]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - kernel/sched.c
sched: Reorder root_domain to remove 64 bit alignment padding
[mirror_ubuntu-eoan-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
85
86 /*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95 /*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104 /*
105 * Helpers for converting nanosecond timing to jiffy resolution
106 */
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
112 /*
113 * These are the 'tuning knobs' of the scheduler:
114 *
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
117 */
118 #define DEF_TIMESLICE (100 * HZ / 1000)
119
120 /*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123 #define RUNTIME_INF ((u64)~0ULL)
124
125 static inline int rt_policy(int policy)
126 {
127 if (policy == SCHED_FIFO || policy == SCHED_RR)
128 return 1;
129 return 0;
130 }
131
132 static inline int task_has_rt_policy(struct task_struct *p)
133 {
134 return rt_policy(p->policy);
135 }
136
137 /*
138 * This is the priority-queue data structure of the RT scheduling class:
139 */
140 struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143 };
144
145 struct rt_bandwidth {
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock;
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
151 };
152
153 static struct rt_bandwidth def_rt_bandwidth;
154
155 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158 {
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176 }
177
178 static
179 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180 {
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
185
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
189 }
190
191 static inline int rt_bandwidth_enabled(void)
192 {
193 return sysctl_sched_rt_runtime >= 0;
194 }
195
196 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197 {
198 ktime_t now;
199
200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
206 raw_spin_lock(&rt_b->rt_runtime_lock);
207 for (;;) {
208 unsigned long delta;
209 ktime_t soft, hard;
210
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221 HRTIMER_MODE_ABS_PINNED, 0);
222 }
223 raw_spin_unlock(&rt_b->rt_runtime_lock);
224 }
225
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228 {
229 hrtimer_cancel(&rt_b->rt_period_timer);
230 }
231 #endif
232
233 /*
234 * sched_domains_mutex serializes calls to init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237 static DEFINE_MUTEX(sched_domains_mutex);
238
239 #ifdef CONFIG_CGROUP_SCHED
240
241 #include <linux/cgroup.h>
242
243 struct cfs_rq;
244
245 static LIST_HEAD(task_groups);
246
247 /* task group related information */
248 struct task_group {
249 struct cgroup_subsys_state css;
250
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
257
258 atomic_t load_weight;
259 #endif
260
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
265 struct rt_bandwidth rt_bandwidth;
266 #endif
267
268 struct rcu_head rcu;
269 struct list_head list;
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
274
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277 #endif
278 };
279
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock);
282
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
286
287 /*
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
295 #define MIN_SHARES (1UL << 1)
296 #define MAX_SHARES (1UL << 18)
297
298 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
299 #endif
300
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
303 */
304 struct task_group root_task_group;
305
306 #endif /* CONFIG_CGROUP_SCHED */
307
308 /* CFS-related fields in a runqueue */
309 struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
313 u64 exec_clock;
314 u64 min_vruntime;
315 #ifndef CONFIG_64BIT
316 u64 min_vruntime_copy;
317 #endif
318
319 struct rb_root tasks_timeline;
320 struct rb_node *rb_leftmost;
321
322 struct list_head tasks;
323 struct list_head *balance_iterator;
324
325 /*
326 * 'curr' points to currently running entity on this cfs_rq.
327 * It is set to NULL otherwise (i.e when none are currently running).
328 */
329 struct sched_entity *curr, *next, *last, *skip;
330
331 #ifdef CONFIG_SCHED_DEBUG
332 unsigned int nr_spread_over;
333 #endif
334
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
337
338 /*
339 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
340 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
341 * (like users, containers etc.)
342 *
343 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
344 * list is used during load balance.
345 */
346 int on_list;
347 struct list_head leaf_cfs_rq_list;
348 struct task_group *tg; /* group that "owns" this runqueue */
349
350 #ifdef CONFIG_SMP
351 /*
352 * the part of load.weight contributed by tasks
353 */
354 unsigned long task_weight;
355
356 /*
357 * h_load = weight * f(tg)
358 *
359 * Where f(tg) is the recursive weight fraction assigned to
360 * this group.
361 */
362 unsigned long h_load;
363
364 /*
365 * Maintaining per-cpu shares distribution for group scheduling
366 *
367 * load_stamp is the last time we updated the load average
368 * load_last is the last time we updated the load average and saw load
369 * load_unacc_exec_time is currently unaccounted execution time
370 */
371 u64 load_avg;
372 u64 load_period;
373 u64 load_stamp, load_last, load_unacc_exec_time;
374
375 unsigned long load_contribution;
376 #endif
377 #endif
378 };
379
380 /* Real-Time classes' related field in a runqueue: */
381 struct rt_rq {
382 struct rt_prio_array active;
383 unsigned long rt_nr_running;
384 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
385 struct {
386 int curr; /* highest queued rt task prio */
387 #ifdef CONFIG_SMP
388 int next; /* next highest */
389 #endif
390 } highest_prio;
391 #endif
392 #ifdef CONFIG_SMP
393 unsigned long rt_nr_migratory;
394 unsigned long rt_nr_total;
395 int overloaded;
396 struct plist_head pushable_tasks;
397 #endif
398 int rt_throttled;
399 u64 rt_time;
400 u64 rt_runtime;
401 /* Nests inside the rq lock: */
402 raw_spinlock_t rt_runtime_lock;
403
404 #ifdef CONFIG_RT_GROUP_SCHED
405 unsigned long rt_nr_boosted;
406
407 struct rq *rq;
408 struct list_head leaf_rt_rq_list;
409 struct task_group *tg;
410 #endif
411 };
412
413 #ifdef CONFIG_SMP
414
415 /*
416 * We add the notion of a root-domain which will be used to define per-domain
417 * variables. Each exclusive cpuset essentially defines an island domain by
418 * fully partitioning the member cpus from any other cpuset. Whenever a new
419 * exclusive cpuset is created, we also create and attach a new root-domain
420 * object.
421 *
422 */
423 struct root_domain {
424 atomic_t refcount;
425 atomic_t rto_count;
426 struct rcu_head rcu;
427 cpumask_var_t span;
428 cpumask_var_t online;
429
430 /*
431 * The "RT overload" flag: it gets set if a CPU has more than
432 * one runnable RT task.
433 */
434 cpumask_var_t rto_mask;
435 struct cpupri cpupri;
436 };
437
438 /*
439 * By default the system creates a single root-domain with all cpus as
440 * members (mimicking the global state we have today).
441 */
442 static struct root_domain def_root_domain;
443
444 #endif /* CONFIG_SMP */
445
446 /*
447 * This is the main, per-CPU runqueue data structure.
448 *
449 * Locking rule: those places that want to lock multiple runqueues
450 * (such as the load balancing or the thread migration code), lock
451 * acquire operations must be ordered by ascending &runqueue.
452 */
453 struct rq {
454 /* runqueue lock: */
455 raw_spinlock_t lock;
456
457 /*
458 * nr_running and cpu_load should be in the same cacheline because
459 * remote CPUs use both these fields when doing load calculation.
460 */
461 unsigned long nr_running;
462 #define CPU_LOAD_IDX_MAX 5
463 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
464 unsigned long last_load_update_tick;
465 #ifdef CONFIG_NO_HZ
466 u64 nohz_stamp;
467 unsigned char nohz_balance_kick;
468 #endif
469 int skip_clock_update;
470
471 /* capture load from *all* tasks on this cpu: */
472 struct load_weight load;
473 unsigned long nr_load_updates;
474 u64 nr_switches;
475
476 struct cfs_rq cfs;
477 struct rt_rq rt;
478
479 #ifdef CONFIG_FAIR_GROUP_SCHED
480 /* list of leaf cfs_rq on this cpu: */
481 struct list_head leaf_cfs_rq_list;
482 #endif
483 #ifdef CONFIG_RT_GROUP_SCHED
484 struct list_head leaf_rt_rq_list;
485 #endif
486
487 /*
488 * This is part of a global counter where only the total sum
489 * over all CPUs matters. A task can increase this counter on
490 * one CPU and if it got migrated afterwards it may decrease
491 * it on another CPU. Always updated under the runqueue lock:
492 */
493 unsigned long nr_uninterruptible;
494
495 struct task_struct *curr, *idle, *stop;
496 unsigned long next_balance;
497 struct mm_struct *prev_mm;
498
499 u64 clock;
500 u64 clock_task;
501
502 atomic_t nr_iowait;
503
504 #ifdef CONFIG_SMP
505 struct root_domain *rd;
506 struct sched_domain *sd;
507
508 unsigned long cpu_power;
509
510 unsigned char idle_at_tick;
511 /* For active balancing */
512 int post_schedule;
513 int active_balance;
514 int push_cpu;
515 struct cpu_stop_work active_balance_work;
516 /* cpu of this runqueue: */
517 int cpu;
518 int online;
519
520 unsigned long avg_load_per_task;
521
522 u64 rt_avg;
523 u64 age_stamp;
524 u64 idle_stamp;
525 u64 avg_idle;
526 #endif
527
528 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
529 u64 prev_irq_time;
530 #endif
531
532 /* calc_load related fields */
533 unsigned long calc_load_update;
534 long calc_load_active;
535
536 #ifdef CONFIG_SCHED_HRTICK
537 #ifdef CONFIG_SMP
538 int hrtick_csd_pending;
539 struct call_single_data hrtick_csd;
540 #endif
541 struct hrtimer hrtick_timer;
542 #endif
543
544 #ifdef CONFIG_SCHEDSTATS
545 /* latency stats */
546 struct sched_info rq_sched_info;
547 unsigned long long rq_cpu_time;
548 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
549
550 /* sys_sched_yield() stats */
551 unsigned int yld_count;
552
553 /* schedule() stats */
554 unsigned int sched_switch;
555 unsigned int sched_count;
556 unsigned int sched_goidle;
557
558 /* try_to_wake_up() stats */
559 unsigned int ttwu_count;
560 unsigned int ttwu_local;
561 #endif
562
563 #ifdef CONFIG_SMP
564 struct task_struct *wake_list;
565 #endif
566 };
567
568 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
569
570
571 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
572
573 static inline int cpu_of(struct rq *rq)
574 {
575 #ifdef CONFIG_SMP
576 return rq->cpu;
577 #else
578 return 0;
579 #endif
580 }
581
582 #define rcu_dereference_check_sched_domain(p) \
583 rcu_dereference_check((p), \
584 rcu_read_lock_held() || \
585 lockdep_is_held(&sched_domains_mutex))
586
587 /*
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589 * See detach_destroy_domains: synchronize_sched for details.
590 *
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
593 */
594 #define for_each_domain(cpu, __sd) \
595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
596
597 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598 #define this_rq() (&__get_cpu_var(runqueues))
599 #define task_rq(p) cpu_rq(task_cpu(p))
600 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
601 #define raw_rq() (&__raw_get_cpu_var(runqueues))
602
603 #ifdef CONFIG_CGROUP_SCHED
604
605 /*
606 * Return the group to which this tasks belongs.
607 *
608 * We use task_subsys_state_check() and extend the RCU verification with
609 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
610 * task it moves into the cgroup. Therefore by holding either of those locks,
611 * we pin the task to the current cgroup.
612 */
613 static inline struct task_group *task_group(struct task_struct *p)
614 {
615 struct task_group *tg;
616 struct cgroup_subsys_state *css;
617
618 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
619 lockdep_is_held(&p->pi_lock) ||
620 lockdep_is_held(&task_rq(p)->lock));
621 tg = container_of(css, struct task_group, css);
622
623 return autogroup_task_group(p, tg);
624 }
625
626 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
627 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
628 {
629 #ifdef CONFIG_FAIR_GROUP_SCHED
630 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
631 p->se.parent = task_group(p)->se[cpu];
632 #endif
633
634 #ifdef CONFIG_RT_GROUP_SCHED
635 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
636 p->rt.parent = task_group(p)->rt_se[cpu];
637 #endif
638 }
639
640 #else /* CONFIG_CGROUP_SCHED */
641
642 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
643 static inline struct task_group *task_group(struct task_struct *p)
644 {
645 return NULL;
646 }
647
648 #endif /* CONFIG_CGROUP_SCHED */
649
650 static void update_rq_clock_task(struct rq *rq, s64 delta);
651
652 static void update_rq_clock(struct rq *rq)
653 {
654 s64 delta;
655
656 if (rq->skip_clock_update > 0)
657 return;
658
659 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
660 rq->clock += delta;
661 update_rq_clock_task(rq, delta);
662 }
663
664 /*
665 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
666 */
667 #ifdef CONFIG_SCHED_DEBUG
668 # define const_debug __read_mostly
669 #else
670 # define const_debug static const
671 #endif
672
673 /**
674 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
675 * @cpu: the processor in question.
676 *
677 * This interface allows printk to be called with the runqueue lock
678 * held and know whether or not it is OK to wake up the klogd.
679 */
680 int runqueue_is_locked(int cpu)
681 {
682 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
683 }
684
685 /*
686 * Debugging: various feature bits
687 */
688
689 #define SCHED_FEAT(name, enabled) \
690 __SCHED_FEAT_##name ,
691
692 enum {
693 #include "sched_features.h"
694 };
695
696 #undef SCHED_FEAT
697
698 #define SCHED_FEAT(name, enabled) \
699 (1UL << __SCHED_FEAT_##name) * enabled |
700
701 const_debug unsigned int sysctl_sched_features =
702 #include "sched_features.h"
703 0;
704
705 #undef SCHED_FEAT
706
707 #ifdef CONFIG_SCHED_DEBUG
708 #define SCHED_FEAT(name, enabled) \
709 #name ,
710
711 static __read_mostly char *sched_feat_names[] = {
712 #include "sched_features.h"
713 NULL
714 };
715
716 #undef SCHED_FEAT
717
718 static int sched_feat_show(struct seq_file *m, void *v)
719 {
720 int i;
721
722 for (i = 0; sched_feat_names[i]; i++) {
723 if (!(sysctl_sched_features & (1UL << i)))
724 seq_puts(m, "NO_");
725 seq_printf(m, "%s ", sched_feat_names[i]);
726 }
727 seq_puts(m, "\n");
728
729 return 0;
730 }
731
732 static ssize_t
733 sched_feat_write(struct file *filp, const char __user *ubuf,
734 size_t cnt, loff_t *ppos)
735 {
736 char buf[64];
737 char *cmp;
738 int neg = 0;
739 int i;
740
741 if (cnt > 63)
742 cnt = 63;
743
744 if (copy_from_user(&buf, ubuf, cnt))
745 return -EFAULT;
746
747 buf[cnt] = 0;
748 cmp = strstrip(buf);
749
750 if (strncmp(cmp, "NO_", 3) == 0) {
751 neg = 1;
752 cmp += 3;
753 }
754
755 for (i = 0; sched_feat_names[i]; i++) {
756 if (strcmp(cmp, sched_feat_names[i]) == 0) {
757 if (neg)
758 sysctl_sched_features &= ~(1UL << i);
759 else
760 sysctl_sched_features |= (1UL << i);
761 break;
762 }
763 }
764
765 if (!sched_feat_names[i])
766 return -EINVAL;
767
768 *ppos += cnt;
769
770 return cnt;
771 }
772
773 static int sched_feat_open(struct inode *inode, struct file *filp)
774 {
775 return single_open(filp, sched_feat_show, NULL);
776 }
777
778 static const struct file_operations sched_feat_fops = {
779 .open = sched_feat_open,
780 .write = sched_feat_write,
781 .read = seq_read,
782 .llseek = seq_lseek,
783 .release = single_release,
784 };
785
786 static __init int sched_init_debug(void)
787 {
788 debugfs_create_file("sched_features", 0644, NULL, NULL,
789 &sched_feat_fops);
790
791 return 0;
792 }
793 late_initcall(sched_init_debug);
794
795 #endif
796
797 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
798
799 /*
800 * Number of tasks to iterate in a single balance run.
801 * Limited because this is done with IRQs disabled.
802 */
803 const_debug unsigned int sysctl_sched_nr_migrate = 32;
804
805 /*
806 * period over which we average the RT time consumption, measured
807 * in ms.
808 *
809 * default: 1s
810 */
811 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
812
813 /*
814 * period over which we measure -rt task cpu usage in us.
815 * default: 1s
816 */
817 unsigned int sysctl_sched_rt_period = 1000000;
818
819 static __read_mostly int scheduler_running;
820
821 /*
822 * part of the period that we allow rt tasks to run in us.
823 * default: 0.95s
824 */
825 int sysctl_sched_rt_runtime = 950000;
826
827 static inline u64 global_rt_period(void)
828 {
829 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
830 }
831
832 static inline u64 global_rt_runtime(void)
833 {
834 if (sysctl_sched_rt_runtime < 0)
835 return RUNTIME_INF;
836
837 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
838 }
839
840 #ifndef prepare_arch_switch
841 # define prepare_arch_switch(next) do { } while (0)
842 #endif
843 #ifndef finish_arch_switch
844 # define finish_arch_switch(prev) do { } while (0)
845 #endif
846
847 static inline int task_current(struct rq *rq, struct task_struct *p)
848 {
849 return rq->curr == p;
850 }
851
852 static inline int task_running(struct rq *rq, struct task_struct *p)
853 {
854 #ifdef CONFIG_SMP
855 return p->on_cpu;
856 #else
857 return task_current(rq, p);
858 #endif
859 }
860
861 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
862 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
863 {
864 #ifdef CONFIG_SMP
865 /*
866 * We can optimise this out completely for !SMP, because the
867 * SMP rebalancing from interrupt is the only thing that cares
868 * here.
869 */
870 next->on_cpu = 1;
871 #endif
872 }
873
874 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
875 {
876 #ifdef CONFIG_SMP
877 /*
878 * After ->on_cpu is cleared, the task can be moved to a different CPU.
879 * We must ensure this doesn't happen until the switch is completely
880 * finished.
881 */
882 smp_wmb();
883 prev->on_cpu = 0;
884 #endif
885 #ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888 #endif
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
896 raw_spin_unlock_irq(&rq->lock);
897 }
898
899 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
900 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
901 {
902 #ifdef CONFIG_SMP
903 /*
904 * We can optimise this out completely for !SMP, because the
905 * SMP rebalancing from interrupt is the only thing that cares
906 * here.
907 */
908 next->on_cpu = 1;
909 #endif
910 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 raw_spin_unlock_irq(&rq->lock);
912 #else
913 raw_spin_unlock(&rq->lock);
914 #endif
915 }
916
917 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
918 {
919 #ifdef CONFIG_SMP
920 /*
921 * After ->on_cpu is cleared, the task can be moved to a different CPU.
922 * We must ensure this doesn't happen until the switch is completely
923 * finished.
924 */
925 smp_wmb();
926 prev->on_cpu = 0;
927 #endif
928 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
929 local_irq_enable();
930 #endif
931 }
932 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
933
934 /*
935 * __task_rq_lock - lock the rq @p resides on.
936 */
937 static inline struct rq *__task_rq_lock(struct task_struct *p)
938 __acquires(rq->lock)
939 {
940 struct rq *rq;
941
942 lockdep_assert_held(&p->pi_lock);
943
944 for (;;) {
945 rq = task_rq(p);
946 raw_spin_lock(&rq->lock);
947 if (likely(rq == task_rq(p)))
948 return rq;
949 raw_spin_unlock(&rq->lock);
950 }
951 }
952
953 /*
954 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
955 */
956 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
957 __acquires(p->pi_lock)
958 __acquires(rq->lock)
959 {
960 struct rq *rq;
961
962 for (;;) {
963 raw_spin_lock_irqsave(&p->pi_lock, *flags);
964 rq = task_rq(p);
965 raw_spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
968 raw_spin_unlock(&rq->lock);
969 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
970 }
971 }
972
973 static void __task_rq_unlock(struct rq *rq)
974 __releases(rq->lock)
975 {
976 raw_spin_unlock(&rq->lock);
977 }
978
979 static inline void
980 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
981 __releases(rq->lock)
982 __releases(p->pi_lock)
983 {
984 raw_spin_unlock(&rq->lock);
985 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
986 }
987
988 /*
989 * this_rq_lock - lock this runqueue and disable interrupts.
990 */
991 static struct rq *this_rq_lock(void)
992 __acquires(rq->lock)
993 {
994 struct rq *rq;
995
996 local_irq_disable();
997 rq = this_rq();
998 raw_spin_lock(&rq->lock);
999
1000 return rq;
1001 }
1002
1003 #ifdef CONFIG_SCHED_HRTICK
1004 /*
1005 * Use HR-timers to deliver accurate preemption points.
1006 *
1007 * Its all a bit involved since we cannot program an hrt while holding the
1008 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1009 * reschedule event.
1010 *
1011 * When we get rescheduled we reprogram the hrtick_timer outside of the
1012 * rq->lock.
1013 */
1014
1015 /*
1016 * Use hrtick when:
1017 * - enabled by features
1018 * - hrtimer is actually high res
1019 */
1020 static inline int hrtick_enabled(struct rq *rq)
1021 {
1022 if (!sched_feat(HRTICK))
1023 return 0;
1024 if (!cpu_active(cpu_of(rq)))
1025 return 0;
1026 return hrtimer_is_hres_active(&rq->hrtick_timer);
1027 }
1028
1029 static void hrtick_clear(struct rq *rq)
1030 {
1031 if (hrtimer_active(&rq->hrtick_timer))
1032 hrtimer_cancel(&rq->hrtick_timer);
1033 }
1034
1035 /*
1036 * High-resolution timer tick.
1037 * Runs from hardirq context with interrupts disabled.
1038 */
1039 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1040 {
1041 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1042
1043 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1044
1045 raw_spin_lock(&rq->lock);
1046 update_rq_clock(rq);
1047 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1048 raw_spin_unlock(&rq->lock);
1049
1050 return HRTIMER_NORESTART;
1051 }
1052
1053 #ifdef CONFIG_SMP
1054 /*
1055 * called from hardirq (IPI) context
1056 */
1057 static void __hrtick_start(void *arg)
1058 {
1059 struct rq *rq = arg;
1060
1061 raw_spin_lock(&rq->lock);
1062 hrtimer_restart(&rq->hrtick_timer);
1063 rq->hrtick_csd_pending = 0;
1064 raw_spin_unlock(&rq->lock);
1065 }
1066
1067 /*
1068 * Called to set the hrtick timer state.
1069 *
1070 * called with rq->lock held and irqs disabled
1071 */
1072 static void hrtick_start(struct rq *rq, u64 delay)
1073 {
1074 struct hrtimer *timer = &rq->hrtick_timer;
1075 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1076
1077 hrtimer_set_expires(timer, time);
1078
1079 if (rq == this_rq()) {
1080 hrtimer_restart(timer);
1081 } else if (!rq->hrtick_csd_pending) {
1082 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1083 rq->hrtick_csd_pending = 1;
1084 }
1085 }
1086
1087 static int
1088 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1089 {
1090 int cpu = (int)(long)hcpu;
1091
1092 switch (action) {
1093 case CPU_UP_CANCELED:
1094 case CPU_UP_CANCELED_FROZEN:
1095 case CPU_DOWN_PREPARE:
1096 case CPU_DOWN_PREPARE_FROZEN:
1097 case CPU_DEAD:
1098 case CPU_DEAD_FROZEN:
1099 hrtick_clear(cpu_rq(cpu));
1100 return NOTIFY_OK;
1101 }
1102
1103 return NOTIFY_DONE;
1104 }
1105
1106 static __init void init_hrtick(void)
1107 {
1108 hotcpu_notifier(hotplug_hrtick, 0);
1109 }
1110 #else
1111 /*
1112 * Called to set the hrtick timer state.
1113 *
1114 * called with rq->lock held and irqs disabled
1115 */
1116 static void hrtick_start(struct rq *rq, u64 delay)
1117 {
1118 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1119 HRTIMER_MODE_REL_PINNED, 0);
1120 }
1121
1122 static inline void init_hrtick(void)
1123 {
1124 }
1125 #endif /* CONFIG_SMP */
1126
1127 static void init_rq_hrtick(struct rq *rq)
1128 {
1129 #ifdef CONFIG_SMP
1130 rq->hrtick_csd_pending = 0;
1131
1132 rq->hrtick_csd.flags = 0;
1133 rq->hrtick_csd.func = __hrtick_start;
1134 rq->hrtick_csd.info = rq;
1135 #endif
1136
1137 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1138 rq->hrtick_timer.function = hrtick;
1139 }
1140 #else /* CONFIG_SCHED_HRTICK */
1141 static inline void hrtick_clear(struct rq *rq)
1142 {
1143 }
1144
1145 static inline void init_rq_hrtick(struct rq *rq)
1146 {
1147 }
1148
1149 static inline void init_hrtick(void)
1150 {
1151 }
1152 #endif /* CONFIG_SCHED_HRTICK */
1153
1154 /*
1155 * resched_task - mark a task 'to be rescheduled now'.
1156 *
1157 * On UP this means the setting of the need_resched flag, on SMP it
1158 * might also involve a cross-CPU call to trigger the scheduler on
1159 * the target CPU.
1160 */
1161 #ifdef CONFIG_SMP
1162
1163 #ifndef tsk_is_polling
1164 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1165 #endif
1166
1167 static void resched_task(struct task_struct *p)
1168 {
1169 int cpu;
1170
1171 assert_raw_spin_locked(&task_rq(p)->lock);
1172
1173 if (test_tsk_need_resched(p))
1174 return;
1175
1176 set_tsk_need_resched(p);
1177
1178 cpu = task_cpu(p);
1179 if (cpu == smp_processor_id())
1180 return;
1181
1182 /* NEED_RESCHED must be visible before we test polling */
1183 smp_mb();
1184 if (!tsk_is_polling(p))
1185 smp_send_reschedule(cpu);
1186 }
1187
1188 static void resched_cpu(int cpu)
1189 {
1190 struct rq *rq = cpu_rq(cpu);
1191 unsigned long flags;
1192
1193 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1194 return;
1195 resched_task(cpu_curr(cpu));
1196 raw_spin_unlock_irqrestore(&rq->lock, flags);
1197 }
1198
1199 #ifdef CONFIG_NO_HZ
1200 /*
1201 * In the semi idle case, use the nearest busy cpu for migrating timers
1202 * from an idle cpu. This is good for power-savings.
1203 *
1204 * We don't do similar optimization for completely idle system, as
1205 * selecting an idle cpu will add more delays to the timers than intended
1206 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1207 */
1208 int get_nohz_timer_target(void)
1209 {
1210 int cpu = smp_processor_id();
1211 int i;
1212 struct sched_domain *sd;
1213
1214 rcu_read_lock();
1215 for_each_domain(cpu, sd) {
1216 for_each_cpu(i, sched_domain_span(sd)) {
1217 if (!idle_cpu(i)) {
1218 cpu = i;
1219 goto unlock;
1220 }
1221 }
1222 }
1223 unlock:
1224 rcu_read_unlock();
1225 return cpu;
1226 }
1227 /*
1228 * When add_timer_on() enqueues a timer into the timer wheel of an
1229 * idle CPU then this timer might expire before the next timer event
1230 * which is scheduled to wake up that CPU. In case of a completely
1231 * idle system the next event might even be infinite time into the
1232 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1233 * leaves the inner idle loop so the newly added timer is taken into
1234 * account when the CPU goes back to idle and evaluates the timer
1235 * wheel for the next timer event.
1236 */
1237 void wake_up_idle_cpu(int cpu)
1238 {
1239 struct rq *rq = cpu_rq(cpu);
1240
1241 if (cpu == smp_processor_id())
1242 return;
1243
1244 /*
1245 * This is safe, as this function is called with the timer
1246 * wheel base lock of (cpu) held. When the CPU is on the way
1247 * to idle and has not yet set rq->curr to idle then it will
1248 * be serialized on the timer wheel base lock and take the new
1249 * timer into account automatically.
1250 */
1251 if (rq->curr != rq->idle)
1252 return;
1253
1254 /*
1255 * We can set TIF_RESCHED on the idle task of the other CPU
1256 * lockless. The worst case is that the other CPU runs the
1257 * idle task through an additional NOOP schedule()
1258 */
1259 set_tsk_need_resched(rq->idle);
1260
1261 /* NEED_RESCHED must be visible before we test polling */
1262 smp_mb();
1263 if (!tsk_is_polling(rq->idle))
1264 smp_send_reschedule(cpu);
1265 }
1266
1267 #endif /* CONFIG_NO_HZ */
1268
1269 static u64 sched_avg_period(void)
1270 {
1271 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1272 }
1273
1274 static void sched_avg_update(struct rq *rq)
1275 {
1276 s64 period = sched_avg_period();
1277
1278 while ((s64)(rq->clock - rq->age_stamp) > period) {
1279 /*
1280 * Inline assembly required to prevent the compiler
1281 * optimising this loop into a divmod call.
1282 * See __iter_div_u64_rem() for another example of this.
1283 */
1284 asm("" : "+rm" (rq->age_stamp));
1285 rq->age_stamp += period;
1286 rq->rt_avg /= 2;
1287 }
1288 }
1289
1290 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1291 {
1292 rq->rt_avg += rt_delta;
1293 sched_avg_update(rq);
1294 }
1295
1296 #else /* !CONFIG_SMP */
1297 static void resched_task(struct task_struct *p)
1298 {
1299 assert_raw_spin_locked(&task_rq(p)->lock);
1300 set_tsk_need_resched(p);
1301 }
1302
1303 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1304 {
1305 }
1306
1307 static void sched_avg_update(struct rq *rq)
1308 {
1309 }
1310 #endif /* CONFIG_SMP */
1311
1312 #if BITS_PER_LONG == 32
1313 # define WMULT_CONST (~0UL)
1314 #else
1315 # define WMULT_CONST (1UL << 32)
1316 #endif
1317
1318 #define WMULT_SHIFT 32
1319
1320 /*
1321 * Shift right and round:
1322 */
1323 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1324
1325 /*
1326 * delta *= weight / lw
1327 */
1328 static unsigned long
1329 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1330 struct load_weight *lw)
1331 {
1332 u64 tmp;
1333
1334 /*
1335 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1336 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1337 * 2^SCHED_LOAD_RESOLUTION.
1338 */
1339 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1340 tmp = (u64)delta_exec * scale_load_down(weight);
1341 else
1342 tmp = (u64)delta_exec;
1343
1344 if (!lw->inv_weight) {
1345 unsigned long w = scale_load_down(lw->weight);
1346
1347 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1348 lw->inv_weight = 1;
1349 else if (unlikely(!w))
1350 lw->inv_weight = WMULT_CONST;
1351 else
1352 lw->inv_weight = WMULT_CONST / w;
1353 }
1354
1355 /*
1356 * Check whether we'd overflow the 64-bit multiplication:
1357 */
1358 if (unlikely(tmp > WMULT_CONST))
1359 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1360 WMULT_SHIFT/2);
1361 else
1362 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1363
1364 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1365 }
1366
1367 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1368 {
1369 lw->weight += inc;
1370 lw->inv_weight = 0;
1371 }
1372
1373 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1374 {
1375 lw->weight -= dec;
1376 lw->inv_weight = 0;
1377 }
1378
1379 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1380 {
1381 lw->weight = w;
1382 lw->inv_weight = 0;
1383 }
1384
1385 /*
1386 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1387 * of tasks with abnormal "nice" values across CPUs the contribution that
1388 * each task makes to its run queue's load is weighted according to its
1389 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1390 * scaled version of the new time slice allocation that they receive on time
1391 * slice expiry etc.
1392 */
1393
1394 #define WEIGHT_IDLEPRIO 3
1395 #define WMULT_IDLEPRIO 1431655765
1396
1397 /*
1398 * Nice levels are multiplicative, with a gentle 10% change for every
1399 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1400 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1401 * that remained on nice 0.
1402 *
1403 * The "10% effect" is relative and cumulative: from _any_ nice level,
1404 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1405 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1406 * If a task goes up by ~10% and another task goes down by ~10% then
1407 * the relative distance between them is ~25%.)
1408 */
1409 static const int prio_to_weight[40] = {
1410 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1411 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1412 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1413 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1414 /* 0 */ 1024, 820, 655, 526, 423,
1415 /* 5 */ 335, 272, 215, 172, 137,
1416 /* 10 */ 110, 87, 70, 56, 45,
1417 /* 15 */ 36, 29, 23, 18, 15,
1418 };
1419
1420 /*
1421 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1422 *
1423 * In cases where the weight does not change often, we can use the
1424 * precalculated inverse to speed up arithmetics by turning divisions
1425 * into multiplications:
1426 */
1427 static const u32 prio_to_wmult[40] = {
1428 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1429 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1430 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1431 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1432 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1433 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1434 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1435 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1436 };
1437
1438 /* Time spent by the tasks of the cpu accounting group executing in ... */
1439 enum cpuacct_stat_index {
1440 CPUACCT_STAT_USER, /* ... user mode */
1441 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1442
1443 CPUACCT_STAT_NSTATS,
1444 };
1445
1446 #ifdef CONFIG_CGROUP_CPUACCT
1447 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1448 static void cpuacct_update_stats(struct task_struct *tsk,
1449 enum cpuacct_stat_index idx, cputime_t val);
1450 #else
1451 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1452 static inline void cpuacct_update_stats(struct task_struct *tsk,
1453 enum cpuacct_stat_index idx, cputime_t val) {}
1454 #endif
1455
1456 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1457 {
1458 update_load_add(&rq->load, load);
1459 }
1460
1461 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1462 {
1463 update_load_sub(&rq->load, load);
1464 }
1465
1466 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1467 typedef int (*tg_visitor)(struct task_group *, void *);
1468
1469 /*
1470 * Iterate the full tree, calling @down when first entering a node and @up when
1471 * leaving it for the final time.
1472 */
1473 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1474 {
1475 struct task_group *parent, *child;
1476 int ret;
1477
1478 rcu_read_lock();
1479 parent = &root_task_group;
1480 down:
1481 ret = (*down)(parent, data);
1482 if (ret)
1483 goto out_unlock;
1484 list_for_each_entry_rcu(child, &parent->children, siblings) {
1485 parent = child;
1486 goto down;
1487
1488 up:
1489 continue;
1490 }
1491 ret = (*up)(parent, data);
1492 if (ret)
1493 goto out_unlock;
1494
1495 child = parent;
1496 parent = parent->parent;
1497 if (parent)
1498 goto up;
1499 out_unlock:
1500 rcu_read_unlock();
1501
1502 return ret;
1503 }
1504
1505 static int tg_nop(struct task_group *tg, void *data)
1506 {
1507 return 0;
1508 }
1509 #endif
1510
1511 #ifdef CONFIG_SMP
1512 /* Used instead of source_load when we know the type == 0 */
1513 static unsigned long weighted_cpuload(const int cpu)
1514 {
1515 return cpu_rq(cpu)->load.weight;
1516 }
1517
1518 /*
1519 * Return a low guess at the load of a migration-source cpu weighted
1520 * according to the scheduling class and "nice" value.
1521 *
1522 * We want to under-estimate the load of migration sources, to
1523 * balance conservatively.
1524 */
1525 static unsigned long source_load(int cpu, int type)
1526 {
1527 struct rq *rq = cpu_rq(cpu);
1528 unsigned long total = weighted_cpuload(cpu);
1529
1530 if (type == 0 || !sched_feat(LB_BIAS))
1531 return total;
1532
1533 return min(rq->cpu_load[type-1], total);
1534 }
1535
1536 /*
1537 * Return a high guess at the load of a migration-target cpu weighted
1538 * according to the scheduling class and "nice" value.
1539 */
1540 static unsigned long target_load(int cpu, int type)
1541 {
1542 struct rq *rq = cpu_rq(cpu);
1543 unsigned long total = weighted_cpuload(cpu);
1544
1545 if (type == 0 || !sched_feat(LB_BIAS))
1546 return total;
1547
1548 return max(rq->cpu_load[type-1], total);
1549 }
1550
1551 static unsigned long power_of(int cpu)
1552 {
1553 return cpu_rq(cpu)->cpu_power;
1554 }
1555
1556 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1557
1558 static unsigned long cpu_avg_load_per_task(int cpu)
1559 {
1560 struct rq *rq = cpu_rq(cpu);
1561 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1562
1563 if (nr_running)
1564 rq->avg_load_per_task = rq->load.weight / nr_running;
1565 else
1566 rq->avg_load_per_task = 0;
1567
1568 return rq->avg_load_per_task;
1569 }
1570
1571 #ifdef CONFIG_PREEMPT
1572
1573 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1574
1575 /*
1576 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1577 * way at the expense of forcing extra atomic operations in all
1578 * invocations. This assures that the double_lock is acquired using the
1579 * same underlying policy as the spinlock_t on this architecture, which
1580 * reduces latency compared to the unfair variant below. However, it
1581 * also adds more overhead and therefore may reduce throughput.
1582 */
1583 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1584 __releases(this_rq->lock)
1585 __acquires(busiest->lock)
1586 __acquires(this_rq->lock)
1587 {
1588 raw_spin_unlock(&this_rq->lock);
1589 double_rq_lock(this_rq, busiest);
1590
1591 return 1;
1592 }
1593
1594 #else
1595 /*
1596 * Unfair double_lock_balance: Optimizes throughput at the expense of
1597 * latency by eliminating extra atomic operations when the locks are
1598 * already in proper order on entry. This favors lower cpu-ids and will
1599 * grant the double lock to lower cpus over higher ids under contention,
1600 * regardless of entry order into the function.
1601 */
1602 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1603 __releases(this_rq->lock)
1604 __acquires(busiest->lock)
1605 __acquires(this_rq->lock)
1606 {
1607 int ret = 0;
1608
1609 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1610 if (busiest < this_rq) {
1611 raw_spin_unlock(&this_rq->lock);
1612 raw_spin_lock(&busiest->lock);
1613 raw_spin_lock_nested(&this_rq->lock,
1614 SINGLE_DEPTH_NESTING);
1615 ret = 1;
1616 } else
1617 raw_spin_lock_nested(&busiest->lock,
1618 SINGLE_DEPTH_NESTING);
1619 }
1620 return ret;
1621 }
1622
1623 #endif /* CONFIG_PREEMPT */
1624
1625 /*
1626 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1627 */
1628 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1629 {
1630 if (unlikely(!irqs_disabled())) {
1631 /* printk() doesn't work good under rq->lock */
1632 raw_spin_unlock(&this_rq->lock);
1633 BUG_ON(1);
1634 }
1635
1636 return _double_lock_balance(this_rq, busiest);
1637 }
1638
1639 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1640 __releases(busiest->lock)
1641 {
1642 raw_spin_unlock(&busiest->lock);
1643 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1644 }
1645
1646 /*
1647 * double_rq_lock - safely lock two runqueues
1648 *
1649 * Note this does not disable interrupts like task_rq_lock,
1650 * you need to do so manually before calling.
1651 */
1652 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1653 __acquires(rq1->lock)
1654 __acquires(rq2->lock)
1655 {
1656 BUG_ON(!irqs_disabled());
1657 if (rq1 == rq2) {
1658 raw_spin_lock(&rq1->lock);
1659 __acquire(rq2->lock); /* Fake it out ;) */
1660 } else {
1661 if (rq1 < rq2) {
1662 raw_spin_lock(&rq1->lock);
1663 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1664 } else {
1665 raw_spin_lock(&rq2->lock);
1666 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1667 }
1668 }
1669 }
1670
1671 /*
1672 * double_rq_unlock - safely unlock two runqueues
1673 *
1674 * Note this does not restore interrupts like task_rq_unlock,
1675 * you need to do so manually after calling.
1676 */
1677 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1678 __releases(rq1->lock)
1679 __releases(rq2->lock)
1680 {
1681 raw_spin_unlock(&rq1->lock);
1682 if (rq1 != rq2)
1683 raw_spin_unlock(&rq2->lock);
1684 else
1685 __release(rq2->lock);
1686 }
1687
1688 #else /* CONFIG_SMP */
1689
1690 /*
1691 * double_rq_lock - safely lock two runqueues
1692 *
1693 * Note this does not disable interrupts like task_rq_lock,
1694 * you need to do so manually before calling.
1695 */
1696 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1697 __acquires(rq1->lock)
1698 __acquires(rq2->lock)
1699 {
1700 BUG_ON(!irqs_disabled());
1701 BUG_ON(rq1 != rq2);
1702 raw_spin_lock(&rq1->lock);
1703 __acquire(rq2->lock); /* Fake it out ;) */
1704 }
1705
1706 /*
1707 * double_rq_unlock - safely unlock two runqueues
1708 *
1709 * Note this does not restore interrupts like task_rq_unlock,
1710 * you need to do so manually after calling.
1711 */
1712 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1713 __releases(rq1->lock)
1714 __releases(rq2->lock)
1715 {
1716 BUG_ON(rq1 != rq2);
1717 raw_spin_unlock(&rq1->lock);
1718 __release(rq2->lock);
1719 }
1720
1721 #endif
1722
1723 static void calc_load_account_idle(struct rq *this_rq);
1724 static void update_sysctl(void);
1725 static int get_update_sysctl_factor(void);
1726 static void update_cpu_load(struct rq *this_rq);
1727
1728 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1729 {
1730 set_task_rq(p, cpu);
1731 #ifdef CONFIG_SMP
1732 /*
1733 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1734 * successfuly executed on another CPU. We must ensure that updates of
1735 * per-task data have been completed by this moment.
1736 */
1737 smp_wmb();
1738 task_thread_info(p)->cpu = cpu;
1739 #endif
1740 }
1741
1742 static const struct sched_class rt_sched_class;
1743
1744 #define sched_class_highest (&stop_sched_class)
1745 #define for_each_class(class) \
1746 for (class = sched_class_highest; class; class = class->next)
1747
1748 #include "sched_stats.h"
1749
1750 static void inc_nr_running(struct rq *rq)
1751 {
1752 rq->nr_running++;
1753 }
1754
1755 static void dec_nr_running(struct rq *rq)
1756 {
1757 rq->nr_running--;
1758 }
1759
1760 static void set_load_weight(struct task_struct *p)
1761 {
1762 int prio = p->static_prio - MAX_RT_PRIO;
1763 struct load_weight *load = &p->se.load;
1764
1765 /*
1766 * SCHED_IDLE tasks get minimal weight:
1767 */
1768 if (p->policy == SCHED_IDLE) {
1769 load->weight = scale_load(WEIGHT_IDLEPRIO);
1770 load->inv_weight = WMULT_IDLEPRIO;
1771 return;
1772 }
1773
1774 load->weight = scale_load(prio_to_weight[prio]);
1775 load->inv_weight = prio_to_wmult[prio];
1776 }
1777
1778 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1779 {
1780 update_rq_clock(rq);
1781 sched_info_queued(p);
1782 p->sched_class->enqueue_task(rq, p, flags);
1783 }
1784
1785 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1786 {
1787 update_rq_clock(rq);
1788 sched_info_dequeued(p);
1789 p->sched_class->dequeue_task(rq, p, flags);
1790 }
1791
1792 /*
1793 * activate_task - move a task to the runqueue.
1794 */
1795 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1796 {
1797 if (task_contributes_to_load(p))
1798 rq->nr_uninterruptible--;
1799
1800 enqueue_task(rq, p, flags);
1801 inc_nr_running(rq);
1802 }
1803
1804 /*
1805 * deactivate_task - remove a task from the runqueue.
1806 */
1807 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1808 {
1809 if (task_contributes_to_load(p))
1810 rq->nr_uninterruptible++;
1811
1812 dequeue_task(rq, p, flags);
1813 dec_nr_running(rq);
1814 }
1815
1816 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1817
1818 /*
1819 * There are no locks covering percpu hardirq/softirq time.
1820 * They are only modified in account_system_vtime, on corresponding CPU
1821 * with interrupts disabled. So, writes are safe.
1822 * They are read and saved off onto struct rq in update_rq_clock().
1823 * This may result in other CPU reading this CPU's irq time and can
1824 * race with irq/account_system_vtime on this CPU. We would either get old
1825 * or new value with a side effect of accounting a slice of irq time to wrong
1826 * task when irq is in progress while we read rq->clock. That is a worthy
1827 * compromise in place of having locks on each irq in account_system_time.
1828 */
1829 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1830 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1831
1832 static DEFINE_PER_CPU(u64, irq_start_time);
1833 static int sched_clock_irqtime;
1834
1835 void enable_sched_clock_irqtime(void)
1836 {
1837 sched_clock_irqtime = 1;
1838 }
1839
1840 void disable_sched_clock_irqtime(void)
1841 {
1842 sched_clock_irqtime = 0;
1843 }
1844
1845 #ifndef CONFIG_64BIT
1846 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1847
1848 static inline void irq_time_write_begin(void)
1849 {
1850 __this_cpu_inc(irq_time_seq.sequence);
1851 smp_wmb();
1852 }
1853
1854 static inline void irq_time_write_end(void)
1855 {
1856 smp_wmb();
1857 __this_cpu_inc(irq_time_seq.sequence);
1858 }
1859
1860 static inline u64 irq_time_read(int cpu)
1861 {
1862 u64 irq_time;
1863 unsigned seq;
1864
1865 do {
1866 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1867 irq_time = per_cpu(cpu_softirq_time, cpu) +
1868 per_cpu(cpu_hardirq_time, cpu);
1869 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1870
1871 return irq_time;
1872 }
1873 #else /* CONFIG_64BIT */
1874 static inline void irq_time_write_begin(void)
1875 {
1876 }
1877
1878 static inline void irq_time_write_end(void)
1879 {
1880 }
1881
1882 static inline u64 irq_time_read(int cpu)
1883 {
1884 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1885 }
1886 #endif /* CONFIG_64BIT */
1887
1888 /*
1889 * Called before incrementing preempt_count on {soft,}irq_enter
1890 * and before decrementing preempt_count on {soft,}irq_exit.
1891 */
1892 void account_system_vtime(struct task_struct *curr)
1893 {
1894 unsigned long flags;
1895 s64 delta;
1896 int cpu;
1897
1898 if (!sched_clock_irqtime)
1899 return;
1900
1901 local_irq_save(flags);
1902
1903 cpu = smp_processor_id();
1904 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1905 __this_cpu_add(irq_start_time, delta);
1906
1907 irq_time_write_begin();
1908 /*
1909 * We do not account for softirq time from ksoftirqd here.
1910 * We want to continue accounting softirq time to ksoftirqd thread
1911 * in that case, so as not to confuse scheduler with a special task
1912 * that do not consume any time, but still wants to run.
1913 */
1914 if (hardirq_count())
1915 __this_cpu_add(cpu_hardirq_time, delta);
1916 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1917 __this_cpu_add(cpu_softirq_time, delta);
1918
1919 irq_time_write_end();
1920 local_irq_restore(flags);
1921 }
1922 EXPORT_SYMBOL_GPL(account_system_vtime);
1923
1924 static void update_rq_clock_task(struct rq *rq, s64 delta)
1925 {
1926 s64 irq_delta;
1927
1928 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1929
1930 /*
1931 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1932 * this case when a previous update_rq_clock() happened inside a
1933 * {soft,}irq region.
1934 *
1935 * When this happens, we stop ->clock_task and only update the
1936 * prev_irq_time stamp to account for the part that fit, so that a next
1937 * update will consume the rest. This ensures ->clock_task is
1938 * monotonic.
1939 *
1940 * It does however cause some slight miss-attribution of {soft,}irq
1941 * time, a more accurate solution would be to update the irq_time using
1942 * the current rq->clock timestamp, except that would require using
1943 * atomic ops.
1944 */
1945 if (irq_delta > delta)
1946 irq_delta = delta;
1947
1948 rq->prev_irq_time += irq_delta;
1949 delta -= irq_delta;
1950 rq->clock_task += delta;
1951
1952 if (irq_delta && sched_feat(NONIRQ_POWER))
1953 sched_rt_avg_update(rq, irq_delta);
1954 }
1955
1956 static int irqtime_account_hi_update(void)
1957 {
1958 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1959 unsigned long flags;
1960 u64 latest_ns;
1961 int ret = 0;
1962
1963 local_irq_save(flags);
1964 latest_ns = this_cpu_read(cpu_hardirq_time);
1965 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1966 ret = 1;
1967 local_irq_restore(flags);
1968 return ret;
1969 }
1970
1971 static int irqtime_account_si_update(void)
1972 {
1973 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1974 unsigned long flags;
1975 u64 latest_ns;
1976 int ret = 0;
1977
1978 local_irq_save(flags);
1979 latest_ns = this_cpu_read(cpu_softirq_time);
1980 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1981 ret = 1;
1982 local_irq_restore(flags);
1983 return ret;
1984 }
1985
1986 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
1987
1988 #define sched_clock_irqtime (0)
1989
1990 static void update_rq_clock_task(struct rq *rq, s64 delta)
1991 {
1992 rq->clock_task += delta;
1993 }
1994
1995 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1996
1997 #include "sched_idletask.c"
1998 #include "sched_fair.c"
1999 #include "sched_rt.c"
2000 #include "sched_autogroup.c"
2001 #include "sched_stoptask.c"
2002 #ifdef CONFIG_SCHED_DEBUG
2003 # include "sched_debug.c"
2004 #endif
2005
2006 void sched_set_stop_task(int cpu, struct task_struct *stop)
2007 {
2008 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2009 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2010
2011 if (stop) {
2012 /*
2013 * Make it appear like a SCHED_FIFO task, its something
2014 * userspace knows about and won't get confused about.
2015 *
2016 * Also, it will make PI more or less work without too
2017 * much confusion -- but then, stop work should not
2018 * rely on PI working anyway.
2019 */
2020 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2021
2022 stop->sched_class = &stop_sched_class;
2023 }
2024
2025 cpu_rq(cpu)->stop = stop;
2026
2027 if (old_stop) {
2028 /*
2029 * Reset it back to a normal scheduling class so that
2030 * it can die in pieces.
2031 */
2032 old_stop->sched_class = &rt_sched_class;
2033 }
2034 }
2035
2036 /*
2037 * __normal_prio - return the priority that is based on the static prio
2038 */
2039 static inline int __normal_prio(struct task_struct *p)
2040 {
2041 return p->static_prio;
2042 }
2043
2044 /*
2045 * Calculate the expected normal priority: i.e. priority
2046 * without taking RT-inheritance into account. Might be
2047 * boosted by interactivity modifiers. Changes upon fork,
2048 * setprio syscalls, and whenever the interactivity
2049 * estimator recalculates.
2050 */
2051 static inline int normal_prio(struct task_struct *p)
2052 {
2053 int prio;
2054
2055 if (task_has_rt_policy(p))
2056 prio = MAX_RT_PRIO-1 - p->rt_priority;
2057 else
2058 prio = __normal_prio(p);
2059 return prio;
2060 }
2061
2062 /*
2063 * Calculate the current priority, i.e. the priority
2064 * taken into account by the scheduler. This value might
2065 * be boosted by RT tasks, or might be boosted by
2066 * interactivity modifiers. Will be RT if the task got
2067 * RT-boosted. If not then it returns p->normal_prio.
2068 */
2069 static int effective_prio(struct task_struct *p)
2070 {
2071 p->normal_prio = normal_prio(p);
2072 /*
2073 * If we are RT tasks or we were boosted to RT priority,
2074 * keep the priority unchanged. Otherwise, update priority
2075 * to the normal priority:
2076 */
2077 if (!rt_prio(p->prio))
2078 return p->normal_prio;
2079 return p->prio;
2080 }
2081
2082 /**
2083 * task_curr - is this task currently executing on a CPU?
2084 * @p: the task in question.
2085 */
2086 inline int task_curr(const struct task_struct *p)
2087 {
2088 return cpu_curr(task_cpu(p)) == p;
2089 }
2090
2091 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2092 const struct sched_class *prev_class,
2093 int oldprio)
2094 {
2095 if (prev_class != p->sched_class) {
2096 if (prev_class->switched_from)
2097 prev_class->switched_from(rq, p);
2098 p->sched_class->switched_to(rq, p);
2099 } else if (oldprio != p->prio)
2100 p->sched_class->prio_changed(rq, p, oldprio);
2101 }
2102
2103 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2104 {
2105 const struct sched_class *class;
2106
2107 if (p->sched_class == rq->curr->sched_class) {
2108 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2109 } else {
2110 for_each_class(class) {
2111 if (class == rq->curr->sched_class)
2112 break;
2113 if (class == p->sched_class) {
2114 resched_task(rq->curr);
2115 break;
2116 }
2117 }
2118 }
2119
2120 /*
2121 * A queue event has occurred, and we're going to schedule. In
2122 * this case, we can save a useless back to back clock update.
2123 */
2124 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2125 rq->skip_clock_update = 1;
2126 }
2127
2128 #ifdef CONFIG_SMP
2129 /*
2130 * Is this task likely cache-hot:
2131 */
2132 static int
2133 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2134 {
2135 s64 delta;
2136
2137 if (p->sched_class != &fair_sched_class)
2138 return 0;
2139
2140 if (unlikely(p->policy == SCHED_IDLE))
2141 return 0;
2142
2143 /*
2144 * Buddy candidates are cache hot:
2145 */
2146 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2147 (&p->se == cfs_rq_of(&p->se)->next ||
2148 &p->se == cfs_rq_of(&p->se)->last))
2149 return 1;
2150
2151 if (sysctl_sched_migration_cost == -1)
2152 return 1;
2153 if (sysctl_sched_migration_cost == 0)
2154 return 0;
2155
2156 delta = now - p->se.exec_start;
2157
2158 return delta < (s64)sysctl_sched_migration_cost;
2159 }
2160
2161 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2162 {
2163 #ifdef CONFIG_SCHED_DEBUG
2164 /*
2165 * We should never call set_task_cpu() on a blocked task,
2166 * ttwu() will sort out the placement.
2167 */
2168 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2169 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2170
2171 #ifdef CONFIG_LOCKDEP
2172 /*
2173 * The caller should hold either p->pi_lock or rq->lock, when changing
2174 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2175 *
2176 * sched_move_task() holds both and thus holding either pins the cgroup,
2177 * see set_task_rq().
2178 *
2179 * Furthermore, all task_rq users should acquire both locks, see
2180 * task_rq_lock().
2181 */
2182 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2183 lockdep_is_held(&task_rq(p)->lock)));
2184 #endif
2185 #endif
2186
2187 trace_sched_migrate_task(p, new_cpu);
2188
2189 if (task_cpu(p) != new_cpu) {
2190 p->se.nr_migrations++;
2191 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2192 }
2193
2194 __set_task_cpu(p, new_cpu);
2195 }
2196
2197 struct migration_arg {
2198 struct task_struct *task;
2199 int dest_cpu;
2200 };
2201
2202 static int migration_cpu_stop(void *data);
2203
2204 /*
2205 * wait_task_inactive - wait for a thread to unschedule.
2206 *
2207 * If @match_state is nonzero, it's the @p->state value just checked and
2208 * not expected to change. If it changes, i.e. @p might have woken up,
2209 * then return zero. When we succeed in waiting for @p to be off its CPU,
2210 * we return a positive number (its total switch count). If a second call
2211 * a short while later returns the same number, the caller can be sure that
2212 * @p has remained unscheduled the whole time.
2213 *
2214 * The caller must ensure that the task *will* unschedule sometime soon,
2215 * else this function might spin for a *long* time. This function can't
2216 * be called with interrupts off, or it may introduce deadlock with
2217 * smp_call_function() if an IPI is sent by the same process we are
2218 * waiting to become inactive.
2219 */
2220 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2221 {
2222 unsigned long flags;
2223 int running, on_rq;
2224 unsigned long ncsw;
2225 struct rq *rq;
2226
2227 for (;;) {
2228 /*
2229 * We do the initial early heuristics without holding
2230 * any task-queue locks at all. We'll only try to get
2231 * the runqueue lock when things look like they will
2232 * work out!
2233 */
2234 rq = task_rq(p);
2235
2236 /*
2237 * If the task is actively running on another CPU
2238 * still, just relax and busy-wait without holding
2239 * any locks.
2240 *
2241 * NOTE! Since we don't hold any locks, it's not
2242 * even sure that "rq" stays as the right runqueue!
2243 * But we don't care, since "task_running()" will
2244 * return false if the runqueue has changed and p
2245 * is actually now running somewhere else!
2246 */
2247 while (task_running(rq, p)) {
2248 if (match_state && unlikely(p->state != match_state))
2249 return 0;
2250 cpu_relax();
2251 }
2252
2253 /*
2254 * Ok, time to look more closely! We need the rq
2255 * lock now, to be *sure*. If we're wrong, we'll
2256 * just go back and repeat.
2257 */
2258 rq = task_rq_lock(p, &flags);
2259 trace_sched_wait_task(p);
2260 running = task_running(rq, p);
2261 on_rq = p->on_rq;
2262 ncsw = 0;
2263 if (!match_state || p->state == match_state)
2264 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2265 task_rq_unlock(rq, p, &flags);
2266
2267 /*
2268 * If it changed from the expected state, bail out now.
2269 */
2270 if (unlikely(!ncsw))
2271 break;
2272
2273 /*
2274 * Was it really running after all now that we
2275 * checked with the proper locks actually held?
2276 *
2277 * Oops. Go back and try again..
2278 */
2279 if (unlikely(running)) {
2280 cpu_relax();
2281 continue;
2282 }
2283
2284 /*
2285 * It's not enough that it's not actively running,
2286 * it must be off the runqueue _entirely_, and not
2287 * preempted!
2288 *
2289 * So if it was still runnable (but just not actively
2290 * running right now), it's preempted, and we should
2291 * yield - it could be a while.
2292 */
2293 if (unlikely(on_rq)) {
2294 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2295
2296 set_current_state(TASK_UNINTERRUPTIBLE);
2297 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2298 continue;
2299 }
2300
2301 /*
2302 * Ahh, all good. It wasn't running, and it wasn't
2303 * runnable, which means that it will never become
2304 * running in the future either. We're all done!
2305 */
2306 break;
2307 }
2308
2309 return ncsw;
2310 }
2311
2312 /***
2313 * kick_process - kick a running thread to enter/exit the kernel
2314 * @p: the to-be-kicked thread
2315 *
2316 * Cause a process which is running on another CPU to enter
2317 * kernel-mode, without any delay. (to get signals handled.)
2318 *
2319 * NOTE: this function doesn't have to take the runqueue lock,
2320 * because all it wants to ensure is that the remote task enters
2321 * the kernel. If the IPI races and the task has been migrated
2322 * to another CPU then no harm is done and the purpose has been
2323 * achieved as well.
2324 */
2325 void kick_process(struct task_struct *p)
2326 {
2327 int cpu;
2328
2329 preempt_disable();
2330 cpu = task_cpu(p);
2331 if ((cpu != smp_processor_id()) && task_curr(p))
2332 smp_send_reschedule(cpu);
2333 preempt_enable();
2334 }
2335 EXPORT_SYMBOL_GPL(kick_process);
2336 #endif /* CONFIG_SMP */
2337
2338 #ifdef CONFIG_SMP
2339 /*
2340 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2341 */
2342 static int select_fallback_rq(int cpu, struct task_struct *p)
2343 {
2344 int dest_cpu;
2345 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2346
2347 /* Look for allowed, online CPU in same node. */
2348 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2349 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2350 return dest_cpu;
2351
2352 /* Any allowed, online CPU? */
2353 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2354 if (dest_cpu < nr_cpu_ids)
2355 return dest_cpu;
2356
2357 /* No more Mr. Nice Guy. */
2358 dest_cpu = cpuset_cpus_allowed_fallback(p);
2359 /*
2360 * Don't tell them about moving exiting tasks or
2361 * kernel threads (both mm NULL), since they never
2362 * leave kernel.
2363 */
2364 if (p->mm && printk_ratelimit()) {
2365 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2366 task_pid_nr(p), p->comm, cpu);
2367 }
2368
2369 return dest_cpu;
2370 }
2371
2372 /*
2373 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2374 */
2375 static inline
2376 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2377 {
2378 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2379
2380 /*
2381 * In order not to call set_task_cpu() on a blocking task we need
2382 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2383 * cpu.
2384 *
2385 * Since this is common to all placement strategies, this lives here.
2386 *
2387 * [ this allows ->select_task() to simply return task_cpu(p) and
2388 * not worry about this generic constraint ]
2389 */
2390 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2391 !cpu_online(cpu)))
2392 cpu = select_fallback_rq(task_cpu(p), p);
2393
2394 return cpu;
2395 }
2396
2397 static void update_avg(u64 *avg, u64 sample)
2398 {
2399 s64 diff = sample - *avg;
2400 *avg += diff >> 3;
2401 }
2402 #endif
2403
2404 static void
2405 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2406 {
2407 #ifdef CONFIG_SCHEDSTATS
2408 struct rq *rq = this_rq();
2409
2410 #ifdef CONFIG_SMP
2411 int this_cpu = smp_processor_id();
2412
2413 if (cpu == this_cpu) {
2414 schedstat_inc(rq, ttwu_local);
2415 schedstat_inc(p, se.statistics.nr_wakeups_local);
2416 } else {
2417 struct sched_domain *sd;
2418
2419 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2420 rcu_read_lock();
2421 for_each_domain(this_cpu, sd) {
2422 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2423 schedstat_inc(sd, ttwu_wake_remote);
2424 break;
2425 }
2426 }
2427 rcu_read_unlock();
2428 }
2429
2430 if (wake_flags & WF_MIGRATED)
2431 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2432
2433 #endif /* CONFIG_SMP */
2434
2435 schedstat_inc(rq, ttwu_count);
2436 schedstat_inc(p, se.statistics.nr_wakeups);
2437
2438 if (wake_flags & WF_SYNC)
2439 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2440
2441 #endif /* CONFIG_SCHEDSTATS */
2442 }
2443
2444 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2445 {
2446 activate_task(rq, p, en_flags);
2447 p->on_rq = 1;
2448
2449 /* if a worker is waking up, notify workqueue */
2450 if (p->flags & PF_WQ_WORKER)
2451 wq_worker_waking_up(p, cpu_of(rq));
2452 }
2453
2454 /*
2455 * Mark the task runnable and perform wakeup-preemption.
2456 */
2457 static void
2458 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2459 {
2460 trace_sched_wakeup(p, true);
2461 check_preempt_curr(rq, p, wake_flags);
2462
2463 p->state = TASK_RUNNING;
2464 #ifdef CONFIG_SMP
2465 if (p->sched_class->task_woken)
2466 p->sched_class->task_woken(rq, p);
2467
2468 if (rq->idle_stamp) {
2469 u64 delta = rq->clock - rq->idle_stamp;
2470 u64 max = 2*sysctl_sched_migration_cost;
2471
2472 if (delta > max)
2473 rq->avg_idle = max;
2474 else
2475 update_avg(&rq->avg_idle, delta);
2476 rq->idle_stamp = 0;
2477 }
2478 #endif
2479 }
2480
2481 static void
2482 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2483 {
2484 #ifdef CONFIG_SMP
2485 if (p->sched_contributes_to_load)
2486 rq->nr_uninterruptible--;
2487 #endif
2488
2489 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2490 ttwu_do_wakeup(rq, p, wake_flags);
2491 }
2492
2493 /*
2494 * Called in case the task @p isn't fully descheduled from its runqueue,
2495 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2496 * since all we need to do is flip p->state to TASK_RUNNING, since
2497 * the task is still ->on_rq.
2498 */
2499 static int ttwu_remote(struct task_struct *p, int wake_flags)
2500 {
2501 struct rq *rq;
2502 int ret = 0;
2503
2504 rq = __task_rq_lock(p);
2505 if (p->on_rq) {
2506 ttwu_do_wakeup(rq, p, wake_flags);
2507 ret = 1;
2508 }
2509 __task_rq_unlock(rq);
2510
2511 return ret;
2512 }
2513
2514 #ifdef CONFIG_SMP
2515 static void sched_ttwu_do_pending(struct task_struct *list)
2516 {
2517 struct rq *rq = this_rq();
2518
2519 raw_spin_lock(&rq->lock);
2520
2521 while (list) {
2522 struct task_struct *p = list;
2523 list = list->wake_entry;
2524 ttwu_do_activate(rq, p, 0);
2525 }
2526
2527 raw_spin_unlock(&rq->lock);
2528 }
2529
2530 #ifdef CONFIG_HOTPLUG_CPU
2531
2532 static void sched_ttwu_pending(void)
2533 {
2534 struct rq *rq = this_rq();
2535 struct task_struct *list = xchg(&rq->wake_list, NULL);
2536
2537 if (!list)
2538 return;
2539
2540 sched_ttwu_do_pending(list);
2541 }
2542
2543 #endif /* CONFIG_HOTPLUG_CPU */
2544
2545 void scheduler_ipi(void)
2546 {
2547 struct rq *rq = this_rq();
2548 struct task_struct *list = xchg(&rq->wake_list, NULL);
2549
2550 if (!list)
2551 return;
2552
2553 /*
2554 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2555 * traditionally all their work was done from the interrupt return
2556 * path. Now that we actually do some work, we need to make sure
2557 * we do call them.
2558 *
2559 * Some archs already do call them, luckily irq_enter/exit nest
2560 * properly.
2561 *
2562 * Arguably we should visit all archs and update all handlers,
2563 * however a fair share of IPIs are still resched only so this would
2564 * somewhat pessimize the simple resched case.
2565 */
2566 irq_enter();
2567 sched_ttwu_do_pending(list);
2568 irq_exit();
2569 }
2570
2571 static void ttwu_queue_remote(struct task_struct *p, int cpu)
2572 {
2573 struct rq *rq = cpu_rq(cpu);
2574 struct task_struct *next = rq->wake_list;
2575
2576 for (;;) {
2577 struct task_struct *old = next;
2578
2579 p->wake_entry = next;
2580 next = cmpxchg(&rq->wake_list, old, p);
2581 if (next == old)
2582 break;
2583 }
2584
2585 if (!next)
2586 smp_send_reschedule(cpu);
2587 }
2588
2589 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2590 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2591 {
2592 struct rq *rq;
2593 int ret = 0;
2594
2595 rq = __task_rq_lock(p);
2596 if (p->on_cpu) {
2597 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2598 ttwu_do_wakeup(rq, p, wake_flags);
2599 ret = 1;
2600 }
2601 __task_rq_unlock(rq);
2602
2603 return ret;
2604
2605 }
2606 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2607 #endif /* CONFIG_SMP */
2608
2609 static void ttwu_queue(struct task_struct *p, int cpu)
2610 {
2611 struct rq *rq = cpu_rq(cpu);
2612
2613 #if defined(CONFIG_SMP)
2614 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2615 sched_clock_cpu(cpu); /* sync clocks x-cpu */
2616 ttwu_queue_remote(p, cpu);
2617 return;
2618 }
2619 #endif
2620
2621 raw_spin_lock(&rq->lock);
2622 ttwu_do_activate(rq, p, 0);
2623 raw_spin_unlock(&rq->lock);
2624 }
2625
2626 /**
2627 * try_to_wake_up - wake up a thread
2628 * @p: the thread to be awakened
2629 * @state: the mask of task states that can be woken
2630 * @wake_flags: wake modifier flags (WF_*)
2631 *
2632 * Put it on the run-queue if it's not already there. The "current"
2633 * thread is always on the run-queue (except when the actual
2634 * re-schedule is in progress), and as such you're allowed to do
2635 * the simpler "current->state = TASK_RUNNING" to mark yourself
2636 * runnable without the overhead of this.
2637 *
2638 * Returns %true if @p was woken up, %false if it was already running
2639 * or @state didn't match @p's state.
2640 */
2641 static int
2642 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2643 {
2644 unsigned long flags;
2645 int cpu, success = 0;
2646
2647 smp_wmb();
2648 raw_spin_lock_irqsave(&p->pi_lock, flags);
2649 if (!(p->state & state))
2650 goto out;
2651
2652 success = 1; /* we're going to change ->state */
2653 cpu = task_cpu(p);
2654
2655 if (p->on_rq && ttwu_remote(p, wake_flags))
2656 goto stat;
2657
2658 #ifdef CONFIG_SMP
2659 /*
2660 * If the owning (remote) cpu is still in the middle of schedule() with
2661 * this task as prev, wait until its done referencing the task.
2662 */
2663 while (p->on_cpu) {
2664 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2665 /*
2666 * In case the architecture enables interrupts in
2667 * context_switch(), we cannot busy wait, since that
2668 * would lead to deadlocks when an interrupt hits and
2669 * tries to wake up @prev. So bail and do a complete
2670 * remote wakeup.
2671 */
2672 if (ttwu_activate_remote(p, wake_flags))
2673 goto stat;
2674 #else
2675 cpu_relax();
2676 #endif
2677 }
2678 /*
2679 * Pairs with the smp_wmb() in finish_lock_switch().
2680 */
2681 smp_rmb();
2682
2683 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2684 p->state = TASK_WAKING;
2685
2686 if (p->sched_class->task_waking)
2687 p->sched_class->task_waking(p);
2688
2689 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2690 if (task_cpu(p) != cpu) {
2691 wake_flags |= WF_MIGRATED;
2692 set_task_cpu(p, cpu);
2693 }
2694 #endif /* CONFIG_SMP */
2695
2696 ttwu_queue(p, cpu);
2697 stat:
2698 ttwu_stat(p, cpu, wake_flags);
2699 out:
2700 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2701
2702 return success;
2703 }
2704
2705 /**
2706 * try_to_wake_up_local - try to wake up a local task with rq lock held
2707 * @p: the thread to be awakened
2708 *
2709 * Put @p on the run-queue if it's not already there. The caller must
2710 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2711 * the current task.
2712 */
2713 static void try_to_wake_up_local(struct task_struct *p)
2714 {
2715 struct rq *rq = task_rq(p);
2716
2717 BUG_ON(rq != this_rq());
2718 BUG_ON(p == current);
2719 lockdep_assert_held(&rq->lock);
2720
2721 if (!raw_spin_trylock(&p->pi_lock)) {
2722 raw_spin_unlock(&rq->lock);
2723 raw_spin_lock(&p->pi_lock);
2724 raw_spin_lock(&rq->lock);
2725 }
2726
2727 if (!(p->state & TASK_NORMAL))
2728 goto out;
2729
2730 if (!p->on_rq)
2731 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2732
2733 ttwu_do_wakeup(rq, p, 0);
2734 ttwu_stat(p, smp_processor_id(), 0);
2735 out:
2736 raw_spin_unlock(&p->pi_lock);
2737 }
2738
2739 /**
2740 * wake_up_process - Wake up a specific process
2741 * @p: The process to be woken up.
2742 *
2743 * Attempt to wake up the nominated process and move it to the set of runnable
2744 * processes. Returns 1 if the process was woken up, 0 if it was already
2745 * running.
2746 *
2747 * It may be assumed that this function implies a write memory barrier before
2748 * changing the task state if and only if any tasks are woken up.
2749 */
2750 int wake_up_process(struct task_struct *p)
2751 {
2752 return try_to_wake_up(p, TASK_ALL, 0);
2753 }
2754 EXPORT_SYMBOL(wake_up_process);
2755
2756 int wake_up_state(struct task_struct *p, unsigned int state)
2757 {
2758 return try_to_wake_up(p, state, 0);
2759 }
2760
2761 /*
2762 * Perform scheduler related setup for a newly forked process p.
2763 * p is forked by current.
2764 *
2765 * __sched_fork() is basic setup used by init_idle() too:
2766 */
2767 static void __sched_fork(struct task_struct *p)
2768 {
2769 p->on_rq = 0;
2770
2771 p->se.on_rq = 0;
2772 p->se.exec_start = 0;
2773 p->se.sum_exec_runtime = 0;
2774 p->se.prev_sum_exec_runtime = 0;
2775 p->se.nr_migrations = 0;
2776 p->se.vruntime = 0;
2777 INIT_LIST_HEAD(&p->se.group_node);
2778
2779 #ifdef CONFIG_SCHEDSTATS
2780 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2781 #endif
2782
2783 INIT_LIST_HEAD(&p->rt.run_list);
2784
2785 #ifdef CONFIG_PREEMPT_NOTIFIERS
2786 INIT_HLIST_HEAD(&p->preempt_notifiers);
2787 #endif
2788 }
2789
2790 /*
2791 * fork()/clone()-time setup:
2792 */
2793 void sched_fork(struct task_struct *p)
2794 {
2795 unsigned long flags;
2796 int cpu = get_cpu();
2797
2798 __sched_fork(p);
2799 /*
2800 * We mark the process as running here. This guarantees that
2801 * nobody will actually run it, and a signal or other external
2802 * event cannot wake it up and insert it on the runqueue either.
2803 */
2804 p->state = TASK_RUNNING;
2805
2806 /*
2807 * Revert to default priority/policy on fork if requested.
2808 */
2809 if (unlikely(p->sched_reset_on_fork)) {
2810 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2811 p->policy = SCHED_NORMAL;
2812 p->normal_prio = p->static_prio;
2813 }
2814
2815 if (PRIO_TO_NICE(p->static_prio) < 0) {
2816 p->static_prio = NICE_TO_PRIO(0);
2817 p->normal_prio = p->static_prio;
2818 set_load_weight(p);
2819 }
2820
2821 /*
2822 * We don't need the reset flag anymore after the fork. It has
2823 * fulfilled its duty:
2824 */
2825 p->sched_reset_on_fork = 0;
2826 }
2827
2828 /*
2829 * Make sure we do not leak PI boosting priority to the child.
2830 */
2831 p->prio = current->normal_prio;
2832
2833 if (!rt_prio(p->prio))
2834 p->sched_class = &fair_sched_class;
2835
2836 if (p->sched_class->task_fork)
2837 p->sched_class->task_fork(p);
2838
2839 /*
2840 * The child is not yet in the pid-hash so no cgroup attach races,
2841 * and the cgroup is pinned to this child due to cgroup_fork()
2842 * is ran before sched_fork().
2843 *
2844 * Silence PROVE_RCU.
2845 */
2846 raw_spin_lock_irqsave(&p->pi_lock, flags);
2847 set_task_cpu(p, cpu);
2848 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2849
2850 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2851 if (likely(sched_info_on()))
2852 memset(&p->sched_info, 0, sizeof(p->sched_info));
2853 #endif
2854 #if defined(CONFIG_SMP)
2855 p->on_cpu = 0;
2856 #endif
2857 #ifdef CONFIG_PREEMPT_COUNT
2858 /* Want to start with kernel preemption disabled. */
2859 task_thread_info(p)->preempt_count = 1;
2860 #endif
2861 #ifdef CONFIG_SMP
2862 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2863 #endif
2864
2865 put_cpu();
2866 }
2867
2868 /*
2869 * wake_up_new_task - wake up a newly created task for the first time.
2870 *
2871 * This function will do some initial scheduler statistics housekeeping
2872 * that must be done for every newly created context, then puts the task
2873 * on the runqueue and wakes it.
2874 */
2875 void wake_up_new_task(struct task_struct *p)
2876 {
2877 unsigned long flags;
2878 struct rq *rq;
2879
2880 raw_spin_lock_irqsave(&p->pi_lock, flags);
2881 #ifdef CONFIG_SMP
2882 /*
2883 * Fork balancing, do it here and not earlier because:
2884 * - cpus_allowed can change in the fork path
2885 * - any previously selected cpu might disappear through hotplug
2886 */
2887 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
2888 #endif
2889
2890 rq = __task_rq_lock(p);
2891 activate_task(rq, p, 0);
2892 p->on_rq = 1;
2893 trace_sched_wakeup_new(p, true);
2894 check_preempt_curr(rq, p, WF_FORK);
2895 #ifdef CONFIG_SMP
2896 if (p->sched_class->task_woken)
2897 p->sched_class->task_woken(rq, p);
2898 #endif
2899 task_rq_unlock(rq, p, &flags);
2900 }
2901
2902 #ifdef CONFIG_PREEMPT_NOTIFIERS
2903
2904 /**
2905 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2906 * @notifier: notifier struct to register
2907 */
2908 void preempt_notifier_register(struct preempt_notifier *notifier)
2909 {
2910 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2911 }
2912 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2913
2914 /**
2915 * preempt_notifier_unregister - no longer interested in preemption notifications
2916 * @notifier: notifier struct to unregister
2917 *
2918 * This is safe to call from within a preemption notifier.
2919 */
2920 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2921 {
2922 hlist_del(&notifier->link);
2923 }
2924 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2925
2926 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2927 {
2928 struct preempt_notifier *notifier;
2929 struct hlist_node *node;
2930
2931 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2932 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2933 }
2934
2935 static void
2936 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2937 struct task_struct *next)
2938 {
2939 struct preempt_notifier *notifier;
2940 struct hlist_node *node;
2941
2942 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2943 notifier->ops->sched_out(notifier, next);
2944 }
2945
2946 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2947
2948 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2949 {
2950 }
2951
2952 static void
2953 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2954 struct task_struct *next)
2955 {
2956 }
2957
2958 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2959
2960 /**
2961 * prepare_task_switch - prepare to switch tasks
2962 * @rq: the runqueue preparing to switch
2963 * @prev: the current task that is being switched out
2964 * @next: the task we are going to switch to.
2965 *
2966 * This is called with the rq lock held and interrupts off. It must
2967 * be paired with a subsequent finish_task_switch after the context
2968 * switch.
2969 *
2970 * prepare_task_switch sets up locking and calls architecture specific
2971 * hooks.
2972 */
2973 static inline void
2974 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2975 struct task_struct *next)
2976 {
2977 sched_info_switch(prev, next);
2978 perf_event_task_sched_out(prev, next);
2979 fire_sched_out_preempt_notifiers(prev, next);
2980 prepare_lock_switch(rq, next);
2981 prepare_arch_switch(next);
2982 trace_sched_switch(prev, next);
2983 }
2984
2985 /**
2986 * finish_task_switch - clean up after a task-switch
2987 * @rq: runqueue associated with task-switch
2988 * @prev: the thread we just switched away from.
2989 *
2990 * finish_task_switch must be called after the context switch, paired
2991 * with a prepare_task_switch call before the context switch.
2992 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2993 * and do any other architecture-specific cleanup actions.
2994 *
2995 * Note that we may have delayed dropping an mm in context_switch(). If
2996 * so, we finish that here outside of the runqueue lock. (Doing it
2997 * with the lock held can cause deadlocks; see schedule() for
2998 * details.)
2999 */
3000 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
3001 __releases(rq->lock)
3002 {
3003 struct mm_struct *mm = rq->prev_mm;
3004 long prev_state;
3005
3006 rq->prev_mm = NULL;
3007
3008 /*
3009 * A task struct has one reference for the use as "current".
3010 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3011 * schedule one last time. The schedule call will never return, and
3012 * the scheduled task must drop that reference.
3013 * The test for TASK_DEAD must occur while the runqueue locks are
3014 * still held, otherwise prev could be scheduled on another cpu, die
3015 * there before we look at prev->state, and then the reference would
3016 * be dropped twice.
3017 * Manfred Spraul <manfred@colorfullife.com>
3018 */
3019 prev_state = prev->state;
3020 finish_arch_switch(prev);
3021 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3022 local_irq_disable();
3023 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3024 perf_event_task_sched_in(current);
3025 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3026 local_irq_enable();
3027 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3028 finish_lock_switch(rq, prev);
3029
3030 fire_sched_in_preempt_notifiers(current);
3031 if (mm)
3032 mmdrop(mm);
3033 if (unlikely(prev_state == TASK_DEAD)) {
3034 /*
3035 * Remove function-return probe instances associated with this
3036 * task and put them back on the free list.
3037 */
3038 kprobe_flush_task(prev);
3039 put_task_struct(prev);
3040 }
3041 }
3042
3043 #ifdef CONFIG_SMP
3044
3045 /* assumes rq->lock is held */
3046 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3047 {
3048 if (prev->sched_class->pre_schedule)
3049 prev->sched_class->pre_schedule(rq, prev);
3050 }
3051
3052 /* rq->lock is NOT held, but preemption is disabled */
3053 static inline void post_schedule(struct rq *rq)
3054 {
3055 if (rq->post_schedule) {
3056 unsigned long flags;
3057
3058 raw_spin_lock_irqsave(&rq->lock, flags);
3059 if (rq->curr->sched_class->post_schedule)
3060 rq->curr->sched_class->post_schedule(rq);
3061 raw_spin_unlock_irqrestore(&rq->lock, flags);
3062
3063 rq->post_schedule = 0;
3064 }
3065 }
3066
3067 #else
3068
3069 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3070 {
3071 }
3072
3073 static inline void post_schedule(struct rq *rq)
3074 {
3075 }
3076
3077 #endif
3078
3079 /**
3080 * schedule_tail - first thing a freshly forked thread must call.
3081 * @prev: the thread we just switched away from.
3082 */
3083 asmlinkage void schedule_tail(struct task_struct *prev)
3084 __releases(rq->lock)
3085 {
3086 struct rq *rq = this_rq();
3087
3088 finish_task_switch(rq, prev);
3089
3090 /*
3091 * FIXME: do we need to worry about rq being invalidated by the
3092 * task_switch?
3093 */
3094 post_schedule(rq);
3095
3096 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3097 /* In this case, finish_task_switch does not reenable preemption */
3098 preempt_enable();
3099 #endif
3100 if (current->set_child_tid)
3101 put_user(task_pid_vnr(current), current->set_child_tid);
3102 }
3103
3104 /*
3105 * context_switch - switch to the new MM and the new
3106 * thread's register state.
3107 */
3108 static inline void
3109 context_switch(struct rq *rq, struct task_struct *prev,
3110 struct task_struct *next)
3111 {
3112 struct mm_struct *mm, *oldmm;
3113
3114 prepare_task_switch(rq, prev, next);
3115
3116 mm = next->mm;
3117 oldmm = prev->active_mm;
3118 /*
3119 * For paravirt, this is coupled with an exit in switch_to to
3120 * combine the page table reload and the switch backend into
3121 * one hypercall.
3122 */
3123 arch_start_context_switch(prev);
3124
3125 if (!mm) {
3126 next->active_mm = oldmm;
3127 atomic_inc(&oldmm->mm_count);
3128 enter_lazy_tlb(oldmm, next);
3129 } else
3130 switch_mm(oldmm, mm, next);
3131
3132 if (!prev->mm) {
3133 prev->active_mm = NULL;
3134 rq->prev_mm = oldmm;
3135 }
3136 /*
3137 * Since the runqueue lock will be released by the next
3138 * task (which is an invalid locking op but in the case
3139 * of the scheduler it's an obvious special-case), so we
3140 * do an early lockdep release here:
3141 */
3142 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3143 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3144 #endif
3145
3146 /* Here we just switch the register state and the stack. */
3147 switch_to(prev, next, prev);
3148
3149 barrier();
3150 /*
3151 * this_rq must be evaluated again because prev may have moved
3152 * CPUs since it called schedule(), thus the 'rq' on its stack
3153 * frame will be invalid.
3154 */
3155 finish_task_switch(this_rq(), prev);
3156 }
3157
3158 /*
3159 * nr_running, nr_uninterruptible and nr_context_switches:
3160 *
3161 * externally visible scheduler statistics: current number of runnable
3162 * threads, current number of uninterruptible-sleeping threads, total
3163 * number of context switches performed since bootup.
3164 */
3165 unsigned long nr_running(void)
3166 {
3167 unsigned long i, sum = 0;
3168
3169 for_each_online_cpu(i)
3170 sum += cpu_rq(i)->nr_running;
3171
3172 return sum;
3173 }
3174
3175 unsigned long nr_uninterruptible(void)
3176 {
3177 unsigned long i, sum = 0;
3178
3179 for_each_possible_cpu(i)
3180 sum += cpu_rq(i)->nr_uninterruptible;
3181
3182 /*
3183 * Since we read the counters lockless, it might be slightly
3184 * inaccurate. Do not allow it to go below zero though:
3185 */
3186 if (unlikely((long)sum < 0))
3187 sum = 0;
3188
3189 return sum;
3190 }
3191
3192 unsigned long long nr_context_switches(void)
3193 {
3194 int i;
3195 unsigned long long sum = 0;
3196
3197 for_each_possible_cpu(i)
3198 sum += cpu_rq(i)->nr_switches;
3199
3200 return sum;
3201 }
3202
3203 unsigned long nr_iowait(void)
3204 {
3205 unsigned long i, sum = 0;
3206
3207 for_each_possible_cpu(i)
3208 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3209
3210 return sum;
3211 }
3212
3213 unsigned long nr_iowait_cpu(int cpu)
3214 {
3215 struct rq *this = cpu_rq(cpu);
3216 return atomic_read(&this->nr_iowait);
3217 }
3218
3219 unsigned long this_cpu_load(void)
3220 {
3221 struct rq *this = this_rq();
3222 return this->cpu_load[0];
3223 }
3224
3225
3226 /* Variables and functions for calc_load */
3227 static atomic_long_t calc_load_tasks;
3228 static unsigned long calc_load_update;
3229 unsigned long avenrun[3];
3230 EXPORT_SYMBOL(avenrun);
3231
3232 static long calc_load_fold_active(struct rq *this_rq)
3233 {
3234 long nr_active, delta = 0;
3235
3236 nr_active = this_rq->nr_running;
3237 nr_active += (long) this_rq->nr_uninterruptible;
3238
3239 if (nr_active != this_rq->calc_load_active) {
3240 delta = nr_active - this_rq->calc_load_active;
3241 this_rq->calc_load_active = nr_active;
3242 }
3243
3244 return delta;
3245 }
3246
3247 static unsigned long
3248 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3249 {
3250 load *= exp;
3251 load += active * (FIXED_1 - exp);
3252 load += 1UL << (FSHIFT - 1);
3253 return load >> FSHIFT;
3254 }
3255
3256 #ifdef CONFIG_NO_HZ
3257 /*
3258 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3259 *
3260 * When making the ILB scale, we should try to pull this in as well.
3261 */
3262 static atomic_long_t calc_load_tasks_idle;
3263
3264 static void calc_load_account_idle(struct rq *this_rq)
3265 {
3266 long delta;
3267
3268 delta = calc_load_fold_active(this_rq);
3269 if (delta)
3270 atomic_long_add(delta, &calc_load_tasks_idle);
3271 }
3272
3273 static long calc_load_fold_idle(void)
3274 {
3275 long delta = 0;
3276
3277 /*
3278 * Its got a race, we don't care...
3279 */
3280 if (atomic_long_read(&calc_load_tasks_idle))
3281 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3282
3283 return delta;
3284 }
3285
3286 /**
3287 * fixed_power_int - compute: x^n, in O(log n) time
3288 *
3289 * @x: base of the power
3290 * @frac_bits: fractional bits of @x
3291 * @n: power to raise @x to.
3292 *
3293 * By exploiting the relation between the definition of the natural power
3294 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3295 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3296 * (where: n_i \elem {0, 1}, the binary vector representing n),
3297 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3298 * of course trivially computable in O(log_2 n), the length of our binary
3299 * vector.
3300 */
3301 static unsigned long
3302 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3303 {
3304 unsigned long result = 1UL << frac_bits;
3305
3306 if (n) for (;;) {
3307 if (n & 1) {
3308 result *= x;
3309 result += 1UL << (frac_bits - 1);
3310 result >>= frac_bits;
3311 }
3312 n >>= 1;
3313 if (!n)
3314 break;
3315 x *= x;
3316 x += 1UL << (frac_bits - 1);
3317 x >>= frac_bits;
3318 }
3319
3320 return result;
3321 }
3322
3323 /*
3324 * a1 = a0 * e + a * (1 - e)
3325 *
3326 * a2 = a1 * e + a * (1 - e)
3327 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3328 * = a0 * e^2 + a * (1 - e) * (1 + e)
3329 *
3330 * a3 = a2 * e + a * (1 - e)
3331 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3332 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3333 *
3334 * ...
3335 *
3336 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3337 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3338 * = a0 * e^n + a * (1 - e^n)
3339 *
3340 * [1] application of the geometric series:
3341 *
3342 * n 1 - x^(n+1)
3343 * S_n := \Sum x^i = -------------
3344 * i=0 1 - x
3345 */
3346 static unsigned long
3347 calc_load_n(unsigned long load, unsigned long exp,
3348 unsigned long active, unsigned int n)
3349 {
3350
3351 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3352 }
3353
3354 /*
3355 * NO_HZ can leave us missing all per-cpu ticks calling
3356 * calc_load_account_active(), but since an idle CPU folds its delta into
3357 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3358 * in the pending idle delta if our idle period crossed a load cycle boundary.
3359 *
3360 * Once we've updated the global active value, we need to apply the exponential
3361 * weights adjusted to the number of cycles missed.
3362 */
3363 static void calc_global_nohz(unsigned long ticks)
3364 {
3365 long delta, active, n;
3366
3367 if (time_before(jiffies, calc_load_update))
3368 return;
3369
3370 /*
3371 * If we crossed a calc_load_update boundary, make sure to fold
3372 * any pending idle changes, the respective CPUs might have
3373 * missed the tick driven calc_load_account_active() update
3374 * due to NO_HZ.
3375 */
3376 delta = calc_load_fold_idle();
3377 if (delta)
3378 atomic_long_add(delta, &calc_load_tasks);
3379
3380 /*
3381 * If we were idle for multiple load cycles, apply them.
3382 */
3383 if (ticks >= LOAD_FREQ) {
3384 n = ticks / LOAD_FREQ;
3385
3386 active = atomic_long_read(&calc_load_tasks);
3387 active = active > 0 ? active * FIXED_1 : 0;
3388
3389 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3390 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3391 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3392
3393 calc_load_update += n * LOAD_FREQ;
3394 }
3395
3396 /*
3397 * Its possible the remainder of the above division also crosses
3398 * a LOAD_FREQ period, the regular check in calc_global_load()
3399 * which comes after this will take care of that.
3400 *
3401 * Consider us being 11 ticks before a cycle completion, and us
3402 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3403 * age us 4 cycles, and the test in calc_global_load() will
3404 * pick up the final one.
3405 */
3406 }
3407 #else
3408 static void calc_load_account_idle(struct rq *this_rq)
3409 {
3410 }
3411
3412 static inline long calc_load_fold_idle(void)
3413 {
3414 return 0;
3415 }
3416
3417 static void calc_global_nohz(unsigned long ticks)
3418 {
3419 }
3420 #endif
3421
3422 /**
3423 * get_avenrun - get the load average array
3424 * @loads: pointer to dest load array
3425 * @offset: offset to add
3426 * @shift: shift count to shift the result left
3427 *
3428 * These values are estimates at best, so no need for locking.
3429 */
3430 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3431 {
3432 loads[0] = (avenrun[0] + offset) << shift;
3433 loads[1] = (avenrun[1] + offset) << shift;
3434 loads[2] = (avenrun[2] + offset) << shift;
3435 }
3436
3437 /*
3438 * calc_load - update the avenrun load estimates 10 ticks after the
3439 * CPUs have updated calc_load_tasks.
3440 */
3441 void calc_global_load(unsigned long ticks)
3442 {
3443 long active;
3444
3445 calc_global_nohz(ticks);
3446
3447 if (time_before(jiffies, calc_load_update + 10))
3448 return;
3449
3450 active = atomic_long_read(&calc_load_tasks);
3451 active = active > 0 ? active * FIXED_1 : 0;
3452
3453 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3454 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3455 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3456
3457 calc_load_update += LOAD_FREQ;
3458 }
3459
3460 /*
3461 * Called from update_cpu_load() to periodically update this CPU's
3462 * active count.
3463 */
3464 static void calc_load_account_active(struct rq *this_rq)
3465 {
3466 long delta;
3467
3468 if (time_before(jiffies, this_rq->calc_load_update))
3469 return;
3470
3471 delta = calc_load_fold_active(this_rq);
3472 delta += calc_load_fold_idle();
3473 if (delta)
3474 atomic_long_add(delta, &calc_load_tasks);
3475
3476 this_rq->calc_load_update += LOAD_FREQ;
3477 }
3478
3479 /*
3480 * The exact cpuload at various idx values, calculated at every tick would be
3481 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3482 *
3483 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3484 * on nth tick when cpu may be busy, then we have:
3485 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3486 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3487 *
3488 * decay_load_missed() below does efficient calculation of
3489 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3490 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3491 *
3492 * The calculation is approximated on a 128 point scale.
3493 * degrade_zero_ticks is the number of ticks after which load at any
3494 * particular idx is approximated to be zero.
3495 * degrade_factor is a precomputed table, a row for each load idx.
3496 * Each column corresponds to degradation factor for a power of two ticks,
3497 * based on 128 point scale.
3498 * Example:
3499 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3500 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3501 *
3502 * With this power of 2 load factors, we can degrade the load n times
3503 * by looking at 1 bits in n and doing as many mult/shift instead of
3504 * n mult/shifts needed by the exact degradation.
3505 */
3506 #define DEGRADE_SHIFT 7
3507 static const unsigned char
3508 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3509 static const unsigned char
3510 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3511 {0, 0, 0, 0, 0, 0, 0, 0},
3512 {64, 32, 8, 0, 0, 0, 0, 0},
3513 {96, 72, 40, 12, 1, 0, 0},
3514 {112, 98, 75, 43, 15, 1, 0},
3515 {120, 112, 98, 76, 45, 16, 2} };
3516
3517 /*
3518 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3519 * would be when CPU is idle and so we just decay the old load without
3520 * adding any new load.
3521 */
3522 static unsigned long
3523 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3524 {
3525 int j = 0;
3526
3527 if (!missed_updates)
3528 return load;
3529
3530 if (missed_updates >= degrade_zero_ticks[idx])
3531 return 0;
3532
3533 if (idx == 1)
3534 return load >> missed_updates;
3535
3536 while (missed_updates) {
3537 if (missed_updates % 2)
3538 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3539
3540 missed_updates >>= 1;
3541 j++;
3542 }
3543 return load;
3544 }
3545
3546 /*
3547 * Update rq->cpu_load[] statistics. This function is usually called every
3548 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3549 * every tick. We fix it up based on jiffies.
3550 */
3551 static void update_cpu_load(struct rq *this_rq)
3552 {
3553 unsigned long this_load = this_rq->load.weight;
3554 unsigned long curr_jiffies = jiffies;
3555 unsigned long pending_updates;
3556 int i, scale;
3557
3558 this_rq->nr_load_updates++;
3559
3560 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3561 if (curr_jiffies == this_rq->last_load_update_tick)
3562 return;
3563
3564 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3565 this_rq->last_load_update_tick = curr_jiffies;
3566
3567 /* Update our load: */
3568 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3569 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3570 unsigned long old_load, new_load;
3571
3572 /* scale is effectively 1 << i now, and >> i divides by scale */
3573
3574 old_load = this_rq->cpu_load[i];
3575 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3576 new_load = this_load;
3577 /*
3578 * Round up the averaging division if load is increasing. This
3579 * prevents us from getting stuck on 9 if the load is 10, for
3580 * example.
3581 */
3582 if (new_load > old_load)
3583 new_load += scale - 1;
3584
3585 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3586 }
3587
3588 sched_avg_update(this_rq);
3589 }
3590
3591 static void update_cpu_load_active(struct rq *this_rq)
3592 {
3593 update_cpu_load(this_rq);
3594
3595 calc_load_account_active(this_rq);
3596 }
3597
3598 #ifdef CONFIG_SMP
3599
3600 /*
3601 * sched_exec - execve() is a valuable balancing opportunity, because at
3602 * this point the task has the smallest effective memory and cache footprint.
3603 */
3604 void sched_exec(void)
3605 {
3606 struct task_struct *p = current;
3607 unsigned long flags;
3608 int dest_cpu;
3609
3610 raw_spin_lock_irqsave(&p->pi_lock, flags);
3611 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3612 if (dest_cpu == smp_processor_id())
3613 goto unlock;
3614
3615 if (likely(cpu_active(dest_cpu))) {
3616 struct migration_arg arg = { p, dest_cpu };
3617
3618 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3619 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3620 return;
3621 }
3622 unlock:
3623 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3624 }
3625
3626 #endif
3627
3628 DEFINE_PER_CPU(struct kernel_stat, kstat);
3629
3630 EXPORT_PER_CPU_SYMBOL(kstat);
3631
3632 /*
3633 * Return any ns on the sched_clock that have not yet been accounted in
3634 * @p in case that task is currently running.
3635 *
3636 * Called with task_rq_lock() held on @rq.
3637 */
3638 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3639 {
3640 u64 ns = 0;
3641
3642 if (task_current(rq, p)) {
3643 update_rq_clock(rq);
3644 ns = rq->clock_task - p->se.exec_start;
3645 if ((s64)ns < 0)
3646 ns = 0;
3647 }
3648
3649 return ns;
3650 }
3651
3652 unsigned long long task_delta_exec(struct task_struct *p)
3653 {
3654 unsigned long flags;
3655 struct rq *rq;
3656 u64 ns = 0;
3657
3658 rq = task_rq_lock(p, &flags);
3659 ns = do_task_delta_exec(p, rq);
3660 task_rq_unlock(rq, p, &flags);
3661
3662 return ns;
3663 }
3664
3665 /*
3666 * Return accounted runtime for the task.
3667 * In case the task is currently running, return the runtime plus current's
3668 * pending runtime that have not been accounted yet.
3669 */
3670 unsigned long long task_sched_runtime(struct task_struct *p)
3671 {
3672 unsigned long flags;
3673 struct rq *rq;
3674 u64 ns = 0;
3675
3676 rq = task_rq_lock(p, &flags);
3677 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3678 task_rq_unlock(rq, p, &flags);
3679
3680 return ns;
3681 }
3682
3683 /*
3684 * Return sum_exec_runtime for the thread group.
3685 * In case the task is currently running, return the sum plus current's
3686 * pending runtime that have not been accounted yet.
3687 *
3688 * Note that the thread group might have other running tasks as well,
3689 * so the return value not includes other pending runtime that other
3690 * running tasks might have.
3691 */
3692 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3693 {
3694 struct task_cputime totals;
3695 unsigned long flags;
3696 struct rq *rq;
3697 u64 ns;
3698
3699 rq = task_rq_lock(p, &flags);
3700 thread_group_cputime(p, &totals);
3701 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3702 task_rq_unlock(rq, p, &flags);
3703
3704 return ns;
3705 }
3706
3707 /*
3708 * Account user cpu time to a process.
3709 * @p: the process that the cpu time gets accounted to
3710 * @cputime: the cpu time spent in user space since the last update
3711 * @cputime_scaled: cputime scaled by cpu frequency
3712 */
3713 void account_user_time(struct task_struct *p, cputime_t cputime,
3714 cputime_t cputime_scaled)
3715 {
3716 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3717 cputime64_t tmp;
3718
3719 /* Add user time to process. */
3720 p->utime = cputime_add(p->utime, cputime);
3721 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3722 account_group_user_time(p, cputime);
3723
3724 /* Add user time to cpustat. */
3725 tmp = cputime_to_cputime64(cputime);
3726 if (TASK_NICE(p) > 0)
3727 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3728 else
3729 cpustat->user = cputime64_add(cpustat->user, tmp);
3730
3731 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3732 /* Account for user time used */
3733 acct_update_integrals(p);
3734 }
3735
3736 /*
3737 * Account guest cpu time to a process.
3738 * @p: the process that the cpu time gets accounted to
3739 * @cputime: the cpu time spent in virtual machine since the last update
3740 * @cputime_scaled: cputime scaled by cpu frequency
3741 */
3742 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3743 cputime_t cputime_scaled)
3744 {
3745 cputime64_t tmp;
3746 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3747
3748 tmp = cputime_to_cputime64(cputime);
3749
3750 /* Add guest time to process. */
3751 p->utime = cputime_add(p->utime, cputime);
3752 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3753 account_group_user_time(p, cputime);
3754 p->gtime = cputime_add(p->gtime, cputime);
3755
3756 /* Add guest time to cpustat. */
3757 if (TASK_NICE(p) > 0) {
3758 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3759 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3760 } else {
3761 cpustat->user = cputime64_add(cpustat->user, tmp);
3762 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3763 }
3764 }
3765
3766 /*
3767 * Account system cpu time to a process and desired cpustat field
3768 * @p: the process that the cpu time gets accounted to
3769 * @cputime: the cpu time spent in kernel space since the last update
3770 * @cputime_scaled: cputime scaled by cpu frequency
3771 * @target_cputime64: pointer to cpustat field that has to be updated
3772 */
3773 static inline
3774 void __account_system_time(struct task_struct *p, cputime_t cputime,
3775 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3776 {
3777 cputime64_t tmp = cputime_to_cputime64(cputime);
3778
3779 /* Add system time to process. */
3780 p->stime = cputime_add(p->stime, cputime);
3781 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3782 account_group_system_time(p, cputime);
3783
3784 /* Add system time to cpustat. */
3785 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3786 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3787
3788 /* Account for system time used */
3789 acct_update_integrals(p);
3790 }
3791
3792 /*
3793 * Account system cpu time to a process.
3794 * @p: the process that the cpu time gets accounted to
3795 * @hardirq_offset: the offset to subtract from hardirq_count()
3796 * @cputime: the cpu time spent in kernel space since the last update
3797 * @cputime_scaled: cputime scaled by cpu frequency
3798 */
3799 void account_system_time(struct task_struct *p, int hardirq_offset,
3800 cputime_t cputime, cputime_t cputime_scaled)
3801 {
3802 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3803 cputime64_t *target_cputime64;
3804
3805 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3806 account_guest_time(p, cputime, cputime_scaled);
3807 return;
3808 }
3809
3810 if (hardirq_count() - hardirq_offset)
3811 target_cputime64 = &cpustat->irq;
3812 else if (in_serving_softirq())
3813 target_cputime64 = &cpustat->softirq;
3814 else
3815 target_cputime64 = &cpustat->system;
3816
3817 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3818 }
3819
3820 /*
3821 * Account for involuntary wait time.
3822 * @cputime: the cpu time spent in involuntary wait
3823 */
3824 void account_steal_time(cputime_t cputime)
3825 {
3826 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3827 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3828
3829 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3830 }
3831
3832 /*
3833 * Account for idle time.
3834 * @cputime: the cpu time spent in idle wait
3835 */
3836 void account_idle_time(cputime_t cputime)
3837 {
3838 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3839 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3840 struct rq *rq = this_rq();
3841
3842 if (atomic_read(&rq->nr_iowait) > 0)
3843 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3844 else
3845 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3846 }
3847
3848 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3849
3850 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3851 /*
3852 * Account a tick to a process and cpustat
3853 * @p: the process that the cpu time gets accounted to
3854 * @user_tick: is the tick from userspace
3855 * @rq: the pointer to rq
3856 *
3857 * Tick demultiplexing follows the order
3858 * - pending hardirq update
3859 * - pending softirq update
3860 * - user_time
3861 * - idle_time
3862 * - system time
3863 * - check for guest_time
3864 * - else account as system_time
3865 *
3866 * Check for hardirq is done both for system and user time as there is
3867 * no timer going off while we are on hardirq and hence we may never get an
3868 * opportunity to update it solely in system time.
3869 * p->stime and friends are only updated on system time and not on irq
3870 * softirq as those do not count in task exec_runtime any more.
3871 */
3872 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3873 struct rq *rq)
3874 {
3875 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3876 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3877 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3878
3879 if (irqtime_account_hi_update()) {
3880 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3881 } else if (irqtime_account_si_update()) {
3882 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3883 } else if (this_cpu_ksoftirqd() == p) {
3884 /*
3885 * ksoftirqd time do not get accounted in cpu_softirq_time.
3886 * So, we have to handle it separately here.
3887 * Also, p->stime needs to be updated for ksoftirqd.
3888 */
3889 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3890 &cpustat->softirq);
3891 } else if (user_tick) {
3892 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3893 } else if (p == rq->idle) {
3894 account_idle_time(cputime_one_jiffy);
3895 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3896 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3897 } else {
3898 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3899 &cpustat->system);
3900 }
3901 }
3902
3903 static void irqtime_account_idle_ticks(int ticks)
3904 {
3905 int i;
3906 struct rq *rq = this_rq();
3907
3908 for (i = 0; i < ticks; i++)
3909 irqtime_account_process_tick(current, 0, rq);
3910 }
3911 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3912 static void irqtime_account_idle_ticks(int ticks) {}
3913 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3914 struct rq *rq) {}
3915 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3916
3917 /*
3918 * Account a single tick of cpu time.
3919 * @p: the process that the cpu time gets accounted to
3920 * @user_tick: indicates if the tick is a user or a system tick
3921 */
3922 void account_process_tick(struct task_struct *p, int user_tick)
3923 {
3924 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3925 struct rq *rq = this_rq();
3926
3927 if (sched_clock_irqtime) {
3928 irqtime_account_process_tick(p, user_tick, rq);
3929 return;
3930 }
3931
3932 if (user_tick)
3933 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3934 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3935 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3936 one_jiffy_scaled);
3937 else
3938 account_idle_time(cputime_one_jiffy);
3939 }
3940
3941 /*
3942 * Account multiple ticks of steal time.
3943 * @p: the process from which the cpu time has been stolen
3944 * @ticks: number of stolen ticks
3945 */
3946 void account_steal_ticks(unsigned long ticks)
3947 {
3948 account_steal_time(jiffies_to_cputime(ticks));
3949 }
3950
3951 /*
3952 * Account multiple ticks of idle time.
3953 * @ticks: number of stolen ticks
3954 */
3955 void account_idle_ticks(unsigned long ticks)
3956 {
3957
3958 if (sched_clock_irqtime) {
3959 irqtime_account_idle_ticks(ticks);
3960 return;
3961 }
3962
3963 account_idle_time(jiffies_to_cputime(ticks));
3964 }
3965
3966 #endif
3967
3968 /*
3969 * Use precise platform statistics if available:
3970 */
3971 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3972 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3973 {
3974 *ut = p->utime;
3975 *st = p->stime;
3976 }
3977
3978 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3979 {
3980 struct task_cputime cputime;
3981
3982 thread_group_cputime(p, &cputime);
3983
3984 *ut = cputime.utime;
3985 *st = cputime.stime;
3986 }
3987 #else
3988
3989 #ifndef nsecs_to_cputime
3990 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3991 #endif
3992
3993 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3994 {
3995 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3996
3997 /*
3998 * Use CFS's precise accounting:
3999 */
4000 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
4001
4002 if (total) {
4003 u64 temp = rtime;
4004
4005 temp *= utime;
4006 do_div(temp, total);
4007 utime = (cputime_t)temp;
4008 } else
4009 utime = rtime;
4010
4011 /*
4012 * Compare with previous values, to keep monotonicity:
4013 */
4014 p->prev_utime = max(p->prev_utime, utime);
4015 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4016
4017 *ut = p->prev_utime;
4018 *st = p->prev_stime;
4019 }
4020
4021 /*
4022 * Must be called with siglock held.
4023 */
4024 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4025 {
4026 struct signal_struct *sig = p->signal;
4027 struct task_cputime cputime;
4028 cputime_t rtime, utime, total;
4029
4030 thread_group_cputime(p, &cputime);
4031
4032 total = cputime_add(cputime.utime, cputime.stime);
4033 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4034
4035 if (total) {
4036 u64 temp = rtime;
4037
4038 temp *= cputime.utime;
4039 do_div(temp, total);
4040 utime = (cputime_t)temp;
4041 } else
4042 utime = rtime;
4043
4044 sig->prev_utime = max(sig->prev_utime, utime);
4045 sig->prev_stime = max(sig->prev_stime,
4046 cputime_sub(rtime, sig->prev_utime));
4047
4048 *ut = sig->prev_utime;
4049 *st = sig->prev_stime;
4050 }
4051 #endif
4052
4053 /*
4054 * This function gets called by the timer code, with HZ frequency.
4055 * We call it with interrupts disabled.
4056 */
4057 void scheduler_tick(void)
4058 {
4059 int cpu = smp_processor_id();
4060 struct rq *rq = cpu_rq(cpu);
4061 struct task_struct *curr = rq->curr;
4062
4063 sched_clock_tick();
4064
4065 raw_spin_lock(&rq->lock);
4066 update_rq_clock(rq);
4067 update_cpu_load_active(rq);
4068 curr->sched_class->task_tick(rq, curr, 0);
4069 raw_spin_unlock(&rq->lock);
4070
4071 perf_event_task_tick();
4072
4073 #ifdef CONFIG_SMP
4074 rq->idle_at_tick = idle_cpu(cpu);
4075 trigger_load_balance(rq, cpu);
4076 #endif
4077 }
4078
4079 notrace unsigned long get_parent_ip(unsigned long addr)
4080 {
4081 if (in_lock_functions(addr)) {
4082 addr = CALLER_ADDR2;
4083 if (in_lock_functions(addr))
4084 addr = CALLER_ADDR3;
4085 }
4086 return addr;
4087 }
4088
4089 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4090 defined(CONFIG_PREEMPT_TRACER))
4091
4092 void __kprobes add_preempt_count(int val)
4093 {
4094 #ifdef CONFIG_DEBUG_PREEMPT
4095 /*
4096 * Underflow?
4097 */
4098 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4099 return;
4100 #endif
4101 preempt_count() += val;
4102 #ifdef CONFIG_DEBUG_PREEMPT
4103 /*
4104 * Spinlock count overflowing soon?
4105 */
4106 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4107 PREEMPT_MASK - 10);
4108 #endif
4109 if (preempt_count() == val)
4110 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4111 }
4112 EXPORT_SYMBOL(add_preempt_count);
4113
4114 void __kprobes sub_preempt_count(int val)
4115 {
4116 #ifdef CONFIG_DEBUG_PREEMPT
4117 /*
4118 * Underflow?
4119 */
4120 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4121 return;
4122 /*
4123 * Is the spinlock portion underflowing?
4124 */
4125 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4126 !(preempt_count() & PREEMPT_MASK)))
4127 return;
4128 #endif
4129
4130 if (preempt_count() == val)
4131 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4132 preempt_count() -= val;
4133 }
4134 EXPORT_SYMBOL(sub_preempt_count);
4135
4136 #endif
4137
4138 /*
4139 * Print scheduling while atomic bug:
4140 */
4141 static noinline void __schedule_bug(struct task_struct *prev)
4142 {
4143 struct pt_regs *regs = get_irq_regs();
4144
4145 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4146 prev->comm, prev->pid, preempt_count());
4147
4148 debug_show_held_locks(prev);
4149 print_modules();
4150 if (irqs_disabled())
4151 print_irqtrace_events(prev);
4152
4153 if (regs)
4154 show_regs(regs);
4155 else
4156 dump_stack();
4157 }
4158
4159 /*
4160 * Various schedule()-time debugging checks and statistics:
4161 */
4162 static inline void schedule_debug(struct task_struct *prev)
4163 {
4164 /*
4165 * Test if we are atomic. Since do_exit() needs to call into
4166 * schedule() atomically, we ignore that path for now.
4167 * Otherwise, whine if we are scheduling when we should not be.
4168 */
4169 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4170 __schedule_bug(prev);
4171
4172 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4173
4174 schedstat_inc(this_rq(), sched_count);
4175 }
4176
4177 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4178 {
4179 if (prev->on_rq || rq->skip_clock_update < 0)
4180 update_rq_clock(rq);
4181 prev->sched_class->put_prev_task(rq, prev);
4182 }
4183
4184 /*
4185 * Pick up the highest-prio task:
4186 */
4187 static inline struct task_struct *
4188 pick_next_task(struct rq *rq)
4189 {
4190 const struct sched_class *class;
4191 struct task_struct *p;
4192
4193 /*
4194 * Optimization: we know that if all tasks are in
4195 * the fair class we can call that function directly:
4196 */
4197 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4198 p = fair_sched_class.pick_next_task(rq);
4199 if (likely(p))
4200 return p;
4201 }
4202
4203 for_each_class(class) {
4204 p = class->pick_next_task(rq);
4205 if (p)
4206 return p;
4207 }
4208
4209 BUG(); /* the idle class will always have a runnable task */
4210 }
4211
4212 /*
4213 * schedule() is the main scheduler function.
4214 */
4215 asmlinkage void __sched schedule(void)
4216 {
4217 struct task_struct *prev, *next;
4218 unsigned long *switch_count;
4219 struct rq *rq;
4220 int cpu;
4221
4222 need_resched:
4223 preempt_disable();
4224 cpu = smp_processor_id();
4225 rq = cpu_rq(cpu);
4226 rcu_note_context_switch(cpu);
4227 prev = rq->curr;
4228
4229 schedule_debug(prev);
4230
4231 if (sched_feat(HRTICK))
4232 hrtick_clear(rq);
4233
4234 raw_spin_lock_irq(&rq->lock);
4235
4236 switch_count = &prev->nivcsw;
4237 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4238 if (unlikely(signal_pending_state(prev->state, prev))) {
4239 prev->state = TASK_RUNNING;
4240 } else {
4241 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4242 prev->on_rq = 0;
4243
4244 /*
4245 * If a worker went to sleep, notify and ask workqueue
4246 * whether it wants to wake up a task to maintain
4247 * concurrency.
4248 */
4249 if (prev->flags & PF_WQ_WORKER) {
4250 struct task_struct *to_wakeup;
4251
4252 to_wakeup = wq_worker_sleeping(prev, cpu);
4253 if (to_wakeup)
4254 try_to_wake_up_local(to_wakeup);
4255 }
4256
4257 /*
4258 * If we are going to sleep and we have plugged IO
4259 * queued, make sure to submit it to avoid deadlocks.
4260 */
4261 if (blk_needs_flush_plug(prev)) {
4262 raw_spin_unlock(&rq->lock);
4263 blk_schedule_flush_plug(prev);
4264 raw_spin_lock(&rq->lock);
4265 }
4266 }
4267 switch_count = &prev->nvcsw;
4268 }
4269
4270 pre_schedule(rq, prev);
4271
4272 if (unlikely(!rq->nr_running))
4273 idle_balance(cpu, rq);
4274
4275 put_prev_task(rq, prev);
4276 next = pick_next_task(rq);
4277 clear_tsk_need_resched(prev);
4278 rq->skip_clock_update = 0;
4279
4280 if (likely(prev != next)) {
4281 rq->nr_switches++;
4282 rq->curr = next;
4283 ++*switch_count;
4284
4285 context_switch(rq, prev, next); /* unlocks the rq */
4286 /*
4287 * The context switch have flipped the stack from under us
4288 * and restored the local variables which were saved when
4289 * this task called schedule() in the past. prev == current
4290 * is still correct, but it can be moved to another cpu/rq.
4291 */
4292 cpu = smp_processor_id();
4293 rq = cpu_rq(cpu);
4294 } else
4295 raw_spin_unlock_irq(&rq->lock);
4296
4297 post_schedule(rq);
4298
4299 preempt_enable_no_resched();
4300 if (need_resched())
4301 goto need_resched;
4302 }
4303 EXPORT_SYMBOL(schedule);
4304
4305 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4306
4307 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4308 {
4309 if (lock->owner != owner)
4310 return false;
4311
4312 /*
4313 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4314 * lock->owner still matches owner, if that fails, owner might
4315 * point to free()d memory, if it still matches, the rcu_read_lock()
4316 * ensures the memory stays valid.
4317 */
4318 barrier();
4319
4320 return owner->on_cpu;
4321 }
4322
4323 /*
4324 * Look out! "owner" is an entirely speculative pointer
4325 * access and not reliable.
4326 */
4327 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4328 {
4329 if (!sched_feat(OWNER_SPIN))
4330 return 0;
4331
4332 rcu_read_lock();
4333 while (owner_running(lock, owner)) {
4334 if (need_resched())
4335 break;
4336
4337 arch_mutex_cpu_relax();
4338 }
4339 rcu_read_unlock();
4340
4341 /*
4342 * We break out the loop above on need_resched() and when the
4343 * owner changed, which is a sign for heavy contention. Return
4344 * success only when lock->owner is NULL.
4345 */
4346 return lock->owner == NULL;
4347 }
4348 #endif
4349
4350 #ifdef CONFIG_PREEMPT
4351 /*
4352 * this is the entry point to schedule() from in-kernel preemption
4353 * off of preempt_enable. Kernel preemptions off return from interrupt
4354 * occur there and call schedule directly.
4355 */
4356 asmlinkage void __sched notrace preempt_schedule(void)
4357 {
4358 struct thread_info *ti = current_thread_info();
4359
4360 /*
4361 * If there is a non-zero preempt_count or interrupts are disabled,
4362 * we do not want to preempt the current task. Just return..
4363 */
4364 if (likely(ti->preempt_count || irqs_disabled()))
4365 return;
4366
4367 do {
4368 add_preempt_count_notrace(PREEMPT_ACTIVE);
4369 schedule();
4370 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4371
4372 /*
4373 * Check again in case we missed a preemption opportunity
4374 * between schedule and now.
4375 */
4376 barrier();
4377 } while (need_resched());
4378 }
4379 EXPORT_SYMBOL(preempt_schedule);
4380
4381 /*
4382 * this is the entry point to schedule() from kernel preemption
4383 * off of irq context.
4384 * Note, that this is called and return with irqs disabled. This will
4385 * protect us against recursive calling from irq.
4386 */
4387 asmlinkage void __sched preempt_schedule_irq(void)
4388 {
4389 struct thread_info *ti = current_thread_info();
4390
4391 /* Catch callers which need to be fixed */
4392 BUG_ON(ti->preempt_count || !irqs_disabled());
4393
4394 do {
4395 add_preempt_count(PREEMPT_ACTIVE);
4396 local_irq_enable();
4397 schedule();
4398 local_irq_disable();
4399 sub_preempt_count(PREEMPT_ACTIVE);
4400
4401 /*
4402 * Check again in case we missed a preemption opportunity
4403 * between schedule and now.
4404 */
4405 barrier();
4406 } while (need_resched());
4407 }
4408
4409 #endif /* CONFIG_PREEMPT */
4410
4411 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4412 void *key)
4413 {
4414 return try_to_wake_up(curr->private, mode, wake_flags);
4415 }
4416 EXPORT_SYMBOL(default_wake_function);
4417
4418 /*
4419 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4420 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4421 * number) then we wake all the non-exclusive tasks and one exclusive task.
4422 *
4423 * There are circumstances in which we can try to wake a task which has already
4424 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4425 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4426 */
4427 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4428 int nr_exclusive, int wake_flags, void *key)
4429 {
4430 wait_queue_t *curr, *next;
4431
4432 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4433 unsigned flags = curr->flags;
4434
4435 if (curr->func(curr, mode, wake_flags, key) &&
4436 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4437 break;
4438 }
4439 }
4440
4441 /**
4442 * __wake_up - wake up threads blocked on a waitqueue.
4443 * @q: the waitqueue
4444 * @mode: which threads
4445 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4446 * @key: is directly passed to the wakeup function
4447 *
4448 * It may be assumed that this function implies a write memory barrier before
4449 * changing the task state if and only if any tasks are woken up.
4450 */
4451 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4452 int nr_exclusive, void *key)
4453 {
4454 unsigned long flags;
4455
4456 spin_lock_irqsave(&q->lock, flags);
4457 __wake_up_common(q, mode, nr_exclusive, 0, key);
4458 spin_unlock_irqrestore(&q->lock, flags);
4459 }
4460 EXPORT_SYMBOL(__wake_up);
4461
4462 /*
4463 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4464 */
4465 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4466 {
4467 __wake_up_common(q, mode, 1, 0, NULL);
4468 }
4469 EXPORT_SYMBOL_GPL(__wake_up_locked);
4470
4471 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4472 {
4473 __wake_up_common(q, mode, 1, 0, key);
4474 }
4475 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4476
4477 /**
4478 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4479 * @q: the waitqueue
4480 * @mode: which threads
4481 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4482 * @key: opaque value to be passed to wakeup targets
4483 *
4484 * The sync wakeup differs that the waker knows that it will schedule
4485 * away soon, so while the target thread will be woken up, it will not
4486 * be migrated to another CPU - ie. the two threads are 'synchronized'
4487 * with each other. This can prevent needless bouncing between CPUs.
4488 *
4489 * On UP it can prevent extra preemption.
4490 *
4491 * It may be assumed that this function implies a write memory barrier before
4492 * changing the task state if and only if any tasks are woken up.
4493 */
4494 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4495 int nr_exclusive, void *key)
4496 {
4497 unsigned long flags;
4498 int wake_flags = WF_SYNC;
4499
4500 if (unlikely(!q))
4501 return;
4502
4503 if (unlikely(!nr_exclusive))
4504 wake_flags = 0;
4505
4506 spin_lock_irqsave(&q->lock, flags);
4507 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4508 spin_unlock_irqrestore(&q->lock, flags);
4509 }
4510 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4511
4512 /*
4513 * __wake_up_sync - see __wake_up_sync_key()
4514 */
4515 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4516 {
4517 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4518 }
4519 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4520
4521 /**
4522 * complete: - signals a single thread waiting on this completion
4523 * @x: holds the state of this particular completion
4524 *
4525 * This will wake up a single thread waiting on this completion. Threads will be
4526 * awakened in the same order in which they were queued.
4527 *
4528 * See also complete_all(), wait_for_completion() and related routines.
4529 *
4530 * It may be assumed that this function implies a write memory barrier before
4531 * changing the task state if and only if any tasks are woken up.
4532 */
4533 void complete(struct completion *x)
4534 {
4535 unsigned long flags;
4536
4537 spin_lock_irqsave(&x->wait.lock, flags);
4538 x->done++;
4539 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4540 spin_unlock_irqrestore(&x->wait.lock, flags);
4541 }
4542 EXPORT_SYMBOL(complete);
4543
4544 /**
4545 * complete_all: - signals all threads waiting on this completion
4546 * @x: holds the state of this particular completion
4547 *
4548 * This will wake up all threads waiting on this particular completion event.
4549 *
4550 * It may be assumed that this function implies a write memory barrier before
4551 * changing the task state if and only if any tasks are woken up.
4552 */
4553 void complete_all(struct completion *x)
4554 {
4555 unsigned long flags;
4556
4557 spin_lock_irqsave(&x->wait.lock, flags);
4558 x->done += UINT_MAX/2;
4559 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4560 spin_unlock_irqrestore(&x->wait.lock, flags);
4561 }
4562 EXPORT_SYMBOL(complete_all);
4563
4564 static inline long __sched
4565 do_wait_for_common(struct completion *x, long timeout, int state)
4566 {
4567 if (!x->done) {
4568 DECLARE_WAITQUEUE(wait, current);
4569
4570 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4571 do {
4572 if (signal_pending_state(state, current)) {
4573 timeout = -ERESTARTSYS;
4574 break;
4575 }
4576 __set_current_state(state);
4577 spin_unlock_irq(&x->wait.lock);
4578 timeout = schedule_timeout(timeout);
4579 spin_lock_irq(&x->wait.lock);
4580 } while (!x->done && timeout);
4581 __remove_wait_queue(&x->wait, &wait);
4582 if (!x->done)
4583 return timeout;
4584 }
4585 x->done--;
4586 return timeout ?: 1;
4587 }
4588
4589 static long __sched
4590 wait_for_common(struct completion *x, long timeout, int state)
4591 {
4592 might_sleep();
4593
4594 spin_lock_irq(&x->wait.lock);
4595 timeout = do_wait_for_common(x, timeout, state);
4596 spin_unlock_irq(&x->wait.lock);
4597 return timeout;
4598 }
4599
4600 /**
4601 * wait_for_completion: - waits for completion of a task
4602 * @x: holds the state of this particular completion
4603 *
4604 * This waits to be signaled for completion of a specific task. It is NOT
4605 * interruptible and there is no timeout.
4606 *
4607 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4608 * and interrupt capability. Also see complete().
4609 */
4610 void __sched wait_for_completion(struct completion *x)
4611 {
4612 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4613 }
4614 EXPORT_SYMBOL(wait_for_completion);
4615
4616 /**
4617 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4618 * @x: holds the state of this particular completion
4619 * @timeout: timeout value in jiffies
4620 *
4621 * This waits for either a completion of a specific task to be signaled or for a
4622 * specified timeout to expire. The timeout is in jiffies. It is not
4623 * interruptible.
4624 */
4625 unsigned long __sched
4626 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4627 {
4628 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4629 }
4630 EXPORT_SYMBOL(wait_for_completion_timeout);
4631
4632 /**
4633 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4634 * @x: holds the state of this particular completion
4635 *
4636 * This waits for completion of a specific task to be signaled. It is
4637 * interruptible.
4638 */
4639 int __sched wait_for_completion_interruptible(struct completion *x)
4640 {
4641 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4642 if (t == -ERESTARTSYS)
4643 return t;
4644 return 0;
4645 }
4646 EXPORT_SYMBOL(wait_for_completion_interruptible);
4647
4648 /**
4649 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4650 * @x: holds the state of this particular completion
4651 * @timeout: timeout value in jiffies
4652 *
4653 * This waits for either a completion of a specific task to be signaled or for a
4654 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4655 */
4656 long __sched
4657 wait_for_completion_interruptible_timeout(struct completion *x,
4658 unsigned long timeout)
4659 {
4660 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4661 }
4662 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4663
4664 /**
4665 * wait_for_completion_killable: - waits for completion of a task (killable)
4666 * @x: holds the state of this particular completion
4667 *
4668 * This waits to be signaled for completion of a specific task. It can be
4669 * interrupted by a kill signal.
4670 */
4671 int __sched wait_for_completion_killable(struct completion *x)
4672 {
4673 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4674 if (t == -ERESTARTSYS)
4675 return t;
4676 return 0;
4677 }
4678 EXPORT_SYMBOL(wait_for_completion_killable);
4679
4680 /**
4681 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4682 * @x: holds the state of this particular completion
4683 * @timeout: timeout value in jiffies
4684 *
4685 * This waits for either a completion of a specific task to be
4686 * signaled or for a specified timeout to expire. It can be
4687 * interrupted by a kill signal. The timeout is in jiffies.
4688 */
4689 long __sched
4690 wait_for_completion_killable_timeout(struct completion *x,
4691 unsigned long timeout)
4692 {
4693 return wait_for_common(x, timeout, TASK_KILLABLE);
4694 }
4695 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4696
4697 /**
4698 * try_wait_for_completion - try to decrement a completion without blocking
4699 * @x: completion structure
4700 *
4701 * Returns: 0 if a decrement cannot be done without blocking
4702 * 1 if a decrement succeeded.
4703 *
4704 * If a completion is being used as a counting completion,
4705 * attempt to decrement the counter without blocking. This
4706 * enables us to avoid waiting if the resource the completion
4707 * is protecting is not available.
4708 */
4709 bool try_wait_for_completion(struct completion *x)
4710 {
4711 unsigned long flags;
4712 int ret = 1;
4713
4714 spin_lock_irqsave(&x->wait.lock, flags);
4715 if (!x->done)
4716 ret = 0;
4717 else
4718 x->done--;
4719 spin_unlock_irqrestore(&x->wait.lock, flags);
4720 return ret;
4721 }
4722 EXPORT_SYMBOL(try_wait_for_completion);
4723
4724 /**
4725 * completion_done - Test to see if a completion has any waiters
4726 * @x: completion structure
4727 *
4728 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4729 * 1 if there are no waiters.
4730 *
4731 */
4732 bool completion_done(struct completion *x)
4733 {
4734 unsigned long flags;
4735 int ret = 1;
4736
4737 spin_lock_irqsave(&x->wait.lock, flags);
4738 if (!x->done)
4739 ret = 0;
4740 spin_unlock_irqrestore(&x->wait.lock, flags);
4741 return ret;
4742 }
4743 EXPORT_SYMBOL(completion_done);
4744
4745 static long __sched
4746 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4747 {
4748 unsigned long flags;
4749 wait_queue_t wait;
4750
4751 init_waitqueue_entry(&wait, current);
4752
4753 __set_current_state(state);
4754
4755 spin_lock_irqsave(&q->lock, flags);
4756 __add_wait_queue(q, &wait);
4757 spin_unlock(&q->lock);
4758 timeout = schedule_timeout(timeout);
4759 spin_lock_irq(&q->lock);
4760 __remove_wait_queue(q, &wait);
4761 spin_unlock_irqrestore(&q->lock, flags);
4762
4763 return timeout;
4764 }
4765
4766 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4767 {
4768 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4769 }
4770 EXPORT_SYMBOL(interruptible_sleep_on);
4771
4772 long __sched
4773 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4774 {
4775 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4776 }
4777 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4778
4779 void __sched sleep_on(wait_queue_head_t *q)
4780 {
4781 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4782 }
4783 EXPORT_SYMBOL(sleep_on);
4784
4785 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4786 {
4787 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4788 }
4789 EXPORT_SYMBOL(sleep_on_timeout);
4790
4791 #ifdef CONFIG_RT_MUTEXES
4792
4793 /*
4794 * rt_mutex_setprio - set the current priority of a task
4795 * @p: task
4796 * @prio: prio value (kernel-internal form)
4797 *
4798 * This function changes the 'effective' priority of a task. It does
4799 * not touch ->normal_prio like __setscheduler().
4800 *
4801 * Used by the rt_mutex code to implement priority inheritance logic.
4802 */
4803 void rt_mutex_setprio(struct task_struct *p, int prio)
4804 {
4805 int oldprio, on_rq, running;
4806 struct rq *rq;
4807 const struct sched_class *prev_class;
4808
4809 BUG_ON(prio < 0 || prio > MAX_PRIO);
4810
4811 rq = __task_rq_lock(p);
4812
4813 trace_sched_pi_setprio(p, prio);
4814 oldprio = p->prio;
4815 prev_class = p->sched_class;
4816 on_rq = p->on_rq;
4817 running = task_current(rq, p);
4818 if (on_rq)
4819 dequeue_task(rq, p, 0);
4820 if (running)
4821 p->sched_class->put_prev_task(rq, p);
4822
4823 if (rt_prio(prio))
4824 p->sched_class = &rt_sched_class;
4825 else
4826 p->sched_class = &fair_sched_class;
4827
4828 p->prio = prio;
4829
4830 if (running)
4831 p->sched_class->set_curr_task(rq);
4832 if (on_rq)
4833 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4834
4835 check_class_changed(rq, p, prev_class, oldprio);
4836 __task_rq_unlock(rq);
4837 }
4838
4839 #endif
4840
4841 void set_user_nice(struct task_struct *p, long nice)
4842 {
4843 int old_prio, delta, on_rq;
4844 unsigned long flags;
4845 struct rq *rq;
4846
4847 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4848 return;
4849 /*
4850 * We have to be careful, if called from sys_setpriority(),
4851 * the task might be in the middle of scheduling on another CPU.
4852 */
4853 rq = task_rq_lock(p, &flags);
4854 /*
4855 * The RT priorities are set via sched_setscheduler(), but we still
4856 * allow the 'normal' nice value to be set - but as expected
4857 * it wont have any effect on scheduling until the task is
4858 * SCHED_FIFO/SCHED_RR:
4859 */
4860 if (task_has_rt_policy(p)) {
4861 p->static_prio = NICE_TO_PRIO(nice);
4862 goto out_unlock;
4863 }
4864 on_rq = p->on_rq;
4865 if (on_rq)
4866 dequeue_task(rq, p, 0);
4867
4868 p->static_prio = NICE_TO_PRIO(nice);
4869 set_load_weight(p);
4870 old_prio = p->prio;
4871 p->prio = effective_prio(p);
4872 delta = p->prio - old_prio;
4873
4874 if (on_rq) {
4875 enqueue_task(rq, p, 0);
4876 /*
4877 * If the task increased its priority or is running and
4878 * lowered its priority, then reschedule its CPU:
4879 */
4880 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4881 resched_task(rq->curr);
4882 }
4883 out_unlock:
4884 task_rq_unlock(rq, p, &flags);
4885 }
4886 EXPORT_SYMBOL(set_user_nice);
4887
4888 /*
4889 * can_nice - check if a task can reduce its nice value
4890 * @p: task
4891 * @nice: nice value
4892 */
4893 int can_nice(const struct task_struct *p, const int nice)
4894 {
4895 /* convert nice value [19,-20] to rlimit style value [1,40] */
4896 int nice_rlim = 20 - nice;
4897
4898 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4899 capable(CAP_SYS_NICE));
4900 }
4901
4902 #ifdef __ARCH_WANT_SYS_NICE
4903
4904 /*
4905 * sys_nice - change the priority of the current process.
4906 * @increment: priority increment
4907 *
4908 * sys_setpriority is a more generic, but much slower function that
4909 * does similar things.
4910 */
4911 SYSCALL_DEFINE1(nice, int, increment)
4912 {
4913 long nice, retval;
4914
4915 /*
4916 * Setpriority might change our priority at the same moment.
4917 * We don't have to worry. Conceptually one call occurs first
4918 * and we have a single winner.
4919 */
4920 if (increment < -40)
4921 increment = -40;
4922 if (increment > 40)
4923 increment = 40;
4924
4925 nice = TASK_NICE(current) + increment;
4926 if (nice < -20)
4927 nice = -20;
4928 if (nice > 19)
4929 nice = 19;
4930
4931 if (increment < 0 && !can_nice(current, nice))
4932 return -EPERM;
4933
4934 retval = security_task_setnice(current, nice);
4935 if (retval)
4936 return retval;
4937
4938 set_user_nice(current, nice);
4939 return 0;
4940 }
4941
4942 #endif
4943
4944 /**
4945 * task_prio - return the priority value of a given task.
4946 * @p: the task in question.
4947 *
4948 * This is the priority value as seen by users in /proc.
4949 * RT tasks are offset by -200. Normal tasks are centered
4950 * around 0, value goes from -16 to +15.
4951 */
4952 int task_prio(const struct task_struct *p)
4953 {
4954 return p->prio - MAX_RT_PRIO;
4955 }
4956
4957 /**
4958 * task_nice - return the nice value of a given task.
4959 * @p: the task in question.
4960 */
4961 int task_nice(const struct task_struct *p)
4962 {
4963 return TASK_NICE(p);
4964 }
4965 EXPORT_SYMBOL(task_nice);
4966
4967 /**
4968 * idle_cpu - is a given cpu idle currently?
4969 * @cpu: the processor in question.
4970 */
4971 int idle_cpu(int cpu)
4972 {
4973 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4974 }
4975
4976 /**
4977 * idle_task - return the idle task for a given cpu.
4978 * @cpu: the processor in question.
4979 */
4980 struct task_struct *idle_task(int cpu)
4981 {
4982 return cpu_rq(cpu)->idle;
4983 }
4984
4985 /**
4986 * find_process_by_pid - find a process with a matching PID value.
4987 * @pid: the pid in question.
4988 */
4989 static struct task_struct *find_process_by_pid(pid_t pid)
4990 {
4991 return pid ? find_task_by_vpid(pid) : current;
4992 }
4993
4994 /* Actually do priority change: must hold rq lock. */
4995 static void
4996 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4997 {
4998 p->policy = policy;
4999 p->rt_priority = prio;
5000 p->normal_prio = normal_prio(p);
5001 /* we are holding p->pi_lock already */
5002 p->prio = rt_mutex_getprio(p);
5003 if (rt_prio(p->prio))
5004 p->sched_class = &rt_sched_class;
5005 else
5006 p->sched_class = &fair_sched_class;
5007 set_load_weight(p);
5008 }
5009
5010 /*
5011 * check the target process has a UID that matches the current process's
5012 */
5013 static bool check_same_owner(struct task_struct *p)
5014 {
5015 const struct cred *cred = current_cred(), *pcred;
5016 bool match;
5017
5018 rcu_read_lock();
5019 pcred = __task_cred(p);
5020 if (cred->user->user_ns == pcred->user->user_ns)
5021 match = (cred->euid == pcred->euid ||
5022 cred->euid == pcred->uid);
5023 else
5024 match = false;
5025 rcu_read_unlock();
5026 return match;
5027 }
5028
5029 static int __sched_setscheduler(struct task_struct *p, int policy,
5030 const struct sched_param *param, bool user)
5031 {
5032 int retval, oldprio, oldpolicy = -1, on_rq, running;
5033 unsigned long flags;
5034 const struct sched_class *prev_class;
5035 struct rq *rq;
5036 int reset_on_fork;
5037
5038 /* may grab non-irq protected spin_locks */
5039 BUG_ON(in_interrupt());
5040 recheck:
5041 /* double check policy once rq lock held */
5042 if (policy < 0) {
5043 reset_on_fork = p->sched_reset_on_fork;
5044 policy = oldpolicy = p->policy;
5045 } else {
5046 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5047 policy &= ~SCHED_RESET_ON_FORK;
5048
5049 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5050 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5051 policy != SCHED_IDLE)
5052 return -EINVAL;
5053 }
5054
5055 /*
5056 * Valid priorities for SCHED_FIFO and SCHED_RR are
5057 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5058 * SCHED_BATCH and SCHED_IDLE is 0.
5059 */
5060 if (param->sched_priority < 0 ||
5061 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5062 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5063 return -EINVAL;
5064 if (rt_policy(policy) != (param->sched_priority != 0))
5065 return -EINVAL;
5066
5067 /*
5068 * Allow unprivileged RT tasks to decrease priority:
5069 */
5070 if (user && !capable(CAP_SYS_NICE)) {
5071 if (rt_policy(policy)) {
5072 unsigned long rlim_rtprio =
5073 task_rlimit(p, RLIMIT_RTPRIO);
5074
5075 /* can't set/change the rt policy */
5076 if (policy != p->policy && !rlim_rtprio)
5077 return -EPERM;
5078
5079 /* can't increase priority */
5080 if (param->sched_priority > p->rt_priority &&
5081 param->sched_priority > rlim_rtprio)
5082 return -EPERM;
5083 }
5084
5085 /*
5086 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5087 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5088 */
5089 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5090 if (!can_nice(p, TASK_NICE(p)))
5091 return -EPERM;
5092 }
5093
5094 /* can't change other user's priorities */
5095 if (!check_same_owner(p))
5096 return -EPERM;
5097
5098 /* Normal users shall not reset the sched_reset_on_fork flag */
5099 if (p->sched_reset_on_fork && !reset_on_fork)
5100 return -EPERM;
5101 }
5102
5103 if (user) {
5104 retval = security_task_setscheduler(p);
5105 if (retval)
5106 return retval;
5107 }
5108
5109 /*
5110 * make sure no PI-waiters arrive (or leave) while we are
5111 * changing the priority of the task:
5112 *
5113 * To be able to change p->policy safely, the appropriate
5114 * runqueue lock must be held.
5115 */
5116 rq = task_rq_lock(p, &flags);
5117
5118 /*
5119 * Changing the policy of the stop threads its a very bad idea
5120 */
5121 if (p == rq->stop) {
5122 task_rq_unlock(rq, p, &flags);
5123 return -EINVAL;
5124 }
5125
5126 /*
5127 * If not changing anything there's no need to proceed further:
5128 */
5129 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5130 param->sched_priority == p->rt_priority))) {
5131
5132 __task_rq_unlock(rq);
5133 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5134 return 0;
5135 }
5136
5137 #ifdef CONFIG_RT_GROUP_SCHED
5138 if (user) {
5139 /*
5140 * Do not allow realtime tasks into groups that have no runtime
5141 * assigned.
5142 */
5143 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5144 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5145 !task_group_is_autogroup(task_group(p))) {
5146 task_rq_unlock(rq, p, &flags);
5147 return -EPERM;
5148 }
5149 }
5150 #endif
5151
5152 /* recheck policy now with rq lock held */
5153 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5154 policy = oldpolicy = -1;
5155 task_rq_unlock(rq, p, &flags);
5156 goto recheck;
5157 }
5158 on_rq = p->on_rq;
5159 running = task_current(rq, p);
5160 if (on_rq)
5161 deactivate_task(rq, p, 0);
5162 if (running)
5163 p->sched_class->put_prev_task(rq, p);
5164
5165 p->sched_reset_on_fork = reset_on_fork;
5166
5167 oldprio = p->prio;
5168 prev_class = p->sched_class;
5169 __setscheduler(rq, p, policy, param->sched_priority);
5170
5171 if (running)
5172 p->sched_class->set_curr_task(rq);
5173 if (on_rq)
5174 activate_task(rq, p, 0);
5175
5176 check_class_changed(rq, p, prev_class, oldprio);
5177 task_rq_unlock(rq, p, &flags);
5178
5179 rt_mutex_adjust_pi(p);
5180
5181 return 0;
5182 }
5183
5184 /**
5185 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5186 * @p: the task in question.
5187 * @policy: new policy.
5188 * @param: structure containing the new RT priority.
5189 *
5190 * NOTE that the task may be already dead.
5191 */
5192 int sched_setscheduler(struct task_struct *p, int policy,
5193 const struct sched_param *param)
5194 {
5195 return __sched_setscheduler(p, policy, param, true);
5196 }
5197 EXPORT_SYMBOL_GPL(sched_setscheduler);
5198
5199 /**
5200 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5201 * @p: the task in question.
5202 * @policy: new policy.
5203 * @param: structure containing the new RT priority.
5204 *
5205 * Just like sched_setscheduler, only don't bother checking if the
5206 * current context has permission. For example, this is needed in
5207 * stop_machine(): we create temporary high priority worker threads,
5208 * but our caller might not have that capability.
5209 */
5210 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5211 const struct sched_param *param)
5212 {
5213 return __sched_setscheduler(p, policy, param, false);
5214 }
5215
5216 static int
5217 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5218 {
5219 struct sched_param lparam;
5220 struct task_struct *p;
5221 int retval;
5222
5223 if (!param || pid < 0)
5224 return -EINVAL;
5225 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5226 return -EFAULT;
5227
5228 rcu_read_lock();
5229 retval = -ESRCH;
5230 p = find_process_by_pid(pid);
5231 if (p != NULL)
5232 retval = sched_setscheduler(p, policy, &lparam);
5233 rcu_read_unlock();
5234
5235 return retval;
5236 }
5237
5238 /**
5239 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5240 * @pid: the pid in question.
5241 * @policy: new policy.
5242 * @param: structure containing the new RT priority.
5243 */
5244 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5245 struct sched_param __user *, param)
5246 {
5247 /* negative values for policy are not valid */
5248 if (policy < 0)
5249 return -EINVAL;
5250
5251 return do_sched_setscheduler(pid, policy, param);
5252 }
5253
5254 /**
5255 * sys_sched_setparam - set/change the RT priority of a thread
5256 * @pid: the pid in question.
5257 * @param: structure containing the new RT priority.
5258 */
5259 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5260 {
5261 return do_sched_setscheduler(pid, -1, param);
5262 }
5263
5264 /**
5265 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5266 * @pid: the pid in question.
5267 */
5268 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5269 {
5270 struct task_struct *p;
5271 int retval;
5272
5273 if (pid < 0)
5274 return -EINVAL;
5275
5276 retval = -ESRCH;
5277 rcu_read_lock();
5278 p = find_process_by_pid(pid);
5279 if (p) {
5280 retval = security_task_getscheduler(p);
5281 if (!retval)
5282 retval = p->policy
5283 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5284 }
5285 rcu_read_unlock();
5286 return retval;
5287 }
5288
5289 /**
5290 * sys_sched_getparam - get the RT priority of a thread
5291 * @pid: the pid in question.
5292 * @param: structure containing the RT priority.
5293 */
5294 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5295 {
5296 struct sched_param lp;
5297 struct task_struct *p;
5298 int retval;
5299
5300 if (!param || pid < 0)
5301 return -EINVAL;
5302
5303 rcu_read_lock();
5304 p = find_process_by_pid(pid);
5305 retval = -ESRCH;
5306 if (!p)
5307 goto out_unlock;
5308
5309 retval = security_task_getscheduler(p);
5310 if (retval)
5311 goto out_unlock;
5312
5313 lp.sched_priority = p->rt_priority;
5314 rcu_read_unlock();
5315
5316 /*
5317 * This one might sleep, we cannot do it with a spinlock held ...
5318 */
5319 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5320
5321 return retval;
5322
5323 out_unlock:
5324 rcu_read_unlock();
5325 return retval;
5326 }
5327
5328 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5329 {
5330 cpumask_var_t cpus_allowed, new_mask;
5331 struct task_struct *p;
5332 int retval;
5333
5334 get_online_cpus();
5335 rcu_read_lock();
5336
5337 p = find_process_by_pid(pid);
5338 if (!p) {
5339 rcu_read_unlock();
5340 put_online_cpus();
5341 return -ESRCH;
5342 }
5343
5344 /* Prevent p going away */
5345 get_task_struct(p);
5346 rcu_read_unlock();
5347
5348 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5349 retval = -ENOMEM;
5350 goto out_put_task;
5351 }
5352 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5353 retval = -ENOMEM;
5354 goto out_free_cpus_allowed;
5355 }
5356 retval = -EPERM;
5357 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5358 goto out_unlock;
5359
5360 retval = security_task_setscheduler(p);
5361 if (retval)
5362 goto out_unlock;
5363
5364 cpuset_cpus_allowed(p, cpus_allowed);
5365 cpumask_and(new_mask, in_mask, cpus_allowed);
5366 again:
5367 retval = set_cpus_allowed_ptr(p, new_mask);
5368
5369 if (!retval) {
5370 cpuset_cpus_allowed(p, cpus_allowed);
5371 if (!cpumask_subset(new_mask, cpus_allowed)) {
5372 /*
5373 * We must have raced with a concurrent cpuset
5374 * update. Just reset the cpus_allowed to the
5375 * cpuset's cpus_allowed
5376 */
5377 cpumask_copy(new_mask, cpus_allowed);
5378 goto again;
5379 }
5380 }
5381 out_unlock:
5382 free_cpumask_var(new_mask);
5383 out_free_cpus_allowed:
5384 free_cpumask_var(cpus_allowed);
5385 out_put_task:
5386 put_task_struct(p);
5387 put_online_cpus();
5388 return retval;
5389 }
5390
5391 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5392 struct cpumask *new_mask)
5393 {
5394 if (len < cpumask_size())
5395 cpumask_clear(new_mask);
5396 else if (len > cpumask_size())
5397 len = cpumask_size();
5398
5399 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5400 }
5401
5402 /**
5403 * sys_sched_setaffinity - set the cpu affinity of a process
5404 * @pid: pid of the process
5405 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5406 * @user_mask_ptr: user-space pointer to the new cpu mask
5407 */
5408 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5409 unsigned long __user *, user_mask_ptr)
5410 {
5411 cpumask_var_t new_mask;
5412 int retval;
5413
5414 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5415 return -ENOMEM;
5416
5417 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5418 if (retval == 0)
5419 retval = sched_setaffinity(pid, new_mask);
5420 free_cpumask_var(new_mask);
5421 return retval;
5422 }
5423
5424 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5425 {
5426 struct task_struct *p;
5427 unsigned long flags;
5428 int retval;
5429
5430 get_online_cpus();
5431 rcu_read_lock();
5432
5433 retval = -ESRCH;
5434 p = find_process_by_pid(pid);
5435 if (!p)
5436 goto out_unlock;
5437
5438 retval = security_task_getscheduler(p);
5439 if (retval)
5440 goto out_unlock;
5441
5442 raw_spin_lock_irqsave(&p->pi_lock, flags);
5443 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5444 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5445
5446 out_unlock:
5447 rcu_read_unlock();
5448 put_online_cpus();
5449
5450 return retval;
5451 }
5452
5453 /**
5454 * sys_sched_getaffinity - get the cpu affinity of a process
5455 * @pid: pid of the process
5456 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5457 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5458 */
5459 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5460 unsigned long __user *, user_mask_ptr)
5461 {
5462 int ret;
5463 cpumask_var_t mask;
5464
5465 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5466 return -EINVAL;
5467 if (len & (sizeof(unsigned long)-1))
5468 return -EINVAL;
5469
5470 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5471 return -ENOMEM;
5472
5473 ret = sched_getaffinity(pid, mask);
5474 if (ret == 0) {
5475 size_t retlen = min_t(size_t, len, cpumask_size());
5476
5477 if (copy_to_user(user_mask_ptr, mask, retlen))
5478 ret = -EFAULT;
5479 else
5480 ret = retlen;
5481 }
5482 free_cpumask_var(mask);
5483
5484 return ret;
5485 }
5486
5487 /**
5488 * sys_sched_yield - yield the current processor to other threads.
5489 *
5490 * This function yields the current CPU to other tasks. If there are no
5491 * other threads running on this CPU then this function will return.
5492 */
5493 SYSCALL_DEFINE0(sched_yield)
5494 {
5495 struct rq *rq = this_rq_lock();
5496
5497 schedstat_inc(rq, yld_count);
5498 current->sched_class->yield_task(rq);
5499
5500 /*
5501 * Since we are going to call schedule() anyway, there's
5502 * no need to preempt or enable interrupts:
5503 */
5504 __release(rq->lock);
5505 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5506 do_raw_spin_unlock(&rq->lock);
5507 preempt_enable_no_resched();
5508
5509 schedule();
5510
5511 return 0;
5512 }
5513
5514 static inline int should_resched(void)
5515 {
5516 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5517 }
5518
5519 static void __cond_resched(void)
5520 {
5521 add_preempt_count(PREEMPT_ACTIVE);
5522 schedule();
5523 sub_preempt_count(PREEMPT_ACTIVE);
5524 }
5525
5526 int __sched _cond_resched(void)
5527 {
5528 if (should_resched()) {
5529 __cond_resched();
5530 return 1;
5531 }
5532 return 0;
5533 }
5534 EXPORT_SYMBOL(_cond_resched);
5535
5536 /*
5537 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5538 * call schedule, and on return reacquire the lock.
5539 *
5540 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5541 * operations here to prevent schedule() from being called twice (once via
5542 * spin_unlock(), once by hand).
5543 */
5544 int __cond_resched_lock(spinlock_t *lock)
5545 {
5546 int resched = should_resched();
5547 int ret = 0;
5548
5549 lockdep_assert_held(lock);
5550
5551 if (spin_needbreak(lock) || resched) {
5552 spin_unlock(lock);
5553 if (resched)
5554 __cond_resched();
5555 else
5556 cpu_relax();
5557 ret = 1;
5558 spin_lock(lock);
5559 }
5560 return ret;
5561 }
5562 EXPORT_SYMBOL(__cond_resched_lock);
5563
5564 int __sched __cond_resched_softirq(void)
5565 {
5566 BUG_ON(!in_softirq());
5567
5568 if (should_resched()) {
5569 local_bh_enable();
5570 __cond_resched();
5571 local_bh_disable();
5572 return 1;
5573 }
5574 return 0;
5575 }
5576 EXPORT_SYMBOL(__cond_resched_softirq);
5577
5578 /**
5579 * yield - yield the current processor to other threads.
5580 *
5581 * This is a shortcut for kernel-space yielding - it marks the
5582 * thread runnable and calls sys_sched_yield().
5583 */
5584 void __sched yield(void)
5585 {
5586 set_current_state(TASK_RUNNING);
5587 sys_sched_yield();
5588 }
5589 EXPORT_SYMBOL(yield);
5590
5591 /**
5592 * yield_to - yield the current processor to another thread in
5593 * your thread group, or accelerate that thread toward the
5594 * processor it's on.
5595 * @p: target task
5596 * @preempt: whether task preemption is allowed or not
5597 *
5598 * It's the caller's job to ensure that the target task struct
5599 * can't go away on us before we can do any checks.
5600 *
5601 * Returns true if we indeed boosted the target task.
5602 */
5603 bool __sched yield_to(struct task_struct *p, bool preempt)
5604 {
5605 struct task_struct *curr = current;
5606 struct rq *rq, *p_rq;
5607 unsigned long flags;
5608 bool yielded = 0;
5609
5610 local_irq_save(flags);
5611 rq = this_rq();
5612
5613 again:
5614 p_rq = task_rq(p);
5615 double_rq_lock(rq, p_rq);
5616 while (task_rq(p) != p_rq) {
5617 double_rq_unlock(rq, p_rq);
5618 goto again;
5619 }
5620
5621 if (!curr->sched_class->yield_to_task)
5622 goto out;
5623
5624 if (curr->sched_class != p->sched_class)
5625 goto out;
5626
5627 if (task_running(p_rq, p) || p->state)
5628 goto out;
5629
5630 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5631 if (yielded) {
5632 schedstat_inc(rq, yld_count);
5633 /*
5634 * Make p's CPU reschedule; pick_next_entity takes care of
5635 * fairness.
5636 */
5637 if (preempt && rq != p_rq)
5638 resched_task(p_rq->curr);
5639 }
5640
5641 out:
5642 double_rq_unlock(rq, p_rq);
5643 local_irq_restore(flags);
5644
5645 if (yielded)
5646 schedule();
5647
5648 return yielded;
5649 }
5650 EXPORT_SYMBOL_GPL(yield_to);
5651
5652 /*
5653 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5654 * that process accounting knows that this is a task in IO wait state.
5655 */
5656 void __sched io_schedule(void)
5657 {
5658 struct rq *rq = raw_rq();
5659
5660 delayacct_blkio_start();
5661 atomic_inc(&rq->nr_iowait);
5662 blk_flush_plug(current);
5663 current->in_iowait = 1;
5664 schedule();
5665 current->in_iowait = 0;
5666 atomic_dec(&rq->nr_iowait);
5667 delayacct_blkio_end();
5668 }
5669 EXPORT_SYMBOL(io_schedule);
5670
5671 long __sched io_schedule_timeout(long timeout)
5672 {
5673 struct rq *rq = raw_rq();
5674 long ret;
5675
5676 delayacct_blkio_start();
5677 atomic_inc(&rq->nr_iowait);
5678 blk_flush_plug(current);
5679 current->in_iowait = 1;
5680 ret = schedule_timeout(timeout);
5681 current->in_iowait = 0;
5682 atomic_dec(&rq->nr_iowait);
5683 delayacct_blkio_end();
5684 return ret;
5685 }
5686
5687 /**
5688 * sys_sched_get_priority_max - return maximum RT priority.
5689 * @policy: scheduling class.
5690 *
5691 * this syscall returns the maximum rt_priority that can be used
5692 * by a given scheduling class.
5693 */
5694 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5695 {
5696 int ret = -EINVAL;
5697
5698 switch (policy) {
5699 case SCHED_FIFO:
5700 case SCHED_RR:
5701 ret = MAX_USER_RT_PRIO-1;
5702 break;
5703 case SCHED_NORMAL:
5704 case SCHED_BATCH:
5705 case SCHED_IDLE:
5706 ret = 0;
5707 break;
5708 }
5709 return ret;
5710 }
5711
5712 /**
5713 * sys_sched_get_priority_min - return minimum RT priority.
5714 * @policy: scheduling class.
5715 *
5716 * this syscall returns the minimum rt_priority that can be used
5717 * by a given scheduling class.
5718 */
5719 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5720 {
5721 int ret = -EINVAL;
5722
5723 switch (policy) {
5724 case SCHED_FIFO:
5725 case SCHED_RR:
5726 ret = 1;
5727 break;
5728 case SCHED_NORMAL:
5729 case SCHED_BATCH:
5730 case SCHED_IDLE:
5731 ret = 0;
5732 }
5733 return ret;
5734 }
5735
5736 /**
5737 * sys_sched_rr_get_interval - return the default timeslice of a process.
5738 * @pid: pid of the process.
5739 * @interval: userspace pointer to the timeslice value.
5740 *
5741 * this syscall writes the default timeslice value of a given process
5742 * into the user-space timespec buffer. A value of '0' means infinity.
5743 */
5744 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5745 struct timespec __user *, interval)
5746 {
5747 struct task_struct *p;
5748 unsigned int time_slice;
5749 unsigned long flags;
5750 struct rq *rq;
5751 int retval;
5752 struct timespec t;
5753
5754 if (pid < 0)
5755 return -EINVAL;
5756
5757 retval = -ESRCH;
5758 rcu_read_lock();
5759 p = find_process_by_pid(pid);
5760 if (!p)
5761 goto out_unlock;
5762
5763 retval = security_task_getscheduler(p);
5764 if (retval)
5765 goto out_unlock;
5766
5767 rq = task_rq_lock(p, &flags);
5768 time_slice = p->sched_class->get_rr_interval(rq, p);
5769 task_rq_unlock(rq, p, &flags);
5770
5771 rcu_read_unlock();
5772 jiffies_to_timespec(time_slice, &t);
5773 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5774 return retval;
5775
5776 out_unlock:
5777 rcu_read_unlock();
5778 return retval;
5779 }
5780
5781 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5782
5783 void sched_show_task(struct task_struct *p)
5784 {
5785 unsigned long free = 0;
5786 unsigned state;
5787
5788 state = p->state ? __ffs(p->state) + 1 : 0;
5789 printk(KERN_INFO "%-15.15s %c", p->comm,
5790 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5791 #if BITS_PER_LONG == 32
5792 if (state == TASK_RUNNING)
5793 printk(KERN_CONT " running ");
5794 else
5795 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5796 #else
5797 if (state == TASK_RUNNING)
5798 printk(KERN_CONT " running task ");
5799 else
5800 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5801 #endif
5802 #ifdef CONFIG_DEBUG_STACK_USAGE
5803 free = stack_not_used(p);
5804 #endif
5805 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5806 task_pid_nr(p), task_pid_nr(p->real_parent),
5807 (unsigned long)task_thread_info(p)->flags);
5808
5809 show_stack(p, NULL);
5810 }
5811
5812 void show_state_filter(unsigned long state_filter)
5813 {
5814 struct task_struct *g, *p;
5815
5816 #if BITS_PER_LONG == 32
5817 printk(KERN_INFO
5818 " task PC stack pid father\n");
5819 #else
5820 printk(KERN_INFO
5821 " task PC stack pid father\n");
5822 #endif
5823 read_lock(&tasklist_lock);
5824 do_each_thread(g, p) {
5825 /*
5826 * reset the NMI-timeout, listing all files on a slow
5827 * console might take a lot of time:
5828 */
5829 touch_nmi_watchdog();
5830 if (!state_filter || (p->state & state_filter))
5831 sched_show_task(p);
5832 } while_each_thread(g, p);
5833
5834 touch_all_softlockup_watchdogs();
5835
5836 #ifdef CONFIG_SCHED_DEBUG
5837 sysrq_sched_debug_show();
5838 #endif
5839 read_unlock(&tasklist_lock);
5840 /*
5841 * Only show locks if all tasks are dumped:
5842 */
5843 if (!state_filter)
5844 debug_show_all_locks();
5845 }
5846
5847 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5848 {
5849 idle->sched_class = &idle_sched_class;
5850 }
5851
5852 /**
5853 * init_idle - set up an idle thread for a given CPU
5854 * @idle: task in question
5855 * @cpu: cpu the idle task belongs to
5856 *
5857 * NOTE: this function does not set the idle thread's NEED_RESCHED
5858 * flag, to make booting more robust.
5859 */
5860 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5861 {
5862 struct rq *rq = cpu_rq(cpu);
5863 unsigned long flags;
5864
5865 raw_spin_lock_irqsave(&rq->lock, flags);
5866
5867 __sched_fork(idle);
5868 idle->state = TASK_RUNNING;
5869 idle->se.exec_start = sched_clock();
5870
5871 do_set_cpus_allowed(idle, cpumask_of(cpu));
5872 /*
5873 * We're having a chicken and egg problem, even though we are
5874 * holding rq->lock, the cpu isn't yet set to this cpu so the
5875 * lockdep check in task_group() will fail.
5876 *
5877 * Similar case to sched_fork(). / Alternatively we could
5878 * use task_rq_lock() here and obtain the other rq->lock.
5879 *
5880 * Silence PROVE_RCU
5881 */
5882 rcu_read_lock();
5883 __set_task_cpu(idle, cpu);
5884 rcu_read_unlock();
5885
5886 rq->curr = rq->idle = idle;
5887 #if defined(CONFIG_SMP)
5888 idle->on_cpu = 1;
5889 #endif
5890 raw_spin_unlock_irqrestore(&rq->lock, flags);
5891
5892 /* Set the preempt count _outside_ the spinlocks! */
5893 task_thread_info(idle)->preempt_count = 0;
5894
5895 /*
5896 * The idle tasks have their own, simple scheduling class:
5897 */
5898 idle->sched_class = &idle_sched_class;
5899 ftrace_graph_init_idle_task(idle, cpu);
5900 }
5901
5902 /*
5903 * In a system that switches off the HZ timer nohz_cpu_mask
5904 * indicates which cpus entered this state. This is used
5905 * in the rcu update to wait only for active cpus. For system
5906 * which do not switch off the HZ timer nohz_cpu_mask should
5907 * always be CPU_BITS_NONE.
5908 */
5909 cpumask_var_t nohz_cpu_mask;
5910
5911 /*
5912 * Increase the granularity value when there are more CPUs,
5913 * because with more CPUs the 'effective latency' as visible
5914 * to users decreases. But the relationship is not linear,
5915 * so pick a second-best guess by going with the log2 of the
5916 * number of CPUs.
5917 *
5918 * This idea comes from the SD scheduler of Con Kolivas:
5919 */
5920 static int get_update_sysctl_factor(void)
5921 {
5922 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5923 unsigned int factor;
5924
5925 switch (sysctl_sched_tunable_scaling) {
5926 case SCHED_TUNABLESCALING_NONE:
5927 factor = 1;
5928 break;
5929 case SCHED_TUNABLESCALING_LINEAR:
5930 factor = cpus;
5931 break;
5932 case SCHED_TUNABLESCALING_LOG:
5933 default:
5934 factor = 1 + ilog2(cpus);
5935 break;
5936 }
5937
5938 return factor;
5939 }
5940
5941 static void update_sysctl(void)
5942 {
5943 unsigned int factor = get_update_sysctl_factor();
5944
5945 #define SET_SYSCTL(name) \
5946 (sysctl_##name = (factor) * normalized_sysctl_##name)
5947 SET_SYSCTL(sched_min_granularity);
5948 SET_SYSCTL(sched_latency);
5949 SET_SYSCTL(sched_wakeup_granularity);
5950 #undef SET_SYSCTL
5951 }
5952
5953 static inline void sched_init_granularity(void)
5954 {
5955 update_sysctl();
5956 }
5957
5958 #ifdef CONFIG_SMP
5959 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5960 {
5961 if (p->sched_class && p->sched_class->set_cpus_allowed)
5962 p->sched_class->set_cpus_allowed(p, new_mask);
5963 else {
5964 cpumask_copy(&p->cpus_allowed, new_mask);
5965 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5966 }
5967 }
5968
5969 /*
5970 * This is how migration works:
5971 *
5972 * 1) we invoke migration_cpu_stop() on the target CPU using
5973 * stop_one_cpu().
5974 * 2) stopper starts to run (implicitly forcing the migrated thread
5975 * off the CPU)
5976 * 3) it checks whether the migrated task is still in the wrong runqueue.
5977 * 4) if it's in the wrong runqueue then the migration thread removes
5978 * it and puts it into the right queue.
5979 * 5) stopper completes and stop_one_cpu() returns and the migration
5980 * is done.
5981 */
5982
5983 /*
5984 * Change a given task's CPU affinity. Migrate the thread to a
5985 * proper CPU and schedule it away if the CPU it's executing on
5986 * is removed from the allowed bitmask.
5987 *
5988 * NOTE: the caller must have a valid reference to the task, the
5989 * task must not exit() & deallocate itself prematurely. The
5990 * call is not atomic; no spinlocks may be held.
5991 */
5992 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5993 {
5994 unsigned long flags;
5995 struct rq *rq;
5996 unsigned int dest_cpu;
5997 int ret = 0;
5998
5999 rq = task_rq_lock(p, &flags);
6000
6001 if (cpumask_equal(&p->cpus_allowed, new_mask))
6002 goto out;
6003
6004 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
6005 ret = -EINVAL;
6006 goto out;
6007 }
6008
6009 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6010 ret = -EINVAL;
6011 goto out;
6012 }
6013
6014 do_set_cpus_allowed(p, new_mask);
6015
6016 /* Can the task run on the task's current CPU? If so, we're done */
6017 if (cpumask_test_cpu(task_cpu(p), new_mask))
6018 goto out;
6019
6020 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6021 if (p->on_rq) {
6022 struct migration_arg arg = { p, dest_cpu };
6023 /* Need help from migration thread: drop lock and wait. */
6024 task_rq_unlock(rq, p, &flags);
6025 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
6026 tlb_migrate_finish(p->mm);
6027 return 0;
6028 }
6029 out:
6030 task_rq_unlock(rq, p, &flags);
6031
6032 return ret;
6033 }
6034 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6035
6036 /*
6037 * Move (not current) task off this cpu, onto dest cpu. We're doing
6038 * this because either it can't run here any more (set_cpus_allowed()
6039 * away from this CPU, or CPU going down), or because we're
6040 * attempting to rebalance this task on exec (sched_exec).
6041 *
6042 * So we race with normal scheduler movements, but that's OK, as long
6043 * as the task is no longer on this CPU.
6044 *
6045 * Returns non-zero if task was successfully migrated.
6046 */
6047 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6048 {
6049 struct rq *rq_dest, *rq_src;
6050 int ret = 0;
6051
6052 if (unlikely(!cpu_active(dest_cpu)))
6053 return ret;
6054
6055 rq_src = cpu_rq(src_cpu);
6056 rq_dest = cpu_rq(dest_cpu);
6057
6058 raw_spin_lock(&p->pi_lock);
6059 double_rq_lock(rq_src, rq_dest);
6060 /* Already moved. */
6061 if (task_cpu(p) != src_cpu)
6062 goto done;
6063 /* Affinity changed (again). */
6064 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6065 goto fail;
6066
6067 /*
6068 * If we're not on a rq, the next wake-up will ensure we're
6069 * placed properly.
6070 */
6071 if (p->on_rq) {
6072 deactivate_task(rq_src, p, 0);
6073 set_task_cpu(p, dest_cpu);
6074 activate_task(rq_dest, p, 0);
6075 check_preempt_curr(rq_dest, p, 0);
6076 }
6077 done:
6078 ret = 1;
6079 fail:
6080 double_rq_unlock(rq_src, rq_dest);
6081 raw_spin_unlock(&p->pi_lock);
6082 return ret;
6083 }
6084
6085 /*
6086 * migration_cpu_stop - this will be executed by a highprio stopper thread
6087 * and performs thread migration by bumping thread off CPU then
6088 * 'pushing' onto another runqueue.
6089 */
6090 static int migration_cpu_stop(void *data)
6091 {
6092 struct migration_arg *arg = data;
6093
6094 /*
6095 * The original target cpu might have gone down and we might
6096 * be on another cpu but it doesn't matter.
6097 */
6098 local_irq_disable();
6099 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6100 local_irq_enable();
6101 return 0;
6102 }
6103
6104 #ifdef CONFIG_HOTPLUG_CPU
6105
6106 /*
6107 * Ensures that the idle task is using init_mm right before its cpu goes
6108 * offline.
6109 */
6110 void idle_task_exit(void)
6111 {
6112 struct mm_struct *mm = current->active_mm;
6113
6114 BUG_ON(cpu_online(smp_processor_id()));
6115
6116 if (mm != &init_mm)
6117 switch_mm(mm, &init_mm, current);
6118 mmdrop(mm);
6119 }
6120
6121 /*
6122 * While a dead CPU has no uninterruptible tasks queued at this point,
6123 * it might still have a nonzero ->nr_uninterruptible counter, because
6124 * for performance reasons the counter is not stricly tracking tasks to
6125 * their home CPUs. So we just add the counter to another CPU's counter,
6126 * to keep the global sum constant after CPU-down:
6127 */
6128 static void migrate_nr_uninterruptible(struct rq *rq_src)
6129 {
6130 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6131
6132 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6133 rq_src->nr_uninterruptible = 0;
6134 }
6135
6136 /*
6137 * remove the tasks which were accounted by rq from calc_load_tasks.
6138 */
6139 static void calc_global_load_remove(struct rq *rq)
6140 {
6141 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6142 rq->calc_load_active = 0;
6143 }
6144
6145 /*
6146 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6147 * try_to_wake_up()->select_task_rq().
6148 *
6149 * Called with rq->lock held even though we'er in stop_machine() and
6150 * there's no concurrency possible, we hold the required locks anyway
6151 * because of lock validation efforts.
6152 */
6153 static void migrate_tasks(unsigned int dead_cpu)
6154 {
6155 struct rq *rq = cpu_rq(dead_cpu);
6156 struct task_struct *next, *stop = rq->stop;
6157 int dest_cpu;
6158
6159 /*
6160 * Fudge the rq selection such that the below task selection loop
6161 * doesn't get stuck on the currently eligible stop task.
6162 *
6163 * We're currently inside stop_machine() and the rq is either stuck
6164 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6165 * either way we should never end up calling schedule() until we're
6166 * done here.
6167 */
6168 rq->stop = NULL;
6169
6170 for ( ; ; ) {
6171 /*
6172 * There's this thread running, bail when that's the only
6173 * remaining thread.
6174 */
6175 if (rq->nr_running == 1)
6176 break;
6177
6178 next = pick_next_task(rq);
6179 BUG_ON(!next);
6180 next->sched_class->put_prev_task(rq, next);
6181
6182 /* Find suitable destination for @next, with force if needed. */
6183 dest_cpu = select_fallback_rq(dead_cpu, next);
6184 raw_spin_unlock(&rq->lock);
6185
6186 __migrate_task(next, dead_cpu, dest_cpu);
6187
6188 raw_spin_lock(&rq->lock);
6189 }
6190
6191 rq->stop = stop;
6192 }
6193
6194 #endif /* CONFIG_HOTPLUG_CPU */
6195
6196 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6197
6198 static struct ctl_table sd_ctl_dir[] = {
6199 {
6200 .procname = "sched_domain",
6201 .mode = 0555,
6202 },
6203 {}
6204 };
6205
6206 static struct ctl_table sd_ctl_root[] = {
6207 {
6208 .procname = "kernel",
6209 .mode = 0555,
6210 .child = sd_ctl_dir,
6211 },
6212 {}
6213 };
6214
6215 static struct ctl_table *sd_alloc_ctl_entry(int n)
6216 {
6217 struct ctl_table *entry =
6218 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6219
6220 return entry;
6221 }
6222
6223 static void sd_free_ctl_entry(struct ctl_table **tablep)
6224 {
6225 struct ctl_table *entry;
6226
6227 /*
6228 * In the intermediate directories, both the child directory and
6229 * procname are dynamically allocated and could fail but the mode
6230 * will always be set. In the lowest directory the names are
6231 * static strings and all have proc handlers.
6232 */
6233 for (entry = *tablep; entry->mode; entry++) {
6234 if (entry->child)
6235 sd_free_ctl_entry(&entry->child);
6236 if (entry->proc_handler == NULL)
6237 kfree(entry->procname);
6238 }
6239
6240 kfree(*tablep);
6241 *tablep = NULL;
6242 }
6243
6244 static void
6245 set_table_entry(struct ctl_table *entry,
6246 const char *procname, void *data, int maxlen,
6247 mode_t mode, proc_handler *proc_handler)
6248 {
6249 entry->procname = procname;
6250 entry->data = data;
6251 entry->maxlen = maxlen;
6252 entry->mode = mode;
6253 entry->proc_handler = proc_handler;
6254 }
6255
6256 static struct ctl_table *
6257 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6258 {
6259 struct ctl_table *table = sd_alloc_ctl_entry(13);
6260
6261 if (table == NULL)
6262 return NULL;
6263
6264 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6265 sizeof(long), 0644, proc_doulongvec_minmax);
6266 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6267 sizeof(long), 0644, proc_doulongvec_minmax);
6268 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6269 sizeof(int), 0644, proc_dointvec_minmax);
6270 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6271 sizeof(int), 0644, proc_dointvec_minmax);
6272 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6273 sizeof(int), 0644, proc_dointvec_minmax);
6274 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6275 sizeof(int), 0644, proc_dointvec_minmax);
6276 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6277 sizeof(int), 0644, proc_dointvec_minmax);
6278 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6279 sizeof(int), 0644, proc_dointvec_minmax);
6280 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6281 sizeof(int), 0644, proc_dointvec_minmax);
6282 set_table_entry(&table[9], "cache_nice_tries",
6283 &sd->cache_nice_tries,
6284 sizeof(int), 0644, proc_dointvec_minmax);
6285 set_table_entry(&table[10], "flags", &sd->flags,
6286 sizeof(int), 0644, proc_dointvec_minmax);
6287 set_table_entry(&table[11], "name", sd->name,
6288 CORENAME_MAX_SIZE, 0444, proc_dostring);
6289 /* &table[12] is terminator */
6290
6291 return table;
6292 }
6293
6294 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6295 {
6296 struct ctl_table *entry, *table;
6297 struct sched_domain *sd;
6298 int domain_num = 0, i;
6299 char buf[32];
6300
6301 for_each_domain(cpu, sd)
6302 domain_num++;
6303 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6304 if (table == NULL)
6305 return NULL;
6306
6307 i = 0;
6308 for_each_domain(cpu, sd) {
6309 snprintf(buf, 32, "domain%d", i);
6310 entry->procname = kstrdup(buf, GFP_KERNEL);
6311 entry->mode = 0555;
6312 entry->child = sd_alloc_ctl_domain_table(sd);
6313 entry++;
6314 i++;
6315 }
6316 return table;
6317 }
6318
6319 static struct ctl_table_header *sd_sysctl_header;
6320 static void register_sched_domain_sysctl(void)
6321 {
6322 int i, cpu_num = num_possible_cpus();
6323 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6324 char buf[32];
6325
6326 WARN_ON(sd_ctl_dir[0].child);
6327 sd_ctl_dir[0].child = entry;
6328
6329 if (entry == NULL)
6330 return;
6331
6332 for_each_possible_cpu(i) {
6333 snprintf(buf, 32, "cpu%d", i);
6334 entry->procname = kstrdup(buf, GFP_KERNEL);
6335 entry->mode = 0555;
6336 entry->child = sd_alloc_ctl_cpu_table(i);
6337 entry++;
6338 }
6339
6340 WARN_ON(sd_sysctl_header);
6341 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6342 }
6343
6344 /* may be called multiple times per register */
6345 static void unregister_sched_domain_sysctl(void)
6346 {
6347 if (sd_sysctl_header)
6348 unregister_sysctl_table(sd_sysctl_header);
6349 sd_sysctl_header = NULL;
6350 if (sd_ctl_dir[0].child)
6351 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6352 }
6353 #else
6354 static void register_sched_domain_sysctl(void)
6355 {
6356 }
6357 static void unregister_sched_domain_sysctl(void)
6358 {
6359 }
6360 #endif
6361
6362 static void set_rq_online(struct rq *rq)
6363 {
6364 if (!rq->online) {
6365 const struct sched_class *class;
6366
6367 cpumask_set_cpu(rq->cpu, rq->rd->online);
6368 rq->online = 1;
6369
6370 for_each_class(class) {
6371 if (class->rq_online)
6372 class->rq_online(rq);
6373 }
6374 }
6375 }
6376
6377 static void set_rq_offline(struct rq *rq)
6378 {
6379 if (rq->online) {
6380 const struct sched_class *class;
6381
6382 for_each_class(class) {
6383 if (class->rq_offline)
6384 class->rq_offline(rq);
6385 }
6386
6387 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6388 rq->online = 0;
6389 }
6390 }
6391
6392 /*
6393 * migration_call - callback that gets triggered when a CPU is added.
6394 * Here we can start up the necessary migration thread for the new CPU.
6395 */
6396 static int __cpuinit
6397 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6398 {
6399 int cpu = (long)hcpu;
6400 unsigned long flags;
6401 struct rq *rq = cpu_rq(cpu);
6402
6403 switch (action & ~CPU_TASKS_FROZEN) {
6404
6405 case CPU_UP_PREPARE:
6406 rq->calc_load_update = calc_load_update;
6407 break;
6408
6409 case CPU_ONLINE:
6410 /* Update our root-domain */
6411 raw_spin_lock_irqsave(&rq->lock, flags);
6412 if (rq->rd) {
6413 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6414
6415 set_rq_online(rq);
6416 }
6417 raw_spin_unlock_irqrestore(&rq->lock, flags);
6418 break;
6419
6420 #ifdef CONFIG_HOTPLUG_CPU
6421 case CPU_DYING:
6422 sched_ttwu_pending();
6423 /* Update our root-domain */
6424 raw_spin_lock_irqsave(&rq->lock, flags);
6425 if (rq->rd) {
6426 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6427 set_rq_offline(rq);
6428 }
6429 migrate_tasks(cpu);
6430 BUG_ON(rq->nr_running != 1); /* the migration thread */
6431 raw_spin_unlock_irqrestore(&rq->lock, flags);
6432
6433 migrate_nr_uninterruptible(rq);
6434 calc_global_load_remove(rq);
6435 break;
6436 #endif
6437 }
6438
6439 update_max_interval();
6440
6441 return NOTIFY_OK;
6442 }
6443
6444 /*
6445 * Register at high priority so that task migration (migrate_all_tasks)
6446 * happens before everything else. This has to be lower priority than
6447 * the notifier in the perf_event subsystem, though.
6448 */
6449 static struct notifier_block __cpuinitdata migration_notifier = {
6450 .notifier_call = migration_call,
6451 .priority = CPU_PRI_MIGRATION,
6452 };
6453
6454 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6455 unsigned long action, void *hcpu)
6456 {
6457 switch (action & ~CPU_TASKS_FROZEN) {
6458 case CPU_ONLINE:
6459 case CPU_DOWN_FAILED:
6460 set_cpu_active((long)hcpu, true);
6461 return NOTIFY_OK;
6462 default:
6463 return NOTIFY_DONE;
6464 }
6465 }
6466
6467 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6468 unsigned long action, void *hcpu)
6469 {
6470 switch (action & ~CPU_TASKS_FROZEN) {
6471 case CPU_DOWN_PREPARE:
6472 set_cpu_active((long)hcpu, false);
6473 return NOTIFY_OK;
6474 default:
6475 return NOTIFY_DONE;
6476 }
6477 }
6478
6479 static int __init migration_init(void)
6480 {
6481 void *cpu = (void *)(long)smp_processor_id();
6482 int err;
6483
6484 /* Initialize migration for the boot CPU */
6485 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6486 BUG_ON(err == NOTIFY_BAD);
6487 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6488 register_cpu_notifier(&migration_notifier);
6489
6490 /* Register cpu active notifiers */
6491 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6492 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6493
6494 return 0;
6495 }
6496 early_initcall(migration_init);
6497 #endif
6498
6499 #ifdef CONFIG_SMP
6500
6501 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6502
6503 #ifdef CONFIG_SCHED_DEBUG
6504
6505 static __read_mostly int sched_domain_debug_enabled;
6506
6507 static int __init sched_domain_debug_setup(char *str)
6508 {
6509 sched_domain_debug_enabled = 1;
6510
6511 return 0;
6512 }
6513 early_param("sched_debug", sched_domain_debug_setup);
6514
6515 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6516 struct cpumask *groupmask)
6517 {
6518 struct sched_group *group = sd->groups;
6519 char str[256];
6520
6521 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6522 cpumask_clear(groupmask);
6523
6524 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6525
6526 if (!(sd->flags & SD_LOAD_BALANCE)) {
6527 printk("does not load-balance\n");
6528 if (sd->parent)
6529 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6530 " has parent");
6531 return -1;
6532 }
6533
6534 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6535
6536 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6537 printk(KERN_ERR "ERROR: domain->span does not contain "
6538 "CPU%d\n", cpu);
6539 }
6540 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6541 printk(KERN_ERR "ERROR: domain->groups does not contain"
6542 " CPU%d\n", cpu);
6543 }
6544
6545 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6546 do {
6547 if (!group) {
6548 printk("\n");
6549 printk(KERN_ERR "ERROR: group is NULL\n");
6550 break;
6551 }
6552
6553 if (!group->sgp->power) {
6554 printk(KERN_CONT "\n");
6555 printk(KERN_ERR "ERROR: domain->cpu_power not "
6556 "set\n");
6557 break;
6558 }
6559
6560 if (!cpumask_weight(sched_group_cpus(group))) {
6561 printk(KERN_CONT "\n");
6562 printk(KERN_ERR "ERROR: empty group\n");
6563 break;
6564 }
6565
6566 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6567 printk(KERN_CONT "\n");
6568 printk(KERN_ERR "ERROR: repeated CPUs\n");
6569 break;
6570 }
6571
6572 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6573
6574 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6575
6576 printk(KERN_CONT " %s", str);
6577 if (group->sgp->power != SCHED_POWER_SCALE) {
6578 printk(KERN_CONT " (cpu_power = %d)",
6579 group->sgp->power);
6580 }
6581
6582 group = group->next;
6583 } while (group != sd->groups);
6584 printk(KERN_CONT "\n");
6585
6586 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6587 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6588
6589 if (sd->parent &&
6590 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6591 printk(KERN_ERR "ERROR: parent span is not a superset "
6592 "of domain->span\n");
6593 return 0;
6594 }
6595
6596 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6597 {
6598 int level = 0;
6599
6600 if (!sched_domain_debug_enabled)
6601 return;
6602
6603 if (!sd) {
6604 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6605 return;
6606 }
6607
6608 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6609
6610 for (;;) {
6611 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
6612 break;
6613 level++;
6614 sd = sd->parent;
6615 if (!sd)
6616 break;
6617 }
6618 }
6619 #else /* !CONFIG_SCHED_DEBUG */
6620 # define sched_domain_debug(sd, cpu) do { } while (0)
6621 #endif /* CONFIG_SCHED_DEBUG */
6622
6623 static int sd_degenerate(struct sched_domain *sd)
6624 {
6625 if (cpumask_weight(sched_domain_span(sd)) == 1)
6626 return 1;
6627
6628 /* Following flags need at least 2 groups */
6629 if (sd->flags & (SD_LOAD_BALANCE |
6630 SD_BALANCE_NEWIDLE |
6631 SD_BALANCE_FORK |
6632 SD_BALANCE_EXEC |
6633 SD_SHARE_CPUPOWER |
6634 SD_SHARE_PKG_RESOURCES)) {
6635 if (sd->groups != sd->groups->next)
6636 return 0;
6637 }
6638
6639 /* Following flags don't use groups */
6640 if (sd->flags & (SD_WAKE_AFFINE))
6641 return 0;
6642
6643 return 1;
6644 }
6645
6646 static int
6647 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6648 {
6649 unsigned long cflags = sd->flags, pflags = parent->flags;
6650
6651 if (sd_degenerate(parent))
6652 return 1;
6653
6654 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6655 return 0;
6656
6657 /* Flags needing groups don't count if only 1 group in parent */
6658 if (parent->groups == parent->groups->next) {
6659 pflags &= ~(SD_LOAD_BALANCE |
6660 SD_BALANCE_NEWIDLE |
6661 SD_BALANCE_FORK |
6662 SD_BALANCE_EXEC |
6663 SD_SHARE_CPUPOWER |
6664 SD_SHARE_PKG_RESOURCES);
6665 if (nr_node_ids == 1)
6666 pflags &= ~SD_SERIALIZE;
6667 }
6668 if (~cflags & pflags)
6669 return 0;
6670
6671 return 1;
6672 }
6673
6674 static void free_rootdomain(struct rcu_head *rcu)
6675 {
6676 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6677
6678 cpupri_cleanup(&rd->cpupri);
6679 free_cpumask_var(rd->rto_mask);
6680 free_cpumask_var(rd->online);
6681 free_cpumask_var(rd->span);
6682 kfree(rd);
6683 }
6684
6685 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6686 {
6687 struct root_domain *old_rd = NULL;
6688 unsigned long flags;
6689
6690 raw_spin_lock_irqsave(&rq->lock, flags);
6691
6692 if (rq->rd) {
6693 old_rd = rq->rd;
6694
6695 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6696 set_rq_offline(rq);
6697
6698 cpumask_clear_cpu(rq->cpu, old_rd->span);
6699
6700 /*
6701 * If we dont want to free the old_rt yet then
6702 * set old_rd to NULL to skip the freeing later
6703 * in this function:
6704 */
6705 if (!atomic_dec_and_test(&old_rd->refcount))
6706 old_rd = NULL;
6707 }
6708
6709 atomic_inc(&rd->refcount);
6710 rq->rd = rd;
6711
6712 cpumask_set_cpu(rq->cpu, rd->span);
6713 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6714 set_rq_online(rq);
6715
6716 raw_spin_unlock_irqrestore(&rq->lock, flags);
6717
6718 if (old_rd)
6719 call_rcu_sched(&old_rd->rcu, free_rootdomain);
6720 }
6721
6722 static int init_rootdomain(struct root_domain *rd)
6723 {
6724 memset(rd, 0, sizeof(*rd));
6725
6726 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6727 goto out;
6728 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6729 goto free_span;
6730 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6731 goto free_online;
6732
6733 if (cpupri_init(&rd->cpupri) != 0)
6734 goto free_rto_mask;
6735 return 0;
6736
6737 free_rto_mask:
6738 free_cpumask_var(rd->rto_mask);
6739 free_online:
6740 free_cpumask_var(rd->online);
6741 free_span:
6742 free_cpumask_var(rd->span);
6743 out:
6744 return -ENOMEM;
6745 }
6746
6747 static void init_defrootdomain(void)
6748 {
6749 init_rootdomain(&def_root_domain);
6750
6751 atomic_set(&def_root_domain.refcount, 1);
6752 }
6753
6754 static struct root_domain *alloc_rootdomain(void)
6755 {
6756 struct root_domain *rd;
6757
6758 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6759 if (!rd)
6760 return NULL;
6761
6762 if (init_rootdomain(rd) != 0) {
6763 kfree(rd);
6764 return NULL;
6765 }
6766
6767 return rd;
6768 }
6769
6770 static void free_sched_groups(struct sched_group *sg, int free_sgp)
6771 {
6772 struct sched_group *tmp, *first;
6773
6774 if (!sg)
6775 return;
6776
6777 first = sg;
6778 do {
6779 tmp = sg->next;
6780
6781 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
6782 kfree(sg->sgp);
6783
6784 kfree(sg);
6785 sg = tmp;
6786 } while (sg != first);
6787 }
6788
6789 static void free_sched_domain(struct rcu_head *rcu)
6790 {
6791 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
6792
6793 /*
6794 * If its an overlapping domain it has private groups, iterate and
6795 * nuke them all.
6796 */
6797 if (sd->flags & SD_OVERLAP) {
6798 free_sched_groups(sd->groups, 1);
6799 } else if (atomic_dec_and_test(&sd->groups->ref)) {
6800 kfree(sd->groups->sgp);
6801 kfree(sd->groups);
6802 }
6803 kfree(sd);
6804 }
6805
6806 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
6807 {
6808 call_rcu(&sd->rcu, free_sched_domain);
6809 }
6810
6811 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
6812 {
6813 for (; sd; sd = sd->parent)
6814 destroy_sched_domain(sd, cpu);
6815 }
6816
6817 /*
6818 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6819 * hold the hotplug lock.
6820 */
6821 static void
6822 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6823 {
6824 struct rq *rq = cpu_rq(cpu);
6825 struct sched_domain *tmp;
6826
6827 /* Remove the sched domains which do not contribute to scheduling. */
6828 for (tmp = sd; tmp; ) {
6829 struct sched_domain *parent = tmp->parent;
6830 if (!parent)
6831 break;
6832
6833 if (sd_parent_degenerate(tmp, parent)) {
6834 tmp->parent = parent->parent;
6835 if (parent->parent)
6836 parent->parent->child = tmp;
6837 destroy_sched_domain(parent, cpu);
6838 } else
6839 tmp = tmp->parent;
6840 }
6841
6842 if (sd && sd_degenerate(sd)) {
6843 tmp = sd;
6844 sd = sd->parent;
6845 destroy_sched_domain(tmp, cpu);
6846 if (sd)
6847 sd->child = NULL;
6848 }
6849
6850 sched_domain_debug(sd, cpu);
6851
6852 rq_attach_root(rq, rd);
6853 tmp = rq->sd;
6854 rcu_assign_pointer(rq->sd, sd);
6855 destroy_sched_domains(tmp, cpu);
6856 }
6857
6858 /* cpus with isolated domains */
6859 static cpumask_var_t cpu_isolated_map;
6860
6861 /* Setup the mask of cpus configured for isolated domains */
6862 static int __init isolated_cpu_setup(char *str)
6863 {
6864 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6865 cpulist_parse(str, cpu_isolated_map);
6866 return 1;
6867 }
6868
6869 __setup("isolcpus=", isolated_cpu_setup);
6870
6871 #define SD_NODES_PER_DOMAIN 16
6872
6873 #ifdef CONFIG_NUMA
6874
6875 /**
6876 * find_next_best_node - find the next node to include in a sched_domain
6877 * @node: node whose sched_domain we're building
6878 * @used_nodes: nodes already in the sched_domain
6879 *
6880 * Find the next node to include in a given scheduling domain. Simply
6881 * finds the closest node not already in the @used_nodes map.
6882 *
6883 * Should use nodemask_t.
6884 */
6885 static int find_next_best_node(int node, nodemask_t *used_nodes)
6886 {
6887 int i, n, val, min_val, best_node = -1;
6888
6889 min_val = INT_MAX;
6890
6891 for (i = 0; i < nr_node_ids; i++) {
6892 /* Start at @node */
6893 n = (node + i) % nr_node_ids;
6894
6895 if (!nr_cpus_node(n))
6896 continue;
6897
6898 /* Skip already used nodes */
6899 if (node_isset(n, *used_nodes))
6900 continue;
6901
6902 /* Simple min distance search */
6903 val = node_distance(node, n);
6904
6905 if (val < min_val) {
6906 min_val = val;
6907 best_node = n;
6908 }
6909 }
6910
6911 if (best_node != -1)
6912 node_set(best_node, *used_nodes);
6913 return best_node;
6914 }
6915
6916 /**
6917 * sched_domain_node_span - get a cpumask for a node's sched_domain
6918 * @node: node whose cpumask we're constructing
6919 * @span: resulting cpumask
6920 *
6921 * Given a node, construct a good cpumask for its sched_domain to span. It
6922 * should be one that prevents unnecessary balancing, but also spreads tasks
6923 * out optimally.
6924 */
6925 static void sched_domain_node_span(int node, struct cpumask *span)
6926 {
6927 nodemask_t used_nodes;
6928 int i;
6929
6930 cpumask_clear(span);
6931 nodes_clear(used_nodes);
6932
6933 cpumask_or(span, span, cpumask_of_node(node));
6934 node_set(node, used_nodes);
6935
6936 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6937 int next_node = find_next_best_node(node, &used_nodes);
6938 if (next_node < 0)
6939 break;
6940 cpumask_or(span, span, cpumask_of_node(next_node));
6941 }
6942 }
6943
6944 static const struct cpumask *cpu_node_mask(int cpu)
6945 {
6946 lockdep_assert_held(&sched_domains_mutex);
6947
6948 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
6949
6950 return sched_domains_tmpmask;
6951 }
6952
6953 static const struct cpumask *cpu_allnodes_mask(int cpu)
6954 {
6955 return cpu_possible_mask;
6956 }
6957 #endif /* CONFIG_NUMA */
6958
6959 static const struct cpumask *cpu_cpu_mask(int cpu)
6960 {
6961 return cpumask_of_node(cpu_to_node(cpu));
6962 }
6963
6964 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6965
6966 struct sd_data {
6967 struct sched_domain **__percpu sd;
6968 struct sched_group **__percpu sg;
6969 struct sched_group_power **__percpu sgp;
6970 };
6971
6972 struct s_data {
6973 struct sched_domain ** __percpu sd;
6974 struct root_domain *rd;
6975 };
6976
6977 enum s_alloc {
6978 sa_rootdomain,
6979 sa_sd,
6980 sa_sd_storage,
6981 sa_none,
6982 };
6983
6984 struct sched_domain_topology_level;
6985
6986 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
6987 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
6988
6989 #define SDTL_OVERLAP 0x01
6990
6991 struct sched_domain_topology_level {
6992 sched_domain_init_f init;
6993 sched_domain_mask_f mask;
6994 int flags;
6995 struct sd_data data;
6996 };
6997
6998 static int
6999 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7000 {
7001 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7002 const struct cpumask *span = sched_domain_span(sd);
7003 struct cpumask *covered = sched_domains_tmpmask;
7004 struct sd_data *sdd = sd->private;
7005 struct sched_domain *child;
7006 int i;
7007
7008 cpumask_clear(covered);
7009
7010 for_each_cpu(i, span) {
7011 struct cpumask *sg_span;
7012
7013 if (cpumask_test_cpu(i, covered))
7014 continue;
7015
7016 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7017 GFP_KERNEL, cpu_to_node(i));
7018
7019 if (!sg)
7020 goto fail;
7021
7022 sg_span = sched_group_cpus(sg);
7023
7024 child = *per_cpu_ptr(sdd->sd, i);
7025 if (child->child) {
7026 child = child->child;
7027 cpumask_copy(sg_span, sched_domain_span(child));
7028 } else
7029 cpumask_set_cpu(i, sg_span);
7030
7031 cpumask_or(covered, covered, sg_span);
7032
7033 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7034 atomic_inc(&sg->sgp->ref);
7035
7036 if (cpumask_test_cpu(cpu, sg_span))
7037 groups = sg;
7038
7039 if (!first)
7040 first = sg;
7041 if (last)
7042 last->next = sg;
7043 last = sg;
7044 last->next = first;
7045 }
7046 sd->groups = groups;
7047
7048 return 0;
7049
7050 fail:
7051 free_sched_groups(first, 0);
7052
7053 return -ENOMEM;
7054 }
7055
7056 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
7057 {
7058 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7059 struct sched_domain *child = sd->child;
7060
7061 if (child)
7062 cpu = cpumask_first(sched_domain_span(child));
7063
7064 if (sg) {
7065 *sg = *per_cpu_ptr(sdd->sg, cpu);
7066 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7067 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
7068 }
7069
7070 return cpu;
7071 }
7072
7073 /*
7074 * build_sched_groups will build a circular linked list of the groups
7075 * covered by the given span, and will set each group's ->cpumask correctly,
7076 * and ->cpu_power to 0.
7077 *
7078 * Assumes the sched_domain tree is fully constructed
7079 */
7080 static int
7081 build_sched_groups(struct sched_domain *sd, int cpu)
7082 {
7083 struct sched_group *first = NULL, *last = NULL;
7084 struct sd_data *sdd = sd->private;
7085 const struct cpumask *span = sched_domain_span(sd);
7086 struct cpumask *covered;
7087 int i;
7088
7089 get_group(cpu, sdd, &sd->groups);
7090 atomic_inc(&sd->groups->ref);
7091
7092 if (cpu != cpumask_first(sched_domain_span(sd)))
7093 return 0;
7094
7095 lockdep_assert_held(&sched_domains_mutex);
7096 covered = sched_domains_tmpmask;
7097
7098 cpumask_clear(covered);
7099
7100 for_each_cpu(i, span) {
7101 struct sched_group *sg;
7102 int group = get_group(i, sdd, &sg);
7103 int j;
7104
7105 if (cpumask_test_cpu(i, covered))
7106 continue;
7107
7108 cpumask_clear(sched_group_cpus(sg));
7109 sg->sgp->power = 0;
7110
7111 for_each_cpu(j, span) {
7112 if (get_group(j, sdd, NULL) != group)
7113 continue;
7114
7115 cpumask_set_cpu(j, covered);
7116 cpumask_set_cpu(j, sched_group_cpus(sg));
7117 }
7118
7119 if (!first)
7120 first = sg;
7121 if (last)
7122 last->next = sg;
7123 last = sg;
7124 }
7125 last->next = first;
7126
7127 return 0;
7128 }
7129
7130 /*
7131 * Initialize sched groups cpu_power.
7132 *
7133 * cpu_power indicates the capacity of sched group, which is used while
7134 * distributing the load between different sched groups in a sched domain.
7135 * Typically cpu_power for all the groups in a sched domain will be same unless
7136 * there are asymmetries in the topology. If there are asymmetries, group
7137 * having more cpu_power will pickup more load compared to the group having
7138 * less cpu_power.
7139 */
7140 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7141 {
7142 struct sched_group *sg = sd->groups;
7143
7144 WARN_ON(!sd || !sg);
7145
7146 do {
7147 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7148 sg = sg->next;
7149 } while (sg != sd->groups);
7150
7151 if (cpu != group_first_cpu(sg))
7152 return;
7153
7154 update_group_power(sd, cpu);
7155 }
7156
7157 /*
7158 * Initializers for schedule domains
7159 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7160 */
7161
7162 #ifdef CONFIG_SCHED_DEBUG
7163 # define SD_INIT_NAME(sd, type) sd->name = #type
7164 #else
7165 # define SD_INIT_NAME(sd, type) do { } while (0)
7166 #endif
7167
7168 #define SD_INIT_FUNC(type) \
7169 static noinline struct sched_domain * \
7170 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7171 { \
7172 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7173 *sd = SD_##type##_INIT; \
7174 SD_INIT_NAME(sd, type); \
7175 sd->private = &tl->data; \
7176 return sd; \
7177 }
7178
7179 SD_INIT_FUNC(CPU)
7180 #ifdef CONFIG_NUMA
7181 SD_INIT_FUNC(ALLNODES)
7182 SD_INIT_FUNC(NODE)
7183 #endif
7184 #ifdef CONFIG_SCHED_SMT
7185 SD_INIT_FUNC(SIBLING)
7186 #endif
7187 #ifdef CONFIG_SCHED_MC
7188 SD_INIT_FUNC(MC)
7189 #endif
7190 #ifdef CONFIG_SCHED_BOOK
7191 SD_INIT_FUNC(BOOK)
7192 #endif
7193
7194 static int default_relax_domain_level = -1;
7195 int sched_domain_level_max;
7196
7197 static int __init setup_relax_domain_level(char *str)
7198 {
7199 unsigned long val;
7200
7201 val = simple_strtoul(str, NULL, 0);
7202 if (val < sched_domain_level_max)
7203 default_relax_domain_level = val;
7204
7205 return 1;
7206 }
7207 __setup("relax_domain_level=", setup_relax_domain_level);
7208
7209 static void set_domain_attribute(struct sched_domain *sd,
7210 struct sched_domain_attr *attr)
7211 {
7212 int request;
7213
7214 if (!attr || attr->relax_domain_level < 0) {
7215 if (default_relax_domain_level < 0)
7216 return;
7217 else
7218 request = default_relax_domain_level;
7219 } else
7220 request = attr->relax_domain_level;
7221 if (request < sd->level) {
7222 /* turn off idle balance on this domain */
7223 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7224 } else {
7225 /* turn on idle balance on this domain */
7226 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7227 }
7228 }
7229
7230 static void __sdt_free(const struct cpumask *cpu_map);
7231 static int __sdt_alloc(const struct cpumask *cpu_map);
7232
7233 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7234 const struct cpumask *cpu_map)
7235 {
7236 switch (what) {
7237 case sa_rootdomain:
7238 if (!atomic_read(&d->rd->refcount))
7239 free_rootdomain(&d->rd->rcu); /* fall through */
7240 case sa_sd:
7241 free_percpu(d->sd); /* fall through */
7242 case sa_sd_storage:
7243 __sdt_free(cpu_map); /* fall through */
7244 case sa_none:
7245 break;
7246 }
7247 }
7248
7249 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7250 const struct cpumask *cpu_map)
7251 {
7252 memset(d, 0, sizeof(*d));
7253
7254 if (__sdt_alloc(cpu_map))
7255 return sa_sd_storage;
7256 d->sd = alloc_percpu(struct sched_domain *);
7257 if (!d->sd)
7258 return sa_sd_storage;
7259 d->rd = alloc_rootdomain();
7260 if (!d->rd)
7261 return sa_sd;
7262 return sa_rootdomain;
7263 }
7264
7265 /*
7266 * NULL the sd_data elements we've used to build the sched_domain and
7267 * sched_group structure so that the subsequent __free_domain_allocs()
7268 * will not free the data we're using.
7269 */
7270 static void claim_allocations(int cpu, struct sched_domain *sd)
7271 {
7272 struct sd_data *sdd = sd->private;
7273
7274 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7275 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7276
7277 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7278 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7279
7280 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7281 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
7282 }
7283
7284 #ifdef CONFIG_SCHED_SMT
7285 static const struct cpumask *cpu_smt_mask(int cpu)
7286 {
7287 return topology_thread_cpumask(cpu);
7288 }
7289 #endif
7290
7291 /*
7292 * Topology list, bottom-up.
7293 */
7294 static struct sched_domain_topology_level default_topology[] = {
7295 #ifdef CONFIG_SCHED_SMT
7296 { sd_init_SIBLING, cpu_smt_mask, },
7297 #endif
7298 #ifdef CONFIG_SCHED_MC
7299 { sd_init_MC, cpu_coregroup_mask, },
7300 #endif
7301 #ifdef CONFIG_SCHED_BOOK
7302 { sd_init_BOOK, cpu_book_mask, },
7303 #endif
7304 { sd_init_CPU, cpu_cpu_mask, },
7305 #ifdef CONFIG_NUMA
7306 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7307 { sd_init_ALLNODES, cpu_allnodes_mask, },
7308 #endif
7309 { NULL, },
7310 };
7311
7312 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7313
7314 static int __sdt_alloc(const struct cpumask *cpu_map)
7315 {
7316 struct sched_domain_topology_level *tl;
7317 int j;
7318
7319 for (tl = sched_domain_topology; tl->init; tl++) {
7320 struct sd_data *sdd = &tl->data;
7321
7322 sdd->sd = alloc_percpu(struct sched_domain *);
7323 if (!sdd->sd)
7324 return -ENOMEM;
7325
7326 sdd->sg = alloc_percpu(struct sched_group *);
7327 if (!sdd->sg)
7328 return -ENOMEM;
7329
7330 sdd->sgp = alloc_percpu(struct sched_group_power *);
7331 if (!sdd->sgp)
7332 return -ENOMEM;
7333
7334 for_each_cpu(j, cpu_map) {
7335 struct sched_domain *sd;
7336 struct sched_group *sg;
7337 struct sched_group_power *sgp;
7338
7339 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7340 GFP_KERNEL, cpu_to_node(j));
7341 if (!sd)
7342 return -ENOMEM;
7343
7344 *per_cpu_ptr(sdd->sd, j) = sd;
7345
7346 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7347 GFP_KERNEL, cpu_to_node(j));
7348 if (!sg)
7349 return -ENOMEM;
7350
7351 *per_cpu_ptr(sdd->sg, j) = sg;
7352
7353 sgp = kzalloc_node(sizeof(struct sched_group_power),
7354 GFP_KERNEL, cpu_to_node(j));
7355 if (!sgp)
7356 return -ENOMEM;
7357
7358 *per_cpu_ptr(sdd->sgp, j) = sgp;
7359 }
7360 }
7361
7362 return 0;
7363 }
7364
7365 static void __sdt_free(const struct cpumask *cpu_map)
7366 {
7367 struct sched_domain_topology_level *tl;
7368 int j;
7369
7370 for (tl = sched_domain_topology; tl->init; tl++) {
7371 struct sd_data *sdd = &tl->data;
7372
7373 for_each_cpu(j, cpu_map) {
7374 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7375 if (sd && (sd->flags & SD_OVERLAP))
7376 free_sched_groups(sd->groups, 0);
7377 kfree(*per_cpu_ptr(sdd->sg, j));
7378 kfree(*per_cpu_ptr(sdd->sgp, j));
7379 }
7380 free_percpu(sdd->sd);
7381 free_percpu(sdd->sg);
7382 free_percpu(sdd->sgp);
7383 }
7384 }
7385
7386 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7387 struct s_data *d, const struct cpumask *cpu_map,
7388 struct sched_domain_attr *attr, struct sched_domain *child,
7389 int cpu)
7390 {
7391 struct sched_domain *sd = tl->init(tl, cpu);
7392 if (!sd)
7393 return child;
7394
7395 set_domain_attribute(sd, attr);
7396 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7397 if (child) {
7398 sd->level = child->level + 1;
7399 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7400 child->parent = sd;
7401 }
7402 sd->child = child;
7403
7404 return sd;
7405 }
7406
7407 /*
7408 * Build sched domains for a given set of cpus and attach the sched domains
7409 * to the individual cpus
7410 */
7411 static int build_sched_domains(const struct cpumask *cpu_map,
7412 struct sched_domain_attr *attr)
7413 {
7414 enum s_alloc alloc_state = sa_none;
7415 struct sched_domain *sd;
7416 struct s_data d;
7417 int i, ret = -ENOMEM;
7418
7419 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7420 if (alloc_state != sa_rootdomain)
7421 goto error;
7422
7423 /* Set up domains for cpus specified by the cpu_map. */
7424 for_each_cpu(i, cpu_map) {
7425 struct sched_domain_topology_level *tl;
7426
7427 sd = NULL;
7428 for (tl = sched_domain_topology; tl->init; tl++) {
7429 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7430 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7431 sd->flags |= SD_OVERLAP;
7432 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7433 break;
7434 }
7435
7436 while (sd->child)
7437 sd = sd->child;
7438
7439 *per_cpu_ptr(d.sd, i) = sd;
7440 }
7441
7442 /* Build the groups for the domains */
7443 for_each_cpu(i, cpu_map) {
7444 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7445 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7446 if (sd->flags & SD_OVERLAP) {
7447 if (build_overlap_sched_groups(sd, i))
7448 goto error;
7449 } else {
7450 if (build_sched_groups(sd, i))
7451 goto error;
7452 }
7453 }
7454 }
7455
7456 /* Calculate CPU power for physical packages and nodes */
7457 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7458 if (!cpumask_test_cpu(i, cpu_map))
7459 continue;
7460
7461 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7462 claim_allocations(i, sd);
7463 init_sched_groups_power(i, sd);
7464 }
7465 }
7466
7467 /* Attach the domains */
7468 rcu_read_lock();
7469 for_each_cpu(i, cpu_map) {
7470 sd = *per_cpu_ptr(d.sd, i);
7471 cpu_attach_domain(sd, d.rd, i);
7472 }
7473 rcu_read_unlock();
7474
7475 ret = 0;
7476 error:
7477 __free_domain_allocs(&d, alloc_state, cpu_map);
7478 return ret;
7479 }
7480
7481 static cpumask_var_t *doms_cur; /* current sched domains */
7482 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7483 static struct sched_domain_attr *dattr_cur;
7484 /* attribues of custom domains in 'doms_cur' */
7485
7486 /*
7487 * Special case: If a kmalloc of a doms_cur partition (array of
7488 * cpumask) fails, then fallback to a single sched domain,
7489 * as determined by the single cpumask fallback_doms.
7490 */
7491 static cpumask_var_t fallback_doms;
7492
7493 /*
7494 * arch_update_cpu_topology lets virtualized architectures update the
7495 * cpu core maps. It is supposed to return 1 if the topology changed
7496 * or 0 if it stayed the same.
7497 */
7498 int __attribute__((weak)) arch_update_cpu_topology(void)
7499 {
7500 return 0;
7501 }
7502
7503 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7504 {
7505 int i;
7506 cpumask_var_t *doms;
7507
7508 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7509 if (!doms)
7510 return NULL;
7511 for (i = 0; i < ndoms; i++) {
7512 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7513 free_sched_domains(doms, i);
7514 return NULL;
7515 }
7516 }
7517 return doms;
7518 }
7519
7520 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7521 {
7522 unsigned int i;
7523 for (i = 0; i < ndoms; i++)
7524 free_cpumask_var(doms[i]);
7525 kfree(doms);
7526 }
7527
7528 /*
7529 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7530 * For now this just excludes isolated cpus, but could be used to
7531 * exclude other special cases in the future.
7532 */
7533 static int init_sched_domains(const struct cpumask *cpu_map)
7534 {
7535 int err;
7536
7537 arch_update_cpu_topology();
7538 ndoms_cur = 1;
7539 doms_cur = alloc_sched_domains(ndoms_cur);
7540 if (!doms_cur)
7541 doms_cur = &fallback_doms;
7542 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7543 dattr_cur = NULL;
7544 err = build_sched_domains(doms_cur[0], NULL);
7545 register_sched_domain_sysctl();
7546
7547 return err;
7548 }
7549
7550 /*
7551 * Detach sched domains from a group of cpus specified in cpu_map
7552 * These cpus will now be attached to the NULL domain
7553 */
7554 static void detach_destroy_domains(const struct cpumask *cpu_map)
7555 {
7556 int i;
7557
7558 rcu_read_lock();
7559 for_each_cpu(i, cpu_map)
7560 cpu_attach_domain(NULL, &def_root_domain, i);
7561 rcu_read_unlock();
7562 }
7563
7564 /* handle null as "default" */
7565 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7566 struct sched_domain_attr *new, int idx_new)
7567 {
7568 struct sched_domain_attr tmp;
7569
7570 /* fast path */
7571 if (!new && !cur)
7572 return 1;
7573
7574 tmp = SD_ATTR_INIT;
7575 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7576 new ? (new + idx_new) : &tmp,
7577 sizeof(struct sched_domain_attr));
7578 }
7579
7580 /*
7581 * Partition sched domains as specified by the 'ndoms_new'
7582 * cpumasks in the array doms_new[] of cpumasks. This compares
7583 * doms_new[] to the current sched domain partitioning, doms_cur[].
7584 * It destroys each deleted domain and builds each new domain.
7585 *
7586 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7587 * The masks don't intersect (don't overlap.) We should setup one
7588 * sched domain for each mask. CPUs not in any of the cpumasks will
7589 * not be load balanced. If the same cpumask appears both in the
7590 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7591 * it as it is.
7592 *
7593 * The passed in 'doms_new' should be allocated using
7594 * alloc_sched_domains. This routine takes ownership of it and will
7595 * free_sched_domains it when done with it. If the caller failed the
7596 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7597 * and partition_sched_domains() will fallback to the single partition
7598 * 'fallback_doms', it also forces the domains to be rebuilt.
7599 *
7600 * If doms_new == NULL it will be replaced with cpu_online_mask.
7601 * ndoms_new == 0 is a special case for destroying existing domains,
7602 * and it will not create the default domain.
7603 *
7604 * Call with hotplug lock held
7605 */
7606 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7607 struct sched_domain_attr *dattr_new)
7608 {
7609 int i, j, n;
7610 int new_topology;
7611
7612 mutex_lock(&sched_domains_mutex);
7613
7614 /* always unregister in case we don't destroy any domains */
7615 unregister_sched_domain_sysctl();
7616
7617 /* Let architecture update cpu core mappings. */
7618 new_topology = arch_update_cpu_topology();
7619
7620 n = doms_new ? ndoms_new : 0;
7621
7622 /* Destroy deleted domains */
7623 for (i = 0; i < ndoms_cur; i++) {
7624 for (j = 0; j < n && !new_topology; j++) {
7625 if (cpumask_equal(doms_cur[i], doms_new[j])
7626 && dattrs_equal(dattr_cur, i, dattr_new, j))
7627 goto match1;
7628 }
7629 /* no match - a current sched domain not in new doms_new[] */
7630 detach_destroy_domains(doms_cur[i]);
7631 match1:
7632 ;
7633 }
7634
7635 if (doms_new == NULL) {
7636 ndoms_cur = 0;
7637 doms_new = &fallback_doms;
7638 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7639 WARN_ON_ONCE(dattr_new);
7640 }
7641
7642 /* Build new domains */
7643 for (i = 0; i < ndoms_new; i++) {
7644 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7645 if (cpumask_equal(doms_new[i], doms_cur[j])
7646 && dattrs_equal(dattr_new, i, dattr_cur, j))
7647 goto match2;
7648 }
7649 /* no match - add a new doms_new */
7650 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7651 match2:
7652 ;
7653 }
7654
7655 /* Remember the new sched domains */
7656 if (doms_cur != &fallback_doms)
7657 free_sched_domains(doms_cur, ndoms_cur);
7658 kfree(dattr_cur); /* kfree(NULL) is safe */
7659 doms_cur = doms_new;
7660 dattr_cur = dattr_new;
7661 ndoms_cur = ndoms_new;
7662
7663 register_sched_domain_sysctl();
7664
7665 mutex_unlock(&sched_domains_mutex);
7666 }
7667
7668 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7669 static void reinit_sched_domains(void)
7670 {
7671 get_online_cpus();
7672
7673 /* Destroy domains first to force the rebuild */
7674 partition_sched_domains(0, NULL, NULL);
7675
7676 rebuild_sched_domains();
7677 put_online_cpus();
7678 }
7679
7680 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7681 {
7682 unsigned int level = 0;
7683
7684 if (sscanf(buf, "%u", &level) != 1)
7685 return -EINVAL;
7686
7687 /*
7688 * level is always be positive so don't check for
7689 * level < POWERSAVINGS_BALANCE_NONE which is 0
7690 * What happens on 0 or 1 byte write,
7691 * need to check for count as well?
7692 */
7693
7694 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7695 return -EINVAL;
7696
7697 if (smt)
7698 sched_smt_power_savings = level;
7699 else
7700 sched_mc_power_savings = level;
7701
7702 reinit_sched_domains();
7703
7704 return count;
7705 }
7706
7707 #ifdef CONFIG_SCHED_MC
7708 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7709 struct sysdev_class_attribute *attr,
7710 char *page)
7711 {
7712 return sprintf(page, "%u\n", sched_mc_power_savings);
7713 }
7714 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7715 struct sysdev_class_attribute *attr,
7716 const char *buf, size_t count)
7717 {
7718 return sched_power_savings_store(buf, count, 0);
7719 }
7720 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7721 sched_mc_power_savings_show,
7722 sched_mc_power_savings_store);
7723 #endif
7724
7725 #ifdef CONFIG_SCHED_SMT
7726 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7727 struct sysdev_class_attribute *attr,
7728 char *page)
7729 {
7730 return sprintf(page, "%u\n", sched_smt_power_savings);
7731 }
7732 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7733 struct sysdev_class_attribute *attr,
7734 const char *buf, size_t count)
7735 {
7736 return sched_power_savings_store(buf, count, 1);
7737 }
7738 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7739 sched_smt_power_savings_show,
7740 sched_smt_power_savings_store);
7741 #endif
7742
7743 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7744 {
7745 int err = 0;
7746
7747 #ifdef CONFIG_SCHED_SMT
7748 if (smt_capable())
7749 err = sysfs_create_file(&cls->kset.kobj,
7750 &attr_sched_smt_power_savings.attr);
7751 #endif
7752 #ifdef CONFIG_SCHED_MC
7753 if (!err && mc_capable())
7754 err = sysfs_create_file(&cls->kset.kobj,
7755 &attr_sched_mc_power_savings.attr);
7756 #endif
7757 return err;
7758 }
7759 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7760
7761 /*
7762 * Update cpusets according to cpu_active mask. If cpusets are
7763 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7764 * around partition_sched_domains().
7765 */
7766 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7767 void *hcpu)
7768 {
7769 switch (action & ~CPU_TASKS_FROZEN) {
7770 case CPU_ONLINE:
7771 case CPU_DOWN_FAILED:
7772 cpuset_update_active_cpus();
7773 return NOTIFY_OK;
7774 default:
7775 return NOTIFY_DONE;
7776 }
7777 }
7778
7779 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7780 void *hcpu)
7781 {
7782 switch (action & ~CPU_TASKS_FROZEN) {
7783 case CPU_DOWN_PREPARE:
7784 cpuset_update_active_cpus();
7785 return NOTIFY_OK;
7786 default:
7787 return NOTIFY_DONE;
7788 }
7789 }
7790
7791 static int update_runtime(struct notifier_block *nfb,
7792 unsigned long action, void *hcpu)
7793 {
7794 int cpu = (int)(long)hcpu;
7795
7796 switch (action) {
7797 case CPU_DOWN_PREPARE:
7798 case CPU_DOWN_PREPARE_FROZEN:
7799 disable_runtime(cpu_rq(cpu));
7800 return NOTIFY_OK;
7801
7802 case CPU_DOWN_FAILED:
7803 case CPU_DOWN_FAILED_FROZEN:
7804 case CPU_ONLINE:
7805 case CPU_ONLINE_FROZEN:
7806 enable_runtime(cpu_rq(cpu));
7807 return NOTIFY_OK;
7808
7809 default:
7810 return NOTIFY_DONE;
7811 }
7812 }
7813
7814 void __init sched_init_smp(void)
7815 {
7816 cpumask_var_t non_isolated_cpus;
7817
7818 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7819 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7820
7821 get_online_cpus();
7822 mutex_lock(&sched_domains_mutex);
7823 init_sched_domains(cpu_active_mask);
7824 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7825 if (cpumask_empty(non_isolated_cpus))
7826 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7827 mutex_unlock(&sched_domains_mutex);
7828 put_online_cpus();
7829
7830 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7831 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7832
7833 /* RT runtime code needs to handle some hotplug events */
7834 hotcpu_notifier(update_runtime, 0);
7835
7836 init_hrtick();
7837
7838 /* Move init over to a non-isolated CPU */
7839 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7840 BUG();
7841 sched_init_granularity();
7842 free_cpumask_var(non_isolated_cpus);
7843
7844 init_sched_rt_class();
7845 }
7846 #else
7847 void __init sched_init_smp(void)
7848 {
7849 sched_init_granularity();
7850 }
7851 #endif /* CONFIG_SMP */
7852
7853 const_debug unsigned int sysctl_timer_migration = 1;
7854
7855 int in_sched_functions(unsigned long addr)
7856 {
7857 return in_lock_functions(addr) ||
7858 (addr >= (unsigned long)__sched_text_start
7859 && addr < (unsigned long)__sched_text_end);
7860 }
7861
7862 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7863 {
7864 cfs_rq->tasks_timeline = RB_ROOT;
7865 INIT_LIST_HEAD(&cfs_rq->tasks);
7866 #ifdef CONFIG_FAIR_GROUP_SCHED
7867 cfs_rq->rq = rq;
7868 /* allow initial update_cfs_load() to truncate */
7869 #ifdef CONFIG_SMP
7870 cfs_rq->load_stamp = 1;
7871 #endif
7872 #endif
7873 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7874 #ifndef CONFIG_64BIT
7875 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7876 #endif
7877 }
7878
7879 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7880 {
7881 struct rt_prio_array *array;
7882 int i;
7883
7884 array = &rt_rq->active;
7885 for (i = 0; i < MAX_RT_PRIO; i++) {
7886 INIT_LIST_HEAD(array->queue + i);
7887 __clear_bit(i, array->bitmap);
7888 }
7889 /* delimiter for bitsearch: */
7890 __set_bit(MAX_RT_PRIO, array->bitmap);
7891
7892 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7893 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7894 #ifdef CONFIG_SMP
7895 rt_rq->highest_prio.next = MAX_RT_PRIO;
7896 #endif
7897 #endif
7898 #ifdef CONFIG_SMP
7899 rt_rq->rt_nr_migratory = 0;
7900 rt_rq->overloaded = 0;
7901 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7902 #endif
7903
7904 rt_rq->rt_time = 0;
7905 rt_rq->rt_throttled = 0;
7906 rt_rq->rt_runtime = 0;
7907 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7908
7909 #ifdef CONFIG_RT_GROUP_SCHED
7910 rt_rq->rt_nr_boosted = 0;
7911 rt_rq->rq = rq;
7912 #endif
7913 }
7914
7915 #ifdef CONFIG_FAIR_GROUP_SCHED
7916 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7917 struct sched_entity *se, int cpu,
7918 struct sched_entity *parent)
7919 {
7920 struct rq *rq = cpu_rq(cpu);
7921 tg->cfs_rq[cpu] = cfs_rq;
7922 init_cfs_rq(cfs_rq, rq);
7923 cfs_rq->tg = tg;
7924
7925 tg->se[cpu] = se;
7926 /* se could be NULL for root_task_group */
7927 if (!se)
7928 return;
7929
7930 if (!parent)
7931 se->cfs_rq = &rq->cfs;
7932 else
7933 se->cfs_rq = parent->my_q;
7934
7935 se->my_q = cfs_rq;
7936 update_load_set(&se->load, 0);
7937 se->parent = parent;
7938 }
7939 #endif
7940
7941 #ifdef CONFIG_RT_GROUP_SCHED
7942 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7943 struct sched_rt_entity *rt_se, int cpu,
7944 struct sched_rt_entity *parent)
7945 {
7946 struct rq *rq = cpu_rq(cpu);
7947
7948 tg->rt_rq[cpu] = rt_rq;
7949 init_rt_rq(rt_rq, rq);
7950 rt_rq->tg = tg;
7951 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7952
7953 tg->rt_se[cpu] = rt_se;
7954 if (!rt_se)
7955 return;
7956
7957 if (!parent)
7958 rt_se->rt_rq = &rq->rt;
7959 else
7960 rt_se->rt_rq = parent->my_q;
7961
7962 rt_se->my_q = rt_rq;
7963 rt_se->parent = parent;
7964 INIT_LIST_HEAD(&rt_se->run_list);
7965 }
7966 #endif
7967
7968 void __init sched_init(void)
7969 {
7970 int i, j;
7971 unsigned long alloc_size = 0, ptr;
7972
7973 #ifdef CONFIG_FAIR_GROUP_SCHED
7974 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7975 #endif
7976 #ifdef CONFIG_RT_GROUP_SCHED
7977 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7978 #endif
7979 #ifdef CONFIG_CPUMASK_OFFSTACK
7980 alloc_size += num_possible_cpus() * cpumask_size();
7981 #endif
7982 if (alloc_size) {
7983 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7984
7985 #ifdef CONFIG_FAIR_GROUP_SCHED
7986 root_task_group.se = (struct sched_entity **)ptr;
7987 ptr += nr_cpu_ids * sizeof(void **);
7988
7989 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7990 ptr += nr_cpu_ids * sizeof(void **);
7991
7992 #endif /* CONFIG_FAIR_GROUP_SCHED */
7993 #ifdef CONFIG_RT_GROUP_SCHED
7994 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7995 ptr += nr_cpu_ids * sizeof(void **);
7996
7997 root_task_group.rt_rq = (struct rt_rq **)ptr;
7998 ptr += nr_cpu_ids * sizeof(void **);
7999
8000 #endif /* CONFIG_RT_GROUP_SCHED */
8001 #ifdef CONFIG_CPUMASK_OFFSTACK
8002 for_each_possible_cpu(i) {
8003 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8004 ptr += cpumask_size();
8005 }
8006 #endif /* CONFIG_CPUMASK_OFFSTACK */
8007 }
8008
8009 #ifdef CONFIG_SMP
8010 init_defrootdomain();
8011 #endif
8012
8013 init_rt_bandwidth(&def_rt_bandwidth,
8014 global_rt_period(), global_rt_runtime());
8015
8016 #ifdef CONFIG_RT_GROUP_SCHED
8017 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8018 global_rt_period(), global_rt_runtime());
8019 #endif /* CONFIG_RT_GROUP_SCHED */
8020
8021 #ifdef CONFIG_CGROUP_SCHED
8022 list_add(&root_task_group.list, &task_groups);
8023 INIT_LIST_HEAD(&root_task_group.children);
8024 autogroup_init(&init_task);
8025 #endif /* CONFIG_CGROUP_SCHED */
8026
8027 for_each_possible_cpu(i) {
8028 struct rq *rq;
8029
8030 rq = cpu_rq(i);
8031 raw_spin_lock_init(&rq->lock);
8032 rq->nr_running = 0;
8033 rq->calc_load_active = 0;
8034 rq->calc_load_update = jiffies + LOAD_FREQ;
8035 init_cfs_rq(&rq->cfs, rq);
8036 init_rt_rq(&rq->rt, rq);
8037 #ifdef CONFIG_FAIR_GROUP_SCHED
8038 root_task_group.shares = root_task_group_load;
8039 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8040 /*
8041 * How much cpu bandwidth does root_task_group get?
8042 *
8043 * In case of task-groups formed thr' the cgroup filesystem, it
8044 * gets 100% of the cpu resources in the system. This overall
8045 * system cpu resource is divided among the tasks of
8046 * root_task_group and its child task-groups in a fair manner,
8047 * based on each entity's (task or task-group's) weight
8048 * (se->load.weight).
8049 *
8050 * In other words, if root_task_group has 10 tasks of weight
8051 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8052 * then A0's share of the cpu resource is:
8053 *
8054 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8055 *
8056 * We achieve this by letting root_task_group's tasks sit
8057 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8058 */
8059 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8060 #endif /* CONFIG_FAIR_GROUP_SCHED */
8061
8062 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8063 #ifdef CONFIG_RT_GROUP_SCHED
8064 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8065 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8066 #endif
8067
8068 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8069 rq->cpu_load[j] = 0;
8070
8071 rq->last_load_update_tick = jiffies;
8072
8073 #ifdef CONFIG_SMP
8074 rq->sd = NULL;
8075 rq->rd = NULL;
8076 rq->cpu_power = SCHED_POWER_SCALE;
8077 rq->post_schedule = 0;
8078 rq->active_balance = 0;
8079 rq->next_balance = jiffies;
8080 rq->push_cpu = 0;
8081 rq->cpu = i;
8082 rq->online = 0;
8083 rq->idle_stamp = 0;
8084 rq->avg_idle = 2*sysctl_sched_migration_cost;
8085 rq_attach_root(rq, &def_root_domain);
8086 #ifdef CONFIG_NO_HZ
8087 rq->nohz_balance_kick = 0;
8088 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8089 #endif
8090 #endif
8091 init_rq_hrtick(rq);
8092 atomic_set(&rq->nr_iowait, 0);
8093 }
8094
8095 set_load_weight(&init_task);
8096
8097 #ifdef CONFIG_PREEMPT_NOTIFIERS
8098 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8099 #endif
8100
8101 #ifdef CONFIG_SMP
8102 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8103 #endif
8104
8105 #ifdef CONFIG_RT_MUTEXES
8106 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8107 #endif
8108
8109 /*
8110 * The boot idle thread does lazy MMU switching as well:
8111 */
8112 atomic_inc(&init_mm.mm_count);
8113 enter_lazy_tlb(&init_mm, current);
8114
8115 /*
8116 * Make us the idle thread. Technically, schedule() should not be
8117 * called from this thread, however somewhere below it might be,
8118 * but because we are the idle thread, we just pick up running again
8119 * when this runqueue becomes "idle".
8120 */
8121 init_idle(current, smp_processor_id());
8122
8123 calc_load_update = jiffies + LOAD_FREQ;
8124
8125 /*
8126 * During early bootup we pretend to be a normal task:
8127 */
8128 current->sched_class = &fair_sched_class;
8129
8130 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8131 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8132 #ifdef CONFIG_SMP
8133 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8134 #ifdef CONFIG_NO_HZ
8135 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8136 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8137 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8138 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8139 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8140 #endif
8141 /* May be allocated at isolcpus cmdline parse time */
8142 if (cpu_isolated_map == NULL)
8143 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8144 #endif /* SMP */
8145
8146 scheduler_running = 1;
8147 }
8148
8149 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8150 static inline int preempt_count_equals(int preempt_offset)
8151 {
8152 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8153
8154 return (nested == preempt_offset);
8155 }
8156
8157 void __might_sleep(const char *file, int line, int preempt_offset)
8158 {
8159 static unsigned long prev_jiffy; /* ratelimiting */
8160
8161 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8162 system_state != SYSTEM_RUNNING || oops_in_progress)
8163 return;
8164 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8165 return;
8166 prev_jiffy = jiffies;
8167
8168 printk(KERN_ERR
8169 "BUG: sleeping function called from invalid context at %s:%d\n",
8170 file, line);
8171 printk(KERN_ERR
8172 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8173 in_atomic(), irqs_disabled(),
8174 current->pid, current->comm);
8175
8176 debug_show_held_locks(current);
8177 if (irqs_disabled())
8178 print_irqtrace_events(current);
8179 dump_stack();
8180 }
8181 EXPORT_SYMBOL(__might_sleep);
8182 #endif
8183
8184 #ifdef CONFIG_MAGIC_SYSRQ
8185 static void normalize_task(struct rq *rq, struct task_struct *p)
8186 {
8187 const struct sched_class *prev_class = p->sched_class;
8188 int old_prio = p->prio;
8189 int on_rq;
8190
8191 on_rq = p->on_rq;
8192 if (on_rq)
8193 deactivate_task(rq, p, 0);
8194 __setscheduler(rq, p, SCHED_NORMAL, 0);
8195 if (on_rq) {
8196 activate_task(rq, p, 0);
8197 resched_task(rq->curr);
8198 }
8199
8200 check_class_changed(rq, p, prev_class, old_prio);
8201 }
8202
8203 void normalize_rt_tasks(void)
8204 {
8205 struct task_struct *g, *p;
8206 unsigned long flags;
8207 struct rq *rq;
8208
8209 read_lock_irqsave(&tasklist_lock, flags);
8210 do_each_thread(g, p) {
8211 /*
8212 * Only normalize user tasks:
8213 */
8214 if (!p->mm)
8215 continue;
8216
8217 p->se.exec_start = 0;
8218 #ifdef CONFIG_SCHEDSTATS
8219 p->se.statistics.wait_start = 0;
8220 p->se.statistics.sleep_start = 0;
8221 p->se.statistics.block_start = 0;
8222 #endif
8223
8224 if (!rt_task(p)) {
8225 /*
8226 * Renice negative nice level userspace
8227 * tasks back to 0:
8228 */
8229 if (TASK_NICE(p) < 0 && p->mm)
8230 set_user_nice(p, 0);
8231 continue;
8232 }
8233
8234 raw_spin_lock(&p->pi_lock);
8235 rq = __task_rq_lock(p);
8236
8237 normalize_task(rq, p);
8238
8239 __task_rq_unlock(rq);
8240 raw_spin_unlock(&p->pi_lock);
8241 } while_each_thread(g, p);
8242
8243 read_unlock_irqrestore(&tasklist_lock, flags);
8244 }
8245
8246 #endif /* CONFIG_MAGIC_SYSRQ */
8247
8248 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8249 /*
8250 * These functions are only useful for the IA64 MCA handling, or kdb.
8251 *
8252 * They can only be called when the whole system has been
8253 * stopped - every CPU needs to be quiescent, and no scheduling
8254 * activity can take place. Using them for anything else would
8255 * be a serious bug, and as a result, they aren't even visible
8256 * under any other configuration.
8257 */
8258
8259 /**
8260 * curr_task - return the current task for a given cpu.
8261 * @cpu: the processor in question.
8262 *
8263 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8264 */
8265 struct task_struct *curr_task(int cpu)
8266 {
8267 return cpu_curr(cpu);
8268 }
8269
8270 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8271
8272 #ifdef CONFIG_IA64
8273 /**
8274 * set_curr_task - set the current task for a given cpu.
8275 * @cpu: the processor in question.
8276 * @p: the task pointer to set.
8277 *
8278 * Description: This function must only be used when non-maskable interrupts
8279 * are serviced on a separate stack. It allows the architecture to switch the
8280 * notion of the current task on a cpu in a non-blocking manner. This function
8281 * must be called with all CPU's synchronized, and interrupts disabled, the
8282 * and caller must save the original value of the current task (see
8283 * curr_task() above) and restore that value before reenabling interrupts and
8284 * re-starting the system.
8285 *
8286 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8287 */
8288 void set_curr_task(int cpu, struct task_struct *p)
8289 {
8290 cpu_curr(cpu) = p;
8291 }
8292
8293 #endif
8294
8295 #ifdef CONFIG_FAIR_GROUP_SCHED
8296 static void free_fair_sched_group(struct task_group *tg)
8297 {
8298 int i;
8299
8300 for_each_possible_cpu(i) {
8301 if (tg->cfs_rq)
8302 kfree(tg->cfs_rq[i]);
8303 if (tg->se)
8304 kfree(tg->se[i]);
8305 }
8306
8307 kfree(tg->cfs_rq);
8308 kfree(tg->se);
8309 }
8310
8311 static
8312 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8313 {
8314 struct cfs_rq *cfs_rq;
8315 struct sched_entity *se;
8316 int i;
8317
8318 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8319 if (!tg->cfs_rq)
8320 goto err;
8321 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8322 if (!tg->se)
8323 goto err;
8324
8325 tg->shares = NICE_0_LOAD;
8326
8327 for_each_possible_cpu(i) {
8328 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8329 GFP_KERNEL, cpu_to_node(i));
8330 if (!cfs_rq)
8331 goto err;
8332
8333 se = kzalloc_node(sizeof(struct sched_entity),
8334 GFP_KERNEL, cpu_to_node(i));
8335 if (!se)
8336 goto err_free_rq;
8337
8338 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8339 }
8340
8341 return 1;
8342
8343 err_free_rq:
8344 kfree(cfs_rq);
8345 err:
8346 return 0;
8347 }
8348
8349 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8350 {
8351 struct rq *rq = cpu_rq(cpu);
8352 unsigned long flags;
8353
8354 /*
8355 * Only empty task groups can be destroyed; so we can speculatively
8356 * check on_list without danger of it being re-added.
8357 */
8358 if (!tg->cfs_rq[cpu]->on_list)
8359 return;
8360
8361 raw_spin_lock_irqsave(&rq->lock, flags);
8362 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8363 raw_spin_unlock_irqrestore(&rq->lock, flags);
8364 }
8365 #else /* !CONFIG_FAIR_GROUP_SCHED */
8366 static inline void free_fair_sched_group(struct task_group *tg)
8367 {
8368 }
8369
8370 static inline
8371 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8372 {
8373 return 1;
8374 }
8375
8376 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8377 {
8378 }
8379 #endif /* CONFIG_FAIR_GROUP_SCHED */
8380
8381 #ifdef CONFIG_RT_GROUP_SCHED
8382 static void free_rt_sched_group(struct task_group *tg)
8383 {
8384 int i;
8385
8386 if (tg->rt_se)
8387 destroy_rt_bandwidth(&tg->rt_bandwidth);
8388
8389 for_each_possible_cpu(i) {
8390 if (tg->rt_rq)
8391 kfree(tg->rt_rq[i]);
8392 if (tg->rt_se)
8393 kfree(tg->rt_se[i]);
8394 }
8395
8396 kfree(tg->rt_rq);
8397 kfree(tg->rt_se);
8398 }
8399
8400 static
8401 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8402 {
8403 struct rt_rq *rt_rq;
8404 struct sched_rt_entity *rt_se;
8405 int i;
8406
8407 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8408 if (!tg->rt_rq)
8409 goto err;
8410 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8411 if (!tg->rt_se)
8412 goto err;
8413
8414 init_rt_bandwidth(&tg->rt_bandwidth,
8415 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8416
8417 for_each_possible_cpu(i) {
8418 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8419 GFP_KERNEL, cpu_to_node(i));
8420 if (!rt_rq)
8421 goto err;
8422
8423 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8424 GFP_KERNEL, cpu_to_node(i));
8425 if (!rt_se)
8426 goto err_free_rq;
8427
8428 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8429 }
8430
8431 return 1;
8432
8433 err_free_rq:
8434 kfree(rt_rq);
8435 err:
8436 return 0;
8437 }
8438 #else /* !CONFIG_RT_GROUP_SCHED */
8439 static inline void free_rt_sched_group(struct task_group *tg)
8440 {
8441 }
8442
8443 static inline
8444 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8445 {
8446 return 1;
8447 }
8448 #endif /* CONFIG_RT_GROUP_SCHED */
8449
8450 #ifdef CONFIG_CGROUP_SCHED
8451 static void free_sched_group(struct task_group *tg)
8452 {
8453 free_fair_sched_group(tg);
8454 free_rt_sched_group(tg);
8455 autogroup_free(tg);
8456 kfree(tg);
8457 }
8458
8459 /* allocate runqueue etc for a new task group */
8460 struct task_group *sched_create_group(struct task_group *parent)
8461 {
8462 struct task_group *tg;
8463 unsigned long flags;
8464
8465 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8466 if (!tg)
8467 return ERR_PTR(-ENOMEM);
8468
8469 if (!alloc_fair_sched_group(tg, parent))
8470 goto err;
8471
8472 if (!alloc_rt_sched_group(tg, parent))
8473 goto err;
8474
8475 spin_lock_irqsave(&task_group_lock, flags);
8476 list_add_rcu(&tg->list, &task_groups);
8477
8478 WARN_ON(!parent); /* root should already exist */
8479
8480 tg->parent = parent;
8481 INIT_LIST_HEAD(&tg->children);
8482 list_add_rcu(&tg->siblings, &parent->children);
8483 spin_unlock_irqrestore(&task_group_lock, flags);
8484
8485 return tg;
8486
8487 err:
8488 free_sched_group(tg);
8489 return ERR_PTR(-ENOMEM);
8490 }
8491
8492 /* rcu callback to free various structures associated with a task group */
8493 static void free_sched_group_rcu(struct rcu_head *rhp)
8494 {
8495 /* now it should be safe to free those cfs_rqs */
8496 free_sched_group(container_of(rhp, struct task_group, rcu));
8497 }
8498
8499 /* Destroy runqueue etc associated with a task group */
8500 void sched_destroy_group(struct task_group *tg)
8501 {
8502 unsigned long flags;
8503 int i;
8504
8505 /* end participation in shares distribution */
8506 for_each_possible_cpu(i)
8507 unregister_fair_sched_group(tg, i);
8508
8509 spin_lock_irqsave(&task_group_lock, flags);
8510 list_del_rcu(&tg->list);
8511 list_del_rcu(&tg->siblings);
8512 spin_unlock_irqrestore(&task_group_lock, flags);
8513
8514 /* wait for possible concurrent references to cfs_rqs complete */
8515 call_rcu(&tg->rcu, free_sched_group_rcu);
8516 }
8517
8518 /* change task's runqueue when it moves between groups.
8519 * The caller of this function should have put the task in its new group
8520 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8521 * reflect its new group.
8522 */
8523 void sched_move_task(struct task_struct *tsk)
8524 {
8525 int on_rq, running;
8526 unsigned long flags;
8527 struct rq *rq;
8528
8529 rq = task_rq_lock(tsk, &flags);
8530
8531 running = task_current(rq, tsk);
8532 on_rq = tsk->on_rq;
8533
8534 if (on_rq)
8535 dequeue_task(rq, tsk, 0);
8536 if (unlikely(running))
8537 tsk->sched_class->put_prev_task(rq, tsk);
8538
8539 #ifdef CONFIG_FAIR_GROUP_SCHED
8540 if (tsk->sched_class->task_move_group)
8541 tsk->sched_class->task_move_group(tsk, on_rq);
8542 else
8543 #endif
8544 set_task_rq(tsk, task_cpu(tsk));
8545
8546 if (unlikely(running))
8547 tsk->sched_class->set_curr_task(rq);
8548 if (on_rq)
8549 enqueue_task(rq, tsk, 0);
8550
8551 task_rq_unlock(rq, tsk, &flags);
8552 }
8553 #endif /* CONFIG_CGROUP_SCHED */
8554
8555 #ifdef CONFIG_FAIR_GROUP_SCHED
8556 static DEFINE_MUTEX(shares_mutex);
8557
8558 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8559 {
8560 int i;
8561 unsigned long flags;
8562
8563 /*
8564 * We can't change the weight of the root cgroup.
8565 */
8566 if (!tg->se[0])
8567 return -EINVAL;
8568
8569 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8570
8571 mutex_lock(&shares_mutex);
8572 if (tg->shares == shares)
8573 goto done;
8574
8575 tg->shares = shares;
8576 for_each_possible_cpu(i) {
8577 struct rq *rq = cpu_rq(i);
8578 struct sched_entity *se;
8579
8580 se = tg->se[i];
8581 /* Propagate contribution to hierarchy */
8582 raw_spin_lock_irqsave(&rq->lock, flags);
8583 for_each_sched_entity(se)
8584 update_cfs_shares(group_cfs_rq(se));
8585 raw_spin_unlock_irqrestore(&rq->lock, flags);
8586 }
8587
8588 done:
8589 mutex_unlock(&shares_mutex);
8590 return 0;
8591 }
8592
8593 unsigned long sched_group_shares(struct task_group *tg)
8594 {
8595 return tg->shares;
8596 }
8597 #endif
8598
8599 #ifdef CONFIG_RT_GROUP_SCHED
8600 /*
8601 * Ensure that the real time constraints are schedulable.
8602 */
8603 static DEFINE_MUTEX(rt_constraints_mutex);
8604
8605 static unsigned long to_ratio(u64 period, u64 runtime)
8606 {
8607 if (runtime == RUNTIME_INF)
8608 return 1ULL << 20;
8609
8610 return div64_u64(runtime << 20, period);
8611 }
8612
8613 /* Must be called with tasklist_lock held */
8614 static inline int tg_has_rt_tasks(struct task_group *tg)
8615 {
8616 struct task_struct *g, *p;
8617
8618 do_each_thread(g, p) {
8619 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8620 return 1;
8621 } while_each_thread(g, p);
8622
8623 return 0;
8624 }
8625
8626 struct rt_schedulable_data {
8627 struct task_group *tg;
8628 u64 rt_period;
8629 u64 rt_runtime;
8630 };
8631
8632 static int tg_schedulable(struct task_group *tg, void *data)
8633 {
8634 struct rt_schedulable_data *d = data;
8635 struct task_group *child;
8636 unsigned long total, sum = 0;
8637 u64 period, runtime;
8638
8639 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8640 runtime = tg->rt_bandwidth.rt_runtime;
8641
8642 if (tg == d->tg) {
8643 period = d->rt_period;
8644 runtime = d->rt_runtime;
8645 }
8646
8647 /*
8648 * Cannot have more runtime than the period.
8649 */
8650 if (runtime > period && runtime != RUNTIME_INF)
8651 return -EINVAL;
8652
8653 /*
8654 * Ensure we don't starve existing RT tasks.
8655 */
8656 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8657 return -EBUSY;
8658
8659 total = to_ratio(period, runtime);
8660
8661 /*
8662 * Nobody can have more than the global setting allows.
8663 */
8664 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8665 return -EINVAL;
8666
8667 /*
8668 * The sum of our children's runtime should not exceed our own.
8669 */
8670 list_for_each_entry_rcu(child, &tg->children, siblings) {
8671 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8672 runtime = child->rt_bandwidth.rt_runtime;
8673
8674 if (child == d->tg) {
8675 period = d->rt_period;
8676 runtime = d->rt_runtime;
8677 }
8678
8679 sum += to_ratio(period, runtime);
8680 }
8681
8682 if (sum > total)
8683 return -EINVAL;
8684
8685 return 0;
8686 }
8687
8688 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8689 {
8690 struct rt_schedulable_data data = {
8691 .tg = tg,
8692 .rt_period = period,
8693 .rt_runtime = runtime,
8694 };
8695
8696 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8697 }
8698
8699 static int tg_set_bandwidth(struct task_group *tg,
8700 u64 rt_period, u64 rt_runtime)
8701 {
8702 int i, err = 0;
8703
8704 mutex_lock(&rt_constraints_mutex);
8705 read_lock(&tasklist_lock);
8706 err = __rt_schedulable(tg, rt_period, rt_runtime);
8707 if (err)
8708 goto unlock;
8709
8710 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8711 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8712 tg->rt_bandwidth.rt_runtime = rt_runtime;
8713
8714 for_each_possible_cpu(i) {
8715 struct rt_rq *rt_rq = tg->rt_rq[i];
8716
8717 raw_spin_lock(&rt_rq->rt_runtime_lock);
8718 rt_rq->rt_runtime = rt_runtime;
8719 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8720 }
8721 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8722 unlock:
8723 read_unlock(&tasklist_lock);
8724 mutex_unlock(&rt_constraints_mutex);
8725
8726 return err;
8727 }
8728
8729 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8730 {
8731 u64 rt_runtime, rt_period;
8732
8733 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8734 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8735 if (rt_runtime_us < 0)
8736 rt_runtime = RUNTIME_INF;
8737
8738 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8739 }
8740
8741 long sched_group_rt_runtime(struct task_group *tg)
8742 {
8743 u64 rt_runtime_us;
8744
8745 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8746 return -1;
8747
8748 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8749 do_div(rt_runtime_us, NSEC_PER_USEC);
8750 return rt_runtime_us;
8751 }
8752
8753 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8754 {
8755 u64 rt_runtime, rt_period;
8756
8757 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8758 rt_runtime = tg->rt_bandwidth.rt_runtime;
8759
8760 if (rt_period == 0)
8761 return -EINVAL;
8762
8763 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8764 }
8765
8766 long sched_group_rt_period(struct task_group *tg)
8767 {
8768 u64 rt_period_us;
8769
8770 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8771 do_div(rt_period_us, NSEC_PER_USEC);
8772 return rt_period_us;
8773 }
8774
8775 static int sched_rt_global_constraints(void)
8776 {
8777 u64 runtime, period;
8778 int ret = 0;
8779
8780 if (sysctl_sched_rt_period <= 0)
8781 return -EINVAL;
8782
8783 runtime = global_rt_runtime();
8784 period = global_rt_period();
8785
8786 /*
8787 * Sanity check on the sysctl variables.
8788 */
8789 if (runtime > period && runtime != RUNTIME_INF)
8790 return -EINVAL;
8791
8792 mutex_lock(&rt_constraints_mutex);
8793 read_lock(&tasklist_lock);
8794 ret = __rt_schedulable(NULL, 0, 0);
8795 read_unlock(&tasklist_lock);
8796 mutex_unlock(&rt_constraints_mutex);
8797
8798 return ret;
8799 }
8800
8801 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8802 {
8803 /* Don't accept realtime tasks when there is no way for them to run */
8804 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8805 return 0;
8806
8807 return 1;
8808 }
8809
8810 #else /* !CONFIG_RT_GROUP_SCHED */
8811 static int sched_rt_global_constraints(void)
8812 {
8813 unsigned long flags;
8814 int i;
8815
8816 if (sysctl_sched_rt_period <= 0)
8817 return -EINVAL;
8818
8819 /*
8820 * There's always some RT tasks in the root group
8821 * -- migration, kstopmachine etc..
8822 */
8823 if (sysctl_sched_rt_runtime == 0)
8824 return -EBUSY;
8825
8826 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8827 for_each_possible_cpu(i) {
8828 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8829
8830 raw_spin_lock(&rt_rq->rt_runtime_lock);
8831 rt_rq->rt_runtime = global_rt_runtime();
8832 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8833 }
8834 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8835
8836 return 0;
8837 }
8838 #endif /* CONFIG_RT_GROUP_SCHED */
8839
8840 int sched_rt_handler(struct ctl_table *table, int write,
8841 void __user *buffer, size_t *lenp,
8842 loff_t *ppos)
8843 {
8844 int ret;
8845 int old_period, old_runtime;
8846 static DEFINE_MUTEX(mutex);
8847
8848 mutex_lock(&mutex);
8849 old_period = sysctl_sched_rt_period;
8850 old_runtime = sysctl_sched_rt_runtime;
8851
8852 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8853
8854 if (!ret && write) {
8855 ret = sched_rt_global_constraints();
8856 if (ret) {
8857 sysctl_sched_rt_period = old_period;
8858 sysctl_sched_rt_runtime = old_runtime;
8859 } else {
8860 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8861 def_rt_bandwidth.rt_period =
8862 ns_to_ktime(global_rt_period());
8863 }
8864 }
8865 mutex_unlock(&mutex);
8866
8867 return ret;
8868 }
8869
8870 #ifdef CONFIG_CGROUP_SCHED
8871
8872 /* return corresponding task_group object of a cgroup */
8873 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8874 {
8875 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8876 struct task_group, css);
8877 }
8878
8879 static struct cgroup_subsys_state *
8880 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8881 {
8882 struct task_group *tg, *parent;
8883
8884 if (!cgrp->parent) {
8885 /* This is early initialization for the top cgroup */
8886 return &root_task_group.css;
8887 }
8888
8889 parent = cgroup_tg(cgrp->parent);
8890 tg = sched_create_group(parent);
8891 if (IS_ERR(tg))
8892 return ERR_PTR(-ENOMEM);
8893
8894 return &tg->css;
8895 }
8896
8897 static void
8898 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8899 {
8900 struct task_group *tg = cgroup_tg(cgrp);
8901
8902 sched_destroy_group(tg);
8903 }
8904
8905 static int
8906 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8907 {
8908 #ifdef CONFIG_RT_GROUP_SCHED
8909 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8910 return -EINVAL;
8911 #else
8912 /* We don't support RT-tasks being in separate groups */
8913 if (tsk->sched_class != &fair_sched_class)
8914 return -EINVAL;
8915 #endif
8916 return 0;
8917 }
8918
8919 static void
8920 cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8921 {
8922 sched_move_task(tsk);
8923 }
8924
8925 static void
8926 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
8927 struct cgroup *old_cgrp, struct task_struct *task)
8928 {
8929 /*
8930 * cgroup_exit() is called in the copy_process() failure path.
8931 * Ignore this case since the task hasn't ran yet, this avoids
8932 * trying to poke a half freed task state from generic code.
8933 */
8934 if (!(task->flags & PF_EXITING))
8935 return;
8936
8937 sched_move_task(task);
8938 }
8939
8940 #ifdef CONFIG_FAIR_GROUP_SCHED
8941 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8942 u64 shareval)
8943 {
8944 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
8945 }
8946
8947 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8948 {
8949 struct task_group *tg = cgroup_tg(cgrp);
8950
8951 return (u64) scale_load_down(tg->shares);
8952 }
8953 #endif /* CONFIG_FAIR_GROUP_SCHED */
8954
8955 #ifdef CONFIG_RT_GROUP_SCHED
8956 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8957 s64 val)
8958 {
8959 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8960 }
8961
8962 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8963 {
8964 return sched_group_rt_runtime(cgroup_tg(cgrp));
8965 }
8966
8967 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8968 u64 rt_period_us)
8969 {
8970 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8971 }
8972
8973 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8974 {
8975 return sched_group_rt_period(cgroup_tg(cgrp));
8976 }
8977 #endif /* CONFIG_RT_GROUP_SCHED */
8978
8979 static struct cftype cpu_files[] = {
8980 #ifdef CONFIG_FAIR_GROUP_SCHED
8981 {
8982 .name = "shares",
8983 .read_u64 = cpu_shares_read_u64,
8984 .write_u64 = cpu_shares_write_u64,
8985 },
8986 #endif
8987 #ifdef CONFIG_RT_GROUP_SCHED
8988 {
8989 .name = "rt_runtime_us",
8990 .read_s64 = cpu_rt_runtime_read,
8991 .write_s64 = cpu_rt_runtime_write,
8992 },
8993 {
8994 .name = "rt_period_us",
8995 .read_u64 = cpu_rt_period_read_uint,
8996 .write_u64 = cpu_rt_period_write_uint,
8997 },
8998 #endif
8999 };
9000
9001 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9002 {
9003 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9004 }
9005
9006 struct cgroup_subsys cpu_cgroup_subsys = {
9007 .name = "cpu",
9008 .create = cpu_cgroup_create,
9009 .destroy = cpu_cgroup_destroy,
9010 .can_attach_task = cpu_cgroup_can_attach_task,
9011 .attach_task = cpu_cgroup_attach_task,
9012 .exit = cpu_cgroup_exit,
9013 .populate = cpu_cgroup_populate,
9014 .subsys_id = cpu_cgroup_subsys_id,
9015 .early_init = 1,
9016 };
9017
9018 #endif /* CONFIG_CGROUP_SCHED */
9019
9020 #ifdef CONFIG_CGROUP_CPUACCT
9021
9022 /*
9023 * CPU accounting code for task groups.
9024 *
9025 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9026 * (balbir@in.ibm.com).
9027 */
9028
9029 /* track cpu usage of a group of tasks and its child groups */
9030 struct cpuacct {
9031 struct cgroup_subsys_state css;
9032 /* cpuusage holds pointer to a u64-type object on every cpu */
9033 u64 __percpu *cpuusage;
9034 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9035 struct cpuacct *parent;
9036 };
9037
9038 struct cgroup_subsys cpuacct_subsys;
9039
9040 /* return cpu accounting group corresponding to this container */
9041 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9042 {
9043 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9044 struct cpuacct, css);
9045 }
9046
9047 /* return cpu accounting group to which this task belongs */
9048 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9049 {
9050 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9051 struct cpuacct, css);
9052 }
9053
9054 /* create a new cpu accounting group */
9055 static struct cgroup_subsys_state *cpuacct_create(
9056 struct cgroup_subsys *ss, struct cgroup *cgrp)
9057 {
9058 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9059 int i;
9060
9061 if (!ca)
9062 goto out;
9063
9064 ca->cpuusage = alloc_percpu(u64);
9065 if (!ca->cpuusage)
9066 goto out_free_ca;
9067
9068 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9069 if (percpu_counter_init(&ca->cpustat[i], 0))
9070 goto out_free_counters;
9071
9072 if (cgrp->parent)
9073 ca->parent = cgroup_ca(cgrp->parent);
9074
9075 return &ca->css;
9076
9077 out_free_counters:
9078 while (--i >= 0)
9079 percpu_counter_destroy(&ca->cpustat[i]);
9080 free_percpu(ca->cpuusage);
9081 out_free_ca:
9082 kfree(ca);
9083 out:
9084 return ERR_PTR(-ENOMEM);
9085 }
9086
9087 /* destroy an existing cpu accounting group */
9088 static void
9089 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9090 {
9091 struct cpuacct *ca = cgroup_ca(cgrp);
9092 int i;
9093
9094 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9095 percpu_counter_destroy(&ca->cpustat[i]);
9096 free_percpu(ca->cpuusage);
9097 kfree(ca);
9098 }
9099
9100 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9101 {
9102 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9103 u64 data;
9104
9105 #ifndef CONFIG_64BIT
9106 /*
9107 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9108 */
9109 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9110 data = *cpuusage;
9111 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9112 #else
9113 data = *cpuusage;
9114 #endif
9115
9116 return data;
9117 }
9118
9119 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9120 {
9121 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9122
9123 #ifndef CONFIG_64BIT
9124 /*
9125 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9126 */
9127 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9128 *cpuusage = val;
9129 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9130 #else
9131 *cpuusage = val;
9132 #endif
9133 }
9134
9135 /* return total cpu usage (in nanoseconds) of a group */
9136 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9137 {
9138 struct cpuacct *ca = cgroup_ca(cgrp);
9139 u64 totalcpuusage = 0;
9140 int i;
9141
9142 for_each_present_cpu(i)
9143 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9144
9145 return totalcpuusage;
9146 }
9147
9148 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9149 u64 reset)
9150 {
9151 struct cpuacct *ca = cgroup_ca(cgrp);
9152 int err = 0;
9153 int i;
9154
9155 if (reset) {
9156 err = -EINVAL;
9157 goto out;
9158 }
9159
9160 for_each_present_cpu(i)
9161 cpuacct_cpuusage_write(ca, i, 0);
9162
9163 out:
9164 return err;
9165 }
9166
9167 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9168 struct seq_file *m)
9169 {
9170 struct cpuacct *ca = cgroup_ca(cgroup);
9171 u64 percpu;
9172 int i;
9173
9174 for_each_present_cpu(i) {
9175 percpu = cpuacct_cpuusage_read(ca, i);
9176 seq_printf(m, "%llu ", (unsigned long long) percpu);
9177 }
9178 seq_printf(m, "\n");
9179 return 0;
9180 }
9181
9182 static const char *cpuacct_stat_desc[] = {
9183 [CPUACCT_STAT_USER] = "user",
9184 [CPUACCT_STAT_SYSTEM] = "system",
9185 };
9186
9187 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9188 struct cgroup_map_cb *cb)
9189 {
9190 struct cpuacct *ca = cgroup_ca(cgrp);
9191 int i;
9192
9193 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9194 s64 val = percpu_counter_read(&ca->cpustat[i]);
9195 val = cputime64_to_clock_t(val);
9196 cb->fill(cb, cpuacct_stat_desc[i], val);
9197 }
9198 return 0;
9199 }
9200
9201 static struct cftype files[] = {
9202 {
9203 .name = "usage",
9204 .read_u64 = cpuusage_read,
9205 .write_u64 = cpuusage_write,
9206 },
9207 {
9208 .name = "usage_percpu",
9209 .read_seq_string = cpuacct_percpu_seq_read,
9210 },
9211 {
9212 .name = "stat",
9213 .read_map = cpuacct_stats_show,
9214 },
9215 };
9216
9217 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9218 {
9219 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9220 }
9221
9222 /*
9223 * charge this task's execution time to its accounting group.
9224 *
9225 * called with rq->lock held.
9226 */
9227 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9228 {
9229 struct cpuacct *ca;
9230 int cpu;
9231
9232 if (unlikely(!cpuacct_subsys.active))
9233 return;
9234
9235 cpu = task_cpu(tsk);
9236
9237 rcu_read_lock();
9238
9239 ca = task_ca(tsk);
9240
9241 for (; ca; ca = ca->parent) {
9242 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9243 *cpuusage += cputime;
9244 }
9245
9246 rcu_read_unlock();
9247 }
9248
9249 /*
9250 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9251 * in cputime_t units. As a result, cpuacct_update_stats calls
9252 * percpu_counter_add with values large enough to always overflow the
9253 * per cpu batch limit causing bad SMP scalability.
9254 *
9255 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9256 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9257 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9258 */
9259 #ifdef CONFIG_SMP
9260 #define CPUACCT_BATCH \
9261 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9262 #else
9263 #define CPUACCT_BATCH 0
9264 #endif
9265
9266 /*
9267 * Charge the system/user time to the task's accounting group.
9268 */
9269 static void cpuacct_update_stats(struct task_struct *tsk,
9270 enum cpuacct_stat_index idx, cputime_t val)
9271 {
9272 struct cpuacct *ca;
9273 int batch = CPUACCT_BATCH;
9274
9275 if (unlikely(!cpuacct_subsys.active))
9276 return;
9277
9278 rcu_read_lock();
9279 ca = task_ca(tsk);
9280
9281 do {
9282 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9283 ca = ca->parent;
9284 } while (ca);
9285 rcu_read_unlock();
9286 }
9287
9288 struct cgroup_subsys cpuacct_subsys = {
9289 .name = "cpuacct",
9290 .create = cpuacct_create,
9291 .destroy = cpuacct_destroy,
9292 .populate = cpuacct_populate,
9293 .subsys_id = cpuacct_subsys_id,
9294 };
9295 #endif /* CONFIG_CGROUP_CPUACCT */
9296