]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched.c
Merge branches 'bugzilla-14446', 'bugzilla-14753' and 'bugzilla-14824' into release
[mirror_ubuntu-zesty-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 raw_spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 raw_spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_GROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
249
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
253
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275 };
276
277 #ifdef CONFIG_USER_SCHED
278
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
281 {
282 user->tg->uid = user->uid;
283 }
284
285 /*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290 struct task_group root_task_group;
291
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
298
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq_var);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
306
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310 static DEFINE_SPINLOCK(task_group_lock);
311
312 #ifdef CONFIG_FAIR_GROUP_SCHED
313
314 #ifdef CONFIG_SMP
315 static int root_task_group_empty(void)
316 {
317 return list_empty(&root_task_group.children);
318 }
319 #endif
320
321 #ifdef CONFIG_USER_SCHED
322 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323 #else /* !CONFIG_USER_SCHED */
324 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325 #endif /* CONFIG_USER_SCHED */
326
327 /*
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
335 #define MIN_SHARES 2
336 #define MAX_SHARES (1UL << 18)
337
338 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339 #endif
340
341 /* Default task group.
342 * Every task in system belong to this group at bootup.
343 */
344 struct task_group init_task_group;
345
346 /* return group to which a task belongs */
347 static inline struct task_group *task_group(struct task_struct *p)
348 {
349 struct task_group *tg;
350
351 #ifdef CONFIG_USER_SCHED
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
358 #else
359 tg = &init_task_group;
360 #endif
361 return tg;
362 }
363
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
366 {
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
370 #endif
371
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
375 #endif
376 }
377
378 #else
379
380 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 static inline struct task_group *task_group(struct task_struct *p)
382 {
383 return NULL;
384 }
385
386 #endif /* CONFIG_GROUP_SCHED */
387
388 /* CFS-related fields in a runqueue */
389 struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
393 u64 exec_clock;
394 u64 min_vruntime;
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
406 struct sched_entity *curr, *next, *last;
407
408 unsigned int nr_spread_over;
409
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
423
424 #ifdef CONFIG_SMP
425 /*
426 * the part of load.weight contributed by tasks
427 */
428 unsigned long task_weight;
429
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
437
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
447 #endif
448 #endif
449 };
450
451 /* Real-Time classes' related field in a runqueue: */
452 struct rt_rq {
453 struct rt_prio_array active;
454 unsigned long rt_nr_running;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 struct {
457 int curr; /* highest queued rt task prio */
458 #ifdef CONFIG_SMP
459 int next; /* next highest */
460 #endif
461 } highest_prio;
462 #endif
463 #ifdef CONFIG_SMP
464 unsigned long rt_nr_migratory;
465 unsigned long rt_nr_total;
466 int overloaded;
467 struct plist_head pushable_tasks;
468 #endif
469 int rt_throttled;
470 u64 rt_time;
471 u64 rt_runtime;
472 /* Nests inside the rq lock: */
473 raw_spinlock_t rt_runtime_lock;
474
475 #ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted;
477
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482 #endif
483 };
484
485 #ifdef CONFIG_SMP
486
487 /*
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
494 */
495 struct root_domain {
496 atomic_t refcount;
497 cpumask_var_t span;
498 cpumask_var_t online;
499
500 /*
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
504 cpumask_var_t rto_mask;
505 atomic_t rto_count;
506 #ifdef CONFIG_SMP
507 struct cpupri cpupri;
508 #endif
509 };
510
511 /*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
515 static struct root_domain def_root_domain;
516
517 #endif
518
519 /*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
526 struct rq {
527 /* runqueue lock: */
528 raw_spinlock_t lock;
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 #ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539 #endif
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
546 struct rt_rq rt;
547
548 #ifdef CONFIG_FAIR_GROUP_SCHED
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
551 #endif
552 #ifdef CONFIG_RT_GROUP_SCHED
553 struct list_head leaf_rt_rq_list;
554 #endif
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
564 struct task_struct *curr, *idle;
565 unsigned long next_balance;
566 struct mm_struct *prev_mm;
567
568 u64 clock;
569
570 atomic_t nr_iowait;
571
572 #ifdef CONFIG_SMP
573 struct root_domain *rd;
574 struct sched_domain *sd;
575
576 unsigned char idle_at_tick;
577 /* For active balancing */
578 int post_schedule;
579 int active_balance;
580 int push_cpu;
581 /* cpu of this runqueue: */
582 int cpu;
583 int online;
584
585 unsigned long avg_load_per_task;
586
587 struct task_struct *migration_thread;
588 struct list_head migration_queue;
589
590 u64 rt_avg;
591 u64 age_stamp;
592 u64 idle_stamp;
593 u64 avg_idle;
594 #endif
595
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
600 #ifdef CONFIG_SCHED_HRTICK
601 #ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604 #endif
605 struct hrtimer hrtick_timer;
606 #endif
607
608 #ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
613
614 /* sys_sched_yield() stats */
615 unsigned int yld_count;
616
617 /* schedule() stats */
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
621
622 /* try_to_wake_up() stats */
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
625
626 /* BKL stats */
627 unsigned int bkl_count;
628 #endif
629 };
630
631 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
632
633 static inline
634 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
635 {
636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
637 }
638
639 static inline int cpu_of(struct rq *rq)
640 {
641 #ifdef CONFIG_SMP
642 return rq->cpu;
643 #else
644 return 0;
645 #endif
646 }
647
648 /*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650 * See detach_destroy_domains: synchronize_sched for details.
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
655 #define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
657
658 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659 #define this_rq() (&__get_cpu_var(runqueues))
660 #define task_rq(p) cpu_rq(task_cpu(p))
661 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
662 #define raw_rq() (&__raw_get_cpu_var(runqueues))
663
664 inline void update_rq_clock(struct rq *rq)
665 {
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667 }
668
669 /*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672 #ifdef CONFIG_SCHED_DEBUG
673 # define const_debug __read_mostly
674 #else
675 # define const_debug static const
676 #endif
677
678 /**
679 * runqueue_is_locked
680 * @cpu: the processor in question.
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
686 int runqueue_is_locked(int cpu)
687 {
688 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
689 }
690
691 /*
692 * Debugging: various feature bits
693 */
694
695 #define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
698 enum {
699 #include "sched_features.h"
700 };
701
702 #undef SCHED_FEAT
703
704 #define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
707 const_debug unsigned int sysctl_sched_features =
708 #include "sched_features.h"
709 0;
710
711 #undef SCHED_FEAT
712
713 #ifdef CONFIG_SCHED_DEBUG
714 #define SCHED_FEAT(name, enabled) \
715 #name ,
716
717 static __read_mostly char *sched_feat_names[] = {
718 #include "sched_features.h"
719 NULL
720 };
721
722 #undef SCHED_FEAT
723
724 static int sched_feat_show(struct seq_file *m, void *v)
725 {
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
732 }
733 seq_puts(m, "\n");
734
735 return 0;
736 }
737
738 static ssize_t
739 sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741 {
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
755 if (strncmp(buf, "NO_", 3) == 0) {
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
775 *ppos += cnt;
776
777 return cnt;
778 }
779
780 static int sched_feat_open(struct inode *inode, struct file *filp)
781 {
782 return single_open(filp, sched_feat_show, NULL);
783 }
784
785 static const struct file_operations sched_feat_fops = {
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
791 };
792
793 static __init int sched_init_debug(void)
794 {
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799 }
800 late_initcall(sched_init_debug);
801
802 #endif
803
804 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
805
806 /*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810 const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
812 /*
813 * ratelimit for updating the group shares.
814 * default: 0.25ms
815 */
816 unsigned int sysctl_sched_shares_ratelimit = 250000;
817 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
818
819 /*
820 * Inject some fuzzyness into changing the per-cpu group shares
821 * this avoids remote rq-locks at the expense of fairness.
822 * default: 4
823 */
824 unsigned int sysctl_sched_shares_thresh = 4;
825
826 /*
827 * period over which we average the RT time consumption, measured
828 * in ms.
829 *
830 * default: 1s
831 */
832 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
833
834 /*
835 * period over which we measure -rt task cpu usage in us.
836 * default: 1s
837 */
838 unsigned int sysctl_sched_rt_period = 1000000;
839
840 static __read_mostly int scheduler_running;
841
842 /*
843 * part of the period that we allow rt tasks to run in us.
844 * default: 0.95s
845 */
846 int sysctl_sched_rt_runtime = 950000;
847
848 static inline u64 global_rt_period(void)
849 {
850 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
851 }
852
853 static inline u64 global_rt_runtime(void)
854 {
855 if (sysctl_sched_rt_runtime < 0)
856 return RUNTIME_INF;
857
858 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
859 }
860
861 #ifndef prepare_arch_switch
862 # define prepare_arch_switch(next) do { } while (0)
863 #endif
864 #ifndef finish_arch_switch
865 # define finish_arch_switch(prev) do { } while (0)
866 #endif
867
868 static inline int task_current(struct rq *rq, struct task_struct *p)
869 {
870 return rq->curr == p;
871 }
872
873 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
874 static inline int task_running(struct rq *rq, struct task_struct *p)
875 {
876 return task_current(rq, p);
877 }
878
879 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
880 {
881 }
882
883 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
884 {
885 #ifdef CONFIG_DEBUG_SPINLOCK
886 /* this is a valid case when another task releases the spinlock */
887 rq->lock.owner = current;
888 #endif
889 /*
890 * If we are tracking spinlock dependencies then we have to
891 * fix up the runqueue lock - which gets 'carried over' from
892 * prev into current:
893 */
894 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
895
896 raw_spin_unlock_irq(&rq->lock);
897 }
898
899 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
900 static inline int task_running(struct rq *rq, struct task_struct *p)
901 {
902 #ifdef CONFIG_SMP
903 return p->oncpu;
904 #else
905 return task_current(rq, p);
906 #endif
907 }
908
909 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
910 {
911 #ifdef CONFIG_SMP
912 /*
913 * We can optimise this out completely for !SMP, because the
914 * SMP rebalancing from interrupt is the only thing that cares
915 * here.
916 */
917 next->oncpu = 1;
918 #endif
919 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 raw_spin_unlock_irq(&rq->lock);
921 #else
922 raw_spin_unlock(&rq->lock);
923 #endif
924 }
925
926 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
927 {
928 #ifdef CONFIG_SMP
929 /*
930 * After ->oncpu is cleared, the task can be moved to a different CPU.
931 * We must ensure this doesn't happen until the switch is completely
932 * finished.
933 */
934 smp_wmb();
935 prev->oncpu = 0;
936 #endif
937 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
938 local_irq_enable();
939 #endif
940 }
941 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
942
943 /*
944 * __task_rq_lock - lock the runqueue a given task resides on.
945 * Must be called interrupts disabled.
946 */
947 static inline struct rq *__task_rq_lock(struct task_struct *p)
948 __acquires(rq->lock)
949 {
950 for (;;) {
951 struct rq *rq = task_rq(p);
952 raw_spin_lock(&rq->lock);
953 if (likely(rq == task_rq(p)))
954 return rq;
955 raw_spin_unlock(&rq->lock);
956 }
957 }
958
959 /*
960 * task_rq_lock - lock the runqueue a given task resides on and disable
961 * interrupts. Note the ordering: we can safely lookup the task_rq without
962 * explicitly disabling preemption.
963 */
964 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
965 __acquires(rq->lock)
966 {
967 struct rq *rq;
968
969 for (;;) {
970 local_irq_save(*flags);
971 rq = task_rq(p);
972 raw_spin_lock(&rq->lock);
973 if (likely(rq == task_rq(p)))
974 return rq;
975 raw_spin_unlock_irqrestore(&rq->lock, *flags);
976 }
977 }
978
979 void task_rq_unlock_wait(struct task_struct *p)
980 {
981 struct rq *rq = task_rq(p);
982
983 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
984 raw_spin_unlock_wait(&rq->lock);
985 }
986
987 static void __task_rq_unlock(struct rq *rq)
988 __releases(rq->lock)
989 {
990 raw_spin_unlock(&rq->lock);
991 }
992
993 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
994 __releases(rq->lock)
995 {
996 raw_spin_unlock_irqrestore(&rq->lock, *flags);
997 }
998
999 /*
1000 * this_rq_lock - lock this runqueue and disable interrupts.
1001 */
1002 static struct rq *this_rq_lock(void)
1003 __acquires(rq->lock)
1004 {
1005 struct rq *rq;
1006
1007 local_irq_disable();
1008 rq = this_rq();
1009 raw_spin_lock(&rq->lock);
1010
1011 return rq;
1012 }
1013
1014 #ifdef CONFIG_SCHED_HRTICK
1015 /*
1016 * Use HR-timers to deliver accurate preemption points.
1017 *
1018 * Its all a bit involved since we cannot program an hrt while holding the
1019 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1020 * reschedule event.
1021 *
1022 * When we get rescheduled we reprogram the hrtick_timer outside of the
1023 * rq->lock.
1024 */
1025
1026 /*
1027 * Use hrtick when:
1028 * - enabled by features
1029 * - hrtimer is actually high res
1030 */
1031 static inline int hrtick_enabled(struct rq *rq)
1032 {
1033 if (!sched_feat(HRTICK))
1034 return 0;
1035 if (!cpu_active(cpu_of(rq)))
1036 return 0;
1037 return hrtimer_is_hres_active(&rq->hrtick_timer);
1038 }
1039
1040 static void hrtick_clear(struct rq *rq)
1041 {
1042 if (hrtimer_active(&rq->hrtick_timer))
1043 hrtimer_cancel(&rq->hrtick_timer);
1044 }
1045
1046 /*
1047 * High-resolution timer tick.
1048 * Runs from hardirq context with interrupts disabled.
1049 */
1050 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1051 {
1052 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1053
1054 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1055
1056 raw_spin_lock(&rq->lock);
1057 update_rq_clock(rq);
1058 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1059 raw_spin_unlock(&rq->lock);
1060
1061 return HRTIMER_NORESTART;
1062 }
1063
1064 #ifdef CONFIG_SMP
1065 /*
1066 * called from hardirq (IPI) context
1067 */
1068 static void __hrtick_start(void *arg)
1069 {
1070 struct rq *rq = arg;
1071
1072 raw_spin_lock(&rq->lock);
1073 hrtimer_restart(&rq->hrtick_timer);
1074 rq->hrtick_csd_pending = 0;
1075 raw_spin_unlock(&rq->lock);
1076 }
1077
1078 /*
1079 * Called to set the hrtick timer state.
1080 *
1081 * called with rq->lock held and irqs disabled
1082 */
1083 static void hrtick_start(struct rq *rq, u64 delay)
1084 {
1085 struct hrtimer *timer = &rq->hrtick_timer;
1086 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1087
1088 hrtimer_set_expires(timer, time);
1089
1090 if (rq == this_rq()) {
1091 hrtimer_restart(timer);
1092 } else if (!rq->hrtick_csd_pending) {
1093 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1094 rq->hrtick_csd_pending = 1;
1095 }
1096 }
1097
1098 static int
1099 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1100 {
1101 int cpu = (int)(long)hcpu;
1102
1103 switch (action) {
1104 case CPU_UP_CANCELED:
1105 case CPU_UP_CANCELED_FROZEN:
1106 case CPU_DOWN_PREPARE:
1107 case CPU_DOWN_PREPARE_FROZEN:
1108 case CPU_DEAD:
1109 case CPU_DEAD_FROZEN:
1110 hrtick_clear(cpu_rq(cpu));
1111 return NOTIFY_OK;
1112 }
1113
1114 return NOTIFY_DONE;
1115 }
1116
1117 static __init void init_hrtick(void)
1118 {
1119 hotcpu_notifier(hotplug_hrtick, 0);
1120 }
1121 #else
1122 /*
1123 * Called to set the hrtick timer state.
1124 *
1125 * called with rq->lock held and irqs disabled
1126 */
1127 static void hrtick_start(struct rq *rq, u64 delay)
1128 {
1129 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1130 HRTIMER_MODE_REL_PINNED, 0);
1131 }
1132
1133 static inline void init_hrtick(void)
1134 {
1135 }
1136 #endif /* CONFIG_SMP */
1137
1138 static void init_rq_hrtick(struct rq *rq)
1139 {
1140 #ifdef CONFIG_SMP
1141 rq->hrtick_csd_pending = 0;
1142
1143 rq->hrtick_csd.flags = 0;
1144 rq->hrtick_csd.func = __hrtick_start;
1145 rq->hrtick_csd.info = rq;
1146 #endif
1147
1148 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1149 rq->hrtick_timer.function = hrtick;
1150 }
1151 #else /* CONFIG_SCHED_HRTICK */
1152 static inline void hrtick_clear(struct rq *rq)
1153 {
1154 }
1155
1156 static inline void init_rq_hrtick(struct rq *rq)
1157 {
1158 }
1159
1160 static inline void init_hrtick(void)
1161 {
1162 }
1163 #endif /* CONFIG_SCHED_HRTICK */
1164
1165 /*
1166 * resched_task - mark a task 'to be rescheduled now'.
1167 *
1168 * On UP this means the setting of the need_resched flag, on SMP it
1169 * might also involve a cross-CPU call to trigger the scheduler on
1170 * the target CPU.
1171 */
1172 #ifdef CONFIG_SMP
1173
1174 #ifndef tsk_is_polling
1175 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1176 #endif
1177
1178 static void resched_task(struct task_struct *p)
1179 {
1180 int cpu;
1181
1182 assert_raw_spin_locked(&task_rq(p)->lock);
1183
1184 if (test_tsk_need_resched(p))
1185 return;
1186
1187 set_tsk_need_resched(p);
1188
1189 cpu = task_cpu(p);
1190 if (cpu == smp_processor_id())
1191 return;
1192
1193 /* NEED_RESCHED must be visible before we test polling */
1194 smp_mb();
1195 if (!tsk_is_polling(p))
1196 smp_send_reschedule(cpu);
1197 }
1198
1199 static void resched_cpu(int cpu)
1200 {
1201 struct rq *rq = cpu_rq(cpu);
1202 unsigned long flags;
1203
1204 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1205 return;
1206 resched_task(cpu_curr(cpu));
1207 raw_spin_unlock_irqrestore(&rq->lock, flags);
1208 }
1209
1210 #ifdef CONFIG_NO_HZ
1211 /*
1212 * When add_timer_on() enqueues a timer into the timer wheel of an
1213 * idle CPU then this timer might expire before the next timer event
1214 * which is scheduled to wake up that CPU. In case of a completely
1215 * idle system the next event might even be infinite time into the
1216 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1217 * leaves the inner idle loop so the newly added timer is taken into
1218 * account when the CPU goes back to idle and evaluates the timer
1219 * wheel for the next timer event.
1220 */
1221 void wake_up_idle_cpu(int cpu)
1222 {
1223 struct rq *rq = cpu_rq(cpu);
1224
1225 if (cpu == smp_processor_id())
1226 return;
1227
1228 /*
1229 * This is safe, as this function is called with the timer
1230 * wheel base lock of (cpu) held. When the CPU is on the way
1231 * to idle and has not yet set rq->curr to idle then it will
1232 * be serialized on the timer wheel base lock and take the new
1233 * timer into account automatically.
1234 */
1235 if (rq->curr != rq->idle)
1236 return;
1237
1238 /*
1239 * We can set TIF_RESCHED on the idle task of the other CPU
1240 * lockless. The worst case is that the other CPU runs the
1241 * idle task through an additional NOOP schedule()
1242 */
1243 set_tsk_need_resched(rq->idle);
1244
1245 /* NEED_RESCHED must be visible before we test polling */
1246 smp_mb();
1247 if (!tsk_is_polling(rq->idle))
1248 smp_send_reschedule(cpu);
1249 }
1250 #endif /* CONFIG_NO_HZ */
1251
1252 static u64 sched_avg_period(void)
1253 {
1254 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1255 }
1256
1257 static void sched_avg_update(struct rq *rq)
1258 {
1259 s64 period = sched_avg_period();
1260
1261 while ((s64)(rq->clock - rq->age_stamp) > period) {
1262 rq->age_stamp += period;
1263 rq->rt_avg /= 2;
1264 }
1265 }
1266
1267 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1268 {
1269 rq->rt_avg += rt_delta;
1270 sched_avg_update(rq);
1271 }
1272
1273 #else /* !CONFIG_SMP */
1274 static void resched_task(struct task_struct *p)
1275 {
1276 assert_raw_spin_locked(&task_rq(p)->lock);
1277 set_tsk_need_resched(p);
1278 }
1279
1280 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1281 {
1282 }
1283 #endif /* CONFIG_SMP */
1284
1285 #if BITS_PER_LONG == 32
1286 # define WMULT_CONST (~0UL)
1287 #else
1288 # define WMULT_CONST (1UL << 32)
1289 #endif
1290
1291 #define WMULT_SHIFT 32
1292
1293 /*
1294 * Shift right and round:
1295 */
1296 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1297
1298 /*
1299 * delta *= weight / lw
1300 */
1301 static unsigned long
1302 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1303 struct load_weight *lw)
1304 {
1305 u64 tmp;
1306
1307 if (!lw->inv_weight) {
1308 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1309 lw->inv_weight = 1;
1310 else
1311 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1312 / (lw->weight+1);
1313 }
1314
1315 tmp = (u64)delta_exec * weight;
1316 /*
1317 * Check whether we'd overflow the 64-bit multiplication:
1318 */
1319 if (unlikely(tmp > WMULT_CONST))
1320 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1321 WMULT_SHIFT/2);
1322 else
1323 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1324
1325 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1326 }
1327
1328 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1329 {
1330 lw->weight += inc;
1331 lw->inv_weight = 0;
1332 }
1333
1334 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1335 {
1336 lw->weight -= dec;
1337 lw->inv_weight = 0;
1338 }
1339
1340 /*
1341 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1342 * of tasks with abnormal "nice" values across CPUs the contribution that
1343 * each task makes to its run queue's load is weighted according to its
1344 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1345 * scaled version of the new time slice allocation that they receive on time
1346 * slice expiry etc.
1347 */
1348
1349 #define WEIGHT_IDLEPRIO 3
1350 #define WMULT_IDLEPRIO 1431655765
1351
1352 /*
1353 * Nice levels are multiplicative, with a gentle 10% change for every
1354 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1355 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1356 * that remained on nice 0.
1357 *
1358 * The "10% effect" is relative and cumulative: from _any_ nice level,
1359 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1360 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1361 * If a task goes up by ~10% and another task goes down by ~10% then
1362 * the relative distance between them is ~25%.)
1363 */
1364 static const int prio_to_weight[40] = {
1365 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1366 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1367 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1368 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1369 /* 0 */ 1024, 820, 655, 526, 423,
1370 /* 5 */ 335, 272, 215, 172, 137,
1371 /* 10 */ 110, 87, 70, 56, 45,
1372 /* 15 */ 36, 29, 23, 18, 15,
1373 };
1374
1375 /*
1376 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1377 *
1378 * In cases where the weight does not change often, we can use the
1379 * precalculated inverse to speed up arithmetics by turning divisions
1380 * into multiplications:
1381 */
1382 static const u32 prio_to_wmult[40] = {
1383 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1384 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1385 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1386 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1387 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1388 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1389 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1390 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1391 };
1392
1393 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1394
1395 /*
1396 * runqueue iterator, to support SMP load-balancing between different
1397 * scheduling classes, without having to expose their internal data
1398 * structures to the load-balancing proper:
1399 */
1400 struct rq_iterator {
1401 void *arg;
1402 struct task_struct *(*start)(void *);
1403 struct task_struct *(*next)(void *);
1404 };
1405
1406 #ifdef CONFIG_SMP
1407 static unsigned long
1408 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1409 unsigned long max_load_move, struct sched_domain *sd,
1410 enum cpu_idle_type idle, int *all_pinned,
1411 int *this_best_prio, struct rq_iterator *iterator);
1412
1413 static int
1414 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1415 struct sched_domain *sd, enum cpu_idle_type idle,
1416 struct rq_iterator *iterator);
1417 #endif
1418
1419 /* Time spent by the tasks of the cpu accounting group executing in ... */
1420 enum cpuacct_stat_index {
1421 CPUACCT_STAT_USER, /* ... user mode */
1422 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1423
1424 CPUACCT_STAT_NSTATS,
1425 };
1426
1427 #ifdef CONFIG_CGROUP_CPUACCT
1428 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1429 static void cpuacct_update_stats(struct task_struct *tsk,
1430 enum cpuacct_stat_index idx, cputime_t val);
1431 #else
1432 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1433 static inline void cpuacct_update_stats(struct task_struct *tsk,
1434 enum cpuacct_stat_index idx, cputime_t val) {}
1435 #endif
1436
1437 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1438 {
1439 update_load_add(&rq->load, load);
1440 }
1441
1442 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1443 {
1444 update_load_sub(&rq->load, load);
1445 }
1446
1447 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1448 typedef int (*tg_visitor)(struct task_group *, void *);
1449
1450 /*
1451 * Iterate the full tree, calling @down when first entering a node and @up when
1452 * leaving it for the final time.
1453 */
1454 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1455 {
1456 struct task_group *parent, *child;
1457 int ret;
1458
1459 rcu_read_lock();
1460 parent = &root_task_group;
1461 down:
1462 ret = (*down)(parent, data);
1463 if (ret)
1464 goto out_unlock;
1465 list_for_each_entry_rcu(child, &parent->children, siblings) {
1466 parent = child;
1467 goto down;
1468
1469 up:
1470 continue;
1471 }
1472 ret = (*up)(parent, data);
1473 if (ret)
1474 goto out_unlock;
1475
1476 child = parent;
1477 parent = parent->parent;
1478 if (parent)
1479 goto up;
1480 out_unlock:
1481 rcu_read_unlock();
1482
1483 return ret;
1484 }
1485
1486 static int tg_nop(struct task_group *tg, void *data)
1487 {
1488 return 0;
1489 }
1490 #endif
1491
1492 #ifdef CONFIG_SMP
1493 /* Used instead of source_load when we know the type == 0 */
1494 static unsigned long weighted_cpuload(const int cpu)
1495 {
1496 return cpu_rq(cpu)->load.weight;
1497 }
1498
1499 /*
1500 * Return a low guess at the load of a migration-source cpu weighted
1501 * according to the scheduling class and "nice" value.
1502 *
1503 * We want to under-estimate the load of migration sources, to
1504 * balance conservatively.
1505 */
1506 static unsigned long source_load(int cpu, int type)
1507 {
1508 struct rq *rq = cpu_rq(cpu);
1509 unsigned long total = weighted_cpuload(cpu);
1510
1511 if (type == 0 || !sched_feat(LB_BIAS))
1512 return total;
1513
1514 return min(rq->cpu_load[type-1], total);
1515 }
1516
1517 /*
1518 * Return a high guess at the load of a migration-target cpu weighted
1519 * according to the scheduling class and "nice" value.
1520 */
1521 static unsigned long target_load(int cpu, int type)
1522 {
1523 struct rq *rq = cpu_rq(cpu);
1524 unsigned long total = weighted_cpuload(cpu);
1525
1526 if (type == 0 || !sched_feat(LB_BIAS))
1527 return total;
1528
1529 return max(rq->cpu_load[type-1], total);
1530 }
1531
1532 static struct sched_group *group_of(int cpu)
1533 {
1534 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1535
1536 if (!sd)
1537 return NULL;
1538
1539 return sd->groups;
1540 }
1541
1542 static unsigned long power_of(int cpu)
1543 {
1544 struct sched_group *group = group_of(cpu);
1545
1546 if (!group)
1547 return SCHED_LOAD_SCALE;
1548
1549 return group->cpu_power;
1550 }
1551
1552 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1553
1554 static unsigned long cpu_avg_load_per_task(int cpu)
1555 {
1556 struct rq *rq = cpu_rq(cpu);
1557 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1558
1559 if (nr_running)
1560 rq->avg_load_per_task = rq->load.weight / nr_running;
1561 else
1562 rq->avg_load_per_task = 0;
1563
1564 return rq->avg_load_per_task;
1565 }
1566
1567 #ifdef CONFIG_FAIR_GROUP_SCHED
1568
1569 static __read_mostly unsigned long *update_shares_data;
1570
1571 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1572
1573 /*
1574 * Calculate and set the cpu's group shares.
1575 */
1576 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1577 unsigned long sd_shares,
1578 unsigned long sd_rq_weight,
1579 unsigned long *usd_rq_weight)
1580 {
1581 unsigned long shares, rq_weight;
1582 int boost = 0;
1583
1584 rq_weight = usd_rq_weight[cpu];
1585 if (!rq_weight) {
1586 boost = 1;
1587 rq_weight = NICE_0_LOAD;
1588 }
1589
1590 /*
1591 * \Sum_j shares_j * rq_weight_i
1592 * shares_i = -----------------------------
1593 * \Sum_j rq_weight_j
1594 */
1595 shares = (sd_shares * rq_weight) / sd_rq_weight;
1596 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1597
1598 if (abs(shares - tg->se[cpu]->load.weight) >
1599 sysctl_sched_shares_thresh) {
1600 struct rq *rq = cpu_rq(cpu);
1601 unsigned long flags;
1602
1603 raw_spin_lock_irqsave(&rq->lock, flags);
1604 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1605 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1606 __set_se_shares(tg->se[cpu], shares);
1607 raw_spin_unlock_irqrestore(&rq->lock, flags);
1608 }
1609 }
1610
1611 /*
1612 * Re-compute the task group their per cpu shares over the given domain.
1613 * This needs to be done in a bottom-up fashion because the rq weight of a
1614 * parent group depends on the shares of its child groups.
1615 */
1616 static int tg_shares_up(struct task_group *tg, void *data)
1617 {
1618 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1619 unsigned long *usd_rq_weight;
1620 struct sched_domain *sd = data;
1621 unsigned long flags;
1622 int i;
1623
1624 if (!tg->se[0])
1625 return 0;
1626
1627 local_irq_save(flags);
1628 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1629
1630 for_each_cpu(i, sched_domain_span(sd)) {
1631 weight = tg->cfs_rq[i]->load.weight;
1632 usd_rq_weight[i] = weight;
1633
1634 rq_weight += weight;
1635 /*
1636 * If there are currently no tasks on the cpu pretend there
1637 * is one of average load so that when a new task gets to
1638 * run here it will not get delayed by group starvation.
1639 */
1640 if (!weight)
1641 weight = NICE_0_LOAD;
1642
1643 sum_weight += weight;
1644 shares += tg->cfs_rq[i]->shares;
1645 }
1646
1647 if (!rq_weight)
1648 rq_weight = sum_weight;
1649
1650 if ((!shares && rq_weight) || shares > tg->shares)
1651 shares = tg->shares;
1652
1653 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1654 shares = tg->shares;
1655
1656 for_each_cpu(i, sched_domain_span(sd))
1657 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1658
1659 local_irq_restore(flags);
1660
1661 return 0;
1662 }
1663
1664 /*
1665 * Compute the cpu's hierarchical load factor for each task group.
1666 * This needs to be done in a top-down fashion because the load of a child
1667 * group is a fraction of its parents load.
1668 */
1669 static int tg_load_down(struct task_group *tg, void *data)
1670 {
1671 unsigned long load;
1672 long cpu = (long)data;
1673
1674 if (!tg->parent) {
1675 load = cpu_rq(cpu)->load.weight;
1676 } else {
1677 load = tg->parent->cfs_rq[cpu]->h_load;
1678 load *= tg->cfs_rq[cpu]->shares;
1679 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1680 }
1681
1682 tg->cfs_rq[cpu]->h_load = load;
1683
1684 return 0;
1685 }
1686
1687 static void update_shares(struct sched_domain *sd)
1688 {
1689 s64 elapsed;
1690 u64 now;
1691
1692 if (root_task_group_empty())
1693 return;
1694
1695 now = cpu_clock(raw_smp_processor_id());
1696 elapsed = now - sd->last_update;
1697
1698 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1699 sd->last_update = now;
1700 walk_tg_tree(tg_nop, tg_shares_up, sd);
1701 }
1702 }
1703
1704 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1705 {
1706 if (root_task_group_empty())
1707 return;
1708
1709 raw_spin_unlock(&rq->lock);
1710 update_shares(sd);
1711 raw_spin_lock(&rq->lock);
1712 }
1713
1714 static void update_h_load(long cpu)
1715 {
1716 if (root_task_group_empty())
1717 return;
1718
1719 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1720 }
1721
1722 #else
1723
1724 static inline void update_shares(struct sched_domain *sd)
1725 {
1726 }
1727
1728 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1729 {
1730 }
1731
1732 #endif
1733
1734 #ifdef CONFIG_PREEMPT
1735
1736 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1737
1738 /*
1739 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1740 * way at the expense of forcing extra atomic operations in all
1741 * invocations. This assures that the double_lock is acquired using the
1742 * same underlying policy as the spinlock_t on this architecture, which
1743 * reduces latency compared to the unfair variant below. However, it
1744 * also adds more overhead and therefore may reduce throughput.
1745 */
1746 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1747 __releases(this_rq->lock)
1748 __acquires(busiest->lock)
1749 __acquires(this_rq->lock)
1750 {
1751 raw_spin_unlock(&this_rq->lock);
1752 double_rq_lock(this_rq, busiest);
1753
1754 return 1;
1755 }
1756
1757 #else
1758 /*
1759 * Unfair double_lock_balance: Optimizes throughput at the expense of
1760 * latency by eliminating extra atomic operations when the locks are
1761 * already in proper order on entry. This favors lower cpu-ids and will
1762 * grant the double lock to lower cpus over higher ids under contention,
1763 * regardless of entry order into the function.
1764 */
1765 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1766 __releases(this_rq->lock)
1767 __acquires(busiest->lock)
1768 __acquires(this_rq->lock)
1769 {
1770 int ret = 0;
1771
1772 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1773 if (busiest < this_rq) {
1774 raw_spin_unlock(&this_rq->lock);
1775 raw_spin_lock(&busiest->lock);
1776 raw_spin_lock_nested(&this_rq->lock,
1777 SINGLE_DEPTH_NESTING);
1778 ret = 1;
1779 } else
1780 raw_spin_lock_nested(&busiest->lock,
1781 SINGLE_DEPTH_NESTING);
1782 }
1783 return ret;
1784 }
1785
1786 #endif /* CONFIG_PREEMPT */
1787
1788 /*
1789 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1790 */
1791 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1792 {
1793 if (unlikely(!irqs_disabled())) {
1794 /* printk() doesn't work good under rq->lock */
1795 raw_spin_unlock(&this_rq->lock);
1796 BUG_ON(1);
1797 }
1798
1799 return _double_lock_balance(this_rq, busiest);
1800 }
1801
1802 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1803 __releases(busiest->lock)
1804 {
1805 raw_spin_unlock(&busiest->lock);
1806 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1807 }
1808 #endif
1809
1810 #ifdef CONFIG_FAIR_GROUP_SCHED
1811 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1812 {
1813 #ifdef CONFIG_SMP
1814 cfs_rq->shares = shares;
1815 #endif
1816 }
1817 #endif
1818
1819 static void calc_load_account_active(struct rq *this_rq);
1820 static void update_sysctl(void);
1821 static int get_update_sysctl_factor(void);
1822
1823 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1824 {
1825 set_task_rq(p, cpu);
1826 #ifdef CONFIG_SMP
1827 /*
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1831 */
1832 smp_wmb();
1833 task_thread_info(p)->cpu = cpu;
1834 #endif
1835 }
1836
1837 #include "sched_stats.h"
1838 #include "sched_idletask.c"
1839 #include "sched_fair.c"
1840 #include "sched_rt.c"
1841 #ifdef CONFIG_SCHED_DEBUG
1842 # include "sched_debug.c"
1843 #endif
1844
1845 #define sched_class_highest (&rt_sched_class)
1846 #define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next)
1848
1849 static void inc_nr_running(struct rq *rq)
1850 {
1851 rq->nr_running++;
1852 }
1853
1854 static void dec_nr_running(struct rq *rq)
1855 {
1856 rq->nr_running--;
1857 }
1858
1859 static void set_load_weight(struct task_struct *p)
1860 {
1861 if (task_has_rt_policy(p)) {
1862 p->se.load.weight = prio_to_weight[0] * 2;
1863 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1864 return;
1865 }
1866
1867 /*
1868 * SCHED_IDLE tasks get minimal weight:
1869 */
1870 if (p->policy == SCHED_IDLE) {
1871 p->se.load.weight = WEIGHT_IDLEPRIO;
1872 p->se.load.inv_weight = WMULT_IDLEPRIO;
1873 return;
1874 }
1875
1876 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1877 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1878 }
1879
1880 static void update_avg(u64 *avg, u64 sample)
1881 {
1882 s64 diff = sample - *avg;
1883 *avg += diff >> 3;
1884 }
1885
1886 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1887 {
1888 if (wakeup)
1889 p->se.start_runtime = p->se.sum_exec_runtime;
1890
1891 sched_info_queued(p);
1892 p->sched_class->enqueue_task(rq, p, wakeup);
1893 p->se.on_rq = 1;
1894 }
1895
1896 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1897 {
1898 if (sleep) {
1899 if (p->se.last_wakeup) {
1900 update_avg(&p->se.avg_overlap,
1901 p->se.sum_exec_runtime - p->se.last_wakeup);
1902 p->se.last_wakeup = 0;
1903 } else {
1904 update_avg(&p->se.avg_wakeup,
1905 sysctl_sched_wakeup_granularity);
1906 }
1907 }
1908
1909 sched_info_dequeued(p);
1910 p->sched_class->dequeue_task(rq, p, sleep);
1911 p->se.on_rq = 0;
1912 }
1913
1914 /*
1915 * __normal_prio - return the priority that is based on the static prio
1916 */
1917 static inline int __normal_prio(struct task_struct *p)
1918 {
1919 return p->static_prio;
1920 }
1921
1922 /*
1923 * Calculate the expected normal priority: i.e. priority
1924 * without taking RT-inheritance into account. Might be
1925 * boosted by interactivity modifiers. Changes upon fork,
1926 * setprio syscalls, and whenever the interactivity
1927 * estimator recalculates.
1928 */
1929 static inline int normal_prio(struct task_struct *p)
1930 {
1931 int prio;
1932
1933 if (task_has_rt_policy(p))
1934 prio = MAX_RT_PRIO-1 - p->rt_priority;
1935 else
1936 prio = __normal_prio(p);
1937 return prio;
1938 }
1939
1940 /*
1941 * Calculate the current priority, i.e. the priority
1942 * taken into account by the scheduler. This value might
1943 * be boosted by RT tasks, or might be boosted by
1944 * interactivity modifiers. Will be RT if the task got
1945 * RT-boosted. If not then it returns p->normal_prio.
1946 */
1947 static int effective_prio(struct task_struct *p)
1948 {
1949 p->normal_prio = normal_prio(p);
1950 /*
1951 * If we are RT tasks or we were boosted to RT priority,
1952 * keep the priority unchanged. Otherwise, update priority
1953 * to the normal priority:
1954 */
1955 if (!rt_prio(p->prio))
1956 return p->normal_prio;
1957 return p->prio;
1958 }
1959
1960 /*
1961 * activate_task - move a task to the runqueue.
1962 */
1963 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1964 {
1965 if (task_contributes_to_load(p))
1966 rq->nr_uninterruptible--;
1967
1968 enqueue_task(rq, p, wakeup);
1969 inc_nr_running(rq);
1970 }
1971
1972 /*
1973 * deactivate_task - remove a task from the runqueue.
1974 */
1975 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1976 {
1977 if (task_contributes_to_load(p))
1978 rq->nr_uninterruptible++;
1979
1980 dequeue_task(rq, p, sleep);
1981 dec_nr_running(rq);
1982 }
1983
1984 /**
1985 * task_curr - is this task currently executing on a CPU?
1986 * @p: the task in question.
1987 */
1988 inline int task_curr(const struct task_struct *p)
1989 {
1990 return cpu_curr(task_cpu(p)) == p;
1991 }
1992
1993 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1994 const struct sched_class *prev_class,
1995 int oldprio, int running)
1996 {
1997 if (prev_class != p->sched_class) {
1998 if (prev_class->switched_from)
1999 prev_class->switched_from(rq, p, running);
2000 p->sched_class->switched_to(rq, p, running);
2001 } else
2002 p->sched_class->prio_changed(rq, p, oldprio, running);
2003 }
2004
2005 #ifdef CONFIG_SMP
2006 /*
2007 * Is this task likely cache-hot:
2008 */
2009 static int
2010 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2011 {
2012 s64 delta;
2013
2014 if (p->sched_class != &fair_sched_class)
2015 return 0;
2016
2017 /*
2018 * Buddy candidates are cache hot:
2019 */
2020 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2021 (&p->se == cfs_rq_of(&p->se)->next ||
2022 &p->se == cfs_rq_of(&p->se)->last))
2023 return 1;
2024
2025 if (sysctl_sched_migration_cost == -1)
2026 return 1;
2027 if (sysctl_sched_migration_cost == 0)
2028 return 0;
2029
2030 delta = now - p->se.exec_start;
2031
2032 return delta < (s64)sysctl_sched_migration_cost;
2033 }
2034
2035 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2036 {
2037 #ifdef CONFIG_SCHED_DEBUG
2038 /*
2039 * We should never call set_task_cpu() on a blocked task,
2040 * ttwu() will sort out the placement.
2041 */
2042 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2043 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2044 #endif
2045
2046 trace_sched_migrate_task(p, new_cpu);
2047
2048 if (task_cpu(p) != new_cpu) {
2049 p->se.nr_migrations++;
2050 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2051 }
2052
2053 __set_task_cpu(p, new_cpu);
2054 }
2055
2056 struct migration_req {
2057 struct list_head list;
2058
2059 struct task_struct *task;
2060 int dest_cpu;
2061
2062 struct completion done;
2063 };
2064
2065 /*
2066 * The task's runqueue lock must be held.
2067 * Returns true if you have to wait for migration thread.
2068 */
2069 static int
2070 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2071 {
2072 struct rq *rq = task_rq(p);
2073
2074 /*
2075 * If the task is not on a runqueue (and not running), then
2076 * the next wake-up will properly place the task.
2077 */
2078 if (!p->se.on_rq && !task_running(rq, p))
2079 return 0;
2080
2081 init_completion(&req->done);
2082 req->task = p;
2083 req->dest_cpu = dest_cpu;
2084 list_add(&req->list, &rq->migration_queue);
2085
2086 return 1;
2087 }
2088
2089 /*
2090 * wait_task_context_switch - wait for a thread to complete at least one
2091 * context switch.
2092 *
2093 * @p must not be current.
2094 */
2095 void wait_task_context_switch(struct task_struct *p)
2096 {
2097 unsigned long nvcsw, nivcsw, flags;
2098 int running;
2099 struct rq *rq;
2100
2101 nvcsw = p->nvcsw;
2102 nivcsw = p->nivcsw;
2103 for (;;) {
2104 /*
2105 * The runqueue is assigned before the actual context
2106 * switch. We need to take the runqueue lock.
2107 *
2108 * We could check initially without the lock but it is
2109 * very likely that we need to take the lock in every
2110 * iteration.
2111 */
2112 rq = task_rq_lock(p, &flags);
2113 running = task_running(rq, p);
2114 task_rq_unlock(rq, &flags);
2115
2116 if (likely(!running))
2117 break;
2118 /*
2119 * The switch count is incremented before the actual
2120 * context switch. We thus wait for two switches to be
2121 * sure at least one completed.
2122 */
2123 if ((p->nvcsw - nvcsw) > 1)
2124 break;
2125 if ((p->nivcsw - nivcsw) > 1)
2126 break;
2127
2128 cpu_relax();
2129 }
2130 }
2131
2132 /*
2133 * wait_task_inactive - wait for a thread to unschedule.
2134 *
2135 * If @match_state is nonzero, it's the @p->state value just checked and
2136 * not expected to change. If it changes, i.e. @p might have woken up,
2137 * then return zero. When we succeed in waiting for @p to be off its CPU,
2138 * we return a positive number (its total switch count). If a second call
2139 * a short while later returns the same number, the caller can be sure that
2140 * @p has remained unscheduled the whole time.
2141 *
2142 * The caller must ensure that the task *will* unschedule sometime soon,
2143 * else this function might spin for a *long* time. This function can't
2144 * be called with interrupts off, or it may introduce deadlock with
2145 * smp_call_function() if an IPI is sent by the same process we are
2146 * waiting to become inactive.
2147 */
2148 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2149 {
2150 unsigned long flags;
2151 int running, on_rq;
2152 unsigned long ncsw;
2153 struct rq *rq;
2154
2155 for (;;) {
2156 /*
2157 * We do the initial early heuristics without holding
2158 * any task-queue locks at all. We'll only try to get
2159 * the runqueue lock when things look like they will
2160 * work out!
2161 */
2162 rq = task_rq(p);
2163
2164 /*
2165 * If the task is actively running on another CPU
2166 * still, just relax and busy-wait without holding
2167 * any locks.
2168 *
2169 * NOTE! Since we don't hold any locks, it's not
2170 * even sure that "rq" stays as the right runqueue!
2171 * But we don't care, since "task_running()" will
2172 * return false if the runqueue has changed and p
2173 * is actually now running somewhere else!
2174 */
2175 while (task_running(rq, p)) {
2176 if (match_state && unlikely(p->state != match_state))
2177 return 0;
2178 cpu_relax();
2179 }
2180
2181 /*
2182 * Ok, time to look more closely! We need the rq
2183 * lock now, to be *sure*. If we're wrong, we'll
2184 * just go back and repeat.
2185 */
2186 rq = task_rq_lock(p, &flags);
2187 trace_sched_wait_task(rq, p);
2188 running = task_running(rq, p);
2189 on_rq = p->se.on_rq;
2190 ncsw = 0;
2191 if (!match_state || p->state == match_state)
2192 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2193 task_rq_unlock(rq, &flags);
2194
2195 /*
2196 * If it changed from the expected state, bail out now.
2197 */
2198 if (unlikely(!ncsw))
2199 break;
2200
2201 /*
2202 * Was it really running after all now that we
2203 * checked with the proper locks actually held?
2204 *
2205 * Oops. Go back and try again..
2206 */
2207 if (unlikely(running)) {
2208 cpu_relax();
2209 continue;
2210 }
2211
2212 /*
2213 * It's not enough that it's not actively running,
2214 * it must be off the runqueue _entirely_, and not
2215 * preempted!
2216 *
2217 * So if it was still runnable (but just not actively
2218 * running right now), it's preempted, and we should
2219 * yield - it could be a while.
2220 */
2221 if (unlikely(on_rq)) {
2222 schedule_timeout_uninterruptible(1);
2223 continue;
2224 }
2225
2226 /*
2227 * Ahh, all good. It wasn't running, and it wasn't
2228 * runnable, which means that it will never become
2229 * running in the future either. We're all done!
2230 */
2231 break;
2232 }
2233
2234 return ncsw;
2235 }
2236
2237 /***
2238 * kick_process - kick a running thread to enter/exit the kernel
2239 * @p: the to-be-kicked thread
2240 *
2241 * Cause a process which is running on another CPU to enter
2242 * kernel-mode, without any delay. (to get signals handled.)
2243 *
2244 * NOTE: this function doesnt have to take the runqueue lock,
2245 * because all it wants to ensure is that the remote task enters
2246 * the kernel. If the IPI races and the task has been migrated
2247 * to another CPU then no harm is done and the purpose has been
2248 * achieved as well.
2249 */
2250 void kick_process(struct task_struct *p)
2251 {
2252 int cpu;
2253
2254 preempt_disable();
2255 cpu = task_cpu(p);
2256 if ((cpu != smp_processor_id()) && task_curr(p))
2257 smp_send_reschedule(cpu);
2258 preempt_enable();
2259 }
2260 EXPORT_SYMBOL_GPL(kick_process);
2261 #endif /* CONFIG_SMP */
2262
2263 /**
2264 * task_oncpu_function_call - call a function on the cpu on which a task runs
2265 * @p: the task to evaluate
2266 * @func: the function to be called
2267 * @info: the function call argument
2268 *
2269 * Calls the function @func when the task is currently running. This might
2270 * be on the current CPU, which just calls the function directly
2271 */
2272 void task_oncpu_function_call(struct task_struct *p,
2273 void (*func) (void *info), void *info)
2274 {
2275 int cpu;
2276
2277 preempt_disable();
2278 cpu = task_cpu(p);
2279 if (task_curr(p))
2280 smp_call_function_single(cpu, func, info, 1);
2281 preempt_enable();
2282 }
2283
2284 #ifdef CONFIG_SMP
2285 static int select_fallback_rq(int cpu, struct task_struct *p)
2286 {
2287 int dest_cpu;
2288 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2289
2290 /* Look for allowed, online CPU in same node. */
2291 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2292 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2293 return dest_cpu;
2294
2295 /* Any allowed, online CPU? */
2296 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2297 if (dest_cpu < nr_cpu_ids)
2298 return dest_cpu;
2299
2300 /* No more Mr. Nice Guy. */
2301 if (dest_cpu >= nr_cpu_ids) {
2302 rcu_read_lock();
2303 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2304 rcu_read_unlock();
2305 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2306
2307 /*
2308 * Don't tell them about moving exiting tasks or
2309 * kernel threads (both mm NULL), since they never
2310 * leave kernel.
2311 */
2312 if (p->mm && printk_ratelimit()) {
2313 printk(KERN_INFO "process %d (%s) no "
2314 "longer affine to cpu%d\n",
2315 task_pid_nr(p), p->comm, cpu);
2316 }
2317 }
2318
2319 return dest_cpu;
2320 }
2321
2322 /*
2323 * Called from:
2324 *
2325 * - fork, @p is stable because it isn't on the tasklist yet
2326 *
2327 * - exec, @p is unstable, retry loop
2328 *
2329 * - wake-up, we serialize ->cpus_allowed against TASK_WAKING so
2330 * we should be good.
2331 */
2332 static inline
2333 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2334 {
2335 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2336
2337 /*
2338 * In order not to call set_task_cpu() on a blocking task we need
2339 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2340 * cpu.
2341 *
2342 * Since this is common to all placement strategies, this lives here.
2343 *
2344 * [ this allows ->select_task() to simply return task_cpu(p) and
2345 * not worry about this generic constraint ]
2346 */
2347 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2348 !cpu_online(cpu)))
2349 cpu = select_fallback_rq(task_cpu(p), p);
2350
2351 return cpu;
2352 }
2353 #endif
2354
2355 /***
2356 * try_to_wake_up - wake up a thread
2357 * @p: the to-be-woken-up thread
2358 * @state: the mask of task states that can be woken
2359 * @sync: do a synchronous wakeup?
2360 *
2361 * Put it on the run-queue if it's not already there. The "current"
2362 * thread is always on the run-queue (except when the actual
2363 * re-schedule is in progress), and as such you're allowed to do
2364 * the simpler "current->state = TASK_RUNNING" to mark yourself
2365 * runnable without the overhead of this.
2366 *
2367 * returns failure only if the task is already active.
2368 */
2369 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2370 int wake_flags)
2371 {
2372 int cpu, orig_cpu, this_cpu, success = 0;
2373 unsigned long flags;
2374 struct rq *rq, *orig_rq;
2375
2376 if (!sched_feat(SYNC_WAKEUPS))
2377 wake_flags &= ~WF_SYNC;
2378
2379 this_cpu = get_cpu();
2380
2381 smp_wmb();
2382 rq = orig_rq = task_rq_lock(p, &flags);
2383 update_rq_clock(rq);
2384 if (!(p->state & state))
2385 goto out;
2386
2387 if (p->se.on_rq)
2388 goto out_running;
2389
2390 cpu = task_cpu(p);
2391 orig_cpu = cpu;
2392
2393 #ifdef CONFIG_SMP
2394 if (unlikely(task_running(rq, p)))
2395 goto out_activate;
2396
2397 /*
2398 * In order to handle concurrent wakeups and release the rq->lock
2399 * we put the task in TASK_WAKING state.
2400 *
2401 * First fix up the nr_uninterruptible count:
2402 */
2403 if (task_contributes_to_load(p))
2404 rq->nr_uninterruptible--;
2405 p->state = TASK_WAKING;
2406
2407 if (p->sched_class->task_waking)
2408 p->sched_class->task_waking(rq, p);
2409
2410 __task_rq_unlock(rq);
2411
2412 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2413 if (cpu != orig_cpu)
2414 set_task_cpu(p, cpu);
2415
2416 rq = __task_rq_lock(p);
2417 update_rq_clock(rq);
2418
2419 WARN_ON(p->state != TASK_WAKING);
2420 cpu = task_cpu(p);
2421
2422 #ifdef CONFIG_SCHEDSTATS
2423 schedstat_inc(rq, ttwu_count);
2424 if (cpu == this_cpu)
2425 schedstat_inc(rq, ttwu_local);
2426 else {
2427 struct sched_domain *sd;
2428 for_each_domain(this_cpu, sd) {
2429 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2430 schedstat_inc(sd, ttwu_wake_remote);
2431 break;
2432 }
2433 }
2434 }
2435 #endif /* CONFIG_SCHEDSTATS */
2436
2437 out_activate:
2438 #endif /* CONFIG_SMP */
2439 schedstat_inc(p, se.nr_wakeups);
2440 if (wake_flags & WF_SYNC)
2441 schedstat_inc(p, se.nr_wakeups_sync);
2442 if (orig_cpu != cpu)
2443 schedstat_inc(p, se.nr_wakeups_migrate);
2444 if (cpu == this_cpu)
2445 schedstat_inc(p, se.nr_wakeups_local);
2446 else
2447 schedstat_inc(p, se.nr_wakeups_remote);
2448 activate_task(rq, p, 1);
2449 success = 1;
2450
2451 /*
2452 * Only attribute actual wakeups done by this task.
2453 */
2454 if (!in_interrupt()) {
2455 struct sched_entity *se = &current->se;
2456 u64 sample = se->sum_exec_runtime;
2457
2458 if (se->last_wakeup)
2459 sample -= se->last_wakeup;
2460 else
2461 sample -= se->start_runtime;
2462 update_avg(&se->avg_wakeup, sample);
2463
2464 se->last_wakeup = se->sum_exec_runtime;
2465 }
2466
2467 out_running:
2468 trace_sched_wakeup(rq, p, success);
2469 check_preempt_curr(rq, p, wake_flags);
2470
2471 p->state = TASK_RUNNING;
2472 #ifdef CONFIG_SMP
2473 if (p->sched_class->task_woken)
2474 p->sched_class->task_woken(rq, p);
2475
2476 if (unlikely(rq->idle_stamp)) {
2477 u64 delta = rq->clock - rq->idle_stamp;
2478 u64 max = 2*sysctl_sched_migration_cost;
2479
2480 if (delta > max)
2481 rq->avg_idle = max;
2482 else
2483 update_avg(&rq->avg_idle, delta);
2484 rq->idle_stamp = 0;
2485 }
2486 #endif
2487 out:
2488 task_rq_unlock(rq, &flags);
2489 put_cpu();
2490
2491 return success;
2492 }
2493
2494 /**
2495 * wake_up_process - Wake up a specific process
2496 * @p: The process to be woken up.
2497 *
2498 * Attempt to wake up the nominated process and move it to the set of runnable
2499 * processes. Returns 1 if the process was woken up, 0 if it was already
2500 * running.
2501 *
2502 * It may be assumed that this function implies a write memory barrier before
2503 * changing the task state if and only if any tasks are woken up.
2504 */
2505 int wake_up_process(struct task_struct *p)
2506 {
2507 return try_to_wake_up(p, TASK_ALL, 0);
2508 }
2509 EXPORT_SYMBOL(wake_up_process);
2510
2511 int wake_up_state(struct task_struct *p, unsigned int state)
2512 {
2513 return try_to_wake_up(p, state, 0);
2514 }
2515
2516 /*
2517 * Perform scheduler related setup for a newly forked process p.
2518 * p is forked by current.
2519 *
2520 * __sched_fork() is basic setup used by init_idle() too:
2521 */
2522 static void __sched_fork(struct task_struct *p)
2523 {
2524 p->se.exec_start = 0;
2525 p->se.sum_exec_runtime = 0;
2526 p->se.prev_sum_exec_runtime = 0;
2527 p->se.nr_migrations = 0;
2528 p->se.last_wakeup = 0;
2529 p->se.avg_overlap = 0;
2530 p->se.start_runtime = 0;
2531 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2532
2533 #ifdef CONFIG_SCHEDSTATS
2534 p->se.wait_start = 0;
2535 p->se.wait_max = 0;
2536 p->se.wait_count = 0;
2537 p->se.wait_sum = 0;
2538
2539 p->se.sleep_start = 0;
2540 p->se.sleep_max = 0;
2541 p->se.sum_sleep_runtime = 0;
2542
2543 p->se.block_start = 0;
2544 p->se.block_max = 0;
2545 p->se.exec_max = 0;
2546 p->se.slice_max = 0;
2547
2548 p->se.nr_migrations_cold = 0;
2549 p->se.nr_failed_migrations_affine = 0;
2550 p->se.nr_failed_migrations_running = 0;
2551 p->se.nr_failed_migrations_hot = 0;
2552 p->se.nr_forced_migrations = 0;
2553
2554 p->se.nr_wakeups = 0;
2555 p->se.nr_wakeups_sync = 0;
2556 p->se.nr_wakeups_migrate = 0;
2557 p->se.nr_wakeups_local = 0;
2558 p->se.nr_wakeups_remote = 0;
2559 p->se.nr_wakeups_affine = 0;
2560 p->se.nr_wakeups_affine_attempts = 0;
2561 p->se.nr_wakeups_passive = 0;
2562 p->se.nr_wakeups_idle = 0;
2563
2564 #endif
2565
2566 INIT_LIST_HEAD(&p->rt.run_list);
2567 p->se.on_rq = 0;
2568 INIT_LIST_HEAD(&p->se.group_node);
2569
2570 #ifdef CONFIG_PREEMPT_NOTIFIERS
2571 INIT_HLIST_HEAD(&p->preempt_notifiers);
2572 #endif
2573 }
2574
2575 /*
2576 * fork()/clone()-time setup:
2577 */
2578 void sched_fork(struct task_struct *p, int clone_flags)
2579 {
2580 int cpu = get_cpu();
2581
2582 __sched_fork(p);
2583 /*
2584 * We mark the process as waking here. This guarantees that
2585 * nobody will actually run it, and a signal or other external
2586 * event cannot wake it up and insert it on the runqueue either.
2587 */
2588 p->state = TASK_WAKING;
2589
2590 /*
2591 * Revert to default priority/policy on fork if requested.
2592 */
2593 if (unlikely(p->sched_reset_on_fork)) {
2594 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2595 p->policy = SCHED_NORMAL;
2596 p->normal_prio = p->static_prio;
2597 }
2598
2599 if (PRIO_TO_NICE(p->static_prio) < 0) {
2600 p->static_prio = NICE_TO_PRIO(0);
2601 p->normal_prio = p->static_prio;
2602 set_load_weight(p);
2603 }
2604
2605 /*
2606 * We don't need the reset flag anymore after the fork. It has
2607 * fulfilled its duty:
2608 */
2609 p->sched_reset_on_fork = 0;
2610 }
2611
2612 /*
2613 * Make sure we do not leak PI boosting priority to the child.
2614 */
2615 p->prio = current->normal_prio;
2616
2617 if (!rt_prio(p->prio))
2618 p->sched_class = &fair_sched_class;
2619
2620 if (p->sched_class->task_fork)
2621 p->sched_class->task_fork(p);
2622
2623 #ifdef CONFIG_SMP
2624 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2625 #endif
2626 set_task_cpu(p, cpu);
2627
2628 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2629 if (likely(sched_info_on()))
2630 memset(&p->sched_info, 0, sizeof(p->sched_info));
2631 #endif
2632 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2633 p->oncpu = 0;
2634 #endif
2635 #ifdef CONFIG_PREEMPT
2636 /* Want to start with kernel preemption disabled. */
2637 task_thread_info(p)->preempt_count = 1;
2638 #endif
2639 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2640
2641 put_cpu();
2642 }
2643
2644 /*
2645 * wake_up_new_task - wake up a newly created task for the first time.
2646 *
2647 * This function will do some initial scheduler statistics housekeeping
2648 * that must be done for every newly created context, then puts the task
2649 * on the runqueue and wakes it.
2650 */
2651 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2652 {
2653 unsigned long flags;
2654 struct rq *rq;
2655
2656 rq = task_rq_lock(p, &flags);
2657 BUG_ON(p->state != TASK_WAKING);
2658 p->state = TASK_RUNNING;
2659 update_rq_clock(rq);
2660 activate_task(rq, p, 0);
2661 trace_sched_wakeup_new(rq, p, 1);
2662 check_preempt_curr(rq, p, WF_FORK);
2663 #ifdef CONFIG_SMP
2664 if (p->sched_class->task_woken)
2665 p->sched_class->task_woken(rq, p);
2666 #endif
2667 task_rq_unlock(rq, &flags);
2668 }
2669
2670 #ifdef CONFIG_PREEMPT_NOTIFIERS
2671
2672 /**
2673 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2674 * @notifier: notifier struct to register
2675 */
2676 void preempt_notifier_register(struct preempt_notifier *notifier)
2677 {
2678 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2679 }
2680 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2681
2682 /**
2683 * preempt_notifier_unregister - no longer interested in preemption notifications
2684 * @notifier: notifier struct to unregister
2685 *
2686 * This is safe to call from within a preemption notifier.
2687 */
2688 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2689 {
2690 hlist_del(&notifier->link);
2691 }
2692 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2693
2694 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2695 {
2696 struct preempt_notifier *notifier;
2697 struct hlist_node *node;
2698
2699 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2700 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2701 }
2702
2703 static void
2704 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2705 struct task_struct *next)
2706 {
2707 struct preempt_notifier *notifier;
2708 struct hlist_node *node;
2709
2710 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2711 notifier->ops->sched_out(notifier, next);
2712 }
2713
2714 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2715
2716 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2717 {
2718 }
2719
2720 static void
2721 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2722 struct task_struct *next)
2723 {
2724 }
2725
2726 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2727
2728 /**
2729 * prepare_task_switch - prepare to switch tasks
2730 * @rq: the runqueue preparing to switch
2731 * @prev: the current task that is being switched out
2732 * @next: the task we are going to switch to.
2733 *
2734 * This is called with the rq lock held and interrupts off. It must
2735 * be paired with a subsequent finish_task_switch after the context
2736 * switch.
2737 *
2738 * prepare_task_switch sets up locking and calls architecture specific
2739 * hooks.
2740 */
2741 static inline void
2742 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2743 struct task_struct *next)
2744 {
2745 fire_sched_out_preempt_notifiers(prev, next);
2746 prepare_lock_switch(rq, next);
2747 prepare_arch_switch(next);
2748 }
2749
2750 /**
2751 * finish_task_switch - clean up after a task-switch
2752 * @rq: runqueue associated with task-switch
2753 * @prev: the thread we just switched away from.
2754 *
2755 * finish_task_switch must be called after the context switch, paired
2756 * with a prepare_task_switch call before the context switch.
2757 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2758 * and do any other architecture-specific cleanup actions.
2759 *
2760 * Note that we may have delayed dropping an mm in context_switch(). If
2761 * so, we finish that here outside of the runqueue lock. (Doing it
2762 * with the lock held can cause deadlocks; see schedule() for
2763 * details.)
2764 */
2765 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2766 __releases(rq->lock)
2767 {
2768 struct mm_struct *mm = rq->prev_mm;
2769 long prev_state;
2770
2771 rq->prev_mm = NULL;
2772
2773 /*
2774 * A task struct has one reference for the use as "current".
2775 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2776 * schedule one last time. The schedule call will never return, and
2777 * the scheduled task must drop that reference.
2778 * The test for TASK_DEAD must occur while the runqueue locks are
2779 * still held, otherwise prev could be scheduled on another cpu, die
2780 * there before we look at prev->state, and then the reference would
2781 * be dropped twice.
2782 * Manfred Spraul <manfred@colorfullife.com>
2783 */
2784 prev_state = prev->state;
2785 finish_arch_switch(prev);
2786 perf_event_task_sched_in(current, cpu_of(rq));
2787 finish_lock_switch(rq, prev);
2788
2789 fire_sched_in_preempt_notifiers(current);
2790 if (mm)
2791 mmdrop(mm);
2792 if (unlikely(prev_state == TASK_DEAD)) {
2793 /*
2794 * Remove function-return probe instances associated with this
2795 * task and put them back on the free list.
2796 */
2797 kprobe_flush_task(prev);
2798 put_task_struct(prev);
2799 }
2800 }
2801
2802 #ifdef CONFIG_SMP
2803
2804 /* assumes rq->lock is held */
2805 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2806 {
2807 if (prev->sched_class->pre_schedule)
2808 prev->sched_class->pre_schedule(rq, prev);
2809 }
2810
2811 /* rq->lock is NOT held, but preemption is disabled */
2812 static inline void post_schedule(struct rq *rq)
2813 {
2814 if (rq->post_schedule) {
2815 unsigned long flags;
2816
2817 raw_spin_lock_irqsave(&rq->lock, flags);
2818 if (rq->curr->sched_class->post_schedule)
2819 rq->curr->sched_class->post_schedule(rq);
2820 raw_spin_unlock_irqrestore(&rq->lock, flags);
2821
2822 rq->post_schedule = 0;
2823 }
2824 }
2825
2826 #else
2827
2828 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2829 {
2830 }
2831
2832 static inline void post_schedule(struct rq *rq)
2833 {
2834 }
2835
2836 #endif
2837
2838 /**
2839 * schedule_tail - first thing a freshly forked thread must call.
2840 * @prev: the thread we just switched away from.
2841 */
2842 asmlinkage void schedule_tail(struct task_struct *prev)
2843 __releases(rq->lock)
2844 {
2845 struct rq *rq = this_rq();
2846
2847 finish_task_switch(rq, prev);
2848
2849 /*
2850 * FIXME: do we need to worry about rq being invalidated by the
2851 * task_switch?
2852 */
2853 post_schedule(rq);
2854
2855 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2856 /* In this case, finish_task_switch does not reenable preemption */
2857 preempt_enable();
2858 #endif
2859 if (current->set_child_tid)
2860 put_user(task_pid_vnr(current), current->set_child_tid);
2861 }
2862
2863 /*
2864 * context_switch - switch to the new MM and the new
2865 * thread's register state.
2866 */
2867 static inline void
2868 context_switch(struct rq *rq, struct task_struct *prev,
2869 struct task_struct *next)
2870 {
2871 struct mm_struct *mm, *oldmm;
2872
2873 prepare_task_switch(rq, prev, next);
2874 trace_sched_switch(rq, prev, next);
2875 mm = next->mm;
2876 oldmm = prev->active_mm;
2877 /*
2878 * For paravirt, this is coupled with an exit in switch_to to
2879 * combine the page table reload and the switch backend into
2880 * one hypercall.
2881 */
2882 arch_start_context_switch(prev);
2883
2884 if (likely(!mm)) {
2885 next->active_mm = oldmm;
2886 atomic_inc(&oldmm->mm_count);
2887 enter_lazy_tlb(oldmm, next);
2888 } else
2889 switch_mm(oldmm, mm, next);
2890
2891 if (likely(!prev->mm)) {
2892 prev->active_mm = NULL;
2893 rq->prev_mm = oldmm;
2894 }
2895 /*
2896 * Since the runqueue lock will be released by the next
2897 * task (which is an invalid locking op but in the case
2898 * of the scheduler it's an obvious special-case), so we
2899 * do an early lockdep release here:
2900 */
2901 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2902 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2903 #endif
2904
2905 /* Here we just switch the register state and the stack. */
2906 switch_to(prev, next, prev);
2907
2908 barrier();
2909 /*
2910 * this_rq must be evaluated again because prev may have moved
2911 * CPUs since it called schedule(), thus the 'rq' on its stack
2912 * frame will be invalid.
2913 */
2914 finish_task_switch(this_rq(), prev);
2915 }
2916
2917 /*
2918 * nr_running, nr_uninterruptible and nr_context_switches:
2919 *
2920 * externally visible scheduler statistics: current number of runnable
2921 * threads, current number of uninterruptible-sleeping threads, total
2922 * number of context switches performed since bootup.
2923 */
2924 unsigned long nr_running(void)
2925 {
2926 unsigned long i, sum = 0;
2927
2928 for_each_online_cpu(i)
2929 sum += cpu_rq(i)->nr_running;
2930
2931 return sum;
2932 }
2933
2934 unsigned long nr_uninterruptible(void)
2935 {
2936 unsigned long i, sum = 0;
2937
2938 for_each_possible_cpu(i)
2939 sum += cpu_rq(i)->nr_uninterruptible;
2940
2941 /*
2942 * Since we read the counters lockless, it might be slightly
2943 * inaccurate. Do not allow it to go below zero though:
2944 */
2945 if (unlikely((long)sum < 0))
2946 sum = 0;
2947
2948 return sum;
2949 }
2950
2951 unsigned long long nr_context_switches(void)
2952 {
2953 int i;
2954 unsigned long long sum = 0;
2955
2956 for_each_possible_cpu(i)
2957 sum += cpu_rq(i)->nr_switches;
2958
2959 return sum;
2960 }
2961
2962 unsigned long nr_iowait(void)
2963 {
2964 unsigned long i, sum = 0;
2965
2966 for_each_possible_cpu(i)
2967 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2968
2969 return sum;
2970 }
2971
2972 unsigned long nr_iowait_cpu(void)
2973 {
2974 struct rq *this = this_rq();
2975 return atomic_read(&this->nr_iowait);
2976 }
2977
2978 unsigned long this_cpu_load(void)
2979 {
2980 struct rq *this = this_rq();
2981 return this->cpu_load[0];
2982 }
2983
2984
2985 /* Variables and functions for calc_load */
2986 static atomic_long_t calc_load_tasks;
2987 static unsigned long calc_load_update;
2988 unsigned long avenrun[3];
2989 EXPORT_SYMBOL(avenrun);
2990
2991 /**
2992 * get_avenrun - get the load average array
2993 * @loads: pointer to dest load array
2994 * @offset: offset to add
2995 * @shift: shift count to shift the result left
2996 *
2997 * These values are estimates at best, so no need for locking.
2998 */
2999 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3000 {
3001 loads[0] = (avenrun[0] + offset) << shift;
3002 loads[1] = (avenrun[1] + offset) << shift;
3003 loads[2] = (avenrun[2] + offset) << shift;
3004 }
3005
3006 static unsigned long
3007 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3008 {
3009 load *= exp;
3010 load += active * (FIXED_1 - exp);
3011 return load >> FSHIFT;
3012 }
3013
3014 /*
3015 * calc_load - update the avenrun load estimates 10 ticks after the
3016 * CPUs have updated calc_load_tasks.
3017 */
3018 void calc_global_load(void)
3019 {
3020 unsigned long upd = calc_load_update + 10;
3021 long active;
3022
3023 if (time_before(jiffies, upd))
3024 return;
3025
3026 active = atomic_long_read(&calc_load_tasks);
3027 active = active > 0 ? active * FIXED_1 : 0;
3028
3029 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3030 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3031 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3032
3033 calc_load_update += LOAD_FREQ;
3034 }
3035
3036 /*
3037 * Either called from update_cpu_load() or from a cpu going idle
3038 */
3039 static void calc_load_account_active(struct rq *this_rq)
3040 {
3041 long nr_active, delta;
3042
3043 nr_active = this_rq->nr_running;
3044 nr_active += (long) this_rq->nr_uninterruptible;
3045
3046 if (nr_active != this_rq->calc_load_active) {
3047 delta = nr_active - this_rq->calc_load_active;
3048 this_rq->calc_load_active = nr_active;
3049 atomic_long_add(delta, &calc_load_tasks);
3050 }
3051 }
3052
3053 /*
3054 * Update rq->cpu_load[] statistics. This function is usually called every
3055 * scheduler tick (TICK_NSEC).
3056 */
3057 static void update_cpu_load(struct rq *this_rq)
3058 {
3059 unsigned long this_load = this_rq->load.weight;
3060 int i, scale;
3061
3062 this_rq->nr_load_updates++;
3063
3064 /* Update our load: */
3065 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3066 unsigned long old_load, new_load;
3067
3068 /* scale is effectively 1 << i now, and >> i divides by scale */
3069
3070 old_load = this_rq->cpu_load[i];
3071 new_load = this_load;
3072 /*
3073 * Round up the averaging division if load is increasing. This
3074 * prevents us from getting stuck on 9 if the load is 10, for
3075 * example.
3076 */
3077 if (new_load > old_load)
3078 new_load += scale-1;
3079 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3080 }
3081
3082 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3083 this_rq->calc_load_update += LOAD_FREQ;
3084 calc_load_account_active(this_rq);
3085 }
3086 }
3087
3088 #ifdef CONFIG_SMP
3089
3090 /*
3091 * double_rq_lock - safely lock two runqueues
3092 *
3093 * Note this does not disable interrupts like task_rq_lock,
3094 * you need to do so manually before calling.
3095 */
3096 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3097 __acquires(rq1->lock)
3098 __acquires(rq2->lock)
3099 {
3100 BUG_ON(!irqs_disabled());
3101 if (rq1 == rq2) {
3102 raw_spin_lock(&rq1->lock);
3103 __acquire(rq2->lock); /* Fake it out ;) */
3104 } else {
3105 if (rq1 < rq2) {
3106 raw_spin_lock(&rq1->lock);
3107 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3108 } else {
3109 raw_spin_lock(&rq2->lock);
3110 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3111 }
3112 }
3113 update_rq_clock(rq1);
3114 update_rq_clock(rq2);
3115 }
3116
3117 /*
3118 * double_rq_unlock - safely unlock two runqueues
3119 *
3120 * Note this does not restore interrupts like task_rq_unlock,
3121 * you need to do so manually after calling.
3122 */
3123 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3124 __releases(rq1->lock)
3125 __releases(rq2->lock)
3126 {
3127 raw_spin_unlock(&rq1->lock);
3128 if (rq1 != rq2)
3129 raw_spin_unlock(&rq2->lock);
3130 else
3131 __release(rq2->lock);
3132 }
3133
3134 /*
3135 * sched_exec - execve() is a valuable balancing opportunity, because at
3136 * this point the task has the smallest effective memory and cache footprint.
3137 */
3138 void sched_exec(void)
3139 {
3140 struct task_struct *p = current;
3141 struct migration_req req;
3142 int dest_cpu, this_cpu;
3143 unsigned long flags;
3144 struct rq *rq;
3145
3146 again:
3147 this_cpu = get_cpu();
3148 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3149 if (dest_cpu == this_cpu) {
3150 put_cpu();
3151 return;
3152 }
3153
3154 rq = task_rq_lock(p, &flags);
3155 put_cpu();
3156
3157 /*
3158 * select_task_rq() can race against ->cpus_allowed
3159 */
3160 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3161 || unlikely(!cpu_active(dest_cpu))) {
3162 task_rq_unlock(rq, &flags);
3163 goto again;
3164 }
3165
3166 /* force the process onto the specified CPU */
3167 if (migrate_task(p, dest_cpu, &req)) {
3168 /* Need to wait for migration thread (might exit: take ref). */
3169 struct task_struct *mt = rq->migration_thread;
3170
3171 get_task_struct(mt);
3172 task_rq_unlock(rq, &flags);
3173 wake_up_process(mt);
3174 put_task_struct(mt);
3175 wait_for_completion(&req.done);
3176
3177 return;
3178 }
3179 task_rq_unlock(rq, &flags);
3180 }
3181
3182 /*
3183 * pull_task - move a task from a remote runqueue to the local runqueue.
3184 * Both runqueues must be locked.
3185 */
3186 static void pull_task(struct rq *src_rq, struct task_struct *p,
3187 struct rq *this_rq, int this_cpu)
3188 {
3189 deactivate_task(src_rq, p, 0);
3190 set_task_cpu(p, this_cpu);
3191 activate_task(this_rq, p, 0);
3192 check_preempt_curr(this_rq, p, 0);
3193 }
3194
3195 /*
3196 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3197 */
3198 static
3199 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3200 struct sched_domain *sd, enum cpu_idle_type idle,
3201 int *all_pinned)
3202 {
3203 int tsk_cache_hot = 0;
3204 /*
3205 * We do not migrate tasks that are:
3206 * 1) running (obviously), or
3207 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3208 * 3) are cache-hot on their current CPU.
3209 */
3210 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3211 schedstat_inc(p, se.nr_failed_migrations_affine);
3212 return 0;
3213 }
3214 *all_pinned = 0;
3215
3216 if (task_running(rq, p)) {
3217 schedstat_inc(p, se.nr_failed_migrations_running);
3218 return 0;
3219 }
3220
3221 /*
3222 * Aggressive migration if:
3223 * 1) task is cache cold, or
3224 * 2) too many balance attempts have failed.
3225 */
3226
3227 tsk_cache_hot = task_hot(p, rq->clock, sd);
3228 if (!tsk_cache_hot ||
3229 sd->nr_balance_failed > sd->cache_nice_tries) {
3230 #ifdef CONFIG_SCHEDSTATS
3231 if (tsk_cache_hot) {
3232 schedstat_inc(sd, lb_hot_gained[idle]);
3233 schedstat_inc(p, se.nr_forced_migrations);
3234 }
3235 #endif
3236 return 1;
3237 }
3238
3239 if (tsk_cache_hot) {
3240 schedstat_inc(p, se.nr_failed_migrations_hot);
3241 return 0;
3242 }
3243 return 1;
3244 }
3245
3246 static unsigned long
3247 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3248 unsigned long max_load_move, struct sched_domain *sd,
3249 enum cpu_idle_type idle, int *all_pinned,
3250 int *this_best_prio, struct rq_iterator *iterator)
3251 {
3252 int loops = 0, pulled = 0, pinned = 0;
3253 struct task_struct *p;
3254 long rem_load_move = max_load_move;
3255
3256 if (max_load_move == 0)
3257 goto out;
3258
3259 pinned = 1;
3260
3261 /*
3262 * Start the load-balancing iterator:
3263 */
3264 p = iterator->start(iterator->arg);
3265 next:
3266 if (!p || loops++ > sysctl_sched_nr_migrate)
3267 goto out;
3268
3269 if ((p->se.load.weight >> 1) > rem_load_move ||
3270 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3271 p = iterator->next(iterator->arg);
3272 goto next;
3273 }
3274
3275 pull_task(busiest, p, this_rq, this_cpu);
3276 pulled++;
3277 rem_load_move -= p->se.load.weight;
3278
3279 #ifdef CONFIG_PREEMPT
3280 /*
3281 * NEWIDLE balancing is a source of latency, so preemptible kernels
3282 * will stop after the first task is pulled to minimize the critical
3283 * section.
3284 */
3285 if (idle == CPU_NEWLY_IDLE)
3286 goto out;
3287 #endif
3288
3289 /*
3290 * We only want to steal up to the prescribed amount of weighted load.
3291 */
3292 if (rem_load_move > 0) {
3293 if (p->prio < *this_best_prio)
3294 *this_best_prio = p->prio;
3295 p = iterator->next(iterator->arg);
3296 goto next;
3297 }
3298 out:
3299 /*
3300 * Right now, this is one of only two places pull_task() is called,
3301 * so we can safely collect pull_task() stats here rather than
3302 * inside pull_task().
3303 */
3304 schedstat_add(sd, lb_gained[idle], pulled);
3305
3306 if (all_pinned)
3307 *all_pinned = pinned;
3308
3309 return max_load_move - rem_load_move;
3310 }
3311
3312 /*
3313 * move_tasks tries to move up to max_load_move weighted load from busiest to
3314 * this_rq, as part of a balancing operation within domain "sd".
3315 * Returns 1 if successful and 0 otherwise.
3316 *
3317 * Called with both runqueues locked.
3318 */
3319 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3320 unsigned long max_load_move,
3321 struct sched_domain *sd, enum cpu_idle_type idle,
3322 int *all_pinned)
3323 {
3324 const struct sched_class *class = sched_class_highest;
3325 unsigned long total_load_moved = 0;
3326 int this_best_prio = this_rq->curr->prio;
3327
3328 do {
3329 total_load_moved +=
3330 class->load_balance(this_rq, this_cpu, busiest,
3331 max_load_move - total_load_moved,
3332 sd, idle, all_pinned, &this_best_prio);
3333 class = class->next;
3334
3335 #ifdef CONFIG_PREEMPT
3336 /*
3337 * NEWIDLE balancing is a source of latency, so preemptible
3338 * kernels will stop after the first task is pulled to minimize
3339 * the critical section.
3340 */
3341 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3342 break;
3343 #endif
3344 } while (class && max_load_move > total_load_moved);
3345
3346 return total_load_moved > 0;
3347 }
3348
3349 static int
3350 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3351 struct sched_domain *sd, enum cpu_idle_type idle,
3352 struct rq_iterator *iterator)
3353 {
3354 struct task_struct *p = iterator->start(iterator->arg);
3355 int pinned = 0;
3356
3357 while (p) {
3358 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3359 pull_task(busiest, p, this_rq, this_cpu);
3360 /*
3361 * Right now, this is only the second place pull_task()
3362 * is called, so we can safely collect pull_task()
3363 * stats here rather than inside pull_task().
3364 */
3365 schedstat_inc(sd, lb_gained[idle]);
3366
3367 return 1;
3368 }
3369 p = iterator->next(iterator->arg);
3370 }
3371
3372 return 0;
3373 }
3374
3375 /*
3376 * move_one_task tries to move exactly one task from busiest to this_rq, as
3377 * part of active balancing operations within "domain".
3378 * Returns 1 if successful and 0 otherwise.
3379 *
3380 * Called with both runqueues locked.
3381 */
3382 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3383 struct sched_domain *sd, enum cpu_idle_type idle)
3384 {
3385 const struct sched_class *class;
3386
3387 for_each_class(class) {
3388 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3389 return 1;
3390 }
3391
3392 return 0;
3393 }
3394 /********** Helpers for find_busiest_group ************************/
3395 /*
3396 * sd_lb_stats - Structure to store the statistics of a sched_domain
3397 * during load balancing.
3398 */
3399 struct sd_lb_stats {
3400 struct sched_group *busiest; /* Busiest group in this sd */
3401 struct sched_group *this; /* Local group in this sd */
3402 unsigned long total_load; /* Total load of all groups in sd */
3403 unsigned long total_pwr; /* Total power of all groups in sd */
3404 unsigned long avg_load; /* Average load across all groups in sd */
3405
3406 /** Statistics of this group */
3407 unsigned long this_load;
3408 unsigned long this_load_per_task;
3409 unsigned long this_nr_running;
3410
3411 /* Statistics of the busiest group */
3412 unsigned long max_load;
3413 unsigned long busiest_load_per_task;
3414 unsigned long busiest_nr_running;
3415
3416 int group_imb; /* Is there imbalance in this sd */
3417 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3418 int power_savings_balance; /* Is powersave balance needed for this sd */
3419 struct sched_group *group_min; /* Least loaded group in sd */
3420 struct sched_group *group_leader; /* Group which relieves group_min */
3421 unsigned long min_load_per_task; /* load_per_task in group_min */
3422 unsigned long leader_nr_running; /* Nr running of group_leader */
3423 unsigned long min_nr_running; /* Nr running of group_min */
3424 #endif
3425 };
3426
3427 /*
3428 * sg_lb_stats - stats of a sched_group required for load_balancing
3429 */
3430 struct sg_lb_stats {
3431 unsigned long avg_load; /*Avg load across the CPUs of the group */
3432 unsigned long group_load; /* Total load over the CPUs of the group */
3433 unsigned long sum_nr_running; /* Nr tasks running in the group */
3434 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3435 unsigned long group_capacity;
3436 int group_imb; /* Is there an imbalance in the group ? */
3437 };
3438
3439 /**
3440 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3441 * @group: The group whose first cpu is to be returned.
3442 */
3443 static inline unsigned int group_first_cpu(struct sched_group *group)
3444 {
3445 return cpumask_first(sched_group_cpus(group));
3446 }
3447
3448 /**
3449 * get_sd_load_idx - Obtain the load index for a given sched domain.
3450 * @sd: The sched_domain whose load_idx is to be obtained.
3451 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3452 */
3453 static inline int get_sd_load_idx(struct sched_domain *sd,
3454 enum cpu_idle_type idle)
3455 {
3456 int load_idx;
3457
3458 switch (idle) {
3459 case CPU_NOT_IDLE:
3460 load_idx = sd->busy_idx;
3461 break;
3462
3463 case CPU_NEWLY_IDLE:
3464 load_idx = sd->newidle_idx;
3465 break;
3466 default:
3467 load_idx = sd->idle_idx;
3468 break;
3469 }
3470
3471 return load_idx;
3472 }
3473
3474
3475 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3476 /**
3477 * init_sd_power_savings_stats - Initialize power savings statistics for
3478 * the given sched_domain, during load balancing.
3479 *
3480 * @sd: Sched domain whose power-savings statistics are to be initialized.
3481 * @sds: Variable containing the statistics for sd.
3482 * @idle: Idle status of the CPU at which we're performing load-balancing.
3483 */
3484 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3485 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3486 {
3487 /*
3488 * Busy processors will not participate in power savings
3489 * balance.
3490 */
3491 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3492 sds->power_savings_balance = 0;
3493 else {
3494 sds->power_savings_balance = 1;
3495 sds->min_nr_running = ULONG_MAX;
3496 sds->leader_nr_running = 0;
3497 }
3498 }
3499
3500 /**
3501 * update_sd_power_savings_stats - Update the power saving stats for a
3502 * sched_domain while performing load balancing.
3503 *
3504 * @group: sched_group belonging to the sched_domain under consideration.
3505 * @sds: Variable containing the statistics of the sched_domain
3506 * @local_group: Does group contain the CPU for which we're performing
3507 * load balancing ?
3508 * @sgs: Variable containing the statistics of the group.
3509 */
3510 static inline void update_sd_power_savings_stats(struct sched_group *group,
3511 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3512 {
3513
3514 if (!sds->power_savings_balance)
3515 return;
3516
3517 /*
3518 * If the local group is idle or completely loaded
3519 * no need to do power savings balance at this domain
3520 */
3521 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3522 !sds->this_nr_running))
3523 sds->power_savings_balance = 0;
3524
3525 /*
3526 * If a group is already running at full capacity or idle,
3527 * don't include that group in power savings calculations
3528 */
3529 if (!sds->power_savings_balance ||
3530 sgs->sum_nr_running >= sgs->group_capacity ||
3531 !sgs->sum_nr_running)
3532 return;
3533
3534 /*
3535 * Calculate the group which has the least non-idle load.
3536 * This is the group from where we need to pick up the load
3537 * for saving power
3538 */
3539 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3540 (sgs->sum_nr_running == sds->min_nr_running &&
3541 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3542 sds->group_min = group;
3543 sds->min_nr_running = sgs->sum_nr_running;
3544 sds->min_load_per_task = sgs->sum_weighted_load /
3545 sgs->sum_nr_running;
3546 }
3547
3548 /*
3549 * Calculate the group which is almost near its
3550 * capacity but still has some space to pick up some load
3551 * from other group and save more power
3552 */
3553 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3554 return;
3555
3556 if (sgs->sum_nr_running > sds->leader_nr_running ||
3557 (sgs->sum_nr_running == sds->leader_nr_running &&
3558 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3559 sds->group_leader = group;
3560 sds->leader_nr_running = sgs->sum_nr_running;
3561 }
3562 }
3563
3564 /**
3565 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3566 * @sds: Variable containing the statistics of the sched_domain
3567 * under consideration.
3568 * @this_cpu: Cpu at which we're currently performing load-balancing.
3569 * @imbalance: Variable to store the imbalance.
3570 *
3571 * Description:
3572 * Check if we have potential to perform some power-savings balance.
3573 * If yes, set the busiest group to be the least loaded group in the
3574 * sched_domain, so that it's CPUs can be put to idle.
3575 *
3576 * Returns 1 if there is potential to perform power-savings balance.
3577 * Else returns 0.
3578 */
3579 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3580 int this_cpu, unsigned long *imbalance)
3581 {
3582 if (!sds->power_savings_balance)
3583 return 0;
3584
3585 if (sds->this != sds->group_leader ||
3586 sds->group_leader == sds->group_min)
3587 return 0;
3588
3589 *imbalance = sds->min_load_per_task;
3590 sds->busiest = sds->group_min;
3591
3592 return 1;
3593
3594 }
3595 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3596 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3597 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3598 {
3599 return;
3600 }
3601
3602 static inline void update_sd_power_savings_stats(struct sched_group *group,
3603 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3604 {
3605 return;
3606 }
3607
3608 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3609 int this_cpu, unsigned long *imbalance)
3610 {
3611 return 0;
3612 }
3613 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3614
3615
3616 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3617 {
3618 return SCHED_LOAD_SCALE;
3619 }
3620
3621 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3622 {
3623 return default_scale_freq_power(sd, cpu);
3624 }
3625
3626 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3627 {
3628 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3629 unsigned long smt_gain = sd->smt_gain;
3630
3631 smt_gain /= weight;
3632
3633 return smt_gain;
3634 }
3635
3636 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3637 {
3638 return default_scale_smt_power(sd, cpu);
3639 }
3640
3641 unsigned long scale_rt_power(int cpu)
3642 {
3643 struct rq *rq = cpu_rq(cpu);
3644 u64 total, available;
3645
3646 sched_avg_update(rq);
3647
3648 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3649 available = total - rq->rt_avg;
3650
3651 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3652 total = SCHED_LOAD_SCALE;
3653
3654 total >>= SCHED_LOAD_SHIFT;
3655
3656 return div_u64(available, total);
3657 }
3658
3659 static void update_cpu_power(struct sched_domain *sd, int cpu)
3660 {
3661 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3662 unsigned long power = SCHED_LOAD_SCALE;
3663 struct sched_group *sdg = sd->groups;
3664
3665 if (sched_feat(ARCH_POWER))
3666 power *= arch_scale_freq_power(sd, cpu);
3667 else
3668 power *= default_scale_freq_power(sd, cpu);
3669
3670 power >>= SCHED_LOAD_SHIFT;
3671
3672 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3673 if (sched_feat(ARCH_POWER))
3674 power *= arch_scale_smt_power(sd, cpu);
3675 else
3676 power *= default_scale_smt_power(sd, cpu);
3677
3678 power >>= SCHED_LOAD_SHIFT;
3679 }
3680
3681 power *= scale_rt_power(cpu);
3682 power >>= SCHED_LOAD_SHIFT;
3683
3684 if (!power)
3685 power = 1;
3686
3687 sdg->cpu_power = power;
3688 }
3689
3690 static void update_group_power(struct sched_domain *sd, int cpu)
3691 {
3692 struct sched_domain *child = sd->child;
3693 struct sched_group *group, *sdg = sd->groups;
3694 unsigned long power;
3695
3696 if (!child) {
3697 update_cpu_power(sd, cpu);
3698 return;
3699 }
3700
3701 power = 0;
3702
3703 group = child->groups;
3704 do {
3705 power += group->cpu_power;
3706 group = group->next;
3707 } while (group != child->groups);
3708
3709 sdg->cpu_power = power;
3710 }
3711
3712 /**
3713 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3714 * @sd: The sched_domain whose statistics are to be updated.
3715 * @group: sched_group whose statistics are to be updated.
3716 * @this_cpu: Cpu for which load balance is currently performed.
3717 * @idle: Idle status of this_cpu
3718 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3719 * @sd_idle: Idle status of the sched_domain containing group.
3720 * @local_group: Does group contain this_cpu.
3721 * @cpus: Set of cpus considered for load balancing.
3722 * @balance: Should we balance.
3723 * @sgs: variable to hold the statistics for this group.
3724 */
3725 static inline void update_sg_lb_stats(struct sched_domain *sd,
3726 struct sched_group *group, int this_cpu,
3727 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3728 int local_group, const struct cpumask *cpus,
3729 int *balance, struct sg_lb_stats *sgs)
3730 {
3731 unsigned long load, max_cpu_load, min_cpu_load;
3732 int i;
3733 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3734 unsigned long sum_avg_load_per_task;
3735 unsigned long avg_load_per_task;
3736
3737 if (local_group) {
3738 balance_cpu = group_first_cpu(group);
3739 if (balance_cpu == this_cpu)
3740 update_group_power(sd, this_cpu);
3741 }
3742
3743 /* Tally up the load of all CPUs in the group */
3744 sum_avg_load_per_task = avg_load_per_task = 0;
3745 max_cpu_load = 0;
3746 min_cpu_load = ~0UL;
3747
3748 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3749 struct rq *rq = cpu_rq(i);
3750
3751 if (*sd_idle && rq->nr_running)
3752 *sd_idle = 0;
3753
3754 /* Bias balancing toward cpus of our domain */
3755 if (local_group) {
3756 if (idle_cpu(i) && !first_idle_cpu) {
3757 first_idle_cpu = 1;
3758 balance_cpu = i;
3759 }
3760
3761 load = target_load(i, load_idx);
3762 } else {
3763 load = source_load(i, load_idx);
3764 if (load > max_cpu_load)
3765 max_cpu_load = load;
3766 if (min_cpu_load > load)
3767 min_cpu_load = load;
3768 }
3769
3770 sgs->group_load += load;
3771 sgs->sum_nr_running += rq->nr_running;
3772 sgs->sum_weighted_load += weighted_cpuload(i);
3773
3774 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3775 }
3776
3777 /*
3778 * First idle cpu or the first cpu(busiest) in this sched group
3779 * is eligible for doing load balancing at this and above
3780 * domains. In the newly idle case, we will allow all the cpu's
3781 * to do the newly idle load balance.
3782 */
3783 if (idle != CPU_NEWLY_IDLE && local_group &&
3784 balance_cpu != this_cpu && balance) {
3785 *balance = 0;
3786 return;
3787 }
3788
3789 /* Adjust by relative CPU power of the group */
3790 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3791
3792
3793 /*
3794 * Consider the group unbalanced when the imbalance is larger
3795 * than the average weight of two tasks.
3796 *
3797 * APZ: with cgroup the avg task weight can vary wildly and
3798 * might not be a suitable number - should we keep a
3799 * normalized nr_running number somewhere that negates
3800 * the hierarchy?
3801 */
3802 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3803 group->cpu_power;
3804
3805 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3806 sgs->group_imb = 1;
3807
3808 sgs->group_capacity =
3809 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3810 }
3811
3812 /**
3813 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3814 * @sd: sched_domain whose statistics are to be updated.
3815 * @this_cpu: Cpu for which load balance is currently performed.
3816 * @idle: Idle status of this_cpu
3817 * @sd_idle: Idle status of the sched_domain containing group.
3818 * @cpus: Set of cpus considered for load balancing.
3819 * @balance: Should we balance.
3820 * @sds: variable to hold the statistics for this sched_domain.
3821 */
3822 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3823 enum cpu_idle_type idle, int *sd_idle,
3824 const struct cpumask *cpus, int *balance,
3825 struct sd_lb_stats *sds)
3826 {
3827 struct sched_domain *child = sd->child;
3828 struct sched_group *group = sd->groups;
3829 struct sg_lb_stats sgs;
3830 int load_idx, prefer_sibling = 0;
3831
3832 if (child && child->flags & SD_PREFER_SIBLING)
3833 prefer_sibling = 1;
3834
3835 init_sd_power_savings_stats(sd, sds, idle);
3836 load_idx = get_sd_load_idx(sd, idle);
3837
3838 do {
3839 int local_group;
3840
3841 local_group = cpumask_test_cpu(this_cpu,
3842 sched_group_cpus(group));
3843 memset(&sgs, 0, sizeof(sgs));
3844 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3845 local_group, cpus, balance, &sgs);
3846
3847 if (local_group && balance && !(*balance))
3848 return;
3849
3850 sds->total_load += sgs.group_load;
3851 sds->total_pwr += group->cpu_power;
3852
3853 /*
3854 * In case the child domain prefers tasks go to siblings
3855 * first, lower the group capacity to one so that we'll try
3856 * and move all the excess tasks away.
3857 */
3858 if (prefer_sibling)
3859 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3860
3861 if (local_group) {
3862 sds->this_load = sgs.avg_load;
3863 sds->this = group;
3864 sds->this_nr_running = sgs.sum_nr_running;
3865 sds->this_load_per_task = sgs.sum_weighted_load;
3866 } else if (sgs.avg_load > sds->max_load &&
3867 (sgs.sum_nr_running > sgs.group_capacity ||
3868 sgs.group_imb)) {
3869 sds->max_load = sgs.avg_load;
3870 sds->busiest = group;
3871 sds->busiest_nr_running = sgs.sum_nr_running;
3872 sds->busiest_load_per_task = sgs.sum_weighted_load;
3873 sds->group_imb = sgs.group_imb;
3874 }
3875
3876 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3877 group = group->next;
3878 } while (group != sd->groups);
3879 }
3880
3881 /**
3882 * fix_small_imbalance - Calculate the minor imbalance that exists
3883 * amongst the groups of a sched_domain, during
3884 * load balancing.
3885 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3886 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3887 * @imbalance: Variable to store the imbalance.
3888 */
3889 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3890 int this_cpu, unsigned long *imbalance)
3891 {
3892 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3893 unsigned int imbn = 2;
3894
3895 if (sds->this_nr_running) {
3896 sds->this_load_per_task /= sds->this_nr_running;
3897 if (sds->busiest_load_per_task >
3898 sds->this_load_per_task)
3899 imbn = 1;
3900 } else
3901 sds->this_load_per_task =
3902 cpu_avg_load_per_task(this_cpu);
3903
3904 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3905 sds->busiest_load_per_task * imbn) {
3906 *imbalance = sds->busiest_load_per_task;
3907 return;
3908 }
3909
3910 /*
3911 * OK, we don't have enough imbalance to justify moving tasks,
3912 * however we may be able to increase total CPU power used by
3913 * moving them.
3914 */
3915
3916 pwr_now += sds->busiest->cpu_power *
3917 min(sds->busiest_load_per_task, sds->max_load);
3918 pwr_now += sds->this->cpu_power *
3919 min(sds->this_load_per_task, sds->this_load);
3920 pwr_now /= SCHED_LOAD_SCALE;
3921
3922 /* Amount of load we'd subtract */
3923 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3924 sds->busiest->cpu_power;
3925 if (sds->max_load > tmp)
3926 pwr_move += sds->busiest->cpu_power *
3927 min(sds->busiest_load_per_task, sds->max_load - tmp);
3928
3929 /* Amount of load we'd add */
3930 if (sds->max_load * sds->busiest->cpu_power <
3931 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3932 tmp = (sds->max_load * sds->busiest->cpu_power) /
3933 sds->this->cpu_power;
3934 else
3935 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3936 sds->this->cpu_power;
3937 pwr_move += sds->this->cpu_power *
3938 min(sds->this_load_per_task, sds->this_load + tmp);
3939 pwr_move /= SCHED_LOAD_SCALE;
3940
3941 /* Move if we gain throughput */
3942 if (pwr_move > pwr_now)
3943 *imbalance = sds->busiest_load_per_task;
3944 }
3945
3946 /**
3947 * calculate_imbalance - Calculate the amount of imbalance present within the
3948 * groups of a given sched_domain during load balance.
3949 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3950 * @this_cpu: Cpu for which currently load balance is being performed.
3951 * @imbalance: The variable to store the imbalance.
3952 */
3953 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3954 unsigned long *imbalance)
3955 {
3956 unsigned long max_pull;
3957 /*
3958 * In the presence of smp nice balancing, certain scenarios can have
3959 * max load less than avg load(as we skip the groups at or below
3960 * its cpu_power, while calculating max_load..)
3961 */
3962 if (sds->max_load < sds->avg_load) {
3963 *imbalance = 0;
3964 return fix_small_imbalance(sds, this_cpu, imbalance);
3965 }
3966
3967 /* Don't want to pull so many tasks that a group would go idle */
3968 max_pull = min(sds->max_load - sds->avg_load,
3969 sds->max_load - sds->busiest_load_per_task);
3970
3971 /* How much load to actually move to equalise the imbalance */
3972 *imbalance = min(max_pull * sds->busiest->cpu_power,
3973 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3974 / SCHED_LOAD_SCALE;
3975
3976 /*
3977 * if *imbalance is less than the average load per runnable task
3978 * there is no gaurantee that any tasks will be moved so we'll have
3979 * a think about bumping its value to force at least one task to be
3980 * moved
3981 */
3982 if (*imbalance < sds->busiest_load_per_task)
3983 return fix_small_imbalance(sds, this_cpu, imbalance);
3984
3985 }
3986 /******* find_busiest_group() helpers end here *********************/
3987
3988 /**
3989 * find_busiest_group - Returns the busiest group within the sched_domain
3990 * if there is an imbalance. If there isn't an imbalance, and
3991 * the user has opted for power-savings, it returns a group whose
3992 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3993 * such a group exists.
3994 *
3995 * Also calculates the amount of weighted load which should be moved
3996 * to restore balance.
3997 *
3998 * @sd: The sched_domain whose busiest group is to be returned.
3999 * @this_cpu: The cpu for which load balancing is currently being performed.
4000 * @imbalance: Variable which stores amount of weighted load which should
4001 * be moved to restore balance/put a group to idle.
4002 * @idle: The idle status of this_cpu.
4003 * @sd_idle: The idleness of sd
4004 * @cpus: The set of CPUs under consideration for load-balancing.
4005 * @balance: Pointer to a variable indicating if this_cpu
4006 * is the appropriate cpu to perform load balancing at this_level.
4007 *
4008 * Returns: - the busiest group if imbalance exists.
4009 * - If no imbalance and user has opted for power-savings balance,
4010 * return the least loaded group whose CPUs can be
4011 * put to idle by rebalancing its tasks onto our group.
4012 */
4013 static struct sched_group *
4014 find_busiest_group(struct sched_domain *sd, int this_cpu,
4015 unsigned long *imbalance, enum cpu_idle_type idle,
4016 int *sd_idle, const struct cpumask *cpus, int *balance)
4017 {
4018 struct sd_lb_stats sds;
4019
4020 memset(&sds, 0, sizeof(sds));
4021
4022 /*
4023 * Compute the various statistics relavent for load balancing at
4024 * this level.
4025 */
4026 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4027 balance, &sds);
4028
4029 /* Cases where imbalance does not exist from POV of this_cpu */
4030 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4031 * at this level.
4032 * 2) There is no busy sibling group to pull from.
4033 * 3) This group is the busiest group.
4034 * 4) This group is more busy than the avg busieness at this
4035 * sched_domain.
4036 * 5) The imbalance is within the specified limit.
4037 * 6) Any rebalance would lead to ping-pong
4038 */
4039 if (balance && !(*balance))
4040 goto ret;
4041
4042 if (!sds.busiest || sds.busiest_nr_running == 0)
4043 goto out_balanced;
4044
4045 if (sds.this_load >= sds.max_load)
4046 goto out_balanced;
4047
4048 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4049
4050 if (sds.this_load >= sds.avg_load)
4051 goto out_balanced;
4052
4053 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4054 goto out_balanced;
4055
4056 sds.busiest_load_per_task /= sds.busiest_nr_running;
4057 if (sds.group_imb)
4058 sds.busiest_load_per_task =
4059 min(sds.busiest_load_per_task, sds.avg_load);
4060
4061 /*
4062 * We're trying to get all the cpus to the average_load, so we don't
4063 * want to push ourselves above the average load, nor do we wish to
4064 * reduce the max loaded cpu below the average load, as either of these
4065 * actions would just result in more rebalancing later, and ping-pong
4066 * tasks around. Thus we look for the minimum possible imbalance.
4067 * Negative imbalances (*we* are more loaded than anyone else) will
4068 * be counted as no imbalance for these purposes -- we can't fix that
4069 * by pulling tasks to us. Be careful of negative numbers as they'll
4070 * appear as very large values with unsigned longs.
4071 */
4072 if (sds.max_load <= sds.busiest_load_per_task)
4073 goto out_balanced;
4074
4075 /* Looks like there is an imbalance. Compute it */
4076 calculate_imbalance(&sds, this_cpu, imbalance);
4077 return sds.busiest;
4078
4079 out_balanced:
4080 /*
4081 * There is no obvious imbalance. But check if we can do some balancing
4082 * to save power.
4083 */
4084 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4085 return sds.busiest;
4086 ret:
4087 *imbalance = 0;
4088 return NULL;
4089 }
4090
4091 /*
4092 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4093 */
4094 static struct rq *
4095 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4096 unsigned long imbalance, const struct cpumask *cpus)
4097 {
4098 struct rq *busiest = NULL, *rq;
4099 unsigned long max_load = 0;
4100 int i;
4101
4102 for_each_cpu(i, sched_group_cpus(group)) {
4103 unsigned long power = power_of(i);
4104 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4105 unsigned long wl;
4106
4107 if (!cpumask_test_cpu(i, cpus))
4108 continue;
4109
4110 rq = cpu_rq(i);
4111 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4112 wl /= power;
4113
4114 if (capacity && rq->nr_running == 1 && wl > imbalance)
4115 continue;
4116
4117 if (wl > max_load) {
4118 max_load = wl;
4119 busiest = rq;
4120 }
4121 }
4122
4123 return busiest;
4124 }
4125
4126 /*
4127 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4128 * so long as it is large enough.
4129 */
4130 #define MAX_PINNED_INTERVAL 512
4131
4132 /* Working cpumask for load_balance and load_balance_newidle. */
4133 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4134
4135 /*
4136 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4137 * tasks if there is an imbalance.
4138 */
4139 static int load_balance(int this_cpu, struct rq *this_rq,
4140 struct sched_domain *sd, enum cpu_idle_type idle,
4141 int *balance)
4142 {
4143 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4144 struct sched_group *group;
4145 unsigned long imbalance;
4146 struct rq *busiest;
4147 unsigned long flags;
4148 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4149
4150 cpumask_copy(cpus, cpu_active_mask);
4151
4152 /*
4153 * When power savings policy is enabled for the parent domain, idle
4154 * sibling can pick up load irrespective of busy siblings. In this case,
4155 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4156 * portraying it as CPU_NOT_IDLE.
4157 */
4158 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4159 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4160 sd_idle = 1;
4161
4162 schedstat_inc(sd, lb_count[idle]);
4163
4164 redo:
4165 update_shares(sd);
4166 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4167 cpus, balance);
4168
4169 if (*balance == 0)
4170 goto out_balanced;
4171
4172 if (!group) {
4173 schedstat_inc(sd, lb_nobusyg[idle]);
4174 goto out_balanced;
4175 }
4176
4177 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4178 if (!busiest) {
4179 schedstat_inc(sd, lb_nobusyq[idle]);
4180 goto out_balanced;
4181 }
4182
4183 BUG_ON(busiest == this_rq);
4184
4185 schedstat_add(sd, lb_imbalance[idle], imbalance);
4186
4187 ld_moved = 0;
4188 if (busiest->nr_running > 1) {
4189 /*
4190 * Attempt to move tasks. If find_busiest_group has found
4191 * an imbalance but busiest->nr_running <= 1, the group is
4192 * still unbalanced. ld_moved simply stays zero, so it is
4193 * correctly treated as an imbalance.
4194 */
4195 local_irq_save(flags);
4196 double_rq_lock(this_rq, busiest);
4197 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4198 imbalance, sd, idle, &all_pinned);
4199 double_rq_unlock(this_rq, busiest);
4200 local_irq_restore(flags);
4201
4202 /*
4203 * some other cpu did the load balance for us.
4204 */
4205 if (ld_moved && this_cpu != smp_processor_id())
4206 resched_cpu(this_cpu);
4207
4208 /* All tasks on this runqueue were pinned by CPU affinity */
4209 if (unlikely(all_pinned)) {
4210 cpumask_clear_cpu(cpu_of(busiest), cpus);
4211 if (!cpumask_empty(cpus))
4212 goto redo;
4213 goto out_balanced;
4214 }
4215 }
4216
4217 if (!ld_moved) {
4218 schedstat_inc(sd, lb_failed[idle]);
4219 sd->nr_balance_failed++;
4220
4221 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4222
4223 raw_spin_lock_irqsave(&busiest->lock, flags);
4224
4225 /* don't kick the migration_thread, if the curr
4226 * task on busiest cpu can't be moved to this_cpu
4227 */
4228 if (!cpumask_test_cpu(this_cpu,
4229 &busiest->curr->cpus_allowed)) {
4230 raw_spin_unlock_irqrestore(&busiest->lock,
4231 flags);
4232 all_pinned = 1;
4233 goto out_one_pinned;
4234 }
4235
4236 if (!busiest->active_balance) {
4237 busiest->active_balance = 1;
4238 busiest->push_cpu = this_cpu;
4239 active_balance = 1;
4240 }
4241 raw_spin_unlock_irqrestore(&busiest->lock, flags);
4242 if (active_balance)
4243 wake_up_process(busiest->migration_thread);
4244
4245 /*
4246 * We've kicked active balancing, reset the failure
4247 * counter.
4248 */
4249 sd->nr_balance_failed = sd->cache_nice_tries+1;
4250 }
4251 } else
4252 sd->nr_balance_failed = 0;
4253
4254 if (likely(!active_balance)) {
4255 /* We were unbalanced, so reset the balancing interval */
4256 sd->balance_interval = sd->min_interval;
4257 } else {
4258 /*
4259 * If we've begun active balancing, start to back off. This
4260 * case may not be covered by the all_pinned logic if there
4261 * is only 1 task on the busy runqueue (because we don't call
4262 * move_tasks).
4263 */
4264 if (sd->balance_interval < sd->max_interval)
4265 sd->balance_interval *= 2;
4266 }
4267
4268 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4269 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4270 ld_moved = -1;
4271
4272 goto out;
4273
4274 out_balanced:
4275 schedstat_inc(sd, lb_balanced[idle]);
4276
4277 sd->nr_balance_failed = 0;
4278
4279 out_one_pinned:
4280 /* tune up the balancing interval */
4281 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4282 (sd->balance_interval < sd->max_interval))
4283 sd->balance_interval *= 2;
4284
4285 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4286 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4287 ld_moved = -1;
4288 else
4289 ld_moved = 0;
4290 out:
4291 if (ld_moved)
4292 update_shares(sd);
4293 return ld_moved;
4294 }
4295
4296 /*
4297 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4298 * tasks if there is an imbalance.
4299 *
4300 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4301 * this_rq is locked.
4302 */
4303 static int
4304 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4305 {
4306 struct sched_group *group;
4307 struct rq *busiest = NULL;
4308 unsigned long imbalance;
4309 int ld_moved = 0;
4310 int sd_idle = 0;
4311 int all_pinned = 0;
4312 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4313
4314 cpumask_copy(cpus, cpu_active_mask);
4315
4316 /*
4317 * When power savings policy is enabled for the parent domain, idle
4318 * sibling can pick up load irrespective of busy siblings. In this case,
4319 * let the state of idle sibling percolate up as IDLE, instead of
4320 * portraying it as CPU_NOT_IDLE.
4321 */
4322 if (sd->flags & SD_SHARE_CPUPOWER &&
4323 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4324 sd_idle = 1;
4325
4326 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4327 redo:
4328 update_shares_locked(this_rq, sd);
4329 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4330 &sd_idle, cpus, NULL);
4331 if (!group) {
4332 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4333 goto out_balanced;
4334 }
4335
4336 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4337 if (!busiest) {
4338 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4339 goto out_balanced;
4340 }
4341
4342 BUG_ON(busiest == this_rq);
4343
4344 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4345
4346 ld_moved = 0;
4347 if (busiest->nr_running > 1) {
4348 /* Attempt to move tasks */
4349 double_lock_balance(this_rq, busiest);
4350 /* this_rq->clock is already updated */
4351 update_rq_clock(busiest);
4352 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4353 imbalance, sd, CPU_NEWLY_IDLE,
4354 &all_pinned);
4355 double_unlock_balance(this_rq, busiest);
4356
4357 if (unlikely(all_pinned)) {
4358 cpumask_clear_cpu(cpu_of(busiest), cpus);
4359 if (!cpumask_empty(cpus))
4360 goto redo;
4361 }
4362 }
4363
4364 if (!ld_moved) {
4365 int active_balance = 0;
4366
4367 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4368 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4369 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4370 return -1;
4371
4372 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4373 return -1;
4374
4375 if (sd->nr_balance_failed++ < 2)
4376 return -1;
4377
4378 /*
4379 * The only task running in a non-idle cpu can be moved to this
4380 * cpu in an attempt to completely freeup the other CPU
4381 * package. The same method used to move task in load_balance()
4382 * have been extended for load_balance_newidle() to speedup
4383 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4384 *
4385 * The package power saving logic comes from
4386 * find_busiest_group(). If there are no imbalance, then
4387 * f_b_g() will return NULL. However when sched_mc={1,2} then
4388 * f_b_g() will select a group from which a running task may be
4389 * pulled to this cpu in order to make the other package idle.
4390 * If there is no opportunity to make a package idle and if
4391 * there are no imbalance, then f_b_g() will return NULL and no
4392 * action will be taken in load_balance_newidle().
4393 *
4394 * Under normal task pull operation due to imbalance, there
4395 * will be more than one task in the source run queue and
4396 * move_tasks() will succeed. ld_moved will be true and this
4397 * active balance code will not be triggered.
4398 */
4399
4400 /* Lock busiest in correct order while this_rq is held */
4401 double_lock_balance(this_rq, busiest);
4402
4403 /*
4404 * don't kick the migration_thread, if the curr
4405 * task on busiest cpu can't be moved to this_cpu
4406 */
4407 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4408 double_unlock_balance(this_rq, busiest);
4409 all_pinned = 1;
4410 return ld_moved;
4411 }
4412
4413 if (!busiest->active_balance) {
4414 busiest->active_balance = 1;
4415 busiest->push_cpu = this_cpu;
4416 active_balance = 1;
4417 }
4418
4419 double_unlock_balance(this_rq, busiest);
4420 /*
4421 * Should not call ttwu while holding a rq->lock
4422 */
4423 raw_spin_unlock(&this_rq->lock);
4424 if (active_balance)
4425 wake_up_process(busiest->migration_thread);
4426 raw_spin_lock(&this_rq->lock);
4427
4428 } else
4429 sd->nr_balance_failed = 0;
4430
4431 update_shares_locked(this_rq, sd);
4432 return ld_moved;
4433
4434 out_balanced:
4435 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4436 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4437 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4438 return -1;
4439 sd->nr_balance_failed = 0;
4440
4441 return 0;
4442 }
4443
4444 /*
4445 * idle_balance is called by schedule() if this_cpu is about to become
4446 * idle. Attempts to pull tasks from other CPUs.
4447 */
4448 static void idle_balance(int this_cpu, struct rq *this_rq)
4449 {
4450 struct sched_domain *sd;
4451 int pulled_task = 0;
4452 unsigned long next_balance = jiffies + HZ;
4453
4454 this_rq->idle_stamp = this_rq->clock;
4455
4456 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4457 return;
4458
4459 for_each_domain(this_cpu, sd) {
4460 unsigned long interval;
4461
4462 if (!(sd->flags & SD_LOAD_BALANCE))
4463 continue;
4464
4465 if (sd->flags & SD_BALANCE_NEWIDLE)
4466 /* If we've pulled tasks over stop searching: */
4467 pulled_task = load_balance_newidle(this_cpu, this_rq,
4468 sd);
4469
4470 interval = msecs_to_jiffies(sd->balance_interval);
4471 if (time_after(next_balance, sd->last_balance + interval))
4472 next_balance = sd->last_balance + interval;
4473 if (pulled_task) {
4474 this_rq->idle_stamp = 0;
4475 break;
4476 }
4477 }
4478 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4479 /*
4480 * We are going idle. next_balance may be set based on
4481 * a busy processor. So reset next_balance.
4482 */
4483 this_rq->next_balance = next_balance;
4484 }
4485 }
4486
4487 /*
4488 * active_load_balance is run by migration threads. It pushes running tasks
4489 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4490 * running on each physical CPU where possible, and avoids physical /
4491 * logical imbalances.
4492 *
4493 * Called with busiest_rq locked.
4494 */
4495 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4496 {
4497 int target_cpu = busiest_rq->push_cpu;
4498 struct sched_domain *sd;
4499 struct rq *target_rq;
4500
4501 /* Is there any task to move? */
4502 if (busiest_rq->nr_running <= 1)
4503 return;
4504
4505 target_rq = cpu_rq(target_cpu);
4506
4507 /*
4508 * This condition is "impossible", if it occurs
4509 * we need to fix it. Originally reported by
4510 * Bjorn Helgaas on a 128-cpu setup.
4511 */
4512 BUG_ON(busiest_rq == target_rq);
4513
4514 /* move a task from busiest_rq to target_rq */
4515 double_lock_balance(busiest_rq, target_rq);
4516 update_rq_clock(busiest_rq);
4517 update_rq_clock(target_rq);
4518
4519 /* Search for an sd spanning us and the target CPU. */
4520 for_each_domain(target_cpu, sd) {
4521 if ((sd->flags & SD_LOAD_BALANCE) &&
4522 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4523 break;
4524 }
4525
4526 if (likely(sd)) {
4527 schedstat_inc(sd, alb_count);
4528
4529 if (move_one_task(target_rq, target_cpu, busiest_rq,
4530 sd, CPU_IDLE))
4531 schedstat_inc(sd, alb_pushed);
4532 else
4533 schedstat_inc(sd, alb_failed);
4534 }
4535 double_unlock_balance(busiest_rq, target_rq);
4536 }
4537
4538 #ifdef CONFIG_NO_HZ
4539 static struct {
4540 atomic_t load_balancer;
4541 cpumask_var_t cpu_mask;
4542 cpumask_var_t ilb_grp_nohz_mask;
4543 } nohz ____cacheline_aligned = {
4544 .load_balancer = ATOMIC_INIT(-1),
4545 };
4546
4547 int get_nohz_load_balancer(void)
4548 {
4549 return atomic_read(&nohz.load_balancer);
4550 }
4551
4552 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4553 /**
4554 * lowest_flag_domain - Return lowest sched_domain containing flag.
4555 * @cpu: The cpu whose lowest level of sched domain is to
4556 * be returned.
4557 * @flag: The flag to check for the lowest sched_domain
4558 * for the given cpu.
4559 *
4560 * Returns the lowest sched_domain of a cpu which contains the given flag.
4561 */
4562 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4563 {
4564 struct sched_domain *sd;
4565
4566 for_each_domain(cpu, sd)
4567 if (sd && (sd->flags & flag))
4568 break;
4569
4570 return sd;
4571 }
4572
4573 /**
4574 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4575 * @cpu: The cpu whose domains we're iterating over.
4576 * @sd: variable holding the value of the power_savings_sd
4577 * for cpu.
4578 * @flag: The flag to filter the sched_domains to be iterated.
4579 *
4580 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4581 * set, starting from the lowest sched_domain to the highest.
4582 */
4583 #define for_each_flag_domain(cpu, sd, flag) \
4584 for (sd = lowest_flag_domain(cpu, flag); \
4585 (sd && (sd->flags & flag)); sd = sd->parent)
4586
4587 /**
4588 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4589 * @ilb_group: group to be checked for semi-idleness
4590 *
4591 * Returns: 1 if the group is semi-idle. 0 otherwise.
4592 *
4593 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4594 * and atleast one non-idle CPU. This helper function checks if the given
4595 * sched_group is semi-idle or not.
4596 */
4597 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4598 {
4599 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4600 sched_group_cpus(ilb_group));
4601
4602 /*
4603 * A sched_group is semi-idle when it has atleast one busy cpu
4604 * and atleast one idle cpu.
4605 */
4606 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4607 return 0;
4608
4609 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4610 return 0;
4611
4612 return 1;
4613 }
4614 /**
4615 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4616 * @cpu: The cpu which is nominating a new idle_load_balancer.
4617 *
4618 * Returns: Returns the id of the idle load balancer if it exists,
4619 * Else, returns >= nr_cpu_ids.
4620 *
4621 * This algorithm picks the idle load balancer such that it belongs to a
4622 * semi-idle powersavings sched_domain. The idea is to try and avoid
4623 * completely idle packages/cores just for the purpose of idle load balancing
4624 * when there are other idle cpu's which are better suited for that job.
4625 */
4626 static int find_new_ilb(int cpu)
4627 {
4628 struct sched_domain *sd;
4629 struct sched_group *ilb_group;
4630
4631 /*
4632 * Have idle load balancer selection from semi-idle packages only
4633 * when power-aware load balancing is enabled
4634 */
4635 if (!(sched_smt_power_savings || sched_mc_power_savings))
4636 goto out_done;
4637
4638 /*
4639 * Optimize for the case when we have no idle CPUs or only one
4640 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4641 */
4642 if (cpumask_weight(nohz.cpu_mask) < 2)
4643 goto out_done;
4644
4645 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4646 ilb_group = sd->groups;
4647
4648 do {
4649 if (is_semi_idle_group(ilb_group))
4650 return cpumask_first(nohz.ilb_grp_nohz_mask);
4651
4652 ilb_group = ilb_group->next;
4653
4654 } while (ilb_group != sd->groups);
4655 }
4656
4657 out_done:
4658 return cpumask_first(nohz.cpu_mask);
4659 }
4660 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4661 static inline int find_new_ilb(int call_cpu)
4662 {
4663 return cpumask_first(nohz.cpu_mask);
4664 }
4665 #endif
4666
4667 /*
4668 * This routine will try to nominate the ilb (idle load balancing)
4669 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4670 * load balancing on behalf of all those cpus. If all the cpus in the system
4671 * go into this tickless mode, then there will be no ilb owner (as there is
4672 * no need for one) and all the cpus will sleep till the next wakeup event
4673 * arrives...
4674 *
4675 * For the ilb owner, tick is not stopped. And this tick will be used
4676 * for idle load balancing. ilb owner will still be part of
4677 * nohz.cpu_mask..
4678 *
4679 * While stopping the tick, this cpu will become the ilb owner if there
4680 * is no other owner. And will be the owner till that cpu becomes busy
4681 * or if all cpus in the system stop their ticks at which point
4682 * there is no need for ilb owner.
4683 *
4684 * When the ilb owner becomes busy, it nominates another owner, during the
4685 * next busy scheduler_tick()
4686 */
4687 int select_nohz_load_balancer(int stop_tick)
4688 {
4689 int cpu = smp_processor_id();
4690
4691 if (stop_tick) {
4692 cpu_rq(cpu)->in_nohz_recently = 1;
4693
4694 if (!cpu_active(cpu)) {
4695 if (atomic_read(&nohz.load_balancer) != cpu)
4696 return 0;
4697
4698 /*
4699 * If we are going offline and still the leader,
4700 * give up!
4701 */
4702 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4703 BUG();
4704
4705 return 0;
4706 }
4707
4708 cpumask_set_cpu(cpu, nohz.cpu_mask);
4709
4710 /* time for ilb owner also to sleep */
4711 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4712 if (atomic_read(&nohz.load_balancer) == cpu)
4713 atomic_set(&nohz.load_balancer, -1);
4714 return 0;
4715 }
4716
4717 if (atomic_read(&nohz.load_balancer) == -1) {
4718 /* make me the ilb owner */
4719 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4720 return 1;
4721 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4722 int new_ilb;
4723
4724 if (!(sched_smt_power_savings ||
4725 sched_mc_power_savings))
4726 return 1;
4727 /*
4728 * Check to see if there is a more power-efficient
4729 * ilb.
4730 */
4731 new_ilb = find_new_ilb(cpu);
4732 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4733 atomic_set(&nohz.load_balancer, -1);
4734 resched_cpu(new_ilb);
4735 return 0;
4736 }
4737 return 1;
4738 }
4739 } else {
4740 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4741 return 0;
4742
4743 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4744
4745 if (atomic_read(&nohz.load_balancer) == cpu)
4746 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4747 BUG();
4748 }
4749 return 0;
4750 }
4751 #endif
4752
4753 static DEFINE_SPINLOCK(balancing);
4754
4755 /*
4756 * It checks each scheduling domain to see if it is due to be balanced,
4757 * and initiates a balancing operation if so.
4758 *
4759 * Balancing parameters are set up in arch_init_sched_domains.
4760 */
4761 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4762 {
4763 int balance = 1;
4764 struct rq *rq = cpu_rq(cpu);
4765 unsigned long interval;
4766 struct sched_domain *sd;
4767 /* Earliest time when we have to do rebalance again */
4768 unsigned long next_balance = jiffies + 60*HZ;
4769 int update_next_balance = 0;
4770 int need_serialize;
4771
4772 for_each_domain(cpu, sd) {
4773 if (!(sd->flags & SD_LOAD_BALANCE))
4774 continue;
4775
4776 interval = sd->balance_interval;
4777 if (idle != CPU_IDLE)
4778 interval *= sd->busy_factor;
4779
4780 /* scale ms to jiffies */
4781 interval = msecs_to_jiffies(interval);
4782 if (unlikely(!interval))
4783 interval = 1;
4784 if (interval > HZ*NR_CPUS/10)
4785 interval = HZ*NR_CPUS/10;
4786
4787 need_serialize = sd->flags & SD_SERIALIZE;
4788
4789 if (need_serialize) {
4790 if (!spin_trylock(&balancing))
4791 goto out;
4792 }
4793
4794 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4795 if (load_balance(cpu, rq, sd, idle, &balance)) {
4796 /*
4797 * We've pulled tasks over so either we're no
4798 * longer idle, or one of our SMT siblings is
4799 * not idle.
4800 */
4801 idle = CPU_NOT_IDLE;
4802 }
4803 sd->last_balance = jiffies;
4804 }
4805 if (need_serialize)
4806 spin_unlock(&balancing);
4807 out:
4808 if (time_after(next_balance, sd->last_balance + interval)) {
4809 next_balance = sd->last_balance + interval;
4810 update_next_balance = 1;
4811 }
4812
4813 /*
4814 * Stop the load balance at this level. There is another
4815 * CPU in our sched group which is doing load balancing more
4816 * actively.
4817 */
4818 if (!balance)
4819 break;
4820 }
4821
4822 /*
4823 * next_balance will be updated only when there is a need.
4824 * When the cpu is attached to null domain for ex, it will not be
4825 * updated.
4826 */
4827 if (likely(update_next_balance))
4828 rq->next_balance = next_balance;
4829 }
4830
4831 /*
4832 * run_rebalance_domains is triggered when needed from the scheduler tick.
4833 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4834 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4835 */
4836 static void run_rebalance_domains(struct softirq_action *h)
4837 {
4838 int this_cpu = smp_processor_id();
4839 struct rq *this_rq = cpu_rq(this_cpu);
4840 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4841 CPU_IDLE : CPU_NOT_IDLE;
4842
4843 rebalance_domains(this_cpu, idle);
4844
4845 #ifdef CONFIG_NO_HZ
4846 /*
4847 * If this cpu is the owner for idle load balancing, then do the
4848 * balancing on behalf of the other idle cpus whose ticks are
4849 * stopped.
4850 */
4851 if (this_rq->idle_at_tick &&
4852 atomic_read(&nohz.load_balancer) == this_cpu) {
4853 struct rq *rq;
4854 int balance_cpu;
4855
4856 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4857 if (balance_cpu == this_cpu)
4858 continue;
4859
4860 /*
4861 * If this cpu gets work to do, stop the load balancing
4862 * work being done for other cpus. Next load
4863 * balancing owner will pick it up.
4864 */
4865 if (need_resched())
4866 break;
4867
4868 rebalance_domains(balance_cpu, CPU_IDLE);
4869
4870 rq = cpu_rq(balance_cpu);
4871 if (time_after(this_rq->next_balance, rq->next_balance))
4872 this_rq->next_balance = rq->next_balance;
4873 }
4874 }
4875 #endif
4876 }
4877
4878 static inline int on_null_domain(int cpu)
4879 {
4880 return !rcu_dereference(cpu_rq(cpu)->sd);
4881 }
4882
4883 /*
4884 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4885 *
4886 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4887 * idle load balancing owner or decide to stop the periodic load balancing,
4888 * if the whole system is idle.
4889 */
4890 static inline void trigger_load_balance(struct rq *rq, int cpu)
4891 {
4892 #ifdef CONFIG_NO_HZ
4893 /*
4894 * If we were in the nohz mode recently and busy at the current
4895 * scheduler tick, then check if we need to nominate new idle
4896 * load balancer.
4897 */
4898 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4899 rq->in_nohz_recently = 0;
4900
4901 if (atomic_read(&nohz.load_balancer) == cpu) {
4902 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4903 atomic_set(&nohz.load_balancer, -1);
4904 }
4905
4906 if (atomic_read(&nohz.load_balancer) == -1) {
4907 int ilb = find_new_ilb(cpu);
4908
4909 if (ilb < nr_cpu_ids)
4910 resched_cpu(ilb);
4911 }
4912 }
4913
4914 /*
4915 * If this cpu is idle and doing idle load balancing for all the
4916 * cpus with ticks stopped, is it time for that to stop?
4917 */
4918 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4919 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4920 resched_cpu(cpu);
4921 return;
4922 }
4923
4924 /*
4925 * If this cpu is idle and the idle load balancing is done by
4926 * someone else, then no need raise the SCHED_SOFTIRQ
4927 */
4928 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4929 cpumask_test_cpu(cpu, nohz.cpu_mask))
4930 return;
4931 #endif
4932 /* Don't need to rebalance while attached to NULL domain */
4933 if (time_after_eq(jiffies, rq->next_balance) &&
4934 likely(!on_null_domain(cpu)))
4935 raise_softirq(SCHED_SOFTIRQ);
4936 }
4937
4938 #else /* CONFIG_SMP */
4939
4940 /*
4941 * on UP we do not need to balance between CPUs:
4942 */
4943 static inline void idle_balance(int cpu, struct rq *rq)
4944 {
4945 }
4946
4947 #endif
4948
4949 DEFINE_PER_CPU(struct kernel_stat, kstat);
4950
4951 EXPORT_PER_CPU_SYMBOL(kstat);
4952
4953 /*
4954 * Return any ns on the sched_clock that have not yet been accounted in
4955 * @p in case that task is currently running.
4956 *
4957 * Called with task_rq_lock() held on @rq.
4958 */
4959 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4960 {
4961 u64 ns = 0;
4962
4963 if (task_current(rq, p)) {
4964 update_rq_clock(rq);
4965 ns = rq->clock - p->se.exec_start;
4966 if ((s64)ns < 0)
4967 ns = 0;
4968 }
4969
4970 return ns;
4971 }
4972
4973 unsigned long long task_delta_exec(struct task_struct *p)
4974 {
4975 unsigned long flags;
4976 struct rq *rq;
4977 u64 ns = 0;
4978
4979 rq = task_rq_lock(p, &flags);
4980 ns = do_task_delta_exec(p, rq);
4981 task_rq_unlock(rq, &flags);
4982
4983 return ns;
4984 }
4985
4986 /*
4987 * Return accounted runtime for the task.
4988 * In case the task is currently running, return the runtime plus current's
4989 * pending runtime that have not been accounted yet.
4990 */
4991 unsigned long long task_sched_runtime(struct task_struct *p)
4992 {
4993 unsigned long flags;
4994 struct rq *rq;
4995 u64 ns = 0;
4996
4997 rq = task_rq_lock(p, &flags);
4998 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4999 task_rq_unlock(rq, &flags);
5000
5001 return ns;
5002 }
5003
5004 /*
5005 * Return sum_exec_runtime for the thread group.
5006 * In case the task is currently running, return the sum plus current's
5007 * pending runtime that have not been accounted yet.
5008 *
5009 * Note that the thread group might have other running tasks as well,
5010 * so the return value not includes other pending runtime that other
5011 * running tasks might have.
5012 */
5013 unsigned long long thread_group_sched_runtime(struct task_struct *p)
5014 {
5015 struct task_cputime totals;
5016 unsigned long flags;
5017 struct rq *rq;
5018 u64 ns;
5019
5020 rq = task_rq_lock(p, &flags);
5021 thread_group_cputime(p, &totals);
5022 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5023 task_rq_unlock(rq, &flags);
5024
5025 return ns;
5026 }
5027
5028 /*
5029 * Account user cpu time to a process.
5030 * @p: the process that the cpu time gets accounted to
5031 * @cputime: the cpu time spent in user space since the last update
5032 * @cputime_scaled: cputime scaled by cpu frequency
5033 */
5034 void account_user_time(struct task_struct *p, cputime_t cputime,
5035 cputime_t cputime_scaled)
5036 {
5037 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5038 cputime64_t tmp;
5039
5040 /* Add user time to process. */
5041 p->utime = cputime_add(p->utime, cputime);
5042 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5043 account_group_user_time(p, cputime);
5044
5045 /* Add user time to cpustat. */
5046 tmp = cputime_to_cputime64(cputime);
5047 if (TASK_NICE(p) > 0)
5048 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5049 else
5050 cpustat->user = cputime64_add(cpustat->user, tmp);
5051
5052 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5053 /* Account for user time used */
5054 acct_update_integrals(p);
5055 }
5056
5057 /*
5058 * Account guest cpu time to a process.
5059 * @p: the process that the cpu time gets accounted to
5060 * @cputime: the cpu time spent in virtual machine since the last update
5061 * @cputime_scaled: cputime scaled by cpu frequency
5062 */
5063 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5064 cputime_t cputime_scaled)
5065 {
5066 cputime64_t tmp;
5067 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5068
5069 tmp = cputime_to_cputime64(cputime);
5070
5071 /* Add guest time to process. */
5072 p->utime = cputime_add(p->utime, cputime);
5073 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5074 account_group_user_time(p, cputime);
5075 p->gtime = cputime_add(p->gtime, cputime);
5076
5077 /* Add guest time to cpustat. */
5078 if (TASK_NICE(p) > 0) {
5079 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5080 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5081 } else {
5082 cpustat->user = cputime64_add(cpustat->user, tmp);
5083 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5084 }
5085 }
5086
5087 /*
5088 * Account system cpu time to a process.
5089 * @p: the process that the cpu time gets accounted to
5090 * @hardirq_offset: the offset to subtract from hardirq_count()
5091 * @cputime: the cpu time spent in kernel space since the last update
5092 * @cputime_scaled: cputime scaled by cpu frequency
5093 */
5094 void account_system_time(struct task_struct *p, int hardirq_offset,
5095 cputime_t cputime, cputime_t cputime_scaled)
5096 {
5097 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5098 cputime64_t tmp;
5099
5100 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5101 account_guest_time(p, cputime, cputime_scaled);
5102 return;
5103 }
5104
5105 /* Add system time to process. */
5106 p->stime = cputime_add(p->stime, cputime);
5107 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5108 account_group_system_time(p, cputime);
5109
5110 /* Add system time to cpustat. */
5111 tmp = cputime_to_cputime64(cputime);
5112 if (hardirq_count() - hardirq_offset)
5113 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5114 else if (softirq_count())
5115 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5116 else
5117 cpustat->system = cputime64_add(cpustat->system, tmp);
5118
5119 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5120
5121 /* Account for system time used */
5122 acct_update_integrals(p);
5123 }
5124
5125 /*
5126 * Account for involuntary wait time.
5127 * @steal: the cpu time spent in involuntary wait
5128 */
5129 void account_steal_time(cputime_t cputime)
5130 {
5131 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5132 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5133
5134 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5135 }
5136
5137 /*
5138 * Account for idle time.
5139 * @cputime: the cpu time spent in idle wait
5140 */
5141 void account_idle_time(cputime_t cputime)
5142 {
5143 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5144 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5145 struct rq *rq = this_rq();
5146
5147 if (atomic_read(&rq->nr_iowait) > 0)
5148 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5149 else
5150 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5151 }
5152
5153 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5154
5155 /*
5156 * Account a single tick of cpu time.
5157 * @p: the process that the cpu time gets accounted to
5158 * @user_tick: indicates if the tick is a user or a system tick
5159 */
5160 void account_process_tick(struct task_struct *p, int user_tick)
5161 {
5162 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5163 struct rq *rq = this_rq();
5164
5165 if (user_tick)
5166 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5167 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5168 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5169 one_jiffy_scaled);
5170 else
5171 account_idle_time(cputime_one_jiffy);
5172 }
5173
5174 /*
5175 * Account multiple ticks of steal time.
5176 * @p: the process from which the cpu time has been stolen
5177 * @ticks: number of stolen ticks
5178 */
5179 void account_steal_ticks(unsigned long ticks)
5180 {
5181 account_steal_time(jiffies_to_cputime(ticks));
5182 }
5183
5184 /*
5185 * Account multiple ticks of idle time.
5186 * @ticks: number of stolen ticks
5187 */
5188 void account_idle_ticks(unsigned long ticks)
5189 {
5190 account_idle_time(jiffies_to_cputime(ticks));
5191 }
5192
5193 #endif
5194
5195 /*
5196 * Use precise platform statistics if available:
5197 */
5198 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5199 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5200 {
5201 *ut = p->utime;
5202 *st = p->stime;
5203 }
5204
5205 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5206 {
5207 struct task_cputime cputime;
5208
5209 thread_group_cputime(p, &cputime);
5210
5211 *ut = cputime.utime;
5212 *st = cputime.stime;
5213 }
5214 #else
5215
5216 #ifndef nsecs_to_cputime
5217 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5218 #endif
5219
5220 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5221 {
5222 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5223
5224 /*
5225 * Use CFS's precise accounting:
5226 */
5227 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5228
5229 if (total) {
5230 u64 temp;
5231
5232 temp = (u64)(rtime * utime);
5233 do_div(temp, total);
5234 utime = (cputime_t)temp;
5235 } else
5236 utime = rtime;
5237
5238 /*
5239 * Compare with previous values, to keep monotonicity:
5240 */
5241 p->prev_utime = max(p->prev_utime, utime);
5242 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5243
5244 *ut = p->prev_utime;
5245 *st = p->prev_stime;
5246 }
5247
5248 /*
5249 * Must be called with siglock held.
5250 */
5251 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5252 {
5253 struct signal_struct *sig = p->signal;
5254 struct task_cputime cputime;
5255 cputime_t rtime, utime, total;
5256
5257 thread_group_cputime(p, &cputime);
5258
5259 total = cputime_add(cputime.utime, cputime.stime);
5260 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5261
5262 if (total) {
5263 u64 temp;
5264
5265 temp = (u64)(rtime * cputime.utime);
5266 do_div(temp, total);
5267 utime = (cputime_t)temp;
5268 } else
5269 utime = rtime;
5270
5271 sig->prev_utime = max(sig->prev_utime, utime);
5272 sig->prev_stime = max(sig->prev_stime,
5273 cputime_sub(rtime, sig->prev_utime));
5274
5275 *ut = sig->prev_utime;
5276 *st = sig->prev_stime;
5277 }
5278 #endif
5279
5280 /*
5281 * This function gets called by the timer code, with HZ frequency.
5282 * We call it with interrupts disabled.
5283 *
5284 * It also gets called by the fork code, when changing the parent's
5285 * timeslices.
5286 */
5287 void scheduler_tick(void)
5288 {
5289 int cpu = smp_processor_id();
5290 struct rq *rq = cpu_rq(cpu);
5291 struct task_struct *curr = rq->curr;
5292
5293 sched_clock_tick();
5294
5295 raw_spin_lock(&rq->lock);
5296 update_rq_clock(rq);
5297 update_cpu_load(rq);
5298 curr->sched_class->task_tick(rq, curr, 0);
5299 raw_spin_unlock(&rq->lock);
5300
5301 perf_event_task_tick(curr, cpu);
5302
5303 #ifdef CONFIG_SMP
5304 rq->idle_at_tick = idle_cpu(cpu);
5305 trigger_load_balance(rq, cpu);
5306 #endif
5307 }
5308
5309 notrace unsigned long get_parent_ip(unsigned long addr)
5310 {
5311 if (in_lock_functions(addr)) {
5312 addr = CALLER_ADDR2;
5313 if (in_lock_functions(addr))
5314 addr = CALLER_ADDR3;
5315 }
5316 return addr;
5317 }
5318
5319 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5320 defined(CONFIG_PREEMPT_TRACER))
5321
5322 void __kprobes add_preempt_count(int val)
5323 {
5324 #ifdef CONFIG_DEBUG_PREEMPT
5325 /*
5326 * Underflow?
5327 */
5328 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5329 return;
5330 #endif
5331 preempt_count() += val;
5332 #ifdef CONFIG_DEBUG_PREEMPT
5333 /*
5334 * Spinlock count overflowing soon?
5335 */
5336 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5337 PREEMPT_MASK - 10);
5338 #endif
5339 if (preempt_count() == val)
5340 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5341 }
5342 EXPORT_SYMBOL(add_preempt_count);
5343
5344 void __kprobes sub_preempt_count(int val)
5345 {
5346 #ifdef CONFIG_DEBUG_PREEMPT
5347 /*
5348 * Underflow?
5349 */
5350 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5351 return;
5352 /*
5353 * Is the spinlock portion underflowing?
5354 */
5355 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5356 !(preempt_count() & PREEMPT_MASK)))
5357 return;
5358 #endif
5359
5360 if (preempt_count() == val)
5361 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5362 preempt_count() -= val;
5363 }
5364 EXPORT_SYMBOL(sub_preempt_count);
5365
5366 #endif
5367
5368 /*
5369 * Print scheduling while atomic bug:
5370 */
5371 static noinline void __schedule_bug(struct task_struct *prev)
5372 {
5373 struct pt_regs *regs = get_irq_regs();
5374
5375 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5376 prev->comm, prev->pid, preempt_count());
5377
5378 debug_show_held_locks(prev);
5379 print_modules();
5380 if (irqs_disabled())
5381 print_irqtrace_events(prev);
5382
5383 if (regs)
5384 show_regs(regs);
5385 else
5386 dump_stack();
5387 }
5388
5389 /*
5390 * Various schedule()-time debugging checks and statistics:
5391 */
5392 static inline void schedule_debug(struct task_struct *prev)
5393 {
5394 /*
5395 * Test if we are atomic. Since do_exit() needs to call into
5396 * schedule() atomically, we ignore that path for now.
5397 * Otherwise, whine if we are scheduling when we should not be.
5398 */
5399 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5400 __schedule_bug(prev);
5401
5402 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5403
5404 schedstat_inc(this_rq(), sched_count);
5405 #ifdef CONFIG_SCHEDSTATS
5406 if (unlikely(prev->lock_depth >= 0)) {
5407 schedstat_inc(this_rq(), bkl_count);
5408 schedstat_inc(prev, sched_info.bkl_count);
5409 }
5410 #endif
5411 }
5412
5413 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5414 {
5415 if (prev->state == TASK_RUNNING) {
5416 u64 runtime = prev->se.sum_exec_runtime;
5417
5418 runtime -= prev->se.prev_sum_exec_runtime;
5419 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5420
5421 /*
5422 * In order to avoid avg_overlap growing stale when we are
5423 * indeed overlapping and hence not getting put to sleep, grow
5424 * the avg_overlap on preemption.
5425 *
5426 * We use the average preemption runtime because that
5427 * correlates to the amount of cache footprint a task can
5428 * build up.
5429 */
5430 update_avg(&prev->se.avg_overlap, runtime);
5431 }
5432 prev->sched_class->put_prev_task(rq, prev);
5433 }
5434
5435 /*
5436 * Pick up the highest-prio task:
5437 */
5438 static inline struct task_struct *
5439 pick_next_task(struct rq *rq)
5440 {
5441 const struct sched_class *class;
5442 struct task_struct *p;
5443
5444 /*
5445 * Optimization: we know that if all tasks are in
5446 * the fair class we can call that function directly:
5447 */
5448 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5449 p = fair_sched_class.pick_next_task(rq);
5450 if (likely(p))
5451 return p;
5452 }
5453
5454 class = sched_class_highest;
5455 for ( ; ; ) {
5456 p = class->pick_next_task(rq);
5457 if (p)
5458 return p;
5459 /*
5460 * Will never be NULL as the idle class always
5461 * returns a non-NULL p:
5462 */
5463 class = class->next;
5464 }
5465 }
5466
5467 /*
5468 * schedule() is the main scheduler function.
5469 */
5470 asmlinkage void __sched schedule(void)
5471 {
5472 struct task_struct *prev, *next;
5473 unsigned long *switch_count;
5474 struct rq *rq;
5475 int cpu;
5476
5477 need_resched:
5478 preempt_disable();
5479 cpu = smp_processor_id();
5480 rq = cpu_rq(cpu);
5481 rcu_sched_qs(cpu);
5482 prev = rq->curr;
5483 switch_count = &prev->nivcsw;
5484
5485 release_kernel_lock(prev);
5486 need_resched_nonpreemptible:
5487
5488 schedule_debug(prev);
5489
5490 if (sched_feat(HRTICK))
5491 hrtick_clear(rq);
5492
5493 raw_spin_lock_irq(&rq->lock);
5494 update_rq_clock(rq);
5495 clear_tsk_need_resched(prev);
5496
5497 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5498 if (unlikely(signal_pending_state(prev->state, prev)))
5499 prev->state = TASK_RUNNING;
5500 else
5501 deactivate_task(rq, prev, 1);
5502 switch_count = &prev->nvcsw;
5503 }
5504
5505 pre_schedule(rq, prev);
5506
5507 if (unlikely(!rq->nr_running))
5508 idle_balance(cpu, rq);
5509
5510 put_prev_task(rq, prev);
5511 next = pick_next_task(rq);
5512
5513 if (likely(prev != next)) {
5514 sched_info_switch(prev, next);
5515 perf_event_task_sched_out(prev, next, cpu);
5516
5517 rq->nr_switches++;
5518 rq->curr = next;
5519 ++*switch_count;
5520
5521 context_switch(rq, prev, next); /* unlocks the rq */
5522 /*
5523 * the context switch might have flipped the stack from under
5524 * us, hence refresh the local variables.
5525 */
5526 cpu = smp_processor_id();
5527 rq = cpu_rq(cpu);
5528 } else
5529 raw_spin_unlock_irq(&rq->lock);
5530
5531 post_schedule(rq);
5532
5533 if (unlikely(reacquire_kernel_lock(current) < 0))
5534 goto need_resched_nonpreemptible;
5535
5536 preempt_enable_no_resched();
5537 if (need_resched())
5538 goto need_resched;
5539 }
5540 EXPORT_SYMBOL(schedule);
5541
5542 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5543 /*
5544 * Look out! "owner" is an entirely speculative pointer
5545 * access and not reliable.
5546 */
5547 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5548 {
5549 unsigned int cpu;
5550 struct rq *rq;
5551
5552 if (!sched_feat(OWNER_SPIN))
5553 return 0;
5554
5555 #ifdef CONFIG_DEBUG_PAGEALLOC
5556 /*
5557 * Need to access the cpu field knowing that
5558 * DEBUG_PAGEALLOC could have unmapped it if
5559 * the mutex owner just released it and exited.
5560 */
5561 if (probe_kernel_address(&owner->cpu, cpu))
5562 goto out;
5563 #else
5564 cpu = owner->cpu;
5565 #endif
5566
5567 /*
5568 * Even if the access succeeded (likely case),
5569 * the cpu field may no longer be valid.
5570 */
5571 if (cpu >= nr_cpumask_bits)
5572 goto out;
5573
5574 /*
5575 * We need to validate that we can do a
5576 * get_cpu() and that we have the percpu area.
5577 */
5578 if (!cpu_online(cpu))
5579 goto out;
5580
5581 rq = cpu_rq(cpu);
5582
5583 for (;;) {
5584 /*
5585 * Owner changed, break to re-assess state.
5586 */
5587 if (lock->owner != owner)
5588 break;
5589
5590 /*
5591 * Is that owner really running on that cpu?
5592 */
5593 if (task_thread_info(rq->curr) != owner || need_resched())
5594 return 0;
5595
5596 cpu_relax();
5597 }
5598 out:
5599 return 1;
5600 }
5601 #endif
5602
5603 #ifdef CONFIG_PREEMPT
5604 /*
5605 * this is the entry point to schedule() from in-kernel preemption
5606 * off of preempt_enable. Kernel preemptions off return from interrupt
5607 * occur there and call schedule directly.
5608 */
5609 asmlinkage void __sched preempt_schedule(void)
5610 {
5611 struct thread_info *ti = current_thread_info();
5612
5613 /*
5614 * If there is a non-zero preempt_count or interrupts are disabled,
5615 * we do not want to preempt the current task. Just return..
5616 */
5617 if (likely(ti->preempt_count || irqs_disabled()))
5618 return;
5619
5620 do {
5621 add_preempt_count(PREEMPT_ACTIVE);
5622 schedule();
5623 sub_preempt_count(PREEMPT_ACTIVE);
5624
5625 /*
5626 * Check again in case we missed a preemption opportunity
5627 * between schedule and now.
5628 */
5629 barrier();
5630 } while (need_resched());
5631 }
5632 EXPORT_SYMBOL(preempt_schedule);
5633
5634 /*
5635 * this is the entry point to schedule() from kernel preemption
5636 * off of irq context.
5637 * Note, that this is called and return with irqs disabled. This will
5638 * protect us against recursive calling from irq.
5639 */
5640 asmlinkage void __sched preempt_schedule_irq(void)
5641 {
5642 struct thread_info *ti = current_thread_info();
5643
5644 /* Catch callers which need to be fixed */
5645 BUG_ON(ti->preempt_count || !irqs_disabled());
5646
5647 do {
5648 add_preempt_count(PREEMPT_ACTIVE);
5649 local_irq_enable();
5650 schedule();
5651 local_irq_disable();
5652 sub_preempt_count(PREEMPT_ACTIVE);
5653
5654 /*
5655 * Check again in case we missed a preemption opportunity
5656 * between schedule and now.
5657 */
5658 barrier();
5659 } while (need_resched());
5660 }
5661
5662 #endif /* CONFIG_PREEMPT */
5663
5664 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5665 void *key)
5666 {
5667 return try_to_wake_up(curr->private, mode, wake_flags);
5668 }
5669 EXPORT_SYMBOL(default_wake_function);
5670
5671 /*
5672 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5673 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5674 * number) then we wake all the non-exclusive tasks and one exclusive task.
5675 *
5676 * There are circumstances in which we can try to wake a task which has already
5677 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5678 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5679 */
5680 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5681 int nr_exclusive, int wake_flags, void *key)
5682 {
5683 wait_queue_t *curr, *next;
5684
5685 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5686 unsigned flags = curr->flags;
5687
5688 if (curr->func(curr, mode, wake_flags, key) &&
5689 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5690 break;
5691 }
5692 }
5693
5694 /**
5695 * __wake_up - wake up threads blocked on a waitqueue.
5696 * @q: the waitqueue
5697 * @mode: which threads
5698 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5699 * @key: is directly passed to the wakeup function
5700 *
5701 * It may be assumed that this function implies a write memory barrier before
5702 * changing the task state if and only if any tasks are woken up.
5703 */
5704 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5705 int nr_exclusive, void *key)
5706 {
5707 unsigned long flags;
5708
5709 spin_lock_irqsave(&q->lock, flags);
5710 __wake_up_common(q, mode, nr_exclusive, 0, key);
5711 spin_unlock_irqrestore(&q->lock, flags);
5712 }
5713 EXPORT_SYMBOL(__wake_up);
5714
5715 /*
5716 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5717 */
5718 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5719 {
5720 __wake_up_common(q, mode, 1, 0, NULL);
5721 }
5722
5723 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5724 {
5725 __wake_up_common(q, mode, 1, 0, key);
5726 }
5727
5728 /**
5729 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5730 * @q: the waitqueue
5731 * @mode: which threads
5732 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5733 * @key: opaque value to be passed to wakeup targets
5734 *
5735 * The sync wakeup differs that the waker knows that it will schedule
5736 * away soon, so while the target thread will be woken up, it will not
5737 * be migrated to another CPU - ie. the two threads are 'synchronized'
5738 * with each other. This can prevent needless bouncing between CPUs.
5739 *
5740 * On UP it can prevent extra preemption.
5741 *
5742 * It may be assumed that this function implies a write memory barrier before
5743 * changing the task state if and only if any tasks are woken up.
5744 */
5745 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5746 int nr_exclusive, void *key)
5747 {
5748 unsigned long flags;
5749 int wake_flags = WF_SYNC;
5750
5751 if (unlikely(!q))
5752 return;
5753
5754 if (unlikely(!nr_exclusive))
5755 wake_flags = 0;
5756
5757 spin_lock_irqsave(&q->lock, flags);
5758 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5759 spin_unlock_irqrestore(&q->lock, flags);
5760 }
5761 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5762
5763 /*
5764 * __wake_up_sync - see __wake_up_sync_key()
5765 */
5766 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5767 {
5768 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5769 }
5770 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5771
5772 /**
5773 * complete: - signals a single thread waiting on this completion
5774 * @x: holds the state of this particular completion
5775 *
5776 * This will wake up a single thread waiting on this completion. Threads will be
5777 * awakened in the same order in which they were queued.
5778 *
5779 * See also complete_all(), wait_for_completion() and related routines.
5780 *
5781 * It may be assumed that this function implies a write memory barrier before
5782 * changing the task state if and only if any tasks are woken up.
5783 */
5784 void complete(struct completion *x)
5785 {
5786 unsigned long flags;
5787
5788 spin_lock_irqsave(&x->wait.lock, flags);
5789 x->done++;
5790 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5791 spin_unlock_irqrestore(&x->wait.lock, flags);
5792 }
5793 EXPORT_SYMBOL(complete);
5794
5795 /**
5796 * complete_all: - signals all threads waiting on this completion
5797 * @x: holds the state of this particular completion
5798 *
5799 * This will wake up all threads waiting on this particular completion event.
5800 *
5801 * It may be assumed that this function implies a write memory barrier before
5802 * changing the task state if and only if any tasks are woken up.
5803 */
5804 void complete_all(struct completion *x)
5805 {
5806 unsigned long flags;
5807
5808 spin_lock_irqsave(&x->wait.lock, flags);
5809 x->done += UINT_MAX/2;
5810 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5811 spin_unlock_irqrestore(&x->wait.lock, flags);
5812 }
5813 EXPORT_SYMBOL(complete_all);
5814
5815 static inline long __sched
5816 do_wait_for_common(struct completion *x, long timeout, int state)
5817 {
5818 if (!x->done) {
5819 DECLARE_WAITQUEUE(wait, current);
5820
5821 wait.flags |= WQ_FLAG_EXCLUSIVE;
5822 __add_wait_queue_tail(&x->wait, &wait);
5823 do {
5824 if (signal_pending_state(state, current)) {
5825 timeout = -ERESTARTSYS;
5826 break;
5827 }
5828 __set_current_state(state);
5829 spin_unlock_irq(&x->wait.lock);
5830 timeout = schedule_timeout(timeout);
5831 spin_lock_irq(&x->wait.lock);
5832 } while (!x->done && timeout);
5833 __remove_wait_queue(&x->wait, &wait);
5834 if (!x->done)
5835 return timeout;
5836 }
5837 x->done--;
5838 return timeout ?: 1;
5839 }
5840
5841 static long __sched
5842 wait_for_common(struct completion *x, long timeout, int state)
5843 {
5844 might_sleep();
5845
5846 spin_lock_irq(&x->wait.lock);
5847 timeout = do_wait_for_common(x, timeout, state);
5848 spin_unlock_irq(&x->wait.lock);
5849 return timeout;
5850 }
5851
5852 /**
5853 * wait_for_completion: - waits for completion of a task
5854 * @x: holds the state of this particular completion
5855 *
5856 * This waits to be signaled for completion of a specific task. It is NOT
5857 * interruptible and there is no timeout.
5858 *
5859 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5860 * and interrupt capability. Also see complete().
5861 */
5862 void __sched wait_for_completion(struct completion *x)
5863 {
5864 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5865 }
5866 EXPORT_SYMBOL(wait_for_completion);
5867
5868 /**
5869 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5870 * @x: holds the state of this particular completion
5871 * @timeout: timeout value in jiffies
5872 *
5873 * This waits for either a completion of a specific task to be signaled or for a
5874 * specified timeout to expire. The timeout is in jiffies. It is not
5875 * interruptible.
5876 */
5877 unsigned long __sched
5878 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5879 {
5880 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5881 }
5882 EXPORT_SYMBOL(wait_for_completion_timeout);
5883
5884 /**
5885 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5886 * @x: holds the state of this particular completion
5887 *
5888 * This waits for completion of a specific task to be signaled. It is
5889 * interruptible.
5890 */
5891 int __sched wait_for_completion_interruptible(struct completion *x)
5892 {
5893 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5894 if (t == -ERESTARTSYS)
5895 return t;
5896 return 0;
5897 }
5898 EXPORT_SYMBOL(wait_for_completion_interruptible);
5899
5900 /**
5901 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5902 * @x: holds the state of this particular completion
5903 * @timeout: timeout value in jiffies
5904 *
5905 * This waits for either a completion of a specific task to be signaled or for a
5906 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5907 */
5908 unsigned long __sched
5909 wait_for_completion_interruptible_timeout(struct completion *x,
5910 unsigned long timeout)
5911 {
5912 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5913 }
5914 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5915
5916 /**
5917 * wait_for_completion_killable: - waits for completion of a task (killable)
5918 * @x: holds the state of this particular completion
5919 *
5920 * This waits to be signaled for completion of a specific task. It can be
5921 * interrupted by a kill signal.
5922 */
5923 int __sched wait_for_completion_killable(struct completion *x)
5924 {
5925 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5926 if (t == -ERESTARTSYS)
5927 return t;
5928 return 0;
5929 }
5930 EXPORT_SYMBOL(wait_for_completion_killable);
5931
5932 /**
5933 * try_wait_for_completion - try to decrement a completion without blocking
5934 * @x: completion structure
5935 *
5936 * Returns: 0 if a decrement cannot be done without blocking
5937 * 1 if a decrement succeeded.
5938 *
5939 * If a completion is being used as a counting completion,
5940 * attempt to decrement the counter without blocking. This
5941 * enables us to avoid waiting if the resource the completion
5942 * is protecting is not available.
5943 */
5944 bool try_wait_for_completion(struct completion *x)
5945 {
5946 unsigned long flags;
5947 int ret = 1;
5948
5949 spin_lock_irqsave(&x->wait.lock, flags);
5950 if (!x->done)
5951 ret = 0;
5952 else
5953 x->done--;
5954 spin_unlock_irqrestore(&x->wait.lock, flags);
5955 return ret;
5956 }
5957 EXPORT_SYMBOL(try_wait_for_completion);
5958
5959 /**
5960 * completion_done - Test to see if a completion has any waiters
5961 * @x: completion structure
5962 *
5963 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5964 * 1 if there are no waiters.
5965 *
5966 */
5967 bool completion_done(struct completion *x)
5968 {
5969 unsigned long flags;
5970 int ret = 1;
5971
5972 spin_lock_irqsave(&x->wait.lock, flags);
5973 if (!x->done)
5974 ret = 0;
5975 spin_unlock_irqrestore(&x->wait.lock, flags);
5976 return ret;
5977 }
5978 EXPORT_SYMBOL(completion_done);
5979
5980 static long __sched
5981 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5982 {
5983 unsigned long flags;
5984 wait_queue_t wait;
5985
5986 init_waitqueue_entry(&wait, current);
5987
5988 __set_current_state(state);
5989
5990 spin_lock_irqsave(&q->lock, flags);
5991 __add_wait_queue(q, &wait);
5992 spin_unlock(&q->lock);
5993 timeout = schedule_timeout(timeout);
5994 spin_lock_irq(&q->lock);
5995 __remove_wait_queue(q, &wait);
5996 spin_unlock_irqrestore(&q->lock, flags);
5997
5998 return timeout;
5999 }
6000
6001 void __sched interruptible_sleep_on(wait_queue_head_t *q)
6002 {
6003 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6004 }
6005 EXPORT_SYMBOL(interruptible_sleep_on);
6006
6007 long __sched
6008 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
6009 {
6010 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
6011 }
6012 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6013
6014 void __sched sleep_on(wait_queue_head_t *q)
6015 {
6016 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6017 }
6018 EXPORT_SYMBOL(sleep_on);
6019
6020 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
6021 {
6022 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
6023 }
6024 EXPORT_SYMBOL(sleep_on_timeout);
6025
6026 #ifdef CONFIG_RT_MUTEXES
6027
6028 /*
6029 * rt_mutex_setprio - set the current priority of a task
6030 * @p: task
6031 * @prio: prio value (kernel-internal form)
6032 *
6033 * This function changes the 'effective' priority of a task. It does
6034 * not touch ->normal_prio like __setscheduler().
6035 *
6036 * Used by the rt_mutex code to implement priority inheritance logic.
6037 */
6038 void rt_mutex_setprio(struct task_struct *p, int prio)
6039 {
6040 unsigned long flags;
6041 int oldprio, on_rq, running;
6042 struct rq *rq;
6043 const struct sched_class *prev_class = p->sched_class;
6044
6045 BUG_ON(prio < 0 || prio > MAX_PRIO);
6046
6047 rq = task_rq_lock(p, &flags);
6048 update_rq_clock(rq);
6049
6050 oldprio = p->prio;
6051 on_rq = p->se.on_rq;
6052 running = task_current(rq, p);
6053 if (on_rq)
6054 dequeue_task(rq, p, 0);
6055 if (running)
6056 p->sched_class->put_prev_task(rq, p);
6057
6058 if (rt_prio(prio))
6059 p->sched_class = &rt_sched_class;
6060 else
6061 p->sched_class = &fair_sched_class;
6062
6063 p->prio = prio;
6064
6065 if (running)
6066 p->sched_class->set_curr_task(rq);
6067 if (on_rq) {
6068 enqueue_task(rq, p, 0);
6069
6070 check_class_changed(rq, p, prev_class, oldprio, running);
6071 }
6072 task_rq_unlock(rq, &flags);
6073 }
6074
6075 #endif
6076
6077 void set_user_nice(struct task_struct *p, long nice)
6078 {
6079 int old_prio, delta, on_rq;
6080 unsigned long flags;
6081 struct rq *rq;
6082
6083 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6084 return;
6085 /*
6086 * We have to be careful, if called from sys_setpriority(),
6087 * the task might be in the middle of scheduling on another CPU.
6088 */
6089 rq = task_rq_lock(p, &flags);
6090 update_rq_clock(rq);
6091 /*
6092 * The RT priorities are set via sched_setscheduler(), but we still
6093 * allow the 'normal' nice value to be set - but as expected
6094 * it wont have any effect on scheduling until the task is
6095 * SCHED_FIFO/SCHED_RR:
6096 */
6097 if (task_has_rt_policy(p)) {
6098 p->static_prio = NICE_TO_PRIO(nice);
6099 goto out_unlock;
6100 }
6101 on_rq = p->se.on_rq;
6102 if (on_rq)
6103 dequeue_task(rq, p, 0);
6104
6105 p->static_prio = NICE_TO_PRIO(nice);
6106 set_load_weight(p);
6107 old_prio = p->prio;
6108 p->prio = effective_prio(p);
6109 delta = p->prio - old_prio;
6110
6111 if (on_rq) {
6112 enqueue_task(rq, p, 0);
6113 /*
6114 * If the task increased its priority or is running and
6115 * lowered its priority, then reschedule its CPU:
6116 */
6117 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6118 resched_task(rq->curr);
6119 }
6120 out_unlock:
6121 task_rq_unlock(rq, &flags);
6122 }
6123 EXPORT_SYMBOL(set_user_nice);
6124
6125 /*
6126 * can_nice - check if a task can reduce its nice value
6127 * @p: task
6128 * @nice: nice value
6129 */
6130 int can_nice(const struct task_struct *p, const int nice)
6131 {
6132 /* convert nice value [19,-20] to rlimit style value [1,40] */
6133 int nice_rlim = 20 - nice;
6134
6135 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6136 capable(CAP_SYS_NICE));
6137 }
6138
6139 #ifdef __ARCH_WANT_SYS_NICE
6140
6141 /*
6142 * sys_nice - change the priority of the current process.
6143 * @increment: priority increment
6144 *
6145 * sys_setpriority is a more generic, but much slower function that
6146 * does similar things.
6147 */
6148 SYSCALL_DEFINE1(nice, int, increment)
6149 {
6150 long nice, retval;
6151
6152 /*
6153 * Setpriority might change our priority at the same moment.
6154 * We don't have to worry. Conceptually one call occurs first
6155 * and we have a single winner.
6156 */
6157 if (increment < -40)
6158 increment = -40;
6159 if (increment > 40)
6160 increment = 40;
6161
6162 nice = TASK_NICE(current) + increment;
6163 if (nice < -20)
6164 nice = -20;
6165 if (nice > 19)
6166 nice = 19;
6167
6168 if (increment < 0 && !can_nice(current, nice))
6169 return -EPERM;
6170
6171 retval = security_task_setnice(current, nice);
6172 if (retval)
6173 return retval;
6174
6175 set_user_nice(current, nice);
6176 return 0;
6177 }
6178
6179 #endif
6180
6181 /**
6182 * task_prio - return the priority value of a given task.
6183 * @p: the task in question.
6184 *
6185 * This is the priority value as seen by users in /proc.
6186 * RT tasks are offset by -200. Normal tasks are centered
6187 * around 0, value goes from -16 to +15.
6188 */
6189 int task_prio(const struct task_struct *p)
6190 {
6191 return p->prio - MAX_RT_PRIO;
6192 }
6193
6194 /**
6195 * task_nice - return the nice value of a given task.
6196 * @p: the task in question.
6197 */
6198 int task_nice(const struct task_struct *p)
6199 {
6200 return TASK_NICE(p);
6201 }
6202 EXPORT_SYMBOL(task_nice);
6203
6204 /**
6205 * idle_cpu - is a given cpu idle currently?
6206 * @cpu: the processor in question.
6207 */
6208 int idle_cpu(int cpu)
6209 {
6210 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6211 }
6212
6213 /**
6214 * idle_task - return the idle task for a given cpu.
6215 * @cpu: the processor in question.
6216 */
6217 struct task_struct *idle_task(int cpu)
6218 {
6219 return cpu_rq(cpu)->idle;
6220 }
6221
6222 /**
6223 * find_process_by_pid - find a process with a matching PID value.
6224 * @pid: the pid in question.
6225 */
6226 static struct task_struct *find_process_by_pid(pid_t pid)
6227 {
6228 return pid ? find_task_by_vpid(pid) : current;
6229 }
6230
6231 /* Actually do priority change: must hold rq lock. */
6232 static void
6233 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6234 {
6235 BUG_ON(p->se.on_rq);
6236
6237 p->policy = policy;
6238 p->rt_priority = prio;
6239 p->normal_prio = normal_prio(p);
6240 /* we are holding p->pi_lock already */
6241 p->prio = rt_mutex_getprio(p);
6242 if (rt_prio(p->prio))
6243 p->sched_class = &rt_sched_class;
6244 else
6245 p->sched_class = &fair_sched_class;
6246 set_load_weight(p);
6247 }
6248
6249 /*
6250 * check the target process has a UID that matches the current process's
6251 */
6252 static bool check_same_owner(struct task_struct *p)
6253 {
6254 const struct cred *cred = current_cred(), *pcred;
6255 bool match;
6256
6257 rcu_read_lock();
6258 pcred = __task_cred(p);
6259 match = (cred->euid == pcred->euid ||
6260 cred->euid == pcred->uid);
6261 rcu_read_unlock();
6262 return match;
6263 }
6264
6265 static int __sched_setscheduler(struct task_struct *p, int policy,
6266 struct sched_param *param, bool user)
6267 {
6268 int retval, oldprio, oldpolicy = -1, on_rq, running;
6269 unsigned long flags;
6270 const struct sched_class *prev_class = p->sched_class;
6271 struct rq *rq;
6272 int reset_on_fork;
6273
6274 /* may grab non-irq protected spin_locks */
6275 BUG_ON(in_interrupt());
6276 recheck:
6277 /* double check policy once rq lock held */
6278 if (policy < 0) {
6279 reset_on_fork = p->sched_reset_on_fork;
6280 policy = oldpolicy = p->policy;
6281 } else {
6282 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6283 policy &= ~SCHED_RESET_ON_FORK;
6284
6285 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6286 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6287 policy != SCHED_IDLE)
6288 return -EINVAL;
6289 }
6290
6291 /*
6292 * Valid priorities for SCHED_FIFO and SCHED_RR are
6293 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6294 * SCHED_BATCH and SCHED_IDLE is 0.
6295 */
6296 if (param->sched_priority < 0 ||
6297 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6298 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6299 return -EINVAL;
6300 if (rt_policy(policy) != (param->sched_priority != 0))
6301 return -EINVAL;
6302
6303 /*
6304 * Allow unprivileged RT tasks to decrease priority:
6305 */
6306 if (user && !capable(CAP_SYS_NICE)) {
6307 if (rt_policy(policy)) {
6308 unsigned long rlim_rtprio;
6309
6310 if (!lock_task_sighand(p, &flags))
6311 return -ESRCH;
6312 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6313 unlock_task_sighand(p, &flags);
6314
6315 /* can't set/change the rt policy */
6316 if (policy != p->policy && !rlim_rtprio)
6317 return -EPERM;
6318
6319 /* can't increase priority */
6320 if (param->sched_priority > p->rt_priority &&
6321 param->sched_priority > rlim_rtprio)
6322 return -EPERM;
6323 }
6324 /*
6325 * Like positive nice levels, dont allow tasks to
6326 * move out of SCHED_IDLE either:
6327 */
6328 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6329 return -EPERM;
6330
6331 /* can't change other user's priorities */
6332 if (!check_same_owner(p))
6333 return -EPERM;
6334
6335 /* Normal users shall not reset the sched_reset_on_fork flag */
6336 if (p->sched_reset_on_fork && !reset_on_fork)
6337 return -EPERM;
6338 }
6339
6340 if (user) {
6341 #ifdef CONFIG_RT_GROUP_SCHED
6342 /*
6343 * Do not allow realtime tasks into groups that have no runtime
6344 * assigned.
6345 */
6346 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6347 task_group(p)->rt_bandwidth.rt_runtime == 0)
6348 return -EPERM;
6349 #endif
6350
6351 retval = security_task_setscheduler(p, policy, param);
6352 if (retval)
6353 return retval;
6354 }
6355
6356 /*
6357 * make sure no PI-waiters arrive (or leave) while we are
6358 * changing the priority of the task:
6359 */
6360 raw_spin_lock_irqsave(&p->pi_lock, flags);
6361 /*
6362 * To be able to change p->policy safely, the apropriate
6363 * runqueue lock must be held.
6364 */
6365 rq = __task_rq_lock(p);
6366 /* recheck policy now with rq lock held */
6367 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6368 policy = oldpolicy = -1;
6369 __task_rq_unlock(rq);
6370 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6371 goto recheck;
6372 }
6373 update_rq_clock(rq);
6374 on_rq = p->se.on_rq;
6375 running = task_current(rq, p);
6376 if (on_rq)
6377 deactivate_task(rq, p, 0);
6378 if (running)
6379 p->sched_class->put_prev_task(rq, p);
6380
6381 p->sched_reset_on_fork = reset_on_fork;
6382
6383 oldprio = p->prio;
6384 __setscheduler(rq, p, policy, param->sched_priority);
6385
6386 if (running)
6387 p->sched_class->set_curr_task(rq);
6388 if (on_rq) {
6389 activate_task(rq, p, 0);
6390
6391 check_class_changed(rq, p, prev_class, oldprio, running);
6392 }
6393 __task_rq_unlock(rq);
6394 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6395
6396 rt_mutex_adjust_pi(p);
6397
6398 return 0;
6399 }
6400
6401 /**
6402 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6403 * @p: the task in question.
6404 * @policy: new policy.
6405 * @param: structure containing the new RT priority.
6406 *
6407 * NOTE that the task may be already dead.
6408 */
6409 int sched_setscheduler(struct task_struct *p, int policy,
6410 struct sched_param *param)
6411 {
6412 return __sched_setscheduler(p, policy, param, true);
6413 }
6414 EXPORT_SYMBOL_GPL(sched_setscheduler);
6415
6416 /**
6417 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6418 * @p: the task in question.
6419 * @policy: new policy.
6420 * @param: structure containing the new RT priority.
6421 *
6422 * Just like sched_setscheduler, only don't bother checking if the
6423 * current context has permission. For example, this is needed in
6424 * stop_machine(): we create temporary high priority worker threads,
6425 * but our caller might not have that capability.
6426 */
6427 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6428 struct sched_param *param)
6429 {
6430 return __sched_setscheduler(p, policy, param, false);
6431 }
6432
6433 static int
6434 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6435 {
6436 struct sched_param lparam;
6437 struct task_struct *p;
6438 int retval;
6439
6440 if (!param || pid < 0)
6441 return -EINVAL;
6442 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6443 return -EFAULT;
6444
6445 rcu_read_lock();
6446 retval = -ESRCH;
6447 p = find_process_by_pid(pid);
6448 if (p != NULL)
6449 retval = sched_setscheduler(p, policy, &lparam);
6450 rcu_read_unlock();
6451
6452 return retval;
6453 }
6454
6455 /**
6456 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6457 * @pid: the pid in question.
6458 * @policy: new policy.
6459 * @param: structure containing the new RT priority.
6460 */
6461 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6462 struct sched_param __user *, param)
6463 {
6464 /* negative values for policy are not valid */
6465 if (policy < 0)
6466 return -EINVAL;
6467
6468 return do_sched_setscheduler(pid, policy, param);
6469 }
6470
6471 /**
6472 * sys_sched_setparam - set/change the RT priority of a thread
6473 * @pid: the pid in question.
6474 * @param: structure containing the new RT priority.
6475 */
6476 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6477 {
6478 return do_sched_setscheduler(pid, -1, param);
6479 }
6480
6481 /**
6482 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6483 * @pid: the pid in question.
6484 */
6485 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6486 {
6487 struct task_struct *p;
6488 int retval;
6489
6490 if (pid < 0)
6491 return -EINVAL;
6492
6493 retval = -ESRCH;
6494 rcu_read_lock();
6495 p = find_process_by_pid(pid);
6496 if (p) {
6497 retval = security_task_getscheduler(p);
6498 if (!retval)
6499 retval = p->policy
6500 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6501 }
6502 rcu_read_unlock();
6503 return retval;
6504 }
6505
6506 /**
6507 * sys_sched_getparam - get the RT priority of a thread
6508 * @pid: the pid in question.
6509 * @param: structure containing the RT priority.
6510 */
6511 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6512 {
6513 struct sched_param lp;
6514 struct task_struct *p;
6515 int retval;
6516
6517 if (!param || pid < 0)
6518 return -EINVAL;
6519
6520 rcu_read_lock();
6521 p = find_process_by_pid(pid);
6522 retval = -ESRCH;
6523 if (!p)
6524 goto out_unlock;
6525
6526 retval = security_task_getscheduler(p);
6527 if (retval)
6528 goto out_unlock;
6529
6530 lp.sched_priority = p->rt_priority;
6531 rcu_read_unlock();
6532
6533 /*
6534 * This one might sleep, we cannot do it with a spinlock held ...
6535 */
6536 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6537
6538 return retval;
6539
6540 out_unlock:
6541 rcu_read_unlock();
6542 return retval;
6543 }
6544
6545 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6546 {
6547 cpumask_var_t cpus_allowed, new_mask;
6548 struct task_struct *p;
6549 int retval;
6550
6551 get_online_cpus();
6552 rcu_read_lock();
6553
6554 p = find_process_by_pid(pid);
6555 if (!p) {
6556 rcu_read_unlock();
6557 put_online_cpus();
6558 return -ESRCH;
6559 }
6560
6561 /* Prevent p going away */
6562 get_task_struct(p);
6563 rcu_read_unlock();
6564
6565 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6566 retval = -ENOMEM;
6567 goto out_put_task;
6568 }
6569 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6570 retval = -ENOMEM;
6571 goto out_free_cpus_allowed;
6572 }
6573 retval = -EPERM;
6574 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6575 goto out_unlock;
6576
6577 retval = security_task_setscheduler(p, 0, NULL);
6578 if (retval)
6579 goto out_unlock;
6580
6581 cpuset_cpus_allowed(p, cpus_allowed);
6582 cpumask_and(new_mask, in_mask, cpus_allowed);
6583 again:
6584 retval = set_cpus_allowed_ptr(p, new_mask);
6585
6586 if (!retval) {
6587 cpuset_cpus_allowed(p, cpus_allowed);
6588 if (!cpumask_subset(new_mask, cpus_allowed)) {
6589 /*
6590 * We must have raced with a concurrent cpuset
6591 * update. Just reset the cpus_allowed to the
6592 * cpuset's cpus_allowed
6593 */
6594 cpumask_copy(new_mask, cpus_allowed);
6595 goto again;
6596 }
6597 }
6598 out_unlock:
6599 free_cpumask_var(new_mask);
6600 out_free_cpus_allowed:
6601 free_cpumask_var(cpus_allowed);
6602 out_put_task:
6603 put_task_struct(p);
6604 put_online_cpus();
6605 return retval;
6606 }
6607
6608 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6609 struct cpumask *new_mask)
6610 {
6611 if (len < cpumask_size())
6612 cpumask_clear(new_mask);
6613 else if (len > cpumask_size())
6614 len = cpumask_size();
6615
6616 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6617 }
6618
6619 /**
6620 * sys_sched_setaffinity - set the cpu affinity of a process
6621 * @pid: pid of the process
6622 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6623 * @user_mask_ptr: user-space pointer to the new cpu mask
6624 */
6625 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6626 unsigned long __user *, user_mask_ptr)
6627 {
6628 cpumask_var_t new_mask;
6629 int retval;
6630
6631 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6632 return -ENOMEM;
6633
6634 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6635 if (retval == 0)
6636 retval = sched_setaffinity(pid, new_mask);
6637 free_cpumask_var(new_mask);
6638 return retval;
6639 }
6640
6641 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6642 {
6643 struct task_struct *p;
6644 unsigned long flags;
6645 struct rq *rq;
6646 int retval;
6647
6648 get_online_cpus();
6649 rcu_read_lock();
6650
6651 retval = -ESRCH;
6652 p = find_process_by_pid(pid);
6653 if (!p)
6654 goto out_unlock;
6655
6656 retval = security_task_getscheduler(p);
6657 if (retval)
6658 goto out_unlock;
6659
6660 rq = task_rq_lock(p, &flags);
6661 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6662 task_rq_unlock(rq, &flags);
6663
6664 out_unlock:
6665 rcu_read_unlock();
6666 put_online_cpus();
6667
6668 return retval;
6669 }
6670
6671 /**
6672 * sys_sched_getaffinity - get the cpu affinity of a process
6673 * @pid: pid of the process
6674 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6675 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6676 */
6677 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6678 unsigned long __user *, user_mask_ptr)
6679 {
6680 int ret;
6681 cpumask_var_t mask;
6682
6683 if (len < cpumask_size())
6684 return -EINVAL;
6685
6686 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6687 return -ENOMEM;
6688
6689 ret = sched_getaffinity(pid, mask);
6690 if (ret == 0) {
6691 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6692 ret = -EFAULT;
6693 else
6694 ret = cpumask_size();
6695 }
6696 free_cpumask_var(mask);
6697
6698 return ret;
6699 }
6700
6701 /**
6702 * sys_sched_yield - yield the current processor to other threads.
6703 *
6704 * This function yields the current CPU to other tasks. If there are no
6705 * other threads running on this CPU then this function will return.
6706 */
6707 SYSCALL_DEFINE0(sched_yield)
6708 {
6709 struct rq *rq = this_rq_lock();
6710
6711 schedstat_inc(rq, yld_count);
6712 current->sched_class->yield_task(rq);
6713
6714 /*
6715 * Since we are going to call schedule() anyway, there's
6716 * no need to preempt or enable interrupts:
6717 */
6718 __release(rq->lock);
6719 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6720 do_raw_spin_unlock(&rq->lock);
6721 preempt_enable_no_resched();
6722
6723 schedule();
6724
6725 return 0;
6726 }
6727
6728 static inline int should_resched(void)
6729 {
6730 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6731 }
6732
6733 static void __cond_resched(void)
6734 {
6735 add_preempt_count(PREEMPT_ACTIVE);
6736 schedule();
6737 sub_preempt_count(PREEMPT_ACTIVE);
6738 }
6739
6740 int __sched _cond_resched(void)
6741 {
6742 if (should_resched()) {
6743 __cond_resched();
6744 return 1;
6745 }
6746 return 0;
6747 }
6748 EXPORT_SYMBOL(_cond_resched);
6749
6750 /*
6751 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6752 * call schedule, and on return reacquire the lock.
6753 *
6754 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6755 * operations here to prevent schedule() from being called twice (once via
6756 * spin_unlock(), once by hand).
6757 */
6758 int __cond_resched_lock(spinlock_t *lock)
6759 {
6760 int resched = should_resched();
6761 int ret = 0;
6762
6763 lockdep_assert_held(lock);
6764
6765 if (spin_needbreak(lock) || resched) {
6766 spin_unlock(lock);
6767 if (resched)
6768 __cond_resched();
6769 else
6770 cpu_relax();
6771 ret = 1;
6772 spin_lock(lock);
6773 }
6774 return ret;
6775 }
6776 EXPORT_SYMBOL(__cond_resched_lock);
6777
6778 int __sched __cond_resched_softirq(void)
6779 {
6780 BUG_ON(!in_softirq());
6781
6782 if (should_resched()) {
6783 local_bh_enable();
6784 __cond_resched();
6785 local_bh_disable();
6786 return 1;
6787 }
6788 return 0;
6789 }
6790 EXPORT_SYMBOL(__cond_resched_softirq);
6791
6792 /**
6793 * yield - yield the current processor to other threads.
6794 *
6795 * This is a shortcut for kernel-space yielding - it marks the
6796 * thread runnable and calls sys_sched_yield().
6797 */
6798 void __sched yield(void)
6799 {
6800 set_current_state(TASK_RUNNING);
6801 sys_sched_yield();
6802 }
6803 EXPORT_SYMBOL(yield);
6804
6805 /*
6806 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6807 * that process accounting knows that this is a task in IO wait state.
6808 */
6809 void __sched io_schedule(void)
6810 {
6811 struct rq *rq = raw_rq();
6812
6813 delayacct_blkio_start();
6814 atomic_inc(&rq->nr_iowait);
6815 current->in_iowait = 1;
6816 schedule();
6817 current->in_iowait = 0;
6818 atomic_dec(&rq->nr_iowait);
6819 delayacct_blkio_end();
6820 }
6821 EXPORT_SYMBOL(io_schedule);
6822
6823 long __sched io_schedule_timeout(long timeout)
6824 {
6825 struct rq *rq = raw_rq();
6826 long ret;
6827
6828 delayacct_blkio_start();
6829 atomic_inc(&rq->nr_iowait);
6830 current->in_iowait = 1;
6831 ret = schedule_timeout(timeout);
6832 current->in_iowait = 0;
6833 atomic_dec(&rq->nr_iowait);
6834 delayacct_blkio_end();
6835 return ret;
6836 }
6837
6838 /**
6839 * sys_sched_get_priority_max - return maximum RT priority.
6840 * @policy: scheduling class.
6841 *
6842 * this syscall returns the maximum rt_priority that can be used
6843 * by a given scheduling class.
6844 */
6845 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6846 {
6847 int ret = -EINVAL;
6848
6849 switch (policy) {
6850 case SCHED_FIFO:
6851 case SCHED_RR:
6852 ret = MAX_USER_RT_PRIO-1;
6853 break;
6854 case SCHED_NORMAL:
6855 case SCHED_BATCH:
6856 case SCHED_IDLE:
6857 ret = 0;
6858 break;
6859 }
6860 return ret;
6861 }
6862
6863 /**
6864 * sys_sched_get_priority_min - return minimum RT priority.
6865 * @policy: scheduling class.
6866 *
6867 * this syscall returns the minimum rt_priority that can be used
6868 * by a given scheduling class.
6869 */
6870 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6871 {
6872 int ret = -EINVAL;
6873
6874 switch (policy) {
6875 case SCHED_FIFO:
6876 case SCHED_RR:
6877 ret = 1;
6878 break;
6879 case SCHED_NORMAL:
6880 case SCHED_BATCH:
6881 case SCHED_IDLE:
6882 ret = 0;
6883 }
6884 return ret;
6885 }
6886
6887 /**
6888 * sys_sched_rr_get_interval - return the default timeslice of a process.
6889 * @pid: pid of the process.
6890 * @interval: userspace pointer to the timeslice value.
6891 *
6892 * this syscall writes the default timeslice value of a given process
6893 * into the user-space timespec buffer. A value of '0' means infinity.
6894 */
6895 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6896 struct timespec __user *, interval)
6897 {
6898 struct task_struct *p;
6899 unsigned int time_slice;
6900 unsigned long flags;
6901 struct rq *rq;
6902 int retval;
6903 struct timespec t;
6904
6905 if (pid < 0)
6906 return -EINVAL;
6907
6908 retval = -ESRCH;
6909 rcu_read_lock();
6910 p = find_process_by_pid(pid);
6911 if (!p)
6912 goto out_unlock;
6913
6914 retval = security_task_getscheduler(p);
6915 if (retval)
6916 goto out_unlock;
6917
6918 rq = task_rq_lock(p, &flags);
6919 time_slice = p->sched_class->get_rr_interval(rq, p);
6920 task_rq_unlock(rq, &flags);
6921
6922 rcu_read_unlock();
6923 jiffies_to_timespec(time_slice, &t);
6924 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6925 return retval;
6926
6927 out_unlock:
6928 rcu_read_unlock();
6929 return retval;
6930 }
6931
6932 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6933
6934 void sched_show_task(struct task_struct *p)
6935 {
6936 unsigned long free = 0;
6937 unsigned state;
6938
6939 state = p->state ? __ffs(p->state) + 1 : 0;
6940 printk(KERN_INFO "%-13.13s %c", p->comm,
6941 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6942 #if BITS_PER_LONG == 32
6943 if (state == TASK_RUNNING)
6944 printk(KERN_CONT " running ");
6945 else
6946 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6947 #else
6948 if (state == TASK_RUNNING)
6949 printk(KERN_CONT " running task ");
6950 else
6951 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6952 #endif
6953 #ifdef CONFIG_DEBUG_STACK_USAGE
6954 free = stack_not_used(p);
6955 #endif
6956 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6957 task_pid_nr(p), task_pid_nr(p->real_parent),
6958 (unsigned long)task_thread_info(p)->flags);
6959
6960 show_stack(p, NULL);
6961 }
6962
6963 void show_state_filter(unsigned long state_filter)
6964 {
6965 struct task_struct *g, *p;
6966
6967 #if BITS_PER_LONG == 32
6968 printk(KERN_INFO
6969 " task PC stack pid father\n");
6970 #else
6971 printk(KERN_INFO
6972 " task PC stack pid father\n");
6973 #endif
6974 read_lock(&tasklist_lock);
6975 do_each_thread(g, p) {
6976 /*
6977 * reset the NMI-timeout, listing all files on a slow
6978 * console might take alot of time:
6979 */
6980 touch_nmi_watchdog();
6981 if (!state_filter || (p->state & state_filter))
6982 sched_show_task(p);
6983 } while_each_thread(g, p);
6984
6985 touch_all_softlockup_watchdogs();
6986
6987 #ifdef CONFIG_SCHED_DEBUG
6988 sysrq_sched_debug_show();
6989 #endif
6990 read_unlock(&tasklist_lock);
6991 /*
6992 * Only show locks if all tasks are dumped:
6993 */
6994 if (!state_filter)
6995 debug_show_all_locks();
6996 }
6997
6998 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6999 {
7000 idle->sched_class = &idle_sched_class;
7001 }
7002
7003 /**
7004 * init_idle - set up an idle thread for a given CPU
7005 * @idle: task in question
7006 * @cpu: cpu the idle task belongs to
7007 *
7008 * NOTE: this function does not set the idle thread's NEED_RESCHED
7009 * flag, to make booting more robust.
7010 */
7011 void __cpuinit init_idle(struct task_struct *idle, int cpu)
7012 {
7013 struct rq *rq = cpu_rq(cpu);
7014 unsigned long flags;
7015
7016 raw_spin_lock_irqsave(&rq->lock, flags);
7017
7018 __sched_fork(idle);
7019 idle->state = TASK_RUNNING;
7020 idle->se.exec_start = sched_clock();
7021
7022 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
7023 __set_task_cpu(idle, cpu);
7024
7025 rq->curr = rq->idle = idle;
7026 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7027 idle->oncpu = 1;
7028 #endif
7029 raw_spin_unlock_irqrestore(&rq->lock, flags);
7030
7031 /* Set the preempt count _outside_ the spinlocks! */
7032 #if defined(CONFIG_PREEMPT)
7033 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7034 #else
7035 task_thread_info(idle)->preempt_count = 0;
7036 #endif
7037 /*
7038 * The idle tasks have their own, simple scheduling class:
7039 */
7040 idle->sched_class = &idle_sched_class;
7041 ftrace_graph_init_task(idle);
7042 }
7043
7044 /*
7045 * In a system that switches off the HZ timer nohz_cpu_mask
7046 * indicates which cpus entered this state. This is used
7047 * in the rcu update to wait only for active cpus. For system
7048 * which do not switch off the HZ timer nohz_cpu_mask should
7049 * always be CPU_BITS_NONE.
7050 */
7051 cpumask_var_t nohz_cpu_mask;
7052
7053 /*
7054 * Increase the granularity value when there are more CPUs,
7055 * because with more CPUs the 'effective latency' as visible
7056 * to users decreases. But the relationship is not linear,
7057 * so pick a second-best guess by going with the log2 of the
7058 * number of CPUs.
7059 *
7060 * This idea comes from the SD scheduler of Con Kolivas:
7061 */
7062 static int get_update_sysctl_factor(void)
7063 {
7064 unsigned int cpus = min_t(int, num_online_cpus(), 8);
7065 unsigned int factor;
7066
7067 switch (sysctl_sched_tunable_scaling) {
7068 case SCHED_TUNABLESCALING_NONE:
7069 factor = 1;
7070 break;
7071 case SCHED_TUNABLESCALING_LINEAR:
7072 factor = cpus;
7073 break;
7074 case SCHED_TUNABLESCALING_LOG:
7075 default:
7076 factor = 1 + ilog2(cpus);
7077 break;
7078 }
7079
7080 return factor;
7081 }
7082
7083 static void update_sysctl(void)
7084 {
7085 unsigned int factor = get_update_sysctl_factor();
7086
7087 #define SET_SYSCTL(name) \
7088 (sysctl_##name = (factor) * normalized_sysctl_##name)
7089 SET_SYSCTL(sched_min_granularity);
7090 SET_SYSCTL(sched_latency);
7091 SET_SYSCTL(sched_wakeup_granularity);
7092 SET_SYSCTL(sched_shares_ratelimit);
7093 #undef SET_SYSCTL
7094 }
7095
7096 static inline void sched_init_granularity(void)
7097 {
7098 update_sysctl();
7099 }
7100
7101 #ifdef CONFIG_SMP
7102 /*
7103 * This is how migration works:
7104 *
7105 * 1) we queue a struct migration_req structure in the source CPU's
7106 * runqueue and wake up that CPU's migration thread.
7107 * 2) we down() the locked semaphore => thread blocks.
7108 * 3) migration thread wakes up (implicitly it forces the migrated
7109 * thread off the CPU)
7110 * 4) it gets the migration request and checks whether the migrated
7111 * task is still in the wrong runqueue.
7112 * 5) if it's in the wrong runqueue then the migration thread removes
7113 * it and puts it into the right queue.
7114 * 6) migration thread up()s the semaphore.
7115 * 7) we wake up and the migration is done.
7116 */
7117
7118 /*
7119 * Change a given task's CPU affinity. Migrate the thread to a
7120 * proper CPU and schedule it away if the CPU it's executing on
7121 * is removed from the allowed bitmask.
7122 *
7123 * NOTE: the caller must have a valid reference to the task, the
7124 * task must not exit() & deallocate itself prematurely. The
7125 * call is not atomic; no spinlocks may be held.
7126 */
7127 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7128 {
7129 struct migration_req req;
7130 unsigned long flags;
7131 struct rq *rq;
7132 int ret = 0;
7133
7134 /*
7135 * Since we rely on wake-ups to migrate sleeping tasks, don't change
7136 * the ->cpus_allowed mask from under waking tasks, which would be
7137 * possible when we change rq->lock in ttwu(), so synchronize against
7138 * TASK_WAKING to avoid that.
7139 */
7140 again:
7141 while (p->state == TASK_WAKING)
7142 cpu_relax();
7143
7144 rq = task_rq_lock(p, &flags);
7145
7146 if (p->state == TASK_WAKING) {
7147 task_rq_unlock(rq, &flags);
7148 goto again;
7149 }
7150
7151 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7152 ret = -EINVAL;
7153 goto out;
7154 }
7155
7156 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7157 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7158 ret = -EINVAL;
7159 goto out;
7160 }
7161
7162 if (p->sched_class->set_cpus_allowed)
7163 p->sched_class->set_cpus_allowed(p, new_mask);
7164 else {
7165 cpumask_copy(&p->cpus_allowed, new_mask);
7166 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7167 }
7168
7169 /* Can the task run on the task's current CPU? If so, we're done */
7170 if (cpumask_test_cpu(task_cpu(p), new_mask))
7171 goto out;
7172
7173 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7174 /* Need help from migration thread: drop lock and wait. */
7175 struct task_struct *mt = rq->migration_thread;
7176
7177 get_task_struct(mt);
7178 task_rq_unlock(rq, &flags);
7179 wake_up_process(rq->migration_thread);
7180 put_task_struct(mt);
7181 wait_for_completion(&req.done);
7182 tlb_migrate_finish(p->mm);
7183 return 0;
7184 }
7185 out:
7186 task_rq_unlock(rq, &flags);
7187
7188 return ret;
7189 }
7190 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7191
7192 /*
7193 * Move (not current) task off this cpu, onto dest cpu. We're doing
7194 * this because either it can't run here any more (set_cpus_allowed()
7195 * away from this CPU, or CPU going down), or because we're
7196 * attempting to rebalance this task on exec (sched_exec).
7197 *
7198 * So we race with normal scheduler movements, but that's OK, as long
7199 * as the task is no longer on this CPU.
7200 *
7201 * Returns non-zero if task was successfully migrated.
7202 */
7203 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7204 {
7205 struct rq *rq_dest, *rq_src;
7206 int ret = 0;
7207
7208 if (unlikely(!cpu_active(dest_cpu)))
7209 return ret;
7210
7211 rq_src = cpu_rq(src_cpu);
7212 rq_dest = cpu_rq(dest_cpu);
7213
7214 double_rq_lock(rq_src, rq_dest);
7215 /* Already moved. */
7216 if (task_cpu(p) != src_cpu)
7217 goto done;
7218 /* Affinity changed (again). */
7219 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7220 goto fail;
7221
7222 /*
7223 * If we're not on a rq, the next wake-up will ensure we're
7224 * placed properly.
7225 */
7226 if (p->se.on_rq) {
7227 deactivate_task(rq_src, p, 0);
7228 set_task_cpu(p, dest_cpu);
7229 activate_task(rq_dest, p, 0);
7230 check_preempt_curr(rq_dest, p, 0);
7231 }
7232 done:
7233 ret = 1;
7234 fail:
7235 double_rq_unlock(rq_src, rq_dest);
7236 return ret;
7237 }
7238
7239 #define RCU_MIGRATION_IDLE 0
7240 #define RCU_MIGRATION_NEED_QS 1
7241 #define RCU_MIGRATION_GOT_QS 2
7242 #define RCU_MIGRATION_MUST_SYNC 3
7243
7244 /*
7245 * migration_thread - this is a highprio system thread that performs
7246 * thread migration by bumping thread off CPU then 'pushing' onto
7247 * another runqueue.
7248 */
7249 static int migration_thread(void *data)
7250 {
7251 int badcpu;
7252 int cpu = (long)data;
7253 struct rq *rq;
7254
7255 rq = cpu_rq(cpu);
7256 BUG_ON(rq->migration_thread != current);
7257
7258 set_current_state(TASK_INTERRUPTIBLE);
7259 while (!kthread_should_stop()) {
7260 struct migration_req *req;
7261 struct list_head *head;
7262
7263 raw_spin_lock_irq(&rq->lock);
7264
7265 if (cpu_is_offline(cpu)) {
7266 raw_spin_unlock_irq(&rq->lock);
7267 break;
7268 }
7269
7270 if (rq->active_balance) {
7271 active_load_balance(rq, cpu);
7272 rq->active_balance = 0;
7273 }
7274
7275 head = &rq->migration_queue;
7276
7277 if (list_empty(head)) {
7278 raw_spin_unlock_irq(&rq->lock);
7279 schedule();
7280 set_current_state(TASK_INTERRUPTIBLE);
7281 continue;
7282 }
7283 req = list_entry(head->next, struct migration_req, list);
7284 list_del_init(head->next);
7285
7286 if (req->task != NULL) {
7287 raw_spin_unlock(&rq->lock);
7288 __migrate_task(req->task, cpu, req->dest_cpu);
7289 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7290 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7291 raw_spin_unlock(&rq->lock);
7292 } else {
7293 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7294 raw_spin_unlock(&rq->lock);
7295 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7296 }
7297 local_irq_enable();
7298
7299 complete(&req->done);
7300 }
7301 __set_current_state(TASK_RUNNING);
7302
7303 return 0;
7304 }
7305
7306 #ifdef CONFIG_HOTPLUG_CPU
7307
7308 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7309 {
7310 int ret;
7311
7312 local_irq_disable();
7313 ret = __migrate_task(p, src_cpu, dest_cpu);
7314 local_irq_enable();
7315 return ret;
7316 }
7317
7318 /*
7319 * Figure out where task on dead CPU should go, use force if necessary.
7320 */
7321 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7322 {
7323 int dest_cpu;
7324
7325 again:
7326 dest_cpu = select_fallback_rq(dead_cpu, p);
7327
7328 /* It can have affinity changed while we were choosing. */
7329 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7330 goto again;
7331 }
7332
7333 /*
7334 * While a dead CPU has no uninterruptible tasks queued at this point,
7335 * it might still have a nonzero ->nr_uninterruptible counter, because
7336 * for performance reasons the counter is not stricly tracking tasks to
7337 * their home CPUs. So we just add the counter to another CPU's counter,
7338 * to keep the global sum constant after CPU-down:
7339 */
7340 static void migrate_nr_uninterruptible(struct rq *rq_src)
7341 {
7342 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7343 unsigned long flags;
7344
7345 local_irq_save(flags);
7346 double_rq_lock(rq_src, rq_dest);
7347 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7348 rq_src->nr_uninterruptible = 0;
7349 double_rq_unlock(rq_src, rq_dest);
7350 local_irq_restore(flags);
7351 }
7352
7353 /* Run through task list and migrate tasks from the dead cpu. */
7354 static void migrate_live_tasks(int src_cpu)
7355 {
7356 struct task_struct *p, *t;
7357
7358 read_lock(&tasklist_lock);
7359
7360 do_each_thread(t, p) {
7361 if (p == current)
7362 continue;
7363
7364 if (task_cpu(p) == src_cpu)
7365 move_task_off_dead_cpu(src_cpu, p);
7366 } while_each_thread(t, p);
7367
7368 read_unlock(&tasklist_lock);
7369 }
7370
7371 /*
7372 * Schedules idle task to be the next runnable task on current CPU.
7373 * It does so by boosting its priority to highest possible.
7374 * Used by CPU offline code.
7375 */
7376 void sched_idle_next(void)
7377 {
7378 int this_cpu = smp_processor_id();
7379 struct rq *rq = cpu_rq(this_cpu);
7380 struct task_struct *p = rq->idle;
7381 unsigned long flags;
7382
7383 /* cpu has to be offline */
7384 BUG_ON(cpu_online(this_cpu));
7385
7386 /*
7387 * Strictly not necessary since rest of the CPUs are stopped by now
7388 * and interrupts disabled on the current cpu.
7389 */
7390 raw_spin_lock_irqsave(&rq->lock, flags);
7391
7392 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7393
7394 update_rq_clock(rq);
7395 activate_task(rq, p, 0);
7396
7397 raw_spin_unlock_irqrestore(&rq->lock, flags);
7398 }
7399
7400 /*
7401 * Ensures that the idle task is using init_mm right before its cpu goes
7402 * offline.
7403 */
7404 void idle_task_exit(void)
7405 {
7406 struct mm_struct *mm = current->active_mm;
7407
7408 BUG_ON(cpu_online(smp_processor_id()));
7409
7410 if (mm != &init_mm)
7411 switch_mm(mm, &init_mm, current);
7412 mmdrop(mm);
7413 }
7414
7415 /* called under rq->lock with disabled interrupts */
7416 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7417 {
7418 struct rq *rq = cpu_rq(dead_cpu);
7419
7420 /* Must be exiting, otherwise would be on tasklist. */
7421 BUG_ON(!p->exit_state);
7422
7423 /* Cannot have done final schedule yet: would have vanished. */
7424 BUG_ON(p->state == TASK_DEAD);
7425
7426 get_task_struct(p);
7427
7428 /*
7429 * Drop lock around migration; if someone else moves it,
7430 * that's OK. No task can be added to this CPU, so iteration is
7431 * fine.
7432 */
7433 raw_spin_unlock_irq(&rq->lock);
7434 move_task_off_dead_cpu(dead_cpu, p);
7435 raw_spin_lock_irq(&rq->lock);
7436
7437 put_task_struct(p);
7438 }
7439
7440 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7441 static void migrate_dead_tasks(unsigned int dead_cpu)
7442 {
7443 struct rq *rq = cpu_rq(dead_cpu);
7444 struct task_struct *next;
7445
7446 for ( ; ; ) {
7447 if (!rq->nr_running)
7448 break;
7449 update_rq_clock(rq);
7450 next = pick_next_task(rq);
7451 if (!next)
7452 break;
7453 next->sched_class->put_prev_task(rq, next);
7454 migrate_dead(dead_cpu, next);
7455
7456 }
7457 }
7458
7459 /*
7460 * remove the tasks which were accounted by rq from calc_load_tasks.
7461 */
7462 static void calc_global_load_remove(struct rq *rq)
7463 {
7464 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7465 rq->calc_load_active = 0;
7466 }
7467 #endif /* CONFIG_HOTPLUG_CPU */
7468
7469 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7470
7471 static struct ctl_table sd_ctl_dir[] = {
7472 {
7473 .procname = "sched_domain",
7474 .mode = 0555,
7475 },
7476 {}
7477 };
7478
7479 static struct ctl_table sd_ctl_root[] = {
7480 {
7481 .procname = "kernel",
7482 .mode = 0555,
7483 .child = sd_ctl_dir,
7484 },
7485 {}
7486 };
7487
7488 static struct ctl_table *sd_alloc_ctl_entry(int n)
7489 {
7490 struct ctl_table *entry =
7491 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7492
7493 return entry;
7494 }
7495
7496 static void sd_free_ctl_entry(struct ctl_table **tablep)
7497 {
7498 struct ctl_table *entry;
7499
7500 /*
7501 * In the intermediate directories, both the child directory and
7502 * procname are dynamically allocated and could fail but the mode
7503 * will always be set. In the lowest directory the names are
7504 * static strings and all have proc handlers.
7505 */
7506 for (entry = *tablep; entry->mode; entry++) {
7507 if (entry->child)
7508 sd_free_ctl_entry(&entry->child);
7509 if (entry->proc_handler == NULL)
7510 kfree(entry->procname);
7511 }
7512
7513 kfree(*tablep);
7514 *tablep = NULL;
7515 }
7516
7517 static void
7518 set_table_entry(struct ctl_table *entry,
7519 const char *procname, void *data, int maxlen,
7520 mode_t mode, proc_handler *proc_handler)
7521 {
7522 entry->procname = procname;
7523 entry->data = data;
7524 entry->maxlen = maxlen;
7525 entry->mode = mode;
7526 entry->proc_handler = proc_handler;
7527 }
7528
7529 static struct ctl_table *
7530 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7531 {
7532 struct ctl_table *table = sd_alloc_ctl_entry(13);
7533
7534 if (table == NULL)
7535 return NULL;
7536
7537 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7538 sizeof(long), 0644, proc_doulongvec_minmax);
7539 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7540 sizeof(long), 0644, proc_doulongvec_minmax);
7541 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7542 sizeof(int), 0644, proc_dointvec_minmax);
7543 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7544 sizeof(int), 0644, proc_dointvec_minmax);
7545 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7546 sizeof(int), 0644, proc_dointvec_minmax);
7547 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7548 sizeof(int), 0644, proc_dointvec_minmax);
7549 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7550 sizeof(int), 0644, proc_dointvec_minmax);
7551 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7552 sizeof(int), 0644, proc_dointvec_minmax);
7553 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7554 sizeof(int), 0644, proc_dointvec_minmax);
7555 set_table_entry(&table[9], "cache_nice_tries",
7556 &sd->cache_nice_tries,
7557 sizeof(int), 0644, proc_dointvec_minmax);
7558 set_table_entry(&table[10], "flags", &sd->flags,
7559 sizeof(int), 0644, proc_dointvec_minmax);
7560 set_table_entry(&table[11], "name", sd->name,
7561 CORENAME_MAX_SIZE, 0444, proc_dostring);
7562 /* &table[12] is terminator */
7563
7564 return table;
7565 }
7566
7567 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7568 {
7569 struct ctl_table *entry, *table;
7570 struct sched_domain *sd;
7571 int domain_num = 0, i;
7572 char buf[32];
7573
7574 for_each_domain(cpu, sd)
7575 domain_num++;
7576 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7577 if (table == NULL)
7578 return NULL;
7579
7580 i = 0;
7581 for_each_domain(cpu, sd) {
7582 snprintf(buf, 32, "domain%d", i);
7583 entry->procname = kstrdup(buf, GFP_KERNEL);
7584 entry->mode = 0555;
7585 entry->child = sd_alloc_ctl_domain_table(sd);
7586 entry++;
7587 i++;
7588 }
7589 return table;
7590 }
7591
7592 static struct ctl_table_header *sd_sysctl_header;
7593 static void register_sched_domain_sysctl(void)
7594 {
7595 int i, cpu_num = num_possible_cpus();
7596 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7597 char buf[32];
7598
7599 WARN_ON(sd_ctl_dir[0].child);
7600 sd_ctl_dir[0].child = entry;
7601
7602 if (entry == NULL)
7603 return;
7604
7605 for_each_possible_cpu(i) {
7606 snprintf(buf, 32, "cpu%d", i);
7607 entry->procname = kstrdup(buf, GFP_KERNEL);
7608 entry->mode = 0555;
7609 entry->child = sd_alloc_ctl_cpu_table(i);
7610 entry++;
7611 }
7612
7613 WARN_ON(sd_sysctl_header);
7614 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7615 }
7616
7617 /* may be called multiple times per register */
7618 static void unregister_sched_domain_sysctl(void)
7619 {
7620 if (sd_sysctl_header)
7621 unregister_sysctl_table(sd_sysctl_header);
7622 sd_sysctl_header = NULL;
7623 if (sd_ctl_dir[0].child)
7624 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7625 }
7626 #else
7627 static void register_sched_domain_sysctl(void)
7628 {
7629 }
7630 static void unregister_sched_domain_sysctl(void)
7631 {
7632 }
7633 #endif
7634
7635 static void set_rq_online(struct rq *rq)
7636 {
7637 if (!rq->online) {
7638 const struct sched_class *class;
7639
7640 cpumask_set_cpu(rq->cpu, rq->rd->online);
7641 rq->online = 1;
7642
7643 for_each_class(class) {
7644 if (class->rq_online)
7645 class->rq_online(rq);
7646 }
7647 }
7648 }
7649
7650 static void set_rq_offline(struct rq *rq)
7651 {
7652 if (rq->online) {
7653 const struct sched_class *class;
7654
7655 for_each_class(class) {
7656 if (class->rq_offline)
7657 class->rq_offline(rq);
7658 }
7659
7660 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7661 rq->online = 0;
7662 }
7663 }
7664
7665 /*
7666 * migration_call - callback that gets triggered when a CPU is added.
7667 * Here we can start up the necessary migration thread for the new CPU.
7668 */
7669 static int __cpuinit
7670 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7671 {
7672 struct task_struct *p;
7673 int cpu = (long)hcpu;
7674 unsigned long flags;
7675 struct rq *rq;
7676
7677 switch (action) {
7678
7679 case CPU_UP_PREPARE:
7680 case CPU_UP_PREPARE_FROZEN:
7681 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7682 if (IS_ERR(p))
7683 return NOTIFY_BAD;
7684 kthread_bind(p, cpu);
7685 /* Must be high prio: stop_machine expects to yield to it. */
7686 rq = task_rq_lock(p, &flags);
7687 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7688 task_rq_unlock(rq, &flags);
7689 get_task_struct(p);
7690 cpu_rq(cpu)->migration_thread = p;
7691 rq->calc_load_update = calc_load_update;
7692 break;
7693
7694 case CPU_ONLINE:
7695 case CPU_ONLINE_FROZEN:
7696 /* Strictly unnecessary, as first user will wake it. */
7697 wake_up_process(cpu_rq(cpu)->migration_thread);
7698
7699 /* Update our root-domain */
7700 rq = cpu_rq(cpu);
7701 raw_spin_lock_irqsave(&rq->lock, flags);
7702 if (rq->rd) {
7703 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7704
7705 set_rq_online(rq);
7706 }
7707 raw_spin_unlock_irqrestore(&rq->lock, flags);
7708 break;
7709
7710 #ifdef CONFIG_HOTPLUG_CPU
7711 case CPU_UP_CANCELED:
7712 case CPU_UP_CANCELED_FROZEN:
7713 if (!cpu_rq(cpu)->migration_thread)
7714 break;
7715 /* Unbind it from offline cpu so it can run. Fall thru. */
7716 kthread_bind(cpu_rq(cpu)->migration_thread,
7717 cpumask_any(cpu_online_mask));
7718 kthread_stop(cpu_rq(cpu)->migration_thread);
7719 put_task_struct(cpu_rq(cpu)->migration_thread);
7720 cpu_rq(cpu)->migration_thread = NULL;
7721 break;
7722
7723 case CPU_DEAD:
7724 case CPU_DEAD_FROZEN:
7725 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7726 migrate_live_tasks(cpu);
7727 rq = cpu_rq(cpu);
7728 kthread_stop(rq->migration_thread);
7729 put_task_struct(rq->migration_thread);
7730 rq->migration_thread = NULL;
7731 /* Idle task back to normal (off runqueue, low prio) */
7732 raw_spin_lock_irq(&rq->lock);
7733 update_rq_clock(rq);
7734 deactivate_task(rq, rq->idle, 0);
7735 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7736 rq->idle->sched_class = &idle_sched_class;
7737 migrate_dead_tasks(cpu);
7738 raw_spin_unlock_irq(&rq->lock);
7739 cpuset_unlock();
7740 migrate_nr_uninterruptible(rq);
7741 BUG_ON(rq->nr_running != 0);
7742 calc_global_load_remove(rq);
7743 /*
7744 * No need to migrate the tasks: it was best-effort if
7745 * they didn't take sched_hotcpu_mutex. Just wake up
7746 * the requestors.
7747 */
7748 raw_spin_lock_irq(&rq->lock);
7749 while (!list_empty(&rq->migration_queue)) {
7750 struct migration_req *req;
7751
7752 req = list_entry(rq->migration_queue.next,
7753 struct migration_req, list);
7754 list_del_init(&req->list);
7755 raw_spin_unlock_irq(&rq->lock);
7756 complete(&req->done);
7757 raw_spin_lock_irq(&rq->lock);
7758 }
7759 raw_spin_unlock_irq(&rq->lock);
7760 break;
7761
7762 case CPU_DYING:
7763 case CPU_DYING_FROZEN:
7764 /* Update our root-domain */
7765 rq = cpu_rq(cpu);
7766 raw_spin_lock_irqsave(&rq->lock, flags);
7767 if (rq->rd) {
7768 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7769 set_rq_offline(rq);
7770 }
7771 raw_spin_unlock_irqrestore(&rq->lock, flags);
7772 break;
7773 #endif
7774 }
7775 return NOTIFY_OK;
7776 }
7777
7778 /*
7779 * Register at high priority so that task migration (migrate_all_tasks)
7780 * happens before everything else. This has to be lower priority than
7781 * the notifier in the perf_event subsystem, though.
7782 */
7783 static struct notifier_block __cpuinitdata migration_notifier = {
7784 .notifier_call = migration_call,
7785 .priority = 10
7786 };
7787
7788 static int __init migration_init(void)
7789 {
7790 void *cpu = (void *)(long)smp_processor_id();
7791 int err;
7792
7793 /* Start one for the boot CPU: */
7794 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7795 BUG_ON(err == NOTIFY_BAD);
7796 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7797 register_cpu_notifier(&migration_notifier);
7798
7799 return 0;
7800 }
7801 early_initcall(migration_init);
7802 #endif
7803
7804 #ifdef CONFIG_SMP
7805
7806 #ifdef CONFIG_SCHED_DEBUG
7807
7808 static __read_mostly int sched_domain_debug_enabled;
7809
7810 static int __init sched_domain_debug_setup(char *str)
7811 {
7812 sched_domain_debug_enabled = 1;
7813
7814 return 0;
7815 }
7816 early_param("sched_debug", sched_domain_debug_setup);
7817
7818 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7819 struct cpumask *groupmask)
7820 {
7821 struct sched_group *group = sd->groups;
7822 char str[256];
7823
7824 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7825 cpumask_clear(groupmask);
7826
7827 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7828
7829 if (!(sd->flags & SD_LOAD_BALANCE)) {
7830 printk("does not load-balance\n");
7831 if (sd->parent)
7832 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7833 " has parent");
7834 return -1;
7835 }
7836
7837 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7838
7839 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7840 printk(KERN_ERR "ERROR: domain->span does not contain "
7841 "CPU%d\n", cpu);
7842 }
7843 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7844 printk(KERN_ERR "ERROR: domain->groups does not contain"
7845 " CPU%d\n", cpu);
7846 }
7847
7848 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7849 do {
7850 if (!group) {
7851 printk("\n");
7852 printk(KERN_ERR "ERROR: group is NULL\n");
7853 break;
7854 }
7855
7856 if (!group->cpu_power) {
7857 printk(KERN_CONT "\n");
7858 printk(KERN_ERR "ERROR: domain->cpu_power not "
7859 "set\n");
7860 break;
7861 }
7862
7863 if (!cpumask_weight(sched_group_cpus(group))) {
7864 printk(KERN_CONT "\n");
7865 printk(KERN_ERR "ERROR: empty group\n");
7866 break;
7867 }
7868
7869 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7870 printk(KERN_CONT "\n");
7871 printk(KERN_ERR "ERROR: repeated CPUs\n");
7872 break;
7873 }
7874
7875 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7876
7877 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7878
7879 printk(KERN_CONT " %s", str);
7880 if (group->cpu_power != SCHED_LOAD_SCALE) {
7881 printk(KERN_CONT " (cpu_power = %d)",
7882 group->cpu_power);
7883 }
7884
7885 group = group->next;
7886 } while (group != sd->groups);
7887 printk(KERN_CONT "\n");
7888
7889 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7890 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7891
7892 if (sd->parent &&
7893 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7894 printk(KERN_ERR "ERROR: parent span is not a superset "
7895 "of domain->span\n");
7896 return 0;
7897 }
7898
7899 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7900 {
7901 cpumask_var_t groupmask;
7902 int level = 0;
7903
7904 if (!sched_domain_debug_enabled)
7905 return;
7906
7907 if (!sd) {
7908 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7909 return;
7910 }
7911
7912 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7913
7914 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7915 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7916 return;
7917 }
7918
7919 for (;;) {
7920 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7921 break;
7922 level++;
7923 sd = sd->parent;
7924 if (!sd)
7925 break;
7926 }
7927 free_cpumask_var(groupmask);
7928 }
7929 #else /* !CONFIG_SCHED_DEBUG */
7930 # define sched_domain_debug(sd, cpu) do { } while (0)
7931 #endif /* CONFIG_SCHED_DEBUG */
7932
7933 static int sd_degenerate(struct sched_domain *sd)
7934 {
7935 if (cpumask_weight(sched_domain_span(sd)) == 1)
7936 return 1;
7937
7938 /* Following flags need at least 2 groups */
7939 if (sd->flags & (SD_LOAD_BALANCE |
7940 SD_BALANCE_NEWIDLE |
7941 SD_BALANCE_FORK |
7942 SD_BALANCE_EXEC |
7943 SD_SHARE_CPUPOWER |
7944 SD_SHARE_PKG_RESOURCES)) {
7945 if (sd->groups != sd->groups->next)
7946 return 0;
7947 }
7948
7949 /* Following flags don't use groups */
7950 if (sd->flags & (SD_WAKE_AFFINE))
7951 return 0;
7952
7953 return 1;
7954 }
7955
7956 static int
7957 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7958 {
7959 unsigned long cflags = sd->flags, pflags = parent->flags;
7960
7961 if (sd_degenerate(parent))
7962 return 1;
7963
7964 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7965 return 0;
7966
7967 /* Flags needing groups don't count if only 1 group in parent */
7968 if (parent->groups == parent->groups->next) {
7969 pflags &= ~(SD_LOAD_BALANCE |
7970 SD_BALANCE_NEWIDLE |
7971 SD_BALANCE_FORK |
7972 SD_BALANCE_EXEC |
7973 SD_SHARE_CPUPOWER |
7974 SD_SHARE_PKG_RESOURCES);
7975 if (nr_node_ids == 1)
7976 pflags &= ~SD_SERIALIZE;
7977 }
7978 if (~cflags & pflags)
7979 return 0;
7980
7981 return 1;
7982 }
7983
7984 static void free_rootdomain(struct root_domain *rd)
7985 {
7986 synchronize_sched();
7987
7988 cpupri_cleanup(&rd->cpupri);
7989
7990 free_cpumask_var(rd->rto_mask);
7991 free_cpumask_var(rd->online);
7992 free_cpumask_var(rd->span);
7993 kfree(rd);
7994 }
7995
7996 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7997 {
7998 struct root_domain *old_rd = NULL;
7999 unsigned long flags;
8000
8001 raw_spin_lock_irqsave(&rq->lock, flags);
8002
8003 if (rq->rd) {
8004 old_rd = rq->rd;
8005
8006 if (cpumask_test_cpu(rq->cpu, old_rd->online))
8007 set_rq_offline(rq);
8008
8009 cpumask_clear_cpu(rq->cpu, old_rd->span);
8010
8011 /*
8012 * If we dont want to free the old_rt yet then
8013 * set old_rd to NULL to skip the freeing later
8014 * in this function:
8015 */
8016 if (!atomic_dec_and_test(&old_rd->refcount))
8017 old_rd = NULL;
8018 }
8019
8020 atomic_inc(&rd->refcount);
8021 rq->rd = rd;
8022
8023 cpumask_set_cpu(rq->cpu, rd->span);
8024 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8025 set_rq_online(rq);
8026
8027 raw_spin_unlock_irqrestore(&rq->lock, flags);
8028
8029 if (old_rd)
8030 free_rootdomain(old_rd);
8031 }
8032
8033 static int init_rootdomain(struct root_domain *rd, bool bootmem)
8034 {
8035 gfp_t gfp = GFP_KERNEL;
8036
8037 memset(rd, 0, sizeof(*rd));
8038
8039 if (bootmem)
8040 gfp = GFP_NOWAIT;
8041
8042 if (!alloc_cpumask_var(&rd->span, gfp))
8043 goto out;
8044 if (!alloc_cpumask_var(&rd->online, gfp))
8045 goto free_span;
8046 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8047 goto free_online;
8048
8049 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8050 goto free_rto_mask;
8051 return 0;
8052
8053 free_rto_mask:
8054 free_cpumask_var(rd->rto_mask);
8055 free_online:
8056 free_cpumask_var(rd->online);
8057 free_span:
8058 free_cpumask_var(rd->span);
8059 out:
8060 return -ENOMEM;
8061 }
8062
8063 static void init_defrootdomain(void)
8064 {
8065 init_rootdomain(&def_root_domain, true);
8066
8067 atomic_set(&def_root_domain.refcount, 1);
8068 }
8069
8070 static struct root_domain *alloc_rootdomain(void)
8071 {
8072 struct root_domain *rd;
8073
8074 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8075 if (!rd)
8076 return NULL;
8077
8078 if (init_rootdomain(rd, false) != 0) {
8079 kfree(rd);
8080 return NULL;
8081 }
8082
8083 return rd;
8084 }
8085
8086 /*
8087 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8088 * hold the hotplug lock.
8089 */
8090 static void
8091 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8092 {
8093 struct rq *rq = cpu_rq(cpu);
8094 struct sched_domain *tmp;
8095
8096 /* Remove the sched domains which do not contribute to scheduling. */
8097 for (tmp = sd; tmp; ) {
8098 struct sched_domain *parent = tmp->parent;
8099 if (!parent)
8100 break;
8101
8102 if (sd_parent_degenerate(tmp, parent)) {
8103 tmp->parent = parent->parent;
8104 if (parent->parent)
8105 parent->parent->child = tmp;
8106 } else
8107 tmp = tmp->parent;
8108 }
8109
8110 if (sd && sd_degenerate(sd)) {
8111 sd = sd->parent;
8112 if (sd)
8113 sd->child = NULL;
8114 }
8115
8116 sched_domain_debug(sd, cpu);
8117
8118 rq_attach_root(rq, rd);
8119 rcu_assign_pointer(rq->sd, sd);
8120 }
8121
8122 /* cpus with isolated domains */
8123 static cpumask_var_t cpu_isolated_map;
8124
8125 /* Setup the mask of cpus configured for isolated domains */
8126 static int __init isolated_cpu_setup(char *str)
8127 {
8128 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8129 cpulist_parse(str, cpu_isolated_map);
8130 return 1;
8131 }
8132
8133 __setup("isolcpus=", isolated_cpu_setup);
8134
8135 /*
8136 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8137 * to a function which identifies what group(along with sched group) a CPU
8138 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8139 * (due to the fact that we keep track of groups covered with a struct cpumask).
8140 *
8141 * init_sched_build_groups will build a circular linked list of the groups
8142 * covered by the given span, and will set each group's ->cpumask correctly,
8143 * and ->cpu_power to 0.
8144 */
8145 static void
8146 init_sched_build_groups(const struct cpumask *span,
8147 const struct cpumask *cpu_map,
8148 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8149 struct sched_group **sg,
8150 struct cpumask *tmpmask),
8151 struct cpumask *covered, struct cpumask *tmpmask)
8152 {
8153 struct sched_group *first = NULL, *last = NULL;
8154 int i;
8155
8156 cpumask_clear(covered);
8157
8158 for_each_cpu(i, span) {
8159 struct sched_group *sg;
8160 int group = group_fn(i, cpu_map, &sg, tmpmask);
8161 int j;
8162
8163 if (cpumask_test_cpu(i, covered))
8164 continue;
8165
8166 cpumask_clear(sched_group_cpus(sg));
8167 sg->cpu_power = 0;
8168
8169 for_each_cpu(j, span) {
8170 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8171 continue;
8172
8173 cpumask_set_cpu(j, covered);
8174 cpumask_set_cpu(j, sched_group_cpus(sg));
8175 }
8176 if (!first)
8177 first = sg;
8178 if (last)
8179 last->next = sg;
8180 last = sg;
8181 }
8182 last->next = first;
8183 }
8184
8185 #define SD_NODES_PER_DOMAIN 16
8186
8187 #ifdef CONFIG_NUMA
8188
8189 /**
8190 * find_next_best_node - find the next node to include in a sched_domain
8191 * @node: node whose sched_domain we're building
8192 * @used_nodes: nodes already in the sched_domain
8193 *
8194 * Find the next node to include in a given scheduling domain. Simply
8195 * finds the closest node not already in the @used_nodes map.
8196 *
8197 * Should use nodemask_t.
8198 */
8199 static int find_next_best_node(int node, nodemask_t *used_nodes)
8200 {
8201 int i, n, val, min_val, best_node = 0;
8202
8203 min_val = INT_MAX;
8204
8205 for (i = 0; i < nr_node_ids; i++) {
8206 /* Start at @node */
8207 n = (node + i) % nr_node_ids;
8208
8209 if (!nr_cpus_node(n))
8210 continue;
8211
8212 /* Skip already used nodes */
8213 if (node_isset(n, *used_nodes))
8214 continue;
8215
8216 /* Simple min distance search */
8217 val = node_distance(node, n);
8218
8219 if (val < min_val) {
8220 min_val = val;
8221 best_node = n;
8222 }
8223 }
8224
8225 node_set(best_node, *used_nodes);
8226 return best_node;
8227 }
8228
8229 /**
8230 * sched_domain_node_span - get a cpumask for a node's sched_domain
8231 * @node: node whose cpumask we're constructing
8232 * @span: resulting cpumask
8233 *
8234 * Given a node, construct a good cpumask for its sched_domain to span. It
8235 * should be one that prevents unnecessary balancing, but also spreads tasks
8236 * out optimally.
8237 */
8238 static void sched_domain_node_span(int node, struct cpumask *span)
8239 {
8240 nodemask_t used_nodes;
8241 int i;
8242
8243 cpumask_clear(span);
8244 nodes_clear(used_nodes);
8245
8246 cpumask_or(span, span, cpumask_of_node(node));
8247 node_set(node, used_nodes);
8248
8249 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8250 int next_node = find_next_best_node(node, &used_nodes);
8251
8252 cpumask_or(span, span, cpumask_of_node(next_node));
8253 }
8254 }
8255 #endif /* CONFIG_NUMA */
8256
8257 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8258
8259 /*
8260 * The cpus mask in sched_group and sched_domain hangs off the end.
8261 *
8262 * ( See the the comments in include/linux/sched.h:struct sched_group
8263 * and struct sched_domain. )
8264 */
8265 struct static_sched_group {
8266 struct sched_group sg;
8267 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8268 };
8269
8270 struct static_sched_domain {
8271 struct sched_domain sd;
8272 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8273 };
8274
8275 struct s_data {
8276 #ifdef CONFIG_NUMA
8277 int sd_allnodes;
8278 cpumask_var_t domainspan;
8279 cpumask_var_t covered;
8280 cpumask_var_t notcovered;
8281 #endif
8282 cpumask_var_t nodemask;
8283 cpumask_var_t this_sibling_map;
8284 cpumask_var_t this_core_map;
8285 cpumask_var_t send_covered;
8286 cpumask_var_t tmpmask;
8287 struct sched_group **sched_group_nodes;
8288 struct root_domain *rd;
8289 };
8290
8291 enum s_alloc {
8292 sa_sched_groups = 0,
8293 sa_rootdomain,
8294 sa_tmpmask,
8295 sa_send_covered,
8296 sa_this_core_map,
8297 sa_this_sibling_map,
8298 sa_nodemask,
8299 sa_sched_group_nodes,
8300 #ifdef CONFIG_NUMA
8301 sa_notcovered,
8302 sa_covered,
8303 sa_domainspan,
8304 #endif
8305 sa_none,
8306 };
8307
8308 /*
8309 * SMT sched-domains:
8310 */
8311 #ifdef CONFIG_SCHED_SMT
8312 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8313 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
8314
8315 static int
8316 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8317 struct sched_group **sg, struct cpumask *unused)
8318 {
8319 if (sg)
8320 *sg = &per_cpu(sched_groups, cpu).sg;
8321 return cpu;
8322 }
8323 #endif /* CONFIG_SCHED_SMT */
8324
8325 /*
8326 * multi-core sched-domains:
8327 */
8328 #ifdef CONFIG_SCHED_MC
8329 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8330 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8331 #endif /* CONFIG_SCHED_MC */
8332
8333 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8334 static int
8335 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8336 struct sched_group **sg, struct cpumask *mask)
8337 {
8338 int group;
8339
8340 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8341 group = cpumask_first(mask);
8342 if (sg)
8343 *sg = &per_cpu(sched_group_core, group).sg;
8344 return group;
8345 }
8346 #elif defined(CONFIG_SCHED_MC)
8347 static int
8348 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8349 struct sched_group **sg, struct cpumask *unused)
8350 {
8351 if (sg)
8352 *sg = &per_cpu(sched_group_core, cpu).sg;
8353 return cpu;
8354 }
8355 #endif
8356
8357 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8358 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8359
8360 static int
8361 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8362 struct sched_group **sg, struct cpumask *mask)
8363 {
8364 int group;
8365 #ifdef CONFIG_SCHED_MC
8366 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8367 group = cpumask_first(mask);
8368 #elif defined(CONFIG_SCHED_SMT)
8369 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8370 group = cpumask_first(mask);
8371 #else
8372 group = cpu;
8373 #endif
8374 if (sg)
8375 *sg = &per_cpu(sched_group_phys, group).sg;
8376 return group;
8377 }
8378
8379 #ifdef CONFIG_NUMA
8380 /*
8381 * The init_sched_build_groups can't handle what we want to do with node
8382 * groups, so roll our own. Now each node has its own list of groups which
8383 * gets dynamically allocated.
8384 */
8385 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8386 static struct sched_group ***sched_group_nodes_bycpu;
8387
8388 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8389 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8390
8391 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8392 struct sched_group **sg,
8393 struct cpumask *nodemask)
8394 {
8395 int group;
8396
8397 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8398 group = cpumask_first(nodemask);
8399
8400 if (sg)
8401 *sg = &per_cpu(sched_group_allnodes, group).sg;
8402 return group;
8403 }
8404
8405 static void init_numa_sched_groups_power(struct sched_group *group_head)
8406 {
8407 struct sched_group *sg = group_head;
8408 int j;
8409
8410 if (!sg)
8411 return;
8412 do {
8413 for_each_cpu(j, sched_group_cpus(sg)) {
8414 struct sched_domain *sd;
8415
8416 sd = &per_cpu(phys_domains, j).sd;
8417 if (j != group_first_cpu(sd->groups)) {
8418 /*
8419 * Only add "power" once for each
8420 * physical package.
8421 */
8422 continue;
8423 }
8424
8425 sg->cpu_power += sd->groups->cpu_power;
8426 }
8427 sg = sg->next;
8428 } while (sg != group_head);
8429 }
8430
8431 static int build_numa_sched_groups(struct s_data *d,
8432 const struct cpumask *cpu_map, int num)
8433 {
8434 struct sched_domain *sd;
8435 struct sched_group *sg, *prev;
8436 int n, j;
8437
8438 cpumask_clear(d->covered);
8439 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8440 if (cpumask_empty(d->nodemask)) {
8441 d->sched_group_nodes[num] = NULL;
8442 goto out;
8443 }
8444
8445 sched_domain_node_span(num, d->domainspan);
8446 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8447
8448 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8449 GFP_KERNEL, num);
8450 if (!sg) {
8451 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8452 num);
8453 return -ENOMEM;
8454 }
8455 d->sched_group_nodes[num] = sg;
8456
8457 for_each_cpu(j, d->nodemask) {
8458 sd = &per_cpu(node_domains, j).sd;
8459 sd->groups = sg;
8460 }
8461
8462 sg->cpu_power = 0;
8463 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8464 sg->next = sg;
8465 cpumask_or(d->covered, d->covered, d->nodemask);
8466
8467 prev = sg;
8468 for (j = 0; j < nr_node_ids; j++) {
8469 n = (num + j) % nr_node_ids;
8470 cpumask_complement(d->notcovered, d->covered);
8471 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8472 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8473 if (cpumask_empty(d->tmpmask))
8474 break;
8475 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8476 if (cpumask_empty(d->tmpmask))
8477 continue;
8478 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8479 GFP_KERNEL, num);
8480 if (!sg) {
8481 printk(KERN_WARNING
8482 "Can not alloc domain group for node %d\n", j);
8483 return -ENOMEM;
8484 }
8485 sg->cpu_power = 0;
8486 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8487 sg->next = prev->next;
8488 cpumask_or(d->covered, d->covered, d->tmpmask);
8489 prev->next = sg;
8490 prev = sg;
8491 }
8492 out:
8493 return 0;
8494 }
8495 #endif /* CONFIG_NUMA */
8496
8497 #ifdef CONFIG_NUMA
8498 /* Free memory allocated for various sched_group structures */
8499 static void free_sched_groups(const struct cpumask *cpu_map,
8500 struct cpumask *nodemask)
8501 {
8502 int cpu, i;
8503
8504 for_each_cpu(cpu, cpu_map) {
8505 struct sched_group **sched_group_nodes
8506 = sched_group_nodes_bycpu[cpu];
8507
8508 if (!sched_group_nodes)
8509 continue;
8510
8511 for (i = 0; i < nr_node_ids; i++) {
8512 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8513
8514 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8515 if (cpumask_empty(nodemask))
8516 continue;
8517
8518 if (sg == NULL)
8519 continue;
8520 sg = sg->next;
8521 next_sg:
8522 oldsg = sg;
8523 sg = sg->next;
8524 kfree(oldsg);
8525 if (oldsg != sched_group_nodes[i])
8526 goto next_sg;
8527 }
8528 kfree(sched_group_nodes);
8529 sched_group_nodes_bycpu[cpu] = NULL;
8530 }
8531 }
8532 #else /* !CONFIG_NUMA */
8533 static void free_sched_groups(const struct cpumask *cpu_map,
8534 struct cpumask *nodemask)
8535 {
8536 }
8537 #endif /* CONFIG_NUMA */
8538
8539 /*
8540 * Initialize sched groups cpu_power.
8541 *
8542 * cpu_power indicates the capacity of sched group, which is used while
8543 * distributing the load between different sched groups in a sched domain.
8544 * Typically cpu_power for all the groups in a sched domain will be same unless
8545 * there are asymmetries in the topology. If there are asymmetries, group
8546 * having more cpu_power will pickup more load compared to the group having
8547 * less cpu_power.
8548 */
8549 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8550 {
8551 struct sched_domain *child;
8552 struct sched_group *group;
8553 long power;
8554 int weight;
8555
8556 WARN_ON(!sd || !sd->groups);
8557
8558 if (cpu != group_first_cpu(sd->groups))
8559 return;
8560
8561 child = sd->child;
8562
8563 sd->groups->cpu_power = 0;
8564
8565 if (!child) {
8566 power = SCHED_LOAD_SCALE;
8567 weight = cpumask_weight(sched_domain_span(sd));
8568 /*
8569 * SMT siblings share the power of a single core.
8570 * Usually multiple threads get a better yield out of
8571 * that one core than a single thread would have,
8572 * reflect that in sd->smt_gain.
8573 */
8574 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8575 power *= sd->smt_gain;
8576 power /= weight;
8577 power >>= SCHED_LOAD_SHIFT;
8578 }
8579 sd->groups->cpu_power += power;
8580 return;
8581 }
8582
8583 /*
8584 * Add cpu_power of each child group to this groups cpu_power.
8585 */
8586 group = child->groups;
8587 do {
8588 sd->groups->cpu_power += group->cpu_power;
8589 group = group->next;
8590 } while (group != child->groups);
8591 }
8592
8593 /*
8594 * Initializers for schedule domains
8595 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8596 */
8597
8598 #ifdef CONFIG_SCHED_DEBUG
8599 # define SD_INIT_NAME(sd, type) sd->name = #type
8600 #else
8601 # define SD_INIT_NAME(sd, type) do { } while (0)
8602 #endif
8603
8604 #define SD_INIT(sd, type) sd_init_##type(sd)
8605
8606 #define SD_INIT_FUNC(type) \
8607 static noinline void sd_init_##type(struct sched_domain *sd) \
8608 { \
8609 memset(sd, 0, sizeof(*sd)); \
8610 *sd = SD_##type##_INIT; \
8611 sd->level = SD_LV_##type; \
8612 SD_INIT_NAME(sd, type); \
8613 }
8614
8615 SD_INIT_FUNC(CPU)
8616 #ifdef CONFIG_NUMA
8617 SD_INIT_FUNC(ALLNODES)
8618 SD_INIT_FUNC(NODE)
8619 #endif
8620 #ifdef CONFIG_SCHED_SMT
8621 SD_INIT_FUNC(SIBLING)
8622 #endif
8623 #ifdef CONFIG_SCHED_MC
8624 SD_INIT_FUNC(MC)
8625 #endif
8626
8627 static int default_relax_domain_level = -1;
8628
8629 static int __init setup_relax_domain_level(char *str)
8630 {
8631 unsigned long val;
8632
8633 val = simple_strtoul(str, NULL, 0);
8634 if (val < SD_LV_MAX)
8635 default_relax_domain_level = val;
8636
8637 return 1;
8638 }
8639 __setup("relax_domain_level=", setup_relax_domain_level);
8640
8641 static void set_domain_attribute(struct sched_domain *sd,
8642 struct sched_domain_attr *attr)
8643 {
8644 int request;
8645
8646 if (!attr || attr->relax_domain_level < 0) {
8647 if (default_relax_domain_level < 0)
8648 return;
8649 else
8650 request = default_relax_domain_level;
8651 } else
8652 request = attr->relax_domain_level;
8653 if (request < sd->level) {
8654 /* turn off idle balance on this domain */
8655 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8656 } else {
8657 /* turn on idle balance on this domain */
8658 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8659 }
8660 }
8661
8662 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8663 const struct cpumask *cpu_map)
8664 {
8665 switch (what) {
8666 case sa_sched_groups:
8667 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8668 d->sched_group_nodes = NULL;
8669 case sa_rootdomain:
8670 free_rootdomain(d->rd); /* fall through */
8671 case sa_tmpmask:
8672 free_cpumask_var(d->tmpmask); /* fall through */
8673 case sa_send_covered:
8674 free_cpumask_var(d->send_covered); /* fall through */
8675 case sa_this_core_map:
8676 free_cpumask_var(d->this_core_map); /* fall through */
8677 case sa_this_sibling_map:
8678 free_cpumask_var(d->this_sibling_map); /* fall through */
8679 case sa_nodemask:
8680 free_cpumask_var(d->nodemask); /* fall through */
8681 case sa_sched_group_nodes:
8682 #ifdef CONFIG_NUMA
8683 kfree(d->sched_group_nodes); /* fall through */
8684 case sa_notcovered:
8685 free_cpumask_var(d->notcovered); /* fall through */
8686 case sa_covered:
8687 free_cpumask_var(d->covered); /* fall through */
8688 case sa_domainspan:
8689 free_cpumask_var(d->domainspan); /* fall through */
8690 #endif
8691 case sa_none:
8692 break;
8693 }
8694 }
8695
8696 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8697 const struct cpumask *cpu_map)
8698 {
8699 #ifdef CONFIG_NUMA
8700 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8701 return sa_none;
8702 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8703 return sa_domainspan;
8704 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8705 return sa_covered;
8706 /* Allocate the per-node list of sched groups */
8707 d->sched_group_nodes = kcalloc(nr_node_ids,
8708 sizeof(struct sched_group *), GFP_KERNEL);
8709 if (!d->sched_group_nodes) {
8710 printk(KERN_WARNING "Can not alloc sched group node list\n");
8711 return sa_notcovered;
8712 }
8713 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8714 #endif
8715 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8716 return sa_sched_group_nodes;
8717 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8718 return sa_nodemask;
8719 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8720 return sa_this_sibling_map;
8721 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8722 return sa_this_core_map;
8723 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8724 return sa_send_covered;
8725 d->rd = alloc_rootdomain();
8726 if (!d->rd) {
8727 printk(KERN_WARNING "Cannot alloc root domain\n");
8728 return sa_tmpmask;
8729 }
8730 return sa_rootdomain;
8731 }
8732
8733 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8734 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8735 {
8736 struct sched_domain *sd = NULL;
8737 #ifdef CONFIG_NUMA
8738 struct sched_domain *parent;
8739
8740 d->sd_allnodes = 0;
8741 if (cpumask_weight(cpu_map) >
8742 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8743 sd = &per_cpu(allnodes_domains, i).sd;
8744 SD_INIT(sd, ALLNODES);
8745 set_domain_attribute(sd, attr);
8746 cpumask_copy(sched_domain_span(sd), cpu_map);
8747 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8748 d->sd_allnodes = 1;
8749 }
8750 parent = sd;
8751
8752 sd = &per_cpu(node_domains, i).sd;
8753 SD_INIT(sd, NODE);
8754 set_domain_attribute(sd, attr);
8755 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8756 sd->parent = parent;
8757 if (parent)
8758 parent->child = sd;
8759 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8760 #endif
8761 return sd;
8762 }
8763
8764 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8765 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8766 struct sched_domain *parent, int i)
8767 {
8768 struct sched_domain *sd;
8769 sd = &per_cpu(phys_domains, i).sd;
8770 SD_INIT(sd, CPU);
8771 set_domain_attribute(sd, attr);
8772 cpumask_copy(sched_domain_span(sd), d->nodemask);
8773 sd->parent = parent;
8774 if (parent)
8775 parent->child = sd;
8776 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8777 return sd;
8778 }
8779
8780 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8781 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8782 struct sched_domain *parent, int i)
8783 {
8784 struct sched_domain *sd = parent;
8785 #ifdef CONFIG_SCHED_MC
8786 sd = &per_cpu(core_domains, i).sd;
8787 SD_INIT(sd, MC);
8788 set_domain_attribute(sd, attr);
8789 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8790 sd->parent = parent;
8791 parent->child = sd;
8792 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8793 #endif
8794 return sd;
8795 }
8796
8797 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8798 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8799 struct sched_domain *parent, int i)
8800 {
8801 struct sched_domain *sd = parent;
8802 #ifdef CONFIG_SCHED_SMT
8803 sd = &per_cpu(cpu_domains, i).sd;
8804 SD_INIT(sd, SIBLING);
8805 set_domain_attribute(sd, attr);
8806 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8807 sd->parent = parent;
8808 parent->child = sd;
8809 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8810 #endif
8811 return sd;
8812 }
8813
8814 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8815 const struct cpumask *cpu_map, int cpu)
8816 {
8817 switch (l) {
8818 #ifdef CONFIG_SCHED_SMT
8819 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8820 cpumask_and(d->this_sibling_map, cpu_map,
8821 topology_thread_cpumask(cpu));
8822 if (cpu == cpumask_first(d->this_sibling_map))
8823 init_sched_build_groups(d->this_sibling_map, cpu_map,
8824 &cpu_to_cpu_group,
8825 d->send_covered, d->tmpmask);
8826 break;
8827 #endif
8828 #ifdef CONFIG_SCHED_MC
8829 case SD_LV_MC: /* set up multi-core groups */
8830 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8831 if (cpu == cpumask_first(d->this_core_map))
8832 init_sched_build_groups(d->this_core_map, cpu_map,
8833 &cpu_to_core_group,
8834 d->send_covered, d->tmpmask);
8835 break;
8836 #endif
8837 case SD_LV_CPU: /* set up physical groups */
8838 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8839 if (!cpumask_empty(d->nodemask))
8840 init_sched_build_groups(d->nodemask, cpu_map,
8841 &cpu_to_phys_group,
8842 d->send_covered, d->tmpmask);
8843 break;
8844 #ifdef CONFIG_NUMA
8845 case SD_LV_ALLNODES:
8846 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8847 d->send_covered, d->tmpmask);
8848 break;
8849 #endif
8850 default:
8851 break;
8852 }
8853 }
8854
8855 /*
8856 * Build sched domains for a given set of cpus and attach the sched domains
8857 * to the individual cpus
8858 */
8859 static int __build_sched_domains(const struct cpumask *cpu_map,
8860 struct sched_domain_attr *attr)
8861 {
8862 enum s_alloc alloc_state = sa_none;
8863 struct s_data d;
8864 struct sched_domain *sd;
8865 int i;
8866 #ifdef CONFIG_NUMA
8867 d.sd_allnodes = 0;
8868 #endif
8869
8870 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8871 if (alloc_state != sa_rootdomain)
8872 goto error;
8873 alloc_state = sa_sched_groups;
8874
8875 /*
8876 * Set up domains for cpus specified by the cpu_map.
8877 */
8878 for_each_cpu(i, cpu_map) {
8879 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8880 cpu_map);
8881
8882 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8883 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8884 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8885 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8886 }
8887
8888 for_each_cpu(i, cpu_map) {
8889 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8890 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8891 }
8892
8893 /* Set up physical groups */
8894 for (i = 0; i < nr_node_ids; i++)
8895 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8896
8897 #ifdef CONFIG_NUMA
8898 /* Set up node groups */
8899 if (d.sd_allnodes)
8900 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8901
8902 for (i = 0; i < nr_node_ids; i++)
8903 if (build_numa_sched_groups(&d, cpu_map, i))
8904 goto error;
8905 #endif
8906
8907 /* Calculate CPU power for physical packages and nodes */
8908 #ifdef CONFIG_SCHED_SMT
8909 for_each_cpu(i, cpu_map) {
8910 sd = &per_cpu(cpu_domains, i).sd;
8911 init_sched_groups_power(i, sd);
8912 }
8913 #endif
8914 #ifdef CONFIG_SCHED_MC
8915 for_each_cpu(i, cpu_map) {
8916 sd = &per_cpu(core_domains, i).sd;
8917 init_sched_groups_power(i, sd);
8918 }
8919 #endif
8920
8921 for_each_cpu(i, cpu_map) {
8922 sd = &per_cpu(phys_domains, i).sd;
8923 init_sched_groups_power(i, sd);
8924 }
8925
8926 #ifdef CONFIG_NUMA
8927 for (i = 0; i < nr_node_ids; i++)
8928 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8929
8930 if (d.sd_allnodes) {
8931 struct sched_group *sg;
8932
8933 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8934 d.tmpmask);
8935 init_numa_sched_groups_power(sg);
8936 }
8937 #endif
8938
8939 /* Attach the domains */
8940 for_each_cpu(i, cpu_map) {
8941 #ifdef CONFIG_SCHED_SMT
8942 sd = &per_cpu(cpu_domains, i).sd;
8943 #elif defined(CONFIG_SCHED_MC)
8944 sd = &per_cpu(core_domains, i).sd;
8945 #else
8946 sd = &per_cpu(phys_domains, i).sd;
8947 #endif
8948 cpu_attach_domain(sd, d.rd, i);
8949 }
8950
8951 d.sched_group_nodes = NULL; /* don't free this we still need it */
8952 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8953 return 0;
8954
8955 error:
8956 __free_domain_allocs(&d, alloc_state, cpu_map);
8957 return -ENOMEM;
8958 }
8959
8960 static int build_sched_domains(const struct cpumask *cpu_map)
8961 {
8962 return __build_sched_domains(cpu_map, NULL);
8963 }
8964
8965 static cpumask_var_t *doms_cur; /* current sched domains */
8966 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8967 static struct sched_domain_attr *dattr_cur;
8968 /* attribues of custom domains in 'doms_cur' */
8969
8970 /*
8971 * Special case: If a kmalloc of a doms_cur partition (array of
8972 * cpumask) fails, then fallback to a single sched domain,
8973 * as determined by the single cpumask fallback_doms.
8974 */
8975 static cpumask_var_t fallback_doms;
8976
8977 /*
8978 * arch_update_cpu_topology lets virtualized architectures update the
8979 * cpu core maps. It is supposed to return 1 if the topology changed
8980 * or 0 if it stayed the same.
8981 */
8982 int __attribute__((weak)) arch_update_cpu_topology(void)
8983 {
8984 return 0;
8985 }
8986
8987 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8988 {
8989 int i;
8990 cpumask_var_t *doms;
8991
8992 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8993 if (!doms)
8994 return NULL;
8995 for (i = 0; i < ndoms; i++) {
8996 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8997 free_sched_domains(doms, i);
8998 return NULL;
8999 }
9000 }
9001 return doms;
9002 }
9003
9004 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
9005 {
9006 unsigned int i;
9007 for (i = 0; i < ndoms; i++)
9008 free_cpumask_var(doms[i]);
9009 kfree(doms);
9010 }
9011
9012 /*
9013 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
9014 * For now this just excludes isolated cpus, but could be used to
9015 * exclude other special cases in the future.
9016 */
9017 static int arch_init_sched_domains(const struct cpumask *cpu_map)
9018 {
9019 int err;
9020
9021 arch_update_cpu_topology();
9022 ndoms_cur = 1;
9023 doms_cur = alloc_sched_domains(ndoms_cur);
9024 if (!doms_cur)
9025 doms_cur = &fallback_doms;
9026 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
9027 dattr_cur = NULL;
9028 err = build_sched_domains(doms_cur[0]);
9029 register_sched_domain_sysctl();
9030
9031 return err;
9032 }
9033
9034 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9035 struct cpumask *tmpmask)
9036 {
9037 free_sched_groups(cpu_map, tmpmask);
9038 }
9039
9040 /*
9041 * Detach sched domains from a group of cpus specified in cpu_map
9042 * These cpus will now be attached to the NULL domain
9043 */
9044 static void detach_destroy_domains(const struct cpumask *cpu_map)
9045 {
9046 /* Save because hotplug lock held. */
9047 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9048 int i;
9049
9050 for_each_cpu(i, cpu_map)
9051 cpu_attach_domain(NULL, &def_root_domain, i);
9052 synchronize_sched();
9053 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9054 }
9055
9056 /* handle null as "default" */
9057 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9058 struct sched_domain_attr *new, int idx_new)
9059 {
9060 struct sched_domain_attr tmp;
9061
9062 /* fast path */
9063 if (!new && !cur)
9064 return 1;
9065
9066 tmp = SD_ATTR_INIT;
9067 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9068 new ? (new + idx_new) : &tmp,
9069 sizeof(struct sched_domain_attr));
9070 }
9071
9072 /*
9073 * Partition sched domains as specified by the 'ndoms_new'
9074 * cpumasks in the array doms_new[] of cpumasks. This compares
9075 * doms_new[] to the current sched domain partitioning, doms_cur[].
9076 * It destroys each deleted domain and builds each new domain.
9077 *
9078 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
9079 * The masks don't intersect (don't overlap.) We should setup one
9080 * sched domain for each mask. CPUs not in any of the cpumasks will
9081 * not be load balanced. If the same cpumask appears both in the
9082 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9083 * it as it is.
9084 *
9085 * The passed in 'doms_new' should be allocated using
9086 * alloc_sched_domains. This routine takes ownership of it and will
9087 * free_sched_domains it when done with it. If the caller failed the
9088 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9089 * and partition_sched_domains() will fallback to the single partition
9090 * 'fallback_doms', it also forces the domains to be rebuilt.
9091 *
9092 * If doms_new == NULL it will be replaced with cpu_online_mask.
9093 * ndoms_new == 0 is a special case for destroying existing domains,
9094 * and it will not create the default domain.
9095 *
9096 * Call with hotplug lock held
9097 */
9098 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9099 struct sched_domain_attr *dattr_new)
9100 {
9101 int i, j, n;
9102 int new_topology;
9103
9104 mutex_lock(&sched_domains_mutex);
9105
9106 /* always unregister in case we don't destroy any domains */
9107 unregister_sched_domain_sysctl();
9108
9109 /* Let architecture update cpu core mappings. */
9110 new_topology = arch_update_cpu_topology();
9111
9112 n = doms_new ? ndoms_new : 0;
9113
9114 /* Destroy deleted domains */
9115 for (i = 0; i < ndoms_cur; i++) {
9116 for (j = 0; j < n && !new_topology; j++) {
9117 if (cpumask_equal(doms_cur[i], doms_new[j])
9118 && dattrs_equal(dattr_cur, i, dattr_new, j))
9119 goto match1;
9120 }
9121 /* no match - a current sched domain not in new doms_new[] */
9122 detach_destroy_domains(doms_cur[i]);
9123 match1:
9124 ;
9125 }
9126
9127 if (doms_new == NULL) {
9128 ndoms_cur = 0;
9129 doms_new = &fallback_doms;
9130 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9131 WARN_ON_ONCE(dattr_new);
9132 }
9133
9134 /* Build new domains */
9135 for (i = 0; i < ndoms_new; i++) {
9136 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9137 if (cpumask_equal(doms_new[i], doms_cur[j])
9138 && dattrs_equal(dattr_new, i, dattr_cur, j))
9139 goto match2;
9140 }
9141 /* no match - add a new doms_new */
9142 __build_sched_domains(doms_new[i],
9143 dattr_new ? dattr_new + i : NULL);
9144 match2:
9145 ;
9146 }
9147
9148 /* Remember the new sched domains */
9149 if (doms_cur != &fallback_doms)
9150 free_sched_domains(doms_cur, ndoms_cur);
9151 kfree(dattr_cur); /* kfree(NULL) is safe */
9152 doms_cur = doms_new;
9153 dattr_cur = dattr_new;
9154 ndoms_cur = ndoms_new;
9155
9156 register_sched_domain_sysctl();
9157
9158 mutex_unlock(&sched_domains_mutex);
9159 }
9160
9161 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9162 static void arch_reinit_sched_domains(void)
9163 {
9164 get_online_cpus();
9165
9166 /* Destroy domains first to force the rebuild */
9167 partition_sched_domains(0, NULL, NULL);
9168
9169 rebuild_sched_domains();
9170 put_online_cpus();
9171 }
9172
9173 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9174 {
9175 unsigned int level = 0;
9176
9177 if (sscanf(buf, "%u", &level) != 1)
9178 return -EINVAL;
9179
9180 /*
9181 * level is always be positive so don't check for
9182 * level < POWERSAVINGS_BALANCE_NONE which is 0
9183 * What happens on 0 or 1 byte write,
9184 * need to check for count as well?
9185 */
9186
9187 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9188 return -EINVAL;
9189
9190 if (smt)
9191 sched_smt_power_savings = level;
9192 else
9193 sched_mc_power_savings = level;
9194
9195 arch_reinit_sched_domains();
9196
9197 return count;
9198 }
9199
9200 #ifdef CONFIG_SCHED_MC
9201 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9202 char *page)
9203 {
9204 return sprintf(page, "%u\n", sched_mc_power_savings);
9205 }
9206 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9207 const char *buf, size_t count)
9208 {
9209 return sched_power_savings_store(buf, count, 0);
9210 }
9211 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9212 sched_mc_power_savings_show,
9213 sched_mc_power_savings_store);
9214 #endif
9215
9216 #ifdef CONFIG_SCHED_SMT
9217 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9218 char *page)
9219 {
9220 return sprintf(page, "%u\n", sched_smt_power_savings);
9221 }
9222 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9223 const char *buf, size_t count)
9224 {
9225 return sched_power_savings_store(buf, count, 1);
9226 }
9227 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9228 sched_smt_power_savings_show,
9229 sched_smt_power_savings_store);
9230 #endif
9231
9232 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9233 {
9234 int err = 0;
9235
9236 #ifdef CONFIG_SCHED_SMT
9237 if (smt_capable())
9238 err = sysfs_create_file(&cls->kset.kobj,
9239 &attr_sched_smt_power_savings.attr);
9240 #endif
9241 #ifdef CONFIG_SCHED_MC
9242 if (!err && mc_capable())
9243 err = sysfs_create_file(&cls->kset.kobj,
9244 &attr_sched_mc_power_savings.attr);
9245 #endif
9246 return err;
9247 }
9248 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9249
9250 #ifndef CONFIG_CPUSETS
9251 /*
9252 * Add online and remove offline CPUs from the scheduler domains.
9253 * When cpusets are enabled they take over this function.
9254 */
9255 static int update_sched_domains(struct notifier_block *nfb,
9256 unsigned long action, void *hcpu)
9257 {
9258 switch (action) {
9259 case CPU_ONLINE:
9260 case CPU_ONLINE_FROZEN:
9261 case CPU_DOWN_PREPARE:
9262 case CPU_DOWN_PREPARE_FROZEN:
9263 case CPU_DOWN_FAILED:
9264 case CPU_DOWN_FAILED_FROZEN:
9265 partition_sched_domains(1, NULL, NULL);
9266 return NOTIFY_OK;
9267
9268 default:
9269 return NOTIFY_DONE;
9270 }
9271 }
9272 #endif
9273
9274 static int update_runtime(struct notifier_block *nfb,
9275 unsigned long action, void *hcpu)
9276 {
9277 int cpu = (int)(long)hcpu;
9278
9279 switch (action) {
9280 case CPU_DOWN_PREPARE:
9281 case CPU_DOWN_PREPARE_FROZEN:
9282 disable_runtime(cpu_rq(cpu));
9283 return NOTIFY_OK;
9284
9285 case CPU_DOWN_FAILED:
9286 case CPU_DOWN_FAILED_FROZEN:
9287 case CPU_ONLINE:
9288 case CPU_ONLINE_FROZEN:
9289 enable_runtime(cpu_rq(cpu));
9290 return NOTIFY_OK;
9291
9292 default:
9293 return NOTIFY_DONE;
9294 }
9295 }
9296
9297 void __init sched_init_smp(void)
9298 {
9299 cpumask_var_t non_isolated_cpus;
9300
9301 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9302 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9303
9304 #if defined(CONFIG_NUMA)
9305 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9306 GFP_KERNEL);
9307 BUG_ON(sched_group_nodes_bycpu == NULL);
9308 #endif
9309 get_online_cpus();
9310 mutex_lock(&sched_domains_mutex);
9311 arch_init_sched_domains(cpu_active_mask);
9312 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9313 if (cpumask_empty(non_isolated_cpus))
9314 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9315 mutex_unlock(&sched_domains_mutex);
9316 put_online_cpus();
9317
9318 #ifndef CONFIG_CPUSETS
9319 /* XXX: Theoretical race here - CPU may be hotplugged now */
9320 hotcpu_notifier(update_sched_domains, 0);
9321 #endif
9322
9323 /* RT runtime code needs to handle some hotplug events */
9324 hotcpu_notifier(update_runtime, 0);
9325
9326 init_hrtick();
9327
9328 /* Move init over to a non-isolated CPU */
9329 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9330 BUG();
9331 sched_init_granularity();
9332 free_cpumask_var(non_isolated_cpus);
9333
9334 init_sched_rt_class();
9335 }
9336 #else
9337 void __init sched_init_smp(void)
9338 {
9339 sched_init_granularity();
9340 }
9341 #endif /* CONFIG_SMP */
9342
9343 const_debug unsigned int sysctl_timer_migration = 1;
9344
9345 int in_sched_functions(unsigned long addr)
9346 {
9347 return in_lock_functions(addr) ||
9348 (addr >= (unsigned long)__sched_text_start
9349 && addr < (unsigned long)__sched_text_end);
9350 }
9351
9352 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9353 {
9354 cfs_rq->tasks_timeline = RB_ROOT;
9355 INIT_LIST_HEAD(&cfs_rq->tasks);
9356 #ifdef CONFIG_FAIR_GROUP_SCHED
9357 cfs_rq->rq = rq;
9358 #endif
9359 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9360 }
9361
9362 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9363 {
9364 struct rt_prio_array *array;
9365 int i;
9366
9367 array = &rt_rq->active;
9368 for (i = 0; i < MAX_RT_PRIO; i++) {
9369 INIT_LIST_HEAD(array->queue + i);
9370 __clear_bit(i, array->bitmap);
9371 }
9372 /* delimiter for bitsearch: */
9373 __set_bit(MAX_RT_PRIO, array->bitmap);
9374
9375 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9376 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9377 #ifdef CONFIG_SMP
9378 rt_rq->highest_prio.next = MAX_RT_PRIO;
9379 #endif
9380 #endif
9381 #ifdef CONFIG_SMP
9382 rt_rq->rt_nr_migratory = 0;
9383 rt_rq->overloaded = 0;
9384 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
9385 #endif
9386
9387 rt_rq->rt_time = 0;
9388 rt_rq->rt_throttled = 0;
9389 rt_rq->rt_runtime = 0;
9390 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
9391
9392 #ifdef CONFIG_RT_GROUP_SCHED
9393 rt_rq->rt_nr_boosted = 0;
9394 rt_rq->rq = rq;
9395 #endif
9396 }
9397
9398 #ifdef CONFIG_FAIR_GROUP_SCHED
9399 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9400 struct sched_entity *se, int cpu, int add,
9401 struct sched_entity *parent)
9402 {
9403 struct rq *rq = cpu_rq(cpu);
9404 tg->cfs_rq[cpu] = cfs_rq;
9405 init_cfs_rq(cfs_rq, rq);
9406 cfs_rq->tg = tg;
9407 if (add)
9408 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9409
9410 tg->se[cpu] = se;
9411 /* se could be NULL for init_task_group */
9412 if (!se)
9413 return;
9414
9415 if (!parent)
9416 se->cfs_rq = &rq->cfs;
9417 else
9418 se->cfs_rq = parent->my_q;
9419
9420 se->my_q = cfs_rq;
9421 se->load.weight = tg->shares;
9422 se->load.inv_weight = 0;
9423 se->parent = parent;
9424 }
9425 #endif
9426
9427 #ifdef CONFIG_RT_GROUP_SCHED
9428 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9429 struct sched_rt_entity *rt_se, int cpu, int add,
9430 struct sched_rt_entity *parent)
9431 {
9432 struct rq *rq = cpu_rq(cpu);
9433
9434 tg->rt_rq[cpu] = rt_rq;
9435 init_rt_rq(rt_rq, rq);
9436 rt_rq->tg = tg;
9437 rt_rq->rt_se = rt_se;
9438 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9439 if (add)
9440 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9441
9442 tg->rt_se[cpu] = rt_se;
9443 if (!rt_se)
9444 return;
9445
9446 if (!parent)
9447 rt_se->rt_rq = &rq->rt;
9448 else
9449 rt_se->rt_rq = parent->my_q;
9450
9451 rt_se->my_q = rt_rq;
9452 rt_se->parent = parent;
9453 INIT_LIST_HEAD(&rt_se->run_list);
9454 }
9455 #endif
9456
9457 void __init sched_init(void)
9458 {
9459 int i, j;
9460 unsigned long alloc_size = 0, ptr;
9461
9462 #ifdef CONFIG_FAIR_GROUP_SCHED
9463 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9464 #endif
9465 #ifdef CONFIG_RT_GROUP_SCHED
9466 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9467 #endif
9468 #ifdef CONFIG_USER_SCHED
9469 alloc_size *= 2;
9470 #endif
9471 #ifdef CONFIG_CPUMASK_OFFSTACK
9472 alloc_size += num_possible_cpus() * cpumask_size();
9473 #endif
9474 if (alloc_size) {
9475 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9476
9477 #ifdef CONFIG_FAIR_GROUP_SCHED
9478 init_task_group.se = (struct sched_entity **)ptr;
9479 ptr += nr_cpu_ids * sizeof(void **);
9480
9481 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9482 ptr += nr_cpu_ids * sizeof(void **);
9483
9484 #ifdef CONFIG_USER_SCHED
9485 root_task_group.se = (struct sched_entity **)ptr;
9486 ptr += nr_cpu_ids * sizeof(void **);
9487
9488 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9489 ptr += nr_cpu_ids * sizeof(void **);
9490 #endif /* CONFIG_USER_SCHED */
9491 #endif /* CONFIG_FAIR_GROUP_SCHED */
9492 #ifdef CONFIG_RT_GROUP_SCHED
9493 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9494 ptr += nr_cpu_ids * sizeof(void **);
9495
9496 init_task_group.rt_rq = (struct rt_rq **)ptr;
9497 ptr += nr_cpu_ids * sizeof(void **);
9498
9499 #ifdef CONFIG_USER_SCHED
9500 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9501 ptr += nr_cpu_ids * sizeof(void **);
9502
9503 root_task_group.rt_rq = (struct rt_rq **)ptr;
9504 ptr += nr_cpu_ids * sizeof(void **);
9505 #endif /* CONFIG_USER_SCHED */
9506 #endif /* CONFIG_RT_GROUP_SCHED */
9507 #ifdef CONFIG_CPUMASK_OFFSTACK
9508 for_each_possible_cpu(i) {
9509 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9510 ptr += cpumask_size();
9511 }
9512 #endif /* CONFIG_CPUMASK_OFFSTACK */
9513 }
9514
9515 #ifdef CONFIG_SMP
9516 init_defrootdomain();
9517 #endif
9518
9519 init_rt_bandwidth(&def_rt_bandwidth,
9520 global_rt_period(), global_rt_runtime());
9521
9522 #ifdef CONFIG_RT_GROUP_SCHED
9523 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9524 global_rt_period(), global_rt_runtime());
9525 #ifdef CONFIG_USER_SCHED
9526 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9527 global_rt_period(), RUNTIME_INF);
9528 #endif /* CONFIG_USER_SCHED */
9529 #endif /* CONFIG_RT_GROUP_SCHED */
9530
9531 #ifdef CONFIG_GROUP_SCHED
9532 list_add(&init_task_group.list, &task_groups);
9533 INIT_LIST_HEAD(&init_task_group.children);
9534
9535 #ifdef CONFIG_USER_SCHED
9536 INIT_LIST_HEAD(&root_task_group.children);
9537 init_task_group.parent = &root_task_group;
9538 list_add(&init_task_group.siblings, &root_task_group.children);
9539 #endif /* CONFIG_USER_SCHED */
9540 #endif /* CONFIG_GROUP_SCHED */
9541
9542 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9543 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9544 __alignof__(unsigned long));
9545 #endif
9546 for_each_possible_cpu(i) {
9547 struct rq *rq;
9548
9549 rq = cpu_rq(i);
9550 raw_spin_lock_init(&rq->lock);
9551 rq->nr_running = 0;
9552 rq->calc_load_active = 0;
9553 rq->calc_load_update = jiffies + LOAD_FREQ;
9554 init_cfs_rq(&rq->cfs, rq);
9555 init_rt_rq(&rq->rt, rq);
9556 #ifdef CONFIG_FAIR_GROUP_SCHED
9557 init_task_group.shares = init_task_group_load;
9558 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9559 #ifdef CONFIG_CGROUP_SCHED
9560 /*
9561 * How much cpu bandwidth does init_task_group get?
9562 *
9563 * In case of task-groups formed thr' the cgroup filesystem, it
9564 * gets 100% of the cpu resources in the system. This overall
9565 * system cpu resource is divided among the tasks of
9566 * init_task_group and its child task-groups in a fair manner,
9567 * based on each entity's (task or task-group's) weight
9568 * (se->load.weight).
9569 *
9570 * In other words, if init_task_group has 10 tasks of weight
9571 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9572 * then A0's share of the cpu resource is:
9573 *
9574 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9575 *
9576 * We achieve this by letting init_task_group's tasks sit
9577 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9578 */
9579 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9580 #elif defined CONFIG_USER_SCHED
9581 root_task_group.shares = NICE_0_LOAD;
9582 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9583 /*
9584 * In case of task-groups formed thr' the user id of tasks,
9585 * init_task_group represents tasks belonging to root user.
9586 * Hence it forms a sibling of all subsequent groups formed.
9587 * In this case, init_task_group gets only a fraction of overall
9588 * system cpu resource, based on the weight assigned to root
9589 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9590 * by letting tasks of init_task_group sit in a separate cfs_rq
9591 * (init_tg_cfs_rq) and having one entity represent this group of
9592 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9593 */
9594 init_tg_cfs_entry(&init_task_group,
9595 &per_cpu(init_tg_cfs_rq, i),
9596 &per_cpu(init_sched_entity, i), i, 1,
9597 root_task_group.se[i]);
9598
9599 #endif
9600 #endif /* CONFIG_FAIR_GROUP_SCHED */
9601
9602 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9603 #ifdef CONFIG_RT_GROUP_SCHED
9604 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9605 #ifdef CONFIG_CGROUP_SCHED
9606 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9607 #elif defined CONFIG_USER_SCHED
9608 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9609 init_tg_rt_entry(&init_task_group,
9610 &per_cpu(init_rt_rq_var, i),
9611 &per_cpu(init_sched_rt_entity, i), i, 1,
9612 root_task_group.rt_se[i]);
9613 #endif
9614 #endif
9615
9616 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9617 rq->cpu_load[j] = 0;
9618 #ifdef CONFIG_SMP
9619 rq->sd = NULL;
9620 rq->rd = NULL;
9621 rq->post_schedule = 0;
9622 rq->active_balance = 0;
9623 rq->next_balance = jiffies;
9624 rq->push_cpu = 0;
9625 rq->cpu = i;
9626 rq->online = 0;
9627 rq->migration_thread = NULL;
9628 rq->idle_stamp = 0;
9629 rq->avg_idle = 2*sysctl_sched_migration_cost;
9630 INIT_LIST_HEAD(&rq->migration_queue);
9631 rq_attach_root(rq, &def_root_domain);
9632 #endif
9633 init_rq_hrtick(rq);
9634 atomic_set(&rq->nr_iowait, 0);
9635 }
9636
9637 set_load_weight(&init_task);
9638
9639 #ifdef CONFIG_PREEMPT_NOTIFIERS
9640 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9641 #endif
9642
9643 #ifdef CONFIG_SMP
9644 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9645 #endif
9646
9647 #ifdef CONFIG_RT_MUTEXES
9648 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
9649 #endif
9650
9651 /*
9652 * The boot idle thread does lazy MMU switching as well:
9653 */
9654 atomic_inc(&init_mm.mm_count);
9655 enter_lazy_tlb(&init_mm, current);
9656
9657 /*
9658 * Make us the idle thread. Technically, schedule() should not be
9659 * called from this thread, however somewhere below it might be,
9660 * but because we are the idle thread, we just pick up running again
9661 * when this runqueue becomes "idle".
9662 */
9663 init_idle(current, smp_processor_id());
9664
9665 calc_load_update = jiffies + LOAD_FREQ;
9666
9667 /*
9668 * During early bootup we pretend to be a normal task:
9669 */
9670 current->sched_class = &fair_sched_class;
9671
9672 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9673 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9674 #ifdef CONFIG_SMP
9675 #ifdef CONFIG_NO_HZ
9676 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9677 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9678 #endif
9679 /* May be allocated at isolcpus cmdline parse time */
9680 if (cpu_isolated_map == NULL)
9681 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9682 #endif /* SMP */
9683
9684 perf_event_init();
9685
9686 scheduler_running = 1;
9687 }
9688
9689 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9690 static inline int preempt_count_equals(int preempt_offset)
9691 {
9692 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
9693
9694 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9695 }
9696
9697 void __might_sleep(char *file, int line, int preempt_offset)
9698 {
9699 #ifdef in_atomic
9700 static unsigned long prev_jiffy; /* ratelimiting */
9701
9702 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9703 system_state != SYSTEM_RUNNING || oops_in_progress)
9704 return;
9705 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9706 return;
9707 prev_jiffy = jiffies;
9708
9709 printk(KERN_ERR
9710 "BUG: sleeping function called from invalid context at %s:%d\n",
9711 file, line);
9712 printk(KERN_ERR
9713 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9714 in_atomic(), irqs_disabled(),
9715 current->pid, current->comm);
9716
9717 debug_show_held_locks(current);
9718 if (irqs_disabled())
9719 print_irqtrace_events(current);
9720 dump_stack();
9721 #endif
9722 }
9723 EXPORT_SYMBOL(__might_sleep);
9724 #endif
9725
9726 #ifdef CONFIG_MAGIC_SYSRQ
9727 static void normalize_task(struct rq *rq, struct task_struct *p)
9728 {
9729 int on_rq;
9730
9731 update_rq_clock(rq);
9732 on_rq = p->se.on_rq;
9733 if (on_rq)
9734 deactivate_task(rq, p, 0);
9735 __setscheduler(rq, p, SCHED_NORMAL, 0);
9736 if (on_rq) {
9737 activate_task(rq, p, 0);
9738 resched_task(rq->curr);
9739 }
9740 }
9741
9742 void normalize_rt_tasks(void)
9743 {
9744 struct task_struct *g, *p;
9745 unsigned long flags;
9746 struct rq *rq;
9747
9748 read_lock_irqsave(&tasklist_lock, flags);
9749 do_each_thread(g, p) {
9750 /*
9751 * Only normalize user tasks:
9752 */
9753 if (!p->mm)
9754 continue;
9755
9756 p->se.exec_start = 0;
9757 #ifdef CONFIG_SCHEDSTATS
9758 p->se.wait_start = 0;
9759 p->se.sleep_start = 0;
9760 p->se.block_start = 0;
9761 #endif
9762
9763 if (!rt_task(p)) {
9764 /*
9765 * Renice negative nice level userspace
9766 * tasks back to 0:
9767 */
9768 if (TASK_NICE(p) < 0 && p->mm)
9769 set_user_nice(p, 0);
9770 continue;
9771 }
9772
9773 raw_spin_lock(&p->pi_lock);
9774 rq = __task_rq_lock(p);
9775
9776 normalize_task(rq, p);
9777
9778 __task_rq_unlock(rq);
9779 raw_spin_unlock(&p->pi_lock);
9780 } while_each_thread(g, p);
9781
9782 read_unlock_irqrestore(&tasklist_lock, flags);
9783 }
9784
9785 #endif /* CONFIG_MAGIC_SYSRQ */
9786
9787 #ifdef CONFIG_IA64
9788 /*
9789 * These functions are only useful for the IA64 MCA handling.
9790 *
9791 * They can only be called when the whole system has been
9792 * stopped - every CPU needs to be quiescent, and no scheduling
9793 * activity can take place. Using them for anything else would
9794 * be a serious bug, and as a result, they aren't even visible
9795 * under any other configuration.
9796 */
9797
9798 /**
9799 * curr_task - return the current task for a given cpu.
9800 * @cpu: the processor in question.
9801 *
9802 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9803 */
9804 struct task_struct *curr_task(int cpu)
9805 {
9806 return cpu_curr(cpu);
9807 }
9808
9809 /**
9810 * set_curr_task - set the current task for a given cpu.
9811 * @cpu: the processor in question.
9812 * @p: the task pointer to set.
9813 *
9814 * Description: This function must only be used when non-maskable interrupts
9815 * are serviced on a separate stack. It allows the architecture to switch the
9816 * notion of the current task on a cpu in a non-blocking manner. This function
9817 * must be called with all CPU's synchronized, and interrupts disabled, the
9818 * and caller must save the original value of the current task (see
9819 * curr_task() above) and restore that value before reenabling interrupts and
9820 * re-starting the system.
9821 *
9822 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9823 */
9824 void set_curr_task(int cpu, struct task_struct *p)
9825 {
9826 cpu_curr(cpu) = p;
9827 }
9828
9829 #endif
9830
9831 #ifdef CONFIG_FAIR_GROUP_SCHED
9832 static void free_fair_sched_group(struct task_group *tg)
9833 {
9834 int i;
9835
9836 for_each_possible_cpu(i) {
9837 if (tg->cfs_rq)
9838 kfree(tg->cfs_rq[i]);
9839 if (tg->se)
9840 kfree(tg->se[i]);
9841 }
9842
9843 kfree(tg->cfs_rq);
9844 kfree(tg->se);
9845 }
9846
9847 static
9848 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9849 {
9850 struct cfs_rq *cfs_rq;
9851 struct sched_entity *se;
9852 struct rq *rq;
9853 int i;
9854
9855 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9856 if (!tg->cfs_rq)
9857 goto err;
9858 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9859 if (!tg->se)
9860 goto err;
9861
9862 tg->shares = NICE_0_LOAD;
9863
9864 for_each_possible_cpu(i) {
9865 rq = cpu_rq(i);
9866
9867 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9868 GFP_KERNEL, cpu_to_node(i));
9869 if (!cfs_rq)
9870 goto err;
9871
9872 se = kzalloc_node(sizeof(struct sched_entity),
9873 GFP_KERNEL, cpu_to_node(i));
9874 if (!se)
9875 goto err_free_rq;
9876
9877 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9878 }
9879
9880 return 1;
9881
9882 err_free_rq:
9883 kfree(cfs_rq);
9884 err:
9885 return 0;
9886 }
9887
9888 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9889 {
9890 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9891 &cpu_rq(cpu)->leaf_cfs_rq_list);
9892 }
9893
9894 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9895 {
9896 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9897 }
9898 #else /* !CONFG_FAIR_GROUP_SCHED */
9899 static inline void free_fair_sched_group(struct task_group *tg)
9900 {
9901 }
9902
9903 static inline
9904 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9905 {
9906 return 1;
9907 }
9908
9909 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9910 {
9911 }
9912
9913 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9914 {
9915 }
9916 #endif /* CONFIG_FAIR_GROUP_SCHED */
9917
9918 #ifdef CONFIG_RT_GROUP_SCHED
9919 static void free_rt_sched_group(struct task_group *tg)
9920 {
9921 int i;
9922
9923 destroy_rt_bandwidth(&tg->rt_bandwidth);
9924
9925 for_each_possible_cpu(i) {
9926 if (tg->rt_rq)
9927 kfree(tg->rt_rq[i]);
9928 if (tg->rt_se)
9929 kfree(tg->rt_se[i]);
9930 }
9931
9932 kfree(tg->rt_rq);
9933 kfree(tg->rt_se);
9934 }
9935
9936 static
9937 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9938 {
9939 struct rt_rq *rt_rq;
9940 struct sched_rt_entity *rt_se;
9941 struct rq *rq;
9942 int i;
9943
9944 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9945 if (!tg->rt_rq)
9946 goto err;
9947 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9948 if (!tg->rt_se)
9949 goto err;
9950
9951 init_rt_bandwidth(&tg->rt_bandwidth,
9952 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9953
9954 for_each_possible_cpu(i) {
9955 rq = cpu_rq(i);
9956
9957 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9958 GFP_KERNEL, cpu_to_node(i));
9959 if (!rt_rq)
9960 goto err;
9961
9962 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9963 GFP_KERNEL, cpu_to_node(i));
9964 if (!rt_se)
9965 goto err_free_rq;
9966
9967 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9968 }
9969
9970 return 1;
9971
9972 err_free_rq:
9973 kfree(rt_rq);
9974 err:
9975 return 0;
9976 }
9977
9978 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9979 {
9980 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9981 &cpu_rq(cpu)->leaf_rt_rq_list);
9982 }
9983
9984 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9985 {
9986 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9987 }
9988 #else /* !CONFIG_RT_GROUP_SCHED */
9989 static inline void free_rt_sched_group(struct task_group *tg)
9990 {
9991 }
9992
9993 static inline
9994 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9995 {
9996 return 1;
9997 }
9998
9999 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10000 {
10001 }
10002
10003 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10004 {
10005 }
10006 #endif /* CONFIG_RT_GROUP_SCHED */
10007
10008 #ifdef CONFIG_GROUP_SCHED
10009 static void free_sched_group(struct task_group *tg)
10010 {
10011 free_fair_sched_group(tg);
10012 free_rt_sched_group(tg);
10013 kfree(tg);
10014 }
10015
10016 /* allocate runqueue etc for a new task group */
10017 struct task_group *sched_create_group(struct task_group *parent)
10018 {
10019 struct task_group *tg;
10020 unsigned long flags;
10021 int i;
10022
10023 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10024 if (!tg)
10025 return ERR_PTR(-ENOMEM);
10026
10027 if (!alloc_fair_sched_group(tg, parent))
10028 goto err;
10029
10030 if (!alloc_rt_sched_group(tg, parent))
10031 goto err;
10032
10033 spin_lock_irqsave(&task_group_lock, flags);
10034 for_each_possible_cpu(i) {
10035 register_fair_sched_group(tg, i);
10036 register_rt_sched_group(tg, i);
10037 }
10038 list_add_rcu(&tg->list, &task_groups);
10039
10040 WARN_ON(!parent); /* root should already exist */
10041
10042 tg->parent = parent;
10043 INIT_LIST_HEAD(&tg->children);
10044 list_add_rcu(&tg->siblings, &parent->children);
10045 spin_unlock_irqrestore(&task_group_lock, flags);
10046
10047 return tg;
10048
10049 err:
10050 free_sched_group(tg);
10051 return ERR_PTR(-ENOMEM);
10052 }
10053
10054 /* rcu callback to free various structures associated with a task group */
10055 static void free_sched_group_rcu(struct rcu_head *rhp)
10056 {
10057 /* now it should be safe to free those cfs_rqs */
10058 free_sched_group(container_of(rhp, struct task_group, rcu));
10059 }
10060
10061 /* Destroy runqueue etc associated with a task group */
10062 void sched_destroy_group(struct task_group *tg)
10063 {
10064 unsigned long flags;
10065 int i;
10066
10067 spin_lock_irqsave(&task_group_lock, flags);
10068 for_each_possible_cpu(i) {
10069 unregister_fair_sched_group(tg, i);
10070 unregister_rt_sched_group(tg, i);
10071 }
10072 list_del_rcu(&tg->list);
10073 list_del_rcu(&tg->siblings);
10074 spin_unlock_irqrestore(&task_group_lock, flags);
10075
10076 /* wait for possible concurrent references to cfs_rqs complete */
10077 call_rcu(&tg->rcu, free_sched_group_rcu);
10078 }
10079
10080 /* change task's runqueue when it moves between groups.
10081 * The caller of this function should have put the task in its new group
10082 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10083 * reflect its new group.
10084 */
10085 void sched_move_task(struct task_struct *tsk)
10086 {
10087 int on_rq, running;
10088 unsigned long flags;
10089 struct rq *rq;
10090
10091 rq = task_rq_lock(tsk, &flags);
10092
10093 update_rq_clock(rq);
10094
10095 running = task_current(rq, tsk);
10096 on_rq = tsk->se.on_rq;
10097
10098 if (on_rq)
10099 dequeue_task(rq, tsk, 0);
10100 if (unlikely(running))
10101 tsk->sched_class->put_prev_task(rq, tsk);
10102
10103 set_task_rq(tsk, task_cpu(tsk));
10104
10105 #ifdef CONFIG_FAIR_GROUP_SCHED
10106 if (tsk->sched_class->moved_group)
10107 tsk->sched_class->moved_group(tsk, on_rq);
10108 #endif
10109
10110 if (unlikely(running))
10111 tsk->sched_class->set_curr_task(rq);
10112 if (on_rq)
10113 enqueue_task(rq, tsk, 0);
10114
10115 task_rq_unlock(rq, &flags);
10116 }
10117 #endif /* CONFIG_GROUP_SCHED */
10118
10119 #ifdef CONFIG_FAIR_GROUP_SCHED
10120 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10121 {
10122 struct cfs_rq *cfs_rq = se->cfs_rq;
10123 int on_rq;
10124
10125 on_rq = se->on_rq;
10126 if (on_rq)
10127 dequeue_entity(cfs_rq, se, 0);
10128
10129 se->load.weight = shares;
10130 se->load.inv_weight = 0;
10131
10132 if (on_rq)
10133 enqueue_entity(cfs_rq, se, 0);
10134 }
10135
10136 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10137 {
10138 struct cfs_rq *cfs_rq = se->cfs_rq;
10139 struct rq *rq = cfs_rq->rq;
10140 unsigned long flags;
10141
10142 raw_spin_lock_irqsave(&rq->lock, flags);
10143 __set_se_shares(se, shares);
10144 raw_spin_unlock_irqrestore(&rq->lock, flags);
10145 }
10146
10147 static DEFINE_MUTEX(shares_mutex);
10148
10149 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10150 {
10151 int i;
10152 unsigned long flags;
10153
10154 /*
10155 * We can't change the weight of the root cgroup.
10156 */
10157 if (!tg->se[0])
10158 return -EINVAL;
10159
10160 if (shares < MIN_SHARES)
10161 shares = MIN_SHARES;
10162 else if (shares > MAX_SHARES)
10163 shares = MAX_SHARES;
10164
10165 mutex_lock(&shares_mutex);
10166 if (tg->shares == shares)
10167 goto done;
10168
10169 spin_lock_irqsave(&task_group_lock, flags);
10170 for_each_possible_cpu(i)
10171 unregister_fair_sched_group(tg, i);
10172 list_del_rcu(&tg->siblings);
10173 spin_unlock_irqrestore(&task_group_lock, flags);
10174
10175 /* wait for any ongoing reference to this group to finish */
10176 synchronize_sched();
10177
10178 /*
10179 * Now we are free to modify the group's share on each cpu
10180 * w/o tripping rebalance_share or load_balance_fair.
10181 */
10182 tg->shares = shares;
10183 for_each_possible_cpu(i) {
10184 /*
10185 * force a rebalance
10186 */
10187 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10188 set_se_shares(tg->se[i], shares);
10189 }
10190
10191 /*
10192 * Enable load balance activity on this group, by inserting it back on
10193 * each cpu's rq->leaf_cfs_rq_list.
10194 */
10195 spin_lock_irqsave(&task_group_lock, flags);
10196 for_each_possible_cpu(i)
10197 register_fair_sched_group(tg, i);
10198 list_add_rcu(&tg->siblings, &tg->parent->children);
10199 spin_unlock_irqrestore(&task_group_lock, flags);
10200 done:
10201 mutex_unlock(&shares_mutex);
10202 return 0;
10203 }
10204
10205 unsigned long sched_group_shares(struct task_group *tg)
10206 {
10207 return tg->shares;
10208 }
10209 #endif
10210
10211 #ifdef CONFIG_RT_GROUP_SCHED
10212 /*
10213 * Ensure that the real time constraints are schedulable.
10214 */
10215 static DEFINE_MUTEX(rt_constraints_mutex);
10216
10217 static unsigned long to_ratio(u64 period, u64 runtime)
10218 {
10219 if (runtime == RUNTIME_INF)
10220 return 1ULL << 20;
10221
10222 return div64_u64(runtime << 20, period);
10223 }
10224
10225 /* Must be called with tasklist_lock held */
10226 static inline int tg_has_rt_tasks(struct task_group *tg)
10227 {
10228 struct task_struct *g, *p;
10229
10230 do_each_thread(g, p) {
10231 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10232 return 1;
10233 } while_each_thread(g, p);
10234
10235 return 0;
10236 }
10237
10238 struct rt_schedulable_data {
10239 struct task_group *tg;
10240 u64 rt_period;
10241 u64 rt_runtime;
10242 };
10243
10244 static int tg_schedulable(struct task_group *tg, void *data)
10245 {
10246 struct rt_schedulable_data *d = data;
10247 struct task_group *child;
10248 unsigned long total, sum = 0;
10249 u64 period, runtime;
10250
10251 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10252 runtime = tg->rt_bandwidth.rt_runtime;
10253
10254 if (tg == d->tg) {
10255 period = d->rt_period;
10256 runtime = d->rt_runtime;
10257 }
10258
10259 #ifdef CONFIG_USER_SCHED
10260 if (tg == &root_task_group) {
10261 period = global_rt_period();
10262 runtime = global_rt_runtime();
10263 }
10264 #endif
10265
10266 /*
10267 * Cannot have more runtime than the period.
10268 */
10269 if (runtime > period && runtime != RUNTIME_INF)
10270 return -EINVAL;
10271
10272 /*
10273 * Ensure we don't starve existing RT tasks.
10274 */
10275 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10276 return -EBUSY;
10277
10278 total = to_ratio(period, runtime);
10279
10280 /*
10281 * Nobody can have more than the global setting allows.
10282 */
10283 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10284 return -EINVAL;
10285
10286 /*
10287 * The sum of our children's runtime should not exceed our own.
10288 */
10289 list_for_each_entry_rcu(child, &tg->children, siblings) {
10290 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10291 runtime = child->rt_bandwidth.rt_runtime;
10292
10293 if (child == d->tg) {
10294 period = d->rt_period;
10295 runtime = d->rt_runtime;
10296 }
10297
10298 sum += to_ratio(period, runtime);
10299 }
10300
10301 if (sum > total)
10302 return -EINVAL;
10303
10304 return 0;
10305 }
10306
10307 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10308 {
10309 struct rt_schedulable_data data = {
10310 .tg = tg,
10311 .rt_period = period,
10312 .rt_runtime = runtime,
10313 };
10314
10315 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10316 }
10317
10318 static int tg_set_bandwidth(struct task_group *tg,
10319 u64 rt_period, u64 rt_runtime)
10320 {
10321 int i, err = 0;
10322
10323 mutex_lock(&rt_constraints_mutex);
10324 read_lock(&tasklist_lock);
10325 err = __rt_schedulable(tg, rt_period, rt_runtime);
10326 if (err)
10327 goto unlock;
10328
10329 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10330 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10331 tg->rt_bandwidth.rt_runtime = rt_runtime;
10332
10333 for_each_possible_cpu(i) {
10334 struct rt_rq *rt_rq = tg->rt_rq[i];
10335
10336 raw_spin_lock(&rt_rq->rt_runtime_lock);
10337 rt_rq->rt_runtime = rt_runtime;
10338 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10339 }
10340 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10341 unlock:
10342 read_unlock(&tasklist_lock);
10343 mutex_unlock(&rt_constraints_mutex);
10344
10345 return err;
10346 }
10347
10348 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10349 {
10350 u64 rt_runtime, rt_period;
10351
10352 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10353 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10354 if (rt_runtime_us < 0)
10355 rt_runtime = RUNTIME_INF;
10356
10357 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10358 }
10359
10360 long sched_group_rt_runtime(struct task_group *tg)
10361 {
10362 u64 rt_runtime_us;
10363
10364 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10365 return -1;
10366
10367 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10368 do_div(rt_runtime_us, NSEC_PER_USEC);
10369 return rt_runtime_us;
10370 }
10371
10372 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10373 {
10374 u64 rt_runtime, rt_period;
10375
10376 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10377 rt_runtime = tg->rt_bandwidth.rt_runtime;
10378
10379 if (rt_period == 0)
10380 return -EINVAL;
10381
10382 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10383 }
10384
10385 long sched_group_rt_period(struct task_group *tg)
10386 {
10387 u64 rt_period_us;
10388
10389 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10390 do_div(rt_period_us, NSEC_PER_USEC);
10391 return rt_period_us;
10392 }
10393
10394 static int sched_rt_global_constraints(void)
10395 {
10396 u64 runtime, period;
10397 int ret = 0;
10398
10399 if (sysctl_sched_rt_period <= 0)
10400 return -EINVAL;
10401
10402 runtime = global_rt_runtime();
10403 period = global_rt_period();
10404
10405 /*
10406 * Sanity check on the sysctl variables.
10407 */
10408 if (runtime > period && runtime != RUNTIME_INF)
10409 return -EINVAL;
10410
10411 mutex_lock(&rt_constraints_mutex);
10412 read_lock(&tasklist_lock);
10413 ret = __rt_schedulable(NULL, 0, 0);
10414 read_unlock(&tasklist_lock);
10415 mutex_unlock(&rt_constraints_mutex);
10416
10417 return ret;
10418 }
10419
10420 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10421 {
10422 /* Don't accept realtime tasks when there is no way for them to run */
10423 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10424 return 0;
10425
10426 return 1;
10427 }
10428
10429 #else /* !CONFIG_RT_GROUP_SCHED */
10430 static int sched_rt_global_constraints(void)
10431 {
10432 unsigned long flags;
10433 int i;
10434
10435 if (sysctl_sched_rt_period <= 0)
10436 return -EINVAL;
10437
10438 /*
10439 * There's always some RT tasks in the root group
10440 * -- migration, kstopmachine etc..
10441 */
10442 if (sysctl_sched_rt_runtime == 0)
10443 return -EBUSY;
10444
10445 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10446 for_each_possible_cpu(i) {
10447 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10448
10449 raw_spin_lock(&rt_rq->rt_runtime_lock);
10450 rt_rq->rt_runtime = global_rt_runtime();
10451 raw_spin_unlock(&rt_rq->rt_runtime_lock);
10452 }
10453 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10454
10455 return 0;
10456 }
10457 #endif /* CONFIG_RT_GROUP_SCHED */
10458
10459 int sched_rt_handler(struct ctl_table *table, int write,
10460 void __user *buffer, size_t *lenp,
10461 loff_t *ppos)
10462 {
10463 int ret;
10464 int old_period, old_runtime;
10465 static DEFINE_MUTEX(mutex);
10466
10467 mutex_lock(&mutex);
10468 old_period = sysctl_sched_rt_period;
10469 old_runtime = sysctl_sched_rt_runtime;
10470
10471 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10472
10473 if (!ret && write) {
10474 ret = sched_rt_global_constraints();
10475 if (ret) {
10476 sysctl_sched_rt_period = old_period;
10477 sysctl_sched_rt_runtime = old_runtime;
10478 } else {
10479 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10480 def_rt_bandwidth.rt_period =
10481 ns_to_ktime(global_rt_period());
10482 }
10483 }
10484 mutex_unlock(&mutex);
10485
10486 return ret;
10487 }
10488
10489 #ifdef CONFIG_CGROUP_SCHED
10490
10491 /* return corresponding task_group object of a cgroup */
10492 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10493 {
10494 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10495 struct task_group, css);
10496 }
10497
10498 static struct cgroup_subsys_state *
10499 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10500 {
10501 struct task_group *tg, *parent;
10502
10503 if (!cgrp->parent) {
10504 /* This is early initialization for the top cgroup */
10505 return &init_task_group.css;
10506 }
10507
10508 parent = cgroup_tg(cgrp->parent);
10509 tg = sched_create_group(parent);
10510 if (IS_ERR(tg))
10511 return ERR_PTR(-ENOMEM);
10512
10513 return &tg->css;
10514 }
10515
10516 static void
10517 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10518 {
10519 struct task_group *tg = cgroup_tg(cgrp);
10520
10521 sched_destroy_group(tg);
10522 }
10523
10524 static int
10525 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10526 {
10527 #ifdef CONFIG_RT_GROUP_SCHED
10528 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10529 return -EINVAL;
10530 #else
10531 /* We don't support RT-tasks being in separate groups */
10532 if (tsk->sched_class != &fair_sched_class)
10533 return -EINVAL;
10534 #endif
10535 return 0;
10536 }
10537
10538 static int
10539 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10540 struct task_struct *tsk, bool threadgroup)
10541 {
10542 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10543 if (retval)
10544 return retval;
10545 if (threadgroup) {
10546 struct task_struct *c;
10547 rcu_read_lock();
10548 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10549 retval = cpu_cgroup_can_attach_task(cgrp, c);
10550 if (retval) {
10551 rcu_read_unlock();
10552 return retval;
10553 }
10554 }
10555 rcu_read_unlock();
10556 }
10557 return 0;
10558 }
10559
10560 static void
10561 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10562 struct cgroup *old_cont, struct task_struct *tsk,
10563 bool threadgroup)
10564 {
10565 sched_move_task(tsk);
10566 if (threadgroup) {
10567 struct task_struct *c;
10568 rcu_read_lock();
10569 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10570 sched_move_task(c);
10571 }
10572 rcu_read_unlock();
10573 }
10574 }
10575
10576 #ifdef CONFIG_FAIR_GROUP_SCHED
10577 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10578 u64 shareval)
10579 {
10580 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10581 }
10582
10583 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10584 {
10585 struct task_group *tg = cgroup_tg(cgrp);
10586
10587 return (u64) tg->shares;
10588 }
10589 #endif /* CONFIG_FAIR_GROUP_SCHED */
10590
10591 #ifdef CONFIG_RT_GROUP_SCHED
10592 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10593 s64 val)
10594 {
10595 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10596 }
10597
10598 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10599 {
10600 return sched_group_rt_runtime(cgroup_tg(cgrp));
10601 }
10602
10603 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10604 u64 rt_period_us)
10605 {
10606 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10607 }
10608
10609 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10610 {
10611 return sched_group_rt_period(cgroup_tg(cgrp));
10612 }
10613 #endif /* CONFIG_RT_GROUP_SCHED */
10614
10615 static struct cftype cpu_files[] = {
10616 #ifdef CONFIG_FAIR_GROUP_SCHED
10617 {
10618 .name = "shares",
10619 .read_u64 = cpu_shares_read_u64,
10620 .write_u64 = cpu_shares_write_u64,
10621 },
10622 #endif
10623 #ifdef CONFIG_RT_GROUP_SCHED
10624 {
10625 .name = "rt_runtime_us",
10626 .read_s64 = cpu_rt_runtime_read,
10627 .write_s64 = cpu_rt_runtime_write,
10628 },
10629 {
10630 .name = "rt_period_us",
10631 .read_u64 = cpu_rt_period_read_uint,
10632 .write_u64 = cpu_rt_period_write_uint,
10633 },
10634 #endif
10635 };
10636
10637 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10638 {
10639 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10640 }
10641
10642 struct cgroup_subsys cpu_cgroup_subsys = {
10643 .name = "cpu",
10644 .create = cpu_cgroup_create,
10645 .destroy = cpu_cgroup_destroy,
10646 .can_attach = cpu_cgroup_can_attach,
10647 .attach = cpu_cgroup_attach,
10648 .populate = cpu_cgroup_populate,
10649 .subsys_id = cpu_cgroup_subsys_id,
10650 .early_init = 1,
10651 };
10652
10653 #endif /* CONFIG_CGROUP_SCHED */
10654
10655 #ifdef CONFIG_CGROUP_CPUACCT
10656
10657 /*
10658 * CPU accounting code for task groups.
10659 *
10660 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10661 * (balbir@in.ibm.com).
10662 */
10663
10664 /* track cpu usage of a group of tasks and its child groups */
10665 struct cpuacct {
10666 struct cgroup_subsys_state css;
10667 /* cpuusage holds pointer to a u64-type object on every cpu */
10668 u64 *cpuusage;
10669 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10670 struct cpuacct *parent;
10671 };
10672
10673 struct cgroup_subsys cpuacct_subsys;
10674
10675 /* return cpu accounting group corresponding to this container */
10676 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10677 {
10678 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10679 struct cpuacct, css);
10680 }
10681
10682 /* return cpu accounting group to which this task belongs */
10683 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10684 {
10685 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10686 struct cpuacct, css);
10687 }
10688
10689 /* create a new cpu accounting group */
10690 static struct cgroup_subsys_state *cpuacct_create(
10691 struct cgroup_subsys *ss, struct cgroup *cgrp)
10692 {
10693 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10694 int i;
10695
10696 if (!ca)
10697 goto out;
10698
10699 ca->cpuusage = alloc_percpu(u64);
10700 if (!ca->cpuusage)
10701 goto out_free_ca;
10702
10703 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10704 if (percpu_counter_init(&ca->cpustat[i], 0))
10705 goto out_free_counters;
10706
10707 if (cgrp->parent)
10708 ca->parent = cgroup_ca(cgrp->parent);
10709
10710 return &ca->css;
10711
10712 out_free_counters:
10713 while (--i >= 0)
10714 percpu_counter_destroy(&ca->cpustat[i]);
10715 free_percpu(ca->cpuusage);
10716 out_free_ca:
10717 kfree(ca);
10718 out:
10719 return ERR_PTR(-ENOMEM);
10720 }
10721
10722 /* destroy an existing cpu accounting group */
10723 static void
10724 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10725 {
10726 struct cpuacct *ca = cgroup_ca(cgrp);
10727 int i;
10728
10729 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10730 percpu_counter_destroy(&ca->cpustat[i]);
10731 free_percpu(ca->cpuusage);
10732 kfree(ca);
10733 }
10734
10735 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10736 {
10737 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10738 u64 data;
10739
10740 #ifndef CONFIG_64BIT
10741 /*
10742 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10743 */
10744 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10745 data = *cpuusage;
10746 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10747 #else
10748 data = *cpuusage;
10749 #endif
10750
10751 return data;
10752 }
10753
10754 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10755 {
10756 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10757
10758 #ifndef CONFIG_64BIT
10759 /*
10760 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10761 */
10762 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
10763 *cpuusage = val;
10764 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
10765 #else
10766 *cpuusage = val;
10767 #endif
10768 }
10769
10770 /* return total cpu usage (in nanoseconds) of a group */
10771 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10772 {
10773 struct cpuacct *ca = cgroup_ca(cgrp);
10774 u64 totalcpuusage = 0;
10775 int i;
10776
10777 for_each_present_cpu(i)
10778 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10779
10780 return totalcpuusage;
10781 }
10782
10783 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10784 u64 reset)
10785 {
10786 struct cpuacct *ca = cgroup_ca(cgrp);
10787 int err = 0;
10788 int i;
10789
10790 if (reset) {
10791 err = -EINVAL;
10792 goto out;
10793 }
10794
10795 for_each_present_cpu(i)
10796 cpuacct_cpuusage_write(ca, i, 0);
10797
10798 out:
10799 return err;
10800 }
10801
10802 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10803 struct seq_file *m)
10804 {
10805 struct cpuacct *ca = cgroup_ca(cgroup);
10806 u64 percpu;
10807 int i;
10808
10809 for_each_present_cpu(i) {
10810 percpu = cpuacct_cpuusage_read(ca, i);
10811 seq_printf(m, "%llu ", (unsigned long long) percpu);
10812 }
10813 seq_printf(m, "\n");
10814 return 0;
10815 }
10816
10817 static const char *cpuacct_stat_desc[] = {
10818 [CPUACCT_STAT_USER] = "user",
10819 [CPUACCT_STAT_SYSTEM] = "system",
10820 };
10821
10822 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10823 struct cgroup_map_cb *cb)
10824 {
10825 struct cpuacct *ca = cgroup_ca(cgrp);
10826 int i;
10827
10828 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10829 s64 val = percpu_counter_read(&ca->cpustat[i]);
10830 val = cputime64_to_clock_t(val);
10831 cb->fill(cb, cpuacct_stat_desc[i], val);
10832 }
10833 return 0;
10834 }
10835
10836 static struct cftype files[] = {
10837 {
10838 .name = "usage",
10839 .read_u64 = cpuusage_read,
10840 .write_u64 = cpuusage_write,
10841 },
10842 {
10843 .name = "usage_percpu",
10844 .read_seq_string = cpuacct_percpu_seq_read,
10845 },
10846 {
10847 .name = "stat",
10848 .read_map = cpuacct_stats_show,
10849 },
10850 };
10851
10852 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10853 {
10854 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10855 }
10856
10857 /*
10858 * charge this task's execution time to its accounting group.
10859 *
10860 * called with rq->lock held.
10861 */
10862 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10863 {
10864 struct cpuacct *ca;
10865 int cpu;
10866
10867 if (unlikely(!cpuacct_subsys.active))
10868 return;
10869
10870 cpu = task_cpu(tsk);
10871
10872 rcu_read_lock();
10873
10874 ca = task_ca(tsk);
10875
10876 for (; ca; ca = ca->parent) {
10877 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10878 *cpuusage += cputime;
10879 }
10880
10881 rcu_read_unlock();
10882 }
10883
10884 /*
10885 * Charge the system/user time to the task's accounting group.
10886 */
10887 static void cpuacct_update_stats(struct task_struct *tsk,
10888 enum cpuacct_stat_index idx, cputime_t val)
10889 {
10890 struct cpuacct *ca;
10891
10892 if (unlikely(!cpuacct_subsys.active))
10893 return;
10894
10895 rcu_read_lock();
10896 ca = task_ca(tsk);
10897
10898 do {
10899 percpu_counter_add(&ca->cpustat[idx], val);
10900 ca = ca->parent;
10901 } while (ca);
10902 rcu_read_unlock();
10903 }
10904
10905 struct cgroup_subsys cpuacct_subsys = {
10906 .name = "cpuacct",
10907 .create = cpuacct_create,
10908 .destroy = cpuacct_destroy,
10909 .populate = cpuacct_populate,
10910 .subsys_id = cpuacct_subsys_id,
10911 };
10912 #endif /* CONFIG_CGROUP_CPUACCT */
10913
10914 #ifndef CONFIG_SMP
10915
10916 int rcu_expedited_torture_stats(char *page)
10917 {
10918 return 0;
10919 }
10920 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10921
10922 void synchronize_sched_expedited(void)
10923 {
10924 }
10925 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10926
10927 #else /* #ifndef CONFIG_SMP */
10928
10929 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10930 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10931
10932 #define RCU_EXPEDITED_STATE_POST -2
10933 #define RCU_EXPEDITED_STATE_IDLE -1
10934
10935 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10936
10937 int rcu_expedited_torture_stats(char *page)
10938 {
10939 int cnt = 0;
10940 int cpu;
10941
10942 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10943 for_each_online_cpu(cpu) {
10944 cnt += sprintf(&page[cnt], " %d:%d",
10945 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10946 }
10947 cnt += sprintf(&page[cnt], "\n");
10948 return cnt;
10949 }
10950 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10951
10952 static long synchronize_sched_expedited_count;
10953
10954 /*
10955 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10956 * approach to force grace period to end quickly. This consumes
10957 * significant time on all CPUs, and is thus not recommended for
10958 * any sort of common-case code.
10959 *
10960 * Note that it is illegal to call this function while holding any
10961 * lock that is acquired by a CPU-hotplug notifier. Failing to
10962 * observe this restriction will result in deadlock.
10963 */
10964 void synchronize_sched_expedited(void)
10965 {
10966 int cpu;
10967 unsigned long flags;
10968 bool need_full_sync = 0;
10969 struct rq *rq;
10970 struct migration_req *req;
10971 long snap;
10972 int trycount = 0;
10973
10974 smp_mb(); /* ensure prior mod happens before capturing snap. */
10975 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10976 get_online_cpus();
10977 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10978 put_online_cpus();
10979 if (trycount++ < 10)
10980 udelay(trycount * num_online_cpus());
10981 else {
10982 synchronize_sched();
10983 return;
10984 }
10985 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10986 smp_mb(); /* ensure test happens before caller kfree */
10987 return;
10988 }
10989 get_online_cpus();
10990 }
10991 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10992 for_each_online_cpu(cpu) {
10993 rq = cpu_rq(cpu);
10994 req = &per_cpu(rcu_migration_req, cpu);
10995 init_completion(&req->done);
10996 req->task = NULL;
10997 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10998 raw_spin_lock_irqsave(&rq->lock, flags);
10999 list_add(&req->list, &rq->migration_queue);
11000 raw_spin_unlock_irqrestore(&rq->lock, flags);
11001 wake_up_process(rq->migration_thread);
11002 }
11003 for_each_online_cpu(cpu) {
11004 rcu_expedited_state = cpu;
11005 req = &per_cpu(rcu_migration_req, cpu);
11006 rq = cpu_rq(cpu);
11007 wait_for_completion(&req->done);
11008 raw_spin_lock_irqsave(&rq->lock, flags);
11009 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11010 need_full_sync = 1;
11011 req->dest_cpu = RCU_MIGRATION_IDLE;
11012 raw_spin_unlock_irqrestore(&rq->lock, flags);
11013 }
11014 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11015 synchronize_sched_expedited_count++;
11016 mutex_unlock(&rcu_sched_expedited_mutex);
11017 put_online_cpus();
11018 if (need_full_sync)
11019 synchronize_sched();
11020 }
11021 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11022
11023 #endif /* #else #ifndef CONFIG_SMP */