]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched.c
sched: reduce schedstat variable overhead a bit
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64 #include <linux/pagemap.h>
65
66 #include <asm/tlb.h>
67
68 /*
69 * Scheduler clock - returns current time in nanosec units.
70 * This is default implementation.
71 * Architectures and sub-architectures can override this.
72 */
73 unsigned long long __attribute__((weak)) sched_clock(void)
74 {
75 return (unsigned long long)jiffies * (1000000000 / HZ);
76 }
77
78 /*
79 * Convert user-nice values [ -20 ... 0 ... 19 ]
80 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
81 * and back.
82 */
83 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
84 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
85 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
86
87 /*
88 * 'User priority' is the nice value converted to something we
89 * can work with better when scaling various scheduler parameters,
90 * it's a [ 0 ... 39 ] range.
91 */
92 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
93 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
94 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
95
96 /*
97 * Some helpers for converting nanosecond timing to jiffy resolution
98 */
99 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
100 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
101
102 #define NICE_0_LOAD SCHED_LOAD_SCALE
103 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
104
105 /*
106 * These are the 'tuning knobs' of the scheduler:
107 *
108 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
109 * Timeslices get refilled after they expire.
110 */
111 #define DEF_TIMESLICE (100 * HZ / 1000)
112
113 #ifdef CONFIG_SMP
114 /*
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
117 */
118 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
119 {
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
121 }
122
123 /*
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
126 */
127 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
128 {
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
131 }
132 #endif
133
134 static inline int rt_policy(int policy)
135 {
136 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
137 return 1;
138 return 0;
139 }
140
141 static inline int task_has_rt_policy(struct task_struct *p)
142 {
143 return rt_policy(p->policy);
144 }
145
146 /*
147 * This is the priority-queue data structure of the RT scheduling class:
148 */
149 struct rt_prio_array {
150 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
151 struct list_head queue[MAX_RT_PRIO];
152 };
153
154 #ifdef CONFIG_FAIR_GROUP_SCHED
155
156 struct cfs_rq;
157
158 /* task group related information */
159 struct task_group {
160 /* schedulable entities of this group on each cpu */
161 struct sched_entity **se;
162 /* runqueue "owned" by this group on each cpu */
163 struct cfs_rq **cfs_rq;
164 unsigned long shares;
165 /* spinlock to serialize modification to shares */
166 spinlock_t lock;
167 };
168
169 /* Default task group's sched entity on each cpu */
170 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
171 /* Default task group's cfs_rq on each cpu */
172 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
173
174 static struct sched_entity *init_sched_entity_p[NR_CPUS];
175 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
176
177 /* Default task group.
178 * Every task in system belong to this group at bootup.
179 */
180 struct task_group init_task_group = {
181 .se = init_sched_entity_p,
182 .cfs_rq = init_cfs_rq_p,
183 };
184
185 #ifdef CONFIG_FAIR_USER_SCHED
186 # define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
187 #else
188 # define INIT_TASK_GRP_LOAD NICE_0_LOAD
189 #endif
190
191 static int init_task_group_load = INIT_TASK_GRP_LOAD;
192
193 /* return group to which a task belongs */
194 static inline struct task_group *task_group(struct task_struct *p)
195 {
196 struct task_group *tg;
197
198 #ifdef CONFIG_FAIR_USER_SCHED
199 tg = p->user->tg;
200 #else
201 tg = &init_task_group;
202 #endif
203
204 return tg;
205 }
206
207 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
208 static inline void set_task_cfs_rq(struct task_struct *p)
209 {
210 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
211 p->se.parent = task_group(p)->se[task_cpu(p)];
212 }
213
214 #else
215
216 static inline void set_task_cfs_rq(struct task_struct *p) { }
217
218 #endif /* CONFIG_FAIR_GROUP_SCHED */
219
220 /* CFS-related fields in a runqueue */
221 struct cfs_rq {
222 struct load_weight load;
223 unsigned long nr_running;
224
225 u64 exec_clock;
226 u64 min_vruntime;
227
228 struct rb_root tasks_timeline;
229 struct rb_node *rb_leftmost;
230 struct rb_node *rb_load_balance_curr;
231 /* 'curr' points to currently running entity on this cfs_rq.
232 * It is set to NULL otherwise (i.e when none are currently running).
233 */
234 struct sched_entity *curr;
235
236 unsigned long nr_spread_over;
237
238 #ifdef CONFIG_FAIR_GROUP_SCHED
239 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
240
241 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
242 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
243 * (like users, containers etc.)
244 *
245 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
246 * list is used during load balance.
247 */
248 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
249 struct task_group *tg; /* group that "owns" this runqueue */
250 struct rcu_head rcu;
251 #endif
252 };
253
254 /* Real-Time classes' related field in a runqueue: */
255 struct rt_rq {
256 struct rt_prio_array active;
257 int rt_load_balance_idx;
258 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
259 };
260
261 /*
262 * This is the main, per-CPU runqueue data structure.
263 *
264 * Locking rule: those places that want to lock multiple runqueues
265 * (such as the load balancing or the thread migration code), lock
266 * acquire operations must be ordered by ascending &runqueue.
267 */
268 struct rq {
269 /* runqueue lock: */
270 spinlock_t lock;
271
272 /*
273 * nr_running and cpu_load should be in the same cacheline because
274 * remote CPUs use both these fields when doing load calculation.
275 */
276 unsigned long nr_running;
277 #define CPU_LOAD_IDX_MAX 5
278 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
279 unsigned char idle_at_tick;
280 #ifdef CONFIG_NO_HZ
281 unsigned char in_nohz_recently;
282 #endif
283 /* capture load from *all* tasks on this cpu: */
284 struct load_weight load;
285 unsigned long nr_load_updates;
286 u64 nr_switches;
287
288 struct cfs_rq cfs;
289 #ifdef CONFIG_FAIR_GROUP_SCHED
290 /* list of leaf cfs_rq on this cpu: */
291 struct list_head leaf_cfs_rq_list;
292 #endif
293 struct rt_rq rt;
294
295 /*
296 * This is part of a global counter where only the total sum
297 * over all CPUs matters. A task can increase this counter on
298 * one CPU and if it got migrated afterwards it may decrease
299 * it on another CPU. Always updated under the runqueue lock:
300 */
301 unsigned long nr_uninterruptible;
302
303 struct task_struct *curr, *idle;
304 unsigned long next_balance;
305 struct mm_struct *prev_mm;
306
307 u64 clock, prev_clock_raw;
308 s64 clock_max_delta;
309
310 unsigned int clock_warps, clock_overflows;
311 u64 idle_clock;
312 unsigned int clock_deep_idle_events;
313 u64 tick_timestamp;
314
315 atomic_t nr_iowait;
316
317 #ifdef CONFIG_SMP
318 struct sched_domain *sd;
319
320 /* For active balancing */
321 int active_balance;
322 int push_cpu;
323 /* cpu of this runqueue: */
324 int cpu;
325
326 struct task_struct *migration_thread;
327 struct list_head migration_queue;
328 #endif
329
330 #ifdef CONFIG_SCHEDSTATS
331 /* latency stats */
332 struct sched_info rq_sched_info;
333
334 /* sys_sched_yield() stats */
335 unsigned int yld_exp_empty;
336 unsigned int yld_act_empty;
337 unsigned int yld_both_empty;
338 unsigned int yld_count;
339
340 /* schedule() stats */
341 unsigned int sched_switch;
342 unsigned int sched_count;
343 unsigned int sched_goidle;
344
345 /* try_to_wake_up() stats */
346 unsigned int ttwu_count;
347 unsigned int ttwu_local;
348
349 /* BKL stats */
350 unsigned int bkl_count;
351 #endif
352 struct lock_class_key rq_lock_key;
353 };
354
355 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
356 static DEFINE_MUTEX(sched_hotcpu_mutex);
357
358 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
359 {
360 rq->curr->sched_class->check_preempt_curr(rq, p);
361 }
362
363 static inline int cpu_of(struct rq *rq)
364 {
365 #ifdef CONFIG_SMP
366 return rq->cpu;
367 #else
368 return 0;
369 #endif
370 }
371
372 /*
373 * Update the per-runqueue clock, as finegrained as the platform can give
374 * us, but without assuming monotonicity, etc.:
375 */
376 static void __update_rq_clock(struct rq *rq)
377 {
378 u64 prev_raw = rq->prev_clock_raw;
379 u64 now = sched_clock();
380 s64 delta = now - prev_raw;
381 u64 clock = rq->clock;
382
383 #ifdef CONFIG_SCHED_DEBUG
384 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
385 #endif
386 /*
387 * Protect against sched_clock() occasionally going backwards:
388 */
389 if (unlikely(delta < 0)) {
390 clock++;
391 rq->clock_warps++;
392 } else {
393 /*
394 * Catch too large forward jumps too:
395 */
396 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
397 if (clock < rq->tick_timestamp + TICK_NSEC)
398 clock = rq->tick_timestamp + TICK_NSEC;
399 else
400 clock++;
401 rq->clock_overflows++;
402 } else {
403 if (unlikely(delta > rq->clock_max_delta))
404 rq->clock_max_delta = delta;
405 clock += delta;
406 }
407 }
408
409 rq->prev_clock_raw = now;
410 rq->clock = clock;
411 }
412
413 static void update_rq_clock(struct rq *rq)
414 {
415 if (likely(smp_processor_id() == cpu_of(rq)))
416 __update_rq_clock(rq);
417 }
418
419 /*
420 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
421 * See detach_destroy_domains: synchronize_sched for details.
422 *
423 * The domain tree of any CPU may only be accessed from within
424 * preempt-disabled sections.
425 */
426 #define for_each_domain(cpu, __sd) \
427 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
428
429 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
430 #define this_rq() (&__get_cpu_var(runqueues))
431 #define task_rq(p) cpu_rq(task_cpu(p))
432 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
433
434 /*
435 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
436 */
437 #ifdef CONFIG_SCHED_DEBUG
438 # define const_debug __read_mostly
439 #else
440 # define const_debug static const
441 #endif
442
443 /*
444 * Debugging: various feature bits
445 */
446 enum {
447 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
448 SCHED_FEAT_START_DEBIT = 2,
449 SCHED_FEAT_TREE_AVG = 4,
450 SCHED_FEAT_APPROX_AVG = 8,
451 SCHED_FEAT_WAKEUP_PREEMPT = 16,
452 SCHED_FEAT_PREEMPT_RESTRICT = 32,
453 };
454
455 const_debug unsigned int sysctl_sched_features =
456 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
457 SCHED_FEAT_START_DEBIT * 1 |
458 SCHED_FEAT_TREE_AVG * 0 |
459 SCHED_FEAT_APPROX_AVG * 0 |
460 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
461 SCHED_FEAT_PREEMPT_RESTRICT * 1;
462
463 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
464
465 /*
466 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
467 * clock constructed from sched_clock():
468 */
469 unsigned long long cpu_clock(int cpu)
470 {
471 unsigned long long now;
472 unsigned long flags;
473 struct rq *rq;
474
475 local_irq_save(flags);
476 rq = cpu_rq(cpu);
477 update_rq_clock(rq);
478 now = rq->clock;
479 local_irq_restore(flags);
480
481 return now;
482 }
483 EXPORT_SYMBOL_GPL(cpu_clock);
484
485 #ifndef prepare_arch_switch
486 # define prepare_arch_switch(next) do { } while (0)
487 #endif
488 #ifndef finish_arch_switch
489 # define finish_arch_switch(prev) do { } while (0)
490 #endif
491
492 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
493 static inline int task_running(struct rq *rq, struct task_struct *p)
494 {
495 return rq->curr == p;
496 }
497
498 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
499 {
500 }
501
502 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
503 {
504 #ifdef CONFIG_DEBUG_SPINLOCK
505 /* this is a valid case when another task releases the spinlock */
506 rq->lock.owner = current;
507 #endif
508 /*
509 * If we are tracking spinlock dependencies then we have to
510 * fix up the runqueue lock - which gets 'carried over' from
511 * prev into current:
512 */
513 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
514
515 spin_unlock_irq(&rq->lock);
516 }
517
518 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
519 static inline int task_running(struct rq *rq, struct task_struct *p)
520 {
521 #ifdef CONFIG_SMP
522 return p->oncpu;
523 #else
524 return rq->curr == p;
525 #endif
526 }
527
528 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
529 {
530 #ifdef CONFIG_SMP
531 /*
532 * We can optimise this out completely for !SMP, because the
533 * SMP rebalancing from interrupt is the only thing that cares
534 * here.
535 */
536 next->oncpu = 1;
537 #endif
538 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
539 spin_unlock_irq(&rq->lock);
540 #else
541 spin_unlock(&rq->lock);
542 #endif
543 }
544
545 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
546 {
547 #ifdef CONFIG_SMP
548 /*
549 * After ->oncpu is cleared, the task can be moved to a different CPU.
550 * We must ensure this doesn't happen until the switch is completely
551 * finished.
552 */
553 smp_wmb();
554 prev->oncpu = 0;
555 #endif
556 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
557 local_irq_enable();
558 #endif
559 }
560 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
561
562 /*
563 * __task_rq_lock - lock the runqueue a given task resides on.
564 * Must be called interrupts disabled.
565 */
566 static inline struct rq *__task_rq_lock(struct task_struct *p)
567 __acquires(rq->lock)
568 {
569 for (;;) {
570 struct rq *rq = task_rq(p);
571 spin_lock(&rq->lock);
572 if (likely(rq == task_rq(p)))
573 return rq;
574 spin_unlock(&rq->lock);
575 }
576 }
577
578 /*
579 * task_rq_lock - lock the runqueue a given task resides on and disable
580 * interrupts. Note the ordering: we can safely lookup the task_rq without
581 * explicitly disabling preemption.
582 */
583 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
584 __acquires(rq->lock)
585 {
586 struct rq *rq;
587
588 for (;;) {
589 local_irq_save(*flags);
590 rq = task_rq(p);
591 spin_lock(&rq->lock);
592 if (likely(rq == task_rq(p)))
593 return rq;
594 spin_unlock_irqrestore(&rq->lock, *flags);
595 }
596 }
597
598 static void __task_rq_unlock(struct rq *rq)
599 __releases(rq->lock)
600 {
601 spin_unlock(&rq->lock);
602 }
603
604 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
605 __releases(rq->lock)
606 {
607 spin_unlock_irqrestore(&rq->lock, *flags);
608 }
609
610 /*
611 * this_rq_lock - lock this runqueue and disable interrupts.
612 */
613 static struct rq *this_rq_lock(void)
614 __acquires(rq->lock)
615 {
616 struct rq *rq;
617
618 local_irq_disable();
619 rq = this_rq();
620 spin_lock(&rq->lock);
621
622 return rq;
623 }
624
625 /*
626 * We are going deep-idle (irqs are disabled):
627 */
628 void sched_clock_idle_sleep_event(void)
629 {
630 struct rq *rq = cpu_rq(smp_processor_id());
631
632 spin_lock(&rq->lock);
633 __update_rq_clock(rq);
634 spin_unlock(&rq->lock);
635 rq->clock_deep_idle_events++;
636 }
637 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
638
639 /*
640 * We just idled delta nanoseconds (called with irqs disabled):
641 */
642 void sched_clock_idle_wakeup_event(u64 delta_ns)
643 {
644 struct rq *rq = cpu_rq(smp_processor_id());
645 u64 now = sched_clock();
646
647 rq->idle_clock += delta_ns;
648 /*
649 * Override the previous timestamp and ignore all
650 * sched_clock() deltas that occured while we idled,
651 * and use the PM-provided delta_ns to advance the
652 * rq clock:
653 */
654 spin_lock(&rq->lock);
655 rq->prev_clock_raw = now;
656 rq->clock += delta_ns;
657 spin_unlock(&rq->lock);
658 }
659 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
660
661 /*
662 * resched_task - mark a task 'to be rescheduled now'.
663 *
664 * On UP this means the setting of the need_resched flag, on SMP it
665 * might also involve a cross-CPU call to trigger the scheduler on
666 * the target CPU.
667 */
668 #ifdef CONFIG_SMP
669
670 #ifndef tsk_is_polling
671 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
672 #endif
673
674 static void resched_task(struct task_struct *p)
675 {
676 int cpu;
677
678 assert_spin_locked(&task_rq(p)->lock);
679
680 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
681 return;
682
683 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
684
685 cpu = task_cpu(p);
686 if (cpu == smp_processor_id())
687 return;
688
689 /* NEED_RESCHED must be visible before we test polling */
690 smp_mb();
691 if (!tsk_is_polling(p))
692 smp_send_reschedule(cpu);
693 }
694
695 static void resched_cpu(int cpu)
696 {
697 struct rq *rq = cpu_rq(cpu);
698 unsigned long flags;
699
700 if (!spin_trylock_irqsave(&rq->lock, flags))
701 return;
702 resched_task(cpu_curr(cpu));
703 spin_unlock_irqrestore(&rq->lock, flags);
704 }
705 #else
706 static inline void resched_task(struct task_struct *p)
707 {
708 assert_spin_locked(&task_rq(p)->lock);
709 set_tsk_need_resched(p);
710 }
711 #endif
712
713 #if BITS_PER_LONG == 32
714 # define WMULT_CONST (~0UL)
715 #else
716 # define WMULT_CONST (1UL << 32)
717 #endif
718
719 #define WMULT_SHIFT 32
720
721 /*
722 * Shift right and round:
723 */
724 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
725
726 static unsigned long
727 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
728 struct load_weight *lw)
729 {
730 u64 tmp;
731
732 if (unlikely(!lw->inv_weight))
733 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
734
735 tmp = (u64)delta_exec * weight;
736 /*
737 * Check whether we'd overflow the 64-bit multiplication:
738 */
739 if (unlikely(tmp > WMULT_CONST))
740 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
741 WMULT_SHIFT/2);
742 else
743 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
744
745 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
746 }
747
748 static inline unsigned long
749 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
750 {
751 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
752 }
753
754 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
755 {
756 lw->weight += inc;
757 }
758
759 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
760 {
761 lw->weight -= dec;
762 }
763
764 /*
765 * To aid in avoiding the subversion of "niceness" due to uneven distribution
766 * of tasks with abnormal "nice" values across CPUs the contribution that
767 * each task makes to its run queue's load is weighted according to its
768 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
769 * scaled version of the new time slice allocation that they receive on time
770 * slice expiry etc.
771 */
772
773 #define WEIGHT_IDLEPRIO 2
774 #define WMULT_IDLEPRIO (1 << 31)
775
776 /*
777 * Nice levels are multiplicative, with a gentle 10% change for every
778 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
779 * nice 1, it will get ~10% less CPU time than another CPU-bound task
780 * that remained on nice 0.
781 *
782 * The "10% effect" is relative and cumulative: from _any_ nice level,
783 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
784 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
785 * If a task goes up by ~10% and another task goes down by ~10% then
786 * the relative distance between them is ~25%.)
787 */
788 static const int prio_to_weight[40] = {
789 /* -20 */ 88761, 71755, 56483, 46273, 36291,
790 /* -15 */ 29154, 23254, 18705, 14949, 11916,
791 /* -10 */ 9548, 7620, 6100, 4904, 3906,
792 /* -5 */ 3121, 2501, 1991, 1586, 1277,
793 /* 0 */ 1024, 820, 655, 526, 423,
794 /* 5 */ 335, 272, 215, 172, 137,
795 /* 10 */ 110, 87, 70, 56, 45,
796 /* 15 */ 36, 29, 23, 18, 15,
797 };
798
799 /*
800 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
801 *
802 * In cases where the weight does not change often, we can use the
803 * precalculated inverse to speed up arithmetics by turning divisions
804 * into multiplications:
805 */
806 static const u32 prio_to_wmult[40] = {
807 /* -20 */ 48388, 59856, 76040, 92818, 118348,
808 /* -15 */ 147320, 184698, 229616, 287308, 360437,
809 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
810 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
811 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
812 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
813 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
814 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
815 };
816
817 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
818
819 /*
820 * runqueue iterator, to support SMP load-balancing between different
821 * scheduling classes, without having to expose their internal data
822 * structures to the load-balancing proper:
823 */
824 struct rq_iterator {
825 void *arg;
826 struct task_struct *(*start)(void *);
827 struct task_struct *(*next)(void *);
828 };
829
830 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
831 unsigned long max_nr_move, unsigned long max_load_move,
832 struct sched_domain *sd, enum cpu_idle_type idle,
833 int *all_pinned, unsigned long *load_moved,
834 int *this_best_prio, struct rq_iterator *iterator);
835
836 #include "sched_stats.h"
837 #include "sched_idletask.c"
838 #include "sched_fair.c"
839 #include "sched_rt.c"
840 #ifdef CONFIG_SCHED_DEBUG
841 # include "sched_debug.c"
842 #endif
843
844 #define sched_class_highest (&rt_sched_class)
845
846 /*
847 * Update delta_exec, delta_fair fields for rq.
848 *
849 * delta_fair clock advances at a rate inversely proportional to
850 * total load (rq->load.weight) on the runqueue, while
851 * delta_exec advances at the same rate as wall-clock (provided
852 * cpu is not idle).
853 *
854 * delta_exec / delta_fair is a measure of the (smoothened) load on this
855 * runqueue over any given interval. This (smoothened) load is used
856 * during load balance.
857 *
858 * This function is called /before/ updating rq->load
859 * and when switching tasks.
860 */
861 static inline void inc_load(struct rq *rq, const struct task_struct *p)
862 {
863 update_load_add(&rq->load, p->se.load.weight);
864 }
865
866 static inline void dec_load(struct rq *rq, const struct task_struct *p)
867 {
868 update_load_sub(&rq->load, p->se.load.weight);
869 }
870
871 static void inc_nr_running(struct task_struct *p, struct rq *rq)
872 {
873 rq->nr_running++;
874 inc_load(rq, p);
875 }
876
877 static void dec_nr_running(struct task_struct *p, struct rq *rq)
878 {
879 rq->nr_running--;
880 dec_load(rq, p);
881 }
882
883 static void set_load_weight(struct task_struct *p)
884 {
885 if (task_has_rt_policy(p)) {
886 p->se.load.weight = prio_to_weight[0] * 2;
887 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
888 return;
889 }
890
891 /*
892 * SCHED_IDLE tasks get minimal weight:
893 */
894 if (p->policy == SCHED_IDLE) {
895 p->se.load.weight = WEIGHT_IDLEPRIO;
896 p->se.load.inv_weight = WMULT_IDLEPRIO;
897 return;
898 }
899
900 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
901 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
902 }
903
904 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
905 {
906 sched_info_queued(p);
907 p->sched_class->enqueue_task(rq, p, wakeup);
908 p->se.on_rq = 1;
909 }
910
911 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
912 {
913 p->sched_class->dequeue_task(rq, p, sleep);
914 p->se.on_rq = 0;
915 }
916
917 /*
918 * __normal_prio - return the priority that is based on the static prio
919 */
920 static inline int __normal_prio(struct task_struct *p)
921 {
922 return p->static_prio;
923 }
924
925 /*
926 * Calculate the expected normal priority: i.e. priority
927 * without taking RT-inheritance into account. Might be
928 * boosted by interactivity modifiers. Changes upon fork,
929 * setprio syscalls, and whenever the interactivity
930 * estimator recalculates.
931 */
932 static inline int normal_prio(struct task_struct *p)
933 {
934 int prio;
935
936 if (task_has_rt_policy(p))
937 prio = MAX_RT_PRIO-1 - p->rt_priority;
938 else
939 prio = __normal_prio(p);
940 return prio;
941 }
942
943 /*
944 * Calculate the current priority, i.e. the priority
945 * taken into account by the scheduler. This value might
946 * be boosted by RT tasks, or might be boosted by
947 * interactivity modifiers. Will be RT if the task got
948 * RT-boosted. If not then it returns p->normal_prio.
949 */
950 static int effective_prio(struct task_struct *p)
951 {
952 p->normal_prio = normal_prio(p);
953 /*
954 * If we are RT tasks or we were boosted to RT priority,
955 * keep the priority unchanged. Otherwise, update priority
956 * to the normal priority:
957 */
958 if (!rt_prio(p->prio))
959 return p->normal_prio;
960 return p->prio;
961 }
962
963 /*
964 * activate_task - move a task to the runqueue.
965 */
966 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
967 {
968 if (p->state == TASK_UNINTERRUPTIBLE)
969 rq->nr_uninterruptible--;
970
971 enqueue_task(rq, p, wakeup);
972 inc_nr_running(p, rq);
973 }
974
975 /*
976 * deactivate_task - remove a task from the runqueue.
977 */
978 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
979 {
980 if (p->state == TASK_UNINTERRUPTIBLE)
981 rq->nr_uninterruptible++;
982
983 dequeue_task(rq, p, sleep);
984 dec_nr_running(p, rq);
985 }
986
987 /**
988 * task_curr - is this task currently executing on a CPU?
989 * @p: the task in question.
990 */
991 inline int task_curr(const struct task_struct *p)
992 {
993 return cpu_curr(task_cpu(p)) == p;
994 }
995
996 /* Used instead of source_load when we know the type == 0 */
997 unsigned long weighted_cpuload(const int cpu)
998 {
999 return cpu_rq(cpu)->load.weight;
1000 }
1001
1002 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1003 {
1004 #ifdef CONFIG_SMP
1005 task_thread_info(p)->cpu = cpu;
1006 #endif
1007 set_task_cfs_rq(p);
1008 }
1009
1010 #ifdef CONFIG_SMP
1011
1012 /*
1013 * Is this task likely cache-hot:
1014 */
1015 static inline int
1016 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1017 {
1018 s64 delta;
1019
1020 if (p->sched_class != &fair_sched_class)
1021 return 0;
1022
1023 if (sysctl_sched_migration_cost == -1)
1024 return 1;
1025 if (sysctl_sched_migration_cost == 0)
1026 return 0;
1027
1028 delta = now - p->se.exec_start;
1029
1030 return delta < (s64)sysctl_sched_migration_cost;
1031 }
1032
1033
1034 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1035 {
1036 int old_cpu = task_cpu(p);
1037 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1038 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1039 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1040 u64 clock_offset;
1041
1042 clock_offset = old_rq->clock - new_rq->clock;
1043
1044 #ifdef CONFIG_SCHEDSTATS
1045 if (p->se.wait_start)
1046 p->se.wait_start -= clock_offset;
1047 if (p->se.sleep_start)
1048 p->se.sleep_start -= clock_offset;
1049 if (p->se.block_start)
1050 p->se.block_start -= clock_offset;
1051 if (old_cpu != new_cpu) {
1052 schedstat_inc(p, se.nr_migrations);
1053 if (task_hot(p, old_rq->clock, NULL))
1054 schedstat_inc(p, se.nr_forced2_migrations);
1055 }
1056 #endif
1057 p->se.vruntime -= old_cfsrq->min_vruntime -
1058 new_cfsrq->min_vruntime;
1059
1060 __set_task_cpu(p, new_cpu);
1061 }
1062
1063 struct migration_req {
1064 struct list_head list;
1065
1066 struct task_struct *task;
1067 int dest_cpu;
1068
1069 struct completion done;
1070 };
1071
1072 /*
1073 * The task's runqueue lock must be held.
1074 * Returns true if you have to wait for migration thread.
1075 */
1076 static int
1077 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1078 {
1079 struct rq *rq = task_rq(p);
1080
1081 /*
1082 * If the task is not on a runqueue (and not running), then
1083 * it is sufficient to simply update the task's cpu field.
1084 */
1085 if (!p->se.on_rq && !task_running(rq, p)) {
1086 set_task_cpu(p, dest_cpu);
1087 return 0;
1088 }
1089
1090 init_completion(&req->done);
1091 req->task = p;
1092 req->dest_cpu = dest_cpu;
1093 list_add(&req->list, &rq->migration_queue);
1094
1095 return 1;
1096 }
1097
1098 /*
1099 * wait_task_inactive - wait for a thread to unschedule.
1100 *
1101 * The caller must ensure that the task *will* unschedule sometime soon,
1102 * else this function might spin for a *long* time. This function can't
1103 * be called with interrupts off, or it may introduce deadlock with
1104 * smp_call_function() if an IPI is sent by the same process we are
1105 * waiting to become inactive.
1106 */
1107 void wait_task_inactive(struct task_struct *p)
1108 {
1109 unsigned long flags;
1110 int running, on_rq;
1111 struct rq *rq;
1112
1113 for (;;) {
1114 /*
1115 * We do the initial early heuristics without holding
1116 * any task-queue locks at all. We'll only try to get
1117 * the runqueue lock when things look like they will
1118 * work out!
1119 */
1120 rq = task_rq(p);
1121
1122 /*
1123 * If the task is actively running on another CPU
1124 * still, just relax and busy-wait without holding
1125 * any locks.
1126 *
1127 * NOTE! Since we don't hold any locks, it's not
1128 * even sure that "rq" stays as the right runqueue!
1129 * But we don't care, since "task_running()" will
1130 * return false if the runqueue has changed and p
1131 * is actually now running somewhere else!
1132 */
1133 while (task_running(rq, p))
1134 cpu_relax();
1135
1136 /*
1137 * Ok, time to look more closely! We need the rq
1138 * lock now, to be *sure*. If we're wrong, we'll
1139 * just go back and repeat.
1140 */
1141 rq = task_rq_lock(p, &flags);
1142 running = task_running(rq, p);
1143 on_rq = p->se.on_rq;
1144 task_rq_unlock(rq, &flags);
1145
1146 /*
1147 * Was it really running after all now that we
1148 * checked with the proper locks actually held?
1149 *
1150 * Oops. Go back and try again..
1151 */
1152 if (unlikely(running)) {
1153 cpu_relax();
1154 continue;
1155 }
1156
1157 /*
1158 * It's not enough that it's not actively running,
1159 * it must be off the runqueue _entirely_, and not
1160 * preempted!
1161 *
1162 * So if it wa still runnable (but just not actively
1163 * running right now), it's preempted, and we should
1164 * yield - it could be a while.
1165 */
1166 if (unlikely(on_rq)) {
1167 schedule_timeout_uninterruptible(1);
1168 continue;
1169 }
1170
1171 /*
1172 * Ahh, all good. It wasn't running, and it wasn't
1173 * runnable, which means that it will never become
1174 * running in the future either. We're all done!
1175 */
1176 break;
1177 }
1178 }
1179
1180 /***
1181 * kick_process - kick a running thread to enter/exit the kernel
1182 * @p: the to-be-kicked thread
1183 *
1184 * Cause a process which is running on another CPU to enter
1185 * kernel-mode, without any delay. (to get signals handled.)
1186 *
1187 * NOTE: this function doesnt have to take the runqueue lock,
1188 * because all it wants to ensure is that the remote task enters
1189 * the kernel. If the IPI races and the task has been migrated
1190 * to another CPU then no harm is done and the purpose has been
1191 * achieved as well.
1192 */
1193 void kick_process(struct task_struct *p)
1194 {
1195 int cpu;
1196
1197 preempt_disable();
1198 cpu = task_cpu(p);
1199 if ((cpu != smp_processor_id()) && task_curr(p))
1200 smp_send_reschedule(cpu);
1201 preempt_enable();
1202 }
1203
1204 /*
1205 * Return a low guess at the load of a migration-source cpu weighted
1206 * according to the scheduling class and "nice" value.
1207 *
1208 * We want to under-estimate the load of migration sources, to
1209 * balance conservatively.
1210 */
1211 static unsigned long source_load(int cpu, int type)
1212 {
1213 struct rq *rq = cpu_rq(cpu);
1214 unsigned long total = weighted_cpuload(cpu);
1215
1216 if (type == 0)
1217 return total;
1218
1219 return min(rq->cpu_load[type-1], total);
1220 }
1221
1222 /*
1223 * Return a high guess at the load of a migration-target cpu weighted
1224 * according to the scheduling class and "nice" value.
1225 */
1226 static unsigned long target_load(int cpu, int type)
1227 {
1228 struct rq *rq = cpu_rq(cpu);
1229 unsigned long total = weighted_cpuload(cpu);
1230
1231 if (type == 0)
1232 return total;
1233
1234 return max(rq->cpu_load[type-1], total);
1235 }
1236
1237 /*
1238 * Return the average load per task on the cpu's run queue
1239 */
1240 static inline unsigned long cpu_avg_load_per_task(int cpu)
1241 {
1242 struct rq *rq = cpu_rq(cpu);
1243 unsigned long total = weighted_cpuload(cpu);
1244 unsigned long n = rq->nr_running;
1245
1246 return n ? total / n : SCHED_LOAD_SCALE;
1247 }
1248
1249 /*
1250 * find_idlest_group finds and returns the least busy CPU group within the
1251 * domain.
1252 */
1253 static struct sched_group *
1254 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1255 {
1256 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1257 unsigned long min_load = ULONG_MAX, this_load = 0;
1258 int load_idx = sd->forkexec_idx;
1259 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1260
1261 do {
1262 unsigned long load, avg_load;
1263 int local_group;
1264 int i;
1265
1266 /* Skip over this group if it has no CPUs allowed */
1267 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1268 continue;
1269
1270 local_group = cpu_isset(this_cpu, group->cpumask);
1271
1272 /* Tally up the load of all CPUs in the group */
1273 avg_load = 0;
1274
1275 for_each_cpu_mask(i, group->cpumask) {
1276 /* Bias balancing toward cpus of our domain */
1277 if (local_group)
1278 load = source_load(i, load_idx);
1279 else
1280 load = target_load(i, load_idx);
1281
1282 avg_load += load;
1283 }
1284
1285 /* Adjust by relative CPU power of the group */
1286 avg_load = sg_div_cpu_power(group,
1287 avg_load * SCHED_LOAD_SCALE);
1288
1289 if (local_group) {
1290 this_load = avg_load;
1291 this = group;
1292 } else if (avg_load < min_load) {
1293 min_load = avg_load;
1294 idlest = group;
1295 }
1296 } while (group = group->next, group != sd->groups);
1297
1298 if (!idlest || 100*this_load < imbalance*min_load)
1299 return NULL;
1300 return idlest;
1301 }
1302
1303 /*
1304 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1305 */
1306 static int
1307 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1308 {
1309 cpumask_t tmp;
1310 unsigned long load, min_load = ULONG_MAX;
1311 int idlest = -1;
1312 int i;
1313
1314 /* Traverse only the allowed CPUs */
1315 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1316
1317 for_each_cpu_mask(i, tmp) {
1318 load = weighted_cpuload(i);
1319
1320 if (load < min_load || (load == min_load && i == this_cpu)) {
1321 min_load = load;
1322 idlest = i;
1323 }
1324 }
1325
1326 return idlest;
1327 }
1328
1329 /*
1330 * sched_balance_self: balance the current task (running on cpu) in domains
1331 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1332 * SD_BALANCE_EXEC.
1333 *
1334 * Balance, ie. select the least loaded group.
1335 *
1336 * Returns the target CPU number, or the same CPU if no balancing is needed.
1337 *
1338 * preempt must be disabled.
1339 */
1340 static int sched_balance_self(int cpu, int flag)
1341 {
1342 struct task_struct *t = current;
1343 struct sched_domain *tmp, *sd = NULL;
1344
1345 for_each_domain(cpu, tmp) {
1346 /*
1347 * If power savings logic is enabled for a domain, stop there.
1348 */
1349 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1350 break;
1351 if (tmp->flags & flag)
1352 sd = tmp;
1353 }
1354
1355 while (sd) {
1356 cpumask_t span;
1357 struct sched_group *group;
1358 int new_cpu, weight;
1359
1360 if (!(sd->flags & flag)) {
1361 sd = sd->child;
1362 continue;
1363 }
1364
1365 span = sd->span;
1366 group = find_idlest_group(sd, t, cpu);
1367 if (!group) {
1368 sd = sd->child;
1369 continue;
1370 }
1371
1372 new_cpu = find_idlest_cpu(group, t, cpu);
1373 if (new_cpu == -1 || new_cpu == cpu) {
1374 /* Now try balancing at a lower domain level of cpu */
1375 sd = sd->child;
1376 continue;
1377 }
1378
1379 /* Now try balancing at a lower domain level of new_cpu */
1380 cpu = new_cpu;
1381 sd = NULL;
1382 weight = cpus_weight(span);
1383 for_each_domain(cpu, tmp) {
1384 if (weight <= cpus_weight(tmp->span))
1385 break;
1386 if (tmp->flags & flag)
1387 sd = tmp;
1388 }
1389 /* while loop will break here if sd == NULL */
1390 }
1391
1392 return cpu;
1393 }
1394
1395 #endif /* CONFIG_SMP */
1396
1397 /*
1398 * wake_idle() will wake a task on an idle cpu if task->cpu is
1399 * not idle and an idle cpu is available. The span of cpus to
1400 * search starts with cpus closest then further out as needed,
1401 * so we always favor a closer, idle cpu.
1402 *
1403 * Returns the CPU we should wake onto.
1404 */
1405 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1406 static int wake_idle(int cpu, struct task_struct *p)
1407 {
1408 cpumask_t tmp;
1409 struct sched_domain *sd;
1410 int i;
1411
1412 /*
1413 * If it is idle, then it is the best cpu to run this task.
1414 *
1415 * This cpu is also the best, if it has more than one task already.
1416 * Siblings must be also busy(in most cases) as they didn't already
1417 * pickup the extra load from this cpu and hence we need not check
1418 * sibling runqueue info. This will avoid the checks and cache miss
1419 * penalities associated with that.
1420 */
1421 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1422 return cpu;
1423
1424 for_each_domain(cpu, sd) {
1425 if (sd->flags & SD_WAKE_IDLE) {
1426 cpus_and(tmp, sd->span, p->cpus_allowed);
1427 for_each_cpu_mask(i, tmp) {
1428 if (idle_cpu(i)) {
1429 if (i != task_cpu(p)) {
1430 schedstat_inc(p,
1431 se.nr_wakeups_idle);
1432 }
1433 return i;
1434 }
1435 }
1436 } else {
1437 break;
1438 }
1439 }
1440 return cpu;
1441 }
1442 #else
1443 static inline int wake_idle(int cpu, struct task_struct *p)
1444 {
1445 return cpu;
1446 }
1447 #endif
1448
1449 /***
1450 * try_to_wake_up - wake up a thread
1451 * @p: the to-be-woken-up thread
1452 * @state: the mask of task states that can be woken
1453 * @sync: do a synchronous wakeup?
1454 *
1455 * Put it on the run-queue if it's not already there. The "current"
1456 * thread is always on the run-queue (except when the actual
1457 * re-schedule is in progress), and as such you're allowed to do
1458 * the simpler "current->state = TASK_RUNNING" to mark yourself
1459 * runnable without the overhead of this.
1460 *
1461 * returns failure only if the task is already active.
1462 */
1463 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1464 {
1465 int cpu, orig_cpu, this_cpu, success = 0;
1466 unsigned long flags;
1467 long old_state;
1468 struct rq *rq;
1469 #ifdef CONFIG_SMP
1470 struct sched_domain *sd, *this_sd = NULL;
1471 unsigned long load, this_load;
1472 int new_cpu;
1473 #endif
1474
1475 rq = task_rq_lock(p, &flags);
1476 old_state = p->state;
1477 if (!(old_state & state))
1478 goto out;
1479
1480 if (p->se.on_rq)
1481 goto out_running;
1482
1483 cpu = task_cpu(p);
1484 orig_cpu = cpu;
1485 this_cpu = smp_processor_id();
1486
1487 #ifdef CONFIG_SMP
1488 if (unlikely(task_running(rq, p)))
1489 goto out_activate;
1490
1491 new_cpu = cpu;
1492
1493 schedstat_inc(rq, ttwu_count);
1494 if (cpu == this_cpu) {
1495 schedstat_inc(rq, ttwu_local);
1496 goto out_set_cpu;
1497 }
1498
1499 for_each_domain(this_cpu, sd) {
1500 if (cpu_isset(cpu, sd->span)) {
1501 schedstat_inc(sd, ttwu_wake_remote);
1502 this_sd = sd;
1503 break;
1504 }
1505 }
1506
1507 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1508 goto out_set_cpu;
1509
1510 /*
1511 * Check for affine wakeup and passive balancing possibilities.
1512 */
1513 if (this_sd) {
1514 int idx = this_sd->wake_idx;
1515 unsigned int imbalance;
1516
1517 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1518
1519 load = source_load(cpu, idx);
1520 this_load = target_load(this_cpu, idx);
1521
1522 new_cpu = this_cpu; /* Wake to this CPU if we can */
1523
1524 if (this_sd->flags & SD_WAKE_AFFINE) {
1525 unsigned long tl = this_load;
1526 unsigned long tl_per_task;
1527
1528 /*
1529 * Attract cache-cold tasks on sync wakeups:
1530 */
1531 if (sync && !task_hot(p, rq->clock, this_sd))
1532 goto out_set_cpu;
1533
1534 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1535 tl_per_task = cpu_avg_load_per_task(this_cpu);
1536
1537 /*
1538 * If sync wakeup then subtract the (maximum possible)
1539 * effect of the currently running task from the load
1540 * of the current CPU:
1541 */
1542 if (sync)
1543 tl -= current->se.load.weight;
1544
1545 if ((tl <= load &&
1546 tl + target_load(cpu, idx) <= tl_per_task) ||
1547 100*(tl + p->se.load.weight) <= imbalance*load) {
1548 /*
1549 * This domain has SD_WAKE_AFFINE and
1550 * p is cache cold in this domain, and
1551 * there is no bad imbalance.
1552 */
1553 schedstat_inc(this_sd, ttwu_move_affine);
1554 schedstat_inc(p, se.nr_wakeups_affine);
1555 goto out_set_cpu;
1556 }
1557 }
1558
1559 /*
1560 * Start passive balancing when half the imbalance_pct
1561 * limit is reached.
1562 */
1563 if (this_sd->flags & SD_WAKE_BALANCE) {
1564 if (imbalance*this_load <= 100*load) {
1565 schedstat_inc(this_sd, ttwu_move_balance);
1566 schedstat_inc(p, se.nr_wakeups_passive);
1567 goto out_set_cpu;
1568 }
1569 }
1570 }
1571
1572 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1573 out_set_cpu:
1574 new_cpu = wake_idle(new_cpu, p);
1575 if (new_cpu != cpu) {
1576 set_task_cpu(p, new_cpu);
1577 task_rq_unlock(rq, &flags);
1578 /* might preempt at this point */
1579 rq = task_rq_lock(p, &flags);
1580 old_state = p->state;
1581 if (!(old_state & state))
1582 goto out;
1583 if (p->se.on_rq)
1584 goto out_running;
1585
1586 this_cpu = smp_processor_id();
1587 cpu = task_cpu(p);
1588 }
1589
1590 out_activate:
1591 #endif /* CONFIG_SMP */
1592 schedstat_inc(p, se.nr_wakeups);
1593 if (sync)
1594 schedstat_inc(p, se.nr_wakeups_sync);
1595 if (orig_cpu != cpu)
1596 schedstat_inc(p, se.nr_wakeups_migrate);
1597 if (cpu == this_cpu)
1598 schedstat_inc(p, se.nr_wakeups_local);
1599 else
1600 schedstat_inc(p, se.nr_wakeups_remote);
1601 update_rq_clock(rq);
1602 activate_task(rq, p, 1);
1603 check_preempt_curr(rq, p);
1604 success = 1;
1605
1606 out_running:
1607 p->state = TASK_RUNNING;
1608 out:
1609 task_rq_unlock(rq, &flags);
1610
1611 return success;
1612 }
1613
1614 int fastcall wake_up_process(struct task_struct *p)
1615 {
1616 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1617 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1618 }
1619 EXPORT_SYMBOL(wake_up_process);
1620
1621 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1622 {
1623 return try_to_wake_up(p, state, 0);
1624 }
1625
1626 /*
1627 * Perform scheduler related setup for a newly forked process p.
1628 * p is forked by current.
1629 *
1630 * __sched_fork() is basic setup used by init_idle() too:
1631 */
1632 static void __sched_fork(struct task_struct *p)
1633 {
1634 p->se.exec_start = 0;
1635 p->se.sum_exec_runtime = 0;
1636 p->se.prev_sum_exec_runtime = 0;
1637
1638 #ifdef CONFIG_SCHEDSTATS
1639 p->se.wait_start = 0;
1640 p->se.sum_sleep_runtime = 0;
1641 p->se.sleep_start = 0;
1642 p->se.block_start = 0;
1643 p->se.sleep_max = 0;
1644 p->se.block_max = 0;
1645 p->se.exec_max = 0;
1646 p->se.slice_max = 0;
1647 p->se.wait_max = 0;
1648 #endif
1649
1650 INIT_LIST_HEAD(&p->run_list);
1651 p->se.on_rq = 0;
1652
1653 #ifdef CONFIG_PREEMPT_NOTIFIERS
1654 INIT_HLIST_HEAD(&p->preempt_notifiers);
1655 #endif
1656
1657 /*
1658 * We mark the process as running here, but have not actually
1659 * inserted it onto the runqueue yet. This guarantees that
1660 * nobody will actually run it, and a signal or other external
1661 * event cannot wake it up and insert it on the runqueue either.
1662 */
1663 p->state = TASK_RUNNING;
1664 }
1665
1666 /*
1667 * fork()/clone()-time setup:
1668 */
1669 void sched_fork(struct task_struct *p, int clone_flags)
1670 {
1671 int cpu = get_cpu();
1672
1673 __sched_fork(p);
1674
1675 #ifdef CONFIG_SMP
1676 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1677 #endif
1678 set_task_cpu(p, cpu);
1679
1680 /*
1681 * Make sure we do not leak PI boosting priority to the child:
1682 */
1683 p->prio = current->normal_prio;
1684 if (!rt_prio(p->prio))
1685 p->sched_class = &fair_sched_class;
1686
1687 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1688 if (likely(sched_info_on()))
1689 memset(&p->sched_info, 0, sizeof(p->sched_info));
1690 #endif
1691 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1692 p->oncpu = 0;
1693 #endif
1694 #ifdef CONFIG_PREEMPT
1695 /* Want to start with kernel preemption disabled. */
1696 task_thread_info(p)->preempt_count = 1;
1697 #endif
1698 put_cpu();
1699 }
1700
1701 /*
1702 * wake_up_new_task - wake up a newly created task for the first time.
1703 *
1704 * This function will do some initial scheduler statistics housekeeping
1705 * that must be done for every newly created context, then puts the task
1706 * on the runqueue and wakes it.
1707 */
1708 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1709 {
1710 unsigned long flags;
1711 struct rq *rq;
1712
1713 rq = task_rq_lock(p, &flags);
1714 BUG_ON(p->state != TASK_RUNNING);
1715 update_rq_clock(rq);
1716
1717 p->prio = effective_prio(p);
1718
1719 if (!p->sched_class->task_new || !current->se.on_rq) {
1720 activate_task(rq, p, 0);
1721 } else {
1722 /*
1723 * Let the scheduling class do new task startup
1724 * management (if any):
1725 */
1726 p->sched_class->task_new(rq, p);
1727 inc_nr_running(p, rq);
1728 }
1729 check_preempt_curr(rq, p);
1730 task_rq_unlock(rq, &flags);
1731 }
1732
1733 #ifdef CONFIG_PREEMPT_NOTIFIERS
1734
1735 /**
1736 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1737 * @notifier: notifier struct to register
1738 */
1739 void preempt_notifier_register(struct preempt_notifier *notifier)
1740 {
1741 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1742 }
1743 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1744
1745 /**
1746 * preempt_notifier_unregister - no longer interested in preemption notifications
1747 * @notifier: notifier struct to unregister
1748 *
1749 * This is safe to call from within a preemption notifier.
1750 */
1751 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1752 {
1753 hlist_del(&notifier->link);
1754 }
1755 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1756
1757 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1758 {
1759 struct preempt_notifier *notifier;
1760 struct hlist_node *node;
1761
1762 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1763 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1764 }
1765
1766 static void
1767 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1768 struct task_struct *next)
1769 {
1770 struct preempt_notifier *notifier;
1771 struct hlist_node *node;
1772
1773 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1774 notifier->ops->sched_out(notifier, next);
1775 }
1776
1777 #else
1778
1779 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1780 {
1781 }
1782
1783 static void
1784 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1785 struct task_struct *next)
1786 {
1787 }
1788
1789 #endif
1790
1791 /**
1792 * prepare_task_switch - prepare to switch tasks
1793 * @rq: the runqueue preparing to switch
1794 * @prev: the current task that is being switched out
1795 * @next: the task we are going to switch to.
1796 *
1797 * This is called with the rq lock held and interrupts off. It must
1798 * be paired with a subsequent finish_task_switch after the context
1799 * switch.
1800 *
1801 * prepare_task_switch sets up locking and calls architecture specific
1802 * hooks.
1803 */
1804 static inline void
1805 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1806 struct task_struct *next)
1807 {
1808 fire_sched_out_preempt_notifiers(prev, next);
1809 prepare_lock_switch(rq, next);
1810 prepare_arch_switch(next);
1811 }
1812
1813 /**
1814 * finish_task_switch - clean up after a task-switch
1815 * @rq: runqueue associated with task-switch
1816 * @prev: the thread we just switched away from.
1817 *
1818 * finish_task_switch must be called after the context switch, paired
1819 * with a prepare_task_switch call before the context switch.
1820 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1821 * and do any other architecture-specific cleanup actions.
1822 *
1823 * Note that we may have delayed dropping an mm in context_switch(). If
1824 * so, we finish that here outside of the runqueue lock. (Doing it
1825 * with the lock held can cause deadlocks; see schedule() for
1826 * details.)
1827 */
1828 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1829 __releases(rq->lock)
1830 {
1831 struct mm_struct *mm = rq->prev_mm;
1832 long prev_state;
1833
1834 rq->prev_mm = NULL;
1835
1836 /*
1837 * A task struct has one reference for the use as "current".
1838 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1839 * schedule one last time. The schedule call will never return, and
1840 * the scheduled task must drop that reference.
1841 * The test for TASK_DEAD must occur while the runqueue locks are
1842 * still held, otherwise prev could be scheduled on another cpu, die
1843 * there before we look at prev->state, and then the reference would
1844 * be dropped twice.
1845 * Manfred Spraul <manfred@colorfullife.com>
1846 */
1847 prev_state = prev->state;
1848 finish_arch_switch(prev);
1849 finish_lock_switch(rq, prev);
1850 fire_sched_in_preempt_notifiers(current);
1851 if (mm)
1852 mmdrop(mm);
1853 if (unlikely(prev_state == TASK_DEAD)) {
1854 /*
1855 * Remove function-return probe instances associated with this
1856 * task and put them back on the free list.
1857 */
1858 kprobe_flush_task(prev);
1859 put_task_struct(prev);
1860 }
1861 }
1862
1863 /**
1864 * schedule_tail - first thing a freshly forked thread must call.
1865 * @prev: the thread we just switched away from.
1866 */
1867 asmlinkage void schedule_tail(struct task_struct *prev)
1868 __releases(rq->lock)
1869 {
1870 struct rq *rq = this_rq();
1871
1872 finish_task_switch(rq, prev);
1873 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1874 /* In this case, finish_task_switch does not reenable preemption */
1875 preempt_enable();
1876 #endif
1877 if (current->set_child_tid)
1878 put_user(current->pid, current->set_child_tid);
1879 }
1880
1881 /*
1882 * context_switch - switch to the new MM and the new
1883 * thread's register state.
1884 */
1885 static inline void
1886 context_switch(struct rq *rq, struct task_struct *prev,
1887 struct task_struct *next)
1888 {
1889 struct mm_struct *mm, *oldmm;
1890
1891 prepare_task_switch(rq, prev, next);
1892 mm = next->mm;
1893 oldmm = prev->active_mm;
1894 /*
1895 * For paravirt, this is coupled with an exit in switch_to to
1896 * combine the page table reload and the switch backend into
1897 * one hypercall.
1898 */
1899 arch_enter_lazy_cpu_mode();
1900
1901 if (unlikely(!mm)) {
1902 next->active_mm = oldmm;
1903 atomic_inc(&oldmm->mm_count);
1904 enter_lazy_tlb(oldmm, next);
1905 } else
1906 switch_mm(oldmm, mm, next);
1907
1908 if (unlikely(!prev->mm)) {
1909 prev->active_mm = NULL;
1910 rq->prev_mm = oldmm;
1911 }
1912 /*
1913 * Since the runqueue lock will be released by the next
1914 * task (which is an invalid locking op but in the case
1915 * of the scheduler it's an obvious special-case), so we
1916 * do an early lockdep release here:
1917 */
1918 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1919 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1920 #endif
1921
1922 /* Here we just switch the register state and the stack. */
1923 switch_to(prev, next, prev);
1924
1925 barrier();
1926 /*
1927 * this_rq must be evaluated again because prev may have moved
1928 * CPUs since it called schedule(), thus the 'rq' on its stack
1929 * frame will be invalid.
1930 */
1931 finish_task_switch(this_rq(), prev);
1932 }
1933
1934 /*
1935 * nr_running, nr_uninterruptible and nr_context_switches:
1936 *
1937 * externally visible scheduler statistics: current number of runnable
1938 * threads, current number of uninterruptible-sleeping threads, total
1939 * number of context switches performed since bootup.
1940 */
1941 unsigned long nr_running(void)
1942 {
1943 unsigned long i, sum = 0;
1944
1945 for_each_online_cpu(i)
1946 sum += cpu_rq(i)->nr_running;
1947
1948 return sum;
1949 }
1950
1951 unsigned long nr_uninterruptible(void)
1952 {
1953 unsigned long i, sum = 0;
1954
1955 for_each_possible_cpu(i)
1956 sum += cpu_rq(i)->nr_uninterruptible;
1957
1958 /*
1959 * Since we read the counters lockless, it might be slightly
1960 * inaccurate. Do not allow it to go below zero though:
1961 */
1962 if (unlikely((long)sum < 0))
1963 sum = 0;
1964
1965 return sum;
1966 }
1967
1968 unsigned long long nr_context_switches(void)
1969 {
1970 int i;
1971 unsigned long long sum = 0;
1972
1973 for_each_possible_cpu(i)
1974 sum += cpu_rq(i)->nr_switches;
1975
1976 return sum;
1977 }
1978
1979 unsigned long nr_iowait(void)
1980 {
1981 unsigned long i, sum = 0;
1982
1983 for_each_possible_cpu(i)
1984 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1985
1986 return sum;
1987 }
1988
1989 unsigned long nr_active(void)
1990 {
1991 unsigned long i, running = 0, uninterruptible = 0;
1992
1993 for_each_online_cpu(i) {
1994 running += cpu_rq(i)->nr_running;
1995 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1996 }
1997
1998 if (unlikely((long)uninterruptible < 0))
1999 uninterruptible = 0;
2000
2001 return running + uninterruptible;
2002 }
2003
2004 /*
2005 * Update rq->cpu_load[] statistics. This function is usually called every
2006 * scheduler tick (TICK_NSEC).
2007 */
2008 static void update_cpu_load(struct rq *this_rq)
2009 {
2010 unsigned long this_load = this_rq->load.weight;
2011 int i, scale;
2012
2013 this_rq->nr_load_updates++;
2014
2015 /* Update our load: */
2016 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2017 unsigned long old_load, new_load;
2018
2019 /* scale is effectively 1 << i now, and >> i divides by scale */
2020
2021 old_load = this_rq->cpu_load[i];
2022 new_load = this_load;
2023 /*
2024 * Round up the averaging division if load is increasing. This
2025 * prevents us from getting stuck on 9 if the load is 10, for
2026 * example.
2027 */
2028 if (new_load > old_load)
2029 new_load += scale-1;
2030 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2031 }
2032 }
2033
2034 #ifdef CONFIG_SMP
2035
2036 /*
2037 * double_rq_lock - safely lock two runqueues
2038 *
2039 * Note this does not disable interrupts like task_rq_lock,
2040 * you need to do so manually before calling.
2041 */
2042 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2043 __acquires(rq1->lock)
2044 __acquires(rq2->lock)
2045 {
2046 BUG_ON(!irqs_disabled());
2047 if (rq1 == rq2) {
2048 spin_lock(&rq1->lock);
2049 __acquire(rq2->lock); /* Fake it out ;) */
2050 } else {
2051 if (rq1 < rq2) {
2052 spin_lock(&rq1->lock);
2053 spin_lock(&rq2->lock);
2054 } else {
2055 spin_lock(&rq2->lock);
2056 spin_lock(&rq1->lock);
2057 }
2058 }
2059 update_rq_clock(rq1);
2060 update_rq_clock(rq2);
2061 }
2062
2063 /*
2064 * double_rq_unlock - safely unlock two runqueues
2065 *
2066 * Note this does not restore interrupts like task_rq_unlock,
2067 * you need to do so manually after calling.
2068 */
2069 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2070 __releases(rq1->lock)
2071 __releases(rq2->lock)
2072 {
2073 spin_unlock(&rq1->lock);
2074 if (rq1 != rq2)
2075 spin_unlock(&rq2->lock);
2076 else
2077 __release(rq2->lock);
2078 }
2079
2080 /*
2081 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2082 */
2083 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2084 __releases(this_rq->lock)
2085 __acquires(busiest->lock)
2086 __acquires(this_rq->lock)
2087 {
2088 if (unlikely(!irqs_disabled())) {
2089 /* printk() doesn't work good under rq->lock */
2090 spin_unlock(&this_rq->lock);
2091 BUG_ON(1);
2092 }
2093 if (unlikely(!spin_trylock(&busiest->lock))) {
2094 if (busiest < this_rq) {
2095 spin_unlock(&this_rq->lock);
2096 spin_lock(&busiest->lock);
2097 spin_lock(&this_rq->lock);
2098 } else
2099 spin_lock(&busiest->lock);
2100 }
2101 }
2102
2103 /*
2104 * If dest_cpu is allowed for this process, migrate the task to it.
2105 * This is accomplished by forcing the cpu_allowed mask to only
2106 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2107 * the cpu_allowed mask is restored.
2108 */
2109 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2110 {
2111 struct migration_req req;
2112 unsigned long flags;
2113 struct rq *rq;
2114
2115 rq = task_rq_lock(p, &flags);
2116 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2117 || unlikely(cpu_is_offline(dest_cpu)))
2118 goto out;
2119
2120 /* force the process onto the specified CPU */
2121 if (migrate_task(p, dest_cpu, &req)) {
2122 /* Need to wait for migration thread (might exit: take ref). */
2123 struct task_struct *mt = rq->migration_thread;
2124
2125 get_task_struct(mt);
2126 task_rq_unlock(rq, &flags);
2127 wake_up_process(mt);
2128 put_task_struct(mt);
2129 wait_for_completion(&req.done);
2130
2131 return;
2132 }
2133 out:
2134 task_rq_unlock(rq, &flags);
2135 }
2136
2137 /*
2138 * sched_exec - execve() is a valuable balancing opportunity, because at
2139 * this point the task has the smallest effective memory and cache footprint.
2140 */
2141 void sched_exec(void)
2142 {
2143 int new_cpu, this_cpu = get_cpu();
2144 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2145 put_cpu();
2146 if (new_cpu != this_cpu)
2147 sched_migrate_task(current, new_cpu);
2148 }
2149
2150 /*
2151 * pull_task - move a task from a remote runqueue to the local runqueue.
2152 * Both runqueues must be locked.
2153 */
2154 static void pull_task(struct rq *src_rq, struct task_struct *p,
2155 struct rq *this_rq, int this_cpu)
2156 {
2157 deactivate_task(src_rq, p, 0);
2158 set_task_cpu(p, this_cpu);
2159 activate_task(this_rq, p, 0);
2160 /*
2161 * Note that idle threads have a prio of MAX_PRIO, for this test
2162 * to be always true for them.
2163 */
2164 check_preempt_curr(this_rq, p);
2165 }
2166
2167 /*
2168 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2169 */
2170 static
2171 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2172 struct sched_domain *sd, enum cpu_idle_type idle,
2173 int *all_pinned)
2174 {
2175 /*
2176 * We do not migrate tasks that are:
2177 * 1) running (obviously), or
2178 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2179 * 3) are cache-hot on their current CPU.
2180 */
2181 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2182 schedstat_inc(p, se.nr_failed_migrations_affine);
2183 return 0;
2184 }
2185 *all_pinned = 0;
2186
2187 if (task_running(rq, p)) {
2188 schedstat_inc(p, se.nr_failed_migrations_running);
2189 return 0;
2190 }
2191
2192 /*
2193 * Aggressive migration if:
2194 * 1) task is cache cold, or
2195 * 2) too many balance attempts have failed.
2196 */
2197
2198 if (!task_hot(p, rq->clock, sd) ||
2199 sd->nr_balance_failed > sd->cache_nice_tries) {
2200 #ifdef CONFIG_SCHEDSTATS
2201 if (task_hot(p, rq->clock, sd)) {
2202 schedstat_inc(sd, lb_hot_gained[idle]);
2203 schedstat_inc(p, se.nr_forced_migrations);
2204 }
2205 #endif
2206 return 1;
2207 }
2208
2209 if (task_hot(p, rq->clock, sd)) {
2210 schedstat_inc(p, se.nr_failed_migrations_hot);
2211 return 0;
2212 }
2213 return 1;
2214 }
2215
2216 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2217 unsigned long max_nr_move, unsigned long max_load_move,
2218 struct sched_domain *sd, enum cpu_idle_type idle,
2219 int *all_pinned, unsigned long *load_moved,
2220 int *this_best_prio, struct rq_iterator *iterator)
2221 {
2222 int pulled = 0, pinned = 0, skip_for_load;
2223 struct task_struct *p;
2224 long rem_load_move = max_load_move;
2225
2226 if (max_nr_move == 0 || max_load_move == 0)
2227 goto out;
2228
2229 pinned = 1;
2230
2231 /*
2232 * Start the load-balancing iterator:
2233 */
2234 p = iterator->start(iterator->arg);
2235 next:
2236 if (!p)
2237 goto out;
2238 /*
2239 * To help distribute high priority tasks accross CPUs we don't
2240 * skip a task if it will be the highest priority task (i.e. smallest
2241 * prio value) on its new queue regardless of its load weight
2242 */
2243 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2244 SCHED_LOAD_SCALE_FUZZ;
2245 if ((skip_for_load && p->prio >= *this_best_prio) ||
2246 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2247 p = iterator->next(iterator->arg);
2248 goto next;
2249 }
2250
2251 pull_task(busiest, p, this_rq, this_cpu);
2252 pulled++;
2253 rem_load_move -= p->se.load.weight;
2254
2255 /*
2256 * We only want to steal up to the prescribed number of tasks
2257 * and the prescribed amount of weighted load.
2258 */
2259 if (pulled < max_nr_move && rem_load_move > 0) {
2260 if (p->prio < *this_best_prio)
2261 *this_best_prio = p->prio;
2262 p = iterator->next(iterator->arg);
2263 goto next;
2264 }
2265 out:
2266 /*
2267 * Right now, this is the only place pull_task() is called,
2268 * so we can safely collect pull_task() stats here rather than
2269 * inside pull_task().
2270 */
2271 schedstat_add(sd, lb_gained[idle], pulled);
2272
2273 if (all_pinned)
2274 *all_pinned = pinned;
2275 *load_moved = max_load_move - rem_load_move;
2276 return pulled;
2277 }
2278
2279 /*
2280 * move_tasks tries to move up to max_load_move weighted load from busiest to
2281 * this_rq, as part of a balancing operation within domain "sd".
2282 * Returns 1 if successful and 0 otherwise.
2283 *
2284 * Called with both runqueues locked.
2285 */
2286 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2287 unsigned long max_load_move,
2288 struct sched_domain *sd, enum cpu_idle_type idle,
2289 int *all_pinned)
2290 {
2291 const struct sched_class *class = sched_class_highest;
2292 unsigned long total_load_moved = 0;
2293 int this_best_prio = this_rq->curr->prio;
2294
2295 do {
2296 total_load_moved +=
2297 class->load_balance(this_rq, this_cpu, busiest,
2298 ULONG_MAX, max_load_move - total_load_moved,
2299 sd, idle, all_pinned, &this_best_prio);
2300 class = class->next;
2301 } while (class && max_load_move > total_load_moved);
2302
2303 return total_load_moved > 0;
2304 }
2305
2306 /*
2307 * move_one_task tries to move exactly one task from busiest to this_rq, as
2308 * part of active balancing operations within "domain".
2309 * Returns 1 if successful and 0 otherwise.
2310 *
2311 * Called with both runqueues locked.
2312 */
2313 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2314 struct sched_domain *sd, enum cpu_idle_type idle)
2315 {
2316 const struct sched_class *class;
2317 int this_best_prio = MAX_PRIO;
2318
2319 for (class = sched_class_highest; class; class = class->next)
2320 if (class->load_balance(this_rq, this_cpu, busiest,
2321 1, ULONG_MAX, sd, idle, NULL,
2322 &this_best_prio))
2323 return 1;
2324
2325 return 0;
2326 }
2327
2328 /*
2329 * find_busiest_group finds and returns the busiest CPU group within the
2330 * domain. It calculates and returns the amount of weighted load which
2331 * should be moved to restore balance via the imbalance parameter.
2332 */
2333 static struct sched_group *
2334 find_busiest_group(struct sched_domain *sd, int this_cpu,
2335 unsigned long *imbalance, enum cpu_idle_type idle,
2336 int *sd_idle, cpumask_t *cpus, int *balance)
2337 {
2338 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2339 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2340 unsigned long max_pull;
2341 unsigned long busiest_load_per_task, busiest_nr_running;
2342 unsigned long this_load_per_task, this_nr_running;
2343 int load_idx, group_imb = 0;
2344 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2345 int power_savings_balance = 1;
2346 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2347 unsigned long min_nr_running = ULONG_MAX;
2348 struct sched_group *group_min = NULL, *group_leader = NULL;
2349 #endif
2350
2351 max_load = this_load = total_load = total_pwr = 0;
2352 busiest_load_per_task = busiest_nr_running = 0;
2353 this_load_per_task = this_nr_running = 0;
2354 if (idle == CPU_NOT_IDLE)
2355 load_idx = sd->busy_idx;
2356 else if (idle == CPU_NEWLY_IDLE)
2357 load_idx = sd->newidle_idx;
2358 else
2359 load_idx = sd->idle_idx;
2360
2361 do {
2362 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2363 int local_group;
2364 int i;
2365 int __group_imb = 0;
2366 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2367 unsigned long sum_nr_running, sum_weighted_load;
2368
2369 local_group = cpu_isset(this_cpu, group->cpumask);
2370
2371 if (local_group)
2372 balance_cpu = first_cpu(group->cpumask);
2373
2374 /* Tally up the load of all CPUs in the group */
2375 sum_weighted_load = sum_nr_running = avg_load = 0;
2376 max_cpu_load = 0;
2377 min_cpu_load = ~0UL;
2378
2379 for_each_cpu_mask(i, group->cpumask) {
2380 struct rq *rq;
2381
2382 if (!cpu_isset(i, *cpus))
2383 continue;
2384
2385 rq = cpu_rq(i);
2386
2387 if (*sd_idle && rq->nr_running)
2388 *sd_idle = 0;
2389
2390 /* Bias balancing toward cpus of our domain */
2391 if (local_group) {
2392 if (idle_cpu(i) && !first_idle_cpu) {
2393 first_idle_cpu = 1;
2394 balance_cpu = i;
2395 }
2396
2397 load = target_load(i, load_idx);
2398 } else {
2399 load = source_load(i, load_idx);
2400 if (load > max_cpu_load)
2401 max_cpu_load = load;
2402 if (min_cpu_load > load)
2403 min_cpu_load = load;
2404 }
2405
2406 avg_load += load;
2407 sum_nr_running += rq->nr_running;
2408 sum_weighted_load += weighted_cpuload(i);
2409 }
2410
2411 /*
2412 * First idle cpu or the first cpu(busiest) in this sched group
2413 * is eligible for doing load balancing at this and above
2414 * domains. In the newly idle case, we will allow all the cpu's
2415 * to do the newly idle load balance.
2416 */
2417 if (idle != CPU_NEWLY_IDLE && local_group &&
2418 balance_cpu != this_cpu && balance) {
2419 *balance = 0;
2420 goto ret;
2421 }
2422
2423 total_load += avg_load;
2424 total_pwr += group->__cpu_power;
2425
2426 /* Adjust by relative CPU power of the group */
2427 avg_load = sg_div_cpu_power(group,
2428 avg_load * SCHED_LOAD_SCALE);
2429
2430 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2431 __group_imb = 1;
2432
2433 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2434
2435 if (local_group) {
2436 this_load = avg_load;
2437 this = group;
2438 this_nr_running = sum_nr_running;
2439 this_load_per_task = sum_weighted_load;
2440 } else if (avg_load > max_load &&
2441 (sum_nr_running > group_capacity || __group_imb)) {
2442 max_load = avg_load;
2443 busiest = group;
2444 busiest_nr_running = sum_nr_running;
2445 busiest_load_per_task = sum_weighted_load;
2446 group_imb = __group_imb;
2447 }
2448
2449 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2450 /*
2451 * Busy processors will not participate in power savings
2452 * balance.
2453 */
2454 if (idle == CPU_NOT_IDLE ||
2455 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2456 goto group_next;
2457
2458 /*
2459 * If the local group is idle or completely loaded
2460 * no need to do power savings balance at this domain
2461 */
2462 if (local_group && (this_nr_running >= group_capacity ||
2463 !this_nr_running))
2464 power_savings_balance = 0;
2465
2466 /*
2467 * If a group is already running at full capacity or idle,
2468 * don't include that group in power savings calculations
2469 */
2470 if (!power_savings_balance || sum_nr_running >= group_capacity
2471 || !sum_nr_running)
2472 goto group_next;
2473
2474 /*
2475 * Calculate the group which has the least non-idle load.
2476 * This is the group from where we need to pick up the load
2477 * for saving power
2478 */
2479 if ((sum_nr_running < min_nr_running) ||
2480 (sum_nr_running == min_nr_running &&
2481 first_cpu(group->cpumask) <
2482 first_cpu(group_min->cpumask))) {
2483 group_min = group;
2484 min_nr_running = sum_nr_running;
2485 min_load_per_task = sum_weighted_load /
2486 sum_nr_running;
2487 }
2488
2489 /*
2490 * Calculate the group which is almost near its
2491 * capacity but still has some space to pick up some load
2492 * from other group and save more power
2493 */
2494 if (sum_nr_running <= group_capacity - 1) {
2495 if (sum_nr_running > leader_nr_running ||
2496 (sum_nr_running == leader_nr_running &&
2497 first_cpu(group->cpumask) >
2498 first_cpu(group_leader->cpumask))) {
2499 group_leader = group;
2500 leader_nr_running = sum_nr_running;
2501 }
2502 }
2503 group_next:
2504 #endif
2505 group = group->next;
2506 } while (group != sd->groups);
2507
2508 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2509 goto out_balanced;
2510
2511 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2512
2513 if (this_load >= avg_load ||
2514 100*max_load <= sd->imbalance_pct*this_load)
2515 goto out_balanced;
2516
2517 busiest_load_per_task /= busiest_nr_running;
2518 if (group_imb)
2519 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2520
2521 /*
2522 * We're trying to get all the cpus to the average_load, so we don't
2523 * want to push ourselves above the average load, nor do we wish to
2524 * reduce the max loaded cpu below the average load, as either of these
2525 * actions would just result in more rebalancing later, and ping-pong
2526 * tasks around. Thus we look for the minimum possible imbalance.
2527 * Negative imbalances (*we* are more loaded than anyone else) will
2528 * be counted as no imbalance for these purposes -- we can't fix that
2529 * by pulling tasks to us. Be careful of negative numbers as they'll
2530 * appear as very large values with unsigned longs.
2531 */
2532 if (max_load <= busiest_load_per_task)
2533 goto out_balanced;
2534
2535 /*
2536 * In the presence of smp nice balancing, certain scenarios can have
2537 * max load less than avg load(as we skip the groups at or below
2538 * its cpu_power, while calculating max_load..)
2539 */
2540 if (max_load < avg_load) {
2541 *imbalance = 0;
2542 goto small_imbalance;
2543 }
2544
2545 /* Don't want to pull so many tasks that a group would go idle */
2546 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2547
2548 /* How much load to actually move to equalise the imbalance */
2549 *imbalance = min(max_pull * busiest->__cpu_power,
2550 (avg_load - this_load) * this->__cpu_power)
2551 / SCHED_LOAD_SCALE;
2552
2553 /*
2554 * if *imbalance is less than the average load per runnable task
2555 * there is no gaurantee that any tasks will be moved so we'll have
2556 * a think about bumping its value to force at least one task to be
2557 * moved
2558 */
2559 if (*imbalance < busiest_load_per_task) {
2560 unsigned long tmp, pwr_now, pwr_move;
2561 unsigned int imbn;
2562
2563 small_imbalance:
2564 pwr_move = pwr_now = 0;
2565 imbn = 2;
2566 if (this_nr_running) {
2567 this_load_per_task /= this_nr_running;
2568 if (busiest_load_per_task > this_load_per_task)
2569 imbn = 1;
2570 } else
2571 this_load_per_task = SCHED_LOAD_SCALE;
2572
2573 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2574 busiest_load_per_task * imbn) {
2575 *imbalance = busiest_load_per_task;
2576 return busiest;
2577 }
2578
2579 /*
2580 * OK, we don't have enough imbalance to justify moving tasks,
2581 * however we may be able to increase total CPU power used by
2582 * moving them.
2583 */
2584
2585 pwr_now += busiest->__cpu_power *
2586 min(busiest_load_per_task, max_load);
2587 pwr_now += this->__cpu_power *
2588 min(this_load_per_task, this_load);
2589 pwr_now /= SCHED_LOAD_SCALE;
2590
2591 /* Amount of load we'd subtract */
2592 tmp = sg_div_cpu_power(busiest,
2593 busiest_load_per_task * SCHED_LOAD_SCALE);
2594 if (max_load > tmp)
2595 pwr_move += busiest->__cpu_power *
2596 min(busiest_load_per_task, max_load - tmp);
2597
2598 /* Amount of load we'd add */
2599 if (max_load * busiest->__cpu_power <
2600 busiest_load_per_task * SCHED_LOAD_SCALE)
2601 tmp = sg_div_cpu_power(this,
2602 max_load * busiest->__cpu_power);
2603 else
2604 tmp = sg_div_cpu_power(this,
2605 busiest_load_per_task * SCHED_LOAD_SCALE);
2606 pwr_move += this->__cpu_power *
2607 min(this_load_per_task, this_load + tmp);
2608 pwr_move /= SCHED_LOAD_SCALE;
2609
2610 /* Move if we gain throughput */
2611 if (pwr_move > pwr_now)
2612 *imbalance = busiest_load_per_task;
2613 }
2614
2615 return busiest;
2616
2617 out_balanced:
2618 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2619 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2620 goto ret;
2621
2622 if (this == group_leader && group_leader != group_min) {
2623 *imbalance = min_load_per_task;
2624 return group_min;
2625 }
2626 #endif
2627 ret:
2628 *imbalance = 0;
2629 return NULL;
2630 }
2631
2632 /*
2633 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2634 */
2635 static struct rq *
2636 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2637 unsigned long imbalance, cpumask_t *cpus)
2638 {
2639 struct rq *busiest = NULL, *rq;
2640 unsigned long max_load = 0;
2641 int i;
2642
2643 for_each_cpu_mask(i, group->cpumask) {
2644 unsigned long wl;
2645
2646 if (!cpu_isset(i, *cpus))
2647 continue;
2648
2649 rq = cpu_rq(i);
2650 wl = weighted_cpuload(i);
2651
2652 if (rq->nr_running == 1 && wl > imbalance)
2653 continue;
2654
2655 if (wl > max_load) {
2656 max_load = wl;
2657 busiest = rq;
2658 }
2659 }
2660
2661 return busiest;
2662 }
2663
2664 /*
2665 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2666 * so long as it is large enough.
2667 */
2668 #define MAX_PINNED_INTERVAL 512
2669
2670 /*
2671 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2672 * tasks if there is an imbalance.
2673 */
2674 static int load_balance(int this_cpu, struct rq *this_rq,
2675 struct sched_domain *sd, enum cpu_idle_type idle,
2676 int *balance)
2677 {
2678 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2679 struct sched_group *group;
2680 unsigned long imbalance;
2681 struct rq *busiest;
2682 cpumask_t cpus = CPU_MASK_ALL;
2683 unsigned long flags;
2684
2685 /*
2686 * When power savings policy is enabled for the parent domain, idle
2687 * sibling can pick up load irrespective of busy siblings. In this case,
2688 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2689 * portraying it as CPU_NOT_IDLE.
2690 */
2691 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2692 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2693 sd_idle = 1;
2694
2695 schedstat_inc(sd, lb_count[idle]);
2696
2697 redo:
2698 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2699 &cpus, balance);
2700
2701 if (*balance == 0)
2702 goto out_balanced;
2703
2704 if (!group) {
2705 schedstat_inc(sd, lb_nobusyg[idle]);
2706 goto out_balanced;
2707 }
2708
2709 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2710 if (!busiest) {
2711 schedstat_inc(sd, lb_nobusyq[idle]);
2712 goto out_balanced;
2713 }
2714
2715 BUG_ON(busiest == this_rq);
2716
2717 schedstat_add(sd, lb_imbalance[idle], imbalance);
2718
2719 ld_moved = 0;
2720 if (busiest->nr_running > 1) {
2721 /*
2722 * Attempt to move tasks. If find_busiest_group has found
2723 * an imbalance but busiest->nr_running <= 1, the group is
2724 * still unbalanced. ld_moved simply stays zero, so it is
2725 * correctly treated as an imbalance.
2726 */
2727 local_irq_save(flags);
2728 double_rq_lock(this_rq, busiest);
2729 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2730 imbalance, sd, idle, &all_pinned);
2731 double_rq_unlock(this_rq, busiest);
2732 local_irq_restore(flags);
2733
2734 /*
2735 * some other cpu did the load balance for us.
2736 */
2737 if (ld_moved && this_cpu != smp_processor_id())
2738 resched_cpu(this_cpu);
2739
2740 /* All tasks on this runqueue were pinned by CPU affinity */
2741 if (unlikely(all_pinned)) {
2742 cpu_clear(cpu_of(busiest), cpus);
2743 if (!cpus_empty(cpus))
2744 goto redo;
2745 goto out_balanced;
2746 }
2747 }
2748
2749 if (!ld_moved) {
2750 schedstat_inc(sd, lb_failed[idle]);
2751 sd->nr_balance_failed++;
2752
2753 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2754
2755 spin_lock_irqsave(&busiest->lock, flags);
2756
2757 /* don't kick the migration_thread, if the curr
2758 * task on busiest cpu can't be moved to this_cpu
2759 */
2760 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2761 spin_unlock_irqrestore(&busiest->lock, flags);
2762 all_pinned = 1;
2763 goto out_one_pinned;
2764 }
2765
2766 if (!busiest->active_balance) {
2767 busiest->active_balance = 1;
2768 busiest->push_cpu = this_cpu;
2769 active_balance = 1;
2770 }
2771 spin_unlock_irqrestore(&busiest->lock, flags);
2772 if (active_balance)
2773 wake_up_process(busiest->migration_thread);
2774
2775 /*
2776 * We've kicked active balancing, reset the failure
2777 * counter.
2778 */
2779 sd->nr_balance_failed = sd->cache_nice_tries+1;
2780 }
2781 } else
2782 sd->nr_balance_failed = 0;
2783
2784 if (likely(!active_balance)) {
2785 /* We were unbalanced, so reset the balancing interval */
2786 sd->balance_interval = sd->min_interval;
2787 } else {
2788 /*
2789 * If we've begun active balancing, start to back off. This
2790 * case may not be covered by the all_pinned logic if there
2791 * is only 1 task on the busy runqueue (because we don't call
2792 * move_tasks).
2793 */
2794 if (sd->balance_interval < sd->max_interval)
2795 sd->balance_interval *= 2;
2796 }
2797
2798 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2799 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2800 return -1;
2801 return ld_moved;
2802
2803 out_balanced:
2804 schedstat_inc(sd, lb_balanced[idle]);
2805
2806 sd->nr_balance_failed = 0;
2807
2808 out_one_pinned:
2809 /* tune up the balancing interval */
2810 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2811 (sd->balance_interval < sd->max_interval))
2812 sd->balance_interval *= 2;
2813
2814 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2815 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2816 return -1;
2817 return 0;
2818 }
2819
2820 /*
2821 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2822 * tasks if there is an imbalance.
2823 *
2824 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2825 * this_rq is locked.
2826 */
2827 static int
2828 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2829 {
2830 struct sched_group *group;
2831 struct rq *busiest = NULL;
2832 unsigned long imbalance;
2833 int ld_moved = 0;
2834 int sd_idle = 0;
2835 int all_pinned = 0;
2836 cpumask_t cpus = CPU_MASK_ALL;
2837
2838 /*
2839 * When power savings policy is enabled for the parent domain, idle
2840 * sibling can pick up load irrespective of busy siblings. In this case,
2841 * let the state of idle sibling percolate up as IDLE, instead of
2842 * portraying it as CPU_NOT_IDLE.
2843 */
2844 if (sd->flags & SD_SHARE_CPUPOWER &&
2845 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2846 sd_idle = 1;
2847
2848 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
2849 redo:
2850 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2851 &sd_idle, &cpus, NULL);
2852 if (!group) {
2853 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2854 goto out_balanced;
2855 }
2856
2857 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2858 &cpus);
2859 if (!busiest) {
2860 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2861 goto out_balanced;
2862 }
2863
2864 BUG_ON(busiest == this_rq);
2865
2866 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2867
2868 ld_moved = 0;
2869 if (busiest->nr_running > 1) {
2870 /* Attempt to move tasks */
2871 double_lock_balance(this_rq, busiest);
2872 /* this_rq->clock is already updated */
2873 update_rq_clock(busiest);
2874 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2875 imbalance, sd, CPU_NEWLY_IDLE,
2876 &all_pinned);
2877 spin_unlock(&busiest->lock);
2878
2879 if (unlikely(all_pinned)) {
2880 cpu_clear(cpu_of(busiest), cpus);
2881 if (!cpus_empty(cpus))
2882 goto redo;
2883 }
2884 }
2885
2886 if (!ld_moved) {
2887 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2888 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2889 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2890 return -1;
2891 } else
2892 sd->nr_balance_failed = 0;
2893
2894 return ld_moved;
2895
2896 out_balanced:
2897 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2898 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2899 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2900 return -1;
2901 sd->nr_balance_failed = 0;
2902
2903 return 0;
2904 }
2905
2906 /*
2907 * idle_balance is called by schedule() if this_cpu is about to become
2908 * idle. Attempts to pull tasks from other CPUs.
2909 */
2910 static void idle_balance(int this_cpu, struct rq *this_rq)
2911 {
2912 struct sched_domain *sd;
2913 int pulled_task = -1;
2914 unsigned long next_balance = jiffies + HZ;
2915
2916 for_each_domain(this_cpu, sd) {
2917 unsigned long interval;
2918
2919 if (!(sd->flags & SD_LOAD_BALANCE))
2920 continue;
2921
2922 if (sd->flags & SD_BALANCE_NEWIDLE)
2923 /* If we've pulled tasks over stop searching: */
2924 pulled_task = load_balance_newidle(this_cpu,
2925 this_rq, sd);
2926
2927 interval = msecs_to_jiffies(sd->balance_interval);
2928 if (time_after(next_balance, sd->last_balance + interval))
2929 next_balance = sd->last_balance + interval;
2930 if (pulled_task)
2931 break;
2932 }
2933 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2934 /*
2935 * We are going idle. next_balance may be set based on
2936 * a busy processor. So reset next_balance.
2937 */
2938 this_rq->next_balance = next_balance;
2939 }
2940 }
2941
2942 /*
2943 * active_load_balance is run by migration threads. It pushes running tasks
2944 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2945 * running on each physical CPU where possible, and avoids physical /
2946 * logical imbalances.
2947 *
2948 * Called with busiest_rq locked.
2949 */
2950 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2951 {
2952 int target_cpu = busiest_rq->push_cpu;
2953 struct sched_domain *sd;
2954 struct rq *target_rq;
2955
2956 /* Is there any task to move? */
2957 if (busiest_rq->nr_running <= 1)
2958 return;
2959
2960 target_rq = cpu_rq(target_cpu);
2961
2962 /*
2963 * This condition is "impossible", if it occurs
2964 * we need to fix it. Originally reported by
2965 * Bjorn Helgaas on a 128-cpu setup.
2966 */
2967 BUG_ON(busiest_rq == target_rq);
2968
2969 /* move a task from busiest_rq to target_rq */
2970 double_lock_balance(busiest_rq, target_rq);
2971 update_rq_clock(busiest_rq);
2972 update_rq_clock(target_rq);
2973
2974 /* Search for an sd spanning us and the target CPU. */
2975 for_each_domain(target_cpu, sd) {
2976 if ((sd->flags & SD_LOAD_BALANCE) &&
2977 cpu_isset(busiest_cpu, sd->span))
2978 break;
2979 }
2980
2981 if (likely(sd)) {
2982 schedstat_inc(sd, alb_count);
2983
2984 if (move_one_task(target_rq, target_cpu, busiest_rq,
2985 sd, CPU_IDLE))
2986 schedstat_inc(sd, alb_pushed);
2987 else
2988 schedstat_inc(sd, alb_failed);
2989 }
2990 spin_unlock(&target_rq->lock);
2991 }
2992
2993 #ifdef CONFIG_NO_HZ
2994 static struct {
2995 atomic_t load_balancer;
2996 cpumask_t cpu_mask;
2997 } nohz ____cacheline_aligned = {
2998 .load_balancer = ATOMIC_INIT(-1),
2999 .cpu_mask = CPU_MASK_NONE,
3000 };
3001
3002 /*
3003 * This routine will try to nominate the ilb (idle load balancing)
3004 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3005 * load balancing on behalf of all those cpus. If all the cpus in the system
3006 * go into this tickless mode, then there will be no ilb owner (as there is
3007 * no need for one) and all the cpus will sleep till the next wakeup event
3008 * arrives...
3009 *
3010 * For the ilb owner, tick is not stopped. And this tick will be used
3011 * for idle load balancing. ilb owner will still be part of
3012 * nohz.cpu_mask..
3013 *
3014 * While stopping the tick, this cpu will become the ilb owner if there
3015 * is no other owner. And will be the owner till that cpu becomes busy
3016 * or if all cpus in the system stop their ticks at which point
3017 * there is no need for ilb owner.
3018 *
3019 * When the ilb owner becomes busy, it nominates another owner, during the
3020 * next busy scheduler_tick()
3021 */
3022 int select_nohz_load_balancer(int stop_tick)
3023 {
3024 int cpu = smp_processor_id();
3025
3026 if (stop_tick) {
3027 cpu_set(cpu, nohz.cpu_mask);
3028 cpu_rq(cpu)->in_nohz_recently = 1;
3029
3030 /*
3031 * If we are going offline and still the leader, give up!
3032 */
3033 if (cpu_is_offline(cpu) &&
3034 atomic_read(&nohz.load_balancer) == cpu) {
3035 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3036 BUG();
3037 return 0;
3038 }
3039
3040 /* time for ilb owner also to sleep */
3041 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3042 if (atomic_read(&nohz.load_balancer) == cpu)
3043 atomic_set(&nohz.load_balancer, -1);
3044 return 0;
3045 }
3046
3047 if (atomic_read(&nohz.load_balancer) == -1) {
3048 /* make me the ilb owner */
3049 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3050 return 1;
3051 } else if (atomic_read(&nohz.load_balancer) == cpu)
3052 return 1;
3053 } else {
3054 if (!cpu_isset(cpu, nohz.cpu_mask))
3055 return 0;
3056
3057 cpu_clear(cpu, nohz.cpu_mask);
3058
3059 if (atomic_read(&nohz.load_balancer) == cpu)
3060 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3061 BUG();
3062 }
3063 return 0;
3064 }
3065 #endif
3066
3067 static DEFINE_SPINLOCK(balancing);
3068
3069 /*
3070 * It checks each scheduling domain to see if it is due to be balanced,
3071 * and initiates a balancing operation if so.
3072 *
3073 * Balancing parameters are set up in arch_init_sched_domains.
3074 */
3075 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3076 {
3077 int balance = 1;
3078 struct rq *rq = cpu_rq(cpu);
3079 unsigned long interval;
3080 struct sched_domain *sd;
3081 /* Earliest time when we have to do rebalance again */
3082 unsigned long next_balance = jiffies + 60*HZ;
3083 int update_next_balance = 0;
3084
3085 for_each_domain(cpu, sd) {
3086 if (!(sd->flags & SD_LOAD_BALANCE))
3087 continue;
3088
3089 interval = sd->balance_interval;
3090 if (idle != CPU_IDLE)
3091 interval *= sd->busy_factor;
3092
3093 /* scale ms to jiffies */
3094 interval = msecs_to_jiffies(interval);
3095 if (unlikely(!interval))
3096 interval = 1;
3097 if (interval > HZ*NR_CPUS/10)
3098 interval = HZ*NR_CPUS/10;
3099
3100
3101 if (sd->flags & SD_SERIALIZE) {
3102 if (!spin_trylock(&balancing))
3103 goto out;
3104 }
3105
3106 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3107 if (load_balance(cpu, rq, sd, idle, &balance)) {
3108 /*
3109 * We've pulled tasks over so either we're no
3110 * longer idle, or one of our SMT siblings is
3111 * not idle.
3112 */
3113 idle = CPU_NOT_IDLE;
3114 }
3115 sd->last_balance = jiffies;
3116 }
3117 if (sd->flags & SD_SERIALIZE)
3118 spin_unlock(&balancing);
3119 out:
3120 if (time_after(next_balance, sd->last_balance + interval)) {
3121 next_balance = sd->last_balance + interval;
3122 update_next_balance = 1;
3123 }
3124
3125 /*
3126 * Stop the load balance at this level. There is another
3127 * CPU in our sched group which is doing load balancing more
3128 * actively.
3129 */
3130 if (!balance)
3131 break;
3132 }
3133
3134 /*
3135 * next_balance will be updated only when there is a need.
3136 * When the cpu is attached to null domain for ex, it will not be
3137 * updated.
3138 */
3139 if (likely(update_next_balance))
3140 rq->next_balance = next_balance;
3141 }
3142
3143 /*
3144 * run_rebalance_domains is triggered when needed from the scheduler tick.
3145 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3146 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3147 */
3148 static void run_rebalance_domains(struct softirq_action *h)
3149 {
3150 int this_cpu = smp_processor_id();
3151 struct rq *this_rq = cpu_rq(this_cpu);
3152 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3153 CPU_IDLE : CPU_NOT_IDLE;
3154
3155 rebalance_domains(this_cpu, idle);
3156
3157 #ifdef CONFIG_NO_HZ
3158 /*
3159 * If this cpu is the owner for idle load balancing, then do the
3160 * balancing on behalf of the other idle cpus whose ticks are
3161 * stopped.
3162 */
3163 if (this_rq->idle_at_tick &&
3164 atomic_read(&nohz.load_balancer) == this_cpu) {
3165 cpumask_t cpus = nohz.cpu_mask;
3166 struct rq *rq;
3167 int balance_cpu;
3168
3169 cpu_clear(this_cpu, cpus);
3170 for_each_cpu_mask(balance_cpu, cpus) {
3171 /*
3172 * If this cpu gets work to do, stop the load balancing
3173 * work being done for other cpus. Next load
3174 * balancing owner will pick it up.
3175 */
3176 if (need_resched())
3177 break;
3178
3179 rebalance_domains(balance_cpu, CPU_IDLE);
3180
3181 rq = cpu_rq(balance_cpu);
3182 if (time_after(this_rq->next_balance, rq->next_balance))
3183 this_rq->next_balance = rq->next_balance;
3184 }
3185 }
3186 #endif
3187 }
3188
3189 /*
3190 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3191 *
3192 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3193 * idle load balancing owner or decide to stop the periodic load balancing,
3194 * if the whole system is idle.
3195 */
3196 static inline void trigger_load_balance(struct rq *rq, int cpu)
3197 {
3198 #ifdef CONFIG_NO_HZ
3199 /*
3200 * If we were in the nohz mode recently and busy at the current
3201 * scheduler tick, then check if we need to nominate new idle
3202 * load balancer.
3203 */
3204 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3205 rq->in_nohz_recently = 0;
3206
3207 if (atomic_read(&nohz.load_balancer) == cpu) {
3208 cpu_clear(cpu, nohz.cpu_mask);
3209 atomic_set(&nohz.load_balancer, -1);
3210 }
3211
3212 if (atomic_read(&nohz.load_balancer) == -1) {
3213 /*
3214 * simple selection for now: Nominate the
3215 * first cpu in the nohz list to be the next
3216 * ilb owner.
3217 *
3218 * TBD: Traverse the sched domains and nominate
3219 * the nearest cpu in the nohz.cpu_mask.
3220 */
3221 int ilb = first_cpu(nohz.cpu_mask);
3222
3223 if (ilb != NR_CPUS)
3224 resched_cpu(ilb);
3225 }
3226 }
3227
3228 /*
3229 * If this cpu is idle and doing idle load balancing for all the
3230 * cpus with ticks stopped, is it time for that to stop?
3231 */
3232 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3233 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3234 resched_cpu(cpu);
3235 return;
3236 }
3237
3238 /*
3239 * If this cpu is idle and the idle load balancing is done by
3240 * someone else, then no need raise the SCHED_SOFTIRQ
3241 */
3242 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3243 cpu_isset(cpu, nohz.cpu_mask))
3244 return;
3245 #endif
3246 if (time_after_eq(jiffies, rq->next_balance))
3247 raise_softirq(SCHED_SOFTIRQ);
3248 }
3249
3250 #else /* CONFIG_SMP */
3251
3252 /*
3253 * on UP we do not need to balance between CPUs:
3254 */
3255 static inline void idle_balance(int cpu, struct rq *rq)
3256 {
3257 }
3258
3259 /* Avoid "used but not defined" warning on UP */
3260 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3261 unsigned long max_nr_move, unsigned long max_load_move,
3262 struct sched_domain *sd, enum cpu_idle_type idle,
3263 int *all_pinned, unsigned long *load_moved,
3264 int *this_best_prio, struct rq_iterator *iterator)
3265 {
3266 *load_moved = 0;
3267
3268 return 0;
3269 }
3270
3271 #endif
3272
3273 DEFINE_PER_CPU(struct kernel_stat, kstat);
3274
3275 EXPORT_PER_CPU_SYMBOL(kstat);
3276
3277 /*
3278 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3279 * that have not yet been banked in case the task is currently running.
3280 */
3281 unsigned long long task_sched_runtime(struct task_struct *p)
3282 {
3283 unsigned long flags;
3284 u64 ns, delta_exec;
3285 struct rq *rq;
3286
3287 rq = task_rq_lock(p, &flags);
3288 ns = p->se.sum_exec_runtime;
3289 if (rq->curr == p) {
3290 update_rq_clock(rq);
3291 delta_exec = rq->clock - p->se.exec_start;
3292 if ((s64)delta_exec > 0)
3293 ns += delta_exec;
3294 }
3295 task_rq_unlock(rq, &flags);
3296
3297 return ns;
3298 }
3299
3300 /*
3301 * Account user cpu time to a process.
3302 * @p: the process that the cpu time gets accounted to
3303 * @hardirq_offset: the offset to subtract from hardirq_count()
3304 * @cputime: the cpu time spent in user space since the last update
3305 */
3306 void account_user_time(struct task_struct *p, cputime_t cputime)
3307 {
3308 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3309 cputime64_t tmp;
3310
3311 p->utime = cputime_add(p->utime, cputime);
3312
3313 /* Add user time to cpustat. */
3314 tmp = cputime_to_cputime64(cputime);
3315 if (TASK_NICE(p) > 0)
3316 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3317 else
3318 cpustat->user = cputime64_add(cpustat->user, tmp);
3319 }
3320
3321 /*
3322 * Account guest cpu time to a process.
3323 * @p: the process that the cpu time gets accounted to
3324 * @cputime: the cpu time spent in virtual machine since the last update
3325 */
3326 void account_guest_time(struct task_struct *p, cputime_t cputime)
3327 {
3328 cputime64_t tmp;
3329 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3330
3331 tmp = cputime_to_cputime64(cputime);
3332
3333 p->utime = cputime_add(p->utime, cputime);
3334 p->gtime = cputime_add(p->gtime, cputime);
3335
3336 cpustat->user = cputime64_add(cpustat->user, tmp);
3337 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3338 }
3339
3340 /*
3341 * Account system cpu time to a process.
3342 * @p: the process that the cpu time gets accounted to
3343 * @hardirq_offset: the offset to subtract from hardirq_count()
3344 * @cputime: the cpu time spent in kernel space since the last update
3345 */
3346 void account_system_time(struct task_struct *p, int hardirq_offset,
3347 cputime_t cputime)
3348 {
3349 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3350 struct rq *rq = this_rq();
3351 cputime64_t tmp;
3352
3353 if (p->flags & PF_VCPU) {
3354 account_guest_time(p, cputime);
3355 p->flags &= ~PF_VCPU;
3356 return;
3357 }
3358
3359 p->stime = cputime_add(p->stime, cputime);
3360
3361 /* Add system time to cpustat. */
3362 tmp = cputime_to_cputime64(cputime);
3363 if (hardirq_count() - hardirq_offset)
3364 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3365 else if (softirq_count())
3366 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3367 else if (p != rq->idle)
3368 cpustat->system = cputime64_add(cpustat->system, tmp);
3369 else if (atomic_read(&rq->nr_iowait) > 0)
3370 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3371 else
3372 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3373 /* Account for system time used */
3374 acct_update_integrals(p);
3375 }
3376
3377 /*
3378 * Account for involuntary wait time.
3379 * @p: the process from which the cpu time has been stolen
3380 * @steal: the cpu time spent in involuntary wait
3381 */
3382 void account_steal_time(struct task_struct *p, cputime_t steal)
3383 {
3384 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3385 cputime64_t tmp = cputime_to_cputime64(steal);
3386 struct rq *rq = this_rq();
3387
3388 if (p == rq->idle) {
3389 p->stime = cputime_add(p->stime, steal);
3390 if (atomic_read(&rq->nr_iowait) > 0)
3391 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3392 else
3393 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3394 } else
3395 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3396 }
3397
3398 /*
3399 * This function gets called by the timer code, with HZ frequency.
3400 * We call it with interrupts disabled.
3401 *
3402 * It also gets called by the fork code, when changing the parent's
3403 * timeslices.
3404 */
3405 void scheduler_tick(void)
3406 {
3407 int cpu = smp_processor_id();
3408 struct rq *rq = cpu_rq(cpu);
3409 struct task_struct *curr = rq->curr;
3410 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3411
3412 spin_lock(&rq->lock);
3413 __update_rq_clock(rq);
3414 /*
3415 * Let rq->clock advance by at least TICK_NSEC:
3416 */
3417 if (unlikely(rq->clock < next_tick))
3418 rq->clock = next_tick;
3419 rq->tick_timestamp = rq->clock;
3420 update_cpu_load(rq);
3421 if (curr != rq->idle) /* FIXME: needed? */
3422 curr->sched_class->task_tick(rq, curr);
3423 spin_unlock(&rq->lock);
3424
3425 #ifdef CONFIG_SMP
3426 rq->idle_at_tick = idle_cpu(cpu);
3427 trigger_load_balance(rq, cpu);
3428 #endif
3429 }
3430
3431 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3432
3433 void fastcall add_preempt_count(int val)
3434 {
3435 /*
3436 * Underflow?
3437 */
3438 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3439 return;
3440 preempt_count() += val;
3441 /*
3442 * Spinlock count overflowing soon?
3443 */
3444 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3445 PREEMPT_MASK - 10);
3446 }
3447 EXPORT_SYMBOL(add_preempt_count);
3448
3449 void fastcall sub_preempt_count(int val)
3450 {
3451 /*
3452 * Underflow?
3453 */
3454 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3455 return;
3456 /*
3457 * Is the spinlock portion underflowing?
3458 */
3459 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3460 !(preempt_count() & PREEMPT_MASK)))
3461 return;
3462
3463 preempt_count() -= val;
3464 }
3465 EXPORT_SYMBOL(sub_preempt_count);
3466
3467 #endif
3468
3469 /*
3470 * Print scheduling while atomic bug:
3471 */
3472 static noinline void __schedule_bug(struct task_struct *prev)
3473 {
3474 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3475 prev->comm, preempt_count(), prev->pid);
3476 debug_show_held_locks(prev);
3477 if (irqs_disabled())
3478 print_irqtrace_events(prev);
3479 dump_stack();
3480 }
3481
3482 /*
3483 * Various schedule()-time debugging checks and statistics:
3484 */
3485 static inline void schedule_debug(struct task_struct *prev)
3486 {
3487 /*
3488 * Test if we are atomic. Since do_exit() needs to call into
3489 * schedule() atomically, we ignore that path for now.
3490 * Otherwise, whine if we are scheduling when we should not be.
3491 */
3492 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3493 __schedule_bug(prev);
3494
3495 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3496
3497 schedstat_inc(this_rq(), sched_count);
3498 #ifdef CONFIG_SCHEDSTATS
3499 if (unlikely(prev->lock_depth >= 0)) {
3500 schedstat_inc(this_rq(), bkl_count);
3501 schedstat_inc(prev, sched_info.bkl_count);
3502 }
3503 #endif
3504 }
3505
3506 /*
3507 * Pick up the highest-prio task:
3508 */
3509 static inline struct task_struct *
3510 pick_next_task(struct rq *rq, struct task_struct *prev)
3511 {
3512 const struct sched_class *class;
3513 struct task_struct *p;
3514
3515 /*
3516 * Optimization: we know that if all tasks are in
3517 * the fair class we can call that function directly:
3518 */
3519 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3520 p = fair_sched_class.pick_next_task(rq);
3521 if (likely(p))
3522 return p;
3523 }
3524
3525 class = sched_class_highest;
3526 for ( ; ; ) {
3527 p = class->pick_next_task(rq);
3528 if (p)
3529 return p;
3530 /*
3531 * Will never be NULL as the idle class always
3532 * returns a non-NULL p:
3533 */
3534 class = class->next;
3535 }
3536 }
3537
3538 /*
3539 * schedule() is the main scheduler function.
3540 */
3541 asmlinkage void __sched schedule(void)
3542 {
3543 struct task_struct *prev, *next;
3544 long *switch_count;
3545 struct rq *rq;
3546 int cpu;
3547
3548 need_resched:
3549 preempt_disable();
3550 cpu = smp_processor_id();
3551 rq = cpu_rq(cpu);
3552 rcu_qsctr_inc(cpu);
3553 prev = rq->curr;
3554 switch_count = &prev->nivcsw;
3555
3556 release_kernel_lock(prev);
3557 need_resched_nonpreemptible:
3558
3559 schedule_debug(prev);
3560
3561 /*
3562 * Do the rq-clock update outside the rq lock:
3563 */
3564 local_irq_disable();
3565 __update_rq_clock(rq);
3566 spin_lock(&rq->lock);
3567 clear_tsk_need_resched(prev);
3568
3569 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3570 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3571 unlikely(signal_pending(prev)))) {
3572 prev->state = TASK_RUNNING;
3573 } else {
3574 deactivate_task(rq, prev, 1);
3575 }
3576 switch_count = &prev->nvcsw;
3577 }
3578
3579 if (unlikely(!rq->nr_running))
3580 idle_balance(cpu, rq);
3581
3582 prev->sched_class->put_prev_task(rq, prev);
3583 next = pick_next_task(rq, prev);
3584
3585 sched_info_switch(prev, next);
3586
3587 if (likely(prev != next)) {
3588 rq->nr_switches++;
3589 rq->curr = next;
3590 ++*switch_count;
3591
3592 context_switch(rq, prev, next); /* unlocks the rq */
3593 } else
3594 spin_unlock_irq(&rq->lock);
3595
3596 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3597 cpu = smp_processor_id();
3598 rq = cpu_rq(cpu);
3599 goto need_resched_nonpreemptible;
3600 }
3601 preempt_enable_no_resched();
3602 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3603 goto need_resched;
3604 }
3605 EXPORT_SYMBOL(schedule);
3606
3607 #ifdef CONFIG_PREEMPT
3608 /*
3609 * this is the entry point to schedule() from in-kernel preemption
3610 * off of preempt_enable. Kernel preemptions off return from interrupt
3611 * occur there and call schedule directly.
3612 */
3613 asmlinkage void __sched preempt_schedule(void)
3614 {
3615 struct thread_info *ti = current_thread_info();
3616 #ifdef CONFIG_PREEMPT_BKL
3617 struct task_struct *task = current;
3618 int saved_lock_depth;
3619 #endif
3620 /*
3621 * If there is a non-zero preempt_count or interrupts are disabled,
3622 * we do not want to preempt the current task. Just return..
3623 */
3624 if (likely(ti->preempt_count || irqs_disabled()))
3625 return;
3626
3627 do {
3628 add_preempt_count(PREEMPT_ACTIVE);
3629
3630 /*
3631 * We keep the big kernel semaphore locked, but we
3632 * clear ->lock_depth so that schedule() doesnt
3633 * auto-release the semaphore:
3634 */
3635 #ifdef CONFIG_PREEMPT_BKL
3636 saved_lock_depth = task->lock_depth;
3637 task->lock_depth = -1;
3638 #endif
3639 schedule();
3640 #ifdef CONFIG_PREEMPT_BKL
3641 task->lock_depth = saved_lock_depth;
3642 #endif
3643 sub_preempt_count(PREEMPT_ACTIVE);
3644
3645 /*
3646 * Check again in case we missed a preemption opportunity
3647 * between schedule and now.
3648 */
3649 barrier();
3650 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3651 }
3652 EXPORT_SYMBOL(preempt_schedule);
3653
3654 /*
3655 * this is the entry point to schedule() from kernel preemption
3656 * off of irq context.
3657 * Note, that this is called and return with irqs disabled. This will
3658 * protect us against recursive calling from irq.
3659 */
3660 asmlinkage void __sched preempt_schedule_irq(void)
3661 {
3662 struct thread_info *ti = current_thread_info();
3663 #ifdef CONFIG_PREEMPT_BKL
3664 struct task_struct *task = current;
3665 int saved_lock_depth;
3666 #endif
3667 /* Catch callers which need to be fixed */
3668 BUG_ON(ti->preempt_count || !irqs_disabled());
3669
3670 do {
3671 add_preempt_count(PREEMPT_ACTIVE);
3672
3673 /*
3674 * We keep the big kernel semaphore locked, but we
3675 * clear ->lock_depth so that schedule() doesnt
3676 * auto-release the semaphore:
3677 */
3678 #ifdef CONFIG_PREEMPT_BKL
3679 saved_lock_depth = task->lock_depth;
3680 task->lock_depth = -1;
3681 #endif
3682 local_irq_enable();
3683 schedule();
3684 local_irq_disable();
3685 #ifdef CONFIG_PREEMPT_BKL
3686 task->lock_depth = saved_lock_depth;
3687 #endif
3688 sub_preempt_count(PREEMPT_ACTIVE);
3689
3690 /*
3691 * Check again in case we missed a preemption opportunity
3692 * between schedule and now.
3693 */
3694 barrier();
3695 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
3696 }
3697
3698 #endif /* CONFIG_PREEMPT */
3699
3700 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3701 void *key)
3702 {
3703 return try_to_wake_up(curr->private, mode, sync);
3704 }
3705 EXPORT_SYMBOL(default_wake_function);
3706
3707 /*
3708 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3709 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3710 * number) then we wake all the non-exclusive tasks and one exclusive task.
3711 *
3712 * There are circumstances in which we can try to wake a task which has already
3713 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3714 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3715 */
3716 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3717 int nr_exclusive, int sync, void *key)
3718 {
3719 wait_queue_t *curr, *next;
3720
3721 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3722 unsigned flags = curr->flags;
3723
3724 if (curr->func(curr, mode, sync, key) &&
3725 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3726 break;
3727 }
3728 }
3729
3730 /**
3731 * __wake_up - wake up threads blocked on a waitqueue.
3732 * @q: the waitqueue
3733 * @mode: which threads
3734 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3735 * @key: is directly passed to the wakeup function
3736 */
3737 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3738 int nr_exclusive, void *key)
3739 {
3740 unsigned long flags;
3741
3742 spin_lock_irqsave(&q->lock, flags);
3743 __wake_up_common(q, mode, nr_exclusive, 0, key);
3744 spin_unlock_irqrestore(&q->lock, flags);
3745 }
3746 EXPORT_SYMBOL(__wake_up);
3747
3748 /*
3749 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3750 */
3751 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3752 {
3753 __wake_up_common(q, mode, 1, 0, NULL);
3754 }
3755
3756 /**
3757 * __wake_up_sync - wake up threads blocked on a waitqueue.
3758 * @q: the waitqueue
3759 * @mode: which threads
3760 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3761 *
3762 * The sync wakeup differs that the waker knows that it will schedule
3763 * away soon, so while the target thread will be woken up, it will not
3764 * be migrated to another CPU - ie. the two threads are 'synchronized'
3765 * with each other. This can prevent needless bouncing between CPUs.
3766 *
3767 * On UP it can prevent extra preemption.
3768 */
3769 void fastcall
3770 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3771 {
3772 unsigned long flags;
3773 int sync = 1;
3774
3775 if (unlikely(!q))
3776 return;
3777
3778 if (unlikely(!nr_exclusive))
3779 sync = 0;
3780
3781 spin_lock_irqsave(&q->lock, flags);
3782 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3783 spin_unlock_irqrestore(&q->lock, flags);
3784 }
3785 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3786
3787 void fastcall complete(struct completion *x)
3788 {
3789 unsigned long flags;
3790
3791 spin_lock_irqsave(&x->wait.lock, flags);
3792 x->done++;
3793 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3794 1, 0, NULL);
3795 spin_unlock_irqrestore(&x->wait.lock, flags);
3796 }
3797 EXPORT_SYMBOL(complete);
3798
3799 void fastcall complete_all(struct completion *x)
3800 {
3801 unsigned long flags;
3802
3803 spin_lock_irqsave(&x->wait.lock, flags);
3804 x->done += UINT_MAX/2;
3805 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3806 0, 0, NULL);
3807 spin_unlock_irqrestore(&x->wait.lock, flags);
3808 }
3809 EXPORT_SYMBOL(complete_all);
3810
3811 static inline long __sched
3812 do_wait_for_common(struct completion *x, long timeout, int state)
3813 {
3814 if (!x->done) {
3815 DECLARE_WAITQUEUE(wait, current);
3816
3817 wait.flags |= WQ_FLAG_EXCLUSIVE;
3818 __add_wait_queue_tail(&x->wait, &wait);
3819 do {
3820 if (state == TASK_INTERRUPTIBLE &&
3821 signal_pending(current)) {
3822 __remove_wait_queue(&x->wait, &wait);
3823 return -ERESTARTSYS;
3824 }
3825 __set_current_state(state);
3826 spin_unlock_irq(&x->wait.lock);
3827 timeout = schedule_timeout(timeout);
3828 spin_lock_irq(&x->wait.lock);
3829 if (!timeout) {
3830 __remove_wait_queue(&x->wait, &wait);
3831 return timeout;
3832 }
3833 } while (!x->done);
3834 __remove_wait_queue(&x->wait, &wait);
3835 }
3836 x->done--;
3837 return timeout;
3838 }
3839
3840 static long __sched
3841 wait_for_common(struct completion *x, long timeout, int state)
3842 {
3843 might_sleep();
3844
3845 spin_lock_irq(&x->wait.lock);
3846 timeout = do_wait_for_common(x, timeout, state);
3847 spin_unlock_irq(&x->wait.lock);
3848 return timeout;
3849 }
3850
3851 void fastcall __sched wait_for_completion(struct completion *x)
3852 {
3853 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3854 }
3855 EXPORT_SYMBOL(wait_for_completion);
3856
3857 unsigned long fastcall __sched
3858 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3859 {
3860 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
3861 }
3862 EXPORT_SYMBOL(wait_for_completion_timeout);
3863
3864 int __sched wait_for_completion_interruptible(struct completion *x)
3865 {
3866 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3867 if (t == -ERESTARTSYS)
3868 return t;
3869 return 0;
3870 }
3871 EXPORT_SYMBOL(wait_for_completion_interruptible);
3872
3873 unsigned long fastcall __sched
3874 wait_for_completion_interruptible_timeout(struct completion *x,
3875 unsigned long timeout)
3876 {
3877 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
3878 }
3879 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3880
3881 static long __sched
3882 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
3883 {
3884 unsigned long flags;
3885 wait_queue_t wait;
3886
3887 init_waitqueue_entry(&wait, current);
3888
3889 __set_current_state(state);
3890
3891 spin_lock_irqsave(&q->lock, flags);
3892 __add_wait_queue(q, &wait);
3893 spin_unlock(&q->lock);
3894 timeout = schedule_timeout(timeout);
3895 spin_lock_irq(&q->lock);
3896 __remove_wait_queue(q, &wait);
3897 spin_unlock_irqrestore(&q->lock, flags);
3898
3899 return timeout;
3900 }
3901
3902 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3903 {
3904 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3905 }
3906 EXPORT_SYMBOL(interruptible_sleep_on);
3907
3908 long __sched
3909 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3910 {
3911 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
3912 }
3913 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3914
3915 void __sched sleep_on(wait_queue_head_t *q)
3916 {
3917 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
3918 }
3919 EXPORT_SYMBOL(sleep_on);
3920
3921 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3922 {
3923 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
3924 }
3925 EXPORT_SYMBOL(sleep_on_timeout);
3926
3927 #ifdef CONFIG_RT_MUTEXES
3928
3929 /*
3930 * rt_mutex_setprio - set the current priority of a task
3931 * @p: task
3932 * @prio: prio value (kernel-internal form)
3933 *
3934 * This function changes the 'effective' priority of a task. It does
3935 * not touch ->normal_prio like __setscheduler().
3936 *
3937 * Used by the rt_mutex code to implement priority inheritance logic.
3938 */
3939 void rt_mutex_setprio(struct task_struct *p, int prio)
3940 {
3941 unsigned long flags;
3942 int oldprio, on_rq, running;
3943 struct rq *rq;
3944
3945 BUG_ON(prio < 0 || prio > MAX_PRIO);
3946
3947 rq = task_rq_lock(p, &flags);
3948 update_rq_clock(rq);
3949
3950 oldprio = p->prio;
3951 on_rq = p->se.on_rq;
3952 running = task_running(rq, p);
3953 if (on_rq) {
3954 dequeue_task(rq, p, 0);
3955 if (running)
3956 p->sched_class->put_prev_task(rq, p);
3957 }
3958
3959 if (rt_prio(prio))
3960 p->sched_class = &rt_sched_class;
3961 else
3962 p->sched_class = &fair_sched_class;
3963
3964 p->prio = prio;
3965
3966 if (on_rq) {
3967 if (running)
3968 p->sched_class->set_curr_task(rq);
3969 enqueue_task(rq, p, 0);
3970 /*
3971 * Reschedule if we are currently running on this runqueue and
3972 * our priority decreased, or if we are not currently running on
3973 * this runqueue and our priority is higher than the current's
3974 */
3975 if (running) {
3976 if (p->prio > oldprio)
3977 resched_task(rq->curr);
3978 } else {
3979 check_preempt_curr(rq, p);
3980 }
3981 }
3982 task_rq_unlock(rq, &flags);
3983 }
3984
3985 #endif
3986
3987 void set_user_nice(struct task_struct *p, long nice)
3988 {
3989 int old_prio, delta, on_rq;
3990 unsigned long flags;
3991 struct rq *rq;
3992
3993 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3994 return;
3995 /*
3996 * We have to be careful, if called from sys_setpriority(),
3997 * the task might be in the middle of scheduling on another CPU.
3998 */
3999 rq = task_rq_lock(p, &flags);
4000 update_rq_clock(rq);
4001 /*
4002 * The RT priorities are set via sched_setscheduler(), but we still
4003 * allow the 'normal' nice value to be set - but as expected
4004 * it wont have any effect on scheduling until the task is
4005 * SCHED_FIFO/SCHED_RR:
4006 */
4007 if (task_has_rt_policy(p)) {
4008 p->static_prio = NICE_TO_PRIO(nice);
4009 goto out_unlock;
4010 }
4011 on_rq = p->se.on_rq;
4012 if (on_rq) {
4013 dequeue_task(rq, p, 0);
4014 dec_load(rq, p);
4015 }
4016
4017 p->static_prio = NICE_TO_PRIO(nice);
4018 set_load_weight(p);
4019 old_prio = p->prio;
4020 p->prio = effective_prio(p);
4021 delta = p->prio - old_prio;
4022
4023 if (on_rq) {
4024 enqueue_task(rq, p, 0);
4025 inc_load(rq, p);
4026 /*
4027 * If the task increased its priority or is running and
4028 * lowered its priority, then reschedule its CPU:
4029 */
4030 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4031 resched_task(rq->curr);
4032 }
4033 out_unlock:
4034 task_rq_unlock(rq, &flags);
4035 }
4036 EXPORT_SYMBOL(set_user_nice);
4037
4038 /*
4039 * can_nice - check if a task can reduce its nice value
4040 * @p: task
4041 * @nice: nice value
4042 */
4043 int can_nice(const struct task_struct *p, const int nice)
4044 {
4045 /* convert nice value [19,-20] to rlimit style value [1,40] */
4046 int nice_rlim = 20 - nice;
4047
4048 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4049 capable(CAP_SYS_NICE));
4050 }
4051
4052 #ifdef __ARCH_WANT_SYS_NICE
4053
4054 /*
4055 * sys_nice - change the priority of the current process.
4056 * @increment: priority increment
4057 *
4058 * sys_setpriority is a more generic, but much slower function that
4059 * does similar things.
4060 */
4061 asmlinkage long sys_nice(int increment)
4062 {
4063 long nice, retval;
4064
4065 /*
4066 * Setpriority might change our priority at the same moment.
4067 * We don't have to worry. Conceptually one call occurs first
4068 * and we have a single winner.
4069 */
4070 if (increment < -40)
4071 increment = -40;
4072 if (increment > 40)
4073 increment = 40;
4074
4075 nice = PRIO_TO_NICE(current->static_prio) + increment;
4076 if (nice < -20)
4077 nice = -20;
4078 if (nice > 19)
4079 nice = 19;
4080
4081 if (increment < 0 && !can_nice(current, nice))
4082 return -EPERM;
4083
4084 retval = security_task_setnice(current, nice);
4085 if (retval)
4086 return retval;
4087
4088 set_user_nice(current, nice);
4089 return 0;
4090 }
4091
4092 #endif
4093
4094 /**
4095 * task_prio - return the priority value of a given task.
4096 * @p: the task in question.
4097 *
4098 * This is the priority value as seen by users in /proc.
4099 * RT tasks are offset by -200. Normal tasks are centered
4100 * around 0, value goes from -16 to +15.
4101 */
4102 int task_prio(const struct task_struct *p)
4103 {
4104 return p->prio - MAX_RT_PRIO;
4105 }
4106
4107 /**
4108 * task_nice - return the nice value of a given task.
4109 * @p: the task in question.
4110 */
4111 int task_nice(const struct task_struct *p)
4112 {
4113 return TASK_NICE(p);
4114 }
4115 EXPORT_SYMBOL_GPL(task_nice);
4116
4117 /**
4118 * idle_cpu - is a given cpu idle currently?
4119 * @cpu: the processor in question.
4120 */
4121 int idle_cpu(int cpu)
4122 {
4123 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4124 }
4125
4126 /**
4127 * idle_task - return the idle task for a given cpu.
4128 * @cpu: the processor in question.
4129 */
4130 struct task_struct *idle_task(int cpu)
4131 {
4132 return cpu_rq(cpu)->idle;
4133 }
4134
4135 /**
4136 * find_process_by_pid - find a process with a matching PID value.
4137 * @pid: the pid in question.
4138 */
4139 static struct task_struct *find_process_by_pid(pid_t pid)
4140 {
4141 return pid ? find_task_by_pid(pid) : current;
4142 }
4143
4144 /* Actually do priority change: must hold rq lock. */
4145 static void
4146 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4147 {
4148 BUG_ON(p->se.on_rq);
4149
4150 p->policy = policy;
4151 switch (p->policy) {
4152 case SCHED_NORMAL:
4153 case SCHED_BATCH:
4154 case SCHED_IDLE:
4155 p->sched_class = &fair_sched_class;
4156 break;
4157 case SCHED_FIFO:
4158 case SCHED_RR:
4159 p->sched_class = &rt_sched_class;
4160 break;
4161 }
4162
4163 p->rt_priority = prio;
4164 p->normal_prio = normal_prio(p);
4165 /* we are holding p->pi_lock already */
4166 p->prio = rt_mutex_getprio(p);
4167 set_load_weight(p);
4168 }
4169
4170 /**
4171 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4172 * @p: the task in question.
4173 * @policy: new policy.
4174 * @param: structure containing the new RT priority.
4175 *
4176 * NOTE that the task may be already dead.
4177 */
4178 int sched_setscheduler(struct task_struct *p, int policy,
4179 struct sched_param *param)
4180 {
4181 int retval, oldprio, oldpolicy = -1, on_rq, running;
4182 unsigned long flags;
4183 struct rq *rq;
4184
4185 /* may grab non-irq protected spin_locks */
4186 BUG_ON(in_interrupt());
4187 recheck:
4188 /* double check policy once rq lock held */
4189 if (policy < 0)
4190 policy = oldpolicy = p->policy;
4191 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4192 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4193 policy != SCHED_IDLE)
4194 return -EINVAL;
4195 /*
4196 * Valid priorities for SCHED_FIFO and SCHED_RR are
4197 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4198 * SCHED_BATCH and SCHED_IDLE is 0.
4199 */
4200 if (param->sched_priority < 0 ||
4201 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4202 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4203 return -EINVAL;
4204 if (rt_policy(policy) != (param->sched_priority != 0))
4205 return -EINVAL;
4206
4207 /*
4208 * Allow unprivileged RT tasks to decrease priority:
4209 */
4210 if (!capable(CAP_SYS_NICE)) {
4211 if (rt_policy(policy)) {
4212 unsigned long rlim_rtprio;
4213
4214 if (!lock_task_sighand(p, &flags))
4215 return -ESRCH;
4216 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4217 unlock_task_sighand(p, &flags);
4218
4219 /* can't set/change the rt policy */
4220 if (policy != p->policy && !rlim_rtprio)
4221 return -EPERM;
4222
4223 /* can't increase priority */
4224 if (param->sched_priority > p->rt_priority &&
4225 param->sched_priority > rlim_rtprio)
4226 return -EPERM;
4227 }
4228 /*
4229 * Like positive nice levels, dont allow tasks to
4230 * move out of SCHED_IDLE either:
4231 */
4232 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4233 return -EPERM;
4234
4235 /* can't change other user's priorities */
4236 if ((current->euid != p->euid) &&
4237 (current->euid != p->uid))
4238 return -EPERM;
4239 }
4240
4241 retval = security_task_setscheduler(p, policy, param);
4242 if (retval)
4243 return retval;
4244 /*
4245 * make sure no PI-waiters arrive (or leave) while we are
4246 * changing the priority of the task:
4247 */
4248 spin_lock_irqsave(&p->pi_lock, flags);
4249 /*
4250 * To be able to change p->policy safely, the apropriate
4251 * runqueue lock must be held.
4252 */
4253 rq = __task_rq_lock(p);
4254 /* recheck policy now with rq lock held */
4255 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4256 policy = oldpolicy = -1;
4257 __task_rq_unlock(rq);
4258 spin_unlock_irqrestore(&p->pi_lock, flags);
4259 goto recheck;
4260 }
4261 update_rq_clock(rq);
4262 on_rq = p->se.on_rq;
4263 running = task_running(rq, p);
4264 if (on_rq) {
4265 deactivate_task(rq, p, 0);
4266 if (running)
4267 p->sched_class->put_prev_task(rq, p);
4268 }
4269
4270 oldprio = p->prio;
4271 __setscheduler(rq, p, policy, param->sched_priority);
4272
4273 if (on_rq) {
4274 if (running)
4275 p->sched_class->set_curr_task(rq);
4276 activate_task(rq, p, 0);
4277 /*
4278 * Reschedule if we are currently running on this runqueue and
4279 * our priority decreased, or if we are not currently running on
4280 * this runqueue and our priority is higher than the current's
4281 */
4282 if (running) {
4283 if (p->prio > oldprio)
4284 resched_task(rq->curr);
4285 } else {
4286 check_preempt_curr(rq, p);
4287 }
4288 }
4289 __task_rq_unlock(rq);
4290 spin_unlock_irqrestore(&p->pi_lock, flags);
4291
4292 rt_mutex_adjust_pi(p);
4293
4294 return 0;
4295 }
4296 EXPORT_SYMBOL_GPL(sched_setscheduler);
4297
4298 static int
4299 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4300 {
4301 struct sched_param lparam;
4302 struct task_struct *p;
4303 int retval;
4304
4305 if (!param || pid < 0)
4306 return -EINVAL;
4307 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4308 return -EFAULT;
4309
4310 rcu_read_lock();
4311 retval = -ESRCH;
4312 p = find_process_by_pid(pid);
4313 if (p != NULL)
4314 retval = sched_setscheduler(p, policy, &lparam);
4315 rcu_read_unlock();
4316
4317 return retval;
4318 }
4319
4320 /**
4321 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4322 * @pid: the pid in question.
4323 * @policy: new policy.
4324 * @param: structure containing the new RT priority.
4325 */
4326 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4327 struct sched_param __user *param)
4328 {
4329 /* negative values for policy are not valid */
4330 if (policy < 0)
4331 return -EINVAL;
4332
4333 return do_sched_setscheduler(pid, policy, param);
4334 }
4335
4336 /**
4337 * sys_sched_setparam - set/change the RT priority of a thread
4338 * @pid: the pid in question.
4339 * @param: structure containing the new RT priority.
4340 */
4341 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4342 {
4343 return do_sched_setscheduler(pid, -1, param);
4344 }
4345
4346 /**
4347 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4348 * @pid: the pid in question.
4349 */
4350 asmlinkage long sys_sched_getscheduler(pid_t pid)
4351 {
4352 struct task_struct *p;
4353 int retval;
4354
4355 if (pid < 0)
4356 return -EINVAL;
4357
4358 retval = -ESRCH;
4359 read_lock(&tasklist_lock);
4360 p = find_process_by_pid(pid);
4361 if (p) {
4362 retval = security_task_getscheduler(p);
4363 if (!retval)
4364 retval = p->policy;
4365 }
4366 read_unlock(&tasklist_lock);
4367 return retval;
4368 }
4369
4370 /**
4371 * sys_sched_getscheduler - get the RT priority of a thread
4372 * @pid: the pid in question.
4373 * @param: structure containing the RT priority.
4374 */
4375 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4376 {
4377 struct sched_param lp;
4378 struct task_struct *p;
4379 int retval;
4380
4381 if (!param || pid < 0)
4382 return -EINVAL;
4383
4384 read_lock(&tasklist_lock);
4385 p = find_process_by_pid(pid);
4386 retval = -ESRCH;
4387 if (!p)
4388 goto out_unlock;
4389
4390 retval = security_task_getscheduler(p);
4391 if (retval)
4392 goto out_unlock;
4393
4394 lp.sched_priority = p->rt_priority;
4395 read_unlock(&tasklist_lock);
4396
4397 /*
4398 * This one might sleep, we cannot do it with a spinlock held ...
4399 */
4400 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4401
4402 return retval;
4403
4404 out_unlock:
4405 read_unlock(&tasklist_lock);
4406 return retval;
4407 }
4408
4409 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4410 {
4411 cpumask_t cpus_allowed;
4412 struct task_struct *p;
4413 int retval;
4414
4415 mutex_lock(&sched_hotcpu_mutex);
4416 read_lock(&tasklist_lock);
4417
4418 p = find_process_by_pid(pid);
4419 if (!p) {
4420 read_unlock(&tasklist_lock);
4421 mutex_unlock(&sched_hotcpu_mutex);
4422 return -ESRCH;
4423 }
4424
4425 /*
4426 * It is not safe to call set_cpus_allowed with the
4427 * tasklist_lock held. We will bump the task_struct's
4428 * usage count and then drop tasklist_lock.
4429 */
4430 get_task_struct(p);
4431 read_unlock(&tasklist_lock);
4432
4433 retval = -EPERM;
4434 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4435 !capable(CAP_SYS_NICE))
4436 goto out_unlock;
4437
4438 retval = security_task_setscheduler(p, 0, NULL);
4439 if (retval)
4440 goto out_unlock;
4441
4442 cpus_allowed = cpuset_cpus_allowed(p);
4443 cpus_and(new_mask, new_mask, cpus_allowed);
4444 retval = set_cpus_allowed(p, new_mask);
4445
4446 out_unlock:
4447 put_task_struct(p);
4448 mutex_unlock(&sched_hotcpu_mutex);
4449 return retval;
4450 }
4451
4452 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4453 cpumask_t *new_mask)
4454 {
4455 if (len < sizeof(cpumask_t)) {
4456 memset(new_mask, 0, sizeof(cpumask_t));
4457 } else if (len > sizeof(cpumask_t)) {
4458 len = sizeof(cpumask_t);
4459 }
4460 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4461 }
4462
4463 /**
4464 * sys_sched_setaffinity - set the cpu affinity of a process
4465 * @pid: pid of the process
4466 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4467 * @user_mask_ptr: user-space pointer to the new cpu mask
4468 */
4469 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4470 unsigned long __user *user_mask_ptr)
4471 {
4472 cpumask_t new_mask;
4473 int retval;
4474
4475 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4476 if (retval)
4477 return retval;
4478
4479 return sched_setaffinity(pid, new_mask);
4480 }
4481
4482 /*
4483 * Represents all cpu's present in the system
4484 * In systems capable of hotplug, this map could dynamically grow
4485 * as new cpu's are detected in the system via any platform specific
4486 * method, such as ACPI for e.g.
4487 */
4488
4489 cpumask_t cpu_present_map __read_mostly;
4490 EXPORT_SYMBOL(cpu_present_map);
4491
4492 #ifndef CONFIG_SMP
4493 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4494 EXPORT_SYMBOL(cpu_online_map);
4495
4496 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4497 EXPORT_SYMBOL(cpu_possible_map);
4498 #endif
4499
4500 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4501 {
4502 struct task_struct *p;
4503 int retval;
4504
4505 mutex_lock(&sched_hotcpu_mutex);
4506 read_lock(&tasklist_lock);
4507
4508 retval = -ESRCH;
4509 p = find_process_by_pid(pid);
4510 if (!p)
4511 goto out_unlock;
4512
4513 retval = security_task_getscheduler(p);
4514 if (retval)
4515 goto out_unlock;
4516
4517 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4518
4519 out_unlock:
4520 read_unlock(&tasklist_lock);
4521 mutex_unlock(&sched_hotcpu_mutex);
4522
4523 return retval;
4524 }
4525
4526 /**
4527 * sys_sched_getaffinity - get the cpu affinity of a process
4528 * @pid: pid of the process
4529 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4530 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4531 */
4532 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4533 unsigned long __user *user_mask_ptr)
4534 {
4535 int ret;
4536 cpumask_t mask;
4537
4538 if (len < sizeof(cpumask_t))
4539 return -EINVAL;
4540
4541 ret = sched_getaffinity(pid, &mask);
4542 if (ret < 0)
4543 return ret;
4544
4545 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4546 return -EFAULT;
4547
4548 return sizeof(cpumask_t);
4549 }
4550
4551 /**
4552 * sys_sched_yield - yield the current processor to other threads.
4553 *
4554 * This function yields the current CPU to other tasks. If there are no
4555 * other threads running on this CPU then this function will return.
4556 */
4557 asmlinkage long sys_sched_yield(void)
4558 {
4559 struct rq *rq = this_rq_lock();
4560
4561 schedstat_inc(rq, yld_count);
4562 current->sched_class->yield_task(rq);
4563
4564 /*
4565 * Since we are going to call schedule() anyway, there's
4566 * no need to preempt or enable interrupts:
4567 */
4568 __release(rq->lock);
4569 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4570 _raw_spin_unlock(&rq->lock);
4571 preempt_enable_no_resched();
4572
4573 schedule();
4574
4575 return 0;
4576 }
4577
4578 static void __cond_resched(void)
4579 {
4580 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4581 __might_sleep(__FILE__, __LINE__);
4582 #endif
4583 /*
4584 * The BKS might be reacquired before we have dropped
4585 * PREEMPT_ACTIVE, which could trigger a second
4586 * cond_resched() call.
4587 */
4588 do {
4589 add_preempt_count(PREEMPT_ACTIVE);
4590 schedule();
4591 sub_preempt_count(PREEMPT_ACTIVE);
4592 } while (need_resched());
4593 }
4594
4595 int __sched cond_resched(void)
4596 {
4597 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4598 system_state == SYSTEM_RUNNING) {
4599 __cond_resched();
4600 return 1;
4601 }
4602 return 0;
4603 }
4604 EXPORT_SYMBOL(cond_resched);
4605
4606 /*
4607 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4608 * call schedule, and on return reacquire the lock.
4609 *
4610 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4611 * operations here to prevent schedule() from being called twice (once via
4612 * spin_unlock(), once by hand).
4613 */
4614 int cond_resched_lock(spinlock_t *lock)
4615 {
4616 int ret = 0;
4617
4618 if (need_lockbreak(lock)) {
4619 spin_unlock(lock);
4620 cpu_relax();
4621 ret = 1;
4622 spin_lock(lock);
4623 }
4624 if (need_resched() && system_state == SYSTEM_RUNNING) {
4625 spin_release(&lock->dep_map, 1, _THIS_IP_);
4626 _raw_spin_unlock(lock);
4627 preempt_enable_no_resched();
4628 __cond_resched();
4629 ret = 1;
4630 spin_lock(lock);
4631 }
4632 return ret;
4633 }
4634 EXPORT_SYMBOL(cond_resched_lock);
4635
4636 int __sched cond_resched_softirq(void)
4637 {
4638 BUG_ON(!in_softirq());
4639
4640 if (need_resched() && system_state == SYSTEM_RUNNING) {
4641 local_bh_enable();
4642 __cond_resched();
4643 local_bh_disable();
4644 return 1;
4645 }
4646 return 0;
4647 }
4648 EXPORT_SYMBOL(cond_resched_softirq);
4649
4650 /**
4651 * yield - yield the current processor to other threads.
4652 *
4653 * This is a shortcut for kernel-space yielding - it marks the
4654 * thread runnable and calls sys_sched_yield().
4655 */
4656 void __sched yield(void)
4657 {
4658 set_current_state(TASK_RUNNING);
4659 sys_sched_yield();
4660 }
4661 EXPORT_SYMBOL(yield);
4662
4663 /*
4664 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4665 * that process accounting knows that this is a task in IO wait state.
4666 *
4667 * But don't do that if it is a deliberate, throttling IO wait (this task
4668 * has set its backing_dev_info: the queue against which it should throttle)
4669 */
4670 void __sched io_schedule(void)
4671 {
4672 struct rq *rq = &__raw_get_cpu_var(runqueues);
4673
4674 delayacct_blkio_start();
4675 atomic_inc(&rq->nr_iowait);
4676 schedule();
4677 atomic_dec(&rq->nr_iowait);
4678 delayacct_blkio_end();
4679 }
4680 EXPORT_SYMBOL(io_schedule);
4681
4682 long __sched io_schedule_timeout(long timeout)
4683 {
4684 struct rq *rq = &__raw_get_cpu_var(runqueues);
4685 long ret;
4686
4687 delayacct_blkio_start();
4688 atomic_inc(&rq->nr_iowait);
4689 ret = schedule_timeout(timeout);
4690 atomic_dec(&rq->nr_iowait);
4691 delayacct_blkio_end();
4692 return ret;
4693 }
4694
4695 /**
4696 * sys_sched_get_priority_max - return maximum RT priority.
4697 * @policy: scheduling class.
4698 *
4699 * this syscall returns the maximum rt_priority that can be used
4700 * by a given scheduling class.
4701 */
4702 asmlinkage long sys_sched_get_priority_max(int policy)
4703 {
4704 int ret = -EINVAL;
4705
4706 switch (policy) {
4707 case SCHED_FIFO:
4708 case SCHED_RR:
4709 ret = MAX_USER_RT_PRIO-1;
4710 break;
4711 case SCHED_NORMAL:
4712 case SCHED_BATCH:
4713 case SCHED_IDLE:
4714 ret = 0;
4715 break;
4716 }
4717 return ret;
4718 }
4719
4720 /**
4721 * sys_sched_get_priority_min - return minimum RT priority.
4722 * @policy: scheduling class.
4723 *
4724 * this syscall returns the minimum rt_priority that can be used
4725 * by a given scheduling class.
4726 */
4727 asmlinkage long sys_sched_get_priority_min(int policy)
4728 {
4729 int ret = -EINVAL;
4730
4731 switch (policy) {
4732 case SCHED_FIFO:
4733 case SCHED_RR:
4734 ret = 1;
4735 break;
4736 case SCHED_NORMAL:
4737 case SCHED_BATCH:
4738 case SCHED_IDLE:
4739 ret = 0;
4740 }
4741 return ret;
4742 }
4743
4744 /**
4745 * sys_sched_rr_get_interval - return the default timeslice of a process.
4746 * @pid: pid of the process.
4747 * @interval: userspace pointer to the timeslice value.
4748 *
4749 * this syscall writes the default timeslice value of a given process
4750 * into the user-space timespec buffer. A value of '0' means infinity.
4751 */
4752 asmlinkage
4753 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4754 {
4755 struct task_struct *p;
4756 unsigned int time_slice;
4757 int retval;
4758 struct timespec t;
4759
4760 if (pid < 0)
4761 return -EINVAL;
4762
4763 retval = -ESRCH;
4764 read_lock(&tasklist_lock);
4765 p = find_process_by_pid(pid);
4766 if (!p)
4767 goto out_unlock;
4768
4769 retval = security_task_getscheduler(p);
4770 if (retval)
4771 goto out_unlock;
4772
4773 if (p->policy == SCHED_FIFO)
4774 time_slice = 0;
4775 else if (p->policy == SCHED_RR)
4776 time_slice = DEF_TIMESLICE;
4777 else {
4778 struct sched_entity *se = &p->se;
4779 unsigned long flags;
4780 struct rq *rq;
4781
4782 rq = task_rq_lock(p, &flags);
4783 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4784 task_rq_unlock(rq, &flags);
4785 }
4786 read_unlock(&tasklist_lock);
4787 jiffies_to_timespec(time_slice, &t);
4788 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4789 return retval;
4790
4791 out_unlock:
4792 read_unlock(&tasklist_lock);
4793 return retval;
4794 }
4795
4796 static const char stat_nam[] = "RSDTtZX";
4797
4798 static void show_task(struct task_struct *p)
4799 {
4800 unsigned long free = 0;
4801 unsigned state;
4802
4803 state = p->state ? __ffs(p->state) + 1 : 0;
4804 printk(KERN_INFO "%-13.13s %c", p->comm,
4805 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4806 #if BITS_PER_LONG == 32
4807 if (state == TASK_RUNNING)
4808 printk(KERN_CONT " running ");
4809 else
4810 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
4811 #else
4812 if (state == TASK_RUNNING)
4813 printk(KERN_CONT " running task ");
4814 else
4815 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
4816 #endif
4817 #ifdef CONFIG_DEBUG_STACK_USAGE
4818 {
4819 unsigned long *n = end_of_stack(p);
4820 while (!*n)
4821 n++;
4822 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4823 }
4824 #endif
4825 printk(KERN_CONT "%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4826
4827 if (state != TASK_RUNNING)
4828 show_stack(p, NULL);
4829 }
4830
4831 void show_state_filter(unsigned long state_filter)
4832 {
4833 struct task_struct *g, *p;
4834
4835 #if BITS_PER_LONG == 32
4836 printk(KERN_INFO
4837 " task PC stack pid father\n");
4838 #else
4839 printk(KERN_INFO
4840 " task PC stack pid father\n");
4841 #endif
4842 read_lock(&tasklist_lock);
4843 do_each_thread(g, p) {
4844 /*
4845 * reset the NMI-timeout, listing all files on a slow
4846 * console might take alot of time:
4847 */
4848 touch_nmi_watchdog();
4849 if (!state_filter || (p->state & state_filter))
4850 show_task(p);
4851 } while_each_thread(g, p);
4852
4853 touch_all_softlockup_watchdogs();
4854
4855 #ifdef CONFIG_SCHED_DEBUG
4856 sysrq_sched_debug_show();
4857 #endif
4858 read_unlock(&tasklist_lock);
4859 /*
4860 * Only show locks if all tasks are dumped:
4861 */
4862 if (state_filter == -1)
4863 debug_show_all_locks();
4864 }
4865
4866 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4867 {
4868 idle->sched_class = &idle_sched_class;
4869 }
4870
4871 /**
4872 * init_idle - set up an idle thread for a given CPU
4873 * @idle: task in question
4874 * @cpu: cpu the idle task belongs to
4875 *
4876 * NOTE: this function does not set the idle thread's NEED_RESCHED
4877 * flag, to make booting more robust.
4878 */
4879 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4880 {
4881 struct rq *rq = cpu_rq(cpu);
4882 unsigned long flags;
4883
4884 __sched_fork(idle);
4885 idle->se.exec_start = sched_clock();
4886
4887 idle->prio = idle->normal_prio = MAX_PRIO;
4888 idle->cpus_allowed = cpumask_of_cpu(cpu);
4889 __set_task_cpu(idle, cpu);
4890
4891 spin_lock_irqsave(&rq->lock, flags);
4892 rq->curr = rq->idle = idle;
4893 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4894 idle->oncpu = 1;
4895 #endif
4896 spin_unlock_irqrestore(&rq->lock, flags);
4897
4898 /* Set the preempt count _outside_ the spinlocks! */
4899 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4900 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4901 #else
4902 task_thread_info(idle)->preempt_count = 0;
4903 #endif
4904 /*
4905 * The idle tasks have their own, simple scheduling class:
4906 */
4907 idle->sched_class = &idle_sched_class;
4908 }
4909
4910 /*
4911 * In a system that switches off the HZ timer nohz_cpu_mask
4912 * indicates which cpus entered this state. This is used
4913 * in the rcu update to wait only for active cpus. For system
4914 * which do not switch off the HZ timer nohz_cpu_mask should
4915 * always be CPU_MASK_NONE.
4916 */
4917 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4918
4919 #ifdef CONFIG_SMP
4920 /*
4921 * This is how migration works:
4922 *
4923 * 1) we queue a struct migration_req structure in the source CPU's
4924 * runqueue and wake up that CPU's migration thread.
4925 * 2) we down() the locked semaphore => thread blocks.
4926 * 3) migration thread wakes up (implicitly it forces the migrated
4927 * thread off the CPU)
4928 * 4) it gets the migration request and checks whether the migrated
4929 * task is still in the wrong runqueue.
4930 * 5) if it's in the wrong runqueue then the migration thread removes
4931 * it and puts it into the right queue.
4932 * 6) migration thread up()s the semaphore.
4933 * 7) we wake up and the migration is done.
4934 */
4935
4936 /*
4937 * Change a given task's CPU affinity. Migrate the thread to a
4938 * proper CPU and schedule it away if the CPU it's executing on
4939 * is removed from the allowed bitmask.
4940 *
4941 * NOTE: the caller must have a valid reference to the task, the
4942 * task must not exit() & deallocate itself prematurely. The
4943 * call is not atomic; no spinlocks may be held.
4944 */
4945 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4946 {
4947 struct migration_req req;
4948 unsigned long flags;
4949 struct rq *rq;
4950 int ret = 0;
4951
4952 rq = task_rq_lock(p, &flags);
4953 if (!cpus_intersects(new_mask, cpu_online_map)) {
4954 ret = -EINVAL;
4955 goto out;
4956 }
4957
4958 p->cpus_allowed = new_mask;
4959 /* Can the task run on the task's current CPU? If so, we're done */
4960 if (cpu_isset(task_cpu(p), new_mask))
4961 goto out;
4962
4963 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4964 /* Need help from migration thread: drop lock and wait. */
4965 task_rq_unlock(rq, &flags);
4966 wake_up_process(rq->migration_thread);
4967 wait_for_completion(&req.done);
4968 tlb_migrate_finish(p->mm);
4969 return 0;
4970 }
4971 out:
4972 task_rq_unlock(rq, &flags);
4973
4974 return ret;
4975 }
4976 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4977
4978 /*
4979 * Move (not current) task off this cpu, onto dest cpu. We're doing
4980 * this because either it can't run here any more (set_cpus_allowed()
4981 * away from this CPU, or CPU going down), or because we're
4982 * attempting to rebalance this task on exec (sched_exec).
4983 *
4984 * So we race with normal scheduler movements, but that's OK, as long
4985 * as the task is no longer on this CPU.
4986 *
4987 * Returns non-zero if task was successfully migrated.
4988 */
4989 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4990 {
4991 struct rq *rq_dest, *rq_src;
4992 int ret = 0, on_rq;
4993
4994 if (unlikely(cpu_is_offline(dest_cpu)))
4995 return ret;
4996
4997 rq_src = cpu_rq(src_cpu);
4998 rq_dest = cpu_rq(dest_cpu);
4999
5000 double_rq_lock(rq_src, rq_dest);
5001 /* Already moved. */
5002 if (task_cpu(p) != src_cpu)
5003 goto out;
5004 /* Affinity changed (again). */
5005 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5006 goto out;
5007
5008 on_rq = p->se.on_rq;
5009 if (on_rq)
5010 deactivate_task(rq_src, p, 0);
5011
5012 set_task_cpu(p, dest_cpu);
5013 if (on_rq) {
5014 activate_task(rq_dest, p, 0);
5015 check_preempt_curr(rq_dest, p);
5016 }
5017 ret = 1;
5018 out:
5019 double_rq_unlock(rq_src, rq_dest);
5020 return ret;
5021 }
5022
5023 /*
5024 * migration_thread - this is a highprio system thread that performs
5025 * thread migration by bumping thread off CPU then 'pushing' onto
5026 * another runqueue.
5027 */
5028 static int migration_thread(void *data)
5029 {
5030 int cpu = (long)data;
5031 struct rq *rq;
5032
5033 rq = cpu_rq(cpu);
5034 BUG_ON(rq->migration_thread != current);
5035
5036 set_current_state(TASK_INTERRUPTIBLE);
5037 while (!kthread_should_stop()) {
5038 struct migration_req *req;
5039 struct list_head *head;
5040
5041 spin_lock_irq(&rq->lock);
5042
5043 if (cpu_is_offline(cpu)) {
5044 spin_unlock_irq(&rq->lock);
5045 goto wait_to_die;
5046 }
5047
5048 if (rq->active_balance) {
5049 active_load_balance(rq, cpu);
5050 rq->active_balance = 0;
5051 }
5052
5053 head = &rq->migration_queue;
5054
5055 if (list_empty(head)) {
5056 spin_unlock_irq(&rq->lock);
5057 schedule();
5058 set_current_state(TASK_INTERRUPTIBLE);
5059 continue;
5060 }
5061 req = list_entry(head->next, struct migration_req, list);
5062 list_del_init(head->next);
5063
5064 spin_unlock(&rq->lock);
5065 __migrate_task(req->task, cpu, req->dest_cpu);
5066 local_irq_enable();
5067
5068 complete(&req->done);
5069 }
5070 __set_current_state(TASK_RUNNING);
5071 return 0;
5072
5073 wait_to_die:
5074 /* Wait for kthread_stop */
5075 set_current_state(TASK_INTERRUPTIBLE);
5076 while (!kthread_should_stop()) {
5077 schedule();
5078 set_current_state(TASK_INTERRUPTIBLE);
5079 }
5080 __set_current_state(TASK_RUNNING);
5081 return 0;
5082 }
5083
5084 #ifdef CONFIG_HOTPLUG_CPU
5085
5086 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5087 {
5088 int ret;
5089
5090 local_irq_disable();
5091 ret = __migrate_task(p, src_cpu, dest_cpu);
5092 local_irq_enable();
5093 return ret;
5094 }
5095
5096 /*
5097 * Figure out where task on dead CPU should go, use force if neccessary.
5098 * NOTE: interrupts should be disabled by the caller
5099 */
5100 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5101 {
5102 unsigned long flags;
5103 cpumask_t mask;
5104 struct rq *rq;
5105 int dest_cpu;
5106
5107 do {
5108 /* On same node? */
5109 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5110 cpus_and(mask, mask, p->cpus_allowed);
5111 dest_cpu = any_online_cpu(mask);
5112
5113 /* On any allowed CPU? */
5114 if (dest_cpu == NR_CPUS)
5115 dest_cpu = any_online_cpu(p->cpus_allowed);
5116
5117 /* No more Mr. Nice Guy. */
5118 if (dest_cpu == NR_CPUS) {
5119 rq = task_rq_lock(p, &flags);
5120 cpus_setall(p->cpus_allowed);
5121 dest_cpu = any_online_cpu(p->cpus_allowed);
5122 task_rq_unlock(rq, &flags);
5123
5124 /*
5125 * Don't tell them about moving exiting tasks or
5126 * kernel threads (both mm NULL), since they never
5127 * leave kernel.
5128 */
5129 if (p->mm && printk_ratelimit())
5130 printk(KERN_INFO "process %d (%s) no "
5131 "longer affine to cpu%d\n",
5132 p->pid, p->comm, dead_cpu);
5133 }
5134 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5135 }
5136
5137 /*
5138 * While a dead CPU has no uninterruptible tasks queued at this point,
5139 * it might still have a nonzero ->nr_uninterruptible counter, because
5140 * for performance reasons the counter is not stricly tracking tasks to
5141 * their home CPUs. So we just add the counter to another CPU's counter,
5142 * to keep the global sum constant after CPU-down:
5143 */
5144 static void migrate_nr_uninterruptible(struct rq *rq_src)
5145 {
5146 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5147 unsigned long flags;
5148
5149 local_irq_save(flags);
5150 double_rq_lock(rq_src, rq_dest);
5151 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5152 rq_src->nr_uninterruptible = 0;
5153 double_rq_unlock(rq_src, rq_dest);
5154 local_irq_restore(flags);
5155 }
5156
5157 /* Run through task list and migrate tasks from the dead cpu. */
5158 static void migrate_live_tasks(int src_cpu)
5159 {
5160 struct task_struct *p, *t;
5161
5162 read_lock(&tasklist_lock);
5163
5164 do_each_thread(t, p) {
5165 if (p == current)
5166 continue;
5167
5168 if (task_cpu(p) == src_cpu)
5169 move_task_off_dead_cpu(src_cpu, p);
5170 } while_each_thread(t, p);
5171
5172 read_unlock(&tasklist_lock);
5173 }
5174
5175 /*
5176 * activate_idle_task - move idle task to the _front_ of runqueue.
5177 */
5178 static void activate_idle_task(struct task_struct *p, struct rq *rq)
5179 {
5180 update_rq_clock(rq);
5181
5182 if (p->state == TASK_UNINTERRUPTIBLE)
5183 rq->nr_uninterruptible--;
5184
5185 enqueue_task(rq, p, 0);
5186 inc_nr_running(p, rq);
5187 }
5188
5189 /*
5190 * Schedules idle task to be the next runnable task on current CPU.
5191 * It does so by boosting its priority to highest possible and adding it to
5192 * the _front_ of the runqueue. Used by CPU offline code.
5193 */
5194 void sched_idle_next(void)
5195 {
5196 int this_cpu = smp_processor_id();
5197 struct rq *rq = cpu_rq(this_cpu);
5198 struct task_struct *p = rq->idle;
5199 unsigned long flags;
5200
5201 /* cpu has to be offline */
5202 BUG_ON(cpu_online(this_cpu));
5203
5204 /*
5205 * Strictly not necessary since rest of the CPUs are stopped by now
5206 * and interrupts disabled on the current cpu.
5207 */
5208 spin_lock_irqsave(&rq->lock, flags);
5209
5210 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5211
5212 /* Add idle task to the _front_ of its priority queue: */
5213 activate_idle_task(p, rq);
5214
5215 spin_unlock_irqrestore(&rq->lock, flags);
5216 }
5217
5218 /*
5219 * Ensures that the idle task is using init_mm right before its cpu goes
5220 * offline.
5221 */
5222 void idle_task_exit(void)
5223 {
5224 struct mm_struct *mm = current->active_mm;
5225
5226 BUG_ON(cpu_online(smp_processor_id()));
5227
5228 if (mm != &init_mm)
5229 switch_mm(mm, &init_mm, current);
5230 mmdrop(mm);
5231 }
5232
5233 /* called under rq->lock with disabled interrupts */
5234 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5235 {
5236 struct rq *rq = cpu_rq(dead_cpu);
5237
5238 /* Must be exiting, otherwise would be on tasklist. */
5239 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5240
5241 /* Cannot have done final schedule yet: would have vanished. */
5242 BUG_ON(p->state == TASK_DEAD);
5243
5244 get_task_struct(p);
5245
5246 /*
5247 * Drop lock around migration; if someone else moves it,
5248 * that's OK. No task can be added to this CPU, so iteration is
5249 * fine.
5250 */
5251 spin_unlock_irq(&rq->lock);
5252 move_task_off_dead_cpu(dead_cpu, p);
5253 spin_lock_irq(&rq->lock);
5254
5255 put_task_struct(p);
5256 }
5257
5258 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5259 static void migrate_dead_tasks(unsigned int dead_cpu)
5260 {
5261 struct rq *rq = cpu_rq(dead_cpu);
5262 struct task_struct *next;
5263
5264 for ( ; ; ) {
5265 if (!rq->nr_running)
5266 break;
5267 update_rq_clock(rq);
5268 next = pick_next_task(rq, rq->curr);
5269 if (!next)
5270 break;
5271 migrate_dead(dead_cpu, next);
5272
5273 }
5274 }
5275 #endif /* CONFIG_HOTPLUG_CPU */
5276
5277 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5278
5279 static struct ctl_table sd_ctl_dir[] = {
5280 {
5281 .procname = "sched_domain",
5282 .mode = 0555,
5283 },
5284 {0,},
5285 };
5286
5287 static struct ctl_table sd_ctl_root[] = {
5288 {
5289 .ctl_name = CTL_KERN,
5290 .procname = "kernel",
5291 .mode = 0555,
5292 .child = sd_ctl_dir,
5293 },
5294 {0,},
5295 };
5296
5297 static struct ctl_table *sd_alloc_ctl_entry(int n)
5298 {
5299 struct ctl_table *entry =
5300 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5301
5302 return entry;
5303 }
5304
5305 static void sd_free_ctl_entry(struct ctl_table **tablep)
5306 {
5307 struct ctl_table *entry;
5308
5309 /*
5310 * In the intermediate directories, both the child directory and
5311 * procname are dynamically allocated and could fail but the mode
5312 * will always be set. In the lowest directory the names are
5313 * static strings and all have proc handlers.
5314 */
5315 for (entry = *tablep; entry->mode; entry++) {
5316 if (entry->child)
5317 sd_free_ctl_entry(&entry->child);
5318 if (entry->proc_handler == NULL)
5319 kfree(entry->procname);
5320 }
5321
5322 kfree(*tablep);
5323 *tablep = NULL;
5324 }
5325
5326 static void
5327 set_table_entry(struct ctl_table *entry,
5328 const char *procname, void *data, int maxlen,
5329 mode_t mode, proc_handler *proc_handler)
5330 {
5331 entry->procname = procname;
5332 entry->data = data;
5333 entry->maxlen = maxlen;
5334 entry->mode = mode;
5335 entry->proc_handler = proc_handler;
5336 }
5337
5338 static struct ctl_table *
5339 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5340 {
5341 struct ctl_table *table = sd_alloc_ctl_entry(12);
5342
5343 if (table == NULL)
5344 return NULL;
5345
5346 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5347 sizeof(long), 0644, proc_doulongvec_minmax);
5348 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5349 sizeof(long), 0644, proc_doulongvec_minmax);
5350 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5351 sizeof(int), 0644, proc_dointvec_minmax);
5352 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5353 sizeof(int), 0644, proc_dointvec_minmax);
5354 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5355 sizeof(int), 0644, proc_dointvec_minmax);
5356 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5357 sizeof(int), 0644, proc_dointvec_minmax);
5358 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5359 sizeof(int), 0644, proc_dointvec_minmax);
5360 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5361 sizeof(int), 0644, proc_dointvec_minmax);
5362 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5363 sizeof(int), 0644, proc_dointvec_minmax);
5364 set_table_entry(&table[9], "cache_nice_tries",
5365 &sd->cache_nice_tries,
5366 sizeof(int), 0644, proc_dointvec_minmax);
5367 set_table_entry(&table[10], "flags", &sd->flags,
5368 sizeof(int), 0644, proc_dointvec_minmax);
5369 /* &table[11] is terminator */
5370
5371 return table;
5372 }
5373
5374 static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
5375 {
5376 struct ctl_table *entry, *table;
5377 struct sched_domain *sd;
5378 int domain_num = 0, i;
5379 char buf[32];
5380
5381 for_each_domain(cpu, sd)
5382 domain_num++;
5383 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5384 if (table == NULL)
5385 return NULL;
5386
5387 i = 0;
5388 for_each_domain(cpu, sd) {
5389 snprintf(buf, 32, "domain%d", i);
5390 entry->procname = kstrdup(buf, GFP_KERNEL);
5391 entry->mode = 0555;
5392 entry->child = sd_alloc_ctl_domain_table(sd);
5393 entry++;
5394 i++;
5395 }
5396 return table;
5397 }
5398
5399 static struct ctl_table_header *sd_sysctl_header;
5400 static void register_sched_domain_sysctl(void)
5401 {
5402 int i, cpu_num = num_online_cpus();
5403 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5404 char buf[32];
5405
5406 if (entry == NULL)
5407 return;
5408
5409 sd_ctl_dir[0].child = entry;
5410
5411 for_each_online_cpu(i) {
5412 snprintf(buf, 32, "cpu%d", i);
5413 entry->procname = kstrdup(buf, GFP_KERNEL);
5414 entry->mode = 0555;
5415 entry->child = sd_alloc_ctl_cpu_table(i);
5416 entry++;
5417 }
5418 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5419 }
5420
5421 static void unregister_sched_domain_sysctl(void)
5422 {
5423 unregister_sysctl_table(sd_sysctl_header);
5424 sd_sysctl_header = NULL;
5425 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5426 }
5427 #else
5428 static void register_sched_domain_sysctl(void)
5429 {
5430 }
5431 static void unregister_sched_domain_sysctl(void)
5432 {
5433 }
5434 #endif
5435
5436 /*
5437 * migration_call - callback that gets triggered when a CPU is added.
5438 * Here we can start up the necessary migration thread for the new CPU.
5439 */
5440 static int __cpuinit
5441 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5442 {
5443 struct task_struct *p;
5444 int cpu = (long)hcpu;
5445 unsigned long flags;
5446 struct rq *rq;
5447
5448 switch (action) {
5449 case CPU_LOCK_ACQUIRE:
5450 mutex_lock(&sched_hotcpu_mutex);
5451 break;
5452
5453 case CPU_UP_PREPARE:
5454 case CPU_UP_PREPARE_FROZEN:
5455 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5456 if (IS_ERR(p))
5457 return NOTIFY_BAD;
5458 kthread_bind(p, cpu);
5459 /* Must be high prio: stop_machine expects to yield to it. */
5460 rq = task_rq_lock(p, &flags);
5461 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5462 task_rq_unlock(rq, &flags);
5463 cpu_rq(cpu)->migration_thread = p;
5464 break;
5465
5466 case CPU_ONLINE:
5467 case CPU_ONLINE_FROZEN:
5468 /* Strictly unneccessary, as first user will wake it. */
5469 wake_up_process(cpu_rq(cpu)->migration_thread);
5470 break;
5471
5472 #ifdef CONFIG_HOTPLUG_CPU
5473 case CPU_UP_CANCELED:
5474 case CPU_UP_CANCELED_FROZEN:
5475 if (!cpu_rq(cpu)->migration_thread)
5476 break;
5477 /* Unbind it from offline cpu so it can run. Fall thru. */
5478 kthread_bind(cpu_rq(cpu)->migration_thread,
5479 any_online_cpu(cpu_online_map));
5480 kthread_stop(cpu_rq(cpu)->migration_thread);
5481 cpu_rq(cpu)->migration_thread = NULL;
5482 break;
5483
5484 case CPU_DEAD:
5485 case CPU_DEAD_FROZEN:
5486 migrate_live_tasks(cpu);
5487 rq = cpu_rq(cpu);
5488 kthread_stop(rq->migration_thread);
5489 rq->migration_thread = NULL;
5490 /* Idle task back to normal (off runqueue, low prio) */
5491 spin_lock_irq(&rq->lock);
5492 update_rq_clock(rq);
5493 deactivate_task(rq, rq->idle, 0);
5494 rq->idle->static_prio = MAX_PRIO;
5495 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5496 rq->idle->sched_class = &idle_sched_class;
5497 migrate_dead_tasks(cpu);
5498 spin_unlock_irq(&rq->lock);
5499 migrate_nr_uninterruptible(rq);
5500 BUG_ON(rq->nr_running != 0);
5501
5502 /* No need to migrate the tasks: it was best-effort if
5503 * they didn't take sched_hotcpu_mutex. Just wake up
5504 * the requestors. */
5505 spin_lock_irq(&rq->lock);
5506 while (!list_empty(&rq->migration_queue)) {
5507 struct migration_req *req;
5508
5509 req = list_entry(rq->migration_queue.next,
5510 struct migration_req, list);
5511 list_del_init(&req->list);
5512 complete(&req->done);
5513 }
5514 spin_unlock_irq(&rq->lock);
5515 break;
5516 #endif
5517 case CPU_LOCK_RELEASE:
5518 mutex_unlock(&sched_hotcpu_mutex);
5519 break;
5520 }
5521 return NOTIFY_OK;
5522 }
5523
5524 /* Register at highest priority so that task migration (migrate_all_tasks)
5525 * happens before everything else.
5526 */
5527 static struct notifier_block __cpuinitdata migration_notifier = {
5528 .notifier_call = migration_call,
5529 .priority = 10
5530 };
5531
5532 int __init migration_init(void)
5533 {
5534 void *cpu = (void *)(long)smp_processor_id();
5535 int err;
5536
5537 /* Start one for the boot CPU: */
5538 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5539 BUG_ON(err == NOTIFY_BAD);
5540 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5541 register_cpu_notifier(&migration_notifier);
5542
5543 return 0;
5544 }
5545 #endif
5546
5547 #ifdef CONFIG_SMP
5548
5549 /* Number of possible processor ids */
5550 int nr_cpu_ids __read_mostly = NR_CPUS;
5551 EXPORT_SYMBOL(nr_cpu_ids);
5552
5553 #ifdef CONFIG_SCHED_DEBUG
5554 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5555 {
5556 int level = 0;
5557
5558 if (!sd) {
5559 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5560 return;
5561 }
5562
5563 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5564
5565 do {
5566 int i;
5567 char str[NR_CPUS];
5568 struct sched_group *group = sd->groups;
5569 cpumask_t groupmask;
5570
5571 cpumask_scnprintf(str, NR_CPUS, sd->span);
5572 cpus_clear(groupmask);
5573
5574 printk(KERN_DEBUG);
5575 for (i = 0; i < level + 1; i++)
5576 printk(" ");
5577 printk("domain %d: ", level);
5578
5579 if (!(sd->flags & SD_LOAD_BALANCE)) {
5580 printk("does not load-balance\n");
5581 if (sd->parent)
5582 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5583 " has parent");
5584 break;
5585 }
5586
5587 printk("span %s\n", str);
5588
5589 if (!cpu_isset(cpu, sd->span))
5590 printk(KERN_ERR "ERROR: domain->span does not contain "
5591 "CPU%d\n", cpu);
5592 if (!cpu_isset(cpu, group->cpumask))
5593 printk(KERN_ERR "ERROR: domain->groups does not contain"
5594 " CPU%d\n", cpu);
5595
5596 printk(KERN_DEBUG);
5597 for (i = 0; i < level + 2; i++)
5598 printk(" ");
5599 printk("groups:");
5600 do {
5601 if (!group) {
5602 printk("\n");
5603 printk(KERN_ERR "ERROR: group is NULL\n");
5604 break;
5605 }
5606
5607 if (!group->__cpu_power) {
5608 printk(KERN_CONT "\n");
5609 printk(KERN_ERR "ERROR: domain->cpu_power not "
5610 "set\n");
5611 break;
5612 }
5613
5614 if (!cpus_weight(group->cpumask)) {
5615 printk(KERN_CONT "\n");
5616 printk(KERN_ERR "ERROR: empty group\n");
5617 break;
5618 }
5619
5620 if (cpus_intersects(groupmask, group->cpumask)) {
5621 printk(KERN_CONT "\n");
5622 printk(KERN_ERR "ERROR: repeated CPUs\n");
5623 break;
5624 }
5625
5626 cpus_or(groupmask, groupmask, group->cpumask);
5627
5628 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5629 printk(KERN_CONT " %s", str);
5630
5631 group = group->next;
5632 } while (group != sd->groups);
5633 printk(KERN_CONT "\n");
5634
5635 if (!cpus_equal(sd->span, groupmask))
5636 printk(KERN_ERR "ERROR: groups don't span "
5637 "domain->span\n");
5638
5639 level++;
5640 sd = sd->parent;
5641 if (!sd)
5642 continue;
5643
5644 if (!cpus_subset(groupmask, sd->span))
5645 printk(KERN_ERR "ERROR: parent span is not a superset "
5646 "of domain->span\n");
5647
5648 } while (sd);
5649 }
5650 #else
5651 # define sched_domain_debug(sd, cpu) do { } while (0)
5652 #endif
5653
5654 static int sd_degenerate(struct sched_domain *sd)
5655 {
5656 if (cpus_weight(sd->span) == 1)
5657 return 1;
5658
5659 /* Following flags need at least 2 groups */
5660 if (sd->flags & (SD_LOAD_BALANCE |
5661 SD_BALANCE_NEWIDLE |
5662 SD_BALANCE_FORK |
5663 SD_BALANCE_EXEC |
5664 SD_SHARE_CPUPOWER |
5665 SD_SHARE_PKG_RESOURCES)) {
5666 if (sd->groups != sd->groups->next)
5667 return 0;
5668 }
5669
5670 /* Following flags don't use groups */
5671 if (sd->flags & (SD_WAKE_IDLE |
5672 SD_WAKE_AFFINE |
5673 SD_WAKE_BALANCE))
5674 return 0;
5675
5676 return 1;
5677 }
5678
5679 static int
5680 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5681 {
5682 unsigned long cflags = sd->flags, pflags = parent->flags;
5683
5684 if (sd_degenerate(parent))
5685 return 1;
5686
5687 if (!cpus_equal(sd->span, parent->span))
5688 return 0;
5689
5690 /* Does parent contain flags not in child? */
5691 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5692 if (cflags & SD_WAKE_AFFINE)
5693 pflags &= ~SD_WAKE_BALANCE;
5694 /* Flags needing groups don't count if only 1 group in parent */
5695 if (parent->groups == parent->groups->next) {
5696 pflags &= ~(SD_LOAD_BALANCE |
5697 SD_BALANCE_NEWIDLE |
5698 SD_BALANCE_FORK |
5699 SD_BALANCE_EXEC |
5700 SD_SHARE_CPUPOWER |
5701 SD_SHARE_PKG_RESOURCES);
5702 }
5703 if (~cflags & pflags)
5704 return 0;
5705
5706 return 1;
5707 }
5708
5709 /*
5710 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5711 * hold the hotplug lock.
5712 */
5713 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5714 {
5715 struct rq *rq = cpu_rq(cpu);
5716 struct sched_domain *tmp;
5717
5718 /* Remove the sched domains which do not contribute to scheduling. */
5719 for (tmp = sd; tmp; tmp = tmp->parent) {
5720 struct sched_domain *parent = tmp->parent;
5721 if (!parent)
5722 break;
5723 if (sd_parent_degenerate(tmp, parent)) {
5724 tmp->parent = parent->parent;
5725 if (parent->parent)
5726 parent->parent->child = tmp;
5727 }
5728 }
5729
5730 if (sd && sd_degenerate(sd)) {
5731 sd = sd->parent;
5732 if (sd)
5733 sd->child = NULL;
5734 }
5735
5736 sched_domain_debug(sd, cpu);
5737
5738 rcu_assign_pointer(rq->sd, sd);
5739 }
5740
5741 /* cpus with isolated domains */
5742 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5743
5744 /* Setup the mask of cpus configured for isolated domains */
5745 static int __init isolated_cpu_setup(char *str)
5746 {
5747 int ints[NR_CPUS], i;
5748
5749 str = get_options(str, ARRAY_SIZE(ints), ints);
5750 cpus_clear(cpu_isolated_map);
5751 for (i = 1; i <= ints[0]; i++)
5752 if (ints[i] < NR_CPUS)
5753 cpu_set(ints[i], cpu_isolated_map);
5754 return 1;
5755 }
5756
5757 __setup("isolcpus=", isolated_cpu_setup);
5758
5759 /*
5760 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5761 * to a function which identifies what group(along with sched group) a CPU
5762 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5763 * (due to the fact that we keep track of groups covered with a cpumask_t).
5764 *
5765 * init_sched_build_groups will build a circular linked list of the groups
5766 * covered by the given span, and will set each group's ->cpumask correctly,
5767 * and ->cpu_power to 0.
5768 */
5769 static void
5770 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5771 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5772 struct sched_group **sg))
5773 {
5774 struct sched_group *first = NULL, *last = NULL;
5775 cpumask_t covered = CPU_MASK_NONE;
5776 int i;
5777
5778 for_each_cpu_mask(i, span) {
5779 struct sched_group *sg;
5780 int group = group_fn(i, cpu_map, &sg);
5781 int j;
5782
5783 if (cpu_isset(i, covered))
5784 continue;
5785
5786 sg->cpumask = CPU_MASK_NONE;
5787 sg->__cpu_power = 0;
5788
5789 for_each_cpu_mask(j, span) {
5790 if (group_fn(j, cpu_map, NULL) != group)
5791 continue;
5792
5793 cpu_set(j, covered);
5794 cpu_set(j, sg->cpumask);
5795 }
5796 if (!first)
5797 first = sg;
5798 if (last)
5799 last->next = sg;
5800 last = sg;
5801 }
5802 last->next = first;
5803 }
5804
5805 #define SD_NODES_PER_DOMAIN 16
5806
5807 #ifdef CONFIG_NUMA
5808
5809 /**
5810 * find_next_best_node - find the next node to include in a sched_domain
5811 * @node: node whose sched_domain we're building
5812 * @used_nodes: nodes already in the sched_domain
5813 *
5814 * Find the next node to include in a given scheduling domain. Simply
5815 * finds the closest node not already in the @used_nodes map.
5816 *
5817 * Should use nodemask_t.
5818 */
5819 static int find_next_best_node(int node, unsigned long *used_nodes)
5820 {
5821 int i, n, val, min_val, best_node = 0;
5822
5823 min_val = INT_MAX;
5824
5825 for (i = 0; i < MAX_NUMNODES; i++) {
5826 /* Start at @node */
5827 n = (node + i) % MAX_NUMNODES;
5828
5829 if (!nr_cpus_node(n))
5830 continue;
5831
5832 /* Skip already used nodes */
5833 if (test_bit(n, used_nodes))
5834 continue;
5835
5836 /* Simple min distance search */
5837 val = node_distance(node, n);
5838
5839 if (val < min_val) {
5840 min_val = val;
5841 best_node = n;
5842 }
5843 }
5844
5845 set_bit(best_node, used_nodes);
5846 return best_node;
5847 }
5848
5849 /**
5850 * sched_domain_node_span - get a cpumask for a node's sched_domain
5851 * @node: node whose cpumask we're constructing
5852 * @size: number of nodes to include in this span
5853 *
5854 * Given a node, construct a good cpumask for its sched_domain to span. It
5855 * should be one that prevents unnecessary balancing, but also spreads tasks
5856 * out optimally.
5857 */
5858 static cpumask_t sched_domain_node_span(int node)
5859 {
5860 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5861 cpumask_t span, nodemask;
5862 int i;
5863
5864 cpus_clear(span);
5865 bitmap_zero(used_nodes, MAX_NUMNODES);
5866
5867 nodemask = node_to_cpumask(node);
5868 cpus_or(span, span, nodemask);
5869 set_bit(node, used_nodes);
5870
5871 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5872 int next_node = find_next_best_node(node, used_nodes);
5873
5874 nodemask = node_to_cpumask(next_node);
5875 cpus_or(span, span, nodemask);
5876 }
5877
5878 return span;
5879 }
5880 #endif
5881
5882 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5883
5884 /*
5885 * SMT sched-domains:
5886 */
5887 #ifdef CONFIG_SCHED_SMT
5888 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5889 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5890
5891 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5892 struct sched_group **sg)
5893 {
5894 if (sg)
5895 *sg = &per_cpu(sched_group_cpus, cpu);
5896 return cpu;
5897 }
5898 #endif
5899
5900 /*
5901 * multi-core sched-domains:
5902 */
5903 #ifdef CONFIG_SCHED_MC
5904 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5905 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5906 #endif
5907
5908 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5909 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5910 struct sched_group **sg)
5911 {
5912 int group;
5913 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5914 cpus_and(mask, mask, *cpu_map);
5915 group = first_cpu(mask);
5916 if (sg)
5917 *sg = &per_cpu(sched_group_core, group);
5918 return group;
5919 }
5920 #elif defined(CONFIG_SCHED_MC)
5921 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5922 struct sched_group **sg)
5923 {
5924 if (sg)
5925 *sg = &per_cpu(sched_group_core, cpu);
5926 return cpu;
5927 }
5928 #endif
5929
5930 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5931 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5932
5933 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5934 struct sched_group **sg)
5935 {
5936 int group;
5937 #ifdef CONFIG_SCHED_MC
5938 cpumask_t mask = cpu_coregroup_map(cpu);
5939 cpus_and(mask, mask, *cpu_map);
5940 group = first_cpu(mask);
5941 #elif defined(CONFIG_SCHED_SMT)
5942 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
5943 cpus_and(mask, mask, *cpu_map);
5944 group = first_cpu(mask);
5945 #else
5946 group = cpu;
5947 #endif
5948 if (sg)
5949 *sg = &per_cpu(sched_group_phys, group);
5950 return group;
5951 }
5952
5953 #ifdef CONFIG_NUMA
5954 /*
5955 * The init_sched_build_groups can't handle what we want to do with node
5956 * groups, so roll our own. Now each node has its own list of groups which
5957 * gets dynamically allocated.
5958 */
5959 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5960 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5961
5962 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5963 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5964
5965 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5966 struct sched_group **sg)
5967 {
5968 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5969 int group;
5970
5971 cpus_and(nodemask, nodemask, *cpu_map);
5972 group = first_cpu(nodemask);
5973
5974 if (sg)
5975 *sg = &per_cpu(sched_group_allnodes, group);
5976 return group;
5977 }
5978
5979 static void init_numa_sched_groups_power(struct sched_group *group_head)
5980 {
5981 struct sched_group *sg = group_head;
5982 int j;
5983
5984 if (!sg)
5985 return;
5986 do {
5987 for_each_cpu_mask(j, sg->cpumask) {
5988 struct sched_domain *sd;
5989
5990 sd = &per_cpu(phys_domains, j);
5991 if (j != first_cpu(sd->groups->cpumask)) {
5992 /*
5993 * Only add "power" once for each
5994 * physical package.
5995 */
5996 continue;
5997 }
5998
5999 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6000 }
6001 sg = sg->next;
6002 } while (sg != group_head);
6003 }
6004 #endif
6005
6006 #ifdef CONFIG_NUMA
6007 /* Free memory allocated for various sched_group structures */
6008 static void free_sched_groups(const cpumask_t *cpu_map)
6009 {
6010 int cpu, i;
6011
6012 for_each_cpu_mask(cpu, *cpu_map) {
6013 struct sched_group **sched_group_nodes
6014 = sched_group_nodes_bycpu[cpu];
6015
6016 if (!sched_group_nodes)
6017 continue;
6018
6019 for (i = 0; i < MAX_NUMNODES; i++) {
6020 cpumask_t nodemask = node_to_cpumask(i);
6021 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6022
6023 cpus_and(nodemask, nodemask, *cpu_map);
6024 if (cpus_empty(nodemask))
6025 continue;
6026
6027 if (sg == NULL)
6028 continue;
6029 sg = sg->next;
6030 next_sg:
6031 oldsg = sg;
6032 sg = sg->next;
6033 kfree(oldsg);
6034 if (oldsg != sched_group_nodes[i])
6035 goto next_sg;
6036 }
6037 kfree(sched_group_nodes);
6038 sched_group_nodes_bycpu[cpu] = NULL;
6039 }
6040 }
6041 #else
6042 static void free_sched_groups(const cpumask_t *cpu_map)
6043 {
6044 }
6045 #endif
6046
6047 /*
6048 * Initialize sched groups cpu_power.
6049 *
6050 * cpu_power indicates the capacity of sched group, which is used while
6051 * distributing the load between different sched groups in a sched domain.
6052 * Typically cpu_power for all the groups in a sched domain will be same unless
6053 * there are asymmetries in the topology. If there are asymmetries, group
6054 * having more cpu_power will pickup more load compared to the group having
6055 * less cpu_power.
6056 *
6057 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6058 * the maximum number of tasks a group can handle in the presence of other idle
6059 * or lightly loaded groups in the same sched domain.
6060 */
6061 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6062 {
6063 struct sched_domain *child;
6064 struct sched_group *group;
6065
6066 WARN_ON(!sd || !sd->groups);
6067
6068 if (cpu != first_cpu(sd->groups->cpumask))
6069 return;
6070
6071 child = sd->child;
6072
6073 sd->groups->__cpu_power = 0;
6074
6075 /*
6076 * For perf policy, if the groups in child domain share resources
6077 * (for example cores sharing some portions of the cache hierarchy
6078 * or SMT), then set this domain groups cpu_power such that each group
6079 * can handle only one task, when there are other idle groups in the
6080 * same sched domain.
6081 */
6082 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6083 (child->flags &
6084 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6085 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6086 return;
6087 }
6088
6089 /*
6090 * add cpu_power of each child group to this groups cpu_power
6091 */
6092 group = child->groups;
6093 do {
6094 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6095 group = group->next;
6096 } while (group != child->groups);
6097 }
6098
6099 /*
6100 * Build sched domains for a given set of cpus and attach the sched domains
6101 * to the individual cpus
6102 */
6103 static int build_sched_domains(const cpumask_t *cpu_map)
6104 {
6105 int i;
6106 #ifdef CONFIG_NUMA
6107 struct sched_group **sched_group_nodes = NULL;
6108 int sd_allnodes = 0;
6109
6110 /*
6111 * Allocate the per-node list of sched groups
6112 */
6113 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6114 GFP_KERNEL);
6115 if (!sched_group_nodes) {
6116 printk(KERN_WARNING "Can not alloc sched group node list\n");
6117 return -ENOMEM;
6118 }
6119 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6120 #endif
6121
6122 /*
6123 * Set up domains for cpus specified by the cpu_map.
6124 */
6125 for_each_cpu_mask(i, *cpu_map) {
6126 struct sched_domain *sd = NULL, *p;
6127 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6128
6129 cpus_and(nodemask, nodemask, *cpu_map);
6130
6131 #ifdef CONFIG_NUMA
6132 if (cpus_weight(*cpu_map) >
6133 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6134 sd = &per_cpu(allnodes_domains, i);
6135 *sd = SD_ALLNODES_INIT;
6136 sd->span = *cpu_map;
6137 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6138 p = sd;
6139 sd_allnodes = 1;
6140 } else
6141 p = NULL;
6142
6143 sd = &per_cpu(node_domains, i);
6144 *sd = SD_NODE_INIT;
6145 sd->span = sched_domain_node_span(cpu_to_node(i));
6146 sd->parent = p;
6147 if (p)
6148 p->child = sd;
6149 cpus_and(sd->span, sd->span, *cpu_map);
6150 #endif
6151
6152 p = sd;
6153 sd = &per_cpu(phys_domains, i);
6154 *sd = SD_CPU_INIT;
6155 sd->span = nodemask;
6156 sd->parent = p;
6157 if (p)
6158 p->child = sd;
6159 cpu_to_phys_group(i, cpu_map, &sd->groups);
6160
6161 #ifdef CONFIG_SCHED_MC
6162 p = sd;
6163 sd = &per_cpu(core_domains, i);
6164 *sd = SD_MC_INIT;
6165 sd->span = cpu_coregroup_map(i);
6166 cpus_and(sd->span, sd->span, *cpu_map);
6167 sd->parent = p;
6168 p->child = sd;
6169 cpu_to_core_group(i, cpu_map, &sd->groups);
6170 #endif
6171
6172 #ifdef CONFIG_SCHED_SMT
6173 p = sd;
6174 sd = &per_cpu(cpu_domains, i);
6175 *sd = SD_SIBLING_INIT;
6176 sd->span = per_cpu(cpu_sibling_map, i);
6177 cpus_and(sd->span, sd->span, *cpu_map);
6178 sd->parent = p;
6179 p->child = sd;
6180 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6181 #endif
6182 }
6183
6184 #ifdef CONFIG_SCHED_SMT
6185 /* Set up CPU (sibling) groups */
6186 for_each_cpu_mask(i, *cpu_map) {
6187 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6188 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6189 if (i != first_cpu(this_sibling_map))
6190 continue;
6191
6192 init_sched_build_groups(this_sibling_map, cpu_map,
6193 &cpu_to_cpu_group);
6194 }
6195 #endif
6196
6197 #ifdef CONFIG_SCHED_MC
6198 /* Set up multi-core groups */
6199 for_each_cpu_mask(i, *cpu_map) {
6200 cpumask_t this_core_map = cpu_coregroup_map(i);
6201 cpus_and(this_core_map, this_core_map, *cpu_map);
6202 if (i != first_cpu(this_core_map))
6203 continue;
6204 init_sched_build_groups(this_core_map, cpu_map,
6205 &cpu_to_core_group);
6206 }
6207 #endif
6208
6209 /* Set up physical groups */
6210 for (i = 0; i < MAX_NUMNODES; i++) {
6211 cpumask_t nodemask = node_to_cpumask(i);
6212
6213 cpus_and(nodemask, nodemask, *cpu_map);
6214 if (cpus_empty(nodemask))
6215 continue;
6216
6217 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6218 }
6219
6220 #ifdef CONFIG_NUMA
6221 /* Set up node groups */
6222 if (sd_allnodes)
6223 init_sched_build_groups(*cpu_map, cpu_map,
6224 &cpu_to_allnodes_group);
6225
6226 for (i = 0; i < MAX_NUMNODES; i++) {
6227 /* Set up node groups */
6228 struct sched_group *sg, *prev;
6229 cpumask_t nodemask = node_to_cpumask(i);
6230 cpumask_t domainspan;
6231 cpumask_t covered = CPU_MASK_NONE;
6232 int j;
6233
6234 cpus_and(nodemask, nodemask, *cpu_map);
6235 if (cpus_empty(nodemask)) {
6236 sched_group_nodes[i] = NULL;
6237 continue;
6238 }
6239
6240 domainspan = sched_domain_node_span(i);
6241 cpus_and(domainspan, domainspan, *cpu_map);
6242
6243 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6244 if (!sg) {
6245 printk(KERN_WARNING "Can not alloc domain group for "
6246 "node %d\n", i);
6247 goto error;
6248 }
6249 sched_group_nodes[i] = sg;
6250 for_each_cpu_mask(j, nodemask) {
6251 struct sched_domain *sd;
6252
6253 sd = &per_cpu(node_domains, j);
6254 sd->groups = sg;
6255 }
6256 sg->__cpu_power = 0;
6257 sg->cpumask = nodemask;
6258 sg->next = sg;
6259 cpus_or(covered, covered, nodemask);
6260 prev = sg;
6261
6262 for (j = 0; j < MAX_NUMNODES; j++) {
6263 cpumask_t tmp, notcovered;
6264 int n = (i + j) % MAX_NUMNODES;
6265
6266 cpus_complement(notcovered, covered);
6267 cpus_and(tmp, notcovered, *cpu_map);
6268 cpus_and(tmp, tmp, domainspan);
6269 if (cpus_empty(tmp))
6270 break;
6271
6272 nodemask = node_to_cpumask(n);
6273 cpus_and(tmp, tmp, nodemask);
6274 if (cpus_empty(tmp))
6275 continue;
6276
6277 sg = kmalloc_node(sizeof(struct sched_group),
6278 GFP_KERNEL, i);
6279 if (!sg) {
6280 printk(KERN_WARNING
6281 "Can not alloc domain group for node %d\n", j);
6282 goto error;
6283 }
6284 sg->__cpu_power = 0;
6285 sg->cpumask = tmp;
6286 sg->next = prev->next;
6287 cpus_or(covered, covered, tmp);
6288 prev->next = sg;
6289 prev = sg;
6290 }
6291 }
6292 #endif
6293
6294 /* Calculate CPU power for physical packages and nodes */
6295 #ifdef CONFIG_SCHED_SMT
6296 for_each_cpu_mask(i, *cpu_map) {
6297 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6298
6299 init_sched_groups_power(i, sd);
6300 }
6301 #endif
6302 #ifdef CONFIG_SCHED_MC
6303 for_each_cpu_mask(i, *cpu_map) {
6304 struct sched_domain *sd = &per_cpu(core_domains, i);
6305
6306 init_sched_groups_power(i, sd);
6307 }
6308 #endif
6309
6310 for_each_cpu_mask(i, *cpu_map) {
6311 struct sched_domain *sd = &per_cpu(phys_domains, i);
6312
6313 init_sched_groups_power(i, sd);
6314 }
6315
6316 #ifdef CONFIG_NUMA
6317 for (i = 0; i < MAX_NUMNODES; i++)
6318 init_numa_sched_groups_power(sched_group_nodes[i]);
6319
6320 if (sd_allnodes) {
6321 struct sched_group *sg;
6322
6323 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6324 init_numa_sched_groups_power(sg);
6325 }
6326 #endif
6327
6328 /* Attach the domains */
6329 for_each_cpu_mask(i, *cpu_map) {
6330 struct sched_domain *sd;
6331 #ifdef CONFIG_SCHED_SMT
6332 sd = &per_cpu(cpu_domains, i);
6333 #elif defined(CONFIG_SCHED_MC)
6334 sd = &per_cpu(core_domains, i);
6335 #else
6336 sd = &per_cpu(phys_domains, i);
6337 #endif
6338 cpu_attach_domain(sd, i);
6339 }
6340
6341 return 0;
6342
6343 #ifdef CONFIG_NUMA
6344 error:
6345 free_sched_groups(cpu_map);
6346 return -ENOMEM;
6347 #endif
6348 }
6349 /*
6350 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6351 */
6352 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6353 {
6354 cpumask_t cpu_default_map;
6355 int err;
6356
6357 /*
6358 * Setup mask for cpus without special case scheduling requirements.
6359 * For now this just excludes isolated cpus, but could be used to
6360 * exclude other special cases in the future.
6361 */
6362 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6363
6364 err = build_sched_domains(&cpu_default_map);
6365
6366 register_sched_domain_sysctl();
6367
6368 return err;
6369 }
6370
6371 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6372 {
6373 free_sched_groups(cpu_map);
6374 }
6375
6376 /*
6377 * Detach sched domains from a group of cpus specified in cpu_map
6378 * These cpus will now be attached to the NULL domain
6379 */
6380 static void detach_destroy_domains(const cpumask_t *cpu_map)
6381 {
6382 int i;
6383
6384 unregister_sched_domain_sysctl();
6385
6386 for_each_cpu_mask(i, *cpu_map)
6387 cpu_attach_domain(NULL, i);
6388 synchronize_sched();
6389 arch_destroy_sched_domains(cpu_map);
6390 }
6391
6392 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6393 static int arch_reinit_sched_domains(void)
6394 {
6395 int err;
6396
6397 mutex_lock(&sched_hotcpu_mutex);
6398 detach_destroy_domains(&cpu_online_map);
6399 err = arch_init_sched_domains(&cpu_online_map);
6400 mutex_unlock(&sched_hotcpu_mutex);
6401
6402 return err;
6403 }
6404
6405 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6406 {
6407 int ret;
6408
6409 if (buf[0] != '0' && buf[0] != '1')
6410 return -EINVAL;
6411
6412 if (smt)
6413 sched_smt_power_savings = (buf[0] == '1');
6414 else
6415 sched_mc_power_savings = (buf[0] == '1');
6416
6417 ret = arch_reinit_sched_domains();
6418
6419 return ret ? ret : count;
6420 }
6421
6422 #ifdef CONFIG_SCHED_MC
6423 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6424 {
6425 return sprintf(page, "%u\n", sched_mc_power_savings);
6426 }
6427 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6428 const char *buf, size_t count)
6429 {
6430 return sched_power_savings_store(buf, count, 0);
6431 }
6432 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6433 sched_mc_power_savings_store);
6434 #endif
6435
6436 #ifdef CONFIG_SCHED_SMT
6437 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6438 {
6439 return sprintf(page, "%u\n", sched_smt_power_savings);
6440 }
6441 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6442 const char *buf, size_t count)
6443 {
6444 return sched_power_savings_store(buf, count, 1);
6445 }
6446 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6447 sched_smt_power_savings_store);
6448 #endif
6449
6450 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6451 {
6452 int err = 0;
6453
6454 #ifdef CONFIG_SCHED_SMT
6455 if (smt_capable())
6456 err = sysfs_create_file(&cls->kset.kobj,
6457 &attr_sched_smt_power_savings.attr);
6458 #endif
6459 #ifdef CONFIG_SCHED_MC
6460 if (!err && mc_capable())
6461 err = sysfs_create_file(&cls->kset.kobj,
6462 &attr_sched_mc_power_savings.attr);
6463 #endif
6464 return err;
6465 }
6466 #endif
6467
6468 /*
6469 * Force a reinitialization of the sched domains hierarchy. The domains
6470 * and groups cannot be updated in place without racing with the balancing
6471 * code, so we temporarily attach all running cpus to the NULL domain
6472 * which will prevent rebalancing while the sched domains are recalculated.
6473 */
6474 static int update_sched_domains(struct notifier_block *nfb,
6475 unsigned long action, void *hcpu)
6476 {
6477 switch (action) {
6478 case CPU_UP_PREPARE:
6479 case CPU_UP_PREPARE_FROZEN:
6480 case CPU_DOWN_PREPARE:
6481 case CPU_DOWN_PREPARE_FROZEN:
6482 detach_destroy_domains(&cpu_online_map);
6483 return NOTIFY_OK;
6484
6485 case CPU_UP_CANCELED:
6486 case CPU_UP_CANCELED_FROZEN:
6487 case CPU_DOWN_FAILED:
6488 case CPU_DOWN_FAILED_FROZEN:
6489 case CPU_ONLINE:
6490 case CPU_ONLINE_FROZEN:
6491 case CPU_DEAD:
6492 case CPU_DEAD_FROZEN:
6493 /*
6494 * Fall through and re-initialise the domains.
6495 */
6496 break;
6497 default:
6498 return NOTIFY_DONE;
6499 }
6500
6501 /* The hotplug lock is already held by cpu_up/cpu_down */
6502 arch_init_sched_domains(&cpu_online_map);
6503
6504 return NOTIFY_OK;
6505 }
6506
6507 void __init sched_init_smp(void)
6508 {
6509 cpumask_t non_isolated_cpus;
6510
6511 mutex_lock(&sched_hotcpu_mutex);
6512 arch_init_sched_domains(&cpu_online_map);
6513 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6514 if (cpus_empty(non_isolated_cpus))
6515 cpu_set(smp_processor_id(), non_isolated_cpus);
6516 mutex_unlock(&sched_hotcpu_mutex);
6517 /* XXX: Theoretical race here - CPU may be hotplugged now */
6518 hotcpu_notifier(update_sched_domains, 0);
6519
6520 /* Move init over to a non-isolated CPU */
6521 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6522 BUG();
6523 }
6524 #else
6525 void __init sched_init_smp(void)
6526 {
6527 }
6528 #endif /* CONFIG_SMP */
6529
6530 int in_sched_functions(unsigned long addr)
6531 {
6532 /* Linker adds these: start and end of __sched functions */
6533 extern char __sched_text_start[], __sched_text_end[];
6534
6535 return in_lock_functions(addr) ||
6536 (addr >= (unsigned long)__sched_text_start
6537 && addr < (unsigned long)__sched_text_end);
6538 }
6539
6540 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6541 {
6542 cfs_rq->tasks_timeline = RB_ROOT;
6543 #ifdef CONFIG_FAIR_GROUP_SCHED
6544 cfs_rq->rq = rq;
6545 #endif
6546 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6547 }
6548
6549 void __init sched_init(void)
6550 {
6551 int highest_cpu = 0;
6552 int i, j;
6553
6554 for_each_possible_cpu(i) {
6555 struct rt_prio_array *array;
6556 struct rq *rq;
6557
6558 rq = cpu_rq(i);
6559 spin_lock_init(&rq->lock);
6560 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6561 rq->nr_running = 0;
6562 rq->clock = 1;
6563 init_cfs_rq(&rq->cfs, rq);
6564 #ifdef CONFIG_FAIR_GROUP_SCHED
6565 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6566 {
6567 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6568 struct sched_entity *se =
6569 &per_cpu(init_sched_entity, i);
6570
6571 init_cfs_rq_p[i] = cfs_rq;
6572 init_cfs_rq(cfs_rq, rq);
6573 cfs_rq->tg = &init_task_group;
6574 list_add(&cfs_rq->leaf_cfs_rq_list,
6575 &rq->leaf_cfs_rq_list);
6576
6577 init_sched_entity_p[i] = se;
6578 se->cfs_rq = &rq->cfs;
6579 se->my_q = cfs_rq;
6580 se->load.weight = init_task_group_load;
6581 se->load.inv_weight =
6582 div64_64(1ULL<<32, init_task_group_load);
6583 se->parent = NULL;
6584 }
6585 init_task_group.shares = init_task_group_load;
6586 spin_lock_init(&init_task_group.lock);
6587 #endif
6588
6589 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6590 rq->cpu_load[j] = 0;
6591 #ifdef CONFIG_SMP
6592 rq->sd = NULL;
6593 rq->active_balance = 0;
6594 rq->next_balance = jiffies;
6595 rq->push_cpu = 0;
6596 rq->cpu = i;
6597 rq->migration_thread = NULL;
6598 INIT_LIST_HEAD(&rq->migration_queue);
6599 #endif
6600 atomic_set(&rq->nr_iowait, 0);
6601
6602 array = &rq->rt.active;
6603 for (j = 0; j < MAX_RT_PRIO; j++) {
6604 INIT_LIST_HEAD(array->queue + j);
6605 __clear_bit(j, array->bitmap);
6606 }
6607 highest_cpu = i;
6608 /* delimiter for bitsearch: */
6609 __set_bit(MAX_RT_PRIO, array->bitmap);
6610 }
6611
6612 set_load_weight(&init_task);
6613
6614 #ifdef CONFIG_PREEMPT_NOTIFIERS
6615 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6616 #endif
6617
6618 #ifdef CONFIG_SMP
6619 nr_cpu_ids = highest_cpu + 1;
6620 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6621 #endif
6622
6623 #ifdef CONFIG_RT_MUTEXES
6624 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6625 #endif
6626
6627 /*
6628 * The boot idle thread does lazy MMU switching as well:
6629 */
6630 atomic_inc(&init_mm.mm_count);
6631 enter_lazy_tlb(&init_mm, current);
6632
6633 /*
6634 * Make us the idle thread. Technically, schedule() should not be
6635 * called from this thread, however somewhere below it might be,
6636 * but because we are the idle thread, we just pick up running again
6637 * when this runqueue becomes "idle".
6638 */
6639 init_idle(current, smp_processor_id());
6640 /*
6641 * During early bootup we pretend to be a normal task:
6642 */
6643 current->sched_class = &fair_sched_class;
6644 }
6645
6646 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6647 void __might_sleep(char *file, int line)
6648 {
6649 #ifdef in_atomic
6650 static unsigned long prev_jiffy; /* ratelimiting */
6651
6652 if ((in_atomic() || irqs_disabled()) &&
6653 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6654 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6655 return;
6656 prev_jiffy = jiffies;
6657 printk(KERN_ERR "BUG: sleeping function called from invalid"
6658 " context at %s:%d\n", file, line);
6659 printk("in_atomic():%d, irqs_disabled():%d\n",
6660 in_atomic(), irqs_disabled());
6661 debug_show_held_locks(current);
6662 if (irqs_disabled())
6663 print_irqtrace_events(current);
6664 dump_stack();
6665 }
6666 #endif
6667 }
6668 EXPORT_SYMBOL(__might_sleep);
6669 #endif
6670
6671 #ifdef CONFIG_MAGIC_SYSRQ
6672 static void normalize_task(struct rq *rq, struct task_struct *p)
6673 {
6674 int on_rq;
6675 update_rq_clock(rq);
6676 on_rq = p->se.on_rq;
6677 if (on_rq)
6678 deactivate_task(rq, p, 0);
6679 __setscheduler(rq, p, SCHED_NORMAL, 0);
6680 if (on_rq) {
6681 activate_task(rq, p, 0);
6682 resched_task(rq->curr);
6683 }
6684 }
6685
6686 void normalize_rt_tasks(void)
6687 {
6688 struct task_struct *g, *p;
6689 unsigned long flags;
6690 struct rq *rq;
6691
6692 read_lock_irq(&tasklist_lock);
6693 do_each_thread(g, p) {
6694 /*
6695 * Only normalize user tasks:
6696 */
6697 if (!p->mm)
6698 continue;
6699
6700 p->se.exec_start = 0;
6701 #ifdef CONFIG_SCHEDSTATS
6702 p->se.wait_start = 0;
6703 p->se.sleep_start = 0;
6704 p->se.block_start = 0;
6705 #endif
6706 task_rq(p)->clock = 0;
6707
6708 if (!rt_task(p)) {
6709 /*
6710 * Renice negative nice level userspace
6711 * tasks back to 0:
6712 */
6713 if (TASK_NICE(p) < 0 && p->mm)
6714 set_user_nice(p, 0);
6715 continue;
6716 }
6717
6718 spin_lock_irqsave(&p->pi_lock, flags);
6719 rq = __task_rq_lock(p);
6720
6721 normalize_task(rq, p);
6722
6723 __task_rq_unlock(rq);
6724 spin_unlock_irqrestore(&p->pi_lock, flags);
6725 } while_each_thread(g, p);
6726
6727 read_unlock_irq(&tasklist_lock);
6728 }
6729
6730 #endif /* CONFIG_MAGIC_SYSRQ */
6731
6732 #ifdef CONFIG_IA64
6733 /*
6734 * These functions are only useful for the IA64 MCA handling.
6735 *
6736 * They can only be called when the whole system has been
6737 * stopped - every CPU needs to be quiescent, and no scheduling
6738 * activity can take place. Using them for anything else would
6739 * be a serious bug, and as a result, they aren't even visible
6740 * under any other configuration.
6741 */
6742
6743 /**
6744 * curr_task - return the current task for a given cpu.
6745 * @cpu: the processor in question.
6746 *
6747 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6748 */
6749 struct task_struct *curr_task(int cpu)
6750 {
6751 return cpu_curr(cpu);
6752 }
6753
6754 /**
6755 * set_curr_task - set the current task for a given cpu.
6756 * @cpu: the processor in question.
6757 * @p: the task pointer to set.
6758 *
6759 * Description: This function must only be used when non-maskable interrupts
6760 * are serviced on a separate stack. It allows the architecture to switch the
6761 * notion of the current task on a cpu in a non-blocking manner. This function
6762 * must be called with all CPU's synchronized, and interrupts disabled, the
6763 * and caller must save the original value of the current task (see
6764 * curr_task() above) and restore that value before reenabling interrupts and
6765 * re-starting the system.
6766 *
6767 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6768 */
6769 void set_curr_task(int cpu, struct task_struct *p)
6770 {
6771 cpu_curr(cpu) = p;
6772 }
6773
6774 #endif
6775
6776 #ifdef CONFIG_FAIR_GROUP_SCHED
6777
6778 /* allocate runqueue etc for a new task group */
6779 struct task_group *sched_create_group(void)
6780 {
6781 struct task_group *tg;
6782 struct cfs_rq *cfs_rq;
6783 struct sched_entity *se;
6784 struct rq *rq;
6785 int i;
6786
6787 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6788 if (!tg)
6789 return ERR_PTR(-ENOMEM);
6790
6791 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
6792 if (!tg->cfs_rq)
6793 goto err;
6794 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
6795 if (!tg->se)
6796 goto err;
6797
6798 for_each_possible_cpu(i) {
6799 rq = cpu_rq(i);
6800
6801 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6802 cpu_to_node(i));
6803 if (!cfs_rq)
6804 goto err;
6805
6806 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6807 cpu_to_node(i));
6808 if (!se)
6809 goto err;
6810
6811 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6812 memset(se, 0, sizeof(struct sched_entity));
6813
6814 tg->cfs_rq[i] = cfs_rq;
6815 init_cfs_rq(cfs_rq, rq);
6816 cfs_rq->tg = tg;
6817
6818 tg->se[i] = se;
6819 se->cfs_rq = &rq->cfs;
6820 se->my_q = cfs_rq;
6821 se->load.weight = NICE_0_LOAD;
6822 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6823 se->parent = NULL;
6824 }
6825
6826 for_each_possible_cpu(i) {
6827 rq = cpu_rq(i);
6828 cfs_rq = tg->cfs_rq[i];
6829 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6830 }
6831
6832 tg->shares = NICE_0_LOAD;
6833 spin_lock_init(&tg->lock);
6834
6835 return tg;
6836
6837 err:
6838 for_each_possible_cpu(i) {
6839 if (tg->cfs_rq)
6840 kfree(tg->cfs_rq[i]);
6841 if (tg->se)
6842 kfree(tg->se[i]);
6843 }
6844 kfree(tg->cfs_rq);
6845 kfree(tg->se);
6846 kfree(tg);
6847
6848 return ERR_PTR(-ENOMEM);
6849 }
6850
6851 /* rcu callback to free various structures associated with a task group */
6852 static void free_sched_group(struct rcu_head *rhp)
6853 {
6854 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
6855 struct task_group *tg = cfs_rq->tg;
6856 struct sched_entity *se;
6857 int i;
6858
6859 /* now it should be safe to free those cfs_rqs */
6860 for_each_possible_cpu(i) {
6861 cfs_rq = tg->cfs_rq[i];
6862 kfree(cfs_rq);
6863
6864 se = tg->se[i];
6865 kfree(se);
6866 }
6867
6868 kfree(tg->cfs_rq);
6869 kfree(tg->se);
6870 kfree(tg);
6871 }
6872
6873 /* Destroy runqueue etc associated with a task group */
6874 void sched_destroy_group(struct task_group *tg)
6875 {
6876 struct cfs_rq *cfs_rq;
6877 int i;
6878
6879 for_each_possible_cpu(i) {
6880 cfs_rq = tg->cfs_rq[i];
6881 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
6882 }
6883
6884 cfs_rq = tg->cfs_rq[0];
6885
6886 /* wait for possible concurrent references to cfs_rqs complete */
6887 call_rcu(&cfs_rq->rcu, free_sched_group);
6888 }
6889
6890 /* change task's runqueue when it moves between groups.
6891 * The caller of this function should have put the task in its new group
6892 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
6893 * reflect its new group.
6894 */
6895 void sched_move_task(struct task_struct *tsk)
6896 {
6897 int on_rq, running;
6898 unsigned long flags;
6899 struct rq *rq;
6900
6901 rq = task_rq_lock(tsk, &flags);
6902
6903 if (tsk->sched_class != &fair_sched_class)
6904 goto done;
6905
6906 update_rq_clock(rq);
6907
6908 running = task_running(rq, tsk);
6909 on_rq = tsk->se.on_rq;
6910
6911 if (on_rq) {
6912 dequeue_task(rq, tsk, 0);
6913 if (unlikely(running))
6914 tsk->sched_class->put_prev_task(rq, tsk);
6915 }
6916
6917 set_task_cfs_rq(tsk);
6918
6919 if (on_rq) {
6920 if (unlikely(running))
6921 tsk->sched_class->set_curr_task(rq);
6922 enqueue_task(rq, tsk, 0);
6923 }
6924
6925 done:
6926 task_rq_unlock(rq, &flags);
6927 }
6928
6929 static void set_se_shares(struct sched_entity *se, unsigned long shares)
6930 {
6931 struct cfs_rq *cfs_rq = se->cfs_rq;
6932 struct rq *rq = cfs_rq->rq;
6933 int on_rq;
6934
6935 spin_lock_irq(&rq->lock);
6936
6937 on_rq = se->on_rq;
6938 if (on_rq)
6939 dequeue_entity(cfs_rq, se, 0);
6940
6941 se->load.weight = shares;
6942 se->load.inv_weight = div64_64((1ULL<<32), shares);
6943
6944 if (on_rq)
6945 enqueue_entity(cfs_rq, se, 0);
6946
6947 spin_unlock_irq(&rq->lock);
6948 }
6949
6950 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6951 {
6952 int i;
6953
6954 spin_lock(&tg->lock);
6955 if (tg->shares == shares)
6956 goto done;
6957
6958 tg->shares = shares;
6959 for_each_possible_cpu(i)
6960 set_se_shares(tg->se[i], shares);
6961
6962 done:
6963 spin_unlock(&tg->lock);
6964 return 0;
6965 }
6966
6967 unsigned long sched_group_shares(struct task_group *tg)
6968 {
6969 return tg->shares;
6970 }
6971
6972 #endif /* CONFIG_FAIR_GROUP_SCHED */