]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched.c
Fix tsk->exit_state usage
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/cpu_acct.h>
56 #include <linux/kthread.h>
57 #include <linux/seq_file.h>
58 #include <linux/sysctl.h>
59 #include <linux/syscalls.h>
60 #include <linux/times.h>
61 #include <linux/tsacct_kern.h>
62 #include <linux/kprobes.h>
63 #include <linux/delayacct.h>
64 #include <linux/reciprocal_div.h>
65 #include <linux/unistd.h>
66 #include <linux/pagemap.h>
67
68 #include <asm/tlb.h>
69
70 /*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75 unsigned long long __attribute__((weak)) sched_clock(void)
76 {
77 return (unsigned long long)jiffies * (1000000000 / HZ);
78 }
79
80 /*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89 /*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98 /*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
103
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
107 /*
108 * These are the 'tuning knobs' of the scheduler:
109 *
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
112 */
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 static inline int rt_policy(int policy)
137 {
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141 }
142
143 static inline int task_has_rt_policy(struct task_struct *p)
144 {
145 return rt_policy(p->policy);
146 }
147
148 /*
149 * This is the priority-queue data structure of the RT scheduling class:
150 */
151 struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154 };
155
156 #ifdef CONFIG_FAIR_GROUP_SCHED
157
158 struct cfs_rq;
159
160 /* task group related information */
161 struct task_group {
162 /* schedulable entities of this group on each cpu */
163 struct sched_entity **se;
164 /* runqueue "owned" by this group on each cpu */
165 struct cfs_rq **cfs_rq;
166 unsigned long shares;
167 /* spinlock to serialize modification to shares */
168 spinlock_t lock;
169 };
170
171 /* Default task group's sched entity on each cpu */
172 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
173 /* Default task group's cfs_rq on each cpu */
174 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
175
176 static struct sched_entity *init_sched_entity_p[NR_CPUS];
177 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
178
179 /* Default task group.
180 * Every task in system belong to this group at bootup.
181 */
182 struct task_group init_task_group = {
183 .se = init_sched_entity_p,
184 .cfs_rq = init_cfs_rq_p,
185 };
186
187 #ifdef CONFIG_FAIR_USER_SCHED
188 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
189 #else
190 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
191 #endif
192
193 static int init_task_group_load = INIT_TASK_GRP_LOAD;
194
195 /* return group to which a task belongs */
196 static inline struct task_group *task_group(struct task_struct *p)
197 {
198 struct task_group *tg;
199
200 #ifdef CONFIG_FAIR_USER_SCHED
201 tg = p->user->tg;
202 #else
203 tg = &init_task_group;
204 #endif
205
206 return tg;
207 }
208
209 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
210 static inline void set_task_cfs_rq(struct task_struct *p)
211 {
212 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
213 p->se.parent = task_group(p)->se[task_cpu(p)];
214 }
215
216 #else
217
218 static inline void set_task_cfs_rq(struct task_struct *p) { }
219
220 #endif /* CONFIG_FAIR_GROUP_SCHED */
221
222 /* CFS-related fields in a runqueue */
223 struct cfs_rq {
224 struct load_weight load;
225 unsigned long nr_running;
226
227 u64 exec_clock;
228 u64 min_vruntime;
229
230 struct rb_root tasks_timeline;
231 struct rb_node *rb_leftmost;
232 struct rb_node *rb_load_balance_curr;
233 /* 'curr' points to currently running entity on this cfs_rq.
234 * It is set to NULL otherwise (i.e when none are currently running).
235 */
236 struct sched_entity *curr;
237
238 unsigned long nr_spread_over;
239
240 #ifdef CONFIG_FAIR_GROUP_SCHED
241 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
242
243 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
244 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
245 * (like users, containers etc.)
246 *
247 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
248 * list is used during load balance.
249 */
250 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
251 struct task_group *tg; /* group that "owns" this runqueue */
252 struct rcu_head rcu;
253 #endif
254 };
255
256 /* Real-Time classes' related field in a runqueue: */
257 struct rt_rq {
258 struct rt_prio_array active;
259 int rt_load_balance_idx;
260 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
261 };
262
263 /*
264 * This is the main, per-CPU runqueue data structure.
265 *
266 * Locking rule: those places that want to lock multiple runqueues
267 * (such as the load balancing or the thread migration code), lock
268 * acquire operations must be ordered by ascending &runqueue.
269 */
270 struct rq {
271 /* runqueue lock: */
272 spinlock_t lock;
273
274 /*
275 * nr_running and cpu_load should be in the same cacheline because
276 * remote CPUs use both these fields when doing load calculation.
277 */
278 unsigned long nr_running;
279 #define CPU_LOAD_IDX_MAX 5
280 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
281 unsigned char idle_at_tick;
282 #ifdef CONFIG_NO_HZ
283 unsigned char in_nohz_recently;
284 #endif
285 /* capture load from *all* tasks on this cpu: */
286 struct load_weight load;
287 unsigned long nr_load_updates;
288 u64 nr_switches;
289
290 struct cfs_rq cfs;
291 #ifdef CONFIG_FAIR_GROUP_SCHED
292 /* list of leaf cfs_rq on this cpu: */
293 struct list_head leaf_cfs_rq_list;
294 #endif
295 struct rt_rq rt;
296
297 /*
298 * This is part of a global counter where only the total sum
299 * over all CPUs matters. A task can increase this counter on
300 * one CPU and if it got migrated afterwards it may decrease
301 * it on another CPU. Always updated under the runqueue lock:
302 */
303 unsigned long nr_uninterruptible;
304
305 struct task_struct *curr, *idle;
306 unsigned long next_balance;
307 struct mm_struct *prev_mm;
308
309 u64 clock, prev_clock_raw;
310 s64 clock_max_delta;
311
312 unsigned int clock_warps, clock_overflows;
313 u64 idle_clock;
314 unsigned int clock_deep_idle_events;
315 u64 tick_timestamp;
316
317 atomic_t nr_iowait;
318
319 #ifdef CONFIG_SMP
320 struct sched_domain *sd;
321
322 /* For active balancing */
323 int active_balance;
324 int push_cpu;
325 /* cpu of this runqueue: */
326 int cpu;
327
328 struct task_struct *migration_thread;
329 struct list_head migration_queue;
330 #endif
331
332 #ifdef CONFIG_SCHEDSTATS
333 /* latency stats */
334 struct sched_info rq_sched_info;
335
336 /* sys_sched_yield() stats */
337 unsigned int yld_exp_empty;
338 unsigned int yld_act_empty;
339 unsigned int yld_both_empty;
340 unsigned int yld_count;
341
342 /* schedule() stats */
343 unsigned int sched_switch;
344 unsigned int sched_count;
345 unsigned int sched_goidle;
346
347 /* try_to_wake_up() stats */
348 unsigned int ttwu_count;
349 unsigned int ttwu_local;
350
351 /* BKL stats */
352 unsigned int bkl_count;
353 #endif
354 struct lock_class_key rq_lock_key;
355 };
356
357 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
358 static DEFINE_MUTEX(sched_hotcpu_mutex);
359
360 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
361 {
362 rq->curr->sched_class->check_preempt_curr(rq, p);
363 }
364
365 static inline int cpu_of(struct rq *rq)
366 {
367 #ifdef CONFIG_SMP
368 return rq->cpu;
369 #else
370 return 0;
371 #endif
372 }
373
374 /*
375 * Update the per-runqueue clock, as finegrained as the platform can give
376 * us, but without assuming monotonicity, etc.:
377 */
378 static void __update_rq_clock(struct rq *rq)
379 {
380 u64 prev_raw = rq->prev_clock_raw;
381 u64 now = sched_clock();
382 s64 delta = now - prev_raw;
383 u64 clock = rq->clock;
384
385 #ifdef CONFIG_SCHED_DEBUG
386 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
387 #endif
388 /*
389 * Protect against sched_clock() occasionally going backwards:
390 */
391 if (unlikely(delta < 0)) {
392 clock++;
393 rq->clock_warps++;
394 } else {
395 /*
396 * Catch too large forward jumps too:
397 */
398 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
399 if (clock < rq->tick_timestamp + TICK_NSEC)
400 clock = rq->tick_timestamp + TICK_NSEC;
401 else
402 clock++;
403 rq->clock_overflows++;
404 } else {
405 if (unlikely(delta > rq->clock_max_delta))
406 rq->clock_max_delta = delta;
407 clock += delta;
408 }
409 }
410
411 rq->prev_clock_raw = now;
412 rq->clock = clock;
413 }
414
415 static void update_rq_clock(struct rq *rq)
416 {
417 if (likely(smp_processor_id() == cpu_of(rq)))
418 __update_rq_clock(rq);
419 }
420
421 /*
422 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
423 * See detach_destroy_domains: synchronize_sched for details.
424 *
425 * The domain tree of any CPU may only be accessed from within
426 * preempt-disabled sections.
427 */
428 #define for_each_domain(cpu, __sd) \
429 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
430
431 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
432 #define this_rq() (&__get_cpu_var(runqueues))
433 #define task_rq(p) cpu_rq(task_cpu(p))
434 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
435
436 /*
437 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
438 */
439 #ifdef CONFIG_SCHED_DEBUG
440 # define const_debug __read_mostly
441 #else
442 # define const_debug static const
443 #endif
444
445 /*
446 * Debugging: various feature bits
447 */
448 enum {
449 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
450 SCHED_FEAT_START_DEBIT = 2,
451 SCHED_FEAT_TREE_AVG = 4,
452 SCHED_FEAT_APPROX_AVG = 8,
453 SCHED_FEAT_WAKEUP_PREEMPT = 16,
454 SCHED_FEAT_PREEMPT_RESTRICT = 32,
455 };
456
457 const_debug unsigned int sysctl_sched_features =
458 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
459 SCHED_FEAT_START_DEBIT * 1 |
460 SCHED_FEAT_TREE_AVG * 0 |
461 SCHED_FEAT_APPROX_AVG * 0 |
462 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
463 SCHED_FEAT_PREEMPT_RESTRICT * 1;
464
465 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
466
467 /*
468 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
469 * clock constructed from sched_clock():
470 */
471 unsigned long long cpu_clock(int cpu)
472 {
473 unsigned long long now;
474 unsigned long flags;
475 struct rq *rq;
476
477 local_irq_save(flags);
478 rq = cpu_rq(cpu);
479 update_rq_clock(rq);
480 now = rq->clock;
481 local_irq_restore(flags);
482
483 return now;
484 }
485 EXPORT_SYMBOL_GPL(cpu_clock);
486
487 #ifndef prepare_arch_switch
488 # define prepare_arch_switch(next) do { } while (0)
489 #endif
490 #ifndef finish_arch_switch
491 # define finish_arch_switch(prev) do { } while (0)
492 #endif
493
494 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
495 static inline int task_running(struct rq *rq, struct task_struct *p)
496 {
497 return rq->curr == p;
498 }
499
500 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
501 {
502 }
503
504 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
505 {
506 #ifdef CONFIG_DEBUG_SPINLOCK
507 /* this is a valid case when another task releases the spinlock */
508 rq->lock.owner = current;
509 #endif
510 /*
511 * If we are tracking spinlock dependencies then we have to
512 * fix up the runqueue lock - which gets 'carried over' from
513 * prev into current:
514 */
515 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
516
517 spin_unlock_irq(&rq->lock);
518 }
519
520 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
521 static inline int task_running(struct rq *rq, struct task_struct *p)
522 {
523 #ifdef CONFIG_SMP
524 return p->oncpu;
525 #else
526 return rq->curr == p;
527 #endif
528 }
529
530 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
531 {
532 #ifdef CONFIG_SMP
533 /*
534 * We can optimise this out completely for !SMP, because the
535 * SMP rebalancing from interrupt is the only thing that cares
536 * here.
537 */
538 next->oncpu = 1;
539 #endif
540 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
541 spin_unlock_irq(&rq->lock);
542 #else
543 spin_unlock(&rq->lock);
544 #endif
545 }
546
547 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
548 {
549 #ifdef CONFIG_SMP
550 /*
551 * After ->oncpu is cleared, the task can be moved to a different CPU.
552 * We must ensure this doesn't happen until the switch is completely
553 * finished.
554 */
555 smp_wmb();
556 prev->oncpu = 0;
557 #endif
558 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
559 local_irq_enable();
560 #endif
561 }
562 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
563
564 /*
565 * __task_rq_lock - lock the runqueue a given task resides on.
566 * Must be called interrupts disabled.
567 */
568 static inline struct rq *__task_rq_lock(struct task_struct *p)
569 __acquires(rq->lock)
570 {
571 for (;;) {
572 struct rq *rq = task_rq(p);
573 spin_lock(&rq->lock);
574 if (likely(rq == task_rq(p)))
575 return rq;
576 spin_unlock(&rq->lock);
577 }
578 }
579
580 /*
581 * task_rq_lock - lock the runqueue a given task resides on and disable
582 * interrupts. Note the ordering: we can safely lookup the task_rq without
583 * explicitly disabling preemption.
584 */
585 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
586 __acquires(rq->lock)
587 {
588 struct rq *rq;
589
590 for (;;) {
591 local_irq_save(*flags);
592 rq = task_rq(p);
593 spin_lock(&rq->lock);
594 if (likely(rq == task_rq(p)))
595 return rq;
596 spin_unlock_irqrestore(&rq->lock, *flags);
597 }
598 }
599
600 static void __task_rq_unlock(struct rq *rq)
601 __releases(rq->lock)
602 {
603 spin_unlock(&rq->lock);
604 }
605
606 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
607 __releases(rq->lock)
608 {
609 spin_unlock_irqrestore(&rq->lock, *flags);
610 }
611
612 /*
613 * this_rq_lock - lock this runqueue and disable interrupts.
614 */
615 static struct rq *this_rq_lock(void)
616 __acquires(rq->lock)
617 {
618 struct rq *rq;
619
620 local_irq_disable();
621 rq = this_rq();
622 spin_lock(&rq->lock);
623
624 return rq;
625 }
626
627 /*
628 * We are going deep-idle (irqs are disabled):
629 */
630 void sched_clock_idle_sleep_event(void)
631 {
632 struct rq *rq = cpu_rq(smp_processor_id());
633
634 spin_lock(&rq->lock);
635 __update_rq_clock(rq);
636 spin_unlock(&rq->lock);
637 rq->clock_deep_idle_events++;
638 }
639 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
640
641 /*
642 * We just idled delta nanoseconds (called with irqs disabled):
643 */
644 void sched_clock_idle_wakeup_event(u64 delta_ns)
645 {
646 struct rq *rq = cpu_rq(smp_processor_id());
647 u64 now = sched_clock();
648
649 rq->idle_clock += delta_ns;
650 /*
651 * Override the previous timestamp and ignore all
652 * sched_clock() deltas that occured while we idled,
653 * and use the PM-provided delta_ns to advance the
654 * rq clock:
655 */
656 spin_lock(&rq->lock);
657 rq->prev_clock_raw = now;
658 rq->clock += delta_ns;
659 spin_unlock(&rq->lock);
660 }
661 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
662
663 /*
664 * resched_task - mark a task 'to be rescheduled now'.
665 *
666 * On UP this means the setting of the need_resched flag, on SMP it
667 * might also involve a cross-CPU call to trigger the scheduler on
668 * the target CPU.
669 */
670 #ifdef CONFIG_SMP
671
672 #ifndef tsk_is_polling
673 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
674 #endif
675
676 static void resched_task(struct task_struct *p)
677 {
678 int cpu;
679
680 assert_spin_locked(&task_rq(p)->lock);
681
682 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
683 return;
684
685 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
686
687 cpu = task_cpu(p);
688 if (cpu == smp_processor_id())
689 return;
690
691 /* NEED_RESCHED must be visible before we test polling */
692 smp_mb();
693 if (!tsk_is_polling(p))
694 smp_send_reschedule(cpu);
695 }
696
697 static void resched_cpu(int cpu)
698 {
699 struct rq *rq = cpu_rq(cpu);
700 unsigned long flags;
701
702 if (!spin_trylock_irqsave(&rq->lock, flags))
703 return;
704 resched_task(cpu_curr(cpu));
705 spin_unlock_irqrestore(&rq->lock, flags);
706 }
707 #else
708 static inline void resched_task(struct task_struct *p)
709 {
710 assert_spin_locked(&task_rq(p)->lock);
711 set_tsk_need_resched(p);
712 }
713 #endif
714
715 #if BITS_PER_LONG == 32
716 # define WMULT_CONST (~0UL)
717 #else
718 # define WMULT_CONST (1UL << 32)
719 #endif
720
721 #define WMULT_SHIFT 32
722
723 /*
724 * Shift right and round:
725 */
726 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
727
728 static unsigned long
729 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
730 struct load_weight *lw)
731 {
732 u64 tmp;
733
734 if (unlikely(!lw->inv_weight))
735 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
736
737 tmp = (u64)delta_exec * weight;
738 /*
739 * Check whether we'd overflow the 64-bit multiplication:
740 */
741 if (unlikely(tmp > WMULT_CONST))
742 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
743 WMULT_SHIFT/2);
744 else
745 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
746
747 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
748 }
749
750 static inline unsigned long
751 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
752 {
753 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
754 }
755
756 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
757 {
758 lw->weight += inc;
759 }
760
761 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
762 {
763 lw->weight -= dec;
764 }
765
766 /*
767 * To aid in avoiding the subversion of "niceness" due to uneven distribution
768 * of tasks with abnormal "nice" values across CPUs the contribution that
769 * each task makes to its run queue's load is weighted according to its
770 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
771 * scaled version of the new time slice allocation that they receive on time
772 * slice expiry etc.
773 */
774
775 #define WEIGHT_IDLEPRIO 2
776 #define WMULT_IDLEPRIO (1 << 31)
777
778 /*
779 * Nice levels are multiplicative, with a gentle 10% change for every
780 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
781 * nice 1, it will get ~10% less CPU time than another CPU-bound task
782 * that remained on nice 0.
783 *
784 * The "10% effect" is relative and cumulative: from _any_ nice level,
785 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
786 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
787 * If a task goes up by ~10% and another task goes down by ~10% then
788 * the relative distance between them is ~25%.)
789 */
790 static const int prio_to_weight[40] = {
791 /* -20 */ 88761, 71755, 56483, 46273, 36291,
792 /* -15 */ 29154, 23254, 18705, 14949, 11916,
793 /* -10 */ 9548, 7620, 6100, 4904, 3906,
794 /* -5 */ 3121, 2501, 1991, 1586, 1277,
795 /* 0 */ 1024, 820, 655, 526, 423,
796 /* 5 */ 335, 272, 215, 172, 137,
797 /* 10 */ 110, 87, 70, 56, 45,
798 /* 15 */ 36, 29, 23, 18, 15,
799 };
800
801 /*
802 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
803 *
804 * In cases where the weight does not change often, we can use the
805 * precalculated inverse to speed up arithmetics by turning divisions
806 * into multiplications:
807 */
808 static const u32 prio_to_wmult[40] = {
809 /* -20 */ 48388, 59856, 76040, 92818, 118348,
810 /* -15 */ 147320, 184698, 229616, 287308, 360437,
811 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
812 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
813 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
814 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
815 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
816 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
817 };
818
819 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
820
821 /*
822 * runqueue iterator, to support SMP load-balancing between different
823 * scheduling classes, without having to expose their internal data
824 * structures to the load-balancing proper:
825 */
826 struct rq_iterator {
827 void *arg;
828 struct task_struct *(*start)(void *);
829 struct task_struct *(*next)(void *);
830 };
831
832 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
833 unsigned long max_nr_move, unsigned long max_load_move,
834 struct sched_domain *sd, enum cpu_idle_type idle,
835 int *all_pinned, unsigned long *load_moved,
836 int *this_best_prio, struct rq_iterator *iterator);
837
838 #include "sched_stats.h"
839 #include "sched_idletask.c"
840 #include "sched_fair.c"
841 #include "sched_rt.c"
842 #ifdef CONFIG_SCHED_DEBUG
843 # include "sched_debug.c"
844 #endif
845
846 #define sched_class_highest (&rt_sched_class)
847
848 /*
849 * Update delta_exec, delta_fair fields for rq.
850 *
851 * delta_fair clock advances at a rate inversely proportional to
852 * total load (rq->load.weight) on the runqueue, while
853 * delta_exec advances at the same rate as wall-clock (provided
854 * cpu is not idle).
855 *
856 * delta_exec / delta_fair is a measure of the (smoothened) load on this
857 * runqueue over any given interval. This (smoothened) load is used
858 * during load balance.
859 *
860 * This function is called /before/ updating rq->load
861 * and when switching tasks.
862 */
863 static inline void inc_load(struct rq *rq, const struct task_struct *p)
864 {
865 update_load_add(&rq->load, p->se.load.weight);
866 }
867
868 static inline void dec_load(struct rq *rq, const struct task_struct *p)
869 {
870 update_load_sub(&rq->load, p->se.load.weight);
871 }
872
873 static void inc_nr_running(struct task_struct *p, struct rq *rq)
874 {
875 rq->nr_running++;
876 inc_load(rq, p);
877 }
878
879 static void dec_nr_running(struct task_struct *p, struct rq *rq)
880 {
881 rq->nr_running--;
882 dec_load(rq, p);
883 }
884
885 static void set_load_weight(struct task_struct *p)
886 {
887 if (task_has_rt_policy(p)) {
888 p->se.load.weight = prio_to_weight[0] * 2;
889 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
890 return;
891 }
892
893 /*
894 * SCHED_IDLE tasks get minimal weight:
895 */
896 if (p->policy == SCHED_IDLE) {
897 p->se.load.weight = WEIGHT_IDLEPRIO;
898 p->se.load.inv_weight = WMULT_IDLEPRIO;
899 return;
900 }
901
902 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
903 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
904 }
905
906 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
907 {
908 sched_info_queued(p);
909 p->sched_class->enqueue_task(rq, p, wakeup);
910 p->se.on_rq = 1;
911 }
912
913 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
914 {
915 p->sched_class->dequeue_task(rq, p, sleep);
916 p->se.on_rq = 0;
917 }
918
919 /*
920 * __normal_prio - return the priority that is based on the static prio
921 */
922 static inline int __normal_prio(struct task_struct *p)
923 {
924 return p->static_prio;
925 }
926
927 /*
928 * Calculate the expected normal priority: i.e. priority
929 * without taking RT-inheritance into account. Might be
930 * boosted by interactivity modifiers. Changes upon fork,
931 * setprio syscalls, and whenever the interactivity
932 * estimator recalculates.
933 */
934 static inline int normal_prio(struct task_struct *p)
935 {
936 int prio;
937
938 if (task_has_rt_policy(p))
939 prio = MAX_RT_PRIO-1 - p->rt_priority;
940 else
941 prio = __normal_prio(p);
942 return prio;
943 }
944
945 /*
946 * Calculate the current priority, i.e. the priority
947 * taken into account by the scheduler. This value might
948 * be boosted by RT tasks, or might be boosted by
949 * interactivity modifiers. Will be RT if the task got
950 * RT-boosted. If not then it returns p->normal_prio.
951 */
952 static int effective_prio(struct task_struct *p)
953 {
954 p->normal_prio = normal_prio(p);
955 /*
956 * If we are RT tasks or we were boosted to RT priority,
957 * keep the priority unchanged. Otherwise, update priority
958 * to the normal priority:
959 */
960 if (!rt_prio(p->prio))
961 return p->normal_prio;
962 return p->prio;
963 }
964
965 /*
966 * activate_task - move a task to the runqueue.
967 */
968 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
969 {
970 if (p->state == TASK_UNINTERRUPTIBLE)
971 rq->nr_uninterruptible--;
972
973 enqueue_task(rq, p, wakeup);
974 inc_nr_running(p, rq);
975 }
976
977 /*
978 * deactivate_task - remove a task from the runqueue.
979 */
980 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
981 {
982 if (p->state == TASK_UNINTERRUPTIBLE)
983 rq->nr_uninterruptible++;
984
985 dequeue_task(rq, p, sleep);
986 dec_nr_running(p, rq);
987 }
988
989 /**
990 * task_curr - is this task currently executing on a CPU?
991 * @p: the task in question.
992 */
993 inline int task_curr(const struct task_struct *p)
994 {
995 return cpu_curr(task_cpu(p)) == p;
996 }
997
998 /* Used instead of source_load when we know the type == 0 */
999 unsigned long weighted_cpuload(const int cpu)
1000 {
1001 return cpu_rq(cpu)->load.weight;
1002 }
1003
1004 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1005 {
1006 #ifdef CONFIG_SMP
1007 task_thread_info(p)->cpu = cpu;
1008 #endif
1009 set_task_cfs_rq(p);
1010 }
1011
1012 #ifdef CONFIG_SMP
1013
1014 /*
1015 * Is this task likely cache-hot:
1016 */
1017 static inline int
1018 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1019 {
1020 s64 delta;
1021
1022 if (p->sched_class != &fair_sched_class)
1023 return 0;
1024
1025 if (sysctl_sched_migration_cost == -1)
1026 return 1;
1027 if (sysctl_sched_migration_cost == 0)
1028 return 0;
1029
1030 delta = now - p->se.exec_start;
1031
1032 return delta < (s64)sysctl_sched_migration_cost;
1033 }
1034
1035
1036 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1037 {
1038 int old_cpu = task_cpu(p);
1039 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1040 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1041 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1042 u64 clock_offset;
1043
1044 clock_offset = old_rq->clock - new_rq->clock;
1045
1046 #ifdef CONFIG_SCHEDSTATS
1047 if (p->se.wait_start)
1048 p->se.wait_start -= clock_offset;
1049 if (p->se.sleep_start)
1050 p->se.sleep_start -= clock_offset;
1051 if (p->se.block_start)
1052 p->se.block_start -= clock_offset;
1053 if (old_cpu != new_cpu) {
1054 schedstat_inc(p, se.nr_migrations);
1055 if (task_hot(p, old_rq->clock, NULL))
1056 schedstat_inc(p, se.nr_forced2_migrations);
1057 }
1058 #endif
1059 p->se.vruntime -= old_cfsrq->min_vruntime -
1060 new_cfsrq->min_vruntime;
1061
1062 __set_task_cpu(p, new_cpu);
1063 }
1064
1065 struct migration_req {
1066 struct list_head list;
1067
1068 struct task_struct *task;
1069 int dest_cpu;
1070
1071 struct completion done;
1072 };
1073
1074 /*
1075 * The task's runqueue lock must be held.
1076 * Returns true if you have to wait for migration thread.
1077 */
1078 static int
1079 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1080 {
1081 struct rq *rq = task_rq(p);
1082
1083 /*
1084 * If the task is not on a runqueue (and not running), then
1085 * it is sufficient to simply update the task's cpu field.
1086 */
1087 if (!p->se.on_rq && !task_running(rq, p)) {
1088 set_task_cpu(p, dest_cpu);
1089 return 0;
1090 }
1091
1092 init_completion(&req->done);
1093 req->task = p;
1094 req->dest_cpu = dest_cpu;
1095 list_add(&req->list, &rq->migration_queue);
1096
1097 return 1;
1098 }
1099
1100 /*
1101 * wait_task_inactive - wait for a thread to unschedule.
1102 *
1103 * The caller must ensure that the task *will* unschedule sometime soon,
1104 * else this function might spin for a *long* time. This function can't
1105 * be called with interrupts off, or it may introduce deadlock with
1106 * smp_call_function() if an IPI is sent by the same process we are
1107 * waiting to become inactive.
1108 */
1109 void wait_task_inactive(struct task_struct *p)
1110 {
1111 unsigned long flags;
1112 int running, on_rq;
1113 struct rq *rq;
1114
1115 for (;;) {
1116 /*
1117 * We do the initial early heuristics without holding
1118 * any task-queue locks at all. We'll only try to get
1119 * the runqueue lock when things look like they will
1120 * work out!
1121 */
1122 rq = task_rq(p);
1123
1124 /*
1125 * If the task is actively running on another CPU
1126 * still, just relax and busy-wait without holding
1127 * any locks.
1128 *
1129 * NOTE! Since we don't hold any locks, it's not
1130 * even sure that "rq" stays as the right runqueue!
1131 * But we don't care, since "task_running()" will
1132 * return false if the runqueue has changed and p
1133 * is actually now running somewhere else!
1134 */
1135 while (task_running(rq, p))
1136 cpu_relax();
1137
1138 /*
1139 * Ok, time to look more closely! We need the rq
1140 * lock now, to be *sure*. If we're wrong, we'll
1141 * just go back and repeat.
1142 */
1143 rq = task_rq_lock(p, &flags);
1144 running = task_running(rq, p);
1145 on_rq = p->se.on_rq;
1146 task_rq_unlock(rq, &flags);
1147
1148 /*
1149 * Was it really running after all now that we
1150 * checked with the proper locks actually held?
1151 *
1152 * Oops. Go back and try again..
1153 */
1154 if (unlikely(running)) {
1155 cpu_relax();
1156 continue;
1157 }
1158
1159 /*
1160 * It's not enough that it's not actively running,
1161 * it must be off the runqueue _entirely_, and not
1162 * preempted!
1163 *
1164 * So if it wa still runnable (but just not actively
1165 * running right now), it's preempted, and we should
1166 * yield - it could be a while.
1167 */
1168 if (unlikely(on_rq)) {
1169 schedule_timeout_uninterruptible(1);
1170 continue;
1171 }
1172
1173 /*
1174 * Ahh, all good. It wasn't running, and it wasn't
1175 * runnable, which means that it will never become
1176 * running in the future either. We're all done!
1177 */
1178 break;
1179 }
1180 }
1181
1182 /***
1183 * kick_process - kick a running thread to enter/exit the kernel
1184 * @p: the to-be-kicked thread
1185 *
1186 * Cause a process which is running on another CPU to enter
1187 * kernel-mode, without any delay. (to get signals handled.)
1188 *
1189 * NOTE: this function doesnt have to take the runqueue lock,
1190 * because all it wants to ensure is that the remote task enters
1191 * the kernel. If the IPI races and the task has been migrated
1192 * to another CPU then no harm is done and the purpose has been
1193 * achieved as well.
1194 */
1195 void kick_process(struct task_struct *p)
1196 {
1197 int cpu;
1198
1199 preempt_disable();
1200 cpu = task_cpu(p);
1201 if ((cpu != smp_processor_id()) && task_curr(p))
1202 smp_send_reschedule(cpu);
1203 preempt_enable();
1204 }
1205
1206 /*
1207 * Return a low guess at the load of a migration-source cpu weighted
1208 * according to the scheduling class and "nice" value.
1209 *
1210 * We want to under-estimate the load of migration sources, to
1211 * balance conservatively.
1212 */
1213 static unsigned long source_load(int cpu, int type)
1214 {
1215 struct rq *rq = cpu_rq(cpu);
1216 unsigned long total = weighted_cpuload(cpu);
1217
1218 if (type == 0)
1219 return total;
1220
1221 return min(rq->cpu_load[type-1], total);
1222 }
1223
1224 /*
1225 * Return a high guess at the load of a migration-target cpu weighted
1226 * according to the scheduling class and "nice" value.
1227 */
1228 static unsigned long target_load(int cpu, int type)
1229 {
1230 struct rq *rq = cpu_rq(cpu);
1231 unsigned long total = weighted_cpuload(cpu);
1232
1233 if (type == 0)
1234 return total;
1235
1236 return max(rq->cpu_load[type-1], total);
1237 }
1238
1239 /*
1240 * Return the average load per task on the cpu's run queue
1241 */
1242 static inline unsigned long cpu_avg_load_per_task(int cpu)
1243 {
1244 struct rq *rq = cpu_rq(cpu);
1245 unsigned long total = weighted_cpuload(cpu);
1246 unsigned long n = rq->nr_running;
1247
1248 return n ? total / n : SCHED_LOAD_SCALE;
1249 }
1250
1251 /*
1252 * find_idlest_group finds and returns the least busy CPU group within the
1253 * domain.
1254 */
1255 static struct sched_group *
1256 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1257 {
1258 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1259 unsigned long min_load = ULONG_MAX, this_load = 0;
1260 int load_idx = sd->forkexec_idx;
1261 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1262
1263 do {
1264 unsigned long load, avg_load;
1265 int local_group;
1266 int i;
1267
1268 /* Skip over this group if it has no CPUs allowed */
1269 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1270 continue;
1271
1272 local_group = cpu_isset(this_cpu, group->cpumask);
1273
1274 /* Tally up the load of all CPUs in the group */
1275 avg_load = 0;
1276
1277 for_each_cpu_mask(i, group->cpumask) {
1278 /* Bias balancing toward cpus of our domain */
1279 if (local_group)
1280 load = source_load(i, load_idx);
1281 else
1282 load = target_load(i, load_idx);
1283
1284 avg_load += load;
1285 }
1286
1287 /* Adjust by relative CPU power of the group */
1288 avg_load = sg_div_cpu_power(group,
1289 avg_load * SCHED_LOAD_SCALE);
1290
1291 if (local_group) {
1292 this_load = avg_load;
1293 this = group;
1294 } else if (avg_load < min_load) {
1295 min_load = avg_load;
1296 idlest = group;
1297 }
1298 } while (group = group->next, group != sd->groups);
1299
1300 if (!idlest || 100*this_load < imbalance*min_load)
1301 return NULL;
1302 return idlest;
1303 }
1304
1305 /*
1306 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1307 */
1308 static int
1309 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1310 {
1311 cpumask_t tmp;
1312 unsigned long load, min_load = ULONG_MAX;
1313 int idlest = -1;
1314 int i;
1315
1316 /* Traverse only the allowed CPUs */
1317 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1318
1319 for_each_cpu_mask(i, tmp) {
1320 load = weighted_cpuload(i);
1321
1322 if (load < min_load || (load == min_load && i == this_cpu)) {
1323 min_load = load;
1324 idlest = i;
1325 }
1326 }
1327
1328 return idlest;
1329 }
1330
1331 /*
1332 * sched_balance_self: balance the current task (running on cpu) in domains
1333 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1334 * SD_BALANCE_EXEC.
1335 *
1336 * Balance, ie. select the least loaded group.
1337 *
1338 * Returns the target CPU number, or the same CPU if no balancing is needed.
1339 *
1340 * preempt must be disabled.
1341 */
1342 static int sched_balance_self(int cpu, int flag)
1343 {
1344 struct task_struct *t = current;
1345 struct sched_domain *tmp, *sd = NULL;
1346
1347 for_each_domain(cpu, tmp) {
1348 /*
1349 * If power savings logic is enabled for a domain, stop there.
1350 */
1351 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1352 break;
1353 if (tmp->flags & flag)
1354 sd = tmp;
1355 }
1356
1357 while (sd) {
1358 cpumask_t span;
1359 struct sched_group *group;
1360 int new_cpu, weight;
1361
1362 if (!(sd->flags & flag)) {
1363 sd = sd->child;
1364 continue;
1365 }
1366
1367 span = sd->span;
1368 group = find_idlest_group(sd, t, cpu);
1369 if (!group) {
1370 sd = sd->child;
1371 continue;
1372 }
1373
1374 new_cpu = find_idlest_cpu(group, t, cpu);
1375 if (new_cpu == -1 || new_cpu == cpu) {
1376 /* Now try balancing at a lower domain level of cpu */
1377 sd = sd->child;
1378 continue;
1379 }
1380
1381 /* Now try balancing at a lower domain level of new_cpu */
1382 cpu = new_cpu;
1383 sd = NULL;
1384 weight = cpus_weight(span);
1385 for_each_domain(cpu, tmp) {
1386 if (weight <= cpus_weight(tmp->span))
1387 break;
1388 if (tmp->flags & flag)
1389 sd = tmp;
1390 }
1391 /* while loop will break here if sd == NULL */
1392 }
1393
1394 return cpu;
1395 }
1396
1397 #endif /* CONFIG_SMP */
1398
1399 /*
1400 * wake_idle() will wake a task on an idle cpu if task->cpu is
1401 * not idle and an idle cpu is available. The span of cpus to
1402 * search starts with cpus closest then further out as needed,
1403 * so we always favor a closer, idle cpu.
1404 *
1405 * Returns the CPU we should wake onto.
1406 */
1407 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1408 static int wake_idle(int cpu, struct task_struct *p)
1409 {
1410 cpumask_t tmp;
1411 struct sched_domain *sd;
1412 int i;
1413
1414 /*
1415 * If it is idle, then it is the best cpu to run this task.
1416 *
1417 * This cpu is also the best, if it has more than one task already.
1418 * Siblings must be also busy(in most cases) as they didn't already
1419 * pickup the extra load from this cpu and hence we need not check
1420 * sibling runqueue info. This will avoid the checks and cache miss
1421 * penalities associated with that.
1422 */
1423 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1424 return cpu;
1425
1426 for_each_domain(cpu, sd) {
1427 if (sd->flags & SD_WAKE_IDLE) {
1428 cpus_and(tmp, sd->span, p->cpus_allowed);
1429 for_each_cpu_mask(i, tmp) {
1430 if (idle_cpu(i)) {
1431 if (i != task_cpu(p)) {
1432 schedstat_inc(p,
1433 se.nr_wakeups_idle);
1434 }
1435 return i;
1436 }
1437 }
1438 } else {
1439 break;
1440 }
1441 }
1442 return cpu;
1443 }
1444 #else
1445 static inline int wake_idle(int cpu, struct task_struct *p)
1446 {
1447 return cpu;
1448 }
1449 #endif
1450
1451 /***
1452 * try_to_wake_up - wake up a thread
1453 * @p: the to-be-woken-up thread
1454 * @state: the mask of task states that can be woken
1455 * @sync: do a synchronous wakeup?
1456 *
1457 * Put it on the run-queue if it's not already there. The "current"
1458 * thread is always on the run-queue (except when the actual
1459 * re-schedule is in progress), and as such you're allowed to do
1460 * the simpler "current->state = TASK_RUNNING" to mark yourself
1461 * runnable without the overhead of this.
1462 *
1463 * returns failure only if the task is already active.
1464 */
1465 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1466 {
1467 int cpu, orig_cpu, this_cpu, success = 0;
1468 unsigned long flags;
1469 long old_state;
1470 struct rq *rq;
1471 #ifdef CONFIG_SMP
1472 struct sched_domain *sd, *this_sd = NULL;
1473 unsigned long load, this_load;
1474 int new_cpu;
1475 #endif
1476
1477 rq = task_rq_lock(p, &flags);
1478 old_state = p->state;
1479 if (!(old_state & state))
1480 goto out;
1481
1482 if (p->se.on_rq)
1483 goto out_running;
1484
1485 cpu = task_cpu(p);
1486 orig_cpu = cpu;
1487 this_cpu = smp_processor_id();
1488
1489 #ifdef CONFIG_SMP
1490 if (unlikely(task_running(rq, p)))
1491 goto out_activate;
1492
1493 new_cpu = cpu;
1494
1495 schedstat_inc(rq, ttwu_count);
1496 if (cpu == this_cpu) {
1497 schedstat_inc(rq, ttwu_local);
1498 goto out_set_cpu;
1499 }
1500
1501 for_each_domain(this_cpu, sd) {
1502 if (cpu_isset(cpu, sd->span)) {
1503 schedstat_inc(sd, ttwu_wake_remote);
1504 this_sd = sd;
1505 break;
1506 }
1507 }
1508
1509 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1510 goto out_set_cpu;
1511
1512 /*
1513 * Check for affine wakeup and passive balancing possibilities.
1514 */
1515 if (this_sd) {
1516 int idx = this_sd->wake_idx;
1517 unsigned int imbalance;
1518
1519 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1520
1521 load = source_load(cpu, idx);
1522 this_load = target_load(this_cpu, idx);
1523
1524 new_cpu = this_cpu; /* Wake to this CPU if we can */
1525
1526 if (this_sd->flags & SD_WAKE_AFFINE) {
1527 unsigned long tl = this_load;
1528 unsigned long tl_per_task;
1529
1530 /*
1531 * Attract cache-cold tasks on sync wakeups:
1532 */
1533 if (sync && !task_hot(p, rq->clock, this_sd))
1534 goto out_set_cpu;
1535
1536 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1537 tl_per_task = cpu_avg_load_per_task(this_cpu);
1538
1539 /*
1540 * If sync wakeup then subtract the (maximum possible)
1541 * effect of the currently running task from the load
1542 * of the current CPU:
1543 */
1544 if (sync)
1545 tl -= current->se.load.weight;
1546
1547 if ((tl <= load &&
1548 tl + target_load(cpu, idx) <= tl_per_task) ||
1549 100*(tl + p->se.load.weight) <= imbalance*load) {
1550 /*
1551 * This domain has SD_WAKE_AFFINE and
1552 * p is cache cold in this domain, and
1553 * there is no bad imbalance.
1554 */
1555 schedstat_inc(this_sd, ttwu_move_affine);
1556 schedstat_inc(p, se.nr_wakeups_affine);
1557 goto out_set_cpu;
1558 }
1559 }
1560
1561 /*
1562 * Start passive balancing when half the imbalance_pct
1563 * limit is reached.
1564 */
1565 if (this_sd->flags & SD_WAKE_BALANCE) {
1566 if (imbalance*this_load <= 100*load) {
1567 schedstat_inc(this_sd, ttwu_move_balance);
1568 schedstat_inc(p, se.nr_wakeups_passive);
1569 goto out_set_cpu;
1570 }
1571 }
1572 }
1573
1574 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1575 out_set_cpu:
1576 new_cpu = wake_idle(new_cpu, p);
1577 if (new_cpu != cpu) {
1578 set_task_cpu(p, new_cpu);
1579 task_rq_unlock(rq, &flags);
1580 /* might preempt at this point */
1581 rq = task_rq_lock(p, &flags);
1582 old_state = p->state;
1583 if (!(old_state & state))
1584 goto out;
1585 if (p->se.on_rq)
1586 goto out_running;
1587
1588 this_cpu = smp_processor_id();
1589 cpu = task_cpu(p);
1590 }
1591
1592 out_activate:
1593 #endif /* CONFIG_SMP */
1594 schedstat_inc(p, se.nr_wakeups);
1595 if (sync)
1596 schedstat_inc(p, se.nr_wakeups_sync);
1597 if (orig_cpu != cpu)
1598 schedstat_inc(p, se.nr_wakeups_migrate);
1599 if (cpu == this_cpu)
1600 schedstat_inc(p, se.nr_wakeups_local);
1601 else
1602 schedstat_inc(p, se.nr_wakeups_remote);
1603 update_rq_clock(rq);
1604 activate_task(rq, p, 1);
1605 check_preempt_curr(rq, p);
1606 success = 1;
1607
1608 out_running:
1609 p->state = TASK_RUNNING;
1610 out:
1611 task_rq_unlock(rq, &flags);
1612
1613 return success;
1614 }
1615
1616 int fastcall wake_up_process(struct task_struct *p)
1617 {
1618 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1619 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1620 }
1621 EXPORT_SYMBOL(wake_up_process);
1622
1623 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1624 {
1625 return try_to_wake_up(p, state, 0);
1626 }
1627
1628 /*
1629 * Perform scheduler related setup for a newly forked process p.
1630 * p is forked by current.
1631 *
1632 * __sched_fork() is basic setup used by init_idle() too:
1633 */
1634 static void __sched_fork(struct task_struct *p)
1635 {
1636 p->se.exec_start = 0;
1637 p->se.sum_exec_runtime = 0;
1638 p->se.prev_sum_exec_runtime = 0;
1639
1640 #ifdef CONFIG_SCHEDSTATS
1641 p->se.wait_start = 0;
1642 p->se.sum_sleep_runtime = 0;
1643 p->se.sleep_start = 0;
1644 p->se.block_start = 0;
1645 p->se.sleep_max = 0;
1646 p->se.block_max = 0;
1647 p->se.exec_max = 0;
1648 p->se.slice_max = 0;
1649 p->se.wait_max = 0;
1650 #endif
1651
1652 INIT_LIST_HEAD(&p->run_list);
1653 p->se.on_rq = 0;
1654
1655 #ifdef CONFIG_PREEMPT_NOTIFIERS
1656 INIT_HLIST_HEAD(&p->preempt_notifiers);
1657 #endif
1658
1659 /*
1660 * We mark the process as running here, but have not actually
1661 * inserted it onto the runqueue yet. This guarantees that
1662 * nobody will actually run it, and a signal or other external
1663 * event cannot wake it up and insert it on the runqueue either.
1664 */
1665 p->state = TASK_RUNNING;
1666 }
1667
1668 /*
1669 * fork()/clone()-time setup:
1670 */
1671 void sched_fork(struct task_struct *p, int clone_flags)
1672 {
1673 int cpu = get_cpu();
1674
1675 __sched_fork(p);
1676
1677 #ifdef CONFIG_SMP
1678 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1679 #endif
1680 set_task_cpu(p, cpu);
1681
1682 /*
1683 * Make sure we do not leak PI boosting priority to the child:
1684 */
1685 p->prio = current->normal_prio;
1686 if (!rt_prio(p->prio))
1687 p->sched_class = &fair_sched_class;
1688
1689 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1690 if (likely(sched_info_on()))
1691 memset(&p->sched_info, 0, sizeof(p->sched_info));
1692 #endif
1693 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1694 p->oncpu = 0;
1695 #endif
1696 #ifdef CONFIG_PREEMPT
1697 /* Want to start with kernel preemption disabled. */
1698 task_thread_info(p)->preempt_count = 1;
1699 #endif
1700 put_cpu();
1701 }
1702
1703 /*
1704 * wake_up_new_task - wake up a newly created task for the first time.
1705 *
1706 * This function will do some initial scheduler statistics housekeeping
1707 * that must be done for every newly created context, then puts the task
1708 * on the runqueue and wakes it.
1709 */
1710 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1711 {
1712 unsigned long flags;
1713 struct rq *rq;
1714
1715 rq = task_rq_lock(p, &flags);
1716 BUG_ON(p->state != TASK_RUNNING);
1717 update_rq_clock(rq);
1718
1719 p->prio = effective_prio(p);
1720
1721 if (!p->sched_class->task_new || !current->se.on_rq) {
1722 activate_task(rq, p, 0);
1723 } else {
1724 /*
1725 * Let the scheduling class do new task startup
1726 * management (if any):
1727 */
1728 p->sched_class->task_new(rq, p);
1729 inc_nr_running(p, rq);
1730 }
1731 check_preempt_curr(rq, p);
1732 task_rq_unlock(rq, &flags);
1733 }
1734
1735 #ifdef CONFIG_PREEMPT_NOTIFIERS
1736
1737 /**
1738 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1739 * @notifier: notifier struct to register
1740 */
1741 void preempt_notifier_register(struct preempt_notifier *notifier)
1742 {
1743 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1744 }
1745 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1746
1747 /**
1748 * preempt_notifier_unregister - no longer interested in preemption notifications
1749 * @notifier: notifier struct to unregister
1750 *
1751 * This is safe to call from within a preemption notifier.
1752 */
1753 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1754 {
1755 hlist_del(&notifier->link);
1756 }
1757 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1758
1759 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1760 {
1761 struct preempt_notifier *notifier;
1762 struct hlist_node *node;
1763
1764 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1765 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1766 }
1767
1768 static void
1769 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1770 struct task_struct *next)
1771 {
1772 struct preempt_notifier *notifier;
1773 struct hlist_node *node;
1774
1775 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1776 notifier->ops->sched_out(notifier, next);
1777 }
1778
1779 #else
1780
1781 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1782 {
1783 }
1784
1785 static void
1786 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1787 struct task_struct *next)
1788 {
1789 }
1790
1791 #endif
1792
1793 /**
1794 * prepare_task_switch - prepare to switch tasks
1795 * @rq: the runqueue preparing to switch
1796 * @prev: the current task that is being switched out
1797 * @next: the task we are going to switch to.
1798 *
1799 * This is called with the rq lock held and interrupts off. It must
1800 * be paired with a subsequent finish_task_switch after the context
1801 * switch.
1802 *
1803 * prepare_task_switch sets up locking and calls architecture specific
1804 * hooks.
1805 */
1806 static inline void
1807 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1808 struct task_struct *next)
1809 {
1810 fire_sched_out_preempt_notifiers(prev, next);
1811 prepare_lock_switch(rq, next);
1812 prepare_arch_switch(next);
1813 }
1814
1815 /**
1816 * finish_task_switch - clean up after a task-switch
1817 * @rq: runqueue associated with task-switch
1818 * @prev: the thread we just switched away from.
1819 *
1820 * finish_task_switch must be called after the context switch, paired
1821 * with a prepare_task_switch call before the context switch.
1822 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1823 * and do any other architecture-specific cleanup actions.
1824 *
1825 * Note that we may have delayed dropping an mm in context_switch(). If
1826 * so, we finish that here outside of the runqueue lock. (Doing it
1827 * with the lock held can cause deadlocks; see schedule() for
1828 * details.)
1829 */
1830 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1831 __releases(rq->lock)
1832 {
1833 struct mm_struct *mm = rq->prev_mm;
1834 long prev_state;
1835
1836 rq->prev_mm = NULL;
1837
1838 /*
1839 * A task struct has one reference for the use as "current".
1840 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1841 * schedule one last time. The schedule call will never return, and
1842 * the scheduled task must drop that reference.
1843 * The test for TASK_DEAD must occur while the runqueue locks are
1844 * still held, otherwise prev could be scheduled on another cpu, die
1845 * there before we look at prev->state, and then the reference would
1846 * be dropped twice.
1847 * Manfred Spraul <manfred@colorfullife.com>
1848 */
1849 prev_state = prev->state;
1850 finish_arch_switch(prev);
1851 finish_lock_switch(rq, prev);
1852 fire_sched_in_preempt_notifiers(current);
1853 if (mm)
1854 mmdrop(mm);
1855 if (unlikely(prev_state == TASK_DEAD)) {
1856 /*
1857 * Remove function-return probe instances associated with this
1858 * task and put them back on the free list.
1859 */
1860 kprobe_flush_task(prev);
1861 put_task_struct(prev);
1862 }
1863 }
1864
1865 /**
1866 * schedule_tail - first thing a freshly forked thread must call.
1867 * @prev: the thread we just switched away from.
1868 */
1869 asmlinkage void schedule_tail(struct task_struct *prev)
1870 __releases(rq->lock)
1871 {
1872 struct rq *rq = this_rq();
1873
1874 finish_task_switch(rq, prev);
1875 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1876 /* In this case, finish_task_switch does not reenable preemption */
1877 preempt_enable();
1878 #endif
1879 if (current->set_child_tid)
1880 put_user(task_pid_vnr(current), current->set_child_tid);
1881 }
1882
1883 /*
1884 * context_switch - switch to the new MM and the new
1885 * thread's register state.
1886 */
1887 static inline void
1888 context_switch(struct rq *rq, struct task_struct *prev,
1889 struct task_struct *next)
1890 {
1891 struct mm_struct *mm, *oldmm;
1892
1893 prepare_task_switch(rq, prev, next);
1894 mm = next->mm;
1895 oldmm = prev->active_mm;
1896 /*
1897 * For paravirt, this is coupled with an exit in switch_to to
1898 * combine the page table reload and the switch backend into
1899 * one hypercall.
1900 */
1901 arch_enter_lazy_cpu_mode();
1902
1903 if (unlikely(!mm)) {
1904 next->active_mm = oldmm;
1905 atomic_inc(&oldmm->mm_count);
1906 enter_lazy_tlb(oldmm, next);
1907 } else
1908 switch_mm(oldmm, mm, next);
1909
1910 if (unlikely(!prev->mm)) {
1911 prev->active_mm = NULL;
1912 rq->prev_mm = oldmm;
1913 }
1914 /*
1915 * Since the runqueue lock will be released by the next
1916 * task (which is an invalid locking op but in the case
1917 * of the scheduler it's an obvious special-case), so we
1918 * do an early lockdep release here:
1919 */
1920 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1921 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1922 #endif
1923
1924 /* Here we just switch the register state and the stack. */
1925 switch_to(prev, next, prev);
1926
1927 barrier();
1928 /*
1929 * this_rq must be evaluated again because prev may have moved
1930 * CPUs since it called schedule(), thus the 'rq' on its stack
1931 * frame will be invalid.
1932 */
1933 finish_task_switch(this_rq(), prev);
1934 }
1935
1936 /*
1937 * nr_running, nr_uninterruptible and nr_context_switches:
1938 *
1939 * externally visible scheduler statistics: current number of runnable
1940 * threads, current number of uninterruptible-sleeping threads, total
1941 * number of context switches performed since bootup.
1942 */
1943 unsigned long nr_running(void)
1944 {
1945 unsigned long i, sum = 0;
1946
1947 for_each_online_cpu(i)
1948 sum += cpu_rq(i)->nr_running;
1949
1950 return sum;
1951 }
1952
1953 unsigned long nr_uninterruptible(void)
1954 {
1955 unsigned long i, sum = 0;
1956
1957 for_each_possible_cpu(i)
1958 sum += cpu_rq(i)->nr_uninterruptible;
1959
1960 /*
1961 * Since we read the counters lockless, it might be slightly
1962 * inaccurate. Do not allow it to go below zero though:
1963 */
1964 if (unlikely((long)sum < 0))
1965 sum = 0;
1966
1967 return sum;
1968 }
1969
1970 unsigned long long nr_context_switches(void)
1971 {
1972 int i;
1973 unsigned long long sum = 0;
1974
1975 for_each_possible_cpu(i)
1976 sum += cpu_rq(i)->nr_switches;
1977
1978 return sum;
1979 }
1980
1981 unsigned long nr_iowait(void)
1982 {
1983 unsigned long i, sum = 0;
1984
1985 for_each_possible_cpu(i)
1986 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1987
1988 return sum;
1989 }
1990
1991 unsigned long nr_active(void)
1992 {
1993 unsigned long i, running = 0, uninterruptible = 0;
1994
1995 for_each_online_cpu(i) {
1996 running += cpu_rq(i)->nr_running;
1997 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1998 }
1999
2000 if (unlikely((long)uninterruptible < 0))
2001 uninterruptible = 0;
2002
2003 return running + uninterruptible;
2004 }
2005
2006 /*
2007 * Update rq->cpu_load[] statistics. This function is usually called every
2008 * scheduler tick (TICK_NSEC).
2009 */
2010 static void update_cpu_load(struct rq *this_rq)
2011 {
2012 unsigned long this_load = this_rq->load.weight;
2013 int i, scale;
2014
2015 this_rq->nr_load_updates++;
2016
2017 /* Update our load: */
2018 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2019 unsigned long old_load, new_load;
2020
2021 /* scale is effectively 1 << i now, and >> i divides by scale */
2022
2023 old_load = this_rq->cpu_load[i];
2024 new_load = this_load;
2025 /*
2026 * Round up the averaging division if load is increasing. This
2027 * prevents us from getting stuck on 9 if the load is 10, for
2028 * example.
2029 */
2030 if (new_load > old_load)
2031 new_load += scale-1;
2032 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2033 }
2034 }
2035
2036 #ifdef CONFIG_SMP
2037
2038 /*
2039 * double_rq_lock - safely lock two runqueues
2040 *
2041 * Note this does not disable interrupts like task_rq_lock,
2042 * you need to do so manually before calling.
2043 */
2044 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2045 __acquires(rq1->lock)
2046 __acquires(rq2->lock)
2047 {
2048 BUG_ON(!irqs_disabled());
2049 if (rq1 == rq2) {
2050 spin_lock(&rq1->lock);
2051 __acquire(rq2->lock); /* Fake it out ;) */
2052 } else {
2053 if (rq1 < rq2) {
2054 spin_lock(&rq1->lock);
2055 spin_lock(&rq2->lock);
2056 } else {
2057 spin_lock(&rq2->lock);
2058 spin_lock(&rq1->lock);
2059 }
2060 }
2061 update_rq_clock(rq1);
2062 update_rq_clock(rq2);
2063 }
2064
2065 /*
2066 * double_rq_unlock - safely unlock two runqueues
2067 *
2068 * Note this does not restore interrupts like task_rq_unlock,
2069 * you need to do so manually after calling.
2070 */
2071 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2072 __releases(rq1->lock)
2073 __releases(rq2->lock)
2074 {
2075 spin_unlock(&rq1->lock);
2076 if (rq1 != rq2)
2077 spin_unlock(&rq2->lock);
2078 else
2079 __release(rq2->lock);
2080 }
2081
2082 /*
2083 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2084 */
2085 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2086 __releases(this_rq->lock)
2087 __acquires(busiest->lock)
2088 __acquires(this_rq->lock)
2089 {
2090 if (unlikely(!irqs_disabled())) {
2091 /* printk() doesn't work good under rq->lock */
2092 spin_unlock(&this_rq->lock);
2093 BUG_ON(1);
2094 }
2095 if (unlikely(!spin_trylock(&busiest->lock))) {
2096 if (busiest < this_rq) {
2097 spin_unlock(&this_rq->lock);
2098 spin_lock(&busiest->lock);
2099 spin_lock(&this_rq->lock);
2100 } else
2101 spin_lock(&busiest->lock);
2102 }
2103 }
2104
2105 /*
2106 * If dest_cpu is allowed for this process, migrate the task to it.
2107 * This is accomplished by forcing the cpu_allowed mask to only
2108 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2109 * the cpu_allowed mask is restored.
2110 */
2111 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2112 {
2113 struct migration_req req;
2114 unsigned long flags;
2115 struct rq *rq;
2116
2117 rq = task_rq_lock(p, &flags);
2118 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2119 || unlikely(cpu_is_offline(dest_cpu)))
2120 goto out;
2121
2122 /* force the process onto the specified CPU */
2123 if (migrate_task(p, dest_cpu, &req)) {
2124 /* Need to wait for migration thread (might exit: take ref). */
2125 struct task_struct *mt = rq->migration_thread;
2126
2127 get_task_struct(mt);
2128 task_rq_unlock(rq, &flags);
2129 wake_up_process(mt);
2130 put_task_struct(mt);
2131 wait_for_completion(&req.done);
2132
2133 return;
2134 }
2135 out:
2136 task_rq_unlock(rq, &flags);
2137 }
2138
2139 /*
2140 * sched_exec - execve() is a valuable balancing opportunity, because at
2141 * this point the task has the smallest effective memory and cache footprint.
2142 */
2143 void sched_exec(void)
2144 {
2145 int new_cpu, this_cpu = get_cpu();
2146 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2147 put_cpu();
2148 if (new_cpu != this_cpu)
2149 sched_migrate_task(current, new_cpu);
2150 }
2151
2152 /*
2153 * pull_task - move a task from a remote runqueue to the local runqueue.
2154 * Both runqueues must be locked.
2155 */
2156 static void pull_task(struct rq *src_rq, struct task_struct *p,
2157 struct rq *this_rq, int this_cpu)
2158 {
2159 deactivate_task(src_rq, p, 0);
2160 set_task_cpu(p, this_cpu);
2161 activate_task(this_rq, p, 0);
2162 /*
2163 * Note that idle threads have a prio of MAX_PRIO, for this test
2164 * to be always true for them.
2165 */
2166 check_preempt_curr(this_rq, p);
2167 }
2168
2169 /*
2170 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2171 */
2172 static
2173 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2174 struct sched_domain *sd, enum cpu_idle_type idle,
2175 int *all_pinned)
2176 {
2177 /*
2178 * We do not migrate tasks that are:
2179 * 1) running (obviously), or
2180 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2181 * 3) are cache-hot on their current CPU.
2182 */
2183 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2184 schedstat_inc(p, se.nr_failed_migrations_affine);
2185 return 0;
2186 }
2187 *all_pinned = 0;
2188
2189 if (task_running(rq, p)) {
2190 schedstat_inc(p, se.nr_failed_migrations_running);
2191 return 0;
2192 }
2193
2194 /*
2195 * Aggressive migration if:
2196 * 1) task is cache cold, or
2197 * 2) too many balance attempts have failed.
2198 */
2199
2200 if (!task_hot(p, rq->clock, sd) ||
2201 sd->nr_balance_failed > sd->cache_nice_tries) {
2202 #ifdef CONFIG_SCHEDSTATS
2203 if (task_hot(p, rq->clock, sd)) {
2204 schedstat_inc(sd, lb_hot_gained[idle]);
2205 schedstat_inc(p, se.nr_forced_migrations);
2206 }
2207 #endif
2208 return 1;
2209 }
2210
2211 if (task_hot(p, rq->clock, sd)) {
2212 schedstat_inc(p, se.nr_failed_migrations_hot);
2213 return 0;
2214 }
2215 return 1;
2216 }
2217
2218 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2219 unsigned long max_nr_move, unsigned long max_load_move,
2220 struct sched_domain *sd, enum cpu_idle_type idle,
2221 int *all_pinned, unsigned long *load_moved,
2222 int *this_best_prio, struct rq_iterator *iterator)
2223 {
2224 int pulled = 0, pinned = 0, skip_for_load;
2225 struct task_struct *p;
2226 long rem_load_move = max_load_move;
2227
2228 if (max_nr_move == 0 || max_load_move == 0)
2229 goto out;
2230
2231 pinned = 1;
2232
2233 /*
2234 * Start the load-balancing iterator:
2235 */
2236 p = iterator->start(iterator->arg);
2237 next:
2238 if (!p)
2239 goto out;
2240 /*
2241 * To help distribute high priority tasks accross CPUs we don't
2242 * skip a task if it will be the highest priority task (i.e. smallest
2243 * prio value) on its new queue regardless of its load weight
2244 */
2245 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2246 SCHED_LOAD_SCALE_FUZZ;
2247 if ((skip_for_load && p->prio >= *this_best_prio) ||
2248 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2249 p = iterator->next(iterator->arg);
2250 goto next;
2251 }
2252
2253 pull_task(busiest, p, this_rq, this_cpu);
2254 pulled++;
2255 rem_load_move -= p->se.load.weight;
2256
2257 /*
2258 * We only want to steal up to the prescribed number of tasks
2259 * and the prescribed amount of weighted load.
2260 */
2261 if (pulled < max_nr_move && rem_load_move > 0) {
2262 if (p->prio < *this_best_prio)
2263 *this_best_prio = p->prio;
2264 p = iterator->next(iterator->arg);
2265 goto next;
2266 }
2267 out:
2268 /*
2269 * Right now, this is the only place pull_task() is called,
2270 * so we can safely collect pull_task() stats here rather than
2271 * inside pull_task().
2272 */
2273 schedstat_add(sd, lb_gained[idle], pulled);
2274
2275 if (all_pinned)
2276 *all_pinned = pinned;
2277 *load_moved = max_load_move - rem_load_move;
2278 return pulled;
2279 }
2280
2281 /*
2282 * move_tasks tries to move up to max_load_move weighted load from busiest to
2283 * this_rq, as part of a balancing operation within domain "sd".
2284 * Returns 1 if successful and 0 otherwise.
2285 *
2286 * Called with both runqueues locked.
2287 */
2288 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2289 unsigned long max_load_move,
2290 struct sched_domain *sd, enum cpu_idle_type idle,
2291 int *all_pinned)
2292 {
2293 const struct sched_class *class = sched_class_highest;
2294 unsigned long total_load_moved = 0;
2295 int this_best_prio = this_rq->curr->prio;
2296
2297 do {
2298 total_load_moved +=
2299 class->load_balance(this_rq, this_cpu, busiest,
2300 ULONG_MAX, max_load_move - total_load_moved,
2301 sd, idle, all_pinned, &this_best_prio);
2302 class = class->next;
2303 } while (class && max_load_move > total_load_moved);
2304
2305 return total_load_moved > 0;
2306 }
2307
2308 /*
2309 * move_one_task tries to move exactly one task from busiest to this_rq, as
2310 * part of active balancing operations within "domain".
2311 * Returns 1 if successful and 0 otherwise.
2312 *
2313 * Called with both runqueues locked.
2314 */
2315 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2316 struct sched_domain *sd, enum cpu_idle_type idle)
2317 {
2318 const struct sched_class *class;
2319 int this_best_prio = MAX_PRIO;
2320
2321 for (class = sched_class_highest; class; class = class->next)
2322 if (class->load_balance(this_rq, this_cpu, busiest,
2323 1, ULONG_MAX, sd, idle, NULL,
2324 &this_best_prio))
2325 return 1;
2326
2327 return 0;
2328 }
2329
2330 /*
2331 * find_busiest_group finds and returns the busiest CPU group within the
2332 * domain. It calculates and returns the amount of weighted load which
2333 * should be moved to restore balance via the imbalance parameter.
2334 */
2335 static struct sched_group *
2336 find_busiest_group(struct sched_domain *sd, int this_cpu,
2337 unsigned long *imbalance, enum cpu_idle_type idle,
2338 int *sd_idle, cpumask_t *cpus, int *balance)
2339 {
2340 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2341 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2342 unsigned long max_pull;
2343 unsigned long busiest_load_per_task, busiest_nr_running;
2344 unsigned long this_load_per_task, this_nr_running;
2345 int load_idx, group_imb = 0;
2346 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2347 int power_savings_balance = 1;
2348 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2349 unsigned long min_nr_running = ULONG_MAX;
2350 struct sched_group *group_min = NULL, *group_leader = NULL;
2351 #endif
2352
2353 max_load = this_load = total_load = total_pwr = 0;
2354 busiest_load_per_task = busiest_nr_running = 0;
2355 this_load_per_task = this_nr_running = 0;
2356 if (idle == CPU_NOT_IDLE)
2357 load_idx = sd->busy_idx;
2358 else if (idle == CPU_NEWLY_IDLE)
2359 load_idx = sd->newidle_idx;
2360 else
2361 load_idx = sd->idle_idx;
2362
2363 do {
2364 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2365 int local_group;
2366 int i;
2367 int __group_imb = 0;
2368 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2369 unsigned long sum_nr_running, sum_weighted_load;
2370
2371 local_group = cpu_isset(this_cpu, group->cpumask);
2372
2373 if (local_group)
2374 balance_cpu = first_cpu(group->cpumask);
2375
2376 /* Tally up the load of all CPUs in the group */
2377 sum_weighted_load = sum_nr_running = avg_load = 0;
2378 max_cpu_load = 0;
2379 min_cpu_load = ~0UL;
2380
2381 for_each_cpu_mask(i, group->cpumask) {
2382 struct rq *rq;
2383
2384 if (!cpu_isset(i, *cpus))
2385 continue;
2386
2387 rq = cpu_rq(i);
2388
2389 if (*sd_idle && rq->nr_running)
2390 *sd_idle = 0;
2391
2392 /* Bias balancing toward cpus of our domain */
2393 if (local_group) {
2394 if (idle_cpu(i) && !first_idle_cpu) {
2395 first_idle_cpu = 1;
2396 balance_cpu = i;
2397 }
2398
2399 load = target_load(i, load_idx);
2400 } else {
2401 load = source_load(i, load_idx);
2402 if (load > max_cpu_load)
2403 max_cpu_load = load;
2404 if (min_cpu_load > load)
2405 min_cpu_load = load;
2406 }
2407
2408 avg_load += load;
2409 sum_nr_running += rq->nr_running;
2410 sum_weighted_load += weighted_cpuload(i);
2411 }
2412
2413 /*
2414 * First idle cpu or the first cpu(busiest) in this sched group
2415 * is eligible for doing load balancing at this and above
2416 * domains. In the newly idle case, we will allow all the cpu's
2417 * to do the newly idle load balance.
2418 */
2419 if (idle != CPU_NEWLY_IDLE && local_group &&
2420 balance_cpu != this_cpu && balance) {
2421 *balance = 0;
2422 goto ret;
2423 }
2424
2425 total_load += avg_load;
2426 total_pwr += group->__cpu_power;
2427
2428 /* Adjust by relative CPU power of the group */
2429 avg_load = sg_div_cpu_power(group,
2430 avg_load * SCHED_LOAD_SCALE);
2431
2432 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2433 __group_imb = 1;
2434
2435 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2436
2437 if (local_group) {
2438 this_load = avg_load;
2439 this = group;
2440 this_nr_running = sum_nr_running;
2441 this_load_per_task = sum_weighted_load;
2442 } else if (avg_load > max_load &&
2443 (sum_nr_running > group_capacity || __group_imb)) {
2444 max_load = avg_load;
2445 busiest = group;
2446 busiest_nr_running = sum_nr_running;
2447 busiest_load_per_task = sum_weighted_load;
2448 group_imb = __group_imb;
2449 }
2450
2451 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2452 /*
2453 * Busy processors will not participate in power savings
2454 * balance.
2455 */
2456 if (idle == CPU_NOT_IDLE ||
2457 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2458 goto group_next;
2459
2460 /*
2461 * If the local group is idle or completely loaded
2462 * no need to do power savings balance at this domain
2463 */
2464 if (local_group && (this_nr_running >= group_capacity ||
2465 !this_nr_running))
2466 power_savings_balance = 0;
2467
2468 /*
2469 * If a group is already running at full capacity or idle,
2470 * don't include that group in power savings calculations
2471 */
2472 if (!power_savings_balance || sum_nr_running >= group_capacity
2473 || !sum_nr_running)
2474 goto group_next;
2475
2476 /*
2477 * Calculate the group which has the least non-idle load.
2478 * This is the group from where we need to pick up the load
2479 * for saving power
2480 */
2481 if ((sum_nr_running < min_nr_running) ||
2482 (sum_nr_running == min_nr_running &&
2483 first_cpu(group->cpumask) <
2484 first_cpu(group_min->cpumask))) {
2485 group_min = group;
2486 min_nr_running = sum_nr_running;
2487 min_load_per_task = sum_weighted_load /
2488 sum_nr_running;
2489 }
2490
2491 /*
2492 * Calculate the group which is almost near its
2493 * capacity but still has some space to pick up some load
2494 * from other group and save more power
2495 */
2496 if (sum_nr_running <= group_capacity - 1) {
2497 if (sum_nr_running > leader_nr_running ||
2498 (sum_nr_running == leader_nr_running &&
2499 first_cpu(group->cpumask) >
2500 first_cpu(group_leader->cpumask))) {
2501 group_leader = group;
2502 leader_nr_running = sum_nr_running;
2503 }
2504 }
2505 group_next:
2506 #endif
2507 group = group->next;
2508 } while (group != sd->groups);
2509
2510 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2511 goto out_balanced;
2512
2513 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2514
2515 if (this_load >= avg_load ||
2516 100*max_load <= sd->imbalance_pct*this_load)
2517 goto out_balanced;
2518
2519 busiest_load_per_task /= busiest_nr_running;
2520 if (group_imb)
2521 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2522
2523 /*
2524 * We're trying to get all the cpus to the average_load, so we don't
2525 * want to push ourselves above the average load, nor do we wish to
2526 * reduce the max loaded cpu below the average load, as either of these
2527 * actions would just result in more rebalancing later, and ping-pong
2528 * tasks around. Thus we look for the minimum possible imbalance.
2529 * Negative imbalances (*we* are more loaded than anyone else) will
2530 * be counted as no imbalance for these purposes -- we can't fix that
2531 * by pulling tasks to us. Be careful of negative numbers as they'll
2532 * appear as very large values with unsigned longs.
2533 */
2534 if (max_load <= busiest_load_per_task)
2535 goto out_balanced;
2536
2537 /*
2538 * In the presence of smp nice balancing, certain scenarios can have
2539 * max load less than avg load(as we skip the groups at or below
2540 * its cpu_power, while calculating max_load..)
2541 */
2542 if (max_load < avg_load) {
2543 *imbalance = 0;
2544 goto small_imbalance;
2545 }
2546
2547 /* Don't want to pull so many tasks that a group would go idle */
2548 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2549
2550 /* How much load to actually move to equalise the imbalance */
2551 *imbalance = min(max_pull * busiest->__cpu_power,
2552 (avg_load - this_load) * this->__cpu_power)
2553 / SCHED_LOAD_SCALE;
2554
2555 /*
2556 * if *imbalance is less than the average load per runnable task
2557 * there is no gaurantee that any tasks will be moved so we'll have
2558 * a think about bumping its value to force at least one task to be
2559 * moved
2560 */
2561 if (*imbalance < busiest_load_per_task) {
2562 unsigned long tmp, pwr_now, pwr_move;
2563 unsigned int imbn;
2564
2565 small_imbalance:
2566 pwr_move = pwr_now = 0;
2567 imbn = 2;
2568 if (this_nr_running) {
2569 this_load_per_task /= this_nr_running;
2570 if (busiest_load_per_task > this_load_per_task)
2571 imbn = 1;
2572 } else
2573 this_load_per_task = SCHED_LOAD_SCALE;
2574
2575 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2576 busiest_load_per_task * imbn) {
2577 *imbalance = busiest_load_per_task;
2578 return busiest;
2579 }
2580
2581 /*
2582 * OK, we don't have enough imbalance to justify moving tasks,
2583 * however we may be able to increase total CPU power used by
2584 * moving them.
2585 */
2586
2587 pwr_now += busiest->__cpu_power *
2588 min(busiest_load_per_task, max_load);
2589 pwr_now += this->__cpu_power *
2590 min(this_load_per_task, this_load);
2591 pwr_now /= SCHED_LOAD_SCALE;
2592
2593 /* Amount of load we'd subtract */
2594 tmp = sg_div_cpu_power(busiest,
2595 busiest_load_per_task * SCHED_LOAD_SCALE);
2596 if (max_load > tmp)
2597 pwr_move += busiest->__cpu_power *
2598 min(busiest_load_per_task, max_load - tmp);
2599
2600 /* Amount of load we'd add */
2601 if (max_load * busiest->__cpu_power <
2602 busiest_load_per_task * SCHED_LOAD_SCALE)
2603 tmp = sg_div_cpu_power(this,
2604 max_load * busiest->__cpu_power);
2605 else
2606 tmp = sg_div_cpu_power(this,
2607 busiest_load_per_task * SCHED_LOAD_SCALE);
2608 pwr_move += this->__cpu_power *
2609 min(this_load_per_task, this_load + tmp);
2610 pwr_move /= SCHED_LOAD_SCALE;
2611
2612 /* Move if we gain throughput */
2613 if (pwr_move > pwr_now)
2614 *imbalance = busiest_load_per_task;
2615 }
2616
2617 return busiest;
2618
2619 out_balanced:
2620 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2621 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2622 goto ret;
2623
2624 if (this == group_leader && group_leader != group_min) {
2625 *imbalance = min_load_per_task;
2626 return group_min;
2627 }
2628 #endif
2629 ret:
2630 *imbalance = 0;
2631 return NULL;
2632 }
2633
2634 /*
2635 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2636 */
2637 static struct rq *
2638 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2639 unsigned long imbalance, cpumask_t *cpus)
2640 {
2641 struct rq *busiest = NULL, *rq;
2642 unsigned long max_load = 0;
2643 int i;
2644
2645 for_each_cpu_mask(i, group->cpumask) {
2646 unsigned long wl;
2647
2648 if (!cpu_isset(i, *cpus))
2649 continue;
2650
2651 rq = cpu_rq(i);
2652 wl = weighted_cpuload(i);
2653
2654 if (rq->nr_running == 1 && wl > imbalance)
2655 continue;
2656
2657 if (wl > max_load) {
2658 max_load = wl;
2659 busiest = rq;
2660 }
2661 }
2662
2663 return busiest;
2664 }
2665
2666 /*
2667 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2668 * so long as it is large enough.
2669 */
2670 #define MAX_PINNED_INTERVAL 512
2671
2672 /*
2673 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2674 * tasks if there is an imbalance.
2675 */
2676 static int load_balance(int this_cpu, struct rq *this_rq,
2677 struct sched_domain *sd, enum cpu_idle_type idle,
2678 int *balance)
2679 {
2680 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2681 struct sched_group *group;
2682 unsigned long imbalance;
2683 struct rq *busiest;
2684 cpumask_t cpus = CPU_MASK_ALL;
2685 unsigned long flags;
2686
2687 /*
2688 * When power savings policy is enabled for the parent domain, idle
2689 * sibling can pick up load irrespective of busy siblings. In this case,
2690 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2691 * portraying it as CPU_NOT_IDLE.
2692 */
2693 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2694 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2695 sd_idle = 1;
2696
2697 schedstat_inc(sd, lb_count[idle]);
2698
2699 redo:
2700 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2701 &cpus, balance);
2702
2703 if (*balance == 0)
2704 goto out_balanced;
2705
2706 if (!group) {
2707 schedstat_inc(sd, lb_nobusyg[idle]);
2708 goto out_balanced;
2709 }
2710
2711 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2712 if (!busiest) {
2713 schedstat_inc(sd, lb_nobusyq[idle]);
2714 goto out_balanced;
2715 }
2716
2717 BUG_ON(busiest == this_rq);
2718
2719 schedstat_add(sd, lb_imbalance[idle], imbalance);
2720
2721 ld_moved = 0;
2722 if (busiest->nr_running > 1) {
2723 /*
2724 * Attempt to move tasks. If find_busiest_group has found
2725 * an imbalance but busiest->nr_running <= 1, the group is
2726 * still unbalanced. ld_moved simply stays zero, so it is
2727 * correctly treated as an imbalance.
2728 */
2729 local_irq_save(flags);
2730 double_rq_lock(this_rq, busiest);
2731 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2732 imbalance, sd, idle, &all_pinned);
2733 double_rq_unlock(this_rq, busiest);
2734 local_irq_restore(flags);
2735
2736 /*
2737 * some other cpu did the load balance for us.
2738 */
2739 if (ld_moved && this_cpu != smp_processor_id())
2740 resched_cpu(this_cpu);
2741
2742 /* All tasks on this runqueue were pinned by CPU affinity */
2743 if (unlikely(all_pinned)) {
2744 cpu_clear(cpu_of(busiest), cpus);
2745 if (!cpus_empty(cpus))
2746 goto redo;
2747 goto out_balanced;
2748 }
2749 }
2750
2751 if (!ld_moved) {
2752 schedstat_inc(sd, lb_failed[idle]);
2753 sd->nr_balance_failed++;
2754
2755 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2756
2757 spin_lock_irqsave(&busiest->lock, flags);
2758
2759 /* don't kick the migration_thread, if the curr
2760 * task on busiest cpu can't be moved to this_cpu
2761 */
2762 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2763 spin_unlock_irqrestore(&busiest->lock, flags);
2764 all_pinned = 1;
2765 goto out_one_pinned;
2766 }
2767
2768 if (!busiest->active_balance) {
2769 busiest->active_balance = 1;
2770 busiest->push_cpu = this_cpu;
2771 active_balance = 1;
2772 }
2773 spin_unlock_irqrestore(&busiest->lock, flags);
2774 if (active_balance)
2775 wake_up_process(busiest->migration_thread);
2776
2777 /*
2778 * We've kicked active balancing, reset the failure
2779 * counter.
2780 */
2781 sd->nr_balance_failed = sd->cache_nice_tries+1;
2782 }
2783 } else
2784 sd->nr_balance_failed = 0;
2785
2786 if (likely(!active_balance)) {
2787 /* We were unbalanced, so reset the balancing interval */
2788 sd->balance_interval = sd->min_interval;
2789 } else {
2790 /*
2791 * If we've begun active balancing, start to back off. This
2792 * case may not be covered by the all_pinned logic if there
2793 * is only 1 task on the busy runqueue (because we don't call
2794 * move_tasks).
2795 */
2796 if (sd->balance_interval < sd->max_interval)
2797 sd->balance_interval *= 2;
2798 }
2799
2800 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2801 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2802 return -1;
2803 return ld_moved;
2804
2805 out_balanced:
2806 schedstat_inc(sd, lb_balanced[idle]);
2807
2808 sd->nr_balance_failed = 0;
2809
2810 out_one_pinned:
2811 /* tune up the balancing interval */
2812 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2813 (sd->balance_interval < sd->max_interval))
2814 sd->balance_interval *= 2;
2815
2816 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2817 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2818 return -1;
2819 return 0;
2820 }
2821
2822 /*
2823 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2824 * tasks if there is an imbalance.
2825 *
2826 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2827 * this_rq is locked.
2828 */
2829 static int
2830 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2831 {
2832 struct sched_group *group;
2833 struct rq *busiest = NULL;
2834 unsigned long imbalance;
2835 int ld_moved = 0;
2836 int sd_idle = 0;
2837 int all_pinned = 0;
2838 cpumask_t cpus = CPU_MASK_ALL;
2839
2840 /*
2841 * When power savings policy is enabled for the parent domain, idle
2842 * sibling can pick up load irrespective of busy siblings. In this case,
2843 * let the state of idle sibling percolate up as IDLE, instead of
2844 * portraying it as CPU_NOT_IDLE.
2845 */
2846 if (sd->flags & SD_SHARE_CPUPOWER &&
2847 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2848 sd_idle = 1;
2849
2850 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2851 redo:
2852 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2853 &sd_idle, &cpus, NULL);
2854 if (!group) {
2855 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2856 goto out_balanced;
2857 }
2858
2859 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2860 &cpus);
2861 if (!busiest) {
2862 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2863 goto out_balanced;
2864 }
2865
2866 BUG_ON(busiest == this_rq);
2867
2868 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2869
2870 ld_moved = 0;
2871 if (busiest->nr_running > 1) {
2872 /* Attempt to move tasks */
2873 double_lock_balance(this_rq, busiest);
2874 /* this_rq->clock is already updated */
2875 update_rq_clock(busiest);
2876 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2877 imbalance, sd, CPU_NEWLY_IDLE,
2878 &all_pinned);
2879 spin_unlock(&busiest->lock);
2880
2881 if (unlikely(all_pinned)) {
2882 cpu_clear(cpu_of(busiest), cpus);
2883 if (!cpus_empty(cpus))
2884 goto redo;
2885 }
2886 }
2887
2888 if (!ld_moved) {
2889 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2890 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2891 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2892 return -1;
2893 } else
2894 sd->nr_balance_failed = 0;
2895
2896 return ld_moved;
2897
2898 out_balanced:
2899 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2900 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2901 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2902 return -1;
2903 sd->nr_balance_failed = 0;
2904
2905 return 0;
2906 }
2907
2908 /*
2909 * idle_balance is called by schedule() if this_cpu is about to become
2910 * idle. Attempts to pull tasks from other CPUs.
2911 */
2912 static void idle_balance(int this_cpu, struct rq *this_rq)
2913 {
2914 struct sched_domain *sd;
2915 int pulled_task = -1;
2916 unsigned long next_balance = jiffies + HZ;
2917
2918 for_each_domain(this_cpu, sd) {
2919 unsigned long interval;
2920
2921 if (!(sd->flags & SD_LOAD_BALANCE))
2922 continue;
2923
2924 if (sd->flags & SD_BALANCE_NEWIDLE)
2925 /* If we've pulled tasks over stop searching: */
2926 pulled_task = load_balance_newidle(this_cpu,
2927 this_rq, sd);
2928
2929 interval = msecs_to_jiffies(sd->balance_interval);
2930 if (time_after(next_balance, sd->last_balance + interval))
2931 next_balance = sd->last_balance + interval;
2932 if (pulled_task)
2933 break;
2934 }
2935 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2936 /*
2937 * We are going idle. next_balance may be set based on
2938 * a busy processor. So reset next_balance.
2939 */
2940 this_rq->next_balance = next_balance;
2941 }
2942 }
2943
2944 /*
2945 * active_load_balance is run by migration threads. It pushes running tasks
2946 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2947 * running on each physical CPU where possible, and avoids physical /
2948 * logical imbalances.
2949 *
2950 * Called with busiest_rq locked.
2951 */
2952 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2953 {
2954 int target_cpu = busiest_rq->push_cpu;
2955 struct sched_domain *sd;
2956 struct rq *target_rq;
2957
2958 /* Is there any task to move? */
2959 if (busiest_rq->nr_running <= 1)
2960 return;
2961
2962 target_rq = cpu_rq(target_cpu);
2963
2964 /*
2965 * This condition is "impossible", if it occurs
2966 * we need to fix it. Originally reported by
2967 * Bjorn Helgaas on a 128-cpu setup.
2968 */
2969 BUG_ON(busiest_rq == target_rq);
2970
2971 /* move a task from busiest_rq to target_rq */
2972 double_lock_balance(busiest_rq, target_rq);
2973 update_rq_clock(busiest_rq);
2974 update_rq_clock(target_rq);
2975
2976 /* Search for an sd spanning us and the target CPU. */
2977 for_each_domain(target_cpu, sd) {
2978 if ((sd->flags & SD_LOAD_BALANCE) &&
2979 cpu_isset(busiest_cpu, sd->span))
2980 break;
2981 }
2982
2983 if (likely(sd)) {
2984 schedstat_inc(sd, alb_count);
2985
2986 if (move_one_task(target_rq, target_cpu, busiest_rq,
2987 sd, CPU_IDLE))
2988 schedstat_inc(sd, alb_pushed);
2989 else
2990 schedstat_inc(sd, alb_failed);
2991 }
2992 spin_unlock(&target_rq->lock);
2993 }
2994
2995 #ifdef CONFIG_NO_HZ
2996 static struct {
2997 atomic_t load_balancer;
2998 cpumask_t cpu_mask;
2999 } nohz ____cacheline_aligned = {
3000 .load_balancer = ATOMIC_INIT(-1),
3001 .cpu_mask = CPU_MASK_NONE,
3002 };
3003
3004 /*
3005 * This routine will try to nominate the ilb (idle load balancing)
3006 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3007 * load balancing on behalf of all those cpus. If all the cpus in the system
3008 * go into this tickless mode, then there will be no ilb owner (as there is
3009 * no need for one) and all the cpus will sleep till the next wakeup event
3010 * arrives...
3011 *
3012 * For the ilb owner, tick is not stopped. And this tick will be used
3013 * for idle load balancing. ilb owner will still be part of
3014 * nohz.cpu_mask..
3015 *
3016 * While stopping the tick, this cpu will become the ilb owner if there
3017 * is no other owner. And will be the owner till that cpu becomes busy
3018 * or if all cpus in the system stop their ticks at which point
3019 * there is no need for ilb owner.
3020 *
3021 * When the ilb owner becomes busy, it nominates another owner, during the
3022 * next busy scheduler_tick()
3023 */
3024 int select_nohz_load_balancer(int stop_tick)
3025 {
3026 int cpu = smp_processor_id();
3027
3028 if (stop_tick) {
3029 cpu_set(cpu, nohz.cpu_mask);
3030 cpu_rq(cpu)->in_nohz_recently = 1;
3031
3032 /*
3033 * If we are going offline and still the leader, give up!
3034 */
3035 if (cpu_is_offline(cpu) &&
3036 atomic_read(&nohz.load_balancer) == cpu) {
3037 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3038 BUG();
3039 return 0;
3040 }
3041
3042 /* time for ilb owner also to sleep */
3043 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3044 if (atomic_read(&nohz.load_balancer) == cpu)
3045 atomic_set(&nohz.load_balancer, -1);
3046 return 0;
3047 }
3048
3049 if (atomic_read(&nohz.load_balancer) == -1) {
3050 /* make me the ilb owner */
3051 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3052 return 1;
3053 } else if (atomic_read(&nohz.load_balancer) == cpu)
3054 return 1;
3055 } else {
3056 if (!cpu_isset(cpu, nohz.cpu_mask))
3057 return 0;
3058
3059 cpu_clear(cpu, nohz.cpu_mask);
3060
3061 if (atomic_read(&nohz.load_balancer) == cpu)
3062 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3063 BUG();
3064 }
3065 return 0;
3066 }
3067 #endif
3068
3069 static DEFINE_SPINLOCK(balancing);
3070
3071 /*
3072 * It checks each scheduling domain to see if it is due to be balanced,
3073 * and initiates a balancing operation if so.
3074 *
3075 * Balancing parameters are set up in arch_init_sched_domains.
3076 */
3077 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3078 {
3079 int balance = 1;
3080 struct rq *rq = cpu_rq(cpu);
3081 unsigned long interval;
3082 struct sched_domain *sd;
3083 /* Earliest time when we have to do rebalance again */
3084 unsigned long next_balance = jiffies + 60*HZ;
3085 int update_next_balance = 0;
3086
3087 for_each_domain(cpu, sd) {
3088 if (!(sd->flags & SD_LOAD_BALANCE))
3089 continue;
3090
3091 interval = sd->balance_interval;
3092 if (idle != CPU_IDLE)
3093 interval *= sd->busy_factor;
3094
3095 /* scale ms to jiffies */
3096 interval = msecs_to_jiffies(interval);
3097 if (unlikely(!interval))
3098 interval = 1;
3099 if (interval > HZ*NR_CPUS/10)
3100 interval = HZ*NR_CPUS/10;
3101
3102
3103 if (sd->flags & SD_SERIALIZE) {
3104 if (!spin_trylock(&balancing))
3105 goto out;
3106 }
3107
3108 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3109 if (load_balance(cpu, rq, sd, idle, &balance)) {
3110 /*
3111 * We've pulled tasks over so either we're no
3112 * longer idle, or one of our SMT siblings is
3113 * not idle.
3114 */
3115 idle = CPU_NOT_IDLE;
3116 }
3117 sd->last_balance = jiffies;
3118 }
3119 if (sd->flags & SD_SERIALIZE)
3120 spin_unlock(&balancing);
3121 out:
3122 if (time_after(next_balance, sd->last_balance + interval)) {
3123 next_balance = sd->last_balance + interval;
3124 update_next_balance = 1;
3125 }
3126
3127 /*
3128 * Stop the load balance at this level. There is another
3129 * CPU in our sched group which is doing load balancing more
3130 * actively.
3131 */
3132 if (!balance)
3133 break;
3134 }
3135
3136 /*
3137 * next_balance will be updated only when there is a need.
3138 * When the cpu is attached to null domain for ex, it will not be
3139 * updated.
3140 */
3141 if (likely(update_next_balance))
3142 rq->next_balance = next_balance;
3143 }
3144
3145 /*
3146 * run_rebalance_domains is triggered when needed from the scheduler tick.
3147 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3148 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3149 */
3150 static void run_rebalance_domains(struct softirq_action *h)
3151 {
3152 int this_cpu = smp_processor_id();
3153 struct rq *this_rq = cpu_rq(this_cpu);
3154 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3155 CPU_IDLE : CPU_NOT_IDLE;
3156
3157 rebalance_domains(this_cpu, idle);
3158
3159 #ifdef CONFIG_NO_HZ
3160 /*
3161 * If this cpu is the owner for idle load balancing, then do the
3162 * balancing on behalf of the other idle cpus whose ticks are
3163 * stopped.
3164 */
3165 if (this_rq->idle_at_tick &&
3166 atomic_read(&nohz.load_balancer) == this_cpu) {
3167 cpumask_t cpus = nohz.cpu_mask;
3168 struct rq *rq;
3169 int balance_cpu;
3170
3171 cpu_clear(this_cpu, cpus);
3172 for_each_cpu_mask(balance_cpu, cpus) {
3173 /*
3174 * If this cpu gets work to do, stop the load balancing
3175 * work being done for other cpus. Next load
3176 * balancing owner will pick it up.
3177 */
3178 if (need_resched())
3179 break;
3180
3181 rebalance_domains(balance_cpu, CPU_IDLE);
3182
3183 rq = cpu_rq(balance_cpu);
3184 if (time_after(this_rq->next_balance, rq->next_balance))
3185 this_rq->next_balance = rq->next_balance;
3186 }
3187 }
3188 #endif
3189 }
3190
3191 /*
3192 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3193 *
3194 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3195 * idle load balancing owner or decide to stop the periodic load balancing,
3196 * if the whole system is idle.
3197 */
3198 static inline void trigger_load_balance(struct rq *rq, int cpu)
3199 {
3200 #ifdef CONFIG_NO_HZ
3201 /*
3202 * If we were in the nohz mode recently and busy at the current
3203 * scheduler tick, then check if we need to nominate new idle
3204 * load balancer.
3205 */
3206 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3207 rq->in_nohz_recently = 0;
3208
3209 if (atomic_read(&nohz.load_balancer) == cpu) {
3210 cpu_clear(cpu, nohz.cpu_mask);
3211 atomic_set(&nohz.load_balancer, -1);
3212 }
3213
3214 if (atomic_read(&nohz.load_balancer) == -1) {
3215 /*
3216 * simple selection for now: Nominate the
3217 * first cpu in the nohz list to be the next
3218 * ilb owner.
3219 *
3220 * TBD: Traverse the sched domains and nominate
3221 * the nearest cpu in the nohz.cpu_mask.
3222 */
3223 int ilb = first_cpu(nohz.cpu_mask);
3224
3225 if (ilb != NR_CPUS)
3226 resched_cpu(ilb);
3227 }
3228 }
3229
3230 /*
3231 * If this cpu is idle and doing idle load balancing for all the
3232 * cpus with ticks stopped, is it time for that to stop?
3233 */
3234 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3235 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3236 resched_cpu(cpu);
3237 return;
3238 }
3239
3240 /*
3241 * If this cpu is idle and the idle load balancing is done by
3242 * someone else, then no need raise the SCHED_SOFTIRQ
3243 */
3244 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3245 cpu_isset(cpu, nohz.cpu_mask))
3246 return;
3247 #endif
3248 if (time_after_eq(jiffies, rq->next_balance))
3249 raise_softirq(SCHED_SOFTIRQ);
3250 }
3251
3252 #else /* CONFIG_SMP */
3253
3254 /*
3255 * on UP we do not need to balance between CPUs:
3256 */
3257 static inline void idle_balance(int cpu, struct rq *rq)
3258 {
3259 }
3260
3261 /* Avoid "used but not defined" warning on UP */
3262 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3263 unsigned long max_nr_move, unsigned long max_load_move,
3264 struct sched_domain *sd, enum cpu_idle_type idle,
3265 int *all_pinned, unsigned long *load_moved,
3266 int *this_best_prio, struct rq_iterator *iterator)
3267 {
3268 *load_moved = 0;
3269
3270 return 0;
3271 }
3272
3273 #endif
3274
3275 DEFINE_PER_CPU(struct kernel_stat, kstat);
3276
3277 EXPORT_PER_CPU_SYMBOL(kstat);
3278
3279 /*
3280 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3281 * that have not yet been banked in case the task is currently running.
3282 */
3283 unsigned long long task_sched_runtime(struct task_struct *p)
3284 {
3285 unsigned long flags;
3286 u64 ns, delta_exec;
3287 struct rq *rq;
3288
3289 rq = task_rq_lock(p, &flags);
3290 ns = p->se.sum_exec_runtime;
3291 if (rq->curr == p) {
3292 update_rq_clock(rq);
3293 delta_exec = rq->clock - p->se.exec_start;
3294 if ((s64)delta_exec > 0)
3295 ns += delta_exec;
3296 }
3297 task_rq_unlock(rq, &flags);
3298
3299 return ns;
3300 }
3301
3302 /*
3303 * Account user cpu time to a process.
3304 * @p: the process that the cpu time gets accounted to
3305 * @hardirq_offset: the offset to subtract from hardirq_count()
3306 * @cputime: the cpu time spent in user space since the last update
3307 */
3308 void account_user_time(struct task_struct *p, cputime_t cputime)
3309 {
3310 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3311 cputime64_t tmp;
3312 struct rq *rq = this_rq();
3313
3314 p->utime = cputime_add(p->utime, cputime);
3315
3316 if (p != rq->idle)
3317 cpuacct_charge(p, cputime);
3318
3319 /* Add user time to cpustat. */
3320 tmp = cputime_to_cputime64(cputime);
3321 if (TASK_NICE(p) > 0)
3322 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3323 else
3324 cpustat->user = cputime64_add(cpustat->user, tmp);
3325 }
3326
3327 /*
3328 * Account guest cpu time to a process.
3329 * @p: the process that the cpu time gets accounted to
3330 * @cputime: the cpu time spent in virtual machine since the last update
3331 */
3332 void account_guest_time(struct task_struct *p, cputime_t cputime)
3333 {
3334 cputime64_t tmp;
3335 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3336
3337 tmp = cputime_to_cputime64(cputime);
3338
3339 p->utime = cputime_add(p->utime, cputime);
3340 p->gtime = cputime_add(p->gtime, cputime);
3341
3342 cpustat->user = cputime64_add(cpustat->user, tmp);
3343 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3344 }
3345
3346 /*
3347 * Account scaled user cpu time to a process.
3348 * @p: the process that the cpu time gets accounted to
3349 * @cputime: the cpu time spent in user space since the last update
3350 */
3351 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3352 {
3353 p->utimescaled = cputime_add(p->utimescaled, cputime);
3354 }
3355
3356 /*
3357 * Account system cpu time to a process.
3358 * @p: the process that the cpu time gets accounted to
3359 * @hardirq_offset: the offset to subtract from hardirq_count()
3360 * @cputime: the cpu time spent in kernel space since the last update
3361 */
3362 void account_system_time(struct task_struct *p, int hardirq_offset,
3363 cputime_t cputime)
3364 {
3365 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3366 struct rq *rq = this_rq();
3367 cputime64_t tmp;
3368
3369 if (p->flags & PF_VCPU) {
3370 account_guest_time(p, cputime);
3371 p->flags &= ~PF_VCPU;
3372 return;
3373 }
3374
3375 p->stime = cputime_add(p->stime, cputime);
3376
3377 /* Add system time to cpustat. */
3378 tmp = cputime_to_cputime64(cputime);
3379 if (hardirq_count() - hardirq_offset)
3380 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3381 else if (softirq_count())
3382 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3383 else if (p != rq->idle) {
3384 cpustat->system = cputime64_add(cpustat->system, tmp);
3385 cpuacct_charge(p, cputime);
3386 } else if (atomic_read(&rq->nr_iowait) > 0)
3387 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3388 else
3389 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3390 /* Account for system time used */
3391 acct_update_integrals(p);
3392 }
3393
3394 /*
3395 * Account scaled system cpu time to a process.
3396 * @p: the process that the cpu time gets accounted to
3397 * @hardirq_offset: the offset to subtract from hardirq_count()
3398 * @cputime: the cpu time spent in kernel space since the last update
3399 */
3400 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3401 {
3402 p->stimescaled = cputime_add(p->stimescaled, cputime);
3403 }
3404
3405 /*
3406 * Account for involuntary wait time.
3407 * @p: the process from which the cpu time has been stolen
3408 * @steal: the cpu time spent in involuntary wait
3409 */
3410 void account_steal_time(struct task_struct *p, cputime_t steal)
3411 {
3412 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3413 cputime64_t tmp = cputime_to_cputime64(steal);
3414 struct rq *rq = this_rq();
3415
3416 if (p == rq->idle) {
3417 p->stime = cputime_add(p->stime, steal);
3418 if (atomic_read(&rq->nr_iowait) > 0)
3419 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3420 else
3421 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3422 } else {
3423 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3424 cpuacct_charge(p, -tmp);
3425 }
3426 }
3427
3428 /*
3429 * This function gets called by the timer code, with HZ frequency.
3430 * We call it with interrupts disabled.
3431 *
3432 * It also gets called by the fork code, when changing the parent's
3433 * timeslices.
3434 */
3435 void scheduler_tick(void)
3436 {
3437 int cpu = smp_processor_id();
3438 struct rq *rq = cpu_rq(cpu);
3439 struct task_struct *curr = rq->curr;
3440 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3441
3442 spin_lock(&rq->lock);
3443 __update_rq_clock(rq);
3444 /*
3445 * Let rq->clock advance by at least TICK_NSEC:
3446 */
3447 if (unlikely(rq->clock < next_tick))
3448 rq->clock = next_tick;
3449 rq->tick_timestamp = rq->clock;
3450 update_cpu_load(rq);
3451 if (curr != rq->idle) /* FIXME: needed? */
3452 curr->sched_class->task_tick(rq, curr);
3453 spin_unlock(&rq->lock);
3454
3455 #ifdef CONFIG_SMP
3456 rq->idle_at_tick = idle_cpu(cpu);
3457 trigger_load_balance(rq, cpu);
3458 #endif
3459 }
3460
3461 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3462
3463 void fastcall add_preempt_count(int val)
3464 {
3465 /*
3466 * Underflow?
3467 */
3468 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3469 return;
3470 preempt_count() += val;
3471 /*
3472 * Spinlock count overflowing soon?
3473 */
3474 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3475 PREEMPT_MASK - 10);
3476 }
3477 EXPORT_SYMBOL(add_preempt_count);
3478
3479 void fastcall sub_preempt_count(int val)
3480 {
3481 /*
3482 * Underflow?
3483 */
3484 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3485 return;
3486 /*
3487 * Is the spinlock portion underflowing?
3488 */
3489 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3490 !(preempt_count() & PREEMPT_MASK)))
3491 return;
3492
3493 preempt_count() -= val;
3494 }
3495 EXPORT_SYMBOL(sub_preempt_count);
3496
3497 #endif
3498
3499 /*
3500 * Print scheduling while atomic bug:
3501 */
3502 static noinline void __schedule_bug(struct task_struct *prev)
3503 {
3504 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3505 prev->comm, preempt_count(), prev->pid);
3506 debug_show_held_locks(prev);
3507 if (irqs_disabled())
3508 print_irqtrace_events(prev);
3509 dump_stack();
3510 }
3511
3512 /*
3513 * Various schedule()-time debugging checks and statistics:
3514 */
3515 static inline void schedule_debug(struct task_struct *prev)
3516 {
3517 /*
3518 * Test if we are atomic. Since do_exit() needs to call into
3519 * schedule() atomically, we ignore that path for now.
3520 * Otherwise, whine if we are scheduling when we should not be.
3521 */
3522 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3523 __schedule_bug(prev);
3524
3525 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3526
3527 schedstat_inc(this_rq(), sched_count);
3528 #ifdef CONFIG_SCHEDSTATS
3529 if (unlikely(prev->lock_depth >= 0)) {
3530 schedstat_inc(this_rq(), bkl_count);
3531 schedstat_inc(prev, sched_info.bkl_count);
3532 }
3533 #endif
3534 }
3535
3536 /*
3537 * Pick up the highest-prio task:
3538 */
3539 static inline struct task_struct *
3540 pick_next_task(struct rq *rq, struct task_struct *prev)
3541 {
3542 const struct sched_class *class;
3543 struct task_struct *p;
3544
3545 /*
3546 * Optimization: we know that if all tasks are in
3547 * the fair class we can call that function directly:
3548 */
3549 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3550 p = fair_sched_class.pick_next_task(rq);
3551 if (likely(p))
3552 return p;
3553 }
3554
3555 class = sched_class_highest;
3556 for ( ; ; ) {
3557 p = class->pick_next_task(rq);
3558 if (p)
3559 return p;
3560 /*
3561 * Will never be NULL as the idle class always
3562 * returns a non-NULL p:
3563 */
3564 class = class->next;
3565 }
3566 }
3567
3568 /*
3569 * schedule() is the main scheduler function.
3570 */
3571 asmlinkage void __sched schedule(void)
3572 {
3573 struct task_struct *prev, *next;
3574 long *switch_count;
3575 struct rq *rq;
3576 int cpu;
3577
3578 need_resched:
3579 preempt_disable();
3580 cpu = smp_processor_id();
3581 rq = cpu_rq(cpu);
3582 rcu_qsctr_inc(cpu);
3583 prev = rq->curr;
3584 switch_count = &prev->nivcsw;
3585
3586 release_kernel_lock(prev);
3587 need_resched_nonpreemptible:
3588
3589 schedule_debug(prev);
3590
3591 /*
3592 * Do the rq-clock update outside the rq lock:
3593 */
3594 local_irq_disable();
3595 __update_rq_clock(rq);
3596 spin_lock(&rq->lock);
3597 clear_tsk_need_resched(prev);
3598
3599 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3600 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3601 unlikely(signal_pending(prev)))) {
3602 prev->state = TASK_RUNNING;
3603 } else {
3604 deactivate_task(rq, prev, 1);
3605 }
3606 switch_count = &prev->nvcsw;
3607 }
3608
3609 if (unlikely(!rq->nr_running))
3610 idle_balance(cpu, rq);
3611
3612 prev->sched_class->put_prev_task(rq, prev);
3613 next = pick_next_task(rq, prev);
3614
3615 sched_info_switch(prev, next);
3616
3617 if (likely(prev != next)) {
3618 rq->nr_switches++;
3619 rq->curr = next;
3620 ++*switch_count;
3621
3622 context_switch(rq, prev, next); /* unlocks the rq */
3623 } else
3624 spin_unlock_irq(&rq->lock);
3625
3626 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3627 cpu = smp_processor_id();
3628 rq = cpu_rq(cpu);
3629 goto need_resched_nonpreemptible;
3630 }
3631 preempt_enable_no_resched();
3632 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3633 goto need_resched;
3634 }
3635 EXPORT_SYMBOL(schedule);
3636
3637 #ifdef CONFIG_PREEMPT
3638 /*
3639 * this is the entry point to schedule() from in-kernel preemption
3640 * off of preempt_enable. Kernel preemptions off return from interrupt
3641 * occur there and call schedule directly.
3642 */
3643 asmlinkage void __sched preempt_schedule(void)
3644 {
3645 struct thread_info *ti = current_thread_info();
3646 #ifdef CONFIG_PREEMPT_BKL
3647 struct task_struct *task = current;
3648 int saved_lock_depth;
3649 #endif
3650 /*
3651 * If there is a non-zero preempt_count or interrupts are disabled,
3652 * we do not want to preempt the current task. Just return..
3653 */
3654 if (likely(ti->preempt_count || irqs_disabled()))
3655 return;
3656
3657 do {
3658 add_preempt_count(PREEMPT_ACTIVE);
3659
3660 /*
3661 * We keep the big kernel semaphore locked, but we
3662 * clear ->lock_depth so that schedule() doesnt
3663 * auto-release the semaphore:
3664 */
3665 #ifdef CONFIG_PREEMPT_BKL
3666 saved_lock_depth = task->lock_depth;
3667 task->lock_depth = -1;
3668 #endif
3669 schedule();
3670 #ifdef CONFIG_PREEMPT_BKL
3671 task->lock_depth = saved_lock_depth;
3672 #endif
3673 sub_preempt_count(PREEMPT_ACTIVE);
3674
3675 /*
3676 * Check again in case we missed a preemption opportunity
3677 * between schedule and now.
3678 */
3679 barrier();
3680 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3681 }
3682 EXPORT_SYMBOL(preempt_schedule);
3683
3684 /*
3685 * this is the entry point to schedule() from kernel preemption
3686 * off of irq context.
3687 * Note, that this is called and return with irqs disabled. This will
3688 * protect us against recursive calling from irq.
3689 */
3690 asmlinkage void __sched preempt_schedule_irq(void)
3691 {
3692 struct thread_info *ti = current_thread_info();
3693 #ifdef CONFIG_PREEMPT_BKL
3694 struct task_struct *task = current;
3695 int saved_lock_depth;
3696 #endif
3697 /* Catch callers which need to be fixed */
3698 BUG_ON(ti->preempt_count || !irqs_disabled());
3699
3700 do {
3701 add_preempt_count(PREEMPT_ACTIVE);
3702
3703 /*
3704 * We keep the big kernel semaphore locked, but we
3705 * clear ->lock_depth so that schedule() doesnt
3706 * auto-release the semaphore:
3707 */
3708 #ifdef CONFIG_PREEMPT_BKL
3709 saved_lock_depth = task->lock_depth;
3710 task->lock_depth = -1;
3711 #endif
3712 local_irq_enable();
3713 schedule();
3714 local_irq_disable();
3715 #ifdef CONFIG_PREEMPT_BKL
3716 task->lock_depth = saved_lock_depth;
3717 #endif
3718 sub_preempt_count(PREEMPT_ACTIVE);
3719
3720 /*
3721 * Check again in case we missed a preemption opportunity
3722 * between schedule and now.
3723 */
3724 barrier();
3725 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3726 }
3727
3728 #endif /* CONFIG_PREEMPT */
3729
3730 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3731 void *key)
3732 {
3733 return try_to_wake_up(curr->private, mode, sync);
3734 }
3735 EXPORT_SYMBOL(default_wake_function);
3736
3737 /*
3738 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3739 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3740 * number) then we wake all the non-exclusive tasks and one exclusive task.
3741 *
3742 * There are circumstances in which we can try to wake a task which has already
3743 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3744 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3745 */
3746 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3747 int nr_exclusive, int sync, void *key)
3748 {
3749 wait_queue_t *curr, *next;
3750
3751 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3752 unsigned flags = curr->flags;
3753
3754 if (curr->func(curr, mode, sync, key) &&
3755 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3756 break;
3757 }
3758 }
3759
3760 /**
3761 * __wake_up - wake up threads blocked on a waitqueue.
3762 * @q: the waitqueue
3763 * @mode: which threads
3764 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3765 * @key: is directly passed to the wakeup function
3766 */
3767 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3768 int nr_exclusive, void *key)
3769 {
3770 unsigned long flags;
3771
3772 spin_lock_irqsave(&q->lock, flags);
3773 __wake_up_common(q, mode, nr_exclusive, 0, key);
3774 spin_unlock_irqrestore(&q->lock, flags);
3775 }
3776 EXPORT_SYMBOL(__wake_up);
3777
3778 /*
3779 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3780 */
3781 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3782 {
3783 __wake_up_common(q, mode, 1, 0, NULL);
3784 }
3785
3786 /**
3787 * __wake_up_sync - wake up threads blocked on a waitqueue.
3788 * @q: the waitqueue
3789 * @mode: which threads
3790 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3791 *
3792 * The sync wakeup differs that the waker knows that it will schedule
3793 * away soon, so while the target thread will be woken up, it will not
3794 * be migrated to another CPU - ie. the two threads are 'synchronized'
3795 * with each other. This can prevent needless bouncing between CPUs.
3796 *
3797 * On UP it can prevent extra preemption.
3798 */
3799 void fastcall
3800 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3801 {
3802 unsigned long flags;
3803 int sync = 1;
3804
3805 if (unlikely(!q))
3806 return;
3807
3808 if (unlikely(!nr_exclusive))
3809 sync = 0;
3810
3811 spin_lock_irqsave(&q->lock, flags);
3812 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3813 spin_unlock_irqrestore(&q->lock, flags);
3814 }
3815 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3816
3817 void fastcall complete(struct completion *x)
3818 {
3819 unsigned long flags;
3820
3821 spin_lock_irqsave(&x->wait.lock, flags);
3822 x->done++;
3823 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3824 1, 0, NULL);
3825 spin_unlock_irqrestore(&x->wait.lock, flags);
3826 }
3827 EXPORT_SYMBOL(complete);
3828
3829 void fastcall complete_all(struct completion *x)
3830 {
3831 unsigned long flags;
3832
3833 spin_lock_irqsave(&x->wait.lock, flags);
3834 x->done += UINT_MAX/2;
3835 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3836 0, 0, NULL);
3837 spin_unlock_irqrestore(&x->wait.lock, flags);
3838 }
3839 EXPORT_SYMBOL(complete_all);
3840
3841 static inline long __sched
3842 do_wait_for_common(struct completion *x, long timeout, int state)
3843 {
3844 if (!x->done) {
3845 DECLARE_WAITQUEUE(wait, current);
3846
3847 wait.flags |= WQ_FLAG_EXCLUSIVE;
3848 __add_wait_queue_tail(&x->wait, &wait);
3849 do {
3850 if (state == TASK_INTERRUPTIBLE &&
3851 signal_pending(current)) {
3852 __remove_wait_queue(&x->wait, &wait);
3853 return -ERESTARTSYS;
3854 }
3855 __set_current_state(state);
3856 spin_unlock_irq(&x->wait.lock);
3857 timeout = schedule_timeout(timeout);
3858 spin_lock_irq(&x->wait.lock);
3859 if (!timeout) {
3860 __remove_wait_queue(&x->wait, &wait);
3861 return timeout;
3862 }
3863 } while (!x->done);
3864 __remove_wait_queue(&x->wait, &wait);
3865 }
3866 x->done--;
3867 return timeout;
3868 }
3869
3870 static long __sched
3871 wait_for_common(struct completion *x, long timeout, int state)
3872 {
3873 might_sleep();
3874
3875 spin_lock_irq(&x->wait.lock);
3876 timeout = do_wait_for_common(x, timeout, state);
3877 spin_unlock_irq(&x->wait.lock);
3878 return timeout;
3879 }
3880
3881 void fastcall __sched wait_for_completion(struct completion *x)
3882 {
3883 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3884 }
3885 EXPORT_SYMBOL(wait_for_completion);
3886
3887 unsigned long fastcall __sched
3888 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3889 {
3890 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3891 }
3892 EXPORT_SYMBOL(wait_for_completion_timeout);
3893
3894 int __sched wait_for_completion_interruptible(struct completion *x)
3895 {
3896 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3897 if (t == -ERESTARTSYS)
3898 return t;
3899 return 0;
3900 }
3901 EXPORT_SYMBOL(wait_for_completion_interruptible);
3902
3903 unsigned long fastcall __sched
3904 wait_for_completion_interruptible_timeout(struct completion *x,
3905 unsigned long timeout)
3906 {
3907 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3908 }
3909 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3910
3911 static long __sched
3912 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3913 {
3914 unsigned long flags;
3915 wait_queue_t wait;
3916
3917 init_waitqueue_entry(&wait, current);
3918
3919 __set_current_state(state);
3920
3921 spin_lock_irqsave(&q->lock, flags);
3922 __add_wait_queue(q, &wait);
3923 spin_unlock(&q->lock);
3924 timeout = schedule_timeout(timeout);
3925 spin_lock_irq(&q->lock);
3926 __remove_wait_queue(q, &wait);
3927 spin_unlock_irqrestore(&q->lock, flags);
3928
3929 return timeout;
3930 }
3931
3932 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3933 {
3934 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3935 }
3936 EXPORT_SYMBOL(interruptible_sleep_on);
3937
3938 long __sched
3939 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3940 {
3941 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3942 }
3943 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3944
3945 void __sched sleep_on(wait_queue_head_t *q)
3946 {
3947 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3948 }
3949 EXPORT_SYMBOL(sleep_on);
3950
3951 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3952 {
3953 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3954 }
3955 EXPORT_SYMBOL(sleep_on_timeout);
3956
3957 #ifdef CONFIG_RT_MUTEXES
3958
3959 /*
3960 * rt_mutex_setprio - set the current priority of a task
3961 * @p: task
3962 * @prio: prio value (kernel-internal form)
3963 *
3964 * This function changes the 'effective' priority of a task. It does
3965 * not touch ->normal_prio like __setscheduler().
3966 *
3967 * Used by the rt_mutex code to implement priority inheritance logic.
3968 */
3969 void rt_mutex_setprio(struct task_struct *p, int prio)
3970 {
3971 unsigned long flags;
3972 int oldprio, on_rq, running;
3973 struct rq *rq;
3974
3975 BUG_ON(prio < 0 || prio > MAX_PRIO);
3976
3977 rq = task_rq_lock(p, &flags);
3978 update_rq_clock(rq);
3979
3980 oldprio = p->prio;
3981 on_rq = p->se.on_rq;
3982 running = task_running(rq, p);
3983 if (on_rq) {
3984 dequeue_task(rq, p, 0);
3985 if (running)
3986 p->sched_class->put_prev_task(rq, p);
3987 }
3988
3989 if (rt_prio(prio))
3990 p->sched_class = &rt_sched_class;
3991 else
3992 p->sched_class = &fair_sched_class;
3993
3994 p->prio = prio;
3995
3996 if (on_rq) {
3997 if (running)
3998 p->sched_class->set_curr_task(rq);
3999 enqueue_task(rq, p, 0);
4000 /*
4001 * Reschedule if we are currently running on this runqueue and
4002 * our priority decreased, or if we are not currently running on
4003 * this runqueue and our priority is higher than the current's
4004 */
4005 if (running) {
4006 if (p->prio > oldprio)
4007 resched_task(rq->curr);
4008 } else {
4009 check_preempt_curr(rq, p);
4010 }
4011 }
4012 task_rq_unlock(rq, &flags);
4013 }
4014
4015 #endif
4016
4017 void set_user_nice(struct task_struct *p, long nice)
4018 {
4019 int old_prio, delta, on_rq;
4020 unsigned long flags;
4021 struct rq *rq;
4022
4023 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4024 return;
4025 /*
4026 * We have to be careful, if called from sys_setpriority(),
4027 * the task might be in the middle of scheduling on another CPU.
4028 */
4029 rq = task_rq_lock(p, &flags);
4030 update_rq_clock(rq);
4031 /*
4032 * The RT priorities are set via sched_setscheduler(), but we still
4033 * allow the 'normal' nice value to be set - but as expected
4034 * it wont have any effect on scheduling until the task is
4035 * SCHED_FIFO/SCHED_RR:
4036 */
4037 if (task_has_rt_policy(p)) {
4038 p->static_prio = NICE_TO_PRIO(nice);
4039 goto out_unlock;
4040 }
4041 on_rq = p->se.on_rq;
4042 if (on_rq) {
4043 dequeue_task(rq, p, 0);
4044 dec_load(rq, p);
4045 }
4046
4047 p->static_prio = NICE_TO_PRIO(nice);
4048 set_load_weight(p);
4049 old_prio = p->prio;
4050 p->prio = effective_prio(p);
4051 delta = p->prio - old_prio;
4052
4053 if (on_rq) {
4054 enqueue_task(rq, p, 0);
4055 inc_load(rq, p);
4056 /*
4057 * If the task increased its priority or is running and
4058 * lowered its priority, then reschedule its CPU:
4059 */
4060 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4061 resched_task(rq->curr);
4062 }
4063 out_unlock:
4064 task_rq_unlock(rq, &flags);
4065 }
4066 EXPORT_SYMBOL(set_user_nice);
4067
4068 /*
4069 * can_nice - check if a task can reduce its nice value
4070 * @p: task
4071 * @nice: nice value
4072 */
4073 int can_nice(const struct task_struct *p, const int nice)
4074 {
4075 /* convert nice value [19,-20] to rlimit style value [1,40] */
4076 int nice_rlim = 20 - nice;
4077
4078 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4079 capable(CAP_SYS_NICE));
4080 }
4081
4082 #ifdef __ARCH_WANT_SYS_NICE
4083
4084 /*
4085 * sys_nice - change the priority of the current process.
4086 * @increment: priority increment
4087 *
4088 * sys_setpriority is a more generic, but much slower function that
4089 * does similar things.
4090 */
4091 asmlinkage long sys_nice(int increment)
4092 {
4093 long nice, retval;
4094
4095 /*
4096 * Setpriority might change our priority at the same moment.
4097 * We don't have to worry. Conceptually one call occurs first
4098 * and we have a single winner.
4099 */
4100 if (increment < -40)
4101 increment = -40;
4102 if (increment > 40)
4103 increment = 40;
4104
4105 nice = PRIO_TO_NICE(current->static_prio) + increment;
4106 if (nice < -20)
4107 nice = -20;
4108 if (nice > 19)
4109 nice = 19;
4110
4111 if (increment < 0 && !can_nice(current, nice))
4112 return -EPERM;
4113
4114 retval = security_task_setnice(current, nice);
4115 if (retval)
4116 return retval;
4117
4118 set_user_nice(current, nice);
4119 return 0;
4120 }
4121
4122 #endif
4123
4124 /**
4125 * task_prio - return the priority value of a given task.
4126 * @p: the task in question.
4127 *
4128 * This is the priority value as seen by users in /proc.
4129 * RT tasks are offset by -200. Normal tasks are centered
4130 * around 0, value goes from -16 to +15.
4131 */
4132 int task_prio(const struct task_struct *p)
4133 {
4134 return p->prio - MAX_RT_PRIO;
4135 }
4136
4137 /**
4138 * task_nice - return the nice value of a given task.
4139 * @p: the task in question.
4140 */
4141 int task_nice(const struct task_struct *p)
4142 {
4143 return TASK_NICE(p);
4144 }
4145 EXPORT_SYMBOL_GPL(task_nice);
4146
4147 /**
4148 * idle_cpu - is a given cpu idle currently?
4149 * @cpu: the processor in question.
4150 */
4151 int idle_cpu(int cpu)
4152 {
4153 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4154 }
4155
4156 /**
4157 * idle_task - return the idle task for a given cpu.
4158 * @cpu: the processor in question.
4159 */
4160 struct task_struct *idle_task(int cpu)
4161 {
4162 return cpu_rq(cpu)->idle;
4163 }
4164
4165 /**
4166 * find_process_by_pid - find a process with a matching PID value.
4167 * @pid: the pid in question.
4168 */
4169 static struct task_struct *find_process_by_pid(pid_t pid)
4170 {
4171 return pid ? find_task_by_vpid(pid) : current;
4172 }
4173
4174 /* Actually do priority change: must hold rq lock. */
4175 static void
4176 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4177 {
4178 BUG_ON(p->se.on_rq);
4179
4180 p->policy = policy;
4181 switch (p->policy) {
4182 case SCHED_NORMAL:
4183 case SCHED_BATCH:
4184 case SCHED_IDLE:
4185 p->sched_class = &fair_sched_class;
4186 break;
4187 case SCHED_FIFO:
4188 case SCHED_RR:
4189 p->sched_class = &rt_sched_class;
4190 break;
4191 }
4192
4193 p->rt_priority = prio;
4194 p->normal_prio = normal_prio(p);
4195 /* we are holding p->pi_lock already */
4196 p->prio = rt_mutex_getprio(p);
4197 set_load_weight(p);
4198 }
4199
4200 /**
4201 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4202 * @p: the task in question.
4203 * @policy: new policy.
4204 * @param: structure containing the new RT priority.
4205 *
4206 * NOTE that the task may be already dead.
4207 */
4208 int sched_setscheduler(struct task_struct *p, int policy,
4209 struct sched_param *param)
4210 {
4211 int retval, oldprio, oldpolicy = -1, on_rq, running;
4212 unsigned long flags;
4213 struct rq *rq;
4214
4215 /* may grab non-irq protected spin_locks */
4216 BUG_ON(in_interrupt());
4217 recheck:
4218 /* double check policy once rq lock held */
4219 if (policy < 0)
4220 policy = oldpolicy = p->policy;
4221 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4222 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4223 policy != SCHED_IDLE)
4224 return -EINVAL;
4225 /*
4226 * Valid priorities for SCHED_FIFO and SCHED_RR are
4227 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4228 * SCHED_BATCH and SCHED_IDLE is 0.
4229 */
4230 if (param->sched_priority < 0 ||
4231 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4232 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4233 return -EINVAL;
4234 if (rt_policy(policy) != (param->sched_priority != 0))
4235 return -EINVAL;
4236
4237 /*
4238 * Allow unprivileged RT tasks to decrease priority:
4239 */
4240 if (!capable(CAP_SYS_NICE)) {
4241 if (rt_policy(policy)) {
4242 unsigned long rlim_rtprio;
4243
4244 if (!lock_task_sighand(p, &flags))
4245 return -ESRCH;
4246 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4247 unlock_task_sighand(p, &flags);
4248
4249 /* can't set/change the rt policy */
4250 if (policy != p->policy && !rlim_rtprio)
4251 return -EPERM;
4252
4253 /* can't increase priority */
4254 if (param->sched_priority > p->rt_priority &&
4255 param->sched_priority > rlim_rtprio)
4256 return -EPERM;
4257 }
4258 /*
4259 * Like positive nice levels, dont allow tasks to
4260 * move out of SCHED_IDLE either:
4261 */
4262 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4263 return -EPERM;
4264
4265 /* can't change other user's priorities */
4266 if ((current->euid != p->euid) &&
4267 (current->euid != p->uid))
4268 return -EPERM;
4269 }
4270
4271 retval = security_task_setscheduler(p, policy, param);
4272 if (retval)
4273 return retval;
4274 /*
4275 * make sure no PI-waiters arrive (or leave) while we are
4276 * changing the priority of the task:
4277 */
4278 spin_lock_irqsave(&p->pi_lock, flags);
4279 /*
4280 * To be able to change p->policy safely, the apropriate
4281 * runqueue lock must be held.
4282 */
4283 rq = __task_rq_lock(p);
4284 /* recheck policy now with rq lock held */
4285 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4286 policy = oldpolicy = -1;
4287 __task_rq_unlock(rq);
4288 spin_unlock_irqrestore(&p->pi_lock, flags);
4289 goto recheck;
4290 }
4291 update_rq_clock(rq);
4292 on_rq = p->se.on_rq;
4293 running = task_running(rq, p);
4294 if (on_rq) {
4295 deactivate_task(rq, p, 0);
4296 if (running)
4297 p->sched_class->put_prev_task(rq, p);
4298 }
4299
4300 oldprio = p->prio;
4301 __setscheduler(rq, p, policy, param->sched_priority);
4302
4303 if (on_rq) {
4304 if (running)
4305 p->sched_class->set_curr_task(rq);
4306 activate_task(rq, p, 0);
4307 /*
4308 * Reschedule if we are currently running on this runqueue and
4309 * our priority decreased, or if we are not currently running on
4310 * this runqueue and our priority is higher than the current's
4311 */
4312 if (running) {
4313 if (p->prio > oldprio)
4314 resched_task(rq->curr);
4315 } else {
4316 check_preempt_curr(rq, p);
4317 }
4318 }
4319 __task_rq_unlock(rq);
4320 spin_unlock_irqrestore(&p->pi_lock, flags);
4321
4322 rt_mutex_adjust_pi(p);
4323
4324 return 0;
4325 }
4326 EXPORT_SYMBOL_GPL(sched_setscheduler);
4327
4328 static int
4329 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4330 {
4331 struct sched_param lparam;
4332 struct task_struct *p;
4333 int retval;
4334
4335 if (!param || pid < 0)
4336 return -EINVAL;
4337 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4338 return -EFAULT;
4339
4340 rcu_read_lock();
4341 retval = -ESRCH;
4342 p = find_process_by_pid(pid);
4343 if (p != NULL)
4344 retval = sched_setscheduler(p, policy, &lparam);
4345 rcu_read_unlock();
4346
4347 return retval;
4348 }
4349
4350 /**
4351 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4352 * @pid: the pid in question.
4353 * @policy: new policy.
4354 * @param: structure containing the new RT priority.
4355 */
4356 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4357 struct sched_param __user *param)
4358 {
4359 /* negative values for policy are not valid */
4360 if (policy < 0)
4361 return -EINVAL;
4362
4363 return do_sched_setscheduler(pid, policy, param);
4364 }
4365
4366 /**
4367 * sys_sched_setparam - set/change the RT priority of a thread
4368 * @pid: the pid in question.
4369 * @param: structure containing the new RT priority.
4370 */
4371 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4372 {
4373 return do_sched_setscheduler(pid, -1, param);
4374 }
4375
4376 /**
4377 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4378 * @pid: the pid in question.
4379 */
4380 asmlinkage long sys_sched_getscheduler(pid_t pid)
4381 {
4382 struct task_struct *p;
4383 int retval;
4384
4385 if (pid < 0)
4386 return -EINVAL;
4387
4388 retval = -ESRCH;
4389 read_lock(&tasklist_lock);
4390 p = find_process_by_pid(pid);
4391 if (p) {
4392 retval = security_task_getscheduler(p);
4393 if (!retval)
4394 retval = p->policy;
4395 }
4396 read_unlock(&tasklist_lock);
4397 return retval;
4398 }
4399
4400 /**
4401 * sys_sched_getscheduler - get the RT priority of a thread
4402 * @pid: the pid in question.
4403 * @param: structure containing the RT priority.
4404 */
4405 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4406 {
4407 struct sched_param lp;
4408 struct task_struct *p;
4409 int retval;
4410
4411 if (!param || pid < 0)
4412 return -EINVAL;
4413
4414 read_lock(&tasklist_lock);
4415 p = find_process_by_pid(pid);
4416 retval = -ESRCH;
4417 if (!p)
4418 goto out_unlock;
4419
4420 retval = security_task_getscheduler(p);
4421 if (retval)
4422 goto out_unlock;
4423
4424 lp.sched_priority = p->rt_priority;
4425 read_unlock(&tasklist_lock);
4426
4427 /*
4428 * This one might sleep, we cannot do it with a spinlock held ...
4429 */
4430 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4431
4432 return retval;
4433
4434 out_unlock:
4435 read_unlock(&tasklist_lock);
4436 return retval;
4437 }
4438
4439 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4440 {
4441 cpumask_t cpus_allowed;
4442 struct task_struct *p;
4443 int retval;
4444
4445 mutex_lock(&sched_hotcpu_mutex);
4446 read_lock(&tasklist_lock);
4447
4448 p = find_process_by_pid(pid);
4449 if (!p) {
4450 read_unlock(&tasklist_lock);
4451 mutex_unlock(&sched_hotcpu_mutex);
4452 return -ESRCH;
4453 }
4454
4455 /*
4456 * It is not safe to call set_cpus_allowed with the
4457 * tasklist_lock held. We will bump the task_struct's
4458 * usage count and then drop tasklist_lock.
4459 */
4460 get_task_struct(p);
4461 read_unlock(&tasklist_lock);
4462
4463 retval = -EPERM;
4464 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4465 !capable(CAP_SYS_NICE))
4466 goto out_unlock;
4467
4468 retval = security_task_setscheduler(p, 0, NULL);
4469 if (retval)
4470 goto out_unlock;
4471
4472 cpus_allowed = cpuset_cpus_allowed(p);
4473 cpus_and(new_mask, new_mask, cpus_allowed);
4474 again:
4475 retval = set_cpus_allowed(p, new_mask);
4476
4477 if (!retval) {
4478 cpus_allowed = cpuset_cpus_allowed(p);
4479 if (!cpus_subset(new_mask, cpus_allowed)) {
4480 /*
4481 * We must have raced with a concurrent cpuset
4482 * update. Just reset the cpus_allowed to the
4483 * cpuset's cpus_allowed
4484 */
4485 new_mask = cpus_allowed;
4486 goto again;
4487 }
4488 }
4489 out_unlock:
4490 put_task_struct(p);
4491 mutex_unlock(&sched_hotcpu_mutex);
4492 return retval;
4493 }
4494
4495 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4496 cpumask_t *new_mask)
4497 {
4498 if (len < sizeof(cpumask_t)) {
4499 memset(new_mask, 0, sizeof(cpumask_t));
4500 } else if (len > sizeof(cpumask_t)) {
4501 len = sizeof(cpumask_t);
4502 }
4503 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4504 }
4505
4506 /**
4507 * sys_sched_setaffinity - set the cpu affinity of a process
4508 * @pid: pid of the process
4509 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4510 * @user_mask_ptr: user-space pointer to the new cpu mask
4511 */
4512 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4513 unsigned long __user *user_mask_ptr)
4514 {
4515 cpumask_t new_mask;
4516 int retval;
4517
4518 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4519 if (retval)
4520 return retval;
4521
4522 return sched_setaffinity(pid, new_mask);
4523 }
4524
4525 /*
4526 * Represents all cpu's present in the system
4527 * In systems capable of hotplug, this map could dynamically grow
4528 * as new cpu's are detected in the system via any platform specific
4529 * method, such as ACPI for e.g.
4530 */
4531
4532 cpumask_t cpu_present_map __read_mostly;
4533 EXPORT_SYMBOL(cpu_present_map);
4534
4535 #ifndef CONFIG_SMP
4536 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4537 EXPORT_SYMBOL(cpu_online_map);
4538
4539 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4540 EXPORT_SYMBOL(cpu_possible_map);
4541 #endif
4542
4543 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4544 {
4545 struct task_struct *p;
4546 int retval;
4547
4548 mutex_lock(&sched_hotcpu_mutex);
4549 read_lock(&tasklist_lock);
4550
4551 retval = -ESRCH;
4552 p = find_process_by_pid(pid);
4553 if (!p)
4554 goto out_unlock;
4555
4556 retval = security_task_getscheduler(p);
4557 if (retval)
4558 goto out_unlock;
4559
4560 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4561
4562 out_unlock:
4563 read_unlock(&tasklist_lock);
4564 mutex_unlock(&sched_hotcpu_mutex);
4565
4566 return retval;
4567 }
4568
4569 /**
4570 * sys_sched_getaffinity - get the cpu affinity of a process
4571 * @pid: pid of the process
4572 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4573 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4574 */
4575 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4576 unsigned long __user *user_mask_ptr)
4577 {
4578 int ret;
4579 cpumask_t mask;
4580
4581 if (len < sizeof(cpumask_t))
4582 return -EINVAL;
4583
4584 ret = sched_getaffinity(pid, &mask);
4585 if (ret < 0)
4586 return ret;
4587
4588 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4589 return -EFAULT;
4590
4591 return sizeof(cpumask_t);
4592 }
4593
4594 /**
4595 * sys_sched_yield - yield the current processor to other threads.
4596 *
4597 * This function yields the current CPU to other tasks. If there are no
4598 * other threads running on this CPU then this function will return.
4599 */
4600 asmlinkage long sys_sched_yield(void)
4601 {
4602 struct rq *rq = this_rq_lock();
4603
4604 schedstat_inc(rq, yld_count);
4605 current->sched_class->yield_task(rq);
4606
4607 /*
4608 * Since we are going to call schedule() anyway, there's
4609 * no need to preempt or enable interrupts:
4610 */
4611 __release(rq->lock);
4612 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4613 _raw_spin_unlock(&rq->lock);
4614 preempt_enable_no_resched();
4615
4616 schedule();
4617
4618 return 0;
4619 }
4620
4621 static void __cond_resched(void)
4622 {
4623 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4624 __might_sleep(__FILE__, __LINE__);
4625 #endif
4626 /*
4627 * The BKS might be reacquired before we have dropped
4628 * PREEMPT_ACTIVE, which could trigger a second
4629 * cond_resched() call.
4630 */
4631 do {
4632 add_preempt_count(PREEMPT_ACTIVE);
4633 schedule();
4634 sub_preempt_count(PREEMPT_ACTIVE);
4635 } while (need_resched());
4636 }
4637
4638 int __sched cond_resched(void)
4639 {
4640 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4641 system_state == SYSTEM_RUNNING) {
4642 __cond_resched();
4643 return 1;
4644 }
4645 return 0;
4646 }
4647 EXPORT_SYMBOL(cond_resched);
4648
4649 /*
4650 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4651 * call schedule, and on return reacquire the lock.
4652 *
4653 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4654 * operations here to prevent schedule() from being called twice (once via
4655 * spin_unlock(), once by hand).
4656 */
4657 int cond_resched_lock(spinlock_t *lock)
4658 {
4659 int ret = 0;
4660
4661 if (need_lockbreak(lock)) {
4662 spin_unlock(lock);
4663 cpu_relax();
4664 ret = 1;
4665 spin_lock(lock);
4666 }
4667 if (need_resched() && system_state == SYSTEM_RUNNING) {
4668 spin_release(&lock->dep_map, 1, _THIS_IP_);
4669 _raw_spin_unlock(lock);
4670 preempt_enable_no_resched();
4671 __cond_resched();
4672 ret = 1;
4673 spin_lock(lock);
4674 }
4675 return ret;
4676 }
4677 EXPORT_SYMBOL(cond_resched_lock);
4678
4679 int __sched cond_resched_softirq(void)
4680 {
4681 BUG_ON(!in_softirq());
4682
4683 if (need_resched() && system_state == SYSTEM_RUNNING) {
4684 local_bh_enable();
4685 __cond_resched();
4686 local_bh_disable();
4687 return 1;
4688 }
4689 return 0;
4690 }
4691 EXPORT_SYMBOL(cond_resched_softirq);
4692
4693 /**
4694 * yield - yield the current processor to other threads.
4695 *
4696 * This is a shortcut for kernel-space yielding - it marks the
4697 * thread runnable and calls sys_sched_yield().
4698 */
4699 void __sched yield(void)
4700 {
4701 set_current_state(TASK_RUNNING);
4702 sys_sched_yield();
4703 }
4704 EXPORT_SYMBOL(yield);
4705
4706 /*
4707 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4708 * that process accounting knows that this is a task in IO wait state.
4709 *
4710 * But don't do that if it is a deliberate, throttling IO wait (this task
4711 * has set its backing_dev_info: the queue against which it should throttle)
4712 */
4713 void __sched io_schedule(void)
4714 {
4715 struct rq *rq = &__raw_get_cpu_var(runqueues);
4716
4717 delayacct_blkio_start();
4718 atomic_inc(&rq->nr_iowait);
4719 schedule();
4720 atomic_dec(&rq->nr_iowait);
4721 delayacct_blkio_end();
4722 }
4723 EXPORT_SYMBOL(io_schedule);
4724
4725 long __sched io_schedule_timeout(long timeout)
4726 {
4727 struct rq *rq = &__raw_get_cpu_var(runqueues);
4728 long ret;
4729
4730 delayacct_blkio_start();
4731 atomic_inc(&rq->nr_iowait);
4732 ret = schedule_timeout(timeout);
4733 atomic_dec(&rq->nr_iowait);
4734 delayacct_blkio_end();
4735 return ret;
4736 }
4737
4738 /**
4739 * sys_sched_get_priority_max - return maximum RT priority.
4740 * @policy: scheduling class.
4741 *
4742 * this syscall returns the maximum rt_priority that can be used
4743 * by a given scheduling class.
4744 */
4745 asmlinkage long sys_sched_get_priority_max(int policy)
4746 {
4747 int ret = -EINVAL;
4748
4749 switch (policy) {
4750 case SCHED_FIFO:
4751 case SCHED_RR:
4752 ret = MAX_USER_RT_PRIO-1;
4753 break;
4754 case SCHED_NORMAL:
4755 case SCHED_BATCH:
4756 case SCHED_IDLE:
4757 ret = 0;
4758 break;
4759 }
4760 return ret;
4761 }
4762
4763 /**
4764 * sys_sched_get_priority_min - return minimum RT priority.
4765 * @policy: scheduling class.
4766 *
4767 * this syscall returns the minimum rt_priority that can be used
4768 * by a given scheduling class.
4769 */
4770 asmlinkage long sys_sched_get_priority_min(int policy)
4771 {
4772 int ret = -EINVAL;
4773
4774 switch (policy) {
4775 case SCHED_FIFO:
4776 case SCHED_RR:
4777 ret = 1;
4778 break;
4779 case SCHED_NORMAL:
4780 case SCHED_BATCH:
4781 case SCHED_IDLE:
4782 ret = 0;
4783 }
4784 return ret;
4785 }
4786
4787 /**
4788 * sys_sched_rr_get_interval - return the default timeslice of a process.
4789 * @pid: pid of the process.
4790 * @interval: userspace pointer to the timeslice value.
4791 *
4792 * this syscall writes the default timeslice value of a given process
4793 * into the user-space timespec buffer. A value of '0' means infinity.
4794 */
4795 asmlinkage
4796 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4797 {
4798 struct task_struct *p;
4799 unsigned int time_slice;
4800 int retval;
4801 struct timespec t;
4802
4803 if (pid < 0)
4804 return -EINVAL;
4805
4806 retval = -ESRCH;
4807 read_lock(&tasklist_lock);
4808 p = find_process_by_pid(pid);
4809 if (!p)
4810 goto out_unlock;
4811
4812 retval = security_task_getscheduler(p);
4813 if (retval)
4814 goto out_unlock;
4815
4816 if (p->policy == SCHED_FIFO)
4817 time_slice = 0;
4818 else if (p->policy == SCHED_RR)
4819 time_slice = DEF_TIMESLICE;
4820 else {
4821 struct sched_entity *se = &p->se;
4822 unsigned long flags;
4823 struct rq *rq;
4824
4825 rq = task_rq_lock(p, &flags);
4826 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4827 task_rq_unlock(rq, &flags);
4828 }
4829 read_unlock(&tasklist_lock);
4830 jiffies_to_timespec(time_slice, &t);
4831 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4832 return retval;
4833
4834 out_unlock:
4835 read_unlock(&tasklist_lock);
4836 return retval;
4837 }
4838
4839 static const char stat_nam[] = "RSDTtZX";
4840
4841 static void show_task(struct task_struct *p)
4842 {
4843 unsigned long free = 0;
4844 unsigned state;
4845
4846 state = p->state ? __ffs(p->state) + 1 : 0;
4847 printk(KERN_INFO "%-13.13s %c", p->comm,
4848 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4849 #if BITS_PER_LONG == 32
4850 if (state == TASK_RUNNING)
4851 printk(KERN_CONT " running ");
4852 else
4853 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4854 #else
4855 if (state == TASK_RUNNING)
4856 printk(KERN_CONT " running task ");
4857 else
4858 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4859 #endif
4860 #ifdef CONFIG_DEBUG_STACK_USAGE
4861 {
4862 unsigned long *n = end_of_stack(p);
4863 while (!*n)
4864 n++;
4865 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4866 }
4867 #endif
4868 printk(KERN_CONT "%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4869
4870 if (state != TASK_RUNNING)
4871 show_stack(p, NULL);
4872 }
4873
4874 void show_state_filter(unsigned long state_filter)
4875 {
4876 struct task_struct *g, *p;
4877
4878 #if BITS_PER_LONG == 32
4879 printk(KERN_INFO
4880 " task PC stack pid father\n");
4881 #else
4882 printk(KERN_INFO
4883 " task PC stack pid father\n");
4884 #endif
4885 read_lock(&tasklist_lock);
4886 do_each_thread(g, p) {
4887 /*
4888 * reset the NMI-timeout, listing all files on a slow
4889 * console might take alot of time:
4890 */
4891 touch_nmi_watchdog();
4892 if (!state_filter || (p->state & state_filter))
4893 show_task(p);
4894 } while_each_thread(g, p);
4895
4896 touch_all_softlockup_watchdogs();
4897
4898 #ifdef CONFIG_SCHED_DEBUG
4899 sysrq_sched_debug_show();
4900 #endif
4901 read_unlock(&tasklist_lock);
4902 /*
4903 * Only show locks if all tasks are dumped:
4904 */
4905 if (state_filter == -1)
4906 debug_show_all_locks();
4907 }
4908
4909 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4910 {
4911 idle->sched_class = &idle_sched_class;
4912 }
4913
4914 /**
4915 * init_idle - set up an idle thread for a given CPU
4916 * @idle: task in question
4917 * @cpu: cpu the idle task belongs to
4918 *
4919 * NOTE: this function does not set the idle thread's NEED_RESCHED
4920 * flag, to make booting more robust.
4921 */
4922 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4923 {
4924 struct rq *rq = cpu_rq(cpu);
4925 unsigned long flags;
4926
4927 __sched_fork(idle);
4928 idle->se.exec_start = sched_clock();
4929
4930 idle->prio = idle->normal_prio = MAX_PRIO;
4931 idle->cpus_allowed = cpumask_of_cpu(cpu);
4932 __set_task_cpu(idle, cpu);
4933
4934 spin_lock_irqsave(&rq->lock, flags);
4935 rq->curr = rq->idle = idle;
4936 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4937 idle->oncpu = 1;
4938 #endif
4939 spin_unlock_irqrestore(&rq->lock, flags);
4940
4941 /* Set the preempt count _outside_ the spinlocks! */
4942 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4943 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4944 #else
4945 task_thread_info(idle)->preempt_count = 0;
4946 #endif
4947 /*
4948 * The idle tasks have their own, simple scheduling class:
4949 */
4950 idle->sched_class = &idle_sched_class;
4951 }
4952
4953 /*
4954 * In a system that switches off the HZ timer nohz_cpu_mask
4955 * indicates which cpus entered this state. This is used
4956 * in the rcu update to wait only for active cpus. For system
4957 * which do not switch off the HZ timer nohz_cpu_mask should
4958 * always be CPU_MASK_NONE.
4959 */
4960 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4961
4962 #ifdef CONFIG_SMP
4963 /*
4964 * This is how migration works:
4965 *
4966 * 1) we queue a struct migration_req structure in the source CPU's
4967 * runqueue and wake up that CPU's migration thread.
4968 * 2) we down() the locked semaphore => thread blocks.
4969 * 3) migration thread wakes up (implicitly it forces the migrated
4970 * thread off the CPU)
4971 * 4) it gets the migration request and checks whether the migrated
4972 * task is still in the wrong runqueue.
4973 * 5) if it's in the wrong runqueue then the migration thread removes
4974 * it and puts it into the right queue.
4975 * 6) migration thread up()s the semaphore.
4976 * 7) we wake up and the migration is done.
4977 */
4978
4979 /*
4980 * Change a given task's CPU affinity. Migrate the thread to a
4981 * proper CPU and schedule it away if the CPU it's executing on
4982 * is removed from the allowed bitmask.
4983 *
4984 * NOTE: the caller must have a valid reference to the task, the
4985 * task must not exit() & deallocate itself prematurely. The
4986 * call is not atomic; no spinlocks may be held.
4987 */
4988 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4989 {
4990 struct migration_req req;
4991 unsigned long flags;
4992 struct rq *rq;
4993 int ret = 0;
4994
4995 rq = task_rq_lock(p, &flags);
4996 if (!cpus_intersects(new_mask, cpu_online_map)) {
4997 ret = -EINVAL;
4998 goto out;
4999 }
5000
5001 p->cpus_allowed = new_mask;
5002 /* Can the task run on the task's current CPU? If so, we're done */
5003 if (cpu_isset(task_cpu(p), new_mask))
5004 goto out;
5005
5006 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5007 /* Need help from migration thread: drop lock and wait. */
5008 task_rq_unlock(rq, &flags);
5009 wake_up_process(rq->migration_thread);
5010 wait_for_completion(&req.done);
5011 tlb_migrate_finish(p->mm);
5012 return 0;
5013 }
5014 out:
5015 task_rq_unlock(rq, &flags);
5016
5017 return ret;
5018 }
5019 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5020
5021 /*
5022 * Move (not current) task off this cpu, onto dest cpu. We're doing
5023 * this because either it can't run here any more (set_cpus_allowed()
5024 * away from this CPU, or CPU going down), or because we're
5025 * attempting to rebalance this task on exec (sched_exec).
5026 *
5027 * So we race with normal scheduler movements, but that's OK, as long
5028 * as the task is no longer on this CPU.
5029 *
5030 * Returns non-zero if task was successfully migrated.
5031 */
5032 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5033 {
5034 struct rq *rq_dest, *rq_src;
5035 int ret = 0, on_rq;
5036
5037 if (unlikely(cpu_is_offline(dest_cpu)))
5038 return ret;
5039
5040 rq_src = cpu_rq(src_cpu);
5041 rq_dest = cpu_rq(dest_cpu);
5042
5043 double_rq_lock(rq_src, rq_dest);
5044 /* Already moved. */
5045 if (task_cpu(p) != src_cpu)
5046 goto out;
5047 /* Affinity changed (again). */
5048 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5049 goto out;
5050
5051 on_rq = p->se.on_rq;
5052 if (on_rq)
5053 deactivate_task(rq_src, p, 0);
5054
5055 set_task_cpu(p, dest_cpu);
5056 if (on_rq) {
5057 activate_task(rq_dest, p, 0);
5058 check_preempt_curr(rq_dest, p);
5059 }
5060 ret = 1;
5061 out:
5062 double_rq_unlock(rq_src, rq_dest);
5063 return ret;
5064 }
5065
5066 /*
5067 * migration_thread - this is a highprio system thread that performs
5068 * thread migration by bumping thread off CPU then 'pushing' onto
5069 * another runqueue.
5070 */
5071 static int migration_thread(void *data)
5072 {
5073 int cpu = (long)data;
5074 struct rq *rq;
5075
5076 rq = cpu_rq(cpu);
5077 BUG_ON(rq->migration_thread != current);
5078
5079 set_current_state(TASK_INTERRUPTIBLE);
5080 while (!kthread_should_stop()) {
5081 struct migration_req *req;
5082 struct list_head *head;
5083
5084 spin_lock_irq(&rq->lock);
5085
5086 if (cpu_is_offline(cpu)) {
5087 spin_unlock_irq(&rq->lock);
5088 goto wait_to_die;
5089 }
5090
5091 if (rq->active_balance) {
5092 active_load_balance(rq, cpu);
5093 rq->active_balance = 0;
5094 }
5095
5096 head = &rq->migration_queue;
5097
5098 if (list_empty(head)) {
5099 spin_unlock_irq(&rq->lock);
5100 schedule();
5101 set_current_state(TASK_INTERRUPTIBLE);
5102 continue;
5103 }
5104 req = list_entry(head->next, struct migration_req, list);
5105 list_del_init(head->next);
5106
5107 spin_unlock(&rq->lock);
5108 __migrate_task(req->task, cpu, req->dest_cpu);
5109 local_irq_enable();
5110
5111 complete(&req->done);
5112 }
5113 __set_current_state(TASK_RUNNING);
5114 return 0;
5115
5116 wait_to_die:
5117 /* Wait for kthread_stop */
5118 set_current_state(TASK_INTERRUPTIBLE);
5119 while (!kthread_should_stop()) {
5120 schedule();
5121 set_current_state(TASK_INTERRUPTIBLE);
5122 }
5123 __set_current_state(TASK_RUNNING);
5124 return 0;
5125 }
5126
5127 #ifdef CONFIG_HOTPLUG_CPU
5128
5129 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5130 {
5131 int ret;
5132
5133 local_irq_disable();
5134 ret = __migrate_task(p, src_cpu, dest_cpu);
5135 local_irq_enable();
5136 return ret;
5137 }
5138
5139 /*
5140 * Figure out where task on dead CPU should go, use force if neccessary.
5141 * NOTE: interrupts should be disabled by the caller
5142 */
5143 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5144 {
5145 unsigned long flags;
5146 cpumask_t mask;
5147 struct rq *rq;
5148 int dest_cpu;
5149
5150 do {
5151 /* On same node? */
5152 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5153 cpus_and(mask, mask, p->cpus_allowed);
5154 dest_cpu = any_online_cpu(mask);
5155
5156 /* On any allowed CPU? */
5157 if (dest_cpu == NR_CPUS)
5158 dest_cpu = any_online_cpu(p->cpus_allowed);
5159
5160 /* No more Mr. Nice Guy. */
5161 if (dest_cpu == NR_CPUS) {
5162 rq = task_rq_lock(p, &flags);
5163 cpus_setall(p->cpus_allowed);
5164 dest_cpu = any_online_cpu(p->cpus_allowed);
5165 task_rq_unlock(rq, &flags);
5166
5167 /*
5168 * Don't tell them about moving exiting tasks or
5169 * kernel threads (both mm NULL), since they never
5170 * leave kernel.
5171 */
5172 if (p->mm && printk_ratelimit())
5173 printk(KERN_INFO "process %d (%s) no "
5174 "longer affine to cpu%d\n",
5175 p->pid, p->comm, dead_cpu);
5176 }
5177 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5178 }
5179
5180 /*
5181 * While a dead CPU has no uninterruptible tasks queued at this point,
5182 * it might still have a nonzero ->nr_uninterruptible counter, because
5183 * for performance reasons the counter is not stricly tracking tasks to
5184 * their home CPUs. So we just add the counter to another CPU's counter,
5185 * to keep the global sum constant after CPU-down:
5186 */
5187 static void migrate_nr_uninterruptible(struct rq *rq_src)
5188 {
5189 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5190 unsigned long flags;
5191
5192 local_irq_save(flags);
5193 double_rq_lock(rq_src, rq_dest);
5194 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5195 rq_src->nr_uninterruptible = 0;
5196 double_rq_unlock(rq_src, rq_dest);
5197 local_irq_restore(flags);
5198 }
5199
5200 /* Run through task list and migrate tasks from the dead cpu. */
5201 static void migrate_live_tasks(int src_cpu)
5202 {
5203 struct task_struct *p, *t;
5204
5205 read_lock(&tasklist_lock);
5206
5207 do_each_thread(t, p) {
5208 if (p == current)
5209 continue;
5210
5211 if (task_cpu(p) == src_cpu)
5212 move_task_off_dead_cpu(src_cpu, p);
5213 } while_each_thread(t, p);
5214
5215 read_unlock(&tasklist_lock);
5216 }
5217
5218 /*
5219 * activate_idle_task - move idle task to the _front_ of runqueue.
5220 */
5221 static void activate_idle_task(struct task_struct *p, struct rq *rq)
5222 {
5223 update_rq_clock(rq);
5224
5225 if (p->state == TASK_UNINTERRUPTIBLE)
5226 rq->nr_uninterruptible--;
5227
5228 enqueue_task(rq, p, 0);
5229 inc_nr_running(p, rq);
5230 }
5231
5232 /*
5233 * Schedules idle task to be the next runnable task on current CPU.
5234 * It does so by boosting its priority to highest possible and adding it to
5235 * the _front_ of the runqueue. Used by CPU offline code.
5236 */
5237 void sched_idle_next(void)
5238 {
5239 int this_cpu = smp_processor_id();
5240 struct rq *rq = cpu_rq(this_cpu);
5241 struct task_struct *p = rq->idle;
5242 unsigned long flags;
5243
5244 /* cpu has to be offline */
5245 BUG_ON(cpu_online(this_cpu));
5246
5247 /*
5248 * Strictly not necessary since rest of the CPUs are stopped by now
5249 * and interrupts disabled on the current cpu.
5250 */
5251 spin_lock_irqsave(&rq->lock, flags);
5252
5253 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5254
5255 /* Add idle task to the _front_ of its priority queue: */
5256 activate_idle_task(p, rq);
5257
5258 spin_unlock_irqrestore(&rq->lock, flags);
5259 }
5260
5261 /*
5262 * Ensures that the idle task is using init_mm right before its cpu goes
5263 * offline.
5264 */
5265 void idle_task_exit(void)
5266 {
5267 struct mm_struct *mm = current->active_mm;
5268
5269 BUG_ON(cpu_online(smp_processor_id()));
5270
5271 if (mm != &init_mm)
5272 switch_mm(mm, &init_mm, current);
5273 mmdrop(mm);
5274 }
5275
5276 /* called under rq->lock with disabled interrupts */
5277 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5278 {
5279 struct rq *rq = cpu_rq(dead_cpu);
5280
5281 /* Must be exiting, otherwise would be on tasklist. */
5282 BUG_ON(!p->exit_state);
5283
5284 /* Cannot have done final schedule yet: would have vanished. */
5285 BUG_ON(p->state == TASK_DEAD);
5286
5287 get_task_struct(p);
5288
5289 /*
5290 * Drop lock around migration; if someone else moves it,
5291 * that's OK. No task can be added to this CPU, so iteration is
5292 * fine.
5293 */
5294 spin_unlock_irq(&rq->lock);
5295 move_task_off_dead_cpu(dead_cpu, p);
5296 spin_lock_irq(&rq->lock);
5297
5298 put_task_struct(p);
5299 }
5300
5301 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5302 static void migrate_dead_tasks(unsigned int dead_cpu)
5303 {
5304 struct rq *rq = cpu_rq(dead_cpu);
5305 struct task_struct *next;
5306
5307 for ( ; ; ) {
5308 if (!rq->nr_running)
5309 break;
5310 update_rq_clock(rq);
5311 next = pick_next_task(rq, rq->curr);
5312 if (!next)
5313 break;
5314 migrate_dead(dead_cpu, next);
5315
5316 }
5317 }
5318 #endif /* CONFIG_HOTPLUG_CPU */
5319
5320 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5321
5322 static struct ctl_table sd_ctl_dir[] = {
5323 {
5324 .procname = "sched_domain",
5325 .mode = 0555,
5326 },
5327 {0,},
5328 };
5329
5330 static struct ctl_table sd_ctl_root[] = {
5331 {
5332 .ctl_name = CTL_KERN,
5333 .procname = "kernel",
5334 .mode = 0555,
5335 .child = sd_ctl_dir,
5336 },
5337 {0,},
5338 };
5339
5340 static struct ctl_table *sd_alloc_ctl_entry(int n)
5341 {
5342 struct ctl_table *entry =
5343 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5344
5345 return entry;
5346 }
5347
5348 static void sd_free_ctl_entry(struct ctl_table **tablep)
5349 {
5350 struct ctl_table *entry;
5351
5352 /*
5353 * In the intermediate directories, both the child directory and
5354 * procname are dynamically allocated and could fail but the mode
5355 * will always be set. In the lowest directory the names are
5356 * static strings and all have proc handlers.
5357 */
5358 for (entry = *tablep; entry->mode; entry++) {
5359 if (entry->child)
5360 sd_free_ctl_entry(&entry->child);
5361 if (entry->proc_handler == NULL)
5362 kfree(entry->procname);
5363 }
5364
5365 kfree(*tablep);
5366 *tablep = NULL;
5367 }
5368
5369 static void
5370 set_table_entry(struct ctl_table *entry,
5371 const char *procname, void *data, int maxlen,
5372 mode_t mode, proc_handler *proc_handler)
5373 {
5374 entry->procname = procname;
5375 entry->data = data;
5376 entry->maxlen = maxlen;
5377 entry->mode = mode;
5378 entry->proc_handler = proc_handler;
5379 }
5380
5381 static struct ctl_table *
5382 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5383 {
5384 struct ctl_table *table = sd_alloc_ctl_entry(12);
5385
5386 if (table == NULL)
5387 return NULL;
5388
5389 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5390 sizeof(long), 0644, proc_doulongvec_minmax);
5391 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5392 sizeof(long), 0644, proc_doulongvec_minmax);
5393 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5394 sizeof(int), 0644, proc_dointvec_minmax);
5395 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5396 sizeof(int), 0644, proc_dointvec_minmax);
5397 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5398 sizeof(int), 0644, proc_dointvec_minmax);
5399 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5400 sizeof(int), 0644, proc_dointvec_minmax);
5401 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5402 sizeof(int), 0644, proc_dointvec_minmax);
5403 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5404 sizeof(int), 0644, proc_dointvec_minmax);
5405 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5406 sizeof(int), 0644, proc_dointvec_minmax);
5407 set_table_entry(&table[9], "cache_nice_tries",
5408 &sd->cache_nice_tries,
5409 sizeof(int), 0644, proc_dointvec_minmax);
5410 set_table_entry(&table[10], "flags", &sd->flags,
5411 sizeof(int), 0644, proc_dointvec_minmax);
5412 /* &table[11] is terminator */
5413
5414 return table;
5415 }
5416
5417 static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
5418 {
5419 struct ctl_table *entry, *table;
5420 struct sched_domain *sd;
5421 int domain_num = 0, i;
5422 char buf[32];
5423
5424 for_each_domain(cpu, sd)
5425 domain_num++;
5426 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5427 if (table == NULL)
5428 return NULL;
5429
5430 i = 0;
5431 for_each_domain(cpu, sd) {
5432 snprintf(buf, 32, "domain%d", i);
5433 entry->procname = kstrdup(buf, GFP_KERNEL);
5434 entry->mode = 0555;
5435 entry->child = sd_alloc_ctl_domain_table(sd);
5436 entry++;
5437 i++;
5438 }
5439 return table;
5440 }
5441
5442 static struct ctl_table_header *sd_sysctl_header;
5443 static void register_sched_domain_sysctl(void)
5444 {
5445 int i, cpu_num = num_online_cpus();
5446 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5447 char buf[32];
5448
5449 if (entry == NULL)
5450 return;
5451
5452 sd_ctl_dir[0].child = entry;
5453
5454 for_each_online_cpu(i) {
5455 snprintf(buf, 32, "cpu%d", i);
5456 entry->procname = kstrdup(buf, GFP_KERNEL);
5457 entry->mode = 0555;
5458 entry->child = sd_alloc_ctl_cpu_table(i);
5459 entry++;
5460 }
5461 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5462 }
5463
5464 static void unregister_sched_domain_sysctl(void)
5465 {
5466 unregister_sysctl_table(sd_sysctl_header);
5467 sd_sysctl_header = NULL;
5468 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5469 }
5470 #else
5471 static void register_sched_domain_sysctl(void)
5472 {
5473 }
5474 static void unregister_sched_domain_sysctl(void)
5475 {
5476 }
5477 #endif
5478
5479 /*
5480 * migration_call - callback that gets triggered when a CPU is added.
5481 * Here we can start up the necessary migration thread for the new CPU.
5482 */
5483 static int __cpuinit
5484 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5485 {
5486 struct task_struct *p;
5487 int cpu = (long)hcpu;
5488 unsigned long flags;
5489 struct rq *rq;
5490
5491 switch (action) {
5492 case CPU_LOCK_ACQUIRE:
5493 mutex_lock(&sched_hotcpu_mutex);
5494 break;
5495
5496 case CPU_UP_PREPARE:
5497 case CPU_UP_PREPARE_FROZEN:
5498 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5499 if (IS_ERR(p))
5500 return NOTIFY_BAD;
5501 kthread_bind(p, cpu);
5502 /* Must be high prio: stop_machine expects to yield to it. */
5503 rq = task_rq_lock(p, &flags);
5504 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5505 task_rq_unlock(rq, &flags);
5506 cpu_rq(cpu)->migration_thread = p;
5507 break;
5508
5509 case CPU_ONLINE:
5510 case CPU_ONLINE_FROZEN:
5511 /* Strictly unneccessary, as first user will wake it. */
5512 wake_up_process(cpu_rq(cpu)->migration_thread);
5513 break;
5514
5515 #ifdef CONFIG_HOTPLUG_CPU
5516 case CPU_UP_CANCELED:
5517 case CPU_UP_CANCELED_FROZEN:
5518 if (!cpu_rq(cpu)->migration_thread)
5519 break;
5520 /* Unbind it from offline cpu so it can run. Fall thru. */
5521 kthread_bind(cpu_rq(cpu)->migration_thread,
5522 any_online_cpu(cpu_online_map));
5523 kthread_stop(cpu_rq(cpu)->migration_thread);
5524 cpu_rq(cpu)->migration_thread = NULL;
5525 break;
5526
5527 case CPU_DEAD:
5528 case CPU_DEAD_FROZEN:
5529 migrate_live_tasks(cpu);
5530 rq = cpu_rq(cpu);
5531 kthread_stop(rq->migration_thread);
5532 rq->migration_thread = NULL;
5533 /* Idle task back to normal (off runqueue, low prio) */
5534 spin_lock_irq(&rq->lock);
5535 update_rq_clock(rq);
5536 deactivate_task(rq, rq->idle, 0);
5537 rq->idle->static_prio = MAX_PRIO;
5538 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5539 rq->idle->sched_class = &idle_sched_class;
5540 migrate_dead_tasks(cpu);
5541 spin_unlock_irq(&rq->lock);
5542 migrate_nr_uninterruptible(rq);
5543 BUG_ON(rq->nr_running != 0);
5544
5545 /* No need to migrate the tasks: it was best-effort if
5546 * they didn't take sched_hotcpu_mutex. Just wake up
5547 * the requestors. */
5548 spin_lock_irq(&rq->lock);
5549 while (!list_empty(&rq->migration_queue)) {
5550 struct migration_req *req;
5551
5552 req = list_entry(rq->migration_queue.next,
5553 struct migration_req, list);
5554 list_del_init(&req->list);
5555 complete(&req->done);
5556 }
5557 spin_unlock_irq(&rq->lock);
5558 break;
5559 #endif
5560 case CPU_LOCK_RELEASE:
5561 mutex_unlock(&sched_hotcpu_mutex);
5562 break;
5563 }
5564 return NOTIFY_OK;
5565 }
5566
5567 /* Register at highest priority so that task migration (migrate_all_tasks)
5568 * happens before everything else.
5569 */
5570 static struct notifier_block __cpuinitdata migration_notifier = {
5571 .notifier_call = migration_call,
5572 .priority = 10
5573 };
5574
5575 int __init migration_init(void)
5576 {
5577 void *cpu = (void *)(long)smp_processor_id();
5578 int err;
5579
5580 /* Start one for the boot CPU: */
5581 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5582 BUG_ON(err == NOTIFY_BAD);
5583 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5584 register_cpu_notifier(&migration_notifier);
5585
5586 return 0;
5587 }
5588 #endif
5589
5590 #ifdef CONFIG_SMP
5591
5592 /* Number of possible processor ids */
5593 int nr_cpu_ids __read_mostly = NR_CPUS;
5594 EXPORT_SYMBOL(nr_cpu_ids);
5595
5596 #ifdef CONFIG_SCHED_DEBUG
5597 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5598 {
5599 int level = 0;
5600
5601 if (!sd) {
5602 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5603 return;
5604 }
5605
5606 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5607
5608 do {
5609 int i;
5610 char str[NR_CPUS];
5611 struct sched_group *group = sd->groups;
5612 cpumask_t groupmask;
5613
5614 cpumask_scnprintf(str, NR_CPUS, sd->span);
5615 cpus_clear(groupmask);
5616
5617 printk(KERN_DEBUG);
5618 for (i = 0; i < level + 1; i++)
5619 printk(" ");
5620 printk("domain %d: ", level);
5621
5622 if (!(sd->flags & SD_LOAD_BALANCE)) {
5623 printk("does not load-balance\n");
5624 if (sd->parent)
5625 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5626 " has parent");
5627 break;
5628 }
5629
5630 printk("span %s\n", str);
5631
5632 if (!cpu_isset(cpu, sd->span))
5633 printk(KERN_ERR "ERROR: domain->span does not contain "
5634 "CPU%d\n", cpu);
5635 if (!cpu_isset(cpu, group->cpumask))
5636 printk(KERN_ERR "ERROR: domain->groups does not contain"
5637 " CPU%d\n", cpu);
5638
5639 printk(KERN_DEBUG);
5640 for (i = 0; i < level + 2; i++)
5641 printk(" ");
5642 printk("groups:");
5643 do {
5644 if (!group) {
5645 printk("\n");
5646 printk(KERN_ERR "ERROR: group is NULL\n");
5647 break;
5648 }
5649
5650 if (!group->__cpu_power) {
5651 printk(KERN_CONT "\n");
5652 printk(KERN_ERR "ERROR: domain->cpu_power not "
5653 "set\n");
5654 break;
5655 }
5656
5657 if (!cpus_weight(group->cpumask)) {
5658 printk(KERN_CONT "\n");
5659 printk(KERN_ERR "ERROR: empty group\n");
5660 break;
5661 }
5662
5663 if (cpus_intersects(groupmask, group->cpumask)) {
5664 printk(KERN_CONT "\n");
5665 printk(KERN_ERR "ERROR: repeated CPUs\n");
5666 break;
5667 }
5668
5669 cpus_or(groupmask, groupmask, group->cpumask);
5670
5671 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5672 printk(KERN_CONT " %s", str);
5673
5674 group = group->next;
5675 } while (group != sd->groups);
5676 printk(KERN_CONT "\n");
5677
5678 if (!cpus_equal(sd->span, groupmask))
5679 printk(KERN_ERR "ERROR: groups don't span "
5680 "domain->span\n");
5681
5682 level++;
5683 sd = sd->parent;
5684 if (!sd)
5685 continue;
5686
5687 if (!cpus_subset(groupmask, sd->span))
5688 printk(KERN_ERR "ERROR: parent span is not a superset "
5689 "of domain->span\n");
5690
5691 } while (sd);
5692 }
5693 #else
5694 # define sched_domain_debug(sd, cpu) do { } while (0)
5695 #endif
5696
5697 static int sd_degenerate(struct sched_domain *sd)
5698 {
5699 if (cpus_weight(sd->span) == 1)
5700 return 1;
5701
5702 /* Following flags need at least 2 groups */
5703 if (sd->flags & (SD_LOAD_BALANCE |
5704 SD_BALANCE_NEWIDLE |
5705 SD_BALANCE_FORK |
5706 SD_BALANCE_EXEC |
5707 SD_SHARE_CPUPOWER |
5708 SD_SHARE_PKG_RESOURCES)) {
5709 if (sd->groups != sd->groups->next)
5710 return 0;
5711 }
5712
5713 /* Following flags don't use groups */
5714 if (sd->flags & (SD_WAKE_IDLE |
5715 SD_WAKE_AFFINE |
5716 SD_WAKE_BALANCE))
5717 return 0;
5718
5719 return 1;
5720 }
5721
5722 static int
5723 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5724 {
5725 unsigned long cflags = sd->flags, pflags = parent->flags;
5726
5727 if (sd_degenerate(parent))
5728 return 1;
5729
5730 if (!cpus_equal(sd->span, parent->span))
5731 return 0;
5732
5733 /* Does parent contain flags not in child? */
5734 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5735 if (cflags & SD_WAKE_AFFINE)
5736 pflags &= ~SD_WAKE_BALANCE;
5737 /* Flags needing groups don't count if only 1 group in parent */
5738 if (parent->groups == parent->groups->next) {
5739 pflags &= ~(SD_LOAD_BALANCE |
5740 SD_BALANCE_NEWIDLE |
5741 SD_BALANCE_FORK |
5742 SD_BALANCE_EXEC |
5743 SD_SHARE_CPUPOWER |
5744 SD_SHARE_PKG_RESOURCES);
5745 }
5746 if (~cflags & pflags)
5747 return 0;
5748
5749 return 1;
5750 }
5751
5752 /*
5753 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5754 * hold the hotplug lock.
5755 */
5756 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5757 {
5758 struct rq *rq = cpu_rq(cpu);
5759 struct sched_domain *tmp;
5760
5761 /* Remove the sched domains which do not contribute to scheduling. */
5762 for (tmp = sd; tmp; tmp = tmp->parent) {
5763 struct sched_domain *parent = tmp->parent;
5764 if (!parent)
5765 break;
5766 if (sd_parent_degenerate(tmp, parent)) {
5767 tmp->parent = parent->parent;
5768 if (parent->parent)
5769 parent->parent->child = tmp;
5770 }
5771 }
5772
5773 if (sd && sd_degenerate(sd)) {
5774 sd = sd->parent;
5775 if (sd)
5776 sd->child = NULL;
5777 }
5778
5779 sched_domain_debug(sd, cpu);
5780
5781 rcu_assign_pointer(rq->sd, sd);
5782 }
5783
5784 /* cpus with isolated domains */
5785 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5786
5787 /* Setup the mask of cpus configured for isolated domains */
5788 static int __init isolated_cpu_setup(char *str)
5789 {
5790 int ints[NR_CPUS], i;
5791
5792 str = get_options(str, ARRAY_SIZE(ints), ints);
5793 cpus_clear(cpu_isolated_map);
5794 for (i = 1; i <= ints[0]; i++)
5795 if (ints[i] < NR_CPUS)
5796 cpu_set(ints[i], cpu_isolated_map);
5797 return 1;
5798 }
5799
5800 __setup("isolcpus=", isolated_cpu_setup);
5801
5802 /*
5803 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5804 * to a function which identifies what group(along with sched group) a CPU
5805 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5806 * (due to the fact that we keep track of groups covered with a cpumask_t).
5807 *
5808 * init_sched_build_groups will build a circular linked list of the groups
5809 * covered by the given span, and will set each group's ->cpumask correctly,
5810 * and ->cpu_power to 0.
5811 */
5812 static void
5813 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5814 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5815 struct sched_group **sg))
5816 {
5817 struct sched_group *first = NULL, *last = NULL;
5818 cpumask_t covered = CPU_MASK_NONE;
5819 int i;
5820
5821 for_each_cpu_mask(i, span) {
5822 struct sched_group *sg;
5823 int group = group_fn(i, cpu_map, &sg);
5824 int j;
5825
5826 if (cpu_isset(i, covered))
5827 continue;
5828
5829 sg->cpumask = CPU_MASK_NONE;
5830 sg->__cpu_power = 0;
5831
5832 for_each_cpu_mask(j, span) {
5833 if (group_fn(j, cpu_map, NULL) != group)
5834 continue;
5835
5836 cpu_set(j, covered);
5837 cpu_set(j, sg->cpumask);
5838 }
5839 if (!first)
5840 first = sg;
5841 if (last)
5842 last->next = sg;
5843 last = sg;
5844 }
5845 last->next = first;
5846 }
5847
5848 #define SD_NODES_PER_DOMAIN 16
5849
5850 #ifdef CONFIG_NUMA
5851
5852 /**
5853 * find_next_best_node - find the next node to include in a sched_domain
5854 * @node: node whose sched_domain we're building
5855 * @used_nodes: nodes already in the sched_domain
5856 *
5857 * Find the next node to include in a given scheduling domain. Simply
5858 * finds the closest node not already in the @used_nodes map.
5859 *
5860 * Should use nodemask_t.
5861 */
5862 static int find_next_best_node(int node, unsigned long *used_nodes)
5863 {
5864 int i, n, val, min_val, best_node = 0;
5865
5866 min_val = INT_MAX;
5867
5868 for (i = 0; i < MAX_NUMNODES; i++) {
5869 /* Start at @node */
5870 n = (node + i) % MAX_NUMNODES;
5871
5872 if (!nr_cpus_node(n))
5873 continue;
5874
5875 /* Skip already used nodes */
5876 if (test_bit(n, used_nodes))
5877 continue;
5878
5879 /* Simple min distance search */
5880 val = node_distance(node, n);
5881
5882 if (val < min_val) {
5883 min_val = val;
5884 best_node = n;
5885 }
5886 }
5887
5888 set_bit(best_node, used_nodes);
5889 return best_node;
5890 }
5891
5892 /**
5893 * sched_domain_node_span - get a cpumask for a node's sched_domain
5894 * @node: node whose cpumask we're constructing
5895 * @size: number of nodes to include in this span
5896 *
5897 * Given a node, construct a good cpumask for its sched_domain to span. It
5898 * should be one that prevents unnecessary balancing, but also spreads tasks
5899 * out optimally.
5900 */
5901 static cpumask_t sched_domain_node_span(int node)
5902 {
5903 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5904 cpumask_t span, nodemask;
5905 int i;
5906
5907 cpus_clear(span);
5908 bitmap_zero(used_nodes, MAX_NUMNODES);
5909
5910 nodemask = node_to_cpumask(node);
5911 cpus_or(span, span, nodemask);
5912 set_bit(node, used_nodes);
5913
5914 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5915 int next_node = find_next_best_node(node, used_nodes);
5916
5917 nodemask = node_to_cpumask(next_node);
5918 cpus_or(span, span, nodemask);
5919 }
5920
5921 return span;
5922 }
5923 #endif
5924
5925 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5926
5927 /*
5928 * SMT sched-domains:
5929 */
5930 #ifdef CONFIG_SCHED_SMT
5931 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5932 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5933
5934 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5935 struct sched_group **sg)
5936 {
5937 if (sg)
5938 *sg = &per_cpu(sched_group_cpus, cpu);
5939 return cpu;
5940 }
5941 #endif
5942
5943 /*
5944 * multi-core sched-domains:
5945 */
5946 #ifdef CONFIG_SCHED_MC
5947 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5948 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5949 #endif
5950
5951 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5952 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5953 struct sched_group **sg)
5954 {
5955 int group;
5956 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5957 cpus_and(mask, mask, *cpu_map);
5958 group = first_cpu(mask);
5959 if (sg)
5960 *sg = &per_cpu(sched_group_core, group);
5961 return group;
5962 }
5963 #elif defined(CONFIG_SCHED_MC)
5964 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5965 struct sched_group **sg)
5966 {
5967 if (sg)
5968 *sg = &per_cpu(sched_group_core, cpu);
5969 return cpu;
5970 }
5971 #endif
5972
5973 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5974 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5975
5976 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5977 struct sched_group **sg)
5978 {
5979 int group;
5980 #ifdef CONFIG_SCHED_MC
5981 cpumask_t mask = cpu_coregroup_map(cpu);
5982 cpus_and(mask, mask, *cpu_map);
5983 group = first_cpu(mask);
5984 #elif defined(CONFIG_SCHED_SMT)
5985 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5986 cpus_and(mask, mask, *cpu_map);
5987 group = first_cpu(mask);
5988 #else
5989 group = cpu;
5990 #endif
5991 if (sg)
5992 *sg = &per_cpu(sched_group_phys, group);
5993 return group;
5994 }
5995
5996 #ifdef CONFIG_NUMA
5997 /*
5998 * The init_sched_build_groups can't handle what we want to do with node
5999 * groups, so roll our own. Now each node has its own list of groups which
6000 * gets dynamically allocated.
6001 */
6002 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6003 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6004
6005 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6006 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6007
6008 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6009 struct sched_group **sg)
6010 {
6011 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6012 int group;
6013
6014 cpus_and(nodemask, nodemask, *cpu_map);
6015 group = first_cpu(nodemask);
6016
6017 if (sg)
6018 *sg = &per_cpu(sched_group_allnodes, group);
6019 return group;
6020 }
6021
6022 static void init_numa_sched_groups_power(struct sched_group *group_head)
6023 {
6024 struct sched_group *sg = group_head;
6025 int j;
6026
6027 if (!sg)
6028 return;
6029 do {
6030 for_each_cpu_mask(j, sg->cpumask) {
6031 struct sched_domain *sd;
6032
6033 sd = &per_cpu(phys_domains, j);
6034 if (j != first_cpu(sd->groups->cpumask)) {
6035 /*
6036 * Only add "power" once for each
6037 * physical package.
6038 */
6039 continue;
6040 }
6041
6042 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6043 }
6044 sg = sg->next;
6045 } while (sg != group_head);
6046 }
6047 #endif
6048
6049 #ifdef CONFIG_NUMA
6050 /* Free memory allocated for various sched_group structures */
6051 static void free_sched_groups(const cpumask_t *cpu_map)
6052 {
6053 int cpu, i;
6054
6055 for_each_cpu_mask(cpu, *cpu_map) {
6056 struct sched_group **sched_group_nodes
6057 = sched_group_nodes_bycpu[cpu];
6058
6059 if (!sched_group_nodes)
6060 continue;
6061
6062 for (i = 0; i < MAX_NUMNODES; i++) {
6063 cpumask_t nodemask = node_to_cpumask(i);
6064 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6065
6066 cpus_and(nodemask, nodemask, *cpu_map);
6067 if (cpus_empty(nodemask))
6068 continue;
6069
6070 if (sg == NULL)
6071 continue;
6072 sg = sg->next;
6073 next_sg:
6074 oldsg = sg;
6075 sg = sg->next;
6076 kfree(oldsg);
6077 if (oldsg != sched_group_nodes[i])
6078 goto next_sg;
6079 }
6080 kfree(sched_group_nodes);
6081 sched_group_nodes_bycpu[cpu] = NULL;
6082 }
6083 }
6084 #else
6085 static void free_sched_groups(const cpumask_t *cpu_map)
6086 {
6087 }
6088 #endif
6089
6090 /*
6091 * Initialize sched groups cpu_power.
6092 *
6093 * cpu_power indicates the capacity of sched group, which is used while
6094 * distributing the load between different sched groups in a sched domain.
6095 * Typically cpu_power for all the groups in a sched domain will be same unless
6096 * there are asymmetries in the topology. If there are asymmetries, group
6097 * having more cpu_power will pickup more load compared to the group having
6098 * less cpu_power.
6099 *
6100 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6101 * the maximum number of tasks a group can handle in the presence of other idle
6102 * or lightly loaded groups in the same sched domain.
6103 */
6104 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6105 {
6106 struct sched_domain *child;
6107 struct sched_group *group;
6108
6109 WARN_ON(!sd || !sd->groups);
6110
6111 if (cpu != first_cpu(sd->groups->cpumask))
6112 return;
6113
6114 child = sd->child;
6115
6116 sd->groups->__cpu_power = 0;
6117
6118 /*
6119 * For perf policy, if the groups in child domain share resources
6120 * (for example cores sharing some portions of the cache hierarchy
6121 * or SMT), then set this domain groups cpu_power such that each group
6122 * can handle only one task, when there are other idle groups in the
6123 * same sched domain.
6124 */
6125 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6126 (child->flags &
6127 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6128 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6129 return;
6130 }
6131
6132 /*
6133 * add cpu_power of each child group to this groups cpu_power
6134 */
6135 group = child->groups;
6136 do {
6137 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6138 group = group->next;
6139 } while (group != child->groups);
6140 }
6141
6142 /*
6143 * Build sched domains for a given set of cpus and attach the sched domains
6144 * to the individual cpus
6145 */
6146 static int build_sched_domains(const cpumask_t *cpu_map)
6147 {
6148 int i;
6149 #ifdef CONFIG_NUMA
6150 struct sched_group **sched_group_nodes = NULL;
6151 int sd_allnodes = 0;
6152
6153 /*
6154 * Allocate the per-node list of sched groups
6155 */
6156 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6157 GFP_KERNEL);
6158 if (!sched_group_nodes) {
6159 printk(KERN_WARNING "Can not alloc sched group node list\n");
6160 return -ENOMEM;
6161 }
6162 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6163 #endif
6164
6165 /*
6166 * Set up domains for cpus specified by the cpu_map.
6167 */
6168 for_each_cpu_mask(i, *cpu_map) {
6169 struct sched_domain *sd = NULL, *p;
6170 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6171
6172 cpus_and(nodemask, nodemask, *cpu_map);
6173
6174 #ifdef CONFIG_NUMA
6175 if (cpus_weight(*cpu_map) >
6176 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6177 sd = &per_cpu(allnodes_domains, i);
6178 *sd = SD_ALLNODES_INIT;
6179 sd->span = *cpu_map;
6180 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6181 p = sd;
6182 sd_allnodes = 1;
6183 } else
6184 p = NULL;
6185
6186 sd = &per_cpu(node_domains, i);
6187 *sd = SD_NODE_INIT;
6188 sd->span = sched_domain_node_span(cpu_to_node(i));
6189 sd->parent = p;
6190 if (p)
6191 p->child = sd;
6192 cpus_and(sd->span, sd->span, *cpu_map);
6193 #endif
6194
6195 p = sd;
6196 sd = &per_cpu(phys_domains, i);
6197 *sd = SD_CPU_INIT;
6198 sd->span = nodemask;
6199 sd->parent = p;
6200 if (p)
6201 p->child = sd;
6202 cpu_to_phys_group(i, cpu_map, &sd->groups);
6203
6204 #ifdef CONFIG_SCHED_MC
6205 p = sd;
6206 sd = &per_cpu(core_domains, i);
6207 *sd = SD_MC_INIT;
6208 sd->span = cpu_coregroup_map(i);
6209 cpus_and(sd->span, sd->span, *cpu_map);
6210 sd->parent = p;
6211 p->child = sd;
6212 cpu_to_core_group(i, cpu_map, &sd->groups);
6213 #endif
6214
6215 #ifdef CONFIG_SCHED_SMT
6216 p = sd;
6217 sd = &per_cpu(cpu_domains, i);
6218 *sd = SD_SIBLING_INIT;
6219 sd->span = per_cpu(cpu_sibling_map, i);
6220 cpus_and(sd->span, sd->span, *cpu_map);
6221 sd->parent = p;
6222 p->child = sd;
6223 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6224 #endif
6225 }
6226
6227 #ifdef CONFIG_SCHED_SMT
6228 /* Set up CPU (sibling) groups */
6229 for_each_cpu_mask(i, *cpu_map) {
6230 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6231 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6232 if (i != first_cpu(this_sibling_map))
6233 continue;
6234
6235 init_sched_build_groups(this_sibling_map, cpu_map,
6236 &cpu_to_cpu_group);
6237 }
6238 #endif
6239
6240 #ifdef CONFIG_SCHED_MC
6241 /* Set up multi-core groups */
6242 for_each_cpu_mask(i, *cpu_map) {
6243 cpumask_t this_core_map = cpu_coregroup_map(i);
6244 cpus_and(this_core_map, this_core_map, *cpu_map);
6245 if (i != first_cpu(this_core_map))
6246 continue;
6247 init_sched_build_groups(this_core_map, cpu_map,
6248 &cpu_to_core_group);
6249 }
6250 #endif
6251
6252 /* Set up physical groups */
6253 for (i = 0; i < MAX_NUMNODES; i++) {
6254 cpumask_t nodemask = node_to_cpumask(i);
6255
6256 cpus_and(nodemask, nodemask, *cpu_map);
6257 if (cpus_empty(nodemask))
6258 continue;
6259
6260 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6261 }
6262
6263 #ifdef CONFIG_NUMA
6264 /* Set up node groups */
6265 if (sd_allnodes)
6266 init_sched_build_groups(*cpu_map, cpu_map,
6267 &cpu_to_allnodes_group);
6268
6269 for (i = 0; i < MAX_NUMNODES; i++) {
6270 /* Set up node groups */
6271 struct sched_group *sg, *prev;
6272 cpumask_t nodemask = node_to_cpumask(i);
6273 cpumask_t domainspan;
6274 cpumask_t covered = CPU_MASK_NONE;
6275 int j;
6276
6277 cpus_and(nodemask, nodemask, *cpu_map);
6278 if (cpus_empty(nodemask)) {
6279 sched_group_nodes[i] = NULL;
6280 continue;
6281 }
6282
6283 domainspan = sched_domain_node_span(i);
6284 cpus_and(domainspan, domainspan, *cpu_map);
6285
6286 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6287 if (!sg) {
6288 printk(KERN_WARNING "Can not alloc domain group for "
6289 "node %d\n", i);
6290 goto error;
6291 }
6292 sched_group_nodes[i] = sg;
6293 for_each_cpu_mask(j, nodemask) {
6294 struct sched_domain *sd;
6295
6296 sd = &per_cpu(node_domains, j);
6297 sd->groups = sg;
6298 }
6299 sg->__cpu_power = 0;
6300 sg->cpumask = nodemask;
6301 sg->next = sg;
6302 cpus_or(covered, covered, nodemask);
6303 prev = sg;
6304
6305 for (j = 0; j < MAX_NUMNODES; j++) {
6306 cpumask_t tmp, notcovered;
6307 int n = (i + j) % MAX_NUMNODES;
6308
6309 cpus_complement(notcovered, covered);
6310 cpus_and(tmp, notcovered, *cpu_map);
6311 cpus_and(tmp, tmp, domainspan);
6312 if (cpus_empty(tmp))
6313 break;
6314
6315 nodemask = node_to_cpumask(n);
6316 cpus_and(tmp, tmp, nodemask);
6317 if (cpus_empty(tmp))
6318 continue;
6319
6320 sg = kmalloc_node(sizeof(struct sched_group),
6321 GFP_KERNEL, i);
6322 if (!sg) {
6323 printk(KERN_WARNING
6324 "Can not alloc domain group for node %d\n", j);
6325 goto error;
6326 }
6327 sg->__cpu_power = 0;
6328 sg->cpumask = tmp;
6329 sg->next = prev->next;
6330 cpus_or(covered, covered, tmp);
6331 prev->next = sg;
6332 prev = sg;
6333 }
6334 }
6335 #endif
6336
6337 /* Calculate CPU power for physical packages and nodes */
6338 #ifdef CONFIG_SCHED_SMT
6339 for_each_cpu_mask(i, *cpu_map) {
6340 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6341
6342 init_sched_groups_power(i, sd);
6343 }
6344 #endif
6345 #ifdef CONFIG_SCHED_MC
6346 for_each_cpu_mask(i, *cpu_map) {
6347 struct sched_domain *sd = &per_cpu(core_domains, i);
6348
6349 init_sched_groups_power(i, sd);
6350 }
6351 #endif
6352
6353 for_each_cpu_mask(i, *cpu_map) {
6354 struct sched_domain *sd = &per_cpu(phys_domains, i);
6355
6356 init_sched_groups_power(i, sd);
6357 }
6358
6359 #ifdef CONFIG_NUMA
6360 for (i = 0; i < MAX_NUMNODES; i++)
6361 init_numa_sched_groups_power(sched_group_nodes[i]);
6362
6363 if (sd_allnodes) {
6364 struct sched_group *sg;
6365
6366 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6367 init_numa_sched_groups_power(sg);
6368 }
6369 #endif
6370
6371 /* Attach the domains */
6372 for_each_cpu_mask(i, *cpu_map) {
6373 struct sched_domain *sd;
6374 #ifdef CONFIG_SCHED_SMT
6375 sd = &per_cpu(cpu_domains, i);
6376 #elif defined(CONFIG_SCHED_MC)
6377 sd = &per_cpu(core_domains, i);
6378 #else
6379 sd = &per_cpu(phys_domains, i);
6380 #endif
6381 cpu_attach_domain(sd, i);
6382 }
6383
6384 return 0;
6385
6386 #ifdef CONFIG_NUMA
6387 error:
6388 free_sched_groups(cpu_map);
6389 return -ENOMEM;
6390 #endif
6391 }
6392
6393 static cpumask_t *doms_cur; /* current sched domains */
6394 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6395
6396 /*
6397 * Special case: If a kmalloc of a doms_cur partition (array of
6398 * cpumask_t) fails, then fallback to a single sched domain,
6399 * as determined by the single cpumask_t fallback_doms.
6400 */
6401 static cpumask_t fallback_doms;
6402
6403 /*
6404 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6405 * For now this just excludes isolated cpus, but could be used to
6406 * exclude other special cases in the future.
6407 */
6408 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6409 {
6410 ndoms_cur = 1;
6411 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6412 if (!doms_cur)
6413 doms_cur = &fallback_doms;
6414 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6415 register_sched_domain_sysctl();
6416 return build_sched_domains(doms_cur);
6417 }
6418
6419 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6420 {
6421 free_sched_groups(cpu_map);
6422 }
6423
6424 /*
6425 * Detach sched domains from a group of cpus specified in cpu_map
6426 * These cpus will now be attached to the NULL domain
6427 */
6428 static void detach_destroy_domains(const cpumask_t *cpu_map)
6429 {
6430 int i;
6431
6432 unregister_sched_domain_sysctl();
6433
6434 for_each_cpu_mask(i, *cpu_map)
6435 cpu_attach_domain(NULL, i);
6436 synchronize_sched();
6437 arch_destroy_sched_domains(cpu_map);
6438 }
6439
6440 /*
6441 * Partition sched domains as specified by the 'ndoms_new'
6442 * cpumasks in the array doms_new[] of cpumasks. This compares
6443 * doms_new[] to the current sched domain partitioning, doms_cur[].
6444 * It destroys each deleted domain and builds each new domain.
6445 *
6446 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6447 * The masks don't intersect (don't overlap.) We should setup one
6448 * sched domain for each mask. CPUs not in any of the cpumasks will
6449 * not be load balanced. If the same cpumask appears both in the
6450 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6451 * it as it is.
6452 *
6453 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6454 * ownership of it and will kfree it when done with it. If the caller
6455 * failed the kmalloc call, then it can pass in doms_new == NULL,
6456 * and partition_sched_domains() will fallback to the single partition
6457 * 'fallback_doms'.
6458 *
6459 * Call with hotplug lock held
6460 */
6461 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6462 {
6463 int i, j;
6464
6465 if (doms_new == NULL) {
6466 ndoms_new = 1;
6467 doms_new = &fallback_doms;
6468 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6469 }
6470
6471 /* Destroy deleted domains */
6472 for (i = 0; i < ndoms_cur; i++) {
6473 for (j = 0; j < ndoms_new; j++) {
6474 if (cpus_equal(doms_cur[i], doms_new[j]))
6475 goto match1;
6476 }
6477 /* no match - a current sched domain not in new doms_new[] */
6478 detach_destroy_domains(doms_cur + i);
6479 match1:
6480 ;
6481 }
6482
6483 /* Build new domains */
6484 for (i = 0; i < ndoms_new; i++) {
6485 for (j = 0; j < ndoms_cur; j++) {
6486 if (cpus_equal(doms_new[i], doms_cur[j]))
6487 goto match2;
6488 }
6489 /* no match - add a new doms_new */
6490 build_sched_domains(doms_new + i);
6491 match2:
6492 ;
6493 }
6494
6495 /* Remember the new sched domains */
6496 if (doms_cur != &fallback_doms)
6497 kfree(doms_cur);
6498 doms_cur = doms_new;
6499 ndoms_cur = ndoms_new;
6500 }
6501
6502 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6503 static int arch_reinit_sched_domains(void)
6504 {
6505 int err;
6506
6507 mutex_lock(&sched_hotcpu_mutex);
6508 detach_destroy_domains(&cpu_online_map);
6509 err = arch_init_sched_domains(&cpu_online_map);
6510 mutex_unlock(&sched_hotcpu_mutex);
6511
6512 return err;
6513 }
6514
6515 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6516 {
6517 int ret;
6518
6519 if (buf[0] != '0' && buf[0] != '1')
6520 return -EINVAL;
6521
6522 if (smt)
6523 sched_smt_power_savings = (buf[0] == '1');
6524 else
6525 sched_mc_power_savings = (buf[0] == '1');
6526
6527 ret = arch_reinit_sched_domains();
6528
6529 return ret ? ret : count;
6530 }
6531
6532 #ifdef CONFIG_SCHED_MC
6533 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6534 {
6535 return sprintf(page, "%u\n", sched_mc_power_savings);
6536 }
6537 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6538 const char *buf, size_t count)
6539 {
6540 return sched_power_savings_store(buf, count, 0);
6541 }
6542 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6543 sched_mc_power_savings_store);
6544 #endif
6545
6546 #ifdef CONFIG_SCHED_SMT
6547 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6548 {
6549 return sprintf(page, "%u\n", sched_smt_power_savings);
6550 }
6551 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6552 const char *buf, size_t count)
6553 {
6554 return sched_power_savings_store(buf, count, 1);
6555 }
6556 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6557 sched_smt_power_savings_store);
6558 #endif
6559
6560 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6561 {
6562 int err = 0;
6563
6564 #ifdef CONFIG_SCHED_SMT
6565 if (smt_capable())
6566 err = sysfs_create_file(&cls->kset.kobj,
6567 &attr_sched_smt_power_savings.attr);
6568 #endif
6569 #ifdef CONFIG_SCHED_MC
6570 if (!err && mc_capable())
6571 err = sysfs_create_file(&cls->kset.kobj,
6572 &attr_sched_mc_power_savings.attr);
6573 #endif
6574 return err;
6575 }
6576 #endif
6577
6578 /*
6579 * Force a reinitialization of the sched domains hierarchy. The domains
6580 * and groups cannot be updated in place without racing with the balancing
6581 * code, so we temporarily attach all running cpus to the NULL domain
6582 * which will prevent rebalancing while the sched domains are recalculated.
6583 */
6584 static int update_sched_domains(struct notifier_block *nfb,
6585 unsigned long action, void *hcpu)
6586 {
6587 switch (action) {
6588 case CPU_UP_PREPARE:
6589 case CPU_UP_PREPARE_FROZEN:
6590 case CPU_DOWN_PREPARE:
6591 case CPU_DOWN_PREPARE_FROZEN:
6592 detach_destroy_domains(&cpu_online_map);
6593 return NOTIFY_OK;
6594
6595 case CPU_UP_CANCELED:
6596 case CPU_UP_CANCELED_FROZEN:
6597 case CPU_DOWN_FAILED:
6598 case CPU_DOWN_FAILED_FROZEN:
6599 case CPU_ONLINE:
6600 case CPU_ONLINE_FROZEN:
6601 case CPU_DEAD:
6602 case CPU_DEAD_FROZEN:
6603 /*
6604 * Fall through and re-initialise the domains.
6605 */
6606 break;
6607 default:
6608 return NOTIFY_DONE;
6609 }
6610
6611 /* The hotplug lock is already held by cpu_up/cpu_down */
6612 arch_init_sched_domains(&cpu_online_map);
6613
6614 return NOTIFY_OK;
6615 }
6616
6617 void __init sched_init_smp(void)
6618 {
6619 cpumask_t non_isolated_cpus;
6620
6621 mutex_lock(&sched_hotcpu_mutex);
6622 arch_init_sched_domains(&cpu_online_map);
6623 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6624 if (cpus_empty(non_isolated_cpus))
6625 cpu_set(smp_processor_id(), non_isolated_cpus);
6626 mutex_unlock(&sched_hotcpu_mutex);
6627 /* XXX: Theoretical race here - CPU may be hotplugged now */
6628 hotcpu_notifier(update_sched_domains, 0);
6629
6630 /* Move init over to a non-isolated CPU */
6631 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6632 BUG();
6633 }
6634 #else
6635 void __init sched_init_smp(void)
6636 {
6637 }
6638 #endif /* CONFIG_SMP */
6639
6640 int in_sched_functions(unsigned long addr)
6641 {
6642 /* Linker adds these: start and end of __sched functions */
6643 extern char __sched_text_start[], __sched_text_end[];
6644
6645 return in_lock_functions(addr) ||
6646 (addr >= (unsigned long)__sched_text_start
6647 && addr < (unsigned long)__sched_text_end);
6648 }
6649
6650 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6651 {
6652 cfs_rq->tasks_timeline = RB_ROOT;
6653 #ifdef CONFIG_FAIR_GROUP_SCHED
6654 cfs_rq->rq = rq;
6655 #endif
6656 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6657 }
6658
6659 void __init sched_init(void)
6660 {
6661 int highest_cpu = 0;
6662 int i, j;
6663
6664 for_each_possible_cpu(i) {
6665 struct rt_prio_array *array;
6666 struct rq *rq;
6667
6668 rq = cpu_rq(i);
6669 spin_lock_init(&rq->lock);
6670 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6671 rq->nr_running = 0;
6672 rq->clock = 1;
6673 init_cfs_rq(&rq->cfs, rq);
6674 #ifdef CONFIG_FAIR_GROUP_SCHED
6675 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6676 {
6677 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6678 struct sched_entity *se =
6679 &per_cpu(init_sched_entity, i);
6680
6681 init_cfs_rq_p[i] = cfs_rq;
6682 init_cfs_rq(cfs_rq, rq);
6683 cfs_rq->tg = &init_task_group;
6684 list_add(&cfs_rq->leaf_cfs_rq_list,
6685 &rq->leaf_cfs_rq_list);
6686
6687 init_sched_entity_p[i] = se;
6688 se->cfs_rq = &rq->cfs;
6689 se->my_q = cfs_rq;
6690 se->load.weight = init_task_group_load;
6691 se->load.inv_weight =
6692 div64_64(1ULL<<32, init_task_group_load);
6693 se->parent = NULL;
6694 }
6695 init_task_group.shares = init_task_group_load;
6696 spin_lock_init(&init_task_group.lock);
6697 #endif
6698
6699 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6700 rq->cpu_load[j] = 0;
6701 #ifdef CONFIG_SMP
6702 rq->sd = NULL;
6703 rq->active_balance = 0;
6704 rq->next_balance = jiffies;
6705 rq->push_cpu = 0;
6706 rq->cpu = i;
6707 rq->migration_thread = NULL;
6708 INIT_LIST_HEAD(&rq->migration_queue);
6709 #endif
6710 atomic_set(&rq->nr_iowait, 0);
6711
6712 array = &rq->rt.active;
6713 for (j = 0; j < MAX_RT_PRIO; j++) {
6714 INIT_LIST_HEAD(array->queue + j);
6715 __clear_bit(j, array->bitmap);
6716 }
6717 highest_cpu = i;
6718 /* delimiter for bitsearch: */
6719 __set_bit(MAX_RT_PRIO, array->bitmap);
6720 }
6721
6722 set_load_weight(&init_task);
6723
6724 #ifdef CONFIG_PREEMPT_NOTIFIERS
6725 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6726 #endif
6727
6728 #ifdef CONFIG_SMP
6729 nr_cpu_ids = highest_cpu + 1;
6730 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6731 #endif
6732
6733 #ifdef CONFIG_RT_MUTEXES
6734 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6735 #endif
6736
6737 /*
6738 * The boot idle thread does lazy MMU switching as well:
6739 */
6740 atomic_inc(&init_mm.mm_count);
6741 enter_lazy_tlb(&init_mm, current);
6742
6743 /*
6744 * Make us the idle thread. Technically, schedule() should not be
6745 * called from this thread, however somewhere below it might be,
6746 * but because we are the idle thread, we just pick up running again
6747 * when this runqueue becomes "idle".
6748 */
6749 init_idle(current, smp_processor_id());
6750 /*
6751 * During early bootup we pretend to be a normal task:
6752 */
6753 current->sched_class = &fair_sched_class;
6754 }
6755
6756 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6757 void __might_sleep(char *file, int line)
6758 {
6759 #ifdef in_atomic
6760 static unsigned long prev_jiffy; /* ratelimiting */
6761
6762 if ((in_atomic() || irqs_disabled()) &&
6763 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6764 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6765 return;
6766 prev_jiffy = jiffies;
6767 printk(KERN_ERR "BUG: sleeping function called from invalid"
6768 " context at %s:%d\n", file, line);
6769 printk("in_atomic():%d, irqs_disabled():%d\n",
6770 in_atomic(), irqs_disabled());
6771 debug_show_held_locks(current);
6772 if (irqs_disabled())
6773 print_irqtrace_events(current);
6774 dump_stack();
6775 }
6776 #endif
6777 }
6778 EXPORT_SYMBOL(__might_sleep);
6779 #endif
6780
6781 #ifdef CONFIG_MAGIC_SYSRQ
6782 static void normalize_task(struct rq *rq, struct task_struct *p)
6783 {
6784 int on_rq;
6785 update_rq_clock(rq);
6786 on_rq = p->se.on_rq;
6787 if (on_rq)
6788 deactivate_task(rq, p, 0);
6789 __setscheduler(rq, p, SCHED_NORMAL, 0);
6790 if (on_rq) {
6791 activate_task(rq, p, 0);
6792 resched_task(rq->curr);
6793 }
6794 }
6795
6796 void normalize_rt_tasks(void)
6797 {
6798 struct task_struct *g, *p;
6799 unsigned long flags;
6800 struct rq *rq;
6801
6802 read_lock_irq(&tasklist_lock);
6803 do_each_thread(g, p) {
6804 /*
6805 * Only normalize user tasks:
6806 */
6807 if (!p->mm)
6808 continue;
6809
6810 p->se.exec_start = 0;
6811 #ifdef CONFIG_SCHEDSTATS
6812 p->se.wait_start = 0;
6813 p->se.sleep_start = 0;
6814 p->se.block_start = 0;
6815 #endif
6816 task_rq(p)->clock = 0;
6817
6818 if (!rt_task(p)) {
6819 /*
6820 * Renice negative nice level userspace
6821 * tasks back to 0:
6822 */
6823 if (TASK_NICE(p) < 0 && p->mm)
6824 set_user_nice(p, 0);
6825 continue;
6826 }
6827
6828 spin_lock_irqsave(&p->pi_lock, flags);
6829 rq = __task_rq_lock(p);
6830
6831 normalize_task(rq, p);
6832
6833 __task_rq_unlock(rq);
6834 spin_unlock_irqrestore(&p->pi_lock, flags);
6835 } while_each_thread(g, p);
6836
6837 read_unlock_irq(&tasklist_lock);
6838 }
6839
6840 #endif /* CONFIG_MAGIC_SYSRQ */
6841
6842 #ifdef CONFIG_IA64
6843 /*
6844 * These functions are only useful for the IA64 MCA handling.
6845 *
6846 * They can only be called when the whole system has been
6847 * stopped - every CPU needs to be quiescent, and no scheduling
6848 * activity can take place. Using them for anything else would
6849 * be a serious bug, and as a result, they aren't even visible
6850 * under any other configuration.
6851 */
6852
6853 /**
6854 * curr_task - return the current task for a given cpu.
6855 * @cpu: the processor in question.
6856 *
6857 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6858 */
6859 struct task_struct *curr_task(int cpu)
6860 {
6861 return cpu_curr(cpu);
6862 }
6863
6864 /**
6865 * set_curr_task - set the current task for a given cpu.
6866 * @cpu: the processor in question.
6867 * @p: the task pointer to set.
6868 *
6869 * Description: This function must only be used when non-maskable interrupts
6870 * are serviced on a separate stack. It allows the architecture to switch the
6871 * notion of the current task on a cpu in a non-blocking manner. This function
6872 * must be called with all CPU's synchronized, and interrupts disabled, the
6873 * and caller must save the original value of the current task (see
6874 * curr_task() above) and restore that value before reenabling interrupts and
6875 * re-starting the system.
6876 *
6877 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6878 */
6879 void set_curr_task(int cpu, struct task_struct *p)
6880 {
6881 cpu_curr(cpu) = p;
6882 }
6883
6884 #endif
6885
6886 #ifdef CONFIG_FAIR_GROUP_SCHED
6887
6888 /* allocate runqueue etc for a new task group */
6889 struct task_group *sched_create_group(void)
6890 {
6891 struct task_group *tg;
6892 struct cfs_rq *cfs_rq;
6893 struct sched_entity *se;
6894 struct rq *rq;
6895 int i;
6896
6897 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6898 if (!tg)
6899 return ERR_PTR(-ENOMEM);
6900
6901 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6902 if (!tg->cfs_rq)
6903 goto err;
6904 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6905 if (!tg->se)
6906 goto err;
6907
6908 for_each_possible_cpu(i) {
6909 rq = cpu_rq(i);
6910
6911 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6912 cpu_to_node(i));
6913 if (!cfs_rq)
6914 goto err;
6915
6916 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6917 cpu_to_node(i));
6918 if (!se)
6919 goto err;
6920
6921 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6922 memset(se, 0, sizeof(struct sched_entity));
6923
6924 tg->cfs_rq[i] = cfs_rq;
6925 init_cfs_rq(cfs_rq, rq);
6926 cfs_rq->tg = tg;
6927
6928 tg->se[i] = se;
6929 se->cfs_rq = &rq->cfs;
6930 se->my_q = cfs_rq;
6931 se->load.weight = NICE_0_LOAD;
6932 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6933 se->parent = NULL;
6934 }
6935
6936 for_each_possible_cpu(i) {
6937 rq = cpu_rq(i);
6938 cfs_rq = tg->cfs_rq[i];
6939 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6940 }
6941
6942 tg->shares = NICE_0_LOAD;
6943 spin_lock_init(&tg->lock);
6944
6945 return tg;
6946
6947 err:
6948 for_each_possible_cpu(i) {
6949 if (tg->cfs_rq)
6950 kfree(tg->cfs_rq[i]);
6951 if (tg->se)
6952 kfree(tg->se[i]);
6953 }
6954 kfree(tg->cfs_rq);
6955 kfree(tg->se);
6956 kfree(tg);
6957
6958 return ERR_PTR(-ENOMEM);
6959 }
6960
6961 /* rcu callback to free various structures associated with a task group */
6962 static void free_sched_group(struct rcu_head *rhp)
6963 {
6964 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6965 struct task_group *tg = cfs_rq->tg;
6966 struct sched_entity *se;
6967 int i;
6968
6969 /* now it should be safe to free those cfs_rqs */
6970 for_each_possible_cpu(i) {
6971 cfs_rq = tg->cfs_rq[i];
6972 kfree(cfs_rq);
6973
6974 se = tg->se[i];
6975 kfree(se);
6976 }
6977
6978 kfree(tg->cfs_rq);
6979 kfree(tg->se);
6980 kfree(tg);
6981 }
6982
6983 /* Destroy runqueue etc associated with a task group */
6984 void sched_destroy_group(struct task_group *tg)
6985 {
6986 struct cfs_rq *cfs_rq;
6987 int i;
6988
6989 for_each_possible_cpu(i) {
6990 cfs_rq = tg->cfs_rq[i];
6991 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6992 }
6993
6994 cfs_rq = tg->cfs_rq[0];
6995
6996 /* wait for possible concurrent references to cfs_rqs complete */
6997 call_rcu(&cfs_rq->rcu, free_sched_group);
6998 }
6999
7000 /* change task's runqueue when it moves between groups.
7001 * The caller of this function should have put the task in its new group
7002 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7003 * reflect its new group.
7004 */
7005 void sched_move_task(struct task_struct *tsk)
7006 {
7007 int on_rq, running;
7008 unsigned long flags;
7009 struct rq *rq;
7010
7011 rq = task_rq_lock(tsk, &flags);
7012
7013 if (tsk->sched_class != &fair_sched_class)
7014 goto done;
7015
7016 update_rq_clock(rq);
7017
7018 running = task_running(rq, tsk);
7019 on_rq = tsk->se.on_rq;
7020
7021 if (on_rq) {
7022 dequeue_task(rq, tsk, 0);
7023 if (unlikely(running))
7024 tsk->sched_class->put_prev_task(rq, tsk);
7025 }
7026
7027 set_task_cfs_rq(tsk);
7028
7029 if (on_rq) {
7030 if (unlikely(running))
7031 tsk->sched_class->set_curr_task(rq);
7032 enqueue_task(rq, tsk, 0);
7033 }
7034
7035 done:
7036 task_rq_unlock(rq, &flags);
7037 }
7038
7039 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7040 {
7041 struct cfs_rq *cfs_rq = se->cfs_rq;
7042 struct rq *rq = cfs_rq->rq;
7043 int on_rq;
7044
7045 spin_lock_irq(&rq->lock);
7046
7047 on_rq = se->on_rq;
7048 if (on_rq)
7049 dequeue_entity(cfs_rq, se, 0);
7050
7051 se->load.weight = shares;
7052 se->load.inv_weight = div64_64((1ULL<<32), shares);
7053
7054 if (on_rq)
7055 enqueue_entity(cfs_rq, se, 0);
7056
7057 spin_unlock_irq(&rq->lock);
7058 }
7059
7060 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7061 {
7062 int i;
7063
7064 spin_lock(&tg->lock);
7065 if (tg->shares == shares)
7066 goto done;
7067
7068 tg->shares = shares;
7069 for_each_possible_cpu(i)
7070 set_se_shares(tg->se[i], shares);
7071
7072 done:
7073 spin_unlock(&tg->lock);
7074 return 0;
7075 }
7076
7077 unsigned long sched_group_shares(struct task_group *tg)
7078 {
7079 return tg->shares;
7080 }
7081
7082 #endif /* CONFIG_FAIR_GROUP_SCHED */