692 thread_group_cputime(p, &cputime);
3693
3694 *ut = cputime.utime;
3695 *st = cputime.stime;
3696 }
3697 #else
3698
3699 #ifndef nsecs_to_cputime
3700 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3701 #endif
3702
3703 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3704 {
3705 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3706
3707 /*
3708 * Use CFS's precise accounting:
3709 */
3710 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3711
3712 if (total) {
3713 u64 temp = rtime;
3714
3715 temp *= utime;
3716 do_div(temp, total);
3717 utime = (cputime_t)temp;
3718 } else
3719 utime = rtime;
3720
3721 /*
3722 * Compare with previous values, to keep monotonicity:
3723 */
3724 p->prev_utime = max(p->prev_utime, utime);
3725 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3726
3727 *ut = p->prev_utime;
3728 *st = p->prev_stime;
3729 }
3730
3731 /*
3732 * Must be called with siglock held.
3733 */
3734 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3735 {
3736 struct signal_struct *sig = p->signal;
3737 struct task_cputime cputime;
3738 cputime_t rtime, utime, total;
3739
3740 thread_group_cputime(p, &cputime);
3741
3742 total = cputime_add(cputime.utime, cputime.stime);
3743 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3744
3745 if (total) {
3746 u64 temp = rtime;
3747
3748 temp *= cputime.utime;
3749 do_div(temp, total);
3750 utime = (cputime_t)temp;
3751 } else
3752 utime = rtime;
3753
3754 sig->prev_utime = max(sig->prev_utime, utime);
3755 sig->prev_stime = max(sig->prev_stime,
3756 cputime_sub(rtime, sig->prev_utime));
3757
3758 *ut = sig->prev_utime;
3759 *st = sig->prev_stime;
3760 }
3761 #endif
3762
3763 /*
3764 * This function gets called by the timer code, with HZ frequency.
3765 * We call it with interrupts disabled.
3766 *
3767 * It also gets called by the fork code, when changing the parent's
3768 * timeslices.
3769 */
3770 void scheduler_tick(void)
3771 {
3772 int cpu = smp_processor_id();
3773 struct rq *rq = cpu_rq(cpu);
3774 struct task_struct *curr = rq->curr;
3775
3776 sched_clock_tick();
3777
3778 raw_spin_lock(&rq->lock);
3779 update_rq_clock(rq);
3780 update_cpu_load_active(rq);
3781 curr->sched_class->task_tick(rq, curr, 0);
3782 raw_spin_unlock(&rq->lock);
3783
3784 perf_event_task_tick();
3785
3786 #ifdef CONFIG_SMP
3787 rq->idle_at_tick = idle_cpu(cpu);
3788 trigger_load_balance(rq, cpu);
3789 #endif
3790 }
3791
3792 notrace unsigned long get_parent_ip(unsigned long addr)
3793 {
3794 if (in_lock_functions(addr)) {
3795 addr = CALLER_ADDR2;
3796 if (in_lock_functions(addr))
3797 addr = CALLER_ADDR3;
3798 }
3799 return addr;
3800 }
3801
3802 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3803 defined(CONFIG_PREEMPT_TRACER))
3804
3805 void __kprobes add_preempt_count(int val)
3806 {
3807 #ifdef CONFIG_DEBUG_PREEMPT
3808 /*
3809 * Underflow?
3810 */
3811 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3812 return;
3813 #endif
3814 preempt_count() += val;
3815 #ifdef CONFIG_DEBUG_PREEMPT
3816 /*
3817 * Spinlock count overflowing soon?
3818 */
3819 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3820 PREEMPT_MASK - 10);
3821 #endif
3822 if (preempt_count() == val)
3823 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3824 }
3825 EXPORT_SYMBOL(add_preempt_count);
3826
3827 void __kprobes sub_preempt_count(int val)
3828 {
3829 #ifdef CONFIG_DEBUG_PREEMPT
3830 /*
3831 * Underflow?
3832 */
3833 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3834 return;
3835 /*
3836 * Is the spinlock portion underflowing?
3837 */
3838 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3839 !(preempt_count() & PREEMPT_MASK)))
3840 return;
3841 #endif
3842
3843 if (preempt_count() == val)
3844 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3845 preempt_count() -= val;
3846 }
3847 EXPORT_SYMBOL(sub_preempt_count);
3848
3849 #endif
3850
3851 /*
3852 * Print scheduling while atomic bug:
3853 */
3854 static noinline void __schedule_bug(struct task_struct *prev)
3855 {
3856 struct pt_regs *regs = get_irq_regs();
3857
3858 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3859 prev->comm, prev->pid, preempt_count());
3860
3861 debug_show_held_locks(prev);
3862 print_modules();
3863 if (irqs_disabled())
3864 print_irqtrace_events(prev);
3865
3866 if (regs)
3867 show_regs(regs);
3868 else
3869 dump_stack();
3870 }
3871
3872 /*
3873 * Various schedule()-time debugging checks and statistics:
3874 */
3875 static inline void schedule_debug(struct task_struct *prev)
3876 {
3877 /*
3878 * Test if we are atomic. Since do_exit() needs to call into
3879 * schedule() atomically, we ignore that path for now.
3880 * Otherwise, whine if we are scheduling when we should not be.
3881 */
3882 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3883 __schedule_bug(prev);
3884
3885 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3886
3887 schedstat_inc(this_rq(), sched_count);
3888 #ifdef CONFIG_SCHEDSTATS
3889 if (unlikely(prev->lock_depth >= 0)) {
3890 schedstat_inc(this_rq(), bkl_count);
3891 schedstat_inc(prev, sched_info.bkl_count);
3892 }
3893 #endif
3894 }
3895
3896 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3897 {
3898 if (prev->se.on_rq)
3899 update_rq_clock(rq);
3900 prev->sched_class->put_prev_task(rq, prev);
3901 }
3902
3903 /*
3904 * Pick up the highest-prio task:
3905 */
3906 static inline struct task_struct *
3907 pick_next_task(struct rq *rq)
3908 {
3909 const struct sched_class *class;
3910 struct task_struct *p;
3911
3912 /*
3913 * Optimization: we know that if all tasks are in
3914 * the fair class we can call that function directly:
3915 */
3916 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3917 p = fair_sched_class.pick_next_task(rq);
3918 if (likely(p))
3919 return p;
3920 }
3921
3922 for_each_class(class) {
3923 p = class->pick_next_task(rq);
3924 if (p)
3925 return p;
3926 }
3927
3928 BUG(); /* the idle class will always have a runnable task */
3929 }
3930
3931 /*
3932 * schedule() is the main scheduler function.
3933 */
3934 asmlinkage void __sched schedule(void)
3935 {
3936 struct task_struct *prev, *next;
3937 unsigned long *switch_count;
3938 struct rq *rq;
3939 int cpu;
3940
3941 need_resched:
3942 preempt_disable();
3943 cpu = smp_processor_id();
3944 rq = cpu_rq(cpu);
3945 rcu_note_context_switch(cpu);
3946 prev = rq->curr;
3947
3948 release_kernel_lock(prev);
3949 need_resched_nonpreemptible:
3950
3951 schedule_debug(prev);
3952
3953 if (sched_feat(HRTICK))
3954 hrtick_clear(rq);
3955
3956 raw_spin_lock_irq(&rq->lock);
3957
3958 switch_count = &prev->nivcsw;
3959 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3960 if (unlikely(signal_pending_state(prev->state, prev))) {
3961 prev->state = TASK_RUNNING;
3962 } else {
3963 /*
3964 * If a worker is going to sleep, notify and
3965 * ask workqueue whether it wants to wake up a
3966 * task to maintain concurrency. If so, wake
3967 * up the task.
3968 */
3969 if (prev->flags & PF_WQ_WORKER) {
3970 struct task_struct *to_wakeup;
3971
3972 to_wakeup = wq_worker_sleeping(prev, cpu);
3973 if (to_wakeup)
3974 try_to_wake_up_local(to_wakeup);
3975 }
3976 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3977 }
3978 switch_count = &prev->nvcsw;
3979 }
3980
3981 pre_schedule(rq, prev);
3982
3983 if (unlikely(!rq->nr_running))
3984 idle_balance(cpu, rq);
3985
3986 put_prev_task(rq, prev);
3987 next = pick_next_task(rq);
3988 clear_tsk_need_resched(prev);
3989 rq->skip_clock_update = 0;
3990
3991 if (likely(prev != next)) {
3992 sched_info_switch(prev, next);
3993 perf_event_task_sched_out(prev, next);
3994
3995 rq->nr_switches++;
3996 rq->curr = next;
3997 ++*switch_count;
3998
3999 context_switch(rq, prev, next); /* unlocks the rq */
4000 /*
4001 * The context switch have flipped the stack from under us
4002 * and restored the local variables which were saved when
4003 * this task called schedule() in the past. prev == current
4004 * is still correct, but it can be moved to another cpu/rq.
4005 */
4006 cpu = smp_processor_id();
4007 rq = cpu_rq(cpu);
4008 } else
4009 raw_spin_unlock_irq(&rq->lock);
4010
4011 post_schedule(rq);
4012
4013 if (unlikely(reacquire_kernel_lock(prev)))
4014 goto need_resched_nonpreemptible;
4015
4016 preempt_enable_no_resched();
4017 if (need_resched())
4018 goto need_resched;
4019 }
4020 EXPORT_SYMBOL(schedule);
4021
4022 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4023 /*
4024 * Look out! "owner" is an entirely speculative pointer
4025 * access and not reliable.
4026 */
4027 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4028 {
4029 unsigned int cpu;
4030 struct rq *rq;
4031
4032 if (!sched_feat(OWNER_SPIN))
4033 return 0;
4034
4035 #ifdef CONFIG_DEBUG_PAGEALLOC
4036 /*
4037 * Need to access the cpu field knowing that
4038 * DEBUG_PAGEALLOC could have unmapped it if
4039 * the mutex owner just released it and exited.
4040 */
4041 if (probe_kernel_address(&owner->cpu, cpu))
4042 return 0;
4043 #else
4044 cpu = owner->cpu;
4045 #endif
4046
4047 /*
4048 * Even if the access succeeded (likely case),
4049 * the cpu field may no longer be valid.
4050 */
4051 if (cpu >= nr_cpumask_bits)
4052 return 0;
4053
4054 /*
4055 * We need to validate that we can do a
4056 * get_cpu() and that we have the percpu area.
4057 */
4058 if (!cpu_online(cpu))
4059 return 0;
4060
4061 rq = cpu_rq(cpu);
4062
4063 for (;;) {
4064 /*
4065 * Owner changed, break to re-assess state.
4066 */
4067 if (lock->owner != owner) {
4068 /*
4069 * If the lock has switched to a different owner,
4070 * we likely have heavy contention. Return 0 to quit
4071 * optimistic spinning and not contend further:
4072 */
4073 if (lock->owner)
4074 return 0;
4075 break;
4076 }
4077
4078 /*
4079 * Is that owner really running on that cpu?
4080 */
4081 if (task_thread_info(rq->curr) != owner || need_resched())
4082 return 0;
4083
4084 arch_mutex_cpu_relax();
4085 }
4086
4087 return 1;
4088 }
4089 #endif
4090
4091 #ifdef CONFIG_PREEMPT
4092 /*
4093 * this is the entry point to schedule() from in-kernel preemption
4094 * off of preempt_enable. Kernel preemptions off return from interrupt
4095 * occur there and call schedule directly.
4096 */
4097 asmlinkage void __sched notrace preempt_schedule(void)
4098 {
4099 struct thread_info *ti = current_thread_info();
4100
4101 /*
4102 * If there is a non-zero preempt_count or interrupts are disabled,
4103 * we do not want to preempt the current task. Just return..
4104 */
4105 if (likely(ti->preempt_count || irqs_disabled()))
4106 return;
4107
4108 do {
4109 add_preempt_count_notrace(PREEMPT_ACTIVE);
4110 schedule();
4111 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4112
4113 /*
4114 * Check again in case we missed a preemption opportunity
4115 * between schedule and now.
4116 */
4117 barrier();
4118 } while (need_resched());
4119 }
4120 EXPORT_SYMBOL(preempt_schedule);
4121
4122 /*
4123 * this is the entry point to schedule() from kernel preemption
4124 * off of irq context.
4125 * Note, that this is called and return with irqs disabled. This will
4126 * protect us against recursive calling from irq.
4127 */
4128 asmlinkage void __sched preempt_schedule_irq(void)
4129 {
4130 struct thread_info *ti = current_thread_info();
4131
4132 /* Catch callers which need to be fixed */
4133 BUG_ON(ti->preempt_count || !irqs_disabled());
4134
4135 do {
4136 add_preempt_count(PREEMPT_ACTIVE);
4137 local_irq_enable();
4138 schedule();
4139 local_irq_disable();
4140 sub_preempt_count(PREEMPT_ACTIVE);
4141
4142 /*
4143 * Check again in case we missed a preemption opportunity
4144 * between schedule and now.
4145 */
4146 barrier();
4147 } while (need_resched());
4148 }
4149
4150 #endif /* CONFIG_PREEMPT */
4151
4152 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4153 void *key)
4154 {
4155 return try_to_wake_up(curr->private, mode, wake_flags);
4156 }
4157 EXPORT_SYMBOL(default_wake_function);
4158
4159 /*
4160 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4161 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4162 * number) then we wake all the non-exclusive tasks and one exclusive task.
4163 *
4164 * There are circumstances in which we can try to wake a task which has already
4165 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4166 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4167 */
4168 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4169 int nr_exclusive, int wake_flags, void *key)
4170 {
4171 wait_queue_t *curr, *next;
4172
4173 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4174 unsigned flags = curr->flags;
4175
4176 if (curr->func(curr, mode, wake_flags, key) &&
4177 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4178 break;
4179 }
4180 }
4181
4182 /**
4183 * __wake_up - wake up threads blocked on a waitqueue.
4184 * @q: the waitqueue
4185 * @mode: which threads
4186 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4187 * @key: is directly passed to the wakeup function
4188 *
4189 * It may be assumed that this function implies a write memory barrier before
4190 * changing the task state if and only if any tasks are woken up.
4191 */
4192 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4193 int nr_exclusive, void *key)
4194 {
4195 unsigned long flags;
4196
4197 spin_lock_irqsave(&q->lock, flags);
4198 __wake_up_common(q, mode, nr_exclusive, 0, key);
4199 spin_unlock_irqrestore(&q->lock, flags);
4200 }
4201 EXPORT_SYMBOL(__wake_up);
4202
4203 /*
4204 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4205 */
4206 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4207 {
4208 __wake_up_common(q, mode, 1, 0, NULL);
4209 }
4210 EXPORT_SYMBOL_GPL(__wake_up_locked);
4211
4212 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4213 {
4214 __wake_up_common(q, mode, 1, 0, key);
4215 }
4216
4217 /**
4218 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4219 * @q: the waitqueue
4220 * @mode: which threads
4221 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4222 * @key: opaque value to be passed to wakeup targets
4223 *
4224 * The sync wakeup differs that the waker knows that it will schedule
4225 * away soon, so while the target thread will be woken up, it will not
4226 * be migrated to another CPU - ie. the two threads are 'synchronized'
4227 * with each other. This can prevent needless bouncing between CPUs.
4228 *
4229 * On UP it can prevent extra preemption.
4230 *
4231 * It may be assumed that this function implies a write memory barrier before
4232 * changing the task state if and only if any tasks are woken up.
4233 */
4234 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4235 int nr_exclusive, void *key)
4236 {
4237 unsigned long flags;
4238 int wake_flags = WF_SYNC;
4239
4240 if (unlikely(!q))
4241 return;
4242
4243 if (unlikely(!nr_exclusive))
4244 wake_flags = 0;
4245
4246 spin_lock_irqsave(&q->lock, flags);
4247 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4248 spin_unlock_irqrestore(&q->lock, flags);
4249 }
4250 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4251
4252 /*
4253 * __wake_up_sync - see __wake_up_sync_key()
4254 */
4255 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4256 {
4257 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4258 }
4259 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4260
4261 /**
4262 * complete: - signals a single thread waiting on this completion
4263 * @x: holds the state of this particular completion
4264 *
4265 * This will wake up a single thread waiting on this completion. Threads will be
4266 * awakened in the same order in which they were queued.
4267 *
4268 * See also complete_all(), wait_for_completion() and related routines.
4269 *
4270 * It may be assumed that this function implies a write memory barrier before
4271 * changing the task state if and only if any tasks are woken up.
4272 */
4273 void complete(struct completion *x)
4274 {
4275 unsigned long flags;
4276
4277 spin_lock_irqsave(&x->wait.lock, flags);
4278 x->done++;
4279 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4280 spin_unlock_irqrestore(&x->wait.lock, flags);
4281 }
4282 EXPORT_SYMBOL(complete);
4283
4284 /**
4285 * complete_all: - signals all threads waiting on this completion
4286 * @x: holds the state of this particular completion
4287 *
4288 * This will wake up all threads waiting on this particular completion event.
4289 *
4290 * It may be assumed that this function implies a write memory barrier before
4291 * changing the task state if and only if any tasks are woken up.
4292 */
4293 void complete_all(struct completion *x)
4294 {
4295 unsigned long flags;
4296
4297 spin_lock_irqsave(&x->wait.lock, flags);
4298 x->done += UINT_MAX/2;
4299 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4300 spin_unlock_irqrestore(&x->wait.lock, flags);
4301 }
4302 EXPORT_SYMBOL(complete_all);
4303
4304 static inline long __sched
4305 do_wait_for_common(struct completion *x, long timeout, int state)
4306 {
4307 if (!x->done) {
4308 DECLARE_WAITQUEUE(wait, current);
4309
4310 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4311 do {
4312 if (signal_pending_state(state, current)) {
4313 timeout = -ERESTARTSYS;
4314 break;
4315 }
4316 __set_current_state(state);
4317 spin_unlock_irq(&x->wait.lock);
4318 timeout = schedule_timeout(timeout);
4319 spin_lock_irq(&x->wait.lock);
4320 } while (!x->done && timeout);
4321 __remove_wait_queue(&x->wait, &wait);
4322 if (!x->done)
4323 return timeout;
4324 }
4325 x->done--;
4326 return timeout ?: 1;
4327 }
4328
4329 static long __sched
4330 wait_for_common(struct completion *x, long timeout, int state)
4331 {
4332 might_sleep();
4333
4334 spin_lock_irq(&x->wait.lock);
4335 timeout = do_wait_for_common(x, timeout, state);
4336 spin_unlock_irq(&x->wait.lock);
4337 return timeout;
4338 }
4339
4340 /**
4341 * wait_for_completion: - waits for completion of a task
4342 * @x: holds the state of this particular completion
4343 *
4344 * This waits to be signaled for completion of a specific task. It is NOT
4345 * interruptible and there is no timeout.
4346 *
4347 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4348 * and interrupt capability. Also see complete().
4349 */
4350 void __sched wait_for_completion(struct completion *x)
4351 {
4352 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4353 }
4354 EXPORT_SYMBOL(wait_for_completion);
4355
4356 /**
4357 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4358 * @x: holds the state of this particular completion
4359 * @timeout: timeout value in jiffies
4360 *
4361 * This waits for either a completion of a specific task to be signaled or for a
4362 * specified timeout to expire. The timeout is in jiffies. It is not
4363 * interruptible.
4364 */
4365 unsigned long __sched
4366 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4367 {
4368 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4369 }
4370 EXPORT_SYMBOL(wait_for_completion_timeout);
4371
4372 /**
4373 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4374 * @x: holds the state of this particular completion
4375 *
4376 * This waits for completion of a specific task to be signaled. It is
4377 * interruptible.
4378 */
4379 int __sched wait_for_completion_interruptible(struct completion *x)
4380 {
4381 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4382 if (t == -ERESTARTSYS)
4383 return t;
4384 return 0;
4385 }
4386 EXPORT_SYMBOL(wait_for_completion_interruptible);
4387
4388 /**
4389 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4390 * @x: holds the state of this particular completion
4391 * @timeout: timeout value in jiffies
4392 *
4393 * This waits for either a completion of a specific task to be signaled or for a
4394 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4395 */
4396 long __sched
4397 wait_for_completion_interruptible_timeout(struct completion *x,
4398 unsigned long timeout)
4399 {
4400 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4401 }
4402 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4403
4404 /**
4405 * wait_for_completion_killable: - waits for completion of a task (killable)
4406 * @x: holds the state of this particular completion
4407 *
4408 * This waits to be signaled for completion of a specific task. It can be
4409 * interrupted by a kill signal.
4410 */
4411 int __sched wait_for_completion_killable(struct completion *x)
4412 {
4413 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4414 if (t == -ERESTARTSYS)
4415 return t;
4416 return 0;
4417 }
4418 EXPORT_SYMBOL(wait_for_completion_killable);
4419
4420 /**
4421 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4422 * @x: holds the state of this particular completion
4423 * @timeout: timeout value in jiffies
4424 *
4425 * This waits for either a completion of a specific task to be
4426 * signaled or for a specified timeout to expire. It can be
4427 * interrupted by a kill signal. The timeout is in jiffies.
4428 */
4429 long __sched
4430 wait_for_completion_killable_timeout(struct completion *x,
4431 unsigned long timeout)
4432 {
4433 return wait_for_common(x, timeout, TASK_KILLABLE);
4434 }
4435 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4436
4437 /**
4438 * try_wait_for_completion - try to decrement a completion without blocking
4439 * @x: completion structure
4440 *
4441 * Returns: 0 if a decrement cannot be done without blocking
4442 * 1 if a decrement succeeded.
4443 *
4444 * If a completion is being used as a counting completion,
4445 * attempt to decrement the counter without blocking. This
4446 * enables us to avoid waiting if the resource the completion
4447 * is protecting is not available.
4448 */
4449 bool try_wait_for_completion(struct completion *x)
4450 {
4451 unsigned long flags;
4452 int ret = 1;
4453
4454 spin_lock_irqsave(&x->wait.lock, flags);
4455 if (!x->done)
4456 ret = 0;
4457 else
4458 x->done--;
4459 spin_unlock_irqrestore(&x->wait.lock, flags);
4460 return ret;
4461 }
4462 EXPORT_SYMBOL(try_wait_for_completion);
4463
4464 /**
4465 * completion_done - Test to see if a completion has any waiters
4466 * @x: completion structure
4467 *
4468 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4469 * 1 if there are no waiters.
4470 *
4471 */
4472 bool completion_done(struct completion *x)
4473 {
4474 unsigned long flags;
4475 int ret = 1;
4476
4477 spin_lock_irqsave(&x->wait.lock, flags);
4478 if (!x->done)
4479 ret = 0;
4480 spin_unlock_irqrestore(&x->wait.lock, flags);
4481 return ret;
4482 }
4483 EXPORT_SYMBOL(completion_done);
4484
4485 static long __sched
4486 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4487 {
4488 unsigned long flags;
4489 wait_queue_t wait;
4490
4491 init_waitqueue_entry(&wait, current);
4492
4493 __set_current_state(state);
4494
4495 spin_lock_irqsave(&q->lock, flags);
4496 __add_wait_queue(q, &wait);
4497 spin_unlock(&q->lock);
4498 timeout = schedule_timeout(timeout);
4499 spin_lock_irq(&q->lock);
4500 __remove_wait_queue(q, &wait);
4501 spin_unlock_irqrestore(&q->lock, flags);
4502
4503 return timeout;
4504 }
4505
4506 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4507 {
4508 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4509 }
4510 EXPORT_SYMBOL(interruptible_sleep_on);
4511
4512 long __sched
4513 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4514 {
4515 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4516 }
4517 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4518
4519 void __sched sleep_on(wait_queue_head_t *q)
4520 {
4521 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4522 }
4523 EXPORT_SYMBOL(sleep_on);
4524
4525 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4526 {
4527 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4528 }
4529 EXPORT_SYMBOL(sleep_on_timeout);
4530
4531 #ifdef CONFIG_RT_MUTEXES
4532
4533 /*
4534 * rt_mutex_setprio - set the current priority of a task
4535 * @p: task
4536 * @prio: prio value (kernel-internal form)
4537 *
4538 * This function changes the 'effective' priority of a task. It does
4539 * not touch ->normal_prio like __setscheduler().
4540 *
4541 * Used by the rt_mutex code to implement priority inheritance logic.
4542 */
4543 void rt_mutex_setprio(struct task_struct *p, int prio)
4544 {
4545 unsigned long flags;
4546 int oldprio, on_rq, running;
4547 struct rq *rq;
4548 const struct sched_class *prev_class;
4549
4550 BUG_ON(prio < 0 || prio > MAX_PRIO);
4551
4552 rq = task_rq_lock(p, &flags);
4553
4554 trace_sched_pi_setprio(p, prio);
4555 oldprio = p->prio;
4556 prev_class = p->sched_class;
4557 on_rq = p->se.on_rq;
4558 running = task_current(rq, p);
4559 if (on_rq)
4560 dequeue_task(rq, p, 0);
4561 if (running)
4562 p->sched_class->put_prev_task(rq, p);
4563
4564 if (rt_prio(prio))
4565 p->sched_class = &rt_sched_class;
4566 else
4567 p->sched_class = &fair_sched_class;
4568
4569 p->prio = prio;
4570
4571 if (running)
4572 p->sched_class->set_curr_task(rq);
4573 if (on_rq) {
4574 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4575
4576 check_class_changed(rq, p, prev_class, oldprio, running);
4577 }
4578 task_rq_unlock(rq, &flags);
4579 }
4580
4581 #endif
4582
4583 void set_user_nice(struct task_struct *p, long nice)
4584 {
4585 int old_prio, delta, on_rq;
4586 unsigned long flags;
4587 struct rq *rq;
4588
4589 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4590 return;
4591 /*
4592 * We have to be careful, if called from sys_setpriority(),
4593 * the task might be in the middle of scheduling on another CPU.
4594 */
4595 rq = task_rq_lock(p, &flags);
4596 /*
4597 * The RT priorities are set via sched_setscheduler(), but we still
4598 * allow the 'normal' nice value to be set - but as expected
4599 * it wont have any effect on scheduling until the task is
4600 * SCHED_FIFO/SCHED_RR:
4601 */
4602 if (task_has_rt_policy(p)) {
4603 p->static_prio = NICE_TO_PRIO(nice);
4604 goto out_unlock;
4605 }
4606 on_rq = p->se.on_rq;
4607 if (on_rq)
4608 dequeue_task(rq, p, 0);
4609
4610 p->static_prio = NICE_TO_PRIO(nice);
4611 set_load_weight(p);
4612 old_prio = p->prio;
4613 p->prio = effective_prio(p);
4614 delta = p->prio - old_prio;
4615
4616 if (on_rq) {
4617 enqueue_task(rq, p, 0);
4618 /*
4619 * If the task increased its priority or is running and
4620 * lowered its priority, then reschedule its CPU:
4621 */
4622 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4623 resched_task(rq->curr);
4624 }
4625 out_unlock:
4626 task_rq_unlock(rq, &flags);
4627 }
4628 EXPORT_SYMBOL(set_user_nice);
4629
4630 /*
4631 * can_nice - check if a task can reduce its nice value
4632 * @p: task
4633 * @nice: nice value
4634 */
4635 int can_nice(const struct task_struct *p, const int nice)
4636 {
4637 /* convert nice value [19,-20] to rlimit style value [1,40] */
4638 int nice_rlim = 20 - nice;
4639
4640 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4641 capable(CAP_SYS_NICE));
4642 }
4643
4644 #ifdef __ARCH_WANT_SYS_NICE
4645
4646 /*
4647 * sys_nice - change the priority of the current process.
4648 * @increment: priority increment
4649 *
4650 * sys_setpriority is a more generic, but much slower function that
4651 * does similar things.
4652 */
4653 SYSCALL_DEFINE1(nice, int, increment)
4654 {
4655 long nice, retval;
4656
4657 /*
4658 * Setpriority might change our priority at the same moment.
4659 * We don't have to worry. Conceptually one call occurs first
4660 * and we have a single winner.
4661 */
4662 if (increment < -40)
4663 increment = -40;
4664 if (increment > 40)
4665 increment = 40;
4666
4667 nice = TASK_NICE(current) + increment;
4668 if (nice < -20)
4669 nice = -20;
4670 if (nice > 19)
4671 nice = 19;
4672
4673 if (increment < 0 && !can_nice(current, nice))
4674 return -EPERM;
4675
4676 retval = security_task_setnice(current, nice);
4677 if (retval)
4678 return retval;
4679
4680 set_user_nice(current, nice);
4681 return 0;
4682 }
4683
4684 #endif
4685
4686 /**
4687 * task_prio - return the priority value of a given task.
4688 * @p: the task in question.
4689 *
4690 * This is the priority value as seen by users in /proc.
4691 * RT tasks are offset by -200. Normal tasks are centered
4692 * around 0, value goes from -16 to +15.
4693 */
4694 int task_prio(const struct task_struct *p)
4695 {
4696 return p->prio - MAX_RT_PRIO;
4697 }
4698
4699 /**
4700 * task_nice - return the nice value of a given task.
4701 * @p: the task in question.
4702 */
4703 int task_nice(const struct task_struct *p)
4704 {
4705 return TASK_NICE(p);
4706 }
4707 EXPORT_SYMBOL(task_nice);
4708
4709 /**
4710 * idle_cpu - is a given cpu idle currently?
4711 * @cpu: the processor in question.
4712 */
4713 int idle_cpu(int cpu)
4714 {
4715 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4716 }
4717
4718 /**
4719 * idle_task - return the idle task for a given cpu.
4720 * @cpu: the processor in question.
4721 */
4722 struct task_struct *idle_task(int cpu)
4723 {
4724 return cpu_rq(cpu)->idle;
4725 }
4726
4727 /**
4728 * find_process_by_pid - find a process with a matching PID value.
4729 * @pid: the pid in question.
4730 */
4731 static struct task_struct *find_process_by_pid(pid_t pid)
4732 {
4733 return pid ? find_task_by_vpid(pid) : current;
4734 }
4735
4736 /* Actually do priority change: must hold rq lock. */
4737 static void
4738 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4739 {
4740 BUG_ON(p->se.on_rq);
4741
4742 p->policy = policy;
4743 p->rt_priority = prio;
4744 p->normal_prio = normal_prio(p);
4745 /* we are holding p->pi_lock already */
4746 p->prio = rt_mutex_getprio(p);
4747 if (rt_prio(p->prio))
4748 p->sched_class = &rt_sched_class;
4749 else
4750 p->sched_class = &fair_sched_class;
4751 set_load_weight(p);
4752 }
4753
4754 /*
4755 * check the target process has a UID that matches the current process's
4756 */
4757 static bool check_same_owner(struct task_struct *p)
4758 {
4759 const struct cred *cred = current_cred(), *pcred;
4760 bool match;
4761
4762 rcu_read_lock();
4763 pcred = __task_cred(p);
4764 match = (cred->euid == pcred->euid ||
4765 cred->euid == pcred->uid);
4766 rcu_read_unlock();
4767 return match;
4768 }
4769
4770 static int __sched_setscheduler(struct task_struct *p, int policy,
4771 const struct sched_param *param, bool user)
4772 {
4773 int retval, oldprio, oldpolicy = -1, on_rq, running;
4774 unsigned long flags;
4775 const struct sched_class *prev_class;
4776 struct rq *rq;
4777 int reset_on_fork;
4778
4779 /* may grab non-irq protected spin_locks */
4780 BUG_ON(in_interrupt());
4781 recheck:
4782 /* double check policy once rq lock held */
4783 if (policy < 0) {
4784 reset_on_fork = p->sched_reset_on_fork;
4785 policy = oldpolicy = p->policy;
4786 } else {
4787 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4788 policy &= ~SCHED_RESET_ON_FORK;
4789
4790 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4791 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4792 policy != SCHED_IDLE)
4793 return -EINVAL;
4794 }
4795
4796 /*
4797 * Valid priorities for SCHED_FIFO and SCHED_RR are
4798 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4799 * SCHED_BATCH and SCHED_IDLE is 0.
4800 */
4801 if (param->sched_priority < 0 ||
4802 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4803 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4804 return -EINVAL;
4805 if (rt_policy(policy) != (param->sched_priority != 0))
4806 return -EINVAL;
4807
4808 /*
4809 * Allow unprivileged RT tasks to decrease priority:
4810 */
4811 if (user && !capable(CAP_SYS_NICE)) {
4812 if (rt_policy(policy)) {
4813 unsigned long rlim_rtprio =
4814 task_rlimit(p, RLIMIT_RTPRIO);
4815
4816 /* can't set/change the rt policy */
4817 if (policy != p->policy && !rlim_rtprio)
4818 return -EPERM;
4819
4820 /* can't increase priority */
4821 if (param->sched_priority > p->rt_priority &&
4822 param->sched_priority > rlim_rtprio)
4823 return -EPERM;
4824 }
4825 /*
4826 * Like positive nice levels, dont allow tasks to
4827 * move out of SCHED_IDLE either:
4828 */
4829 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4830 return -EPERM;
4831
4832 /* can't change other user's priorities */
4833 if (!check_same_owner(p))
4834 return -EPERM;
4835
4836 /* Normal users shall not reset the sched_reset_on_fork flag */
4837 if (p->sched_reset_on_fork && !reset_on_fork)
4838 return -EPERM;
4839 }
4840
4841 if (user) {
4842 retval = security_task_setscheduler(p);
4843 if (retval)
4844 return retval;
4845 }
4846
4847 /*
4848 * make sure no PI-waiters arrive (or leave) while we are
4849 * changing the priority of the task:
4850 */
4851 raw_spin_lock_irqsave(&p->pi_lock, flags);
4852 /*
4853 * To be able to change p->policy safely, the apropriate
4854 * runqueue lock must be held.
4855 */
4856 rq = __task_rq_lock(p);
4857
4858 /*
4859 * Changing the policy of the stop threads its a very bad idea
4860 */
4861 if (p == rq->stop) {
4862 __task_rq_unlock(rq);
4863 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4864 return -EINVAL;
4865 }
4866
4867 #ifdef CONFIG_RT_GROUP_SCHED
4868 if (user) {
4869 /*
4870 * Do not allow realtime tasks into groups that have no runtime
4871 * assigned.
4872 */
4873 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4874 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4875 __task_rq_unlock(rq);
4876 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4877 return -EPERM;
4878 }
4879 }
4880 #endif
4881
4882 /* recheck policy now with rq lock held */
4883 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4884 policy = oldpolicy = -1;
4885 __task_rq_unlock(rq);
4886 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4887 goto recheck;
4888 }
4889 on_rq = p->se.on_rq;
4890 running = task_current(rq, p);
4891 if (on_rq)
4892 deactivate_task(rq, p, 0);
4893 if (running)
4894 p->sched_class->put_prev_task(rq, p);
4895
4896 p->sched_reset_on_fork = reset_on_fork;
4897
4898 oldprio = p->prio;
4899 prev_class = p->sched_class;
4900 __setscheduler(rq, p, policy, param->sched_priority);
4901
4902 if (running)
4903 p->sched_class->set_curr_task(rq);
4904 if (on_rq) {
4905 activate_task(rq, p, 0);
4906
4907 check_class_changed(rq, p, prev_class, oldprio, running);
4908 }
4909 __task_rq_unlock(rq);
4910 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4911
4912 rt_mutex_adjust_pi(p);
4913
4914 return 0;
4915 }
4916
4917 /**
4918 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4919 * @p: the task in question.
4920 * @policy: new policy.
4921 * @param: structure containing the new RT priority.
4922 *
4923 * NOTE that the task may be already dead.
4924 */
4925 int sched_setscheduler(struct task_struct *p, int policy,
4926 const struct sched_param *param)
4927 {
4928 return __sched_setscheduler(p, policy, param, true);
4929 }
4930 EXPORT_SYMBOL_GPL(sched_setscheduler);
4931
4932 /**
4933 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4934 * @p: the task in question.
4935 * @policy: new policy.
4936 * @param: structure containing the new RT priority.
4937 *
4938 * Just like sched_setscheduler, only don't bother checking if the
4939 * current context has permission. For example, this is needed in
4940 * stop_machine(): we create temporary high priority worker threads,
4941 * but our caller might not have that capability.
4942 */
4943 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4944 const struct sched_param *param)
4945 {
4946 return __sched_setscheduler(p, policy, param, false);
4947 }
4948
4949 static int
4950 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4951 {
4952 struct sched_param lparam;
4953 struct task_struct *p;
4954 int retval;
4955
4956 if (!param || pid < 0)
4957 return -EINVAL;
4958 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4959 return -EFAULT;
4960
4961 rcu_read_lock();
4962 retval = -ESRCH;
4963 p = find_process_by_pid(pid);
4964 if (p != NULL)
4965 retval = sched_setscheduler(p, policy, &lparam);
4966 rcu_read_unlock();
4967
4968 return retval;
4969 }
4970
4971 /**
4972 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4973 * @pid: the pid in question.
4974 * @policy: new policy.
4975 * @param: structure containing the new RT priority.
4976 */
4977 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4978 struct sched_param __user *, param)
4979 {
4980 /* negative values for policy are not valid */
4981 if (policy < 0)
4982 return -EINVAL;
4983
4984 return do_sched_setscheduler(pid, policy, param);
4985 }
4986
4987 /**
4988 * sys_sched_setparam - set/change the RT priority of a thread
4989 * @pid: the pid in question.
4990 * @param: structure containing the new RT priority.
4991 */
4992 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4993 {
4994 return do_sched_setscheduler(pid, -1, param);
4995 }
4996
4997 /**
4998 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4999 * @pid: the pid in question.
5000 */
5001 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5002 {
5003 struct task_struct *p;
5004 int retval;
5005
5006 if (pid < 0)
5007 return -EINVAL;
5008
5009 retval = -ESRCH;
5010 rcu_read_lock();
5011 p = find_process_by_pid(pid);
5012 if (p) {
5013 retval = security_task_getscheduler(p);
5014 if (!retval)
5015 retval = p->policy
5016 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5017 }
5018 rcu_read_unlock();
5019 return retval;
5020 }
5021
5022 /**
5023 * sys_sched_getparam - get the RT priority of a thread
5024 * @pid: the pid in question.
5025 * @param: structure containing the RT priority.
5026 */
5027 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5028 {
5029 struct sched_param lp;
5030 struct task_struct *p;
5031 int retval;
5032
5033 if (!param || pid < 0)
5034 return -EINVAL;
5035
5036 rcu_read_lock();
5037 p = find_process_by_pid(pid);
5038 retval = -ESRCH;
5039 if (!p)
5040 goto out_unlock;
5041
5042 retval = security_task_getscheduler(p);
5043 if (retval)
5044 goto out_unlock;
5045
5046 lp.sched_priority = p->rt_priority;
5047 rcu_read_unlock();
5048
5049 /*
5050 * This one might sleep, we cannot do it with a spinlock held ...
5051 */
5052 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5053
5054 return retval;
5055
5056 out_unlock:
5057 rcu_read_unlock();
5058 return retval;
5059 }
5060
5061 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5062 {
5063 cpumask_var_t cpus_allowed, new_mask;
5064 struct task_struct *p;
5065 int retval;
5066
5067 get_online_cpus();
5068 rcu_read_lock();
5069
5070 p = find_process_by_pid(pid);
5071 if (!p) {
5072 rcu_read_unlock();
5073 put_online_cpus();
5074 return -ESRCH;
5075 }
5076
5077 /* Prevent p going away */
5078 get_task_struct(p);
5079 rcu_read_unlock();
5080
5081 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5082 retval = -ENOMEM;
5083 goto out_put_task;
5084 }
5085 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5086 retval = -ENOMEM;
5087 goto out_free_cpus_allowed;
5088 }
5089 retval = -EPERM;
5090 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5091 goto out_unlock;
5092
5093 retval = security_task_setscheduler(p);
5094 if (retval)
5095 goto out_unlock;
5096
5097 cpuset_cpus_allowed(p, cpus_allowed);
5098 cpumask_and(new_mask, in_mask, cpus_allowed);
5099 again:
5100 retval = set_cpus_allowed_ptr(p, new_mask);
5101
5102 if (!retval) {
5103 cpuset_cpus_allowed(p, cpus_allowed);
5104 if (!cpumask_subset(new_mask, cpus_allowed)) {
5105 /*
5106 * We must have raced with a concurrent cpuset
5107 * update. Just reset the cpus_allowed to the
5108 * cpuset's cpus_allowed
5109 */
5110 cpumask_copy(new_mask, cpus_allowed);
5111 goto again;
5112 }
5113 }
5114 out_unlock:
5115 free_cpumask_var(new_mask);
5116 out_free_cpus_allowed:
5117 free_cpumask_var(cpus_allowed);
5118 out_put_task:
5119 put_task_struct(p);
5120 put_online_cpus();
5121 return retval;
5122 }
5123
5124 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5125 struct cpumask *new_mask)
5126 {
5127 if (len < cpumask_size())
5128 cpumask_clear(new_mask);
5129 else if (len > cpumask_size())
5130 len = cpumask_size();
5131
5132 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5133 }
5134
5135 /**
5136 * sys_sched_setaffinity - set the cpu affinity of a process
5137 * @pid: pid of the process
5138 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5139 * @user_mask_ptr: user-space pointer to the new cpu mask
5140 */
5141 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5142 unsigned long __user *, user_mask_ptr)
5143 {
5144 cpumask_var_t new_mask;
5145 int retval;
5146
5147 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5148 return -ENOMEM;
5149
5150 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5151 if (retval == 0)
5152 retval = sched_setaffinity(pid, new_mask);
5153 free_cpumask_var(new_mask);
5154 return retval;
5155 }
5156
5157 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5158 {
5159 struct task_struct *p;
5160 unsigned long flags;
5161 struct rq *rq;
5162 int retval;
5163
5164 get_online_cpus();
5165 rcu_read_lock();
5166
5167 retval = -ESRCH;
5168 p = find_process_by_pid(pid);
5169 if (!p)
5170 goto out_unlock;
5171
5172 retval = security_task_getscheduler(p);
5173 if (retval)
5174 goto out_unlock;
5175
5176 rq = task_rq_lock(p, &flags);
5177 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5178 task_rq_unlock(rq, &flags);
5179
5180 out_unlock:
5181 rcu_read_unlock();
5182 put_online_cpus();
5183
5184 return retval;
5185 }
5186
5187 /**
5188 * sys_sched_getaffinity - get the cpu affinity of a process
5189 * @pid: pid of the process
5190 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5191 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5192 */
5193 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5194 unsigned long __user *, user_mask_ptr)
5195 {
5196 int ret;
5197 cpumask_var_t mask;
5198
5199 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5200 return -EINVAL;
5201 if (len & (sizeof(unsigned long)-1))
5202 return -EINVAL;
5203
5204 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5205 return -ENOMEM;
5206
5207 ret = sched_getaffinity(pid, mask);
5208 if (ret == 0) {
5209 size_t retlen = min_t(size_t, len, cpumask_size());
5210
5211 if (copy_to_user(user_mask_ptr, mask, retlen))
5212 ret = -EFAULT;
5213 else
5214 ret = retlen;
5215 }
5216 free_cpumask_var(mask);
5217
5218 return ret;
5219 }
5220
5221 /**
5222 * sys_sched_yield - yield the current processor to other threads.
5223 *
5224 * This function yields the current CPU to other tasks. If there are no
5225 * other threads running on this CPU then this function will return.
5226 */
5227 SYSCALL_DEFINE0(sched_yield)
5228 {
5229 struct rq *rq = this_rq_lock();
5230
5231 schedstat_inc(rq, yld_count);
5232 current->sched_class->yield_task(rq);
5233
5234 /*
5235 * Since we are going to call schedule() anyway, there's
5236 * no need to preempt or enable interrupts:
5237 */
5238 __release(rq->lock);
5239 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5240 do_raw_spin_unlock(&rq->lock);
5241 preempt_enable_no_resched();
5242
5243 schedule();
5244
5245 return 0;
5246 }
5247
5248 static inline int should_resched(void)
5249 {
5250 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5251 }
5252
5253 static void __cond_resched(void)
5254 {
5255 add_preempt_count(PREEMPT_ACTIVE);
5256 schedule();
5257 sub_preempt_count(PREEMPT_ACTIVE);
5258 }
5259
5260 int __sched _cond_resched(void)
5261 {
5262 if (should_resched()) {
5263 __cond_resched();
5264 return 1;
5265 }
5266 return 0;
5267 }
5268 EXPORT_SYMBOL(_cond_resched);
5269
5270 /*
5271 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5272 * call schedule, and on return reacquire the lock.
5273 *
5274 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5275 * operations here to prevent schedule() from being called twice (once via
5276 * spin_unlock(), once by hand).
5277 */
5278 int __cond_resched_lock(spinlock_t *lock)
5279 {
5280 int resched = should_resched();
5281 int ret = 0;
5282
5283 lockdep_assert_held(lock);
5284
5285 if (spin_needbreak(lock) || resched) {
5286 spin_unlock(lock);
5287 if (resched)
5288 __cond_resched();
5289 else
5290 cpu_relax();
5291 ret = 1;
5292 spin_lock(lock);
5293 }
5294 return ret;
5295 }
5296 EXPORT_SYMBOL(__cond_resched_lock);
5297
5298 int __sched __cond_resched_softirq(void)
5299 {
5300 BUG_ON(!in_softirq());
5301
5302 if (should_resched()) {
5303 local_bh_enable();
5304 __cond_resched();
5305 local_bh_disable();
5306 return 1;
5307 }
5308 return 0;
5309 }
5310 EXPORT_SYMBOL(__cond_resched_softirq);
5311
5312 /**
5313 * yield - yield the current processor to other threads.
5314 *
5315 * This is a shortcut for kernel-space yielding - it marks the
5316 * thread runnable and calls sys_sched_yield().
5317 */
5318 void __sched yield(void)
5319 {
5320 set_current_state(TASK_RUNNING);
5321 sys_sched_yield();
5322 }
5323 EXPORT_SYMBOL(yield);
5324
5325 /*
5326 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5327 * that process accounting knows that this is a task in IO wait state.
5328 */
5329 void __sched io_schedule(void)
5330 {
5331 struct rq *rq = raw_rq();
5332
5333 delayacct_blkio_start();
5334 atomic_inc(&rq->nr_iowait);
5335 current->in_iowait = 1;
5336 schedule();
5337 current->in_iowait = 0;
5338 atomic_dec(&rq->nr_iowait);
5339 delayacct_blkio_end();
5340 }
5341 EXPORT_SYMBOL(io_schedule);
5342
5343 long __sched io_schedule_timeout(long timeout)
5344 {
5345 struct rq *rq = raw_rq();
5346 long ret;
5347
5348 delayacct_blkio_start();
5349 atomic_inc(&rq->nr_iowait);
5350 current->in_iowait = 1;
5351 ret = schedule_timeout(timeout);
5352 current->in_iowait = 0;
5353 atomic_dec(&rq->nr_iowait);
5354 delayacct_blkio_end();
5355 return ret;
5356 }
5357
5358 /**
5359 * sys_sched_get_priority_max - return maximum RT priority.
5360 * @policy: scheduling class.
5361 *
5362 * this syscall returns the maximum rt_priority that can be used
5363 * by a given scheduling class.
5364 */
5365 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5366 {
5367 int ret = -EINVAL;
5368
5369 switch (policy) {
5370 case SCHED_FIFO:
5371 case SCHED_RR:
5372 ret = MAX_USER_RT_PRIO-1;
5373 break;
5374 case SCHED_NORMAL:
5375 case SCHED_BATCH:
5376 case SCHED_IDLE:
5377 ret = 0;
5378 break;
5379 }
5380 return ret;
5381 }
5382
5383 /**
5384 * sys_sched_get_priority_min - return minimum RT priority.
5385 * @policy: scheduling class.
5386 *
5387 * this syscall returns the minimum rt_priority that can be used
5388 * by a given scheduling class.
5389 */
5390 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5391 {
5392 int ret = -EINVAL;
5393
5394 switch (policy) {
5395 case SCHED_FIFO:
5396 case SCHED_RR:
5397 ret = 1;
5398 break;
5399 case SCHED_NORMAL:
5400 case SCHED_BATCH:
5401 case SCHED_IDLE:
5402 ret = 0;
5403 }
5404 return ret;
5405 }
5406
5407 /**
5408 * sys_sched_rr_get_interval - return the default timeslice of a process.
5409 * @pid: pid of the process.
5410 * @interval: userspace pointer to the timeslice value.
5411 *
5412 * this syscall writes the default timeslice value of a given process
5413 * into the user-space timespec buffer. A value of '0' means infinity.
5414 */
5415 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5416 struct timespec __user *, interval)
5417 {
5418 struct task_struct *p;
5419 unsigned int time_slice;
5420 unsigned long flags;
5421 struct rq *rq;
5422 int retval;
5423 struct timespec t;
5424
5425 if (pid < 0)
5426 return -EINVAL;
5427
5428 retval = -ESRCH;
5429 rcu_read_lock();
5430 p = find_process_by_pid(pid);
5431 if (!p)
5432 goto out_unlock;
5433
5434 retval = security_task_getscheduler(p);
5435 if (retval)
5436 goto out_unlock;
5437
5438 rq = task_rq_lock(p, &flags);
5439 time_slice = p->sched_class->get_rr_interval(rq, p);
5440 task_rq_unlock(rq, &flags);
5441
5442 rcu_read_unlock();
5443 jiffies_to_timespec(time_slice, &t);
5444 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5445 return retval;
5446
5447 out_unlock:
5448 rcu_read_unlock();
5449 return retval;
5450 }
5451
5452 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5453
5454 void sched_show_task(struct task_struct *p)
5455 {
5456 unsigned long free = 0;
5457 unsigned state;
5458
5459 state = p->state ? __ffs(p->state) + 1 : 0;
5460 printk(KERN_INFO "%-15.15s %c", p->comm,
5461 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5462 #if BITS_PER_LONG == 32
5463 if (state == TASK_RUNNING)
5464 printk(KERN_CONT " running ");
5465 else
5466 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5467 #else
5468 if (state == TASK_RUNNING)
5469 printk(KERN_CONT " running task ");
5470 else
5471 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5472 #endif
5473 #ifdef CONFIG_DEBUG_STACK_USAGE
5474 free = stack_not_used(p);
5475 #endif
5476 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5477 task_pid_nr(p), task_pid_nr(p->real_parent),
5478 (unsigned long)task_thread_info(p)->flags);
5479
5480 show_stack(p, NULL);
5481 }
5482
5483 void show_state_filter(unsigned long state_filter)
5484 {
5485 struct task_struct *g, *p;
5486
5487 #if BITS_PER_LONG == 32
5488 printk(KERN_INFO
5489 " task PC stack pid father\n");
5490 #else
5491 printk(KERN_INFO
5492 " task PC stack pid father\n");
5493 #endif
5494 read_lock(&tasklist_lock);
5495 do_each_thread(g, p) {
5496 /*
5497 * reset the NMI-timeout, listing all files on a slow
5498 * console might take alot of time:
5499 */
5500 touch_nmi_watchdog();
5501 if (!state_filter || (p->state & state_filter))
5502 sched_show_task(p);
5503 } while_each_thread(g, p);
5504
5505 touch_all_softlockup_watchdogs();
5506
5507 #ifdef CONFIG_SCHED_DEBUG
5508 sysrq_sched_debug_show();
5509 #endif
5510 read_unlock(&tasklist_lock);
5511 /*
5512 * Only show locks if all tasks are dumped:
5513 */
5514 if (!state_filter)
5515 debug_show_all_locks();
5516 }
5517
5518 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5519 {
5520 idle->sched_class = &idle_sched_class;
5521 }
5522
5523 /**
5524 * init_idle - set up an idle thread for a given CPU
5525 * @idle: task in question
5526 * @cpu: cpu the idle task belongs to
5527 *
5528 * NOTE: this function does not set the idle thread's NEED_RESCHED
5529 * flag, to make booting more robust.
5530 */
5531 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5532 {
5533 struct rq *rq = cpu_rq(cpu);
5534 unsigned long flags;
5535
5536 raw_spin_lock_irqsave(&rq->lock, flags);
5537
5538 __sched_fork(idle);
5539 idle->state = TASK_RUNNING;
5540 idle->se.exec_start = sched_clock();
5541
5542 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5543 /*
5544 * We're having a chicken and egg problem, even though we are
5545 * holding rq->lock, the cpu isn't yet set to this cpu so the
5546 * lockdep check in task_group() will fail.
5547 *
5548 * Similar case to sched_fork(). / Alternatively we could
5549 * use task_rq_lock() here and obtain the other rq->lock.
5550 *
5551 * Silence PROVE_RCU
5552 */
5553 rcu_read_lock();
5554 __set_task_cpu(idle, cpu);
5555 rcu_read_unlock();
5556
5557 rq->curr = rq->idle = idle;
5558 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5559 idle->oncpu = 1;
5560 #endif
5561 raw_spin_unlock_irqrestore(&rq->lock, flags);
5562
5563 /* Set the preempt count _outside_ the spinlocks! */
5564 #if defined(CONFIG_PREEMPT)
5565 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5566 #else
5567 task_thread_info(idle)->preempt_count = 0;
5568 #endif
5569 /*
5570 * The idle tasks have their own, simple scheduling class:
5571 */
5572 idle->sched_class = &idle_sched_class;
5573 ftrace_graph_init_task(idle);
5574 }
5575
5576 /*
5577 * In a system that switches off the HZ timer nohz_cpu_mask
5578 * indicates which cpus entered this state. This is used
5579 * in the rcu update to wait only for active cpus. For system
5580 * which do not switch off the HZ timer nohz_cpu_mask should
5581 * always be CPU_BITS_NONE.
5582 */
5583 cpumask_var_t nohz_cpu_mask;
5584
5585 /*
5586 * Increase the granularity value when there are more CPUs,
5587 * because with more CPUs the 'effective latency' as visible
5588 * to users decreases. But the relationship is not linear,
5589 * so pick a second-best guess by going with the log2 of the
5590 * number of CPUs.
5591 *
5592 * This idea comes from the SD scheduler of Con Kolivas:
5593 */
5594 static int get_update_sysctl_factor(void)
5595 {
5596 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5597 unsigned int factor;
5598
5599 switch (sysctl_sched_tunable_scaling) {
5600 case SCHED_TUNABLESCALING_NONE:
5601 factor = 1;
5602 break;
5603 case SCHED_TUNABLESCALING_LINEAR:
5604 factor = cpus;
5605 break;
5606 case SCHED_TUNABLESCALING_LOG:
5607 default:
5608 factor = 1 + ilog2(cpus);
5609 break;
5610 }
5611
5612 return factor;
5613 }
5614
5615 static void update_sysctl(void)
5616 {
5617 unsigned int factor = get_update_sysctl_factor();
5618
5619 #define SET_SYSCTL(name) \
5620 (sysctl_##name = (factor) * normalized_sysctl_##name)
5621 SET_SYSCTL(sched_min_granularity);
5622 SET_SYSCTL(sched_latency);
5623 SET_SYSCTL(sched_wakeup_granularity);
5624 #undef SET_SYSCTL
5625 }
5626
5627 static inline void sched_init_granularity(void)
5628 {
5629 update_sysctl();
5630 }
5631
5632 #ifdef CONFIG_SMP
5633 /*
5634 * This is how migration works:
5635 *
5636 * 1) we invoke migration_cpu_stop() on the target CPU using
5637 * stop_one_cpu().
5638 * 2) stopper starts to run (implicitly forcing the migrated thread
5639 * off the CPU)
5640 * 3) it checks whether the migrated task is still in the wrong runqueue.
5641 * 4) if it's in the wrong runqueue then the migration thread removes
5642 * it and puts it into the right queue.
5643 * 5) stopper completes and stop_one_cpu() returns and the migration
5644 * is done.
5645 */
5646
5647 /*
5648 * Change a given task's CPU affinity. Migrate the thread to a
5649 * proper CPU and schedule it away if the CPU it's executing on
5650 * is removed from the allowed bitmask.
5651 *
5652 * NOTE: the caller must have a valid reference to the task, the
5653 * task must not exit() & deallocate itself prematurely. The
5654 * call is not atomic; no spinlocks may be held.
5655 */
5656 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5657 {
5658 unsigned long flags;
5659 struct rq *rq;
5660 unsigned int dest_cpu;
5661 int ret = 0;
5662
5663 /*
5664 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5665 * drop the rq->lock and still rely on ->cpus_allowed.
5666 */
5667 again:
5668 while (task_is_waking(p))
5669 cpu_relax();
5670 rq = task_rq_lock(p, &flags);
5671 if (task_is_waking(p)) {
5672 task_rq_unlock(rq, &flags);
5673 goto again;
5674 }
5675
5676 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5677 ret = -EINVAL;
5678 goto out;
5679 }
5680
5681 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5682 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5683 ret = -EINVAL;
5684 goto out;
5685 }
5686
5687 if (p->sched_class->set_cpus_allowed)
5688 p->sched_class->set_cpus_allowed(p, new_mask);
5689 else {
5690 cpumask_copy(&p->cpus_allowed, new_mask);
5691 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5692 }
5693
5694 /* Can the task run on the task's current CPU? If so, we're done */
5695 if (cpumask_test_cpu(task_cpu(p), new_mask))
5696 goto out;
5697
5698 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5699 if (migrate_task(p, rq)) {
5700 struct migration_arg arg = { p, dest_cpu };
5701 /* Need help from migration thread: drop lock and wait. */
5702 task_rq_unlock(rq, &flags);
5703 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5704 tlb_migrate_finish(p->mm);
5705 return 0;
5706 }
5707 out:
5708 task_rq_unlock(rq, &flags);
5709
5710 return ret;
5711 }
5712 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5713
5714 /*
5715 * Move (not current) task off this cpu, onto dest cpu. We're doing
5716 * this because either it can't run here any more (set_cpus_allowed()
5717 * away from this CPU, or CPU going down), or because we're
5718 * attempting to rebalance this task on exec (sched_exec).
5719 *
5720 * So we race with normal scheduler movements, but that's OK, as long
5721 * as the task is no longer on this CPU.
5722 *
5723 * Returns non-zero if task was successfully migrated.
5724 */
5725 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5726 {
5727 struct rq *rq_dest, *rq_src;
5728 int ret = 0;
5729
5730 if (unlikely(!cpu_active(dest_cpu)))
5731 return ret;
5732
5733 rq_src = cpu_rq(src_cpu);
5734 rq_dest = cpu_rq(dest_cpu);
5735
5736 double_rq_lock(rq_src, rq_dest);
5737 /* Already moved. */
5738 if (task_cpu(p) != src_cpu)
5739 goto done;
5740 /* Affinity changed (again). */
5741 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5742 goto fail;
5743
5744 /*
5745 * If we're not on a rq, the next wake-up will ensure we're
5746 * placed properly.
5747 */
5748 if (p->se.on_rq) {
5749 deactivate_task(rq_src, p, 0);
5750 set_task_cpu(p, dest_cpu);
5751 activate_task(rq_dest, p, 0);
5752 check_preempt_curr(rq_dest, p, 0);
5753 }
5754 done:
5755 ret = 1;
5756 fail:
5757 double_rq_unlock(rq_src, rq_dest);
5758 return ret;
5759 }
5760
5761 /*
5762 * migration_cpu_stop - this will be executed by a highprio stopper thread
5763 * and performs thread migration by bumping thread off CPU then
5764 * 'pushing' onto another runqueue.
5765 */
5766 static int migration_cpu_stop(void *data)
5767 {
5768 struct migration_arg *arg = data;
5769
5770 /*
5771 * The original target cpu might have gone down and we might
5772 * be on another cpu but it doesn't matter.
5773 */
5774 local_irq_disable();
5775 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5776 local_irq_enable();
5777 return 0;
5778 }
5779
5780 #ifdef CONFIG_HOTPLUG_CPU
5781
5782 /*
5783 * Ensures that the idle task is using init_mm right before its cpu goes
5784 * offline.
5785 */
5786 void idle_task_exit(void)
5787 {
5788 struct mm_struct *mm = current->active_mm;
5789
5790 BUG_ON(cpu_online(smp_processor_id()));
5791
5792 if (mm != &init_mm)
5793 switch_mm(mm, &init_mm, current);
5794 mmdrop(mm);
5795 }
5796
5797 /*
5798 * While a dead CPU has no uninterruptible tasks queued at this point,
5799 * it might still have a nonzero ->nr_uninterruptible counter, because
5800 * for performance reasons the counter is not stricly tracking tasks to
5801 * their home CPUs. So we just add the counter to another CPU's counter,
5802 * to keep the global sum constant after CPU-down:
5803 */
5804 static void migrate_nr_uninterruptible(struct rq *rq_src)
5805 {
5806 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5807
5808 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5809 rq_src->nr_uninterruptible = 0;
5810 }
5811
5812 /*
5813 * remove the tasks which were accounted by rq from calc_load_tasks.
5814 */
5815 static void calc_global_load_remove(struct rq *rq)
5816 {
5817 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5818 rq->calc_load_active = 0;
5819 }
5820
5821 /*
5822 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5823 * try_to_wake_up()->select_task_rq().
5824 *
5825 * Called with rq->lock held even though we'er in stop_machine() and
5826 * there's no concurrency possible, we hold the required locks anyway
5827 * because of lock validation efforts.
5828 */
5829 static void migrate_tasks(unsigned int dead_cpu)
5830 {
5831 struct rq *rq = cpu_rq(dead_cpu);
5832 struct task_struct *next, *stop = rq->stop;
5833 int dest_cpu;
5834
5835 /*
5836 * Fudge the rq selection such that the below task selection loop
5837 * doesn't get stuck on the currently eligible stop task.
5838 *
5839 * We're currently inside stop_machine() and the rq is either stuck
5840 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5841 * either way we should never end up calling schedule() until we're
5842 * done here.
5843 */
5844 rq->stop = NULL;
5845
5846 for ( ; ; ) {
5847 /*
5848 * There's this thread running, bail when that's the only
5849 * remaining thread.
5850 */
5851 if (rq->nr_running == 1)
5852 break;
5853
5854 next = pick_next_task(rq);
5855 BUG_ON(!next);
5856 next->sched_class->put_prev_task(rq, next);
5857
5858 /* Find suitable destination for @next, with force if needed. */
5859 dest_cpu = select_fallback_rq(dead_cpu, next);
5860 raw_spin_unlock(&rq->lock);
5861
5862 __migrate_task(next, dead_cpu, dest_cpu);
5863
5864 raw_spin_lock(&rq->lock);
5865 }
5866
5867 rq->stop = stop;
5868 }
5869
5870 #endif /* CONFIG_HOTPLUG_CPU */
5871
5872 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5873
5874 static struct ctl_table sd_ctl_dir[] = {
5875 {
5876 .procname = "sched_domain",
5877 .mode = 0555,
5878 },
5879 {}
5880 };
5881
5882 static struct ctl_table sd_ctl_root[] = {
5883 {
5884 .procname = "kernel",
5885 .mode = 0555,
5886 .child = sd_ctl_dir,
5887 },
5888 {}
5889 };
5890
5891 static struct ctl_table *sd_alloc_ctl_entry(int n)
5892 {
5893 struct ctl_table *entry =
5894 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5895
5896 return entry;
5897 }
5898
5899 static void sd_free_ctl_entry(struct ctl_table **tablep)
5900 {
5901 struct ctl_table *entry;
5902
5903 /*
5904 * In the intermediate directories, both the child directory and
5905 * procname are dynamically allocated and could fail but the mode
5906 * will always be set. In the lowest directory the names are
5907 * static strings and all have proc handlers.
5908 */
5909 for (entry = *tablep; entry->mode; entry++) {
5910 if (entry->child)
5911 sd_free_ctl_entry(&entry->child);
5912 if (entry->proc_handler == NULL)
5913 kfree(entry->procname);
5914 }
5915
5916 kfree(*tablep);
5917 *tablep = NULL;
5918 }
5919
5920 static void
5921 set_table_entry(struct ctl_table *entry,
5922 const char *procname, void *data, int maxlen,
5923 mode_t mode, proc_handler *proc_handler)
5924 {
5925 entry->procname = procname;
5926 entry->data = data;
5927 entry->maxlen = maxlen;
5928 entry->mode = mode;
5929 entry->proc_handler = proc_handler;
5930 }
5931
5932 static struct ctl_table *
5933 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5934 {
5935 struct ctl_table *table = sd_alloc_ctl_entry(13);
5936
5937 if (table == NULL)
5938 return NULL;
5939
5940 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5941 sizeof(long), 0644, proc_doulongvec_minmax);
5942 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5943 sizeof(long), 0644, proc_doulongvec_minmax);
5944 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5945 sizeof(int), 0644, proc_dointvec_minmax);
5946 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5947 sizeof(int), 0644, proc_dointvec_minmax);
5948 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5949 sizeof(int), 0644, proc_dointvec_minmax);
5950 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5951 sizeof(int), 0644, proc_dointvec_minmax);
5952 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5953 sizeof(int), 0644, proc_dointvec_minmax);
5954 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5955 sizeof(int), 0644, proc_dointvec_minmax);
5956 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5957 sizeof(int), 0644, proc_dointvec_minmax);
5958 set_table_entry(&table[9], "cache_nice_tries",
5959 &sd->cache_nice_tries,
5960 sizeof(int), 0644, proc_dointvec_minmax);
5961 set_table_entry(&table[10], "flags", &sd->flags,
5962 sizeof(int), 0644, proc_dointvec_minmax);
5963 set_table_entry(&table[11], "name", sd->name,
5964 CORENAME_MAX_SIZE, 0444, proc_dostring);
5965 /* &table[12] is terminator */
5966
5967 return table;
5968 }
5969
5970 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5971 {
5972 struct ctl_table *entry, *table;
5973 struct sched_domain *sd;
5974 int domain_num = 0, i;
5975 char buf[32];
5976
5977 for_each_domain(cpu, sd)
5978 domain_num++;
5979 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5980 if (table == NULL)
5981 return NULL;
5982
5983 i = 0;
5984 for_each_domain(cpu, sd) {
5985 snprintf(buf, 32, "domain%d", i);
5986 entry->procname = kstrdup(buf, GFP_KERNEL);
5987 entry->mode = 0555;
5988 entry->child = sd_alloc_ctl_domain_table(sd);
5989 entry++;
5990 i++;
5991 }
5992 return table;
5993 }
5994
5995 static struct ctl_table_header *sd_sysctl_header;
5996 static void register_sched_domain_sysctl(void)
5997 {
5998 int i, cpu_num = num_possible_cpus();
5999 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6000 char buf[32];
6001
6002 WARN_ON(sd_ctl_dir[0].child);
6003 sd_ctl_dir[0].child = entry;
6004
6005 if (entry == NULL)
6006 return;
6007
6008 for_each_possible_cpu(i) {
6009 snprintf(buf, 32, "cpu%d", i);
6010 entry->procname = kstrdup(buf, GFP_KERNEL);
6011 entry->mode = 0555;
6012 entry->child = sd_alloc_ctl_cpu_table(i);
6013 entry++;
6014 }
6015
6016 WARN_ON(sd_sysctl_header);
6017 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6018 }
6019
6020 /* may be called multiple times per register */
6021 static void unregister_sched_domain_sysctl(void)
6022 {
6023 if (sd_sysctl_header)
6024 unregister_sysctl_table(sd_sysctl_header);
6025 sd_sysctl_header = NULL;
6026 if (sd_ctl_dir[0].child)
6027 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6028 }
6029 #else
6030 static void register_sched_domain_sysctl(void)
6031 {
6032 }
6033 static void unregister_sched_domain_sysctl(void)
6034 {
6035 }
6036 #endif
6037
6038 static void set_rq_online(struct rq *rq)
6039 {
6040 if (!rq->online) {
6041 const struct sched_class *class;
6042
6043 cpumask_set_cpu(rq->cpu, rq->rd->online);
6044 rq->online = 1;
6045
6046 for_each_class(class) {
6047 if (class->rq_online)
6048 class->rq_online(rq);
6049 }
6050 }
6051 }
6052
6053 static void set_rq_offline(struct rq *rq)
6054 {
6055 if (rq->online) {
6056 const struct sched_class *class;
6057
6058 for_each_class(class) {
6059 if (class->rq_offline)
6060 class->rq_offline(rq);
6061 }
6062
6063 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6064 rq->online = 0;
6065 }
6066 }
6067
6068 /*
6069 * migration_call - callback that gets triggered when a CPU is added.
6070 * Here we can start up the necessary migration thread for the new CPU.
6071 */
6072 static int __cpuinit
6073 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6074 {
6075 int cpu = (long)hcpu;
6076 unsigned long flags;
6077 struct rq *rq = cpu_rq(cpu);
6078
6079 switch (action & ~CPU_TASKS_FROZEN) {
6080
6081 case CPU_UP_PREPARE:
6082 rq->calc_load_update = calc_load_update;
6083 break;
6084
6085 case CPU_ONLINE:
6086 /* Update our root-domain */
6087 raw_spin_lock_irqsave(&rq->lock, flags);
6088 if (rq->rd) {
6089 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6090
6091 set_rq_online(rq);
6092 }
6093 raw_spin_unlock_irqrestore(&rq->lock, flags);
6094 break;
6095
6096 #ifdef CONFIG_HOTPLUG_CPU
6097 case CPU_DYING:
6098 /* Update our root-domain */
6099 raw_spin_lock_irqsave(&rq->lock, flags);
6100 if (rq->rd) {
6101 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6102 set_rq_offline(rq);
6103 }
6104 migrate_tasks(cpu);
6105 BUG_ON(rq->nr_running != 1); /* the migration thread */
6106 raw_spin_unlock_irqrestore(&rq->lock, flags);
6107
6108 migrate_nr_uninterruptible(rq);
6109 calc_global_load_remove(rq);
6110 break;
6111 #endif
6112 }
6113 return NOTIFY_OK;
6114 }
6115
6116 /*
6117 * Register at high priority so that task migration (migrate_all_tasks)
6118 * happens before everything else. This has to be lower priority than
6119 * the notifier in the perf_event subsystem, though.
6120 */
6121 static struct notifier_block __cpuinitdata migration_notifier = {
6122 .notifier_call = migration_call,
6123 .priority = CPU_PRI_MIGRATION,
6124 };
6125
6126 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6127 unsigned long action, void *hcpu)
6128 {
6129 switch (action & ~CPU_TASKS_FROZEN) {
6130 case CPU_ONLINE:
6131 case CPU_DOWN_FAILED:
6132 set_cpu_active((long)hcpu, true);
6133 return NOTIFY_OK;
6134 default:
6135 return NOTIFY_DONE;
6136 }
6137 }
6138
6139 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6140 unsigned long action, void *hcpu)
6141 {
6142 switch (action & ~CPU_TASKS_FROZEN) {
6143 case CPU_DOWN_PREPARE:
6144 set_cpu_active((long)hcpu, false);
6145 return NOTIFY_OK;
6146 default:
6147 return NOTIFY_DONE;
6148 }
6149 }
6150
6151 static int __init migration_init(void)
6152 {
6153 void *cpu = (void *)(long)smp_processor_id();
6154 int err;
6155
6156 /* Initialize migration for the boot CPU */
6157 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6158 BUG_ON(err == NOTIFY_BAD);
6159 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6160 register_cpu_notifier(&migration_notifier);
6161
6162 /* Register cpu active notifiers */
6163 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6164 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6165
6166 return 0;
6167 }
6168 early_initcall(migration_init);
6169 #endif
6170
6171 #ifdef CONFIG_SMP
6172
6173 #ifdef CONFIG_SCHED_DEBUG
6174
6175 static __read_mostly int sched_domain_debug_enabled;
6176
6177 static int __init sched_domain_debug_setup(char *str)
6178 {
6179 sched_domain_debug_enabled = 1;
6180
6181 return 0;
6182 }
6183 early_param("sched_debug", sched_domain_debug_setup);
6184
6185 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6186 struct cpumask *groupmask)
6187 {
6188 struct sched_group *group = sd->groups;
6189 char str[256];
6190
6191 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6192 cpumask_clear(groupmask);
6193
6194 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6195
6196 if (!(sd->flags & SD_LOAD_BALANCE)) {
6197 printk("does not load-balance\n");
6198 if (sd->parent)
6199 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6200 " has parent");
6201 return -1;
6202 }
6203
6204 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6205
6206 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6207 printk(KERN_ERR "ERROR: domain->span does not contain "
6208 "CPU%d\n", cpu);
6209 }
6210 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6211 printk(KERN_ERR "ERROR: domain->groups does not contain"
6212 " CPU%d\n", cpu);
6213 }
6214
6215 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6216 do {
6217 if (!group) {
6218 printk("\n");
6219 printk(KERN_ERR "ERROR: group is NULL\n");
6220 break;
6221 }
6222
6223 if (!group->cpu_power) {
6224 printk(KERN_CONT "\n");
6225 printk(KERN_ERR "ERROR: domain->cpu_power not "
6226 "set\n");
6227 break;
6228 }
6229
6230 if (!cpumask_weight(sched_group_cpus(group))) {
6231 printk(KERN_CONT "\n");
6232 printk(KERN_ERR "ERROR: empty group\n");
6233 break;
6234 }
6235
6236 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6237 printk(KERN_CONT "\n");
6238 printk(KERN_ERR "ERROR: repeated CPUs\n");
6239 break;
6240 }
6241
6242 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6243
6244 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6245
6246 printk(KERN_CONT " %s", str);
6247 if (group->cpu_power != SCHED_LOAD_SCALE) {
6248 printk(KERN_CONT " (cpu_power = %d)",
6249 group->cpu_power);
6250 }
6251
6252 group = group->next;
6253 } while (group != sd->groups);
6254 printk(KERN_CONT "\n");
6255
6256 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6257 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6258
6259 if (sd->parent &&
6260 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6261 printk(KERN_ERR "ERROR: parent span is not a superset "
6262 "of domain->span\n");
6263 return 0;
6264 }
6265
6266 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6267 {
6268 cpumask_var_t groupmask;
6269 int level = 0;
6270
6271 if (!sched_domain_debug_enabled)
6272 return;
6273
6274 if (!sd) {
6275 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6276 return;
6277 }
6278
6279 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6280
6281 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6282 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6283 return;
6284 }
6285
6286 for (;;) {
6287 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6288 break;
6289 level++;
6290 sd = sd->parent;
6291 if (!sd)
6292 break;
6293 }
6294 free_cpumask_var(groupmask);
6295 }
6296 #else /* !CONFIG_SCHED_DEBUG */
6297 # define sched_domain_debug(sd, cpu) do { } while (0)
6298 #endif /* CONFIG_SCHED_DEBUG */
6299
6300 static int sd_degenerate(struct sched_domain *sd)
6301 {
6302 if (cpumask_weight(sched_domain_span(sd)) == 1)
6303 return 1;
6304
6305 /* Following flags need at least 2 groups */
6306 if (sd->flags & (SD_LOAD_BALANCE |
6307 SD_BALANCE_NEWIDLE |
6308 SD_BALANCE_FORK |
6309 SD_BALANCE_EXEC |
6310 SD_SHARE_CPUPOWER |
6311 SD_SHARE_PKG_RESOURCES)) {
6312 if (sd->groups != sd->groups->next)
6313 return 0;
6314 }
6315
6316 /* Following flags don't use groups */
6317 if (sd->flags & (SD_WAKE_AFFINE))
6318 return 0;
6319
6320 return 1;
6321 }
6322
6323 static int
6324 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6325 {
6326 unsigned long cflags = sd->flags, pflags = parent->flags;
6327
6328 if (sd_degenerate(parent))
6329 return 1;
6330
6331 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6332 return 0;
6333
6334 /* Flags needing groups don't count if only 1 group in parent */
6335 if (parent->groups == parent->groups->next) {
6336 pflags &= ~(SD_LOAD_BALANCE |
6337 SD_BALANCE_NEWIDLE |
6338 SD_BALANCE_FORK |
6339 SD_BALANCE_EXEC |
6340 SD_SHARE_CPUPOWER |
6341 SD_SHARE_PKG_RESOURCES);
6342 if (nr_node_ids == 1)
6343 pflags &= ~SD_SERIALIZE;
6344 }
6345 if (~cflags & pflags)
6346 return 0;
6347
6348 return 1;
6349 }
6350
6351 static void free_rootdomain(struct root_domain *rd)
6352 {
6353 synchronize_sched();
6354
6355 cpupri_cleanup(&rd->cpupri);
6356
6357 free_cpumask_var(rd->rto_mask);
6358 free_cpumask_var(rd->online);
6359 free_cpumask_var(rd->span);
6360 kfree(rd);
6361 }
6362
6363 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6364 {
6365 struct root_domain *old_rd = NULL;
6366 unsigned long flags;
6367
6368 raw_spin_lock_irqsave(&rq->lock, flags);
6369
6370 if (rq->rd) {
6371 old_rd = rq->rd;
6372
6373 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6374 set_rq_offline(rq);
6375
6376 cpumask_clear_cpu(rq->cpu, old_rd->span);
6377
6378 /*
6379 * If we dont want to free the old_rt yet then
6380 * set old_rd to NULL to skip the freeing later
6381 * in this function:
6382 */
6383 if (!atomic_dec_and_test(&old_rd->refcount))
6384 old_rd = NULL;
6385 }
6386
6387 atomic_inc(&rd->refcount);
6388 rq->rd = rd;
6389
6390 cpumask_set_cpu(rq->cpu, rd->span);
6391 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6392 set_rq_online(rq);
6393
6394 raw_spin_unlock_irqrestore(&rq->lock, flags);
6395
6396 if (old_rd)
6397 free_rootdomain(old_rd);
6398 }
6399
6400 static int init_rootdomain(struct root_domain *rd)
6401 {
6402 memset(rd, 0, sizeof(*rd));
6403
6404 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6405 goto out;
6406 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6407 goto free_span;
6408 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6409 goto free_online;
6410
6411 if (cpupri_init(&rd->cpupri) != 0)
6412 goto free_rto_mask;
6413 return 0;
6414
6415 free_rto_mask:
6416 free_cpumask_var(rd->rto_mask);
6417 free_online:
6418 free_cpumask_var(rd->online);
6419 free_span:
6420 free_cpumask_var(rd->span);
6421 out:
6422 return -ENOMEM;
6423 }
6424
6425 static void init_defrootdomain(void)
6426 {
6427 init_rootdomain(&def_root_domain);
6428
6429 atomic_set(&def_root_domain.refcount, 1);
6430 }
6431
6432 static struct root_domain *alloc_rootdomain(void)
6433 {
6434 struct root_domain *rd;
6435
6436 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6437 if (!rd)
6438 return NULL;
6439
6440 if (init_rootdomain(rd) != 0) {
6441 kfree(rd);
6442 return NULL;
6443 }
6444
6445 return rd;
6446 }
6447
6448 /*
6449 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6450 * hold the hotplug lock.
6451 */
6452 static void
6453 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6454 {
6455 struct rq *rq = cpu_rq(cpu);
6456 struct sched_domain *tmp;
6457
6458 for (tmp = sd; tmp; tmp = tmp->parent)
6459 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6460
6461 /* Remove the sched domains which do not contribute to scheduling. */
6462 for (tmp = sd; tmp; ) {
6463 struct sched_domain *parent = tmp->parent;
6464 if (!parent)
6465 break;
6466
6467 if (sd_parent_degenerate(tmp, parent)) {
6468 tmp->parent = parent->parent;
6469 if (parent->parent)
6470 parent->parent->child = tmp;
6471 } else
6472 tmp = tmp->parent;
6473 }
6474
6475 if (sd && sd_degenerate(sd)) {
6476 sd = sd->parent;
6477 if (sd)
6478 sd->child = NULL;
6479 }
6480
6481 sched_domain_debug(sd, cpu);
6482
6483 rq_attach_root(rq, rd);
6484 rcu_assign_pointer(rq->sd, sd);
6485 }
6486
6487 /* cpus with isolated domains */
6488 static cpumask_var_t cpu_isolated_map;
6489
6490 /* Setup the mask of cpus configured for isolated domains */
6491 static int __init isolated_cpu_setup(char *str)
6492 {
6493 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6494 cpulist_parse(str, cpu_isolated_map);
6495 return 1;
6496 }
6497
6498 __setup("isolcpus=", isolated_cpu_setup);
6499
6500 /*
6501 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6502 * to a function which identifies what group(along with sched group) a CPU
6503 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6504 * (due to the fact that we keep track of groups covered with a struct cpumask).
6505 *
6506 * init_sched_build_groups will build a circular linked list of the groups
6507 * covered by the given span, and will set each group's ->cpumask correctly,
6508 * and ->cpu_power to 0.
6509 */
6510 static void
6511 init_sched_build_groups(const struct cpumask *span,
6512 const struct cpumask *cpu_map,
6513 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6514 struct sched_group **sg,
6515 struct cpumask *tmpmask),
6516 struct cpumask *covered, struct cpumask *tmpmask)
6517 {
6518 struct sched_group *first = NULL, *last = NULL;
6519 int i;
6520
6521 cpumask_clear(covered);
6522
6523 for_each_cpu(i, span) {
6524 struct sched_group *sg;
6525 int group = group_fn(i, cpu_map, &sg, tmpmask);
6526 int j;
6527
6528 if (cpumask_test_cpu(i, covered))
6529 continue;
6530
6531 cpumask_clear(sched_group_cpus(sg));
6532 sg->cpu_power = 0;
6533
6534 for_each_cpu(j, span) {
6535 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6536 continue;
6537
6538 cpumask_set_cpu(j, covered);
6539 cpumask_set_cpu(j, sched_group_cpus(sg));
6540 }
6541 if (!first)
6542 first = sg;
6543 if (last)
6544 last->next = sg;
6545 last = sg;
6546 }
6547 last->next = first;
6548 }
6549
6550 #define SD_NODES_PER_DOMAIN 16
6551
6552 #ifdef CONFIG_NUMA
6553
6554 /**
6555 * find_next_best_node - find the next node to include in a sched_domain
6556 * @node: node whose sched_domain we're building
6557 * @used_nodes: nodes already in the sched_domain
6558 *
6559 * Find the next node to include in a given scheduling domain. Simply
6560 * finds the closest node not already in the @used_nodes map.
6561 *
6562 * Should use nodemask_t.
6563 */
6564 static int find_next_best_node(int node, nodemask_t *used_nodes)
6565 {
6566 int i, n, val, min_val, best_node = 0;
6567
6568 min_val = INT_MAX;
6569
6570 for (i = 0; i < nr_node_ids; i++) {
6571 /* Start at @node */
6572 n = (node + i) % nr_node_ids;
6573
6574 if (!nr_cpus_node(n))
6575 continue;
6576
6577 /* Skip already used nodes */
6578 if (node_isset(n, *used_nodes))
6579 continue;
6580
6581 /* Simple min distance search */
6582 val = node_distance(node, n);
6583
6584 if (val < min_val) {
6585 min_val = val;
6586 best_node = n;
6587 }
6588 }
6589
6590 node_set(best_node, *used_nodes);
6591 return best_node;
6592 }
6593
6594 /**
6595 * sched_domain_node_span - get a cpumask for a node's sched_domain
6596 * @node: node whose cpumask we're constructing
6597 * @span: resulting cpumask
6598 *
6599 * Given a node, construct a good cpumask for its sched_domain to span. It
6600 * should be one that prevents unnecessary balancing, but also spreads tasks
6601 * out optimally.
6602 */
6603 static void sched_domain_node_span(int node, struct cpumask *span)
6604 {
6605 nodemask_t used_nodes;
6606 int i;
6607
6608 cpumask_clear(span);
6609 nodes_clear(used_nodes);
6610
6611 cpumask_or(span, span, cpumask_of_node(node));
6612 node_set(node, used_nodes);
6613
6614 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6615 int next_node = find_next_best_node(node, &used_nodes);
6616
6617 cpumask_or(span, span, cpumask_of_node(next_node));
6618 }
6619 }
6620 #endif /* CONFIG_NUMA */
6621
6622 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6623
6624 /*
6625 * The cpus mask in sched_group and sched_domain hangs off the end.
6626 *
6627 * ( See the the comments in include/linux/sched.h:struct sched_group
6628 * and struct sched_domain. )
6629 */
6630 struct static_sched_group {
6631 struct sched_group sg;
6632 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6633 };
6634
6635 struct static_sched_domain {
6636 struct sched_domain sd;
6637 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6638 };
6639
6640 struct s_data {
6641 #ifdef CONFIG_NUMA
6642 int sd_allnodes;
6643 cpumask_var_t domainspan;
6644 cpumask_var_t covered;
6645 cpumask_var_t notcovered;
6646 #endif
6647 cpumask_var_t nodemask;
6648 cpumask_var_t this_sibling_map;
6649 cpumask_var_t this_core_map;
6650 cpumask_var_t this_book_map;
6651 cpumask_var_t send_covered;
6652 cpumask_var_t tmpmask;
6653 struct sched_group **sched_group_nodes;
6654 struct root_domain *rd;
6655 };
6656
6657 enum s_alloc {
6658 sa_sched_groups = 0,
6659 sa_rootdomain,
6660 sa_tmpmask,
6661 sa_send_covered,
6662 sa_this_book_map,
6663 sa_this_core_map,
6664 sa_this_sibling_map,
6665 sa_nodemask,
6666 sa_sched_group_nodes,
6667 #ifdef CONFIG_NUMA
6668 sa_notcovered,
6669 sa_covered,
6670 sa_domainspan,
6671 #endif
6672 sa_none,
6673 };
6674
6675 /*
6676 * SMT sched-domains:
6677 */
6678 #ifdef CONFIG_SCHED_SMT
6679 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6680 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6681
6682 static int
6683 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6684 struct sched_group **sg, struct cpumask *unused)
6685 {
6686 if (sg)
6687 *sg = &per_cpu(sched_groups, cpu).sg;
6688 return cpu;
6689 }
6690 #endif /* CONFIG_SCHED_SMT */
6691
6692 /*
6693 * multi-core sched-domains:
6694 */
6695 #ifdef CONFIG_SCHED_MC
6696 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6697 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6698
6699 static int
6700 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6701 struct sched_group **sg, struct cpumask *mask)
6702 {
6703 int group;
6704 #ifdef CONFIG_SCHED_SMT
6705 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6706 group = cpumask_first(mask);
6707 #else
6708 group = cpu;
6709 #endif
6710 if (sg)
6711 *sg = &per_cpu(sched_group_core, group).sg;
6712 return group;
6713 }
6714 #endif /* CONFIG_SCHED_MC */
6715
6716 /*
6717 * book sched-domains:
6718 */
6719 #ifdef CONFIG_SCHED_BOOK
6720 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6721 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6722
6723 static int
6724 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6725 struct sched_group **sg, struct cpumask *mask)
6726 {
6727 int group = cpu;
6728 #ifdef CONFIG_SCHED_MC
6729 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6730 group = cpumask_first(mask);
6731 #elif defined(CONFIG_SCHED_SMT)
6732 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6733 group = cpumask_first(mask);
6734 #endif
6735 if (sg)
6736 *sg = &per_cpu(sched_group_book, group).sg;
6737 return group;
6738 }
6739 #endif /* CONFIG_SCHED_BOOK */
6740
6741 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6742 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6743
6744 static int
6745 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6746 struct sched_group **sg, struct cpumask *mask)
6747 {
6748 int group;
6749 #ifdef CONFIG_SCHED_BOOK
6750 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6751 group = cpumask_first(mask);
6752 #elif defined(CONFIG_SCHED_MC)
6753 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6754 group = cpumask_first(mask);
6755 #elif defined(CONFIG_SCHED_SMT)
6756 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6757 group = cpumask_first(mask);
6758 #else
6759 group = cpu;
6760 #endif
6761 if (sg)
6762 *sg = &per_cpu(sched_group_phys, group).sg;
6763 return group;
6764 }
6765
6766 #ifdef CONFIG_NUMA
6767 /*
6768 * The init_sched_build_groups can't handle what we want to do with node
6769 * groups, so roll our own. Now each node has its own list of groups which
6770 * gets dynamically allocated.
6771 */
6772 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6773 static struct sched_group ***sched_group_nodes_bycpu;
6774
6775 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6776 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6777
6778 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6779 struct sched_group **sg,
6780 struct cpumask *nodemask)
6781 {
6782 int group;
6783
6784 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6785 group = cpumask_first(nodemask);
6786
6787 if (sg)
6788 *sg = &per_cpu(sched_group_allnodes, group).sg;
6789 return group;
6790 }
6791
6792 static void init_numa_sched_groups_power(struct sched_group *group_head)
6793 {
6794 struct sched_group *sg = group_head;
6795 int j;
6796
6797 if (!sg)
6798 return;
6799 do {
6800 for_each_cpu(j, sched_group_cpus(sg)) {
6801 struct sched_domain *sd;
6802
6803 sd = &per_cpu(phys_domains, j).sd;
6804 if (j != group_first_cpu(sd->groups)) {
6805 /*
6806 * Only add "power" once for each
6807 * physical package.
6808 */
6809 continue;
6810 }
6811
6812 sg->cpu_power += sd->groups->cpu_power;
6813 }
6814 sg = sg->next;
6815 } while (sg != group_head);
6816 }
6817
6818 static int build_numa_sched_groups(struct s_data *d,
6819 const struct cpumask *cpu_map, int num)
6820 {
6821 struct sched_domain *sd;
6822 struct sched_group *sg, *prev;
6823 int n, j;
6824
6825 cpumask_clear(d->covered);
6826 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6827 if (cpumask_empty(d->nodemask)) {
6828 d->sched_group_nodes[num] = NULL;
6829 goto out;
6830 }
6831
6832 sched_domain_node_span(num, d->domainspan);
6833 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6834
6835 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6836 GFP_KERNEL, num);
6837 if (!sg) {
6838 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6839 num);
6840 return -ENOMEM;
6841 }
6842 d->sched_group_nodes[num] = sg;
6843
6844 for_each_cpu(j, d->nodemask) {
6845 sd = &per_cpu(node_domains, j).sd;
6846 sd->groups = sg;
6847 }
6848
6849 sg->cpu_power = 0;
6850 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6851 sg->next = sg;
6852 cpumask_or(d->covered, d->covered, d->nodemask);
6853
6854 prev = sg;
6855 for (j = 0; j < nr_node_ids; j++) {
6856 n = (num + j) % nr_node_ids;
6857 cpumask_complement(d->notcovered, d->covered);
6858 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6859 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6860 if (cpumask_empty(d->tmpmask))
6861 break;
6862 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6863 if (cpumask_empty(d->tmpmask))
6864 continue;
6865 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6866 GFP_KERNEL, num);
6867 if (!sg) {
6868 printk(KERN_WARNING
6869 "Can not alloc domain group for node %d\n", j);
6870 return -ENOMEM;
6871 }
6872 sg->cpu_power = 0;
6873 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6874 sg->next = prev->next;
6875 cpumask_or(d->covered, d->covered, d->tmpmask);
6876 prev->next = sg;
6877 prev = sg;
6878 }
6879 out:
6880 return 0;
6881 }
6882 #endif /* CONFIG_NUMA */
6883
6884 #ifdef CONFIG_NUMA
6885 /* Free memory allocated for various sched_group structures */
6886 static void free_sched_groups(const struct cpumask *cpu_map,
6887 struct cpumask *nodemask)
6888 {
6889 int cpu, i;
6890
6891 for_each_cpu(cpu, cpu_map) {
6892 struct sched_group **sched_group_nodes
6893 = sched_group_nodes_bycpu[cpu];
6894
6895 if (!sched_group_nodes)
6896 continue;
6897
6898 for (i = 0; i < nr_node_ids; i++) {
6899 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6900
6901 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6902 if (cpumask_empty(nodemask))
6903 continue;
6904
6905 if (sg == NULL)
6906 continue;
6907 sg = sg->next;
6908 next_sg:
6909 oldsg = sg;
6910 sg = sg->next;
6911 kfree(oldsg);
6912 if (oldsg != sched_group_nodes[i])
6913 goto next_sg;
6914 }
6915 kfree(sched_group_nodes);
6916 sched_group_nodes_bycpu[cpu] = NULL;
6917 }
6918 }
6919 #else /* !CONFIG_NUMA */
6920 static void free_sched_groups(const struct cpumask *cpu_map,
6921 struct cpumask *nodemask)
6922 {
6923 }
6924 #endif /* CONFIG_NUMA */
6925
6926 /*
6927 * Initialize sched groups cpu_power.
6928 *
6929 * cpu_power indicates the capacity of sched group, which is used while
6930 * distributing the load between different sched groups in a sched domain.
6931 * Typically cpu_power for all the groups in a sched domain will be same unless
6932 * there are asymmetries in the topology. If there are asymmetries, group
6933 * having more cpu_power will pickup more load compared to the group having
6934 * less cpu_power.
6935 */
6936 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6937 {
6938 struct sched_domain *child;
6939 struct sched_group *group;
6940 long power;
6941 int weight;
6942
6943 WARN_ON(!sd || !sd->groups);
6944
6945 if (cpu != group_first_cpu(sd->groups))
6946 return;
6947
6948 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
6949
6950 child = sd->child;
6951
6952 sd->groups->cpu_power = 0;
6953
6954 if (!child) {
6955 power = SCHED_LOAD_SCALE;
6956 weight = cpumask_weight(sched_domain_span(sd));
6957 /*
6958 * SMT siblings share the power of a single core.
6959 * Usually multiple threads get a better yield out of
6960 * that one core than a single thread would have,
6961 * reflect that in sd->smt_gain.
6962 */
6963 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6964 power *= sd->smt_gain;
6965 power /= weight;
6966 power >>= SCHED_LOAD_SHIFT;
6967 }
6968 sd->groups->cpu_power += power;
6969 return;
6970 }
6971
6972 /*
6973 * Add cpu_power of each child group to this groups cpu_power.
6974 */
6975 group = child->groups;
6976 do {
6977 sd->groups->cpu_power += group->cpu_power;
6978 group = group->next;
6979 } while (group != child->groups);
6980 }
6981
6982 /*
6983 * Initializers for schedule domains
6984 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6985 */
6986
6987 #ifdef CONFIG_SCHED_DEBUG
6988 # define SD_INIT_NAME(sd, type) sd->name = #type
6989 #else
6990 # define SD_INIT_NAME(sd, type) do { } while (0)
6991 #endif
6992
6993 #define SD_INIT(sd, type) sd_init_##type(sd)
6994
6995 #define SD_INIT_FUNC(type) \
6996 static noinline void sd_init_##type(struct sched_domain *sd) \
6997 { \
6998 memset(sd, 0, sizeof(*sd)); \
6999 *sd = SD_##type##_INIT; \
7000 sd->level = SD_LV_##type; \
7001 SD_INIT_NAME(sd, type); \
7002 }
7003
7004 SD_INIT_FUNC(CPU)
7005 #ifdef CONFIG_NUMA
7006 SD_INIT_FUNC(ALLNODES)
7007 SD_INIT_FUNC(NODE)
7008 #endif
7009 #ifdef CONFIG_SCHED_SMT
7010 SD_INIT_FUNC(SIBLING)
7011 #endif
7012 #ifdef CONFIG_SCHED_MC
7013 SD_INIT_FUNC(MC)
7014 #endif
7015 #ifdef CONFIG_SCHED_BOOK
7016 SD_INIT_FUNC(BOOK)
7017 #endif
7018
7019 static int default_relax_domain_level = -1;
7020
7021 static int __init setup_relax_domain_level(char *str)
7022 {
7023 unsigned long val;
7024
7025 val = simple_strtoul(str, NULL, 0);
7026 if (val < SD_LV_MAX)
7027 default_relax_domain_level = val;
7028
7029 return 1;
7030 }
7031 __setup("relax_domain_level=", setup_relax_domain_level);
7032
7033 static void set_domain_attribute(struct sched_domain *sd,
7034 struct sched_domain_attr *attr)
7035 {
7036 int request;
7037
7038 if (!attr || attr->relax_domain_level < 0) {
7039 if (default_relax_domain_level < 0)
7040 return;
7041 else
7042 request = default_relax_domain_level;
7043 } else
7044 request = attr->relax_domain_level;
7045 if (request < sd->level) {
7046 /* turn off idle balance on this domain */
7047 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7048 } else {
7049 /* turn on idle balance on this domain */
7050 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7051 }
7052 }
7053
7054 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7055 const struct cpumask *cpu_map)
7056 {
7057 switch (what) {
7058 case sa_sched_groups:
7059 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7060 d->sched_group_nodes = NULL;
7061 case sa_rootdomain:
7062 free_rootdomain(d->rd); /* fall through */
7063 case sa_tmpmask:
7064 free_cpumask_var(d->tmpmask); /* fall through */
7065 case sa_send_covered:
7066 free_cpumask_var(d->send_covered); /* fall through */
7067 case sa_this_book_map:
7068 free_cpumask_var(d->this_book_map); /* fall through */
7069 case sa_this_core_map:
7070 free_cpumask_var(d->this_core_map); /* fall through */
7071 case sa_this_sibling_map:
7072 free_cpumask_var(d->this_sibling_map); /* fall through */
7073 case sa_nodemask:
7074 free_cpumask_var(d->nodemask); /* fall through */
7075 case sa_sched_group_nodes:
7076 #ifdef CONFIG_NUMA
7077 kfree(d->sched_group_nodes); /* fall through */
7078 case sa_notcovered:
7079 free_cpumask_var(d->notcovered); /* fall through */
7080 case sa_covered:
7081 free_cpumask_var(d->covered); /* fall through */
7082 case sa_domainspan:
7083 free_cpumask_var(d->domainspan); /* fall through */
7084 #endif
7085 case sa_none:
7086 break;
7087 }
7088 }
7089
7090 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7091 const struct cpumask *cpu_map)
7092 {
7093 #ifdef CONFIG_NUMA
7094 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7095 return sa_none;
7096 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7097 return sa_domainspan;
7098 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7099 return sa_covered;
7100 /* Allocate the per-node list of sched groups */
7101 d->sched_group_nodes = kcalloc(nr_node_ids,
7102 sizeof(struct sched_group *), GFP_KERNEL);
7103 if (!d->sched_group_nodes) {
7104 printk(KERN_WARNING "Can not alloc sched group node list\n");
7105 return sa_notcovered;
7106 }
7107 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7108 #endif
7109 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7110 return sa_sched_group_nodes;
7111 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7112 return sa_nodemask;
7113 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7114 return sa_this_sibling_map;
7115 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7116 return sa_this_core_map;
7117 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7118 return sa_this_book_map;
7119 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7120 return sa_send_covered;
7121 d->rd = alloc_rootdomain();
7122 if (!d->rd) {
7123 printk(KERN_WARNING "Cannot alloc root domain\n");
7124 return sa_tmpmask;
7125 }
7126 return sa_rootdomain;
7127 }
7128
7129 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7130 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7131 {
7132 struct sched_domain *sd = NULL;
7133 #ifdef CONFIG_NUMA
7134 struct sched_domain *parent;
7135
7136 d->sd_allnodes = 0;
7137 if (cpumask_weight(cpu_map) >
7138 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7139 sd = &per_cpu(allnodes_domains, i).sd;
7140 SD_INIT(sd, ALLNODES);
7141 set_domain_attribute(sd, attr);
7142 cpumask_copy(sched_domain_span(sd), cpu_map);
7143 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7144 d->sd_allnodes = 1;
7145 }
7146 parent = sd;
7147
7148 sd = &per_cpu(node_domains, i).sd;
7149 SD_INIT(sd, NODE);
7150 set_domain_attribute(sd, attr);
7151 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7152 sd->parent = parent;
7153 if (parent)
7154 parent->child = sd;
7155 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7156 #endif
7157 return sd;
7158 }
7159
7160 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7161 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7162 struct sched_domain *parent, int i)
7163 {
7164 struct sched_domain *sd;
7165 sd = &per_cpu(phys_domains, i).sd;
7166 SD_INIT(sd, CPU);
7167 set_domain_attribute(sd, attr);
7168 cpumask_copy(sched_domain_span(sd), d->nodemask);
7169 sd->parent = parent;
7170 if (parent)
7171 parent->child = sd;
7172 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7173 return sd;
7174 }
7175
7176 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7177 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7178 struct sched_domain *parent, int i)
7179 {
7180 struct sched_domain *sd = parent;
7181 #ifdef CONFIG_SCHED_BOOK
7182 sd = &per_cpu(book_domains, i).sd;
7183 SD_INIT(sd, BOOK);
7184 set_domain_attribute(sd, attr);
7185 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7186 sd->parent = parent;
7187 parent->child = sd;
7188 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7189 #endif
7190 return sd;
7191 }
7192
7193 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7194 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7195 struct sched_domain *parent, int i)
7196 {
7197 struct sched_domain *sd = parent;
7198 #ifdef CONFIG_SCHED_MC
7199 sd = &per_cpu(core_domains, i).sd;
7200 SD_INIT(sd, MC);
7201 set_domain_attribute(sd, attr);
7202 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7203 sd->parent = parent;
7204 parent->child = sd;
7205 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7206 #endif
7207 return sd;
7208 }
7209
7210 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7211 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7212 struct sched_domain *parent, int i)
7213 {
7214 struct sched_domain *sd = parent;
7215 #ifdef CONFIG_SCHED_SMT
7216 sd = &per_cpu(cpu_domains, i).sd;
7217 SD_INIT(sd, SIBLING);
7218 set_domain_attribute(sd, attr);
7219 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7220 sd->parent = parent;
7221 parent->child = sd;
7222 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7223 #endif
7224 return sd;
7225 }
7226
7227 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7228 const struct cpumask *cpu_map, int cpu)
7229 {
7230 switch (l) {
7231 #ifdef CONFIG_SCHED_SMT
7232 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7233 cpumask_and(d->this_sibling_map, cpu_map,
7234 topology_thread_cpumask(cpu));
7235 if (cpu == cpumask_first(d->this_sibling_map))
7236 init_sched_build_groups(d->this_sibling_map, cpu_map,
7237 &cpu_to_cpu_group,
7238 d->send_covered, d->tmpmask);
7239 break;
7240 #endif
7241 #ifdef CONFIG_SCHED_MC
7242 case SD_LV_MC: /* set up multi-core groups */
7243 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7244 if (cpu == cpumask_first(d->this_core_map))
7245 init_sched_build_groups(d->this_core_map, cpu_map,
7246 &cpu_to_core_group,
7247 d->send_covered, d->tmpmask);
7248 break;
7249 #endif
7250 #ifdef CONFIG_SCHED_BOOK
7251 case SD_LV_BOOK: /* set up book groups */
7252 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7253 if (cpu == cpumask_first(d->this_book_map))
7254 init_sched_build_groups(d->this_book_map, cpu_map,
7255 &cpu_to_book_group,
7256 d->send_covered, d->tmpmask);
7257 break;
7258 #endif
7259 case SD_LV_CPU: /* set up physical groups */
7260 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7261 if (!cpumask_empty(d->nodemask))
7262 init_sched_build_groups(d->nodemask, cpu_map,
7263 &cpu_to_phys_group,
7264 d->send_covered, d->tmpmask);
7265 break;
7266 #ifdef CONFIG_NUMA
7267 case SD_LV_ALLNODES:
7268 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7269 d->send_covered, d->tmpmask);
7270 break;
7271 #endif
7272 default:
7273 break;
7274 }
7275 }
7276
7277 /*
7278 * Build sched domains for a given set of cpus and attach the sched domains
7279 * to the individual cpus
7280 */
7281 static int __build_sched_domains(const struct cpumask *cpu_map,
7282 struct sched_domain_attr *attr)
7283 {
7284 enum s_alloc alloc_state = sa_none;
7285 struct s_data d;
7286 struct sched_domain *sd;
7287 int i;
7288 #ifdef CONFIG_NUMA
7289 d.sd_allnodes = 0;
7290 #endif
7291
7292 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7293 if (alloc_state != sa_rootdomain)
7294 goto error;
7295 alloc_state = sa_sched_groups;
7296
7297 /*
7298 * Set up domains for cpus specified by the cpu_map.
7299 */
7300 for_each_cpu(i, cpu_map) {
7301 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7302 cpu_map);
7303
7304 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7305 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7306 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7307 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7308 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7309 }
7310
7311 for_each_cpu(i, cpu_map) {
7312 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7313 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7314 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7315 }
7316
7317 /* Set up physical groups */
7318 for (i = 0; i < nr_node_ids; i++)
7319 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7320
7321 #ifdef CONFIG_NUMA
7322 /* Set up node groups */
7323 if (d.sd_allnodes)
7324 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7325
7326 for (i = 0; i < nr_node_ids; i++)
7327 if (build_numa_sched_groups(&d, cpu_map, i))
7328 goto error;
7329 #endif
7330
7331 /* Calculate CPU power for physical packages and nodes */
7332 #ifdef CONFIG_SCHED_SMT
7333 for_each_cpu(i, cpu_map) {
7334 sd = &per_cpu(cpu_domains, i).sd;
7335 init_sched_groups_power(i, sd);
7336 }
7337 #endif
7338 #ifdef CONFIG_SCHED_MC
7339 for_each_cpu(i, cpu_map) {
7340 sd = &per_cpu(core_domains, i).sd;
7341 init_sched_groups_power(i, sd);
7342 }
7343 #endif
7344 #ifdef CONFIG_SCHED_BOOK
7345 for_each_cpu(i, cpu_map) {
7346 sd = &per_cpu(book_domains, i).sd;
7347 init_sched_groups_power(i, sd);
7348 }
7349 #endif
7350
7351 for_each_cpu(i, cpu_map) {
7352 sd = &per_cpu(phys_domains, i).sd;
7353 init_sched_groups_power(i, sd);
7354 }
7355
7356 #ifdef CONFIG_NUMA
7357 for (i = 0; i < nr_node_ids; i++)
7358 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7359
7360 if (d.sd_allnodes) {
7361 struct sched_group *sg;
7362
7363 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7364 d.tmpmask);
7365 init_numa_sched_groups_power(sg);
7366 }
7367 #endif
7368
7369 /* Attach the domains */
7370 for_each_cpu(i, cpu_map) {
7371 #ifdef CONFIG_SCHED_SMT
7372 sd = &per_cpu(cpu_domains, i).sd;
7373 #elif defined(CONFIG_SCHED_MC)
7374 sd = &per_cpu(core_domains, i).sd;
7375 #elif defined(CONFIG_SCHED_BOOK)
7376 sd = &per_cpu(book_domains, i).sd;
7377 #else
7378 sd = &per_cpu(phys_domains, i).sd;
7379 #endif
7380 cpu_attach_domain(sd, d.rd, i);
7381 }
7382
7383 d.sched_group_nodes = NULL; /* don't free this we still need it */
7384 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7385 return 0;
7386
7387 error:
7388 __free_domain_allocs(&d, alloc_state, cpu_map);
7389 return -ENOMEM;
7390 }
7391
7392 static int build_sched_domains(const struct cpumask *cpu_map)
7393 {
7394 return __build_sched_domains(cpu_map, NULL);
7395 }
7396
7397 static cpumask_var_t *doms_cur; /* current sched domains */
7398 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7399 static struct sched_domain_attr *dattr_cur;
7400 /* attribues of custom domains in 'doms_cur' */
7401
7402 /*
7403 * Special case: If a kmalloc of a doms_cur partition (array of
7404 * cpumask) fails, then fallback to a single sched domain,
7405 * as determined by the single cpumask fallback_doms.
7406 */
7407 static cpumask_var_t fallback_doms;
7408
7409 /*
7410 * arch_update_cpu_topology lets virtualized architectures update the
7411 * cpu core maps. It is supposed to return 1 if the topology changed
7412 * or 0 if it stayed the same.
7413 */
7414 int __attribute__((weak)) arch_update_cpu_topology(void)
7415 {
7416 return 0;
7417 }
7418
7419 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7420 {
7421 int i;
7422 cpumask_var_t *doms;
7423
7424 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7425 if (!doms)
7426 return NULL;
7427 for (i = 0; i < ndoms; i++) {
7428 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7429 free_sched_domains(doms, i);
7430 return NULL;
7431 }
7432 }
7433 return doms;
7434 }
7435
7436 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7437 {
7438 unsigned int i;
7439 for (i = 0; i < ndoms; i++)
7440 free_cpumask_var(doms[i]);
7441 kfree(doms);
7442 }
7443
7444 /*
7445 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7446 * For now this just excludes isolated cpus, but could be used to
7447 * exclude other special cases in the future.
7448 */
7449 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7450 {
7451 int err;
7452
7453 arch_update_cpu_topology();
7454 ndoms_cur = 1;
7455 doms_cur = alloc_sched_domains(ndoms_cur);
7456 if (!doms_cur)
7457 doms_cur = &fallback_doms;
7458 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7459 dattr_cur = NULL;
7460 err = build_sched_domains(doms_cur[0]);
7461 register_sched_domain_sysctl();
7462
7463 return err;
7464 }
7465
7466 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7467 struct cpumask *tmpmask)
7468 {
7469 free_sched_groups(cpu_map, tmpmask);
7470 }
7471
7472 /*
7473 * Detach sched domains from a group of cpus specified in cpu_map
7474 * These cpus will now be attached to the NULL domain
7475 */
7476 static void detach_destroy_domains(const struct cpumask *cpu_map)
7477 {
7478 /* Save because hotplug lock held. */
7479 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7480 int i;
7481
7482 for_each_cpu(i, cpu_map)
7483 cpu_attach_domain(NULL, &def_root_domain, i);
7484 synchronize_sched();
7485 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7486 }
7487
7488 /* handle null as "default" */
7489 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7490 struct sched_domain_attr *new, int idx_new)
7491 {
7492 struct sched_domain_attr tmp;
7493
7494 /* fast path */
7495 if (!new && !cur)
7496 return 1;
7497
7498 tmp = SD_ATTR_INIT;
7499 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7500 new ? (new + idx_new) : &tmp,
7501 sizeof(struct sched_domain_attr));
7502 }
7503
7504 /*
7505 * Partition sched domains as specified by the 'ndoms_new'
7506 * cpumasks in the array doms_new[] of cpumasks. This compares
7507 * doms_new[] to the current sched domain partitioning, doms_cur[].
7508 * It destroys each deleted domain and builds each new domain.
7509 *
7510 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7511 * The masks don't intersect (don't overlap.) We should setup one
7512 * sched domain for each mask. CPUs not in any of the cpumasks will
7513 * not be load balanced. If the same cpumask appears both in the
7514 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7515 * it as it is.
7516 *
7517 * The passed in 'doms_new' should be allocated using
7518 * alloc_sched_domains. This routine takes ownership of it and will
7519 * free_sched_domains it when done with it. If the caller failed the
7520 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7521 * and partition_sched_domains() will fallback to the single partition
7522 * 'fallback_doms', it also forces the domains to be rebuilt.
7523 *
7524 * If doms_new == NULL it will be replaced with cpu_online_mask.
7525 * ndoms_new == 0 is a special case for destroying existing domains,
7526 * and it will not create the default domain.
7527 *
7528 * Call with hotplug lock held
7529 */
7530 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7531 struct sched_domain_attr *dattr_new)
7532 {
7533 int i, j, n;
7534 int new_topology;
7535
7536 mutex_lock(&sched_domains_mutex);
7537
7538 /* always unregister in case we don't destroy any domains */
7539 unregister_sched_domain_sysctl();
7540
7541 /* Let architecture update cpu core mappings. */
7542 new_topology = arch_update_cpu_topology();
7543
7544 n = doms_new ? ndoms_new : 0;
7545
7546 /* Destroy deleted domains */
7547 for (i = 0; i < ndoms_cur; i++) {
7548 for (j = 0; j < n && !new_topology; j++) {
7549 if (cpumask_equal(doms_cur[i], doms_new[j])
7550 && dattrs_equal(dattr_cur, i, dattr_new, j))
7551 goto match1;
7552 }
7553 /* no match - a current sched domain not in new doms_new[] */
7554 detach_destroy_domains(doms_cur[i]);
7555 match1:
7556 ;
7557 }
7558
7559 if (doms_new == NULL) {
7560 ndoms_cur = 0;
7561 doms_new = &fallback_doms;
7562 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7563 WARN_ON_ONCE(dattr_new);
7564 }
7565
7566 /* Build new domains */
7567 for (i = 0; i < ndoms_new; i++) {
7568 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7569 if (cpumask_equal(doms_new[i], doms_cur[j])
7570 && dattrs_equal(dattr_new, i, dattr_cur, j))
7571 goto match2;
7572 }
7573 /* no match - add a new doms_new */
7574 __build_sched_domains(doms_new[i],
7575 dattr_new ? dattr_new + i : NULL);
7576 match2:
7577 ;
7578 }
7579
7580 /* Remember the new sched domains */
7581 if (doms_cur != &fallback_doms)
7582 free_sched_domains(doms_cur, ndoms_cur);
7583 kfree(dattr_cur); /* kfree(NULL) is safe */
7584 doms_cur = doms_new;
7585 dattr_cur = dattr_new;
7586 ndoms_cur = ndoms_new;
7587
7588 register_sched_domain_sysctl();
7589
7590 mutex_unlock(&sched_domains_mutex);
7591 }
7592
7593 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7594 static void arch_reinit_sched_domains(void)
7595 {
7596 get_online_cpus();
7597
7598 /* Destroy domains first to force the rebuild */
7599 partition_sched_domains(0, NULL, NULL);
7600
7601 rebuild_sched_domains();
7602 put_online_cpus();
7603 }
7604
7605 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7606 {
7607 unsigned int level = 0;
7608
7609 if (sscanf(buf, "%u", &level) != 1)
7610 return -EINVAL;
7611
7612 /*
7613 * level is always be positive so don't check for
7614 * level < POWERSAVINGS_BALANCE_NONE which is 0
7615 * What happens on 0 or 1 byte write,
7616 * need to check for count as well?
7617 */
7618
7619 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7620 return -EINVAL;
7621
7622 if (smt)
7623 sched_smt_power_savings = level;
7624 else
7625 sched_mc_power_savings = level;
7626
7627 arch_reinit_sched_domains();
7628
7629 return count;
7630 }
7631
7632 #ifdef CONFIG_SCHED_MC
7633 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7634 struct sysdev_class_attribute *attr,
7635 char *page)
7636 {
7637 return sprintf(page, "%u\n", sched_mc_power_savings);
7638 }
7639 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7640 struct sysdev_class_attribute *attr,
7641 const char *buf, size_t count)
7642 {
7643 return sched_power_savings_store(buf, count, 0);
7644 }
7645 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7646 sched_mc_power_savings_show,
7647 sched_mc_power_savings_store);
7648 #endif
7649
7650 #ifdef CONFIG_SCHED_SMT
7651 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7652 struct sysdev_class_attribute *attr,
7653 char *page)
7654 {
7655 return sprintf(page, "%u\n", sched_smt_power_savings);
7656 }
7657 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7658 struct sysdev_class_attribute *attr,
7659 const char *buf, size_t count)
7660 {
7661 return sched_power_savings_store(buf, count, 1);
7662 }
7663 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7664 sched_smt_power_savings_show,
7665 sched_smt_power_savings_store);
7666 #endif
7667
7668 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7669 {
7670 int err = 0;
7671
7672 #ifdef CONFIG_SCHED_SMT
7673 if (smt_capable())
7674 err = sysfs_create_file(&cls->kset.kobj,
7675 &attr_sched_smt_power_savings.attr);
7676 #endif
7677 #ifdef CONFIG_SCHED_MC
7678 if (!err && mc_capable())
7679 err = sysfs_create_file(&cls->kset.kobj,
7680 &attr_sched_mc_power_savings.attr);
7681 #endif
7682 return err;
7683 }
7684 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7685
7686 /*
7687 * Update cpusets according to cpu_active mask. If cpusets are
7688 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7689 * around partition_sched_domains().
7690 */
7691 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7692 void *hcpu)
7693 {
7694 switch (action & ~CPU_TASKS_FROZEN) {
7695 case CPU_ONLINE:
7696 case CPU_DOWN_FAILED:
7697 cpuset_update_active_cpus();
7698 return NOTIFY_OK;
7699 default:
7700 return NOTIFY_DONE;
7701 }
7702 }
7703
7704 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7705 void *hcpu)
7706 {
7707 switch (action & ~CPU_TASKS_FROZEN) {
7708 case CPU_DOWN_PREPARE:
7709 cpuset_update_active_cpus();
7710 return NOTIFY_OK;
7711 default:
7712 return NOTIFY_DONE;
7713 }
7714 }
7715
7716 static int update_runtime(struct notifier_block *nfb,
7717 unsigned long action, void *hcpu)
7718 {
7719 int cpu = (int)(long)hcpu;
7720
7721 switch (action) {
7722 case CPU_DOWN_PREPARE:
7723 case CPU_DOWN_PREPARE_FROZEN:
7724 disable_runtime(cpu_rq(cpu));
7725 return NOTIFY_OK;
7726
7727 case CPU_DOWN_FAILED:
7728 case CPU_DOWN_FAILED_FROZEN:
7729 case CPU_ONLINE:
7730 case CPU_ONLINE_FROZEN:
7731 enable_runtime(cpu_rq(cpu));
7732 return NOTIFY_OK;
7733
7734 default:
7735 return NOTIFY_DONE;
7736 }
7737 }
7738
7739 void __init sched_init_smp(void)
7740 {
7741 cpumask_var_t non_isolated_cpus;
7742
7743 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7744 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7745
7746 #if defined(CONFIG_NUMA)
7747 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7748 GFP_KERNEL);
7749 BUG_ON(sched_group_nodes_bycpu == NULL);
7750 #endif
7751 get_online_cpus();
7752 mutex_lock(&sched_domains_mutex);
7753 arch_init_sched_domains(cpu_active_mask);
7754 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7755 if (cpumask_empty(non_isolated_cpus))
7756 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7757 mutex_unlock(&sched_domains_mutex);
7758 put_online_cpus();
7759
7760 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7761 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7762
7763 /* RT runtime code needs to handle some hotplug events */
7764 hotcpu_notifier(update_runtime, 0);
7765
7766 init_hrtick();
7767
7768 /* Move init over to a non-isolated CPU */
7769 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7770 BUG();
7771 sched_init_granularity();
7772 free_cpumask_var(non_isolated_cpus);
7773
7774 init_sched_rt_class();
7775 }
7776 #else
7777 void __init sched_init_smp(void)
7778 {
7779 sched_init_granularity();
7780 }
7781 #endif /* CONFIG_SMP */
7782
7783 const_debug unsigned int sysctl_timer_migration = 1;
7784
7785 int in_sched_functions(unsigned long addr)
7786 {
7787 return in_lock_functions(addr) ||
7788 (addr >= (unsigned long)__sched_text_start
7789 && addr < (unsigned long)__sched_text_end);
7790 }
7791
7792 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7793 {
7794 cfs_rq->tasks_timeline = RB_ROOT;
7795 INIT_LIST_HEAD(&cfs_rq->tasks);
7796 #ifdef CONFIG_FAIR_GROUP_SCHED
7797 cfs_rq->rq = rq;
7798 #endif
7799 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7800 }
7801
7802 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7803 {
7804 struct rt_prio_array *array;
7805 int i;
7806
7807 array = &rt_rq->active;
7808 for (i = 0; i < MAX_RT_PRIO; i++) {
7809 INIT_LIST_HEAD(array->queue + i);
7810 __clear_bit(i, array->bitmap);
7811 }
7812 /* delimiter for bitsearch: */
7813 __set_bit(MAX_RT_PRIO, array->bitmap);
7814
7815 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7816 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7817 #ifdef CONFIG_SMP
7818 rt_rq->highest_prio.next = MAX_RT_PRIO;
7819 #endif
7820 #endif
7821 #ifdef CONFIG_SMP
7822 rt_rq->rt_nr_migratory = 0;
7823 rt_rq->overloaded = 0;
7824 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7825 #endif
7826
7827 rt_rq->rt_time = 0;
7828 rt_rq->rt_throttled = 0;
7829 rt_rq->rt_runtime = 0;
7830 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7831
7832 #ifdef CONFIG_RT_GROUP_SCHED
7833 rt_rq->rt_nr_boosted = 0;
7834 rt_rq->rq = rq;
7835 #endif
7836 }
7837
7838 #ifdef CONFIG_FAIR_GROUP_SCHED
7839 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7840 struct sched_entity *se, int cpu,
7841 struct sched_entity *parent)
7842 {
7843 struct rq *rq = cpu_rq(cpu);
7844 tg->cfs_rq[cpu] = cfs_rq;
7845 init_cfs_rq(cfs_rq, rq);
7846 cfs_rq->tg = tg;
7847
7848 tg->se[cpu] = se;
7849 /* se could be NULL for root_task_group */
7850 if (!se)
7851 return;
7852
7853 if (!parent)
7854 se->cfs_rq = &rq->cfs;
7855 else
7856 se->cfs_rq = parent->my_q;
7857
7858 se->my_q = cfs_rq;
7859 update_load_set(&se->load, 0);
7860 se->parent = parent;
7861 }
7862 #endif
7863
7864 #ifdef CONFIG_RT_GROUP_SCHED
7865 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7866 struct sched_rt_entity *rt_se, int cpu,
7867 struct sched_rt_entity *parent)
7868 {
7869 struct rq *rq = cpu_rq(cpu);
7870
7871 tg->rt_rq[cpu] = rt_rq;
7872 init_rt_rq(rt_rq, rq);
7873 rt_rq->tg = tg;
7874 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7875
7876 tg->rt_se[cpu] = rt_se;
7877 if (!rt_se)
7878 return;
7879
7880 if (!parent)
7881 rt_se->rt_rq = &rq->rt;
7882 else
7883 rt_se->rt_rq = parent->my_q;
7884
7885 rt_se->my_q = rt_rq;
7886 rt_se->parent = parent;
7887 INIT_LIST_HEAD(&rt_se->run_list);
7888 }
7889 #endif
7890
7891 void __init sched_init(void)
7892 {
7893 int i, j;
7894 unsigned long alloc_size = 0, ptr;
7895
7896 #ifdef CONFIG_FAIR_GROUP_SCHED
7897 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7898 #endif
7899 #ifdef CONFIG_RT_GROUP_SCHED
7900 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7901 #endif
7902 #ifdef CONFIG_CPUMASK_OFFSTACK
7903 alloc_size += num_possible_cpus() * cpumask_size();
7904 #endif
7905 if (alloc_size) {
7906 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7907
7908 #ifdef CONFIG_FAIR_GROUP_SCHED
7909 root_task_group.se = (struct sched_entity **)ptr;
7910 ptr += nr_cpu_ids * sizeof(void **);
7911
7912 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7913 ptr += nr_cpu_ids * sizeof(void **);
7914
7915 #endif /* CONFIG_FAIR_GROUP_SCHED */
7916 #ifdef CONFIG_RT_GROUP_SCHED
7917 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7918 ptr += nr_cpu_ids * sizeof(void **);
7919
7920 root_task_group.rt_rq = (struct rt_rq **)ptr;
7921 ptr += nr_cpu_ids * sizeof(void **);
7922
7923 #endif /* CONFIG_RT_GROUP_SCHED */
7924 #ifdef CONFIG_CPUMASK_OFFSTACK
7925 for_each_possible_cpu(i) {
7926 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7927 ptr += cpumask_size();
7928 }
7929 #endif /* CONFIG_CPUMASK_OFFSTACK */
7930 }
7931
7932 #ifdef CONFIG_SMP
7933 init_defrootdomain();
7934 #endif
7935
7936 init_rt_bandwidth(&def_rt_bandwidth,
7937 global_rt_period(), global_rt_runtime());
7938
7939 #ifdef CONFIG_RT_GROUP_SCHED
7940 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7941 global_rt_period(), global_rt_runtime());
7942 #endif /* CONFIG_RT_GROUP_SCHED */
7943
7944 #ifdef CONFIG_CGROUP_SCHED
7945 list_add(&root_task_group.list, &task_groups);
7946 INIT_LIST_HEAD(&root_task_group.children);
7947 autogroup_init(&init_task);
7948 #endif /* CONFIG_CGROUP_SCHED */
7949
7950 for_each_possible_cpu(i) {
7951 struct rq *rq;
7952
7953 rq = cpu_rq(i);
7954 raw_spin_lock_init(&rq->lock);
7955 rq->nr_running = 0;
7956 rq->calc_load_active = 0;
7957 rq->calc_load_update = jiffies + LOAD_FREQ;
7958 init_cfs_rq(&rq->cfs, rq);
7959 init_rt_rq(&rq->rt, rq);
7960 #ifdef CONFIG_FAIR_GROUP_SCHED
7961 root_task_group.shares = root_task_group_load;
7962 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7963 /*
7964 * How much cpu bandwidth does root_task_group get?
7965 *
7966 * In case of task-groups formed thr' the cgroup filesystem, it
7967 * gets 100% of the cpu resources in the system. This overall
7968 * system cpu resource is divided among the tasks of
7969 * root_task_group and its child task-groups in a fair manner,
7970 * based on each entity's (task or task-group's) weight
7971 * (se->load.weight).
7972 *
7973 * In other words, if root_task_group has 10 tasks of weight
7974 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7975 * then A0's share of the cpu resource is:
7976 *
7977 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7978 *
7979 * We achieve this by letting root_task_group's tasks sit
7980 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7981 */
7982 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7983 #endif /* CONFIG_FAIR_GROUP_SCHED */
7984
7985 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7986 #ifdef CONFIG_RT_GROUP_SCHED
7987 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7988 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7989 #endif
7990
7991 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7992 rq->cpu_load[j] = 0;
7993
7994 rq->last_load_update_tick = jiffies;
7995
7996 #ifdef CONFIG_SMP
7997 rq->sd = NULL;
7998 rq->rd = NULL;
7999 rq->cpu_power = SCHED_LOAD_SCALE;
8000 rq->post_schedule = 0;
8001 rq->active_balance = 0;
8002 rq->next_balance = jiffies;
8003 rq->push_cpu = 0;
8004 rq->cpu = i;
8005 rq->online = 0;
8006 rq->idle_stamp = 0;
8007 rq->avg_idle = 2*sysctl_sched_migration_cost;
8008 rq_attach_root(rq, &def_root_domain);
8009 #ifdef CONFIG_NO_HZ
8010 rq->nohz_balance_kick = 0;
8011 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8012 #endif
8013 #endif
8014 init_rq_hrtick(rq);
8015 atomic_set(&rq->nr_iowait, 0);
8016 }
8017
8018 set_load_weight(&init_task);
8019
8020 #ifdef CONFIG_PREEMPT_NOTIFIERS
8021 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8022 #endif
8023
8024 #ifdef CONFIG_SMP
8025 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8026 #endif
8027
8028 #ifdef CONFIG_RT_MUTEXES
8029 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8030 #endif
8031
8032 /*
8033 * The boot idle thread does lazy MMU switching as well:
8034 */
8035 atomic_inc(&init_mm.mm_count);
8036 enter_lazy_tlb(&init_mm, current);
8037
8038 /*
8039 * Make us the idle thread. Technically, schedule() should not be
8040 * called from this thread, however somewhere below it might be,
8041 * but because we are the idle thread, we just pick up running again
8042 * when this runqueue becomes "idle".
8043 */
8044 init_idle(current, smp_processor_id());
8045
8046 calc_load_update = jiffies + LOAD_FREQ;
8047
8048 /*
8049 * During early bootup we pretend to be a normal task:
8050 */
8051 current->sched_class = &fair_sched_class;
8052
8053 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8054 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8055 #ifdef CONFIG_SMP
8056 #ifdef CONFIG_NO_HZ
8057 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8058 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8059 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8060 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8061 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8062 #endif
8063 /* May be allocated at isolcpus cmdline parse time */
8064 if (cpu_isolated_map == NULL)
8065 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8066 #endif /* SMP */
8067
8068 scheduler_running = 1;
8069 }
8070
8071 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8072 static inline int preempt_count_equals(int preempt_offset)
8073 {
8074 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8075
8076 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
8077 }
8078
8079 void __might_sleep(const char *file, int line, int preempt_offset)
8080 {
8081 #ifdef in_atomic
8082 static unsigned long prev_jiffy; /* ratelimiting */
8083
8084 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8085 system_state != SYSTEM_RUNNING || oops_in_progress)
8086 return;
8087 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8088 return;
8089 prev_jiffy = jiffies;
8090
8091 printk(KERN_ERR
8092 "BUG: sleeping function called from invalid context at %s:%d\n",
8093 file, line);
8094 printk(KERN_ERR
8095 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8096 in_atomic(), irqs_disabled(),
8097 current->pid, current->comm);
8098
8099 debug_show_held_locks(current);
8100 if (irqs_disabled())
8101 print_irqtrace_events(current);
8102 dump_stack();
8103 #endif
8104 }
8105 EXPORT_SYMBOL(__might_sleep);
8106 #endif
8107
8108 #ifdef CONFIG_MAGIC_SYSRQ
8109 static void normalize_task(struct rq *rq, struct task_struct *p)
8110 {
8111 int on_rq;
8112
8113 on_rq = p->se.on_rq;
8114 if (on_rq)
8115 deactivate_task(rq, p, 0);
8116 __setscheduler(rq, p, SCHED_NORMAL, 0);
8117 if (on_rq) {
8118 activate_task(rq, p, 0);
8119 resched_task(rq->curr);
8120 }
8121 }
8122
8123 void normalize_rt_tasks(void)
8124 {
8125 struct task_struct *g, *p;
8126 unsigned long flags;
8127 struct rq *rq;
8128
8129 read_lock_irqsave(&tasklist_lock, flags);
8130 do_each_thread(g, p) {
8131 /*
8132 * Only normalize user tasks:
8133 */
8134 if (!p->mm)
8135 continue;
8136
8137 p->se.exec_start = 0;
8138 #ifdef CONFIG_SCHEDSTATS
8139 p->se.statistics.wait_start = 0;
8140 p->se.statistics.sleep_start = 0;
8141 p->se.statistics.block_start = 0;
8142 #endif
8143
8144 if (!rt_task(p)) {
8145 /*
8146 * Renice negative nice level userspace
8147 * tasks back to 0:
8148 */
8149 if (TASK_NICE(p) < 0 && p->mm)
8150 set_user_nice(p, 0);
8151 continue;
8152 }
8153
8154 raw_spin_lock(&p->pi_lock);
8155 rq = __task_rq_lock(p);
8156
8157 normalize_task(rq, p);
8158
8159 __task_rq_unlock(rq);
8160 raw_spin_unlock(&p->pi_lock);
8161 } while_each_thread(g, p);
8162
8163 read_unlock_irqrestore(&tasklist_lock, flags);
8164 }
8165
8166 #endif /* CONFIG_MAGIC_SYSRQ */
8167
8168 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8169 /*
8170 * These functions are only useful for the IA64 MCA handling, or kdb.
8171 *
8172 * They can only be called when the whole system has been
8173 * stopped - every CPU needs to be quiescent, and no scheduling
8174 * activity can take place. Using them for anything else would
8175 * be a serious bug, and as a result, they aren't even visible
8176 * under any other configuration.
8177 */
8178
8179 /**
8180 * curr_task - return the current task for a given cpu.
8181 * @cpu: the processor in question.
8182 *
8183 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8184 */
8185 struct task_struct *curr_task(int cpu)
8186 {
8187 return cpu_curr(cpu);
8188 }
8189
8190 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8191
8192 #ifdef CONFIG_IA64
8193 /**
8194 * set_curr_task - set the current task for a given cpu.
8195 * @cpu: the processor in question.
8196 * @p: the task pointer to set.
8197 *
8198 * Description: This function must only be used when non-maskable interrupts
8199 * are serviced on a separate stack. It allows the architecture to switch the
8200 * notion of the current task on a cpu in a non-blocking manner. This function
8201 * must be called with all CPU's synchronized, and interrupts disabled, the
8202 * and caller must save the original value of the current task (see
8203 * curr_task() above) and restore that value before reenabling interrupts and
8204 * re-starting the system.
8205 *
8206 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8207 */
8208 void set_curr_task(int cpu, struct task_struct *p)
8209 {
8210 cpu_curr(cpu) = p;
8211 }
8212
8213 #endif
8214
8215 #ifdef CONFIG_FAIR_GROUP_SCHED
8216 static void free_fair_sched_group(struct task_group *tg)
8217 {
8218 int i;
8219
8220 for_each_possible_cpu(i) {
8221 if (tg->cfs_rq)
8222 kfree(tg->cfs_rq[i]);
8223 if (tg->se)
8224 kfree(tg->se[i]);
8225 }
8226
8227 kfree(tg->cfs_rq);
8228 kfree(tg->se);
8229 }
8230
8231 static
8232 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8233 {
8234 struct cfs_rq *cfs_rq;
8235 struct sched_entity *se;
8236 struct rq *rq;
8237 int i;
8238
8239 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8240 if (!tg->cfs_rq)
8241 goto err;
8242 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8243 if (!tg->se)
8244 goto err;
8245
8246 tg->shares = NICE_0_LOAD;
8247
8248 for_each_possible_cpu(i) {
8249 rq = cpu_rq(i);
8250
8251 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8252 GFP_KERNEL, cpu_to_node(i));
8253 if (!cfs_rq)
8254 goto err;
8255
8256 se = kzalloc_node(sizeof(struct sched_entity),
8257 GFP_KERNEL, cpu_to_node(i));
8258 if (!se)
8259 goto err_free_rq;
8260
8261 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8262 }
8263
8264 return 1;
8265
8266 err_free_rq:
8267 kfree(cfs_rq);
8268 err:
8269 return 0;
8270 }
8271
8272 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8273 {
8274 struct rq *rq = cpu_rq(cpu);
8275 unsigned long flags;
8276
8277 /*
8278 * Only empty task groups can be destroyed; so we can speculatively
8279 * check on_list without danger of it being re-added.
8280 */
8281 if (!tg->cfs_rq[cpu]->on_list)
8282 return;
8283
8284 raw_spin_lock_irqsave(&rq->lock, flags);
8285 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8286 raw_spin_unlock_irqrestore(&rq->lock, flags);
8287 }
8288 #else /* !CONFG_FAIR_GROUP_SCHED */
8289 static inline void free_fair_sched_group(struct task_group *tg)
8290 {
8291 }
8292
8293 static inline
8294 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8295 {
8296 return 1;
8297 }
8298
8299 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8300 {
8301 }
8302 #endif /* CONFIG_FAIR_GROUP_SCHED */
8303
8304 #ifdef CONFIG_RT_GROUP_SCHED
8305 static void free_rt_sched_group(struct task_group *tg)
8306 {
8307 int i;
8308
8309 destroy_rt_bandwidth(&tg->rt_bandwidth);
8310
8311 for_each_possible_cpu(i) {
8312 if (tg->rt_rq)
8313 kfree(tg->rt_rq[i]);
8314 if (tg->rt_se)
8315 kfree(tg->rt_se[i]);
8316 }
8317
8318 kfree(tg->rt_rq);
8319 kfree(tg->rt_se);
8320 }
8321
8322 static
8323 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8324 {
8325 struct rt_rq *rt_rq;
8326 struct sched_rt_entity *rt_se;
8327 struct rq *rq;
8328 int i;
8329
8330 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8331 if (!tg->rt_rq)
8332 goto err;
8333 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8334 if (!tg->rt_se)
8335 goto err;
8336
8337 init_rt_bandwidth(&tg->rt_bandwidth,
8338 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8339
8340 for_each_possible_cpu(i) {
8341 rq = cpu_rq(i);
8342
8343 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8344 GFP_KERNEL, cpu_to_node(i));
8345 if (!rt_rq)
8346 goto err;
8347
8348 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8349 GFP_KERNEL, cpu_to_node(i));
8350 if (!rt_se)
8351 goto err_free_rq;
8352
8353 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8354 }
8355
8356 return 1;
8357
8358 err_free_rq:
8359 kfree(rt_rq);
8360 err:
8361 return 0;
8362 }
8363 #else /* !CONFIG_RT_GROUP_SCHED */
8364 static inline void free_rt_sched_group(struct task_group *tg)
8365 {
8366 }
8367
8368 static inline
8369 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8370 {
8371 return 1;
8372 }
8373 #endif /* CONFIG_RT_GROUP_SCHED */
8374
8375 #ifdef CONFIG_CGROUP_SCHED
8376 static void free_sched_group(struct task_group *tg)
8377 {
8378 free_fair_sched_group(tg);
8379 free_rt_sched_group(tg);
8380 autogroup_free(tg);
8381 kfree(tg);
8382 }
8383
8384 /* allocate runqueue etc for a new task group */
8385 struct task_group *sched_create_group(struct task_group *parent)
8386 {
8387 struct task_group *tg;
8388 unsigned long flags;
8389
8390 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8391 if (!tg)
8392 return ERR_PTR(-ENOMEM);
8393
8394 if (!alloc_fair_sched_group(tg, parent))
8395 goto err;
8396
8397 if (!alloc_rt_sched_group(tg, parent))
8398 goto err;
8399
8400 spin_lock_irqsave(&task_group_lock, flags);
8401 list_add_rcu(&tg->list, &task_groups);
8402
8403 WARN_ON(!parent); /* root should already exist */
8404
8405 tg->parent = parent;
8406 INIT_LIST_HEAD(&tg->children);
8407 list_add_rcu(&tg->siblings, &parent->children);
8408 spin_unlock_irqrestore(&task_group_lock, flags);
8409
8410 return tg;
8411
8412 err:
8413 free_sched_group(tg);
8414 return ERR_PTR(-ENOMEM);
8415 }
8416
8417 /* rcu callback to free various structures associated with a task group */
8418 static void free_sched_group_rcu(struct rcu_head *rhp)
8419 {
8420 /* now it should be safe to free those cfs_rqs */
8421 free_sched_group(container_of(rhp, struct task_group, rcu));
8422 }
8423
8424 /* Destroy runqueue etc associated with a task group */
8425 void sched_destroy_group(struct task_group *tg)
8426 {
8427 unsigned long flags;
8428 int i;
8429
8430 /* end participation in shares distribution */
8431 for_each_possible_cpu(i)
8432 unregister_fair_sched_group(tg, i);
8433
8434 spin_lock_irqsave(&task_group_lock, flags);
8435 list_del_rcu(&tg->list);
8436 list_del_rcu(&tg->siblings);
8437 spin_unlock_irqrestore(&task_group_lock, flags);
8438
8439 /* wait for possible concurrent references to cfs_rqs complete */
8440 call_rcu(&tg->rcu, free_sched_group_rcu);
8441 }
8442
8443 /* change task's runqueue when it moves between groups.
8444 * The caller of this function should have put the task in its new group
8445 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8446 * reflect its new group.
8447 */
8448 void sched_move_task(struct task_struct *tsk)
8449 {
8450 int on_rq, running;
8451 unsigned long flags;
8452 struct rq *rq;
8453
8454 rq = task_rq_lock(tsk, &flags);
8455
8456 running = task_current(rq, tsk);
8457 on_rq = tsk->se.on_rq;
8458
8459 if (on_rq)
8460 dequeue_task(rq, tsk, 0);
8461 if (unlikely(running))
8462 tsk->sched_class->put_prev_task(rq, tsk);
8463
8464 #ifdef CONFIG_FAIR_GROUP_SCHED
8465 if (tsk->sched_class->task_move_group)
8466 tsk->sched_class->task_move_group(tsk, on_rq);
8467 else
8468 #endif
8469 set_task_rq(tsk, task_cpu(tsk));
8470
8471 if (unlikely(running))
8472 tsk->sched_class->set_curr_task(rq);
8473 if (on_rq)
8474 enqueue_task(rq, tsk, 0);
8475
8476 task_rq_unlock(rq, &flags);
8477 }
8478 #endif /* CONFIG_CGROUP_SCHED */
8479
8480 #ifdef CONFIG_FAIR_GROUP_SCHED
8481 static DEFINE_MUTEX(shares_mutex);
8482
8483 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8484 {
8485 int i;
8486 unsigned long flags;
8487
8488 /*
8489 * We can't change the weight of the root cgroup.
8490 */
8491 if (!tg->se[0])
8492 return -EINVAL;
8493
8494 if (shares < MIN_SHARES)
8495 shares = MIN_SHARES;
8496 else if (shares > MAX_SHARES)
8497 shares = MAX_SHARES;
8498
8499 mutex_lock(&shares_mutex);
8500 if (tg->shares == shares)
8501 goto done;
8502
8503 tg->shares = shares;
8504 for_each_possible_cpu(i) {
8505 struct rq *rq = cpu_rq(i);
8506 struct sched_entity *se;
8507
8508 se = tg->se[i];
8509 /* Propagate contribution to hierarchy */
8510 raw_spin_lock_irqsave(&rq->lock, flags);
8511 for_each_sched_entity(se)
8512 update_cfs_shares(group_cfs_rq(se), 0);
8513 raw_spin_unlock_irqrestore(&rq->lock, flags);
8514 }
8515
8516 done:
8517 mutex_unlock(&shares_mutex);
8518 return 0;
8519 }
8520
8521 unsigned long sched_group_shares(struct task_group *tg)
8522 {
8523 return tg->shares;
8524 }
8525 #endif
8526
8527 #ifdef CONFIG_RT_GROUP_SCHED
8528 /*
8529 * Ensure that the real time constraints are schedulable.
8530 */
8531 static DEFINE_MUTEX(rt_constraints_mutex);
8532
8533 static unsigned long to_ratio(u64 period, u64 runtime)
8534 {
8535 if (runtime == RUNTIME_INF)
8536 return 1ULL << 20;
8537
8538 return div64_u64(runtime << 20, period);
8539 }
8540
8541 /* Must be called with tasklist_lock held */
8542 static inline int tg_has_rt_tasks(struct task_group *tg)
8543 {
8544 struct task_struct *g, *p;
8545
8546 do_each_thread(g, p) {
8547 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8548 return 1;
8549 } while_each_thread(g, p);
8550
8551 return 0;
8552 }
8553
8554 struct rt_schedulable_data {
8555 struct task_group *tg;
8556 u64 rt_period;
8557 u64 rt_runtime;
8558 };
8559
8560 static int tg_schedulable(struct task_group *tg, void *data)
8561 {
8562 struct rt_schedulable_data *d = data;
8563 struct task_group *child;
8564 unsigned long total, sum = 0;
8565 u64 period, runtime;
8566
8567 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8568 runtime = tg->rt_bandwidth.rt_runtime;
8569
8570 if (tg == d->tg) {
8571 period = d->rt_period;
8572 runtime = d->rt_runtime;
8573 }
8574
8575 /*
8576 * Cannot have more runtime than the period.
8577 */
8578 if (runtime > period && runtime != RUNTIME_INF)
8579 return -EINVAL;
8580
8581 /*
8582 * Ensure we don't starve existing RT tasks.
8583 */
8584 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8585 return -EBUSY;
8586
8587 total = to_ratio(period, runtime);
8588
8589 /*
8590 * Nobody can have more than the global setting allows.
8591 */
8592 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8593 return -EINVAL;
8594
8595 /*
8596 * The sum of our children's runtime should not exceed our own.
8597 */
8598 list_for_each_entry_rcu(child, &tg->children, siblings) {
8599 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8600 runtime = child->rt_bandwidth.rt_runtime;
8601
8602 if (child == d->tg) {
8603 period = d->rt_period;
8604 runtime = d->rt_runtime;
8605 }
8606
8607 sum += to_ratio(period, runtime);
8608 }
8609
8610 if (sum > total)
8611 return -EINVAL;
8612
8613 return 0;
8614 }
8615
8616 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8617 {
8618 struct rt_schedulable_data data = {
8619 .tg = tg,
8620 .rt_period = period,
8621 .rt_runtime = runtime,
8622 };
8623
8624 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8625 }
8626
8627 static int tg_set_bandwidth(struct task_group *tg,
8628 u64 rt_period, u64 rt_runtime)
8629 {
8630 int i, err = 0;
8631
8632 mutex_lock(&rt_constraints_mutex);
8633 read_lock(&tasklist_lock);
8634 err = __rt_schedulable(tg, rt_period, rt_runtime);
8635 if (err)
8636 goto unlock;
8637
8638 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8639 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8640 tg->rt_bandwidth.rt_runtime = rt_runtime;
8641
8642 for_each_possible_cpu(i) {
8643 struct rt_rq *rt_rq = tg->rt_rq[i];
8644
8645 raw_spin_lock(&rt_rq->rt_runtime_lock);
8646 rt_rq->rt_runtime = rt_runtime;
8647 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8648 }
8649 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8650 unlock:
8651 read_unlock(&tasklist_lock);
8652 mutex_unlock(&rt_constraints_mutex);
8653
8654 return err;
8655 }
8656
8657 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8658 {
8659 u64 rt_runtime, rt_period;
8660
8661 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8662 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8663 if (rt_runtime_us < 0)
8664 rt_runtime = RUNTIME_INF;
8665
8666 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8667 }
8668
8669 long sched_group_rt_runtime(struct task_group *tg)
8670 {
8671 u64 rt_runtime_us;
8672
8673 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8674 return -1;
8675
8676 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8677 do_div(rt_runtime_us, NSEC_PER_USEC);
8678 return rt_runtime_us;
8679 }
8680
8681 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8682 {
8683 u64 rt_runtime, rt_period;
8684
8685 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8686 rt_runtime = tg->rt_bandwidth.rt_runtime;
8687
8688 if (rt_period == 0)
8689 return -EINVAL;
8690
8691 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8692 }
8693
8694 long sched_group_rt_period(struct task_group *tg)
8695 {
8696 u64 rt_period_us;
8697
8698 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8699 do_div(rt_period_us, NSEC_PER_USEC);
8700 return rt_period_us;
8701 }
8702
8703 static int sched_rt_global_constraints(void)
8704 {
8705 u64 runtime, period;
8706 int ret = 0;
8707
8708 if (sysctl_sched_rt_period <= 0)
8709 return -EINVAL;
8710
8711 runtime = global_rt_runtime();
8712 period = global_rt_period();
8713
8714 /*
8715 * Sanity check on the sysctl variables.
8716 */
8717 if (runtime > period && runtime != RUNTIME_INF)
8718 return -EINVAL;
8719
8720 mutex_lock(&rt_constraints_mutex);
8721 read_lock(&tasklist_lock);
8722 ret = __rt_schedulable(NULL, 0, 0);
8723 read_unlock(&tasklist_lock);
8724 mutex_unlock(&rt_constraints_mutex);
8725
8726 return ret;
8727 }
8728
8729 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8730 {
8731 /* Don't accept realtime tasks when there is no way for them to run */
8732 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8733 return 0;
8734
8735 return 1;
8736 }
8737
8738 #else /* !CONFIG_RT_GROUP_SCHED */
8739 static int sched_rt_global_constraints(void)
8740 {
8741 unsigned long flags;
8742 int i;
8743
8744 if (sysctl_sched_rt_period <= 0)
8745 return -EINVAL;
8746
8747 /*
8748 * There's always some RT tasks in the root group
8749 * -- migration, kstopmachine etc..
8750 */
8751 if (sysctl_sched_rt_runtime == 0)
8752 return -EBUSY;
8753
8754 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8755 for_each_possible_cpu(i) {
8756 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8757
8758 raw_spin_lock(&rt_rq->rt_runtime_lock);
8759 rt_rq->rt_runtime = global_rt_runtime();
8760 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8761 }
8762 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8763
8764 return 0;
8765 }
8766 #endif /* CONFIG_RT_GROUP_SCHED */
8767
8768 int sched_rt_handler(struct ctl_table *table, int write,
8769 void __user *buffer, size_t *lenp,
8770 loff_t *ppos)
8771 {
8772 int ret;
8773 int old_period, old_runtime;
8774 static DEFINE_MUTEX(mutex);
8775
8776 mutex_lock(&mutex);
8777 old_period = sysctl_sched_rt_period;
8778 old_runtime = sysctl_sched_rt_runtime;
8779
8780 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8781
8782 if (!ret && write) {
8783 ret = sched_rt_global_constraints();
8784 if (ret) {
8785 sysctl_sched_rt_period = old_period;
8786 sysctl_sched_rt_runtime = old_runtime;
8787 } else {
8788 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8789 def_rt_bandwidth.rt_period =
8790 ns_to_ktime(global_rt_period());
8791 }
8792 }
8793 mutex_unlock(&mutex);
8794
8795 return ret;
8796 }
8797
8798 #ifdef CONFIG_CGROUP_SCHED
8799
8800 /* return corresponding task_group object of a cgroup */
8801 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8802 {
8803 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8804 struct task_group, css);
8805 }
8806
8807 static struct cgroup_subsys_state *
8808 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8809 {
8810 struct task_group *tg, *parent;
8811
8812 if (!cgrp->parent) {
8813 /* This is early initialization for the top cgroup */
8814 return &root_task_group.css;
8815 }
8816
8817 parent = cgroup_tg(cgrp->parent);
8818 tg = sched_create_group(parent);
8819 if (IS_ERR(tg))
8820 return ERR_PTR(-ENOMEM);
8821
8822 return &tg->css;
8823 }
8824
8825 static void
8826 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8827 {
8828 struct task_group *tg = cgroup_tg(cgrp);
8829
8830 sched_destroy_group(tg);
8831 }
8832
8833 static int
8834 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8835 {
8836 #ifdef CONFIG_RT_GROUP_SCHED
8837 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8838 return -EINVAL;
8839 #else
8840 /* We don't support RT-tasks being in separate groups */
8841 if (tsk->sched_class != &fair_sched_class)
8842 return -EINVAL;
8843 #endif
8844 return 0;
8845 }
8846
8847 static int
8848 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8849 struct task_struct *tsk, bool threadgroup)
8850 {
8851 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8852 if (retval)
8853 return retval;
8854 if (threadgroup) {
8855 struct task_struct *c;
8856 rcu_read_lock();
8857 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8858 retval = cpu_cgroup_can_attach_task(cgrp, c);
8859 if (retval) {
8860 rcu_read_unlock();
8861 return retval;
8862 }
8863 }
8864 rcu_read_unlock();
8865 }
8866 return 0;
8867 }
8868
8869 static void
8870 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8871 struct cgroup *old_cont, struct task_struct *tsk,
8872 bool threadgroup)
8873 {
8874 sched_move_task(tsk);
8875 if (threadgroup) {
8876 struct task_struct *c;
8877 rcu_read_lock();
8878 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8879 sched_move_task(c);
8880 }
8881 rcu_read_unlock();
8882 }
8883 }
8884
8885 #ifdef CONFIG_FAIR_GROUP_SCHED
8886 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8887 u64 shareval)
8888 {
8889 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8890 }
8891
8892 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8893 {
8894 struct task_group *tg = cgroup_tg(cgrp);
8895
8896 return (u64) tg->shares;
8897 }
8898 #endif /* CONFIG_FAIR_GROUP_SCHED */
8899
8900 #ifdef CONFIG_RT_GROUP_SCHED
8901 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8902 s64 val)
8903 {
8904 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8905 }
8906
8907 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8908 {
8909 return sched_group_rt_runtime(cgroup_tg(cgrp));
8910 }
8911
8912 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8913 u64 rt_period_us)
8914 {
8915 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8916 }
8917
8918 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8919 {
8920 return sched_group_rt_period(cgroup_tg(cgrp));
8921 }
8922 #endif /* CONFIG_RT_GROUP_SCHED */
8923
8924 static struct cftype cpu_files[] = {
8925 #ifdef CONFIG_FAIR_GROUP_SCHED
8926 {
8927 .name = "shares",
8928 .read_u64 = cpu_shares_read_u64,
8929 .write_u64 = cpu_shares_write_u64,
8930 },
8931 #endif
8932 #ifdef CONFIG_RT_GROUP_SCHED
8933 {
8934 .name = "rt_runtime_us",
8935 .read_s64 = cpu_rt_runtime_read,
8936 .write_s64 = cpu_rt_runtime_write,
8937 },
8938 {
8939 .name = "rt_period_us",
8940 .read_u64 = cpu_rt_period_read_uint,
8941 .write_u64 = cpu_rt_period_write_uint,
8942 },
8943 #endif
8944 };
8945
8946 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8947 {
8948 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8949 }
8950
8951 struct cgroup_subsys cpu_cgroup_subsys = {
8952 .name = "cpu",
8953 .create = cpu_cgroup_create,
8954 .destroy = cpu_cgroup_destroy,
8955 .can_attach = cpu_cgroup_can_attach,
8956 .attach = cpu_cgroup_attach,
8957 .populate = cpu_cgroup_populate,
8958 .subsys_id = cpu_cgroup_subsys_id,
8959 .early_init = 1,
8960 };
8961
8962 #endif /* CONFIG_CGROUP_SCHED */
8963
8964 #ifdef CONFIG_CGROUP_CPUACCT
8965
8966 /*
8967 * CPU accounting code for task groups.
8968 *
8969 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8970 * (balbir@in.ibm.com).
8971 */
8972
8973 /* track cpu usage of a group of tasks and its child groups */
8974 struct cpuacct {
8975 struct cgroup_subsys_state css;
8976 /* cpuusage holds pointer to a u64-type object on every cpu */
8977 u64 __percpu *cpuusage;
8978 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8979 struct cpuacct *parent;
8980 };
8981
8982 struct cgroup_subsys cpuacct_subsys;
8983
8984 /* return cpu accounting group corresponding to this container */
8985 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8986 {
8987 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8988 struct cpuacct, css);
8989 }
8990
8991 /* return cpu accounting group to which this task belongs */
8992 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8993 {
8994 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8995 struct cpuacct, css);
8996 }
8997
8998 /* create a new cpu accounting group */
8999 static struct cgroup_subsys_state *cpuacct_create(
9000 struct cgroup_subsys *ss, struct cgroup *cgrp)
9001 {
9002 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9003 int i;
9004
9005 if (!ca)
9006 goto out;
9007
9008 ca->cpuusage = alloc_percpu(u64);
9009 if (!ca->cpuusage)
9010 goto out_free_ca;
9011
9012 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9013 if (percpu_counter_init(&ca->cpustat[i], 0))
9014 goto out_free_counters;
9015
9016 if (cgrp->parent)
9017 ca->parent = cgroup_ca(cgrp->parent);
9018
9019 return &ca->css;
9020
9021 out_free_counters:
9022 while (--i >= 0)
9023 percpu_counter_destroy(&ca->cpustat[i]);
9024 free_percpu(ca->cpuusage);
9025 out_free_ca:
9026 kfree(ca);
9027 out:
9028 return ERR_PTR(-ENOMEM);
9029 }
9030
9031 /* destroy an existing cpu accounting group */
9032 static void
9033 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9034 {
9035 struct cpuacct *ca = cgroup_ca(cgrp);
9036 int i;
9037
9038 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9039 percpu_counter_destroy(&ca->cpustat[i]);
9040 free_percpu(ca->cpuusage);
9041 kfree(ca);
9042 }
9043
9044 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9045 {
9046 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9047 u64 data;
9048
9049 #ifndef CONFIG_64BIT
9050 /*
9051 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9052 */
9053 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9054 data = *cpuusage;
9055 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9056 #else
9057 data = *cpuusage;
9058 #endif
9059
9060 return data;
9061 }
9062
9063 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9064 {
9065 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9066
9067 #ifndef CONFIG_64BIT
9068 /*
9069 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9070 */
9071 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9072 *cpuusage = val;
9073 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9074 #else
9075 *cpuusage = val;
9076 #endif
9077 }
9078
9079 /* return total cpu usage (in nanoseconds) of a group */
9080 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9081 {
9082 struct cpuacct *ca = cgroup_ca(cgrp);
9083 u64 totalcpuusage = 0;
9084 int i;
9085
9086 for_each_present_cpu(i)
9087 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9088
9089 return totalcpuusage;
9090 }
9091
9092 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9093 u64 reset)
9094 {
9095 struct cpuacct *ca = cgroup_ca(cgrp);
9096 int err = 0;
9097 int i;
9098
9099 if (reset) {
9100 err = -EINVAL;
9101 goto out;
9102 }
9103
9104 for_each_present_cpu(i)
9105 cpuacct_cpuusage_write(ca, i, 0);
9106
9107 out:
9108 return err;
9109 }
9110
9111 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9112 struct seq_file *m)
9113 {
9114 struct cpuacct *ca = cgroup_ca(cgroup);
9115 u64 percpu;
9116 int i;
9117
9118 for_each_present_cpu(i) {
9119 percpu = cpuacct_cpuusage_read(ca, i);
9120 seq_printf(m, "%llu ", (unsigned long long) percpu);
9121 }
9122 seq_printf(m, "\n");
9123 return 0;
9124 }
9125
9126 static const char *cpuacct_stat_desc[] = {
9127 [CPUACCT_STAT_USER] = "user",
9128 [CPUACCT_STAT_SYSTEM] = "system",
9129 };
9130
9131 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9132 struct cgroup_map_cb *cb)
9133 {
9134 struct cpuacct *ca = cgroup_ca(cgrp);
9135 int i;
9136
9137 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9138 s64 val = percpu_counter_read(&ca->cpustat[i]);
9139 val = cputime64_to_clock_t(val);
9140 cb->fill(cb, cpuacct_stat_desc[i], val);
9141 }
9142 return 0;
9143 }
9144
9145 static struct cftype files[] = {
9146 {
9147 .name = "usage",
9148 .read_u64 = cpuusage_read,
9149 .write_u64 = cpuusage_write,
9150 },
9151 {
9152 .name = "usage_percpu",
9153 .read_seq_string = cpuacct_percpu_seq_read,
9154 },
9155 {
9156 .name = "stat",
9157 .read_map = cpuacct_stats_show,
9158 },
9159 };
9160
9161 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9162 {
9163 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9164 }
9165
9166 /*
9167 * charge this task's execution time to its accounting group.
9168 *
9169 * called with rq->lock held.
9170 */
9171 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9172 {
9173 struct cpuacct *ca;
9174 int cpu;
9175
9176 if (unlikely(!cpuacct_subsys.active))
9177 return;
9178
9179 cpu = task_cpu(tsk);
9180
9181 rcu_read_lock();
9182
9183 ca = task_ca(tsk);
9184
9185 for (; ca; ca = ca->parent) {
9186 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9187 *cpuusage += cputime;
9188 }
9189
9190 rcu_read_unlock();
9191 }
9192
9193 /*
9194 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9195 * in cputime_t units. As a result, cpuacct_update_stats calls
9196 * percpu_counter_add with values large enough to always overflow the
9197 * per cpu batch limit causing bad SMP scalability.
9198 *
9199 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9200 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9201 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9202 */
9203 #ifdef CONFIG_SMP
9204 #define CPUACCT_BATCH \
9205 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9206 #else
9207 #define CPUACCT_BATCH 0
9208 #endif
9209
9210 /*
9211 * Charge the system/user time to the task's accounting group.
9212 */
9213 static void cpuacct_update_stats(struct task_struct *tsk,
9214 enum cpuacct_stat_index idx, cputime_t val)
9215 {
9216 struct cpuacct *ca;
9217 int batch = CPUACCT_BATCH;
9218
9219 if (unlikely(!cpuacct_subsys.active))
9220 return;
9221
9222 rcu_read_lock();
9223 ca = task_ca(tsk);
9224
9225 do {
9226 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9227 ca = ca->parent;
9228 } while (ca);
9229 rcu_read_unlock();
9230 }
9231
9232 struct cgroup_subsys cpuacct_subsys = {
9233 .name = "cpuacct",
9234 .create = cpuacct_create,
9235 .destroy = cpuacct_destroy,
9236 .populate = cpuacct_populate,
9237 .subsys_id = cpuacct_subsys_id,
9238 };
9239 #endif /* CONFIG_CGROUP_CPUACCT */
9240