]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched.c
sched: Implement group scheduler statistics in one struct
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 raw_spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 raw_spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_CGROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 struct cgroup_subsys_state css;
247
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
254 #endif
255
256 #ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
259
260 struct rt_bandwidth rt_bandwidth;
261 #endif
262
263 struct rcu_head rcu;
264 struct list_head list;
265
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
269 };
270
271 #define root_task_group init_task_group
272
273 /* task_group_lock serializes add/remove of task groups and also changes to
274 * a task group's cpu shares.
275 */
276 static DEFINE_SPINLOCK(task_group_lock);
277
278 #ifdef CONFIG_FAIR_GROUP_SCHED
279
280 #ifdef CONFIG_SMP
281 static int root_task_group_empty(void)
282 {
283 return list_empty(&root_task_group.children);
284 }
285 #endif
286
287 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
288
289 /*
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
296 */
297 #define MIN_SHARES 2
298 #define MAX_SHARES (1UL << 18)
299
300 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301 #endif
302
303 /* Default task group.
304 * Every task in system belong to this group at bootup.
305 */
306 struct task_group init_task_group;
307
308 /* return group to which a task belongs */
309 static inline struct task_group *task_group(struct task_struct *p)
310 {
311 struct task_group *tg;
312
313 #ifdef CONFIG_CGROUP_SCHED
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
316 #else
317 tg = &init_task_group;
318 #endif
319 return tg;
320 }
321
322 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
323 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
324 {
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
328 #endif
329
330 #ifdef CONFIG_RT_GROUP_SCHED
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
333 #endif
334 }
335
336 #else
337
338 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 static inline struct task_group *task_group(struct task_struct *p)
340 {
341 return NULL;
342 }
343
344 #endif /* CONFIG_CGROUP_SCHED */
345
346 /* CFS-related fields in a runqueue */
347 struct cfs_rq {
348 struct load_weight load;
349 unsigned long nr_running;
350
351 u64 exec_clock;
352 u64 min_vruntime;
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
356
357 struct list_head tasks;
358 struct list_head *balance_iterator;
359
360 /*
361 * 'curr' points to currently running entity on this cfs_rq.
362 * It is set to NULL otherwise (i.e when none are currently running).
363 */
364 struct sched_entity *curr, *next, *last;
365
366 unsigned int nr_spread_over;
367
368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
370
371 /*
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
375 *
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
378 */
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
381
382 #ifdef CONFIG_SMP
383 /*
384 * the part of load.weight contributed by tasks
385 */
386 unsigned long task_weight;
387
388 /*
389 * h_load = weight * f(tg)
390 *
391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group.
393 */
394 unsigned long h_load;
395
396 /*
397 * this cpu's part of tg->shares
398 */
399 unsigned long shares;
400
401 /*
402 * load.weight at the time we set shares
403 */
404 unsigned long rq_weight;
405 #endif
406 #endif
407 };
408
409 /* Real-Time classes' related field in a runqueue: */
410 struct rt_rq {
411 struct rt_prio_array active;
412 unsigned long rt_nr_running;
413 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 struct {
415 int curr; /* highest queued rt task prio */
416 #ifdef CONFIG_SMP
417 int next; /* next highest */
418 #endif
419 } highest_prio;
420 #endif
421 #ifdef CONFIG_SMP
422 unsigned long rt_nr_migratory;
423 unsigned long rt_nr_total;
424 int overloaded;
425 struct plist_head pushable_tasks;
426 #endif
427 int rt_throttled;
428 u64 rt_time;
429 u64 rt_runtime;
430 /* Nests inside the rq lock: */
431 raw_spinlock_t rt_runtime_lock;
432
433 #ifdef CONFIG_RT_GROUP_SCHED
434 unsigned long rt_nr_boosted;
435
436 struct rq *rq;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
439 #endif
440 };
441
442 #ifdef CONFIG_SMP
443
444 /*
445 * We add the notion of a root-domain which will be used to define per-domain
446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new
448 * exclusive cpuset is created, we also create and attach a new root-domain
449 * object.
450 *
451 */
452 struct root_domain {
453 atomic_t refcount;
454 cpumask_var_t span;
455 cpumask_var_t online;
456
457 /*
458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task.
460 */
461 cpumask_var_t rto_mask;
462 atomic_t rto_count;
463 #ifdef CONFIG_SMP
464 struct cpupri cpupri;
465 #endif
466 };
467
468 /*
469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today).
471 */
472 static struct root_domain def_root_domain;
473
474 #endif
475
476 /*
477 * This is the main, per-CPU runqueue data structure.
478 *
479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue.
482 */
483 struct rq {
484 /* runqueue lock: */
485 raw_spinlock_t lock;
486
487 /*
488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation.
490 */
491 unsigned long nr_running;
492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494 #ifdef CONFIG_NO_HZ
495 unsigned char in_nohz_recently;
496 #endif
497 /* capture load from *all* tasks on this cpu: */
498 struct load_weight load;
499 unsigned long nr_load_updates;
500 u64 nr_switches;
501
502 struct cfs_rq cfs;
503 struct rt_rq rt;
504
505 #ifdef CONFIG_FAIR_GROUP_SCHED
506 /* list of leaf cfs_rq on this cpu: */
507 struct list_head leaf_cfs_rq_list;
508 #endif
509 #ifdef CONFIG_RT_GROUP_SCHED
510 struct list_head leaf_rt_rq_list;
511 #endif
512
513 /*
514 * This is part of a global counter where only the total sum
515 * over all CPUs matters. A task can increase this counter on
516 * one CPU and if it got migrated afterwards it may decrease
517 * it on another CPU. Always updated under the runqueue lock:
518 */
519 unsigned long nr_uninterruptible;
520
521 struct task_struct *curr, *idle;
522 unsigned long next_balance;
523 struct mm_struct *prev_mm;
524
525 u64 clock;
526
527 atomic_t nr_iowait;
528
529 #ifdef CONFIG_SMP
530 struct root_domain *rd;
531 struct sched_domain *sd;
532
533 unsigned char idle_at_tick;
534 /* For active balancing */
535 int post_schedule;
536 int active_balance;
537 int push_cpu;
538 /* cpu of this runqueue: */
539 int cpu;
540 int online;
541
542 unsigned long avg_load_per_task;
543
544 struct task_struct *migration_thread;
545 struct list_head migration_queue;
546
547 u64 rt_avg;
548 u64 age_stamp;
549 u64 idle_stamp;
550 u64 avg_idle;
551 #endif
552
553 /* calc_load related fields */
554 unsigned long calc_load_update;
555 long calc_load_active;
556
557 #ifdef CONFIG_SCHED_HRTICK
558 #ifdef CONFIG_SMP
559 int hrtick_csd_pending;
560 struct call_single_data hrtick_csd;
561 #endif
562 struct hrtimer hrtick_timer;
563 #endif
564
565 #ifdef CONFIG_SCHEDSTATS
566 /* latency stats */
567 struct sched_info rq_sched_info;
568 unsigned long long rq_cpu_time;
569 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
570
571 /* sys_sched_yield() stats */
572 unsigned int yld_count;
573
574 /* schedule() stats */
575 unsigned int sched_switch;
576 unsigned int sched_count;
577 unsigned int sched_goidle;
578
579 /* try_to_wake_up() stats */
580 unsigned int ttwu_count;
581 unsigned int ttwu_local;
582
583 /* BKL stats */
584 unsigned int bkl_count;
585 #endif
586 };
587
588 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
589
590 static inline
591 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
592 {
593 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
594 }
595
596 static inline int cpu_of(struct rq *rq)
597 {
598 #ifdef CONFIG_SMP
599 return rq->cpu;
600 #else
601 return 0;
602 #endif
603 }
604
605 #define rcu_dereference_check_sched_domain(p) \
606 rcu_dereference_check((p), \
607 rcu_read_lock_sched_held() || \
608 lockdep_is_held(&sched_domains_mutex))
609
610 /*
611 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
612 * See detach_destroy_domains: synchronize_sched for details.
613 *
614 * The domain tree of any CPU may only be accessed from within
615 * preempt-disabled sections.
616 */
617 #define for_each_domain(cpu, __sd) \
618 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
619
620 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
621 #define this_rq() (&__get_cpu_var(runqueues))
622 #define task_rq(p) cpu_rq(task_cpu(p))
623 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
624 #define raw_rq() (&__raw_get_cpu_var(runqueues))
625
626 inline void update_rq_clock(struct rq *rq)
627 {
628 rq->clock = sched_clock_cpu(cpu_of(rq));
629 }
630
631 /*
632 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
633 */
634 #ifdef CONFIG_SCHED_DEBUG
635 # define const_debug __read_mostly
636 #else
637 # define const_debug static const
638 #endif
639
640 /**
641 * runqueue_is_locked
642 * @cpu: the processor in question.
643 *
644 * Returns true if the current cpu runqueue is locked.
645 * This interface allows printk to be called with the runqueue lock
646 * held and know whether or not it is OK to wake up the klogd.
647 */
648 int runqueue_is_locked(int cpu)
649 {
650 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
651 }
652
653 /*
654 * Debugging: various feature bits
655 */
656
657 #define SCHED_FEAT(name, enabled) \
658 __SCHED_FEAT_##name ,
659
660 enum {
661 #include "sched_features.h"
662 };
663
664 #undef SCHED_FEAT
665
666 #define SCHED_FEAT(name, enabled) \
667 (1UL << __SCHED_FEAT_##name) * enabled |
668
669 const_debug unsigned int sysctl_sched_features =
670 #include "sched_features.h"
671 0;
672
673 #undef SCHED_FEAT
674
675 #ifdef CONFIG_SCHED_DEBUG
676 #define SCHED_FEAT(name, enabled) \
677 #name ,
678
679 static __read_mostly char *sched_feat_names[] = {
680 #include "sched_features.h"
681 NULL
682 };
683
684 #undef SCHED_FEAT
685
686 static int sched_feat_show(struct seq_file *m, void *v)
687 {
688 int i;
689
690 for (i = 0; sched_feat_names[i]; i++) {
691 if (!(sysctl_sched_features & (1UL << i)))
692 seq_puts(m, "NO_");
693 seq_printf(m, "%s ", sched_feat_names[i]);
694 }
695 seq_puts(m, "\n");
696
697 return 0;
698 }
699
700 static ssize_t
701 sched_feat_write(struct file *filp, const char __user *ubuf,
702 size_t cnt, loff_t *ppos)
703 {
704 char buf[64];
705 char *cmp = buf;
706 int neg = 0;
707 int i;
708
709 if (cnt > 63)
710 cnt = 63;
711
712 if (copy_from_user(&buf, ubuf, cnt))
713 return -EFAULT;
714
715 buf[cnt] = 0;
716
717 if (strncmp(buf, "NO_", 3) == 0) {
718 neg = 1;
719 cmp += 3;
720 }
721
722 for (i = 0; sched_feat_names[i]; i++) {
723 int len = strlen(sched_feat_names[i]);
724
725 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
726 if (neg)
727 sysctl_sched_features &= ~(1UL << i);
728 else
729 sysctl_sched_features |= (1UL << i);
730 break;
731 }
732 }
733
734 if (!sched_feat_names[i])
735 return -EINVAL;
736
737 *ppos += cnt;
738
739 return cnt;
740 }
741
742 static int sched_feat_open(struct inode *inode, struct file *filp)
743 {
744 return single_open(filp, sched_feat_show, NULL);
745 }
746
747 static const struct file_operations sched_feat_fops = {
748 .open = sched_feat_open,
749 .write = sched_feat_write,
750 .read = seq_read,
751 .llseek = seq_lseek,
752 .release = single_release,
753 };
754
755 static __init int sched_init_debug(void)
756 {
757 debugfs_create_file("sched_features", 0644, NULL, NULL,
758 &sched_feat_fops);
759
760 return 0;
761 }
762 late_initcall(sched_init_debug);
763
764 #endif
765
766 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
767
768 /*
769 * Number of tasks to iterate in a single balance run.
770 * Limited because this is done with IRQs disabled.
771 */
772 const_debug unsigned int sysctl_sched_nr_migrate = 32;
773
774 /*
775 * ratelimit for updating the group shares.
776 * default: 0.25ms
777 */
778 unsigned int sysctl_sched_shares_ratelimit = 250000;
779 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
780
781 /*
782 * Inject some fuzzyness into changing the per-cpu group shares
783 * this avoids remote rq-locks at the expense of fairness.
784 * default: 4
785 */
786 unsigned int sysctl_sched_shares_thresh = 4;
787
788 /*
789 * period over which we average the RT time consumption, measured
790 * in ms.
791 *
792 * default: 1s
793 */
794 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
795
796 /*
797 * period over which we measure -rt task cpu usage in us.
798 * default: 1s
799 */
800 unsigned int sysctl_sched_rt_period = 1000000;
801
802 static __read_mostly int scheduler_running;
803
804 /*
805 * part of the period that we allow rt tasks to run in us.
806 * default: 0.95s
807 */
808 int sysctl_sched_rt_runtime = 950000;
809
810 static inline u64 global_rt_period(void)
811 {
812 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
813 }
814
815 static inline u64 global_rt_runtime(void)
816 {
817 if (sysctl_sched_rt_runtime < 0)
818 return RUNTIME_INF;
819
820 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
821 }
822
823 #ifndef prepare_arch_switch
824 # define prepare_arch_switch(next) do { } while (0)
825 #endif
826 #ifndef finish_arch_switch
827 # define finish_arch_switch(prev) do { } while (0)
828 #endif
829
830 static inline int task_current(struct rq *rq, struct task_struct *p)
831 {
832 return rq->curr == p;
833 }
834
835 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
836 static inline int task_running(struct rq *rq, struct task_struct *p)
837 {
838 return task_current(rq, p);
839 }
840
841 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
842 {
843 }
844
845 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
846 {
847 #ifdef CONFIG_DEBUG_SPINLOCK
848 /* this is a valid case when another task releases the spinlock */
849 rq->lock.owner = current;
850 #endif
851 /*
852 * If we are tracking spinlock dependencies then we have to
853 * fix up the runqueue lock - which gets 'carried over' from
854 * prev into current:
855 */
856 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
857
858 raw_spin_unlock_irq(&rq->lock);
859 }
860
861 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
862 static inline int task_running(struct rq *rq, struct task_struct *p)
863 {
864 #ifdef CONFIG_SMP
865 return p->oncpu;
866 #else
867 return task_current(rq, p);
868 #endif
869 }
870
871 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
872 {
873 #ifdef CONFIG_SMP
874 /*
875 * We can optimise this out completely for !SMP, because the
876 * SMP rebalancing from interrupt is the only thing that cares
877 * here.
878 */
879 next->oncpu = 1;
880 #endif
881 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
882 raw_spin_unlock_irq(&rq->lock);
883 #else
884 raw_spin_unlock(&rq->lock);
885 #endif
886 }
887
888 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
889 {
890 #ifdef CONFIG_SMP
891 /*
892 * After ->oncpu is cleared, the task can be moved to a different CPU.
893 * We must ensure this doesn't happen until the switch is completely
894 * finished.
895 */
896 smp_wmb();
897 prev->oncpu = 0;
898 #endif
899 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
900 local_irq_enable();
901 #endif
902 }
903 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
904
905 /*
906 * Check whether the task is waking, we use this to synchronize against
907 * ttwu() so that task_cpu() reports a stable number.
908 *
909 * We need to make an exception for PF_STARTING tasks because the fork
910 * path might require task_rq_lock() to work, eg. it can call
911 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
912 */
913 static inline int task_is_waking(struct task_struct *p)
914 {
915 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
916 }
917
918 /*
919 * __task_rq_lock - lock the runqueue a given task resides on.
920 * Must be called interrupts disabled.
921 */
922 static inline struct rq *__task_rq_lock(struct task_struct *p)
923 __acquires(rq->lock)
924 {
925 struct rq *rq;
926
927 for (;;) {
928 while (task_is_waking(p))
929 cpu_relax();
930 rq = task_rq(p);
931 raw_spin_lock(&rq->lock);
932 if (likely(rq == task_rq(p) && !task_is_waking(p)))
933 return rq;
934 raw_spin_unlock(&rq->lock);
935 }
936 }
937
938 /*
939 * task_rq_lock - lock the runqueue a given task resides on and disable
940 * interrupts. Note the ordering: we can safely lookup the task_rq without
941 * explicitly disabling preemption.
942 */
943 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
944 __acquires(rq->lock)
945 {
946 struct rq *rq;
947
948 for (;;) {
949 while (task_is_waking(p))
950 cpu_relax();
951 local_irq_save(*flags);
952 rq = task_rq(p);
953 raw_spin_lock(&rq->lock);
954 if (likely(rq == task_rq(p) && !task_is_waking(p)))
955 return rq;
956 raw_spin_unlock_irqrestore(&rq->lock, *flags);
957 }
958 }
959
960 void task_rq_unlock_wait(struct task_struct *p)
961 {
962 struct rq *rq = task_rq(p);
963
964 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
965 raw_spin_unlock_wait(&rq->lock);
966 }
967
968 static void __task_rq_unlock(struct rq *rq)
969 __releases(rq->lock)
970 {
971 raw_spin_unlock(&rq->lock);
972 }
973
974 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
975 __releases(rq->lock)
976 {
977 raw_spin_unlock_irqrestore(&rq->lock, *flags);
978 }
979
980 /*
981 * this_rq_lock - lock this runqueue and disable interrupts.
982 */
983 static struct rq *this_rq_lock(void)
984 __acquires(rq->lock)
985 {
986 struct rq *rq;
987
988 local_irq_disable();
989 rq = this_rq();
990 raw_spin_lock(&rq->lock);
991
992 return rq;
993 }
994
995 #ifdef CONFIG_SCHED_HRTICK
996 /*
997 * Use HR-timers to deliver accurate preemption points.
998 *
999 * Its all a bit involved since we cannot program an hrt while holding the
1000 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1001 * reschedule event.
1002 *
1003 * When we get rescheduled we reprogram the hrtick_timer outside of the
1004 * rq->lock.
1005 */
1006
1007 /*
1008 * Use hrtick when:
1009 * - enabled by features
1010 * - hrtimer is actually high res
1011 */
1012 static inline int hrtick_enabled(struct rq *rq)
1013 {
1014 if (!sched_feat(HRTICK))
1015 return 0;
1016 if (!cpu_active(cpu_of(rq)))
1017 return 0;
1018 return hrtimer_is_hres_active(&rq->hrtick_timer);
1019 }
1020
1021 static void hrtick_clear(struct rq *rq)
1022 {
1023 if (hrtimer_active(&rq->hrtick_timer))
1024 hrtimer_cancel(&rq->hrtick_timer);
1025 }
1026
1027 /*
1028 * High-resolution timer tick.
1029 * Runs from hardirq context with interrupts disabled.
1030 */
1031 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1032 {
1033 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1034
1035 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1036
1037 raw_spin_lock(&rq->lock);
1038 update_rq_clock(rq);
1039 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1040 raw_spin_unlock(&rq->lock);
1041
1042 return HRTIMER_NORESTART;
1043 }
1044
1045 #ifdef CONFIG_SMP
1046 /*
1047 * called from hardirq (IPI) context
1048 */
1049 static void __hrtick_start(void *arg)
1050 {
1051 struct rq *rq = arg;
1052
1053 raw_spin_lock(&rq->lock);
1054 hrtimer_restart(&rq->hrtick_timer);
1055 rq->hrtick_csd_pending = 0;
1056 raw_spin_unlock(&rq->lock);
1057 }
1058
1059 /*
1060 * Called to set the hrtick timer state.
1061 *
1062 * called with rq->lock held and irqs disabled
1063 */
1064 static void hrtick_start(struct rq *rq, u64 delay)
1065 {
1066 struct hrtimer *timer = &rq->hrtick_timer;
1067 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1068
1069 hrtimer_set_expires(timer, time);
1070
1071 if (rq == this_rq()) {
1072 hrtimer_restart(timer);
1073 } else if (!rq->hrtick_csd_pending) {
1074 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1075 rq->hrtick_csd_pending = 1;
1076 }
1077 }
1078
1079 static int
1080 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1081 {
1082 int cpu = (int)(long)hcpu;
1083
1084 switch (action) {
1085 case CPU_UP_CANCELED:
1086 case CPU_UP_CANCELED_FROZEN:
1087 case CPU_DOWN_PREPARE:
1088 case CPU_DOWN_PREPARE_FROZEN:
1089 case CPU_DEAD:
1090 case CPU_DEAD_FROZEN:
1091 hrtick_clear(cpu_rq(cpu));
1092 return NOTIFY_OK;
1093 }
1094
1095 return NOTIFY_DONE;
1096 }
1097
1098 static __init void init_hrtick(void)
1099 {
1100 hotcpu_notifier(hotplug_hrtick, 0);
1101 }
1102 #else
1103 /*
1104 * Called to set the hrtick timer state.
1105 *
1106 * called with rq->lock held and irqs disabled
1107 */
1108 static void hrtick_start(struct rq *rq, u64 delay)
1109 {
1110 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1111 HRTIMER_MODE_REL_PINNED, 0);
1112 }
1113
1114 static inline void init_hrtick(void)
1115 {
1116 }
1117 #endif /* CONFIG_SMP */
1118
1119 static void init_rq_hrtick(struct rq *rq)
1120 {
1121 #ifdef CONFIG_SMP
1122 rq->hrtick_csd_pending = 0;
1123
1124 rq->hrtick_csd.flags = 0;
1125 rq->hrtick_csd.func = __hrtick_start;
1126 rq->hrtick_csd.info = rq;
1127 #endif
1128
1129 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1130 rq->hrtick_timer.function = hrtick;
1131 }
1132 #else /* CONFIG_SCHED_HRTICK */
1133 static inline void hrtick_clear(struct rq *rq)
1134 {
1135 }
1136
1137 static inline void init_rq_hrtick(struct rq *rq)
1138 {
1139 }
1140
1141 static inline void init_hrtick(void)
1142 {
1143 }
1144 #endif /* CONFIG_SCHED_HRTICK */
1145
1146 /*
1147 * resched_task - mark a task 'to be rescheduled now'.
1148 *
1149 * On UP this means the setting of the need_resched flag, on SMP it
1150 * might also involve a cross-CPU call to trigger the scheduler on
1151 * the target CPU.
1152 */
1153 #ifdef CONFIG_SMP
1154
1155 #ifndef tsk_is_polling
1156 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1157 #endif
1158
1159 static void resched_task(struct task_struct *p)
1160 {
1161 int cpu;
1162
1163 assert_raw_spin_locked(&task_rq(p)->lock);
1164
1165 if (test_tsk_need_resched(p))
1166 return;
1167
1168 set_tsk_need_resched(p);
1169
1170 cpu = task_cpu(p);
1171 if (cpu == smp_processor_id())
1172 return;
1173
1174 /* NEED_RESCHED must be visible before we test polling */
1175 smp_mb();
1176 if (!tsk_is_polling(p))
1177 smp_send_reschedule(cpu);
1178 }
1179
1180 static void resched_cpu(int cpu)
1181 {
1182 struct rq *rq = cpu_rq(cpu);
1183 unsigned long flags;
1184
1185 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1186 return;
1187 resched_task(cpu_curr(cpu));
1188 raw_spin_unlock_irqrestore(&rq->lock, flags);
1189 }
1190
1191 #ifdef CONFIG_NO_HZ
1192 /*
1193 * When add_timer_on() enqueues a timer into the timer wheel of an
1194 * idle CPU then this timer might expire before the next timer event
1195 * which is scheduled to wake up that CPU. In case of a completely
1196 * idle system the next event might even be infinite time into the
1197 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1198 * leaves the inner idle loop so the newly added timer is taken into
1199 * account when the CPU goes back to idle and evaluates the timer
1200 * wheel for the next timer event.
1201 */
1202 void wake_up_idle_cpu(int cpu)
1203 {
1204 struct rq *rq = cpu_rq(cpu);
1205
1206 if (cpu == smp_processor_id())
1207 return;
1208
1209 /*
1210 * This is safe, as this function is called with the timer
1211 * wheel base lock of (cpu) held. When the CPU is on the way
1212 * to idle and has not yet set rq->curr to idle then it will
1213 * be serialized on the timer wheel base lock and take the new
1214 * timer into account automatically.
1215 */
1216 if (rq->curr != rq->idle)
1217 return;
1218
1219 /*
1220 * We can set TIF_RESCHED on the idle task of the other CPU
1221 * lockless. The worst case is that the other CPU runs the
1222 * idle task through an additional NOOP schedule()
1223 */
1224 set_tsk_need_resched(rq->idle);
1225
1226 /* NEED_RESCHED must be visible before we test polling */
1227 smp_mb();
1228 if (!tsk_is_polling(rq->idle))
1229 smp_send_reschedule(cpu);
1230 }
1231 #endif /* CONFIG_NO_HZ */
1232
1233 static u64 sched_avg_period(void)
1234 {
1235 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1236 }
1237
1238 static void sched_avg_update(struct rq *rq)
1239 {
1240 s64 period = sched_avg_period();
1241
1242 while ((s64)(rq->clock - rq->age_stamp) > period) {
1243 rq->age_stamp += period;
1244 rq->rt_avg /= 2;
1245 }
1246 }
1247
1248 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1249 {
1250 rq->rt_avg += rt_delta;
1251 sched_avg_update(rq);
1252 }
1253
1254 #else /* !CONFIG_SMP */
1255 static void resched_task(struct task_struct *p)
1256 {
1257 assert_raw_spin_locked(&task_rq(p)->lock);
1258 set_tsk_need_resched(p);
1259 }
1260
1261 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1262 {
1263 }
1264 #endif /* CONFIG_SMP */
1265
1266 #if BITS_PER_LONG == 32
1267 # define WMULT_CONST (~0UL)
1268 #else
1269 # define WMULT_CONST (1UL << 32)
1270 #endif
1271
1272 #define WMULT_SHIFT 32
1273
1274 /*
1275 * Shift right and round:
1276 */
1277 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1278
1279 /*
1280 * delta *= weight / lw
1281 */
1282 static unsigned long
1283 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1284 struct load_weight *lw)
1285 {
1286 u64 tmp;
1287
1288 if (!lw->inv_weight) {
1289 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1290 lw->inv_weight = 1;
1291 else
1292 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1293 / (lw->weight+1);
1294 }
1295
1296 tmp = (u64)delta_exec * weight;
1297 /*
1298 * Check whether we'd overflow the 64-bit multiplication:
1299 */
1300 if (unlikely(tmp > WMULT_CONST))
1301 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1302 WMULT_SHIFT/2);
1303 else
1304 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1305
1306 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1307 }
1308
1309 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1310 {
1311 lw->weight += inc;
1312 lw->inv_weight = 0;
1313 }
1314
1315 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1316 {
1317 lw->weight -= dec;
1318 lw->inv_weight = 0;
1319 }
1320
1321 /*
1322 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1323 * of tasks with abnormal "nice" values across CPUs the contribution that
1324 * each task makes to its run queue's load is weighted according to its
1325 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1326 * scaled version of the new time slice allocation that they receive on time
1327 * slice expiry etc.
1328 */
1329
1330 #define WEIGHT_IDLEPRIO 3
1331 #define WMULT_IDLEPRIO 1431655765
1332
1333 /*
1334 * Nice levels are multiplicative, with a gentle 10% change for every
1335 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1336 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1337 * that remained on nice 0.
1338 *
1339 * The "10% effect" is relative and cumulative: from _any_ nice level,
1340 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1341 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1342 * If a task goes up by ~10% and another task goes down by ~10% then
1343 * the relative distance between them is ~25%.)
1344 */
1345 static const int prio_to_weight[40] = {
1346 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1347 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1348 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1349 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1350 /* 0 */ 1024, 820, 655, 526, 423,
1351 /* 5 */ 335, 272, 215, 172, 137,
1352 /* 10 */ 110, 87, 70, 56, 45,
1353 /* 15 */ 36, 29, 23, 18, 15,
1354 };
1355
1356 /*
1357 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1358 *
1359 * In cases where the weight does not change often, we can use the
1360 * precalculated inverse to speed up arithmetics by turning divisions
1361 * into multiplications:
1362 */
1363 static const u32 prio_to_wmult[40] = {
1364 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1365 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1366 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1367 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1368 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1369 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1370 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1371 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1372 };
1373
1374 /* Time spent by the tasks of the cpu accounting group executing in ... */
1375 enum cpuacct_stat_index {
1376 CPUACCT_STAT_USER, /* ... user mode */
1377 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1378
1379 CPUACCT_STAT_NSTATS,
1380 };
1381
1382 #ifdef CONFIG_CGROUP_CPUACCT
1383 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1384 static void cpuacct_update_stats(struct task_struct *tsk,
1385 enum cpuacct_stat_index idx, cputime_t val);
1386 #else
1387 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1388 static inline void cpuacct_update_stats(struct task_struct *tsk,
1389 enum cpuacct_stat_index idx, cputime_t val) {}
1390 #endif
1391
1392 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1393 {
1394 update_load_add(&rq->load, load);
1395 }
1396
1397 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1398 {
1399 update_load_sub(&rq->load, load);
1400 }
1401
1402 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1403 typedef int (*tg_visitor)(struct task_group *, void *);
1404
1405 /*
1406 * Iterate the full tree, calling @down when first entering a node and @up when
1407 * leaving it for the final time.
1408 */
1409 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1410 {
1411 struct task_group *parent, *child;
1412 int ret;
1413
1414 rcu_read_lock();
1415 parent = &root_task_group;
1416 down:
1417 ret = (*down)(parent, data);
1418 if (ret)
1419 goto out_unlock;
1420 list_for_each_entry_rcu(child, &parent->children, siblings) {
1421 parent = child;
1422 goto down;
1423
1424 up:
1425 continue;
1426 }
1427 ret = (*up)(parent, data);
1428 if (ret)
1429 goto out_unlock;
1430
1431 child = parent;
1432 parent = parent->parent;
1433 if (parent)
1434 goto up;
1435 out_unlock:
1436 rcu_read_unlock();
1437
1438 return ret;
1439 }
1440
1441 static int tg_nop(struct task_group *tg, void *data)
1442 {
1443 return 0;
1444 }
1445 #endif
1446
1447 #ifdef CONFIG_SMP
1448 /* Used instead of source_load when we know the type == 0 */
1449 static unsigned long weighted_cpuload(const int cpu)
1450 {
1451 return cpu_rq(cpu)->load.weight;
1452 }
1453
1454 /*
1455 * Return a low guess at the load of a migration-source cpu weighted
1456 * according to the scheduling class and "nice" value.
1457 *
1458 * We want to under-estimate the load of migration sources, to
1459 * balance conservatively.
1460 */
1461 static unsigned long source_load(int cpu, int type)
1462 {
1463 struct rq *rq = cpu_rq(cpu);
1464 unsigned long total = weighted_cpuload(cpu);
1465
1466 if (type == 0 || !sched_feat(LB_BIAS))
1467 return total;
1468
1469 return min(rq->cpu_load[type-1], total);
1470 }
1471
1472 /*
1473 * Return a high guess at the load of a migration-target cpu weighted
1474 * according to the scheduling class and "nice" value.
1475 */
1476 static unsigned long target_load(int cpu, int type)
1477 {
1478 struct rq *rq = cpu_rq(cpu);
1479 unsigned long total = weighted_cpuload(cpu);
1480
1481 if (type == 0 || !sched_feat(LB_BIAS))
1482 return total;
1483
1484 return max(rq->cpu_load[type-1], total);
1485 }
1486
1487 static struct sched_group *group_of(int cpu)
1488 {
1489 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1490
1491 if (!sd)
1492 return NULL;
1493
1494 return sd->groups;
1495 }
1496
1497 static unsigned long power_of(int cpu)
1498 {
1499 struct sched_group *group = group_of(cpu);
1500
1501 if (!group)
1502 return SCHED_LOAD_SCALE;
1503
1504 return group->cpu_power;
1505 }
1506
1507 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1508
1509 static unsigned long cpu_avg_load_per_task(int cpu)
1510 {
1511 struct rq *rq = cpu_rq(cpu);
1512 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1513
1514 if (nr_running)
1515 rq->avg_load_per_task = rq->load.weight / nr_running;
1516 else
1517 rq->avg_load_per_task = 0;
1518
1519 return rq->avg_load_per_task;
1520 }
1521
1522 #ifdef CONFIG_FAIR_GROUP_SCHED
1523
1524 static __read_mostly unsigned long *update_shares_data;
1525
1526 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1527
1528 /*
1529 * Calculate and set the cpu's group shares.
1530 */
1531 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1532 unsigned long sd_shares,
1533 unsigned long sd_rq_weight,
1534 unsigned long *usd_rq_weight)
1535 {
1536 unsigned long shares, rq_weight;
1537 int boost = 0;
1538
1539 rq_weight = usd_rq_weight[cpu];
1540 if (!rq_weight) {
1541 boost = 1;
1542 rq_weight = NICE_0_LOAD;
1543 }
1544
1545 /*
1546 * \Sum_j shares_j * rq_weight_i
1547 * shares_i = -----------------------------
1548 * \Sum_j rq_weight_j
1549 */
1550 shares = (sd_shares * rq_weight) / sd_rq_weight;
1551 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1552
1553 if (abs(shares - tg->se[cpu]->load.weight) >
1554 sysctl_sched_shares_thresh) {
1555 struct rq *rq = cpu_rq(cpu);
1556 unsigned long flags;
1557
1558 raw_spin_lock_irqsave(&rq->lock, flags);
1559 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1560 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1561 __set_se_shares(tg->se[cpu], shares);
1562 raw_spin_unlock_irqrestore(&rq->lock, flags);
1563 }
1564 }
1565
1566 /*
1567 * Re-compute the task group their per cpu shares over the given domain.
1568 * This needs to be done in a bottom-up fashion because the rq weight of a
1569 * parent group depends on the shares of its child groups.
1570 */
1571 static int tg_shares_up(struct task_group *tg, void *data)
1572 {
1573 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1574 unsigned long *usd_rq_weight;
1575 struct sched_domain *sd = data;
1576 unsigned long flags;
1577 int i;
1578
1579 if (!tg->se[0])
1580 return 0;
1581
1582 local_irq_save(flags);
1583 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1584
1585 for_each_cpu(i, sched_domain_span(sd)) {
1586 weight = tg->cfs_rq[i]->load.weight;
1587 usd_rq_weight[i] = weight;
1588
1589 rq_weight += weight;
1590 /*
1591 * If there are currently no tasks on the cpu pretend there
1592 * is one of average load so that when a new task gets to
1593 * run here it will not get delayed by group starvation.
1594 */
1595 if (!weight)
1596 weight = NICE_0_LOAD;
1597
1598 sum_weight += weight;
1599 shares += tg->cfs_rq[i]->shares;
1600 }
1601
1602 if (!rq_weight)
1603 rq_weight = sum_weight;
1604
1605 if ((!shares && rq_weight) || shares > tg->shares)
1606 shares = tg->shares;
1607
1608 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1609 shares = tg->shares;
1610
1611 for_each_cpu(i, sched_domain_span(sd))
1612 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1613
1614 local_irq_restore(flags);
1615
1616 return 0;
1617 }
1618
1619 /*
1620 * Compute the cpu's hierarchical load factor for each task group.
1621 * This needs to be done in a top-down fashion because the load of a child
1622 * group is a fraction of its parents load.
1623 */
1624 static int tg_load_down(struct task_group *tg, void *data)
1625 {
1626 unsigned long load;
1627 long cpu = (long)data;
1628
1629 if (!tg->parent) {
1630 load = cpu_rq(cpu)->load.weight;
1631 } else {
1632 load = tg->parent->cfs_rq[cpu]->h_load;
1633 load *= tg->cfs_rq[cpu]->shares;
1634 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1635 }
1636
1637 tg->cfs_rq[cpu]->h_load = load;
1638
1639 return 0;
1640 }
1641
1642 static void update_shares(struct sched_domain *sd)
1643 {
1644 s64 elapsed;
1645 u64 now;
1646
1647 if (root_task_group_empty())
1648 return;
1649
1650 now = cpu_clock(raw_smp_processor_id());
1651 elapsed = now - sd->last_update;
1652
1653 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1654 sd->last_update = now;
1655 walk_tg_tree(tg_nop, tg_shares_up, sd);
1656 }
1657 }
1658
1659 static void update_h_load(long cpu)
1660 {
1661 if (root_task_group_empty())
1662 return;
1663
1664 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1665 }
1666
1667 #else
1668
1669 static inline void update_shares(struct sched_domain *sd)
1670 {
1671 }
1672
1673 #endif
1674
1675 #ifdef CONFIG_PREEMPT
1676
1677 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1678
1679 /*
1680 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1681 * way at the expense of forcing extra atomic operations in all
1682 * invocations. This assures that the double_lock is acquired using the
1683 * same underlying policy as the spinlock_t on this architecture, which
1684 * reduces latency compared to the unfair variant below. However, it
1685 * also adds more overhead and therefore may reduce throughput.
1686 */
1687 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1688 __releases(this_rq->lock)
1689 __acquires(busiest->lock)
1690 __acquires(this_rq->lock)
1691 {
1692 raw_spin_unlock(&this_rq->lock);
1693 double_rq_lock(this_rq, busiest);
1694
1695 return 1;
1696 }
1697
1698 #else
1699 /*
1700 * Unfair double_lock_balance: Optimizes throughput at the expense of
1701 * latency by eliminating extra atomic operations when the locks are
1702 * already in proper order on entry. This favors lower cpu-ids and will
1703 * grant the double lock to lower cpus over higher ids under contention,
1704 * regardless of entry order into the function.
1705 */
1706 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1707 __releases(this_rq->lock)
1708 __acquires(busiest->lock)
1709 __acquires(this_rq->lock)
1710 {
1711 int ret = 0;
1712
1713 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1714 if (busiest < this_rq) {
1715 raw_spin_unlock(&this_rq->lock);
1716 raw_spin_lock(&busiest->lock);
1717 raw_spin_lock_nested(&this_rq->lock,
1718 SINGLE_DEPTH_NESTING);
1719 ret = 1;
1720 } else
1721 raw_spin_lock_nested(&busiest->lock,
1722 SINGLE_DEPTH_NESTING);
1723 }
1724 return ret;
1725 }
1726
1727 #endif /* CONFIG_PREEMPT */
1728
1729 /*
1730 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1731 */
1732 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1733 {
1734 if (unlikely(!irqs_disabled())) {
1735 /* printk() doesn't work good under rq->lock */
1736 raw_spin_unlock(&this_rq->lock);
1737 BUG_ON(1);
1738 }
1739
1740 return _double_lock_balance(this_rq, busiest);
1741 }
1742
1743 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1744 __releases(busiest->lock)
1745 {
1746 raw_spin_unlock(&busiest->lock);
1747 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1748 }
1749
1750 /*
1751 * double_rq_lock - safely lock two runqueues
1752 *
1753 * Note this does not disable interrupts like task_rq_lock,
1754 * you need to do so manually before calling.
1755 */
1756 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1757 __acquires(rq1->lock)
1758 __acquires(rq2->lock)
1759 {
1760 BUG_ON(!irqs_disabled());
1761 if (rq1 == rq2) {
1762 raw_spin_lock(&rq1->lock);
1763 __acquire(rq2->lock); /* Fake it out ;) */
1764 } else {
1765 if (rq1 < rq2) {
1766 raw_spin_lock(&rq1->lock);
1767 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1768 } else {
1769 raw_spin_lock(&rq2->lock);
1770 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1771 }
1772 }
1773 update_rq_clock(rq1);
1774 update_rq_clock(rq2);
1775 }
1776
1777 /*
1778 * double_rq_unlock - safely unlock two runqueues
1779 *
1780 * Note this does not restore interrupts like task_rq_unlock,
1781 * you need to do so manually after calling.
1782 */
1783 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1784 __releases(rq1->lock)
1785 __releases(rq2->lock)
1786 {
1787 raw_spin_unlock(&rq1->lock);
1788 if (rq1 != rq2)
1789 raw_spin_unlock(&rq2->lock);
1790 else
1791 __release(rq2->lock);
1792 }
1793
1794 #endif
1795
1796 #ifdef CONFIG_FAIR_GROUP_SCHED
1797 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1798 {
1799 #ifdef CONFIG_SMP
1800 cfs_rq->shares = shares;
1801 #endif
1802 }
1803 #endif
1804
1805 static void calc_load_account_active(struct rq *this_rq);
1806 static void update_sysctl(void);
1807 static int get_update_sysctl_factor(void);
1808
1809 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1810 {
1811 set_task_rq(p, cpu);
1812 #ifdef CONFIG_SMP
1813 /*
1814 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1815 * successfuly executed on another CPU. We must ensure that updates of
1816 * per-task data have been completed by this moment.
1817 */
1818 smp_wmb();
1819 task_thread_info(p)->cpu = cpu;
1820 #endif
1821 }
1822
1823 static const struct sched_class rt_sched_class;
1824
1825 #define sched_class_highest (&rt_sched_class)
1826 #define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next)
1828
1829 #include "sched_stats.h"
1830
1831 static void inc_nr_running(struct rq *rq)
1832 {
1833 rq->nr_running++;
1834 }
1835
1836 static void dec_nr_running(struct rq *rq)
1837 {
1838 rq->nr_running--;
1839 }
1840
1841 static void set_load_weight(struct task_struct *p)
1842 {
1843 if (task_has_rt_policy(p)) {
1844 p->se.load.weight = prio_to_weight[0] * 2;
1845 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1846 return;
1847 }
1848
1849 /*
1850 * SCHED_IDLE tasks get minimal weight:
1851 */
1852 if (p->policy == SCHED_IDLE) {
1853 p->se.load.weight = WEIGHT_IDLEPRIO;
1854 p->se.load.inv_weight = WMULT_IDLEPRIO;
1855 return;
1856 }
1857
1858 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1859 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1860 }
1861
1862 static void update_avg(u64 *avg, u64 sample)
1863 {
1864 s64 diff = sample - *avg;
1865 *avg += diff >> 3;
1866 }
1867
1868 static void
1869 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1870 {
1871 if (wakeup)
1872 p->se.start_runtime = p->se.sum_exec_runtime;
1873
1874 sched_info_queued(p);
1875 p->sched_class->enqueue_task(rq, p, wakeup, head);
1876 p->se.on_rq = 1;
1877 }
1878
1879 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1880 {
1881 if (sleep) {
1882 if (p->se.last_wakeup) {
1883 update_avg(&p->se.avg_overlap,
1884 p->se.sum_exec_runtime - p->se.last_wakeup);
1885 p->se.last_wakeup = 0;
1886 } else {
1887 update_avg(&p->se.avg_wakeup,
1888 sysctl_sched_wakeup_granularity);
1889 }
1890 }
1891
1892 sched_info_dequeued(p);
1893 p->sched_class->dequeue_task(rq, p, sleep);
1894 p->se.on_rq = 0;
1895 }
1896
1897 /*
1898 * activate_task - move a task to the runqueue.
1899 */
1900 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1901 {
1902 if (task_contributes_to_load(p))
1903 rq->nr_uninterruptible--;
1904
1905 enqueue_task(rq, p, wakeup, false);
1906 inc_nr_running(rq);
1907 }
1908
1909 /*
1910 * deactivate_task - remove a task from the runqueue.
1911 */
1912 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1913 {
1914 if (task_contributes_to_load(p))
1915 rq->nr_uninterruptible++;
1916
1917 dequeue_task(rq, p, sleep);
1918 dec_nr_running(rq);
1919 }
1920
1921 #include "sched_idletask.c"
1922 #include "sched_fair.c"
1923 #include "sched_rt.c"
1924 #ifdef CONFIG_SCHED_DEBUG
1925 # include "sched_debug.c"
1926 #endif
1927
1928 /*
1929 * __normal_prio - return the priority that is based on the static prio
1930 */
1931 static inline int __normal_prio(struct task_struct *p)
1932 {
1933 return p->static_prio;
1934 }
1935
1936 /*
1937 * Calculate the expected normal priority: i.e. priority
1938 * without taking RT-inheritance into account. Might be
1939 * boosted by interactivity modifiers. Changes upon fork,
1940 * setprio syscalls, and whenever the interactivity
1941 * estimator recalculates.
1942 */
1943 static inline int normal_prio(struct task_struct *p)
1944 {
1945 int prio;
1946
1947 if (task_has_rt_policy(p))
1948 prio = MAX_RT_PRIO-1 - p->rt_priority;
1949 else
1950 prio = __normal_prio(p);
1951 return prio;
1952 }
1953
1954 /*
1955 * Calculate the current priority, i.e. the priority
1956 * taken into account by the scheduler. This value might
1957 * be boosted by RT tasks, or might be boosted by
1958 * interactivity modifiers. Will be RT if the task got
1959 * RT-boosted. If not then it returns p->normal_prio.
1960 */
1961 static int effective_prio(struct task_struct *p)
1962 {
1963 p->normal_prio = normal_prio(p);
1964 /*
1965 * If we are RT tasks or we were boosted to RT priority,
1966 * keep the priority unchanged. Otherwise, update priority
1967 * to the normal priority:
1968 */
1969 if (!rt_prio(p->prio))
1970 return p->normal_prio;
1971 return p->prio;
1972 }
1973
1974 /**
1975 * task_curr - is this task currently executing on a CPU?
1976 * @p: the task in question.
1977 */
1978 inline int task_curr(const struct task_struct *p)
1979 {
1980 return cpu_curr(task_cpu(p)) == p;
1981 }
1982
1983 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1984 const struct sched_class *prev_class,
1985 int oldprio, int running)
1986 {
1987 if (prev_class != p->sched_class) {
1988 if (prev_class->switched_from)
1989 prev_class->switched_from(rq, p, running);
1990 p->sched_class->switched_to(rq, p, running);
1991 } else
1992 p->sched_class->prio_changed(rq, p, oldprio, running);
1993 }
1994
1995 #ifdef CONFIG_SMP
1996 /*
1997 * Is this task likely cache-hot:
1998 */
1999 static int
2000 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2001 {
2002 s64 delta;
2003
2004 if (p->sched_class != &fair_sched_class)
2005 return 0;
2006
2007 /*
2008 * Buddy candidates are cache hot:
2009 */
2010 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2011 (&p->se == cfs_rq_of(&p->se)->next ||
2012 &p->se == cfs_rq_of(&p->se)->last))
2013 return 1;
2014
2015 if (sysctl_sched_migration_cost == -1)
2016 return 1;
2017 if (sysctl_sched_migration_cost == 0)
2018 return 0;
2019
2020 delta = now - p->se.exec_start;
2021
2022 return delta < (s64)sysctl_sched_migration_cost;
2023 }
2024
2025 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2026 {
2027 #ifdef CONFIG_SCHED_DEBUG
2028 /*
2029 * We should never call set_task_cpu() on a blocked task,
2030 * ttwu() will sort out the placement.
2031 */
2032 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2033 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2034 #endif
2035
2036 trace_sched_migrate_task(p, new_cpu);
2037
2038 if (task_cpu(p) != new_cpu) {
2039 p->se.nr_migrations++;
2040 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2041 }
2042
2043 __set_task_cpu(p, new_cpu);
2044 }
2045
2046 struct migration_req {
2047 struct list_head list;
2048
2049 struct task_struct *task;
2050 int dest_cpu;
2051
2052 struct completion done;
2053 };
2054
2055 /*
2056 * The task's runqueue lock must be held.
2057 * Returns true if you have to wait for migration thread.
2058 */
2059 static int
2060 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2061 {
2062 struct rq *rq = task_rq(p);
2063
2064 /*
2065 * If the task is not on a runqueue (and not running), then
2066 * the next wake-up will properly place the task.
2067 */
2068 if (!p->se.on_rq && !task_running(rq, p))
2069 return 0;
2070
2071 init_completion(&req->done);
2072 req->task = p;
2073 req->dest_cpu = dest_cpu;
2074 list_add(&req->list, &rq->migration_queue);
2075
2076 return 1;
2077 }
2078
2079 /*
2080 * wait_task_context_switch - wait for a thread to complete at least one
2081 * context switch.
2082 *
2083 * @p must not be current.
2084 */
2085 void wait_task_context_switch(struct task_struct *p)
2086 {
2087 unsigned long nvcsw, nivcsw, flags;
2088 int running;
2089 struct rq *rq;
2090
2091 nvcsw = p->nvcsw;
2092 nivcsw = p->nivcsw;
2093 for (;;) {
2094 /*
2095 * The runqueue is assigned before the actual context
2096 * switch. We need to take the runqueue lock.
2097 *
2098 * We could check initially without the lock but it is
2099 * very likely that we need to take the lock in every
2100 * iteration.
2101 */
2102 rq = task_rq_lock(p, &flags);
2103 running = task_running(rq, p);
2104 task_rq_unlock(rq, &flags);
2105
2106 if (likely(!running))
2107 break;
2108 /*
2109 * The switch count is incremented before the actual
2110 * context switch. We thus wait for two switches to be
2111 * sure at least one completed.
2112 */
2113 if ((p->nvcsw - nvcsw) > 1)
2114 break;
2115 if ((p->nivcsw - nivcsw) > 1)
2116 break;
2117
2118 cpu_relax();
2119 }
2120 }
2121
2122 /*
2123 * wait_task_inactive - wait for a thread to unschedule.
2124 *
2125 * If @match_state is nonzero, it's the @p->state value just checked and
2126 * not expected to change. If it changes, i.e. @p might have woken up,
2127 * then return zero. When we succeed in waiting for @p to be off its CPU,
2128 * we return a positive number (its total switch count). If a second call
2129 * a short while later returns the same number, the caller can be sure that
2130 * @p has remained unscheduled the whole time.
2131 *
2132 * The caller must ensure that the task *will* unschedule sometime soon,
2133 * else this function might spin for a *long* time. This function can't
2134 * be called with interrupts off, or it may introduce deadlock with
2135 * smp_call_function() if an IPI is sent by the same process we are
2136 * waiting to become inactive.
2137 */
2138 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2139 {
2140 unsigned long flags;
2141 int running, on_rq;
2142 unsigned long ncsw;
2143 struct rq *rq;
2144
2145 for (;;) {
2146 /*
2147 * We do the initial early heuristics without holding
2148 * any task-queue locks at all. We'll only try to get
2149 * the runqueue lock when things look like they will
2150 * work out!
2151 */
2152 rq = task_rq(p);
2153
2154 /*
2155 * If the task is actively running on another CPU
2156 * still, just relax and busy-wait without holding
2157 * any locks.
2158 *
2159 * NOTE! Since we don't hold any locks, it's not
2160 * even sure that "rq" stays as the right runqueue!
2161 * But we don't care, since "task_running()" will
2162 * return false if the runqueue has changed and p
2163 * is actually now running somewhere else!
2164 */
2165 while (task_running(rq, p)) {
2166 if (match_state && unlikely(p->state != match_state))
2167 return 0;
2168 cpu_relax();
2169 }
2170
2171 /*
2172 * Ok, time to look more closely! We need the rq
2173 * lock now, to be *sure*. If we're wrong, we'll
2174 * just go back and repeat.
2175 */
2176 rq = task_rq_lock(p, &flags);
2177 trace_sched_wait_task(rq, p);
2178 running = task_running(rq, p);
2179 on_rq = p->se.on_rq;
2180 ncsw = 0;
2181 if (!match_state || p->state == match_state)
2182 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2183 task_rq_unlock(rq, &flags);
2184
2185 /*
2186 * If it changed from the expected state, bail out now.
2187 */
2188 if (unlikely(!ncsw))
2189 break;
2190
2191 /*
2192 * Was it really running after all now that we
2193 * checked with the proper locks actually held?
2194 *
2195 * Oops. Go back and try again..
2196 */
2197 if (unlikely(running)) {
2198 cpu_relax();
2199 continue;
2200 }
2201
2202 /*
2203 * It's not enough that it's not actively running,
2204 * it must be off the runqueue _entirely_, and not
2205 * preempted!
2206 *
2207 * So if it was still runnable (but just not actively
2208 * running right now), it's preempted, and we should
2209 * yield - it could be a while.
2210 */
2211 if (unlikely(on_rq)) {
2212 schedule_timeout_uninterruptible(1);
2213 continue;
2214 }
2215
2216 /*
2217 * Ahh, all good. It wasn't running, and it wasn't
2218 * runnable, which means that it will never become
2219 * running in the future either. We're all done!
2220 */
2221 break;
2222 }
2223
2224 return ncsw;
2225 }
2226
2227 /***
2228 * kick_process - kick a running thread to enter/exit the kernel
2229 * @p: the to-be-kicked thread
2230 *
2231 * Cause a process which is running on another CPU to enter
2232 * kernel-mode, without any delay. (to get signals handled.)
2233 *
2234 * NOTE: this function doesnt have to take the runqueue lock,
2235 * because all it wants to ensure is that the remote task enters
2236 * the kernel. If the IPI races and the task has been migrated
2237 * to another CPU then no harm is done and the purpose has been
2238 * achieved as well.
2239 */
2240 void kick_process(struct task_struct *p)
2241 {
2242 int cpu;
2243
2244 preempt_disable();
2245 cpu = task_cpu(p);
2246 if ((cpu != smp_processor_id()) && task_curr(p))
2247 smp_send_reschedule(cpu);
2248 preempt_enable();
2249 }
2250 EXPORT_SYMBOL_GPL(kick_process);
2251 #endif /* CONFIG_SMP */
2252
2253 /**
2254 * task_oncpu_function_call - call a function on the cpu on which a task runs
2255 * @p: the task to evaluate
2256 * @func: the function to be called
2257 * @info: the function call argument
2258 *
2259 * Calls the function @func when the task is currently running. This might
2260 * be on the current CPU, which just calls the function directly
2261 */
2262 void task_oncpu_function_call(struct task_struct *p,
2263 void (*func) (void *info), void *info)
2264 {
2265 int cpu;
2266
2267 preempt_disable();
2268 cpu = task_cpu(p);
2269 if (task_curr(p))
2270 smp_call_function_single(cpu, func, info, 1);
2271 preempt_enable();
2272 }
2273
2274 #ifdef CONFIG_SMP
2275 static int select_fallback_rq(int cpu, struct task_struct *p)
2276 {
2277 int dest_cpu;
2278 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2279
2280 /* Look for allowed, online CPU in same node. */
2281 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2282 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2283 return dest_cpu;
2284
2285 /* Any allowed, online CPU? */
2286 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2287 if (dest_cpu < nr_cpu_ids)
2288 return dest_cpu;
2289
2290 /* No more Mr. Nice Guy. */
2291 if (dest_cpu >= nr_cpu_ids) {
2292 rcu_read_lock();
2293 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2294 rcu_read_unlock();
2295 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2296
2297 /*
2298 * Don't tell them about moving exiting tasks or
2299 * kernel threads (both mm NULL), since they never
2300 * leave kernel.
2301 */
2302 if (p->mm && printk_ratelimit()) {
2303 printk(KERN_INFO "process %d (%s) no "
2304 "longer affine to cpu%d\n",
2305 task_pid_nr(p), p->comm, cpu);
2306 }
2307 }
2308
2309 return dest_cpu;
2310 }
2311
2312 /*
2313 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2314 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2315 * by:
2316 *
2317 * exec: is unstable, retry loop
2318 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2319 */
2320 static inline
2321 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2322 {
2323 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2324
2325 /*
2326 * In order not to call set_task_cpu() on a blocking task we need
2327 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2328 * cpu.
2329 *
2330 * Since this is common to all placement strategies, this lives here.
2331 *
2332 * [ this allows ->select_task() to simply return task_cpu(p) and
2333 * not worry about this generic constraint ]
2334 */
2335 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2336 !cpu_online(cpu)))
2337 cpu = select_fallback_rq(task_cpu(p), p);
2338
2339 return cpu;
2340 }
2341 #endif
2342
2343 /***
2344 * try_to_wake_up - wake up a thread
2345 * @p: the to-be-woken-up thread
2346 * @state: the mask of task states that can be woken
2347 * @sync: do a synchronous wakeup?
2348 *
2349 * Put it on the run-queue if it's not already there. The "current"
2350 * thread is always on the run-queue (except when the actual
2351 * re-schedule is in progress), and as such you're allowed to do
2352 * the simpler "current->state = TASK_RUNNING" to mark yourself
2353 * runnable without the overhead of this.
2354 *
2355 * returns failure only if the task is already active.
2356 */
2357 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2358 int wake_flags)
2359 {
2360 int cpu, orig_cpu, this_cpu, success = 0;
2361 unsigned long flags;
2362 struct rq *rq;
2363
2364 if (!sched_feat(SYNC_WAKEUPS))
2365 wake_flags &= ~WF_SYNC;
2366
2367 this_cpu = get_cpu();
2368
2369 smp_wmb();
2370 rq = task_rq_lock(p, &flags);
2371 update_rq_clock(rq);
2372 if (!(p->state & state))
2373 goto out;
2374
2375 if (p->se.on_rq)
2376 goto out_running;
2377
2378 cpu = task_cpu(p);
2379 orig_cpu = cpu;
2380
2381 #ifdef CONFIG_SMP
2382 if (unlikely(task_running(rq, p)))
2383 goto out_activate;
2384
2385 /*
2386 * In order to handle concurrent wakeups and release the rq->lock
2387 * we put the task in TASK_WAKING state.
2388 *
2389 * First fix up the nr_uninterruptible count:
2390 */
2391 if (task_contributes_to_load(p))
2392 rq->nr_uninterruptible--;
2393 p->state = TASK_WAKING;
2394
2395 if (p->sched_class->task_waking)
2396 p->sched_class->task_waking(rq, p);
2397
2398 __task_rq_unlock(rq);
2399
2400 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2401 if (cpu != orig_cpu) {
2402 /*
2403 * Since we migrate the task without holding any rq->lock,
2404 * we need to be careful with task_rq_lock(), since that
2405 * might end up locking an invalid rq.
2406 */
2407 set_task_cpu(p, cpu);
2408 }
2409
2410 rq = cpu_rq(cpu);
2411 raw_spin_lock(&rq->lock);
2412 update_rq_clock(rq);
2413
2414 /*
2415 * We migrated the task without holding either rq->lock, however
2416 * since the task is not on the task list itself, nobody else
2417 * will try and migrate the task, hence the rq should match the
2418 * cpu we just moved it to.
2419 */
2420 WARN_ON(task_cpu(p) != cpu);
2421 WARN_ON(p->state != TASK_WAKING);
2422
2423 #ifdef CONFIG_SCHEDSTATS
2424 schedstat_inc(rq, ttwu_count);
2425 if (cpu == this_cpu)
2426 schedstat_inc(rq, ttwu_local);
2427 else {
2428 struct sched_domain *sd;
2429 for_each_domain(this_cpu, sd) {
2430 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2431 schedstat_inc(sd, ttwu_wake_remote);
2432 break;
2433 }
2434 }
2435 }
2436 #endif /* CONFIG_SCHEDSTATS */
2437
2438 out_activate:
2439 #endif /* CONFIG_SMP */
2440 schedstat_inc(p, se.statistics.nr_wakeups);
2441 if (wake_flags & WF_SYNC)
2442 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2443 if (orig_cpu != cpu)
2444 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2445 if (cpu == this_cpu)
2446 schedstat_inc(p, se.statistics.nr_wakeups_local);
2447 else
2448 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2449 activate_task(rq, p, 1);
2450 success = 1;
2451
2452 /*
2453 * Only attribute actual wakeups done by this task.
2454 */
2455 if (!in_interrupt()) {
2456 struct sched_entity *se = &current->se;
2457 u64 sample = se->sum_exec_runtime;
2458
2459 if (se->last_wakeup)
2460 sample -= se->last_wakeup;
2461 else
2462 sample -= se->start_runtime;
2463 update_avg(&se->avg_wakeup, sample);
2464
2465 se->last_wakeup = se->sum_exec_runtime;
2466 }
2467
2468 out_running:
2469 trace_sched_wakeup(rq, p, success);
2470 check_preempt_curr(rq, p, wake_flags);
2471
2472 p->state = TASK_RUNNING;
2473 #ifdef CONFIG_SMP
2474 if (p->sched_class->task_woken)
2475 p->sched_class->task_woken(rq, p);
2476
2477 if (unlikely(rq->idle_stamp)) {
2478 u64 delta = rq->clock - rq->idle_stamp;
2479 u64 max = 2*sysctl_sched_migration_cost;
2480
2481 if (delta > max)
2482 rq->avg_idle = max;
2483 else
2484 update_avg(&rq->avg_idle, delta);
2485 rq->idle_stamp = 0;
2486 }
2487 #endif
2488 out:
2489 task_rq_unlock(rq, &flags);
2490 put_cpu();
2491
2492 return success;
2493 }
2494
2495 /**
2496 * wake_up_process - Wake up a specific process
2497 * @p: The process to be woken up.
2498 *
2499 * Attempt to wake up the nominated process and move it to the set of runnable
2500 * processes. Returns 1 if the process was woken up, 0 if it was already
2501 * running.
2502 *
2503 * It may be assumed that this function implies a write memory barrier before
2504 * changing the task state if and only if any tasks are woken up.
2505 */
2506 int wake_up_process(struct task_struct *p)
2507 {
2508 return try_to_wake_up(p, TASK_ALL, 0);
2509 }
2510 EXPORT_SYMBOL(wake_up_process);
2511
2512 int wake_up_state(struct task_struct *p, unsigned int state)
2513 {
2514 return try_to_wake_up(p, state, 0);
2515 }
2516
2517 /*
2518 * Perform scheduler related setup for a newly forked process p.
2519 * p is forked by current.
2520 *
2521 * __sched_fork() is basic setup used by init_idle() too:
2522 */
2523 static void __sched_fork(struct task_struct *p)
2524 {
2525 p->se.exec_start = 0;
2526 p->se.sum_exec_runtime = 0;
2527 p->se.prev_sum_exec_runtime = 0;
2528 p->se.nr_migrations = 0;
2529 p->se.last_wakeup = 0;
2530 p->se.avg_overlap = 0;
2531 p->se.start_runtime = 0;
2532 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2533
2534 #ifdef CONFIG_SCHEDSTATS
2535 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2536 #endif
2537
2538 INIT_LIST_HEAD(&p->rt.run_list);
2539 p->se.on_rq = 0;
2540 INIT_LIST_HEAD(&p->se.group_node);
2541
2542 #ifdef CONFIG_PREEMPT_NOTIFIERS
2543 INIT_HLIST_HEAD(&p->preempt_notifiers);
2544 #endif
2545 }
2546
2547 /*
2548 * fork()/clone()-time setup:
2549 */
2550 void sched_fork(struct task_struct *p, int clone_flags)
2551 {
2552 int cpu = get_cpu();
2553
2554 __sched_fork(p);
2555 /*
2556 * We mark the process as waking here. This guarantees that
2557 * nobody will actually run it, and a signal or other external
2558 * event cannot wake it up and insert it on the runqueue either.
2559 */
2560 p->state = TASK_WAKING;
2561
2562 /*
2563 * Revert to default priority/policy on fork if requested.
2564 */
2565 if (unlikely(p->sched_reset_on_fork)) {
2566 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2567 p->policy = SCHED_NORMAL;
2568 p->normal_prio = p->static_prio;
2569 }
2570
2571 if (PRIO_TO_NICE(p->static_prio) < 0) {
2572 p->static_prio = NICE_TO_PRIO(0);
2573 p->normal_prio = p->static_prio;
2574 set_load_weight(p);
2575 }
2576
2577 /*
2578 * We don't need the reset flag anymore after the fork. It has
2579 * fulfilled its duty:
2580 */
2581 p->sched_reset_on_fork = 0;
2582 }
2583
2584 /*
2585 * Make sure we do not leak PI boosting priority to the child.
2586 */
2587 p->prio = current->normal_prio;
2588
2589 if (!rt_prio(p->prio))
2590 p->sched_class = &fair_sched_class;
2591
2592 if (p->sched_class->task_fork)
2593 p->sched_class->task_fork(p);
2594
2595 set_task_cpu(p, cpu);
2596
2597 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2598 if (likely(sched_info_on()))
2599 memset(&p->sched_info, 0, sizeof(p->sched_info));
2600 #endif
2601 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2602 p->oncpu = 0;
2603 #endif
2604 #ifdef CONFIG_PREEMPT
2605 /* Want to start with kernel preemption disabled. */
2606 task_thread_info(p)->preempt_count = 1;
2607 #endif
2608 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2609
2610 put_cpu();
2611 }
2612
2613 /*
2614 * wake_up_new_task - wake up a newly created task for the first time.
2615 *
2616 * This function will do some initial scheduler statistics housekeeping
2617 * that must be done for every newly created context, then puts the task
2618 * on the runqueue and wakes it.
2619 */
2620 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2621 {
2622 unsigned long flags;
2623 struct rq *rq;
2624 int cpu = get_cpu();
2625
2626 #ifdef CONFIG_SMP
2627 /*
2628 * Fork balancing, do it here and not earlier because:
2629 * - cpus_allowed can change in the fork path
2630 * - any previously selected cpu might disappear through hotplug
2631 *
2632 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2633 * ->cpus_allowed is stable, we have preemption disabled, meaning
2634 * cpu_online_mask is stable.
2635 */
2636 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2637 set_task_cpu(p, cpu);
2638 #endif
2639
2640 /*
2641 * Since the task is not on the rq and we still have TASK_WAKING set
2642 * nobody else will migrate this task.
2643 */
2644 rq = cpu_rq(cpu);
2645 raw_spin_lock_irqsave(&rq->lock, flags);
2646
2647 BUG_ON(p->state != TASK_WAKING);
2648 p->state = TASK_RUNNING;
2649 update_rq_clock(rq);
2650 activate_task(rq, p, 0);
2651 trace_sched_wakeup_new(rq, p, 1);
2652 check_preempt_curr(rq, p, WF_FORK);
2653 #ifdef CONFIG_SMP
2654 if (p->sched_class->task_woken)
2655 p->sched_class->task_woken(rq, p);
2656 #endif
2657 task_rq_unlock(rq, &flags);
2658 put_cpu();
2659 }
2660
2661 #ifdef CONFIG_PREEMPT_NOTIFIERS
2662
2663 /**
2664 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2665 * @notifier: notifier struct to register
2666 */
2667 void preempt_notifier_register(struct preempt_notifier *notifier)
2668 {
2669 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2670 }
2671 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2672
2673 /**
2674 * preempt_notifier_unregister - no longer interested in preemption notifications
2675 * @notifier: notifier struct to unregister
2676 *
2677 * This is safe to call from within a preemption notifier.
2678 */
2679 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2680 {
2681 hlist_del(&notifier->link);
2682 }
2683 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2684
2685 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2686 {
2687 struct preempt_notifier *notifier;
2688 struct hlist_node *node;
2689
2690 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2691 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2692 }
2693
2694 static void
2695 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2696 struct task_struct *next)
2697 {
2698 struct preempt_notifier *notifier;
2699 struct hlist_node *node;
2700
2701 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2702 notifier->ops->sched_out(notifier, next);
2703 }
2704
2705 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2706
2707 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2708 {
2709 }
2710
2711 static void
2712 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2713 struct task_struct *next)
2714 {
2715 }
2716
2717 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2718
2719 /**
2720 * prepare_task_switch - prepare to switch tasks
2721 * @rq: the runqueue preparing to switch
2722 * @prev: the current task that is being switched out
2723 * @next: the task we are going to switch to.
2724 *
2725 * This is called with the rq lock held and interrupts off. It must
2726 * be paired with a subsequent finish_task_switch after the context
2727 * switch.
2728 *
2729 * prepare_task_switch sets up locking and calls architecture specific
2730 * hooks.
2731 */
2732 static inline void
2733 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2734 struct task_struct *next)
2735 {
2736 fire_sched_out_preempt_notifiers(prev, next);
2737 prepare_lock_switch(rq, next);
2738 prepare_arch_switch(next);
2739 }
2740
2741 /**
2742 * finish_task_switch - clean up after a task-switch
2743 * @rq: runqueue associated with task-switch
2744 * @prev: the thread we just switched away from.
2745 *
2746 * finish_task_switch must be called after the context switch, paired
2747 * with a prepare_task_switch call before the context switch.
2748 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2749 * and do any other architecture-specific cleanup actions.
2750 *
2751 * Note that we may have delayed dropping an mm in context_switch(). If
2752 * so, we finish that here outside of the runqueue lock. (Doing it
2753 * with the lock held can cause deadlocks; see schedule() for
2754 * details.)
2755 */
2756 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2757 __releases(rq->lock)
2758 {
2759 struct mm_struct *mm = rq->prev_mm;
2760 long prev_state;
2761
2762 rq->prev_mm = NULL;
2763
2764 /*
2765 * A task struct has one reference for the use as "current".
2766 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2767 * schedule one last time. The schedule call will never return, and
2768 * the scheduled task must drop that reference.
2769 * The test for TASK_DEAD must occur while the runqueue locks are
2770 * still held, otherwise prev could be scheduled on another cpu, die
2771 * there before we look at prev->state, and then the reference would
2772 * be dropped twice.
2773 * Manfred Spraul <manfred@colorfullife.com>
2774 */
2775 prev_state = prev->state;
2776 finish_arch_switch(prev);
2777 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2778 local_irq_disable();
2779 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2780 perf_event_task_sched_in(current);
2781 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2782 local_irq_enable();
2783 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2784 finish_lock_switch(rq, prev);
2785
2786 fire_sched_in_preempt_notifiers(current);
2787 if (mm)
2788 mmdrop(mm);
2789 if (unlikely(prev_state == TASK_DEAD)) {
2790 /*
2791 * Remove function-return probe instances associated with this
2792 * task and put them back on the free list.
2793 */
2794 kprobe_flush_task(prev);
2795 put_task_struct(prev);
2796 }
2797 }
2798
2799 #ifdef CONFIG_SMP
2800
2801 /* assumes rq->lock is held */
2802 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2803 {
2804 if (prev->sched_class->pre_schedule)
2805 prev->sched_class->pre_schedule(rq, prev);
2806 }
2807
2808 /* rq->lock is NOT held, but preemption is disabled */
2809 static inline void post_schedule(struct rq *rq)
2810 {
2811 if (rq->post_schedule) {
2812 unsigned long flags;
2813
2814 raw_spin_lock_irqsave(&rq->lock, flags);
2815 if (rq->curr->sched_class->post_schedule)
2816 rq->curr->sched_class->post_schedule(rq);
2817 raw_spin_unlock_irqrestore(&rq->lock, flags);
2818
2819 rq->post_schedule = 0;
2820 }
2821 }
2822
2823 #else
2824
2825 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2826 {
2827 }
2828
2829 static inline void post_schedule(struct rq *rq)
2830 {
2831 }
2832
2833 #endif
2834
2835 /**
2836 * schedule_tail - first thing a freshly forked thread must call.
2837 * @prev: the thread we just switched away from.
2838 */
2839 asmlinkage void schedule_tail(struct task_struct *prev)
2840 __releases(rq->lock)
2841 {
2842 struct rq *rq = this_rq();
2843
2844 finish_task_switch(rq, prev);
2845
2846 /*
2847 * FIXME: do we need to worry about rq being invalidated by the
2848 * task_switch?
2849 */
2850 post_schedule(rq);
2851
2852 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2853 /* In this case, finish_task_switch does not reenable preemption */
2854 preempt_enable();
2855 #endif
2856 if (current->set_child_tid)
2857 put_user(task_pid_vnr(current), current->set_child_tid);
2858 }
2859
2860 /*
2861 * context_switch - switch to the new MM and the new
2862 * thread's register state.
2863 */
2864 static inline void
2865 context_switch(struct rq *rq, struct task_struct *prev,
2866 struct task_struct *next)
2867 {
2868 struct mm_struct *mm, *oldmm;
2869
2870 prepare_task_switch(rq, prev, next);
2871 trace_sched_switch(rq, prev, next);
2872 mm = next->mm;
2873 oldmm = prev->active_mm;
2874 /*
2875 * For paravirt, this is coupled with an exit in switch_to to
2876 * combine the page table reload and the switch backend into
2877 * one hypercall.
2878 */
2879 arch_start_context_switch(prev);
2880
2881 if (likely(!mm)) {
2882 next->active_mm = oldmm;
2883 atomic_inc(&oldmm->mm_count);
2884 enter_lazy_tlb(oldmm, next);
2885 } else
2886 switch_mm(oldmm, mm, next);
2887
2888 if (likely(!prev->mm)) {
2889 prev->active_mm = NULL;
2890 rq->prev_mm = oldmm;
2891 }
2892 /*
2893 * Since the runqueue lock will be released by the next
2894 * task (which is an invalid locking op but in the case
2895 * of the scheduler it's an obvious special-case), so we
2896 * do an early lockdep release here:
2897 */
2898 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2899 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2900 #endif
2901
2902 /* Here we just switch the register state and the stack. */
2903 switch_to(prev, next, prev);
2904
2905 barrier();
2906 /*
2907 * this_rq must be evaluated again because prev may have moved
2908 * CPUs since it called schedule(), thus the 'rq' on its stack
2909 * frame will be invalid.
2910 */
2911 finish_task_switch(this_rq(), prev);
2912 }
2913
2914 /*
2915 * nr_running, nr_uninterruptible and nr_context_switches:
2916 *
2917 * externally visible scheduler statistics: current number of runnable
2918 * threads, current number of uninterruptible-sleeping threads, total
2919 * number of context switches performed since bootup.
2920 */
2921 unsigned long nr_running(void)
2922 {
2923 unsigned long i, sum = 0;
2924
2925 for_each_online_cpu(i)
2926 sum += cpu_rq(i)->nr_running;
2927
2928 return sum;
2929 }
2930
2931 unsigned long nr_uninterruptible(void)
2932 {
2933 unsigned long i, sum = 0;
2934
2935 for_each_possible_cpu(i)
2936 sum += cpu_rq(i)->nr_uninterruptible;
2937
2938 /*
2939 * Since we read the counters lockless, it might be slightly
2940 * inaccurate. Do not allow it to go below zero though:
2941 */
2942 if (unlikely((long)sum < 0))
2943 sum = 0;
2944
2945 return sum;
2946 }
2947
2948 unsigned long long nr_context_switches(void)
2949 {
2950 int i;
2951 unsigned long long sum = 0;
2952
2953 for_each_possible_cpu(i)
2954 sum += cpu_rq(i)->nr_switches;
2955
2956 return sum;
2957 }
2958
2959 unsigned long nr_iowait(void)
2960 {
2961 unsigned long i, sum = 0;
2962
2963 for_each_possible_cpu(i)
2964 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2965
2966 return sum;
2967 }
2968
2969 unsigned long nr_iowait_cpu(void)
2970 {
2971 struct rq *this = this_rq();
2972 return atomic_read(&this->nr_iowait);
2973 }
2974
2975 unsigned long this_cpu_load(void)
2976 {
2977 struct rq *this = this_rq();
2978 return this->cpu_load[0];
2979 }
2980
2981
2982 /* Variables and functions for calc_load */
2983 static atomic_long_t calc_load_tasks;
2984 static unsigned long calc_load_update;
2985 unsigned long avenrun[3];
2986 EXPORT_SYMBOL(avenrun);
2987
2988 /**
2989 * get_avenrun - get the load average array
2990 * @loads: pointer to dest load array
2991 * @offset: offset to add
2992 * @shift: shift count to shift the result left
2993 *
2994 * These values are estimates at best, so no need for locking.
2995 */
2996 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2997 {
2998 loads[0] = (avenrun[0] + offset) << shift;
2999 loads[1] = (avenrun[1] + offset) << shift;
3000 loads[2] = (avenrun[2] + offset) << shift;
3001 }
3002
3003 static unsigned long
3004 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3005 {
3006 load *= exp;
3007 load += active * (FIXED_1 - exp);
3008 return load >> FSHIFT;
3009 }
3010
3011 /*
3012 * calc_load - update the avenrun load estimates 10 ticks after the
3013 * CPUs have updated calc_load_tasks.
3014 */
3015 void calc_global_load(void)
3016 {
3017 unsigned long upd = calc_load_update + 10;
3018 long active;
3019
3020 if (time_before(jiffies, upd))
3021 return;
3022
3023 active = atomic_long_read(&calc_load_tasks);
3024 active = active > 0 ? active * FIXED_1 : 0;
3025
3026 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3027 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3028 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3029
3030 calc_load_update += LOAD_FREQ;
3031 }
3032
3033 /*
3034 * Either called from update_cpu_load() or from a cpu going idle
3035 */
3036 static void calc_load_account_active(struct rq *this_rq)
3037 {
3038 long nr_active, delta;
3039
3040 nr_active = this_rq->nr_running;
3041 nr_active += (long) this_rq->nr_uninterruptible;
3042
3043 if (nr_active != this_rq->calc_load_active) {
3044 delta = nr_active - this_rq->calc_load_active;
3045 this_rq->calc_load_active = nr_active;
3046 atomic_long_add(delta, &calc_load_tasks);
3047 }
3048 }
3049
3050 /*
3051 * Update rq->cpu_load[] statistics. This function is usually called every
3052 * scheduler tick (TICK_NSEC).
3053 */
3054 static void update_cpu_load(struct rq *this_rq)
3055 {
3056 unsigned long this_load = this_rq->load.weight;
3057 int i, scale;
3058
3059 this_rq->nr_load_updates++;
3060
3061 /* Update our load: */
3062 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3063 unsigned long old_load, new_load;
3064
3065 /* scale is effectively 1 << i now, and >> i divides by scale */
3066
3067 old_load = this_rq->cpu_load[i];
3068 new_load = this_load;
3069 /*
3070 * Round up the averaging division if load is increasing. This
3071 * prevents us from getting stuck on 9 if the load is 10, for
3072 * example.
3073 */
3074 if (new_load > old_load)
3075 new_load += scale-1;
3076 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3077 }
3078
3079 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3080 this_rq->calc_load_update += LOAD_FREQ;
3081 calc_load_account_active(this_rq);
3082 }
3083 }
3084
3085 #ifdef CONFIG_SMP
3086
3087 /*
3088 * sched_exec - execve() is a valuable balancing opportunity, because at
3089 * this point the task has the smallest effective memory and cache footprint.
3090 */
3091 void sched_exec(void)
3092 {
3093 struct task_struct *p = current;
3094 struct migration_req req;
3095 int dest_cpu, this_cpu;
3096 unsigned long flags;
3097 struct rq *rq;
3098
3099 again:
3100 this_cpu = get_cpu();
3101 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3102 if (dest_cpu == this_cpu) {
3103 put_cpu();
3104 return;
3105 }
3106
3107 rq = task_rq_lock(p, &flags);
3108 put_cpu();
3109
3110 /*
3111 * select_task_rq() can race against ->cpus_allowed
3112 */
3113 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3114 || unlikely(!cpu_active(dest_cpu))) {
3115 task_rq_unlock(rq, &flags);
3116 goto again;
3117 }
3118
3119 /* force the process onto the specified CPU */
3120 if (migrate_task(p, dest_cpu, &req)) {
3121 /* Need to wait for migration thread (might exit: take ref). */
3122 struct task_struct *mt = rq->migration_thread;
3123
3124 get_task_struct(mt);
3125 task_rq_unlock(rq, &flags);
3126 wake_up_process(mt);
3127 put_task_struct(mt);
3128 wait_for_completion(&req.done);
3129
3130 return;
3131 }
3132 task_rq_unlock(rq, &flags);
3133 }
3134
3135 #endif
3136
3137 DEFINE_PER_CPU(struct kernel_stat, kstat);
3138
3139 EXPORT_PER_CPU_SYMBOL(kstat);
3140
3141 /*
3142 * Return any ns on the sched_clock that have not yet been accounted in
3143 * @p in case that task is currently running.
3144 *
3145 * Called with task_rq_lock() held on @rq.
3146 */
3147 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3148 {
3149 u64 ns = 0;
3150
3151 if (task_current(rq, p)) {
3152 update_rq_clock(rq);
3153 ns = rq->clock - p->se.exec_start;
3154 if ((s64)ns < 0)
3155 ns = 0;
3156 }
3157
3158 return ns;
3159 }
3160
3161 unsigned long long task_delta_exec(struct task_struct *p)
3162 {
3163 unsigned long flags;
3164 struct rq *rq;
3165 u64 ns = 0;
3166
3167 rq = task_rq_lock(p, &flags);
3168 ns = do_task_delta_exec(p, rq);
3169 task_rq_unlock(rq, &flags);
3170
3171 return ns;
3172 }
3173
3174 /*
3175 * Return accounted runtime for the task.
3176 * In case the task is currently running, return the runtime plus current's
3177 * pending runtime that have not been accounted yet.
3178 */
3179 unsigned long long task_sched_runtime(struct task_struct *p)
3180 {
3181 unsigned long flags;
3182 struct rq *rq;
3183 u64 ns = 0;
3184
3185 rq = task_rq_lock(p, &flags);
3186 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3187 task_rq_unlock(rq, &flags);
3188
3189 return ns;
3190 }
3191
3192 /*
3193 * Return sum_exec_runtime for the thread group.
3194 * In case the task is currently running, return the sum plus current's
3195 * pending runtime that have not been accounted yet.
3196 *
3197 * Note that the thread group might have other running tasks as well,
3198 * so the return value not includes other pending runtime that other
3199 * running tasks might have.
3200 */
3201 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3202 {
3203 struct task_cputime totals;
3204 unsigned long flags;
3205 struct rq *rq;
3206 u64 ns;
3207
3208 rq = task_rq_lock(p, &flags);
3209 thread_group_cputime(p, &totals);
3210 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3211 task_rq_unlock(rq, &flags);
3212
3213 return ns;
3214 }
3215
3216 /*
3217 * Account user cpu time to a process.
3218 * @p: the process that the cpu time gets accounted to
3219 * @cputime: the cpu time spent in user space since the last update
3220 * @cputime_scaled: cputime scaled by cpu frequency
3221 */
3222 void account_user_time(struct task_struct *p, cputime_t cputime,
3223 cputime_t cputime_scaled)
3224 {
3225 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3226 cputime64_t tmp;
3227
3228 /* Add user time to process. */
3229 p->utime = cputime_add(p->utime, cputime);
3230 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3231 account_group_user_time(p, cputime);
3232
3233 /* Add user time to cpustat. */
3234 tmp = cputime_to_cputime64(cputime);
3235 if (TASK_NICE(p) > 0)
3236 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3237 else
3238 cpustat->user = cputime64_add(cpustat->user, tmp);
3239
3240 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3241 /* Account for user time used */
3242 acct_update_integrals(p);
3243 }
3244
3245 /*
3246 * Account guest cpu time to a process.
3247 * @p: the process that the cpu time gets accounted to
3248 * @cputime: the cpu time spent in virtual machine since the last update
3249 * @cputime_scaled: cputime scaled by cpu frequency
3250 */
3251 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3252 cputime_t cputime_scaled)
3253 {
3254 cputime64_t tmp;
3255 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3256
3257 tmp = cputime_to_cputime64(cputime);
3258
3259 /* Add guest time to process. */
3260 p->utime = cputime_add(p->utime, cputime);
3261 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3262 account_group_user_time(p, cputime);
3263 p->gtime = cputime_add(p->gtime, cputime);
3264
3265 /* Add guest time to cpustat. */
3266 if (TASK_NICE(p) > 0) {
3267 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3268 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3269 } else {
3270 cpustat->user = cputime64_add(cpustat->user, tmp);
3271 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3272 }
3273 }
3274
3275 /*
3276 * Account system cpu time to a process.
3277 * @p: the process that the cpu time gets accounted to
3278 * @hardirq_offset: the offset to subtract from hardirq_count()
3279 * @cputime: the cpu time spent in kernel space since the last update
3280 * @cputime_scaled: cputime scaled by cpu frequency
3281 */
3282 void account_system_time(struct task_struct *p, int hardirq_offset,
3283 cputime_t cputime, cputime_t cputime_scaled)
3284 {
3285 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3286 cputime64_t tmp;
3287
3288 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3289 account_guest_time(p, cputime, cputime_scaled);
3290 return;
3291 }
3292
3293 /* Add system time to process. */
3294 p->stime = cputime_add(p->stime, cputime);
3295 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3296 account_group_system_time(p, cputime);
3297
3298 /* Add system time to cpustat. */
3299 tmp = cputime_to_cputime64(cputime);
3300 if (hardirq_count() - hardirq_offset)
3301 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3302 else if (softirq_count())
3303 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3304 else
3305 cpustat->system = cputime64_add(cpustat->system, tmp);
3306
3307 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3308
3309 /* Account for system time used */
3310 acct_update_integrals(p);
3311 }
3312
3313 /*
3314 * Account for involuntary wait time.
3315 * @steal: the cpu time spent in involuntary wait
3316 */
3317 void account_steal_time(cputime_t cputime)
3318 {
3319 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3320 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3321
3322 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3323 }
3324
3325 /*
3326 * Account for idle time.
3327 * @cputime: the cpu time spent in idle wait
3328 */
3329 void account_idle_time(cputime_t cputime)
3330 {
3331 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3332 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3333 struct rq *rq = this_rq();
3334
3335 if (atomic_read(&rq->nr_iowait) > 0)
3336 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3337 else
3338 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3339 }
3340
3341 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3342
3343 /*
3344 * Account a single tick of cpu time.
3345 * @p: the process that the cpu time gets accounted to
3346 * @user_tick: indicates if the tick is a user or a system tick
3347 */
3348 void account_process_tick(struct task_struct *p, int user_tick)
3349 {
3350 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3351 struct rq *rq = this_rq();
3352
3353 if (user_tick)
3354 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3355 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3356 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3357 one_jiffy_scaled);
3358 else
3359 account_idle_time(cputime_one_jiffy);
3360 }
3361
3362 /*
3363 * Account multiple ticks of steal time.
3364 * @p: the process from which the cpu time has been stolen
3365 * @ticks: number of stolen ticks
3366 */
3367 void account_steal_ticks(unsigned long ticks)
3368 {
3369 account_steal_time(jiffies_to_cputime(ticks));
3370 }
3371
3372 /*
3373 * Account multiple ticks of idle time.
3374 * @ticks: number of stolen ticks
3375 */
3376 void account_idle_ticks(unsigned long ticks)
3377 {
3378 account_idle_time(jiffies_to_cputime(ticks));
3379 }
3380
3381 #endif
3382
3383 /*
3384 * Use precise platform statistics if available:
3385 */
3386 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3387 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3388 {
3389 *ut = p->utime;
3390 *st = p->stime;
3391 }
3392
3393 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3394 {
3395 struct task_cputime cputime;
3396
3397 thread_group_cputime(p, &cputime);
3398
3399 *ut = cputime.utime;
3400 *st = cputime.stime;
3401 }
3402 #else
3403
3404 #ifndef nsecs_to_cputime
3405 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3406 #endif
3407
3408 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3409 {
3410 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3411
3412 /*
3413 * Use CFS's precise accounting:
3414 */
3415 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3416
3417 if (total) {
3418 u64 temp;
3419
3420 temp = (u64)(rtime * utime);
3421 do_div(temp, total);
3422 utime = (cputime_t)temp;
3423 } else
3424 utime = rtime;
3425
3426 /*
3427 * Compare with previous values, to keep monotonicity:
3428 */
3429 p->prev_utime = max(p->prev_utime, utime);
3430 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3431
3432 *ut = p->prev_utime;
3433 *st = p->prev_stime;
3434 }
3435
3436 /*
3437 * Must be called with siglock held.
3438 */
3439 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3440 {
3441 struct signal_struct *sig = p->signal;
3442 struct task_cputime cputime;
3443 cputime_t rtime, utime, total;
3444
3445 thread_group_cputime(p, &cputime);
3446
3447 total = cputime_add(cputime.utime, cputime.stime);
3448 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3449
3450 if (total) {
3451 u64 temp;
3452
3453 temp = (u64)(rtime * cputime.utime);
3454 do_div(temp, total);
3455 utime = (cputime_t)temp;
3456 } else
3457 utime = rtime;
3458
3459 sig->prev_utime = max(sig->prev_utime, utime);
3460 sig->prev_stime = max(sig->prev_stime,
3461 cputime_sub(rtime, sig->prev_utime));
3462
3463 *ut = sig->prev_utime;
3464 *st = sig->prev_stime;
3465 }
3466 #endif
3467
3468 /*
3469 * This function gets called by the timer code, with HZ frequency.
3470 * We call it with interrupts disabled.
3471 *
3472 * It also gets called by the fork code, when changing the parent's
3473 * timeslices.
3474 */
3475 void scheduler_tick(void)
3476 {
3477 int cpu = smp_processor_id();
3478 struct rq *rq = cpu_rq(cpu);
3479 struct task_struct *curr = rq->curr;
3480
3481 sched_clock_tick();
3482
3483 raw_spin_lock(&rq->lock);
3484 update_rq_clock(rq);
3485 update_cpu_load(rq);
3486 curr->sched_class->task_tick(rq, curr, 0);
3487 raw_spin_unlock(&rq->lock);
3488
3489 perf_event_task_tick(curr);
3490
3491 #ifdef CONFIG_SMP
3492 rq->idle_at_tick = idle_cpu(cpu);
3493 trigger_load_balance(rq, cpu);
3494 #endif
3495 }
3496
3497 notrace unsigned long get_parent_ip(unsigned long addr)
3498 {
3499 if (in_lock_functions(addr)) {
3500 addr = CALLER_ADDR2;
3501 if (in_lock_functions(addr))
3502 addr = CALLER_ADDR3;
3503 }
3504 return addr;
3505 }
3506
3507 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3508 defined(CONFIG_PREEMPT_TRACER))
3509
3510 void __kprobes add_preempt_count(int val)
3511 {
3512 #ifdef CONFIG_DEBUG_PREEMPT
3513 /*
3514 * Underflow?
3515 */
3516 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3517 return;
3518 #endif
3519 preempt_count() += val;
3520 #ifdef CONFIG_DEBUG_PREEMPT
3521 /*
3522 * Spinlock count overflowing soon?
3523 */
3524 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3525 PREEMPT_MASK - 10);
3526 #endif
3527 if (preempt_count() == val)
3528 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3529 }
3530 EXPORT_SYMBOL(add_preempt_count);
3531
3532 void __kprobes sub_preempt_count(int val)
3533 {
3534 #ifdef CONFIG_DEBUG_PREEMPT
3535 /*
3536 * Underflow?
3537 */
3538 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3539 return;
3540 /*
3541 * Is the spinlock portion underflowing?
3542 */
3543 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3544 !(preempt_count() & PREEMPT_MASK)))
3545 return;
3546 #endif
3547
3548 if (preempt_count() == val)
3549 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3550 preempt_count() -= val;
3551 }
3552 EXPORT_SYMBOL(sub_preempt_count);
3553
3554 #endif
3555
3556 /*
3557 * Print scheduling while atomic bug:
3558 */
3559 static noinline void __schedule_bug(struct task_struct *prev)
3560 {
3561 struct pt_regs *regs = get_irq_regs();
3562
3563 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3564 prev->comm, prev->pid, preempt_count());
3565
3566 debug_show_held_locks(prev);
3567 print_modules();
3568 if (irqs_disabled())
3569 print_irqtrace_events(prev);
3570
3571 if (regs)
3572 show_regs(regs);
3573 else
3574 dump_stack();
3575 }
3576
3577 /*
3578 * Various schedule()-time debugging checks and statistics:
3579 */
3580 static inline void schedule_debug(struct task_struct *prev)
3581 {
3582 /*
3583 * Test if we are atomic. Since do_exit() needs to call into
3584 * schedule() atomically, we ignore that path for now.
3585 * Otherwise, whine if we are scheduling when we should not be.
3586 */
3587 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3588 __schedule_bug(prev);
3589
3590 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3591
3592 schedstat_inc(this_rq(), sched_count);
3593 #ifdef CONFIG_SCHEDSTATS
3594 if (unlikely(prev->lock_depth >= 0)) {
3595 schedstat_inc(this_rq(), bkl_count);
3596 schedstat_inc(prev, sched_info.bkl_count);
3597 }
3598 #endif
3599 }
3600
3601 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3602 {
3603 if (prev->state == TASK_RUNNING) {
3604 u64 runtime = prev->se.sum_exec_runtime;
3605
3606 runtime -= prev->se.prev_sum_exec_runtime;
3607 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
3608
3609 /*
3610 * In order to avoid avg_overlap growing stale when we are
3611 * indeed overlapping and hence not getting put to sleep, grow
3612 * the avg_overlap on preemption.
3613 *
3614 * We use the average preemption runtime because that
3615 * correlates to the amount of cache footprint a task can
3616 * build up.
3617 */
3618 update_avg(&prev->se.avg_overlap, runtime);
3619 }
3620 prev->sched_class->put_prev_task(rq, prev);
3621 }
3622
3623 /*
3624 * Pick up the highest-prio task:
3625 */
3626 static inline struct task_struct *
3627 pick_next_task(struct rq *rq)
3628 {
3629 const struct sched_class *class;
3630 struct task_struct *p;
3631
3632 /*
3633 * Optimization: we know that if all tasks are in
3634 * the fair class we can call that function directly:
3635 */
3636 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3637 p = fair_sched_class.pick_next_task(rq);
3638 if (likely(p))
3639 return p;
3640 }
3641
3642 class = sched_class_highest;
3643 for ( ; ; ) {
3644 p = class->pick_next_task(rq);
3645 if (p)
3646 return p;
3647 /*
3648 * Will never be NULL as the idle class always
3649 * returns a non-NULL p:
3650 */
3651 class = class->next;
3652 }
3653 }
3654
3655 /*
3656 * schedule() is the main scheduler function.
3657 */
3658 asmlinkage void __sched schedule(void)
3659 {
3660 struct task_struct *prev, *next;
3661 unsigned long *switch_count;
3662 struct rq *rq;
3663 int cpu;
3664
3665 need_resched:
3666 preempt_disable();
3667 cpu = smp_processor_id();
3668 rq = cpu_rq(cpu);
3669 rcu_sched_qs(cpu);
3670 prev = rq->curr;
3671 switch_count = &prev->nivcsw;
3672
3673 release_kernel_lock(prev);
3674 need_resched_nonpreemptible:
3675
3676 schedule_debug(prev);
3677
3678 if (sched_feat(HRTICK))
3679 hrtick_clear(rq);
3680
3681 raw_spin_lock_irq(&rq->lock);
3682 update_rq_clock(rq);
3683 clear_tsk_need_resched(prev);
3684
3685 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3686 if (unlikely(signal_pending_state(prev->state, prev)))
3687 prev->state = TASK_RUNNING;
3688 else
3689 deactivate_task(rq, prev, 1);
3690 switch_count = &prev->nvcsw;
3691 }
3692
3693 pre_schedule(rq, prev);
3694
3695 if (unlikely(!rq->nr_running))
3696 idle_balance(cpu, rq);
3697
3698 put_prev_task(rq, prev);
3699 next = pick_next_task(rq);
3700
3701 if (likely(prev != next)) {
3702 sched_info_switch(prev, next);
3703 perf_event_task_sched_out(prev, next);
3704
3705 rq->nr_switches++;
3706 rq->curr = next;
3707 ++*switch_count;
3708
3709 context_switch(rq, prev, next); /* unlocks the rq */
3710 /*
3711 * the context switch might have flipped the stack from under
3712 * us, hence refresh the local variables.
3713 */
3714 cpu = smp_processor_id();
3715 rq = cpu_rq(cpu);
3716 } else
3717 raw_spin_unlock_irq(&rq->lock);
3718
3719 post_schedule(rq);
3720
3721 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3722 prev = rq->curr;
3723 switch_count = &prev->nivcsw;
3724 goto need_resched_nonpreemptible;
3725 }
3726
3727 preempt_enable_no_resched();
3728 if (need_resched())
3729 goto need_resched;
3730 }
3731 EXPORT_SYMBOL(schedule);
3732
3733 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3734 /*
3735 * Look out! "owner" is an entirely speculative pointer
3736 * access and not reliable.
3737 */
3738 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3739 {
3740 unsigned int cpu;
3741 struct rq *rq;
3742
3743 if (!sched_feat(OWNER_SPIN))
3744 return 0;
3745
3746 #ifdef CONFIG_DEBUG_PAGEALLOC
3747 /*
3748 * Need to access the cpu field knowing that
3749 * DEBUG_PAGEALLOC could have unmapped it if
3750 * the mutex owner just released it and exited.
3751 */
3752 if (probe_kernel_address(&owner->cpu, cpu))
3753 goto out;
3754 #else
3755 cpu = owner->cpu;
3756 #endif
3757
3758 /*
3759 * Even if the access succeeded (likely case),
3760 * the cpu field may no longer be valid.
3761 */
3762 if (cpu >= nr_cpumask_bits)
3763 goto out;
3764
3765 /*
3766 * We need to validate that we can do a
3767 * get_cpu() and that we have the percpu area.
3768 */
3769 if (!cpu_online(cpu))
3770 goto out;
3771
3772 rq = cpu_rq(cpu);
3773
3774 for (;;) {
3775 /*
3776 * Owner changed, break to re-assess state.
3777 */
3778 if (lock->owner != owner)
3779 break;
3780
3781 /*
3782 * Is that owner really running on that cpu?
3783 */
3784 if (task_thread_info(rq->curr) != owner || need_resched())
3785 return 0;
3786
3787 cpu_relax();
3788 }
3789 out:
3790 return 1;
3791 }
3792 #endif
3793
3794 #ifdef CONFIG_PREEMPT
3795 /*
3796 * this is the entry point to schedule() from in-kernel preemption
3797 * off of preempt_enable. Kernel preemptions off return from interrupt
3798 * occur there and call schedule directly.
3799 */
3800 asmlinkage void __sched preempt_schedule(void)
3801 {
3802 struct thread_info *ti = current_thread_info();
3803
3804 /*
3805 * If there is a non-zero preempt_count or interrupts are disabled,
3806 * we do not want to preempt the current task. Just return..
3807 */
3808 if (likely(ti->preempt_count || irqs_disabled()))
3809 return;
3810
3811 do {
3812 add_preempt_count(PREEMPT_ACTIVE);
3813 schedule();
3814 sub_preempt_count(PREEMPT_ACTIVE);
3815
3816 /*
3817 * Check again in case we missed a preemption opportunity
3818 * between schedule and now.
3819 */
3820 barrier();
3821 } while (need_resched());
3822 }
3823 EXPORT_SYMBOL(preempt_schedule);
3824
3825 /*
3826 * this is the entry point to schedule() from kernel preemption
3827 * off of irq context.
3828 * Note, that this is called and return with irqs disabled. This will
3829 * protect us against recursive calling from irq.
3830 */
3831 asmlinkage void __sched preempt_schedule_irq(void)
3832 {
3833 struct thread_info *ti = current_thread_info();
3834
3835 /* Catch callers which need to be fixed */
3836 BUG_ON(ti->preempt_count || !irqs_disabled());
3837
3838 do {
3839 add_preempt_count(PREEMPT_ACTIVE);
3840 local_irq_enable();
3841 schedule();
3842 local_irq_disable();
3843 sub_preempt_count(PREEMPT_ACTIVE);
3844
3845 /*
3846 * Check again in case we missed a preemption opportunity
3847 * between schedule and now.
3848 */
3849 barrier();
3850 } while (need_resched());
3851 }
3852
3853 #endif /* CONFIG_PREEMPT */
3854
3855 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3856 void *key)
3857 {
3858 return try_to_wake_up(curr->private, mode, wake_flags);
3859 }
3860 EXPORT_SYMBOL(default_wake_function);
3861
3862 /*
3863 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3864 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3865 * number) then we wake all the non-exclusive tasks and one exclusive task.
3866 *
3867 * There are circumstances in which we can try to wake a task which has already
3868 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3869 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3870 */
3871 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3872 int nr_exclusive, int wake_flags, void *key)
3873 {
3874 wait_queue_t *curr, *next;
3875
3876 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3877 unsigned flags = curr->flags;
3878
3879 if (curr->func(curr, mode, wake_flags, key) &&
3880 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3881 break;
3882 }
3883 }
3884
3885 /**
3886 * __wake_up - wake up threads blocked on a waitqueue.
3887 * @q: the waitqueue
3888 * @mode: which threads
3889 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3890 * @key: is directly passed to the wakeup function
3891 *
3892 * It may be assumed that this function implies a write memory barrier before
3893 * changing the task state if and only if any tasks are woken up.
3894 */
3895 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3896 int nr_exclusive, void *key)
3897 {
3898 unsigned long flags;
3899
3900 spin_lock_irqsave(&q->lock, flags);
3901 __wake_up_common(q, mode, nr_exclusive, 0, key);
3902 spin_unlock_irqrestore(&q->lock, flags);
3903 }
3904 EXPORT_SYMBOL(__wake_up);
3905
3906 /*
3907 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3908 */
3909 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3910 {
3911 __wake_up_common(q, mode, 1, 0, NULL);
3912 }
3913
3914 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3915 {
3916 __wake_up_common(q, mode, 1, 0, key);
3917 }
3918
3919 /**
3920 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3921 * @q: the waitqueue
3922 * @mode: which threads
3923 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3924 * @key: opaque value to be passed to wakeup targets
3925 *
3926 * The sync wakeup differs that the waker knows that it will schedule
3927 * away soon, so while the target thread will be woken up, it will not
3928 * be migrated to another CPU - ie. the two threads are 'synchronized'
3929 * with each other. This can prevent needless bouncing between CPUs.
3930 *
3931 * On UP it can prevent extra preemption.
3932 *
3933 * It may be assumed that this function implies a write memory barrier before
3934 * changing the task state if and only if any tasks are woken up.
3935 */
3936 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3937 int nr_exclusive, void *key)
3938 {
3939 unsigned long flags;
3940 int wake_flags = WF_SYNC;
3941
3942 if (unlikely(!q))
3943 return;
3944
3945 if (unlikely(!nr_exclusive))
3946 wake_flags = 0;
3947
3948 spin_lock_irqsave(&q->lock, flags);
3949 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3950 spin_unlock_irqrestore(&q->lock, flags);
3951 }
3952 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3953
3954 /*
3955 * __wake_up_sync - see __wake_up_sync_key()
3956 */
3957 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3958 {
3959 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3960 }
3961 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3962
3963 /**
3964 * complete: - signals a single thread waiting on this completion
3965 * @x: holds the state of this particular completion
3966 *
3967 * This will wake up a single thread waiting on this completion. Threads will be
3968 * awakened in the same order in which they were queued.
3969 *
3970 * See also complete_all(), wait_for_completion() and related routines.
3971 *
3972 * It may be assumed that this function implies a write memory barrier before
3973 * changing the task state if and only if any tasks are woken up.
3974 */
3975 void complete(struct completion *x)
3976 {
3977 unsigned long flags;
3978
3979 spin_lock_irqsave(&x->wait.lock, flags);
3980 x->done++;
3981 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3982 spin_unlock_irqrestore(&x->wait.lock, flags);
3983 }
3984 EXPORT_SYMBOL(complete);
3985
3986 /**
3987 * complete_all: - signals all threads waiting on this completion
3988 * @x: holds the state of this particular completion
3989 *
3990 * This will wake up all threads waiting on this particular completion event.
3991 *
3992 * It may be assumed that this function implies a write memory barrier before
3993 * changing the task state if and only if any tasks are woken up.
3994 */
3995 void complete_all(struct completion *x)
3996 {
3997 unsigned long flags;
3998
3999 spin_lock_irqsave(&x->wait.lock, flags);
4000 x->done += UINT_MAX/2;
4001 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4002 spin_unlock_irqrestore(&x->wait.lock, flags);
4003 }
4004 EXPORT_SYMBOL(complete_all);
4005
4006 static inline long __sched
4007 do_wait_for_common(struct completion *x, long timeout, int state)
4008 {
4009 if (!x->done) {
4010 DECLARE_WAITQUEUE(wait, current);
4011
4012 wait.flags |= WQ_FLAG_EXCLUSIVE;
4013 __add_wait_queue_tail(&x->wait, &wait);
4014 do {
4015 if (signal_pending_state(state, current)) {
4016 timeout = -ERESTARTSYS;
4017 break;
4018 }
4019 __set_current_state(state);
4020 spin_unlock_irq(&x->wait.lock);
4021 timeout = schedule_timeout(timeout);
4022 spin_lock_irq(&x->wait.lock);
4023 } while (!x->done && timeout);
4024 __remove_wait_queue(&x->wait, &wait);
4025 if (!x->done)
4026 return timeout;
4027 }
4028 x->done--;
4029 return timeout ?: 1;
4030 }
4031
4032 static long __sched
4033 wait_for_common(struct completion *x, long timeout, int state)
4034 {
4035 might_sleep();
4036
4037 spin_lock_irq(&x->wait.lock);
4038 timeout = do_wait_for_common(x, timeout, state);
4039 spin_unlock_irq(&x->wait.lock);
4040 return timeout;
4041 }
4042
4043 /**
4044 * wait_for_completion: - waits for completion of a task
4045 * @x: holds the state of this particular completion
4046 *
4047 * This waits to be signaled for completion of a specific task. It is NOT
4048 * interruptible and there is no timeout.
4049 *
4050 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4051 * and interrupt capability. Also see complete().
4052 */
4053 void __sched wait_for_completion(struct completion *x)
4054 {
4055 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4056 }
4057 EXPORT_SYMBOL(wait_for_completion);
4058
4059 /**
4060 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4061 * @x: holds the state of this particular completion
4062 * @timeout: timeout value in jiffies
4063 *
4064 * This waits for either a completion of a specific task to be signaled or for a
4065 * specified timeout to expire. The timeout is in jiffies. It is not
4066 * interruptible.
4067 */
4068 unsigned long __sched
4069 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4070 {
4071 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4072 }
4073 EXPORT_SYMBOL(wait_for_completion_timeout);
4074
4075 /**
4076 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4077 * @x: holds the state of this particular completion
4078 *
4079 * This waits for completion of a specific task to be signaled. It is
4080 * interruptible.
4081 */
4082 int __sched wait_for_completion_interruptible(struct completion *x)
4083 {
4084 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4085 if (t == -ERESTARTSYS)
4086 return t;
4087 return 0;
4088 }
4089 EXPORT_SYMBOL(wait_for_completion_interruptible);
4090
4091 /**
4092 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4093 * @x: holds the state of this particular completion
4094 * @timeout: timeout value in jiffies
4095 *
4096 * This waits for either a completion of a specific task to be signaled or for a
4097 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4098 */
4099 unsigned long __sched
4100 wait_for_completion_interruptible_timeout(struct completion *x,
4101 unsigned long timeout)
4102 {
4103 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4104 }
4105 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4106
4107 /**
4108 * wait_for_completion_killable: - waits for completion of a task (killable)
4109 * @x: holds the state of this particular completion
4110 *
4111 * This waits to be signaled for completion of a specific task. It can be
4112 * interrupted by a kill signal.
4113 */
4114 int __sched wait_for_completion_killable(struct completion *x)
4115 {
4116 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4117 if (t == -ERESTARTSYS)
4118 return t;
4119 return 0;
4120 }
4121 EXPORT_SYMBOL(wait_for_completion_killable);
4122
4123 /**
4124 * try_wait_for_completion - try to decrement a completion without blocking
4125 * @x: completion structure
4126 *
4127 * Returns: 0 if a decrement cannot be done without blocking
4128 * 1 if a decrement succeeded.
4129 *
4130 * If a completion is being used as a counting completion,
4131 * attempt to decrement the counter without blocking. This
4132 * enables us to avoid waiting if the resource the completion
4133 * is protecting is not available.
4134 */
4135 bool try_wait_for_completion(struct completion *x)
4136 {
4137 unsigned long flags;
4138 int ret = 1;
4139
4140 spin_lock_irqsave(&x->wait.lock, flags);
4141 if (!x->done)
4142 ret = 0;
4143 else
4144 x->done--;
4145 spin_unlock_irqrestore(&x->wait.lock, flags);
4146 return ret;
4147 }
4148 EXPORT_SYMBOL(try_wait_for_completion);
4149
4150 /**
4151 * completion_done - Test to see if a completion has any waiters
4152 * @x: completion structure
4153 *
4154 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4155 * 1 if there are no waiters.
4156 *
4157 */
4158 bool completion_done(struct completion *x)
4159 {
4160 unsigned long flags;
4161 int ret = 1;
4162
4163 spin_lock_irqsave(&x->wait.lock, flags);
4164 if (!x->done)
4165 ret = 0;
4166 spin_unlock_irqrestore(&x->wait.lock, flags);
4167 return ret;
4168 }
4169 EXPORT_SYMBOL(completion_done);
4170
4171 static long __sched
4172 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4173 {
4174 unsigned long flags;
4175 wait_queue_t wait;
4176
4177 init_waitqueue_entry(&wait, current);
4178
4179 __set_current_state(state);
4180
4181 spin_lock_irqsave(&q->lock, flags);
4182 __add_wait_queue(q, &wait);
4183 spin_unlock(&q->lock);
4184 timeout = schedule_timeout(timeout);
4185 spin_lock_irq(&q->lock);
4186 __remove_wait_queue(q, &wait);
4187 spin_unlock_irqrestore(&q->lock, flags);
4188
4189 return timeout;
4190 }
4191
4192 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4193 {
4194 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4195 }
4196 EXPORT_SYMBOL(interruptible_sleep_on);
4197
4198 long __sched
4199 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4200 {
4201 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4202 }
4203 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4204
4205 void __sched sleep_on(wait_queue_head_t *q)
4206 {
4207 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4208 }
4209 EXPORT_SYMBOL(sleep_on);
4210
4211 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4212 {
4213 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4214 }
4215 EXPORT_SYMBOL(sleep_on_timeout);
4216
4217 #ifdef CONFIG_RT_MUTEXES
4218
4219 /*
4220 * rt_mutex_setprio - set the current priority of a task
4221 * @p: task
4222 * @prio: prio value (kernel-internal form)
4223 *
4224 * This function changes the 'effective' priority of a task. It does
4225 * not touch ->normal_prio like __setscheduler().
4226 *
4227 * Used by the rt_mutex code to implement priority inheritance logic.
4228 */
4229 void rt_mutex_setprio(struct task_struct *p, int prio)
4230 {
4231 unsigned long flags;
4232 int oldprio, on_rq, running;
4233 struct rq *rq;
4234 const struct sched_class *prev_class;
4235
4236 BUG_ON(prio < 0 || prio > MAX_PRIO);
4237
4238 rq = task_rq_lock(p, &flags);
4239 update_rq_clock(rq);
4240
4241 oldprio = p->prio;
4242 prev_class = p->sched_class;
4243 on_rq = p->se.on_rq;
4244 running = task_current(rq, p);
4245 if (on_rq)
4246 dequeue_task(rq, p, 0);
4247 if (running)
4248 p->sched_class->put_prev_task(rq, p);
4249
4250 if (rt_prio(prio))
4251 p->sched_class = &rt_sched_class;
4252 else
4253 p->sched_class = &fair_sched_class;
4254
4255 p->prio = prio;
4256
4257 if (running)
4258 p->sched_class->set_curr_task(rq);
4259 if (on_rq) {
4260 enqueue_task(rq, p, 0, oldprio < prio);
4261
4262 check_class_changed(rq, p, prev_class, oldprio, running);
4263 }
4264 task_rq_unlock(rq, &flags);
4265 }
4266
4267 #endif
4268
4269 void set_user_nice(struct task_struct *p, long nice)
4270 {
4271 int old_prio, delta, on_rq;
4272 unsigned long flags;
4273 struct rq *rq;
4274
4275 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4276 return;
4277 /*
4278 * We have to be careful, if called from sys_setpriority(),
4279 * the task might be in the middle of scheduling on another CPU.
4280 */
4281 rq = task_rq_lock(p, &flags);
4282 update_rq_clock(rq);
4283 /*
4284 * The RT priorities are set via sched_setscheduler(), but we still
4285 * allow the 'normal' nice value to be set - but as expected
4286 * it wont have any effect on scheduling until the task is
4287 * SCHED_FIFO/SCHED_RR:
4288 */
4289 if (task_has_rt_policy(p)) {
4290 p->static_prio = NICE_TO_PRIO(nice);
4291 goto out_unlock;
4292 }
4293 on_rq = p->se.on_rq;
4294 if (on_rq)
4295 dequeue_task(rq, p, 0);
4296
4297 p->static_prio = NICE_TO_PRIO(nice);
4298 set_load_weight(p);
4299 old_prio = p->prio;
4300 p->prio = effective_prio(p);
4301 delta = p->prio - old_prio;
4302
4303 if (on_rq) {
4304 enqueue_task(rq, p, 0, false);
4305 /*
4306 * If the task increased its priority or is running and
4307 * lowered its priority, then reschedule its CPU:
4308 */
4309 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4310 resched_task(rq->curr);
4311 }
4312 out_unlock:
4313 task_rq_unlock(rq, &flags);
4314 }
4315 EXPORT_SYMBOL(set_user_nice);
4316
4317 /*
4318 * can_nice - check if a task can reduce its nice value
4319 * @p: task
4320 * @nice: nice value
4321 */
4322 int can_nice(const struct task_struct *p, const int nice)
4323 {
4324 /* convert nice value [19,-20] to rlimit style value [1,40] */
4325 int nice_rlim = 20 - nice;
4326
4327 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4328 capable(CAP_SYS_NICE));
4329 }
4330
4331 #ifdef __ARCH_WANT_SYS_NICE
4332
4333 /*
4334 * sys_nice - change the priority of the current process.
4335 * @increment: priority increment
4336 *
4337 * sys_setpriority is a more generic, but much slower function that
4338 * does similar things.
4339 */
4340 SYSCALL_DEFINE1(nice, int, increment)
4341 {
4342 long nice, retval;
4343
4344 /*
4345 * Setpriority might change our priority at the same moment.
4346 * We don't have to worry. Conceptually one call occurs first
4347 * and we have a single winner.
4348 */
4349 if (increment < -40)
4350 increment = -40;
4351 if (increment > 40)
4352 increment = 40;
4353
4354 nice = TASK_NICE(current) + increment;
4355 if (nice < -20)
4356 nice = -20;
4357 if (nice > 19)
4358 nice = 19;
4359
4360 if (increment < 0 && !can_nice(current, nice))
4361 return -EPERM;
4362
4363 retval = security_task_setnice(current, nice);
4364 if (retval)
4365 return retval;
4366
4367 set_user_nice(current, nice);
4368 return 0;
4369 }
4370
4371 #endif
4372
4373 /**
4374 * task_prio - return the priority value of a given task.
4375 * @p: the task in question.
4376 *
4377 * This is the priority value as seen by users in /proc.
4378 * RT tasks are offset by -200. Normal tasks are centered
4379 * around 0, value goes from -16 to +15.
4380 */
4381 int task_prio(const struct task_struct *p)
4382 {
4383 return p->prio - MAX_RT_PRIO;
4384 }
4385
4386 /**
4387 * task_nice - return the nice value of a given task.
4388 * @p: the task in question.
4389 */
4390 int task_nice(const struct task_struct *p)
4391 {
4392 return TASK_NICE(p);
4393 }
4394 EXPORT_SYMBOL(task_nice);
4395
4396 /**
4397 * idle_cpu - is a given cpu idle currently?
4398 * @cpu: the processor in question.
4399 */
4400 int idle_cpu(int cpu)
4401 {
4402 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4403 }
4404
4405 /**
4406 * idle_task - return the idle task for a given cpu.
4407 * @cpu: the processor in question.
4408 */
4409 struct task_struct *idle_task(int cpu)
4410 {
4411 return cpu_rq(cpu)->idle;
4412 }
4413
4414 /**
4415 * find_process_by_pid - find a process with a matching PID value.
4416 * @pid: the pid in question.
4417 */
4418 static struct task_struct *find_process_by_pid(pid_t pid)
4419 {
4420 return pid ? find_task_by_vpid(pid) : current;
4421 }
4422
4423 /* Actually do priority change: must hold rq lock. */
4424 static void
4425 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4426 {
4427 BUG_ON(p->se.on_rq);
4428
4429 p->policy = policy;
4430 p->rt_priority = prio;
4431 p->normal_prio = normal_prio(p);
4432 /* we are holding p->pi_lock already */
4433 p->prio = rt_mutex_getprio(p);
4434 if (rt_prio(p->prio))
4435 p->sched_class = &rt_sched_class;
4436 else
4437 p->sched_class = &fair_sched_class;
4438 set_load_weight(p);
4439 }
4440
4441 /*
4442 * check the target process has a UID that matches the current process's
4443 */
4444 static bool check_same_owner(struct task_struct *p)
4445 {
4446 const struct cred *cred = current_cred(), *pcred;
4447 bool match;
4448
4449 rcu_read_lock();
4450 pcred = __task_cred(p);
4451 match = (cred->euid == pcred->euid ||
4452 cred->euid == pcred->uid);
4453 rcu_read_unlock();
4454 return match;
4455 }
4456
4457 static int __sched_setscheduler(struct task_struct *p, int policy,
4458 struct sched_param *param, bool user)
4459 {
4460 int retval, oldprio, oldpolicy = -1, on_rq, running;
4461 unsigned long flags;
4462 const struct sched_class *prev_class;
4463 struct rq *rq;
4464 int reset_on_fork;
4465
4466 /* may grab non-irq protected spin_locks */
4467 BUG_ON(in_interrupt());
4468 recheck:
4469 /* double check policy once rq lock held */
4470 if (policy < 0) {
4471 reset_on_fork = p->sched_reset_on_fork;
4472 policy = oldpolicy = p->policy;
4473 } else {
4474 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4475 policy &= ~SCHED_RESET_ON_FORK;
4476
4477 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4478 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4479 policy != SCHED_IDLE)
4480 return -EINVAL;
4481 }
4482
4483 /*
4484 * Valid priorities for SCHED_FIFO and SCHED_RR are
4485 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4486 * SCHED_BATCH and SCHED_IDLE is 0.
4487 */
4488 if (param->sched_priority < 0 ||
4489 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4490 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4491 return -EINVAL;
4492 if (rt_policy(policy) != (param->sched_priority != 0))
4493 return -EINVAL;
4494
4495 /*
4496 * Allow unprivileged RT tasks to decrease priority:
4497 */
4498 if (user && !capable(CAP_SYS_NICE)) {
4499 if (rt_policy(policy)) {
4500 unsigned long rlim_rtprio;
4501
4502 if (!lock_task_sighand(p, &flags))
4503 return -ESRCH;
4504 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4505 unlock_task_sighand(p, &flags);
4506
4507 /* can't set/change the rt policy */
4508 if (policy != p->policy && !rlim_rtprio)
4509 return -EPERM;
4510
4511 /* can't increase priority */
4512 if (param->sched_priority > p->rt_priority &&
4513 param->sched_priority > rlim_rtprio)
4514 return -EPERM;
4515 }
4516 /*
4517 * Like positive nice levels, dont allow tasks to
4518 * move out of SCHED_IDLE either:
4519 */
4520 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4521 return -EPERM;
4522
4523 /* can't change other user's priorities */
4524 if (!check_same_owner(p))
4525 return -EPERM;
4526
4527 /* Normal users shall not reset the sched_reset_on_fork flag */
4528 if (p->sched_reset_on_fork && !reset_on_fork)
4529 return -EPERM;
4530 }
4531
4532 if (user) {
4533 #ifdef CONFIG_RT_GROUP_SCHED
4534 /*
4535 * Do not allow realtime tasks into groups that have no runtime
4536 * assigned.
4537 */
4538 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4539 task_group(p)->rt_bandwidth.rt_runtime == 0)
4540 return -EPERM;
4541 #endif
4542
4543 retval = security_task_setscheduler(p, policy, param);
4544 if (retval)
4545 return retval;
4546 }
4547
4548 /*
4549 * make sure no PI-waiters arrive (or leave) while we are
4550 * changing the priority of the task:
4551 */
4552 raw_spin_lock_irqsave(&p->pi_lock, flags);
4553 /*
4554 * To be able to change p->policy safely, the apropriate
4555 * runqueue lock must be held.
4556 */
4557 rq = __task_rq_lock(p);
4558 /* recheck policy now with rq lock held */
4559 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4560 policy = oldpolicy = -1;
4561 __task_rq_unlock(rq);
4562 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4563 goto recheck;
4564 }
4565 update_rq_clock(rq);
4566 on_rq = p->se.on_rq;
4567 running = task_current(rq, p);
4568 if (on_rq)
4569 deactivate_task(rq, p, 0);
4570 if (running)
4571 p->sched_class->put_prev_task(rq, p);
4572
4573 p->sched_reset_on_fork = reset_on_fork;
4574
4575 oldprio = p->prio;
4576 prev_class = p->sched_class;
4577 __setscheduler(rq, p, policy, param->sched_priority);
4578
4579 if (running)
4580 p->sched_class->set_curr_task(rq);
4581 if (on_rq) {
4582 activate_task(rq, p, 0);
4583
4584 check_class_changed(rq, p, prev_class, oldprio, running);
4585 }
4586 __task_rq_unlock(rq);
4587 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4588
4589 rt_mutex_adjust_pi(p);
4590
4591 return 0;
4592 }
4593
4594 /**
4595 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4596 * @p: the task in question.
4597 * @policy: new policy.
4598 * @param: structure containing the new RT priority.
4599 *
4600 * NOTE that the task may be already dead.
4601 */
4602 int sched_setscheduler(struct task_struct *p, int policy,
4603 struct sched_param *param)
4604 {
4605 return __sched_setscheduler(p, policy, param, true);
4606 }
4607 EXPORT_SYMBOL_GPL(sched_setscheduler);
4608
4609 /**
4610 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4611 * @p: the task in question.
4612 * @policy: new policy.
4613 * @param: structure containing the new RT priority.
4614 *
4615 * Just like sched_setscheduler, only don't bother checking if the
4616 * current context has permission. For example, this is needed in
4617 * stop_machine(): we create temporary high priority worker threads,
4618 * but our caller might not have that capability.
4619 */
4620 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4621 struct sched_param *param)
4622 {
4623 return __sched_setscheduler(p, policy, param, false);
4624 }
4625
4626 static int
4627 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4628 {
4629 struct sched_param lparam;
4630 struct task_struct *p;
4631 int retval;
4632
4633 if (!param || pid < 0)
4634 return -EINVAL;
4635 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4636 return -EFAULT;
4637
4638 rcu_read_lock();
4639 retval = -ESRCH;
4640 p = find_process_by_pid(pid);
4641 if (p != NULL)
4642 retval = sched_setscheduler(p, policy, &lparam);
4643 rcu_read_unlock();
4644
4645 return retval;
4646 }
4647
4648 /**
4649 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4650 * @pid: the pid in question.
4651 * @policy: new policy.
4652 * @param: structure containing the new RT priority.
4653 */
4654 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4655 struct sched_param __user *, param)
4656 {
4657 /* negative values for policy are not valid */
4658 if (policy < 0)
4659 return -EINVAL;
4660
4661 return do_sched_setscheduler(pid, policy, param);
4662 }
4663
4664 /**
4665 * sys_sched_setparam - set/change the RT priority of a thread
4666 * @pid: the pid in question.
4667 * @param: structure containing the new RT priority.
4668 */
4669 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4670 {
4671 return do_sched_setscheduler(pid, -1, param);
4672 }
4673
4674 /**
4675 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4676 * @pid: the pid in question.
4677 */
4678 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4679 {
4680 struct task_struct *p;
4681 int retval;
4682
4683 if (pid < 0)
4684 return -EINVAL;
4685
4686 retval = -ESRCH;
4687 rcu_read_lock();
4688 p = find_process_by_pid(pid);
4689 if (p) {
4690 retval = security_task_getscheduler(p);
4691 if (!retval)
4692 retval = p->policy
4693 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4694 }
4695 rcu_read_unlock();
4696 return retval;
4697 }
4698
4699 /**
4700 * sys_sched_getparam - get the RT priority of a thread
4701 * @pid: the pid in question.
4702 * @param: structure containing the RT priority.
4703 */
4704 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4705 {
4706 struct sched_param lp;
4707 struct task_struct *p;
4708 int retval;
4709
4710 if (!param || pid < 0)
4711 return -EINVAL;
4712
4713 rcu_read_lock();
4714 p = find_process_by_pid(pid);
4715 retval = -ESRCH;
4716 if (!p)
4717 goto out_unlock;
4718
4719 retval = security_task_getscheduler(p);
4720 if (retval)
4721 goto out_unlock;
4722
4723 lp.sched_priority = p->rt_priority;
4724 rcu_read_unlock();
4725
4726 /*
4727 * This one might sleep, we cannot do it with a spinlock held ...
4728 */
4729 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4730
4731 return retval;
4732
4733 out_unlock:
4734 rcu_read_unlock();
4735 return retval;
4736 }
4737
4738 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4739 {
4740 cpumask_var_t cpus_allowed, new_mask;
4741 struct task_struct *p;
4742 int retval;
4743
4744 get_online_cpus();
4745 rcu_read_lock();
4746
4747 p = find_process_by_pid(pid);
4748 if (!p) {
4749 rcu_read_unlock();
4750 put_online_cpus();
4751 return -ESRCH;
4752 }
4753
4754 /* Prevent p going away */
4755 get_task_struct(p);
4756 rcu_read_unlock();
4757
4758 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4759 retval = -ENOMEM;
4760 goto out_put_task;
4761 }
4762 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4763 retval = -ENOMEM;
4764 goto out_free_cpus_allowed;
4765 }
4766 retval = -EPERM;
4767 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4768 goto out_unlock;
4769
4770 retval = security_task_setscheduler(p, 0, NULL);
4771 if (retval)
4772 goto out_unlock;
4773
4774 cpuset_cpus_allowed(p, cpus_allowed);
4775 cpumask_and(new_mask, in_mask, cpus_allowed);
4776 again:
4777 retval = set_cpus_allowed_ptr(p, new_mask);
4778
4779 if (!retval) {
4780 cpuset_cpus_allowed(p, cpus_allowed);
4781 if (!cpumask_subset(new_mask, cpus_allowed)) {
4782 /*
4783 * We must have raced with a concurrent cpuset
4784 * update. Just reset the cpus_allowed to the
4785 * cpuset's cpus_allowed
4786 */
4787 cpumask_copy(new_mask, cpus_allowed);
4788 goto again;
4789 }
4790 }
4791 out_unlock:
4792 free_cpumask_var(new_mask);
4793 out_free_cpus_allowed:
4794 free_cpumask_var(cpus_allowed);
4795 out_put_task:
4796 put_task_struct(p);
4797 put_online_cpus();
4798 return retval;
4799 }
4800
4801 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4802 struct cpumask *new_mask)
4803 {
4804 if (len < cpumask_size())
4805 cpumask_clear(new_mask);
4806 else if (len > cpumask_size())
4807 len = cpumask_size();
4808
4809 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4810 }
4811
4812 /**
4813 * sys_sched_setaffinity - set the cpu affinity of a process
4814 * @pid: pid of the process
4815 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4816 * @user_mask_ptr: user-space pointer to the new cpu mask
4817 */
4818 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4819 unsigned long __user *, user_mask_ptr)
4820 {
4821 cpumask_var_t new_mask;
4822 int retval;
4823
4824 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4825 return -ENOMEM;
4826
4827 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4828 if (retval == 0)
4829 retval = sched_setaffinity(pid, new_mask);
4830 free_cpumask_var(new_mask);
4831 return retval;
4832 }
4833
4834 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4835 {
4836 struct task_struct *p;
4837 unsigned long flags;
4838 struct rq *rq;
4839 int retval;
4840
4841 get_online_cpus();
4842 rcu_read_lock();
4843
4844 retval = -ESRCH;
4845 p = find_process_by_pid(pid);
4846 if (!p)
4847 goto out_unlock;
4848
4849 retval = security_task_getscheduler(p);
4850 if (retval)
4851 goto out_unlock;
4852
4853 rq = task_rq_lock(p, &flags);
4854 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4855 task_rq_unlock(rq, &flags);
4856
4857 out_unlock:
4858 rcu_read_unlock();
4859 put_online_cpus();
4860
4861 return retval;
4862 }
4863
4864 /**
4865 * sys_sched_getaffinity - get the cpu affinity of a process
4866 * @pid: pid of the process
4867 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4868 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4869 */
4870 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4871 unsigned long __user *, user_mask_ptr)
4872 {
4873 int ret;
4874 cpumask_var_t mask;
4875
4876 if (len < cpumask_size())
4877 return -EINVAL;
4878
4879 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4880 return -ENOMEM;
4881
4882 ret = sched_getaffinity(pid, mask);
4883 if (ret == 0) {
4884 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
4885 ret = -EFAULT;
4886 else
4887 ret = cpumask_size();
4888 }
4889 free_cpumask_var(mask);
4890
4891 return ret;
4892 }
4893
4894 /**
4895 * sys_sched_yield - yield the current processor to other threads.
4896 *
4897 * This function yields the current CPU to other tasks. If there are no
4898 * other threads running on this CPU then this function will return.
4899 */
4900 SYSCALL_DEFINE0(sched_yield)
4901 {
4902 struct rq *rq = this_rq_lock();
4903
4904 schedstat_inc(rq, yld_count);
4905 current->sched_class->yield_task(rq);
4906
4907 /*
4908 * Since we are going to call schedule() anyway, there's
4909 * no need to preempt or enable interrupts:
4910 */
4911 __release(rq->lock);
4912 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4913 do_raw_spin_unlock(&rq->lock);
4914 preempt_enable_no_resched();
4915
4916 schedule();
4917
4918 return 0;
4919 }
4920
4921 static inline int should_resched(void)
4922 {
4923 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4924 }
4925
4926 static void __cond_resched(void)
4927 {
4928 add_preempt_count(PREEMPT_ACTIVE);
4929 schedule();
4930 sub_preempt_count(PREEMPT_ACTIVE);
4931 }
4932
4933 int __sched _cond_resched(void)
4934 {
4935 if (should_resched()) {
4936 __cond_resched();
4937 return 1;
4938 }
4939 return 0;
4940 }
4941 EXPORT_SYMBOL(_cond_resched);
4942
4943 /*
4944 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4945 * call schedule, and on return reacquire the lock.
4946 *
4947 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4948 * operations here to prevent schedule() from being called twice (once via
4949 * spin_unlock(), once by hand).
4950 */
4951 int __cond_resched_lock(spinlock_t *lock)
4952 {
4953 int resched = should_resched();
4954 int ret = 0;
4955
4956 lockdep_assert_held(lock);
4957
4958 if (spin_needbreak(lock) || resched) {
4959 spin_unlock(lock);
4960 if (resched)
4961 __cond_resched();
4962 else
4963 cpu_relax();
4964 ret = 1;
4965 spin_lock(lock);
4966 }
4967 return ret;
4968 }
4969 EXPORT_SYMBOL(__cond_resched_lock);
4970
4971 int __sched __cond_resched_softirq(void)
4972 {
4973 BUG_ON(!in_softirq());
4974
4975 if (should_resched()) {
4976 local_bh_enable();
4977 __cond_resched();
4978 local_bh_disable();
4979 return 1;
4980 }
4981 return 0;
4982 }
4983 EXPORT_SYMBOL(__cond_resched_softirq);
4984
4985 /**
4986 * yield - yield the current processor to other threads.
4987 *
4988 * This is a shortcut for kernel-space yielding - it marks the
4989 * thread runnable and calls sys_sched_yield().
4990 */
4991 void __sched yield(void)
4992 {
4993 set_current_state(TASK_RUNNING);
4994 sys_sched_yield();
4995 }
4996 EXPORT_SYMBOL(yield);
4997
4998 /*
4999 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5000 * that process accounting knows that this is a task in IO wait state.
5001 */
5002 void __sched io_schedule(void)
5003 {
5004 struct rq *rq = raw_rq();
5005
5006 delayacct_blkio_start();
5007 atomic_inc(&rq->nr_iowait);
5008 current->in_iowait = 1;
5009 schedule();
5010 current->in_iowait = 0;
5011 atomic_dec(&rq->nr_iowait);
5012 delayacct_blkio_end();
5013 }
5014 EXPORT_SYMBOL(io_schedule);
5015
5016 long __sched io_schedule_timeout(long timeout)
5017 {
5018 struct rq *rq = raw_rq();
5019 long ret;
5020
5021 delayacct_blkio_start();
5022 atomic_inc(&rq->nr_iowait);
5023 current->in_iowait = 1;
5024 ret = schedule_timeout(timeout);
5025 current->in_iowait = 0;
5026 atomic_dec(&rq->nr_iowait);
5027 delayacct_blkio_end();
5028 return ret;
5029 }
5030
5031 /**
5032 * sys_sched_get_priority_max - return maximum RT priority.
5033 * @policy: scheduling class.
5034 *
5035 * this syscall returns the maximum rt_priority that can be used
5036 * by a given scheduling class.
5037 */
5038 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5039 {
5040 int ret = -EINVAL;
5041
5042 switch (policy) {
5043 case SCHED_FIFO:
5044 case SCHED_RR:
5045 ret = MAX_USER_RT_PRIO-1;
5046 break;
5047 case SCHED_NORMAL:
5048 case SCHED_BATCH:
5049 case SCHED_IDLE:
5050 ret = 0;
5051 break;
5052 }
5053 return ret;
5054 }
5055
5056 /**
5057 * sys_sched_get_priority_min - return minimum RT priority.
5058 * @policy: scheduling class.
5059 *
5060 * this syscall returns the minimum rt_priority that can be used
5061 * by a given scheduling class.
5062 */
5063 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5064 {
5065 int ret = -EINVAL;
5066
5067 switch (policy) {
5068 case SCHED_FIFO:
5069 case SCHED_RR:
5070 ret = 1;
5071 break;
5072 case SCHED_NORMAL:
5073 case SCHED_BATCH:
5074 case SCHED_IDLE:
5075 ret = 0;
5076 }
5077 return ret;
5078 }
5079
5080 /**
5081 * sys_sched_rr_get_interval - return the default timeslice of a process.
5082 * @pid: pid of the process.
5083 * @interval: userspace pointer to the timeslice value.
5084 *
5085 * this syscall writes the default timeslice value of a given process
5086 * into the user-space timespec buffer. A value of '0' means infinity.
5087 */
5088 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5089 struct timespec __user *, interval)
5090 {
5091 struct task_struct *p;
5092 unsigned int time_slice;
5093 unsigned long flags;
5094 struct rq *rq;
5095 int retval;
5096 struct timespec t;
5097
5098 if (pid < 0)
5099 return -EINVAL;
5100
5101 retval = -ESRCH;
5102 rcu_read_lock();
5103 p = find_process_by_pid(pid);
5104 if (!p)
5105 goto out_unlock;
5106
5107 retval = security_task_getscheduler(p);
5108 if (retval)
5109 goto out_unlock;
5110
5111 rq = task_rq_lock(p, &flags);
5112 time_slice = p->sched_class->get_rr_interval(rq, p);
5113 task_rq_unlock(rq, &flags);
5114
5115 rcu_read_unlock();
5116 jiffies_to_timespec(time_slice, &t);
5117 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5118 return retval;
5119
5120 out_unlock:
5121 rcu_read_unlock();
5122 return retval;
5123 }
5124
5125 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5126
5127 void sched_show_task(struct task_struct *p)
5128 {
5129 unsigned long free = 0;
5130 unsigned state;
5131
5132 state = p->state ? __ffs(p->state) + 1 : 0;
5133 printk(KERN_INFO "%-13.13s %c", p->comm,
5134 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5135 #if BITS_PER_LONG == 32
5136 if (state == TASK_RUNNING)
5137 printk(KERN_CONT " running ");
5138 else
5139 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5140 #else
5141 if (state == TASK_RUNNING)
5142 printk(KERN_CONT " running task ");
5143 else
5144 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5145 #endif
5146 #ifdef CONFIG_DEBUG_STACK_USAGE
5147 free = stack_not_used(p);
5148 #endif
5149 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5150 task_pid_nr(p), task_pid_nr(p->real_parent),
5151 (unsigned long)task_thread_info(p)->flags);
5152
5153 show_stack(p, NULL);
5154 }
5155
5156 void show_state_filter(unsigned long state_filter)
5157 {
5158 struct task_struct *g, *p;
5159
5160 #if BITS_PER_LONG == 32
5161 printk(KERN_INFO
5162 " task PC stack pid father\n");
5163 #else
5164 printk(KERN_INFO
5165 " task PC stack pid father\n");
5166 #endif
5167 read_lock(&tasklist_lock);
5168 do_each_thread(g, p) {
5169 /*
5170 * reset the NMI-timeout, listing all files on a slow
5171 * console might take alot of time:
5172 */
5173 touch_nmi_watchdog();
5174 if (!state_filter || (p->state & state_filter))
5175 sched_show_task(p);
5176 } while_each_thread(g, p);
5177
5178 touch_all_softlockup_watchdogs();
5179
5180 #ifdef CONFIG_SCHED_DEBUG
5181 sysrq_sched_debug_show();
5182 #endif
5183 read_unlock(&tasklist_lock);
5184 /*
5185 * Only show locks if all tasks are dumped:
5186 */
5187 if (!state_filter)
5188 debug_show_all_locks();
5189 }
5190
5191 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5192 {
5193 idle->sched_class = &idle_sched_class;
5194 }
5195
5196 /**
5197 * init_idle - set up an idle thread for a given CPU
5198 * @idle: task in question
5199 * @cpu: cpu the idle task belongs to
5200 *
5201 * NOTE: this function does not set the idle thread's NEED_RESCHED
5202 * flag, to make booting more robust.
5203 */
5204 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5205 {
5206 struct rq *rq = cpu_rq(cpu);
5207 unsigned long flags;
5208
5209 raw_spin_lock_irqsave(&rq->lock, flags);
5210
5211 __sched_fork(idle);
5212 idle->state = TASK_RUNNING;
5213 idle->se.exec_start = sched_clock();
5214
5215 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5216 __set_task_cpu(idle, cpu);
5217
5218 rq->curr = rq->idle = idle;
5219 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5220 idle->oncpu = 1;
5221 #endif
5222 raw_spin_unlock_irqrestore(&rq->lock, flags);
5223
5224 /* Set the preempt count _outside_ the spinlocks! */
5225 #if defined(CONFIG_PREEMPT)
5226 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5227 #else
5228 task_thread_info(idle)->preempt_count = 0;
5229 #endif
5230 /*
5231 * The idle tasks have their own, simple scheduling class:
5232 */
5233 idle->sched_class = &idle_sched_class;
5234 ftrace_graph_init_task(idle);
5235 }
5236
5237 /*
5238 * In a system that switches off the HZ timer nohz_cpu_mask
5239 * indicates which cpus entered this state. This is used
5240 * in the rcu update to wait only for active cpus. For system
5241 * which do not switch off the HZ timer nohz_cpu_mask should
5242 * always be CPU_BITS_NONE.
5243 */
5244 cpumask_var_t nohz_cpu_mask;
5245
5246 /*
5247 * Increase the granularity value when there are more CPUs,
5248 * because with more CPUs the 'effective latency' as visible
5249 * to users decreases. But the relationship is not linear,
5250 * so pick a second-best guess by going with the log2 of the
5251 * number of CPUs.
5252 *
5253 * This idea comes from the SD scheduler of Con Kolivas:
5254 */
5255 static int get_update_sysctl_factor(void)
5256 {
5257 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5258 unsigned int factor;
5259
5260 switch (sysctl_sched_tunable_scaling) {
5261 case SCHED_TUNABLESCALING_NONE:
5262 factor = 1;
5263 break;
5264 case SCHED_TUNABLESCALING_LINEAR:
5265 factor = cpus;
5266 break;
5267 case SCHED_TUNABLESCALING_LOG:
5268 default:
5269 factor = 1 + ilog2(cpus);
5270 break;
5271 }
5272
5273 return factor;
5274 }
5275
5276 static void update_sysctl(void)
5277 {
5278 unsigned int factor = get_update_sysctl_factor();
5279
5280 #define SET_SYSCTL(name) \
5281 (sysctl_##name = (factor) * normalized_sysctl_##name)
5282 SET_SYSCTL(sched_min_granularity);
5283 SET_SYSCTL(sched_latency);
5284 SET_SYSCTL(sched_wakeup_granularity);
5285 SET_SYSCTL(sched_shares_ratelimit);
5286 #undef SET_SYSCTL
5287 }
5288
5289 static inline void sched_init_granularity(void)
5290 {
5291 update_sysctl();
5292 }
5293
5294 #ifdef CONFIG_SMP
5295 /*
5296 * This is how migration works:
5297 *
5298 * 1) we queue a struct migration_req structure in the source CPU's
5299 * runqueue and wake up that CPU's migration thread.
5300 * 2) we down() the locked semaphore => thread blocks.
5301 * 3) migration thread wakes up (implicitly it forces the migrated
5302 * thread off the CPU)
5303 * 4) it gets the migration request and checks whether the migrated
5304 * task is still in the wrong runqueue.
5305 * 5) if it's in the wrong runqueue then the migration thread removes
5306 * it and puts it into the right queue.
5307 * 6) migration thread up()s the semaphore.
5308 * 7) we wake up and the migration is done.
5309 */
5310
5311 /*
5312 * Change a given task's CPU affinity. Migrate the thread to a
5313 * proper CPU and schedule it away if the CPU it's executing on
5314 * is removed from the allowed bitmask.
5315 *
5316 * NOTE: the caller must have a valid reference to the task, the
5317 * task must not exit() & deallocate itself prematurely. The
5318 * call is not atomic; no spinlocks may be held.
5319 */
5320 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5321 {
5322 struct migration_req req;
5323 unsigned long flags;
5324 struct rq *rq;
5325 int ret = 0;
5326
5327 rq = task_rq_lock(p, &flags);
5328
5329 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5330 ret = -EINVAL;
5331 goto out;
5332 }
5333
5334 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5335 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5336 ret = -EINVAL;
5337 goto out;
5338 }
5339
5340 if (p->sched_class->set_cpus_allowed)
5341 p->sched_class->set_cpus_allowed(p, new_mask);
5342 else {
5343 cpumask_copy(&p->cpus_allowed, new_mask);
5344 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5345 }
5346
5347 /* Can the task run on the task's current CPU? If so, we're done */
5348 if (cpumask_test_cpu(task_cpu(p), new_mask))
5349 goto out;
5350
5351 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
5352 /* Need help from migration thread: drop lock and wait. */
5353 struct task_struct *mt = rq->migration_thread;
5354
5355 get_task_struct(mt);
5356 task_rq_unlock(rq, &flags);
5357 wake_up_process(rq->migration_thread);
5358 put_task_struct(mt);
5359 wait_for_completion(&req.done);
5360 tlb_migrate_finish(p->mm);
5361 return 0;
5362 }
5363 out:
5364 task_rq_unlock(rq, &flags);
5365
5366 return ret;
5367 }
5368 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5369
5370 /*
5371 * Move (not current) task off this cpu, onto dest cpu. We're doing
5372 * this because either it can't run here any more (set_cpus_allowed()
5373 * away from this CPU, or CPU going down), or because we're
5374 * attempting to rebalance this task on exec (sched_exec).
5375 *
5376 * So we race with normal scheduler movements, but that's OK, as long
5377 * as the task is no longer on this CPU.
5378 *
5379 * Returns non-zero if task was successfully migrated.
5380 */
5381 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5382 {
5383 struct rq *rq_dest, *rq_src;
5384 int ret = 0;
5385
5386 if (unlikely(!cpu_active(dest_cpu)))
5387 return ret;
5388
5389 rq_src = cpu_rq(src_cpu);
5390 rq_dest = cpu_rq(dest_cpu);
5391
5392 double_rq_lock(rq_src, rq_dest);
5393 /* Already moved. */
5394 if (task_cpu(p) != src_cpu)
5395 goto done;
5396 /* Affinity changed (again). */
5397 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5398 goto fail;
5399
5400 /*
5401 * If we're not on a rq, the next wake-up will ensure we're
5402 * placed properly.
5403 */
5404 if (p->se.on_rq) {
5405 deactivate_task(rq_src, p, 0);
5406 set_task_cpu(p, dest_cpu);
5407 activate_task(rq_dest, p, 0);
5408 check_preempt_curr(rq_dest, p, 0);
5409 }
5410 done:
5411 ret = 1;
5412 fail:
5413 double_rq_unlock(rq_src, rq_dest);
5414 return ret;
5415 }
5416
5417 #define RCU_MIGRATION_IDLE 0
5418 #define RCU_MIGRATION_NEED_QS 1
5419 #define RCU_MIGRATION_GOT_QS 2
5420 #define RCU_MIGRATION_MUST_SYNC 3
5421
5422 /*
5423 * migration_thread - this is a highprio system thread that performs
5424 * thread migration by bumping thread off CPU then 'pushing' onto
5425 * another runqueue.
5426 */
5427 static int migration_thread(void *data)
5428 {
5429 int badcpu;
5430 int cpu = (long)data;
5431 struct rq *rq;
5432
5433 rq = cpu_rq(cpu);
5434 BUG_ON(rq->migration_thread != current);
5435
5436 set_current_state(TASK_INTERRUPTIBLE);
5437 while (!kthread_should_stop()) {
5438 struct migration_req *req;
5439 struct list_head *head;
5440
5441 raw_spin_lock_irq(&rq->lock);
5442
5443 if (cpu_is_offline(cpu)) {
5444 raw_spin_unlock_irq(&rq->lock);
5445 break;
5446 }
5447
5448 if (rq->active_balance) {
5449 active_load_balance(rq, cpu);
5450 rq->active_balance = 0;
5451 }
5452
5453 head = &rq->migration_queue;
5454
5455 if (list_empty(head)) {
5456 raw_spin_unlock_irq(&rq->lock);
5457 schedule();
5458 set_current_state(TASK_INTERRUPTIBLE);
5459 continue;
5460 }
5461 req = list_entry(head->next, struct migration_req, list);
5462 list_del_init(head->next);
5463
5464 if (req->task != NULL) {
5465 raw_spin_unlock(&rq->lock);
5466 __migrate_task(req->task, cpu, req->dest_cpu);
5467 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5468 req->dest_cpu = RCU_MIGRATION_GOT_QS;
5469 raw_spin_unlock(&rq->lock);
5470 } else {
5471 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5472 raw_spin_unlock(&rq->lock);
5473 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5474 }
5475 local_irq_enable();
5476
5477 complete(&req->done);
5478 }
5479 __set_current_state(TASK_RUNNING);
5480
5481 return 0;
5482 }
5483
5484 #ifdef CONFIG_HOTPLUG_CPU
5485
5486 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5487 {
5488 int ret;
5489
5490 local_irq_disable();
5491 ret = __migrate_task(p, src_cpu, dest_cpu);
5492 local_irq_enable();
5493 return ret;
5494 }
5495
5496 /*
5497 * Figure out where task on dead CPU should go, use force if necessary.
5498 */
5499 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5500 {
5501 int dest_cpu;
5502
5503 again:
5504 dest_cpu = select_fallback_rq(dead_cpu, p);
5505
5506 /* It can have affinity changed while we were choosing. */
5507 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5508 goto again;
5509 }
5510
5511 /*
5512 * While a dead CPU has no uninterruptible tasks queued at this point,
5513 * it might still have a nonzero ->nr_uninterruptible counter, because
5514 * for performance reasons the counter is not stricly tracking tasks to
5515 * their home CPUs. So we just add the counter to another CPU's counter,
5516 * to keep the global sum constant after CPU-down:
5517 */
5518 static void migrate_nr_uninterruptible(struct rq *rq_src)
5519 {
5520 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5521 unsigned long flags;
5522
5523 local_irq_save(flags);
5524 double_rq_lock(rq_src, rq_dest);
5525 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5526 rq_src->nr_uninterruptible = 0;
5527 double_rq_unlock(rq_src, rq_dest);
5528 local_irq_restore(flags);
5529 }
5530
5531 /* Run through task list and migrate tasks from the dead cpu. */
5532 static void migrate_live_tasks(int src_cpu)
5533 {
5534 struct task_struct *p, *t;
5535
5536 read_lock(&tasklist_lock);
5537
5538 do_each_thread(t, p) {
5539 if (p == current)
5540 continue;
5541
5542 if (task_cpu(p) == src_cpu)
5543 move_task_off_dead_cpu(src_cpu, p);
5544 } while_each_thread(t, p);
5545
5546 read_unlock(&tasklist_lock);
5547 }
5548
5549 /*
5550 * Schedules idle task to be the next runnable task on current CPU.
5551 * It does so by boosting its priority to highest possible.
5552 * Used by CPU offline code.
5553 */
5554 void sched_idle_next(void)
5555 {
5556 int this_cpu = smp_processor_id();
5557 struct rq *rq = cpu_rq(this_cpu);
5558 struct task_struct *p = rq->idle;
5559 unsigned long flags;
5560
5561 /* cpu has to be offline */
5562 BUG_ON(cpu_online(this_cpu));
5563
5564 /*
5565 * Strictly not necessary since rest of the CPUs are stopped by now
5566 * and interrupts disabled on the current cpu.
5567 */
5568 raw_spin_lock_irqsave(&rq->lock, flags);
5569
5570 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5571
5572 update_rq_clock(rq);
5573 activate_task(rq, p, 0);
5574
5575 raw_spin_unlock_irqrestore(&rq->lock, flags);
5576 }
5577
5578 /*
5579 * Ensures that the idle task is using init_mm right before its cpu goes
5580 * offline.
5581 */
5582 void idle_task_exit(void)
5583 {
5584 struct mm_struct *mm = current->active_mm;
5585
5586 BUG_ON(cpu_online(smp_processor_id()));
5587
5588 if (mm != &init_mm)
5589 switch_mm(mm, &init_mm, current);
5590 mmdrop(mm);
5591 }
5592
5593 /* called under rq->lock with disabled interrupts */
5594 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5595 {
5596 struct rq *rq = cpu_rq(dead_cpu);
5597
5598 /* Must be exiting, otherwise would be on tasklist. */
5599 BUG_ON(!p->exit_state);
5600
5601 /* Cannot have done final schedule yet: would have vanished. */
5602 BUG_ON(p->state == TASK_DEAD);
5603
5604 get_task_struct(p);
5605
5606 /*
5607 * Drop lock around migration; if someone else moves it,
5608 * that's OK. No task can be added to this CPU, so iteration is
5609 * fine.
5610 */
5611 raw_spin_unlock_irq(&rq->lock);
5612 move_task_off_dead_cpu(dead_cpu, p);
5613 raw_spin_lock_irq(&rq->lock);
5614
5615 put_task_struct(p);
5616 }
5617
5618 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5619 static void migrate_dead_tasks(unsigned int dead_cpu)
5620 {
5621 struct rq *rq = cpu_rq(dead_cpu);
5622 struct task_struct *next;
5623
5624 for ( ; ; ) {
5625 if (!rq->nr_running)
5626 break;
5627 update_rq_clock(rq);
5628 next = pick_next_task(rq);
5629 if (!next)
5630 break;
5631 next->sched_class->put_prev_task(rq, next);
5632 migrate_dead(dead_cpu, next);
5633
5634 }
5635 }
5636
5637 /*
5638 * remove the tasks which were accounted by rq from calc_load_tasks.
5639 */
5640 static void calc_global_load_remove(struct rq *rq)
5641 {
5642 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5643 rq->calc_load_active = 0;
5644 }
5645 #endif /* CONFIG_HOTPLUG_CPU */
5646
5647 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5648
5649 static struct ctl_table sd_ctl_dir[] = {
5650 {
5651 .procname = "sched_domain",
5652 .mode = 0555,
5653 },
5654 {}
5655 };
5656
5657 static struct ctl_table sd_ctl_root[] = {
5658 {
5659 .procname = "kernel",
5660 .mode = 0555,
5661 .child = sd_ctl_dir,
5662 },
5663 {}
5664 };
5665
5666 static struct ctl_table *sd_alloc_ctl_entry(int n)
5667 {
5668 struct ctl_table *entry =
5669 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5670
5671 return entry;
5672 }
5673
5674 static void sd_free_ctl_entry(struct ctl_table **tablep)
5675 {
5676 struct ctl_table *entry;
5677
5678 /*
5679 * In the intermediate directories, both the child directory and
5680 * procname are dynamically allocated and could fail but the mode
5681 * will always be set. In the lowest directory the names are
5682 * static strings and all have proc handlers.
5683 */
5684 for (entry = *tablep; entry->mode; entry++) {
5685 if (entry->child)
5686 sd_free_ctl_entry(&entry->child);
5687 if (entry->proc_handler == NULL)
5688 kfree(entry->procname);
5689 }
5690
5691 kfree(*tablep);
5692 *tablep = NULL;
5693 }
5694
5695 static void
5696 set_table_entry(struct ctl_table *entry,
5697 const char *procname, void *data, int maxlen,
5698 mode_t mode, proc_handler *proc_handler)
5699 {
5700 entry->procname = procname;
5701 entry->data = data;
5702 entry->maxlen = maxlen;
5703 entry->mode = mode;
5704 entry->proc_handler = proc_handler;
5705 }
5706
5707 static struct ctl_table *
5708 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5709 {
5710 struct ctl_table *table = sd_alloc_ctl_entry(13);
5711
5712 if (table == NULL)
5713 return NULL;
5714
5715 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5716 sizeof(long), 0644, proc_doulongvec_minmax);
5717 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5718 sizeof(long), 0644, proc_doulongvec_minmax);
5719 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5720 sizeof(int), 0644, proc_dointvec_minmax);
5721 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5722 sizeof(int), 0644, proc_dointvec_minmax);
5723 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5724 sizeof(int), 0644, proc_dointvec_minmax);
5725 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5726 sizeof(int), 0644, proc_dointvec_minmax);
5727 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5728 sizeof(int), 0644, proc_dointvec_minmax);
5729 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5730 sizeof(int), 0644, proc_dointvec_minmax);
5731 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5732 sizeof(int), 0644, proc_dointvec_minmax);
5733 set_table_entry(&table[9], "cache_nice_tries",
5734 &sd->cache_nice_tries,
5735 sizeof(int), 0644, proc_dointvec_minmax);
5736 set_table_entry(&table[10], "flags", &sd->flags,
5737 sizeof(int), 0644, proc_dointvec_minmax);
5738 set_table_entry(&table[11], "name", sd->name,
5739 CORENAME_MAX_SIZE, 0444, proc_dostring);
5740 /* &table[12] is terminator */
5741
5742 return table;
5743 }
5744
5745 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5746 {
5747 struct ctl_table *entry, *table;
5748 struct sched_domain *sd;
5749 int domain_num = 0, i;
5750 char buf[32];
5751
5752 for_each_domain(cpu, sd)
5753 domain_num++;
5754 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5755 if (table == NULL)
5756 return NULL;
5757
5758 i = 0;
5759 for_each_domain(cpu, sd) {
5760 snprintf(buf, 32, "domain%d", i);
5761 entry->procname = kstrdup(buf, GFP_KERNEL);
5762 entry->mode = 0555;
5763 entry->child = sd_alloc_ctl_domain_table(sd);
5764 entry++;
5765 i++;
5766 }
5767 return table;
5768 }
5769
5770 static struct ctl_table_header *sd_sysctl_header;
5771 static void register_sched_domain_sysctl(void)
5772 {
5773 int i, cpu_num = num_possible_cpus();
5774 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5775 char buf[32];
5776
5777 WARN_ON(sd_ctl_dir[0].child);
5778 sd_ctl_dir[0].child = entry;
5779
5780 if (entry == NULL)
5781 return;
5782
5783 for_each_possible_cpu(i) {
5784 snprintf(buf, 32, "cpu%d", i);
5785 entry->procname = kstrdup(buf, GFP_KERNEL);
5786 entry->mode = 0555;
5787 entry->child = sd_alloc_ctl_cpu_table(i);
5788 entry++;
5789 }
5790
5791 WARN_ON(sd_sysctl_header);
5792 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5793 }
5794
5795 /* may be called multiple times per register */
5796 static void unregister_sched_domain_sysctl(void)
5797 {
5798 if (sd_sysctl_header)
5799 unregister_sysctl_table(sd_sysctl_header);
5800 sd_sysctl_header = NULL;
5801 if (sd_ctl_dir[0].child)
5802 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5803 }
5804 #else
5805 static void register_sched_domain_sysctl(void)
5806 {
5807 }
5808 static void unregister_sched_domain_sysctl(void)
5809 {
5810 }
5811 #endif
5812
5813 static void set_rq_online(struct rq *rq)
5814 {
5815 if (!rq->online) {
5816 const struct sched_class *class;
5817
5818 cpumask_set_cpu(rq->cpu, rq->rd->online);
5819 rq->online = 1;
5820
5821 for_each_class(class) {
5822 if (class->rq_online)
5823 class->rq_online(rq);
5824 }
5825 }
5826 }
5827
5828 static void set_rq_offline(struct rq *rq)
5829 {
5830 if (rq->online) {
5831 const struct sched_class *class;
5832
5833 for_each_class(class) {
5834 if (class->rq_offline)
5835 class->rq_offline(rq);
5836 }
5837
5838 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5839 rq->online = 0;
5840 }
5841 }
5842
5843 /*
5844 * migration_call - callback that gets triggered when a CPU is added.
5845 * Here we can start up the necessary migration thread for the new CPU.
5846 */
5847 static int __cpuinit
5848 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5849 {
5850 struct task_struct *p;
5851 int cpu = (long)hcpu;
5852 unsigned long flags;
5853 struct rq *rq;
5854
5855 switch (action) {
5856
5857 case CPU_UP_PREPARE:
5858 case CPU_UP_PREPARE_FROZEN:
5859 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5860 if (IS_ERR(p))
5861 return NOTIFY_BAD;
5862 kthread_bind(p, cpu);
5863 /* Must be high prio: stop_machine expects to yield to it. */
5864 rq = task_rq_lock(p, &flags);
5865 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5866 task_rq_unlock(rq, &flags);
5867 get_task_struct(p);
5868 cpu_rq(cpu)->migration_thread = p;
5869 rq->calc_load_update = calc_load_update;
5870 break;
5871
5872 case CPU_ONLINE:
5873 case CPU_ONLINE_FROZEN:
5874 /* Strictly unnecessary, as first user will wake it. */
5875 wake_up_process(cpu_rq(cpu)->migration_thread);
5876
5877 /* Update our root-domain */
5878 rq = cpu_rq(cpu);
5879 raw_spin_lock_irqsave(&rq->lock, flags);
5880 if (rq->rd) {
5881 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5882
5883 set_rq_online(rq);
5884 }
5885 raw_spin_unlock_irqrestore(&rq->lock, flags);
5886 break;
5887
5888 #ifdef CONFIG_HOTPLUG_CPU
5889 case CPU_UP_CANCELED:
5890 case CPU_UP_CANCELED_FROZEN:
5891 if (!cpu_rq(cpu)->migration_thread)
5892 break;
5893 /* Unbind it from offline cpu so it can run. Fall thru. */
5894 kthread_bind(cpu_rq(cpu)->migration_thread,
5895 cpumask_any(cpu_online_mask));
5896 kthread_stop(cpu_rq(cpu)->migration_thread);
5897 put_task_struct(cpu_rq(cpu)->migration_thread);
5898 cpu_rq(cpu)->migration_thread = NULL;
5899 break;
5900
5901 case CPU_DEAD:
5902 case CPU_DEAD_FROZEN:
5903 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5904 migrate_live_tasks(cpu);
5905 rq = cpu_rq(cpu);
5906 kthread_stop(rq->migration_thread);
5907 put_task_struct(rq->migration_thread);
5908 rq->migration_thread = NULL;
5909 /* Idle task back to normal (off runqueue, low prio) */
5910 raw_spin_lock_irq(&rq->lock);
5911 update_rq_clock(rq);
5912 deactivate_task(rq, rq->idle, 0);
5913 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5914 rq->idle->sched_class = &idle_sched_class;
5915 migrate_dead_tasks(cpu);
5916 raw_spin_unlock_irq(&rq->lock);
5917 cpuset_unlock();
5918 migrate_nr_uninterruptible(rq);
5919 BUG_ON(rq->nr_running != 0);
5920 calc_global_load_remove(rq);
5921 /*
5922 * No need to migrate the tasks: it was best-effort if
5923 * they didn't take sched_hotcpu_mutex. Just wake up
5924 * the requestors.
5925 */
5926 raw_spin_lock_irq(&rq->lock);
5927 while (!list_empty(&rq->migration_queue)) {
5928 struct migration_req *req;
5929
5930 req = list_entry(rq->migration_queue.next,
5931 struct migration_req, list);
5932 list_del_init(&req->list);
5933 raw_spin_unlock_irq(&rq->lock);
5934 complete(&req->done);
5935 raw_spin_lock_irq(&rq->lock);
5936 }
5937 raw_spin_unlock_irq(&rq->lock);
5938 break;
5939
5940 case CPU_DYING:
5941 case CPU_DYING_FROZEN:
5942 /* Update our root-domain */
5943 rq = cpu_rq(cpu);
5944 raw_spin_lock_irqsave(&rq->lock, flags);
5945 if (rq->rd) {
5946 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5947 set_rq_offline(rq);
5948 }
5949 raw_spin_unlock_irqrestore(&rq->lock, flags);
5950 break;
5951 #endif
5952 }
5953 return NOTIFY_OK;
5954 }
5955
5956 /*
5957 * Register at high priority so that task migration (migrate_all_tasks)
5958 * happens before everything else. This has to be lower priority than
5959 * the notifier in the perf_event subsystem, though.
5960 */
5961 static struct notifier_block __cpuinitdata migration_notifier = {
5962 .notifier_call = migration_call,
5963 .priority = 10
5964 };
5965
5966 static int __init migration_init(void)
5967 {
5968 void *cpu = (void *)(long)smp_processor_id();
5969 int err;
5970
5971 /* Start one for the boot CPU: */
5972 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5973 BUG_ON(err == NOTIFY_BAD);
5974 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5975 register_cpu_notifier(&migration_notifier);
5976
5977 return 0;
5978 }
5979 early_initcall(migration_init);
5980 #endif
5981
5982 #ifdef CONFIG_SMP
5983
5984 #ifdef CONFIG_SCHED_DEBUG
5985
5986 static __read_mostly int sched_domain_debug_enabled;
5987
5988 static int __init sched_domain_debug_setup(char *str)
5989 {
5990 sched_domain_debug_enabled = 1;
5991
5992 return 0;
5993 }
5994 early_param("sched_debug", sched_domain_debug_setup);
5995
5996 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5997 struct cpumask *groupmask)
5998 {
5999 struct sched_group *group = sd->groups;
6000 char str[256];
6001
6002 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6003 cpumask_clear(groupmask);
6004
6005 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6006
6007 if (!(sd->flags & SD_LOAD_BALANCE)) {
6008 printk("does not load-balance\n");
6009 if (sd->parent)
6010 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6011 " has parent");
6012 return -1;
6013 }
6014
6015 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6016
6017 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6018 printk(KERN_ERR "ERROR: domain->span does not contain "
6019 "CPU%d\n", cpu);
6020 }
6021 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6022 printk(KERN_ERR "ERROR: domain->groups does not contain"
6023 " CPU%d\n", cpu);
6024 }
6025
6026 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6027 do {
6028 if (!group) {
6029 printk("\n");
6030 printk(KERN_ERR "ERROR: group is NULL\n");
6031 break;
6032 }
6033
6034 if (!group->cpu_power) {
6035 printk(KERN_CONT "\n");
6036 printk(KERN_ERR "ERROR: domain->cpu_power not "
6037 "set\n");
6038 break;
6039 }
6040
6041 if (!cpumask_weight(sched_group_cpus(group))) {
6042 printk(KERN_CONT "\n");
6043 printk(KERN_ERR "ERROR: empty group\n");
6044 break;
6045 }
6046
6047 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6048 printk(KERN_CONT "\n");
6049 printk(KERN_ERR "ERROR: repeated CPUs\n");
6050 break;
6051 }
6052
6053 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6054
6055 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6056
6057 printk(KERN_CONT " %s", str);
6058 if (group->cpu_power != SCHED_LOAD_SCALE) {
6059 printk(KERN_CONT " (cpu_power = %d)",
6060 group->cpu_power);
6061 }
6062
6063 group = group->next;
6064 } while (group != sd->groups);
6065 printk(KERN_CONT "\n");
6066
6067 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6068 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6069
6070 if (sd->parent &&
6071 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6072 printk(KERN_ERR "ERROR: parent span is not a superset "
6073 "of domain->span\n");
6074 return 0;
6075 }
6076
6077 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6078 {
6079 cpumask_var_t groupmask;
6080 int level = 0;
6081
6082 if (!sched_domain_debug_enabled)
6083 return;
6084
6085 if (!sd) {
6086 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6087 return;
6088 }
6089
6090 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6091
6092 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6093 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6094 return;
6095 }
6096
6097 for (;;) {
6098 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6099 break;
6100 level++;
6101 sd = sd->parent;
6102 if (!sd)
6103 break;
6104 }
6105 free_cpumask_var(groupmask);
6106 }
6107 #else /* !CONFIG_SCHED_DEBUG */
6108 # define sched_domain_debug(sd, cpu) do { } while (0)
6109 #endif /* CONFIG_SCHED_DEBUG */
6110
6111 static int sd_degenerate(struct sched_domain *sd)
6112 {
6113 if (cpumask_weight(sched_domain_span(sd)) == 1)
6114 return 1;
6115
6116 /* Following flags need at least 2 groups */
6117 if (sd->flags & (SD_LOAD_BALANCE |
6118 SD_BALANCE_NEWIDLE |
6119 SD_BALANCE_FORK |
6120 SD_BALANCE_EXEC |
6121 SD_SHARE_CPUPOWER |
6122 SD_SHARE_PKG_RESOURCES)) {
6123 if (sd->groups != sd->groups->next)
6124 return 0;
6125 }
6126
6127 /* Following flags don't use groups */
6128 if (sd->flags & (SD_WAKE_AFFINE))
6129 return 0;
6130
6131 return 1;
6132 }
6133
6134 static int
6135 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6136 {
6137 unsigned long cflags = sd->flags, pflags = parent->flags;
6138
6139 if (sd_degenerate(parent))
6140 return 1;
6141
6142 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6143 return 0;
6144
6145 /* Flags needing groups don't count if only 1 group in parent */
6146 if (parent->groups == parent->groups->next) {
6147 pflags &= ~(SD_LOAD_BALANCE |
6148 SD_BALANCE_NEWIDLE |
6149 SD_BALANCE_FORK |
6150 SD_BALANCE_EXEC |
6151 SD_SHARE_CPUPOWER |
6152 SD_SHARE_PKG_RESOURCES);
6153 if (nr_node_ids == 1)
6154 pflags &= ~SD_SERIALIZE;
6155 }
6156 if (~cflags & pflags)
6157 return 0;
6158
6159 return 1;
6160 }
6161
6162 static void free_rootdomain(struct root_domain *rd)
6163 {
6164 synchronize_sched();
6165
6166 cpupri_cleanup(&rd->cpupri);
6167
6168 free_cpumask_var(rd->rto_mask);
6169 free_cpumask_var(rd->online);
6170 free_cpumask_var(rd->span);
6171 kfree(rd);
6172 }
6173
6174 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6175 {
6176 struct root_domain *old_rd = NULL;
6177 unsigned long flags;
6178
6179 raw_spin_lock_irqsave(&rq->lock, flags);
6180
6181 if (rq->rd) {
6182 old_rd = rq->rd;
6183
6184 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6185 set_rq_offline(rq);
6186
6187 cpumask_clear_cpu(rq->cpu, old_rd->span);
6188
6189 /*
6190 * If we dont want to free the old_rt yet then
6191 * set old_rd to NULL to skip the freeing later
6192 * in this function:
6193 */
6194 if (!atomic_dec_and_test(&old_rd->refcount))
6195 old_rd = NULL;
6196 }
6197
6198 atomic_inc(&rd->refcount);
6199 rq->rd = rd;
6200
6201 cpumask_set_cpu(rq->cpu, rd->span);
6202 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6203 set_rq_online(rq);
6204
6205 raw_spin_unlock_irqrestore(&rq->lock, flags);
6206
6207 if (old_rd)
6208 free_rootdomain(old_rd);
6209 }
6210
6211 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6212 {
6213 gfp_t gfp = GFP_KERNEL;
6214
6215 memset(rd, 0, sizeof(*rd));
6216
6217 if (bootmem)
6218 gfp = GFP_NOWAIT;
6219
6220 if (!alloc_cpumask_var(&rd->span, gfp))
6221 goto out;
6222 if (!alloc_cpumask_var(&rd->online, gfp))
6223 goto free_span;
6224 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6225 goto free_online;
6226
6227 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6228 goto free_rto_mask;
6229 return 0;
6230
6231 free_rto_mask:
6232 free_cpumask_var(rd->rto_mask);
6233 free_online:
6234 free_cpumask_var(rd->online);
6235 free_span:
6236 free_cpumask_var(rd->span);
6237 out:
6238 return -ENOMEM;
6239 }
6240
6241 static void init_defrootdomain(void)
6242 {
6243 init_rootdomain(&def_root_domain, true);
6244
6245 atomic_set(&def_root_domain.refcount, 1);
6246 }
6247
6248 static struct root_domain *alloc_rootdomain(void)
6249 {
6250 struct root_domain *rd;
6251
6252 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6253 if (!rd)
6254 return NULL;
6255
6256 if (init_rootdomain(rd, false) != 0) {
6257 kfree(rd);
6258 return NULL;
6259 }
6260
6261 return rd;
6262 }
6263
6264 /*
6265 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6266 * hold the hotplug lock.
6267 */
6268 static void
6269 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6270 {
6271 struct rq *rq = cpu_rq(cpu);
6272 struct sched_domain *tmp;
6273
6274 /* Remove the sched domains which do not contribute to scheduling. */
6275 for (tmp = sd; tmp; ) {
6276 struct sched_domain *parent = tmp->parent;
6277 if (!parent)
6278 break;
6279
6280 if (sd_parent_degenerate(tmp, parent)) {
6281 tmp->parent = parent->parent;
6282 if (parent->parent)
6283 parent->parent->child = tmp;
6284 } else
6285 tmp = tmp->parent;
6286 }
6287
6288 if (sd && sd_degenerate(sd)) {
6289 sd = sd->parent;
6290 if (sd)
6291 sd->child = NULL;
6292 }
6293
6294 sched_domain_debug(sd, cpu);
6295
6296 rq_attach_root(rq, rd);
6297 rcu_assign_pointer(rq->sd, sd);
6298 }
6299
6300 /* cpus with isolated domains */
6301 static cpumask_var_t cpu_isolated_map;
6302
6303 /* Setup the mask of cpus configured for isolated domains */
6304 static int __init isolated_cpu_setup(char *str)
6305 {
6306 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6307 cpulist_parse(str, cpu_isolated_map);
6308 return 1;
6309 }
6310
6311 __setup("isolcpus=", isolated_cpu_setup);
6312
6313 /*
6314 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6315 * to a function which identifies what group(along with sched group) a CPU
6316 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6317 * (due to the fact that we keep track of groups covered with a struct cpumask).
6318 *
6319 * init_sched_build_groups will build a circular linked list of the groups
6320 * covered by the given span, and will set each group's ->cpumask correctly,
6321 * and ->cpu_power to 0.
6322 */
6323 static void
6324 init_sched_build_groups(const struct cpumask *span,
6325 const struct cpumask *cpu_map,
6326 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6327 struct sched_group **sg,
6328 struct cpumask *tmpmask),
6329 struct cpumask *covered, struct cpumask *tmpmask)
6330 {
6331 struct sched_group *first = NULL, *last = NULL;
6332 int i;
6333
6334 cpumask_clear(covered);
6335
6336 for_each_cpu(i, span) {
6337 struct sched_group *sg;
6338 int group = group_fn(i, cpu_map, &sg, tmpmask);
6339 int j;
6340
6341 if (cpumask_test_cpu(i, covered))
6342 continue;
6343
6344 cpumask_clear(sched_group_cpus(sg));
6345 sg->cpu_power = 0;
6346
6347 for_each_cpu(j, span) {
6348 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6349 continue;
6350
6351 cpumask_set_cpu(j, covered);
6352 cpumask_set_cpu(j, sched_group_cpus(sg));
6353 }
6354 if (!first)
6355 first = sg;
6356 if (last)
6357 last->next = sg;
6358 last = sg;
6359 }
6360 last->next = first;
6361 }
6362
6363 #define SD_NODES_PER_DOMAIN 16
6364
6365 #ifdef CONFIG_NUMA
6366
6367 /**
6368 * find_next_best_node - find the next node to include in a sched_domain
6369 * @node: node whose sched_domain we're building
6370 * @used_nodes: nodes already in the sched_domain
6371 *
6372 * Find the next node to include in a given scheduling domain. Simply
6373 * finds the closest node not already in the @used_nodes map.
6374 *
6375 * Should use nodemask_t.
6376 */
6377 static int find_next_best_node(int node, nodemask_t *used_nodes)
6378 {
6379 int i, n, val, min_val, best_node = 0;
6380
6381 min_val = INT_MAX;
6382
6383 for (i = 0; i < nr_node_ids; i++) {
6384 /* Start at @node */
6385 n = (node + i) % nr_node_ids;
6386
6387 if (!nr_cpus_node(n))
6388 continue;
6389
6390 /* Skip already used nodes */
6391 if (node_isset(n, *used_nodes))
6392 continue;
6393
6394 /* Simple min distance search */
6395 val = node_distance(node, n);
6396
6397 if (val < min_val) {
6398 min_val = val;
6399 best_node = n;
6400 }
6401 }
6402
6403 node_set(best_node, *used_nodes);
6404 return best_node;
6405 }
6406
6407 /**
6408 * sched_domain_node_span - get a cpumask for a node's sched_domain
6409 * @node: node whose cpumask we're constructing
6410 * @span: resulting cpumask
6411 *
6412 * Given a node, construct a good cpumask for its sched_domain to span. It
6413 * should be one that prevents unnecessary balancing, but also spreads tasks
6414 * out optimally.
6415 */
6416 static void sched_domain_node_span(int node, struct cpumask *span)
6417 {
6418 nodemask_t used_nodes;
6419 int i;
6420
6421 cpumask_clear(span);
6422 nodes_clear(used_nodes);
6423
6424 cpumask_or(span, span, cpumask_of_node(node));
6425 node_set(node, used_nodes);
6426
6427 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6428 int next_node = find_next_best_node(node, &used_nodes);
6429
6430 cpumask_or(span, span, cpumask_of_node(next_node));
6431 }
6432 }
6433 #endif /* CONFIG_NUMA */
6434
6435 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6436
6437 /*
6438 * The cpus mask in sched_group and sched_domain hangs off the end.
6439 *
6440 * ( See the the comments in include/linux/sched.h:struct sched_group
6441 * and struct sched_domain. )
6442 */
6443 struct static_sched_group {
6444 struct sched_group sg;
6445 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6446 };
6447
6448 struct static_sched_domain {
6449 struct sched_domain sd;
6450 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6451 };
6452
6453 struct s_data {
6454 #ifdef CONFIG_NUMA
6455 int sd_allnodes;
6456 cpumask_var_t domainspan;
6457 cpumask_var_t covered;
6458 cpumask_var_t notcovered;
6459 #endif
6460 cpumask_var_t nodemask;
6461 cpumask_var_t this_sibling_map;
6462 cpumask_var_t this_core_map;
6463 cpumask_var_t send_covered;
6464 cpumask_var_t tmpmask;
6465 struct sched_group **sched_group_nodes;
6466 struct root_domain *rd;
6467 };
6468
6469 enum s_alloc {
6470 sa_sched_groups = 0,
6471 sa_rootdomain,
6472 sa_tmpmask,
6473 sa_send_covered,
6474 sa_this_core_map,
6475 sa_this_sibling_map,
6476 sa_nodemask,
6477 sa_sched_group_nodes,
6478 #ifdef CONFIG_NUMA
6479 sa_notcovered,
6480 sa_covered,
6481 sa_domainspan,
6482 #endif
6483 sa_none,
6484 };
6485
6486 /*
6487 * SMT sched-domains:
6488 */
6489 #ifdef CONFIG_SCHED_SMT
6490 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6491 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6492
6493 static int
6494 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6495 struct sched_group **sg, struct cpumask *unused)
6496 {
6497 if (sg)
6498 *sg = &per_cpu(sched_groups, cpu).sg;
6499 return cpu;
6500 }
6501 #endif /* CONFIG_SCHED_SMT */
6502
6503 /*
6504 * multi-core sched-domains:
6505 */
6506 #ifdef CONFIG_SCHED_MC
6507 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6508 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6509 #endif /* CONFIG_SCHED_MC */
6510
6511 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6512 static int
6513 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6514 struct sched_group **sg, struct cpumask *mask)
6515 {
6516 int group;
6517
6518 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6519 group = cpumask_first(mask);
6520 if (sg)
6521 *sg = &per_cpu(sched_group_core, group).sg;
6522 return group;
6523 }
6524 #elif defined(CONFIG_SCHED_MC)
6525 static int
6526 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6527 struct sched_group **sg, struct cpumask *unused)
6528 {
6529 if (sg)
6530 *sg = &per_cpu(sched_group_core, cpu).sg;
6531 return cpu;
6532 }
6533 #endif
6534
6535 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6536 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6537
6538 static int
6539 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6540 struct sched_group **sg, struct cpumask *mask)
6541 {
6542 int group;
6543 #ifdef CONFIG_SCHED_MC
6544 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6545 group = cpumask_first(mask);
6546 #elif defined(CONFIG_SCHED_SMT)
6547 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6548 group = cpumask_first(mask);
6549 #else
6550 group = cpu;
6551 #endif
6552 if (sg)
6553 *sg = &per_cpu(sched_group_phys, group).sg;
6554 return group;
6555 }
6556
6557 #ifdef CONFIG_NUMA
6558 /*
6559 * The init_sched_build_groups can't handle what we want to do with node
6560 * groups, so roll our own. Now each node has its own list of groups which
6561 * gets dynamically allocated.
6562 */
6563 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6564 static struct sched_group ***sched_group_nodes_bycpu;
6565
6566 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6567 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6568
6569 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6570 struct sched_group **sg,
6571 struct cpumask *nodemask)
6572 {
6573 int group;
6574
6575 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6576 group = cpumask_first(nodemask);
6577
6578 if (sg)
6579 *sg = &per_cpu(sched_group_allnodes, group).sg;
6580 return group;
6581 }
6582
6583 static void init_numa_sched_groups_power(struct sched_group *group_head)
6584 {
6585 struct sched_group *sg = group_head;
6586 int j;
6587
6588 if (!sg)
6589 return;
6590 do {
6591 for_each_cpu(j, sched_group_cpus(sg)) {
6592 struct sched_domain *sd;
6593
6594 sd = &per_cpu(phys_domains, j).sd;
6595 if (j != group_first_cpu(sd->groups)) {
6596 /*
6597 * Only add "power" once for each
6598 * physical package.
6599 */
6600 continue;
6601 }
6602
6603 sg->cpu_power += sd->groups->cpu_power;
6604 }
6605 sg = sg->next;
6606 } while (sg != group_head);
6607 }
6608
6609 static int build_numa_sched_groups(struct s_data *d,
6610 const struct cpumask *cpu_map, int num)
6611 {
6612 struct sched_domain *sd;
6613 struct sched_group *sg, *prev;
6614 int n, j;
6615
6616 cpumask_clear(d->covered);
6617 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6618 if (cpumask_empty(d->nodemask)) {
6619 d->sched_group_nodes[num] = NULL;
6620 goto out;
6621 }
6622
6623 sched_domain_node_span(num, d->domainspan);
6624 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6625
6626 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6627 GFP_KERNEL, num);
6628 if (!sg) {
6629 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6630 num);
6631 return -ENOMEM;
6632 }
6633 d->sched_group_nodes[num] = sg;
6634
6635 for_each_cpu(j, d->nodemask) {
6636 sd = &per_cpu(node_domains, j).sd;
6637 sd->groups = sg;
6638 }
6639
6640 sg->cpu_power = 0;
6641 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6642 sg->next = sg;
6643 cpumask_or(d->covered, d->covered, d->nodemask);
6644
6645 prev = sg;
6646 for (j = 0; j < nr_node_ids; j++) {
6647 n = (num + j) % nr_node_ids;
6648 cpumask_complement(d->notcovered, d->covered);
6649 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6650 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6651 if (cpumask_empty(d->tmpmask))
6652 break;
6653 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6654 if (cpumask_empty(d->tmpmask))
6655 continue;
6656 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6657 GFP_KERNEL, num);
6658 if (!sg) {
6659 printk(KERN_WARNING
6660 "Can not alloc domain group for node %d\n", j);
6661 return -ENOMEM;
6662 }
6663 sg->cpu_power = 0;
6664 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6665 sg->next = prev->next;
6666 cpumask_or(d->covered, d->covered, d->tmpmask);
6667 prev->next = sg;
6668 prev = sg;
6669 }
6670 out:
6671 return 0;
6672 }
6673 #endif /* CONFIG_NUMA */
6674
6675 #ifdef CONFIG_NUMA
6676 /* Free memory allocated for various sched_group structures */
6677 static void free_sched_groups(const struct cpumask *cpu_map,
6678 struct cpumask *nodemask)
6679 {
6680 int cpu, i;
6681
6682 for_each_cpu(cpu, cpu_map) {
6683 struct sched_group **sched_group_nodes
6684 = sched_group_nodes_bycpu[cpu];
6685
6686 if (!sched_group_nodes)
6687 continue;
6688
6689 for (i = 0; i < nr_node_ids; i++) {
6690 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6691
6692 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6693 if (cpumask_empty(nodemask))
6694 continue;
6695
6696 if (sg == NULL)
6697 continue;
6698 sg = sg->next;
6699 next_sg:
6700 oldsg = sg;
6701 sg = sg->next;
6702 kfree(oldsg);
6703 if (oldsg != sched_group_nodes[i])
6704 goto next_sg;
6705 }
6706 kfree(sched_group_nodes);
6707 sched_group_nodes_bycpu[cpu] = NULL;
6708 }
6709 }
6710 #else /* !CONFIG_NUMA */
6711 static void free_sched_groups(const struct cpumask *cpu_map,
6712 struct cpumask *nodemask)
6713 {
6714 }
6715 #endif /* CONFIG_NUMA */
6716
6717 /*
6718 * Initialize sched groups cpu_power.
6719 *
6720 * cpu_power indicates the capacity of sched group, which is used while
6721 * distributing the load between different sched groups in a sched domain.
6722 * Typically cpu_power for all the groups in a sched domain will be same unless
6723 * there are asymmetries in the topology. If there are asymmetries, group
6724 * having more cpu_power will pickup more load compared to the group having
6725 * less cpu_power.
6726 */
6727 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6728 {
6729 struct sched_domain *child;
6730 struct sched_group *group;
6731 long power;
6732 int weight;
6733
6734 WARN_ON(!sd || !sd->groups);
6735
6736 if (cpu != group_first_cpu(sd->groups))
6737 return;
6738
6739 child = sd->child;
6740
6741 sd->groups->cpu_power = 0;
6742
6743 if (!child) {
6744 power = SCHED_LOAD_SCALE;
6745 weight = cpumask_weight(sched_domain_span(sd));
6746 /*
6747 * SMT siblings share the power of a single core.
6748 * Usually multiple threads get a better yield out of
6749 * that one core than a single thread would have,
6750 * reflect that in sd->smt_gain.
6751 */
6752 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6753 power *= sd->smt_gain;
6754 power /= weight;
6755 power >>= SCHED_LOAD_SHIFT;
6756 }
6757 sd->groups->cpu_power += power;
6758 return;
6759 }
6760
6761 /*
6762 * Add cpu_power of each child group to this groups cpu_power.
6763 */
6764 group = child->groups;
6765 do {
6766 sd->groups->cpu_power += group->cpu_power;
6767 group = group->next;
6768 } while (group != child->groups);
6769 }
6770
6771 /*
6772 * Initializers for schedule domains
6773 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6774 */
6775
6776 #ifdef CONFIG_SCHED_DEBUG
6777 # define SD_INIT_NAME(sd, type) sd->name = #type
6778 #else
6779 # define SD_INIT_NAME(sd, type) do { } while (0)
6780 #endif
6781
6782 #define SD_INIT(sd, type) sd_init_##type(sd)
6783
6784 #define SD_INIT_FUNC(type) \
6785 static noinline void sd_init_##type(struct sched_domain *sd) \
6786 { \
6787 memset(sd, 0, sizeof(*sd)); \
6788 *sd = SD_##type##_INIT; \
6789 sd->level = SD_LV_##type; \
6790 SD_INIT_NAME(sd, type); \
6791 }
6792
6793 SD_INIT_FUNC(CPU)
6794 #ifdef CONFIG_NUMA
6795 SD_INIT_FUNC(ALLNODES)
6796 SD_INIT_FUNC(NODE)
6797 #endif
6798 #ifdef CONFIG_SCHED_SMT
6799 SD_INIT_FUNC(SIBLING)
6800 #endif
6801 #ifdef CONFIG_SCHED_MC
6802 SD_INIT_FUNC(MC)
6803 #endif
6804
6805 static int default_relax_domain_level = -1;
6806
6807 static int __init setup_relax_domain_level(char *str)
6808 {
6809 unsigned long val;
6810
6811 val = simple_strtoul(str, NULL, 0);
6812 if (val < SD_LV_MAX)
6813 default_relax_domain_level = val;
6814
6815 return 1;
6816 }
6817 __setup("relax_domain_level=", setup_relax_domain_level);
6818
6819 static void set_domain_attribute(struct sched_domain *sd,
6820 struct sched_domain_attr *attr)
6821 {
6822 int request;
6823
6824 if (!attr || attr->relax_domain_level < 0) {
6825 if (default_relax_domain_level < 0)
6826 return;
6827 else
6828 request = default_relax_domain_level;
6829 } else
6830 request = attr->relax_domain_level;
6831 if (request < sd->level) {
6832 /* turn off idle balance on this domain */
6833 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6834 } else {
6835 /* turn on idle balance on this domain */
6836 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6837 }
6838 }
6839
6840 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6841 const struct cpumask *cpu_map)
6842 {
6843 switch (what) {
6844 case sa_sched_groups:
6845 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6846 d->sched_group_nodes = NULL;
6847 case sa_rootdomain:
6848 free_rootdomain(d->rd); /* fall through */
6849 case sa_tmpmask:
6850 free_cpumask_var(d->tmpmask); /* fall through */
6851 case sa_send_covered:
6852 free_cpumask_var(d->send_covered); /* fall through */
6853 case sa_this_core_map:
6854 free_cpumask_var(d->this_core_map); /* fall through */
6855 case sa_this_sibling_map:
6856 free_cpumask_var(d->this_sibling_map); /* fall through */
6857 case sa_nodemask:
6858 free_cpumask_var(d->nodemask); /* fall through */
6859 case sa_sched_group_nodes:
6860 #ifdef CONFIG_NUMA
6861 kfree(d->sched_group_nodes); /* fall through */
6862 case sa_notcovered:
6863 free_cpumask_var(d->notcovered); /* fall through */
6864 case sa_covered:
6865 free_cpumask_var(d->covered); /* fall through */
6866 case sa_domainspan:
6867 free_cpumask_var(d->domainspan); /* fall through */
6868 #endif
6869 case sa_none:
6870 break;
6871 }
6872 }
6873
6874 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6875 const struct cpumask *cpu_map)
6876 {
6877 #ifdef CONFIG_NUMA
6878 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6879 return sa_none;
6880 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6881 return sa_domainspan;
6882 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6883 return sa_covered;
6884 /* Allocate the per-node list of sched groups */
6885 d->sched_group_nodes = kcalloc(nr_node_ids,
6886 sizeof(struct sched_group *), GFP_KERNEL);
6887 if (!d->sched_group_nodes) {
6888 printk(KERN_WARNING "Can not alloc sched group node list\n");
6889 return sa_notcovered;
6890 }
6891 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6892 #endif
6893 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6894 return sa_sched_group_nodes;
6895 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6896 return sa_nodemask;
6897 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6898 return sa_this_sibling_map;
6899 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6900 return sa_this_core_map;
6901 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6902 return sa_send_covered;
6903 d->rd = alloc_rootdomain();
6904 if (!d->rd) {
6905 printk(KERN_WARNING "Cannot alloc root domain\n");
6906 return sa_tmpmask;
6907 }
6908 return sa_rootdomain;
6909 }
6910
6911 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6912 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6913 {
6914 struct sched_domain *sd = NULL;
6915 #ifdef CONFIG_NUMA
6916 struct sched_domain *parent;
6917
6918 d->sd_allnodes = 0;
6919 if (cpumask_weight(cpu_map) >
6920 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6921 sd = &per_cpu(allnodes_domains, i).sd;
6922 SD_INIT(sd, ALLNODES);
6923 set_domain_attribute(sd, attr);
6924 cpumask_copy(sched_domain_span(sd), cpu_map);
6925 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6926 d->sd_allnodes = 1;
6927 }
6928 parent = sd;
6929
6930 sd = &per_cpu(node_domains, i).sd;
6931 SD_INIT(sd, NODE);
6932 set_domain_attribute(sd, attr);
6933 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6934 sd->parent = parent;
6935 if (parent)
6936 parent->child = sd;
6937 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6938 #endif
6939 return sd;
6940 }
6941
6942 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6943 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6944 struct sched_domain *parent, int i)
6945 {
6946 struct sched_domain *sd;
6947 sd = &per_cpu(phys_domains, i).sd;
6948 SD_INIT(sd, CPU);
6949 set_domain_attribute(sd, attr);
6950 cpumask_copy(sched_domain_span(sd), d->nodemask);
6951 sd->parent = parent;
6952 if (parent)
6953 parent->child = sd;
6954 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6955 return sd;
6956 }
6957
6958 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6959 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6960 struct sched_domain *parent, int i)
6961 {
6962 struct sched_domain *sd = parent;
6963 #ifdef CONFIG_SCHED_MC
6964 sd = &per_cpu(core_domains, i).sd;
6965 SD_INIT(sd, MC);
6966 set_domain_attribute(sd, attr);
6967 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6968 sd->parent = parent;
6969 parent->child = sd;
6970 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6971 #endif
6972 return sd;
6973 }
6974
6975 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6976 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6977 struct sched_domain *parent, int i)
6978 {
6979 struct sched_domain *sd = parent;
6980 #ifdef CONFIG_SCHED_SMT
6981 sd = &per_cpu(cpu_domains, i).sd;
6982 SD_INIT(sd, SIBLING);
6983 set_domain_attribute(sd, attr);
6984 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6985 sd->parent = parent;
6986 parent->child = sd;
6987 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6988 #endif
6989 return sd;
6990 }
6991
6992 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6993 const struct cpumask *cpu_map, int cpu)
6994 {
6995 switch (l) {
6996 #ifdef CONFIG_SCHED_SMT
6997 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6998 cpumask_and(d->this_sibling_map, cpu_map,
6999 topology_thread_cpumask(cpu));
7000 if (cpu == cpumask_first(d->this_sibling_map))
7001 init_sched_build_groups(d->this_sibling_map, cpu_map,
7002 &cpu_to_cpu_group,
7003 d->send_covered, d->tmpmask);
7004 break;
7005 #endif
7006 #ifdef CONFIG_SCHED_MC
7007 case SD_LV_MC: /* set up multi-core groups */
7008 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7009 if (cpu == cpumask_first(d->this_core_map))
7010 init_sched_build_groups(d->this_core_map, cpu_map,
7011 &cpu_to_core_group,
7012 d->send_covered, d->tmpmask);
7013 break;
7014 #endif
7015 case SD_LV_CPU: /* set up physical groups */
7016 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7017 if (!cpumask_empty(d->nodemask))
7018 init_sched_build_groups(d->nodemask, cpu_map,
7019 &cpu_to_phys_group,
7020 d->send_covered, d->tmpmask);
7021 break;
7022 #ifdef CONFIG_NUMA
7023 case SD_LV_ALLNODES:
7024 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7025 d->send_covered, d->tmpmask);
7026 break;
7027 #endif
7028 default:
7029 break;
7030 }
7031 }
7032
7033 /*
7034 * Build sched domains for a given set of cpus and attach the sched domains
7035 * to the individual cpus
7036 */
7037 static int __build_sched_domains(const struct cpumask *cpu_map,
7038 struct sched_domain_attr *attr)
7039 {
7040 enum s_alloc alloc_state = sa_none;
7041 struct s_data d;
7042 struct sched_domain *sd;
7043 int i;
7044 #ifdef CONFIG_NUMA
7045 d.sd_allnodes = 0;
7046 #endif
7047
7048 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7049 if (alloc_state != sa_rootdomain)
7050 goto error;
7051 alloc_state = sa_sched_groups;
7052
7053 /*
7054 * Set up domains for cpus specified by the cpu_map.
7055 */
7056 for_each_cpu(i, cpu_map) {
7057 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7058 cpu_map);
7059
7060 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7061 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7062 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7063 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7064 }
7065
7066 for_each_cpu(i, cpu_map) {
7067 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7068 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7069 }
7070
7071 /* Set up physical groups */
7072 for (i = 0; i < nr_node_ids; i++)
7073 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7074
7075 #ifdef CONFIG_NUMA
7076 /* Set up node groups */
7077 if (d.sd_allnodes)
7078 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7079
7080 for (i = 0; i < nr_node_ids; i++)
7081 if (build_numa_sched_groups(&d, cpu_map, i))
7082 goto error;
7083 #endif
7084
7085 /* Calculate CPU power for physical packages and nodes */
7086 #ifdef CONFIG_SCHED_SMT
7087 for_each_cpu(i, cpu_map) {
7088 sd = &per_cpu(cpu_domains, i).sd;
7089 init_sched_groups_power(i, sd);
7090 }
7091 #endif
7092 #ifdef CONFIG_SCHED_MC
7093 for_each_cpu(i, cpu_map) {
7094 sd = &per_cpu(core_domains, i).sd;
7095 init_sched_groups_power(i, sd);
7096 }
7097 #endif
7098
7099 for_each_cpu(i, cpu_map) {
7100 sd = &per_cpu(phys_domains, i).sd;
7101 init_sched_groups_power(i, sd);
7102 }
7103
7104 #ifdef CONFIG_NUMA
7105 for (i = 0; i < nr_node_ids; i++)
7106 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7107
7108 if (d.sd_allnodes) {
7109 struct sched_group *sg;
7110
7111 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7112 d.tmpmask);
7113 init_numa_sched_groups_power(sg);
7114 }
7115 #endif
7116
7117 /* Attach the domains */
7118 for_each_cpu(i, cpu_map) {
7119 #ifdef CONFIG_SCHED_SMT
7120 sd = &per_cpu(cpu_domains, i).sd;
7121 #elif defined(CONFIG_SCHED_MC)
7122 sd = &per_cpu(core_domains, i).sd;
7123 #else
7124 sd = &per_cpu(phys_domains, i).sd;
7125 #endif
7126 cpu_attach_domain(sd, d.rd, i);
7127 }
7128
7129 d.sched_group_nodes = NULL; /* don't free this we still need it */
7130 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7131 return 0;
7132
7133 error:
7134 __free_domain_allocs(&d, alloc_state, cpu_map);
7135 return -ENOMEM;
7136 }
7137
7138 static int build_sched_domains(const struct cpumask *cpu_map)
7139 {
7140 return __build_sched_domains(cpu_map, NULL);
7141 }
7142
7143 static cpumask_var_t *doms_cur; /* current sched domains */
7144 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7145 static struct sched_domain_attr *dattr_cur;
7146 /* attribues of custom domains in 'doms_cur' */
7147
7148 /*
7149 * Special case: If a kmalloc of a doms_cur partition (array of
7150 * cpumask) fails, then fallback to a single sched domain,
7151 * as determined by the single cpumask fallback_doms.
7152 */
7153 static cpumask_var_t fallback_doms;
7154
7155 /*
7156 * arch_update_cpu_topology lets virtualized architectures update the
7157 * cpu core maps. It is supposed to return 1 if the topology changed
7158 * or 0 if it stayed the same.
7159 */
7160 int __attribute__((weak)) arch_update_cpu_topology(void)
7161 {
7162 return 0;
7163 }
7164
7165 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7166 {
7167 int i;
7168 cpumask_var_t *doms;
7169
7170 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7171 if (!doms)
7172 return NULL;
7173 for (i = 0; i < ndoms; i++) {
7174 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7175 free_sched_domains(doms, i);
7176 return NULL;
7177 }
7178 }
7179 return doms;
7180 }
7181
7182 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7183 {
7184 unsigned int i;
7185 for (i = 0; i < ndoms; i++)
7186 free_cpumask_var(doms[i]);
7187 kfree(doms);
7188 }
7189
7190 /*
7191 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7192 * For now this just excludes isolated cpus, but could be used to
7193 * exclude other special cases in the future.
7194 */
7195 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7196 {
7197 int err;
7198
7199 arch_update_cpu_topology();
7200 ndoms_cur = 1;
7201 doms_cur = alloc_sched_domains(ndoms_cur);
7202 if (!doms_cur)
7203 doms_cur = &fallback_doms;
7204 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7205 dattr_cur = NULL;
7206 err = build_sched_domains(doms_cur[0]);
7207 register_sched_domain_sysctl();
7208
7209 return err;
7210 }
7211
7212 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7213 struct cpumask *tmpmask)
7214 {
7215 free_sched_groups(cpu_map, tmpmask);
7216 }
7217
7218 /*
7219 * Detach sched domains from a group of cpus specified in cpu_map
7220 * These cpus will now be attached to the NULL domain
7221 */
7222 static void detach_destroy_domains(const struct cpumask *cpu_map)
7223 {
7224 /* Save because hotplug lock held. */
7225 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7226 int i;
7227
7228 for_each_cpu(i, cpu_map)
7229 cpu_attach_domain(NULL, &def_root_domain, i);
7230 synchronize_sched();
7231 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7232 }
7233
7234 /* handle null as "default" */
7235 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7236 struct sched_domain_attr *new, int idx_new)
7237 {
7238 struct sched_domain_attr tmp;
7239
7240 /* fast path */
7241 if (!new && !cur)
7242 return 1;
7243
7244 tmp = SD_ATTR_INIT;
7245 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7246 new ? (new + idx_new) : &tmp,
7247 sizeof(struct sched_domain_attr));
7248 }
7249
7250 /*
7251 * Partition sched domains as specified by the 'ndoms_new'
7252 * cpumasks in the array doms_new[] of cpumasks. This compares
7253 * doms_new[] to the current sched domain partitioning, doms_cur[].
7254 * It destroys each deleted domain and builds each new domain.
7255 *
7256 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7257 * The masks don't intersect (don't overlap.) We should setup one
7258 * sched domain for each mask. CPUs not in any of the cpumasks will
7259 * not be load balanced. If the same cpumask appears both in the
7260 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7261 * it as it is.
7262 *
7263 * The passed in 'doms_new' should be allocated using
7264 * alloc_sched_domains. This routine takes ownership of it and will
7265 * free_sched_domains it when done with it. If the caller failed the
7266 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7267 * and partition_sched_domains() will fallback to the single partition
7268 * 'fallback_doms', it also forces the domains to be rebuilt.
7269 *
7270 * If doms_new == NULL it will be replaced with cpu_online_mask.
7271 * ndoms_new == 0 is a special case for destroying existing domains,
7272 * and it will not create the default domain.
7273 *
7274 * Call with hotplug lock held
7275 */
7276 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7277 struct sched_domain_attr *dattr_new)
7278 {
7279 int i, j, n;
7280 int new_topology;
7281
7282 mutex_lock(&sched_domains_mutex);
7283
7284 /* always unregister in case we don't destroy any domains */
7285 unregister_sched_domain_sysctl();
7286
7287 /* Let architecture update cpu core mappings. */
7288 new_topology = arch_update_cpu_topology();
7289
7290 n = doms_new ? ndoms_new : 0;
7291
7292 /* Destroy deleted domains */
7293 for (i = 0; i < ndoms_cur; i++) {
7294 for (j = 0; j < n && !new_topology; j++) {
7295 if (cpumask_equal(doms_cur[i], doms_new[j])
7296 && dattrs_equal(dattr_cur, i, dattr_new, j))
7297 goto match1;
7298 }
7299 /* no match - a current sched domain not in new doms_new[] */
7300 detach_destroy_domains(doms_cur[i]);
7301 match1:
7302 ;
7303 }
7304
7305 if (doms_new == NULL) {
7306 ndoms_cur = 0;
7307 doms_new = &fallback_doms;
7308 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7309 WARN_ON_ONCE(dattr_new);
7310 }
7311
7312 /* Build new domains */
7313 for (i = 0; i < ndoms_new; i++) {
7314 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7315 if (cpumask_equal(doms_new[i], doms_cur[j])
7316 && dattrs_equal(dattr_new, i, dattr_cur, j))
7317 goto match2;
7318 }
7319 /* no match - add a new doms_new */
7320 __build_sched_domains(doms_new[i],
7321 dattr_new ? dattr_new + i : NULL);
7322 match2:
7323 ;
7324 }
7325
7326 /* Remember the new sched domains */
7327 if (doms_cur != &fallback_doms)
7328 free_sched_domains(doms_cur, ndoms_cur);
7329 kfree(dattr_cur); /* kfree(NULL) is safe */
7330 doms_cur = doms_new;
7331 dattr_cur = dattr_new;
7332 ndoms_cur = ndoms_new;
7333
7334 register_sched_domain_sysctl();
7335
7336 mutex_unlock(&sched_domains_mutex);
7337 }
7338
7339 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7340 static void arch_reinit_sched_domains(void)
7341 {
7342 get_online_cpus();
7343
7344 /* Destroy domains first to force the rebuild */
7345 partition_sched_domains(0, NULL, NULL);
7346
7347 rebuild_sched_domains();
7348 put_online_cpus();
7349 }
7350
7351 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7352 {
7353 unsigned int level = 0;
7354
7355 if (sscanf(buf, "%u", &level) != 1)
7356 return -EINVAL;
7357
7358 /*
7359 * level is always be positive so don't check for
7360 * level < POWERSAVINGS_BALANCE_NONE which is 0
7361 * What happens on 0 or 1 byte write,
7362 * need to check for count as well?
7363 */
7364
7365 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7366 return -EINVAL;
7367
7368 if (smt)
7369 sched_smt_power_savings = level;
7370 else
7371 sched_mc_power_savings = level;
7372
7373 arch_reinit_sched_domains();
7374
7375 return count;
7376 }
7377
7378 #ifdef CONFIG_SCHED_MC
7379 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7380 char *page)
7381 {
7382 return sprintf(page, "%u\n", sched_mc_power_savings);
7383 }
7384 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7385 const char *buf, size_t count)
7386 {
7387 return sched_power_savings_store(buf, count, 0);
7388 }
7389 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7390 sched_mc_power_savings_show,
7391 sched_mc_power_savings_store);
7392 #endif
7393
7394 #ifdef CONFIG_SCHED_SMT
7395 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7396 char *page)
7397 {
7398 return sprintf(page, "%u\n", sched_smt_power_savings);
7399 }
7400 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7401 const char *buf, size_t count)
7402 {
7403 return sched_power_savings_store(buf, count, 1);
7404 }
7405 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7406 sched_smt_power_savings_show,
7407 sched_smt_power_savings_store);
7408 #endif
7409
7410 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7411 {
7412 int err = 0;
7413
7414 #ifdef CONFIG_SCHED_SMT
7415 if (smt_capable())
7416 err = sysfs_create_file(&cls->kset.kobj,
7417 &attr_sched_smt_power_savings.attr);
7418 #endif
7419 #ifdef CONFIG_SCHED_MC
7420 if (!err && mc_capable())
7421 err = sysfs_create_file(&cls->kset.kobj,
7422 &attr_sched_mc_power_savings.attr);
7423 #endif
7424 return err;
7425 }
7426 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7427
7428 #ifndef CONFIG_CPUSETS
7429 /*
7430 * Add online and remove offline CPUs from the scheduler domains.
7431 * When cpusets are enabled they take over this function.
7432 */
7433 static int update_sched_domains(struct notifier_block *nfb,
7434 unsigned long action, void *hcpu)
7435 {
7436 switch (action) {
7437 case CPU_ONLINE:
7438 case CPU_ONLINE_FROZEN:
7439 case CPU_DOWN_PREPARE:
7440 case CPU_DOWN_PREPARE_FROZEN:
7441 case CPU_DOWN_FAILED:
7442 case CPU_DOWN_FAILED_FROZEN:
7443 partition_sched_domains(1, NULL, NULL);
7444 return NOTIFY_OK;
7445
7446 default:
7447 return NOTIFY_DONE;
7448 }
7449 }
7450 #endif
7451
7452 static int update_runtime(struct notifier_block *nfb,
7453 unsigned long action, void *hcpu)
7454 {
7455 int cpu = (int)(long)hcpu;
7456
7457 switch (action) {
7458 case CPU_DOWN_PREPARE:
7459 case CPU_DOWN_PREPARE_FROZEN:
7460 disable_runtime(cpu_rq(cpu));
7461 return NOTIFY_OK;
7462
7463 case CPU_DOWN_FAILED:
7464 case CPU_DOWN_FAILED_FROZEN:
7465 case CPU_ONLINE:
7466 case CPU_ONLINE_FROZEN:
7467 enable_runtime(cpu_rq(cpu));
7468 return NOTIFY_OK;
7469
7470 default:
7471 return NOTIFY_DONE;
7472 }
7473 }
7474
7475 void __init sched_init_smp(void)
7476 {
7477 cpumask_var_t non_isolated_cpus;
7478
7479 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7480 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7481
7482 #if defined(CONFIG_NUMA)
7483 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7484 GFP_KERNEL);
7485 BUG_ON(sched_group_nodes_bycpu == NULL);
7486 #endif
7487 get_online_cpus();
7488 mutex_lock(&sched_domains_mutex);
7489 arch_init_sched_domains(cpu_active_mask);
7490 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7491 if (cpumask_empty(non_isolated_cpus))
7492 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7493 mutex_unlock(&sched_domains_mutex);
7494 put_online_cpus();
7495
7496 #ifndef CONFIG_CPUSETS
7497 /* XXX: Theoretical race here - CPU may be hotplugged now */
7498 hotcpu_notifier(update_sched_domains, 0);
7499 #endif
7500
7501 /* RT runtime code needs to handle some hotplug events */
7502 hotcpu_notifier(update_runtime, 0);
7503
7504 init_hrtick();
7505
7506 /* Move init over to a non-isolated CPU */
7507 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7508 BUG();
7509 sched_init_granularity();
7510 free_cpumask_var(non_isolated_cpus);
7511
7512 init_sched_rt_class();
7513 }
7514 #else
7515 void __init sched_init_smp(void)
7516 {
7517 sched_init_granularity();
7518 }
7519 #endif /* CONFIG_SMP */
7520
7521 const_debug unsigned int sysctl_timer_migration = 1;
7522
7523 int in_sched_functions(unsigned long addr)
7524 {
7525 return in_lock_functions(addr) ||
7526 (addr >= (unsigned long)__sched_text_start
7527 && addr < (unsigned long)__sched_text_end);
7528 }
7529
7530 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7531 {
7532 cfs_rq->tasks_timeline = RB_ROOT;
7533 INIT_LIST_HEAD(&cfs_rq->tasks);
7534 #ifdef CONFIG_FAIR_GROUP_SCHED
7535 cfs_rq->rq = rq;
7536 #endif
7537 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7538 }
7539
7540 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7541 {
7542 struct rt_prio_array *array;
7543 int i;
7544
7545 array = &rt_rq->active;
7546 for (i = 0; i < MAX_RT_PRIO; i++) {
7547 INIT_LIST_HEAD(array->queue + i);
7548 __clear_bit(i, array->bitmap);
7549 }
7550 /* delimiter for bitsearch: */
7551 __set_bit(MAX_RT_PRIO, array->bitmap);
7552
7553 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7554 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7555 #ifdef CONFIG_SMP
7556 rt_rq->highest_prio.next = MAX_RT_PRIO;
7557 #endif
7558 #endif
7559 #ifdef CONFIG_SMP
7560 rt_rq->rt_nr_migratory = 0;
7561 rt_rq->overloaded = 0;
7562 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7563 #endif
7564
7565 rt_rq->rt_time = 0;
7566 rt_rq->rt_throttled = 0;
7567 rt_rq->rt_runtime = 0;
7568 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7569
7570 #ifdef CONFIG_RT_GROUP_SCHED
7571 rt_rq->rt_nr_boosted = 0;
7572 rt_rq->rq = rq;
7573 #endif
7574 }
7575
7576 #ifdef CONFIG_FAIR_GROUP_SCHED
7577 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7578 struct sched_entity *se, int cpu, int add,
7579 struct sched_entity *parent)
7580 {
7581 struct rq *rq = cpu_rq(cpu);
7582 tg->cfs_rq[cpu] = cfs_rq;
7583 init_cfs_rq(cfs_rq, rq);
7584 cfs_rq->tg = tg;
7585 if (add)
7586 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7587
7588 tg->se[cpu] = se;
7589 /* se could be NULL for init_task_group */
7590 if (!se)
7591 return;
7592
7593 if (!parent)
7594 se->cfs_rq = &rq->cfs;
7595 else
7596 se->cfs_rq = parent->my_q;
7597
7598 se->my_q = cfs_rq;
7599 se->load.weight = tg->shares;
7600 se->load.inv_weight = 0;
7601 se->parent = parent;
7602 }
7603 #endif
7604
7605 #ifdef CONFIG_RT_GROUP_SCHED
7606 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7607 struct sched_rt_entity *rt_se, int cpu, int add,
7608 struct sched_rt_entity *parent)
7609 {
7610 struct rq *rq = cpu_rq(cpu);
7611
7612 tg->rt_rq[cpu] = rt_rq;
7613 init_rt_rq(rt_rq, rq);
7614 rt_rq->tg = tg;
7615 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7616 if (add)
7617 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7618
7619 tg->rt_se[cpu] = rt_se;
7620 if (!rt_se)
7621 return;
7622
7623 if (!parent)
7624 rt_se->rt_rq = &rq->rt;
7625 else
7626 rt_se->rt_rq = parent->my_q;
7627
7628 rt_se->my_q = rt_rq;
7629 rt_se->parent = parent;
7630 INIT_LIST_HEAD(&rt_se->run_list);
7631 }
7632 #endif
7633
7634 void __init sched_init(void)
7635 {
7636 int i, j;
7637 unsigned long alloc_size = 0, ptr;
7638
7639 #ifdef CONFIG_FAIR_GROUP_SCHED
7640 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7641 #endif
7642 #ifdef CONFIG_RT_GROUP_SCHED
7643 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7644 #endif
7645 #ifdef CONFIG_CPUMASK_OFFSTACK
7646 alloc_size += num_possible_cpus() * cpumask_size();
7647 #endif
7648 if (alloc_size) {
7649 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7650
7651 #ifdef CONFIG_FAIR_GROUP_SCHED
7652 init_task_group.se = (struct sched_entity **)ptr;
7653 ptr += nr_cpu_ids * sizeof(void **);
7654
7655 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7656 ptr += nr_cpu_ids * sizeof(void **);
7657
7658 #endif /* CONFIG_FAIR_GROUP_SCHED */
7659 #ifdef CONFIG_RT_GROUP_SCHED
7660 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7661 ptr += nr_cpu_ids * sizeof(void **);
7662
7663 init_task_group.rt_rq = (struct rt_rq **)ptr;
7664 ptr += nr_cpu_ids * sizeof(void **);
7665
7666 #endif /* CONFIG_RT_GROUP_SCHED */
7667 #ifdef CONFIG_CPUMASK_OFFSTACK
7668 for_each_possible_cpu(i) {
7669 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7670 ptr += cpumask_size();
7671 }
7672 #endif /* CONFIG_CPUMASK_OFFSTACK */
7673 }
7674
7675 #ifdef CONFIG_SMP
7676 init_defrootdomain();
7677 #endif
7678
7679 init_rt_bandwidth(&def_rt_bandwidth,
7680 global_rt_period(), global_rt_runtime());
7681
7682 #ifdef CONFIG_RT_GROUP_SCHED
7683 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7684 global_rt_period(), global_rt_runtime());
7685 #endif /* CONFIG_RT_GROUP_SCHED */
7686
7687 #ifdef CONFIG_CGROUP_SCHED
7688 list_add(&init_task_group.list, &task_groups);
7689 INIT_LIST_HEAD(&init_task_group.children);
7690
7691 #endif /* CONFIG_CGROUP_SCHED */
7692
7693 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7694 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7695 __alignof__(unsigned long));
7696 #endif
7697 for_each_possible_cpu(i) {
7698 struct rq *rq;
7699
7700 rq = cpu_rq(i);
7701 raw_spin_lock_init(&rq->lock);
7702 rq->nr_running = 0;
7703 rq->calc_load_active = 0;
7704 rq->calc_load_update = jiffies + LOAD_FREQ;
7705 init_cfs_rq(&rq->cfs, rq);
7706 init_rt_rq(&rq->rt, rq);
7707 #ifdef CONFIG_FAIR_GROUP_SCHED
7708 init_task_group.shares = init_task_group_load;
7709 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7710 #ifdef CONFIG_CGROUP_SCHED
7711 /*
7712 * How much cpu bandwidth does init_task_group get?
7713 *
7714 * In case of task-groups formed thr' the cgroup filesystem, it
7715 * gets 100% of the cpu resources in the system. This overall
7716 * system cpu resource is divided among the tasks of
7717 * init_task_group and its child task-groups in a fair manner,
7718 * based on each entity's (task or task-group's) weight
7719 * (se->load.weight).
7720 *
7721 * In other words, if init_task_group has 10 tasks of weight
7722 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7723 * then A0's share of the cpu resource is:
7724 *
7725 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7726 *
7727 * We achieve this by letting init_task_group's tasks sit
7728 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7729 */
7730 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7731 #endif
7732 #endif /* CONFIG_FAIR_GROUP_SCHED */
7733
7734 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7735 #ifdef CONFIG_RT_GROUP_SCHED
7736 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7737 #ifdef CONFIG_CGROUP_SCHED
7738 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7739 #endif
7740 #endif
7741
7742 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7743 rq->cpu_load[j] = 0;
7744 #ifdef CONFIG_SMP
7745 rq->sd = NULL;
7746 rq->rd = NULL;
7747 rq->post_schedule = 0;
7748 rq->active_balance = 0;
7749 rq->next_balance = jiffies;
7750 rq->push_cpu = 0;
7751 rq->cpu = i;
7752 rq->online = 0;
7753 rq->migration_thread = NULL;
7754 rq->idle_stamp = 0;
7755 rq->avg_idle = 2*sysctl_sched_migration_cost;
7756 INIT_LIST_HEAD(&rq->migration_queue);
7757 rq_attach_root(rq, &def_root_domain);
7758 #endif
7759 init_rq_hrtick(rq);
7760 atomic_set(&rq->nr_iowait, 0);
7761 }
7762
7763 set_load_weight(&init_task);
7764
7765 #ifdef CONFIG_PREEMPT_NOTIFIERS
7766 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7767 #endif
7768
7769 #ifdef CONFIG_SMP
7770 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7771 #endif
7772
7773 #ifdef CONFIG_RT_MUTEXES
7774 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7775 #endif
7776
7777 /*
7778 * The boot idle thread does lazy MMU switching as well:
7779 */
7780 atomic_inc(&init_mm.mm_count);
7781 enter_lazy_tlb(&init_mm, current);
7782
7783 /*
7784 * Make us the idle thread. Technically, schedule() should not be
7785 * called from this thread, however somewhere below it might be,
7786 * but because we are the idle thread, we just pick up running again
7787 * when this runqueue becomes "idle".
7788 */
7789 init_idle(current, smp_processor_id());
7790
7791 calc_load_update = jiffies + LOAD_FREQ;
7792
7793 /*
7794 * During early bootup we pretend to be a normal task:
7795 */
7796 current->sched_class = &fair_sched_class;
7797
7798 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7799 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7800 #ifdef CONFIG_SMP
7801 #ifdef CONFIG_NO_HZ
7802 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7803 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7804 #endif
7805 /* May be allocated at isolcpus cmdline parse time */
7806 if (cpu_isolated_map == NULL)
7807 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7808 #endif /* SMP */
7809
7810 perf_event_init();
7811
7812 scheduler_running = 1;
7813 }
7814
7815 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7816 static inline int preempt_count_equals(int preempt_offset)
7817 {
7818 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7819
7820 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7821 }
7822
7823 void __might_sleep(const char *file, int line, int preempt_offset)
7824 {
7825 #ifdef in_atomic
7826 static unsigned long prev_jiffy; /* ratelimiting */
7827
7828 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7829 system_state != SYSTEM_RUNNING || oops_in_progress)
7830 return;
7831 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7832 return;
7833 prev_jiffy = jiffies;
7834
7835 printk(KERN_ERR
7836 "BUG: sleeping function called from invalid context at %s:%d\n",
7837 file, line);
7838 printk(KERN_ERR
7839 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7840 in_atomic(), irqs_disabled(),
7841 current->pid, current->comm);
7842
7843 debug_show_held_locks(current);
7844 if (irqs_disabled())
7845 print_irqtrace_events(current);
7846 dump_stack();
7847 #endif
7848 }
7849 EXPORT_SYMBOL(__might_sleep);
7850 #endif
7851
7852 #ifdef CONFIG_MAGIC_SYSRQ
7853 static void normalize_task(struct rq *rq, struct task_struct *p)
7854 {
7855 int on_rq;
7856
7857 update_rq_clock(rq);
7858 on_rq = p->se.on_rq;
7859 if (on_rq)
7860 deactivate_task(rq, p, 0);
7861 __setscheduler(rq, p, SCHED_NORMAL, 0);
7862 if (on_rq) {
7863 activate_task(rq, p, 0);
7864 resched_task(rq->curr);
7865 }
7866 }
7867
7868 void normalize_rt_tasks(void)
7869 {
7870 struct task_struct *g, *p;
7871 unsigned long flags;
7872 struct rq *rq;
7873
7874 read_lock_irqsave(&tasklist_lock, flags);
7875 do_each_thread(g, p) {
7876 /*
7877 * Only normalize user tasks:
7878 */
7879 if (!p->mm)
7880 continue;
7881
7882 p->se.exec_start = 0;
7883 #ifdef CONFIG_SCHEDSTATS
7884 p->se.statistics.wait_start = 0;
7885 p->se.statistics.sleep_start = 0;
7886 p->se.statistics.block_start = 0;
7887 #endif
7888
7889 if (!rt_task(p)) {
7890 /*
7891 * Renice negative nice level userspace
7892 * tasks back to 0:
7893 */
7894 if (TASK_NICE(p) < 0 && p->mm)
7895 set_user_nice(p, 0);
7896 continue;
7897 }
7898
7899 raw_spin_lock(&p->pi_lock);
7900 rq = __task_rq_lock(p);
7901
7902 normalize_task(rq, p);
7903
7904 __task_rq_unlock(rq);
7905 raw_spin_unlock(&p->pi_lock);
7906 } while_each_thread(g, p);
7907
7908 read_unlock_irqrestore(&tasklist_lock, flags);
7909 }
7910
7911 #endif /* CONFIG_MAGIC_SYSRQ */
7912
7913 #ifdef CONFIG_IA64
7914 /*
7915 * These functions are only useful for the IA64 MCA handling.
7916 *
7917 * They can only be called when the whole system has been
7918 * stopped - every CPU needs to be quiescent, and no scheduling
7919 * activity can take place. Using them for anything else would
7920 * be a serious bug, and as a result, they aren't even visible
7921 * under any other configuration.
7922 */
7923
7924 /**
7925 * curr_task - return the current task for a given cpu.
7926 * @cpu: the processor in question.
7927 *
7928 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7929 */
7930 struct task_struct *curr_task(int cpu)
7931 {
7932 return cpu_curr(cpu);
7933 }
7934
7935 /**
7936 * set_curr_task - set the current task for a given cpu.
7937 * @cpu: the processor in question.
7938 * @p: the task pointer to set.
7939 *
7940 * Description: This function must only be used when non-maskable interrupts
7941 * are serviced on a separate stack. It allows the architecture to switch the
7942 * notion of the current task on a cpu in a non-blocking manner. This function
7943 * must be called with all CPU's synchronized, and interrupts disabled, the
7944 * and caller must save the original value of the current task (see
7945 * curr_task() above) and restore that value before reenabling interrupts and
7946 * re-starting the system.
7947 *
7948 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7949 */
7950 void set_curr_task(int cpu, struct task_struct *p)
7951 {
7952 cpu_curr(cpu) = p;
7953 }
7954
7955 #endif
7956
7957 #ifdef CONFIG_FAIR_GROUP_SCHED
7958 static void free_fair_sched_group(struct task_group *tg)
7959 {
7960 int i;
7961
7962 for_each_possible_cpu(i) {
7963 if (tg->cfs_rq)
7964 kfree(tg->cfs_rq[i]);
7965 if (tg->se)
7966 kfree(tg->se[i]);
7967 }
7968
7969 kfree(tg->cfs_rq);
7970 kfree(tg->se);
7971 }
7972
7973 static
7974 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7975 {
7976 struct cfs_rq *cfs_rq;
7977 struct sched_entity *se;
7978 struct rq *rq;
7979 int i;
7980
7981 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7982 if (!tg->cfs_rq)
7983 goto err;
7984 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7985 if (!tg->se)
7986 goto err;
7987
7988 tg->shares = NICE_0_LOAD;
7989
7990 for_each_possible_cpu(i) {
7991 rq = cpu_rq(i);
7992
7993 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7994 GFP_KERNEL, cpu_to_node(i));
7995 if (!cfs_rq)
7996 goto err;
7997
7998 se = kzalloc_node(sizeof(struct sched_entity),
7999 GFP_KERNEL, cpu_to_node(i));
8000 if (!se)
8001 goto err_free_rq;
8002
8003 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8004 }
8005
8006 return 1;
8007
8008 err_free_rq:
8009 kfree(cfs_rq);
8010 err:
8011 return 0;
8012 }
8013
8014 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8015 {
8016 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8017 &cpu_rq(cpu)->leaf_cfs_rq_list);
8018 }
8019
8020 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8021 {
8022 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8023 }
8024 #else /* !CONFG_FAIR_GROUP_SCHED */
8025 static inline void free_fair_sched_group(struct task_group *tg)
8026 {
8027 }
8028
8029 static inline
8030 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8031 {
8032 return 1;
8033 }
8034
8035 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8036 {
8037 }
8038
8039 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8040 {
8041 }
8042 #endif /* CONFIG_FAIR_GROUP_SCHED */
8043
8044 #ifdef CONFIG_RT_GROUP_SCHED
8045 static void free_rt_sched_group(struct task_group *tg)
8046 {
8047 int i;
8048
8049 destroy_rt_bandwidth(&tg->rt_bandwidth);
8050
8051 for_each_possible_cpu(i) {
8052 if (tg->rt_rq)
8053 kfree(tg->rt_rq[i]);
8054 if (tg->rt_se)
8055 kfree(tg->rt_se[i]);
8056 }
8057
8058 kfree(tg->rt_rq);
8059 kfree(tg->rt_se);
8060 }
8061
8062 static
8063 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8064 {
8065 struct rt_rq *rt_rq;
8066 struct sched_rt_entity *rt_se;
8067 struct rq *rq;
8068 int i;
8069
8070 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8071 if (!tg->rt_rq)
8072 goto err;
8073 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8074 if (!tg->rt_se)
8075 goto err;
8076
8077 init_rt_bandwidth(&tg->rt_bandwidth,
8078 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8079
8080 for_each_possible_cpu(i) {
8081 rq = cpu_rq(i);
8082
8083 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8084 GFP_KERNEL, cpu_to_node(i));
8085 if (!rt_rq)
8086 goto err;
8087
8088 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8089 GFP_KERNEL, cpu_to_node(i));
8090 if (!rt_se)
8091 goto err_free_rq;
8092
8093 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8094 }
8095
8096 return 1;
8097
8098 err_free_rq:
8099 kfree(rt_rq);
8100 err:
8101 return 0;
8102 }
8103
8104 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8105 {
8106 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8107 &cpu_rq(cpu)->leaf_rt_rq_list);
8108 }
8109
8110 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8111 {
8112 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8113 }
8114 #else /* !CONFIG_RT_GROUP_SCHED */
8115 static inline void free_rt_sched_group(struct task_group *tg)
8116 {
8117 }
8118
8119 static inline
8120 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8121 {
8122 return 1;
8123 }
8124
8125 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8126 {
8127 }
8128
8129 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8130 {
8131 }
8132 #endif /* CONFIG_RT_GROUP_SCHED */
8133
8134 #ifdef CONFIG_CGROUP_SCHED
8135 static void free_sched_group(struct task_group *tg)
8136 {
8137 free_fair_sched_group(tg);
8138 free_rt_sched_group(tg);
8139 kfree(tg);
8140 }
8141
8142 /* allocate runqueue etc for a new task group */
8143 struct task_group *sched_create_group(struct task_group *parent)
8144 {
8145 struct task_group *tg;
8146 unsigned long flags;
8147 int i;
8148
8149 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8150 if (!tg)
8151 return ERR_PTR(-ENOMEM);
8152
8153 if (!alloc_fair_sched_group(tg, parent))
8154 goto err;
8155
8156 if (!alloc_rt_sched_group(tg, parent))
8157 goto err;
8158
8159 spin_lock_irqsave(&task_group_lock, flags);
8160 for_each_possible_cpu(i) {
8161 register_fair_sched_group(tg, i);
8162 register_rt_sched_group(tg, i);
8163 }
8164 list_add_rcu(&tg->list, &task_groups);
8165
8166 WARN_ON(!parent); /* root should already exist */
8167
8168 tg->parent = parent;
8169 INIT_LIST_HEAD(&tg->children);
8170 list_add_rcu(&tg->siblings, &parent->children);
8171 spin_unlock_irqrestore(&task_group_lock, flags);
8172
8173 return tg;
8174
8175 err:
8176 free_sched_group(tg);
8177 return ERR_PTR(-ENOMEM);
8178 }
8179
8180 /* rcu callback to free various structures associated with a task group */
8181 static void free_sched_group_rcu(struct rcu_head *rhp)
8182 {
8183 /* now it should be safe to free those cfs_rqs */
8184 free_sched_group(container_of(rhp, struct task_group, rcu));
8185 }
8186
8187 /* Destroy runqueue etc associated with a task group */
8188 void sched_destroy_group(struct task_group *tg)
8189 {
8190 unsigned long flags;
8191 int i;
8192
8193 spin_lock_irqsave(&task_group_lock, flags);
8194 for_each_possible_cpu(i) {
8195 unregister_fair_sched_group(tg, i);
8196 unregister_rt_sched_group(tg, i);
8197 }
8198 list_del_rcu(&tg->list);
8199 list_del_rcu(&tg->siblings);
8200 spin_unlock_irqrestore(&task_group_lock, flags);
8201
8202 /* wait for possible concurrent references to cfs_rqs complete */
8203 call_rcu(&tg->rcu, free_sched_group_rcu);
8204 }
8205
8206 /* change task's runqueue when it moves between groups.
8207 * The caller of this function should have put the task in its new group
8208 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8209 * reflect its new group.
8210 */
8211 void sched_move_task(struct task_struct *tsk)
8212 {
8213 int on_rq, running;
8214 unsigned long flags;
8215 struct rq *rq;
8216
8217 rq = task_rq_lock(tsk, &flags);
8218
8219 update_rq_clock(rq);
8220
8221 running = task_current(rq, tsk);
8222 on_rq = tsk->se.on_rq;
8223
8224 if (on_rq)
8225 dequeue_task(rq, tsk, 0);
8226 if (unlikely(running))
8227 tsk->sched_class->put_prev_task(rq, tsk);
8228
8229 set_task_rq(tsk, task_cpu(tsk));
8230
8231 #ifdef CONFIG_FAIR_GROUP_SCHED
8232 if (tsk->sched_class->moved_group)
8233 tsk->sched_class->moved_group(tsk, on_rq);
8234 #endif
8235
8236 if (unlikely(running))
8237 tsk->sched_class->set_curr_task(rq);
8238 if (on_rq)
8239 enqueue_task(rq, tsk, 0, false);
8240
8241 task_rq_unlock(rq, &flags);
8242 }
8243 #endif /* CONFIG_CGROUP_SCHED */
8244
8245 #ifdef CONFIG_FAIR_GROUP_SCHED
8246 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8247 {
8248 struct cfs_rq *cfs_rq = se->cfs_rq;
8249 int on_rq;
8250
8251 on_rq = se->on_rq;
8252 if (on_rq)
8253 dequeue_entity(cfs_rq, se, 0);
8254
8255 se->load.weight = shares;
8256 se->load.inv_weight = 0;
8257
8258 if (on_rq)
8259 enqueue_entity(cfs_rq, se, 0);
8260 }
8261
8262 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8263 {
8264 struct cfs_rq *cfs_rq = se->cfs_rq;
8265 struct rq *rq = cfs_rq->rq;
8266 unsigned long flags;
8267
8268 raw_spin_lock_irqsave(&rq->lock, flags);
8269 __set_se_shares(se, shares);
8270 raw_spin_unlock_irqrestore(&rq->lock, flags);
8271 }
8272
8273 static DEFINE_MUTEX(shares_mutex);
8274
8275 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8276 {
8277 int i;
8278 unsigned long flags;
8279
8280 /*
8281 * We can't change the weight of the root cgroup.
8282 */
8283 if (!tg->se[0])
8284 return -EINVAL;
8285
8286 if (shares < MIN_SHARES)
8287 shares = MIN_SHARES;
8288 else if (shares > MAX_SHARES)
8289 shares = MAX_SHARES;
8290
8291 mutex_lock(&shares_mutex);
8292 if (tg->shares == shares)
8293 goto done;
8294
8295 spin_lock_irqsave(&task_group_lock, flags);
8296 for_each_possible_cpu(i)
8297 unregister_fair_sched_group(tg, i);
8298 list_del_rcu(&tg->siblings);
8299 spin_unlock_irqrestore(&task_group_lock, flags);
8300
8301 /* wait for any ongoing reference to this group to finish */
8302 synchronize_sched();
8303
8304 /*
8305 * Now we are free to modify the group's share on each cpu
8306 * w/o tripping rebalance_share or load_balance_fair.
8307 */
8308 tg->shares = shares;
8309 for_each_possible_cpu(i) {
8310 /*
8311 * force a rebalance
8312 */
8313 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8314 set_se_shares(tg->se[i], shares);
8315 }
8316
8317 /*
8318 * Enable load balance activity on this group, by inserting it back on
8319 * each cpu's rq->leaf_cfs_rq_list.
8320 */
8321 spin_lock_irqsave(&task_group_lock, flags);
8322 for_each_possible_cpu(i)
8323 register_fair_sched_group(tg, i);
8324 list_add_rcu(&tg->siblings, &tg->parent->children);
8325 spin_unlock_irqrestore(&task_group_lock, flags);
8326 done:
8327 mutex_unlock(&shares_mutex);
8328 return 0;
8329 }
8330
8331 unsigned long sched_group_shares(struct task_group *tg)
8332 {
8333 return tg->shares;
8334 }
8335 #endif
8336
8337 #ifdef CONFIG_RT_GROUP_SCHED
8338 /*
8339 * Ensure that the real time constraints are schedulable.
8340 */
8341 static DEFINE_MUTEX(rt_constraints_mutex);
8342
8343 static unsigned long to_ratio(u64 period, u64 runtime)
8344 {
8345 if (runtime == RUNTIME_INF)
8346 return 1ULL << 20;
8347
8348 return div64_u64(runtime << 20, period);
8349 }
8350
8351 /* Must be called with tasklist_lock held */
8352 static inline int tg_has_rt_tasks(struct task_group *tg)
8353 {
8354 struct task_struct *g, *p;
8355
8356 do_each_thread(g, p) {
8357 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8358 return 1;
8359 } while_each_thread(g, p);
8360
8361 return 0;
8362 }
8363
8364 struct rt_schedulable_data {
8365 struct task_group *tg;
8366 u64 rt_period;
8367 u64 rt_runtime;
8368 };
8369
8370 static int tg_schedulable(struct task_group *tg, void *data)
8371 {
8372 struct rt_schedulable_data *d = data;
8373 struct task_group *child;
8374 unsigned long total, sum = 0;
8375 u64 period, runtime;
8376
8377 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8378 runtime = tg->rt_bandwidth.rt_runtime;
8379
8380 if (tg == d->tg) {
8381 period = d->rt_period;
8382 runtime = d->rt_runtime;
8383 }
8384
8385 /*
8386 * Cannot have more runtime than the period.
8387 */
8388 if (runtime > period && runtime != RUNTIME_INF)
8389 return -EINVAL;
8390
8391 /*
8392 * Ensure we don't starve existing RT tasks.
8393 */
8394 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8395 return -EBUSY;
8396
8397 total = to_ratio(period, runtime);
8398
8399 /*
8400 * Nobody can have more than the global setting allows.
8401 */
8402 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8403 return -EINVAL;
8404
8405 /*
8406 * The sum of our children's runtime should not exceed our own.
8407 */
8408 list_for_each_entry_rcu(child, &tg->children, siblings) {
8409 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8410 runtime = child->rt_bandwidth.rt_runtime;
8411
8412 if (child == d->tg) {
8413 period = d->rt_period;
8414 runtime = d->rt_runtime;
8415 }
8416
8417 sum += to_ratio(period, runtime);
8418 }
8419
8420 if (sum > total)
8421 return -EINVAL;
8422
8423 return 0;
8424 }
8425
8426 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8427 {
8428 struct rt_schedulable_data data = {
8429 .tg = tg,
8430 .rt_period = period,
8431 .rt_runtime = runtime,
8432 };
8433
8434 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8435 }
8436
8437 static int tg_set_bandwidth(struct task_group *tg,
8438 u64 rt_period, u64 rt_runtime)
8439 {
8440 int i, err = 0;
8441
8442 mutex_lock(&rt_constraints_mutex);
8443 read_lock(&tasklist_lock);
8444 err = __rt_schedulable(tg, rt_period, rt_runtime);
8445 if (err)
8446 goto unlock;
8447
8448 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8449 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8450 tg->rt_bandwidth.rt_runtime = rt_runtime;
8451
8452 for_each_possible_cpu(i) {
8453 struct rt_rq *rt_rq = tg->rt_rq[i];
8454
8455 raw_spin_lock(&rt_rq->rt_runtime_lock);
8456 rt_rq->rt_runtime = rt_runtime;
8457 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8458 }
8459 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8460 unlock:
8461 read_unlock(&tasklist_lock);
8462 mutex_unlock(&rt_constraints_mutex);
8463
8464 return err;
8465 }
8466
8467 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8468 {
8469 u64 rt_runtime, rt_period;
8470
8471 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8472 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8473 if (rt_runtime_us < 0)
8474 rt_runtime = RUNTIME_INF;
8475
8476 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8477 }
8478
8479 long sched_group_rt_runtime(struct task_group *tg)
8480 {
8481 u64 rt_runtime_us;
8482
8483 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8484 return -1;
8485
8486 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8487 do_div(rt_runtime_us, NSEC_PER_USEC);
8488 return rt_runtime_us;
8489 }
8490
8491 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8492 {
8493 u64 rt_runtime, rt_period;
8494
8495 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8496 rt_runtime = tg->rt_bandwidth.rt_runtime;
8497
8498 if (rt_period == 0)
8499 return -EINVAL;
8500
8501 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8502 }
8503
8504 long sched_group_rt_period(struct task_group *tg)
8505 {
8506 u64 rt_period_us;
8507
8508 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8509 do_div(rt_period_us, NSEC_PER_USEC);
8510 return rt_period_us;
8511 }
8512
8513 static int sched_rt_global_constraints(void)
8514 {
8515 u64 runtime, period;
8516 int ret = 0;
8517
8518 if (sysctl_sched_rt_period <= 0)
8519 return -EINVAL;
8520
8521 runtime = global_rt_runtime();
8522 period = global_rt_period();
8523
8524 /*
8525 * Sanity check on the sysctl variables.
8526 */
8527 if (runtime > period && runtime != RUNTIME_INF)
8528 return -EINVAL;
8529
8530 mutex_lock(&rt_constraints_mutex);
8531 read_lock(&tasklist_lock);
8532 ret = __rt_schedulable(NULL, 0, 0);
8533 read_unlock(&tasklist_lock);
8534 mutex_unlock(&rt_constraints_mutex);
8535
8536 return ret;
8537 }
8538
8539 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8540 {
8541 /* Don't accept realtime tasks when there is no way for them to run */
8542 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8543 return 0;
8544
8545 return 1;
8546 }
8547
8548 #else /* !CONFIG_RT_GROUP_SCHED */
8549 static int sched_rt_global_constraints(void)
8550 {
8551 unsigned long flags;
8552 int i;
8553
8554 if (sysctl_sched_rt_period <= 0)
8555 return -EINVAL;
8556
8557 /*
8558 * There's always some RT tasks in the root group
8559 * -- migration, kstopmachine etc..
8560 */
8561 if (sysctl_sched_rt_runtime == 0)
8562 return -EBUSY;
8563
8564 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8565 for_each_possible_cpu(i) {
8566 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8567
8568 raw_spin_lock(&rt_rq->rt_runtime_lock);
8569 rt_rq->rt_runtime = global_rt_runtime();
8570 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8571 }
8572 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8573
8574 return 0;
8575 }
8576 #endif /* CONFIG_RT_GROUP_SCHED */
8577
8578 int sched_rt_handler(struct ctl_table *table, int write,
8579 void __user *buffer, size_t *lenp,
8580 loff_t *ppos)
8581 {
8582 int ret;
8583 int old_period, old_runtime;
8584 static DEFINE_MUTEX(mutex);
8585
8586 mutex_lock(&mutex);
8587 old_period = sysctl_sched_rt_period;
8588 old_runtime = sysctl_sched_rt_runtime;
8589
8590 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8591
8592 if (!ret && write) {
8593 ret = sched_rt_global_constraints();
8594 if (ret) {
8595 sysctl_sched_rt_period = old_period;
8596 sysctl_sched_rt_runtime = old_runtime;
8597 } else {
8598 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8599 def_rt_bandwidth.rt_period =
8600 ns_to_ktime(global_rt_period());
8601 }
8602 }
8603 mutex_unlock(&mutex);
8604
8605 return ret;
8606 }
8607
8608 #ifdef CONFIG_CGROUP_SCHED
8609
8610 /* return corresponding task_group object of a cgroup */
8611 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8612 {
8613 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8614 struct task_group, css);
8615 }
8616
8617 static struct cgroup_subsys_state *
8618 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8619 {
8620 struct task_group *tg, *parent;
8621
8622 if (!cgrp->parent) {
8623 /* This is early initialization for the top cgroup */
8624 return &init_task_group.css;
8625 }
8626
8627 parent = cgroup_tg(cgrp->parent);
8628 tg = sched_create_group(parent);
8629 if (IS_ERR(tg))
8630 return ERR_PTR(-ENOMEM);
8631
8632 return &tg->css;
8633 }
8634
8635 static void
8636 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8637 {
8638 struct task_group *tg = cgroup_tg(cgrp);
8639
8640 sched_destroy_group(tg);
8641 }
8642
8643 static int
8644 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8645 {
8646 #ifdef CONFIG_RT_GROUP_SCHED
8647 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8648 return -EINVAL;
8649 #else
8650 /* We don't support RT-tasks being in separate groups */
8651 if (tsk->sched_class != &fair_sched_class)
8652 return -EINVAL;
8653 #endif
8654 return 0;
8655 }
8656
8657 static int
8658 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8659 struct task_struct *tsk, bool threadgroup)
8660 {
8661 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8662 if (retval)
8663 return retval;
8664 if (threadgroup) {
8665 struct task_struct *c;
8666 rcu_read_lock();
8667 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8668 retval = cpu_cgroup_can_attach_task(cgrp, c);
8669 if (retval) {
8670 rcu_read_unlock();
8671 return retval;
8672 }
8673 }
8674 rcu_read_unlock();
8675 }
8676 return 0;
8677 }
8678
8679 static void
8680 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8681 struct cgroup *old_cont, struct task_struct *tsk,
8682 bool threadgroup)
8683 {
8684 sched_move_task(tsk);
8685 if (threadgroup) {
8686 struct task_struct *c;
8687 rcu_read_lock();
8688 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8689 sched_move_task(c);
8690 }
8691 rcu_read_unlock();
8692 }
8693 }
8694
8695 #ifdef CONFIG_FAIR_GROUP_SCHED
8696 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8697 u64 shareval)
8698 {
8699 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8700 }
8701
8702 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8703 {
8704 struct task_group *tg = cgroup_tg(cgrp);
8705
8706 return (u64) tg->shares;
8707 }
8708 #endif /* CONFIG_FAIR_GROUP_SCHED */
8709
8710 #ifdef CONFIG_RT_GROUP_SCHED
8711 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8712 s64 val)
8713 {
8714 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8715 }
8716
8717 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8718 {
8719 return sched_group_rt_runtime(cgroup_tg(cgrp));
8720 }
8721
8722 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8723 u64 rt_period_us)
8724 {
8725 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8726 }
8727
8728 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8729 {
8730 return sched_group_rt_period(cgroup_tg(cgrp));
8731 }
8732 #endif /* CONFIG_RT_GROUP_SCHED */
8733
8734 static struct cftype cpu_files[] = {
8735 #ifdef CONFIG_FAIR_GROUP_SCHED
8736 {
8737 .name = "shares",
8738 .read_u64 = cpu_shares_read_u64,
8739 .write_u64 = cpu_shares_write_u64,
8740 },
8741 #endif
8742 #ifdef CONFIG_RT_GROUP_SCHED
8743 {
8744 .name = "rt_runtime_us",
8745 .read_s64 = cpu_rt_runtime_read,
8746 .write_s64 = cpu_rt_runtime_write,
8747 },
8748 {
8749 .name = "rt_period_us",
8750 .read_u64 = cpu_rt_period_read_uint,
8751 .write_u64 = cpu_rt_period_write_uint,
8752 },
8753 #endif
8754 };
8755
8756 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8757 {
8758 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8759 }
8760
8761 struct cgroup_subsys cpu_cgroup_subsys = {
8762 .name = "cpu",
8763 .create = cpu_cgroup_create,
8764 .destroy = cpu_cgroup_destroy,
8765 .can_attach = cpu_cgroup_can_attach,
8766 .attach = cpu_cgroup_attach,
8767 .populate = cpu_cgroup_populate,
8768 .subsys_id = cpu_cgroup_subsys_id,
8769 .early_init = 1,
8770 };
8771
8772 #endif /* CONFIG_CGROUP_SCHED */
8773
8774 #ifdef CONFIG_CGROUP_CPUACCT
8775
8776 /*
8777 * CPU accounting code for task groups.
8778 *
8779 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8780 * (balbir@in.ibm.com).
8781 */
8782
8783 /* track cpu usage of a group of tasks and its child groups */
8784 struct cpuacct {
8785 struct cgroup_subsys_state css;
8786 /* cpuusage holds pointer to a u64-type object on every cpu */
8787 u64 *cpuusage;
8788 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8789 struct cpuacct *parent;
8790 };
8791
8792 struct cgroup_subsys cpuacct_subsys;
8793
8794 /* return cpu accounting group corresponding to this container */
8795 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8796 {
8797 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8798 struct cpuacct, css);
8799 }
8800
8801 /* return cpu accounting group to which this task belongs */
8802 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8803 {
8804 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8805 struct cpuacct, css);
8806 }
8807
8808 /* create a new cpu accounting group */
8809 static struct cgroup_subsys_state *cpuacct_create(
8810 struct cgroup_subsys *ss, struct cgroup *cgrp)
8811 {
8812 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8813 int i;
8814
8815 if (!ca)
8816 goto out;
8817
8818 ca->cpuusage = alloc_percpu(u64);
8819 if (!ca->cpuusage)
8820 goto out_free_ca;
8821
8822 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8823 if (percpu_counter_init(&ca->cpustat[i], 0))
8824 goto out_free_counters;
8825
8826 if (cgrp->parent)
8827 ca->parent = cgroup_ca(cgrp->parent);
8828
8829 return &ca->css;
8830
8831 out_free_counters:
8832 while (--i >= 0)
8833 percpu_counter_destroy(&ca->cpustat[i]);
8834 free_percpu(ca->cpuusage);
8835 out_free_ca:
8836 kfree(ca);
8837 out:
8838 return ERR_PTR(-ENOMEM);
8839 }
8840
8841 /* destroy an existing cpu accounting group */
8842 static void
8843 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8844 {
8845 struct cpuacct *ca = cgroup_ca(cgrp);
8846 int i;
8847
8848 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8849 percpu_counter_destroy(&ca->cpustat[i]);
8850 free_percpu(ca->cpuusage);
8851 kfree(ca);
8852 }
8853
8854 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8855 {
8856 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8857 u64 data;
8858
8859 #ifndef CONFIG_64BIT
8860 /*
8861 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8862 */
8863 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8864 data = *cpuusage;
8865 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8866 #else
8867 data = *cpuusage;
8868 #endif
8869
8870 return data;
8871 }
8872
8873 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8874 {
8875 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8876
8877 #ifndef CONFIG_64BIT
8878 /*
8879 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8880 */
8881 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8882 *cpuusage = val;
8883 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8884 #else
8885 *cpuusage = val;
8886 #endif
8887 }
8888
8889 /* return total cpu usage (in nanoseconds) of a group */
8890 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8891 {
8892 struct cpuacct *ca = cgroup_ca(cgrp);
8893 u64 totalcpuusage = 0;
8894 int i;
8895
8896 for_each_present_cpu(i)
8897 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8898
8899 return totalcpuusage;
8900 }
8901
8902 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8903 u64 reset)
8904 {
8905 struct cpuacct *ca = cgroup_ca(cgrp);
8906 int err = 0;
8907 int i;
8908
8909 if (reset) {
8910 err = -EINVAL;
8911 goto out;
8912 }
8913
8914 for_each_present_cpu(i)
8915 cpuacct_cpuusage_write(ca, i, 0);
8916
8917 out:
8918 return err;
8919 }
8920
8921 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8922 struct seq_file *m)
8923 {
8924 struct cpuacct *ca = cgroup_ca(cgroup);
8925 u64 percpu;
8926 int i;
8927
8928 for_each_present_cpu(i) {
8929 percpu = cpuacct_cpuusage_read(ca, i);
8930 seq_printf(m, "%llu ", (unsigned long long) percpu);
8931 }
8932 seq_printf(m, "\n");
8933 return 0;
8934 }
8935
8936 static const char *cpuacct_stat_desc[] = {
8937 [CPUACCT_STAT_USER] = "user",
8938 [CPUACCT_STAT_SYSTEM] = "system",
8939 };
8940
8941 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8942 struct cgroup_map_cb *cb)
8943 {
8944 struct cpuacct *ca = cgroup_ca(cgrp);
8945 int i;
8946
8947 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8948 s64 val = percpu_counter_read(&ca->cpustat[i]);
8949 val = cputime64_to_clock_t(val);
8950 cb->fill(cb, cpuacct_stat_desc[i], val);
8951 }
8952 return 0;
8953 }
8954
8955 static struct cftype files[] = {
8956 {
8957 .name = "usage",
8958 .read_u64 = cpuusage_read,
8959 .write_u64 = cpuusage_write,
8960 },
8961 {
8962 .name = "usage_percpu",
8963 .read_seq_string = cpuacct_percpu_seq_read,
8964 },
8965 {
8966 .name = "stat",
8967 .read_map = cpuacct_stats_show,
8968 },
8969 };
8970
8971 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8972 {
8973 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8974 }
8975
8976 /*
8977 * charge this task's execution time to its accounting group.
8978 *
8979 * called with rq->lock held.
8980 */
8981 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8982 {
8983 struct cpuacct *ca;
8984 int cpu;
8985
8986 if (unlikely(!cpuacct_subsys.active))
8987 return;
8988
8989 cpu = task_cpu(tsk);
8990
8991 rcu_read_lock();
8992
8993 ca = task_ca(tsk);
8994
8995 for (; ca; ca = ca->parent) {
8996 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8997 *cpuusage += cputime;
8998 }
8999
9000 rcu_read_unlock();
9001 }
9002
9003 /*
9004 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9005 * in cputime_t units. As a result, cpuacct_update_stats calls
9006 * percpu_counter_add with values large enough to always overflow the
9007 * per cpu batch limit causing bad SMP scalability.
9008 *
9009 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9010 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9011 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9012 */
9013 #ifdef CONFIG_SMP
9014 #define CPUACCT_BATCH \
9015 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9016 #else
9017 #define CPUACCT_BATCH 0
9018 #endif
9019
9020 /*
9021 * Charge the system/user time to the task's accounting group.
9022 */
9023 static void cpuacct_update_stats(struct task_struct *tsk,
9024 enum cpuacct_stat_index idx, cputime_t val)
9025 {
9026 struct cpuacct *ca;
9027 int batch = CPUACCT_BATCH;
9028
9029 if (unlikely(!cpuacct_subsys.active))
9030 return;
9031
9032 rcu_read_lock();
9033 ca = task_ca(tsk);
9034
9035 do {
9036 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9037 ca = ca->parent;
9038 } while (ca);
9039 rcu_read_unlock();
9040 }
9041
9042 struct cgroup_subsys cpuacct_subsys = {
9043 .name = "cpuacct",
9044 .create = cpuacct_create,
9045 .destroy = cpuacct_destroy,
9046 .populate = cpuacct_populate,
9047 .subsys_id = cpuacct_subsys_id,
9048 };
9049 #endif /* CONFIG_CGROUP_CPUACCT */
9050
9051 #ifndef CONFIG_SMP
9052
9053 int rcu_expedited_torture_stats(char *page)
9054 {
9055 return 0;
9056 }
9057 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9058
9059 void synchronize_sched_expedited(void)
9060 {
9061 }
9062 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9063
9064 #else /* #ifndef CONFIG_SMP */
9065
9066 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9067 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9068
9069 #define RCU_EXPEDITED_STATE_POST -2
9070 #define RCU_EXPEDITED_STATE_IDLE -1
9071
9072 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9073
9074 int rcu_expedited_torture_stats(char *page)
9075 {
9076 int cnt = 0;
9077 int cpu;
9078
9079 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9080 for_each_online_cpu(cpu) {
9081 cnt += sprintf(&page[cnt], " %d:%d",
9082 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9083 }
9084 cnt += sprintf(&page[cnt], "\n");
9085 return cnt;
9086 }
9087 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9088
9089 static long synchronize_sched_expedited_count;
9090
9091 /*
9092 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9093 * approach to force grace period to end quickly. This consumes
9094 * significant time on all CPUs, and is thus not recommended for
9095 * any sort of common-case code.
9096 *
9097 * Note that it is illegal to call this function while holding any
9098 * lock that is acquired by a CPU-hotplug notifier. Failing to
9099 * observe this restriction will result in deadlock.
9100 */
9101 void synchronize_sched_expedited(void)
9102 {
9103 int cpu;
9104 unsigned long flags;
9105 bool need_full_sync = 0;
9106 struct rq *rq;
9107 struct migration_req *req;
9108 long snap;
9109 int trycount = 0;
9110
9111 smp_mb(); /* ensure prior mod happens before capturing snap. */
9112 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9113 get_online_cpus();
9114 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9115 put_online_cpus();
9116 if (trycount++ < 10)
9117 udelay(trycount * num_online_cpus());
9118 else {
9119 synchronize_sched();
9120 return;
9121 }
9122 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9123 smp_mb(); /* ensure test happens before caller kfree */
9124 return;
9125 }
9126 get_online_cpus();
9127 }
9128 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9129 for_each_online_cpu(cpu) {
9130 rq = cpu_rq(cpu);
9131 req = &per_cpu(rcu_migration_req, cpu);
9132 init_completion(&req->done);
9133 req->task = NULL;
9134 req->dest_cpu = RCU_MIGRATION_NEED_QS;
9135 raw_spin_lock_irqsave(&rq->lock, flags);
9136 list_add(&req->list, &rq->migration_queue);
9137 raw_spin_unlock_irqrestore(&rq->lock, flags);
9138 wake_up_process(rq->migration_thread);
9139 }
9140 for_each_online_cpu(cpu) {
9141 rcu_expedited_state = cpu;
9142 req = &per_cpu(rcu_migration_req, cpu);
9143 rq = cpu_rq(cpu);
9144 wait_for_completion(&req->done);
9145 raw_spin_lock_irqsave(&rq->lock, flags);
9146 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9147 need_full_sync = 1;
9148 req->dest_cpu = RCU_MIGRATION_IDLE;
9149 raw_spin_unlock_irqrestore(&rq->lock, flags);
9150 }
9151 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9152 synchronize_sched_expedited_count++;
9153 mutex_unlock(&rcu_sched_expedited_mutex);
9154 put_online_cpus();
9155 if (need_full_sync)
9156 synchronize_sched();
9157 }
9158 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9159
9160 #endif /* #else #ifndef CONFIG_SMP */