]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched.c
sched: push RT tasks from overloaded CPUs
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/pid_namespace.h>
48 #include <linux/smp.h>
49 #include <linux/threads.h>
50 #include <linux/timer.h>
51 #include <linux/rcupdate.h>
52 #include <linux/cpu.h>
53 #include <linux/cpuset.h>
54 #include <linux/percpu.h>
55 #include <linux/kthread.h>
56 #include <linux/seq_file.h>
57 #include <linux/sysctl.h>
58 #include <linux/syscalls.h>
59 #include <linux/times.h>
60 #include <linux/tsacct_kern.h>
61 #include <linux/kprobes.h>
62 #include <linux/delayacct.h>
63 #include <linux/reciprocal_div.h>
64 #include <linux/unistd.h>
65 #include <linux/pagemap.h>
66
67 #include <asm/tlb.h>
68 #include <asm/irq_regs.h>
69
70 /*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75 unsigned long long __attribute__((weak)) sched_clock(void)
76 {
77 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
78 }
79
80 /*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89 /*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98 /*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
101 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
102 #define JIFFIES_TO_NS(TIME) ((TIME) * (NSEC_PER_SEC / HZ))
103
104 #define NICE_0_LOAD SCHED_LOAD_SCALE
105 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
107 /*
108 * These are the 'tuning knobs' of the scheduler:
109 *
110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
111 * Timeslices get refilled after they expire.
112 */
113 #define DEF_TIMESLICE (100 * HZ / 1000)
114
115 #ifdef CONFIG_SMP
116 /*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121 {
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123 }
124
125 /*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130 {
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133 }
134 #endif
135
136 static inline int rt_policy(int policy)
137 {
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141 }
142
143 static inline int task_has_rt_policy(struct task_struct *p)
144 {
145 return rt_policy(p->policy);
146 }
147
148 /*
149 * This is the priority-queue data structure of the RT scheduling class:
150 */
151 struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154 };
155
156 #ifdef CONFIG_FAIR_GROUP_SCHED
157
158 #include <linux/cgroup.h>
159
160 struct cfs_rq;
161
162 /* task group related information */
163 struct task_group {
164 #ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166 #endif
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
171
172 /*
173 * shares assigned to a task group governs how much of cpu bandwidth
174 * is allocated to the group. The more shares a group has, the more is
175 * the cpu bandwidth allocated to it.
176 *
177 * For ex, lets say that there are three task groups, A, B and C which
178 * have been assigned shares 1000, 2000 and 3000 respectively. Then,
179 * cpu bandwidth allocated by the scheduler to task groups A, B and C
180 * should be:
181 *
182 * Bw(A) = 1000/(1000+2000+3000) * 100 = 16.66%
183 * Bw(B) = 2000/(1000+2000+3000) * 100 = 33.33%
184 * Bw(C) = 3000/(1000+2000+3000) * 100 = 50%
185 *
186 * The weight assigned to a task group's schedulable entities on every
187 * cpu (task_group.se[a_cpu]->load.weight) is derived from the task
188 * group's shares. For ex: lets say that task group A has been
189 * assigned shares of 1000 and there are two CPUs in a system. Then,
190 *
191 * tg_A->se[0]->load.weight = tg_A->se[1]->load.weight = 1000;
192 *
193 * Note: It's not necessary that each of a task's group schedulable
194 * entity have the same weight on all CPUs. If the group
195 * has 2 of its tasks on CPU0 and 1 task on CPU1, then a
196 * better distribution of weight could be:
197 *
198 * tg_A->se[0]->load.weight = 2/3 * 2000 = 1333
199 * tg_A->se[1]->load.weight = 1/2 * 2000 = 667
200 *
201 * rebalance_shares() is responsible for distributing the shares of a
202 * task groups like this among the group's schedulable entities across
203 * cpus.
204 *
205 */
206 unsigned long shares;
207
208 struct rcu_head rcu;
209 };
210
211 /* Default task group's sched entity on each cpu */
212 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
213 /* Default task group's cfs_rq on each cpu */
214 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
215
216 static struct sched_entity *init_sched_entity_p[NR_CPUS];
217 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
218
219 /* task_group_mutex serializes add/remove of task groups and also changes to
220 * a task group's cpu shares.
221 */
222 static DEFINE_MUTEX(task_group_mutex);
223
224 /* doms_cur_mutex serializes access to doms_cur[] array */
225 static DEFINE_MUTEX(doms_cur_mutex);
226
227 #ifdef CONFIG_SMP
228 /* kernel thread that runs rebalance_shares() periodically */
229 static struct task_struct *lb_monitor_task;
230 static int load_balance_monitor(void *unused);
231 #endif
232
233 static void set_se_shares(struct sched_entity *se, unsigned long shares);
234
235 /* Default task group.
236 * Every task in system belong to this group at bootup.
237 */
238 struct task_group init_task_group = {
239 .se = init_sched_entity_p,
240 .cfs_rq = init_cfs_rq_p,
241 };
242
243 #ifdef CONFIG_FAIR_USER_SCHED
244 # define INIT_TASK_GROUP_LOAD 2*NICE_0_LOAD
245 #else
246 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
247 #endif
248
249 #define MIN_GROUP_SHARES 2
250
251 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
252
253 /* return group to which a task belongs */
254 static inline struct task_group *task_group(struct task_struct *p)
255 {
256 struct task_group *tg;
257
258 #ifdef CONFIG_FAIR_USER_SCHED
259 tg = p->user->tg;
260 #elif defined(CONFIG_FAIR_CGROUP_SCHED)
261 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
262 struct task_group, css);
263 #else
264 tg = &init_task_group;
265 #endif
266 return tg;
267 }
268
269 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
270 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu)
271 {
272 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
273 p->se.parent = task_group(p)->se[cpu];
274 }
275
276 static inline void lock_task_group_list(void)
277 {
278 mutex_lock(&task_group_mutex);
279 }
280
281 static inline void unlock_task_group_list(void)
282 {
283 mutex_unlock(&task_group_mutex);
284 }
285
286 static inline void lock_doms_cur(void)
287 {
288 mutex_lock(&doms_cur_mutex);
289 }
290
291 static inline void unlock_doms_cur(void)
292 {
293 mutex_unlock(&doms_cur_mutex);
294 }
295
296 #else
297
298 static inline void set_task_cfs_rq(struct task_struct *p, unsigned int cpu) { }
299 static inline void lock_task_group_list(void) { }
300 static inline void unlock_task_group_list(void) { }
301 static inline void lock_doms_cur(void) { }
302 static inline void unlock_doms_cur(void) { }
303
304 #endif /* CONFIG_FAIR_GROUP_SCHED */
305
306 /* CFS-related fields in a runqueue */
307 struct cfs_rq {
308 struct load_weight load;
309 unsigned long nr_running;
310
311 u64 exec_clock;
312 u64 min_vruntime;
313
314 struct rb_root tasks_timeline;
315 struct rb_node *rb_leftmost;
316 struct rb_node *rb_load_balance_curr;
317 /* 'curr' points to currently running entity on this cfs_rq.
318 * It is set to NULL otherwise (i.e when none are currently running).
319 */
320 struct sched_entity *curr;
321
322 unsigned long nr_spread_over;
323
324 #ifdef CONFIG_FAIR_GROUP_SCHED
325 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
326
327 /*
328 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
329 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
330 * (like users, containers etc.)
331 *
332 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
333 * list is used during load balance.
334 */
335 struct list_head leaf_cfs_rq_list;
336 struct task_group *tg; /* group that "owns" this runqueue */
337 #endif
338 };
339
340 /* Real-Time classes' related field in a runqueue: */
341 struct rt_rq {
342 struct rt_prio_array active;
343 int rt_load_balance_idx;
344 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
345 unsigned long rt_nr_running;
346 /* highest queued rt task prio */
347 int highest_prio;
348 };
349
350 /*
351 * This is the main, per-CPU runqueue data structure.
352 *
353 * Locking rule: those places that want to lock multiple runqueues
354 * (such as the load balancing or the thread migration code), lock
355 * acquire operations must be ordered by ascending &runqueue.
356 */
357 struct rq {
358 /* runqueue lock: */
359 spinlock_t lock;
360
361 /*
362 * nr_running and cpu_load should be in the same cacheline because
363 * remote CPUs use both these fields when doing load calculation.
364 */
365 unsigned long nr_running;
366 #define CPU_LOAD_IDX_MAX 5
367 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
368 unsigned char idle_at_tick;
369 #ifdef CONFIG_NO_HZ
370 unsigned char in_nohz_recently;
371 #endif
372 /* capture load from *all* tasks on this cpu: */
373 struct load_weight load;
374 unsigned long nr_load_updates;
375 u64 nr_switches;
376
377 struct cfs_rq cfs;
378 #ifdef CONFIG_FAIR_GROUP_SCHED
379 /* list of leaf cfs_rq on this cpu: */
380 struct list_head leaf_cfs_rq_list;
381 #endif
382 struct rt_rq rt;
383
384 /*
385 * This is part of a global counter where only the total sum
386 * over all CPUs matters. A task can increase this counter on
387 * one CPU and if it got migrated afterwards it may decrease
388 * it on another CPU. Always updated under the runqueue lock:
389 */
390 unsigned long nr_uninterruptible;
391
392 struct task_struct *curr, *idle;
393 unsigned long next_balance;
394 struct mm_struct *prev_mm;
395
396 u64 clock, prev_clock_raw;
397 s64 clock_max_delta;
398
399 unsigned int clock_warps, clock_overflows;
400 u64 idle_clock;
401 unsigned int clock_deep_idle_events;
402 u64 tick_timestamp;
403
404 atomic_t nr_iowait;
405
406 #ifdef CONFIG_SMP
407 struct sched_domain *sd;
408
409 /* For active balancing */
410 int active_balance;
411 int push_cpu;
412 /* cpu of this runqueue: */
413 int cpu;
414
415 struct task_struct *migration_thread;
416 struct list_head migration_queue;
417 #endif
418
419 #ifdef CONFIG_SCHEDSTATS
420 /* latency stats */
421 struct sched_info rq_sched_info;
422
423 /* sys_sched_yield() stats */
424 unsigned int yld_exp_empty;
425 unsigned int yld_act_empty;
426 unsigned int yld_both_empty;
427 unsigned int yld_count;
428
429 /* schedule() stats */
430 unsigned int sched_switch;
431 unsigned int sched_count;
432 unsigned int sched_goidle;
433
434 /* try_to_wake_up() stats */
435 unsigned int ttwu_count;
436 unsigned int ttwu_local;
437
438 /* BKL stats */
439 unsigned int bkl_count;
440 #endif
441 struct lock_class_key rq_lock_key;
442 };
443
444 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
445
446 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
447 {
448 rq->curr->sched_class->check_preempt_curr(rq, p);
449 }
450
451 static inline int cpu_of(struct rq *rq)
452 {
453 #ifdef CONFIG_SMP
454 return rq->cpu;
455 #else
456 return 0;
457 #endif
458 }
459
460 /*
461 * Update the per-runqueue clock, as finegrained as the platform can give
462 * us, but without assuming monotonicity, etc.:
463 */
464 static void __update_rq_clock(struct rq *rq)
465 {
466 u64 prev_raw = rq->prev_clock_raw;
467 u64 now = sched_clock();
468 s64 delta = now - prev_raw;
469 u64 clock = rq->clock;
470
471 #ifdef CONFIG_SCHED_DEBUG
472 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
473 #endif
474 /*
475 * Protect against sched_clock() occasionally going backwards:
476 */
477 if (unlikely(delta < 0)) {
478 clock++;
479 rq->clock_warps++;
480 } else {
481 /*
482 * Catch too large forward jumps too:
483 */
484 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
485 if (clock < rq->tick_timestamp + TICK_NSEC)
486 clock = rq->tick_timestamp + TICK_NSEC;
487 else
488 clock++;
489 rq->clock_overflows++;
490 } else {
491 if (unlikely(delta > rq->clock_max_delta))
492 rq->clock_max_delta = delta;
493 clock += delta;
494 }
495 }
496
497 rq->prev_clock_raw = now;
498 rq->clock = clock;
499 }
500
501 static void update_rq_clock(struct rq *rq)
502 {
503 if (likely(smp_processor_id() == cpu_of(rq)))
504 __update_rq_clock(rq);
505 }
506
507 /*
508 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
509 * See detach_destroy_domains: synchronize_sched for details.
510 *
511 * The domain tree of any CPU may only be accessed from within
512 * preempt-disabled sections.
513 */
514 #define for_each_domain(cpu, __sd) \
515 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
516
517 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
518 #define this_rq() (&__get_cpu_var(runqueues))
519 #define task_rq(p) cpu_rq(task_cpu(p))
520 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
521
522 /*
523 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
524 */
525 #ifdef CONFIG_SCHED_DEBUG
526 # define const_debug __read_mostly
527 #else
528 # define const_debug static const
529 #endif
530
531 /*
532 * Debugging: various feature bits
533 */
534 enum {
535 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
536 SCHED_FEAT_WAKEUP_PREEMPT = 2,
537 SCHED_FEAT_START_DEBIT = 4,
538 SCHED_FEAT_TREE_AVG = 8,
539 SCHED_FEAT_APPROX_AVG = 16,
540 };
541
542 const_debug unsigned int sysctl_sched_features =
543 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
544 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
545 SCHED_FEAT_START_DEBIT * 1 |
546 SCHED_FEAT_TREE_AVG * 0 |
547 SCHED_FEAT_APPROX_AVG * 0;
548
549 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
550
551 /*
552 * Number of tasks to iterate in a single balance run.
553 * Limited because this is done with IRQs disabled.
554 */
555 const_debug unsigned int sysctl_sched_nr_migrate = 32;
556
557 /*
558 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
559 * clock constructed from sched_clock():
560 */
561 unsigned long long cpu_clock(int cpu)
562 {
563 unsigned long long now;
564 unsigned long flags;
565 struct rq *rq;
566
567 local_irq_save(flags);
568 rq = cpu_rq(cpu);
569 /*
570 * Only call sched_clock() if the scheduler has already been
571 * initialized (some code might call cpu_clock() very early):
572 */
573 if (rq->idle)
574 update_rq_clock(rq);
575 now = rq->clock;
576 local_irq_restore(flags);
577
578 return now;
579 }
580 EXPORT_SYMBOL_GPL(cpu_clock);
581
582 #ifndef prepare_arch_switch
583 # define prepare_arch_switch(next) do { } while (0)
584 #endif
585 #ifndef finish_arch_switch
586 # define finish_arch_switch(prev) do { } while (0)
587 #endif
588
589 static inline int task_current(struct rq *rq, struct task_struct *p)
590 {
591 return rq->curr == p;
592 }
593
594 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
595 static inline int task_running(struct rq *rq, struct task_struct *p)
596 {
597 return task_current(rq, p);
598 }
599
600 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
601 {
602 }
603
604 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
605 {
606 #ifdef CONFIG_DEBUG_SPINLOCK
607 /* this is a valid case when another task releases the spinlock */
608 rq->lock.owner = current;
609 #endif
610 /*
611 * If we are tracking spinlock dependencies then we have to
612 * fix up the runqueue lock - which gets 'carried over' from
613 * prev into current:
614 */
615 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
616
617 spin_unlock_irq(&rq->lock);
618 }
619
620 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
621 static inline int task_running(struct rq *rq, struct task_struct *p)
622 {
623 #ifdef CONFIG_SMP
624 return p->oncpu;
625 #else
626 return task_current(rq, p);
627 #endif
628 }
629
630 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
631 {
632 #ifdef CONFIG_SMP
633 /*
634 * We can optimise this out completely for !SMP, because the
635 * SMP rebalancing from interrupt is the only thing that cares
636 * here.
637 */
638 next->oncpu = 1;
639 #endif
640 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
641 spin_unlock_irq(&rq->lock);
642 #else
643 spin_unlock(&rq->lock);
644 #endif
645 }
646
647 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
648 {
649 #ifdef CONFIG_SMP
650 /*
651 * After ->oncpu is cleared, the task can be moved to a different CPU.
652 * We must ensure this doesn't happen until the switch is completely
653 * finished.
654 */
655 smp_wmb();
656 prev->oncpu = 0;
657 #endif
658 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
659 local_irq_enable();
660 #endif
661 }
662 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
663
664 /*
665 * __task_rq_lock - lock the runqueue a given task resides on.
666 * Must be called interrupts disabled.
667 */
668 static inline struct rq *__task_rq_lock(struct task_struct *p)
669 __acquires(rq->lock)
670 {
671 for (;;) {
672 struct rq *rq = task_rq(p);
673 spin_lock(&rq->lock);
674 if (likely(rq == task_rq(p)))
675 return rq;
676 spin_unlock(&rq->lock);
677 }
678 }
679
680 /*
681 * task_rq_lock - lock the runqueue a given task resides on and disable
682 * interrupts. Note the ordering: we can safely lookup the task_rq without
683 * explicitly disabling preemption.
684 */
685 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
686 __acquires(rq->lock)
687 {
688 struct rq *rq;
689
690 for (;;) {
691 local_irq_save(*flags);
692 rq = task_rq(p);
693 spin_lock(&rq->lock);
694 if (likely(rq == task_rq(p)))
695 return rq;
696 spin_unlock_irqrestore(&rq->lock, *flags);
697 }
698 }
699
700 static void __task_rq_unlock(struct rq *rq)
701 __releases(rq->lock)
702 {
703 spin_unlock(&rq->lock);
704 }
705
706 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
707 __releases(rq->lock)
708 {
709 spin_unlock_irqrestore(&rq->lock, *flags);
710 }
711
712 /*
713 * this_rq_lock - lock this runqueue and disable interrupts.
714 */
715 static struct rq *this_rq_lock(void)
716 __acquires(rq->lock)
717 {
718 struct rq *rq;
719
720 local_irq_disable();
721 rq = this_rq();
722 spin_lock(&rq->lock);
723
724 return rq;
725 }
726
727 /*
728 * We are going deep-idle (irqs are disabled):
729 */
730 void sched_clock_idle_sleep_event(void)
731 {
732 struct rq *rq = cpu_rq(smp_processor_id());
733
734 spin_lock(&rq->lock);
735 __update_rq_clock(rq);
736 spin_unlock(&rq->lock);
737 rq->clock_deep_idle_events++;
738 }
739 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
740
741 /*
742 * We just idled delta nanoseconds (called with irqs disabled):
743 */
744 void sched_clock_idle_wakeup_event(u64 delta_ns)
745 {
746 struct rq *rq = cpu_rq(smp_processor_id());
747 u64 now = sched_clock();
748
749 touch_softlockup_watchdog();
750 rq->idle_clock += delta_ns;
751 /*
752 * Override the previous timestamp and ignore all
753 * sched_clock() deltas that occured while we idled,
754 * and use the PM-provided delta_ns to advance the
755 * rq clock:
756 */
757 spin_lock(&rq->lock);
758 rq->prev_clock_raw = now;
759 rq->clock += delta_ns;
760 spin_unlock(&rq->lock);
761 }
762 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
763
764 /*
765 * resched_task - mark a task 'to be rescheduled now'.
766 *
767 * On UP this means the setting of the need_resched flag, on SMP it
768 * might also involve a cross-CPU call to trigger the scheduler on
769 * the target CPU.
770 */
771 #ifdef CONFIG_SMP
772
773 #ifndef tsk_is_polling
774 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
775 #endif
776
777 static void resched_task(struct task_struct *p)
778 {
779 int cpu;
780
781 assert_spin_locked(&task_rq(p)->lock);
782
783 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
784 return;
785
786 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
787
788 cpu = task_cpu(p);
789 if (cpu == smp_processor_id())
790 return;
791
792 /* NEED_RESCHED must be visible before we test polling */
793 smp_mb();
794 if (!tsk_is_polling(p))
795 smp_send_reschedule(cpu);
796 }
797
798 static void resched_cpu(int cpu)
799 {
800 struct rq *rq = cpu_rq(cpu);
801 unsigned long flags;
802
803 if (!spin_trylock_irqsave(&rq->lock, flags))
804 return;
805 resched_task(cpu_curr(cpu));
806 spin_unlock_irqrestore(&rq->lock, flags);
807 }
808 #else
809 static inline void resched_task(struct task_struct *p)
810 {
811 assert_spin_locked(&task_rq(p)->lock);
812 set_tsk_need_resched(p);
813 }
814 #endif
815
816 #if BITS_PER_LONG == 32
817 # define WMULT_CONST (~0UL)
818 #else
819 # define WMULT_CONST (1UL << 32)
820 #endif
821
822 #define WMULT_SHIFT 32
823
824 /*
825 * Shift right and round:
826 */
827 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
828
829 static unsigned long
830 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
831 struct load_weight *lw)
832 {
833 u64 tmp;
834
835 if (unlikely(!lw->inv_weight))
836 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
837
838 tmp = (u64)delta_exec * weight;
839 /*
840 * Check whether we'd overflow the 64-bit multiplication:
841 */
842 if (unlikely(tmp > WMULT_CONST))
843 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
844 WMULT_SHIFT/2);
845 else
846 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
847
848 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
849 }
850
851 static inline unsigned long
852 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
853 {
854 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
855 }
856
857 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
858 {
859 lw->weight += inc;
860 }
861
862 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
863 {
864 lw->weight -= dec;
865 }
866
867 /*
868 * To aid in avoiding the subversion of "niceness" due to uneven distribution
869 * of tasks with abnormal "nice" values across CPUs the contribution that
870 * each task makes to its run queue's load is weighted according to its
871 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
872 * scaled version of the new time slice allocation that they receive on time
873 * slice expiry etc.
874 */
875
876 #define WEIGHT_IDLEPRIO 2
877 #define WMULT_IDLEPRIO (1 << 31)
878
879 /*
880 * Nice levels are multiplicative, with a gentle 10% change for every
881 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
882 * nice 1, it will get ~10% less CPU time than another CPU-bound task
883 * that remained on nice 0.
884 *
885 * The "10% effect" is relative and cumulative: from _any_ nice level,
886 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
887 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
888 * If a task goes up by ~10% and another task goes down by ~10% then
889 * the relative distance between them is ~25%.)
890 */
891 static const int prio_to_weight[40] = {
892 /* -20 */ 88761, 71755, 56483, 46273, 36291,
893 /* -15 */ 29154, 23254, 18705, 14949, 11916,
894 /* -10 */ 9548, 7620, 6100, 4904, 3906,
895 /* -5 */ 3121, 2501, 1991, 1586, 1277,
896 /* 0 */ 1024, 820, 655, 526, 423,
897 /* 5 */ 335, 272, 215, 172, 137,
898 /* 10 */ 110, 87, 70, 56, 45,
899 /* 15 */ 36, 29, 23, 18, 15,
900 };
901
902 /*
903 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
904 *
905 * In cases where the weight does not change often, we can use the
906 * precalculated inverse to speed up arithmetics by turning divisions
907 * into multiplications:
908 */
909 static const u32 prio_to_wmult[40] = {
910 /* -20 */ 48388, 59856, 76040, 92818, 118348,
911 /* -15 */ 147320, 184698, 229616, 287308, 360437,
912 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
913 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
914 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
915 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
916 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
917 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
918 };
919
920 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
921
922 /*
923 * runqueue iterator, to support SMP load-balancing between different
924 * scheduling classes, without having to expose their internal data
925 * structures to the load-balancing proper:
926 */
927 struct rq_iterator {
928 void *arg;
929 struct task_struct *(*start)(void *);
930 struct task_struct *(*next)(void *);
931 };
932
933 #ifdef CONFIG_SMP
934 static unsigned long
935 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
936 unsigned long max_load_move, struct sched_domain *sd,
937 enum cpu_idle_type idle, int *all_pinned,
938 int *this_best_prio, struct rq_iterator *iterator);
939
940 static int
941 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
942 struct sched_domain *sd, enum cpu_idle_type idle,
943 struct rq_iterator *iterator);
944 #endif
945
946 #ifdef CONFIG_CGROUP_CPUACCT
947 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
948 #else
949 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
950 #endif
951
952 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
953 {
954 update_load_add(&rq->load, load);
955 }
956
957 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
958 {
959 update_load_sub(&rq->load, load);
960 }
961
962 #include "sched_stats.h"
963 #include "sched_idletask.c"
964 #include "sched_fair.c"
965 #include "sched_rt.c"
966 #ifdef CONFIG_SCHED_DEBUG
967 # include "sched_debug.c"
968 #endif
969
970 #define sched_class_highest (&rt_sched_class)
971
972 static void inc_nr_running(struct task_struct *p, struct rq *rq)
973 {
974 rq->nr_running++;
975 }
976
977 static void dec_nr_running(struct task_struct *p, struct rq *rq)
978 {
979 rq->nr_running--;
980 }
981
982 static void set_load_weight(struct task_struct *p)
983 {
984 if (task_has_rt_policy(p)) {
985 p->se.load.weight = prio_to_weight[0] * 2;
986 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
987 return;
988 }
989
990 /*
991 * SCHED_IDLE tasks get minimal weight:
992 */
993 if (p->policy == SCHED_IDLE) {
994 p->se.load.weight = WEIGHT_IDLEPRIO;
995 p->se.load.inv_weight = WMULT_IDLEPRIO;
996 return;
997 }
998
999 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1000 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1001 }
1002
1003 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1004 {
1005 sched_info_queued(p);
1006 p->sched_class->enqueue_task(rq, p, wakeup);
1007 p->se.on_rq = 1;
1008 }
1009
1010 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1011 {
1012 p->sched_class->dequeue_task(rq, p, sleep);
1013 p->se.on_rq = 0;
1014 }
1015
1016 /*
1017 * __normal_prio - return the priority that is based on the static prio
1018 */
1019 static inline int __normal_prio(struct task_struct *p)
1020 {
1021 return p->static_prio;
1022 }
1023
1024 /*
1025 * Calculate the expected normal priority: i.e. priority
1026 * without taking RT-inheritance into account. Might be
1027 * boosted by interactivity modifiers. Changes upon fork,
1028 * setprio syscalls, and whenever the interactivity
1029 * estimator recalculates.
1030 */
1031 static inline int normal_prio(struct task_struct *p)
1032 {
1033 int prio;
1034
1035 if (task_has_rt_policy(p))
1036 prio = MAX_RT_PRIO-1 - p->rt_priority;
1037 else
1038 prio = __normal_prio(p);
1039 return prio;
1040 }
1041
1042 /*
1043 * Calculate the current priority, i.e. the priority
1044 * taken into account by the scheduler. This value might
1045 * be boosted by RT tasks, or might be boosted by
1046 * interactivity modifiers. Will be RT if the task got
1047 * RT-boosted. If not then it returns p->normal_prio.
1048 */
1049 static int effective_prio(struct task_struct *p)
1050 {
1051 p->normal_prio = normal_prio(p);
1052 /*
1053 * If we are RT tasks or we were boosted to RT priority,
1054 * keep the priority unchanged. Otherwise, update priority
1055 * to the normal priority:
1056 */
1057 if (!rt_prio(p->prio))
1058 return p->normal_prio;
1059 return p->prio;
1060 }
1061
1062 /*
1063 * activate_task - move a task to the runqueue.
1064 */
1065 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1066 {
1067 if (p->state == TASK_UNINTERRUPTIBLE)
1068 rq->nr_uninterruptible--;
1069
1070 enqueue_task(rq, p, wakeup);
1071 inc_nr_running(p, rq);
1072 }
1073
1074 /*
1075 * deactivate_task - remove a task from the runqueue.
1076 */
1077 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1078 {
1079 if (p->state == TASK_UNINTERRUPTIBLE)
1080 rq->nr_uninterruptible++;
1081
1082 dequeue_task(rq, p, sleep);
1083 dec_nr_running(p, rq);
1084 }
1085
1086 /**
1087 * task_curr - is this task currently executing on a CPU?
1088 * @p: the task in question.
1089 */
1090 inline int task_curr(const struct task_struct *p)
1091 {
1092 return cpu_curr(task_cpu(p)) == p;
1093 }
1094
1095 /* Used instead of source_load when we know the type == 0 */
1096 unsigned long weighted_cpuload(const int cpu)
1097 {
1098 return cpu_rq(cpu)->load.weight;
1099 }
1100
1101 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1102 {
1103 set_task_cfs_rq(p, cpu);
1104 #ifdef CONFIG_SMP
1105 /*
1106 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1107 * successfuly executed on another CPU. We must ensure that updates of
1108 * per-task data have been completed by this moment.
1109 */
1110 smp_wmb();
1111 task_thread_info(p)->cpu = cpu;
1112 #endif
1113 }
1114
1115 #ifdef CONFIG_SMP
1116
1117 /*
1118 * Is this task likely cache-hot:
1119 */
1120 static inline int
1121 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1122 {
1123 s64 delta;
1124
1125 if (p->sched_class != &fair_sched_class)
1126 return 0;
1127
1128 if (sysctl_sched_migration_cost == -1)
1129 return 1;
1130 if (sysctl_sched_migration_cost == 0)
1131 return 0;
1132
1133 delta = now - p->se.exec_start;
1134
1135 return delta < (s64)sysctl_sched_migration_cost;
1136 }
1137
1138
1139 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1140 {
1141 int old_cpu = task_cpu(p);
1142 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1143 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1144 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1145 u64 clock_offset;
1146
1147 clock_offset = old_rq->clock - new_rq->clock;
1148
1149 #ifdef CONFIG_SCHEDSTATS
1150 if (p->se.wait_start)
1151 p->se.wait_start -= clock_offset;
1152 if (p->se.sleep_start)
1153 p->se.sleep_start -= clock_offset;
1154 if (p->se.block_start)
1155 p->se.block_start -= clock_offset;
1156 if (old_cpu != new_cpu) {
1157 schedstat_inc(p, se.nr_migrations);
1158 if (task_hot(p, old_rq->clock, NULL))
1159 schedstat_inc(p, se.nr_forced2_migrations);
1160 }
1161 #endif
1162 p->se.vruntime -= old_cfsrq->min_vruntime -
1163 new_cfsrq->min_vruntime;
1164
1165 __set_task_cpu(p, new_cpu);
1166 }
1167
1168 struct migration_req {
1169 struct list_head list;
1170
1171 struct task_struct *task;
1172 int dest_cpu;
1173
1174 struct completion done;
1175 };
1176
1177 /*
1178 * The task's runqueue lock must be held.
1179 * Returns true if you have to wait for migration thread.
1180 */
1181 static int
1182 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1183 {
1184 struct rq *rq = task_rq(p);
1185
1186 /*
1187 * If the task is not on a runqueue (and not running), then
1188 * it is sufficient to simply update the task's cpu field.
1189 */
1190 if (!p->se.on_rq && !task_running(rq, p)) {
1191 set_task_cpu(p, dest_cpu);
1192 return 0;
1193 }
1194
1195 init_completion(&req->done);
1196 req->task = p;
1197 req->dest_cpu = dest_cpu;
1198 list_add(&req->list, &rq->migration_queue);
1199
1200 return 1;
1201 }
1202
1203 /*
1204 * wait_task_inactive - wait for a thread to unschedule.
1205 *
1206 * The caller must ensure that the task *will* unschedule sometime soon,
1207 * else this function might spin for a *long* time. This function can't
1208 * be called with interrupts off, or it may introduce deadlock with
1209 * smp_call_function() if an IPI is sent by the same process we are
1210 * waiting to become inactive.
1211 */
1212 void wait_task_inactive(struct task_struct *p)
1213 {
1214 unsigned long flags;
1215 int running, on_rq;
1216 struct rq *rq;
1217
1218 for (;;) {
1219 /*
1220 * We do the initial early heuristics without holding
1221 * any task-queue locks at all. We'll only try to get
1222 * the runqueue lock when things look like they will
1223 * work out!
1224 */
1225 rq = task_rq(p);
1226
1227 /*
1228 * If the task is actively running on another CPU
1229 * still, just relax and busy-wait without holding
1230 * any locks.
1231 *
1232 * NOTE! Since we don't hold any locks, it's not
1233 * even sure that "rq" stays as the right runqueue!
1234 * But we don't care, since "task_running()" will
1235 * return false if the runqueue has changed and p
1236 * is actually now running somewhere else!
1237 */
1238 while (task_running(rq, p))
1239 cpu_relax();
1240
1241 /*
1242 * Ok, time to look more closely! We need the rq
1243 * lock now, to be *sure*. If we're wrong, we'll
1244 * just go back and repeat.
1245 */
1246 rq = task_rq_lock(p, &flags);
1247 running = task_running(rq, p);
1248 on_rq = p->se.on_rq;
1249 task_rq_unlock(rq, &flags);
1250
1251 /*
1252 * Was it really running after all now that we
1253 * checked with the proper locks actually held?
1254 *
1255 * Oops. Go back and try again..
1256 */
1257 if (unlikely(running)) {
1258 cpu_relax();
1259 continue;
1260 }
1261
1262 /*
1263 * It's not enough that it's not actively running,
1264 * it must be off the runqueue _entirely_, and not
1265 * preempted!
1266 *
1267 * So if it wa still runnable (but just not actively
1268 * running right now), it's preempted, and we should
1269 * yield - it could be a while.
1270 */
1271 if (unlikely(on_rq)) {
1272 schedule_timeout_uninterruptible(1);
1273 continue;
1274 }
1275
1276 /*
1277 * Ahh, all good. It wasn't running, and it wasn't
1278 * runnable, which means that it will never become
1279 * running in the future either. We're all done!
1280 */
1281 break;
1282 }
1283 }
1284
1285 /***
1286 * kick_process - kick a running thread to enter/exit the kernel
1287 * @p: the to-be-kicked thread
1288 *
1289 * Cause a process which is running on another CPU to enter
1290 * kernel-mode, without any delay. (to get signals handled.)
1291 *
1292 * NOTE: this function doesnt have to take the runqueue lock,
1293 * because all it wants to ensure is that the remote task enters
1294 * the kernel. If the IPI races and the task has been migrated
1295 * to another CPU then no harm is done and the purpose has been
1296 * achieved as well.
1297 */
1298 void kick_process(struct task_struct *p)
1299 {
1300 int cpu;
1301
1302 preempt_disable();
1303 cpu = task_cpu(p);
1304 if ((cpu != smp_processor_id()) && task_curr(p))
1305 smp_send_reschedule(cpu);
1306 preempt_enable();
1307 }
1308
1309 /*
1310 * Return a low guess at the load of a migration-source cpu weighted
1311 * according to the scheduling class and "nice" value.
1312 *
1313 * We want to under-estimate the load of migration sources, to
1314 * balance conservatively.
1315 */
1316 static unsigned long source_load(int cpu, int type)
1317 {
1318 struct rq *rq = cpu_rq(cpu);
1319 unsigned long total = weighted_cpuload(cpu);
1320
1321 if (type == 0)
1322 return total;
1323
1324 return min(rq->cpu_load[type-1], total);
1325 }
1326
1327 /*
1328 * Return a high guess at the load of a migration-target cpu weighted
1329 * according to the scheduling class and "nice" value.
1330 */
1331 static unsigned long target_load(int cpu, int type)
1332 {
1333 struct rq *rq = cpu_rq(cpu);
1334 unsigned long total = weighted_cpuload(cpu);
1335
1336 if (type == 0)
1337 return total;
1338
1339 return max(rq->cpu_load[type-1], total);
1340 }
1341
1342 /*
1343 * Return the average load per task on the cpu's run queue
1344 */
1345 static inline unsigned long cpu_avg_load_per_task(int cpu)
1346 {
1347 struct rq *rq = cpu_rq(cpu);
1348 unsigned long total = weighted_cpuload(cpu);
1349 unsigned long n = rq->nr_running;
1350
1351 return n ? total / n : SCHED_LOAD_SCALE;
1352 }
1353
1354 /*
1355 * find_idlest_group finds and returns the least busy CPU group within the
1356 * domain.
1357 */
1358 static struct sched_group *
1359 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1360 {
1361 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1362 unsigned long min_load = ULONG_MAX, this_load = 0;
1363 int load_idx = sd->forkexec_idx;
1364 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1365
1366 do {
1367 unsigned long load, avg_load;
1368 int local_group;
1369 int i;
1370
1371 /* Skip over this group if it has no CPUs allowed */
1372 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1373 continue;
1374
1375 local_group = cpu_isset(this_cpu, group->cpumask);
1376
1377 /* Tally up the load of all CPUs in the group */
1378 avg_load = 0;
1379
1380 for_each_cpu_mask(i, group->cpumask) {
1381 /* Bias balancing toward cpus of our domain */
1382 if (local_group)
1383 load = source_load(i, load_idx);
1384 else
1385 load = target_load(i, load_idx);
1386
1387 avg_load += load;
1388 }
1389
1390 /* Adjust by relative CPU power of the group */
1391 avg_load = sg_div_cpu_power(group,
1392 avg_load * SCHED_LOAD_SCALE);
1393
1394 if (local_group) {
1395 this_load = avg_load;
1396 this = group;
1397 } else if (avg_load < min_load) {
1398 min_load = avg_load;
1399 idlest = group;
1400 }
1401 } while (group = group->next, group != sd->groups);
1402
1403 if (!idlest || 100*this_load < imbalance*min_load)
1404 return NULL;
1405 return idlest;
1406 }
1407
1408 /*
1409 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1410 */
1411 static int
1412 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1413 {
1414 cpumask_t tmp;
1415 unsigned long load, min_load = ULONG_MAX;
1416 int idlest = -1;
1417 int i;
1418
1419 /* Traverse only the allowed CPUs */
1420 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1421
1422 for_each_cpu_mask(i, tmp) {
1423 load = weighted_cpuload(i);
1424
1425 if (load < min_load || (load == min_load && i == this_cpu)) {
1426 min_load = load;
1427 idlest = i;
1428 }
1429 }
1430
1431 return idlest;
1432 }
1433
1434 /*
1435 * sched_balance_self: balance the current task (running on cpu) in domains
1436 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1437 * SD_BALANCE_EXEC.
1438 *
1439 * Balance, ie. select the least loaded group.
1440 *
1441 * Returns the target CPU number, or the same CPU if no balancing is needed.
1442 *
1443 * preempt must be disabled.
1444 */
1445 static int sched_balance_self(int cpu, int flag)
1446 {
1447 struct task_struct *t = current;
1448 struct sched_domain *tmp, *sd = NULL;
1449
1450 for_each_domain(cpu, tmp) {
1451 /*
1452 * If power savings logic is enabled for a domain, stop there.
1453 */
1454 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1455 break;
1456 if (tmp->flags & flag)
1457 sd = tmp;
1458 }
1459
1460 while (sd) {
1461 cpumask_t span;
1462 struct sched_group *group;
1463 int new_cpu, weight;
1464
1465 if (!(sd->flags & flag)) {
1466 sd = sd->child;
1467 continue;
1468 }
1469
1470 span = sd->span;
1471 group = find_idlest_group(sd, t, cpu);
1472 if (!group) {
1473 sd = sd->child;
1474 continue;
1475 }
1476
1477 new_cpu = find_idlest_cpu(group, t, cpu);
1478 if (new_cpu == -1 || new_cpu == cpu) {
1479 /* Now try balancing at a lower domain level of cpu */
1480 sd = sd->child;
1481 continue;
1482 }
1483
1484 /* Now try balancing at a lower domain level of new_cpu */
1485 cpu = new_cpu;
1486 sd = NULL;
1487 weight = cpus_weight(span);
1488 for_each_domain(cpu, tmp) {
1489 if (weight <= cpus_weight(tmp->span))
1490 break;
1491 if (tmp->flags & flag)
1492 sd = tmp;
1493 }
1494 /* while loop will break here if sd == NULL */
1495 }
1496
1497 return cpu;
1498 }
1499
1500 #endif /* CONFIG_SMP */
1501
1502 /*
1503 * wake_idle() will wake a task on an idle cpu if task->cpu is
1504 * not idle and an idle cpu is available. The span of cpus to
1505 * search starts with cpus closest then further out as needed,
1506 * so we always favor a closer, idle cpu.
1507 *
1508 * Returns the CPU we should wake onto.
1509 */
1510 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1511 static int wake_idle(int cpu, struct task_struct *p)
1512 {
1513 cpumask_t tmp;
1514 struct sched_domain *sd;
1515 int i;
1516
1517 /*
1518 * If it is idle, then it is the best cpu to run this task.
1519 *
1520 * This cpu is also the best, if it has more than one task already.
1521 * Siblings must be also busy(in most cases) as they didn't already
1522 * pickup the extra load from this cpu and hence we need not check
1523 * sibling runqueue info. This will avoid the checks and cache miss
1524 * penalities associated with that.
1525 */
1526 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1527 return cpu;
1528
1529 for_each_domain(cpu, sd) {
1530 if (sd->flags & SD_WAKE_IDLE) {
1531 cpus_and(tmp, sd->span, p->cpus_allowed);
1532 for_each_cpu_mask(i, tmp) {
1533 if (idle_cpu(i)) {
1534 if (i != task_cpu(p)) {
1535 schedstat_inc(p,
1536 se.nr_wakeups_idle);
1537 }
1538 return i;
1539 }
1540 }
1541 } else {
1542 break;
1543 }
1544 }
1545 return cpu;
1546 }
1547 #else
1548 static inline int wake_idle(int cpu, struct task_struct *p)
1549 {
1550 return cpu;
1551 }
1552 #endif
1553
1554 /***
1555 * try_to_wake_up - wake up a thread
1556 * @p: the to-be-woken-up thread
1557 * @state: the mask of task states that can be woken
1558 * @sync: do a synchronous wakeup?
1559 *
1560 * Put it on the run-queue if it's not already there. The "current"
1561 * thread is always on the run-queue (except when the actual
1562 * re-schedule is in progress), and as such you're allowed to do
1563 * the simpler "current->state = TASK_RUNNING" to mark yourself
1564 * runnable without the overhead of this.
1565 *
1566 * returns failure only if the task is already active.
1567 */
1568 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1569 {
1570 int cpu, orig_cpu, this_cpu, success = 0;
1571 unsigned long flags;
1572 long old_state;
1573 struct rq *rq;
1574 #ifdef CONFIG_SMP
1575 struct sched_domain *sd, *this_sd = NULL;
1576 unsigned long load, this_load;
1577 int new_cpu;
1578 #endif
1579
1580 rq = task_rq_lock(p, &flags);
1581 old_state = p->state;
1582 if (!(old_state & state))
1583 goto out;
1584
1585 if (p->se.on_rq)
1586 goto out_running;
1587
1588 cpu = task_cpu(p);
1589 orig_cpu = cpu;
1590 this_cpu = smp_processor_id();
1591
1592 #ifdef CONFIG_SMP
1593 if (unlikely(task_running(rq, p)))
1594 goto out_activate;
1595
1596 new_cpu = cpu;
1597
1598 schedstat_inc(rq, ttwu_count);
1599 if (cpu == this_cpu) {
1600 schedstat_inc(rq, ttwu_local);
1601 goto out_set_cpu;
1602 }
1603
1604 for_each_domain(this_cpu, sd) {
1605 if (cpu_isset(cpu, sd->span)) {
1606 schedstat_inc(sd, ttwu_wake_remote);
1607 this_sd = sd;
1608 break;
1609 }
1610 }
1611
1612 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1613 goto out_set_cpu;
1614
1615 /*
1616 * Check for affine wakeup and passive balancing possibilities.
1617 */
1618 if (this_sd) {
1619 int idx = this_sd->wake_idx;
1620 unsigned int imbalance;
1621
1622 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1623
1624 load = source_load(cpu, idx);
1625 this_load = target_load(this_cpu, idx);
1626
1627 new_cpu = this_cpu; /* Wake to this CPU if we can */
1628
1629 if (this_sd->flags & SD_WAKE_AFFINE) {
1630 unsigned long tl = this_load;
1631 unsigned long tl_per_task;
1632
1633 /*
1634 * Attract cache-cold tasks on sync wakeups:
1635 */
1636 if (sync && !task_hot(p, rq->clock, this_sd))
1637 goto out_set_cpu;
1638
1639 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1640 tl_per_task = cpu_avg_load_per_task(this_cpu);
1641
1642 /*
1643 * If sync wakeup then subtract the (maximum possible)
1644 * effect of the currently running task from the load
1645 * of the current CPU:
1646 */
1647 if (sync)
1648 tl -= current->se.load.weight;
1649
1650 if ((tl <= load &&
1651 tl + target_load(cpu, idx) <= tl_per_task) ||
1652 100*(tl + p->se.load.weight) <= imbalance*load) {
1653 /*
1654 * This domain has SD_WAKE_AFFINE and
1655 * p is cache cold in this domain, and
1656 * there is no bad imbalance.
1657 */
1658 schedstat_inc(this_sd, ttwu_move_affine);
1659 schedstat_inc(p, se.nr_wakeups_affine);
1660 goto out_set_cpu;
1661 }
1662 }
1663
1664 /*
1665 * Start passive balancing when half the imbalance_pct
1666 * limit is reached.
1667 */
1668 if (this_sd->flags & SD_WAKE_BALANCE) {
1669 if (imbalance*this_load <= 100*load) {
1670 schedstat_inc(this_sd, ttwu_move_balance);
1671 schedstat_inc(p, se.nr_wakeups_passive);
1672 goto out_set_cpu;
1673 }
1674 }
1675 }
1676
1677 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1678 out_set_cpu:
1679 new_cpu = wake_idle(new_cpu, p);
1680 if (new_cpu != cpu) {
1681 set_task_cpu(p, new_cpu);
1682 task_rq_unlock(rq, &flags);
1683 /* might preempt at this point */
1684 rq = task_rq_lock(p, &flags);
1685 old_state = p->state;
1686 if (!(old_state & state))
1687 goto out;
1688 if (p->se.on_rq)
1689 goto out_running;
1690
1691 this_cpu = smp_processor_id();
1692 cpu = task_cpu(p);
1693 }
1694
1695 out_activate:
1696 #endif /* CONFIG_SMP */
1697 schedstat_inc(p, se.nr_wakeups);
1698 if (sync)
1699 schedstat_inc(p, se.nr_wakeups_sync);
1700 if (orig_cpu != cpu)
1701 schedstat_inc(p, se.nr_wakeups_migrate);
1702 if (cpu == this_cpu)
1703 schedstat_inc(p, se.nr_wakeups_local);
1704 else
1705 schedstat_inc(p, se.nr_wakeups_remote);
1706 update_rq_clock(rq);
1707 activate_task(rq, p, 1);
1708 check_preempt_curr(rq, p);
1709 success = 1;
1710
1711 out_running:
1712 p->state = TASK_RUNNING;
1713 wakeup_balance_rt(rq, p);
1714 out:
1715 task_rq_unlock(rq, &flags);
1716
1717 return success;
1718 }
1719
1720 int fastcall wake_up_process(struct task_struct *p)
1721 {
1722 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1723 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1724 }
1725 EXPORT_SYMBOL(wake_up_process);
1726
1727 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1728 {
1729 return try_to_wake_up(p, state, 0);
1730 }
1731
1732 /*
1733 * Perform scheduler related setup for a newly forked process p.
1734 * p is forked by current.
1735 *
1736 * __sched_fork() is basic setup used by init_idle() too:
1737 */
1738 static void __sched_fork(struct task_struct *p)
1739 {
1740 p->se.exec_start = 0;
1741 p->se.sum_exec_runtime = 0;
1742 p->se.prev_sum_exec_runtime = 0;
1743
1744 #ifdef CONFIG_SCHEDSTATS
1745 p->se.wait_start = 0;
1746 p->se.sum_sleep_runtime = 0;
1747 p->se.sleep_start = 0;
1748 p->se.block_start = 0;
1749 p->se.sleep_max = 0;
1750 p->se.block_max = 0;
1751 p->se.exec_max = 0;
1752 p->se.slice_max = 0;
1753 p->se.wait_max = 0;
1754 #endif
1755
1756 INIT_LIST_HEAD(&p->run_list);
1757 p->se.on_rq = 0;
1758
1759 #ifdef CONFIG_PREEMPT_NOTIFIERS
1760 INIT_HLIST_HEAD(&p->preempt_notifiers);
1761 #endif
1762
1763 /*
1764 * We mark the process as running here, but have not actually
1765 * inserted it onto the runqueue yet. This guarantees that
1766 * nobody will actually run it, and a signal or other external
1767 * event cannot wake it up and insert it on the runqueue either.
1768 */
1769 p->state = TASK_RUNNING;
1770 }
1771
1772 /*
1773 * fork()/clone()-time setup:
1774 */
1775 void sched_fork(struct task_struct *p, int clone_flags)
1776 {
1777 int cpu = get_cpu();
1778
1779 __sched_fork(p);
1780
1781 #ifdef CONFIG_SMP
1782 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1783 #endif
1784 set_task_cpu(p, cpu);
1785
1786 /*
1787 * Make sure we do not leak PI boosting priority to the child:
1788 */
1789 p->prio = current->normal_prio;
1790 if (!rt_prio(p->prio))
1791 p->sched_class = &fair_sched_class;
1792
1793 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1794 if (likely(sched_info_on()))
1795 memset(&p->sched_info, 0, sizeof(p->sched_info));
1796 #endif
1797 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1798 p->oncpu = 0;
1799 #endif
1800 #ifdef CONFIG_PREEMPT
1801 /* Want to start with kernel preemption disabled. */
1802 task_thread_info(p)->preempt_count = 1;
1803 #endif
1804 put_cpu();
1805 }
1806
1807 /*
1808 * wake_up_new_task - wake up a newly created task for the first time.
1809 *
1810 * This function will do some initial scheduler statistics housekeeping
1811 * that must be done for every newly created context, then puts the task
1812 * on the runqueue and wakes it.
1813 */
1814 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1815 {
1816 unsigned long flags;
1817 struct rq *rq;
1818
1819 rq = task_rq_lock(p, &flags);
1820 BUG_ON(p->state != TASK_RUNNING);
1821 update_rq_clock(rq);
1822
1823 p->prio = effective_prio(p);
1824
1825 if (!p->sched_class->task_new || !current->se.on_rq) {
1826 activate_task(rq, p, 0);
1827 } else {
1828 /*
1829 * Let the scheduling class do new task startup
1830 * management (if any):
1831 */
1832 p->sched_class->task_new(rq, p);
1833 inc_nr_running(p, rq);
1834 }
1835 check_preempt_curr(rq, p);
1836 task_rq_unlock(rq, &flags);
1837 }
1838
1839 #ifdef CONFIG_PREEMPT_NOTIFIERS
1840
1841 /**
1842 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1843 * @notifier: notifier struct to register
1844 */
1845 void preempt_notifier_register(struct preempt_notifier *notifier)
1846 {
1847 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1848 }
1849 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1850
1851 /**
1852 * preempt_notifier_unregister - no longer interested in preemption notifications
1853 * @notifier: notifier struct to unregister
1854 *
1855 * This is safe to call from within a preemption notifier.
1856 */
1857 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1858 {
1859 hlist_del(&notifier->link);
1860 }
1861 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1862
1863 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1864 {
1865 struct preempt_notifier *notifier;
1866 struct hlist_node *node;
1867
1868 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1869 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1870 }
1871
1872 static void
1873 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1874 struct task_struct *next)
1875 {
1876 struct preempt_notifier *notifier;
1877 struct hlist_node *node;
1878
1879 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1880 notifier->ops->sched_out(notifier, next);
1881 }
1882
1883 #else
1884
1885 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1886 {
1887 }
1888
1889 static void
1890 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1891 struct task_struct *next)
1892 {
1893 }
1894
1895 #endif
1896
1897 /**
1898 * prepare_task_switch - prepare to switch tasks
1899 * @rq: the runqueue preparing to switch
1900 * @prev: the current task that is being switched out
1901 * @next: the task we are going to switch to.
1902 *
1903 * This is called with the rq lock held and interrupts off. It must
1904 * be paired with a subsequent finish_task_switch after the context
1905 * switch.
1906 *
1907 * prepare_task_switch sets up locking and calls architecture specific
1908 * hooks.
1909 */
1910 static inline void
1911 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1912 struct task_struct *next)
1913 {
1914 fire_sched_out_preempt_notifiers(prev, next);
1915 prepare_lock_switch(rq, next);
1916 prepare_arch_switch(next);
1917 }
1918
1919 /**
1920 * finish_task_switch - clean up after a task-switch
1921 * @rq: runqueue associated with task-switch
1922 * @prev: the thread we just switched away from.
1923 *
1924 * finish_task_switch must be called after the context switch, paired
1925 * with a prepare_task_switch call before the context switch.
1926 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1927 * and do any other architecture-specific cleanup actions.
1928 *
1929 * Note that we may have delayed dropping an mm in context_switch(). If
1930 * so, we finish that here outside of the runqueue lock. (Doing it
1931 * with the lock held can cause deadlocks; see schedule() for
1932 * details.)
1933 */
1934 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1935 __releases(rq->lock)
1936 {
1937 struct mm_struct *mm = rq->prev_mm;
1938 long prev_state;
1939
1940 rq->prev_mm = NULL;
1941
1942 /*
1943 * A task struct has one reference for the use as "current".
1944 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1945 * schedule one last time. The schedule call will never return, and
1946 * the scheduled task must drop that reference.
1947 * The test for TASK_DEAD must occur while the runqueue locks are
1948 * still held, otherwise prev could be scheduled on another cpu, die
1949 * there before we look at prev->state, and then the reference would
1950 * be dropped twice.
1951 * Manfred Spraul <manfred@colorfullife.com>
1952 */
1953 prev_state = prev->state;
1954 finish_arch_switch(prev);
1955 finish_lock_switch(rq, prev);
1956 schedule_tail_balance_rt(rq);
1957
1958 fire_sched_in_preempt_notifiers(current);
1959 if (mm)
1960 mmdrop(mm);
1961 if (unlikely(prev_state == TASK_DEAD)) {
1962 /*
1963 * Remove function-return probe instances associated with this
1964 * task and put them back on the free list.
1965 */
1966 kprobe_flush_task(prev);
1967 put_task_struct(prev);
1968 }
1969 }
1970
1971 /**
1972 * schedule_tail - first thing a freshly forked thread must call.
1973 * @prev: the thread we just switched away from.
1974 */
1975 asmlinkage void schedule_tail(struct task_struct *prev)
1976 __releases(rq->lock)
1977 {
1978 struct rq *rq = this_rq();
1979
1980 finish_task_switch(rq, prev);
1981 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1982 /* In this case, finish_task_switch does not reenable preemption */
1983 preempt_enable();
1984 #endif
1985 if (current->set_child_tid)
1986 put_user(task_pid_vnr(current), current->set_child_tid);
1987 }
1988
1989 /*
1990 * context_switch - switch to the new MM and the new
1991 * thread's register state.
1992 */
1993 static inline void
1994 context_switch(struct rq *rq, struct task_struct *prev,
1995 struct task_struct *next)
1996 {
1997 struct mm_struct *mm, *oldmm;
1998
1999 prepare_task_switch(rq, prev, next);
2000 mm = next->mm;
2001 oldmm = prev->active_mm;
2002 /*
2003 * For paravirt, this is coupled with an exit in switch_to to
2004 * combine the page table reload and the switch backend into
2005 * one hypercall.
2006 */
2007 arch_enter_lazy_cpu_mode();
2008
2009 if (unlikely(!mm)) {
2010 next->active_mm = oldmm;
2011 atomic_inc(&oldmm->mm_count);
2012 enter_lazy_tlb(oldmm, next);
2013 } else
2014 switch_mm(oldmm, mm, next);
2015
2016 if (unlikely(!prev->mm)) {
2017 prev->active_mm = NULL;
2018 rq->prev_mm = oldmm;
2019 }
2020 /*
2021 * Since the runqueue lock will be released by the next
2022 * task (which is an invalid locking op but in the case
2023 * of the scheduler it's an obvious special-case), so we
2024 * do an early lockdep release here:
2025 */
2026 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2027 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2028 #endif
2029
2030 /* Here we just switch the register state and the stack. */
2031 switch_to(prev, next, prev);
2032
2033 barrier();
2034 /*
2035 * this_rq must be evaluated again because prev may have moved
2036 * CPUs since it called schedule(), thus the 'rq' on its stack
2037 * frame will be invalid.
2038 */
2039 finish_task_switch(this_rq(), prev);
2040 }
2041
2042 /*
2043 * nr_running, nr_uninterruptible and nr_context_switches:
2044 *
2045 * externally visible scheduler statistics: current number of runnable
2046 * threads, current number of uninterruptible-sleeping threads, total
2047 * number of context switches performed since bootup.
2048 */
2049 unsigned long nr_running(void)
2050 {
2051 unsigned long i, sum = 0;
2052
2053 for_each_online_cpu(i)
2054 sum += cpu_rq(i)->nr_running;
2055
2056 return sum;
2057 }
2058
2059 unsigned long nr_uninterruptible(void)
2060 {
2061 unsigned long i, sum = 0;
2062
2063 for_each_possible_cpu(i)
2064 sum += cpu_rq(i)->nr_uninterruptible;
2065
2066 /*
2067 * Since we read the counters lockless, it might be slightly
2068 * inaccurate. Do not allow it to go below zero though:
2069 */
2070 if (unlikely((long)sum < 0))
2071 sum = 0;
2072
2073 return sum;
2074 }
2075
2076 unsigned long long nr_context_switches(void)
2077 {
2078 int i;
2079 unsigned long long sum = 0;
2080
2081 for_each_possible_cpu(i)
2082 sum += cpu_rq(i)->nr_switches;
2083
2084 return sum;
2085 }
2086
2087 unsigned long nr_iowait(void)
2088 {
2089 unsigned long i, sum = 0;
2090
2091 for_each_possible_cpu(i)
2092 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2093
2094 return sum;
2095 }
2096
2097 unsigned long nr_active(void)
2098 {
2099 unsigned long i, running = 0, uninterruptible = 0;
2100
2101 for_each_online_cpu(i) {
2102 running += cpu_rq(i)->nr_running;
2103 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2104 }
2105
2106 if (unlikely((long)uninterruptible < 0))
2107 uninterruptible = 0;
2108
2109 return running + uninterruptible;
2110 }
2111
2112 /*
2113 * Update rq->cpu_load[] statistics. This function is usually called every
2114 * scheduler tick (TICK_NSEC).
2115 */
2116 static void update_cpu_load(struct rq *this_rq)
2117 {
2118 unsigned long this_load = this_rq->load.weight;
2119 int i, scale;
2120
2121 this_rq->nr_load_updates++;
2122
2123 /* Update our load: */
2124 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2125 unsigned long old_load, new_load;
2126
2127 /* scale is effectively 1 << i now, and >> i divides by scale */
2128
2129 old_load = this_rq->cpu_load[i];
2130 new_load = this_load;
2131 /*
2132 * Round up the averaging division if load is increasing. This
2133 * prevents us from getting stuck on 9 if the load is 10, for
2134 * example.
2135 */
2136 if (new_load > old_load)
2137 new_load += scale-1;
2138 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2139 }
2140 }
2141
2142 #ifdef CONFIG_SMP
2143
2144 /*
2145 * double_rq_lock - safely lock two runqueues
2146 *
2147 * Note this does not disable interrupts like task_rq_lock,
2148 * you need to do so manually before calling.
2149 */
2150 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2151 __acquires(rq1->lock)
2152 __acquires(rq2->lock)
2153 {
2154 BUG_ON(!irqs_disabled());
2155 if (rq1 == rq2) {
2156 spin_lock(&rq1->lock);
2157 __acquire(rq2->lock); /* Fake it out ;) */
2158 } else {
2159 if (rq1 < rq2) {
2160 spin_lock(&rq1->lock);
2161 spin_lock(&rq2->lock);
2162 } else {
2163 spin_lock(&rq2->lock);
2164 spin_lock(&rq1->lock);
2165 }
2166 }
2167 update_rq_clock(rq1);
2168 update_rq_clock(rq2);
2169 }
2170
2171 /*
2172 * double_rq_unlock - safely unlock two runqueues
2173 *
2174 * Note this does not restore interrupts like task_rq_unlock,
2175 * you need to do so manually after calling.
2176 */
2177 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2178 __releases(rq1->lock)
2179 __releases(rq2->lock)
2180 {
2181 spin_unlock(&rq1->lock);
2182 if (rq1 != rq2)
2183 spin_unlock(&rq2->lock);
2184 else
2185 __release(rq2->lock);
2186 }
2187
2188 /*
2189 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2190 */
2191 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2192 __releases(this_rq->lock)
2193 __acquires(busiest->lock)
2194 __acquires(this_rq->lock)
2195 {
2196 int ret = 0;
2197
2198 if (unlikely(!irqs_disabled())) {
2199 /* printk() doesn't work good under rq->lock */
2200 spin_unlock(&this_rq->lock);
2201 BUG_ON(1);
2202 }
2203 if (unlikely(!spin_trylock(&busiest->lock))) {
2204 if (busiest < this_rq) {
2205 spin_unlock(&this_rq->lock);
2206 spin_lock(&busiest->lock);
2207 spin_lock(&this_rq->lock);
2208 ret = 1;
2209 } else
2210 spin_lock(&busiest->lock);
2211 }
2212 return ret;
2213 }
2214
2215 /*
2216 * If dest_cpu is allowed for this process, migrate the task to it.
2217 * This is accomplished by forcing the cpu_allowed mask to only
2218 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2219 * the cpu_allowed mask is restored.
2220 */
2221 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2222 {
2223 struct migration_req req;
2224 unsigned long flags;
2225 struct rq *rq;
2226
2227 rq = task_rq_lock(p, &flags);
2228 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2229 || unlikely(cpu_is_offline(dest_cpu)))
2230 goto out;
2231
2232 /* force the process onto the specified CPU */
2233 if (migrate_task(p, dest_cpu, &req)) {
2234 /* Need to wait for migration thread (might exit: take ref). */
2235 struct task_struct *mt = rq->migration_thread;
2236
2237 get_task_struct(mt);
2238 task_rq_unlock(rq, &flags);
2239 wake_up_process(mt);
2240 put_task_struct(mt);
2241 wait_for_completion(&req.done);
2242
2243 return;
2244 }
2245 out:
2246 task_rq_unlock(rq, &flags);
2247 }
2248
2249 /*
2250 * sched_exec - execve() is a valuable balancing opportunity, because at
2251 * this point the task has the smallest effective memory and cache footprint.
2252 */
2253 void sched_exec(void)
2254 {
2255 int new_cpu, this_cpu = get_cpu();
2256 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2257 put_cpu();
2258 if (new_cpu != this_cpu)
2259 sched_migrate_task(current, new_cpu);
2260 }
2261
2262 /*
2263 * pull_task - move a task from a remote runqueue to the local runqueue.
2264 * Both runqueues must be locked.
2265 */
2266 static void pull_task(struct rq *src_rq, struct task_struct *p,
2267 struct rq *this_rq, int this_cpu)
2268 {
2269 deactivate_task(src_rq, p, 0);
2270 set_task_cpu(p, this_cpu);
2271 activate_task(this_rq, p, 0);
2272 /*
2273 * Note that idle threads have a prio of MAX_PRIO, for this test
2274 * to be always true for them.
2275 */
2276 check_preempt_curr(this_rq, p);
2277 }
2278
2279 /*
2280 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2281 */
2282 static
2283 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2284 struct sched_domain *sd, enum cpu_idle_type idle,
2285 int *all_pinned)
2286 {
2287 /*
2288 * We do not migrate tasks that are:
2289 * 1) running (obviously), or
2290 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2291 * 3) are cache-hot on their current CPU.
2292 */
2293 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2294 schedstat_inc(p, se.nr_failed_migrations_affine);
2295 return 0;
2296 }
2297 *all_pinned = 0;
2298
2299 if (task_running(rq, p)) {
2300 schedstat_inc(p, se.nr_failed_migrations_running);
2301 return 0;
2302 }
2303
2304 /*
2305 * Aggressive migration if:
2306 * 1) task is cache cold, or
2307 * 2) too many balance attempts have failed.
2308 */
2309
2310 if (!task_hot(p, rq->clock, sd) ||
2311 sd->nr_balance_failed > sd->cache_nice_tries) {
2312 #ifdef CONFIG_SCHEDSTATS
2313 if (task_hot(p, rq->clock, sd)) {
2314 schedstat_inc(sd, lb_hot_gained[idle]);
2315 schedstat_inc(p, se.nr_forced_migrations);
2316 }
2317 #endif
2318 return 1;
2319 }
2320
2321 if (task_hot(p, rq->clock, sd)) {
2322 schedstat_inc(p, se.nr_failed_migrations_hot);
2323 return 0;
2324 }
2325 return 1;
2326 }
2327
2328 static unsigned long
2329 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2330 unsigned long max_load_move, struct sched_domain *sd,
2331 enum cpu_idle_type idle, int *all_pinned,
2332 int *this_best_prio, struct rq_iterator *iterator)
2333 {
2334 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2335 struct task_struct *p;
2336 long rem_load_move = max_load_move;
2337
2338 if (max_load_move == 0)
2339 goto out;
2340
2341 pinned = 1;
2342
2343 /*
2344 * Start the load-balancing iterator:
2345 */
2346 p = iterator->start(iterator->arg);
2347 next:
2348 if (!p || loops++ > sysctl_sched_nr_migrate)
2349 goto out;
2350 /*
2351 * To help distribute high priority tasks across CPUs we don't
2352 * skip a task if it will be the highest priority task (i.e. smallest
2353 * prio value) on its new queue regardless of its load weight
2354 */
2355 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2356 SCHED_LOAD_SCALE_FUZZ;
2357 if ((skip_for_load && p->prio >= *this_best_prio) ||
2358 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2359 p = iterator->next(iterator->arg);
2360 goto next;
2361 }
2362
2363 pull_task(busiest, p, this_rq, this_cpu);
2364 pulled++;
2365 rem_load_move -= p->se.load.weight;
2366
2367 /*
2368 * We only want to steal up to the prescribed amount of weighted load.
2369 */
2370 if (rem_load_move > 0) {
2371 if (p->prio < *this_best_prio)
2372 *this_best_prio = p->prio;
2373 p = iterator->next(iterator->arg);
2374 goto next;
2375 }
2376 out:
2377 /*
2378 * Right now, this is one of only two places pull_task() is called,
2379 * so we can safely collect pull_task() stats here rather than
2380 * inside pull_task().
2381 */
2382 schedstat_add(sd, lb_gained[idle], pulled);
2383
2384 if (all_pinned)
2385 *all_pinned = pinned;
2386
2387 return max_load_move - rem_load_move;
2388 }
2389
2390 /*
2391 * move_tasks tries to move up to max_load_move weighted load from busiest to
2392 * this_rq, as part of a balancing operation within domain "sd".
2393 * Returns 1 if successful and 0 otherwise.
2394 *
2395 * Called with both runqueues locked.
2396 */
2397 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2398 unsigned long max_load_move,
2399 struct sched_domain *sd, enum cpu_idle_type idle,
2400 int *all_pinned)
2401 {
2402 const struct sched_class *class = sched_class_highest;
2403 unsigned long total_load_moved = 0;
2404 int this_best_prio = this_rq->curr->prio;
2405
2406 do {
2407 total_load_moved +=
2408 class->load_balance(this_rq, this_cpu, busiest,
2409 max_load_move - total_load_moved,
2410 sd, idle, all_pinned, &this_best_prio);
2411 class = class->next;
2412 } while (class && max_load_move > total_load_moved);
2413
2414 return total_load_moved > 0;
2415 }
2416
2417 static int
2418 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2419 struct sched_domain *sd, enum cpu_idle_type idle,
2420 struct rq_iterator *iterator)
2421 {
2422 struct task_struct *p = iterator->start(iterator->arg);
2423 int pinned = 0;
2424
2425 while (p) {
2426 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2427 pull_task(busiest, p, this_rq, this_cpu);
2428 /*
2429 * Right now, this is only the second place pull_task()
2430 * is called, so we can safely collect pull_task()
2431 * stats here rather than inside pull_task().
2432 */
2433 schedstat_inc(sd, lb_gained[idle]);
2434
2435 return 1;
2436 }
2437 p = iterator->next(iterator->arg);
2438 }
2439
2440 return 0;
2441 }
2442
2443 /*
2444 * move_one_task tries to move exactly one task from busiest to this_rq, as
2445 * part of active balancing operations within "domain".
2446 * Returns 1 if successful and 0 otherwise.
2447 *
2448 * Called with both runqueues locked.
2449 */
2450 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2451 struct sched_domain *sd, enum cpu_idle_type idle)
2452 {
2453 const struct sched_class *class;
2454
2455 for (class = sched_class_highest; class; class = class->next)
2456 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2457 return 1;
2458
2459 return 0;
2460 }
2461
2462 /*
2463 * find_busiest_group finds and returns the busiest CPU group within the
2464 * domain. It calculates and returns the amount of weighted load which
2465 * should be moved to restore balance via the imbalance parameter.
2466 */
2467 static struct sched_group *
2468 find_busiest_group(struct sched_domain *sd, int this_cpu,
2469 unsigned long *imbalance, enum cpu_idle_type idle,
2470 int *sd_idle, cpumask_t *cpus, int *balance)
2471 {
2472 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2473 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2474 unsigned long max_pull;
2475 unsigned long busiest_load_per_task, busiest_nr_running;
2476 unsigned long this_load_per_task, this_nr_running;
2477 int load_idx, group_imb = 0;
2478 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2479 int power_savings_balance = 1;
2480 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2481 unsigned long min_nr_running = ULONG_MAX;
2482 struct sched_group *group_min = NULL, *group_leader = NULL;
2483 #endif
2484
2485 max_load = this_load = total_load = total_pwr = 0;
2486 busiest_load_per_task = busiest_nr_running = 0;
2487 this_load_per_task = this_nr_running = 0;
2488 if (idle == CPU_NOT_IDLE)
2489 load_idx = sd->busy_idx;
2490 else if (idle == CPU_NEWLY_IDLE)
2491 load_idx = sd->newidle_idx;
2492 else
2493 load_idx = sd->idle_idx;
2494
2495 do {
2496 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2497 int local_group;
2498 int i;
2499 int __group_imb = 0;
2500 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2501 unsigned long sum_nr_running, sum_weighted_load;
2502
2503 local_group = cpu_isset(this_cpu, group->cpumask);
2504
2505 if (local_group)
2506 balance_cpu = first_cpu(group->cpumask);
2507
2508 /* Tally up the load of all CPUs in the group */
2509 sum_weighted_load = sum_nr_running = avg_load = 0;
2510 max_cpu_load = 0;
2511 min_cpu_load = ~0UL;
2512
2513 for_each_cpu_mask(i, group->cpumask) {
2514 struct rq *rq;
2515
2516 if (!cpu_isset(i, *cpus))
2517 continue;
2518
2519 rq = cpu_rq(i);
2520
2521 if (*sd_idle && rq->nr_running)
2522 *sd_idle = 0;
2523
2524 /* Bias balancing toward cpus of our domain */
2525 if (local_group) {
2526 if (idle_cpu(i) && !first_idle_cpu) {
2527 first_idle_cpu = 1;
2528 balance_cpu = i;
2529 }
2530
2531 load = target_load(i, load_idx);
2532 } else {
2533 load = source_load(i, load_idx);
2534 if (load > max_cpu_load)
2535 max_cpu_load = load;
2536 if (min_cpu_load > load)
2537 min_cpu_load = load;
2538 }
2539
2540 avg_load += load;
2541 sum_nr_running += rq->nr_running;
2542 sum_weighted_load += weighted_cpuload(i);
2543 }
2544
2545 /*
2546 * First idle cpu or the first cpu(busiest) in this sched group
2547 * is eligible for doing load balancing at this and above
2548 * domains. In the newly idle case, we will allow all the cpu's
2549 * to do the newly idle load balance.
2550 */
2551 if (idle != CPU_NEWLY_IDLE && local_group &&
2552 balance_cpu != this_cpu && balance) {
2553 *balance = 0;
2554 goto ret;
2555 }
2556
2557 total_load += avg_load;
2558 total_pwr += group->__cpu_power;
2559
2560 /* Adjust by relative CPU power of the group */
2561 avg_load = sg_div_cpu_power(group,
2562 avg_load * SCHED_LOAD_SCALE);
2563
2564 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2565 __group_imb = 1;
2566
2567 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2568
2569 if (local_group) {
2570 this_load = avg_load;
2571 this = group;
2572 this_nr_running = sum_nr_running;
2573 this_load_per_task = sum_weighted_load;
2574 } else if (avg_load > max_load &&
2575 (sum_nr_running > group_capacity || __group_imb)) {
2576 max_load = avg_load;
2577 busiest = group;
2578 busiest_nr_running = sum_nr_running;
2579 busiest_load_per_task = sum_weighted_load;
2580 group_imb = __group_imb;
2581 }
2582
2583 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2584 /*
2585 * Busy processors will not participate in power savings
2586 * balance.
2587 */
2588 if (idle == CPU_NOT_IDLE ||
2589 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2590 goto group_next;
2591
2592 /*
2593 * If the local group is idle or completely loaded
2594 * no need to do power savings balance at this domain
2595 */
2596 if (local_group && (this_nr_running >= group_capacity ||
2597 !this_nr_running))
2598 power_savings_balance = 0;
2599
2600 /*
2601 * If a group is already running at full capacity or idle,
2602 * don't include that group in power savings calculations
2603 */
2604 if (!power_savings_balance || sum_nr_running >= group_capacity
2605 || !sum_nr_running)
2606 goto group_next;
2607
2608 /*
2609 * Calculate the group which has the least non-idle load.
2610 * This is the group from where we need to pick up the load
2611 * for saving power
2612 */
2613 if ((sum_nr_running < min_nr_running) ||
2614 (sum_nr_running == min_nr_running &&
2615 first_cpu(group->cpumask) <
2616 first_cpu(group_min->cpumask))) {
2617 group_min = group;
2618 min_nr_running = sum_nr_running;
2619 min_load_per_task = sum_weighted_load /
2620 sum_nr_running;
2621 }
2622
2623 /*
2624 * Calculate the group which is almost near its
2625 * capacity but still has some space to pick up some load
2626 * from other group and save more power
2627 */
2628 if (sum_nr_running <= group_capacity - 1) {
2629 if (sum_nr_running > leader_nr_running ||
2630 (sum_nr_running == leader_nr_running &&
2631 first_cpu(group->cpumask) >
2632 first_cpu(group_leader->cpumask))) {
2633 group_leader = group;
2634 leader_nr_running = sum_nr_running;
2635 }
2636 }
2637 group_next:
2638 #endif
2639 group = group->next;
2640 } while (group != sd->groups);
2641
2642 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2643 goto out_balanced;
2644
2645 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2646
2647 if (this_load >= avg_load ||
2648 100*max_load <= sd->imbalance_pct*this_load)
2649 goto out_balanced;
2650
2651 busiest_load_per_task /= busiest_nr_running;
2652 if (group_imb)
2653 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2654
2655 /*
2656 * We're trying to get all the cpus to the average_load, so we don't
2657 * want to push ourselves above the average load, nor do we wish to
2658 * reduce the max loaded cpu below the average load, as either of these
2659 * actions would just result in more rebalancing later, and ping-pong
2660 * tasks around. Thus we look for the minimum possible imbalance.
2661 * Negative imbalances (*we* are more loaded than anyone else) will
2662 * be counted as no imbalance for these purposes -- we can't fix that
2663 * by pulling tasks to us. Be careful of negative numbers as they'll
2664 * appear as very large values with unsigned longs.
2665 */
2666 if (max_load <= busiest_load_per_task)
2667 goto out_balanced;
2668
2669 /*
2670 * In the presence of smp nice balancing, certain scenarios can have
2671 * max load less than avg load(as we skip the groups at or below
2672 * its cpu_power, while calculating max_load..)
2673 */
2674 if (max_load < avg_load) {
2675 *imbalance = 0;
2676 goto small_imbalance;
2677 }
2678
2679 /* Don't want to pull so many tasks that a group would go idle */
2680 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2681
2682 /* How much load to actually move to equalise the imbalance */
2683 *imbalance = min(max_pull * busiest->__cpu_power,
2684 (avg_load - this_load) * this->__cpu_power)
2685 / SCHED_LOAD_SCALE;
2686
2687 /*
2688 * if *imbalance is less than the average load per runnable task
2689 * there is no gaurantee that any tasks will be moved so we'll have
2690 * a think about bumping its value to force at least one task to be
2691 * moved
2692 */
2693 if (*imbalance < busiest_load_per_task) {
2694 unsigned long tmp, pwr_now, pwr_move;
2695 unsigned int imbn;
2696
2697 small_imbalance:
2698 pwr_move = pwr_now = 0;
2699 imbn = 2;
2700 if (this_nr_running) {
2701 this_load_per_task /= this_nr_running;
2702 if (busiest_load_per_task > this_load_per_task)
2703 imbn = 1;
2704 } else
2705 this_load_per_task = SCHED_LOAD_SCALE;
2706
2707 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2708 busiest_load_per_task * imbn) {
2709 *imbalance = busiest_load_per_task;
2710 return busiest;
2711 }
2712
2713 /*
2714 * OK, we don't have enough imbalance to justify moving tasks,
2715 * however we may be able to increase total CPU power used by
2716 * moving them.
2717 */
2718
2719 pwr_now += busiest->__cpu_power *
2720 min(busiest_load_per_task, max_load);
2721 pwr_now += this->__cpu_power *
2722 min(this_load_per_task, this_load);
2723 pwr_now /= SCHED_LOAD_SCALE;
2724
2725 /* Amount of load we'd subtract */
2726 tmp = sg_div_cpu_power(busiest,
2727 busiest_load_per_task * SCHED_LOAD_SCALE);
2728 if (max_load > tmp)
2729 pwr_move += busiest->__cpu_power *
2730 min(busiest_load_per_task, max_load - tmp);
2731
2732 /* Amount of load we'd add */
2733 if (max_load * busiest->__cpu_power <
2734 busiest_load_per_task * SCHED_LOAD_SCALE)
2735 tmp = sg_div_cpu_power(this,
2736 max_load * busiest->__cpu_power);
2737 else
2738 tmp = sg_div_cpu_power(this,
2739 busiest_load_per_task * SCHED_LOAD_SCALE);
2740 pwr_move += this->__cpu_power *
2741 min(this_load_per_task, this_load + tmp);
2742 pwr_move /= SCHED_LOAD_SCALE;
2743
2744 /* Move if we gain throughput */
2745 if (pwr_move > pwr_now)
2746 *imbalance = busiest_load_per_task;
2747 }
2748
2749 return busiest;
2750
2751 out_balanced:
2752 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2753 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2754 goto ret;
2755
2756 if (this == group_leader && group_leader != group_min) {
2757 *imbalance = min_load_per_task;
2758 return group_min;
2759 }
2760 #endif
2761 ret:
2762 *imbalance = 0;
2763 return NULL;
2764 }
2765
2766 /*
2767 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2768 */
2769 static struct rq *
2770 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2771 unsigned long imbalance, cpumask_t *cpus)
2772 {
2773 struct rq *busiest = NULL, *rq;
2774 unsigned long max_load = 0;
2775 int i;
2776
2777 for_each_cpu_mask(i, group->cpumask) {
2778 unsigned long wl;
2779
2780 if (!cpu_isset(i, *cpus))
2781 continue;
2782
2783 rq = cpu_rq(i);
2784 wl = weighted_cpuload(i);
2785
2786 if (rq->nr_running == 1 && wl > imbalance)
2787 continue;
2788
2789 if (wl > max_load) {
2790 max_load = wl;
2791 busiest = rq;
2792 }
2793 }
2794
2795 return busiest;
2796 }
2797
2798 /*
2799 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2800 * so long as it is large enough.
2801 */
2802 #define MAX_PINNED_INTERVAL 512
2803
2804 /*
2805 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2806 * tasks if there is an imbalance.
2807 */
2808 static int load_balance(int this_cpu, struct rq *this_rq,
2809 struct sched_domain *sd, enum cpu_idle_type idle,
2810 int *balance)
2811 {
2812 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2813 struct sched_group *group;
2814 unsigned long imbalance;
2815 struct rq *busiest;
2816 cpumask_t cpus = CPU_MASK_ALL;
2817 unsigned long flags;
2818
2819 /*
2820 * When power savings policy is enabled for the parent domain, idle
2821 * sibling can pick up load irrespective of busy siblings. In this case,
2822 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2823 * portraying it as CPU_NOT_IDLE.
2824 */
2825 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2826 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2827 sd_idle = 1;
2828
2829 schedstat_inc(sd, lb_count[idle]);
2830
2831 redo:
2832 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2833 &cpus, balance);
2834
2835 if (*balance == 0)
2836 goto out_balanced;
2837
2838 if (!group) {
2839 schedstat_inc(sd, lb_nobusyg[idle]);
2840 goto out_balanced;
2841 }
2842
2843 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2844 if (!busiest) {
2845 schedstat_inc(sd, lb_nobusyq[idle]);
2846 goto out_balanced;
2847 }
2848
2849 BUG_ON(busiest == this_rq);
2850
2851 schedstat_add(sd, lb_imbalance[idle], imbalance);
2852
2853 ld_moved = 0;
2854 if (busiest->nr_running > 1) {
2855 /*
2856 * Attempt to move tasks. If find_busiest_group has found
2857 * an imbalance but busiest->nr_running <= 1, the group is
2858 * still unbalanced. ld_moved simply stays zero, so it is
2859 * correctly treated as an imbalance.
2860 */
2861 local_irq_save(flags);
2862 double_rq_lock(this_rq, busiest);
2863 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2864 imbalance, sd, idle, &all_pinned);
2865 double_rq_unlock(this_rq, busiest);
2866 local_irq_restore(flags);
2867
2868 /*
2869 * some other cpu did the load balance for us.
2870 */
2871 if (ld_moved && this_cpu != smp_processor_id())
2872 resched_cpu(this_cpu);
2873
2874 /* All tasks on this runqueue were pinned by CPU affinity */
2875 if (unlikely(all_pinned)) {
2876 cpu_clear(cpu_of(busiest), cpus);
2877 if (!cpus_empty(cpus))
2878 goto redo;
2879 goto out_balanced;
2880 }
2881 }
2882
2883 if (!ld_moved) {
2884 schedstat_inc(sd, lb_failed[idle]);
2885 sd->nr_balance_failed++;
2886
2887 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2888
2889 spin_lock_irqsave(&busiest->lock, flags);
2890
2891 /* don't kick the migration_thread, if the curr
2892 * task on busiest cpu can't be moved to this_cpu
2893 */
2894 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2895 spin_unlock_irqrestore(&busiest->lock, flags);
2896 all_pinned = 1;
2897 goto out_one_pinned;
2898 }
2899
2900 if (!busiest->active_balance) {
2901 busiest->active_balance = 1;
2902 busiest->push_cpu = this_cpu;
2903 active_balance = 1;
2904 }
2905 spin_unlock_irqrestore(&busiest->lock, flags);
2906 if (active_balance)
2907 wake_up_process(busiest->migration_thread);
2908
2909 /*
2910 * We've kicked active balancing, reset the failure
2911 * counter.
2912 */
2913 sd->nr_balance_failed = sd->cache_nice_tries+1;
2914 }
2915 } else
2916 sd->nr_balance_failed = 0;
2917
2918 if (likely(!active_balance)) {
2919 /* We were unbalanced, so reset the balancing interval */
2920 sd->balance_interval = sd->min_interval;
2921 } else {
2922 /*
2923 * If we've begun active balancing, start to back off. This
2924 * case may not be covered by the all_pinned logic if there
2925 * is only 1 task on the busy runqueue (because we don't call
2926 * move_tasks).
2927 */
2928 if (sd->balance_interval < sd->max_interval)
2929 sd->balance_interval *= 2;
2930 }
2931
2932 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2933 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2934 return -1;
2935 return ld_moved;
2936
2937 out_balanced:
2938 schedstat_inc(sd, lb_balanced[idle]);
2939
2940 sd->nr_balance_failed = 0;
2941
2942 out_one_pinned:
2943 /* tune up the balancing interval */
2944 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2945 (sd->balance_interval < sd->max_interval))
2946 sd->balance_interval *= 2;
2947
2948 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2949 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2950 return -1;
2951 return 0;
2952 }
2953
2954 /*
2955 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2956 * tasks if there is an imbalance.
2957 *
2958 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2959 * this_rq is locked.
2960 */
2961 static int
2962 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2963 {
2964 struct sched_group *group;
2965 struct rq *busiest = NULL;
2966 unsigned long imbalance;
2967 int ld_moved = 0;
2968 int sd_idle = 0;
2969 int all_pinned = 0;
2970 cpumask_t cpus = CPU_MASK_ALL;
2971
2972 /*
2973 * When power savings policy is enabled for the parent domain, idle
2974 * sibling can pick up load irrespective of busy siblings. In this case,
2975 * let the state of idle sibling percolate up as IDLE, instead of
2976 * portraying it as CPU_NOT_IDLE.
2977 */
2978 if (sd->flags & SD_SHARE_CPUPOWER &&
2979 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2980 sd_idle = 1;
2981
2982 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2983 redo:
2984 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2985 &sd_idle, &cpus, NULL);
2986 if (!group) {
2987 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2988 goto out_balanced;
2989 }
2990
2991 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2992 &cpus);
2993 if (!busiest) {
2994 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2995 goto out_balanced;
2996 }
2997
2998 BUG_ON(busiest == this_rq);
2999
3000 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3001
3002 ld_moved = 0;
3003 if (busiest->nr_running > 1) {
3004 /* Attempt to move tasks */
3005 double_lock_balance(this_rq, busiest);
3006 /* this_rq->clock is already updated */
3007 update_rq_clock(busiest);
3008 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3009 imbalance, sd, CPU_NEWLY_IDLE,
3010 &all_pinned);
3011 spin_unlock(&busiest->lock);
3012
3013 if (unlikely(all_pinned)) {
3014 cpu_clear(cpu_of(busiest), cpus);
3015 if (!cpus_empty(cpus))
3016 goto redo;
3017 }
3018 }
3019
3020 if (!ld_moved) {
3021 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3022 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3023 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3024 return -1;
3025 } else
3026 sd->nr_balance_failed = 0;
3027
3028 return ld_moved;
3029
3030 out_balanced:
3031 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3032 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3033 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3034 return -1;
3035 sd->nr_balance_failed = 0;
3036
3037 return 0;
3038 }
3039
3040 /*
3041 * idle_balance is called by schedule() if this_cpu is about to become
3042 * idle. Attempts to pull tasks from other CPUs.
3043 */
3044 static void idle_balance(int this_cpu, struct rq *this_rq)
3045 {
3046 struct sched_domain *sd;
3047 int pulled_task = -1;
3048 unsigned long next_balance = jiffies + HZ;
3049
3050 for_each_domain(this_cpu, sd) {
3051 unsigned long interval;
3052
3053 if (!(sd->flags & SD_LOAD_BALANCE))
3054 continue;
3055
3056 if (sd->flags & SD_BALANCE_NEWIDLE)
3057 /* If we've pulled tasks over stop searching: */
3058 pulled_task = load_balance_newidle(this_cpu,
3059 this_rq, sd);
3060
3061 interval = msecs_to_jiffies(sd->balance_interval);
3062 if (time_after(next_balance, sd->last_balance + interval))
3063 next_balance = sd->last_balance + interval;
3064 if (pulled_task)
3065 break;
3066 }
3067 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3068 /*
3069 * We are going idle. next_balance may be set based on
3070 * a busy processor. So reset next_balance.
3071 */
3072 this_rq->next_balance = next_balance;
3073 }
3074 }
3075
3076 /*
3077 * active_load_balance is run by migration threads. It pushes running tasks
3078 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3079 * running on each physical CPU where possible, and avoids physical /
3080 * logical imbalances.
3081 *
3082 * Called with busiest_rq locked.
3083 */
3084 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3085 {
3086 int target_cpu = busiest_rq->push_cpu;
3087 struct sched_domain *sd;
3088 struct rq *target_rq;
3089
3090 /* Is there any task to move? */
3091 if (busiest_rq->nr_running <= 1)
3092 return;
3093
3094 target_rq = cpu_rq(target_cpu);
3095
3096 /*
3097 * This condition is "impossible", if it occurs
3098 * we need to fix it. Originally reported by
3099 * Bjorn Helgaas on a 128-cpu setup.
3100 */
3101 BUG_ON(busiest_rq == target_rq);
3102
3103 /* move a task from busiest_rq to target_rq */
3104 double_lock_balance(busiest_rq, target_rq);
3105 update_rq_clock(busiest_rq);
3106 update_rq_clock(target_rq);
3107
3108 /* Search for an sd spanning us and the target CPU. */
3109 for_each_domain(target_cpu, sd) {
3110 if ((sd->flags & SD_LOAD_BALANCE) &&
3111 cpu_isset(busiest_cpu, sd->span))
3112 break;
3113 }
3114
3115 if (likely(sd)) {
3116 schedstat_inc(sd, alb_count);
3117
3118 if (move_one_task(target_rq, target_cpu, busiest_rq,
3119 sd, CPU_IDLE))
3120 schedstat_inc(sd, alb_pushed);
3121 else
3122 schedstat_inc(sd, alb_failed);
3123 }
3124 spin_unlock(&target_rq->lock);
3125 }
3126
3127 #ifdef CONFIG_NO_HZ
3128 static struct {
3129 atomic_t load_balancer;
3130 cpumask_t cpu_mask;
3131 } nohz ____cacheline_aligned = {
3132 .load_balancer = ATOMIC_INIT(-1),
3133 .cpu_mask = CPU_MASK_NONE,
3134 };
3135
3136 /*
3137 * This routine will try to nominate the ilb (idle load balancing)
3138 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3139 * load balancing on behalf of all those cpus. If all the cpus in the system
3140 * go into this tickless mode, then there will be no ilb owner (as there is
3141 * no need for one) and all the cpus will sleep till the next wakeup event
3142 * arrives...
3143 *
3144 * For the ilb owner, tick is not stopped. And this tick will be used
3145 * for idle load balancing. ilb owner will still be part of
3146 * nohz.cpu_mask..
3147 *
3148 * While stopping the tick, this cpu will become the ilb owner if there
3149 * is no other owner. And will be the owner till that cpu becomes busy
3150 * or if all cpus in the system stop their ticks at which point
3151 * there is no need for ilb owner.
3152 *
3153 * When the ilb owner becomes busy, it nominates another owner, during the
3154 * next busy scheduler_tick()
3155 */
3156 int select_nohz_load_balancer(int stop_tick)
3157 {
3158 int cpu = smp_processor_id();
3159
3160 if (stop_tick) {
3161 cpu_set(cpu, nohz.cpu_mask);
3162 cpu_rq(cpu)->in_nohz_recently = 1;
3163
3164 /*
3165 * If we are going offline and still the leader, give up!
3166 */
3167 if (cpu_is_offline(cpu) &&
3168 atomic_read(&nohz.load_balancer) == cpu) {
3169 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3170 BUG();
3171 return 0;
3172 }
3173
3174 /* time for ilb owner also to sleep */
3175 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3176 if (atomic_read(&nohz.load_balancer) == cpu)
3177 atomic_set(&nohz.load_balancer, -1);
3178 return 0;
3179 }
3180
3181 if (atomic_read(&nohz.load_balancer) == -1) {
3182 /* make me the ilb owner */
3183 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3184 return 1;
3185 } else if (atomic_read(&nohz.load_balancer) == cpu)
3186 return 1;
3187 } else {
3188 if (!cpu_isset(cpu, nohz.cpu_mask))
3189 return 0;
3190
3191 cpu_clear(cpu, nohz.cpu_mask);
3192
3193 if (atomic_read(&nohz.load_balancer) == cpu)
3194 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3195 BUG();
3196 }
3197 return 0;
3198 }
3199 #endif
3200
3201 static DEFINE_SPINLOCK(balancing);
3202
3203 /*
3204 * It checks each scheduling domain to see if it is due to be balanced,
3205 * and initiates a balancing operation if so.
3206 *
3207 * Balancing parameters are set up in arch_init_sched_domains.
3208 */
3209 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3210 {
3211 int balance = 1;
3212 struct rq *rq = cpu_rq(cpu);
3213 unsigned long interval;
3214 struct sched_domain *sd;
3215 /* Earliest time when we have to do rebalance again */
3216 unsigned long next_balance = jiffies + 60*HZ;
3217 int update_next_balance = 0;
3218
3219 for_each_domain(cpu, sd) {
3220 if (!(sd->flags & SD_LOAD_BALANCE))
3221 continue;
3222
3223 interval = sd->balance_interval;
3224 if (idle != CPU_IDLE)
3225 interval *= sd->busy_factor;
3226
3227 /* scale ms to jiffies */
3228 interval = msecs_to_jiffies(interval);
3229 if (unlikely(!interval))
3230 interval = 1;
3231 if (interval > HZ*NR_CPUS/10)
3232 interval = HZ*NR_CPUS/10;
3233
3234
3235 if (sd->flags & SD_SERIALIZE) {
3236 if (!spin_trylock(&balancing))
3237 goto out;
3238 }
3239
3240 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3241 if (load_balance(cpu, rq, sd, idle, &balance)) {
3242 /*
3243 * We've pulled tasks over so either we're no
3244 * longer idle, or one of our SMT siblings is
3245 * not idle.
3246 */
3247 idle = CPU_NOT_IDLE;
3248 }
3249 sd->last_balance = jiffies;
3250 }
3251 if (sd->flags & SD_SERIALIZE)
3252 spin_unlock(&balancing);
3253 out:
3254 if (time_after(next_balance, sd->last_balance + interval)) {
3255 next_balance = sd->last_balance + interval;
3256 update_next_balance = 1;
3257 }
3258
3259 /*
3260 * Stop the load balance at this level. There is another
3261 * CPU in our sched group which is doing load balancing more
3262 * actively.
3263 */
3264 if (!balance)
3265 break;
3266 }
3267
3268 /*
3269 * next_balance will be updated only when there is a need.
3270 * When the cpu is attached to null domain for ex, it will not be
3271 * updated.
3272 */
3273 if (likely(update_next_balance))
3274 rq->next_balance = next_balance;
3275 }
3276
3277 /*
3278 * run_rebalance_domains is triggered when needed from the scheduler tick.
3279 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3280 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3281 */
3282 static void run_rebalance_domains(struct softirq_action *h)
3283 {
3284 int this_cpu = smp_processor_id();
3285 struct rq *this_rq = cpu_rq(this_cpu);
3286 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3287 CPU_IDLE : CPU_NOT_IDLE;
3288
3289 rebalance_domains(this_cpu, idle);
3290
3291 #ifdef CONFIG_NO_HZ
3292 /*
3293 * If this cpu is the owner for idle load balancing, then do the
3294 * balancing on behalf of the other idle cpus whose ticks are
3295 * stopped.
3296 */
3297 if (this_rq->idle_at_tick &&
3298 atomic_read(&nohz.load_balancer) == this_cpu) {
3299 cpumask_t cpus = nohz.cpu_mask;
3300 struct rq *rq;
3301 int balance_cpu;
3302
3303 cpu_clear(this_cpu, cpus);
3304 for_each_cpu_mask(balance_cpu, cpus) {
3305 /*
3306 * If this cpu gets work to do, stop the load balancing
3307 * work being done for other cpus. Next load
3308 * balancing owner will pick it up.
3309 */
3310 if (need_resched())
3311 break;
3312
3313 rebalance_domains(balance_cpu, CPU_IDLE);
3314
3315 rq = cpu_rq(balance_cpu);
3316 if (time_after(this_rq->next_balance, rq->next_balance))
3317 this_rq->next_balance = rq->next_balance;
3318 }
3319 }
3320 #endif
3321 }
3322
3323 /*
3324 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3325 *
3326 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3327 * idle load balancing owner or decide to stop the periodic load balancing,
3328 * if the whole system is idle.
3329 */
3330 static inline void trigger_load_balance(struct rq *rq, int cpu)
3331 {
3332 #ifdef CONFIG_NO_HZ
3333 /*
3334 * If we were in the nohz mode recently and busy at the current
3335 * scheduler tick, then check if we need to nominate new idle
3336 * load balancer.
3337 */
3338 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3339 rq->in_nohz_recently = 0;
3340
3341 if (atomic_read(&nohz.load_balancer) == cpu) {
3342 cpu_clear(cpu, nohz.cpu_mask);
3343 atomic_set(&nohz.load_balancer, -1);
3344 }
3345
3346 if (atomic_read(&nohz.load_balancer) == -1) {
3347 /*
3348 * simple selection for now: Nominate the
3349 * first cpu in the nohz list to be the next
3350 * ilb owner.
3351 *
3352 * TBD: Traverse the sched domains and nominate
3353 * the nearest cpu in the nohz.cpu_mask.
3354 */
3355 int ilb = first_cpu(nohz.cpu_mask);
3356
3357 if (ilb != NR_CPUS)
3358 resched_cpu(ilb);
3359 }
3360 }
3361
3362 /*
3363 * If this cpu is idle and doing idle load balancing for all the
3364 * cpus with ticks stopped, is it time for that to stop?
3365 */
3366 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3367 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3368 resched_cpu(cpu);
3369 return;
3370 }
3371
3372 /*
3373 * If this cpu is idle and the idle load balancing is done by
3374 * someone else, then no need raise the SCHED_SOFTIRQ
3375 */
3376 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3377 cpu_isset(cpu, nohz.cpu_mask))
3378 return;
3379 #endif
3380 if (time_after_eq(jiffies, rq->next_balance))
3381 raise_softirq(SCHED_SOFTIRQ);
3382 }
3383
3384 #else /* CONFIG_SMP */
3385
3386 /*
3387 * on UP we do not need to balance between CPUs:
3388 */
3389 static inline void idle_balance(int cpu, struct rq *rq)
3390 {
3391 }
3392
3393 #endif
3394
3395 DEFINE_PER_CPU(struct kernel_stat, kstat);
3396
3397 EXPORT_PER_CPU_SYMBOL(kstat);
3398
3399 /*
3400 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3401 * that have not yet been banked in case the task is currently running.
3402 */
3403 unsigned long long task_sched_runtime(struct task_struct *p)
3404 {
3405 unsigned long flags;
3406 u64 ns, delta_exec;
3407 struct rq *rq;
3408
3409 rq = task_rq_lock(p, &flags);
3410 ns = p->se.sum_exec_runtime;
3411 if (task_current(rq, p)) {
3412 update_rq_clock(rq);
3413 delta_exec = rq->clock - p->se.exec_start;
3414 if ((s64)delta_exec > 0)
3415 ns += delta_exec;
3416 }
3417 task_rq_unlock(rq, &flags);
3418
3419 return ns;
3420 }
3421
3422 /*
3423 * Account user cpu time to a process.
3424 * @p: the process that the cpu time gets accounted to
3425 * @cputime: the cpu time spent in user space since the last update
3426 */
3427 void account_user_time(struct task_struct *p, cputime_t cputime)
3428 {
3429 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3430 cputime64_t tmp;
3431
3432 p->utime = cputime_add(p->utime, cputime);
3433
3434 /* Add user time to cpustat. */
3435 tmp = cputime_to_cputime64(cputime);
3436 if (TASK_NICE(p) > 0)
3437 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3438 else
3439 cpustat->user = cputime64_add(cpustat->user, tmp);
3440 }
3441
3442 /*
3443 * Account guest cpu time to a process.
3444 * @p: the process that the cpu time gets accounted to
3445 * @cputime: the cpu time spent in virtual machine since the last update
3446 */
3447 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3448 {
3449 cputime64_t tmp;
3450 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3451
3452 tmp = cputime_to_cputime64(cputime);
3453
3454 p->utime = cputime_add(p->utime, cputime);
3455 p->gtime = cputime_add(p->gtime, cputime);
3456
3457 cpustat->user = cputime64_add(cpustat->user, tmp);
3458 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3459 }
3460
3461 /*
3462 * Account scaled user cpu time to a process.
3463 * @p: the process that the cpu time gets accounted to
3464 * @cputime: the cpu time spent in user space since the last update
3465 */
3466 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3467 {
3468 p->utimescaled = cputime_add(p->utimescaled, cputime);
3469 }
3470
3471 /*
3472 * Account system cpu time to a process.
3473 * @p: the process that the cpu time gets accounted to
3474 * @hardirq_offset: the offset to subtract from hardirq_count()
3475 * @cputime: the cpu time spent in kernel space since the last update
3476 */
3477 void account_system_time(struct task_struct *p, int hardirq_offset,
3478 cputime_t cputime)
3479 {
3480 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3481 struct rq *rq = this_rq();
3482 cputime64_t tmp;
3483
3484 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3485 return account_guest_time(p, cputime);
3486
3487 p->stime = cputime_add(p->stime, cputime);
3488
3489 /* Add system time to cpustat. */
3490 tmp = cputime_to_cputime64(cputime);
3491 if (hardirq_count() - hardirq_offset)
3492 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3493 else if (softirq_count())
3494 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3495 else if (p != rq->idle)
3496 cpustat->system = cputime64_add(cpustat->system, tmp);
3497 else if (atomic_read(&rq->nr_iowait) > 0)
3498 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3499 else
3500 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3501 /* Account for system time used */
3502 acct_update_integrals(p);
3503 }
3504
3505 /*
3506 * Account scaled system cpu time to a process.
3507 * @p: the process that the cpu time gets accounted to
3508 * @hardirq_offset: the offset to subtract from hardirq_count()
3509 * @cputime: the cpu time spent in kernel space since the last update
3510 */
3511 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3512 {
3513 p->stimescaled = cputime_add(p->stimescaled, cputime);
3514 }
3515
3516 /*
3517 * Account for involuntary wait time.
3518 * @p: the process from which the cpu time has been stolen
3519 * @steal: the cpu time spent in involuntary wait
3520 */
3521 void account_steal_time(struct task_struct *p, cputime_t steal)
3522 {
3523 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3524 cputime64_t tmp = cputime_to_cputime64(steal);
3525 struct rq *rq = this_rq();
3526
3527 if (p == rq->idle) {
3528 p->stime = cputime_add(p->stime, steal);
3529 if (atomic_read(&rq->nr_iowait) > 0)
3530 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3531 else
3532 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3533 } else
3534 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3535 }
3536
3537 /*
3538 * This function gets called by the timer code, with HZ frequency.
3539 * We call it with interrupts disabled.
3540 *
3541 * It also gets called by the fork code, when changing the parent's
3542 * timeslices.
3543 */
3544 void scheduler_tick(void)
3545 {
3546 int cpu = smp_processor_id();
3547 struct rq *rq = cpu_rq(cpu);
3548 struct task_struct *curr = rq->curr;
3549 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3550
3551 spin_lock(&rq->lock);
3552 __update_rq_clock(rq);
3553 /*
3554 * Let rq->clock advance by at least TICK_NSEC:
3555 */
3556 if (unlikely(rq->clock < next_tick))
3557 rq->clock = next_tick;
3558 rq->tick_timestamp = rq->clock;
3559 update_cpu_load(rq);
3560 if (curr != rq->idle) /* FIXME: needed? */
3561 curr->sched_class->task_tick(rq, curr);
3562 spin_unlock(&rq->lock);
3563
3564 #ifdef CONFIG_SMP
3565 rq->idle_at_tick = idle_cpu(cpu);
3566 trigger_load_balance(rq, cpu);
3567 #endif
3568 }
3569
3570 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3571
3572 void fastcall add_preempt_count(int val)
3573 {
3574 /*
3575 * Underflow?
3576 */
3577 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3578 return;
3579 preempt_count() += val;
3580 /*
3581 * Spinlock count overflowing soon?
3582 */
3583 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3584 PREEMPT_MASK - 10);
3585 }
3586 EXPORT_SYMBOL(add_preempt_count);
3587
3588 void fastcall sub_preempt_count(int val)
3589 {
3590 /*
3591 * Underflow?
3592 */
3593 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3594 return;
3595 /*
3596 * Is the spinlock portion underflowing?
3597 */
3598 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3599 !(preempt_count() & PREEMPT_MASK)))
3600 return;
3601
3602 preempt_count() -= val;
3603 }
3604 EXPORT_SYMBOL(sub_preempt_count);
3605
3606 #endif
3607
3608 /*
3609 * Print scheduling while atomic bug:
3610 */
3611 static noinline void __schedule_bug(struct task_struct *prev)
3612 {
3613 struct pt_regs *regs = get_irq_regs();
3614
3615 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3616 prev->comm, prev->pid, preempt_count());
3617
3618 debug_show_held_locks(prev);
3619 if (irqs_disabled())
3620 print_irqtrace_events(prev);
3621
3622 if (regs)
3623 show_regs(regs);
3624 else
3625 dump_stack();
3626 }
3627
3628 /*
3629 * Various schedule()-time debugging checks and statistics:
3630 */
3631 static inline void schedule_debug(struct task_struct *prev)
3632 {
3633 /*
3634 * Test if we are atomic. Since do_exit() needs to call into
3635 * schedule() atomically, we ignore that path for now.
3636 * Otherwise, whine if we are scheduling when we should not be.
3637 */
3638 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3639 __schedule_bug(prev);
3640
3641 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3642
3643 schedstat_inc(this_rq(), sched_count);
3644 #ifdef CONFIG_SCHEDSTATS
3645 if (unlikely(prev->lock_depth >= 0)) {
3646 schedstat_inc(this_rq(), bkl_count);
3647 schedstat_inc(prev, sched_info.bkl_count);
3648 }
3649 #endif
3650 }
3651
3652 /*
3653 * Pick up the highest-prio task:
3654 */
3655 static inline struct task_struct *
3656 pick_next_task(struct rq *rq, struct task_struct *prev)
3657 {
3658 const struct sched_class *class;
3659 struct task_struct *p;
3660
3661 /*
3662 * Optimization: we know that if all tasks are in
3663 * the fair class we can call that function directly:
3664 */
3665 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3666 p = fair_sched_class.pick_next_task(rq);
3667 if (likely(p))
3668 return p;
3669 }
3670
3671 class = sched_class_highest;
3672 for ( ; ; ) {
3673 p = class->pick_next_task(rq);
3674 if (p)
3675 return p;
3676 /*
3677 * Will never be NULL as the idle class always
3678 * returns a non-NULL p:
3679 */
3680 class = class->next;
3681 }
3682 }
3683
3684 /*
3685 * schedule() is the main scheduler function.
3686 */
3687 asmlinkage void __sched schedule(void)
3688 {
3689 struct task_struct *prev, *next;
3690 long *switch_count;
3691 struct rq *rq;
3692 int cpu;
3693
3694 need_resched:
3695 preempt_disable();
3696 cpu = smp_processor_id();
3697 rq = cpu_rq(cpu);
3698 rcu_qsctr_inc(cpu);
3699 prev = rq->curr;
3700 switch_count = &prev->nivcsw;
3701
3702 release_kernel_lock(prev);
3703 need_resched_nonpreemptible:
3704
3705 schedule_debug(prev);
3706
3707 /*
3708 * Do the rq-clock update outside the rq lock:
3709 */
3710 local_irq_disable();
3711 __update_rq_clock(rq);
3712 spin_lock(&rq->lock);
3713 clear_tsk_need_resched(prev);
3714
3715 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3716 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3717 unlikely(signal_pending(prev)))) {
3718 prev->state = TASK_RUNNING;
3719 } else {
3720 deactivate_task(rq, prev, 1);
3721 }
3722 switch_count = &prev->nvcsw;
3723 }
3724
3725 schedule_balance_rt(rq, prev);
3726
3727 if (unlikely(!rq->nr_running))
3728 idle_balance(cpu, rq);
3729
3730 prev->sched_class->put_prev_task(rq, prev);
3731 next = pick_next_task(rq, prev);
3732
3733 sched_info_switch(prev, next);
3734
3735 if (likely(prev != next)) {
3736 rq->nr_switches++;
3737 rq->curr = next;
3738 ++*switch_count;
3739
3740 context_switch(rq, prev, next); /* unlocks the rq */
3741 } else
3742 spin_unlock_irq(&rq->lock);
3743
3744 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3745 cpu = smp_processor_id();
3746 rq = cpu_rq(cpu);
3747 goto need_resched_nonpreemptible;
3748 }
3749 preempt_enable_no_resched();
3750 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3751 goto need_resched;
3752 }
3753 EXPORT_SYMBOL(schedule);
3754
3755 #ifdef CONFIG_PREEMPT
3756 /*
3757 * this is the entry point to schedule() from in-kernel preemption
3758 * off of preempt_enable. Kernel preemptions off return from interrupt
3759 * occur there and call schedule directly.
3760 */
3761 asmlinkage void __sched preempt_schedule(void)
3762 {
3763 struct thread_info *ti = current_thread_info();
3764 #ifdef CONFIG_PREEMPT_BKL
3765 struct task_struct *task = current;
3766 int saved_lock_depth;
3767 #endif
3768 /*
3769 * If there is a non-zero preempt_count or interrupts are disabled,
3770 * we do not want to preempt the current task. Just return..
3771 */
3772 if (likely(ti->preempt_count || irqs_disabled()))
3773 return;
3774
3775 do {
3776 add_preempt_count(PREEMPT_ACTIVE);
3777
3778 /*
3779 * We keep the big kernel semaphore locked, but we
3780 * clear ->lock_depth so that schedule() doesnt
3781 * auto-release the semaphore:
3782 */
3783 #ifdef CONFIG_PREEMPT_BKL
3784 saved_lock_depth = task->lock_depth;
3785 task->lock_depth = -1;
3786 #endif
3787 schedule();
3788 #ifdef CONFIG_PREEMPT_BKL
3789 task->lock_depth = saved_lock_depth;
3790 #endif
3791 sub_preempt_count(PREEMPT_ACTIVE);
3792
3793 /*
3794 * Check again in case we missed a preemption opportunity
3795 * between schedule and now.
3796 */
3797 barrier();
3798 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3799 }
3800 EXPORT_SYMBOL(preempt_schedule);
3801
3802 /*
3803 * this is the entry point to schedule() from kernel preemption
3804 * off of irq context.
3805 * Note, that this is called and return with irqs disabled. This will
3806 * protect us against recursive calling from irq.
3807 */
3808 asmlinkage void __sched preempt_schedule_irq(void)
3809 {
3810 struct thread_info *ti = current_thread_info();
3811 #ifdef CONFIG_PREEMPT_BKL
3812 struct task_struct *task = current;
3813 int saved_lock_depth;
3814 #endif
3815 /* Catch callers which need to be fixed */
3816 BUG_ON(ti->preempt_count || !irqs_disabled());
3817
3818 do {
3819 add_preempt_count(PREEMPT_ACTIVE);
3820
3821 /*
3822 * We keep the big kernel semaphore locked, but we
3823 * clear ->lock_depth so that schedule() doesnt
3824 * auto-release the semaphore:
3825 */
3826 #ifdef CONFIG_PREEMPT_BKL
3827 saved_lock_depth = task->lock_depth;
3828 task->lock_depth = -1;
3829 #endif
3830 local_irq_enable();
3831 schedule();
3832 local_irq_disable();
3833 #ifdef CONFIG_PREEMPT_BKL
3834 task->lock_depth = saved_lock_depth;
3835 #endif
3836 sub_preempt_count(PREEMPT_ACTIVE);
3837
3838 /*
3839 * Check again in case we missed a preemption opportunity
3840 * between schedule and now.
3841 */
3842 barrier();
3843 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3844 }
3845
3846 #endif /* CONFIG_PREEMPT */
3847
3848 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3849 void *key)
3850 {
3851 return try_to_wake_up(curr->private, mode, sync);
3852 }
3853 EXPORT_SYMBOL(default_wake_function);
3854
3855 /*
3856 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3857 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3858 * number) then we wake all the non-exclusive tasks and one exclusive task.
3859 *
3860 * There are circumstances in which we can try to wake a task which has already
3861 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3862 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3863 */
3864 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3865 int nr_exclusive, int sync, void *key)
3866 {
3867 wait_queue_t *curr, *next;
3868
3869 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3870 unsigned flags = curr->flags;
3871
3872 if (curr->func(curr, mode, sync, key) &&
3873 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3874 break;
3875 }
3876 }
3877
3878 /**
3879 * __wake_up - wake up threads blocked on a waitqueue.
3880 * @q: the waitqueue
3881 * @mode: which threads
3882 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3883 * @key: is directly passed to the wakeup function
3884 */
3885 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3886 int nr_exclusive, void *key)
3887 {
3888 unsigned long flags;
3889
3890 spin_lock_irqsave(&q->lock, flags);
3891 __wake_up_common(q, mode, nr_exclusive, 0, key);
3892 spin_unlock_irqrestore(&q->lock, flags);
3893 }
3894 EXPORT_SYMBOL(__wake_up);
3895
3896 /*
3897 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3898 */
3899 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3900 {
3901 __wake_up_common(q, mode, 1, 0, NULL);
3902 }
3903
3904 /**
3905 * __wake_up_sync - wake up threads blocked on a waitqueue.
3906 * @q: the waitqueue
3907 * @mode: which threads
3908 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3909 *
3910 * The sync wakeup differs that the waker knows that it will schedule
3911 * away soon, so while the target thread will be woken up, it will not
3912 * be migrated to another CPU - ie. the two threads are 'synchronized'
3913 * with each other. This can prevent needless bouncing between CPUs.
3914 *
3915 * On UP it can prevent extra preemption.
3916 */
3917 void fastcall
3918 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3919 {
3920 unsigned long flags;
3921 int sync = 1;
3922
3923 if (unlikely(!q))
3924 return;
3925
3926 if (unlikely(!nr_exclusive))
3927 sync = 0;
3928
3929 spin_lock_irqsave(&q->lock, flags);
3930 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3931 spin_unlock_irqrestore(&q->lock, flags);
3932 }
3933 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3934
3935 void complete(struct completion *x)
3936 {
3937 unsigned long flags;
3938
3939 spin_lock_irqsave(&x->wait.lock, flags);
3940 x->done++;
3941 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3942 1, 0, NULL);
3943 spin_unlock_irqrestore(&x->wait.lock, flags);
3944 }
3945 EXPORT_SYMBOL(complete);
3946
3947 void complete_all(struct completion *x)
3948 {
3949 unsigned long flags;
3950
3951 spin_lock_irqsave(&x->wait.lock, flags);
3952 x->done += UINT_MAX/2;
3953 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3954 0, 0, NULL);
3955 spin_unlock_irqrestore(&x->wait.lock, flags);
3956 }
3957 EXPORT_SYMBOL(complete_all);
3958
3959 static inline long __sched
3960 do_wait_for_common(struct completion *x, long timeout, int state)
3961 {
3962 if (!x->done) {
3963 DECLARE_WAITQUEUE(wait, current);
3964
3965 wait.flags |= WQ_FLAG_EXCLUSIVE;
3966 __add_wait_queue_tail(&x->wait, &wait);
3967 do {
3968 if (state == TASK_INTERRUPTIBLE &&
3969 signal_pending(current)) {
3970 __remove_wait_queue(&x->wait, &wait);
3971 return -ERESTARTSYS;
3972 }
3973 __set_current_state(state);
3974 spin_unlock_irq(&x->wait.lock);
3975 timeout = schedule_timeout(timeout);
3976 spin_lock_irq(&x->wait.lock);
3977 if (!timeout) {
3978 __remove_wait_queue(&x->wait, &wait);
3979 return timeout;
3980 }
3981 } while (!x->done);
3982 __remove_wait_queue(&x->wait, &wait);
3983 }
3984 x->done--;
3985 return timeout;
3986 }
3987
3988 static long __sched
3989 wait_for_common(struct completion *x, long timeout, int state)
3990 {
3991 might_sleep();
3992
3993 spin_lock_irq(&x->wait.lock);
3994 timeout = do_wait_for_common(x, timeout, state);
3995 spin_unlock_irq(&x->wait.lock);
3996 return timeout;
3997 }
3998
3999 void __sched wait_for_completion(struct completion *x)
4000 {
4001 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4002 }
4003 EXPORT_SYMBOL(wait_for_completion);
4004
4005 unsigned long __sched
4006 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4007 {
4008 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4009 }
4010 EXPORT_SYMBOL(wait_for_completion_timeout);
4011
4012 int __sched wait_for_completion_interruptible(struct completion *x)
4013 {
4014 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4015 if (t == -ERESTARTSYS)
4016 return t;
4017 return 0;
4018 }
4019 EXPORT_SYMBOL(wait_for_completion_interruptible);
4020
4021 unsigned long __sched
4022 wait_for_completion_interruptible_timeout(struct completion *x,
4023 unsigned long timeout)
4024 {
4025 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4026 }
4027 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4028
4029 static long __sched
4030 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4031 {
4032 unsigned long flags;
4033 wait_queue_t wait;
4034
4035 init_waitqueue_entry(&wait, current);
4036
4037 __set_current_state(state);
4038
4039 spin_lock_irqsave(&q->lock, flags);
4040 __add_wait_queue(q, &wait);
4041 spin_unlock(&q->lock);
4042 timeout = schedule_timeout(timeout);
4043 spin_lock_irq(&q->lock);
4044 __remove_wait_queue(q, &wait);
4045 spin_unlock_irqrestore(&q->lock, flags);
4046
4047 return timeout;
4048 }
4049
4050 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4051 {
4052 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4053 }
4054 EXPORT_SYMBOL(interruptible_sleep_on);
4055
4056 long __sched
4057 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4058 {
4059 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4060 }
4061 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4062
4063 void __sched sleep_on(wait_queue_head_t *q)
4064 {
4065 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4066 }
4067 EXPORT_SYMBOL(sleep_on);
4068
4069 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4070 {
4071 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4072 }
4073 EXPORT_SYMBOL(sleep_on_timeout);
4074
4075 #ifdef CONFIG_RT_MUTEXES
4076
4077 /*
4078 * rt_mutex_setprio - set the current priority of a task
4079 * @p: task
4080 * @prio: prio value (kernel-internal form)
4081 *
4082 * This function changes the 'effective' priority of a task. It does
4083 * not touch ->normal_prio like __setscheduler().
4084 *
4085 * Used by the rt_mutex code to implement priority inheritance logic.
4086 */
4087 void rt_mutex_setprio(struct task_struct *p, int prio)
4088 {
4089 unsigned long flags;
4090 int oldprio, on_rq, running;
4091 struct rq *rq;
4092
4093 BUG_ON(prio < 0 || prio > MAX_PRIO);
4094
4095 rq = task_rq_lock(p, &flags);
4096 update_rq_clock(rq);
4097
4098 oldprio = p->prio;
4099 on_rq = p->se.on_rq;
4100 running = task_current(rq, p);
4101 if (on_rq) {
4102 dequeue_task(rq, p, 0);
4103 if (running)
4104 p->sched_class->put_prev_task(rq, p);
4105 }
4106
4107 if (rt_prio(prio))
4108 p->sched_class = &rt_sched_class;
4109 else
4110 p->sched_class = &fair_sched_class;
4111
4112 p->prio = prio;
4113
4114 if (on_rq) {
4115 if (running)
4116 p->sched_class->set_curr_task(rq);
4117 enqueue_task(rq, p, 0);
4118 /*
4119 * Reschedule if we are currently running on this runqueue and
4120 * our priority decreased, or if we are not currently running on
4121 * this runqueue and our priority is higher than the current's
4122 */
4123 if (running) {
4124 if (p->prio > oldprio)
4125 resched_task(rq->curr);
4126 } else {
4127 check_preempt_curr(rq, p);
4128 }
4129 }
4130 task_rq_unlock(rq, &flags);
4131 }
4132
4133 #endif
4134
4135 void set_user_nice(struct task_struct *p, long nice)
4136 {
4137 int old_prio, delta, on_rq;
4138 unsigned long flags;
4139 struct rq *rq;
4140
4141 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4142 return;
4143 /*
4144 * We have to be careful, if called from sys_setpriority(),
4145 * the task might be in the middle of scheduling on another CPU.
4146 */
4147 rq = task_rq_lock(p, &flags);
4148 update_rq_clock(rq);
4149 /*
4150 * The RT priorities are set via sched_setscheduler(), but we still
4151 * allow the 'normal' nice value to be set - but as expected
4152 * it wont have any effect on scheduling until the task is
4153 * SCHED_FIFO/SCHED_RR:
4154 */
4155 if (task_has_rt_policy(p)) {
4156 p->static_prio = NICE_TO_PRIO(nice);
4157 goto out_unlock;
4158 }
4159 on_rq = p->se.on_rq;
4160 if (on_rq)
4161 dequeue_task(rq, p, 0);
4162
4163 p->static_prio = NICE_TO_PRIO(nice);
4164 set_load_weight(p);
4165 old_prio = p->prio;
4166 p->prio = effective_prio(p);
4167 delta = p->prio - old_prio;
4168
4169 if (on_rq) {
4170 enqueue_task(rq, p, 0);
4171 /*
4172 * If the task increased its priority or is running and
4173 * lowered its priority, then reschedule its CPU:
4174 */
4175 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4176 resched_task(rq->curr);
4177 }
4178 out_unlock:
4179 task_rq_unlock(rq, &flags);
4180 }
4181 EXPORT_SYMBOL(set_user_nice);
4182
4183 /*
4184 * can_nice - check if a task can reduce its nice value
4185 * @p: task
4186 * @nice: nice value
4187 */
4188 int can_nice(const struct task_struct *p, const int nice)
4189 {
4190 /* convert nice value [19,-20] to rlimit style value [1,40] */
4191 int nice_rlim = 20 - nice;
4192
4193 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4194 capable(CAP_SYS_NICE));
4195 }
4196
4197 #ifdef __ARCH_WANT_SYS_NICE
4198
4199 /*
4200 * sys_nice - change the priority of the current process.
4201 * @increment: priority increment
4202 *
4203 * sys_setpriority is a more generic, but much slower function that
4204 * does similar things.
4205 */
4206 asmlinkage long sys_nice(int increment)
4207 {
4208 long nice, retval;
4209
4210 /*
4211 * Setpriority might change our priority at the same moment.
4212 * We don't have to worry. Conceptually one call occurs first
4213 * and we have a single winner.
4214 */
4215 if (increment < -40)
4216 increment = -40;
4217 if (increment > 40)
4218 increment = 40;
4219
4220 nice = PRIO_TO_NICE(current->static_prio) + increment;
4221 if (nice < -20)
4222 nice = -20;
4223 if (nice > 19)
4224 nice = 19;
4225
4226 if (increment < 0 && !can_nice(current, nice))
4227 return -EPERM;
4228
4229 retval = security_task_setnice(current, nice);
4230 if (retval)
4231 return retval;
4232
4233 set_user_nice(current, nice);
4234 return 0;
4235 }
4236
4237 #endif
4238
4239 /**
4240 * task_prio - return the priority value of a given task.
4241 * @p: the task in question.
4242 *
4243 * This is the priority value as seen by users in /proc.
4244 * RT tasks are offset by -200. Normal tasks are centered
4245 * around 0, value goes from -16 to +15.
4246 */
4247 int task_prio(const struct task_struct *p)
4248 {
4249 return p->prio - MAX_RT_PRIO;
4250 }
4251
4252 /**
4253 * task_nice - return the nice value of a given task.
4254 * @p: the task in question.
4255 */
4256 int task_nice(const struct task_struct *p)
4257 {
4258 return TASK_NICE(p);
4259 }
4260 EXPORT_SYMBOL_GPL(task_nice);
4261
4262 /**
4263 * idle_cpu - is a given cpu idle currently?
4264 * @cpu: the processor in question.
4265 */
4266 int idle_cpu(int cpu)
4267 {
4268 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4269 }
4270
4271 /**
4272 * idle_task - return the idle task for a given cpu.
4273 * @cpu: the processor in question.
4274 */
4275 struct task_struct *idle_task(int cpu)
4276 {
4277 return cpu_rq(cpu)->idle;
4278 }
4279
4280 /**
4281 * find_process_by_pid - find a process with a matching PID value.
4282 * @pid: the pid in question.
4283 */
4284 static struct task_struct *find_process_by_pid(pid_t pid)
4285 {
4286 return pid ? find_task_by_vpid(pid) : current;
4287 }
4288
4289 /* Actually do priority change: must hold rq lock. */
4290 static void
4291 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4292 {
4293 BUG_ON(p->se.on_rq);
4294
4295 p->policy = policy;
4296 switch (p->policy) {
4297 case SCHED_NORMAL:
4298 case SCHED_BATCH:
4299 case SCHED_IDLE:
4300 p->sched_class = &fair_sched_class;
4301 break;
4302 case SCHED_FIFO:
4303 case SCHED_RR:
4304 p->sched_class = &rt_sched_class;
4305 break;
4306 }
4307
4308 p->rt_priority = prio;
4309 p->normal_prio = normal_prio(p);
4310 /* we are holding p->pi_lock already */
4311 p->prio = rt_mutex_getprio(p);
4312 set_load_weight(p);
4313 }
4314
4315 /**
4316 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4317 * @p: the task in question.
4318 * @policy: new policy.
4319 * @param: structure containing the new RT priority.
4320 *
4321 * NOTE that the task may be already dead.
4322 */
4323 int sched_setscheduler(struct task_struct *p, int policy,
4324 struct sched_param *param)
4325 {
4326 int retval, oldprio, oldpolicy = -1, on_rq, running;
4327 unsigned long flags;
4328 struct rq *rq;
4329
4330 /* may grab non-irq protected spin_locks */
4331 BUG_ON(in_interrupt());
4332 recheck:
4333 /* double check policy once rq lock held */
4334 if (policy < 0)
4335 policy = oldpolicy = p->policy;
4336 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4337 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4338 policy != SCHED_IDLE)
4339 return -EINVAL;
4340 /*
4341 * Valid priorities for SCHED_FIFO and SCHED_RR are
4342 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4343 * SCHED_BATCH and SCHED_IDLE is 0.
4344 */
4345 if (param->sched_priority < 0 ||
4346 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4347 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4348 return -EINVAL;
4349 if (rt_policy(policy) != (param->sched_priority != 0))
4350 return -EINVAL;
4351
4352 /*
4353 * Allow unprivileged RT tasks to decrease priority:
4354 */
4355 if (!capable(CAP_SYS_NICE)) {
4356 if (rt_policy(policy)) {
4357 unsigned long rlim_rtprio;
4358
4359 if (!lock_task_sighand(p, &flags))
4360 return -ESRCH;
4361 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4362 unlock_task_sighand(p, &flags);
4363
4364 /* can't set/change the rt policy */
4365 if (policy != p->policy && !rlim_rtprio)
4366 return -EPERM;
4367
4368 /* can't increase priority */
4369 if (param->sched_priority > p->rt_priority &&
4370 param->sched_priority > rlim_rtprio)
4371 return -EPERM;
4372 }
4373 /*
4374 * Like positive nice levels, dont allow tasks to
4375 * move out of SCHED_IDLE either:
4376 */
4377 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4378 return -EPERM;
4379
4380 /* can't change other user's priorities */
4381 if ((current->euid != p->euid) &&
4382 (current->euid != p->uid))
4383 return -EPERM;
4384 }
4385
4386 retval = security_task_setscheduler(p, policy, param);
4387 if (retval)
4388 return retval;
4389 /*
4390 * make sure no PI-waiters arrive (or leave) while we are
4391 * changing the priority of the task:
4392 */
4393 spin_lock_irqsave(&p->pi_lock, flags);
4394 /*
4395 * To be able to change p->policy safely, the apropriate
4396 * runqueue lock must be held.
4397 */
4398 rq = __task_rq_lock(p);
4399 /* recheck policy now with rq lock held */
4400 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4401 policy = oldpolicy = -1;
4402 __task_rq_unlock(rq);
4403 spin_unlock_irqrestore(&p->pi_lock, flags);
4404 goto recheck;
4405 }
4406 update_rq_clock(rq);
4407 on_rq = p->se.on_rq;
4408 running = task_current(rq, p);
4409 if (on_rq) {
4410 deactivate_task(rq, p, 0);
4411 if (running)
4412 p->sched_class->put_prev_task(rq, p);
4413 }
4414
4415 oldprio = p->prio;
4416 __setscheduler(rq, p, policy, param->sched_priority);
4417
4418 if (on_rq) {
4419 if (running)
4420 p->sched_class->set_curr_task(rq);
4421 activate_task(rq, p, 0);
4422 /*
4423 * Reschedule if we are currently running on this runqueue and
4424 * our priority decreased, or if we are not currently running on
4425 * this runqueue and our priority is higher than the current's
4426 */
4427 if (running) {
4428 if (p->prio > oldprio)
4429 resched_task(rq->curr);
4430 } else {
4431 check_preempt_curr(rq, p);
4432 }
4433 }
4434 __task_rq_unlock(rq);
4435 spin_unlock_irqrestore(&p->pi_lock, flags);
4436
4437 rt_mutex_adjust_pi(p);
4438
4439 return 0;
4440 }
4441 EXPORT_SYMBOL_GPL(sched_setscheduler);
4442
4443 static int
4444 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4445 {
4446 struct sched_param lparam;
4447 struct task_struct *p;
4448 int retval;
4449
4450 if (!param || pid < 0)
4451 return -EINVAL;
4452 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4453 return -EFAULT;
4454
4455 rcu_read_lock();
4456 retval = -ESRCH;
4457 p = find_process_by_pid(pid);
4458 if (p != NULL)
4459 retval = sched_setscheduler(p, policy, &lparam);
4460 rcu_read_unlock();
4461
4462 return retval;
4463 }
4464
4465 /**
4466 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4467 * @pid: the pid in question.
4468 * @policy: new policy.
4469 * @param: structure containing the new RT priority.
4470 */
4471 asmlinkage long
4472 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4473 {
4474 /* negative values for policy are not valid */
4475 if (policy < 0)
4476 return -EINVAL;
4477
4478 return do_sched_setscheduler(pid, policy, param);
4479 }
4480
4481 /**
4482 * sys_sched_setparam - set/change the RT priority of a thread
4483 * @pid: the pid in question.
4484 * @param: structure containing the new RT priority.
4485 */
4486 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4487 {
4488 return do_sched_setscheduler(pid, -1, param);
4489 }
4490
4491 /**
4492 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4493 * @pid: the pid in question.
4494 */
4495 asmlinkage long sys_sched_getscheduler(pid_t pid)
4496 {
4497 struct task_struct *p;
4498 int retval;
4499
4500 if (pid < 0)
4501 return -EINVAL;
4502
4503 retval = -ESRCH;
4504 read_lock(&tasklist_lock);
4505 p = find_process_by_pid(pid);
4506 if (p) {
4507 retval = security_task_getscheduler(p);
4508 if (!retval)
4509 retval = p->policy;
4510 }
4511 read_unlock(&tasklist_lock);
4512 return retval;
4513 }
4514
4515 /**
4516 * sys_sched_getscheduler - get the RT priority of a thread
4517 * @pid: the pid in question.
4518 * @param: structure containing the RT priority.
4519 */
4520 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4521 {
4522 struct sched_param lp;
4523 struct task_struct *p;
4524 int retval;
4525
4526 if (!param || pid < 0)
4527 return -EINVAL;
4528
4529 read_lock(&tasklist_lock);
4530 p = find_process_by_pid(pid);
4531 retval = -ESRCH;
4532 if (!p)
4533 goto out_unlock;
4534
4535 retval = security_task_getscheduler(p);
4536 if (retval)
4537 goto out_unlock;
4538
4539 lp.sched_priority = p->rt_priority;
4540 read_unlock(&tasklist_lock);
4541
4542 /*
4543 * This one might sleep, we cannot do it with a spinlock held ...
4544 */
4545 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4546
4547 return retval;
4548
4549 out_unlock:
4550 read_unlock(&tasklist_lock);
4551 return retval;
4552 }
4553
4554 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4555 {
4556 cpumask_t cpus_allowed;
4557 struct task_struct *p;
4558 int retval;
4559
4560 get_online_cpus();
4561 read_lock(&tasklist_lock);
4562
4563 p = find_process_by_pid(pid);
4564 if (!p) {
4565 read_unlock(&tasklist_lock);
4566 put_online_cpus();
4567 return -ESRCH;
4568 }
4569
4570 /*
4571 * It is not safe to call set_cpus_allowed with the
4572 * tasklist_lock held. We will bump the task_struct's
4573 * usage count and then drop tasklist_lock.
4574 */
4575 get_task_struct(p);
4576 read_unlock(&tasklist_lock);
4577
4578 retval = -EPERM;
4579 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4580 !capable(CAP_SYS_NICE))
4581 goto out_unlock;
4582
4583 retval = security_task_setscheduler(p, 0, NULL);
4584 if (retval)
4585 goto out_unlock;
4586
4587 cpus_allowed = cpuset_cpus_allowed(p);
4588 cpus_and(new_mask, new_mask, cpus_allowed);
4589 again:
4590 retval = set_cpus_allowed(p, new_mask);
4591
4592 if (!retval) {
4593 cpus_allowed = cpuset_cpus_allowed(p);
4594 if (!cpus_subset(new_mask, cpus_allowed)) {
4595 /*
4596 * We must have raced with a concurrent cpuset
4597 * update. Just reset the cpus_allowed to the
4598 * cpuset's cpus_allowed
4599 */
4600 new_mask = cpus_allowed;
4601 goto again;
4602 }
4603 }
4604 out_unlock:
4605 put_task_struct(p);
4606 put_online_cpus();
4607 return retval;
4608 }
4609
4610 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4611 cpumask_t *new_mask)
4612 {
4613 if (len < sizeof(cpumask_t)) {
4614 memset(new_mask, 0, sizeof(cpumask_t));
4615 } else if (len > sizeof(cpumask_t)) {
4616 len = sizeof(cpumask_t);
4617 }
4618 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4619 }
4620
4621 /**
4622 * sys_sched_setaffinity - set the cpu affinity of a process
4623 * @pid: pid of the process
4624 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4625 * @user_mask_ptr: user-space pointer to the new cpu mask
4626 */
4627 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4628 unsigned long __user *user_mask_ptr)
4629 {
4630 cpumask_t new_mask;
4631 int retval;
4632
4633 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4634 if (retval)
4635 return retval;
4636
4637 return sched_setaffinity(pid, new_mask);
4638 }
4639
4640 /*
4641 * Represents all cpu's present in the system
4642 * In systems capable of hotplug, this map could dynamically grow
4643 * as new cpu's are detected in the system via any platform specific
4644 * method, such as ACPI for e.g.
4645 */
4646
4647 cpumask_t cpu_present_map __read_mostly;
4648 EXPORT_SYMBOL(cpu_present_map);
4649
4650 #ifndef CONFIG_SMP
4651 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4652 EXPORT_SYMBOL(cpu_online_map);
4653
4654 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4655 EXPORT_SYMBOL(cpu_possible_map);
4656 #endif
4657
4658 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4659 {
4660 struct task_struct *p;
4661 int retval;
4662
4663 get_online_cpus();
4664 read_lock(&tasklist_lock);
4665
4666 retval = -ESRCH;
4667 p = find_process_by_pid(pid);
4668 if (!p)
4669 goto out_unlock;
4670
4671 retval = security_task_getscheduler(p);
4672 if (retval)
4673 goto out_unlock;
4674
4675 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4676
4677 out_unlock:
4678 read_unlock(&tasklist_lock);
4679 put_online_cpus();
4680
4681 return retval;
4682 }
4683
4684 /**
4685 * sys_sched_getaffinity - get the cpu affinity of a process
4686 * @pid: pid of the process
4687 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4688 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4689 */
4690 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4691 unsigned long __user *user_mask_ptr)
4692 {
4693 int ret;
4694 cpumask_t mask;
4695
4696 if (len < sizeof(cpumask_t))
4697 return -EINVAL;
4698
4699 ret = sched_getaffinity(pid, &mask);
4700 if (ret < 0)
4701 return ret;
4702
4703 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4704 return -EFAULT;
4705
4706 return sizeof(cpumask_t);
4707 }
4708
4709 /**
4710 * sys_sched_yield - yield the current processor to other threads.
4711 *
4712 * This function yields the current CPU to other tasks. If there are no
4713 * other threads running on this CPU then this function will return.
4714 */
4715 asmlinkage long sys_sched_yield(void)
4716 {
4717 struct rq *rq = this_rq_lock();
4718
4719 schedstat_inc(rq, yld_count);
4720 current->sched_class->yield_task(rq);
4721
4722 /*
4723 * Since we are going to call schedule() anyway, there's
4724 * no need to preempt or enable interrupts:
4725 */
4726 __release(rq->lock);
4727 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4728 _raw_spin_unlock(&rq->lock);
4729 preempt_enable_no_resched();
4730
4731 schedule();
4732
4733 return 0;
4734 }
4735
4736 static void __cond_resched(void)
4737 {
4738 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4739 __might_sleep(__FILE__, __LINE__);
4740 #endif
4741 /*
4742 * The BKS might be reacquired before we have dropped
4743 * PREEMPT_ACTIVE, which could trigger a second
4744 * cond_resched() call.
4745 */
4746 do {
4747 add_preempt_count(PREEMPT_ACTIVE);
4748 schedule();
4749 sub_preempt_count(PREEMPT_ACTIVE);
4750 } while (need_resched());
4751 }
4752
4753 int __sched cond_resched(void)
4754 {
4755 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4756 system_state == SYSTEM_RUNNING) {
4757 __cond_resched();
4758 return 1;
4759 }
4760 return 0;
4761 }
4762 EXPORT_SYMBOL(cond_resched);
4763
4764 /*
4765 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4766 * call schedule, and on return reacquire the lock.
4767 *
4768 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4769 * operations here to prevent schedule() from being called twice (once via
4770 * spin_unlock(), once by hand).
4771 */
4772 int cond_resched_lock(spinlock_t *lock)
4773 {
4774 int ret = 0;
4775
4776 if (need_lockbreak(lock)) {
4777 spin_unlock(lock);
4778 cpu_relax();
4779 ret = 1;
4780 spin_lock(lock);
4781 }
4782 if (need_resched() && system_state == SYSTEM_RUNNING) {
4783 spin_release(&lock->dep_map, 1, _THIS_IP_);
4784 _raw_spin_unlock(lock);
4785 preempt_enable_no_resched();
4786 __cond_resched();
4787 ret = 1;
4788 spin_lock(lock);
4789 }
4790 return ret;
4791 }
4792 EXPORT_SYMBOL(cond_resched_lock);
4793
4794 int __sched cond_resched_softirq(void)
4795 {
4796 BUG_ON(!in_softirq());
4797
4798 if (need_resched() && system_state == SYSTEM_RUNNING) {
4799 local_bh_enable();
4800 __cond_resched();
4801 local_bh_disable();
4802 return 1;
4803 }
4804 return 0;
4805 }
4806 EXPORT_SYMBOL(cond_resched_softirq);
4807
4808 /**
4809 * yield - yield the current processor to other threads.
4810 *
4811 * This is a shortcut for kernel-space yielding - it marks the
4812 * thread runnable and calls sys_sched_yield().
4813 */
4814 void __sched yield(void)
4815 {
4816 set_current_state(TASK_RUNNING);
4817 sys_sched_yield();
4818 }
4819 EXPORT_SYMBOL(yield);
4820
4821 /*
4822 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4823 * that process accounting knows that this is a task in IO wait state.
4824 *
4825 * But don't do that if it is a deliberate, throttling IO wait (this task
4826 * has set its backing_dev_info: the queue against which it should throttle)
4827 */
4828 void __sched io_schedule(void)
4829 {
4830 struct rq *rq = &__raw_get_cpu_var(runqueues);
4831
4832 delayacct_blkio_start();
4833 atomic_inc(&rq->nr_iowait);
4834 schedule();
4835 atomic_dec(&rq->nr_iowait);
4836 delayacct_blkio_end();
4837 }
4838 EXPORT_SYMBOL(io_schedule);
4839
4840 long __sched io_schedule_timeout(long timeout)
4841 {
4842 struct rq *rq = &__raw_get_cpu_var(runqueues);
4843 long ret;
4844
4845 delayacct_blkio_start();
4846 atomic_inc(&rq->nr_iowait);
4847 ret = schedule_timeout(timeout);
4848 atomic_dec(&rq->nr_iowait);
4849 delayacct_blkio_end();
4850 return ret;
4851 }
4852
4853 /**
4854 * sys_sched_get_priority_max - return maximum RT priority.
4855 * @policy: scheduling class.
4856 *
4857 * this syscall returns the maximum rt_priority that can be used
4858 * by a given scheduling class.
4859 */
4860 asmlinkage long sys_sched_get_priority_max(int policy)
4861 {
4862 int ret = -EINVAL;
4863
4864 switch (policy) {
4865 case SCHED_FIFO:
4866 case SCHED_RR:
4867 ret = MAX_USER_RT_PRIO-1;
4868 break;
4869 case SCHED_NORMAL:
4870 case SCHED_BATCH:
4871 case SCHED_IDLE:
4872 ret = 0;
4873 break;
4874 }
4875 return ret;
4876 }
4877
4878 /**
4879 * sys_sched_get_priority_min - return minimum RT priority.
4880 * @policy: scheduling class.
4881 *
4882 * this syscall returns the minimum rt_priority that can be used
4883 * by a given scheduling class.
4884 */
4885 asmlinkage long sys_sched_get_priority_min(int policy)
4886 {
4887 int ret = -EINVAL;
4888
4889 switch (policy) {
4890 case SCHED_FIFO:
4891 case SCHED_RR:
4892 ret = 1;
4893 break;
4894 case SCHED_NORMAL:
4895 case SCHED_BATCH:
4896 case SCHED_IDLE:
4897 ret = 0;
4898 }
4899 return ret;
4900 }
4901
4902 /**
4903 * sys_sched_rr_get_interval - return the default timeslice of a process.
4904 * @pid: pid of the process.
4905 * @interval: userspace pointer to the timeslice value.
4906 *
4907 * this syscall writes the default timeslice value of a given process
4908 * into the user-space timespec buffer. A value of '0' means infinity.
4909 */
4910 asmlinkage
4911 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4912 {
4913 struct task_struct *p;
4914 unsigned int time_slice;
4915 int retval;
4916 struct timespec t;
4917
4918 if (pid < 0)
4919 return -EINVAL;
4920
4921 retval = -ESRCH;
4922 read_lock(&tasklist_lock);
4923 p = find_process_by_pid(pid);
4924 if (!p)
4925 goto out_unlock;
4926
4927 retval = security_task_getscheduler(p);
4928 if (retval)
4929 goto out_unlock;
4930
4931 /*
4932 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
4933 * tasks that are on an otherwise idle runqueue:
4934 */
4935 time_slice = 0;
4936 if (p->policy == SCHED_RR) {
4937 time_slice = DEF_TIMESLICE;
4938 } else {
4939 struct sched_entity *se = &p->se;
4940 unsigned long flags;
4941 struct rq *rq;
4942
4943 rq = task_rq_lock(p, &flags);
4944 if (rq->cfs.load.weight)
4945 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4946 task_rq_unlock(rq, &flags);
4947 }
4948 read_unlock(&tasklist_lock);
4949 jiffies_to_timespec(time_slice, &t);
4950 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4951 return retval;
4952
4953 out_unlock:
4954 read_unlock(&tasklist_lock);
4955 return retval;
4956 }
4957
4958 static const char stat_nam[] = "RSDTtZX";
4959
4960 void sched_show_task(struct task_struct *p)
4961 {
4962 unsigned long free = 0;
4963 unsigned state;
4964
4965 state = p->state ? __ffs(p->state) + 1 : 0;
4966 printk(KERN_INFO "%-13.13s %c", p->comm,
4967 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4968 #if BITS_PER_LONG == 32
4969 if (state == TASK_RUNNING)
4970 printk(KERN_CONT " running ");
4971 else
4972 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4973 #else
4974 if (state == TASK_RUNNING)
4975 printk(KERN_CONT " running task ");
4976 else
4977 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4978 #endif
4979 #ifdef CONFIG_DEBUG_STACK_USAGE
4980 {
4981 unsigned long *n = end_of_stack(p);
4982 while (!*n)
4983 n++;
4984 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4985 }
4986 #endif
4987 printk(KERN_CONT "%5lu %5d %6d\n", free,
4988 task_pid_nr(p), task_pid_nr(p->real_parent));
4989
4990 if (state != TASK_RUNNING)
4991 show_stack(p, NULL);
4992 }
4993
4994 void show_state_filter(unsigned long state_filter)
4995 {
4996 struct task_struct *g, *p;
4997
4998 #if BITS_PER_LONG == 32
4999 printk(KERN_INFO
5000 " task PC stack pid father\n");
5001 #else
5002 printk(KERN_INFO
5003 " task PC stack pid father\n");
5004 #endif
5005 read_lock(&tasklist_lock);
5006 do_each_thread(g, p) {
5007 /*
5008 * reset the NMI-timeout, listing all files on a slow
5009 * console might take alot of time:
5010 */
5011 touch_nmi_watchdog();
5012 if (!state_filter || (p->state & state_filter))
5013 sched_show_task(p);
5014 } while_each_thread(g, p);
5015
5016 touch_all_softlockup_watchdogs();
5017
5018 #ifdef CONFIG_SCHED_DEBUG
5019 sysrq_sched_debug_show();
5020 #endif
5021 read_unlock(&tasklist_lock);
5022 /*
5023 * Only show locks if all tasks are dumped:
5024 */
5025 if (state_filter == -1)
5026 debug_show_all_locks();
5027 }
5028
5029 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5030 {
5031 idle->sched_class = &idle_sched_class;
5032 }
5033
5034 /**
5035 * init_idle - set up an idle thread for a given CPU
5036 * @idle: task in question
5037 * @cpu: cpu the idle task belongs to
5038 *
5039 * NOTE: this function does not set the idle thread's NEED_RESCHED
5040 * flag, to make booting more robust.
5041 */
5042 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5043 {
5044 struct rq *rq = cpu_rq(cpu);
5045 unsigned long flags;
5046
5047 __sched_fork(idle);
5048 idle->se.exec_start = sched_clock();
5049
5050 idle->prio = idle->normal_prio = MAX_PRIO;
5051 idle->cpus_allowed = cpumask_of_cpu(cpu);
5052 __set_task_cpu(idle, cpu);
5053
5054 spin_lock_irqsave(&rq->lock, flags);
5055 rq->curr = rq->idle = idle;
5056 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5057 idle->oncpu = 1;
5058 #endif
5059 spin_unlock_irqrestore(&rq->lock, flags);
5060
5061 /* Set the preempt count _outside_ the spinlocks! */
5062 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
5063 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5064 #else
5065 task_thread_info(idle)->preempt_count = 0;
5066 #endif
5067 /*
5068 * The idle tasks have their own, simple scheduling class:
5069 */
5070 idle->sched_class = &idle_sched_class;
5071 }
5072
5073 /*
5074 * In a system that switches off the HZ timer nohz_cpu_mask
5075 * indicates which cpus entered this state. This is used
5076 * in the rcu update to wait only for active cpus. For system
5077 * which do not switch off the HZ timer nohz_cpu_mask should
5078 * always be CPU_MASK_NONE.
5079 */
5080 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5081
5082 /*
5083 * Increase the granularity value when there are more CPUs,
5084 * because with more CPUs the 'effective latency' as visible
5085 * to users decreases. But the relationship is not linear,
5086 * so pick a second-best guess by going with the log2 of the
5087 * number of CPUs.
5088 *
5089 * This idea comes from the SD scheduler of Con Kolivas:
5090 */
5091 static inline void sched_init_granularity(void)
5092 {
5093 unsigned int factor = 1 + ilog2(num_online_cpus());
5094 const unsigned long limit = 200000000;
5095
5096 sysctl_sched_min_granularity *= factor;
5097 if (sysctl_sched_min_granularity > limit)
5098 sysctl_sched_min_granularity = limit;
5099
5100 sysctl_sched_latency *= factor;
5101 if (sysctl_sched_latency > limit)
5102 sysctl_sched_latency = limit;
5103
5104 sysctl_sched_wakeup_granularity *= factor;
5105 sysctl_sched_batch_wakeup_granularity *= factor;
5106 }
5107
5108 #ifdef CONFIG_SMP
5109 /*
5110 * This is how migration works:
5111 *
5112 * 1) we queue a struct migration_req structure in the source CPU's
5113 * runqueue and wake up that CPU's migration thread.
5114 * 2) we down() the locked semaphore => thread blocks.
5115 * 3) migration thread wakes up (implicitly it forces the migrated
5116 * thread off the CPU)
5117 * 4) it gets the migration request and checks whether the migrated
5118 * task is still in the wrong runqueue.
5119 * 5) if it's in the wrong runqueue then the migration thread removes
5120 * it and puts it into the right queue.
5121 * 6) migration thread up()s the semaphore.
5122 * 7) we wake up and the migration is done.
5123 */
5124
5125 /*
5126 * Change a given task's CPU affinity. Migrate the thread to a
5127 * proper CPU and schedule it away if the CPU it's executing on
5128 * is removed from the allowed bitmask.
5129 *
5130 * NOTE: the caller must have a valid reference to the task, the
5131 * task must not exit() & deallocate itself prematurely. The
5132 * call is not atomic; no spinlocks may be held.
5133 */
5134 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5135 {
5136 struct migration_req req;
5137 unsigned long flags;
5138 struct rq *rq;
5139 int ret = 0;
5140
5141 rq = task_rq_lock(p, &flags);
5142 if (!cpus_intersects(new_mask, cpu_online_map)) {
5143 ret = -EINVAL;
5144 goto out;
5145 }
5146
5147 p->cpus_allowed = new_mask;
5148 /* Can the task run on the task's current CPU? If so, we're done */
5149 if (cpu_isset(task_cpu(p), new_mask))
5150 goto out;
5151
5152 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5153 /* Need help from migration thread: drop lock and wait. */
5154 task_rq_unlock(rq, &flags);
5155 wake_up_process(rq->migration_thread);
5156 wait_for_completion(&req.done);
5157 tlb_migrate_finish(p->mm);
5158 return 0;
5159 }
5160 out:
5161 task_rq_unlock(rq, &flags);
5162
5163 return ret;
5164 }
5165 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5166
5167 /*
5168 * Move (not current) task off this cpu, onto dest cpu. We're doing
5169 * this because either it can't run here any more (set_cpus_allowed()
5170 * away from this CPU, or CPU going down), or because we're
5171 * attempting to rebalance this task on exec (sched_exec).
5172 *
5173 * So we race with normal scheduler movements, but that's OK, as long
5174 * as the task is no longer on this CPU.
5175 *
5176 * Returns non-zero if task was successfully migrated.
5177 */
5178 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5179 {
5180 struct rq *rq_dest, *rq_src;
5181 int ret = 0, on_rq;
5182
5183 if (unlikely(cpu_is_offline(dest_cpu)))
5184 return ret;
5185
5186 rq_src = cpu_rq(src_cpu);
5187 rq_dest = cpu_rq(dest_cpu);
5188
5189 double_rq_lock(rq_src, rq_dest);
5190 /* Already moved. */
5191 if (task_cpu(p) != src_cpu)
5192 goto out;
5193 /* Affinity changed (again). */
5194 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5195 goto out;
5196
5197 on_rq = p->se.on_rq;
5198 if (on_rq)
5199 deactivate_task(rq_src, p, 0);
5200
5201 set_task_cpu(p, dest_cpu);
5202 if (on_rq) {
5203 activate_task(rq_dest, p, 0);
5204 check_preempt_curr(rq_dest, p);
5205 }
5206 ret = 1;
5207 out:
5208 double_rq_unlock(rq_src, rq_dest);
5209 return ret;
5210 }
5211
5212 /*
5213 * migration_thread - this is a highprio system thread that performs
5214 * thread migration by bumping thread off CPU then 'pushing' onto
5215 * another runqueue.
5216 */
5217 static int migration_thread(void *data)
5218 {
5219 int cpu = (long)data;
5220 struct rq *rq;
5221
5222 rq = cpu_rq(cpu);
5223 BUG_ON(rq->migration_thread != current);
5224
5225 set_current_state(TASK_INTERRUPTIBLE);
5226 while (!kthread_should_stop()) {
5227 struct migration_req *req;
5228 struct list_head *head;
5229
5230 spin_lock_irq(&rq->lock);
5231
5232 if (cpu_is_offline(cpu)) {
5233 spin_unlock_irq(&rq->lock);
5234 goto wait_to_die;
5235 }
5236
5237 if (rq->active_balance) {
5238 active_load_balance(rq, cpu);
5239 rq->active_balance = 0;
5240 }
5241
5242 head = &rq->migration_queue;
5243
5244 if (list_empty(head)) {
5245 spin_unlock_irq(&rq->lock);
5246 schedule();
5247 set_current_state(TASK_INTERRUPTIBLE);
5248 continue;
5249 }
5250 req = list_entry(head->next, struct migration_req, list);
5251 list_del_init(head->next);
5252
5253 spin_unlock(&rq->lock);
5254 __migrate_task(req->task, cpu, req->dest_cpu);
5255 local_irq_enable();
5256
5257 complete(&req->done);
5258 }
5259 __set_current_state(TASK_RUNNING);
5260 return 0;
5261
5262 wait_to_die:
5263 /* Wait for kthread_stop */
5264 set_current_state(TASK_INTERRUPTIBLE);
5265 while (!kthread_should_stop()) {
5266 schedule();
5267 set_current_state(TASK_INTERRUPTIBLE);
5268 }
5269 __set_current_state(TASK_RUNNING);
5270 return 0;
5271 }
5272
5273 #ifdef CONFIG_HOTPLUG_CPU
5274
5275 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5276 {
5277 int ret;
5278
5279 local_irq_disable();
5280 ret = __migrate_task(p, src_cpu, dest_cpu);
5281 local_irq_enable();
5282 return ret;
5283 }
5284
5285 /*
5286 * Figure out where task on dead CPU should go, use force if necessary.
5287 * NOTE: interrupts should be disabled by the caller
5288 */
5289 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5290 {
5291 unsigned long flags;
5292 cpumask_t mask;
5293 struct rq *rq;
5294 int dest_cpu;
5295
5296 do {
5297 /* On same node? */
5298 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5299 cpus_and(mask, mask, p->cpus_allowed);
5300 dest_cpu = any_online_cpu(mask);
5301
5302 /* On any allowed CPU? */
5303 if (dest_cpu == NR_CPUS)
5304 dest_cpu = any_online_cpu(p->cpus_allowed);
5305
5306 /* No more Mr. Nice Guy. */
5307 if (dest_cpu == NR_CPUS) {
5308 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5309 /*
5310 * Try to stay on the same cpuset, where the
5311 * current cpuset may be a subset of all cpus.
5312 * The cpuset_cpus_allowed_locked() variant of
5313 * cpuset_cpus_allowed() will not block. It must be
5314 * called within calls to cpuset_lock/cpuset_unlock.
5315 */
5316 rq = task_rq_lock(p, &flags);
5317 p->cpus_allowed = cpus_allowed;
5318 dest_cpu = any_online_cpu(p->cpus_allowed);
5319 task_rq_unlock(rq, &flags);
5320
5321 /*
5322 * Don't tell them about moving exiting tasks or
5323 * kernel threads (both mm NULL), since they never
5324 * leave kernel.
5325 */
5326 if (p->mm && printk_ratelimit()) {
5327 printk(KERN_INFO "process %d (%s) no "
5328 "longer affine to cpu%d\n",
5329 task_pid_nr(p), p->comm, dead_cpu);
5330 }
5331 }
5332 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5333 }
5334
5335 /*
5336 * While a dead CPU has no uninterruptible tasks queued at this point,
5337 * it might still have a nonzero ->nr_uninterruptible counter, because
5338 * for performance reasons the counter is not stricly tracking tasks to
5339 * their home CPUs. So we just add the counter to another CPU's counter,
5340 * to keep the global sum constant after CPU-down:
5341 */
5342 static void migrate_nr_uninterruptible(struct rq *rq_src)
5343 {
5344 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5345 unsigned long flags;
5346
5347 local_irq_save(flags);
5348 double_rq_lock(rq_src, rq_dest);
5349 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5350 rq_src->nr_uninterruptible = 0;
5351 double_rq_unlock(rq_src, rq_dest);
5352 local_irq_restore(flags);
5353 }
5354
5355 /* Run through task list and migrate tasks from the dead cpu. */
5356 static void migrate_live_tasks(int src_cpu)
5357 {
5358 struct task_struct *p, *t;
5359
5360 read_lock(&tasklist_lock);
5361
5362 do_each_thread(t, p) {
5363 if (p == current)
5364 continue;
5365
5366 if (task_cpu(p) == src_cpu)
5367 move_task_off_dead_cpu(src_cpu, p);
5368 } while_each_thread(t, p);
5369
5370 read_unlock(&tasklist_lock);
5371 }
5372
5373 /*
5374 * Schedules idle task to be the next runnable task on current CPU.
5375 * It does so by boosting its priority to highest possible.
5376 * Used by CPU offline code.
5377 */
5378 void sched_idle_next(void)
5379 {
5380 int this_cpu = smp_processor_id();
5381 struct rq *rq = cpu_rq(this_cpu);
5382 struct task_struct *p = rq->idle;
5383 unsigned long flags;
5384
5385 /* cpu has to be offline */
5386 BUG_ON(cpu_online(this_cpu));
5387
5388 /*
5389 * Strictly not necessary since rest of the CPUs are stopped by now
5390 * and interrupts disabled on the current cpu.
5391 */
5392 spin_lock_irqsave(&rq->lock, flags);
5393
5394 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5395
5396 update_rq_clock(rq);
5397 activate_task(rq, p, 0);
5398
5399 spin_unlock_irqrestore(&rq->lock, flags);
5400 }
5401
5402 /*
5403 * Ensures that the idle task is using init_mm right before its cpu goes
5404 * offline.
5405 */
5406 void idle_task_exit(void)
5407 {
5408 struct mm_struct *mm = current->active_mm;
5409
5410 BUG_ON(cpu_online(smp_processor_id()));
5411
5412 if (mm != &init_mm)
5413 switch_mm(mm, &init_mm, current);
5414 mmdrop(mm);
5415 }
5416
5417 /* called under rq->lock with disabled interrupts */
5418 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5419 {
5420 struct rq *rq = cpu_rq(dead_cpu);
5421
5422 /* Must be exiting, otherwise would be on tasklist. */
5423 BUG_ON(!p->exit_state);
5424
5425 /* Cannot have done final schedule yet: would have vanished. */
5426 BUG_ON(p->state == TASK_DEAD);
5427
5428 get_task_struct(p);
5429
5430 /*
5431 * Drop lock around migration; if someone else moves it,
5432 * that's OK. No task can be added to this CPU, so iteration is
5433 * fine.
5434 */
5435 spin_unlock_irq(&rq->lock);
5436 move_task_off_dead_cpu(dead_cpu, p);
5437 spin_lock_irq(&rq->lock);
5438
5439 put_task_struct(p);
5440 }
5441
5442 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5443 static void migrate_dead_tasks(unsigned int dead_cpu)
5444 {
5445 struct rq *rq = cpu_rq(dead_cpu);
5446 struct task_struct *next;
5447
5448 for ( ; ; ) {
5449 if (!rq->nr_running)
5450 break;
5451 update_rq_clock(rq);
5452 next = pick_next_task(rq, rq->curr);
5453 if (!next)
5454 break;
5455 migrate_dead(dead_cpu, next);
5456
5457 }
5458 }
5459 #endif /* CONFIG_HOTPLUG_CPU */
5460
5461 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5462
5463 static struct ctl_table sd_ctl_dir[] = {
5464 {
5465 .procname = "sched_domain",
5466 .mode = 0555,
5467 },
5468 {0, },
5469 };
5470
5471 static struct ctl_table sd_ctl_root[] = {
5472 {
5473 .ctl_name = CTL_KERN,
5474 .procname = "kernel",
5475 .mode = 0555,
5476 .child = sd_ctl_dir,
5477 },
5478 {0, },
5479 };
5480
5481 static struct ctl_table *sd_alloc_ctl_entry(int n)
5482 {
5483 struct ctl_table *entry =
5484 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5485
5486 return entry;
5487 }
5488
5489 static void sd_free_ctl_entry(struct ctl_table **tablep)
5490 {
5491 struct ctl_table *entry;
5492
5493 /*
5494 * In the intermediate directories, both the child directory and
5495 * procname are dynamically allocated and could fail but the mode
5496 * will always be set. In the lowest directory the names are
5497 * static strings and all have proc handlers.
5498 */
5499 for (entry = *tablep; entry->mode; entry++) {
5500 if (entry->child)
5501 sd_free_ctl_entry(&entry->child);
5502 if (entry->proc_handler == NULL)
5503 kfree(entry->procname);
5504 }
5505
5506 kfree(*tablep);
5507 *tablep = NULL;
5508 }
5509
5510 static void
5511 set_table_entry(struct ctl_table *entry,
5512 const char *procname, void *data, int maxlen,
5513 mode_t mode, proc_handler *proc_handler)
5514 {
5515 entry->procname = procname;
5516 entry->data = data;
5517 entry->maxlen = maxlen;
5518 entry->mode = mode;
5519 entry->proc_handler = proc_handler;
5520 }
5521
5522 static struct ctl_table *
5523 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5524 {
5525 struct ctl_table *table = sd_alloc_ctl_entry(12);
5526
5527 if (table == NULL)
5528 return NULL;
5529
5530 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5531 sizeof(long), 0644, proc_doulongvec_minmax);
5532 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5533 sizeof(long), 0644, proc_doulongvec_minmax);
5534 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5535 sizeof(int), 0644, proc_dointvec_minmax);
5536 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5537 sizeof(int), 0644, proc_dointvec_minmax);
5538 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5539 sizeof(int), 0644, proc_dointvec_minmax);
5540 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5541 sizeof(int), 0644, proc_dointvec_minmax);
5542 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5543 sizeof(int), 0644, proc_dointvec_minmax);
5544 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5545 sizeof(int), 0644, proc_dointvec_minmax);
5546 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5547 sizeof(int), 0644, proc_dointvec_minmax);
5548 set_table_entry(&table[9], "cache_nice_tries",
5549 &sd->cache_nice_tries,
5550 sizeof(int), 0644, proc_dointvec_minmax);
5551 set_table_entry(&table[10], "flags", &sd->flags,
5552 sizeof(int), 0644, proc_dointvec_minmax);
5553 /* &table[11] is terminator */
5554
5555 return table;
5556 }
5557
5558 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5559 {
5560 struct ctl_table *entry, *table;
5561 struct sched_domain *sd;
5562 int domain_num = 0, i;
5563 char buf[32];
5564
5565 for_each_domain(cpu, sd)
5566 domain_num++;
5567 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5568 if (table == NULL)
5569 return NULL;
5570
5571 i = 0;
5572 for_each_domain(cpu, sd) {
5573 snprintf(buf, 32, "domain%d", i);
5574 entry->procname = kstrdup(buf, GFP_KERNEL);
5575 entry->mode = 0555;
5576 entry->child = sd_alloc_ctl_domain_table(sd);
5577 entry++;
5578 i++;
5579 }
5580 return table;
5581 }
5582
5583 static struct ctl_table_header *sd_sysctl_header;
5584 static void register_sched_domain_sysctl(void)
5585 {
5586 int i, cpu_num = num_online_cpus();
5587 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5588 char buf[32];
5589
5590 WARN_ON(sd_ctl_dir[0].child);
5591 sd_ctl_dir[0].child = entry;
5592
5593 if (entry == NULL)
5594 return;
5595
5596 for_each_online_cpu(i) {
5597 snprintf(buf, 32, "cpu%d", i);
5598 entry->procname = kstrdup(buf, GFP_KERNEL);
5599 entry->mode = 0555;
5600 entry->child = sd_alloc_ctl_cpu_table(i);
5601 entry++;
5602 }
5603
5604 WARN_ON(sd_sysctl_header);
5605 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5606 }
5607
5608 /* may be called multiple times per register */
5609 static void unregister_sched_domain_sysctl(void)
5610 {
5611 if (sd_sysctl_header)
5612 unregister_sysctl_table(sd_sysctl_header);
5613 sd_sysctl_header = NULL;
5614 if (sd_ctl_dir[0].child)
5615 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5616 }
5617 #else
5618 static void register_sched_domain_sysctl(void)
5619 {
5620 }
5621 static void unregister_sched_domain_sysctl(void)
5622 {
5623 }
5624 #endif
5625
5626 /*
5627 * migration_call - callback that gets triggered when a CPU is added.
5628 * Here we can start up the necessary migration thread for the new CPU.
5629 */
5630 static int __cpuinit
5631 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5632 {
5633 struct task_struct *p;
5634 int cpu = (long)hcpu;
5635 unsigned long flags;
5636 struct rq *rq;
5637
5638 switch (action) {
5639
5640 case CPU_UP_PREPARE:
5641 case CPU_UP_PREPARE_FROZEN:
5642 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5643 if (IS_ERR(p))
5644 return NOTIFY_BAD;
5645 kthread_bind(p, cpu);
5646 /* Must be high prio: stop_machine expects to yield to it. */
5647 rq = task_rq_lock(p, &flags);
5648 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5649 task_rq_unlock(rq, &flags);
5650 cpu_rq(cpu)->migration_thread = p;
5651 break;
5652
5653 case CPU_ONLINE:
5654 case CPU_ONLINE_FROZEN:
5655 /* Strictly unnecessary, as first user will wake it. */
5656 wake_up_process(cpu_rq(cpu)->migration_thread);
5657 break;
5658
5659 #ifdef CONFIG_HOTPLUG_CPU
5660 case CPU_UP_CANCELED:
5661 case CPU_UP_CANCELED_FROZEN:
5662 if (!cpu_rq(cpu)->migration_thread)
5663 break;
5664 /* Unbind it from offline cpu so it can run. Fall thru. */
5665 kthread_bind(cpu_rq(cpu)->migration_thread,
5666 any_online_cpu(cpu_online_map));
5667 kthread_stop(cpu_rq(cpu)->migration_thread);
5668 cpu_rq(cpu)->migration_thread = NULL;
5669 break;
5670
5671 case CPU_DEAD:
5672 case CPU_DEAD_FROZEN:
5673 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5674 migrate_live_tasks(cpu);
5675 rq = cpu_rq(cpu);
5676 kthread_stop(rq->migration_thread);
5677 rq->migration_thread = NULL;
5678 /* Idle task back to normal (off runqueue, low prio) */
5679 spin_lock_irq(&rq->lock);
5680 update_rq_clock(rq);
5681 deactivate_task(rq, rq->idle, 0);
5682 rq->idle->static_prio = MAX_PRIO;
5683 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5684 rq->idle->sched_class = &idle_sched_class;
5685 migrate_dead_tasks(cpu);
5686 spin_unlock_irq(&rq->lock);
5687 cpuset_unlock();
5688 migrate_nr_uninterruptible(rq);
5689 BUG_ON(rq->nr_running != 0);
5690
5691 /*
5692 * No need to migrate the tasks: it was best-effort if
5693 * they didn't take sched_hotcpu_mutex. Just wake up
5694 * the requestors.
5695 */
5696 spin_lock_irq(&rq->lock);
5697 while (!list_empty(&rq->migration_queue)) {
5698 struct migration_req *req;
5699
5700 req = list_entry(rq->migration_queue.next,
5701 struct migration_req, list);
5702 list_del_init(&req->list);
5703 complete(&req->done);
5704 }
5705 spin_unlock_irq(&rq->lock);
5706 break;
5707 #endif
5708 }
5709 return NOTIFY_OK;
5710 }
5711
5712 /* Register at highest priority so that task migration (migrate_all_tasks)
5713 * happens before everything else.
5714 */
5715 static struct notifier_block __cpuinitdata migration_notifier = {
5716 .notifier_call = migration_call,
5717 .priority = 10
5718 };
5719
5720 void __init migration_init(void)
5721 {
5722 void *cpu = (void *)(long)smp_processor_id();
5723 int err;
5724
5725 /* Start one for the boot CPU: */
5726 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5727 BUG_ON(err == NOTIFY_BAD);
5728 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5729 register_cpu_notifier(&migration_notifier);
5730 }
5731 #endif
5732
5733 #ifdef CONFIG_SMP
5734
5735 /* Number of possible processor ids */
5736 int nr_cpu_ids __read_mostly = NR_CPUS;
5737 EXPORT_SYMBOL(nr_cpu_ids);
5738
5739 #ifdef CONFIG_SCHED_DEBUG
5740
5741 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5742 {
5743 struct sched_group *group = sd->groups;
5744 cpumask_t groupmask;
5745 char str[NR_CPUS];
5746
5747 cpumask_scnprintf(str, NR_CPUS, sd->span);
5748 cpus_clear(groupmask);
5749
5750 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5751
5752 if (!(sd->flags & SD_LOAD_BALANCE)) {
5753 printk("does not load-balance\n");
5754 if (sd->parent)
5755 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5756 " has parent");
5757 return -1;
5758 }
5759
5760 printk(KERN_CONT "span %s\n", str);
5761
5762 if (!cpu_isset(cpu, sd->span)) {
5763 printk(KERN_ERR "ERROR: domain->span does not contain "
5764 "CPU%d\n", cpu);
5765 }
5766 if (!cpu_isset(cpu, group->cpumask)) {
5767 printk(KERN_ERR "ERROR: domain->groups does not contain"
5768 " CPU%d\n", cpu);
5769 }
5770
5771 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5772 do {
5773 if (!group) {
5774 printk("\n");
5775 printk(KERN_ERR "ERROR: group is NULL\n");
5776 break;
5777 }
5778
5779 if (!group->__cpu_power) {
5780 printk(KERN_CONT "\n");
5781 printk(KERN_ERR "ERROR: domain->cpu_power not "
5782 "set\n");
5783 break;
5784 }
5785
5786 if (!cpus_weight(group->cpumask)) {
5787 printk(KERN_CONT "\n");
5788 printk(KERN_ERR "ERROR: empty group\n");
5789 break;
5790 }
5791
5792 if (cpus_intersects(groupmask, group->cpumask)) {
5793 printk(KERN_CONT "\n");
5794 printk(KERN_ERR "ERROR: repeated CPUs\n");
5795 break;
5796 }
5797
5798 cpus_or(groupmask, groupmask, group->cpumask);
5799
5800 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5801 printk(KERN_CONT " %s", str);
5802
5803 group = group->next;
5804 } while (group != sd->groups);
5805 printk(KERN_CONT "\n");
5806
5807 if (!cpus_equal(sd->span, groupmask))
5808 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5809
5810 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
5811 printk(KERN_ERR "ERROR: parent span is not a superset "
5812 "of domain->span\n");
5813 return 0;
5814 }
5815
5816 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5817 {
5818 int level = 0;
5819
5820 if (!sd) {
5821 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5822 return;
5823 }
5824
5825 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5826
5827 for (;;) {
5828 if (sched_domain_debug_one(sd, cpu, level))
5829 break;
5830 level++;
5831 sd = sd->parent;
5832 if (!sd)
5833 break;
5834 }
5835 }
5836 #else
5837 # define sched_domain_debug(sd, cpu) do { } while (0)
5838 #endif
5839
5840 static int sd_degenerate(struct sched_domain *sd)
5841 {
5842 if (cpus_weight(sd->span) == 1)
5843 return 1;
5844
5845 /* Following flags need at least 2 groups */
5846 if (sd->flags & (SD_LOAD_BALANCE |
5847 SD_BALANCE_NEWIDLE |
5848 SD_BALANCE_FORK |
5849 SD_BALANCE_EXEC |
5850 SD_SHARE_CPUPOWER |
5851 SD_SHARE_PKG_RESOURCES)) {
5852 if (sd->groups != sd->groups->next)
5853 return 0;
5854 }
5855
5856 /* Following flags don't use groups */
5857 if (sd->flags & (SD_WAKE_IDLE |
5858 SD_WAKE_AFFINE |
5859 SD_WAKE_BALANCE))
5860 return 0;
5861
5862 return 1;
5863 }
5864
5865 static int
5866 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5867 {
5868 unsigned long cflags = sd->flags, pflags = parent->flags;
5869
5870 if (sd_degenerate(parent))
5871 return 1;
5872
5873 if (!cpus_equal(sd->span, parent->span))
5874 return 0;
5875
5876 /* Does parent contain flags not in child? */
5877 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5878 if (cflags & SD_WAKE_AFFINE)
5879 pflags &= ~SD_WAKE_BALANCE;
5880 /* Flags needing groups don't count if only 1 group in parent */
5881 if (parent->groups == parent->groups->next) {
5882 pflags &= ~(SD_LOAD_BALANCE |
5883 SD_BALANCE_NEWIDLE |
5884 SD_BALANCE_FORK |
5885 SD_BALANCE_EXEC |
5886 SD_SHARE_CPUPOWER |
5887 SD_SHARE_PKG_RESOURCES);
5888 }
5889 if (~cflags & pflags)
5890 return 0;
5891
5892 return 1;
5893 }
5894
5895 /*
5896 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5897 * hold the hotplug lock.
5898 */
5899 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5900 {
5901 struct rq *rq = cpu_rq(cpu);
5902 struct sched_domain *tmp;
5903
5904 /* Remove the sched domains which do not contribute to scheduling. */
5905 for (tmp = sd; tmp; tmp = tmp->parent) {
5906 struct sched_domain *parent = tmp->parent;
5907 if (!parent)
5908 break;
5909 if (sd_parent_degenerate(tmp, parent)) {
5910 tmp->parent = parent->parent;
5911 if (parent->parent)
5912 parent->parent->child = tmp;
5913 }
5914 }
5915
5916 if (sd && sd_degenerate(sd)) {
5917 sd = sd->parent;
5918 if (sd)
5919 sd->child = NULL;
5920 }
5921
5922 sched_domain_debug(sd, cpu);
5923
5924 rcu_assign_pointer(rq->sd, sd);
5925 }
5926
5927 /* cpus with isolated domains */
5928 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5929
5930 /* Setup the mask of cpus configured for isolated domains */
5931 static int __init isolated_cpu_setup(char *str)
5932 {
5933 int ints[NR_CPUS], i;
5934
5935 str = get_options(str, ARRAY_SIZE(ints), ints);
5936 cpus_clear(cpu_isolated_map);
5937 for (i = 1; i <= ints[0]; i++)
5938 if (ints[i] < NR_CPUS)
5939 cpu_set(ints[i], cpu_isolated_map);
5940 return 1;
5941 }
5942
5943 __setup("isolcpus=", isolated_cpu_setup);
5944
5945 /*
5946 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5947 * to a function which identifies what group(along with sched group) a CPU
5948 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5949 * (due to the fact that we keep track of groups covered with a cpumask_t).
5950 *
5951 * init_sched_build_groups will build a circular linked list of the groups
5952 * covered by the given span, and will set each group's ->cpumask correctly,
5953 * and ->cpu_power to 0.
5954 */
5955 static void
5956 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5957 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5958 struct sched_group **sg))
5959 {
5960 struct sched_group *first = NULL, *last = NULL;
5961 cpumask_t covered = CPU_MASK_NONE;
5962 int i;
5963
5964 for_each_cpu_mask(i, span) {
5965 struct sched_group *sg;
5966 int group = group_fn(i, cpu_map, &sg);
5967 int j;
5968
5969 if (cpu_isset(i, covered))
5970 continue;
5971
5972 sg->cpumask = CPU_MASK_NONE;
5973 sg->__cpu_power = 0;
5974
5975 for_each_cpu_mask(j, span) {
5976 if (group_fn(j, cpu_map, NULL) != group)
5977 continue;
5978
5979 cpu_set(j, covered);
5980 cpu_set(j, sg->cpumask);
5981 }
5982 if (!first)
5983 first = sg;
5984 if (last)
5985 last->next = sg;
5986 last = sg;
5987 }
5988 last->next = first;
5989 }
5990
5991 #define SD_NODES_PER_DOMAIN 16
5992
5993 #ifdef CONFIG_NUMA
5994
5995 /**
5996 * find_next_best_node - find the next node to include in a sched_domain
5997 * @node: node whose sched_domain we're building
5998 * @used_nodes: nodes already in the sched_domain
5999 *
6000 * Find the next node to include in a given scheduling domain. Simply
6001 * finds the closest node not already in the @used_nodes map.
6002 *
6003 * Should use nodemask_t.
6004 */
6005 static int find_next_best_node(int node, unsigned long *used_nodes)
6006 {
6007 int i, n, val, min_val, best_node = 0;
6008
6009 min_val = INT_MAX;
6010
6011 for (i = 0; i < MAX_NUMNODES; i++) {
6012 /* Start at @node */
6013 n = (node + i) % MAX_NUMNODES;
6014
6015 if (!nr_cpus_node(n))
6016 continue;
6017
6018 /* Skip already used nodes */
6019 if (test_bit(n, used_nodes))
6020 continue;
6021
6022 /* Simple min distance search */
6023 val = node_distance(node, n);
6024
6025 if (val < min_val) {
6026 min_val = val;
6027 best_node = n;
6028 }
6029 }
6030
6031 set_bit(best_node, used_nodes);
6032 return best_node;
6033 }
6034
6035 /**
6036 * sched_domain_node_span - get a cpumask for a node's sched_domain
6037 * @node: node whose cpumask we're constructing
6038 * @size: number of nodes to include in this span
6039 *
6040 * Given a node, construct a good cpumask for its sched_domain to span. It
6041 * should be one that prevents unnecessary balancing, but also spreads tasks
6042 * out optimally.
6043 */
6044 static cpumask_t sched_domain_node_span(int node)
6045 {
6046 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6047 cpumask_t span, nodemask;
6048 int i;
6049
6050 cpus_clear(span);
6051 bitmap_zero(used_nodes, MAX_NUMNODES);
6052
6053 nodemask = node_to_cpumask(node);
6054 cpus_or(span, span, nodemask);
6055 set_bit(node, used_nodes);
6056
6057 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6058 int next_node = find_next_best_node(node, used_nodes);
6059
6060 nodemask = node_to_cpumask(next_node);
6061 cpus_or(span, span, nodemask);
6062 }
6063
6064 return span;
6065 }
6066 #endif
6067
6068 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6069
6070 /*
6071 * SMT sched-domains:
6072 */
6073 #ifdef CONFIG_SCHED_SMT
6074 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6075 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6076
6077 static int
6078 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6079 {
6080 if (sg)
6081 *sg = &per_cpu(sched_group_cpus, cpu);
6082 return cpu;
6083 }
6084 #endif
6085
6086 /*
6087 * multi-core sched-domains:
6088 */
6089 #ifdef CONFIG_SCHED_MC
6090 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6091 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6092 #endif
6093
6094 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6095 static int
6096 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6097 {
6098 int group;
6099 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6100 cpus_and(mask, mask, *cpu_map);
6101 group = first_cpu(mask);
6102 if (sg)
6103 *sg = &per_cpu(sched_group_core, group);
6104 return group;
6105 }
6106 #elif defined(CONFIG_SCHED_MC)
6107 static int
6108 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6109 {
6110 if (sg)
6111 *sg = &per_cpu(sched_group_core, cpu);
6112 return cpu;
6113 }
6114 #endif
6115
6116 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6117 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6118
6119 static int
6120 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6121 {
6122 int group;
6123 #ifdef CONFIG_SCHED_MC
6124 cpumask_t mask = cpu_coregroup_map(cpu);
6125 cpus_and(mask, mask, *cpu_map);
6126 group = first_cpu(mask);
6127 #elif defined(CONFIG_SCHED_SMT)
6128 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6129 cpus_and(mask, mask, *cpu_map);
6130 group = first_cpu(mask);
6131 #else
6132 group = cpu;
6133 #endif
6134 if (sg)
6135 *sg = &per_cpu(sched_group_phys, group);
6136 return group;
6137 }
6138
6139 #ifdef CONFIG_NUMA
6140 /*
6141 * The init_sched_build_groups can't handle what we want to do with node
6142 * groups, so roll our own. Now each node has its own list of groups which
6143 * gets dynamically allocated.
6144 */
6145 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6146 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6147
6148 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6149 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6150
6151 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6152 struct sched_group **sg)
6153 {
6154 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6155 int group;
6156
6157 cpus_and(nodemask, nodemask, *cpu_map);
6158 group = first_cpu(nodemask);
6159
6160 if (sg)
6161 *sg = &per_cpu(sched_group_allnodes, group);
6162 return group;
6163 }
6164
6165 static void init_numa_sched_groups_power(struct sched_group *group_head)
6166 {
6167 struct sched_group *sg = group_head;
6168 int j;
6169
6170 if (!sg)
6171 return;
6172 do {
6173 for_each_cpu_mask(j, sg->cpumask) {
6174 struct sched_domain *sd;
6175
6176 sd = &per_cpu(phys_domains, j);
6177 if (j != first_cpu(sd->groups->cpumask)) {
6178 /*
6179 * Only add "power" once for each
6180 * physical package.
6181 */
6182 continue;
6183 }
6184
6185 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6186 }
6187 sg = sg->next;
6188 } while (sg != group_head);
6189 }
6190 #endif
6191
6192 #ifdef CONFIG_NUMA
6193 /* Free memory allocated for various sched_group structures */
6194 static void free_sched_groups(const cpumask_t *cpu_map)
6195 {
6196 int cpu, i;
6197
6198 for_each_cpu_mask(cpu, *cpu_map) {
6199 struct sched_group **sched_group_nodes
6200 = sched_group_nodes_bycpu[cpu];
6201
6202 if (!sched_group_nodes)
6203 continue;
6204
6205 for (i = 0; i < MAX_NUMNODES; i++) {
6206 cpumask_t nodemask = node_to_cpumask(i);
6207 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6208
6209 cpus_and(nodemask, nodemask, *cpu_map);
6210 if (cpus_empty(nodemask))
6211 continue;
6212
6213 if (sg == NULL)
6214 continue;
6215 sg = sg->next;
6216 next_sg:
6217 oldsg = sg;
6218 sg = sg->next;
6219 kfree(oldsg);
6220 if (oldsg != sched_group_nodes[i])
6221 goto next_sg;
6222 }
6223 kfree(sched_group_nodes);
6224 sched_group_nodes_bycpu[cpu] = NULL;
6225 }
6226 }
6227 #else
6228 static void free_sched_groups(const cpumask_t *cpu_map)
6229 {
6230 }
6231 #endif
6232
6233 /*
6234 * Initialize sched groups cpu_power.
6235 *
6236 * cpu_power indicates the capacity of sched group, which is used while
6237 * distributing the load between different sched groups in a sched domain.
6238 * Typically cpu_power for all the groups in a sched domain will be same unless
6239 * there are asymmetries in the topology. If there are asymmetries, group
6240 * having more cpu_power will pickup more load compared to the group having
6241 * less cpu_power.
6242 *
6243 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6244 * the maximum number of tasks a group can handle in the presence of other idle
6245 * or lightly loaded groups in the same sched domain.
6246 */
6247 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6248 {
6249 struct sched_domain *child;
6250 struct sched_group *group;
6251
6252 WARN_ON(!sd || !sd->groups);
6253
6254 if (cpu != first_cpu(sd->groups->cpumask))
6255 return;
6256
6257 child = sd->child;
6258
6259 sd->groups->__cpu_power = 0;
6260
6261 /*
6262 * For perf policy, if the groups in child domain share resources
6263 * (for example cores sharing some portions of the cache hierarchy
6264 * or SMT), then set this domain groups cpu_power such that each group
6265 * can handle only one task, when there are other idle groups in the
6266 * same sched domain.
6267 */
6268 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6269 (child->flags &
6270 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6271 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6272 return;
6273 }
6274
6275 /*
6276 * add cpu_power of each child group to this groups cpu_power
6277 */
6278 group = child->groups;
6279 do {
6280 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6281 group = group->next;
6282 } while (group != child->groups);
6283 }
6284
6285 /*
6286 * Build sched domains for a given set of cpus and attach the sched domains
6287 * to the individual cpus
6288 */
6289 static int build_sched_domains(const cpumask_t *cpu_map)
6290 {
6291 int i;
6292 #ifdef CONFIG_NUMA
6293 struct sched_group **sched_group_nodes = NULL;
6294 int sd_allnodes = 0;
6295
6296 /*
6297 * Allocate the per-node list of sched groups
6298 */
6299 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6300 GFP_KERNEL);
6301 if (!sched_group_nodes) {
6302 printk(KERN_WARNING "Can not alloc sched group node list\n");
6303 return -ENOMEM;
6304 }
6305 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6306 #endif
6307
6308 /*
6309 * Set up domains for cpus specified by the cpu_map.
6310 */
6311 for_each_cpu_mask(i, *cpu_map) {
6312 struct sched_domain *sd = NULL, *p;
6313 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6314
6315 cpus_and(nodemask, nodemask, *cpu_map);
6316
6317 #ifdef CONFIG_NUMA
6318 if (cpus_weight(*cpu_map) >
6319 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6320 sd = &per_cpu(allnodes_domains, i);
6321 *sd = SD_ALLNODES_INIT;
6322 sd->span = *cpu_map;
6323 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6324 p = sd;
6325 sd_allnodes = 1;
6326 } else
6327 p = NULL;
6328
6329 sd = &per_cpu(node_domains, i);
6330 *sd = SD_NODE_INIT;
6331 sd->span = sched_domain_node_span(cpu_to_node(i));
6332 sd->parent = p;
6333 if (p)
6334 p->child = sd;
6335 cpus_and(sd->span, sd->span, *cpu_map);
6336 #endif
6337
6338 p = sd;
6339 sd = &per_cpu(phys_domains, i);
6340 *sd = SD_CPU_INIT;
6341 sd->span = nodemask;
6342 sd->parent = p;
6343 if (p)
6344 p->child = sd;
6345 cpu_to_phys_group(i, cpu_map, &sd->groups);
6346
6347 #ifdef CONFIG_SCHED_MC
6348 p = sd;
6349 sd = &per_cpu(core_domains, i);
6350 *sd = SD_MC_INIT;
6351 sd->span = cpu_coregroup_map(i);
6352 cpus_and(sd->span, sd->span, *cpu_map);
6353 sd->parent = p;
6354 p->child = sd;
6355 cpu_to_core_group(i, cpu_map, &sd->groups);
6356 #endif
6357
6358 #ifdef CONFIG_SCHED_SMT
6359 p = sd;
6360 sd = &per_cpu(cpu_domains, i);
6361 *sd = SD_SIBLING_INIT;
6362 sd->span = per_cpu(cpu_sibling_map, i);
6363 cpus_and(sd->span, sd->span, *cpu_map);
6364 sd->parent = p;
6365 p->child = sd;
6366 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6367 #endif
6368 }
6369
6370 #ifdef CONFIG_SCHED_SMT
6371 /* Set up CPU (sibling) groups */
6372 for_each_cpu_mask(i, *cpu_map) {
6373 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6374 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6375 if (i != first_cpu(this_sibling_map))
6376 continue;
6377
6378 init_sched_build_groups(this_sibling_map, cpu_map,
6379 &cpu_to_cpu_group);
6380 }
6381 #endif
6382
6383 #ifdef CONFIG_SCHED_MC
6384 /* Set up multi-core groups */
6385 for_each_cpu_mask(i, *cpu_map) {
6386 cpumask_t this_core_map = cpu_coregroup_map(i);
6387 cpus_and(this_core_map, this_core_map, *cpu_map);
6388 if (i != first_cpu(this_core_map))
6389 continue;
6390 init_sched_build_groups(this_core_map, cpu_map,
6391 &cpu_to_core_group);
6392 }
6393 #endif
6394
6395 /* Set up physical groups */
6396 for (i = 0; i < MAX_NUMNODES; i++) {
6397 cpumask_t nodemask = node_to_cpumask(i);
6398
6399 cpus_and(nodemask, nodemask, *cpu_map);
6400 if (cpus_empty(nodemask))
6401 continue;
6402
6403 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6404 }
6405
6406 #ifdef CONFIG_NUMA
6407 /* Set up node groups */
6408 if (sd_allnodes)
6409 init_sched_build_groups(*cpu_map, cpu_map,
6410 &cpu_to_allnodes_group);
6411
6412 for (i = 0; i < MAX_NUMNODES; i++) {
6413 /* Set up node groups */
6414 struct sched_group *sg, *prev;
6415 cpumask_t nodemask = node_to_cpumask(i);
6416 cpumask_t domainspan;
6417 cpumask_t covered = CPU_MASK_NONE;
6418 int j;
6419
6420 cpus_and(nodemask, nodemask, *cpu_map);
6421 if (cpus_empty(nodemask)) {
6422 sched_group_nodes[i] = NULL;
6423 continue;
6424 }
6425
6426 domainspan = sched_domain_node_span(i);
6427 cpus_and(domainspan, domainspan, *cpu_map);
6428
6429 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6430 if (!sg) {
6431 printk(KERN_WARNING "Can not alloc domain group for "
6432 "node %d\n", i);
6433 goto error;
6434 }
6435 sched_group_nodes[i] = sg;
6436 for_each_cpu_mask(j, nodemask) {
6437 struct sched_domain *sd;
6438
6439 sd = &per_cpu(node_domains, j);
6440 sd->groups = sg;
6441 }
6442 sg->__cpu_power = 0;
6443 sg->cpumask = nodemask;
6444 sg->next = sg;
6445 cpus_or(covered, covered, nodemask);
6446 prev = sg;
6447
6448 for (j = 0; j < MAX_NUMNODES; j++) {
6449 cpumask_t tmp, notcovered;
6450 int n = (i + j) % MAX_NUMNODES;
6451
6452 cpus_complement(notcovered, covered);
6453 cpus_and(tmp, notcovered, *cpu_map);
6454 cpus_and(tmp, tmp, domainspan);
6455 if (cpus_empty(tmp))
6456 break;
6457
6458 nodemask = node_to_cpumask(n);
6459 cpus_and(tmp, tmp, nodemask);
6460 if (cpus_empty(tmp))
6461 continue;
6462
6463 sg = kmalloc_node(sizeof(struct sched_group),
6464 GFP_KERNEL, i);
6465 if (!sg) {
6466 printk(KERN_WARNING
6467 "Can not alloc domain group for node %d\n", j);
6468 goto error;
6469 }
6470 sg->__cpu_power = 0;
6471 sg->cpumask = tmp;
6472 sg->next = prev->next;
6473 cpus_or(covered, covered, tmp);
6474 prev->next = sg;
6475 prev = sg;
6476 }
6477 }
6478 #endif
6479
6480 /* Calculate CPU power for physical packages and nodes */
6481 #ifdef CONFIG_SCHED_SMT
6482 for_each_cpu_mask(i, *cpu_map) {
6483 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6484
6485 init_sched_groups_power(i, sd);
6486 }
6487 #endif
6488 #ifdef CONFIG_SCHED_MC
6489 for_each_cpu_mask(i, *cpu_map) {
6490 struct sched_domain *sd = &per_cpu(core_domains, i);
6491
6492 init_sched_groups_power(i, sd);
6493 }
6494 #endif
6495
6496 for_each_cpu_mask(i, *cpu_map) {
6497 struct sched_domain *sd = &per_cpu(phys_domains, i);
6498
6499 init_sched_groups_power(i, sd);
6500 }
6501
6502 #ifdef CONFIG_NUMA
6503 for (i = 0; i < MAX_NUMNODES; i++)
6504 init_numa_sched_groups_power(sched_group_nodes[i]);
6505
6506 if (sd_allnodes) {
6507 struct sched_group *sg;
6508
6509 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6510 init_numa_sched_groups_power(sg);
6511 }
6512 #endif
6513
6514 /* Attach the domains */
6515 for_each_cpu_mask(i, *cpu_map) {
6516 struct sched_domain *sd;
6517 #ifdef CONFIG_SCHED_SMT
6518 sd = &per_cpu(cpu_domains, i);
6519 #elif defined(CONFIG_SCHED_MC)
6520 sd = &per_cpu(core_domains, i);
6521 #else
6522 sd = &per_cpu(phys_domains, i);
6523 #endif
6524 cpu_attach_domain(sd, i);
6525 }
6526
6527 return 0;
6528
6529 #ifdef CONFIG_NUMA
6530 error:
6531 free_sched_groups(cpu_map);
6532 return -ENOMEM;
6533 #endif
6534 }
6535
6536 static cpumask_t *doms_cur; /* current sched domains */
6537 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6538
6539 /*
6540 * Special case: If a kmalloc of a doms_cur partition (array of
6541 * cpumask_t) fails, then fallback to a single sched domain,
6542 * as determined by the single cpumask_t fallback_doms.
6543 */
6544 static cpumask_t fallback_doms;
6545
6546 /*
6547 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6548 * For now this just excludes isolated cpus, but could be used to
6549 * exclude other special cases in the future.
6550 */
6551 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6552 {
6553 int err;
6554
6555 ndoms_cur = 1;
6556 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6557 if (!doms_cur)
6558 doms_cur = &fallback_doms;
6559 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6560 err = build_sched_domains(doms_cur);
6561 register_sched_domain_sysctl();
6562
6563 return err;
6564 }
6565
6566 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6567 {
6568 free_sched_groups(cpu_map);
6569 }
6570
6571 /*
6572 * Detach sched domains from a group of cpus specified in cpu_map
6573 * These cpus will now be attached to the NULL domain
6574 */
6575 static void detach_destroy_domains(const cpumask_t *cpu_map)
6576 {
6577 int i;
6578
6579 unregister_sched_domain_sysctl();
6580
6581 for_each_cpu_mask(i, *cpu_map)
6582 cpu_attach_domain(NULL, i);
6583 synchronize_sched();
6584 arch_destroy_sched_domains(cpu_map);
6585 }
6586
6587 /*
6588 * Partition sched domains as specified by the 'ndoms_new'
6589 * cpumasks in the array doms_new[] of cpumasks. This compares
6590 * doms_new[] to the current sched domain partitioning, doms_cur[].
6591 * It destroys each deleted domain and builds each new domain.
6592 *
6593 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6594 * The masks don't intersect (don't overlap.) We should setup one
6595 * sched domain for each mask. CPUs not in any of the cpumasks will
6596 * not be load balanced. If the same cpumask appears both in the
6597 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6598 * it as it is.
6599 *
6600 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6601 * ownership of it and will kfree it when done with it. If the caller
6602 * failed the kmalloc call, then it can pass in doms_new == NULL,
6603 * and partition_sched_domains() will fallback to the single partition
6604 * 'fallback_doms'.
6605 *
6606 * Call with hotplug lock held
6607 */
6608 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6609 {
6610 int i, j;
6611
6612 lock_doms_cur();
6613
6614 /* always unregister in case we don't destroy any domains */
6615 unregister_sched_domain_sysctl();
6616
6617 if (doms_new == NULL) {
6618 ndoms_new = 1;
6619 doms_new = &fallback_doms;
6620 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6621 }
6622
6623 /* Destroy deleted domains */
6624 for (i = 0; i < ndoms_cur; i++) {
6625 for (j = 0; j < ndoms_new; j++) {
6626 if (cpus_equal(doms_cur[i], doms_new[j]))
6627 goto match1;
6628 }
6629 /* no match - a current sched domain not in new doms_new[] */
6630 detach_destroy_domains(doms_cur + i);
6631 match1:
6632 ;
6633 }
6634
6635 /* Build new domains */
6636 for (i = 0; i < ndoms_new; i++) {
6637 for (j = 0; j < ndoms_cur; j++) {
6638 if (cpus_equal(doms_new[i], doms_cur[j]))
6639 goto match2;
6640 }
6641 /* no match - add a new doms_new */
6642 build_sched_domains(doms_new + i);
6643 match2:
6644 ;
6645 }
6646
6647 /* Remember the new sched domains */
6648 if (doms_cur != &fallback_doms)
6649 kfree(doms_cur);
6650 doms_cur = doms_new;
6651 ndoms_cur = ndoms_new;
6652
6653 register_sched_domain_sysctl();
6654
6655 unlock_doms_cur();
6656 }
6657
6658 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6659 static int arch_reinit_sched_domains(void)
6660 {
6661 int err;
6662
6663 get_online_cpus();
6664 detach_destroy_domains(&cpu_online_map);
6665 err = arch_init_sched_domains(&cpu_online_map);
6666 put_online_cpus();
6667
6668 return err;
6669 }
6670
6671 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6672 {
6673 int ret;
6674
6675 if (buf[0] != '0' && buf[0] != '1')
6676 return -EINVAL;
6677
6678 if (smt)
6679 sched_smt_power_savings = (buf[0] == '1');
6680 else
6681 sched_mc_power_savings = (buf[0] == '1');
6682
6683 ret = arch_reinit_sched_domains();
6684
6685 return ret ? ret : count;
6686 }
6687
6688 #ifdef CONFIG_SCHED_MC
6689 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6690 {
6691 return sprintf(page, "%u\n", sched_mc_power_savings);
6692 }
6693 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6694 const char *buf, size_t count)
6695 {
6696 return sched_power_savings_store(buf, count, 0);
6697 }
6698 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6699 sched_mc_power_savings_store);
6700 #endif
6701
6702 #ifdef CONFIG_SCHED_SMT
6703 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6704 {
6705 return sprintf(page, "%u\n", sched_smt_power_savings);
6706 }
6707 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6708 const char *buf, size_t count)
6709 {
6710 return sched_power_savings_store(buf, count, 1);
6711 }
6712 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6713 sched_smt_power_savings_store);
6714 #endif
6715
6716 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6717 {
6718 int err = 0;
6719
6720 #ifdef CONFIG_SCHED_SMT
6721 if (smt_capable())
6722 err = sysfs_create_file(&cls->kset.kobj,
6723 &attr_sched_smt_power_savings.attr);
6724 #endif
6725 #ifdef CONFIG_SCHED_MC
6726 if (!err && mc_capable())
6727 err = sysfs_create_file(&cls->kset.kobj,
6728 &attr_sched_mc_power_savings.attr);
6729 #endif
6730 return err;
6731 }
6732 #endif
6733
6734 /*
6735 * Force a reinitialization of the sched domains hierarchy. The domains
6736 * and groups cannot be updated in place without racing with the balancing
6737 * code, so we temporarily attach all running cpus to the NULL domain
6738 * which will prevent rebalancing while the sched domains are recalculated.
6739 */
6740 static int update_sched_domains(struct notifier_block *nfb,
6741 unsigned long action, void *hcpu)
6742 {
6743 switch (action) {
6744 case CPU_UP_PREPARE:
6745 case CPU_UP_PREPARE_FROZEN:
6746 case CPU_DOWN_PREPARE:
6747 case CPU_DOWN_PREPARE_FROZEN:
6748 detach_destroy_domains(&cpu_online_map);
6749 return NOTIFY_OK;
6750
6751 case CPU_UP_CANCELED:
6752 case CPU_UP_CANCELED_FROZEN:
6753 case CPU_DOWN_FAILED:
6754 case CPU_DOWN_FAILED_FROZEN:
6755 case CPU_ONLINE:
6756 case CPU_ONLINE_FROZEN:
6757 case CPU_DEAD:
6758 case CPU_DEAD_FROZEN:
6759 /*
6760 * Fall through and re-initialise the domains.
6761 */
6762 break;
6763 default:
6764 return NOTIFY_DONE;
6765 }
6766
6767 /* The hotplug lock is already held by cpu_up/cpu_down */
6768 arch_init_sched_domains(&cpu_online_map);
6769
6770 return NOTIFY_OK;
6771 }
6772
6773 void __init sched_init_smp(void)
6774 {
6775 cpumask_t non_isolated_cpus;
6776
6777 get_online_cpus();
6778 arch_init_sched_domains(&cpu_online_map);
6779 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6780 if (cpus_empty(non_isolated_cpus))
6781 cpu_set(smp_processor_id(), non_isolated_cpus);
6782 put_online_cpus();
6783 /* XXX: Theoretical race here - CPU may be hotplugged now */
6784 hotcpu_notifier(update_sched_domains, 0);
6785
6786 /* Move init over to a non-isolated CPU */
6787 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6788 BUG();
6789 sched_init_granularity();
6790
6791 #ifdef CONFIG_FAIR_GROUP_SCHED
6792 if (nr_cpu_ids == 1)
6793 return;
6794
6795 lb_monitor_task = kthread_create(load_balance_monitor, NULL,
6796 "group_balance");
6797 if (!IS_ERR(lb_monitor_task)) {
6798 lb_monitor_task->flags |= PF_NOFREEZE;
6799 wake_up_process(lb_monitor_task);
6800 } else {
6801 printk(KERN_ERR "Could not create load balance monitor thread"
6802 "(error = %ld) \n", PTR_ERR(lb_monitor_task));
6803 }
6804 #endif
6805 }
6806 #else
6807 void __init sched_init_smp(void)
6808 {
6809 sched_init_granularity();
6810 }
6811 #endif /* CONFIG_SMP */
6812
6813 int in_sched_functions(unsigned long addr)
6814 {
6815 return in_lock_functions(addr) ||
6816 (addr >= (unsigned long)__sched_text_start
6817 && addr < (unsigned long)__sched_text_end);
6818 }
6819
6820 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6821 {
6822 cfs_rq->tasks_timeline = RB_ROOT;
6823 #ifdef CONFIG_FAIR_GROUP_SCHED
6824 cfs_rq->rq = rq;
6825 #endif
6826 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6827 }
6828
6829 void __init sched_init(void)
6830 {
6831 int highest_cpu = 0;
6832 int i, j;
6833
6834 for_each_possible_cpu(i) {
6835 struct rt_prio_array *array;
6836 struct rq *rq;
6837
6838 rq = cpu_rq(i);
6839 spin_lock_init(&rq->lock);
6840 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6841 rq->nr_running = 0;
6842 rq->clock = 1;
6843 init_cfs_rq(&rq->cfs, rq);
6844 #ifdef CONFIG_FAIR_GROUP_SCHED
6845 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6846 {
6847 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6848 struct sched_entity *se =
6849 &per_cpu(init_sched_entity, i);
6850
6851 init_cfs_rq_p[i] = cfs_rq;
6852 init_cfs_rq(cfs_rq, rq);
6853 cfs_rq->tg = &init_task_group;
6854 list_add(&cfs_rq->leaf_cfs_rq_list,
6855 &rq->leaf_cfs_rq_list);
6856
6857 init_sched_entity_p[i] = se;
6858 se->cfs_rq = &rq->cfs;
6859 se->my_q = cfs_rq;
6860 se->load.weight = init_task_group_load;
6861 se->load.inv_weight =
6862 div64_64(1ULL<<32, init_task_group_load);
6863 se->parent = NULL;
6864 }
6865 init_task_group.shares = init_task_group_load;
6866 #endif
6867
6868 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6869 rq->cpu_load[j] = 0;
6870 #ifdef CONFIG_SMP
6871 rq->sd = NULL;
6872 rq->active_balance = 0;
6873 rq->next_balance = jiffies;
6874 rq->push_cpu = 0;
6875 rq->cpu = i;
6876 rq->migration_thread = NULL;
6877 INIT_LIST_HEAD(&rq->migration_queue);
6878 rq->rt.highest_prio = MAX_RT_PRIO;
6879 #endif
6880 atomic_set(&rq->nr_iowait, 0);
6881
6882 array = &rq->rt.active;
6883 for (j = 0; j < MAX_RT_PRIO; j++) {
6884 INIT_LIST_HEAD(array->queue + j);
6885 __clear_bit(j, array->bitmap);
6886 }
6887 highest_cpu = i;
6888 /* delimiter for bitsearch: */
6889 __set_bit(MAX_RT_PRIO, array->bitmap);
6890 }
6891
6892 set_load_weight(&init_task);
6893
6894 #ifdef CONFIG_PREEMPT_NOTIFIERS
6895 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6896 #endif
6897
6898 #ifdef CONFIG_SMP
6899 nr_cpu_ids = highest_cpu + 1;
6900 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6901 #endif
6902
6903 #ifdef CONFIG_RT_MUTEXES
6904 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6905 #endif
6906
6907 /*
6908 * The boot idle thread does lazy MMU switching as well:
6909 */
6910 atomic_inc(&init_mm.mm_count);
6911 enter_lazy_tlb(&init_mm, current);
6912
6913 /*
6914 * Make us the idle thread. Technically, schedule() should not be
6915 * called from this thread, however somewhere below it might be,
6916 * but because we are the idle thread, we just pick up running again
6917 * when this runqueue becomes "idle".
6918 */
6919 init_idle(current, smp_processor_id());
6920 /*
6921 * During early bootup we pretend to be a normal task:
6922 */
6923 current->sched_class = &fair_sched_class;
6924 }
6925
6926 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6927 void __might_sleep(char *file, int line)
6928 {
6929 #ifdef in_atomic
6930 static unsigned long prev_jiffy; /* ratelimiting */
6931
6932 if ((in_atomic() || irqs_disabled()) &&
6933 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6934 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6935 return;
6936 prev_jiffy = jiffies;
6937 printk(KERN_ERR "BUG: sleeping function called from invalid"
6938 " context at %s:%d\n", file, line);
6939 printk("in_atomic():%d, irqs_disabled():%d\n",
6940 in_atomic(), irqs_disabled());
6941 debug_show_held_locks(current);
6942 if (irqs_disabled())
6943 print_irqtrace_events(current);
6944 dump_stack();
6945 }
6946 #endif
6947 }
6948 EXPORT_SYMBOL(__might_sleep);
6949 #endif
6950
6951 #ifdef CONFIG_MAGIC_SYSRQ
6952 static void normalize_task(struct rq *rq, struct task_struct *p)
6953 {
6954 int on_rq;
6955 update_rq_clock(rq);
6956 on_rq = p->se.on_rq;
6957 if (on_rq)
6958 deactivate_task(rq, p, 0);
6959 __setscheduler(rq, p, SCHED_NORMAL, 0);
6960 if (on_rq) {
6961 activate_task(rq, p, 0);
6962 resched_task(rq->curr);
6963 }
6964 }
6965
6966 void normalize_rt_tasks(void)
6967 {
6968 struct task_struct *g, *p;
6969 unsigned long flags;
6970 struct rq *rq;
6971
6972 read_lock_irq(&tasklist_lock);
6973 do_each_thread(g, p) {
6974 /*
6975 * Only normalize user tasks:
6976 */
6977 if (!p->mm)
6978 continue;
6979
6980 p->se.exec_start = 0;
6981 #ifdef CONFIG_SCHEDSTATS
6982 p->se.wait_start = 0;
6983 p->se.sleep_start = 0;
6984 p->se.block_start = 0;
6985 #endif
6986 task_rq(p)->clock = 0;
6987
6988 if (!rt_task(p)) {
6989 /*
6990 * Renice negative nice level userspace
6991 * tasks back to 0:
6992 */
6993 if (TASK_NICE(p) < 0 && p->mm)
6994 set_user_nice(p, 0);
6995 continue;
6996 }
6997
6998 spin_lock_irqsave(&p->pi_lock, flags);
6999 rq = __task_rq_lock(p);
7000
7001 normalize_task(rq, p);
7002
7003 __task_rq_unlock(rq);
7004 spin_unlock_irqrestore(&p->pi_lock, flags);
7005 } while_each_thread(g, p);
7006
7007 read_unlock_irq(&tasklist_lock);
7008 }
7009
7010 #endif /* CONFIG_MAGIC_SYSRQ */
7011
7012 #ifdef CONFIG_IA64
7013 /*
7014 * These functions are only useful for the IA64 MCA handling.
7015 *
7016 * They can only be called when the whole system has been
7017 * stopped - every CPU needs to be quiescent, and no scheduling
7018 * activity can take place. Using them for anything else would
7019 * be a serious bug, and as a result, they aren't even visible
7020 * under any other configuration.
7021 */
7022
7023 /**
7024 * curr_task - return the current task for a given cpu.
7025 * @cpu: the processor in question.
7026 *
7027 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7028 */
7029 struct task_struct *curr_task(int cpu)
7030 {
7031 return cpu_curr(cpu);
7032 }
7033
7034 /**
7035 * set_curr_task - set the current task for a given cpu.
7036 * @cpu: the processor in question.
7037 * @p: the task pointer to set.
7038 *
7039 * Description: This function must only be used when non-maskable interrupts
7040 * are serviced on a separate stack. It allows the architecture to switch the
7041 * notion of the current task on a cpu in a non-blocking manner. This function
7042 * must be called with all CPU's synchronized, and interrupts disabled, the
7043 * and caller must save the original value of the current task (see
7044 * curr_task() above) and restore that value before reenabling interrupts and
7045 * re-starting the system.
7046 *
7047 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7048 */
7049 void set_curr_task(int cpu, struct task_struct *p)
7050 {
7051 cpu_curr(cpu) = p;
7052 }
7053
7054 #endif
7055
7056 #ifdef CONFIG_FAIR_GROUP_SCHED
7057
7058 #ifdef CONFIG_SMP
7059 /*
7060 * distribute shares of all task groups among their schedulable entities,
7061 * to reflect load distrbution across cpus.
7062 */
7063 static int rebalance_shares(struct sched_domain *sd, int this_cpu)
7064 {
7065 struct cfs_rq *cfs_rq;
7066 struct rq *rq = cpu_rq(this_cpu);
7067 cpumask_t sdspan = sd->span;
7068 int balanced = 1;
7069
7070 /* Walk thr' all the task groups that we have */
7071 for_each_leaf_cfs_rq(rq, cfs_rq) {
7072 int i;
7073 unsigned long total_load = 0, total_shares;
7074 struct task_group *tg = cfs_rq->tg;
7075
7076 /* Gather total task load of this group across cpus */
7077 for_each_cpu_mask(i, sdspan)
7078 total_load += tg->cfs_rq[i]->load.weight;
7079
7080 /* Nothing to do if this group has no load */
7081 if (!total_load)
7082 continue;
7083
7084 /*
7085 * tg->shares represents the number of cpu shares the task group
7086 * is eligible to hold on a single cpu. On N cpus, it is
7087 * eligible to hold (N * tg->shares) number of cpu shares.
7088 */
7089 total_shares = tg->shares * cpus_weight(sdspan);
7090
7091 /*
7092 * redistribute total_shares across cpus as per the task load
7093 * distribution.
7094 */
7095 for_each_cpu_mask(i, sdspan) {
7096 unsigned long local_load, local_shares;
7097
7098 local_load = tg->cfs_rq[i]->load.weight;
7099 local_shares = (local_load * total_shares) / total_load;
7100 if (!local_shares)
7101 local_shares = MIN_GROUP_SHARES;
7102 if (local_shares == tg->se[i]->load.weight)
7103 continue;
7104
7105 spin_lock_irq(&cpu_rq(i)->lock);
7106 set_se_shares(tg->se[i], local_shares);
7107 spin_unlock_irq(&cpu_rq(i)->lock);
7108 balanced = 0;
7109 }
7110 }
7111
7112 return balanced;
7113 }
7114
7115 /*
7116 * How frequently should we rebalance_shares() across cpus?
7117 *
7118 * The more frequently we rebalance shares, the more accurate is the fairness
7119 * of cpu bandwidth distribution between task groups. However higher frequency
7120 * also implies increased scheduling overhead.
7121 *
7122 * sysctl_sched_min_bal_int_shares represents the minimum interval between
7123 * consecutive calls to rebalance_shares() in the same sched domain.
7124 *
7125 * sysctl_sched_max_bal_int_shares represents the maximum interval between
7126 * consecutive calls to rebalance_shares() in the same sched domain.
7127 *
7128 * These settings allows for the appropriate tradeoff between accuracy of
7129 * fairness and the associated overhead.
7130 *
7131 */
7132
7133 /* default: 8ms, units: milliseconds */
7134 const_debug unsigned int sysctl_sched_min_bal_int_shares = 8;
7135
7136 /* default: 128ms, units: milliseconds */
7137 const_debug unsigned int sysctl_sched_max_bal_int_shares = 128;
7138
7139 /* kernel thread that runs rebalance_shares() periodically */
7140 static int load_balance_monitor(void *unused)
7141 {
7142 unsigned int timeout = sysctl_sched_min_bal_int_shares;
7143 struct sched_param schedparm;
7144 int ret;
7145
7146 /*
7147 * We don't want this thread's execution to be limited by the shares
7148 * assigned to default group (init_task_group). Hence make it run
7149 * as a SCHED_RR RT task at the lowest priority.
7150 */
7151 schedparm.sched_priority = 1;
7152 ret = sched_setscheduler(current, SCHED_RR, &schedparm);
7153 if (ret)
7154 printk(KERN_ERR "Couldn't set SCHED_RR policy for load balance"
7155 " monitor thread (error = %d) \n", ret);
7156
7157 while (!kthread_should_stop()) {
7158 int i, cpu, balanced = 1;
7159
7160 /* Prevent cpus going down or coming up */
7161 get_online_cpus();
7162 /* lockout changes to doms_cur[] array */
7163 lock_doms_cur();
7164 /*
7165 * Enter a rcu read-side critical section to safely walk rq->sd
7166 * chain on various cpus and to walk task group list
7167 * (rq->leaf_cfs_rq_list) in rebalance_shares().
7168 */
7169 rcu_read_lock();
7170
7171 for (i = 0; i < ndoms_cur; i++) {
7172 cpumask_t cpumap = doms_cur[i];
7173 struct sched_domain *sd = NULL, *sd_prev = NULL;
7174
7175 cpu = first_cpu(cpumap);
7176
7177 /* Find the highest domain at which to balance shares */
7178 for_each_domain(cpu, sd) {
7179 if (!(sd->flags & SD_LOAD_BALANCE))
7180 continue;
7181 sd_prev = sd;
7182 }
7183
7184 sd = sd_prev;
7185 /* sd == NULL? No load balance reqd in this domain */
7186 if (!sd)
7187 continue;
7188
7189 balanced &= rebalance_shares(sd, cpu);
7190 }
7191
7192 rcu_read_unlock();
7193
7194 unlock_doms_cur();
7195 put_online_cpus();
7196
7197 if (!balanced)
7198 timeout = sysctl_sched_min_bal_int_shares;
7199 else if (timeout < sysctl_sched_max_bal_int_shares)
7200 timeout *= 2;
7201
7202 msleep_interruptible(timeout);
7203 }
7204
7205 return 0;
7206 }
7207 #endif /* CONFIG_SMP */
7208
7209 /* allocate runqueue etc for a new task group */
7210 struct task_group *sched_create_group(void)
7211 {
7212 struct task_group *tg;
7213 struct cfs_rq *cfs_rq;
7214 struct sched_entity *se;
7215 struct rq *rq;
7216 int i;
7217
7218 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7219 if (!tg)
7220 return ERR_PTR(-ENOMEM);
7221
7222 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7223 if (!tg->cfs_rq)
7224 goto err;
7225 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7226 if (!tg->se)
7227 goto err;
7228
7229 for_each_possible_cpu(i) {
7230 rq = cpu_rq(i);
7231
7232 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
7233 cpu_to_node(i));
7234 if (!cfs_rq)
7235 goto err;
7236
7237 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
7238 cpu_to_node(i));
7239 if (!se)
7240 goto err;
7241
7242 memset(cfs_rq, 0, sizeof(struct cfs_rq));
7243 memset(se, 0, sizeof(struct sched_entity));
7244
7245 tg->cfs_rq[i] = cfs_rq;
7246 init_cfs_rq(cfs_rq, rq);
7247 cfs_rq->tg = tg;
7248
7249 tg->se[i] = se;
7250 se->cfs_rq = &rq->cfs;
7251 se->my_q = cfs_rq;
7252 se->load.weight = NICE_0_LOAD;
7253 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
7254 se->parent = NULL;
7255 }
7256
7257 tg->shares = NICE_0_LOAD;
7258
7259 lock_task_group_list();
7260 for_each_possible_cpu(i) {
7261 rq = cpu_rq(i);
7262 cfs_rq = tg->cfs_rq[i];
7263 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7264 }
7265 unlock_task_group_list();
7266
7267 return tg;
7268
7269 err:
7270 for_each_possible_cpu(i) {
7271 if (tg->cfs_rq)
7272 kfree(tg->cfs_rq[i]);
7273 if (tg->se)
7274 kfree(tg->se[i]);
7275 }
7276 kfree(tg->cfs_rq);
7277 kfree(tg->se);
7278 kfree(tg);
7279
7280 return ERR_PTR(-ENOMEM);
7281 }
7282
7283 /* rcu callback to free various structures associated with a task group */
7284 static void free_sched_group(struct rcu_head *rhp)
7285 {
7286 struct task_group *tg = container_of(rhp, struct task_group, rcu);
7287 struct cfs_rq *cfs_rq;
7288 struct sched_entity *se;
7289 int i;
7290
7291 /* now it should be safe to free those cfs_rqs */
7292 for_each_possible_cpu(i) {
7293 cfs_rq = tg->cfs_rq[i];
7294 kfree(cfs_rq);
7295
7296 se = tg->se[i];
7297 kfree(se);
7298 }
7299
7300 kfree(tg->cfs_rq);
7301 kfree(tg->se);
7302 kfree(tg);
7303 }
7304
7305 /* Destroy runqueue etc associated with a task group */
7306 void sched_destroy_group(struct task_group *tg)
7307 {
7308 struct cfs_rq *cfs_rq = NULL;
7309 int i;
7310
7311 lock_task_group_list();
7312 for_each_possible_cpu(i) {
7313 cfs_rq = tg->cfs_rq[i];
7314 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7315 }
7316 unlock_task_group_list();
7317
7318 BUG_ON(!cfs_rq);
7319
7320 /* wait for possible concurrent references to cfs_rqs complete */
7321 call_rcu(&tg->rcu, free_sched_group);
7322 }
7323
7324 /* change task's runqueue when it moves between groups.
7325 * The caller of this function should have put the task in its new group
7326 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7327 * reflect its new group.
7328 */
7329 void sched_move_task(struct task_struct *tsk)
7330 {
7331 int on_rq, running;
7332 unsigned long flags;
7333 struct rq *rq;
7334
7335 rq = task_rq_lock(tsk, &flags);
7336
7337 if (tsk->sched_class != &fair_sched_class) {
7338 set_task_cfs_rq(tsk, task_cpu(tsk));
7339 goto done;
7340 }
7341
7342 update_rq_clock(rq);
7343
7344 running = task_current(rq, tsk);
7345 on_rq = tsk->se.on_rq;
7346
7347 if (on_rq) {
7348 dequeue_task(rq, tsk, 0);
7349 if (unlikely(running))
7350 tsk->sched_class->put_prev_task(rq, tsk);
7351 }
7352
7353 set_task_cfs_rq(tsk, task_cpu(tsk));
7354
7355 if (on_rq) {
7356 if (unlikely(running))
7357 tsk->sched_class->set_curr_task(rq);
7358 enqueue_task(rq, tsk, 0);
7359 }
7360
7361 done:
7362 task_rq_unlock(rq, &flags);
7363 }
7364
7365 /* rq->lock to be locked by caller */
7366 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7367 {
7368 struct cfs_rq *cfs_rq = se->cfs_rq;
7369 struct rq *rq = cfs_rq->rq;
7370 int on_rq;
7371
7372 if (!shares)
7373 shares = MIN_GROUP_SHARES;
7374
7375 on_rq = se->on_rq;
7376 if (on_rq) {
7377 dequeue_entity(cfs_rq, se, 0);
7378 dec_cpu_load(rq, se->load.weight);
7379 }
7380
7381 se->load.weight = shares;
7382 se->load.inv_weight = div64_64((1ULL<<32), shares);
7383
7384 if (on_rq) {
7385 enqueue_entity(cfs_rq, se, 0);
7386 inc_cpu_load(rq, se->load.weight);
7387 }
7388 }
7389
7390 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7391 {
7392 int i;
7393 struct cfs_rq *cfs_rq;
7394 struct rq *rq;
7395
7396 lock_task_group_list();
7397 if (tg->shares == shares)
7398 goto done;
7399
7400 if (shares < MIN_GROUP_SHARES)
7401 shares = MIN_GROUP_SHARES;
7402
7403 /*
7404 * Prevent any load balance activity (rebalance_shares,
7405 * load_balance_fair) from referring to this group first,
7406 * by taking it off the rq->leaf_cfs_rq_list on each cpu.
7407 */
7408 for_each_possible_cpu(i) {
7409 cfs_rq = tg->cfs_rq[i];
7410 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7411 }
7412
7413 /* wait for any ongoing reference to this group to finish */
7414 synchronize_sched();
7415
7416 /*
7417 * Now we are free to modify the group's share on each cpu
7418 * w/o tripping rebalance_share or load_balance_fair.
7419 */
7420 tg->shares = shares;
7421 for_each_possible_cpu(i) {
7422 spin_lock_irq(&cpu_rq(i)->lock);
7423 set_se_shares(tg->se[i], shares);
7424 spin_unlock_irq(&cpu_rq(i)->lock);
7425 }
7426
7427 /*
7428 * Enable load balance activity on this group, by inserting it back on
7429 * each cpu's rq->leaf_cfs_rq_list.
7430 */
7431 for_each_possible_cpu(i) {
7432 rq = cpu_rq(i);
7433 cfs_rq = tg->cfs_rq[i];
7434 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7435 }
7436 done:
7437 unlock_task_group_list();
7438 return 0;
7439 }
7440
7441 unsigned long sched_group_shares(struct task_group *tg)
7442 {
7443 return tg->shares;
7444 }
7445
7446 #endif /* CONFIG_FAIR_GROUP_SCHED */
7447
7448 #ifdef CONFIG_FAIR_CGROUP_SCHED
7449
7450 /* return corresponding task_group object of a cgroup */
7451 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7452 {
7453 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7454 struct task_group, css);
7455 }
7456
7457 static struct cgroup_subsys_state *
7458 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7459 {
7460 struct task_group *tg;
7461
7462 if (!cgrp->parent) {
7463 /* This is early initialization for the top cgroup */
7464 init_task_group.css.cgroup = cgrp;
7465 return &init_task_group.css;
7466 }
7467
7468 /* we support only 1-level deep hierarchical scheduler atm */
7469 if (cgrp->parent->parent)
7470 return ERR_PTR(-EINVAL);
7471
7472 tg = sched_create_group();
7473 if (IS_ERR(tg))
7474 return ERR_PTR(-ENOMEM);
7475
7476 /* Bind the cgroup to task_group object we just created */
7477 tg->css.cgroup = cgrp;
7478
7479 return &tg->css;
7480 }
7481
7482 static void
7483 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7484 {
7485 struct task_group *tg = cgroup_tg(cgrp);
7486
7487 sched_destroy_group(tg);
7488 }
7489
7490 static int
7491 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7492 struct task_struct *tsk)
7493 {
7494 /* We don't support RT-tasks being in separate groups */
7495 if (tsk->sched_class != &fair_sched_class)
7496 return -EINVAL;
7497
7498 return 0;
7499 }
7500
7501 static void
7502 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7503 struct cgroup *old_cont, struct task_struct *tsk)
7504 {
7505 sched_move_task(tsk);
7506 }
7507
7508 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7509 u64 shareval)
7510 {
7511 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7512 }
7513
7514 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7515 {
7516 struct task_group *tg = cgroup_tg(cgrp);
7517
7518 return (u64) tg->shares;
7519 }
7520
7521 static struct cftype cpu_files[] = {
7522 {
7523 .name = "shares",
7524 .read_uint = cpu_shares_read_uint,
7525 .write_uint = cpu_shares_write_uint,
7526 },
7527 };
7528
7529 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7530 {
7531 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
7532 }
7533
7534 struct cgroup_subsys cpu_cgroup_subsys = {
7535 .name = "cpu",
7536 .create = cpu_cgroup_create,
7537 .destroy = cpu_cgroup_destroy,
7538 .can_attach = cpu_cgroup_can_attach,
7539 .attach = cpu_cgroup_attach,
7540 .populate = cpu_cgroup_populate,
7541 .subsys_id = cpu_cgroup_subsys_id,
7542 .early_init = 1,
7543 };
7544
7545 #endif /* CONFIG_FAIR_CGROUP_SCHED */
7546
7547 #ifdef CONFIG_CGROUP_CPUACCT
7548
7549 /*
7550 * CPU accounting code for task groups.
7551 *
7552 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
7553 * (balbir@in.ibm.com).
7554 */
7555
7556 /* track cpu usage of a group of tasks */
7557 struct cpuacct {
7558 struct cgroup_subsys_state css;
7559 /* cpuusage holds pointer to a u64-type object on every cpu */
7560 u64 *cpuusage;
7561 };
7562
7563 struct cgroup_subsys cpuacct_subsys;
7564
7565 /* return cpu accounting group corresponding to this container */
7566 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
7567 {
7568 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
7569 struct cpuacct, css);
7570 }
7571
7572 /* return cpu accounting group to which this task belongs */
7573 static inline struct cpuacct *task_ca(struct task_struct *tsk)
7574 {
7575 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
7576 struct cpuacct, css);
7577 }
7578
7579 /* create a new cpu accounting group */
7580 static struct cgroup_subsys_state *cpuacct_create(
7581 struct cgroup_subsys *ss, struct cgroup *cont)
7582 {
7583 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
7584
7585 if (!ca)
7586 return ERR_PTR(-ENOMEM);
7587
7588 ca->cpuusage = alloc_percpu(u64);
7589 if (!ca->cpuusage) {
7590 kfree(ca);
7591 return ERR_PTR(-ENOMEM);
7592 }
7593
7594 return &ca->css;
7595 }
7596
7597 /* destroy an existing cpu accounting group */
7598 static void
7599 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
7600 {
7601 struct cpuacct *ca = cgroup_ca(cont);
7602
7603 free_percpu(ca->cpuusage);
7604 kfree(ca);
7605 }
7606
7607 /* return total cpu usage (in nanoseconds) of a group */
7608 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
7609 {
7610 struct cpuacct *ca = cgroup_ca(cont);
7611 u64 totalcpuusage = 0;
7612 int i;
7613
7614 for_each_possible_cpu(i) {
7615 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
7616
7617 /*
7618 * Take rq->lock to make 64-bit addition safe on 32-bit
7619 * platforms.
7620 */
7621 spin_lock_irq(&cpu_rq(i)->lock);
7622 totalcpuusage += *cpuusage;
7623 spin_unlock_irq(&cpu_rq(i)->lock);
7624 }
7625
7626 return totalcpuusage;
7627 }
7628
7629 static struct cftype files[] = {
7630 {
7631 .name = "usage",
7632 .read_uint = cpuusage_read,
7633 },
7634 };
7635
7636 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7637 {
7638 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
7639 }
7640
7641 /*
7642 * charge this task's execution time to its accounting group.
7643 *
7644 * called with rq->lock held.
7645 */
7646 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
7647 {
7648 struct cpuacct *ca;
7649
7650 if (!cpuacct_subsys.active)
7651 return;
7652
7653 ca = task_ca(tsk);
7654 if (ca) {
7655 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
7656
7657 *cpuusage += cputime;
7658 }
7659 }
7660
7661 struct cgroup_subsys cpuacct_subsys = {
7662 .name = "cpuacct",
7663 .create = cpuacct_create,
7664 .destroy = cpuacct_destroy,
7665 .populate = cpuacct_populate,
7666 .subsys_id = cpuacct_subsys_id,
7667 };
7668 #endif /* CONFIG_CGROUP_CPUACCT */