]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched.c
Merge branch 'for-linus' of git://oss.sgi.com:8090/xfs/xfs-2.6
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
65
66 #include <asm/tlb.h>
67
68 /*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73 unsigned long long __attribute__((weak)) sched_clock(void)
74 {
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76 }
77
78 /*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87 /*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96 /*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
105 /*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
110 */
111 #define DEF_TIMESLICE (100 * HZ / 1000)
112
113 #ifdef CONFIG_SMP
114 /*
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
117 */
118 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
119 {
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
121 }
122
123 /*
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
126 */
127 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
128 {
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
131 }
132 #endif
133
134 static inline int rt_policy(int policy)
135 {
136 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
137 return 1;
138 return 0;
139 }
140
141 static inline int task_has_rt_policy(struct task_struct *p)
142 {
143 return rt_policy(p->policy);
144 }
145
146 /*
147 * This is the priority-queue data structure of the RT scheduling class:
148 */
149 struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
152 };
153
154 #ifdef CONFIG_FAIR_GROUP_SCHED
155
156 struct cfs_rq;
157
158 /* task group related information */
159 struct task_group {
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity **se;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq **cfs_rq;
164 unsigned long shares;
165 /* spinlock to serialize modification to shares */
166 spinlock_t lock;
167 };
168
169 /* Default task group's sched entity on each cpu */
170 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
171 /* Default task group's cfs_rq on each cpu */
172 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
173
174 static struct sched_entity *init_sched_entity_p[NR_CPUS];
175 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
176
177 /* Default task group.
178 * Every task in system belong to this group at bootup.
179 */
180 struct task_group init_task_group = {
181 .se = init_sched_entity_p,
182 .cfs_rq = init_cfs_rq_p,
183 };
184
185 #ifdef CONFIG_FAIR_USER_SCHED
186 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
187 #else
188 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
189 #endif
190
191 static int init_task_group_load = INIT_TASK_GRP_LOAD;
192
193 /* return group to which a task belongs */
194 static inline struct task_group *task_group(struct task_struct *p)
195 {
196 struct task_group *tg;
197
198 #ifdef CONFIG_FAIR_USER_SCHED
199 tg = p->user->tg;
200 #else
201 tg = &init_task_group;
202 #endif
203
204 return tg;
205 }
206
207 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
208 static inline void set_task_cfs_rq(struct task_struct *p)
209 {
210 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
211 p->se.parent = task_group(p)->se[task_cpu(p)];
212 }
213
214 #else
215
216 static inline void set_task_cfs_rq(struct task_struct *p) { }
217
218 #endif /* CONFIG_FAIR_GROUP_SCHED */
219
220 /* CFS-related fields in a runqueue */
221 struct cfs_rq {
222 struct load_weight load;
223 unsigned long nr_running;
224
225 u64 exec_clock;
226 u64 min_vruntime;
227
228 struct rb_root tasks_timeline;
229 struct rb_node *rb_leftmost;
230 struct rb_node *rb_load_balance_curr;
231 /* 'curr' points to currently running entity on this cfs_rq.
232 * It is set to NULL otherwise (i.e when none are currently running).
233 */
234 struct sched_entity *curr;
235
236 unsigned long nr_spread_over;
237
238 #ifdef CONFIG_FAIR_GROUP_SCHED
239 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
240
241 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
242 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
243 * (like users, containers etc.)
244 *
245 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
246 * list is used during load balance.
247 */
248 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
249 struct task_group *tg; /* group that "owns" this runqueue */
250 struct rcu_head rcu;
251 #endif
252 };
253
254 /* Real-Time classes' related field in a runqueue: */
255 struct rt_rq {
256 struct rt_prio_array active;
257 int rt_load_balance_idx;
258 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
259 };
260
261 /*
262 * This is the main, per-CPU runqueue data structure.
263 *
264 * Locking rule: those places that want to lock multiple runqueues
265 * (such as the load balancing or the thread migration code), lock
266 * acquire operations must be ordered by ascending &runqueue.
267 */
268 struct rq {
269 spinlock_t lock; /* runqueue lock */
270
271 /*
272 * nr_running and cpu_load should be in the same cacheline because
273 * remote CPUs use both these fields when doing load calculation.
274 */
275 unsigned long nr_running;
276 #define CPU_LOAD_IDX_MAX 5
277 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
278 unsigned char idle_at_tick;
279 #ifdef CONFIG_NO_HZ
280 unsigned char in_nohz_recently;
281 #endif
282 struct load_weight load; /* capture load from *all* tasks on this cpu */
283 unsigned long nr_load_updates;
284 u64 nr_switches;
285
286 struct cfs_rq cfs;
287 #ifdef CONFIG_FAIR_GROUP_SCHED
288 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
289 #endif
290 struct rt_rq rt;
291
292 /*
293 * This is part of a global counter where only the total sum
294 * over all CPUs matters. A task can increase this counter on
295 * one CPU and if it got migrated afterwards it may decrease
296 * it on another CPU. Always updated under the runqueue lock:
297 */
298 unsigned long nr_uninterruptible;
299
300 struct task_struct *curr, *idle;
301 unsigned long next_balance;
302 struct mm_struct *prev_mm;
303
304 u64 clock, prev_clock_raw;
305 s64 clock_max_delta;
306
307 unsigned int clock_warps, clock_overflows;
308 u64 idle_clock;
309 unsigned int clock_deep_idle_events;
310 u64 tick_timestamp;
311
312 atomic_t nr_iowait;
313
314 #ifdef CONFIG_SMP
315 struct sched_domain *sd;
316
317 /* For active balancing */
318 int active_balance;
319 int push_cpu;
320 int cpu; /* cpu of this runqueue */
321
322 struct task_struct *migration_thread;
323 struct list_head migration_queue;
324 #endif
325
326 #ifdef CONFIG_SCHEDSTATS
327 /* latency stats */
328 struct sched_info rq_sched_info;
329
330 /* sys_sched_yield() stats */
331 unsigned long yld_exp_empty;
332 unsigned long yld_act_empty;
333 unsigned long yld_both_empty;
334 unsigned long yld_count;
335
336 /* schedule() stats */
337 unsigned long sched_switch;
338 unsigned long sched_count;
339 unsigned long sched_goidle;
340
341 /* try_to_wake_up() stats */
342 unsigned long ttwu_count;
343 unsigned long ttwu_local;
344
345 /* BKL stats */
346 unsigned long bkl_count;
347 #endif
348 struct lock_class_key rq_lock_key;
349 };
350
351 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
352 static DEFINE_MUTEX(sched_hotcpu_mutex);
353
354 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
355 {
356 rq->curr->sched_class->check_preempt_curr(rq, p);
357 }
358
359 static inline int cpu_of(struct rq *rq)
360 {
361 #ifdef CONFIG_SMP
362 return rq->cpu;
363 #else
364 return 0;
365 #endif
366 }
367
368 /*
369 * Update the per-runqueue clock, as finegrained as the platform can give
370 * us, but without assuming monotonicity, etc.:
371 */
372 static void __update_rq_clock(struct rq *rq)
373 {
374 u64 prev_raw = rq->prev_clock_raw;
375 u64 now = sched_clock();
376 s64 delta = now - prev_raw;
377 u64 clock = rq->clock;
378
379 #ifdef CONFIG_SCHED_DEBUG
380 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
381 #endif
382 /*
383 * Protect against sched_clock() occasionally going backwards:
384 */
385 if (unlikely(delta < 0)) {
386 clock++;
387 rq->clock_warps++;
388 } else {
389 /*
390 * Catch too large forward jumps too:
391 */
392 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
393 if (clock < rq->tick_timestamp + TICK_NSEC)
394 clock = rq->tick_timestamp + TICK_NSEC;
395 else
396 clock++;
397 rq->clock_overflows++;
398 } else {
399 if (unlikely(delta > rq->clock_max_delta))
400 rq->clock_max_delta = delta;
401 clock += delta;
402 }
403 }
404
405 rq->prev_clock_raw = now;
406 rq->clock = clock;
407 }
408
409 static void update_rq_clock(struct rq *rq)
410 {
411 if (likely(smp_processor_id() == cpu_of(rq)))
412 __update_rq_clock(rq);
413 }
414
415 /*
416 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
417 * See detach_destroy_domains: synchronize_sched for details.
418 *
419 * The domain tree of any CPU may only be accessed from within
420 * preempt-disabled sections.
421 */
422 #define for_each_domain(cpu, __sd) \
423 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
424
425 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
426 #define this_rq() (&__get_cpu_var(runqueues))
427 #define task_rq(p) cpu_rq(task_cpu(p))
428 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
429
430 /*
431 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
432 */
433 #ifdef CONFIG_SCHED_DEBUG
434 # define const_debug __read_mostly
435 #else
436 # define const_debug static const
437 #endif
438
439 /*
440 * Debugging: various feature bits
441 */
442 enum {
443 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
444 SCHED_FEAT_START_DEBIT = 2,
445 SCHED_FEAT_TREE_AVG = 4,
446 SCHED_FEAT_APPROX_AVG = 8,
447 SCHED_FEAT_WAKEUP_PREEMPT = 16,
448 SCHED_FEAT_PREEMPT_RESTRICT = 32,
449 };
450
451 const_debug unsigned int sysctl_sched_features =
452 SCHED_FEAT_NEW_FAIR_SLEEPERS *1 |
453 SCHED_FEAT_START_DEBIT *1 |
454 SCHED_FEAT_TREE_AVG *0 |
455 SCHED_FEAT_APPROX_AVG *0 |
456 SCHED_FEAT_WAKEUP_PREEMPT *1 |
457 SCHED_FEAT_PREEMPT_RESTRICT *1;
458
459 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
460
461 /*
462 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
463 * clock constructed from sched_clock():
464 */
465 unsigned long long cpu_clock(int cpu)
466 {
467 unsigned long long now;
468 unsigned long flags;
469 struct rq *rq;
470
471 local_irq_save(flags);
472 rq = cpu_rq(cpu);
473 update_rq_clock(rq);
474 now = rq->clock;
475 local_irq_restore(flags);
476
477 return now;
478 }
479 EXPORT_SYMBOL_GPL(cpu_clock);
480
481 #ifndef prepare_arch_switch
482 # define prepare_arch_switch(next) do { } while (0)
483 #endif
484 #ifndef finish_arch_switch
485 # define finish_arch_switch(prev) do { } while (0)
486 #endif
487
488 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
489 static inline int task_running(struct rq *rq, struct task_struct *p)
490 {
491 return rq->curr == p;
492 }
493
494 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
495 {
496 }
497
498 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
499 {
500 #ifdef CONFIG_DEBUG_SPINLOCK
501 /* this is a valid case when another task releases the spinlock */
502 rq->lock.owner = current;
503 #endif
504 /*
505 * If we are tracking spinlock dependencies then we have to
506 * fix up the runqueue lock - which gets 'carried over' from
507 * prev into current:
508 */
509 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
510
511 spin_unlock_irq(&rq->lock);
512 }
513
514 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
515 static inline int task_running(struct rq *rq, struct task_struct *p)
516 {
517 #ifdef CONFIG_SMP
518 return p->oncpu;
519 #else
520 return rq->curr == p;
521 #endif
522 }
523
524 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
525 {
526 #ifdef CONFIG_SMP
527 /*
528 * We can optimise this out completely for !SMP, because the
529 * SMP rebalancing from interrupt is the only thing that cares
530 * here.
531 */
532 next->oncpu = 1;
533 #endif
534 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
535 spin_unlock_irq(&rq->lock);
536 #else
537 spin_unlock(&rq->lock);
538 #endif
539 }
540
541 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
542 {
543 #ifdef CONFIG_SMP
544 /*
545 * After ->oncpu is cleared, the task can be moved to a different CPU.
546 * We must ensure this doesn't happen until the switch is completely
547 * finished.
548 */
549 smp_wmb();
550 prev->oncpu = 0;
551 #endif
552 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
553 local_irq_enable();
554 #endif
555 }
556 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
557
558 /*
559 * __task_rq_lock - lock the runqueue a given task resides on.
560 * Must be called interrupts disabled.
561 */
562 static inline struct rq *__task_rq_lock(struct task_struct *p)
563 __acquires(rq->lock)
564 {
565 for (;;) {
566 struct rq *rq = task_rq(p);
567 spin_lock(&rq->lock);
568 if (likely(rq == task_rq(p)))
569 return rq;
570 spin_unlock(&rq->lock);
571 }
572 }
573
574 /*
575 * task_rq_lock - lock the runqueue a given task resides on and disable
576 * interrupts. Note the ordering: we can safely lookup the task_rq without
577 * explicitly disabling preemption.
578 */
579 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
580 __acquires(rq->lock)
581 {
582 struct rq *rq;
583
584 for (;;) {
585 local_irq_save(*flags);
586 rq = task_rq(p);
587 spin_lock(&rq->lock);
588 if (likely(rq == task_rq(p)))
589 return rq;
590 spin_unlock_irqrestore(&rq->lock, *flags);
591 }
592 }
593
594 static void __task_rq_unlock(struct rq *rq)
595 __releases(rq->lock)
596 {
597 spin_unlock(&rq->lock);
598 }
599
600 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
601 __releases(rq->lock)
602 {
603 spin_unlock_irqrestore(&rq->lock, *flags);
604 }
605
606 /*
607 * this_rq_lock - lock this runqueue and disable interrupts.
608 */
609 static struct rq *this_rq_lock(void)
610 __acquires(rq->lock)
611 {
612 struct rq *rq;
613
614 local_irq_disable();
615 rq = this_rq();
616 spin_lock(&rq->lock);
617
618 return rq;
619 }
620
621 /*
622 * We are going deep-idle (irqs are disabled):
623 */
624 void sched_clock_idle_sleep_event(void)
625 {
626 struct rq *rq = cpu_rq(smp_processor_id());
627
628 spin_lock(&rq->lock);
629 __update_rq_clock(rq);
630 spin_unlock(&rq->lock);
631 rq->clock_deep_idle_events++;
632 }
633 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
634
635 /*
636 * We just idled delta nanoseconds (called with irqs disabled):
637 */
638 void sched_clock_idle_wakeup_event(u64 delta_ns)
639 {
640 struct rq *rq = cpu_rq(smp_processor_id());
641 u64 now = sched_clock();
642
643 rq->idle_clock += delta_ns;
644 /*
645 * Override the previous timestamp and ignore all
646 * sched_clock() deltas that occured while we idled,
647 * and use the PM-provided delta_ns to advance the
648 * rq clock:
649 */
650 spin_lock(&rq->lock);
651 rq->prev_clock_raw = now;
652 rq->clock += delta_ns;
653 spin_unlock(&rq->lock);
654 }
655 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
656
657 /*
658 * resched_task - mark a task 'to be rescheduled now'.
659 *
660 * On UP this means the setting of the need_resched flag, on SMP it
661 * might also involve a cross-CPU call to trigger the scheduler on
662 * the target CPU.
663 */
664 #ifdef CONFIG_SMP
665
666 #ifndef tsk_is_polling
667 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
668 #endif
669
670 static void resched_task(struct task_struct *p)
671 {
672 int cpu;
673
674 assert_spin_locked(&task_rq(p)->lock);
675
676 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
677 return;
678
679 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
680
681 cpu = task_cpu(p);
682 if (cpu == smp_processor_id())
683 return;
684
685 /* NEED_RESCHED must be visible before we test polling */
686 smp_mb();
687 if (!tsk_is_polling(p))
688 smp_send_reschedule(cpu);
689 }
690
691 static void resched_cpu(int cpu)
692 {
693 struct rq *rq = cpu_rq(cpu);
694 unsigned long flags;
695
696 if (!spin_trylock_irqsave(&rq->lock, flags))
697 return;
698 resched_task(cpu_curr(cpu));
699 spin_unlock_irqrestore(&rq->lock, flags);
700 }
701 #else
702 static inline void resched_task(struct task_struct *p)
703 {
704 assert_spin_locked(&task_rq(p)->lock);
705 set_tsk_need_resched(p);
706 }
707 #endif
708
709 #if BITS_PER_LONG == 32
710 # define WMULT_CONST (~0UL)
711 #else
712 # define WMULT_CONST (1UL << 32)
713 #endif
714
715 #define WMULT_SHIFT 32
716
717 /*
718 * Shift right and round:
719 */
720 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
721
722 static unsigned long
723 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
724 struct load_weight *lw)
725 {
726 u64 tmp;
727
728 if (unlikely(!lw->inv_weight))
729 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
730
731 tmp = (u64)delta_exec * weight;
732 /*
733 * Check whether we'd overflow the 64-bit multiplication:
734 */
735 if (unlikely(tmp > WMULT_CONST))
736 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
737 WMULT_SHIFT/2);
738 else
739 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
740
741 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
742 }
743
744 static inline unsigned long
745 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
746 {
747 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
748 }
749
750 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
751 {
752 lw->weight += inc;
753 }
754
755 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
756 {
757 lw->weight -= dec;
758 }
759
760 /*
761 * To aid in avoiding the subversion of "niceness" due to uneven distribution
762 * of tasks with abnormal "nice" values across CPUs the contribution that
763 * each task makes to its run queue's load is weighted according to its
764 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
765 * scaled version of the new time slice allocation that they receive on time
766 * slice expiry etc.
767 */
768
769 #define WEIGHT_IDLEPRIO 2
770 #define WMULT_IDLEPRIO (1 << 31)
771
772 /*
773 * Nice levels are multiplicative, with a gentle 10% change for every
774 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
775 * nice 1, it will get ~10% less CPU time than another CPU-bound task
776 * that remained on nice 0.
777 *
778 * The "10% effect" is relative and cumulative: from _any_ nice level,
779 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
780 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
781 * If a task goes up by ~10% and another task goes down by ~10% then
782 * the relative distance between them is ~25%.)
783 */
784 static const int prio_to_weight[40] = {
785 /* -20 */ 88761, 71755, 56483, 46273, 36291,
786 /* -15 */ 29154, 23254, 18705, 14949, 11916,
787 /* -10 */ 9548, 7620, 6100, 4904, 3906,
788 /* -5 */ 3121, 2501, 1991, 1586, 1277,
789 /* 0 */ 1024, 820, 655, 526, 423,
790 /* 5 */ 335, 272, 215, 172, 137,
791 /* 10 */ 110, 87, 70, 56, 45,
792 /* 15 */ 36, 29, 23, 18, 15,
793 };
794
795 /*
796 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
797 *
798 * In cases where the weight does not change often, we can use the
799 * precalculated inverse to speed up arithmetics by turning divisions
800 * into multiplications:
801 */
802 static const u32 prio_to_wmult[40] = {
803 /* -20 */ 48388, 59856, 76040, 92818, 118348,
804 /* -15 */ 147320, 184698, 229616, 287308, 360437,
805 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
806 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
807 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
808 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
809 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
810 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
811 };
812
813 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
814
815 /*
816 * runqueue iterator, to support SMP load-balancing between different
817 * scheduling classes, without having to expose their internal data
818 * structures to the load-balancing proper:
819 */
820 struct rq_iterator {
821 void *arg;
822 struct task_struct *(*start)(void *);
823 struct task_struct *(*next)(void *);
824 };
825
826 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
827 unsigned long max_nr_move, unsigned long max_load_move,
828 struct sched_domain *sd, enum cpu_idle_type idle,
829 int *all_pinned, unsigned long *load_moved,
830 int *this_best_prio, struct rq_iterator *iterator);
831
832 #include "sched_stats.h"
833 #include "sched_idletask.c"
834 #include "sched_fair.c"
835 #include "sched_rt.c"
836 #ifdef CONFIG_SCHED_DEBUG
837 # include "sched_debug.c"
838 #endif
839
840 #define sched_class_highest (&rt_sched_class)
841
842 /*
843 * Update delta_exec, delta_fair fields for rq.
844 *
845 * delta_fair clock advances at a rate inversely proportional to
846 * total load (rq->load.weight) on the runqueue, while
847 * delta_exec advances at the same rate as wall-clock (provided
848 * cpu is not idle).
849 *
850 * delta_exec / delta_fair is a measure of the (smoothened) load on this
851 * runqueue over any given interval. This (smoothened) load is used
852 * during load balance.
853 *
854 * This function is called /before/ updating rq->load
855 * and when switching tasks.
856 */
857 static inline void inc_load(struct rq *rq, const struct task_struct *p)
858 {
859 update_load_add(&rq->load, p->se.load.weight);
860 }
861
862 static inline void dec_load(struct rq *rq, const struct task_struct *p)
863 {
864 update_load_sub(&rq->load, p->se.load.weight);
865 }
866
867 static void inc_nr_running(struct task_struct *p, struct rq *rq)
868 {
869 rq->nr_running++;
870 inc_load(rq, p);
871 }
872
873 static void dec_nr_running(struct task_struct *p, struct rq *rq)
874 {
875 rq->nr_running--;
876 dec_load(rq, p);
877 }
878
879 static void set_load_weight(struct task_struct *p)
880 {
881 if (task_has_rt_policy(p)) {
882 p->se.load.weight = prio_to_weight[0] * 2;
883 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
884 return;
885 }
886
887 /*
888 * SCHED_IDLE tasks get minimal weight:
889 */
890 if (p->policy == SCHED_IDLE) {
891 p->se.load.weight = WEIGHT_IDLEPRIO;
892 p->se.load.inv_weight = WMULT_IDLEPRIO;
893 return;
894 }
895
896 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
897 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
898 }
899
900 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
901 {
902 sched_info_queued(p);
903 p->sched_class->enqueue_task(rq, p, wakeup);
904 p->se.on_rq = 1;
905 }
906
907 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
908 {
909 p->sched_class->dequeue_task(rq, p, sleep);
910 p->se.on_rq = 0;
911 }
912
913 /*
914 * __normal_prio - return the priority that is based on the static prio
915 */
916 static inline int __normal_prio(struct task_struct *p)
917 {
918 return p->static_prio;
919 }
920
921 /*
922 * Calculate the expected normal priority: i.e. priority
923 * without taking RT-inheritance into account. Might be
924 * boosted by interactivity modifiers. Changes upon fork,
925 * setprio syscalls, and whenever the interactivity
926 * estimator recalculates.
927 */
928 static inline int normal_prio(struct task_struct *p)
929 {
930 int prio;
931
932 if (task_has_rt_policy(p))
933 prio = MAX_RT_PRIO-1 - p->rt_priority;
934 else
935 prio = __normal_prio(p);
936 return prio;
937 }
938
939 /*
940 * Calculate the current priority, i.e. the priority
941 * taken into account by the scheduler. This value might
942 * be boosted by RT tasks, or might be boosted by
943 * interactivity modifiers. Will be RT if the task got
944 * RT-boosted. If not then it returns p->normal_prio.
945 */
946 static int effective_prio(struct task_struct *p)
947 {
948 p->normal_prio = normal_prio(p);
949 /*
950 * If we are RT tasks or we were boosted to RT priority,
951 * keep the priority unchanged. Otherwise, update priority
952 * to the normal priority:
953 */
954 if (!rt_prio(p->prio))
955 return p->normal_prio;
956 return p->prio;
957 }
958
959 /*
960 * activate_task - move a task to the runqueue.
961 */
962 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
963 {
964 if (p->state == TASK_UNINTERRUPTIBLE)
965 rq->nr_uninterruptible--;
966
967 enqueue_task(rq, p, wakeup);
968 inc_nr_running(p, rq);
969 }
970
971 /*
972 * deactivate_task - remove a task from the runqueue.
973 */
974 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
975 {
976 if (p->state == TASK_UNINTERRUPTIBLE)
977 rq->nr_uninterruptible++;
978
979 dequeue_task(rq, p, sleep);
980 dec_nr_running(p, rq);
981 }
982
983 /**
984 * task_curr - is this task currently executing on a CPU?
985 * @p: the task in question.
986 */
987 inline int task_curr(const struct task_struct *p)
988 {
989 return cpu_curr(task_cpu(p)) == p;
990 }
991
992 /* Used instead of source_load when we know the type == 0 */
993 unsigned long weighted_cpuload(const int cpu)
994 {
995 return cpu_rq(cpu)->load.weight;
996 }
997
998 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
999 {
1000 #ifdef CONFIG_SMP
1001 task_thread_info(p)->cpu = cpu;
1002 #endif
1003 set_task_cfs_rq(p);
1004 }
1005
1006 #ifdef CONFIG_SMP
1007
1008 /*
1009 * Is this task likely cache-hot:
1010 */
1011 static inline int
1012 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1013 {
1014 s64 delta;
1015
1016 if (p->sched_class != &fair_sched_class)
1017 return 0;
1018
1019 if (sysctl_sched_migration_cost == -1)
1020 return 1;
1021 if (sysctl_sched_migration_cost == 0)
1022 return 0;
1023
1024 delta = now - p->se.exec_start;
1025
1026 return delta < (s64)sysctl_sched_migration_cost;
1027 }
1028
1029
1030 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1031 {
1032 int old_cpu = task_cpu(p);
1033 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1034 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1035 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1036 u64 clock_offset;
1037
1038 clock_offset = old_rq->clock - new_rq->clock;
1039
1040 #ifdef CONFIG_SCHEDSTATS
1041 if (p->se.wait_start)
1042 p->se.wait_start -= clock_offset;
1043 if (p->se.sleep_start)
1044 p->se.sleep_start -= clock_offset;
1045 if (p->se.block_start)
1046 p->se.block_start -= clock_offset;
1047 if (old_cpu != new_cpu) {
1048 schedstat_inc(p, se.nr_migrations);
1049 if (task_hot(p, old_rq->clock, NULL))
1050 schedstat_inc(p, se.nr_forced2_migrations);
1051 }
1052 #endif
1053 p->se.vruntime -= old_cfsrq->min_vruntime -
1054 new_cfsrq->min_vruntime;
1055
1056 __set_task_cpu(p, new_cpu);
1057 }
1058
1059 struct migration_req {
1060 struct list_head list;
1061
1062 struct task_struct *task;
1063 int dest_cpu;
1064
1065 struct completion done;
1066 };
1067
1068 /*
1069 * The task's runqueue lock must be held.
1070 * Returns true if you have to wait for migration thread.
1071 */
1072 static int
1073 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1074 {
1075 struct rq *rq = task_rq(p);
1076
1077 /*
1078 * If the task is not on a runqueue (and not running), then
1079 * it is sufficient to simply update the task's cpu field.
1080 */
1081 if (!p->se.on_rq && !task_running(rq, p)) {
1082 set_task_cpu(p, dest_cpu);
1083 return 0;
1084 }
1085
1086 init_completion(&req->done);
1087 req->task = p;
1088 req->dest_cpu = dest_cpu;
1089 list_add(&req->list, &rq->migration_queue);
1090
1091 return 1;
1092 }
1093
1094 /*
1095 * wait_task_inactive - wait for a thread to unschedule.
1096 *
1097 * The caller must ensure that the task *will* unschedule sometime soon,
1098 * else this function might spin for a *long* time. This function can't
1099 * be called with interrupts off, or it may introduce deadlock with
1100 * smp_call_function() if an IPI is sent by the same process we are
1101 * waiting to become inactive.
1102 */
1103 void wait_task_inactive(struct task_struct *p)
1104 {
1105 unsigned long flags;
1106 int running, on_rq;
1107 struct rq *rq;
1108
1109 for (;;) {
1110 /*
1111 * We do the initial early heuristics without holding
1112 * any task-queue locks at all. We'll only try to get
1113 * the runqueue lock when things look like they will
1114 * work out!
1115 */
1116 rq = task_rq(p);
1117
1118 /*
1119 * If the task is actively running on another CPU
1120 * still, just relax and busy-wait without holding
1121 * any locks.
1122 *
1123 * NOTE! Since we don't hold any locks, it's not
1124 * even sure that "rq" stays as the right runqueue!
1125 * But we don't care, since "task_running()" will
1126 * return false if the runqueue has changed and p
1127 * is actually now running somewhere else!
1128 */
1129 while (task_running(rq, p))
1130 cpu_relax();
1131
1132 /*
1133 * Ok, time to look more closely! We need the rq
1134 * lock now, to be *sure*. If we're wrong, we'll
1135 * just go back and repeat.
1136 */
1137 rq = task_rq_lock(p, &flags);
1138 running = task_running(rq, p);
1139 on_rq = p->se.on_rq;
1140 task_rq_unlock(rq, &flags);
1141
1142 /*
1143 * Was it really running after all now that we
1144 * checked with the proper locks actually held?
1145 *
1146 * Oops. Go back and try again..
1147 */
1148 if (unlikely(running)) {
1149 cpu_relax();
1150 continue;
1151 }
1152
1153 /*
1154 * It's not enough that it's not actively running,
1155 * it must be off the runqueue _entirely_, and not
1156 * preempted!
1157 *
1158 * So if it wa still runnable (but just not actively
1159 * running right now), it's preempted, and we should
1160 * yield - it could be a while.
1161 */
1162 if (unlikely(on_rq)) {
1163 schedule_timeout_uninterruptible(1);
1164 continue;
1165 }
1166
1167 /*
1168 * Ahh, all good. It wasn't running, and it wasn't
1169 * runnable, which means that it will never become
1170 * running in the future either. We're all done!
1171 */
1172 break;
1173 }
1174 }
1175
1176 /***
1177 * kick_process - kick a running thread to enter/exit the kernel
1178 * @p: the to-be-kicked thread
1179 *
1180 * Cause a process which is running on another CPU to enter
1181 * kernel-mode, without any delay. (to get signals handled.)
1182 *
1183 * NOTE: this function doesnt have to take the runqueue lock,
1184 * because all it wants to ensure is that the remote task enters
1185 * the kernel. If the IPI races and the task has been migrated
1186 * to another CPU then no harm is done and the purpose has been
1187 * achieved as well.
1188 */
1189 void kick_process(struct task_struct *p)
1190 {
1191 int cpu;
1192
1193 preempt_disable();
1194 cpu = task_cpu(p);
1195 if ((cpu != smp_processor_id()) && task_curr(p))
1196 smp_send_reschedule(cpu);
1197 preempt_enable();
1198 }
1199
1200 /*
1201 * Return a low guess at the load of a migration-source cpu weighted
1202 * according to the scheduling class and "nice" value.
1203 *
1204 * We want to under-estimate the load of migration sources, to
1205 * balance conservatively.
1206 */
1207 static unsigned long source_load(int cpu, int type)
1208 {
1209 struct rq *rq = cpu_rq(cpu);
1210 unsigned long total = weighted_cpuload(cpu);
1211
1212 if (type == 0)
1213 return total;
1214
1215 return min(rq->cpu_load[type-1], total);
1216 }
1217
1218 /*
1219 * Return a high guess at the load of a migration-target cpu weighted
1220 * according to the scheduling class and "nice" value.
1221 */
1222 static unsigned long target_load(int cpu, int type)
1223 {
1224 struct rq *rq = cpu_rq(cpu);
1225 unsigned long total = weighted_cpuload(cpu);
1226
1227 if (type == 0)
1228 return total;
1229
1230 return max(rq->cpu_load[type-1], total);
1231 }
1232
1233 /*
1234 * Return the average load per task on the cpu's run queue
1235 */
1236 static inline unsigned long cpu_avg_load_per_task(int cpu)
1237 {
1238 struct rq *rq = cpu_rq(cpu);
1239 unsigned long total = weighted_cpuload(cpu);
1240 unsigned long n = rq->nr_running;
1241
1242 return n ? total / n : SCHED_LOAD_SCALE;
1243 }
1244
1245 /*
1246 * find_idlest_group finds and returns the least busy CPU group within the
1247 * domain.
1248 */
1249 static struct sched_group *
1250 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1251 {
1252 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1253 unsigned long min_load = ULONG_MAX, this_load = 0;
1254 int load_idx = sd->forkexec_idx;
1255 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1256
1257 do {
1258 unsigned long load, avg_load;
1259 int local_group;
1260 int i;
1261
1262 /* Skip over this group if it has no CPUs allowed */
1263 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1264 continue;
1265
1266 local_group = cpu_isset(this_cpu, group->cpumask);
1267
1268 /* Tally up the load of all CPUs in the group */
1269 avg_load = 0;
1270
1271 for_each_cpu_mask(i, group->cpumask) {
1272 /* Bias balancing toward cpus of our domain */
1273 if (local_group)
1274 load = source_load(i, load_idx);
1275 else
1276 load = target_load(i, load_idx);
1277
1278 avg_load += load;
1279 }
1280
1281 /* Adjust by relative CPU power of the group */
1282 avg_load = sg_div_cpu_power(group,
1283 avg_load * SCHED_LOAD_SCALE);
1284
1285 if (local_group) {
1286 this_load = avg_load;
1287 this = group;
1288 } else if (avg_load < min_load) {
1289 min_load = avg_load;
1290 idlest = group;
1291 }
1292 } while (group = group->next, group != sd->groups);
1293
1294 if (!idlest || 100*this_load < imbalance*min_load)
1295 return NULL;
1296 return idlest;
1297 }
1298
1299 /*
1300 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1301 */
1302 static int
1303 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1304 {
1305 cpumask_t tmp;
1306 unsigned long load, min_load = ULONG_MAX;
1307 int idlest = -1;
1308 int i;
1309
1310 /* Traverse only the allowed CPUs */
1311 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1312
1313 for_each_cpu_mask(i, tmp) {
1314 load = weighted_cpuload(i);
1315
1316 if (load < min_load || (load == min_load && i == this_cpu)) {
1317 min_load = load;
1318 idlest = i;
1319 }
1320 }
1321
1322 return idlest;
1323 }
1324
1325 /*
1326 * sched_balance_self: balance the current task (running on cpu) in domains
1327 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1328 * SD_BALANCE_EXEC.
1329 *
1330 * Balance, ie. select the least loaded group.
1331 *
1332 * Returns the target CPU number, or the same CPU if no balancing is needed.
1333 *
1334 * preempt must be disabled.
1335 */
1336 static int sched_balance_self(int cpu, int flag)
1337 {
1338 struct task_struct *t = current;
1339 struct sched_domain *tmp, *sd = NULL;
1340
1341 for_each_domain(cpu, tmp) {
1342 /*
1343 * If power savings logic is enabled for a domain, stop there.
1344 */
1345 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1346 break;
1347 if (tmp->flags & flag)
1348 sd = tmp;
1349 }
1350
1351 while (sd) {
1352 cpumask_t span;
1353 struct sched_group *group;
1354 int new_cpu, weight;
1355
1356 if (!(sd->flags & flag)) {
1357 sd = sd->child;
1358 continue;
1359 }
1360
1361 span = sd->span;
1362 group = find_idlest_group(sd, t, cpu);
1363 if (!group) {
1364 sd = sd->child;
1365 continue;
1366 }
1367
1368 new_cpu = find_idlest_cpu(group, t, cpu);
1369 if (new_cpu == -1 || new_cpu == cpu) {
1370 /* Now try balancing at a lower domain level of cpu */
1371 sd = sd->child;
1372 continue;
1373 }
1374
1375 /* Now try balancing at a lower domain level of new_cpu */
1376 cpu = new_cpu;
1377 sd = NULL;
1378 weight = cpus_weight(span);
1379 for_each_domain(cpu, tmp) {
1380 if (weight <= cpus_weight(tmp->span))
1381 break;
1382 if (tmp->flags & flag)
1383 sd = tmp;
1384 }
1385 /* while loop will break here if sd == NULL */
1386 }
1387
1388 return cpu;
1389 }
1390
1391 #endif /* CONFIG_SMP */
1392
1393 /*
1394 * wake_idle() will wake a task on an idle cpu if task->cpu is
1395 * not idle and an idle cpu is available. The span of cpus to
1396 * search starts with cpus closest then further out as needed,
1397 * so we always favor a closer, idle cpu.
1398 *
1399 * Returns the CPU we should wake onto.
1400 */
1401 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1402 static int wake_idle(int cpu, struct task_struct *p)
1403 {
1404 cpumask_t tmp;
1405 struct sched_domain *sd;
1406 int i;
1407
1408 /*
1409 * If it is idle, then it is the best cpu to run this task.
1410 *
1411 * This cpu is also the best, if it has more than one task already.
1412 * Siblings must be also busy(in most cases) as they didn't already
1413 * pickup the extra load from this cpu and hence we need not check
1414 * sibling runqueue info. This will avoid the checks and cache miss
1415 * penalities associated with that.
1416 */
1417 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1418 return cpu;
1419
1420 for_each_domain(cpu, sd) {
1421 if (sd->flags & SD_WAKE_IDLE) {
1422 cpus_and(tmp, sd->span, p->cpus_allowed);
1423 for_each_cpu_mask(i, tmp) {
1424 if (idle_cpu(i)) {
1425 if (i != task_cpu(p)) {
1426 schedstat_inc(p,
1427 se.nr_wakeups_idle);
1428 }
1429 return i;
1430 }
1431 }
1432 } else {
1433 break;
1434 }
1435 }
1436 return cpu;
1437 }
1438 #else
1439 static inline int wake_idle(int cpu, struct task_struct *p)
1440 {
1441 return cpu;
1442 }
1443 #endif
1444
1445 /***
1446 * try_to_wake_up - wake up a thread
1447 * @p: the to-be-woken-up thread
1448 * @state: the mask of task states that can be woken
1449 * @sync: do a synchronous wakeup?
1450 *
1451 * Put it on the run-queue if it's not already there. The "current"
1452 * thread is always on the run-queue (except when the actual
1453 * re-schedule is in progress), and as such you're allowed to do
1454 * the simpler "current->state = TASK_RUNNING" to mark yourself
1455 * runnable without the overhead of this.
1456 *
1457 * returns failure only if the task is already active.
1458 */
1459 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1460 {
1461 int cpu, orig_cpu, this_cpu, success = 0;
1462 unsigned long flags;
1463 long old_state;
1464 struct rq *rq;
1465 #ifdef CONFIG_SMP
1466 struct sched_domain *sd, *this_sd = NULL;
1467 unsigned long load, this_load;
1468 int new_cpu;
1469 #endif
1470
1471 rq = task_rq_lock(p, &flags);
1472 old_state = p->state;
1473 if (!(old_state & state))
1474 goto out;
1475
1476 if (p->se.on_rq)
1477 goto out_running;
1478
1479 cpu = task_cpu(p);
1480 orig_cpu = cpu;
1481 this_cpu = smp_processor_id();
1482
1483 #ifdef CONFIG_SMP
1484 if (unlikely(task_running(rq, p)))
1485 goto out_activate;
1486
1487 new_cpu = cpu;
1488
1489 schedstat_inc(rq, ttwu_count);
1490 if (cpu == this_cpu) {
1491 schedstat_inc(rq, ttwu_local);
1492 goto out_set_cpu;
1493 }
1494
1495 for_each_domain(this_cpu, sd) {
1496 if (cpu_isset(cpu, sd->span)) {
1497 schedstat_inc(sd, ttwu_wake_remote);
1498 this_sd = sd;
1499 break;
1500 }
1501 }
1502
1503 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1504 goto out_set_cpu;
1505
1506 /*
1507 * Check for affine wakeup and passive balancing possibilities.
1508 */
1509 if (this_sd) {
1510 int idx = this_sd->wake_idx;
1511 unsigned int imbalance;
1512
1513 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1514
1515 load = source_load(cpu, idx);
1516 this_load = target_load(this_cpu, idx);
1517
1518 new_cpu = this_cpu; /* Wake to this CPU if we can */
1519
1520 if (this_sd->flags & SD_WAKE_AFFINE) {
1521 unsigned long tl = this_load;
1522 unsigned long tl_per_task;
1523
1524 /*
1525 * Attract cache-cold tasks on sync wakeups:
1526 */
1527 if (sync && !task_hot(p, rq->clock, this_sd))
1528 goto out_set_cpu;
1529
1530 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1531 tl_per_task = cpu_avg_load_per_task(this_cpu);
1532
1533 /*
1534 * If sync wakeup then subtract the (maximum possible)
1535 * effect of the currently running task from the load
1536 * of the current CPU:
1537 */
1538 if (sync)
1539 tl -= current->se.load.weight;
1540
1541 if ((tl <= load &&
1542 tl + target_load(cpu, idx) <= tl_per_task) ||
1543 100*(tl + p->se.load.weight) <= imbalance*load) {
1544 /*
1545 * This domain has SD_WAKE_AFFINE and
1546 * p is cache cold in this domain, and
1547 * there is no bad imbalance.
1548 */
1549 schedstat_inc(this_sd, ttwu_move_affine);
1550 schedstat_inc(p, se.nr_wakeups_affine);
1551 goto out_set_cpu;
1552 }
1553 }
1554
1555 /*
1556 * Start passive balancing when half the imbalance_pct
1557 * limit is reached.
1558 */
1559 if (this_sd->flags & SD_WAKE_BALANCE) {
1560 if (imbalance*this_load <= 100*load) {
1561 schedstat_inc(this_sd, ttwu_move_balance);
1562 schedstat_inc(p, se.nr_wakeups_passive);
1563 goto out_set_cpu;
1564 }
1565 }
1566 }
1567
1568 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1569 out_set_cpu:
1570 new_cpu = wake_idle(new_cpu, p);
1571 if (new_cpu != cpu) {
1572 set_task_cpu(p, new_cpu);
1573 task_rq_unlock(rq, &flags);
1574 /* might preempt at this point */
1575 rq = task_rq_lock(p, &flags);
1576 old_state = p->state;
1577 if (!(old_state & state))
1578 goto out;
1579 if (p->se.on_rq)
1580 goto out_running;
1581
1582 this_cpu = smp_processor_id();
1583 cpu = task_cpu(p);
1584 }
1585
1586 out_activate:
1587 #endif /* CONFIG_SMP */
1588 schedstat_inc(p, se.nr_wakeups);
1589 if (sync)
1590 schedstat_inc(p, se.nr_wakeups_sync);
1591 if (orig_cpu != cpu)
1592 schedstat_inc(p, se.nr_wakeups_migrate);
1593 if (cpu == this_cpu)
1594 schedstat_inc(p, se.nr_wakeups_local);
1595 else
1596 schedstat_inc(p, se.nr_wakeups_remote);
1597 update_rq_clock(rq);
1598 activate_task(rq, p, 1);
1599 check_preempt_curr(rq, p);
1600 success = 1;
1601
1602 out_running:
1603 p->state = TASK_RUNNING;
1604 out:
1605 task_rq_unlock(rq, &flags);
1606
1607 return success;
1608 }
1609
1610 int fastcall wake_up_process(struct task_struct *p)
1611 {
1612 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1613 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1614 }
1615 EXPORT_SYMBOL(wake_up_process);
1616
1617 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1618 {
1619 return try_to_wake_up(p, state, 0);
1620 }
1621
1622 /*
1623 * Perform scheduler related setup for a newly forked process p.
1624 * p is forked by current.
1625 *
1626 * __sched_fork() is basic setup used by init_idle() too:
1627 */
1628 static void __sched_fork(struct task_struct *p)
1629 {
1630 p->se.exec_start = 0;
1631 p->se.sum_exec_runtime = 0;
1632 p->se.prev_sum_exec_runtime = 0;
1633
1634 #ifdef CONFIG_SCHEDSTATS
1635 p->se.wait_start = 0;
1636 p->se.sum_sleep_runtime = 0;
1637 p->se.sleep_start = 0;
1638 p->se.block_start = 0;
1639 p->se.sleep_max = 0;
1640 p->se.block_max = 0;
1641 p->se.exec_max = 0;
1642 p->se.slice_max = 0;
1643 p->se.wait_max = 0;
1644 #endif
1645
1646 INIT_LIST_HEAD(&p->run_list);
1647 p->se.on_rq = 0;
1648
1649 #ifdef CONFIG_PREEMPT_NOTIFIERS
1650 INIT_HLIST_HEAD(&p->preempt_notifiers);
1651 #endif
1652
1653 /*
1654 * We mark the process as running here, but have not actually
1655 * inserted it onto the runqueue yet. This guarantees that
1656 * nobody will actually run it, and a signal or other external
1657 * event cannot wake it up and insert it on the runqueue either.
1658 */
1659 p->state = TASK_RUNNING;
1660 }
1661
1662 /*
1663 * fork()/clone()-time setup:
1664 */
1665 void sched_fork(struct task_struct *p, int clone_flags)
1666 {
1667 int cpu = get_cpu();
1668
1669 __sched_fork(p);
1670
1671 #ifdef CONFIG_SMP
1672 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1673 #endif
1674 set_task_cpu(p, cpu);
1675
1676 /*
1677 * Make sure we do not leak PI boosting priority to the child:
1678 */
1679 p->prio = current->normal_prio;
1680 if (!rt_prio(p->prio))
1681 p->sched_class = &fair_sched_class;
1682
1683 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1684 if (likely(sched_info_on()))
1685 memset(&p->sched_info, 0, sizeof(p->sched_info));
1686 #endif
1687 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1688 p->oncpu = 0;
1689 #endif
1690 #ifdef CONFIG_PREEMPT
1691 /* Want to start with kernel preemption disabled. */
1692 task_thread_info(p)->preempt_count = 1;
1693 #endif
1694 put_cpu();
1695 }
1696
1697 /*
1698 * wake_up_new_task - wake up a newly created task for the first time.
1699 *
1700 * This function will do some initial scheduler statistics housekeeping
1701 * that must be done for every newly created context, then puts the task
1702 * on the runqueue and wakes it.
1703 */
1704 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1705 {
1706 unsigned long flags;
1707 struct rq *rq;
1708
1709 rq = task_rq_lock(p, &flags);
1710 BUG_ON(p->state != TASK_RUNNING);
1711 update_rq_clock(rq);
1712
1713 p->prio = effective_prio(p);
1714
1715 if (!p->sched_class->task_new || !current->se.on_rq || !rq->cfs.curr) {
1716 activate_task(rq, p, 0);
1717 } else {
1718 /*
1719 * Let the scheduling class do new task startup
1720 * management (if any):
1721 */
1722 p->sched_class->task_new(rq, p);
1723 inc_nr_running(p, rq);
1724 }
1725 check_preempt_curr(rq, p);
1726 task_rq_unlock(rq, &flags);
1727 }
1728
1729 #ifdef CONFIG_PREEMPT_NOTIFIERS
1730
1731 /**
1732 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1733 * @notifier: notifier struct to register
1734 */
1735 void preempt_notifier_register(struct preempt_notifier *notifier)
1736 {
1737 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1738 }
1739 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1740
1741 /**
1742 * preempt_notifier_unregister - no longer interested in preemption notifications
1743 * @notifier: notifier struct to unregister
1744 *
1745 * This is safe to call from within a preemption notifier.
1746 */
1747 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1748 {
1749 hlist_del(&notifier->link);
1750 }
1751 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1752
1753 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1754 {
1755 struct preempt_notifier *notifier;
1756 struct hlist_node *node;
1757
1758 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1759 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1760 }
1761
1762 static void
1763 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1764 struct task_struct *next)
1765 {
1766 struct preempt_notifier *notifier;
1767 struct hlist_node *node;
1768
1769 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1770 notifier->ops->sched_out(notifier, next);
1771 }
1772
1773 #else
1774
1775 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1776 {
1777 }
1778
1779 static void
1780 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1781 struct task_struct *next)
1782 {
1783 }
1784
1785 #endif
1786
1787 /**
1788 * prepare_task_switch - prepare to switch tasks
1789 * @rq: the runqueue preparing to switch
1790 * @prev: the current task that is being switched out
1791 * @next: the task we are going to switch to.
1792 *
1793 * This is called with the rq lock held and interrupts off. It must
1794 * be paired with a subsequent finish_task_switch after the context
1795 * switch.
1796 *
1797 * prepare_task_switch sets up locking and calls architecture specific
1798 * hooks.
1799 */
1800 static inline void
1801 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1802 struct task_struct *next)
1803 {
1804 fire_sched_out_preempt_notifiers(prev, next);
1805 prepare_lock_switch(rq, next);
1806 prepare_arch_switch(next);
1807 }
1808
1809 /**
1810 * finish_task_switch - clean up after a task-switch
1811 * @rq: runqueue associated with task-switch
1812 * @prev: the thread we just switched away from.
1813 *
1814 * finish_task_switch must be called after the context switch, paired
1815 * with a prepare_task_switch call before the context switch.
1816 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1817 * and do any other architecture-specific cleanup actions.
1818 *
1819 * Note that we may have delayed dropping an mm in context_switch(). If
1820 * so, we finish that here outside of the runqueue lock. (Doing it
1821 * with the lock held can cause deadlocks; see schedule() for
1822 * details.)
1823 */
1824 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1825 __releases(rq->lock)
1826 {
1827 struct mm_struct *mm = rq->prev_mm;
1828 long prev_state;
1829
1830 rq->prev_mm = NULL;
1831
1832 /*
1833 * A task struct has one reference for the use as "current".
1834 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1835 * schedule one last time. The schedule call will never return, and
1836 * the scheduled task must drop that reference.
1837 * The test for TASK_DEAD must occur while the runqueue locks are
1838 * still held, otherwise prev could be scheduled on another cpu, die
1839 * there before we look at prev->state, and then the reference would
1840 * be dropped twice.
1841 * Manfred Spraul <manfred@colorfullife.com>
1842 */
1843 prev_state = prev->state;
1844 finish_arch_switch(prev);
1845 finish_lock_switch(rq, prev);
1846 fire_sched_in_preempt_notifiers(current);
1847 if (mm)
1848 mmdrop(mm);
1849 if (unlikely(prev_state == TASK_DEAD)) {
1850 /*
1851 * Remove function-return probe instances associated with this
1852 * task and put them back on the free list.
1853 */
1854 kprobe_flush_task(prev);
1855 put_task_struct(prev);
1856 }
1857 }
1858
1859 /**
1860 * schedule_tail - first thing a freshly forked thread must call.
1861 * @prev: the thread we just switched away from.
1862 */
1863 asmlinkage void schedule_tail(struct task_struct *prev)
1864 __releases(rq->lock)
1865 {
1866 struct rq *rq = this_rq();
1867
1868 finish_task_switch(rq, prev);
1869 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1870 /* In this case, finish_task_switch does not reenable preemption */
1871 preempt_enable();
1872 #endif
1873 if (current->set_child_tid)
1874 put_user(current->pid, current->set_child_tid);
1875 }
1876
1877 /*
1878 * context_switch - switch to the new MM and the new
1879 * thread's register state.
1880 */
1881 static inline void
1882 context_switch(struct rq *rq, struct task_struct *prev,
1883 struct task_struct *next)
1884 {
1885 struct mm_struct *mm, *oldmm;
1886
1887 prepare_task_switch(rq, prev, next);
1888 mm = next->mm;
1889 oldmm = prev->active_mm;
1890 /*
1891 * For paravirt, this is coupled with an exit in switch_to to
1892 * combine the page table reload and the switch backend into
1893 * one hypercall.
1894 */
1895 arch_enter_lazy_cpu_mode();
1896
1897 if (unlikely(!mm)) {
1898 next->active_mm = oldmm;
1899 atomic_inc(&oldmm->mm_count);
1900 enter_lazy_tlb(oldmm, next);
1901 } else
1902 switch_mm(oldmm, mm, next);
1903
1904 if (unlikely(!prev->mm)) {
1905 prev->active_mm = NULL;
1906 rq->prev_mm = oldmm;
1907 }
1908 /*
1909 * Since the runqueue lock will be released by the next
1910 * task (which is an invalid locking op but in the case
1911 * of the scheduler it's an obvious special-case), so we
1912 * do an early lockdep release here:
1913 */
1914 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1915 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1916 #endif
1917
1918 /* Here we just switch the register state and the stack. */
1919 switch_to(prev, next, prev);
1920
1921 barrier();
1922 /*
1923 * this_rq must be evaluated again because prev may have moved
1924 * CPUs since it called schedule(), thus the 'rq' on its stack
1925 * frame will be invalid.
1926 */
1927 finish_task_switch(this_rq(), prev);
1928 }
1929
1930 /*
1931 * nr_running, nr_uninterruptible and nr_context_switches:
1932 *
1933 * externally visible scheduler statistics: current number of runnable
1934 * threads, current number of uninterruptible-sleeping threads, total
1935 * number of context switches performed since bootup.
1936 */
1937 unsigned long nr_running(void)
1938 {
1939 unsigned long i, sum = 0;
1940
1941 for_each_online_cpu(i)
1942 sum += cpu_rq(i)->nr_running;
1943
1944 return sum;
1945 }
1946
1947 unsigned long nr_uninterruptible(void)
1948 {
1949 unsigned long i, sum = 0;
1950
1951 for_each_possible_cpu(i)
1952 sum += cpu_rq(i)->nr_uninterruptible;
1953
1954 /*
1955 * Since we read the counters lockless, it might be slightly
1956 * inaccurate. Do not allow it to go below zero though:
1957 */
1958 if (unlikely((long)sum < 0))
1959 sum = 0;
1960
1961 return sum;
1962 }
1963
1964 unsigned long long nr_context_switches(void)
1965 {
1966 int i;
1967 unsigned long long sum = 0;
1968
1969 for_each_possible_cpu(i)
1970 sum += cpu_rq(i)->nr_switches;
1971
1972 return sum;
1973 }
1974
1975 unsigned long nr_iowait(void)
1976 {
1977 unsigned long i, sum = 0;
1978
1979 for_each_possible_cpu(i)
1980 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1981
1982 return sum;
1983 }
1984
1985 unsigned long nr_active(void)
1986 {
1987 unsigned long i, running = 0, uninterruptible = 0;
1988
1989 for_each_online_cpu(i) {
1990 running += cpu_rq(i)->nr_running;
1991 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1992 }
1993
1994 if (unlikely((long)uninterruptible < 0))
1995 uninterruptible = 0;
1996
1997 return running + uninterruptible;
1998 }
1999
2000 /*
2001 * Update rq->cpu_load[] statistics. This function is usually called every
2002 * scheduler tick (TICK_NSEC).
2003 */
2004 static void update_cpu_load(struct rq *this_rq)
2005 {
2006 unsigned long this_load = this_rq->load.weight;
2007 int i, scale;
2008
2009 this_rq->nr_load_updates++;
2010
2011 /* Update our load: */
2012 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2013 unsigned long old_load, new_load;
2014
2015 /* scale is effectively 1 << i now, and >> i divides by scale */
2016
2017 old_load = this_rq->cpu_load[i];
2018 new_load = this_load;
2019 /*
2020 * Round up the averaging division if load is increasing. This
2021 * prevents us from getting stuck on 9 if the load is 10, for
2022 * example.
2023 */
2024 if (new_load > old_load)
2025 new_load += scale-1;
2026 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2027 }
2028 }
2029
2030 #ifdef CONFIG_SMP
2031
2032 /*
2033 * double_rq_lock - safely lock two runqueues
2034 *
2035 * Note this does not disable interrupts like task_rq_lock,
2036 * you need to do so manually before calling.
2037 */
2038 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2039 __acquires(rq1->lock)
2040 __acquires(rq2->lock)
2041 {
2042 BUG_ON(!irqs_disabled());
2043 if (rq1 == rq2) {
2044 spin_lock(&rq1->lock);
2045 __acquire(rq2->lock); /* Fake it out ;) */
2046 } else {
2047 if (rq1 < rq2) {
2048 spin_lock(&rq1->lock);
2049 spin_lock(&rq2->lock);
2050 } else {
2051 spin_lock(&rq2->lock);
2052 spin_lock(&rq1->lock);
2053 }
2054 }
2055 update_rq_clock(rq1);
2056 update_rq_clock(rq2);
2057 }
2058
2059 /*
2060 * double_rq_unlock - safely unlock two runqueues
2061 *
2062 * Note this does not restore interrupts like task_rq_unlock,
2063 * you need to do so manually after calling.
2064 */
2065 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2066 __releases(rq1->lock)
2067 __releases(rq2->lock)
2068 {
2069 spin_unlock(&rq1->lock);
2070 if (rq1 != rq2)
2071 spin_unlock(&rq2->lock);
2072 else
2073 __release(rq2->lock);
2074 }
2075
2076 /*
2077 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2078 */
2079 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2080 __releases(this_rq->lock)
2081 __acquires(busiest->lock)
2082 __acquires(this_rq->lock)
2083 {
2084 if (unlikely(!irqs_disabled())) {
2085 /* printk() doesn't work good under rq->lock */
2086 spin_unlock(&this_rq->lock);
2087 BUG_ON(1);
2088 }
2089 if (unlikely(!spin_trylock(&busiest->lock))) {
2090 if (busiest < this_rq) {
2091 spin_unlock(&this_rq->lock);
2092 spin_lock(&busiest->lock);
2093 spin_lock(&this_rq->lock);
2094 } else
2095 spin_lock(&busiest->lock);
2096 }
2097 }
2098
2099 /*
2100 * If dest_cpu is allowed for this process, migrate the task to it.
2101 * This is accomplished by forcing the cpu_allowed mask to only
2102 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2103 * the cpu_allowed mask is restored.
2104 */
2105 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2106 {
2107 struct migration_req req;
2108 unsigned long flags;
2109 struct rq *rq;
2110
2111 rq = task_rq_lock(p, &flags);
2112 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2113 || unlikely(cpu_is_offline(dest_cpu)))
2114 goto out;
2115
2116 /* force the process onto the specified CPU */
2117 if (migrate_task(p, dest_cpu, &req)) {
2118 /* Need to wait for migration thread (might exit: take ref). */
2119 struct task_struct *mt = rq->migration_thread;
2120
2121 get_task_struct(mt);
2122 task_rq_unlock(rq, &flags);
2123 wake_up_process(mt);
2124 put_task_struct(mt);
2125 wait_for_completion(&req.done);
2126
2127 return;
2128 }
2129 out:
2130 task_rq_unlock(rq, &flags);
2131 }
2132
2133 /*
2134 * sched_exec - execve() is a valuable balancing opportunity, because at
2135 * this point the task has the smallest effective memory and cache footprint.
2136 */
2137 void sched_exec(void)
2138 {
2139 int new_cpu, this_cpu = get_cpu();
2140 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2141 put_cpu();
2142 if (new_cpu != this_cpu)
2143 sched_migrate_task(current, new_cpu);
2144 }
2145
2146 /*
2147 * pull_task - move a task from a remote runqueue to the local runqueue.
2148 * Both runqueues must be locked.
2149 */
2150 static void pull_task(struct rq *src_rq, struct task_struct *p,
2151 struct rq *this_rq, int this_cpu)
2152 {
2153 deactivate_task(src_rq, p, 0);
2154 set_task_cpu(p, this_cpu);
2155 activate_task(this_rq, p, 0);
2156 /*
2157 * Note that idle threads have a prio of MAX_PRIO, for this test
2158 * to be always true for them.
2159 */
2160 check_preempt_curr(this_rq, p);
2161 }
2162
2163 /*
2164 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2165 */
2166 static
2167 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2168 struct sched_domain *sd, enum cpu_idle_type idle,
2169 int *all_pinned)
2170 {
2171 /*
2172 * We do not migrate tasks that are:
2173 * 1) running (obviously), or
2174 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2175 * 3) are cache-hot on their current CPU.
2176 */
2177 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2178 schedstat_inc(p, se.nr_failed_migrations_affine);
2179 return 0;
2180 }
2181 *all_pinned = 0;
2182
2183 if (task_running(rq, p)) {
2184 schedstat_inc(p, se.nr_failed_migrations_running);
2185 return 0;
2186 }
2187
2188 /*
2189 * Aggressive migration if:
2190 * 1) task is cache cold, or
2191 * 2) too many balance attempts have failed.
2192 */
2193
2194 if (!task_hot(p, rq->clock, sd) ||
2195 sd->nr_balance_failed > sd->cache_nice_tries) {
2196 #ifdef CONFIG_SCHEDSTATS
2197 if (task_hot(p, rq->clock, sd)) {
2198 schedstat_inc(sd, lb_hot_gained[idle]);
2199 schedstat_inc(p, se.nr_forced_migrations);
2200 }
2201 #endif
2202 return 1;
2203 }
2204
2205 if (task_hot(p, rq->clock, sd)) {
2206 schedstat_inc(p, se.nr_failed_migrations_hot);
2207 return 0;
2208 }
2209 return 1;
2210 }
2211
2212 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2213 unsigned long max_nr_move, unsigned long max_load_move,
2214 struct sched_domain *sd, enum cpu_idle_type idle,
2215 int *all_pinned, unsigned long *load_moved,
2216 int *this_best_prio, struct rq_iterator *iterator)
2217 {
2218 int pulled = 0, pinned = 0, skip_for_load;
2219 struct task_struct *p;
2220 long rem_load_move = max_load_move;
2221
2222 if (max_nr_move == 0 || max_load_move == 0)
2223 goto out;
2224
2225 pinned = 1;
2226
2227 /*
2228 * Start the load-balancing iterator:
2229 */
2230 p = iterator->start(iterator->arg);
2231 next:
2232 if (!p)
2233 goto out;
2234 /*
2235 * To help distribute high priority tasks accross CPUs we don't
2236 * skip a task if it will be the highest priority task (i.e. smallest
2237 * prio value) on its new queue regardless of its load weight
2238 */
2239 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2240 SCHED_LOAD_SCALE_FUZZ;
2241 if ((skip_for_load && p->prio >= *this_best_prio) ||
2242 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2243 p = iterator->next(iterator->arg);
2244 goto next;
2245 }
2246
2247 pull_task(busiest, p, this_rq, this_cpu);
2248 pulled++;
2249 rem_load_move -= p->se.load.weight;
2250
2251 /*
2252 * We only want to steal up to the prescribed number of tasks
2253 * and the prescribed amount of weighted load.
2254 */
2255 if (pulled < max_nr_move && rem_load_move > 0) {
2256 if (p->prio < *this_best_prio)
2257 *this_best_prio = p->prio;
2258 p = iterator->next(iterator->arg);
2259 goto next;
2260 }
2261 out:
2262 /*
2263 * Right now, this is the only place pull_task() is called,
2264 * so we can safely collect pull_task() stats here rather than
2265 * inside pull_task().
2266 */
2267 schedstat_add(sd, lb_gained[idle], pulled);
2268
2269 if (all_pinned)
2270 *all_pinned = pinned;
2271 *load_moved = max_load_move - rem_load_move;
2272 return pulled;
2273 }
2274
2275 /*
2276 * move_tasks tries to move up to max_load_move weighted load from busiest to
2277 * this_rq, as part of a balancing operation within domain "sd".
2278 * Returns 1 if successful and 0 otherwise.
2279 *
2280 * Called with both runqueues locked.
2281 */
2282 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2283 unsigned long max_load_move,
2284 struct sched_domain *sd, enum cpu_idle_type idle,
2285 int *all_pinned)
2286 {
2287 const struct sched_class *class = sched_class_highest;
2288 unsigned long total_load_moved = 0;
2289 int this_best_prio = this_rq->curr->prio;
2290
2291 do {
2292 total_load_moved +=
2293 class->load_balance(this_rq, this_cpu, busiest,
2294 ULONG_MAX, max_load_move - total_load_moved,
2295 sd, idle, all_pinned, &this_best_prio);
2296 class = class->next;
2297 } while (class && max_load_move > total_load_moved);
2298
2299 return total_load_moved > 0;
2300 }
2301
2302 /*
2303 * move_one_task tries to move exactly one task from busiest to this_rq, as
2304 * part of active balancing operations within "domain".
2305 * Returns 1 if successful and 0 otherwise.
2306 *
2307 * Called with both runqueues locked.
2308 */
2309 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2310 struct sched_domain *sd, enum cpu_idle_type idle)
2311 {
2312 const struct sched_class *class;
2313 int this_best_prio = MAX_PRIO;
2314
2315 for (class = sched_class_highest; class; class = class->next)
2316 if (class->load_balance(this_rq, this_cpu, busiest,
2317 1, ULONG_MAX, sd, idle, NULL,
2318 &this_best_prio))
2319 return 1;
2320
2321 return 0;
2322 }
2323
2324 /*
2325 * find_busiest_group finds and returns the busiest CPU group within the
2326 * domain. It calculates and returns the amount of weighted load which
2327 * should be moved to restore balance via the imbalance parameter.
2328 */
2329 static struct sched_group *
2330 find_busiest_group(struct sched_domain *sd, int this_cpu,
2331 unsigned long *imbalance, enum cpu_idle_type idle,
2332 int *sd_idle, cpumask_t *cpus, int *balance)
2333 {
2334 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2335 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2336 unsigned long max_pull;
2337 unsigned long busiest_load_per_task, busiest_nr_running;
2338 unsigned long this_load_per_task, this_nr_running;
2339 int load_idx;
2340 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2341 int power_savings_balance = 1;
2342 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2343 unsigned long min_nr_running = ULONG_MAX;
2344 struct sched_group *group_min = NULL, *group_leader = NULL;
2345 #endif
2346
2347 max_load = this_load = total_load = total_pwr = 0;
2348 busiest_load_per_task = busiest_nr_running = 0;
2349 this_load_per_task = this_nr_running = 0;
2350 if (idle == CPU_NOT_IDLE)
2351 load_idx = sd->busy_idx;
2352 else if (idle == CPU_NEWLY_IDLE)
2353 load_idx = sd->newidle_idx;
2354 else
2355 load_idx = sd->idle_idx;
2356
2357 do {
2358 unsigned long load, group_capacity;
2359 int local_group;
2360 int i;
2361 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2362 unsigned long sum_nr_running, sum_weighted_load;
2363
2364 local_group = cpu_isset(this_cpu, group->cpumask);
2365
2366 if (local_group)
2367 balance_cpu = first_cpu(group->cpumask);
2368
2369 /* Tally up the load of all CPUs in the group */
2370 sum_weighted_load = sum_nr_running = avg_load = 0;
2371
2372 for_each_cpu_mask(i, group->cpumask) {
2373 struct rq *rq;
2374
2375 if (!cpu_isset(i, *cpus))
2376 continue;
2377
2378 rq = cpu_rq(i);
2379
2380 if (*sd_idle && rq->nr_running)
2381 *sd_idle = 0;
2382
2383 /* Bias balancing toward cpus of our domain */
2384 if (local_group) {
2385 if (idle_cpu(i) && !first_idle_cpu) {
2386 first_idle_cpu = 1;
2387 balance_cpu = i;
2388 }
2389
2390 load = target_load(i, load_idx);
2391 } else
2392 load = source_load(i, load_idx);
2393
2394 avg_load += load;
2395 sum_nr_running += rq->nr_running;
2396 sum_weighted_load += weighted_cpuload(i);
2397 }
2398
2399 /*
2400 * First idle cpu or the first cpu(busiest) in this sched group
2401 * is eligible for doing load balancing at this and above
2402 * domains. In the newly idle case, we will allow all the cpu's
2403 * to do the newly idle load balance.
2404 */
2405 if (idle != CPU_NEWLY_IDLE && local_group &&
2406 balance_cpu != this_cpu && balance) {
2407 *balance = 0;
2408 goto ret;
2409 }
2410
2411 total_load += avg_load;
2412 total_pwr += group->__cpu_power;
2413
2414 /* Adjust by relative CPU power of the group */
2415 avg_load = sg_div_cpu_power(group,
2416 avg_load * SCHED_LOAD_SCALE);
2417
2418 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2419
2420 if (local_group) {
2421 this_load = avg_load;
2422 this = group;
2423 this_nr_running = sum_nr_running;
2424 this_load_per_task = sum_weighted_load;
2425 } else if (avg_load > max_load &&
2426 sum_nr_running > group_capacity) {
2427 max_load = avg_load;
2428 busiest = group;
2429 busiest_nr_running = sum_nr_running;
2430 busiest_load_per_task = sum_weighted_load;
2431 }
2432
2433 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2434 /*
2435 * Busy processors will not participate in power savings
2436 * balance.
2437 */
2438 if (idle == CPU_NOT_IDLE ||
2439 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2440 goto group_next;
2441
2442 /*
2443 * If the local group is idle or completely loaded
2444 * no need to do power savings balance at this domain
2445 */
2446 if (local_group && (this_nr_running >= group_capacity ||
2447 !this_nr_running))
2448 power_savings_balance = 0;
2449
2450 /*
2451 * If a group is already running at full capacity or idle,
2452 * don't include that group in power savings calculations
2453 */
2454 if (!power_savings_balance || sum_nr_running >= group_capacity
2455 || !sum_nr_running)
2456 goto group_next;
2457
2458 /*
2459 * Calculate the group which has the least non-idle load.
2460 * This is the group from where we need to pick up the load
2461 * for saving power
2462 */
2463 if ((sum_nr_running < min_nr_running) ||
2464 (sum_nr_running == min_nr_running &&
2465 first_cpu(group->cpumask) <
2466 first_cpu(group_min->cpumask))) {
2467 group_min = group;
2468 min_nr_running = sum_nr_running;
2469 min_load_per_task = sum_weighted_load /
2470 sum_nr_running;
2471 }
2472
2473 /*
2474 * Calculate the group which is almost near its
2475 * capacity but still has some space to pick up some load
2476 * from other group and save more power
2477 */
2478 if (sum_nr_running <= group_capacity - 1) {
2479 if (sum_nr_running > leader_nr_running ||
2480 (sum_nr_running == leader_nr_running &&
2481 first_cpu(group->cpumask) >
2482 first_cpu(group_leader->cpumask))) {
2483 group_leader = group;
2484 leader_nr_running = sum_nr_running;
2485 }
2486 }
2487 group_next:
2488 #endif
2489 group = group->next;
2490 } while (group != sd->groups);
2491
2492 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2493 goto out_balanced;
2494
2495 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2496
2497 if (this_load >= avg_load ||
2498 100*max_load <= sd->imbalance_pct*this_load)
2499 goto out_balanced;
2500
2501 busiest_load_per_task /= busiest_nr_running;
2502 /*
2503 * We're trying to get all the cpus to the average_load, so we don't
2504 * want to push ourselves above the average load, nor do we wish to
2505 * reduce the max loaded cpu below the average load, as either of these
2506 * actions would just result in more rebalancing later, and ping-pong
2507 * tasks around. Thus we look for the minimum possible imbalance.
2508 * Negative imbalances (*we* are more loaded than anyone else) will
2509 * be counted as no imbalance for these purposes -- we can't fix that
2510 * by pulling tasks to us. Be careful of negative numbers as they'll
2511 * appear as very large values with unsigned longs.
2512 */
2513 if (max_load <= busiest_load_per_task)
2514 goto out_balanced;
2515
2516 /*
2517 * In the presence of smp nice balancing, certain scenarios can have
2518 * max load less than avg load(as we skip the groups at or below
2519 * its cpu_power, while calculating max_load..)
2520 */
2521 if (max_load < avg_load) {
2522 *imbalance = 0;
2523 goto small_imbalance;
2524 }
2525
2526 /* Don't want to pull so many tasks that a group would go idle */
2527 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2528
2529 /* How much load to actually move to equalise the imbalance */
2530 *imbalance = min(max_pull * busiest->__cpu_power,
2531 (avg_load - this_load) * this->__cpu_power)
2532 / SCHED_LOAD_SCALE;
2533
2534 /*
2535 * if *imbalance is less than the average load per runnable task
2536 * there is no gaurantee that any tasks will be moved so we'll have
2537 * a think about bumping its value to force at least one task to be
2538 * moved
2539 */
2540 if (*imbalance < busiest_load_per_task) {
2541 unsigned long tmp, pwr_now, pwr_move;
2542 unsigned int imbn;
2543
2544 small_imbalance:
2545 pwr_move = pwr_now = 0;
2546 imbn = 2;
2547 if (this_nr_running) {
2548 this_load_per_task /= this_nr_running;
2549 if (busiest_load_per_task > this_load_per_task)
2550 imbn = 1;
2551 } else
2552 this_load_per_task = SCHED_LOAD_SCALE;
2553
2554 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2555 busiest_load_per_task * imbn) {
2556 *imbalance = busiest_load_per_task;
2557 return busiest;
2558 }
2559
2560 /*
2561 * OK, we don't have enough imbalance to justify moving tasks,
2562 * however we may be able to increase total CPU power used by
2563 * moving them.
2564 */
2565
2566 pwr_now += busiest->__cpu_power *
2567 min(busiest_load_per_task, max_load);
2568 pwr_now += this->__cpu_power *
2569 min(this_load_per_task, this_load);
2570 pwr_now /= SCHED_LOAD_SCALE;
2571
2572 /* Amount of load we'd subtract */
2573 tmp = sg_div_cpu_power(busiest,
2574 busiest_load_per_task * SCHED_LOAD_SCALE);
2575 if (max_load > tmp)
2576 pwr_move += busiest->__cpu_power *
2577 min(busiest_load_per_task, max_load - tmp);
2578
2579 /* Amount of load we'd add */
2580 if (max_load * busiest->__cpu_power <
2581 busiest_load_per_task * SCHED_LOAD_SCALE)
2582 tmp = sg_div_cpu_power(this,
2583 max_load * busiest->__cpu_power);
2584 else
2585 tmp = sg_div_cpu_power(this,
2586 busiest_load_per_task * SCHED_LOAD_SCALE);
2587 pwr_move += this->__cpu_power *
2588 min(this_load_per_task, this_load + tmp);
2589 pwr_move /= SCHED_LOAD_SCALE;
2590
2591 /* Move if we gain throughput */
2592 if (pwr_move > pwr_now)
2593 *imbalance = busiest_load_per_task;
2594 }
2595
2596 return busiest;
2597
2598 out_balanced:
2599 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2600 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2601 goto ret;
2602
2603 if (this == group_leader && group_leader != group_min) {
2604 *imbalance = min_load_per_task;
2605 return group_min;
2606 }
2607 #endif
2608 ret:
2609 *imbalance = 0;
2610 return NULL;
2611 }
2612
2613 /*
2614 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2615 */
2616 static struct rq *
2617 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2618 unsigned long imbalance, cpumask_t *cpus)
2619 {
2620 struct rq *busiest = NULL, *rq;
2621 unsigned long max_load = 0;
2622 int i;
2623
2624 for_each_cpu_mask(i, group->cpumask) {
2625 unsigned long wl;
2626
2627 if (!cpu_isset(i, *cpus))
2628 continue;
2629
2630 rq = cpu_rq(i);
2631 wl = weighted_cpuload(i);
2632
2633 if (rq->nr_running == 1 && wl > imbalance)
2634 continue;
2635
2636 if (wl > max_load) {
2637 max_load = wl;
2638 busiest = rq;
2639 }
2640 }
2641
2642 return busiest;
2643 }
2644
2645 /*
2646 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2647 * so long as it is large enough.
2648 */
2649 #define MAX_PINNED_INTERVAL 512
2650
2651 /*
2652 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2653 * tasks if there is an imbalance.
2654 */
2655 static int load_balance(int this_cpu, struct rq *this_rq,
2656 struct sched_domain *sd, enum cpu_idle_type idle,
2657 int *balance)
2658 {
2659 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2660 struct sched_group *group;
2661 unsigned long imbalance;
2662 struct rq *busiest;
2663 cpumask_t cpus = CPU_MASK_ALL;
2664 unsigned long flags;
2665
2666 /*
2667 * When power savings policy is enabled for the parent domain, idle
2668 * sibling can pick up load irrespective of busy siblings. In this case,
2669 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2670 * portraying it as CPU_NOT_IDLE.
2671 */
2672 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2673 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2674 sd_idle = 1;
2675
2676 schedstat_inc(sd, lb_count[idle]);
2677
2678 redo:
2679 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2680 &cpus, balance);
2681
2682 if (*balance == 0)
2683 goto out_balanced;
2684
2685 if (!group) {
2686 schedstat_inc(sd, lb_nobusyg[idle]);
2687 goto out_balanced;
2688 }
2689
2690 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2691 if (!busiest) {
2692 schedstat_inc(sd, lb_nobusyq[idle]);
2693 goto out_balanced;
2694 }
2695
2696 BUG_ON(busiest == this_rq);
2697
2698 schedstat_add(sd, lb_imbalance[idle], imbalance);
2699
2700 ld_moved = 0;
2701 if (busiest->nr_running > 1) {
2702 /*
2703 * Attempt to move tasks. If find_busiest_group has found
2704 * an imbalance but busiest->nr_running <= 1, the group is
2705 * still unbalanced. ld_moved simply stays zero, so it is
2706 * correctly treated as an imbalance.
2707 */
2708 local_irq_save(flags);
2709 double_rq_lock(this_rq, busiest);
2710 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2711 imbalance, sd, idle, &all_pinned);
2712 double_rq_unlock(this_rq, busiest);
2713 local_irq_restore(flags);
2714
2715 /*
2716 * some other cpu did the load balance for us.
2717 */
2718 if (ld_moved && this_cpu != smp_processor_id())
2719 resched_cpu(this_cpu);
2720
2721 /* All tasks on this runqueue were pinned by CPU affinity */
2722 if (unlikely(all_pinned)) {
2723 cpu_clear(cpu_of(busiest), cpus);
2724 if (!cpus_empty(cpus))
2725 goto redo;
2726 goto out_balanced;
2727 }
2728 }
2729
2730 if (!ld_moved) {
2731 schedstat_inc(sd, lb_failed[idle]);
2732 sd->nr_balance_failed++;
2733
2734 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2735
2736 spin_lock_irqsave(&busiest->lock, flags);
2737
2738 /* don't kick the migration_thread, if the curr
2739 * task on busiest cpu can't be moved to this_cpu
2740 */
2741 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2742 spin_unlock_irqrestore(&busiest->lock, flags);
2743 all_pinned = 1;
2744 goto out_one_pinned;
2745 }
2746
2747 if (!busiest->active_balance) {
2748 busiest->active_balance = 1;
2749 busiest->push_cpu = this_cpu;
2750 active_balance = 1;
2751 }
2752 spin_unlock_irqrestore(&busiest->lock, flags);
2753 if (active_balance)
2754 wake_up_process(busiest->migration_thread);
2755
2756 /*
2757 * We've kicked active balancing, reset the failure
2758 * counter.
2759 */
2760 sd->nr_balance_failed = sd->cache_nice_tries+1;
2761 }
2762 } else
2763 sd->nr_balance_failed = 0;
2764
2765 if (likely(!active_balance)) {
2766 /* We were unbalanced, so reset the balancing interval */
2767 sd->balance_interval = sd->min_interval;
2768 } else {
2769 /*
2770 * If we've begun active balancing, start to back off. This
2771 * case may not be covered by the all_pinned logic if there
2772 * is only 1 task on the busy runqueue (because we don't call
2773 * move_tasks).
2774 */
2775 if (sd->balance_interval < sd->max_interval)
2776 sd->balance_interval *= 2;
2777 }
2778
2779 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2780 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2781 return -1;
2782 return ld_moved;
2783
2784 out_balanced:
2785 schedstat_inc(sd, lb_balanced[idle]);
2786
2787 sd->nr_balance_failed = 0;
2788
2789 out_one_pinned:
2790 /* tune up the balancing interval */
2791 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2792 (sd->balance_interval < sd->max_interval))
2793 sd->balance_interval *= 2;
2794
2795 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2796 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2797 return -1;
2798 return 0;
2799 }
2800
2801 /*
2802 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2803 * tasks if there is an imbalance.
2804 *
2805 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2806 * this_rq is locked.
2807 */
2808 static int
2809 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2810 {
2811 struct sched_group *group;
2812 struct rq *busiest = NULL;
2813 unsigned long imbalance;
2814 int ld_moved = 0;
2815 int sd_idle = 0;
2816 int all_pinned = 0;
2817 cpumask_t cpus = CPU_MASK_ALL;
2818
2819 /*
2820 * When power savings policy is enabled for the parent domain, idle
2821 * sibling can pick up load irrespective of busy siblings. In this case,
2822 * let the state of idle sibling percolate up as IDLE, instead of
2823 * portraying it as CPU_NOT_IDLE.
2824 */
2825 if (sd->flags & SD_SHARE_CPUPOWER &&
2826 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2827 sd_idle = 1;
2828
2829 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2830 redo:
2831 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2832 &sd_idle, &cpus, NULL);
2833 if (!group) {
2834 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2835 goto out_balanced;
2836 }
2837
2838 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2839 &cpus);
2840 if (!busiest) {
2841 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2842 goto out_balanced;
2843 }
2844
2845 BUG_ON(busiest == this_rq);
2846
2847 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2848
2849 ld_moved = 0;
2850 if (busiest->nr_running > 1) {
2851 /* Attempt to move tasks */
2852 double_lock_balance(this_rq, busiest);
2853 /* this_rq->clock is already updated */
2854 update_rq_clock(busiest);
2855 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2856 imbalance, sd, CPU_NEWLY_IDLE,
2857 &all_pinned);
2858 spin_unlock(&busiest->lock);
2859
2860 if (unlikely(all_pinned)) {
2861 cpu_clear(cpu_of(busiest), cpus);
2862 if (!cpus_empty(cpus))
2863 goto redo;
2864 }
2865 }
2866
2867 if (!ld_moved) {
2868 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2869 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2870 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2871 return -1;
2872 } else
2873 sd->nr_balance_failed = 0;
2874
2875 return ld_moved;
2876
2877 out_balanced:
2878 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2879 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2880 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2881 return -1;
2882 sd->nr_balance_failed = 0;
2883
2884 return 0;
2885 }
2886
2887 /*
2888 * idle_balance is called by schedule() if this_cpu is about to become
2889 * idle. Attempts to pull tasks from other CPUs.
2890 */
2891 static void idle_balance(int this_cpu, struct rq *this_rq)
2892 {
2893 struct sched_domain *sd;
2894 int pulled_task = -1;
2895 unsigned long next_balance = jiffies + HZ;
2896
2897 for_each_domain(this_cpu, sd) {
2898 unsigned long interval;
2899
2900 if (!(sd->flags & SD_LOAD_BALANCE))
2901 continue;
2902
2903 if (sd->flags & SD_BALANCE_NEWIDLE)
2904 /* If we've pulled tasks over stop searching: */
2905 pulled_task = load_balance_newidle(this_cpu,
2906 this_rq, sd);
2907
2908 interval = msecs_to_jiffies(sd->balance_interval);
2909 if (time_after(next_balance, sd->last_balance + interval))
2910 next_balance = sd->last_balance + interval;
2911 if (pulled_task)
2912 break;
2913 }
2914 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2915 /*
2916 * We are going idle. next_balance may be set based on
2917 * a busy processor. So reset next_balance.
2918 */
2919 this_rq->next_balance = next_balance;
2920 }
2921 }
2922
2923 /*
2924 * active_load_balance is run by migration threads. It pushes running tasks
2925 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2926 * running on each physical CPU where possible, and avoids physical /
2927 * logical imbalances.
2928 *
2929 * Called with busiest_rq locked.
2930 */
2931 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2932 {
2933 int target_cpu = busiest_rq->push_cpu;
2934 struct sched_domain *sd;
2935 struct rq *target_rq;
2936
2937 /* Is there any task to move? */
2938 if (busiest_rq->nr_running <= 1)
2939 return;
2940
2941 target_rq = cpu_rq(target_cpu);
2942
2943 /*
2944 * This condition is "impossible", if it occurs
2945 * we need to fix it. Originally reported by
2946 * Bjorn Helgaas on a 128-cpu setup.
2947 */
2948 BUG_ON(busiest_rq == target_rq);
2949
2950 /* move a task from busiest_rq to target_rq */
2951 double_lock_balance(busiest_rq, target_rq);
2952 update_rq_clock(busiest_rq);
2953 update_rq_clock(target_rq);
2954
2955 /* Search for an sd spanning us and the target CPU. */
2956 for_each_domain(target_cpu, sd) {
2957 if ((sd->flags & SD_LOAD_BALANCE) &&
2958 cpu_isset(busiest_cpu, sd->span))
2959 break;
2960 }
2961
2962 if (likely(sd)) {
2963 schedstat_inc(sd, alb_count);
2964
2965 if (move_one_task(target_rq, target_cpu, busiest_rq,
2966 sd, CPU_IDLE))
2967 schedstat_inc(sd, alb_pushed);
2968 else
2969 schedstat_inc(sd, alb_failed);
2970 }
2971 spin_unlock(&target_rq->lock);
2972 }
2973
2974 #ifdef CONFIG_NO_HZ
2975 static struct {
2976 atomic_t load_balancer;
2977 cpumask_t cpu_mask;
2978 } nohz ____cacheline_aligned = {
2979 .load_balancer = ATOMIC_INIT(-1),
2980 .cpu_mask = CPU_MASK_NONE,
2981 };
2982
2983 /*
2984 * This routine will try to nominate the ilb (idle load balancing)
2985 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2986 * load balancing on behalf of all those cpus. If all the cpus in the system
2987 * go into this tickless mode, then there will be no ilb owner (as there is
2988 * no need for one) and all the cpus will sleep till the next wakeup event
2989 * arrives...
2990 *
2991 * For the ilb owner, tick is not stopped. And this tick will be used
2992 * for idle load balancing. ilb owner will still be part of
2993 * nohz.cpu_mask..
2994 *
2995 * While stopping the tick, this cpu will become the ilb owner if there
2996 * is no other owner. And will be the owner till that cpu becomes busy
2997 * or if all cpus in the system stop their ticks at which point
2998 * there is no need for ilb owner.
2999 *
3000 * When the ilb owner becomes busy, it nominates another owner, during the
3001 * next busy scheduler_tick()
3002 */
3003 int select_nohz_load_balancer(int stop_tick)
3004 {
3005 int cpu = smp_processor_id();
3006
3007 if (stop_tick) {
3008 cpu_set(cpu, nohz.cpu_mask);
3009 cpu_rq(cpu)->in_nohz_recently = 1;
3010
3011 /*
3012 * If we are going offline and still the leader, give up!
3013 */
3014 if (cpu_is_offline(cpu) &&
3015 atomic_read(&nohz.load_balancer) == cpu) {
3016 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3017 BUG();
3018 return 0;
3019 }
3020
3021 /* time for ilb owner also to sleep */
3022 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3023 if (atomic_read(&nohz.load_balancer) == cpu)
3024 atomic_set(&nohz.load_balancer, -1);
3025 return 0;
3026 }
3027
3028 if (atomic_read(&nohz.load_balancer) == -1) {
3029 /* make me the ilb owner */
3030 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3031 return 1;
3032 } else if (atomic_read(&nohz.load_balancer) == cpu)
3033 return 1;
3034 } else {
3035 if (!cpu_isset(cpu, nohz.cpu_mask))
3036 return 0;
3037
3038 cpu_clear(cpu, nohz.cpu_mask);
3039
3040 if (atomic_read(&nohz.load_balancer) == cpu)
3041 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3042 BUG();
3043 }
3044 return 0;
3045 }
3046 #endif
3047
3048 static DEFINE_SPINLOCK(balancing);
3049
3050 /*
3051 * It checks each scheduling domain to see if it is due to be balanced,
3052 * and initiates a balancing operation if so.
3053 *
3054 * Balancing parameters are set up in arch_init_sched_domains.
3055 */
3056 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3057 {
3058 int balance = 1;
3059 struct rq *rq = cpu_rq(cpu);
3060 unsigned long interval;
3061 struct sched_domain *sd;
3062 /* Earliest time when we have to do rebalance again */
3063 unsigned long next_balance = jiffies + 60*HZ;
3064 int update_next_balance = 0;
3065
3066 for_each_domain(cpu, sd) {
3067 if (!(sd->flags & SD_LOAD_BALANCE))
3068 continue;
3069
3070 interval = sd->balance_interval;
3071 if (idle != CPU_IDLE)
3072 interval *= sd->busy_factor;
3073
3074 /* scale ms to jiffies */
3075 interval = msecs_to_jiffies(interval);
3076 if (unlikely(!interval))
3077 interval = 1;
3078 if (interval > HZ*NR_CPUS/10)
3079 interval = HZ*NR_CPUS/10;
3080
3081
3082 if (sd->flags & SD_SERIALIZE) {
3083 if (!spin_trylock(&balancing))
3084 goto out;
3085 }
3086
3087 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3088 if (load_balance(cpu, rq, sd, idle, &balance)) {
3089 /*
3090 * We've pulled tasks over so either we're no
3091 * longer idle, or one of our SMT siblings is
3092 * not idle.
3093 */
3094 idle = CPU_NOT_IDLE;
3095 }
3096 sd->last_balance = jiffies;
3097 }
3098 if (sd->flags & SD_SERIALIZE)
3099 spin_unlock(&balancing);
3100 out:
3101 if (time_after(next_balance, sd->last_balance + interval)) {
3102 next_balance = sd->last_balance + interval;
3103 update_next_balance = 1;
3104 }
3105
3106 /*
3107 * Stop the load balance at this level. There is another
3108 * CPU in our sched group which is doing load balancing more
3109 * actively.
3110 */
3111 if (!balance)
3112 break;
3113 }
3114
3115 /*
3116 * next_balance will be updated only when there is a need.
3117 * When the cpu is attached to null domain for ex, it will not be
3118 * updated.
3119 */
3120 if (likely(update_next_balance))
3121 rq->next_balance = next_balance;
3122 }
3123
3124 /*
3125 * run_rebalance_domains is triggered when needed from the scheduler tick.
3126 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3127 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3128 */
3129 static void run_rebalance_domains(struct softirq_action *h)
3130 {
3131 int this_cpu = smp_processor_id();
3132 struct rq *this_rq = cpu_rq(this_cpu);
3133 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3134 CPU_IDLE : CPU_NOT_IDLE;
3135
3136 rebalance_domains(this_cpu, idle);
3137
3138 #ifdef CONFIG_NO_HZ
3139 /*
3140 * If this cpu is the owner for idle load balancing, then do the
3141 * balancing on behalf of the other idle cpus whose ticks are
3142 * stopped.
3143 */
3144 if (this_rq->idle_at_tick &&
3145 atomic_read(&nohz.load_balancer) == this_cpu) {
3146 cpumask_t cpus = nohz.cpu_mask;
3147 struct rq *rq;
3148 int balance_cpu;
3149
3150 cpu_clear(this_cpu, cpus);
3151 for_each_cpu_mask(balance_cpu, cpus) {
3152 /*
3153 * If this cpu gets work to do, stop the load balancing
3154 * work being done for other cpus. Next load
3155 * balancing owner will pick it up.
3156 */
3157 if (need_resched())
3158 break;
3159
3160 rebalance_domains(balance_cpu, CPU_IDLE);
3161
3162 rq = cpu_rq(balance_cpu);
3163 if (time_after(this_rq->next_balance, rq->next_balance))
3164 this_rq->next_balance = rq->next_balance;
3165 }
3166 }
3167 #endif
3168 }
3169
3170 /*
3171 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3172 *
3173 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3174 * idle load balancing owner or decide to stop the periodic load balancing,
3175 * if the whole system is idle.
3176 */
3177 static inline void trigger_load_balance(struct rq *rq, int cpu)
3178 {
3179 #ifdef CONFIG_NO_HZ
3180 /*
3181 * If we were in the nohz mode recently and busy at the current
3182 * scheduler tick, then check if we need to nominate new idle
3183 * load balancer.
3184 */
3185 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3186 rq->in_nohz_recently = 0;
3187
3188 if (atomic_read(&nohz.load_balancer) == cpu) {
3189 cpu_clear(cpu, nohz.cpu_mask);
3190 atomic_set(&nohz.load_balancer, -1);
3191 }
3192
3193 if (atomic_read(&nohz.load_balancer) == -1) {
3194 /*
3195 * simple selection for now: Nominate the
3196 * first cpu in the nohz list to be the next
3197 * ilb owner.
3198 *
3199 * TBD: Traverse the sched domains and nominate
3200 * the nearest cpu in the nohz.cpu_mask.
3201 */
3202 int ilb = first_cpu(nohz.cpu_mask);
3203
3204 if (ilb != NR_CPUS)
3205 resched_cpu(ilb);
3206 }
3207 }
3208
3209 /*
3210 * If this cpu is idle and doing idle load balancing for all the
3211 * cpus with ticks stopped, is it time for that to stop?
3212 */
3213 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3214 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3215 resched_cpu(cpu);
3216 return;
3217 }
3218
3219 /*
3220 * If this cpu is idle and the idle load balancing is done by
3221 * someone else, then no need raise the SCHED_SOFTIRQ
3222 */
3223 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3224 cpu_isset(cpu, nohz.cpu_mask))
3225 return;
3226 #endif
3227 if (time_after_eq(jiffies, rq->next_balance))
3228 raise_softirq(SCHED_SOFTIRQ);
3229 }
3230
3231 #else /* CONFIG_SMP */
3232
3233 /*
3234 * on UP we do not need to balance between CPUs:
3235 */
3236 static inline void idle_balance(int cpu, struct rq *rq)
3237 {
3238 }
3239
3240 /* Avoid "used but not defined" warning on UP */
3241 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3242 unsigned long max_nr_move, unsigned long max_load_move,
3243 struct sched_domain *sd, enum cpu_idle_type idle,
3244 int *all_pinned, unsigned long *load_moved,
3245 int *this_best_prio, struct rq_iterator *iterator)
3246 {
3247 *load_moved = 0;
3248
3249 return 0;
3250 }
3251
3252 #endif
3253
3254 DEFINE_PER_CPU(struct kernel_stat, kstat);
3255
3256 EXPORT_PER_CPU_SYMBOL(kstat);
3257
3258 /*
3259 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3260 * that have not yet been banked in case the task is currently running.
3261 */
3262 unsigned long long task_sched_runtime(struct task_struct *p)
3263 {
3264 unsigned long flags;
3265 u64 ns, delta_exec;
3266 struct rq *rq;
3267
3268 rq = task_rq_lock(p, &flags);
3269 ns = p->se.sum_exec_runtime;
3270 if (rq->curr == p) {
3271 update_rq_clock(rq);
3272 delta_exec = rq->clock - p->se.exec_start;
3273 if ((s64)delta_exec > 0)
3274 ns += delta_exec;
3275 }
3276 task_rq_unlock(rq, &flags);
3277
3278 return ns;
3279 }
3280
3281 /*
3282 * Account user cpu time to a process.
3283 * @p: the process that the cpu time gets accounted to
3284 * @hardirq_offset: the offset to subtract from hardirq_count()
3285 * @cputime: the cpu time spent in user space since the last update
3286 */
3287 void account_user_time(struct task_struct *p, cputime_t cputime)
3288 {
3289 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3290 cputime64_t tmp;
3291
3292 p->utime = cputime_add(p->utime, cputime);
3293
3294 /* Add user time to cpustat. */
3295 tmp = cputime_to_cputime64(cputime);
3296 if (TASK_NICE(p) > 0)
3297 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3298 else
3299 cpustat->user = cputime64_add(cpustat->user, tmp);
3300 }
3301
3302 /*
3303 * Account guest cpu time to a process.
3304 * @p: the process that the cpu time gets accounted to
3305 * @cputime: the cpu time spent in virtual machine since the last update
3306 */
3307 void account_guest_time(struct task_struct *p, cputime_t cputime)
3308 {
3309 cputime64_t tmp;
3310 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3311
3312 tmp = cputime_to_cputime64(cputime);
3313
3314 p->utime = cputime_add(p->utime, cputime);
3315 p->gtime = cputime_add(p->gtime, cputime);
3316
3317 cpustat->user = cputime64_add(cpustat->user, tmp);
3318 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3319 }
3320
3321 /*
3322 * Account system cpu time to a process.
3323 * @p: the process that the cpu time gets accounted to
3324 * @hardirq_offset: the offset to subtract from hardirq_count()
3325 * @cputime: the cpu time spent in kernel space since the last update
3326 */
3327 void account_system_time(struct task_struct *p, int hardirq_offset,
3328 cputime_t cputime)
3329 {
3330 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3331 struct rq *rq = this_rq();
3332 cputime64_t tmp;
3333
3334 if (p->flags & PF_VCPU) {
3335 account_guest_time(p, cputime);
3336 p->flags &= ~PF_VCPU;
3337 return;
3338 }
3339
3340 p->stime = cputime_add(p->stime, cputime);
3341
3342 /* Add system time to cpustat. */
3343 tmp = cputime_to_cputime64(cputime);
3344 if (hardirq_count() - hardirq_offset)
3345 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3346 else if (softirq_count())
3347 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3348 else if (p != rq->idle)
3349 cpustat->system = cputime64_add(cpustat->system, tmp);
3350 else if (atomic_read(&rq->nr_iowait) > 0)
3351 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3352 else
3353 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3354 /* Account for system time used */
3355 acct_update_integrals(p);
3356 }
3357
3358 /*
3359 * Account for involuntary wait time.
3360 * @p: the process from which the cpu time has been stolen
3361 * @steal: the cpu time spent in involuntary wait
3362 */
3363 void account_steal_time(struct task_struct *p, cputime_t steal)
3364 {
3365 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3366 cputime64_t tmp = cputime_to_cputime64(steal);
3367 struct rq *rq = this_rq();
3368
3369 if (p == rq->idle) {
3370 p->stime = cputime_add(p->stime, steal);
3371 if (atomic_read(&rq->nr_iowait) > 0)
3372 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3373 else
3374 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3375 } else
3376 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3377 }
3378
3379 /*
3380 * This function gets called by the timer code, with HZ frequency.
3381 * We call it with interrupts disabled.
3382 *
3383 * It also gets called by the fork code, when changing the parent's
3384 * timeslices.
3385 */
3386 void scheduler_tick(void)
3387 {
3388 int cpu = smp_processor_id();
3389 struct rq *rq = cpu_rq(cpu);
3390 struct task_struct *curr = rq->curr;
3391 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3392
3393 spin_lock(&rq->lock);
3394 __update_rq_clock(rq);
3395 /*
3396 * Let rq->clock advance by at least TICK_NSEC:
3397 */
3398 if (unlikely(rq->clock < next_tick))
3399 rq->clock = next_tick;
3400 rq->tick_timestamp = rq->clock;
3401 update_cpu_load(rq);
3402 if (curr != rq->idle) /* FIXME: needed? */
3403 curr->sched_class->task_tick(rq, curr);
3404 spin_unlock(&rq->lock);
3405
3406 #ifdef CONFIG_SMP
3407 rq->idle_at_tick = idle_cpu(cpu);
3408 trigger_load_balance(rq, cpu);
3409 #endif
3410 }
3411
3412 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3413
3414 void fastcall add_preempt_count(int val)
3415 {
3416 /*
3417 * Underflow?
3418 */
3419 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3420 return;
3421 preempt_count() += val;
3422 /*
3423 * Spinlock count overflowing soon?
3424 */
3425 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3426 PREEMPT_MASK - 10);
3427 }
3428 EXPORT_SYMBOL(add_preempt_count);
3429
3430 void fastcall sub_preempt_count(int val)
3431 {
3432 /*
3433 * Underflow?
3434 */
3435 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3436 return;
3437 /*
3438 * Is the spinlock portion underflowing?
3439 */
3440 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3441 !(preempt_count() & PREEMPT_MASK)))
3442 return;
3443
3444 preempt_count() -= val;
3445 }
3446 EXPORT_SYMBOL(sub_preempt_count);
3447
3448 #endif
3449
3450 /*
3451 * Print scheduling while atomic bug:
3452 */
3453 static noinline void __schedule_bug(struct task_struct *prev)
3454 {
3455 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3456 prev->comm, preempt_count(), prev->pid);
3457 debug_show_held_locks(prev);
3458 if (irqs_disabled())
3459 print_irqtrace_events(prev);
3460 dump_stack();
3461 }
3462
3463 /*
3464 * Various schedule()-time debugging checks and statistics:
3465 */
3466 static inline void schedule_debug(struct task_struct *prev)
3467 {
3468 /*
3469 * Test if we are atomic. Since do_exit() needs to call into
3470 * schedule() atomically, we ignore that path for now.
3471 * Otherwise, whine if we are scheduling when we should not be.
3472 */
3473 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3474 __schedule_bug(prev);
3475
3476 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3477
3478 schedstat_inc(this_rq(), sched_count);
3479 #ifdef CONFIG_SCHEDSTATS
3480 if (unlikely(prev->lock_depth >= 0)) {
3481 schedstat_inc(this_rq(), bkl_count);
3482 schedstat_inc(prev, sched_info.bkl_count);
3483 }
3484 #endif
3485 }
3486
3487 /*
3488 * Pick up the highest-prio task:
3489 */
3490 static inline struct task_struct *
3491 pick_next_task(struct rq *rq, struct task_struct *prev)
3492 {
3493 const struct sched_class *class;
3494 struct task_struct *p;
3495
3496 /*
3497 * Optimization: we know that if all tasks are in
3498 * the fair class we can call that function directly:
3499 */
3500 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3501 p = fair_sched_class.pick_next_task(rq);
3502 if (likely(p))
3503 return p;
3504 }
3505
3506 class = sched_class_highest;
3507 for ( ; ; ) {
3508 p = class->pick_next_task(rq);
3509 if (p)
3510 return p;
3511 /*
3512 * Will never be NULL as the idle class always
3513 * returns a non-NULL p:
3514 */
3515 class = class->next;
3516 }
3517 }
3518
3519 /*
3520 * schedule() is the main scheduler function.
3521 */
3522 asmlinkage void __sched schedule(void)
3523 {
3524 struct task_struct *prev, *next;
3525 long *switch_count;
3526 struct rq *rq;
3527 int cpu;
3528
3529 need_resched:
3530 preempt_disable();
3531 cpu = smp_processor_id();
3532 rq = cpu_rq(cpu);
3533 rcu_qsctr_inc(cpu);
3534 prev = rq->curr;
3535 switch_count = &prev->nivcsw;
3536
3537 release_kernel_lock(prev);
3538 need_resched_nonpreemptible:
3539
3540 schedule_debug(prev);
3541
3542 /*
3543 * Do the rq-clock update outside the rq lock:
3544 */
3545 local_irq_disable();
3546 __update_rq_clock(rq);
3547 spin_lock(&rq->lock);
3548 clear_tsk_need_resched(prev);
3549
3550 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3551 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3552 unlikely(signal_pending(prev)))) {
3553 prev->state = TASK_RUNNING;
3554 } else {
3555 deactivate_task(rq, prev, 1);
3556 }
3557 switch_count = &prev->nvcsw;
3558 }
3559
3560 if (unlikely(!rq->nr_running))
3561 idle_balance(cpu, rq);
3562
3563 prev->sched_class->put_prev_task(rq, prev);
3564 next = pick_next_task(rq, prev);
3565
3566 sched_info_switch(prev, next);
3567
3568 if (likely(prev != next)) {
3569 rq->nr_switches++;
3570 rq->curr = next;
3571 ++*switch_count;
3572
3573 context_switch(rq, prev, next); /* unlocks the rq */
3574 } else
3575 spin_unlock_irq(&rq->lock);
3576
3577 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3578 cpu = smp_processor_id();
3579 rq = cpu_rq(cpu);
3580 goto need_resched_nonpreemptible;
3581 }
3582 preempt_enable_no_resched();
3583 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3584 goto need_resched;
3585 }
3586 EXPORT_SYMBOL(schedule);
3587
3588 #ifdef CONFIG_PREEMPT
3589 /*
3590 * this is the entry point to schedule() from in-kernel preemption
3591 * off of preempt_enable. Kernel preemptions off return from interrupt
3592 * occur there and call schedule directly.
3593 */
3594 asmlinkage void __sched preempt_schedule(void)
3595 {
3596 struct thread_info *ti = current_thread_info();
3597 #ifdef CONFIG_PREEMPT_BKL
3598 struct task_struct *task = current;
3599 int saved_lock_depth;
3600 #endif
3601 /*
3602 * If there is a non-zero preempt_count or interrupts are disabled,
3603 * we do not want to preempt the current task. Just return..
3604 */
3605 if (likely(ti->preempt_count || irqs_disabled()))
3606 return;
3607
3608 do {
3609 add_preempt_count(PREEMPT_ACTIVE);
3610
3611 /*
3612 * We keep the big kernel semaphore locked, but we
3613 * clear ->lock_depth so that schedule() doesnt
3614 * auto-release the semaphore:
3615 */
3616 #ifdef CONFIG_PREEMPT_BKL
3617 saved_lock_depth = task->lock_depth;
3618 task->lock_depth = -1;
3619 #endif
3620 schedule();
3621 #ifdef CONFIG_PREEMPT_BKL
3622 task->lock_depth = saved_lock_depth;
3623 #endif
3624 sub_preempt_count(PREEMPT_ACTIVE);
3625
3626 /*
3627 * Check again in case we missed a preemption opportunity
3628 * between schedule and now.
3629 */
3630 barrier();
3631 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3632 }
3633 EXPORT_SYMBOL(preempt_schedule);
3634
3635 /*
3636 * this is the entry point to schedule() from kernel preemption
3637 * off of irq context.
3638 * Note, that this is called and return with irqs disabled. This will
3639 * protect us against recursive calling from irq.
3640 */
3641 asmlinkage void __sched preempt_schedule_irq(void)
3642 {
3643 struct thread_info *ti = current_thread_info();
3644 #ifdef CONFIG_PREEMPT_BKL
3645 struct task_struct *task = current;
3646 int saved_lock_depth;
3647 #endif
3648 /* Catch callers which need to be fixed */
3649 BUG_ON(ti->preempt_count || !irqs_disabled());
3650
3651 do {
3652 add_preempt_count(PREEMPT_ACTIVE);
3653
3654 /*
3655 * We keep the big kernel semaphore locked, but we
3656 * clear ->lock_depth so that schedule() doesnt
3657 * auto-release the semaphore:
3658 */
3659 #ifdef CONFIG_PREEMPT_BKL
3660 saved_lock_depth = task->lock_depth;
3661 task->lock_depth = -1;
3662 #endif
3663 local_irq_enable();
3664 schedule();
3665 local_irq_disable();
3666 #ifdef CONFIG_PREEMPT_BKL
3667 task->lock_depth = saved_lock_depth;
3668 #endif
3669 sub_preempt_count(PREEMPT_ACTIVE);
3670
3671 /*
3672 * Check again in case we missed a preemption opportunity
3673 * between schedule and now.
3674 */
3675 barrier();
3676 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3677 }
3678
3679 #endif /* CONFIG_PREEMPT */
3680
3681 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3682 void *key)
3683 {
3684 return try_to_wake_up(curr->private, mode, sync);
3685 }
3686 EXPORT_SYMBOL(default_wake_function);
3687
3688 /*
3689 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3690 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3691 * number) then we wake all the non-exclusive tasks and one exclusive task.
3692 *
3693 * There are circumstances in which we can try to wake a task which has already
3694 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3695 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3696 */
3697 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3698 int nr_exclusive, int sync, void *key)
3699 {
3700 wait_queue_t *curr, *next;
3701
3702 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3703 unsigned flags = curr->flags;
3704
3705 if (curr->func(curr, mode, sync, key) &&
3706 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3707 break;
3708 }
3709 }
3710
3711 /**
3712 * __wake_up - wake up threads blocked on a waitqueue.
3713 * @q: the waitqueue
3714 * @mode: which threads
3715 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3716 * @key: is directly passed to the wakeup function
3717 */
3718 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3719 int nr_exclusive, void *key)
3720 {
3721 unsigned long flags;
3722
3723 spin_lock_irqsave(&q->lock, flags);
3724 __wake_up_common(q, mode, nr_exclusive, 0, key);
3725 spin_unlock_irqrestore(&q->lock, flags);
3726 }
3727 EXPORT_SYMBOL(__wake_up);
3728
3729 /*
3730 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3731 */
3732 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3733 {
3734 __wake_up_common(q, mode, 1, 0, NULL);
3735 }
3736
3737 /**
3738 * __wake_up_sync - wake up threads blocked on a waitqueue.
3739 * @q: the waitqueue
3740 * @mode: which threads
3741 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3742 *
3743 * The sync wakeup differs that the waker knows that it will schedule
3744 * away soon, so while the target thread will be woken up, it will not
3745 * be migrated to another CPU - ie. the two threads are 'synchronized'
3746 * with each other. This can prevent needless bouncing between CPUs.
3747 *
3748 * On UP it can prevent extra preemption.
3749 */
3750 void fastcall
3751 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3752 {
3753 unsigned long flags;
3754 int sync = 1;
3755
3756 if (unlikely(!q))
3757 return;
3758
3759 if (unlikely(!nr_exclusive))
3760 sync = 0;
3761
3762 spin_lock_irqsave(&q->lock, flags);
3763 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3764 spin_unlock_irqrestore(&q->lock, flags);
3765 }
3766 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3767
3768 void fastcall complete(struct completion *x)
3769 {
3770 unsigned long flags;
3771
3772 spin_lock_irqsave(&x->wait.lock, flags);
3773 x->done++;
3774 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3775 1, 0, NULL);
3776 spin_unlock_irqrestore(&x->wait.lock, flags);
3777 }
3778 EXPORT_SYMBOL(complete);
3779
3780 void fastcall complete_all(struct completion *x)
3781 {
3782 unsigned long flags;
3783
3784 spin_lock_irqsave(&x->wait.lock, flags);
3785 x->done += UINT_MAX/2;
3786 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3787 0, 0, NULL);
3788 spin_unlock_irqrestore(&x->wait.lock, flags);
3789 }
3790 EXPORT_SYMBOL(complete_all);
3791
3792 static inline long __sched
3793 do_wait_for_common(struct completion *x, long timeout, int state)
3794 {
3795 if (!x->done) {
3796 DECLARE_WAITQUEUE(wait, current);
3797
3798 wait.flags |= WQ_FLAG_EXCLUSIVE;
3799 __add_wait_queue_tail(&x->wait, &wait);
3800 do {
3801 if (state == TASK_INTERRUPTIBLE &&
3802 signal_pending(current)) {
3803 __remove_wait_queue(&x->wait, &wait);
3804 return -ERESTARTSYS;
3805 }
3806 __set_current_state(state);
3807 spin_unlock_irq(&x->wait.lock);
3808 timeout = schedule_timeout(timeout);
3809 spin_lock_irq(&x->wait.lock);
3810 if (!timeout) {
3811 __remove_wait_queue(&x->wait, &wait);
3812 return timeout;
3813 }
3814 } while (!x->done);
3815 __remove_wait_queue(&x->wait, &wait);
3816 }
3817 x->done--;
3818 return timeout;
3819 }
3820
3821 static long __sched
3822 wait_for_common(struct completion *x, long timeout, int state)
3823 {
3824 might_sleep();
3825
3826 spin_lock_irq(&x->wait.lock);
3827 timeout = do_wait_for_common(x, timeout, state);
3828 spin_unlock_irq(&x->wait.lock);
3829 return timeout;
3830 }
3831
3832 void fastcall __sched wait_for_completion(struct completion *x)
3833 {
3834 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3835 }
3836 EXPORT_SYMBOL(wait_for_completion);
3837
3838 unsigned long fastcall __sched
3839 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3840 {
3841 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3842 }
3843 EXPORT_SYMBOL(wait_for_completion_timeout);
3844
3845 int __sched wait_for_completion_interruptible(struct completion *x)
3846 {
3847 return wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3848 }
3849 EXPORT_SYMBOL(wait_for_completion_interruptible);
3850
3851 unsigned long fastcall __sched
3852 wait_for_completion_interruptible_timeout(struct completion *x,
3853 unsigned long timeout)
3854 {
3855 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3856 }
3857 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3858
3859 static long __sched
3860 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3861 {
3862 unsigned long flags;
3863 wait_queue_t wait;
3864
3865 init_waitqueue_entry(&wait, current);
3866
3867 __set_current_state(state);
3868
3869 spin_lock_irqsave(&q->lock, flags);
3870 __add_wait_queue(q, &wait);
3871 spin_unlock(&q->lock);
3872 timeout = schedule_timeout(timeout);
3873 spin_lock_irq(&q->lock);
3874 __remove_wait_queue(q, &wait);
3875 spin_unlock_irqrestore(&q->lock, flags);
3876
3877 return timeout;
3878 }
3879
3880 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3881 {
3882 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3883 }
3884 EXPORT_SYMBOL(interruptible_sleep_on);
3885
3886 long __sched
3887 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3888 {
3889 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3890 }
3891 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3892
3893 void __sched sleep_on(wait_queue_head_t *q)
3894 {
3895 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3896 }
3897 EXPORT_SYMBOL(sleep_on);
3898
3899 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3900 {
3901 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3902 }
3903 EXPORT_SYMBOL(sleep_on_timeout);
3904
3905 #ifdef CONFIG_RT_MUTEXES
3906
3907 /*
3908 * rt_mutex_setprio - set the current priority of a task
3909 * @p: task
3910 * @prio: prio value (kernel-internal form)
3911 *
3912 * This function changes the 'effective' priority of a task. It does
3913 * not touch ->normal_prio like __setscheduler().
3914 *
3915 * Used by the rt_mutex code to implement priority inheritance logic.
3916 */
3917 void rt_mutex_setprio(struct task_struct *p, int prio)
3918 {
3919 unsigned long flags;
3920 int oldprio, on_rq, running;
3921 struct rq *rq;
3922
3923 BUG_ON(prio < 0 || prio > MAX_PRIO);
3924
3925 rq = task_rq_lock(p, &flags);
3926 update_rq_clock(rq);
3927
3928 oldprio = p->prio;
3929 on_rq = p->se.on_rq;
3930 running = task_running(rq, p);
3931 if (on_rq) {
3932 dequeue_task(rq, p, 0);
3933 if (running)
3934 p->sched_class->put_prev_task(rq, p);
3935 }
3936
3937 if (rt_prio(prio))
3938 p->sched_class = &rt_sched_class;
3939 else
3940 p->sched_class = &fair_sched_class;
3941
3942 p->prio = prio;
3943
3944 if (on_rq) {
3945 if (running)
3946 p->sched_class->set_curr_task(rq);
3947 enqueue_task(rq, p, 0);
3948 /*
3949 * Reschedule if we are currently running on this runqueue and
3950 * our priority decreased, or if we are not currently running on
3951 * this runqueue and our priority is higher than the current's
3952 */
3953 if (running) {
3954 if (p->prio > oldprio)
3955 resched_task(rq->curr);
3956 } else {
3957 check_preempt_curr(rq, p);
3958 }
3959 }
3960 task_rq_unlock(rq, &flags);
3961 }
3962
3963 #endif
3964
3965 void set_user_nice(struct task_struct *p, long nice)
3966 {
3967 int old_prio, delta, on_rq;
3968 unsigned long flags;
3969 struct rq *rq;
3970
3971 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3972 return;
3973 /*
3974 * We have to be careful, if called from sys_setpriority(),
3975 * the task might be in the middle of scheduling on another CPU.
3976 */
3977 rq = task_rq_lock(p, &flags);
3978 update_rq_clock(rq);
3979 /*
3980 * The RT priorities are set via sched_setscheduler(), but we still
3981 * allow the 'normal' nice value to be set - but as expected
3982 * it wont have any effect on scheduling until the task is
3983 * SCHED_FIFO/SCHED_RR:
3984 */
3985 if (task_has_rt_policy(p)) {
3986 p->static_prio = NICE_TO_PRIO(nice);
3987 goto out_unlock;
3988 }
3989 on_rq = p->se.on_rq;
3990 if (on_rq) {
3991 dequeue_task(rq, p, 0);
3992 dec_load(rq, p);
3993 }
3994
3995 p->static_prio = NICE_TO_PRIO(nice);
3996 set_load_weight(p);
3997 old_prio = p->prio;
3998 p->prio = effective_prio(p);
3999 delta = p->prio - old_prio;
4000
4001 if (on_rq) {
4002 enqueue_task(rq, p, 0);
4003 inc_load(rq, p);
4004 /*
4005 * If the task increased its priority or is running and
4006 * lowered its priority, then reschedule its CPU:
4007 */
4008 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4009 resched_task(rq->curr);
4010 }
4011 out_unlock:
4012 task_rq_unlock(rq, &flags);
4013 }
4014 EXPORT_SYMBOL(set_user_nice);
4015
4016 /*
4017 * can_nice - check if a task can reduce its nice value
4018 * @p: task
4019 * @nice: nice value
4020 */
4021 int can_nice(const struct task_struct *p, const int nice)
4022 {
4023 /* convert nice value [19,-20] to rlimit style value [1,40] */
4024 int nice_rlim = 20 - nice;
4025
4026 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4027 capable(CAP_SYS_NICE));
4028 }
4029
4030 #ifdef __ARCH_WANT_SYS_NICE
4031
4032 /*
4033 * sys_nice - change the priority of the current process.
4034 * @increment: priority increment
4035 *
4036 * sys_setpriority is a more generic, but much slower function that
4037 * does similar things.
4038 */
4039 asmlinkage long sys_nice(int increment)
4040 {
4041 long nice, retval;
4042
4043 /*
4044 * Setpriority might change our priority at the same moment.
4045 * We don't have to worry. Conceptually one call occurs first
4046 * and we have a single winner.
4047 */
4048 if (increment < -40)
4049 increment = -40;
4050 if (increment > 40)
4051 increment = 40;
4052
4053 nice = PRIO_TO_NICE(current->static_prio) + increment;
4054 if (nice < -20)
4055 nice = -20;
4056 if (nice > 19)
4057 nice = 19;
4058
4059 if (increment < 0 && !can_nice(current, nice))
4060 return -EPERM;
4061
4062 retval = security_task_setnice(current, nice);
4063 if (retval)
4064 return retval;
4065
4066 set_user_nice(current, nice);
4067 return 0;
4068 }
4069
4070 #endif
4071
4072 /**
4073 * task_prio - return the priority value of a given task.
4074 * @p: the task in question.
4075 *
4076 * This is the priority value as seen by users in /proc.
4077 * RT tasks are offset by -200. Normal tasks are centered
4078 * around 0, value goes from -16 to +15.
4079 */
4080 int task_prio(const struct task_struct *p)
4081 {
4082 return p->prio - MAX_RT_PRIO;
4083 }
4084
4085 /**
4086 * task_nice - return the nice value of a given task.
4087 * @p: the task in question.
4088 */
4089 int task_nice(const struct task_struct *p)
4090 {
4091 return TASK_NICE(p);
4092 }
4093 EXPORT_SYMBOL_GPL(task_nice);
4094
4095 /**
4096 * idle_cpu - is a given cpu idle currently?
4097 * @cpu: the processor in question.
4098 */
4099 int idle_cpu(int cpu)
4100 {
4101 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4102 }
4103
4104 /**
4105 * idle_task - return the idle task for a given cpu.
4106 * @cpu: the processor in question.
4107 */
4108 struct task_struct *idle_task(int cpu)
4109 {
4110 return cpu_rq(cpu)->idle;
4111 }
4112
4113 /**
4114 * find_process_by_pid - find a process with a matching PID value.
4115 * @pid: the pid in question.
4116 */
4117 static struct task_struct *find_process_by_pid(pid_t pid)
4118 {
4119 return pid ? find_task_by_pid(pid) : current;
4120 }
4121
4122 /* Actually do priority change: must hold rq lock. */
4123 static void
4124 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4125 {
4126 BUG_ON(p->se.on_rq);
4127
4128 p->policy = policy;
4129 switch (p->policy) {
4130 case SCHED_NORMAL:
4131 case SCHED_BATCH:
4132 case SCHED_IDLE:
4133 p->sched_class = &fair_sched_class;
4134 break;
4135 case SCHED_FIFO:
4136 case SCHED_RR:
4137 p->sched_class = &rt_sched_class;
4138 break;
4139 }
4140
4141 p->rt_priority = prio;
4142 p->normal_prio = normal_prio(p);
4143 /* we are holding p->pi_lock already */
4144 p->prio = rt_mutex_getprio(p);
4145 set_load_weight(p);
4146 }
4147
4148 /**
4149 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4150 * @p: the task in question.
4151 * @policy: new policy.
4152 * @param: structure containing the new RT priority.
4153 *
4154 * NOTE that the task may be already dead.
4155 */
4156 int sched_setscheduler(struct task_struct *p, int policy,
4157 struct sched_param *param)
4158 {
4159 int retval, oldprio, oldpolicy = -1, on_rq, running;
4160 unsigned long flags;
4161 struct rq *rq;
4162
4163 /* may grab non-irq protected spin_locks */
4164 BUG_ON(in_interrupt());
4165 recheck:
4166 /* double check policy once rq lock held */
4167 if (policy < 0)
4168 policy = oldpolicy = p->policy;
4169 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4170 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4171 policy != SCHED_IDLE)
4172 return -EINVAL;
4173 /*
4174 * Valid priorities for SCHED_FIFO and SCHED_RR are
4175 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4176 * SCHED_BATCH and SCHED_IDLE is 0.
4177 */
4178 if (param->sched_priority < 0 ||
4179 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4180 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4181 return -EINVAL;
4182 if (rt_policy(policy) != (param->sched_priority != 0))
4183 return -EINVAL;
4184
4185 /*
4186 * Allow unprivileged RT tasks to decrease priority:
4187 */
4188 if (!capable(CAP_SYS_NICE)) {
4189 if (rt_policy(policy)) {
4190 unsigned long rlim_rtprio;
4191
4192 if (!lock_task_sighand(p, &flags))
4193 return -ESRCH;
4194 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4195 unlock_task_sighand(p, &flags);
4196
4197 /* can't set/change the rt policy */
4198 if (policy != p->policy && !rlim_rtprio)
4199 return -EPERM;
4200
4201 /* can't increase priority */
4202 if (param->sched_priority > p->rt_priority &&
4203 param->sched_priority > rlim_rtprio)
4204 return -EPERM;
4205 }
4206 /*
4207 * Like positive nice levels, dont allow tasks to
4208 * move out of SCHED_IDLE either:
4209 */
4210 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4211 return -EPERM;
4212
4213 /* can't change other user's priorities */
4214 if ((current->euid != p->euid) &&
4215 (current->euid != p->uid))
4216 return -EPERM;
4217 }
4218
4219 retval = security_task_setscheduler(p, policy, param);
4220 if (retval)
4221 return retval;
4222 /*
4223 * make sure no PI-waiters arrive (or leave) while we are
4224 * changing the priority of the task:
4225 */
4226 spin_lock_irqsave(&p->pi_lock, flags);
4227 /*
4228 * To be able to change p->policy safely, the apropriate
4229 * runqueue lock must be held.
4230 */
4231 rq = __task_rq_lock(p);
4232 /* recheck policy now with rq lock held */
4233 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4234 policy = oldpolicy = -1;
4235 __task_rq_unlock(rq);
4236 spin_unlock_irqrestore(&p->pi_lock, flags);
4237 goto recheck;
4238 }
4239 update_rq_clock(rq);
4240 on_rq = p->se.on_rq;
4241 running = task_running(rq, p);
4242 if (on_rq) {
4243 deactivate_task(rq, p, 0);
4244 if (running)
4245 p->sched_class->put_prev_task(rq, p);
4246 }
4247
4248 oldprio = p->prio;
4249 __setscheduler(rq, p, policy, param->sched_priority);
4250
4251 if (on_rq) {
4252 if (running)
4253 p->sched_class->set_curr_task(rq);
4254 activate_task(rq, p, 0);
4255 /*
4256 * Reschedule if we are currently running on this runqueue and
4257 * our priority decreased, or if we are not currently running on
4258 * this runqueue and our priority is higher than the current's
4259 */
4260 if (running) {
4261 if (p->prio > oldprio)
4262 resched_task(rq->curr);
4263 } else {
4264 check_preempt_curr(rq, p);
4265 }
4266 }
4267 __task_rq_unlock(rq);
4268 spin_unlock_irqrestore(&p->pi_lock, flags);
4269
4270 rt_mutex_adjust_pi(p);
4271
4272 return 0;
4273 }
4274 EXPORT_SYMBOL_GPL(sched_setscheduler);
4275
4276 static int
4277 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4278 {
4279 struct sched_param lparam;
4280 struct task_struct *p;
4281 int retval;
4282
4283 if (!param || pid < 0)
4284 return -EINVAL;
4285 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4286 return -EFAULT;
4287
4288 rcu_read_lock();
4289 retval = -ESRCH;
4290 p = find_process_by_pid(pid);
4291 if (p != NULL)
4292 retval = sched_setscheduler(p, policy, &lparam);
4293 rcu_read_unlock();
4294
4295 return retval;
4296 }
4297
4298 /**
4299 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4300 * @pid: the pid in question.
4301 * @policy: new policy.
4302 * @param: structure containing the new RT priority.
4303 */
4304 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4305 struct sched_param __user *param)
4306 {
4307 /* negative values for policy are not valid */
4308 if (policy < 0)
4309 return -EINVAL;
4310
4311 return do_sched_setscheduler(pid, policy, param);
4312 }
4313
4314 /**
4315 * sys_sched_setparam - set/change the RT priority of a thread
4316 * @pid: the pid in question.
4317 * @param: structure containing the new RT priority.
4318 */
4319 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4320 {
4321 return do_sched_setscheduler(pid, -1, param);
4322 }
4323
4324 /**
4325 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4326 * @pid: the pid in question.
4327 */
4328 asmlinkage long sys_sched_getscheduler(pid_t pid)
4329 {
4330 struct task_struct *p;
4331 int retval;
4332
4333 if (pid < 0)
4334 return -EINVAL;
4335
4336 retval = -ESRCH;
4337 read_lock(&tasklist_lock);
4338 p = find_process_by_pid(pid);
4339 if (p) {
4340 retval = security_task_getscheduler(p);
4341 if (!retval)
4342 retval = p->policy;
4343 }
4344 read_unlock(&tasklist_lock);
4345 return retval;
4346 }
4347
4348 /**
4349 * sys_sched_getscheduler - get the RT priority of a thread
4350 * @pid: the pid in question.
4351 * @param: structure containing the RT priority.
4352 */
4353 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4354 {
4355 struct sched_param lp;
4356 struct task_struct *p;
4357 int retval;
4358
4359 if (!param || pid < 0)
4360 return -EINVAL;
4361
4362 read_lock(&tasklist_lock);
4363 p = find_process_by_pid(pid);
4364 retval = -ESRCH;
4365 if (!p)
4366 goto out_unlock;
4367
4368 retval = security_task_getscheduler(p);
4369 if (retval)
4370 goto out_unlock;
4371
4372 lp.sched_priority = p->rt_priority;
4373 read_unlock(&tasklist_lock);
4374
4375 /*
4376 * This one might sleep, we cannot do it with a spinlock held ...
4377 */
4378 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4379
4380 return retval;
4381
4382 out_unlock:
4383 read_unlock(&tasklist_lock);
4384 return retval;
4385 }
4386
4387 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4388 {
4389 cpumask_t cpus_allowed;
4390 struct task_struct *p;
4391 int retval;
4392
4393 mutex_lock(&sched_hotcpu_mutex);
4394 read_lock(&tasklist_lock);
4395
4396 p = find_process_by_pid(pid);
4397 if (!p) {
4398 read_unlock(&tasklist_lock);
4399 mutex_unlock(&sched_hotcpu_mutex);
4400 return -ESRCH;
4401 }
4402
4403 /*
4404 * It is not safe to call set_cpus_allowed with the
4405 * tasklist_lock held. We will bump the task_struct's
4406 * usage count and then drop tasklist_lock.
4407 */
4408 get_task_struct(p);
4409 read_unlock(&tasklist_lock);
4410
4411 retval = -EPERM;
4412 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4413 !capable(CAP_SYS_NICE))
4414 goto out_unlock;
4415
4416 retval = security_task_setscheduler(p, 0, NULL);
4417 if (retval)
4418 goto out_unlock;
4419
4420 cpus_allowed = cpuset_cpus_allowed(p);
4421 cpus_and(new_mask, new_mask, cpus_allowed);
4422 retval = set_cpus_allowed(p, new_mask);
4423
4424 out_unlock:
4425 put_task_struct(p);
4426 mutex_unlock(&sched_hotcpu_mutex);
4427 return retval;
4428 }
4429
4430 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4431 cpumask_t *new_mask)
4432 {
4433 if (len < sizeof(cpumask_t)) {
4434 memset(new_mask, 0, sizeof(cpumask_t));
4435 } else if (len > sizeof(cpumask_t)) {
4436 len = sizeof(cpumask_t);
4437 }
4438 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4439 }
4440
4441 /**
4442 * sys_sched_setaffinity - set the cpu affinity of a process
4443 * @pid: pid of the process
4444 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4445 * @user_mask_ptr: user-space pointer to the new cpu mask
4446 */
4447 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4448 unsigned long __user *user_mask_ptr)
4449 {
4450 cpumask_t new_mask;
4451 int retval;
4452
4453 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4454 if (retval)
4455 return retval;
4456
4457 return sched_setaffinity(pid, new_mask);
4458 }
4459
4460 /*
4461 * Represents all cpu's present in the system
4462 * In systems capable of hotplug, this map could dynamically grow
4463 * as new cpu's are detected in the system via any platform specific
4464 * method, such as ACPI for e.g.
4465 */
4466
4467 cpumask_t cpu_present_map __read_mostly;
4468 EXPORT_SYMBOL(cpu_present_map);
4469
4470 #ifndef CONFIG_SMP
4471 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4472 EXPORT_SYMBOL(cpu_online_map);
4473
4474 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4475 EXPORT_SYMBOL(cpu_possible_map);
4476 #endif
4477
4478 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4479 {
4480 struct task_struct *p;
4481 int retval;
4482
4483 mutex_lock(&sched_hotcpu_mutex);
4484 read_lock(&tasklist_lock);
4485
4486 retval = -ESRCH;
4487 p = find_process_by_pid(pid);
4488 if (!p)
4489 goto out_unlock;
4490
4491 retval = security_task_getscheduler(p);
4492 if (retval)
4493 goto out_unlock;
4494
4495 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4496
4497 out_unlock:
4498 read_unlock(&tasklist_lock);
4499 mutex_unlock(&sched_hotcpu_mutex);
4500
4501 return retval;
4502 }
4503
4504 /**
4505 * sys_sched_getaffinity - get the cpu affinity of a process
4506 * @pid: pid of the process
4507 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4508 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4509 */
4510 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4511 unsigned long __user *user_mask_ptr)
4512 {
4513 int ret;
4514 cpumask_t mask;
4515
4516 if (len < sizeof(cpumask_t))
4517 return -EINVAL;
4518
4519 ret = sched_getaffinity(pid, &mask);
4520 if (ret < 0)
4521 return ret;
4522
4523 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4524 return -EFAULT;
4525
4526 return sizeof(cpumask_t);
4527 }
4528
4529 /**
4530 * sys_sched_yield - yield the current processor to other threads.
4531 *
4532 * This function yields the current CPU to other tasks. If there are no
4533 * other threads running on this CPU then this function will return.
4534 */
4535 asmlinkage long sys_sched_yield(void)
4536 {
4537 struct rq *rq = this_rq_lock();
4538
4539 schedstat_inc(rq, yld_count);
4540 current->sched_class->yield_task(rq);
4541
4542 /*
4543 * Since we are going to call schedule() anyway, there's
4544 * no need to preempt or enable interrupts:
4545 */
4546 __release(rq->lock);
4547 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4548 _raw_spin_unlock(&rq->lock);
4549 preempt_enable_no_resched();
4550
4551 schedule();
4552
4553 return 0;
4554 }
4555
4556 static void __cond_resched(void)
4557 {
4558 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4559 __might_sleep(__FILE__, __LINE__);
4560 #endif
4561 /*
4562 * The BKS might be reacquired before we have dropped
4563 * PREEMPT_ACTIVE, which could trigger a second
4564 * cond_resched() call.
4565 */
4566 do {
4567 add_preempt_count(PREEMPT_ACTIVE);
4568 schedule();
4569 sub_preempt_count(PREEMPT_ACTIVE);
4570 } while (need_resched());
4571 }
4572
4573 int __sched cond_resched(void)
4574 {
4575 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4576 system_state == SYSTEM_RUNNING) {
4577 __cond_resched();
4578 return 1;
4579 }
4580 return 0;
4581 }
4582 EXPORT_SYMBOL(cond_resched);
4583
4584 /*
4585 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4586 * call schedule, and on return reacquire the lock.
4587 *
4588 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4589 * operations here to prevent schedule() from being called twice (once via
4590 * spin_unlock(), once by hand).
4591 */
4592 int cond_resched_lock(spinlock_t *lock)
4593 {
4594 int ret = 0;
4595
4596 if (need_lockbreak(lock)) {
4597 spin_unlock(lock);
4598 cpu_relax();
4599 ret = 1;
4600 spin_lock(lock);
4601 }
4602 if (need_resched() && system_state == SYSTEM_RUNNING) {
4603 spin_release(&lock->dep_map, 1, _THIS_IP_);
4604 _raw_spin_unlock(lock);
4605 preempt_enable_no_resched();
4606 __cond_resched();
4607 ret = 1;
4608 spin_lock(lock);
4609 }
4610 return ret;
4611 }
4612 EXPORT_SYMBOL(cond_resched_lock);
4613
4614 int __sched cond_resched_softirq(void)
4615 {
4616 BUG_ON(!in_softirq());
4617
4618 if (need_resched() && system_state == SYSTEM_RUNNING) {
4619 local_bh_enable();
4620 __cond_resched();
4621 local_bh_disable();
4622 return 1;
4623 }
4624 return 0;
4625 }
4626 EXPORT_SYMBOL(cond_resched_softirq);
4627
4628 /**
4629 * yield - yield the current processor to other threads.
4630 *
4631 * This is a shortcut for kernel-space yielding - it marks the
4632 * thread runnable and calls sys_sched_yield().
4633 */
4634 void __sched yield(void)
4635 {
4636 set_current_state(TASK_RUNNING);
4637 sys_sched_yield();
4638 }
4639 EXPORT_SYMBOL(yield);
4640
4641 /*
4642 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4643 * that process accounting knows that this is a task in IO wait state.
4644 *
4645 * But don't do that if it is a deliberate, throttling IO wait (this task
4646 * has set its backing_dev_info: the queue against which it should throttle)
4647 */
4648 void __sched io_schedule(void)
4649 {
4650 struct rq *rq = &__raw_get_cpu_var(runqueues);
4651
4652 delayacct_blkio_start();
4653 atomic_inc(&rq->nr_iowait);
4654 schedule();
4655 atomic_dec(&rq->nr_iowait);
4656 delayacct_blkio_end();
4657 }
4658 EXPORT_SYMBOL(io_schedule);
4659
4660 long __sched io_schedule_timeout(long timeout)
4661 {
4662 struct rq *rq = &__raw_get_cpu_var(runqueues);
4663 long ret;
4664
4665 delayacct_blkio_start();
4666 atomic_inc(&rq->nr_iowait);
4667 ret = schedule_timeout(timeout);
4668 atomic_dec(&rq->nr_iowait);
4669 delayacct_blkio_end();
4670 return ret;
4671 }
4672
4673 /**
4674 * sys_sched_get_priority_max - return maximum RT priority.
4675 * @policy: scheduling class.
4676 *
4677 * this syscall returns the maximum rt_priority that can be used
4678 * by a given scheduling class.
4679 */
4680 asmlinkage long sys_sched_get_priority_max(int policy)
4681 {
4682 int ret = -EINVAL;
4683
4684 switch (policy) {
4685 case SCHED_FIFO:
4686 case SCHED_RR:
4687 ret = MAX_USER_RT_PRIO-1;
4688 break;
4689 case SCHED_NORMAL:
4690 case SCHED_BATCH:
4691 case SCHED_IDLE:
4692 ret = 0;
4693 break;
4694 }
4695 return ret;
4696 }
4697
4698 /**
4699 * sys_sched_get_priority_min - return minimum RT priority.
4700 * @policy: scheduling class.
4701 *
4702 * this syscall returns the minimum rt_priority that can be used
4703 * by a given scheduling class.
4704 */
4705 asmlinkage long sys_sched_get_priority_min(int policy)
4706 {
4707 int ret = -EINVAL;
4708
4709 switch (policy) {
4710 case SCHED_FIFO:
4711 case SCHED_RR:
4712 ret = 1;
4713 break;
4714 case SCHED_NORMAL:
4715 case SCHED_BATCH:
4716 case SCHED_IDLE:
4717 ret = 0;
4718 }
4719 return ret;
4720 }
4721
4722 /**
4723 * sys_sched_rr_get_interval - return the default timeslice of a process.
4724 * @pid: pid of the process.
4725 * @interval: userspace pointer to the timeslice value.
4726 *
4727 * this syscall writes the default timeslice value of a given process
4728 * into the user-space timespec buffer. A value of '0' means infinity.
4729 */
4730 asmlinkage
4731 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4732 {
4733 struct task_struct *p;
4734 unsigned int time_slice;
4735 int retval;
4736 struct timespec t;
4737
4738 if (pid < 0)
4739 return -EINVAL;
4740
4741 retval = -ESRCH;
4742 read_lock(&tasklist_lock);
4743 p = find_process_by_pid(pid);
4744 if (!p)
4745 goto out_unlock;
4746
4747 retval = security_task_getscheduler(p);
4748 if (retval)
4749 goto out_unlock;
4750
4751 if (p->policy == SCHED_FIFO)
4752 time_slice = 0;
4753 else if (p->policy == SCHED_RR)
4754 time_slice = DEF_TIMESLICE;
4755 else {
4756 struct sched_entity *se = &p->se;
4757 unsigned long flags;
4758 struct rq *rq;
4759
4760 rq = task_rq_lock(p, &flags);
4761 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4762 task_rq_unlock(rq, &flags);
4763 }
4764 read_unlock(&tasklist_lock);
4765 jiffies_to_timespec(time_slice, &t);
4766 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4767 return retval;
4768
4769 out_unlock:
4770 read_unlock(&tasklist_lock);
4771 return retval;
4772 }
4773
4774 static const char stat_nam[] = "RSDTtZX";
4775
4776 static void show_task(struct task_struct *p)
4777 {
4778 unsigned long free = 0;
4779 unsigned state;
4780
4781 state = p->state ? __ffs(p->state) + 1 : 0;
4782 printk("%-13.13s %c", p->comm,
4783 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4784 #if BITS_PER_LONG == 32
4785 if (state == TASK_RUNNING)
4786 printk(" running ");
4787 else
4788 printk(" %08lx ", thread_saved_pc(p));
4789 #else
4790 if (state == TASK_RUNNING)
4791 printk(" running task ");
4792 else
4793 printk(" %016lx ", thread_saved_pc(p));
4794 #endif
4795 #ifdef CONFIG_DEBUG_STACK_USAGE
4796 {
4797 unsigned long *n = end_of_stack(p);
4798 while (!*n)
4799 n++;
4800 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4801 }
4802 #endif
4803 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4804
4805 if (state != TASK_RUNNING)
4806 show_stack(p, NULL);
4807 }
4808
4809 void show_state_filter(unsigned long state_filter)
4810 {
4811 struct task_struct *g, *p;
4812
4813 #if BITS_PER_LONG == 32
4814 printk(KERN_INFO
4815 " task PC stack pid father\n");
4816 #else
4817 printk(KERN_INFO
4818 " task PC stack pid father\n");
4819 #endif
4820 read_lock(&tasklist_lock);
4821 do_each_thread(g, p) {
4822 /*
4823 * reset the NMI-timeout, listing all files on a slow
4824 * console might take alot of time:
4825 */
4826 touch_nmi_watchdog();
4827 if (!state_filter || (p->state & state_filter))
4828 show_task(p);
4829 } while_each_thread(g, p);
4830
4831 touch_all_softlockup_watchdogs();
4832
4833 #ifdef CONFIG_SCHED_DEBUG
4834 sysrq_sched_debug_show();
4835 #endif
4836 read_unlock(&tasklist_lock);
4837 /*
4838 * Only show locks if all tasks are dumped:
4839 */
4840 if (state_filter == -1)
4841 debug_show_all_locks();
4842 }
4843
4844 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4845 {
4846 idle->sched_class = &idle_sched_class;
4847 }
4848
4849 /**
4850 * init_idle - set up an idle thread for a given CPU
4851 * @idle: task in question
4852 * @cpu: cpu the idle task belongs to
4853 *
4854 * NOTE: this function does not set the idle thread's NEED_RESCHED
4855 * flag, to make booting more robust.
4856 */
4857 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4858 {
4859 struct rq *rq = cpu_rq(cpu);
4860 unsigned long flags;
4861
4862 __sched_fork(idle);
4863 idle->se.exec_start = sched_clock();
4864
4865 idle->prio = idle->normal_prio = MAX_PRIO;
4866 idle->cpus_allowed = cpumask_of_cpu(cpu);
4867 __set_task_cpu(idle, cpu);
4868
4869 spin_lock_irqsave(&rq->lock, flags);
4870 rq->curr = rq->idle = idle;
4871 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4872 idle->oncpu = 1;
4873 #endif
4874 spin_unlock_irqrestore(&rq->lock, flags);
4875
4876 /* Set the preempt count _outside_ the spinlocks! */
4877 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4878 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4879 #else
4880 task_thread_info(idle)->preempt_count = 0;
4881 #endif
4882 /*
4883 * The idle tasks have their own, simple scheduling class:
4884 */
4885 idle->sched_class = &idle_sched_class;
4886 }
4887
4888 /*
4889 * In a system that switches off the HZ timer nohz_cpu_mask
4890 * indicates which cpus entered this state. This is used
4891 * in the rcu update to wait only for active cpus. For system
4892 * which do not switch off the HZ timer nohz_cpu_mask should
4893 * always be CPU_MASK_NONE.
4894 */
4895 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4896
4897 #ifdef CONFIG_SMP
4898 /*
4899 * This is how migration works:
4900 *
4901 * 1) we queue a struct migration_req structure in the source CPU's
4902 * runqueue and wake up that CPU's migration thread.
4903 * 2) we down() the locked semaphore => thread blocks.
4904 * 3) migration thread wakes up (implicitly it forces the migrated
4905 * thread off the CPU)
4906 * 4) it gets the migration request and checks whether the migrated
4907 * task is still in the wrong runqueue.
4908 * 5) if it's in the wrong runqueue then the migration thread removes
4909 * it and puts it into the right queue.
4910 * 6) migration thread up()s the semaphore.
4911 * 7) we wake up and the migration is done.
4912 */
4913
4914 /*
4915 * Change a given task's CPU affinity. Migrate the thread to a
4916 * proper CPU and schedule it away if the CPU it's executing on
4917 * is removed from the allowed bitmask.
4918 *
4919 * NOTE: the caller must have a valid reference to the task, the
4920 * task must not exit() & deallocate itself prematurely. The
4921 * call is not atomic; no spinlocks may be held.
4922 */
4923 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4924 {
4925 struct migration_req req;
4926 unsigned long flags;
4927 struct rq *rq;
4928 int ret = 0;
4929
4930 rq = task_rq_lock(p, &flags);
4931 if (!cpus_intersects(new_mask, cpu_online_map)) {
4932 ret = -EINVAL;
4933 goto out;
4934 }
4935
4936 p->cpus_allowed = new_mask;
4937 /* Can the task run on the task's current CPU? If so, we're done */
4938 if (cpu_isset(task_cpu(p), new_mask))
4939 goto out;
4940
4941 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4942 /* Need help from migration thread: drop lock and wait. */
4943 task_rq_unlock(rq, &flags);
4944 wake_up_process(rq->migration_thread);
4945 wait_for_completion(&req.done);
4946 tlb_migrate_finish(p->mm);
4947 return 0;
4948 }
4949 out:
4950 task_rq_unlock(rq, &flags);
4951
4952 return ret;
4953 }
4954 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4955
4956 /*
4957 * Move (not current) task off this cpu, onto dest cpu. We're doing
4958 * this because either it can't run here any more (set_cpus_allowed()
4959 * away from this CPU, or CPU going down), or because we're
4960 * attempting to rebalance this task on exec (sched_exec).
4961 *
4962 * So we race with normal scheduler movements, but that's OK, as long
4963 * as the task is no longer on this CPU.
4964 *
4965 * Returns non-zero if task was successfully migrated.
4966 */
4967 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4968 {
4969 struct rq *rq_dest, *rq_src;
4970 int ret = 0, on_rq;
4971
4972 if (unlikely(cpu_is_offline(dest_cpu)))
4973 return ret;
4974
4975 rq_src = cpu_rq(src_cpu);
4976 rq_dest = cpu_rq(dest_cpu);
4977
4978 double_rq_lock(rq_src, rq_dest);
4979 /* Already moved. */
4980 if (task_cpu(p) != src_cpu)
4981 goto out;
4982 /* Affinity changed (again). */
4983 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4984 goto out;
4985
4986 on_rq = p->se.on_rq;
4987 if (on_rq)
4988 deactivate_task(rq_src, p, 0);
4989
4990 set_task_cpu(p, dest_cpu);
4991 if (on_rq) {
4992 activate_task(rq_dest, p, 0);
4993 check_preempt_curr(rq_dest, p);
4994 }
4995 ret = 1;
4996 out:
4997 double_rq_unlock(rq_src, rq_dest);
4998 return ret;
4999 }
5000
5001 /*
5002 * migration_thread - this is a highprio system thread that performs
5003 * thread migration by bumping thread off CPU then 'pushing' onto
5004 * another runqueue.
5005 */
5006 static int migration_thread(void *data)
5007 {
5008 int cpu = (long)data;
5009 struct rq *rq;
5010
5011 rq = cpu_rq(cpu);
5012 BUG_ON(rq->migration_thread != current);
5013
5014 set_current_state(TASK_INTERRUPTIBLE);
5015 while (!kthread_should_stop()) {
5016 struct migration_req *req;
5017 struct list_head *head;
5018
5019 spin_lock_irq(&rq->lock);
5020
5021 if (cpu_is_offline(cpu)) {
5022 spin_unlock_irq(&rq->lock);
5023 goto wait_to_die;
5024 }
5025
5026 if (rq->active_balance) {
5027 active_load_balance(rq, cpu);
5028 rq->active_balance = 0;
5029 }
5030
5031 head = &rq->migration_queue;
5032
5033 if (list_empty(head)) {
5034 spin_unlock_irq(&rq->lock);
5035 schedule();
5036 set_current_state(TASK_INTERRUPTIBLE);
5037 continue;
5038 }
5039 req = list_entry(head->next, struct migration_req, list);
5040 list_del_init(head->next);
5041
5042 spin_unlock(&rq->lock);
5043 __migrate_task(req->task, cpu, req->dest_cpu);
5044 local_irq_enable();
5045
5046 complete(&req->done);
5047 }
5048 __set_current_state(TASK_RUNNING);
5049 return 0;
5050
5051 wait_to_die:
5052 /* Wait for kthread_stop */
5053 set_current_state(TASK_INTERRUPTIBLE);
5054 while (!kthread_should_stop()) {
5055 schedule();
5056 set_current_state(TASK_INTERRUPTIBLE);
5057 }
5058 __set_current_state(TASK_RUNNING);
5059 return 0;
5060 }
5061
5062 #ifdef CONFIG_HOTPLUG_CPU
5063
5064 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5065 {
5066 int ret;
5067
5068 local_irq_disable();
5069 ret = __migrate_task(p, src_cpu, dest_cpu);
5070 local_irq_enable();
5071 return ret;
5072 }
5073
5074 /*
5075 * Figure out where task on dead CPU should go, use force if neccessary.
5076 * NOTE: interrupts should be disabled by the caller
5077 */
5078 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5079 {
5080 unsigned long flags;
5081 cpumask_t mask;
5082 struct rq *rq;
5083 int dest_cpu;
5084
5085 do {
5086 /* On same node? */
5087 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5088 cpus_and(mask, mask, p->cpus_allowed);
5089 dest_cpu = any_online_cpu(mask);
5090
5091 /* On any allowed CPU? */
5092 if (dest_cpu == NR_CPUS)
5093 dest_cpu = any_online_cpu(p->cpus_allowed);
5094
5095 /* No more Mr. Nice Guy. */
5096 if (dest_cpu == NR_CPUS) {
5097 rq = task_rq_lock(p, &flags);
5098 cpus_setall(p->cpus_allowed);
5099 dest_cpu = any_online_cpu(p->cpus_allowed);
5100 task_rq_unlock(rq, &flags);
5101
5102 /*
5103 * Don't tell them about moving exiting tasks or
5104 * kernel threads (both mm NULL), since they never
5105 * leave kernel.
5106 */
5107 if (p->mm && printk_ratelimit())
5108 printk(KERN_INFO "process %d (%s) no "
5109 "longer affine to cpu%d\n",
5110 p->pid, p->comm, dead_cpu);
5111 }
5112 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5113 }
5114
5115 /*
5116 * While a dead CPU has no uninterruptible tasks queued at this point,
5117 * it might still have a nonzero ->nr_uninterruptible counter, because
5118 * for performance reasons the counter is not stricly tracking tasks to
5119 * their home CPUs. So we just add the counter to another CPU's counter,
5120 * to keep the global sum constant after CPU-down:
5121 */
5122 static void migrate_nr_uninterruptible(struct rq *rq_src)
5123 {
5124 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5125 unsigned long flags;
5126
5127 local_irq_save(flags);
5128 double_rq_lock(rq_src, rq_dest);
5129 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5130 rq_src->nr_uninterruptible = 0;
5131 double_rq_unlock(rq_src, rq_dest);
5132 local_irq_restore(flags);
5133 }
5134
5135 /* Run through task list and migrate tasks from the dead cpu. */
5136 static void migrate_live_tasks(int src_cpu)
5137 {
5138 struct task_struct *p, *t;
5139
5140 read_lock(&tasklist_lock);
5141
5142 do_each_thread(t, p) {
5143 if (p == current)
5144 continue;
5145
5146 if (task_cpu(p) == src_cpu)
5147 move_task_off_dead_cpu(src_cpu, p);
5148 } while_each_thread(t, p);
5149
5150 read_unlock(&tasklist_lock);
5151 }
5152
5153 /*
5154 * activate_idle_task - move idle task to the _front_ of runqueue.
5155 */
5156 static void activate_idle_task(struct task_struct *p, struct rq *rq)
5157 {
5158 update_rq_clock(rq);
5159
5160 if (p->state == TASK_UNINTERRUPTIBLE)
5161 rq->nr_uninterruptible--;
5162
5163 enqueue_task(rq, p, 0);
5164 inc_nr_running(p, rq);
5165 }
5166
5167 /*
5168 * Schedules idle task to be the next runnable task on current CPU.
5169 * It does so by boosting its priority to highest possible and adding it to
5170 * the _front_ of the runqueue. Used by CPU offline code.
5171 */
5172 void sched_idle_next(void)
5173 {
5174 int this_cpu = smp_processor_id();
5175 struct rq *rq = cpu_rq(this_cpu);
5176 struct task_struct *p = rq->idle;
5177 unsigned long flags;
5178
5179 /* cpu has to be offline */
5180 BUG_ON(cpu_online(this_cpu));
5181
5182 /*
5183 * Strictly not necessary since rest of the CPUs are stopped by now
5184 * and interrupts disabled on the current cpu.
5185 */
5186 spin_lock_irqsave(&rq->lock, flags);
5187
5188 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5189
5190 /* Add idle task to the _front_ of its priority queue: */
5191 activate_idle_task(p, rq);
5192
5193 spin_unlock_irqrestore(&rq->lock, flags);
5194 }
5195
5196 /*
5197 * Ensures that the idle task is using init_mm right before its cpu goes
5198 * offline.
5199 */
5200 void idle_task_exit(void)
5201 {
5202 struct mm_struct *mm = current->active_mm;
5203
5204 BUG_ON(cpu_online(smp_processor_id()));
5205
5206 if (mm != &init_mm)
5207 switch_mm(mm, &init_mm, current);
5208 mmdrop(mm);
5209 }
5210
5211 /* called under rq->lock with disabled interrupts */
5212 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5213 {
5214 struct rq *rq = cpu_rq(dead_cpu);
5215
5216 /* Must be exiting, otherwise would be on tasklist. */
5217 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5218
5219 /* Cannot have done final schedule yet: would have vanished. */
5220 BUG_ON(p->state == TASK_DEAD);
5221
5222 get_task_struct(p);
5223
5224 /*
5225 * Drop lock around migration; if someone else moves it,
5226 * that's OK. No task can be added to this CPU, so iteration is
5227 * fine.
5228 */
5229 spin_unlock_irq(&rq->lock);
5230 move_task_off_dead_cpu(dead_cpu, p);
5231 spin_lock_irq(&rq->lock);
5232
5233 put_task_struct(p);
5234 }
5235
5236 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5237 static void migrate_dead_tasks(unsigned int dead_cpu)
5238 {
5239 struct rq *rq = cpu_rq(dead_cpu);
5240 struct task_struct *next;
5241
5242 for ( ; ; ) {
5243 if (!rq->nr_running)
5244 break;
5245 update_rq_clock(rq);
5246 next = pick_next_task(rq, rq->curr);
5247 if (!next)
5248 break;
5249 migrate_dead(dead_cpu, next);
5250
5251 }
5252 }
5253 #endif /* CONFIG_HOTPLUG_CPU */
5254
5255 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5256
5257 static struct ctl_table sd_ctl_dir[] = {
5258 {
5259 .procname = "sched_domain",
5260 .mode = 0555,
5261 },
5262 {0,},
5263 };
5264
5265 static struct ctl_table sd_ctl_root[] = {
5266 {
5267 .ctl_name = CTL_KERN,
5268 .procname = "kernel",
5269 .mode = 0555,
5270 .child = sd_ctl_dir,
5271 },
5272 {0,},
5273 };
5274
5275 static struct ctl_table *sd_alloc_ctl_entry(int n)
5276 {
5277 struct ctl_table *entry =
5278 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5279
5280 return entry;
5281 }
5282
5283 static void sd_free_ctl_entry(struct ctl_table **tablep)
5284 {
5285 struct ctl_table *entry = *tablep;
5286
5287 for (entry = *tablep; entry->procname; entry++)
5288 if (entry->child)
5289 sd_free_ctl_entry(&entry->child);
5290
5291 kfree(*tablep);
5292 *tablep = NULL;
5293 }
5294
5295 static void
5296 set_table_entry(struct ctl_table *entry,
5297 const char *procname, void *data, int maxlen,
5298 mode_t mode, proc_handler *proc_handler)
5299 {
5300 entry->procname = procname;
5301 entry->data = data;
5302 entry->maxlen = maxlen;
5303 entry->mode = mode;
5304 entry->proc_handler = proc_handler;
5305 }
5306
5307 static struct ctl_table *
5308 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5309 {
5310 struct ctl_table *table = sd_alloc_ctl_entry(12);
5311
5312 if (table == NULL)
5313 return NULL;
5314
5315 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5316 sizeof(long), 0644, proc_doulongvec_minmax);
5317 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5318 sizeof(long), 0644, proc_doulongvec_minmax);
5319 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5320 sizeof(int), 0644, proc_dointvec_minmax);
5321 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5322 sizeof(int), 0644, proc_dointvec_minmax);
5323 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5324 sizeof(int), 0644, proc_dointvec_minmax);
5325 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5326 sizeof(int), 0644, proc_dointvec_minmax);
5327 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5328 sizeof(int), 0644, proc_dointvec_minmax);
5329 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5330 sizeof(int), 0644, proc_dointvec_minmax);
5331 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5332 sizeof(int), 0644, proc_dointvec_minmax);
5333 set_table_entry(&table[9], "cache_nice_tries",
5334 &sd->cache_nice_tries,
5335 sizeof(int), 0644, proc_dointvec_minmax);
5336 set_table_entry(&table[10], "flags", &sd->flags,
5337 sizeof(int), 0644, proc_dointvec_minmax);
5338 /* &table[11] is terminator */
5339
5340 return table;
5341 }
5342
5343 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5344 {
5345 struct ctl_table *entry, *table;
5346 struct sched_domain *sd;
5347 int domain_num = 0, i;
5348 char buf[32];
5349
5350 for_each_domain(cpu, sd)
5351 domain_num++;
5352 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5353 if (table == NULL)
5354 return NULL;
5355
5356 i = 0;
5357 for_each_domain(cpu, sd) {
5358 snprintf(buf, 32, "domain%d", i);
5359 entry->procname = kstrdup(buf, GFP_KERNEL);
5360 entry->mode = 0555;
5361 entry->child = sd_alloc_ctl_domain_table(sd);
5362 entry++;
5363 i++;
5364 }
5365 return table;
5366 }
5367
5368 static struct ctl_table_header *sd_sysctl_header;
5369 static void register_sched_domain_sysctl(void)
5370 {
5371 int i, cpu_num = num_online_cpus();
5372 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5373 char buf[32];
5374
5375 if (entry == NULL)
5376 return;
5377
5378 sd_ctl_dir[0].child = entry;
5379
5380 for_each_online_cpu(i) {
5381 snprintf(buf, 32, "cpu%d", i);
5382 entry->procname = kstrdup(buf, GFP_KERNEL);
5383 entry->mode = 0555;
5384 entry->child = sd_alloc_ctl_cpu_table(i);
5385 entry++;
5386 }
5387 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5388 }
5389
5390 static void unregister_sched_domain_sysctl(void)
5391 {
5392 unregister_sysctl_table(sd_sysctl_header);
5393 sd_sysctl_header = NULL;
5394 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5395 }
5396 #else
5397 static void register_sched_domain_sysctl(void)
5398 {
5399 }
5400 static void unregister_sched_domain_sysctl(void)
5401 {
5402 }
5403 #endif
5404
5405 /*
5406 * migration_call - callback that gets triggered when a CPU is added.
5407 * Here we can start up the necessary migration thread for the new CPU.
5408 */
5409 static int __cpuinit
5410 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5411 {
5412 struct task_struct *p;
5413 int cpu = (long)hcpu;
5414 unsigned long flags;
5415 struct rq *rq;
5416
5417 switch (action) {
5418 case CPU_LOCK_ACQUIRE:
5419 mutex_lock(&sched_hotcpu_mutex);
5420 break;
5421
5422 case CPU_UP_PREPARE:
5423 case CPU_UP_PREPARE_FROZEN:
5424 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5425 if (IS_ERR(p))
5426 return NOTIFY_BAD;
5427 kthread_bind(p, cpu);
5428 /* Must be high prio: stop_machine expects to yield to it. */
5429 rq = task_rq_lock(p, &flags);
5430 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5431 task_rq_unlock(rq, &flags);
5432 cpu_rq(cpu)->migration_thread = p;
5433 break;
5434
5435 case CPU_ONLINE:
5436 case CPU_ONLINE_FROZEN:
5437 /* Strictly unneccessary, as first user will wake it. */
5438 wake_up_process(cpu_rq(cpu)->migration_thread);
5439 break;
5440
5441 #ifdef CONFIG_HOTPLUG_CPU
5442 case CPU_UP_CANCELED:
5443 case CPU_UP_CANCELED_FROZEN:
5444 if (!cpu_rq(cpu)->migration_thread)
5445 break;
5446 /* Unbind it from offline cpu so it can run. Fall thru. */
5447 kthread_bind(cpu_rq(cpu)->migration_thread,
5448 any_online_cpu(cpu_online_map));
5449 kthread_stop(cpu_rq(cpu)->migration_thread);
5450 cpu_rq(cpu)->migration_thread = NULL;
5451 break;
5452
5453 case CPU_DEAD:
5454 case CPU_DEAD_FROZEN:
5455 migrate_live_tasks(cpu);
5456 rq = cpu_rq(cpu);
5457 kthread_stop(rq->migration_thread);
5458 rq->migration_thread = NULL;
5459 /* Idle task back to normal (off runqueue, low prio) */
5460 spin_lock_irq(&rq->lock);
5461 update_rq_clock(rq);
5462 deactivate_task(rq, rq->idle, 0);
5463 rq->idle->static_prio = MAX_PRIO;
5464 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5465 rq->idle->sched_class = &idle_sched_class;
5466 migrate_dead_tasks(cpu);
5467 spin_unlock_irq(&rq->lock);
5468 migrate_nr_uninterruptible(rq);
5469 BUG_ON(rq->nr_running != 0);
5470
5471 /* No need to migrate the tasks: it was best-effort if
5472 * they didn't take sched_hotcpu_mutex. Just wake up
5473 * the requestors. */
5474 spin_lock_irq(&rq->lock);
5475 while (!list_empty(&rq->migration_queue)) {
5476 struct migration_req *req;
5477
5478 req = list_entry(rq->migration_queue.next,
5479 struct migration_req, list);
5480 list_del_init(&req->list);
5481 complete(&req->done);
5482 }
5483 spin_unlock_irq(&rq->lock);
5484 break;
5485 #endif
5486 case CPU_LOCK_RELEASE:
5487 mutex_unlock(&sched_hotcpu_mutex);
5488 break;
5489 }
5490 return NOTIFY_OK;
5491 }
5492
5493 /* Register at highest priority so that task migration (migrate_all_tasks)
5494 * happens before everything else.
5495 */
5496 static struct notifier_block __cpuinitdata migration_notifier = {
5497 .notifier_call = migration_call,
5498 .priority = 10
5499 };
5500
5501 int __init migration_init(void)
5502 {
5503 void *cpu = (void *)(long)smp_processor_id();
5504 int err;
5505
5506 /* Start one for the boot CPU: */
5507 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5508 BUG_ON(err == NOTIFY_BAD);
5509 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5510 register_cpu_notifier(&migration_notifier);
5511
5512 return 0;
5513 }
5514 #endif
5515
5516 #ifdef CONFIG_SMP
5517
5518 /* Number of possible processor ids */
5519 int nr_cpu_ids __read_mostly = NR_CPUS;
5520 EXPORT_SYMBOL(nr_cpu_ids);
5521
5522 #ifdef CONFIG_SCHED_DEBUG
5523 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5524 {
5525 int level = 0;
5526
5527 if (!sd) {
5528 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5529 return;
5530 }
5531
5532 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5533
5534 do {
5535 int i;
5536 char str[NR_CPUS];
5537 struct sched_group *group = sd->groups;
5538 cpumask_t groupmask;
5539
5540 cpumask_scnprintf(str, NR_CPUS, sd->span);
5541 cpus_clear(groupmask);
5542
5543 printk(KERN_DEBUG);
5544 for (i = 0; i < level + 1; i++)
5545 printk(" ");
5546 printk("domain %d: ", level);
5547
5548 if (!(sd->flags & SD_LOAD_BALANCE)) {
5549 printk("does not load-balance\n");
5550 if (sd->parent)
5551 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5552 " has parent");
5553 break;
5554 }
5555
5556 printk("span %s\n", str);
5557
5558 if (!cpu_isset(cpu, sd->span))
5559 printk(KERN_ERR "ERROR: domain->span does not contain "
5560 "CPU%d\n", cpu);
5561 if (!cpu_isset(cpu, group->cpumask))
5562 printk(KERN_ERR "ERROR: domain->groups does not contain"
5563 " CPU%d\n", cpu);
5564
5565 printk(KERN_DEBUG);
5566 for (i = 0; i < level + 2; i++)
5567 printk(" ");
5568 printk("groups:");
5569 do {
5570 if (!group) {
5571 printk("\n");
5572 printk(KERN_ERR "ERROR: group is NULL\n");
5573 break;
5574 }
5575
5576 if (!group->__cpu_power) {
5577 printk("\n");
5578 printk(KERN_ERR "ERROR: domain->cpu_power not "
5579 "set\n");
5580 break;
5581 }
5582
5583 if (!cpus_weight(group->cpumask)) {
5584 printk("\n");
5585 printk(KERN_ERR "ERROR: empty group\n");
5586 break;
5587 }
5588
5589 if (cpus_intersects(groupmask, group->cpumask)) {
5590 printk("\n");
5591 printk(KERN_ERR "ERROR: repeated CPUs\n");
5592 break;
5593 }
5594
5595 cpus_or(groupmask, groupmask, group->cpumask);
5596
5597 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5598 printk(" %s", str);
5599
5600 group = group->next;
5601 } while (group != sd->groups);
5602 printk("\n");
5603
5604 if (!cpus_equal(sd->span, groupmask))
5605 printk(KERN_ERR "ERROR: groups don't span "
5606 "domain->span\n");
5607
5608 level++;
5609 sd = sd->parent;
5610 if (!sd)
5611 continue;
5612
5613 if (!cpus_subset(groupmask, sd->span))
5614 printk(KERN_ERR "ERROR: parent span is not a superset "
5615 "of domain->span\n");
5616
5617 } while (sd);
5618 }
5619 #else
5620 # define sched_domain_debug(sd, cpu) do { } while (0)
5621 #endif
5622
5623 static int sd_degenerate(struct sched_domain *sd)
5624 {
5625 if (cpus_weight(sd->span) == 1)
5626 return 1;
5627
5628 /* Following flags need at least 2 groups */
5629 if (sd->flags & (SD_LOAD_BALANCE |
5630 SD_BALANCE_NEWIDLE |
5631 SD_BALANCE_FORK |
5632 SD_BALANCE_EXEC |
5633 SD_SHARE_CPUPOWER |
5634 SD_SHARE_PKG_RESOURCES)) {
5635 if (sd->groups != sd->groups->next)
5636 return 0;
5637 }
5638
5639 /* Following flags don't use groups */
5640 if (sd->flags & (SD_WAKE_IDLE |
5641 SD_WAKE_AFFINE |
5642 SD_WAKE_BALANCE))
5643 return 0;
5644
5645 return 1;
5646 }
5647
5648 static int
5649 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5650 {
5651 unsigned long cflags = sd->flags, pflags = parent->flags;
5652
5653 if (sd_degenerate(parent))
5654 return 1;
5655
5656 if (!cpus_equal(sd->span, parent->span))
5657 return 0;
5658
5659 /* Does parent contain flags not in child? */
5660 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5661 if (cflags & SD_WAKE_AFFINE)
5662 pflags &= ~SD_WAKE_BALANCE;
5663 /* Flags needing groups don't count if only 1 group in parent */
5664 if (parent->groups == parent->groups->next) {
5665 pflags &= ~(SD_LOAD_BALANCE |
5666 SD_BALANCE_NEWIDLE |
5667 SD_BALANCE_FORK |
5668 SD_BALANCE_EXEC |
5669 SD_SHARE_CPUPOWER |
5670 SD_SHARE_PKG_RESOURCES);
5671 }
5672 if (~cflags & pflags)
5673 return 0;
5674
5675 return 1;
5676 }
5677
5678 /*
5679 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5680 * hold the hotplug lock.
5681 */
5682 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5683 {
5684 struct rq *rq = cpu_rq(cpu);
5685 struct sched_domain *tmp;
5686
5687 /* Remove the sched domains which do not contribute to scheduling. */
5688 for (tmp = sd; tmp; tmp = tmp->parent) {
5689 struct sched_domain *parent = tmp->parent;
5690 if (!parent)
5691 break;
5692 if (sd_parent_degenerate(tmp, parent)) {
5693 tmp->parent = parent->parent;
5694 if (parent->parent)
5695 parent->parent->child = tmp;
5696 }
5697 }
5698
5699 if (sd && sd_degenerate(sd)) {
5700 sd = sd->parent;
5701 if (sd)
5702 sd->child = NULL;
5703 }
5704
5705 sched_domain_debug(sd, cpu);
5706
5707 rcu_assign_pointer(rq->sd, sd);
5708 }
5709
5710 /* cpus with isolated domains */
5711 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5712
5713 /* Setup the mask of cpus configured for isolated domains */
5714 static int __init isolated_cpu_setup(char *str)
5715 {
5716 int ints[NR_CPUS], i;
5717
5718 str = get_options(str, ARRAY_SIZE(ints), ints);
5719 cpus_clear(cpu_isolated_map);
5720 for (i = 1; i <= ints[0]; i++)
5721 if (ints[i] < NR_CPUS)
5722 cpu_set(ints[i], cpu_isolated_map);
5723 return 1;
5724 }
5725
5726 __setup("isolcpus=", isolated_cpu_setup);
5727
5728 /*
5729 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5730 * to a function which identifies what group(along with sched group) a CPU
5731 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5732 * (due to the fact that we keep track of groups covered with a cpumask_t).
5733 *
5734 * init_sched_build_groups will build a circular linked list of the groups
5735 * covered by the given span, and will set each group's ->cpumask correctly,
5736 * and ->cpu_power to 0.
5737 */
5738 static void
5739 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5740 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5741 struct sched_group **sg))
5742 {
5743 struct sched_group *first = NULL, *last = NULL;
5744 cpumask_t covered = CPU_MASK_NONE;
5745 int i;
5746
5747 for_each_cpu_mask(i, span) {
5748 struct sched_group *sg;
5749 int group = group_fn(i, cpu_map, &sg);
5750 int j;
5751
5752 if (cpu_isset(i, covered))
5753 continue;
5754
5755 sg->cpumask = CPU_MASK_NONE;
5756 sg->__cpu_power = 0;
5757
5758 for_each_cpu_mask(j, span) {
5759 if (group_fn(j, cpu_map, NULL) != group)
5760 continue;
5761
5762 cpu_set(j, covered);
5763 cpu_set(j, sg->cpumask);
5764 }
5765 if (!first)
5766 first = sg;
5767 if (last)
5768 last->next = sg;
5769 last = sg;
5770 }
5771 last->next = first;
5772 }
5773
5774 #define SD_NODES_PER_DOMAIN 16
5775
5776 #ifdef CONFIG_NUMA
5777
5778 /**
5779 * find_next_best_node - find the next node to include in a sched_domain
5780 * @node: node whose sched_domain we're building
5781 * @used_nodes: nodes already in the sched_domain
5782 *
5783 * Find the next node to include in a given scheduling domain. Simply
5784 * finds the closest node not already in the @used_nodes map.
5785 *
5786 * Should use nodemask_t.
5787 */
5788 static int find_next_best_node(int node, unsigned long *used_nodes)
5789 {
5790 int i, n, val, min_val, best_node = 0;
5791
5792 min_val = INT_MAX;
5793
5794 for (i = 0; i < MAX_NUMNODES; i++) {
5795 /* Start at @node */
5796 n = (node + i) % MAX_NUMNODES;
5797
5798 if (!nr_cpus_node(n))
5799 continue;
5800
5801 /* Skip already used nodes */
5802 if (test_bit(n, used_nodes))
5803 continue;
5804
5805 /* Simple min distance search */
5806 val = node_distance(node, n);
5807
5808 if (val < min_val) {
5809 min_val = val;
5810 best_node = n;
5811 }
5812 }
5813
5814 set_bit(best_node, used_nodes);
5815 return best_node;
5816 }
5817
5818 /**
5819 * sched_domain_node_span - get a cpumask for a node's sched_domain
5820 * @node: node whose cpumask we're constructing
5821 * @size: number of nodes to include in this span
5822 *
5823 * Given a node, construct a good cpumask for its sched_domain to span. It
5824 * should be one that prevents unnecessary balancing, but also spreads tasks
5825 * out optimally.
5826 */
5827 static cpumask_t sched_domain_node_span(int node)
5828 {
5829 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5830 cpumask_t span, nodemask;
5831 int i;
5832
5833 cpus_clear(span);
5834 bitmap_zero(used_nodes, MAX_NUMNODES);
5835
5836 nodemask = node_to_cpumask(node);
5837 cpus_or(span, span, nodemask);
5838 set_bit(node, used_nodes);
5839
5840 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5841 int next_node = find_next_best_node(node, used_nodes);
5842
5843 nodemask = node_to_cpumask(next_node);
5844 cpus_or(span, span, nodemask);
5845 }
5846
5847 return span;
5848 }
5849 #endif
5850
5851 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5852
5853 /*
5854 * SMT sched-domains:
5855 */
5856 #ifdef CONFIG_SCHED_SMT
5857 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5858 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5859
5860 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5861 struct sched_group **sg)
5862 {
5863 if (sg)
5864 *sg = &per_cpu(sched_group_cpus, cpu);
5865 return cpu;
5866 }
5867 #endif
5868
5869 /*
5870 * multi-core sched-domains:
5871 */
5872 #ifdef CONFIG_SCHED_MC
5873 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5874 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5875 #endif
5876
5877 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5878 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5879 struct sched_group **sg)
5880 {
5881 int group;
5882 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5883 cpus_and(mask, mask, *cpu_map);
5884 group = first_cpu(mask);
5885 if (sg)
5886 *sg = &per_cpu(sched_group_core, group);
5887 return group;
5888 }
5889 #elif defined(CONFIG_SCHED_MC)
5890 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5891 struct sched_group **sg)
5892 {
5893 if (sg)
5894 *sg = &per_cpu(sched_group_core, cpu);
5895 return cpu;
5896 }
5897 #endif
5898
5899 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5900 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5901
5902 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5903 struct sched_group **sg)
5904 {
5905 int group;
5906 #ifdef CONFIG_SCHED_MC
5907 cpumask_t mask = cpu_coregroup_map(cpu);
5908 cpus_and(mask, mask, *cpu_map);
5909 group = first_cpu(mask);
5910 #elif defined(CONFIG_SCHED_SMT)
5911 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5912 cpus_and(mask, mask, *cpu_map);
5913 group = first_cpu(mask);
5914 #else
5915 group = cpu;
5916 #endif
5917 if (sg)
5918 *sg = &per_cpu(sched_group_phys, group);
5919 return group;
5920 }
5921
5922 #ifdef CONFIG_NUMA
5923 /*
5924 * The init_sched_build_groups can't handle what we want to do with node
5925 * groups, so roll our own. Now each node has its own list of groups which
5926 * gets dynamically allocated.
5927 */
5928 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5929 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5930
5931 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5932 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5933
5934 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5935 struct sched_group **sg)
5936 {
5937 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5938 int group;
5939
5940 cpus_and(nodemask, nodemask, *cpu_map);
5941 group = first_cpu(nodemask);
5942
5943 if (sg)
5944 *sg = &per_cpu(sched_group_allnodes, group);
5945 return group;
5946 }
5947
5948 static void init_numa_sched_groups_power(struct sched_group *group_head)
5949 {
5950 struct sched_group *sg = group_head;
5951 int j;
5952
5953 if (!sg)
5954 return;
5955 do {
5956 for_each_cpu_mask(j, sg->cpumask) {
5957 struct sched_domain *sd;
5958
5959 sd = &per_cpu(phys_domains, j);
5960 if (j != first_cpu(sd->groups->cpumask)) {
5961 /*
5962 * Only add "power" once for each
5963 * physical package.
5964 */
5965 continue;
5966 }
5967
5968 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5969 }
5970 sg = sg->next;
5971 } while (sg != group_head);
5972 }
5973 #endif
5974
5975 #ifdef CONFIG_NUMA
5976 /* Free memory allocated for various sched_group structures */
5977 static void free_sched_groups(const cpumask_t *cpu_map)
5978 {
5979 int cpu, i;
5980
5981 for_each_cpu_mask(cpu, *cpu_map) {
5982 struct sched_group **sched_group_nodes
5983 = sched_group_nodes_bycpu[cpu];
5984
5985 if (!sched_group_nodes)
5986 continue;
5987
5988 for (i = 0; i < MAX_NUMNODES; i++) {
5989 cpumask_t nodemask = node_to_cpumask(i);
5990 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5991
5992 cpus_and(nodemask, nodemask, *cpu_map);
5993 if (cpus_empty(nodemask))
5994 continue;
5995
5996 if (sg == NULL)
5997 continue;
5998 sg = sg->next;
5999 next_sg:
6000 oldsg = sg;
6001 sg = sg->next;
6002 kfree(oldsg);
6003 if (oldsg != sched_group_nodes[i])
6004 goto next_sg;
6005 }
6006 kfree(sched_group_nodes);
6007 sched_group_nodes_bycpu[cpu] = NULL;
6008 }
6009 }
6010 #else
6011 static void free_sched_groups(const cpumask_t *cpu_map)
6012 {
6013 }
6014 #endif
6015
6016 /*
6017 * Initialize sched groups cpu_power.
6018 *
6019 * cpu_power indicates the capacity of sched group, which is used while
6020 * distributing the load between different sched groups in a sched domain.
6021 * Typically cpu_power for all the groups in a sched domain will be same unless
6022 * there are asymmetries in the topology. If there are asymmetries, group
6023 * having more cpu_power will pickup more load compared to the group having
6024 * less cpu_power.
6025 *
6026 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6027 * the maximum number of tasks a group can handle in the presence of other idle
6028 * or lightly loaded groups in the same sched domain.
6029 */
6030 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6031 {
6032 struct sched_domain *child;
6033 struct sched_group *group;
6034
6035 WARN_ON(!sd || !sd->groups);
6036
6037 if (cpu != first_cpu(sd->groups->cpumask))
6038 return;
6039
6040 child = sd->child;
6041
6042 sd->groups->__cpu_power = 0;
6043
6044 /*
6045 * For perf policy, if the groups in child domain share resources
6046 * (for example cores sharing some portions of the cache hierarchy
6047 * or SMT), then set this domain groups cpu_power such that each group
6048 * can handle only one task, when there are other idle groups in the
6049 * same sched domain.
6050 */
6051 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6052 (child->flags &
6053 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6054 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6055 return;
6056 }
6057
6058 /*
6059 * add cpu_power of each child group to this groups cpu_power
6060 */
6061 group = child->groups;
6062 do {
6063 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6064 group = group->next;
6065 } while (group != child->groups);
6066 }
6067
6068 /*
6069 * Build sched domains for a given set of cpus and attach the sched domains
6070 * to the individual cpus
6071 */
6072 static int build_sched_domains(const cpumask_t *cpu_map)
6073 {
6074 int i;
6075 #ifdef CONFIG_NUMA
6076 struct sched_group **sched_group_nodes = NULL;
6077 int sd_allnodes = 0;
6078
6079 /*
6080 * Allocate the per-node list of sched groups
6081 */
6082 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6083 GFP_KERNEL);
6084 if (!sched_group_nodes) {
6085 printk(KERN_WARNING "Can not alloc sched group node list\n");
6086 return -ENOMEM;
6087 }
6088 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6089 #endif
6090
6091 /*
6092 * Set up domains for cpus specified by the cpu_map.
6093 */
6094 for_each_cpu_mask(i, *cpu_map) {
6095 struct sched_domain *sd = NULL, *p;
6096 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6097
6098 cpus_and(nodemask, nodemask, *cpu_map);
6099
6100 #ifdef CONFIG_NUMA
6101 if (cpus_weight(*cpu_map) >
6102 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6103 sd = &per_cpu(allnodes_domains, i);
6104 *sd = SD_ALLNODES_INIT;
6105 sd->span = *cpu_map;
6106 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6107 p = sd;
6108 sd_allnodes = 1;
6109 } else
6110 p = NULL;
6111
6112 sd = &per_cpu(node_domains, i);
6113 *sd = SD_NODE_INIT;
6114 sd->span = sched_domain_node_span(cpu_to_node(i));
6115 sd->parent = p;
6116 if (p)
6117 p->child = sd;
6118 cpus_and(sd->span, sd->span, *cpu_map);
6119 #endif
6120
6121 p = sd;
6122 sd = &per_cpu(phys_domains, i);
6123 *sd = SD_CPU_INIT;
6124 sd->span = nodemask;
6125 sd->parent = p;
6126 if (p)
6127 p->child = sd;
6128 cpu_to_phys_group(i, cpu_map, &sd->groups);
6129
6130 #ifdef CONFIG_SCHED_MC
6131 p = sd;
6132 sd = &per_cpu(core_domains, i);
6133 *sd = SD_MC_INIT;
6134 sd->span = cpu_coregroup_map(i);
6135 cpus_and(sd->span, sd->span, *cpu_map);
6136 sd->parent = p;
6137 p->child = sd;
6138 cpu_to_core_group(i, cpu_map, &sd->groups);
6139 #endif
6140
6141 #ifdef CONFIG_SCHED_SMT
6142 p = sd;
6143 sd = &per_cpu(cpu_domains, i);
6144 *sd = SD_SIBLING_INIT;
6145 sd->span = per_cpu(cpu_sibling_map, i);
6146 cpus_and(sd->span, sd->span, *cpu_map);
6147 sd->parent = p;
6148 p->child = sd;
6149 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6150 #endif
6151 }
6152
6153 #ifdef CONFIG_SCHED_SMT
6154 /* Set up CPU (sibling) groups */
6155 for_each_cpu_mask(i, *cpu_map) {
6156 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6157 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6158 if (i != first_cpu(this_sibling_map))
6159 continue;
6160
6161 init_sched_build_groups(this_sibling_map, cpu_map,
6162 &cpu_to_cpu_group);
6163 }
6164 #endif
6165
6166 #ifdef CONFIG_SCHED_MC
6167 /* Set up multi-core groups */
6168 for_each_cpu_mask(i, *cpu_map) {
6169 cpumask_t this_core_map = cpu_coregroup_map(i);
6170 cpus_and(this_core_map, this_core_map, *cpu_map);
6171 if (i != first_cpu(this_core_map))
6172 continue;
6173 init_sched_build_groups(this_core_map, cpu_map,
6174 &cpu_to_core_group);
6175 }
6176 #endif
6177
6178 /* Set up physical groups */
6179 for (i = 0; i < MAX_NUMNODES; i++) {
6180 cpumask_t nodemask = node_to_cpumask(i);
6181
6182 cpus_and(nodemask, nodemask, *cpu_map);
6183 if (cpus_empty(nodemask))
6184 continue;
6185
6186 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6187 }
6188
6189 #ifdef CONFIG_NUMA
6190 /* Set up node groups */
6191 if (sd_allnodes)
6192 init_sched_build_groups(*cpu_map, cpu_map,
6193 &cpu_to_allnodes_group);
6194
6195 for (i = 0; i < MAX_NUMNODES; i++) {
6196 /* Set up node groups */
6197 struct sched_group *sg, *prev;
6198 cpumask_t nodemask = node_to_cpumask(i);
6199 cpumask_t domainspan;
6200 cpumask_t covered = CPU_MASK_NONE;
6201 int j;
6202
6203 cpus_and(nodemask, nodemask, *cpu_map);
6204 if (cpus_empty(nodemask)) {
6205 sched_group_nodes[i] = NULL;
6206 continue;
6207 }
6208
6209 domainspan = sched_domain_node_span(i);
6210 cpus_and(domainspan, domainspan, *cpu_map);
6211
6212 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6213 if (!sg) {
6214 printk(KERN_WARNING "Can not alloc domain group for "
6215 "node %d\n", i);
6216 goto error;
6217 }
6218 sched_group_nodes[i] = sg;
6219 for_each_cpu_mask(j, nodemask) {
6220 struct sched_domain *sd;
6221
6222 sd = &per_cpu(node_domains, j);
6223 sd->groups = sg;
6224 }
6225 sg->__cpu_power = 0;
6226 sg->cpumask = nodemask;
6227 sg->next = sg;
6228 cpus_or(covered, covered, nodemask);
6229 prev = sg;
6230
6231 for (j = 0; j < MAX_NUMNODES; j++) {
6232 cpumask_t tmp, notcovered;
6233 int n = (i + j) % MAX_NUMNODES;
6234
6235 cpus_complement(notcovered, covered);
6236 cpus_and(tmp, notcovered, *cpu_map);
6237 cpus_and(tmp, tmp, domainspan);
6238 if (cpus_empty(tmp))
6239 break;
6240
6241 nodemask = node_to_cpumask(n);
6242 cpus_and(tmp, tmp, nodemask);
6243 if (cpus_empty(tmp))
6244 continue;
6245
6246 sg = kmalloc_node(sizeof(struct sched_group),
6247 GFP_KERNEL, i);
6248 if (!sg) {
6249 printk(KERN_WARNING
6250 "Can not alloc domain group for node %d\n", j);
6251 goto error;
6252 }
6253 sg->__cpu_power = 0;
6254 sg->cpumask = tmp;
6255 sg->next = prev->next;
6256 cpus_or(covered, covered, tmp);
6257 prev->next = sg;
6258 prev = sg;
6259 }
6260 }
6261 #endif
6262
6263 /* Calculate CPU power for physical packages and nodes */
6264 #ifdef CONFIG_SCHED_SMT
6265 for_each_cpu_mask(i, *cpu_map) {
6266 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6267
6268 init_sched_groups_power(i, sd);
6269 }
6270 #endif
6271 #ifdef CONFIG_SCHED_MC
6272 for_each_cpu_mask(i, *cpu_map) {
6273 struct sched_domain *sd = &per_cpu(core_domains, i);
6274
6275 init_sched_groups_power(i, sd);
6276 }
6277 #endif
6278
6279 for_each_cpu_mask(i, *cpu_map) {
6280 struct sched_domain *sd = &per_cpu(phys_domains, i);
6281
6282 init_sched_groups_power(i, sd);
6283 }
6284
6285 #ifdef CONFIG_NUMA
6286 for (i = 0; i < MAX_NUMNODES; i++)
6287 init_numa_sched_groups_power(sched_group_nodes[i]);
6288
6289 if (sd_allnodes) {
6290 struct sched_group *sg;
6291
6292 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6293 init_numa_sched_groups_power(sg);
6294 }
6295 #endif
6296
6297 /* Attach the domains */
6298 for_each_cpu_mask(i, *cpu_map) {
6299 struct sched_domain *sd;
6300 #ifdef CONFIG_SCHED_SMT
6301 sd = &per_cpu(cpu_domains, i);
6302 #elif defined(CONFIG_SCHED_MC)
6303 sd = &per_cpu(core_domains, i);
6304 #else
6305 sd = &per_cpu(phys_domains, i);
6306 #endif
6307 cpu_attach_domain(sd, i);
6308 }
6309
6310 return 0;
6311
6312 #ifdef CONFIG_NUMA
6313 error:
6314 free_sched_groups(cpu_map);
6315 return -ENOMEM;
6316 #endif
6317 }
6318 /*
6319 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6320 */
6321 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6322 {
6323 cpumask_t cpu_default_map;
6324 int err;
6325
6326 /*
6327 * Setup mask for cpus without special case scheduling requirements.
6328 * For now this just excludes isolated cpus, but could be used to
6329 * exclude other special cases in the future.
6330 */
6331 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6332
6333 err = build_sched_domains(&cpu_default_map);
6334
6335 register_sched_domain_sysctl();
6336
6337 return err;
6338 }
6339
6340 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6341 {
6342 free_sched_groups(cpu_map);
6343 }
6344
6345 /*
6346 * Detach sched domains from a group of cpus specified in cpu_map
6347 * These cpus will now be attached to the NULL domain
6348 */
6349 static void detach_destroy_domains(const cpumask_t *cpu_map)
6350 {
6351 int i;
6352
6353 unregister_sched_domain_sysctl();
6354
6355 for_each_cpu_mask(i, *cpu_map)
6356 cpu_attach_domain(NULL, i);
6357 synchronize_sched();
6358 arch_destroy_sched_domains(cpu_map);
6359 }
6360
6361 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6362 static int arch_reinit_sched_domains(void)
6363 {
6364 int err;
6365
6366 mutex_lock(&sched_hotcpu_mutex);
6367 detach_destroy_domains(&cpu_online_map);
6368 err = arch_init_sched_domains(&cpu_online_map);
6369 mutex_unlock(&sched_hotcpu_mutex);
6370
6371 return err;
6372 }
6373
6374 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6375 {
6376 int ret;
6377
6378 if (buf[0] != '0' && buf[0] != '1')
6379 return -EINVAL;
6380
6381 if (smt)
6382 sched_smt_power_savings = (buf[0] == '1');
6383 else
6384 sched_mc_power_savings = (buf[0] == '1');
6385
6386 ret = arch_reinit_sched_domains();
6387
6388 return ret ? ret : count;
6389 }
6390
6391 #ifdef CONFIG_SCHED_MC
6392 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6393 {
6394 return sprintf(page, "%u\n", sched_mc_power_savings);
6395 }
6396 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6397 const char *buf, size_t count)
6398 {
6399 return sched_power_savings_store(buf, count, 0);
6400 }
6401 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6402 sched_mc_power_savings_store);
6403 #endif
6404
6405 #ifdef CONFIG_SCHED_SMT
6406 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6407 {
6408 return sprintf(page, "%u\n", sched_smt_power_savings);
6409 }
6410 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6411 const char *buf, size_t count)
6412 {
6413 return sched_power_savings_store(buf, count, 1);
6414 }
6415 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6416 sched_smt_power_savings_store);
6417 #endif
6418
6419 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6420 {
6421 int err = 0;
6422
6423 #ifdef CONFIG_SCHED_SMT
6424 if (smt_capable())
6425 err = sysfs_create_file(&cls->kset.kobj,
6426 &attr_sched_smt_power_savings.attr);
6427 #endif
6428 #ifdef CONFIG_SCHED_MC
6429 if (!err && mc_capable())
6430 err = sysfs_create_file(&cls->kset.kobj,
6431 &attr_sched_mc_power_savings.attr);
6432 #endif
6433 return err;
6434 }
6435 #endif
6436
6437 /*
6438 * Force a reinitialization of the sched domains hierarchy. The domains
6439 * and groups cannot be updated in place without racing with the balancing
6440 * code, so we temporarily attach all running cpus to the NULL domain
6441 * which will prevent rebalancing while the sched domains are recalculated.
6442 */
6443 static int update_sched_domains(struct notifier_block *nfb,
6444 unsigned long action, void *hcpu)
6445 {
6446 switch (action) {
6447 case CPU_UP_PREPARE:
6448 case CPU_UP_PREPARE_FROZEN:
6449 case CPU_DOWN_PREPARE:
6450 case CPU_DOWN_PREPARE_FROZEN:
6451 detach_destroy_domains(&cpu_online_map);
6452 return NOTIFY_OK;
6453
6454 case CPU_UP_CANCELED:
6455 case CPU_UP_CANCELED_FROZEN:
6456 case CPU_DOWN_FAILED:
6457 case CPU_DOWN_FAILED_FROZEN:
6458 case CPU_ONLINE:
6459 case CPU_ONLINE_FROZEN:
6460 case CPU_DEAD:
6461 case CPU_DEAD_FROZEN:
6462 /*
6463 * Fall through and re-initialise the domains.
6464 */
6465 break;
6466 default:
6467 return NOTIFY_DONE;
6468 }
6469
6470 /* The hotplug lock is already held by cpu_up/cpu_down */
6471 arch_init_sched_domains(&cpu_online_map);
6472
6473 return NOTIFY_OK;
6474 }
6475
6476 void __init sched_init_smp(void)
6477 {
6478 cpumask_t non_isolated_cpus;
6479
6480 mutex_lock(&sched_hotcpu_mutex);
6481 arch_init_sched_domains(&cpu_online_map);
6482 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6483 if (cpus_empty(non_isolated_cpus))
6484 cpu_set(smp_processor_id(), non_isolated_cpus);
6485 mutex_unlock(&sched_hotcpu_mutex);
6486 /* XXX: Theoretical race here - CPU may be hotplugged now */
6487 hotcpu_notifier(update_sched_domains, 0);
6488
6489 /* Move init over to a non-isolated CPU */
6490 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6491 BUG();
6492 }
6493 #else
6494 void __init sched_init_smp(void)
6495 {
6496 }
6497 #endif /* CONFIG_SMP */
6498
6499 int in_sched_functions(unsigned long addr)
6500 {
6501 /* Linker adds these: start and end of __sched functions */
6502 extern char __sched_text_start[], __sched_text_end[];
6503
6504 return in_lock_functions(addr) ||
6505 (addr >= (unsigned long)__sched_text_start
6506 && addr < (unsigned long)__sched_text_end);
6507 }
6508
6509 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6510 {
6511 cfs_rq->tasks_timeline = RB_ROOT;
6512 #ifdef CONFIG_FAIR_GROUP_SCHED
6513 cfs_rq->rq = rq;
6514 #endif
6515 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6516 }
6517
6518 void __init sched_init(void)
6519 {
6520 int highest_cpu = 0;
6521 int i, j;
6522
6523 for_each_possible_cpu(i) {
6524 struct rt_prio_array *array;
6525 struct rq *rq;
6526
6527 rq = cpu_rq(i);
6528 spin_lock_init(&rq->lock);
6529 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6530 rq->nr_running = 0;
6531 rq->clock = 1;
6532 init_cfs_rq(&rq->cfs, rq);
6533 #ifdef CONFIG_FAIR_GROUP_SCHED
6534 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6535 {
6536 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6537 struct sched_entity *se =
6538 &per_cpu(init_sched_entity, i);
6539
6540 init_cfs_rq_p[i] = cfs_rq;
6541 init_cfs_rq(cfs_rq, rq);
6542 cfs_rq->tg = &init_task_group;
6543 list_add(&cfs_rq->leaf_cfs_rq_list,
6544 &rq->leaf_cfs_rq_list);
6545
6546 init_sched_entity_p[i] = se;
6547 se->cfs_rq = &rq->cfs;
6548 se->my_q = cfs_rq;
6549 se->load.weight = init_task_group_load;
6550 se->load.inv_weight =
6551 div64_64(1ULL<<32, init_task_group_load);
6552 se->parent = NULL;
6553 }
6554 init_task_group.shares = init_task_group_load;
6555 spin_lock_init(&init_task_group.lock);
6556 #endif
6557
6558 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6559 rq->cpu_load[j] = 0;
6560 #ifdef CONFIG_SMP
6561 rq->sd = NULL;
6562 rq->active_balance = 0;
6563 rq->next_balance = jiffies;
6564 rq->push_cpu = 0;
6565 rq->cpu = i;
6566 rq->migration_thread = NULL;
6567 INIT_LIST_HEAD(&rq->migration_queue);
6568 #endif
6569 atomic_set(&rq->nr_iowait, 0);
6570
6571 array = &rq->rt.active;
6572 for (j = 0; j < MAX_RT_PRIO; j++) {
6573 INIT_LIST_HEAD(array->queue + j);
6574 __clear_bit(j, array->bitmap);
6575 }
6576 highest_cpu = i;
6577 /* delimiter for bitsearch: */
6578 __set_bit(MAX_RT_PRIO, array->bitmap);
6579 }
6580
6581 set_load_weight(&init_task);
6582
6583 #ifdef CONFIG_PREEMPT_NOTIFIERS
6584 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6585 #endif
6586
6587 #ifdef CONFIG_SMP
6588 nr_cpu_ids = highest_cpu + 1;
6589 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6590 #endif
6591
6592 #ifdef CONFIG_RT_MUTEXES
6593 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6594 #endif
6595
6596 /*
6597 * The boot idle thread does lazy MMU switching as well:
6598 */
6599 atomic_inc(&init_mm.mm_count);
6600 enter_lazy_tlb(&init_mm, current);
6601
6602 /*
6603 * Make us the idle thread. Technically, schedule() should not be
6604 * called from this thread, however somewhere below it might be,
6605 * but because we are the idle thread, we just pick up running again
6606 * when this runqueue becomes "idle".
6607 */
6608 init_idle(current, smp_processor_id());
6609 /*
6610 * During early bootup we pretend to be a normal task:
6611 */
6612 current->sched_class = &fair_sched_class;
6613 }
6614
6615 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6616 void __might_sleep(char *file, int line)
6617 {
6618 #ifdef in_atomic
6619 static unsigned long prev_jiffy; /* ratelimiting */
6620
6621 if ((in_atomic() || irqs_disabled()) &&
6622 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6623 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6624 return;
6625 prev_jiffy = jiffies;
6626 printk(KERN_ERR "BUG: sleeping function called from invalid"
6627 " context at %s:%d\n", file, line);
6628 printk("in_atomic():%d, irqs_disabled():%d\n",
6629 in_atomic(), irqs_disabled());
6630 debug_show_held_locks(current);
6631 if (irqs_disabled())
6632 print_irqtrace_events(current);
6633 dump_stack();
6634 }
6635 #endif
6636 }
6637 EXPORT_SYMBOL(__might_sleep);
6638 #endif
6639
6640 #ifdef CONFIG_MAGIC_SYSRQ
6641 static void normalize_task(struct rq *rq, struct task_struct *p)
6642 {
6643 int on_rq;
6644 update_rq_clock(rq);
6645 on_rq = p->se.on_rq;
6646 if (on_rq)
6647 deactivate_task(rq, p, 0);
6648 __setscheduler(rq, p, SCHED_NORMAL, 0);
6649 if (on_rq) {
6650 activate_task(rq, p, 0);
6651 resched_task(rq->curr);
6652 }
6653 }
6654
6655 void normalize_rt_tasks(void)
6656 {
6657 struct task_struct *g, *p;
6658 unsigned long flags;
6659 struct rq *rq;
6660
6661 read_lock_irq(&tasklist_lock);
6662 do_each_thread(g, p) {
6663 /*
6664 * Only normalize user tasks:
6665 */
6666 if (!p->mm)
6667 continue;
6668
6669 p->se.exec_start = 0;
6670 #ifdef CONFIG_SCHEDSTATS
6671 p->se.wait_start = 0;
6672 p->se.sleep_start = 0;
6673 p->se.block_start = 0;
6674 #endif
6675 task_rq(p)->clock = 0;
6676
6677 if (!rt_task(p)) {
6678 /*
6679 * Renice negative nice level userspace
6680 * tasks back to 0:
6681 */
6682 if (TASK_NICE(p) < 0 && p->mm)
6683 set_user_nice(p, 0);
6684 continue;
6685 }
6686
6687 spin_lock_irqsave(&p->pi_lock, flags);
6688 rq = __task_rq_lock(p);
6689
6690 normalize_task(rq, p);
6691
6692 __task_rq_unlock(rq);
6693 spin_unlock_irqrestore(&p->pi_lock, flags);
6694 } while_each_thread(g, p);
6695
6696 read_unlock_irq(&tasklist_lock);
6697 }
6698
6699 #endif /* CONFIG_MAGIC_SYSRQ */
6700
6701 #ifdef CONFIG_IA64
6702 /*
6703 * These functions are only useful for the IA64 MCA handling.
6704 *
6705 * They can only be called when the whole system has been
6706 * stopped - every CPU needs to be quiescent, and no scheduling
6707 * activity can take place. Using them for anything else would
6708 * be a serious bug, and as a result, they aren't even visible
6709 * under any other configuration.
6710 */
6711
6712 /**
6713 * curr_task - return the current task for a given cpu.
6714 * @cpu: the processor in question.
6715 *
6716 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6717 */
6718 struct task_struct *curr_task(int cpu)
6719 {
6720 return cpu_curr(cpu);
6721 }
6722
6723 /**
6724 * set_curr_task - set the current task for a given cpu.
6725 * @cpu: the processor in question.
6726 * @p: the task pointer to set.
6727 *
6728 * Description: This function must only be used when non-maskable interrupts
6729 * are serviced on a separate stack. It allows the architecture to switch the
6730 * notion of the current task on a cpu in a non-blocking manner. This function
6731 * must be called with all CPU's synchronized, and interrupts disabled, the
6732 * and caller must save the original value of the current task (see
6733 * curr_task() above) and restore that value before reenabling interrupts and
6734 * re-starting the system.
6735 *
6736 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6737 */
6738 void set_curr_task(int cpu, struct task_struct *p)
6739 {
6740 cpu_curr(cpu) = p;
6741 }
6742
6743 #endif
6744
6745 #ifdef CONFIG_FAIR_GROUP_SCHED
6746
6747 /* allocate runqueue etc for a new task group */
6748 struct task_group *sched_create_group(void)
6749 {
6750 struct task_group *tg;
6751 struct cfs_rq *cfs_rq;
6752 struct sched_entity *se;
6753 struct rq *rq;
6754 int i;
6755
6756 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6757 if (!tg)
6758 return ERR_PTR(-ENOMEM);
6759
6760 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6761 if (!tg->cfs_rq)
6762 goto err;
6763 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6764 if (!tg->se)
6765 goto err;
6766
6767 for_each_possible_cpu(i) {
6768 rq = cpu_rq(i);
6769
6770 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6771 cpu_to_node(i));
6772 if (!cfs_rq)
6773 goto err;
6774
6775 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6776 cpu_to_node(i));
6777 if (!se)
6778 goto err;
6779
6780 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6781 memset(se, 0, sizeof(struct sched_entity));
6782
6783 tg->cfs_rq[i] = cfs_rq;
6784 init_cfs_rq(cfs_rq, rq);
6785 cfs_rq->tg = tg;
6786
6787 tg->se[i] = se;
6788 se->cfs_rq = &rq->cfs;
6789 se->my_q = cfs_rq;
6790 se->load.weight = NICE_0_LOAD;
6791 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6792 se->parent = NULL;
6793 }
6794
6795 for_each_possible_cpu(i) {
6796 rq = cpu_rq(i);
6797 cfs_rq = tg->cfs_rq[i];
6798 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6799 }
6800
6801 tg->shares = NICE_0_LOAD;
6802 spin_lock_init(&tg->lock);
6803
6804 return tg;
6805
6806 err:
6807 for_each_possible_cpu(i) {
6808 if (tg->cfs_rq)
6809 kfree(tg->cfs_rq[i]);
6810 if (tg->se)
6811 kfree(tg->se[i]);
6812 }
6813 kfree(tg->cfs_rq);
6814 kfree(tg->se);
6815 kfree(tg);
6816
6817 return ERR_PTR(-ENOMEM);
6818 }
6819
6820 /* rcu callback to free various structures associated with a task group */
6821 static void free_sched_group(struct rcu_head *rhp)
6822 {
6823 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6824 struct task_group *tg = cfs_rq->tg;
6825 struct sched_entity *se;
6826 int i;
6827
6828 /* now it should be safe to free those cfs_rqs */
6829 for_each_possible_cpu(i) {
6830 cfs_rq = tg->cfs_rq[i];
6831 kfree(cfs_rq);
6832
6833 se = tg->se[i];
6834 kfree(se);
6835 }
6836
6837 kfree(tg->cfs_rq);
6838 kfree(tg->se);
6839 kfree(tg);
6840 }
6841
6842 /* Destroy runqueue etc associated with a task group */
6843 void sched_destroy_group(struct task_group *tg)
6844 {
6845 struct cfs_rq *cfs_rq;
6846 int i;
6847
6848 for_each_possible_cpu(i) {
6849 cfs_rq = tg->cfs_rq[i];
6850 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6851 }
6852
6853 cfs_rq = tg->cfs_rq[0];
6854
6855 /* wait for possible concurrent references to cfs_rqs complete */
6856 call_rcu(&cfs_rq->rcu, free_sched_group);
6857 }
6858
6859 /* change task's runqueue when it moves between groups.
6860 * The caller of this function should have put the task in its new group
6861 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6862 * reflect its new group.
6863 */
6864 void sched_move_task(struct task_struct *tsk)
6865 {
6866 int on_rq, running;
6867 unsigned long flags;
6868 struct rq *rq;
6869
6870 rq = task_rq_lock(tsk, &flags);
6871
6872 if (tsk->sched_class != &fair_sched_class)
6873 goto done;
6874
6875 update_rq_clock(rq);
6876
6877 running = task_running(rq, tsk);
6878 on_rq = tsk->se.on_rq;
6879
6880 if (on_rq) {
6881 dequeue_task(rq, tsk, 0);
6882 if (unlikely(running))
6883 tsk->sched_class->put_prev_task(rq, tsk);
6884 }
6885
6886 set_task_cfs_rq(tsk);
6887
6888 if (on_rq) {
6889 if (unlikely(running))
6890 tsk->sched_class->set_curr_task(rq);
6891 enqueue_task(rq, tsk, 0);
6892 }
6893
6894 done:
6895 task_rq_unlock(rq, &flags);
6896 }
6897
6898 static void set_se_shares(struct sched_entity *se, unsigned long shares)
6899 {
6900 struct cfs_rq *cfs_rq = se->cfs_rq;
6901 struct rq *rq = cfs_rq->rq;
6902 int on_rq;
6903
6904 spin_lock_irq(&rq->lock);
6905
6906 on_rq = se->on_rq;
6907 if (on_rq)
6908 dequeue_entity(cfs_rq, se, 0);
6909
6910 se->load.weight = shares;
6911 se->load.inv_weight = div64_64((1ULL<<32), shares);
6912
6913 if (on_rq)
6914 enqueue_entity(cfs_rq, se, 0);
6915
6916 spin_unlock_irq(&rq->lock);
6917 }
6918
6919 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6920 {
6921 int i;
6922
6923 spin_lock(&tg->lock);
6924 if (tg->shares == shares)
6925 goto done;
6926
6927 tg->shares = shares;
6928 for_each_possible_cpu(i)
6929 set_se_shares(tg->se[i], shares);
6930
6931 done:
6932 spin_unlock(&tg->lock);
6933 return 0;
6934 }
6935
6936 unsigned long sched_group_shares(struct task_group *tg)
6937 {
6938 return tg->shares;
6939 }
6940
6941 #endif /* CONFIG_FAIR_GROUP_SCHED */