]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/wim/linux-2.6-watchdog
[mirror_ubuntu-zesty-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81 #include "sched_autogroup.h"
82
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/sched.h>
85
86 /*
87 * Convert user-nice values [ -20 ... 0 ... 19 ]
88 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
89 * and back.
90 */
91 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
92 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
93 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
94
95 /*
96 * 'User priority' is the nice value converted to something we
97 * can work with better when scaling various scheduler parameters,
98 * it's a [ 0 ... 39 ] range.
99 */
100 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
101 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
102 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
103
104 /*
105 * Helpers for converting nanosecond timing to jiffy resolution
106 */
107 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108
109 #define NICE_0_LOAD SCHED_LOAD_SCALE
110 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
111
112 /*
113 * These are the 'tuning knobs' of the scheduler:
114 *
115 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
116 * Timeslices get refilled after they expire.
117 */
118 #define DEF_TIMESLICE (100 * HZ / 1000)
119
120 /*
121 * single value that denotes runtime == period, ie unlimited time.
122 */
123 #define RUNTIME_INF ((u64)~0ULL)
124
125 static inline int rt_policy(int policy)
126 {
127 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
128 return 1;
129 return 0;
130 }
131
132 static inline int task_has_rt_policy(struct task_struct *p)
133 {
134 return rt_policy(p->policy);
135 }
136
137 /*
138 * This is the priority-queue data structure of the RT scheduling class:
139 */
140 struct rt_prio_array {
141 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
142 struct list_head queue[MAX_RT_PRIO];
143 };
144
145 struct rt_bandwidth {
146 /* nests inside the rq lock: */
147 raw_spinlock_t rt_runtime_lock;
148 ktime_t rt_period;
149 u64 rt_runtime;
150 struct hrtimer rt_period_timer;
151 };
152
153 static struct rt_bandwidth def_rt_bandwidth;
154
155 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156
157 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158 {
159 struct rt_bandwidth *rt_b =
160 container_of(timer, struct rt_bandwidth, rt_period_timer);
161 ktime_t now;
162 int overrun;
163 int idle = 0;
164
165 for (;;) {
166 now = hrtimer_cb_get_time(timer);
167 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168
169 if (!overrun)
170 break;
171
172 idle = do_sched_rt_period_timer(rt_b, overrun);
173 }
174
175 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
176 }
177
178 static
179 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180 {
181 rt_b->rt_period = ns_to_ktime(period);
182 rt_b->rt_runtime = runtime;
183
184 raw_spin_lock_init(&rt_b->rt_runtime_lock);
185
186 hrtimer_init(&rt_b->rt_period_timer,
187 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
188 rt_b->rt_period_timer.function = sched_rt_period_timer;
189 }
190
191 static inline int rt_bandwidth_enabled(void)
192 {
193 return sysctl_sched_rt_runtime >= 0;
194 }
195
196 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197 {
198 ktime_t now;
199
200 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
201 return;
202
203 if (hrtimer_active(&rt_b->rt_period_timer))
204 return;
205
206 raw_spin_lock(&rt_b->rt_runtime_lock);
207 for (;;) {
208 unsigned long delta;
209 ktime_t soft, hard;
210
211 if (hrtimer_active(&rt_b->rt_period_timer))
212 break;
213
214 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
215 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216
217 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
218 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
219 delta = ktime_to_ns(ktime_sub(hard, soft));
220 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
221 HRTIMER_MODE_ABS_PINNED, 0);
222 }
223 raw_spin_unlock(&rt_b->rt_runtime_lock);
224 }
225
226 #ifdef CONFIG_RT_GROUP_SCHED
227 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228 {
229 hrtimer_cancel(&rt_b->rt_period_timer);
230 }
231 #endif
232
233 /*
234 * sched_domains_mutex serializes calls to arch_init_sched_domains,
235 * detach_destroy_domains and partition_sched_domains.
236 */
237 static DEFINE_MUTEX(sched_domains_mutex);
238
239 #ifdef CONFIG_CGROUP_SCHED
240
241 #include <linux/cgroup.h>
242
243 struct cfs_rq;
244
245 static LIST_HEAD(task_groups);
246
247 /* task group related information */
248 struct task_group {
249 struct cgroup_subsys_state css;
250
251 #ifdef CONFIG_FAIR_GROUP_SCHED
252 /* schedulable entities of this group on each cpu */
253 struct sched_entity **se;
254 /* runqueue "owned" by this group on each cpu */
255 struct cfs_rq **cfs_rq;
256 unsigned long shares;
257
258 atomic_t load_weight;
259 #endif
260
261 #ifdef CONFIG_RT_GROUP_SCHED
262 struct sched_rt_entity **rt_se;
263 struct rt_rq **rt_rq;
264
265 struct rt_bandwidth rt_bandwidth;
266 #endif
267
268 struct rcu_head rcu;
269 struct list_head list;
270
271 struct task_group *parent;
272 struct list_head siblings;
273 struct list_head children;
274
275 #ifdef CONFIG_SCHED_AUTOGROUP
276 struct autogroup *autogroup;
277 #endif
278 };
279
280 /* task_group_lock serializes the addition/removal of task groups */
281 static DEFINE_SPINLOCK(task_group_lock);
282
283 #ifdef CONFIG_FAIR_GROUP_SCHED
284
285 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
286
287 /*
288 * A weight of 0 or 1 can cause arithmetics problems.
289 * A weight of a cfs_rq is the sum of weights of which entities
290 * are queued on this cfs_rq, so a weight of a entity should not be
291 * too large, so as the shares value of a task group.
292 * (The default weight is 1024 - so there's no practical
293 * limitation from this.)
294 */
295 #define MIN_SHARES 2
296 #define MAX_SHARES (1UL << 18)
297
298 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
299 #endif
300
301 /* Default task group.
302 * Every task in system belong to this group at bootup.
303 */
304 struct task_group root_task_group;
305
306 #endif /* CONFIG_CGROUP_SCHED */
307
308 /* CFS-related fields in a runqueue */
309 struct cfs_rq {
310 struct load_weight load;
311 unsigned long nr_running;
312
313 u64 exec_clock;
314 u64 min_vruntime;
315
316 struct rb_root tasks_timeline;
317 struct rb_node *rb_leftmost;
318
319 struct list_head tasks;
320 struct list_head *balance_iterator;
321
322 /*
323 * 'curr' points to currently running entity on this cfs_rq.
324 * It is set to NULL otherwise (i.e when none are currently running).
325 */
326 struct sched_entity *curr, *next, *last, *skip;
327
328 unsigned int nr_spread_over;
329
330 #ifdef CONFIG_FAIR_GROUP_SCHED
331 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
332
333 /*
334 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
335 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
336 * (like users, containers etc.)
337 *
338 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
339 * list is used during load balance.
340 */
341 int on_list;
342 struct list_head leaf_cfs_rq_list;
343 struct task_group *tg; /* group that "owns" this runqueue */
344
345 #ifdef CONFIG_SMP
346 /*
347 * the part of load.weight contributed by tasks
348 */
349 unsigned long task_weight;
350
351 /*
352 * h_load = weight * f(tg)
353 *
354 * Where f(tg) is the recursive weight fraction assigned to
355 * this group.
356 */
357 unsigned long h_load;
358
359 /*
360 * Maintaining per-cpu shares distribution for group scheduling
361 *
362 * load_stamp is the last time we updated the load average
363 * load_last is the last time we updated the load average and saw load
364 * load_unacc_exec_time is currently unaccounted execution time
365 */
366 u64 load_avg;
367 u64 load_period;
368 u64 load_stamp, load_last, load_unacc_exec_time;
369
370 unsigned long load_contribution;
371 #endif
372 #endif
373 };
374
375 /* Real-Time classes' related field in a runqueue: */
376 struct rt_rq {
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 struct {
381 int curr; /* highest queued rt task prio */
382 #ifdef CONFIG_SMP
383 int next; /* next highest */
384 #endif
385 } highest_prio;
386 #endif
387 #ifdef CONFIG_SMP
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
390 int overloaded;
391 struct plist_head pushable_tasks;
392 #endif
393 int rt_throttled;
394 u64 rt_time;
395 u64 rt_runtime;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
398
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
401
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
405 #endif
406 };
407
408 #ifdef CONFIG_SMP
409
410 /*
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
417 */
418 struct root_domain {
419 atomic_t refcount;
420 cpumask_var_t span;
421 cpumask_var_t online;
422
423 /*
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
427 cpumask_var_t rto_mask;
428 atomic_t rto_count;
429 struct cpupri cpupri;
430 };
431
432 /*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
436 static struct root_domain def_root_domain;
437
438 #endif /* CONFIG_SMP */
439
440 /*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
447 struct rq {
448 /* runqueue lock: */
449 raw_spinlock_t lock;
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
458 unsigned long last_load_update_tick;
459 #ifdef CONFIG_NO_HZ
460 u64 nohz_stamp;
461 unsigned char nohz_balance_kick;
462 #endif
463 unsigned int skip_clock_update;
464
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
471 struct rt_rq rt;
472
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
476 #endif
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
479 #endif
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
489 struct task_struct *curr, *idle, *stop;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
492
493 u64 clock;
494 u64 clock_task;
495
496 atomic_t nr_iowait;
497
498 #ifdef CONFIG_SMP
499 struct root_domain *rd;
500 struct sched_domain *sd;
501
502 unsigned long cpu_power;
503
504 unsigned char idle_at_tick;
505 /* For active balancing */
506 int post_schedule;
507 int active_balance;
508 int push_cpu;
509 struct cpu_stop_work active_balance_work;
510 /* cpu of this runqueue: */
511 int cpu;
512 int online;
513
514 unsigned long avg_load_per_task;
515
516 u64 rt_avg;
517 u64 age_stamp;
518 u64 idle_stamp;
519 u64 avg_idle;
520 #endif
521
522 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
523 u64 prev_irq_time;
524 #endif
525
526 /* calc_load related fields */
527 unsigned long calc_load_update;
528 long calc_load_active;
529
530 #ifdef CONFIG_SCHED_HRTICK
531 #ifdef CONFIG_SMP
532 int hrtick_csd_pending;
533 struct call_single_data hrtick_csd;
534 #endif
535 struct hrtimer hrtick_timer;
536 #endif
537
538 #ifdef CONFIG_SCHEDSTATS
539 /* latency stats */
540 struct sched_info rq_sched_info;
541 unsigned long long rq_cpu_time;
542 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
543
544 /* sys_sched_yield() stats */
545 unsigned int yld_count;
546
547 /* schedule() stats */
548 unsigned int sched_switch;
549 unsigned int sched_count;
550 unsigned int sched_goidle;
551
552 /* try_to_wake_up() stats */
553 unsigned int ttwu_count;
554 unsigned int ttwu_local;
555 #endif
556 };
557
558 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
559
560
561 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
562
563 static inline int cpu_of(struct rq *rq)
564 {
565 #ifdef CONFIG_SMP
566 return rq->cpu;
567 #else
568 return 0;
569 #endif
570 }
571
572 #define rcu_dereference_check_sched_domain(p) \
573 rcu_dereference_check((p), \
574 rcu_read_lock_sched_held() || \
575 lockdep_is_held(&sched_domains_mutex))
576
577 /*
578 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
579 * See detach_destroy_domains: synchronize_sched for details.
580 *
581 * The domain tree of any CPU may only be accessed from within
582 * preempt-disabled sections.
583 */
584 #define for_each_domain(cpu, __sd) \
585 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
586
587 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
588 #define this_rq() (&__get_cpu_var(runqueues))
589 #define task_rq(p) cpu_rq(task_cpu(p))
590 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
591 #define raw_rq() (&__raw_get_cpu_var(runqueues))
592
593 #ifdef CONFIG_CGROUP_SCHED
594
595 /*
596 * Return the group to which this tasks belongs.
597 *
598 * We use task_subsys_state_check() and extend the RCU verification
599 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
600 * holds that lock for each task it moves into the cgroup. Therefore
601 * by holding that lock, we pin the task to the current cgroup.
602 */
603 static inline struct task_group *task_group(struct task_struct *p)
604 {
605 struct task_group *tg;
606 struct cgroup_subsys_state *css;
607
608 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
609 lockdep_is_held(&task_rq(p)->lock));
610 tg = container_of(css, struct task_group, css);
611
612 return autogroup_task_group(p, tg);
613 }
614
615 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
616 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
617 {
618 #ifdef CONFIG_FAIR_GROUP_SCHED
619 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
620 p->se.parent = task_group(p)->se[cpu];
621 #endif
622
623 #ifdef CONFIG_RT_GROUP_SCHED
624 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
625 p->rt.parent = task_group(p)->rt_se[cpu];
626 #endif
627 }
628
629 #else /* CONFIG_CGROUP_SCHED */
630
631 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
632 static inline struct task_group *task_group(struct task_struct *p)
633 {
634 return NULL;
635 }
636
637 #endif /* CONFIG_CGROUP_SCHED */
638
639 static void update_rq_clock_task(struct rq *rq, s64 delta);
640
641 static void update_rq_clock(struct rq *rq)
642 {
643 s64 delta;
644
645 if (rq->skip_clock_update)
646 return;
647
648 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
649 rq->clock += delta;
650 update_rq_clock_task(rq, delta);
651 }
652
653 /*
654 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
655 */
656 #ifdef CONFIG_SCHED_DEBUG
657 # define const_debug __read_mostly
658 #else
659 # define const_debug static const
660 #endif
661
662 /**
663 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
664 * @cpu: the processor in question.
665 *
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
668 */
669 int runqueue_is_locked(int cpu)
670 {
671 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
672 }
673
674 /*
675 * Debugging: various feature bits
676 */
677
678 #define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
680
681 enum {
682 #include "sched_features.h"
683 };
684
685 #undef SCHED_FEAT
686
687 #define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
689
690 const_debug unsigned int sysctl_sched_features =
691 #include "sched_features.h"
692 0;
693
694 #undef SCHED_FEAT
695
696 #ifdef CONFIG_SCHED_DEBUG
697 #define SCHED_FEAT(name, enabled) \
698 #name ,
699
700 static __read_mostly char *sched_feat_names[] = {
701 #include "sched_features.h"
702 NULL
703 };
704
705 #undef SCHED_FEAT
706
707 static int sched_feat_show(struct seq_file *m, void *v)
708 {
709 int i;
710
711 for (i = 0; sched_feat_names[i]; i++) {
712 if (!(sysctl_sched_features & (1UL << i)))
713 seq_puts(m, "NO_");
714 seq_printf(m, "%s ", sched_feat_names[i]);
715 }
716 seq_puts(m, "\n");
717
718 return 0;
719 }
720
721 static ssize_t
722 sched_feat_write(struct file *filp, const char __user *ubuf,
723 size_t cnt, loff_t *ppos)
724 {
725 char buf[64];
726 char *cmp;
727 int neg = 0;
728 int i;
729
730 if (cnt > 63)
731 cnt = 63;
732
733 if (copy_from_user(&buf, ubuf, cnt))
734 return -EFAULT;
735
736 buf[cnt] = 0;
737 cmp = strstrip(buf);
738
739 if (strncmp(cmp, "NO_", 3) == 0) {
740 neg = 1;
741 cmp += 3;
742 }
743
744 for (i = 0; sched_feat_names[i]; i++) {
745 if (strcmp(cmp, sched_feat_names[i]) == 0) {
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
751 }
752 }
753
754 if (!sched_feat_names[i])
755 return -EINVAL;
756
757 *ppos += cnt;
758
759 return cnt;
760 }
761
762 static int sched_feat_open(struct inode *inode, struct file *filp)
763 {
764 return single_open(filp, sched_feat_show, NULL);
765 }
766
767 static const struct file_operations sched_feat_fops = {
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
773 };
774
775 static __init int sched_init_debug(void)
776 {
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
779
780 return 0;
781 }
782 late_initcall(sched_init_debug);
783
784 #endif
785
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
787
788 /*
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
791 */
792 const_debug unsigned int sysctl_sched_nr_migrate = 32;
793
794 /*
795 * period over which we average the RT time consumption, measured
796 * in ms.
797 *
798 * default: 1s
799 */
800 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
801
802 /*
803 * period over which we measure -rt task cpu usage in us.
804 * default: 1s
805 */
806 unsigned int sysctl_sched_rt_period = 1000000;
807
808 static __read_mostly int scheduler_running;
809
810 /*
811 * part of the period that we allow rt tasks to run in us.
812 * default: 0.95s
813 */
814 int sysctl_sched_rt_runtime = 950000;
815
816 static inline u64 global_rt_period(void)
817 {
818 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
819 }
820
821 static inline u64 global_rt_runtime(void)
822 {
823 if (sysctl_sched_rt_runtime < 0)
824 return RUNTIME_INF;
825
826 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
827 }
828
829 #ifndef prepare_arch_switch
830 # define prepare_arch_switch(next) do { } while (0)
831 #endif
832 #ifndef finish_arch_switch
833 # define finish_arch_switch(prev) do { } while (0)
834 #endif
835
836 static inline int task_current(struct rq *rq, struct task_struct *p)
837 {
838 return rq->curr == p;
839 }
840
841 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
842 static inline int task_running(struct rq *rq, struct task_struct *p)
843 {
844 return task_current(rq, p);
845 }
846
847 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
848 {
849 }
850
851 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
852 {
853 #ifdef CONFIG_DEBUG_SPINLOCK
854 /* this is a valid case when another task releases the spinlock */
855 rq->lock.owner = current;
856 #endif
857 /*
858 * If we are tracking spinlock dependencies then we have to
859 * fix up the runqueue lock - which gets 'carried over' from
860 * prev into current:
861 */
862 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
863
864 raw_spin_unlock_irq(&rq->lock);
865 }
866
867 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
868 static inline int task_running(struct rq *rq, struct task_struct *p)
869 {
870 #ifdef CONFIG_SMP
871 return p->oncpu;
872 #else
873 return task_current(rq, p);
874 #endif
875 }
876
877 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
878 {
879 #ifdef CONFIG_SMP
880 /*
881 * We can optimise this out completely for !SMP, because the
882 * SMP rebalancing from interrupt is the only thing that cares
883 * here.
884 */
885 next->oncpu = 1;
886 #endif
887 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
888 raw_spin_unlock_irq(&rq->lock);
889 #else
890 raw_spin_unlock(&rq->lock);
891 #endif
892 }
893
894 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
895 {
896 #ifdef CONFIG_SMP
897 /*
898 * After ->oncpu is cleared, the task can be moved to a different CPU.
899 * We must ensure this doesn't happen until the switch is completely
900 * finished.
901 */
902 smp_wmb();
903 prev->oncpu = 0;
904 #endif
905 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
906 local_irq_enable();
907 #endif
908 }
909 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
910
911 /*
912 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
913 * against ttwu().
914 */
915 static inline int task_is_waking(struct task_struct *p)
916 {
917 return unlikely(p->state == TASK_WAKING);
918 }
919
920 /*
921 * __task_rq_lock - lock the runqueue a given task resides on.
922 * Must be called interrupts disabled.
923 */
924 static inline struct rq *__task_rq_lock(struct task_struct *p)
925 __acquires(rq->lock)
926 {
927 struct rq *rq;
928
929 for (;;) {
930 rq = task_rq(p);
931 raw_spin_lock(&rq->lock);
932 if (likely(rq == task_rq(p)))
933 return rq;
934 raw_spin_unlock(&rq->lock);
935 }
936 }
937
938 /*
939 * task_rq_lock - lock the runqueue a given task resides on and disable
940 * interrupts. Note the ordering: we can safely lookup the task_rq without
941 * explicitly disabling preemption.
942 */
943 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
944 __acquires(rq->lock)
945 {
946 struct rq *rq;
947
948 for (;;) {
949 local_irq_save(*flags);
950 rq = task_rq(p);
951 raw_spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p)))
953 return rq;
954 raw_spin_unlock_irqrestore(&rq->lock, *flags);
955 }
956 }
957
958 static void __task_rq_unlock(struct rq *rq)
959 __releases(rq->lock)
960 {
961 raw_spin_unlock(&rq->lock);
962 }
963
964 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
965 __releases(rq->lock)
966 {
967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
968 }
969
970 /*
971 * this_rq_lock - lock this runqueue and disable interrupts.
972 */
973 static struct rq *this_rq_lock(void)
974 __acquires(rq->lock)
975 {
976 struct rq *rq;
977
978 local_irq_disable();
979 rq = this_rq();
980 raw_spin_lock(&rq->lock);
981
982 return rq;
983 }
984
985 #ifdef CONFIG_SCHED_HRTICK
986 /*
987 * Use HR-timers to deliver accurate preemption points.
988 *
989 * Its all a bit involved since we cannot program an hrt while holding the
990 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
991 * reschedule event.
992 *
993 * When we get rescheduled we reprogram the hrtick_timer outside of the
994 * rq->lock.
995 */
996
997 /*
998 * Use hrtick when:
999 * - enabled by features
1000 * - hrtimer is actually high res
1001 */
1002 static inline int hrtick_enabled(struct rq *rq)
1003 {
1004 if (!sched_feat(HRTICK))
1005 return 0;
1006 if (!cpu_active(cpu_of(rq)))
1007 return 0;
1008 return hrtimer_is_hres_active(&rq->hrtick_timer);
1009 }
1010
1011 static void hrtick_clear(struct rq *rq)
1012 {
1013 if (hrtimer_active(&rq->hrtick_timer))
1014 hrtimer_cancel(&rq->hrtick_timer);
1015 }
1016
1017 /*
1018 * High-resolution timer tick.
1019 * Runs from hardirq context with interrupts disabled.
1020 */
1021 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1022 {
1023 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1024
1025 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1026
1027 raw_spin_lock(&rq->lock);
1028 update_rq_clock(rq);
1029 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1030 raw_spin_unlock(&rq->lock);
1031
1032 return HRTIMER_NORESTART;
1033 }
1034
1035 #ifdef CONFIG_SMP
1036 /*
1037 * called from hardirq (IPI) context
1038 */
1039 static void __hrtick_start(void *arg)
1040 {
1041 struct rq *rq = arg;
1042
1043 raw_spin_lock(&rq->lock);
1044 hrtimer_restart(&rq->hrtick_timer);
1045 rq->hrtick_csd_pending = 0;
1046 raw_spin_unlock(&rq->lock);
1047 }
1048
1049 /*
1050 * Called to set the hrtick timer state.
1051 *
1052 * called with rq->lock held and irqs disabled
1053 */
1054 static void hrtick_start(struct rq *rq, u64 delay)
1055 {
1056 struct hrtimer *timer = &rq->hrtick_timer;
1057 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1058
1059 hrtimer_set_expires(timer, time);
1060
1061 if (rq == this_rq()) {
1062 hrtimer_restart(timer);
1063 } else if (!rq->hrtick_csd_pending) {
1064 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1065 rq->hrtick_csd_pending = 1;
1066 }
1067 }
1068
1069 static int
1070 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1071 {
1072 int cpu = (int)(long)hcpu;
1073
1074 switch (action) {
1075 case CPU_UP_CANCELED:
1076 case CPU_UP_CANCELED_FROZEN:
1077 case CPU_DOWN_PREPARE:
1078 case CPU_DOWN_PREPARE_FROZEN:
1079 case CPU_DEAD:
1080 case CPU_DEAD_FROZEN:
1081 hrtick_clear(cpu_rq(cpu));
1082 return NOTIFY_OK;
1083 }
1084
1085 return NOTIFY_DONE;
1086 }
1087
1088 static __init void init_hrtick(void)
1089 {
1090 hotcpu_notifier(hotplug_hrtick, 0);
1091 }
1092 #else
1093 /*
1094 * Called to set the hrtick timer state.
1095 *
1096 * called with rq->lock held and irqs disabled
1097 */
1098 static void hrtick_start(struct rq *rq, u64 delay)
1099 {
1100 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1101 HRTIMER_MODE_REL_PINNED, 0);
1102 }
1103
1104 static inline void init_hrtick(void)
1105 {
1106 }
1107 #endif /* CONFIG_SMP */
1108
1109 static void init_rq_hrtick(struct rq *rq)
1110 {
1111 #ifdef CONFIG_SMP
1112 rq->hrtick_csd_pending = 0;
1113
1114 rq->hrtick_csd.flags = 0;
1115 rq->hrtick_csd.func = __hrtick_start;
1116 rq->hrtick_csd.info = rq;
1117 #endif
1118
1119 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1120 rq->hrtick_timer.function = hrtick;
1121 }
1122 #else /* CONFIG_SCHED_HRTICK */
1123 static inline void hrtick_clear(struct rq *rq)
1124 {
1125 }
1126
1127 static inline void init_rq_hrtick(struct rq *rq)
1128 {
1129 }
1130
1131 static inline void init_hrtick(void)
1132 {
1133 }
1134 #endif /* CONFIG_SCHED_HRTICK */
1135
1136 /*
1137 * resched_task - mark a task 'to be rescheduled now'.
1138 *
1139 * On UP this means the setting of the need_resched flag, on SMP it
1140 * might also involve a cross-CPU call to trigger the scheduler on
1141 * the target CPU.
1142 */
1143 #ifdef CONFIG_SMP
1144
1145 #ifndef tsk_is_polling
1146 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1147 #endif
1148
1149 static void resched_task(struct task_struct *p)
1150 {
1151 int cpu;
1152
1153 assert_raw_spin_locked(&task_rq(p)->lock);
1154
1155 if (test_tsk_need_resched(p))
1156 return;
1157
1158 set_tsk_need_resched(p);
1159
1160 cpu = task_cpu(p);
1161 if (cpu == smp_processor_id())
1162 return;
1163
1164 /* NEED_RESCHED must be visible before we test polling */
1165 smp_mb();
1166 if (!tsk_is_polling(p))
1167 smp_send_reschedule(cpu);
1168 }
1169
1170 static void resched_cpu(int cpu)
1171 {
1172 struct rq *rq = cpu_rq(cpu);
1173 unsigned long flags;
1174
1175 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1176 return;
1177 resched_task(cpu_curr(cpu));
1178 raw_spin_unlock_irqrestore(&rq->lock, flags);
1179 }
1180
1181 #ifdef CONFIG_NO_HZ
1182 /*
1183 * In the semi idle case, use the nearest busy cpu for migrating timers
1184 * from an idle cpu. This is good for power-savings.
1185 *
1186 * We don't do similar optimization for completely idle system, as
1187 * selecting an idle cpu will add more delays to the timers than intended
1188 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1189 */
1190 int get_nohz_timer_target(void)
1191 {
1192 int cpu = smp_processor_id();
1193 int i;
1194 struct sched_domain *sd;
1195
1196 for_each_domain(cpu, sd) {
1197 for_each_cpu(i, sched_domain_span(sd))
1198 if (!idle_cpu(i))
1199 return i;
1200 }
1201 return cpu;
1202 }
1203 /*
1204 * When add_timer_on() enqueues a timer into the timer wheel of an
1205 * idle CPU then this timer might expire before the next timer event
1206 * which is scheduled to wake up that CPU. In case of a completely
1207 * idle system the next event might even be infinite time into the
1208 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1209 * leaves the inner idle loop so the newly added timer is taken into
1210 * account when the CPU goes back to idle and evaluates the timer
1211 * wheel for the next timer event.
1212 */
1213 void wake_up_idle_cpu(int cpu)
1214 {
1215 struct rq *rq = cpu_rq(cpu);
1216
1217 if (cpu == smp_processor_id())
1218 return;
1219
1220 /*
1221 * This is safe, as this function is called with the timer
1222 * wheel base lock of (cpu) held. When the CPU is on the way
1223 * to idle and has not yet set rq->curr to idle then it will
1224 * be serialized on the timer wheel base lock and take the new
1225 * timer into account automatically.
1226 */
1227 if (rq->curr != rq->idle)
1228 return;
1229
1230 /*
1231 * We can set TIF_RESCHED on the idle task of the other CPU
1232 * lockless. The worst case is that the other CPU runs the
1233 * idle task through an additional NOOP schedule()
1234 */
1235 set_tsk_need_resched(rq->idle);
1236
1237 /* NEED_RESCHED must be visible before we test polling */
1238 smp_mb();
1239 if (!tsk_is_polling(rq->idle))
1240 smp_send_reschedule(cpu);
1241 }
1242
1243 #endif /* CONFIG_NO_HZ */
1244
1245 static u64 sched_avg_period(void)
1246 {
1247 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1248 }
1249
1250 static void sched_avg_update(struct rq *rq)
1251 {
1252 s64 period = sched_avg_period();
1253
1254 while ((s64)(rq->clock - rq->age_stamp) > period) {
1255 /*
1256 * Inline assembly required to prevent the compiler
1257 * optimising this loop into a divmod call.
1258 * See __iter_div_u64_rem() for another example of this.
1259 */
1260 asm("" : "+rm" (rq->age_stamp));
1261 rq->age_stamp += period;
1262 rq->rt_avg /= 2;
1263 }
1264 }
1265
1266 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1267 {
1268 rq->rt_avg += rt_delta;
1269 sched_avg_update(rq);
1270 }
1271
1272 #else /* !CONFIG_SMP */
1273 static void resched_task(struct task_struct *p)
1274 {
1275 assert_raw_spin_locked(&task_rq(p)->lock);
1276 set_tsk_need_resched(p);
1277 }
1278
1279 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280 {
1281 }
1282
1283 static void sched_avg_update(struct rq *rq)
1284 {
1285 }
1286 #endif /* CONFIG_SMP */
1287
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1290 #else
1291 # define WMULT_CONST (1UL << 32)
1292 #endif
1293
1294 #define WMULT_SHIFT 32
1295
1296 /*
1297 * Shift right and round:
1298 */
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1300
1301 /*
1302 * delta *= weight / lw
1303 */
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307 {
1308 u64 tmp;
1309
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
1322 if (unlikely(tmp > WMULT_CONST))
1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324 WMULT_SHIFT/2);
1325 else
1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327
1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 }
1330
1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 {
1333 lw->weight += inc;
1334 lw->inv_weight = 0;
1335 }
1336
1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 {
1339 lw->weight -= dec;
1340 lw->inv_weight = 0;
1341 }
1342
1343 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1344 {
1345 lw->weight = w;
1346 lw->inv_weight = 0;
1347 }
1348
1349 /*
1350 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1351 * of tasks with abnormal "nice" values across CPUs the contribution that
1352 * each task makes to its run queue's load is weighted according to its
1353 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1354 * scaled version of the new time slice allocation that they receive on time
1355 * slice expiry etc.
1356 */
1357
1358 #define WEIGHT_IDLEPRIO 3
1359 #define WMULT_IDLEPRIO 1431655765
1360
1361 /*
1362 * Nice levels are multiplicative, with a gentle 10% change for every
1363 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1364 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1365 * that remained on nice 0.
1366 *
1367 * The "10% effect" is relative and cumulative: from _any_ nice level,
1368 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1369 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1370 * If a task goes up by ~10% and another task goes down by ~10% then
1371 * the relative distance between them is ~25%.)
1372 */
1373 static const int prio_to_weight[40] = {
1374 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1375 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1376 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1377 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1378 /* 0 */ 1024, 820, 655, 526, 423,
1379 /* 5 */ 335, 272, 215, 172, 137,
1380 /* 10 */ 110, 87, 70, 56, 45,
1381 /* 15 */ 36, 29, 23, 18, 15,
1382 };
1383
1384 /*
1385 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1386 *
1387 * In cases where the weight does not change often, we can use the
1388 * precalculated inverse to speed up arithmetics by turning divisions
1389 * into multiplications:
1390 */
1391 static const u32 prio_to_wmult[40] = {
1392 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1393 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1394 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1395 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1396 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1397 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1398 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1399 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1400 };
1401
1402 /* Time spent by the tasks of the cpu accounting group executing in ... */
1403 enum cpuacct_stat_index {
1404 CPUACCT_STAT_USER, /* ... user mode */
1405 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1406
1407 CPUACCT_STAT_NSTATS,
1408 };
1409
1410 #ifdef CONFIG_CGROUP_CPUACCT
1411 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1412 static void cpuacct_update_stats(struct task_struct *tsk,
1413 enum cpuacct_stat_index idx, cputime_t val);
1414 #else
1415 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1416 static inline void cpuacct_update_stats(struct task_struct *tsk,
1417 enum cpuacct_stat_index idx, cputime_t val) {}
1418 #endif
1419
1420 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1421 {
1422 update_load_add(&rq->load, load);
1423 }
1424
1425 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1426 {
1427 update_load_sub(&rq->load, load);
1428 }
1429
1430 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1431 typedef int (*tg_visitor)(struct task_group *, void *);
1432
1433 /*
1434 * Iterate the full tree, calling @down when first entering a node and @up when
1435 * leaving it for the final time.
1436 */
1437 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1438 {
1439 struct task_group *parent, *child;
1440 int ret;
1441
1442 rcu_read_lock();
1443 parent = &root_task_group;
1444 down:
1445 ret = (*down)(parent, data);
1446 if (ret)
1447 goto out_unlock;
1448 list_for_each_entry_rcu(child, &parent->children, siblings) {
1449 parent = child;
1450 goto down;
1451
1452 up:
1453 continue;
1454 }
1455 ret = (*up)(parent, data);
1456 if (ret)
1457 goto out_unlock;
1458
1459 child = parent;
1460 parent = parent->parent;
1461 if (parent)
1462 goto up;
1463 out_unlock:
1464 rcu_read_unlock();
1465
1466 return ret;
1467 }
1468
1469 static int tg_nop(struct task_group *tg, void *data)
1470 {
1471 return 0;
1472 }
1473 #endif
1474
1475 #ifdef CONFIG_SMP
1476 /* Used instead of source_load when we know the type == 0 */
1477 static unsigned long weighted_cpuload(const int cpu)
1478 {
1479 return cpu_rq(cpu)->load.weight;
1480 }
1481
1482 /*
1483 * Return a low guess at the load of a migration-source cpu weighted
1484 * according to the scheduling class and "nice" value.
1485 *
1486 * We want to under-estimate the load of migration sources, to
1487 * balance conservatively.
1488 */
1489 static unsigned long source_load(int cpu, int type)
1490 {
1491 struct rq *rq = cpu_rq(cpu);
1492 unsigned long total = weighted_cpuload(cpu);
1493
1494 if (type == 0 || !sched_feat(LB_BIAS))
1495 return total;
1496
1497 return min(rq->cpu_load[type-1], total);
1498 }
1499
1500 /*
1501 * Return a high guess at the load of a migration-target cpu weighted
1502 * according to the scheduling class and "nice" value.
1503 */
1504 static unsigned long target_load(int cpu, int type)
1505 {
1506 struct rq *rq = cpu_rq(cpu);
1507 unsigned long total = weighted_cpuload(cpu);
1508
1509 if (type == 0 || !sched_feat(LB_BIAS))
1510 return total;
1511
1512 return max(rq->cpu_load[type-1], total);
1513 }
1514
1515 static unsigned long power_of(int cpu)
1516 {
1517 return cpu_rq(cpu)->cpu_power;
1518 }
1519
1520 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1521
1522 static unsigned long cpu_avg_load_per_task(int cpu)
1523 {
1524 struct rq *rq = cpu_rq(cpu);
1525 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1526
1527 if (nr_running)
1528 rq->avg_load_per_task = rq->load.weight / nr_running;
1529 else
1530 rq->avg_load_per_task = 0;
1531
1532 return rq->avg_load_per_task;
1533 }
1534
1535 #ifdef CONFIG_FAIR_GROUP_SCHED
1536
1537 /*
1538 * Compute the cpu's hierarchical load factor for each task group.
1539 * This needs to be done in a top-down fashion because the load of a child
1540 * group is a fraction of its parents load.
1541 */
1542 static int tg_load_down(struct task_group *tg, void *data)
1543 {
1544 unsigned long load;
1545 long cpu = (long)data;
1546
1547 if (!tg->parent) {
1548 load = cpu_rq(cpu)->load.weight;
1549 } else {
1550 load = tg->parent->cfs_rq[cpu]->h_load;
1551 load *= tg->se[cpu]->load.weight;
1552 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1553 }
1554
1555 tg->cfs_rq[cpu]->h_load = load;
1556
1557 return 0;
1558 }
1559
1560 static void update_h_load(long cpu)
1561 {
1562 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1563 }
1564
1565 #endif
1566
1567 #ifdef CONFIG_PREEMPT
1568
1569 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1570
1571 /*
1572 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1573 * way at the expense of forcing extra atomic operations in all
1574 * invocations. This assures that the double_lock is acquired using the
1575 * same underlying policy as the spinlock_t on this architecture, which
1576 * reduces latency compared to the unfair variant below. However, it
1577 * also adds more overhead and therefore may reduce throughput.
1578 */
1579 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1580 __releases(this_rq->lock)
1581 __acquires(busiest->lock)
1582 __acquires(this_rq->lock)
1583 {
1584 raw_spin_unlock(&this_rq->lock);
1585 double_rq_lock(this_rq, busiest);
1586
1587 return 1;
1588 }
1589
1590 #else
1591 /*
1592 * Unfair double_lock_balance: Optimizes throughput at the expense of
1593 * latency by eliminating extra atomic operations when the locks are
1594 * already in proper order on entry. This favors lower cpu-ids and will
1595 * grant the double lock to lower cpus over higher ids under contention,
1596 * regardless of entry order into the function.
1597 */
1598 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1599 __releases(this_rq->lock)
1600 __acquires(busiest->lock)
1601 __acquires(this_rq->lock)
1602 {
1603 int ret = 0;
1604
1605 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1606 if (busiest < this_rq) {
1607 raw_spin_unlock(&this_rq->lock);
1608 raw_spin_lock(&busiest->lock);
1609 raw_spin_lock_nested(&this_rq->lock,
1610 SINGLE_DEPTH_NESTING);
1611 ret = 1;
1612 } else
1613 raw_spin_lock_nested(&busiest->lock,
1614 SINGLE_DEPTH_NESTING);
1615 }
1616 return ret;
1617 }
1618
1619 #endif /* CONFIG_PREEMPT */
1620
1621 /*
1622 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1623 */
1624 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1625 {
1626 if (unlikely(!irqs_disabled())) {
1627 /* printk() doesn't work good under rq->lock */
1628 raw_spin_unlock(&this_rq->lock);
1629 BUG_ON(1);
1630 }
1631
1632 return _double_lock_balance(this_rq, busiest);
1633 }
1634
1635 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1636 __releases(busiest->lock)
1637 {
1638 raw_spin_unlock(&busiest->lock);
1639 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1640 }
1641
1642 /*
1643 * double_rq_lock - safely lock two runqueues
1644 *
1645 * Note this does not disable interrupts like task_rq_lock,
1646 * you need to do so manually before calling.
1647 */
1648 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1649 __acquires(rq1->lock)
1650 __acquires(rq2->lock)
1651 {
1652 BUG_ON(!irqs_disabled());
1653 if (rq1 == rq2) {
1654 raw_spin_lock(&rq1->lock);
1655 __acquire(rq2->lock); /* Fake it out ;) */
1656 } else {
1657 if (rq1 < rq2) {
1658 raw_spin_lock(&rq1->lock);
1659 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1660 } else {
1661 raw_spin_lock(&rq2->lock);
1662 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1663 }
1664 }
1665 }
1666
1667 /*
1668 * double_rq_unlock - safely unlock two runqueues
1669 *
1670 * Note this does not restore interrupts like task_rq_unlock,
1671 * you need to do so manually after calling.
1672 */
1673 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1674 __releases(rq1->lock)
1675 __releases(rq2->lock)
1676 {
1677 raw_spin_unlock(&rq1->lock);
1678 if (rq1 != rq2)
1679 raw_spin_unlock(&rq2->lock);
1680 else
1681 __release(rq2->lock);
1682 }
1683
1684 #else /* CONFIG_SMP */
1685
1686 /*
1687 * double_rq_lock - safely lock two runqueues
1688 *
1689 * Note this does not disable interrupts like task_rq_lock,
1690 * you need to do so manually before calling.
1691 */
1692 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1693 __acquires(rq1->lock)
1694 __acquires(rq2->lock)
1695 {
1696 BUG_ON(!irqs_disabled());
1697 BUG_ON(rq1 != rq2);
1698 raw_spin_lock(&rq1->lock);
1699 __acquire(rq2->lock); /* Fake it out ;) */
1700 }
1701
1702 /*
1703 * double_rq_unlock - safely unlock two runqueues
1704 *
1705 * Note this does not restore interrupts like task_rq_unlock,
1706 * you need to do so manually after calling.
1707 */
1708 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1709 __releases(rq1->lock)
1710 __releases(rq2->lock)
1711 {
1712 BUG_ON(rq1 != rq2);
1713 raw_spin_unlock(&rq1->lock);
1714 __release(rq2->lock);
1715 }
1716
1717 #endif
1718
1719 static void calc_load_account_idle(struct rq *this_rq);
1720 static void update_sysctl(void);
1721 static int get_update_sysctl_factor(void);
1722 static void update_cpu_load(struct rq *this_rq);
1723
1724 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1725 {
1726 set_task_rq(p, cpu);
1727 #ifdef CONFIG_SMP
1728 /*
1729 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1730 * successfuly executed on another CPU. We must ensure that updates of
1731 * per-task data have been completed by this moment.
1732 */
1733 smp_wmb();
1734 task_thread_info(p)->cpu = cpu;
1735 #endif
1736 }
1737
1738 static const struct sched_class rt_sched_class;
1739
1740 #define sched_class_highest (&stop_sched_class)
1741 #define for_each_class(class) \
1742 for (class = sched_class_highest; class; class = class->next)
1743
1744 #include "sched_stats.h"
1745
1746 static void inc_nr_running(struct rq *rq)
1747 {
1748 rq->nr_running++;
1749 }
1750
1751 static void dec_nr_running(struct rq *rq)
1752 {
1753 rq->nr_running--;
1754 }
1755
1756 static void set_load_weight(struct task_struct *p)
1757 {
1758 /*
1759 * SCHED_IDLE tasks get minimal weight:
1760 */
1761 if (p->policy == SCHED_IDLE) {
1762 p->se.load.weight = WEIGHT_IDLEPRIO;
1763 p->se.load.inv_weight = WMULT_IDLEPRIO;
1764 return;
1765 }
1766
1767 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1768 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1769 }
1770
1771 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1772 {
1773 update_rq_clock(rq);
1774 sched_info_queued(p);
1775 p->sched_class->enqueue_task(rq, p, flags);
1776 p->se.on_rq = 1;
1777 }
1778
1779 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1780 {
1781 update_rq_clock(rq);
1782 sched_info_dequeued(p);
1783 p->sched_class->dequeue_task(rq, p, flags);
1784 p->se.on_rq = 0;
1785 }
1786
1787 /*
1788 * activate_task - move a task to the runqueue.
1789 */
1790 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1791 {
1792 if (task_contributes_to_load(p))
1793 rq->nr_uninterruptible--;
1794
1795 enqueue_task(rq, p, flags);
1796 inc_nr_running(rq);
1797 }
1798
1799 /*
1800 * deactivate_task - remove a task from the runqueue.
1801 */
1802 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1803 {
1804 if (task_contributes_to_load(p))
1805 rq->nr_uninterruptible++;
1806
1807 dequeue_task(rq, p, flags);
1808 dec_nr_running(rq);
1809 }
1810
1811 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1812
1813 /*
1814 * There are no locks covering percpu hardirq/softirq time.
1815 * They are only modified in account_system_vtime, on corresponding CPU
1816 * with interrupts disabled. So, writes are safe.
1817 * They are read and saved off onto struct rq in update_rq_clock().
1818 * This may result in other CPU reading this CPU's irq time and can
1819 * race with irq/account_system_vtime on this CPU. We would either get old
1820 * or new value with a side effect of accounting a slice of irq time to wrong
1821 * task when irq is in progress while we read rq->clock. That is a worthy
1822 * compromise in place of having locks on each irq in account_system_time.
1823 */
1824 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1825 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1826
1827 static DEFINE_PER_CPU(u64, irq_start_time);
1828 static int sched_clock_irqtime;
1829
1830 void enable_sched_clock_irqtime(void)
1831 {
1832 sched_clock_irqtime = 1;
1833 }
1834
1835 void disable_sched_clock_irqtime(void)
1836 {
1837 sched_clock_irqtime = 0;
1838 }
1839
1840 #ifndef CONFIG_64BIT
1841 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
1842
1843 static inline void irq_time_write_begin(void)
1844 {
1845 __this_cpu_inc(irq_time_seq.sequence);
1846 smp_wmb();
1847 }
1848
1849 static inline void irq_time_write_end(void)
1850 {
1851 smp_wmb();
1852 __this_cpu_inc(irq_time_seq.sequence);
1853 }
1854
1855 static inline u64 irq_time_read(int cpu)
1856 {
1857 u64 irq_time;
1858 unsigned seq;
1859
1860 do {
1861 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1862 irq_time = per_cpu(cpu_softirq_time, cpu) +
1863 per_cpu(cpu_hardirq_time, cpu);
1864 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1865
1866 return irq_time;
1867 }
1868 #else /* CONFIG_64BIT */
1869 static inline void irq_time_write_begin(void)
1870 {
1871 }
1872
1873 static inline void irq_time_write_end(void)
1874 {
1875 }
1876
1877 static inline u64 irq_time_read(int cpu)
1878 {
1879 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1880 }
1881 #endif /* CONFIG_64BIT */
1882
1883 /*
1884 * Called before incrementing preempt_count on {soft,}irq_enter
1885 * and before decrementing preempt_count on {soft,}irq_exit.
1886 */
1887 void account_system_vtime(struct task_struct *curr)
1888 {
1889 unsigned long flags;
1890 s64 delta;
1891 int cpu;
1892
1893 if (!sched_clock_irqtime)
1894 return;
1895
1896 local_irq_save(flags);
1897
1898 cpu = smp_processor_id();
1899 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
1900 __this_cpu_add(irq_start_time, delta);
1901
1902 irq_time_write_begin();
1903 /*
1904 * We do not account for softirq time from ksoftirqd here.
1905 * We want to continue accounting softirq time to ksoftirqd thread
1906 * in that case, so as not to confuse scheduler with a special task
1907 * that do not consume any time, but still wants to run.
1908 */
1909 if (hardirq_count())
1910 __this_cpu_add(cpu_hardirq_time, delta);
1911 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
1912 __this_cpu_add(cpu_softirq_time, delta);
1913
1914 irq_time_write_end();
1915 local_irq_restore(flags);
1916 }
1917 EXPORT_SYMBOL_GPL(account_system_vtime);
1918
1919 static void update_rq_clock_task(struct rq *rq, s64 delta)
1920 {
1921 s64 irq_delta;
1922
1923 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
1924
1925 /*
1926 * Since irq_time is only updated on {soft,}irq_exit, we might run into
1927 * this case when a previous update_rq_clock() happened inside a
1928 * {soft,}irq region.
1929 *
1930 * When this happens, we stop ->clock_task and only update the
1931 * prev_irq_time stamp to account for the part that fit, so that a next
1932 * update will consume the rest. This ensures ->clock_task is
1933 * monotonic.
1934 *
1935 * It does however cause some slight miss-attribution of {soft,}irq
1936 * time, a more accurate solution would be to update the irq_time using
1937 * the current rq->clock timestamp, except that would require using
1938 * atomic ops.
1939 */
1940 if (irq_delta > delta)
1941 irq_delta = delta;
1942
1943 rq->prev_irq_time += irq_delta;
1944 delta -= irq_delta;
1945 rq->clock_task += delta;
1946
1947 if (irq_delta && sched_feat(NONIRQ_POWER))
1948 sched_rt_avg_update(rq, irq_delta);
1949 }
1950
1951 static int irqtime_account_hi_update(void)
1952 {
1953 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1954 unsigned long flags;
1955 u64 latest_ns;
1956 int ret = 0;
1957
1958 local_irq_save(flags);
1959 latest_ns = this_cpu_read(cpu_hardirq_time);
1960 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
1961 ret = 1;
1962 local_irq_restore(flags);
1963 return ret;
1964 }
1965
1966 static int irqtime_account_si_update(void)
1967 {
1968 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1969 unsigned long flags;
1970 u64 latest_ns;
1971 int ret = 0;
1972
1973 local_irq_save(flags);
1974 latest_ns = this_cpu_read(cpu_softirq_time);
1975 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
1976 ret = 1;
1977 local_irq_restore(flags);
1978 return ret;
1979 }
1980
1981 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
1982
1983 #define sched_clock_irqtime (0)
1984
1985 static void update_rq_clock_task(struct rq *rq, s64 delta)
1986 {
1987 rq->clock_task += delta;
1988 }
1989
1990 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1991
1992 #include "sched_idletask.c"
1993 #include "sched_fair.c"
1994 #include "sched_rt.c"
1995 #include "sched_autogroup.c"
1996 #include "sched_stoptask.c"
1997 #ifdef CONFIG_SCHED_DEBUG
1998 # include "sched_debug.c"
1999 #endif
2000
2001 void sched_set_stop_task(int cpu, struct task_struct *stop)
2002 {
2003 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2004 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2005
2006 if (stop) {
2007 /*
2008 * Make it appear like a SCHED_FIFO task, its something
2009 * userspace knows about and won't get confused about.
2010 *
2011 * Also, it will make PI more or less work without too
2012 * much confusion -- but then, stop work should not
2013 * rely on PI working anyway.
2014 */
2015 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2016
2017 stop->sched_class = &stop_sched_class;
2018 }
2019
2020 cpu_rq(cpu)->stop = stop;
2021
2022 if (old_stop) {
2023 /*
2024 * Reset it back to a normal scheduling class so that
2025 * it can die in pieces.
2026 */
2027 old_stop->sched_class = &rt_sched_class;
2028 }
2029 }
2030
2031 /*
2032 * __normal_prio - return the priority that is based on the static prio
2033 */
2034 static inline int __normal_prio(struct task_struct *p)
2035 {
2036 return p->static_prio;
2037 }
2038
2039 /*
2040 * Calculate the expected normal priority: i.e. priority
2041 * without taking RT-inheritance into account. Might be
2042 * boosted by interactivity modifiers. Changes upon fork,
2043 * setprio syscalls, and whenever the interactivity
2044 * estimator recalculates.
2045 */
2046 static inline int normal_prio(struct task_struct *p)
2047 {
2048 int prio;
2049
2050 if (task_has_rt_policy(p))
2051 prio = MAX_RT_PRIO-1 - p->rt_priority;
2052 else
2053 prio = __normal_prio(p);
2054 return prio;
2055 }
2056
2057 /*
2058 * Calculate the current priority, i.e. the priority
2059 * taken into account by the scheduler. This value might
2060 * be boosted by RT tasks, or might be boosted by
2061 * interactivity modifiers. Will be RT if the task got
2062 * RT-boosted. If not then it returns p->normal_prio.
2063 */
2064 static int effective_prio(struct task_struct *p)
2065 {
2066 p->normal_prio = normal_prio(p);
2067 /*
2068 * If we are RT tasks or we were boosted to RT priority,
2069 * keep the priority unchanged. Otherwise, update priority
2070 * to the normal priority:
2071 */
2072 if (!rt_prio(p->prio))
2073 return p->normal_prio;
2074 return p->prio;
2075 }
2076
2077 /**
2078 * task_curr - is this task currently executing on a CPU?
2079 * @p: the task in question.
2080 */
2081 inline int task_curr(const struct task_struct *p)
2082 {
2083 return cpu_curr(task_cpu(p)) == p;
2084 }
2085
2086 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2087 const struct sched_class *prev_class,
2088 int oldprio)
2089 {
2090 if (prev_class != p->sched_class) {
2091 if (prev_class->switched_from)
2092 prev_class->switched_from(rq, p);
2093 p->sched_class->switched_to(rq, p);
2094 } else if (oldprio != p->prio)
2095 p->sched_class->prio_changed(rq, p, oldprio);
2096 }
2097
2098 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2099 {
2100 const struct sched_class *class;
2101
2102 if (p->sched_class == rq->curr->sched_class) {
2103 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2104 } else {
2105 for_each_class(class) {
2106 if (class == rq->curr->sched_class)
2107 break;
2108 if (class == p->sched_class) {
2109 resched_task(rq->curr);
2110 break;
2111 }
2112 }
2113 }
2114
2115 /*
2116 * A queue event has occurred, and we're going to schedule. In
2117 * this case, we can save a useless back to back clock update.
2118 */
2119 if (rq->curr->se.on_rq && test_tsk_need_resched(rq->curr))
2120 rq->skip_clock_update = 1;
2121 }
2122
2123 #ifdef CONFIG_SMP
2124 /*
2125 * Is this task likely cache-hot:
2126 */
2127 static int
2128 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2129 {
2130 s64 delta;
2131
2132 if (p->sched_class != &fair_sched_class)
2133 return 0;
2134
2135 if (unlikely(p->policy == SCHED_IDLE))
2136 return 0;
2137
2138 /*
2139 * Buddy candidates are cache hot:
2140 */
2141 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2142 (&p->se == cfs_rq_of(&p->se)->next ||
2143 &p->se == cfs_rq_of(&p->se)->last))
2144 return 1;
2145
2146 if (sysctl_sched_migration_cost == -1)
2147 return 1;
2148 if (sysctl_sched_migration_cost == 0)
2149 return 0;
2150
2151 delta = now - p->se.exec_start;
2152
2153 return delta < (s64)sysctl_sched_migration_cost;
2154 }
2155
2156 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2157 {
2158 #ifdef CONFIG_SCHED_DEBUG
2159 /*
2160 * We should never call set_task_cpu() on a blocked task,
2161 * ttwu() will sort out the placement.
2162 */
2163 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2164 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2165 #endif
2166
2167 trace_sched_migrate_task(p, new_cpu);
2168
2169 if (task_cpu(p) != new_cpu) {
2170 p->se.nr_migrations++;
2171 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2172 }
2173
2174 __set_task_cpu(p, new_cpu);
2175 }
2176
2177 struct migration_arg {
2178 struct task_struct *task;
2179 int dest_cpu;
2180 };
2181
2182 static int migration_cpu_stop(void *data);
2183
2184 /*
2185 * The task's runqueue lock must be held.
2186 * Returns true if you have to wait for migration thread.
2187 */
2188 static bool migrate_task(struct task_struct *p, struct rq *rq)
2189 {
2190 /*
2191 * If the task is not on a runqueue (and not running), then
2192 * the next wake-up will properly place the task.
2193 */
2194 return p->se.on_rq || task_running(rq, p);
2195 }
2196
2197 /*
2198 * wait_task_inactive - wait for a thread to unschedule.
2199 *
2200 * If @match_state is nonzero, it's the @p->state value just checked and
2201 * not expected to change. If it changes, i.e. @p might have woken up,
2202 * then return zero. When we succeed in waiting for @p to be off its CPU,
2203 * we return a positive number (its total switch count). If a second call
2204 * a short while later returns the same number, the caller can be sure that
2205 * @p has remained unscheduled the whole time.
2206 *
2207 * The caller must ensure that the task *will* unschedule sometime soon,
2208 * else this function might spin for a *long* time. This function can't
2209 * be called with interrupts off, or it may introduce deadlock with
2210 * smp_call_function() if an IPI is sent by the same process we are
2211 * waiting to become inactive.
2212 */
2213 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2214 {
2215 unsigned long flags;
2216 int running, on_rq;
2217 unsigned long ncsw;
2218 struct rq *rq;
2219
2220 for (;;) {
2221 /*
2222 * We do the initial early heuristics without holding
2223 * any task-queue locks at all. We'll only try to get
2224 * the runqueue lock when things look like they will
2225 * work out!
2226 */
2227 rq = task_rq(p);
2228
2229 /*
2230 * If the task is actively running on another CPU
2231 * still, just relax and busy-wait without holding
2232 * any locks.
2233 *
2234 * NOTE! Since we don't hold any locks, it's not
2235 * even sure that "rq" stays as the right runqueue!
2236 * But we don't care, since "task_running()" will
2237 * return false if the runqueue has changed and p
2238 * is actually now running somewhere else!
2239 */
2240 while (task_running(rq, p)) {
2241 if (match_state && unlikely(p->state != match_state))
2242 return 0;
2243 cpu_relax();
2244 }
2245
2246 /*
2247 * Ok, time to look more closely! We need the rq
2248 * lock now, to be *sure*. If we're wrong, we'll
2249 * just go back and repeat.
2250 */
2251 rq = task_rq_lock(p, &flags);
2252 trace_sched_wait_task(p);
2253 running = task_running(rq, p);
2254 on_rq = p->se.on_rq;
2255 ncsw = 0;
2256 if (!match_state || p->state == match_state)
2257 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2258 task_rq_unlock(rq, &flags);
2259
2260 /*
2261 * If it changed from the expected state, bail out now.
2262 */
2263 if (unlikely(!ncsw))
2264 break;
2265
2266 /*
2267 * Was it really running after all now that we
2268 * checked with the proper locks actually held?
2269 *
2270 * Oops. Go back and try again..
2271 */
2272 if (unlikely(running)) {
2273 cpu_relax();
2274 continue;
2275 }
2276
2277 /*
2278 * It's not enough that it's not actively running,
2279 * it must be off the runqueue _entirely_, and not
2280 * preempted!
2281 *
2282 * So if it was still runnable (but just not actively
2283 * running right now), it's preempted, and we should
2284 * yield - it could be a while.
2285 */
2286 if (unlikely(on_rq)) {
2287 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2288
2289 set_current_state(TASK_UNINTERRUPTIBLE);
2290 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2291 continue;
2292 }
2293
2294 /*
2295 * Ahh, all good. It wasn't running, and it wasn't
2296 * runnable, which means that it will never become
2297 * running in the future either. We're all done!
2298 */
2299 break;
2300 }
2301
2302 return ncsw;
2303 }
2304
2305 /***
2306 * kick_process - kick a running thread to enter/exit the kernel
2307 * @p: the to-be-kicked thread
2308 *
2309 * Cause a process which is running on another CPU to enter
2310 * kernel-mode, without any delay. (to get signals handled.)
2311 *
2312 * NOTE: this function doesnt have to take the runqueue lock,
2313 * because all it wants to ensure is that the remote task enters
2314 * the kernel. If the IPI races and the task has been migrated
2315 * to another CPU then no harm is done and the purpose has been
2316 * achieved as well.
2317 */
2318 void kick_process(struct task_struct *p)
2319 {
2320 int cpu;
2321
2322 preempt_disable();
2323 cpu = task_cpu(p);
2324 if ((cpu != smp_processor_id()) && task_curr(p))
2325 smp_send_reschedule(cpu);
2326 preempt_enable();
2327 }
2328 EXPORT_SYMBOL_GPL(kick_process);
2329 #endif /* CONFIG_SMP */
2330
2331 #ifdef CONFIG_SMP
2332 /*
2333 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2334 */
2335 static int select_fallback_rq(int cpu, struct task_struct *p)
2336 {
2337 int dest_cpu;
2338 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2339
2340 /* Look for allowed, online CPU in same node. */
2341 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2342 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2343 return dest_cpu;
2344
2345 /* Any allowed, online CPU? */
2346 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2347 if (dest_cpu < nr_cpu_ids)
2348 return dest_cpu;
2349
2350 /* No more Mr. Nice Guy. */
2351 dest_cpu = cpuset_cpus_allowed_fallback(p);
2352 /*
2353 * Don't tell them about moving exiting tasks or
2354 * kernel threads (both mm NULL), since they never
2355 * leave kernel.
2356 */
2357 if (p->mm && printk_ratelimit()) {
2358 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2359 task_pid_nr(p), p->comm, cpu);
2360 }
2361
2362 return dest_cpu;
2363 }
2364
2365 /*
2366 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2367 */
2368 static inline
2369 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2370 {
2371 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2372
2373 /*
2374 * In order not to call set_task_cpu() on a blocking task we need
2375 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2376 * cpu.
2377 *
2378 * Since this is common to all placement strategies, this lives here.
2379 *
2380 * [ this allows ->select_task() to simply return task_cpu(p) and
2381 * not worry about this generic constraint ]
2382 */
2383 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2384 !cpu_online(cpu)))
2385 cpu = select_fallback_rq(task_cpu(p), p);
2386
2387 return cpu;
2388 }
2389
2390 static void update_avg(u64 *avg, u64 sample)
2391 {
2392 s64 diff = sample - *avg;
2393 *avg += diff >> 3;
2394 }
2395 #endif
2396
2397 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2398 bool is_sync, bool is_migrate, bool is_local,
2399 unsigned long en_flags)
2400 {
2401 schedstat_inc(p, se.statistics.nr_wakeups);
2402 if (is_sync)
2403 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2404 if (is_migrate)
2405 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2406 if (is_local)
2407 schedstat_inc(p, se.statistics.nr_wakeups_local);
2408 else
2409 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2410
2411 activate_task(rq, p, en_flags);
2412 }
2413
2414 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2415 int wake_flags, bool success)
2416 {
2417 trace_sched_wakeup(p, success);
2418 check_preempt_curr(rq, p, wake_flags);
2419
2420 p->state = TASK_RUNNING;
2421 #ifdef CONFIG_SMP
2422 if (p->sched_class->task_woken)
2423 p->sched_class->task_woken(rq, p);
2424
2425 if (unlikely(rq->idle_stamp)) {
2426 u64 delta = rq->clock - rq->idle_stamp;
2427 u64 max = 2*sysctl_sched_migration_cost;
2428
2429 if (delta > max)
2430 rq->avg_idle = max;
2431 else
2432 update_avg(&rq->avg_idle, delta);
2433 rq->idle_stamp = 0;
2434 }
2435 #endif
2436 /* if a worker is waking up, notify workqueue */
2437 if ((p->flags & PF_WQ_WORKER) && success)
2438 wq_worker_waking_up(p, cpu_of(rq));
2439 }
2440
2441 /**
2442 * try_to_wake_up - wake up a thread
2443 * @p: the thread to be awakened
2444 * @state: the mask of task states that can be woken
2445 * @wake_flags: wake modifier flags (WF_*)
2446 *
2447 * Put it on the run-queue if it's not already there. The "current"
2448 * thread is always on the run-queue (except when the actual
2449 * re-schedule is in progress), and as such you're allowed to do
2450 * the simpler "current->state = TASK_RUNNING" to mark yourself
2451 * runnable without the overhead of this.
2452 *
2453 * Returns %true if @p was woken up, %false if it was already running
2454 * or @state didn't match @p's state.
2455 */
2456 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2457 int wake_flags)
2458 {
2459 int cpu, orig_cpu, this_cpu, success = 0;
2460 unsigned long flags;
2461 unsigned long en_flags = ENQUEUE_WAKEUP;
2462 struct rq *rq;
2463
2464 this_cpu = get_cpu();
2465
2466 smp_wmb();
2467 rq = task_rq_lock(p, &flags);
2468 if (!(p->state & state))
2469 goto out;
2470
2471 if (p->se.on_rq)
2472 goto out_running;
2473
2474 cpu = task_cpu(p);
2475 orig_cpu = cpu;
2476
2477 #ifdef CONFIG_SMP
2478 if (unlikely(task_running(rq, p)))
2479 goto out_activate;
2480
2481 /*
2482 * In order to handle concurrent wakeups and release the rq->lock
2483 * we put the task in TASK_WAKING state.
2484 *
2485 * First fix up the nr_uninterruptible count:
2486 */
2487 if (task_contributes_to_load(p)) {
2488 if (likely(cpu_online(orig_cpu)))
2489 rq->nr_uninterruptible--;
2490 else
2491 this_rq()->nr_uninterruptible--;
2492 }
2493 p->state = TASK_WAKING;
2494
2495 if (p->sched_class->task_waking) {
2496 p->sched_class->task_waking(rq, p);
2497 en_flags |= ENQUEUE_WAKING;
2498 }
2499
2500 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2501 if (cpu != orig_cpu)
2502 set_task_cpu(p, cpu);
2503 __task_rq_unlock(rq);
2504
2505 rq = cpu_rq(cpu);
2506 raw_spin_lock(&rq->lock);
2507
2508 /*
2509 * We migrated the task without holding either rq->lock, however
2510 * since the task is not on the task list itself, nobody else
2511 * will try and migrate the task, hence the rq should match the
2512 * cpu we just moved it to.
2513 */
2514 WARN_ON(task_cpu(p) != cpu);
2515 WARN_ON(p->state != TASK_WAKING);
2516
2517 #ifdef CONFIG_SCHEDSTATS
2518 schedstat_inc(rq, ttwu_count);
2519 if (cpu == this_cpu)
2520 schedstat_inc(rq, ttwu_local);
2521 else {
2522 struct sched_domain *sd;
2523 for_each_domain(this_cpu, sd) {
2524 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2525 schedstat_inc(sd, ttwu_wake_remote);
2526 break;
2527 }
2528 }
2529 }
2530 #endif /* CONFIG_SCHEDSTATS */
2531
2532 out_activate:
2533 #endif /* CONFIG_SMP */
2534 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2535 cpu == this_cpu, en_flags);
2536 success = 1;
2537 out_running:
2538 ttwu_post_activation(p, rq, wake_flags, success);
2539 out:
2540 task_rq_unlock(rq, &flags);
2541 put_cpu();
2542
2543 return success;
2544 }
2545
2546 /**
2547 * try_to_wake_up_local - try to wake up a local task with rq lock held
2548 * @p: the thread to be awakened
2549 *
2550 * Put @p on the run-queue if it's not already there. The caller must
2551 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2552 * the current task. this_rq() stays locked over invocation.
2553 */
2554 static void try_to_wake_up_local(struct task_struct *p)
2555 {
2556 struct rq *rq = task_rq(p);
2557 bool success = false;
2558
2559 BUG_ON(rq != this_rq());
2560 BUG_ON(p == current);
2561 lockdep_assert_held(&rq->lock);
2562
2563 if (!(p->state & TASK_NORMAL))
2564 return;
2565
2566 if (!p->se.on_rq) {
2567 if (likely(!task_running(rq, p))) {
2568 schedstat_inc(rq, ttwu_count);
2569 schedstat_inc(rq, ttwu_local);
2570 }
2571 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2572 success = true;
2573 }
2574 ttwu_post_activation(p, rq, 0, success);
2575 }
2576
2577 /**
2578 * wake_up_process - Wake up a specific process
2579 * @p: The process to be woken up.
2580 *
2581 * Attempt to wake up the nominated process and move it to the set of runnable
2582 * processes. Returns 1 if the process was woken up, 0 if it was already
2583 * running.
2584 *
2585 * It may be assumed that this function implies a write memory barrier before
2586 * changing the task state if and only if any tasks are woken up.
2587 */
2588 int wake_up_process(struct task_struct *p)
2589 {
2590 return try_to_wake_up(p, TASK_ALL, 0);
2591 }
2592 EXPORT_SYMBOL(wake_up_process);
2593
2594 int wake_up_state(struct task_struct *p, unsigned int state)
2595 {
2596 return try_to_wake_up(p, state, 0);
2597 }
2598
2599 /*
2600 * Perform scheduler related setup for a newly forked process p.
2601 * p is forked by current.
2602 *
2603 * __sched_fork() is basic setup used by init_idle() too:
2604 */
2605 static void __sched_fork(struct task_struct *p)
2606 {
2607 p->se.exec_start = 0;
2608 p->se.sum_exec_runtime = 0;
2609 p->se.prev_sum_exec_runtime = 0;
2610 p->se.nr_migrations = 0;
2611 p->se.vruntime = 0;
2612
2613 #ifdef CONFIG_SCHEDSTATS
2614 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2615 #endif
2616
2617 INIT_LIST_HEAD(&p->rt.run_list);
2618 p->se.on_rq = 0;
2619 INIT_LIST_HEAD(&p->se.group_node);
2620
2621 #ifdef CONFIG_PREEMPT_NOTIFIERS
2622 INIT_HLIST_HEAD(&p->preempt_notifiers);
2623 #endif
2624 }
2625
2626 /*
2627 * fork()/clone()-time setup:
2628 */
2629 void sched_fork(struct task_struct *p, int clone_flags)
2630 {
2631 int cpu = get_cpu();
2632
2633 __sched_fork(p);
2634 /*
2635 * We mark the process as running here. This guarantees that
2636 * nobody will actually run it, and a signal or other external
2637 * event cannot wake it up and insert it on the runqueue either.
2638 */
2639 p->state = TASK_RUNNING;
2640
2641 /*
2642 * Revert to default priority/policy on fork if requested.
2643 */
2644 if (unlikely(p->sched_reset_on_fork)) {
2645 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2646 p->policy = SCHED_NORMAL;
2647 p->normal_prio = p->static_prio;
2648 }
2649
2650 if (PRIO_TO_NICE(p->static_prio) < 0) {
2651 p->static_prio = NICE_TO_PRIO(0);
2652 p->normal_prio = p->static_prio;
2653 set_load_weight(p);
2654 }
2655
2656 /*
2657 * We don't need the reset flag anymore after the fork. It has
2658 * fulfilled its duty:
2659 */
2660 p->sched_reset_on_fork = 0;
2661 }
2662
2663 /*
2664 * Make sure we do not leak PI boosting priority to the child.
2665 */
2666 p->prio = current->normal_prio;
2667
2668 if (!rt_prio(p->prio))
2669 p->sched_class = &fair_sched_class;
2670
2671 if (p->sched_class->task_fork)
2672 p->sched_class->task_fork(p);
2673
2674 /*
2675 * The child is not yet in the pid-hash so no cgroup attach races,
2676 * and the cgroup is pinned to this child due to cgroup_fork()
2677 * is ran before sched_fork().
2678 *
2679 * Silence PROVE_RCU.
2680 */
2681 rcu_read_lock();
2682 set_task_cpu(p, cpu);
2683 rcu_read_unlock();
2684
2685 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2686 if (likely(sched_info_on()))
2687 memset(&p->sched_info, 0, sizeof(p->sched_info));
2688 #endif
2689 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2690 p->oncpu = 0;
2691 #endif
2692 #ifdef CONFIG_PREEMPT
2693 /* Want to start with kernel preemption disabled. */
2694 task_thread_info(p)->preempt_count = 1;
2695 #endif
2696 #ifdef CONFIG_SMP
2697 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2698 #endif
2699
2700 put_cpu();
2701 }
2702
2703 /*
2704 * wake_up_new_task - wake up a newly created task for the first time.
2705 *
2706 * This function will do some initial scheduler statistics housekeeping
2707 * that must be done for every newly created context, then puts the task
2708 * on the runqueue and wakes it.
2709 */
2710 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2711 {
2712 unsigned long flags;
2713 struct rq *rq;
2714 int cpu __maybe_unused = get_cpu();
2715
2716 #ifdef CONFIG_SMP
2717 rq = task_rq_lock(p, &flags);
2718 p->state = TASK_WAKING;
2719
2720 /*
2721 * Fork balancing, do it here and not earlier because:
2722 * - cpus_allowed can change in the fork path
2723 * - any previously selected cpu might disappear through hotplug
2724 *
2725 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2726 * without people poking at ->cpus_allowed.
2727 */
2728 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2729 set_task_cpu(p, cpu);
2730
2731 p->state = TASK_RUNNING;
2732 task_rq_unlock(rq, &flags);
2733 #endif
2734
2735 rq = task_rq_lock(p, &flags);
2736 activate_task(rq, p, 0);
2737 trace_sched_wakeup_new(p, 1);
2738 check_preempt_curr(rq, p, WF_FORK);
2739 #ifdef CONFIG_SMP
2740 if (p->sched_class->task_woken)
2741 p->sched_class->task_woken(rq, p);
2742 #endif
2743 task_rq_unlock(rq, &flags);
2744 put_cpu();
2745 }
2746
2747 #ifdef CONFIG_PREEMPT_NOTIFIERS
2748
2749 /**
2750 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2751 * @notifier: notifier struct to register
2752 */
2753 void preempt_notifier_register(struct preempt_notifier *notifier)
2754 {
2755 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2756 }
2757 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2758
2759 /**
2760 * preempt_notifier_unregister - no longer interested in preemption notifications
2761 * @notifier: notifier struct to unregister
2762 *
2763 * This is safe to call from within a preemption notifier.
2764 */
2765 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2766 {
2767 hlist_del(&notifier->link);
2768 }
2769 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2770
2771 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2772 {
2773 struct preempt_notifier *notifier;
2774 struct hlist_node *node;
2775
2776 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2777 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2778 }
2779
2780 static void
2781 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2782 struct task_struct *next)
2783 {
2784 struct preempt_notifier *notifier;
2785 struct hlist_node *node;
2786
2787 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2788 notifier->ops->sched_out(notifier, next);
2789 }
2790
2791 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2792
2793 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2794 {
2795 }
2796
2797 static void
2798 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2799 struct task_struct *next)
2800 {
2801 }
2802
2803 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2804
2805 /**
2806 * prepare_task_switch - prepare to switch tasks
2807 * @rq: the runqueue preparing to switch
2808 * @prev: the current task that is being switched out
2809 * @next: the task we are going to switch to.
2810 *
2811 * This is called with the rq lock held and interrupts off. It must
2812 * be paired with a subsequent finish_task_switch after the context
2813 * switch.
2814 *
2815 * prepare_task_switch sets up locking and calls architecture specific
2816 * hooks.
2817 */
2818 static inline void
2819 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2820 struct task_struct *next)
2821 {
2822 sched_info_switch(prev, next);
2823 perf_event_task_sched_out(prev, next);
2824 fire_sched_out_preempt_notifiers(prev, next);
2825 prepare_lock_switch(rq, next);
2826 prepare_arch_switch(next);
2827 trace_sched_switch(prev, next);
2828 }
2829
2830 /**
2831 * finish_task_switch - clean up after a task-switch
2832 * @rq: runqueue associated with task-switch
2833 * @prev: the thread we just switched away from.
2834 *
2835 * finish_task_switch must be called after the context switch, paired
2836 * with a prepare_task_switch call before the context switch.
2837 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2838 * and do any other architecture-specific cleanup actions.
2839 *
2840 * Note that we may have delayed dropping an mm in context_switch(). If
2841 * so, we finish that here outside of the runqueue lock. (Doing it
2842 * with the lock held can cause deadlocks; see schedule() for
2843 * details.)
2844 */
2845 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2846 __releases(rq->lock)
2847 {
2848 struct mm_struct *mm = rq->prev_mm;
2849 long prev_state;
2850
2851 rq->prev_mm = NULL;
2852
2853 /*
2854 * A task struct has one reference for the use as "current".
2855 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2856 * schedule one last time. The schedule call will never return, and
2857 * the scheduled task must drop that reference.
2858 * The test for TASK_DEAD must occur while the runqueue locks are
2859 * still held, otherwise prev could be scheduled on another cpu, die
2860 * there before we look at prev->state, and then the reference would
2861 * be dropped twice.
2862 * Manfred Spraul <manfred@colorfullife.com>
2863 */
2864 prev_state = prev->state;
2865 finish_arch_switch(prev);
2866 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2867 local_irq_disable();
2868 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2869 perf_event_task_sched_in(current);
2870 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2871 local_irq_enable();
2872 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2873 finish_lock_switch(rq, prev);
2874
2875 fire_sched_in_preempt_notifiers(current);
2876 if (mm)
2877 mmdrop(mm);
2878 if (unlikely(prev_state == TASK_DEAD)) {
2879 /*
2880 * Remove function-return probe instances associated with this
2881 * task and put them back on the free list.
2882 */
2883 kprobe_flush_task(prev);
2884 put_task_struct(prev);
2885 }
2886 }
2887
2888 #ifdef CONFIG_SMP
2889
2890 /* assumes rq->lock is held */
2891 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2892 {
2893 if (prev->sched_class->pre_schedule)
2894 prev->sched_class->pre_schedule(rq, prev);
2895 }
2896
2897 /* rq->lock is NOT held, but preemption is disabled */
2898 static inline void post_schedule(struct rq *rq)
2899 {
2900 if (rq->post_schedule) {
2901 unsigned long flags;
2902
2903 raw_spin_lock_irqsave(&rq->lock, flags);
2904 if (rq->curr->sched_class->post_schedule)
2905 rq->curr->sched_class->post_schedule(rq);
2906 raw_spin_unlock_irqrestore(&rq->lock, flags);
2907
2908 rq->post_schedule = 0;
2909 }
2910 }
2911
2912 #else
2913
2914 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2915 {
2916 }
2917
2918 static inline void post_schedule(struct rq *rq)
2919 {
2920 }
2921
2922 #endif
2923
2924 /**
2925 * schedule_tail - first thing a freshly forked thread must call.
2926 * @prev: the thread we just switched away from.
2927 */
2928 asmlinkage void schedule_tail(struct task_struct *prev)
2929 __releases(rq->lock)
2930 {
2931 struct rq *rq = this_rq();
2932
2933 finish_task_switch(rq, prev);
2934
2935 /*
2936 * FIXME: do we need to worry about rq being invalidated by the
2937 * task_switch?
2938 */
2939 post_schedule(rq);
2940
2941 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2942 /* In this case, finish_task_switch does not reenable preemption */
2943 preempt_enable();
2944 #endif
2945 if (current->set_child_tid)
2946 put_user(task_pid_vnr(current), current->set_child_tid);
2947 }
2948
2949 /*
2950 * context_switch - switch to the new MM and the new
2951 * thread's register state.
2952 */
2953 static inline void
2954 context_switch(struct rq *rq, struct task_struct *prev,
2955 struct task_struct *next)
2956 {
2957 struct mm_struct *mm, *oldmm;
2958
2959 prepare_task_switch(rq, prev, next);
2960
2961 mm = next->mm;
2962 oldmm = prev->active_mm;
2963 /*
2964 * For paravirt, this is coupled with an exit in switch_to to
2965 * combine the page table reload and the switch backend into
2966 * one hypercall.
2967 */
2968 arch_start_context_switch(prev);
2969
2970 if (!mm) {
2971 next->active_mm = oldmm;
2972 atomic_inc(&oldmm->mm_count);
2973 enter_lazy_tlb(oldmm, next);
2974 } else
2975 switch_mm(oldmm, mm, next);
2976
2977 if (!prev->mm) {
2978 prev->active_mm = NULL;
2979 rq->prev_mm = oldmm;
2980 }
2981 /*
2982 * Since the runqueue lock will be released by the next
2983 * task (which is an invalid locking op but in the case
2984 * of the scheduler it's an obvious special-case), so we
2985 * do an early lockdep release here:
2986 */
2987 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2988 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2989 #endif
2990
2991 /* Here we just switch the register state and the stack. */
2992 switch_to(prev, next, prev);
2993
2994 barrier();
2995 /*
2996 * this_rq must be evaluated again because prev may have moved
2997 * CPUs since it called schedule(), thus the 'rq' on its stack
2998 * frame will be invalid.
2999 */
3000 finish_task_switch(this_rq(), prev);
3001 }
3002
3003 /*
3004 * nr_running, nr_uninterruptible and nr_context_switches:
3005 *
3006 * externally visible scheduler statistics: current number of runnable
3007 * threads, current number of uninterruptible-sleeping threads, total
3008 * number of context switches performed since bootup.
3009 */
3010 unsigned long nr_running(void)
3011 {
3012 unsigned long i, sum = 0;
3013
3014 for_each_online_cpu(i)
3015 sum += cpu_rq(i)->nr_running;
3016
3017 return sum;
3018 }
3019
3020 unsigned long nr_uninterruptible(void)
3021 {
3022 unsigned long i, sum = 0;
3023
3024 for_each_possible_cpu(i)
3025 sum += cpu_rq(i)->nr_uninterruptible;
3026
3027 /*
3028 * Since we read the counters lockless, it might be slightly
3029 * inaccurate. Do not allow it to go below zero though:
3030 */
3031 if (unlikely((long)sum < 0))
3032 sum = 0;
3033
3034 return sum;
3035 }
3036
3037 unsigned long long nr_context_switches(void)
3038 {
3039 int i;
3040 unsigned long long sum = 0;
3041
3042 for_each_possible_cpu(i)
3043 sum += cpu_rq(i)->nr_switches;
3044
3045 return sum;
3046 }
3047
3048 unsigned long nr_iowait(void)
3049 {
3050 unsigned long i, sum = 0;
3051
3052 for_each_possible_cpu(i)
3053 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3054
3055 return sum;
3056 }
3057
3058 unsigned long nr_iowait_cpu(int cpu)
3059 {
3060 struct rq *this = cpu_rq(cpu);
3061 return atomic_read(&this->nr_iowait);
3062 }
3063
3064 unsigned long this_cpu_load(void)
3065 {
3066 struct rq *this = this_rq();
3067 return this->cpu_load[0];
3068 }
3069
3070
3071 /* Variables and functions for calc_load */
3072 static atomic_long_t calc_load_tasks;
3073 static unsigned long calc_load_update;
3074 unsigned long avenrun[3];
3075 EXPORT_SYMBOL(avenrun);
3076
3077 static long calc_load_fold_active(struct rq *this_rq)
3078 {
3079 long nr_active, delta = 0;
3080
3081 nr_active = this_rq->nr_running;
3082 nr_active += (long) this_rq->nr_uninterruptible;
3083
3084 if (nr_active != this_rq->calc_load_active) {
3085 delta = nr_active - this_rq->calc_load_active;
3086 this_rq->calc_load_active = nr_active;
3087 }
3088
3089 return delta;
3090 }
3091
3092 static unsigned long
3093 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3094 {
3095 load *= exp;
3096 load += active * (FIXED_1 - exp);
3097 load += 1UL << (FSHIFT - 1);
3098 return load >> FSHIFT;
3099 }
3100
3101 #ifdef CONFIG_NO_HZ
3102 /*
3103 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3104 *
3105 * When making the ILB scale, we should try to pull this in as well.
3106 */
3107 static atomic_long_t calc_load_tasks_idle;
3108
3109 static void calc_load_account_idle(struct rq *this_rq)
3110 {
3111 long delta;
3112
3113 delta = calc_load_fold_active(this_rq);
3114 if (delta)
3115 atomic_long_add(delta, &calc_load_tasks_idle);
3116 }
3117
3118 static long calc_load_fold_idle(void)
3119 {
3120 long delta = 0;
3121
3122 /*
3123 * Its got a race, we don't care...
3124 */
3125 if (atomic_long_read(&calc_load_tasks_idle))
3126 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3127
3128 return delta;
3129 }
3130
3131 /**
3132 * fixed_power_int - compute: x^n, in O(log n) time
3133 *
3134 * @x: base of the power
3135 * @frac_bits: fractional bits of @x
3136 * @n: power to raise @x to.
3137 *
3138 * By exploiting the relation between the definition of the natural power
3139 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3140 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3141 * (where: n_i \elem {0, 1}, the binary vector representing n),
3142 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3143 * of course trivially computable in O(log_2 n), the length of our binary
3144 * vector.
3145 */
3146 static unsigned long
3147 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3148 {
3149 unsigned long result = 1UL << frac_bits;
3150
3151 if (n) for (;;) {
3152 if (n & 1) {
3153 result *= x;
3154 result += 1UL << (frac_bits - 1);
3155 result >>= frac_bits;
3156 }
3157 n >>= 1;
3158 if (!n)
3159 break;
3160 x *= x;
3161 x += 1UL << (frac_bits - 1);
3162 x >>= frac_bits;
3163 }
3164
3165 return result;
3166 }
3167
3168 /*
3169 * a1 = a0 * e + a * (1 - e)
3170 *
3171 * a2 = a1 * e + a * (1 - e)
3172 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3173 * = a0 * e^2 + a * (1 - e) * (1 + e)
3174 *
3175 * a3 = a2 * e + a * (1 - e)
3176 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3177 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3178 *
3179 * ...
3180 *
3181 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3182 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3183 * = a0 * e^n + a * (1 - e^n)
3184 *
3185 * [1] application of the geometric series:
3186 *
3187 * n 1 - x^(n+1)
3188 * S_n := \Sum x^i = -------------
3189 * i=0 1 - x
3190 */
3191 static unsigned long
3192 calc_load_n(unsigned long load, unsigned long exp,
3193 unsigned long active, unsigned int n)
3194 {
3195
3196 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3197 }
3198
3199 /*
3200 * NO_HZ can leave us missing all per-cpu ticks calling
3201 * calc_load_account_active(), but since an idle CPU folds its delta into
3202 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3203 * in the pending idle delta if our idle period crossed a load cycle boundary.
3204 *
3205 * Once we've updated the global active value, we need to apply the exponential
3206 * weights adjusted to the number of cycles missed.
3207 */
3208 static void calc_global_nohz(unsigned long ticks)
3209 {
3210 long delta, active, n;
3211
3212 if (time_before(jiffies, calc_load_update))
3213 return;
3214
3215 /*
3216 * If we crossed a calc_load_update boundary, make sure to fold
3217 * any pending idle changes, the respective CPUs might have
3218 * missed the tick driven calc_load_account_active() update
3219 * due to NO_HZ.
3220 */
3221 delta = calc_load_fold_idle();
3222 if (delta)
3223 atomic_long_add(delta, &calc_load_tasks);
3224
3225 /*
3226 * If we were idle for multiple load cycles, apply them.
3227 */
3228 if (ticks >= LOAD_FREQ) {
3229 n = ticks / LOAD_FREQ;
3230
3231 active = atomic_long_read(&calc_load_tasks);
3232 active = active > 0 ? active * FIXED_1 : 0;
3233
3234 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3235 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3236 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3237
3238 calc_load_update += n * LOAD_FREQ;
3239 }
3240
3241 /*
3242 * Its possible the remainder of the above division also crosses
3243 * a LOAD_FREQ period, the regular check in calc_global_load()
3244 * which comes after this will take care of that.
3245 *
3246 * Consider us being 11 ticks before a cycle completion, and us
3247 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3248 * age us 4 cycles, and the test in calc_global_load() will
3249 * pick up the final one.
3250 */
3251 }
3252 #else
3253 static void calc_load_account_idle(struct rq *this_rq)
3254 {
3255 }
3256
3257 static inline long calc_load_fold_idle(void)
3258 {
3259 return 0;
3260 }
3261
3262 static void calc_global_nohz(unsigned long ticks)
3263 {
3264 }
3265 #endif
3266
3267 /**
3268 * get_avenrun - get the load average array
3269 * @loads: pointer to dest load array
3270 * @offset: offset to add
3271 * @shift: shift count to shift the result left
3272 *
3273 * These values are estimates at best, so no need for locking.
3274 */
3275 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3276 {
3277 loads[0] = (avenrun[0] + offset) << shift;
3278 loads[1] = (avenrun[1] + offset) << shift;
3279 loads[2] = (avenrun[2] + offset) << shift;
3280 }
3281
3282 /*
3283 * calc_load - update the avenrun load estimates 10 ticks after the
3284 * CPUs have updated calc_load_tasks.
3285 */
3286 void calc_global_load(unsigned long ticks)
3287 {
3288 long active;
3289
3290 calc_global_nohz(ticks);
3291
3292 if (time_before(jiffies, calc_load_update + 10))
3293 return;
3294
3295 active = atomic_long_read(&calc_load_tasks);
3296 active = active > 0 ? active * FIXED_1 : 0;
3297
3298 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3299 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3300 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3301
3302 calc_load_update += LOAD_FREQ;
3303 }
3304
3305 /*
3306 * Called from update_cpu_load() to periodically update this CPU's
3307 * active count.
3308 */
3309 static void calc_load_account_active(struct rq *this_rq)
3310 {
3311 long delta;
3312
3313 if (time_before(jiffies, this_rq->calc_load_update))
3314 return;
3315
3316 delta = calc_load_fold_active(this_rq);
3317 delta += calc_load_fold_idle();
3318 if (delta)
3319 atomic_long_add(delta, &calc_load_tasks);
3320
3321 this_rq->calc_load_update += LOAD_FREQ;
3322 }
3323
3324 /*
3325 * The exact cpuload at various idx values, calculated at every tick would be
3326 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3327 *
3328 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3329 * on nth tick when cpu may be busy, then we have:
3330 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3331 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3332 *
3333 * decay_load_missed() below does efficient calculation of
3334 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3335 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3336 *
3337 * The calculation is approximated on a 128 point scale.
3338 * degrade_zero_ticks is the number of ticks after which load at any
3339 * particular idx is approximated to be zero.
3340 * degrade_factor is a precomputed table, a row for each load idx.
3341 * Each column corresponds to degradation factor for a power of two ticks,
3342 * based on 128 point scale.
3343 * Example:
3344 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3345 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3346 *
3347 * With this power of 2 load factors, we can degrade the load n times
3348 * by looking at 1 bits in n and doing as many mult/shift instead of
3349 * n mult/shifts needed by the exact degradation.
3350 */
3351 #define DEGRADE_SHIFT 7
3352 static const unsigned char
3353 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3354 static const unsigned char
3355 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3356 {0, 0, 0, 0, 0, 0, 0, 0},
3357 {64, 32, 8, 0, 0, 0, 0, 0},
3358 {96, 72, 40, 12, 1, 0, 0},
3359 {112, 98, 75, 43, 15, 1, 0},
3360 {120, 112, 98, 76, 45, 16, 2} };
3361
3362 /*
3363 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3364 * would be when CPU is idle and so we just decay the old load without
3365 * adding any new load.
3366 */
3367 static unsigned long
3368 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3369 {
3370 int j = 0;
3371
3372 if (!missed_updates)
3373 return load;
3374
3375 if (missed_updates >= degrade_zero_ticks[idx])
3376 return 0;
3377
3378 if (idx == 1)
3379 return load >> missed_updates;
3380
3381 while (missed_updates) {
3382 if (missed_updates % 2)
3383 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3384
3385 missed_updates >>= 1;
3386 j++;
3387 }
3388 return load;
3389 }
3390
3391 /*
3392 * Update rq->cpu_load[] statistics. This function is usually called every
3393 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3394 * every tick. We fix it up based on jiffies.
3395 */
3396 static void update_cpu_load(struct rq *this_rq)
3397 {
3398 unsigned long this_load = this_rq->load.weight;
3399 unsigned long curr_jiffies = jiffies;
3400 unsigned long pending_updates;
3401 int i, scale;
3402
3403 this_rq->nr_load_updates++;
3404
3405 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3406 if (curr_jiffies == this_rq->last_load_update_tick)
3407 return;
3408
3409 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3410 this_rq->last_load_update_tick = curr_jiffies;
3411
3412 /* Update our load: */
3413 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3414 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3415 unsigned long old_load, new_load;
3416
3417 /* scale is effectively 1 << i now, and >> i divides by scale */
3418
3419 old_load = this_rq->cpu_load[i];
3420 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3421 new_load = this_load;
3422 /*
3423 * Round up the averaging division if load is increasing. This
3424 * prevents us from getting stuck on 9 if the load is 10, for
3425 * example.
3426 */
3427 if (new_load > old_load)
3428 new_load += scale - 1;
3429
3430 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3431 }
3432
3433 sched_avg_update(this_rq);
3434 }
3435
3436 static void update_cpu_load_active(struct rq *this_rq)
3437 {
3438 update_cpu_load(this_rq);
3439
3440 calc_load_account_active(this_rq);
3441 }
3442
3443 #ifdef CONFIG_SMP
3444
3445 /*
3446 * sched_exec - execve() is a valuable balancing opportunity, because at
3447 * this point the task has the smallest effective memory and cache footprint.
3448 */
3449 void sched_exec(void)
3450 {
3451 struct task_struct *p = current;
3452 unsigned long flags;
3453 struct rq *rq;
3454 int dest_cpu;
3455
3456 rq = task_rq_lock(p, &flags);
3457 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3458 if (dest_cpu == smp_processor_id())
3459 goto unlock;
3460
3461 /*
3462 * select_task_rq() can race against ->cpus_allowed
3463 */
3464 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3465 likely(cpu_active(dest_cpu)) && migrate_task(p, rq)) {
3466 struct migration_arg arg = { p, dest_cpu };
3467
3468 task_rq_unlock(rq, &flags);
3469 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3470 return;
3471 }
3472 unlock:
3473 task_rq_unlock(rq, &flags);
3474 }
3475
3476 #endif
3477
3478 DEFINE_PER_CPU(struct kernel_stat, kstat);
3479
3480 EXPORT_PER_CPU_SYMBOL(kstat);
3481
3482 /*
3483 * Return any ns on the sched_clock that have not yet been accounted in
3484 * @p in case that task is currently running.
3485 *
3486 * Called with task_rq_lock() held on @rq.
3487 */
3488 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3489 {
3490 u64 ns = 0;
3491
3492 if (task_current(rq, p)) {
3493 update_rq_clock(rq);
3494 ns = rq->clock_task - p->se.exec_start;
3495 if ((s64)ns < 0)
3496 ns = 0;
3497 }
3498
3499 return ns;
3500 }
3501
3502 unsigned long long task_delta_exec(struct task_struct *p)
3503 {
3504 unsigned long flags;
3505 struct rq *rq;
3506 u64 ns = 0;
3507
3508 rq = task_rq_lock(p, &flags);
3509 ns = do_task_delta_exec(p, rq);
3510 task_rq_unlock(rq, &flags);
3511
3512 return ns;
3513 }
3514
3515 /*
3516 * Return accounted runtime for the task.
3517 * In case the task is currently running, return the runtime plus current's
3518 * pending runtime that have not been accounted yet.
3519 */
3520 unsigned long long task_sched_runtime(struct task_struct *p)
3521 {
3522 unsigned long flags;
3523 struct rq *rq;
3524 u64 ns = 0;
3525
3526 rq = task_rq_lock(p, &flags);
3527 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3528 task_rq_unlock(rq, &flags);
3529
3530 return ns;
3531 }
3532
3533 /*
3534 * Return sum_exec_runtime for the thread group.
3535 * In case the task is currently running, return the sum plus current's
3536 * pending runtime that have not been accounted yet.
3537 *
3538 * Note that the thread group might have other running tasks as well,
3539 * so the return value not includes other pending runtime that other
3540 * running tasks might have.
3541 */
3542 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3543 {
3544 struct task_cputime totals;
3545 unsigned long flags;
3546 struct rq *rq;
3547 u64 ns;
3548
3549 rq = task_rq_lock(p, &flags);
3550 thread_group_cputime(p, &totals);
3551 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3552 task_rq_unlock(rq, &flags);
3553
3554 return ns;
3555 }
3556
3557 /*
3558 * Account user cpu time to a process.
3559 * @p: the process that the cpu time gets accounted to
3560 * @cputime: the cpu time spent in user space since the last update
3561 * @cputime_scaled: cputime scaled by cpu frequency
3562 */
3563 void account_user_time(struct task_struct *p, cputime_t cputime,
3564 cputime_t cputime_scaled)
3565 {
3566 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3567 cputime64_t tmp;
3568
3569 /* Add user time to process. */
3570 p->utime = cputime_add(p->utime, cputime);
3571 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3572 account_group_user_time(p, cputime);
3573
3574 /* Add user time to cpustat. */
3575 tmp = cputime_to_cputime64(cputime);
3576 if (TASK_NICE(p) > 0)
3577 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3578 else
3579 cpustat->user = cputime64_add(cpustat->user, tmp);
3580
3581 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3582 /* Account for user time used */
3583 acct_update_integrals(p);
3584 }
3585
3586 /*
3587 * Account guest cpu time to a process.
3588 * @p: the process that the cpu time gets accounted to
3589 * @cputime: the cpu time spent in virtual machine since the last update
3590 * @cputime_scaled: cputime scaled by cpu frequency
3591 */
3592 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3593 cputime_t cputime_scaled)
3594 {
3595 cputime64_t tmp;
3596 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3597
3598 tmp = cputime_to_cputime64(cputime);
3599
3600 /* Add guest time to process. */
3601 p->utime = cputime_add(p->utime, cputime);
3602 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3603 account_group_user_time(p, cputime);
3604 p->gtime = cputime_add(p->gtime, cputime);
3605
3606 /* Add guest time to cpustat. */
3607 if (TASK_NICE(p) > 0) {
3608 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3609 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3610 } else {
3611 cpustat->user = cputime64_add(cpustat->user, tmp);
3612 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3613 }
3614 }
3615
3616 /*
3617 * Account system cpu time to a process and desired cpustat field
3618 * @p: the process that the cpu time gets accounted to
3619 * @cputime: the cpu time spent in kernel space since the last update
3620 * @cputime_scaled: cputime scaled by cpu frequency
3621 * @target_cputime64: pointer to cpustat field that has to be updated
3622 */
3623 static inline
3624 void __account_system_time(struct task_struct *p, cputime_t cputime,
3625 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3626 {
3627 cputime64_t tmp = cputime_to_cputime64(cputime);
3628
3629 /* Add system time to process. */
3630 p->stime = cputime_add(p->stime, cputime);
3631 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3632 account_group_system_time(p, cputime);
3633
3634 /* Add system time to cpustat. */
3635 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3636 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3637
3638 /* Account for system time used */
3639 acct_update_integrals(p);
3640 }
3641
3642 /*
3643 * Account system cpu time to a process.
3644 * @p: the process that the cpu time gets accounted to
3645 * @hardirq_offset: the offset to subtract from hardirq_count()
3646 * @cputime: the cpu time spent in kernel space since the last update
3647 * @cputime_scaled: cputime scaled by cpu frequency
3648 */
3649 void account_system_time(struct task_struct *p, int hardirq_offset,
3650 cputime_t cputime, cputime_t cputime_scaled)
3651 {
3652 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3653 cputime64_t *target_cputime64;
3654
3655 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3656 account_guest_time(p, cputime, cputime_scaled);
3657 return;
3658 }
3659
3660 if (hardirq_count() - hardirq_offset)
3661 target_cputime64 = &cpustat->irq;
3662 else if (in_serving_softirq())
3663 target_cputime64 = &cpustat->softirq;
3664 else
3665 target_cputime64 = &cpustat->system;
3666
3667 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3668 }
3669
3670 /*
3671 * Account for involuntary wait time.
3672 * @cputime: the cpu time spent in involuntary wait
3673 */
3674 void account_steal_time(cputime_t cputime)
3675 {
3676 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3677 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3678
3679 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3680 }
3681
3682 /*
3683 * Account for idle time.
3684 * @cputime: the cpu time spent in idle wait
3685 */
3686 void account_idle_time(cputime_t cputime)
3687 {
3688 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3689 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3690 struct rq *rq = this_rq();
3691
3692 if (atomic_read(&rq->nr_iowait) > 0)
3693 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3694 else
3695 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3696 }
3697
3698 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3699
3700 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
3701 /*
3702 * Account a tick to a process and cpustat
3703 * @p: the process that the cpu time gets accounted to
3704 * @user_tick: is the tick from userspace
3705 * @rq: the pointer to rq
3706 *
3707 * Tick demultiplexing follows the order
3708 * - pending hardirq update
3709 * - pending softirq update
3710 * - user_time
3711 * - idle_time
3712 * - system time
3713 * - check for guest_time
3714 * - else account as system_time
3715 *
3716 * Check for hardirq is done both for system and user time as there is
3717 * no timer going off while we are on hardirq and hence we may never get an
3718 * opportunity to update it solely in system time.
3719 * p->stime and friends are only updated on system time and not on irq
3720 * softirq as those do not count in task exec_runtime any more.
3721 */
3722 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3723 struct rq *rq)
3724 {
3725 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3726 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
3727 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3728
3729 if (irqtime_account_hi_update()) {
3730 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3731 } else if (irqtime_account_si_update()) {
3732 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3733 } else if (this_cpu_ksoftirqd() == p) {
3734 /*
3735 * ksoftirqd time do not get accounted in cpu_softirq_time.
3736 * So, we have to handle it separately here.
3737 * Also, p->stime needs to be updated for ksoftirqd.
3738 */
3739 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3740 &cpustat->softirq);
3741 } else if (user_tick) {
3742 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3743 } else if (p == rq->idle) {
3744 account_idle_time(cputime_one_jiffy);
3745 } else if (p->flags & PF_VCPU) { /* System time or guest time */
3746 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
3747 } else {
3748 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3749 &cpustat->system);
3750 }
3751 }
3752
3753 static void irqtime_account_idle_ticks(int ticks)
3754 {
3755 int i;
3756 struct rq *rq = this_rq();
3757
3758 for (i = 0; i < ticks; i++)
3759 irqtime_account_process_tick(current, 0, rq);
3760 }
3761 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
3762 static void irqtime_account_idle_ticks(int ticks) {}
3763 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
3764 struct rq *rq) {}
3765 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3766
3767 /*
3768 * Account a single tick of cpu time.
3769 * @p: the process that the cpu time gets accounted to
3770 * @user_tick: indicates if the tick is a user or a system tick
3771 */
3772 void account_process_tick(struct task_struct *p, int user_tick)
3773 {
3774 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3775 struct rq *rq = this_rq();
3776
3777 if (sched_clock_irqtime) {
3778 irqtime_account_process_tick(p, user_tick, rq);
3779 return;
3780 }
3781
3782 if (user_tick)
3783 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3784 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3785 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3786 one_jiffy_scaled);
3787 else
3788 account_idle_time(cputime_one_jiffy);
3789 }
3790
3791 /*
3792 * Account multiple ticks of steal time.
3793 * @p: the process from which the cpu time has been stolen
3794 * @ticks: number of stolen ticks
3795 */
3796 void account_steal_ticks(unsigned long ticks)
3797 {
3798 account_steal_time(jiffies_to_cputime(ticks));
3799 }
3800
3801 /*
3802 * Account multiple ticks of idle time.
3803 * @ticks: number of stolen ticks
3804 */
3805 void account_idle_ticks(unsigned long ticks)
3806 {
3807
3808 if (sched_clock_irqtime) {
3809 irqtime_account_idle_ticks(ticks);
3810 return;
3811 }
3812
3813 account_idle_time(jiffies_to_cputime(ticks));
3814 }
3815
3816 #endif
3817
3818 /*
3819 * Use precise platform statistics if available:
3820 */
3821 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3822 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3823 {
3824 *ut = p->utime;
3825 *st = p->stime;
3826 }
3827
3828 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3829 {
3830 struct task_cputime cputime;
3831
3832 thread_group_cputime(p, &cputime);
3833
3834 *ut = cputime.utime;
3835 *st = cputime.stime;
3836 }
3837 #else
3838
3839 #ifndef nsecs_to_cputime
3840 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3841 #endif
3842
3843 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3844 {
3845 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3846
3847 /*
3848 * Use CFS's precise accounting:
3849 */
3850 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3851
3852 if (total) {
3853 u64 temp = rtime;
3854
3855 temp *= utime;
3856 do_div(temp, total);
3857 utime = (cputime_t)temp;
3858 } else
3859 utime = rtime;
3860
3861 /*
3862 * Compare with previous values, to keep monotonicity:
3863 */
3864 p->prev_utime = max(p->prev_utime, utime);
3865 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3866
3867 *ut = p->prev_utime;
3868 *st = p->prev_stime;
3869 }
3870
3871 /*
3872 * Must be called with siglock held.
3873 */
3874 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3875 {
3876 struct signal_struct *sig = p->signal;
3877 struct task_cputime cputime;
3878 cputime_t rtime, utime, total;
3879
3880 thread_group_cputime(p, &cputime);
3881
3882 total = cputime_add(cputime.utime, cputime.stime);
3883 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3884
3885 if (total) {
3886 u64 temp = rtime;
3887
3888 temp *= cputime.utime;
3889 do_div(temp, total);
3890 utime = (cputime_t)temp;
3891 } else
3892 utime = rtime;
3893
3894 sig->prev_utime = max(sig->prev_utime, utime);
3895 sig->prev_stime = max(sig->prev_stime,
3896 cputime_sub(rtime, sig->prev_utime));
3897
3898 *ut = sig->prev_utime;
3899 *st = sig->prev_stime;
3900 }
3901 #endif
3902
3903 /*
3904 * This function gets called by the timer code, with HZ frequency.
3905 * We call it with interrupts disabled.
3906 *
3907 * It also gets called by the fork code, when changing the parent's
3908 * timeslices.
3909 */
3910 void scheduler_tick(void)
3911 {
3912 int cpu = smp_processor_id();
3913 struct rq *rq = cpu_rq(cpu);
3914 struct task_struct *curr = rq->curr;
3915
3916 sched_clock_tick();
3917
3918 raw_spin_lock(&rq->lock);
3919 update_rq_clock(rq);
3920 update_cpu_load_active(rq);
3921 curr->sched_class->task_tick(rq, curr, 0);
3922 raw_spin_unlock(&rq->lock);
3923
3924 perf_event_task_tick();
3925
3926 #ifdef CONFIG_SMP
3927 rq->idle_at_tick = idle_cpu(cpu);
3928 trigger_load_balance(rq, cpu);
3929 #endif
3930 }
3931
3932 notrace unsigned long get_parent_ip(unsigned long addr)
3933 {
3934 if (in_lock_functions(addr)) {
3935 addr = CALLER_ADDR2;
3936 if (in_lock_functions(addr))
3937 addr = CALLER_ADDR3;
3938 }
3939 return addr;
3940 }
3941
3942 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3943 defined(CONFIG_PREEMPT_TRACER))
3944
3945 void __kprobes add_preempt_count(int val)
3946 {
3947 #ifdef CONFIG_DEBUG_PREEMPT
3948 /*
3949 * Underflow?
3950 */
3951 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3952 return;
3953 #endif
3954 preempt_count() += val;
3955 #ifdef CONFIG_DEBUG_PREEMPT
3956 /*
3957 * Spinlock count overflowing soon?
3958 */
3959 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3960 PREEMPT_MASK - 10);
3961 #endif
3962 if (preempt_count() == val)
3963 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3964 }
3965 EXPORT_SYMBOL(add_preempt_count);
3966
3967 void __kprobes sub_preempt_count(int val)
3968 {
3969 #ifdef CONFIG_DEBUG_PREEMPT
3970 /*
3971 * Underflow?
3972 */
3973 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3974 return;
3975 /*
3976 * Is the spinlock portion underflowing?
3977 */
3978 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3979 !(preempt_count() & PREEMPT_MASK)))
3980 return;
3981 #endif
3982
3983 if (preempt_count() == val)
3984 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3985 preempt_count() -= val;
3986 }
3987 EXPORT_SYMBOL(sub_preempt_count);
3988
3989 #endif
3990
3991 /*
3992 * Print scheduling while atomic bug:
3993 */
3994 static noinline void __schedule_bug(struct task_struct *prev)
3995 {
3996 struct pt_regs *regs = get_irq_regs();
3997
3998 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3999 prev->comm, prev->pid, preempt_count());
4000
4001 debug_show_held_locks(prev);
4002 print_modules();
4003 if (irqs_disabled())
4004 print_irqtrace_events(prev);
4005
4006 if (regs)
4007 show_regs(regs);
4008 else
4009 dump_stack();
4010 }
4011
4012 /*
4013 * Various schedule()-time debugging checks and statistics:
4014 */
4015 static inline void schedule_debug(struct task_struct *prev)
4016 {
4017 /*
4018 * Test if we are atomic. Since do_exit() needs to call into
4019 * schedule() atomically, we ignore that path for now.
4020 * Otherwise, whine if we are scheduling when we should not be.
4021 */
4022 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4023 __schedule_bug(prev);
4024
4025 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4026
4027 schedstat_inc(this_rq(), sched_count);
4028 #ifdef CONFIG_SCHEDSTATS
4029 if (unlikely(prev->lock_depth >= 0)) {
4030 schedstat_inc(this_rq(), rq_sched_info.bkl_count);
4031 schedstat_inc(prev, sched_info.bkl_count);
4032 }
4033 #endif
4034 }
4035
4036 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4037 {
4038 if (prev->se.on_rq)
4039 update_rq_clock(rq);
4040 prev->sched_class->put_prev_task(rq, prev);
4041 }
4042
4043 /*
4044 * Pick up the highest-prio task:
4045 */
4046 static inline struct task_struct *
4047 pick_next_task(struct rq *rq)
4048 {
4049 const struct sched_class *class;
4050 struct task_struct *p;
4051
4052 /*
4053 * Optimization: we know that if all tasks are in
4054 * the fair class we can call that function directly:
4055 */
4056 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4057 p = fair_sched_class.pick_next_task(rq);
4058 if (likely(p))
4059 return p;
4060 }
4061
4062 for_each_class(class) {
4063 p = class->pick_next_task(rq);
4064 if (p)
4065 return p;
4066 }
4067
4068 BUG(); /* the idle class will always have a runnable task */
4069 }
4070
4071 /*
4072 * schedule() is the main scheduler function.
4073 */
4074 asmlinkage void __sched schedule(void)
4075 {
4076 struct task_struct *prev, *next;
4077 unsigned long *switch_count;
4078 struct rq *rq;
4079 int cpu;
4080
4081 need_resched:
4082 preempt_disable();
4083 cpu = smp_processor_id();
4084 rq = cpu_rq(cpu);
4085 rcu_note_context_switch(cpu);
4086 prev = rq->curr;
4087
4088 schedule_debug(prev);
4089
4090 if (sched_feat(HRTICK))
4091 hrtick_clear(rq);
4092
4093 raw_spin_lock_irq(&rq->lock);
4094
4095 switch_count = &prev->nivcsw;
4096 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4097 if (unlikely(signal_pending_state(prev->state, prev))) {
4098 prev->state = TASK_RUNNING;
4099 } else {
4100 /*
4101 * If a worker is going to sleep, notify and
4102 * ask workqueue whether it wants to wake up a
4103 * task to maintain concurrency. If so, wake
4104 * up the task.
4105 */
4106 if (prev->flags & PF_WQ_WORKER) {
4107 struct task_struct *to_wakeup;
4108
4109 to_wakeup = wq_worker_sleeping(prev, cpu);
4110 if (to_wakeup)
4111 try_to_wake_up_local(to_wakeup);
4112 }
4113 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4114 }
4115 switch_count = &prev->nvcsw;
4116 }
4117
4118 pre_schedule(rq, prev);
4119
4120 if (unlikely(!rq->nr_running))
4121 idle_balance(cpu, rq);
4122
4123 put_prev_task(rq, prev);
4124 next = pick_next_task(rq);
4125 clear_tsk_need_resched(prev);
4126 rq->skip_clock_update = 0;
4127
4128 if (likely(prev != next)) {
4129 rq->nr_switches++;
4130 rq->curr = next;
4131 ++*switch_count;
4132
4133 context_switch(rq, prev, next); /* unlocks the rq */
4134 /*
4135 * The context switch have flipped the stack from under us
4136 * and restored the local variables which were saved when
4137 * this task called schedule() in the past. prev == current
4138 * is still correct, but it can be moved to another cpu/rq.
4139 */
4140 cpu = smp_processor_id();
4141 rq = cpu_rq(cpu);
4142 } else
4143 raw_spin_unlock_irq(&rq->lock);
4144
4145 post_schedule(rq);
4146
4147 preempt_enable_no_resched();
4148 if (need_resched())
4149 goto need_resched;
4150 }
4151 EXPORT_SYMBOL(schedule);
4152
4153 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4154 /*
4155 * Look out! "owner" is an entirely speculative pointer
4156 * access and not reliable.
4157 */
4158 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
4159 {
4160 unsigned int cpu;
4161 struct rq *rq;
4162
4163 if (!sched_feat(OWNER_SPIN))
4164 return 0;
4165
4166 #ifdef CONFIG_DEBUG_PAGEALLOC
4167 /*
4168 * Need to access the cpu field knowing that
4169 * DEBUG_PAGEALLOC could have unmapped it if
4170 * the mutex owner just released it and exited.
4171 */
4172 if (probe_kernel_address(&owner->cpu, cpu))
4173 return 0;
4174 #else
4175 cpu = owner->cpu;
4176 #endif
4177
4178 /*
4179 * Even if the access succeeded (likely case),
4180 * the cpu field may no longer be valid.
4181 */
4182 if (cpu >= nr_cpumask_bits)
4183 return 0;
4184
4185 /*
4186 * We need to validate that we can do a
4187 * get_cpu() and that we have the percpu area.
4188 */
4189 if (!cpu_online(cpu))
4190 return 0;
4191
4192 rq = cpu_rq(cpu);
4193
4194 for (;;) {
4195 /*
4196 * Owner changed, break to re-assess state.
4197 */
4198 if (lock->owner != owner) {
4199 /*
4200 * If the lock has switched to a different owner,
4201 * we likely have heavy contention. Return 0 to quit
4202 * optimistic spinning and not contend further:
4203 */
4204 if (lock->owner)
4205 return 0;
4206 break;
4207 }
4208
4209 /*
4210 * Is that owner really running on that cpu?
4211 */
4212 if (task_thread_info(rq->curr) != owner || need_resched())
4213 return 0;
4214
4215 arch_mutex_cpu_relax();
4216 }
4217
4218 return 1;
4219 }
4220 #endif
4221
4222 #ifdef CONFIG_PREEMPT
4223 /*
4224 * this is the entry point to schedule() from in-kernel preemption
4225 * off of preempt_enable. Kernel preemptions off return from interrupt
4226 * occur there and call schedule directly.
4227 */
4228 asmlinkage void __sched notrace preempt_schedule(void)
4229 {
4230 struct thread_info *ti = current_thread_info();
4231
4232 /*
4233 * If there is a non-zero preempt_count or interrupts are disabled,
4234 * we do not want to preempt the current task. Just return..
4235 */
4236 if (likely(ti->preempt_count || irqs_disabled()))
4237 return;
4238
4239 do {
4240 add_preempt_count_notrace(PREEMPT_ACTIVE);
4241 schedule();
4242 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4243
4244 /*
4245 * Check again in case we missed a preemption opportunity
4246 * between schedule and now.
4247 */
4248 barrier();
4249 } while (need_resched());
4250 }
4251 EXPORT_SYMBOL(preempt_schedule);
4252
4253 /*
4254 * this is the entry point to schedule() from kernel preemption
4255 * off of irq context.
4256 * Note, that this is called and return with irqs disabled. This will
4257 * protect us against recursive calling from irq.
4258 */
4259 asmlinkage void __sched preempt_schedule_irq(void)
4260 {
4261 struct thread_info *ti = current_thread_info();
4262
4263 /* Catch callers which need to be fixed */
4264 BUG_ON(ti->preempt_count || !irqs_disabled());
4265
4266 do {
4267 add_preempt_count(PREEMPT_ACTIVE);
4268 local_irq_enable();
4269 schedule();
4270 local_irq_disable();
4271 sub_preempt_count(PREEMPT_ACTIVE);
4272
4273 /*
4274 * Check again in case we missed a preemption opportunity
4275 * between schedule and now.
4276 */
4277 barrier();
4278 } while (need_resched());
4279 }
4280
4281 #endif /* CONFIG_PREEMPT */
4282
4283 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4284 void *key)
4285 {
4286 return try_to_wake_up(curr->private, mode, wake_flags);
4287 }
4288 EXPORT_SYMBOL(default_wake_function);
4289
4290 /*
4291 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4292 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4293 * number) then we wake all the non-exclusive tasks and one exclusive task.
4294 *
4295 * There are circumstances in which we can try to wake a task which has already
4296 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4297 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4298 */
4299 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4300 int nr_exclusive, int wake_flags, void *key)
4301 {
4302 wait_queue_t *curr, *next;
4303
4304 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4305 unsigned flags = curr->flags;
4306
4307 if (curr->func(curr, mode, wake_flags, key) &&
4308 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4309 break;
4310 }
4311 }
4312
4313 /**
4314 * __wake_up - wake up threads blocked on a waitqueue.
4315 * @q: the waitqueue
4316 * @mode: which threads
4317 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4318 * @key: is directly passed to the wakeup function
4319 *
4320 * It may be assumed that this function implies a write memory barrier before
4321 * changing the task state if and only if any tasks are woken up.
4322 */
4323 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4324 int nr_exclusive, void *key)
4325 {
4326 unsigned long flags;
4327
4328 spin_lock_irqsave(&q->lock, flags);
4329 __wake_up_common(q, mode, nr_exclusive, 0, key);
4330 spin_unlock_irqrestore(&q->lock, flags);
4331 }
4332 EXPORT_SYMBOL(__wake_up);
4333
4334 /*
4335 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4336 */
4337 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4338 {
4339 __wake_up_common(q, mode, 1, 0, NULL);
4340 }
4341 EXPORT_SYMBOL_GPL(__wake_up_locked);
4342
4343 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4344 {
4345 __wake_up_common(q, mode, 1, 0, key);
4346 }
4347 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4348
4349 /**
4350 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4351 * @q: the waitqueue
4352 * @mode: which threads
4353 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4354 * @key: opaque value to be passed to wakeup targets
4355 *
4356 * The sync wakeup differs that the waker knows that it will schedule
4357 * away soon, so while the target thread will be woken up, it will not
4358 * be migrated to another CPU - ie. the two threads are 'synchronized'
4359 * with each other. This can prevent needless bouncing between CPUs.
4360 *
4361 * On UP it can prevent extra preemption.
4362 *
4363 * It may be assumed that this function implies a write memory barrier before
4364 * changing the task state if and only if any tasks are woken up.
4365 */
4366 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4367 int nr_exclusive, void *key)
4368 {
4369 unsigned long flags;
4370 int wake_flags = WF_SYNC;
4371
4372 if (unlikely(!q))
4373 return;
4374
4375 if (unlikely(!nr_exclusive))
4376 wake_flags = 0;
4377
4378 spin_lock_irqsave(&q->lock, flags);
4379 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4380 spin_unlock_irqrestore(&q->lock, flags);
4381 }
4382 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4383
4384 /*
4385 * __wake_up_sync - see __wake_up_sync_key()
4386 */
4387 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4388 {
4389 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4390 }
4391 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4392
4393 /**
4394 * complete: - signals a single thread waiting on this completion
4395 * @x: holds the state of this particular completion
4396 *
4397 * This will wake up a single thread waiting on this completion. Threads will be
4398 * awakened in the same order in which they were queued.
4399 *
4400 * See also complete_all(), wait_for_completion() and related routines.
4401 *
4402 * It may be assumed that this function implies a write memory barrier before
4403 * changing the task state if and only if any tasks are woken up.
4404 */
4405 void complete(struct completion *x)
4406 {
4407 unsigned long flags;
4408
4409 spin_lock_irqsave(&x->wait.lock, flags);
4410 x->done++;
4411 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4412 spin_unlock_irqrestore(&x->wait.lock, flags);
4413 }
4414 EXPORT_SYMBOL(complete);
4415
4416 /**
4417 * complete_all: - signals all threads waiting on this completion
4418 * @x: holds the state of this particular completion
4419 *
4420 * This will wake up all threads waiting on this particular completion event.
4421 *
4422 * It may be assumed that this function implies a write memory barrier before
4423 * changing the task state if and only if any tasks are woken up.
4424 */
4425 void complete_all(struct completion *x)
4426 {
4427 unsigned long flags;
4428
4429 spin_lock_irqsave(&x->wait.lock, flags);
4430 x->done += UINT_MAX/2;
4431 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4432 spin_unlock_irqrestore(&x->wait.lock, flags);
4433 }
4434 EXPORT_SYMBOL(complete_all);
4435
4436 static inline long __sched
4437 do_wait_for_common(struct completion *x, long timeout, int state)
4438 {
4439 if (!x->done) {
4440 DECLARE_WAITQUEUE(wait, current);
4441
4442 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4443 do {
4444 if (signal_pending_state(state, current)) {
4445 timeout = -ERESTARTSYS;
4446 break;
4447 }
4448 __set_current_state(state);
4449 spin_unlock_irq(&x->wait.lock);
4450 timeout = schedule_timeout(timeout);
4451 spin_lock_irq(&x->wait.lock);
4452 } while (!x->done && timeout);
4453 __remove_wait_queue(&x->wait, &wait);
4454 if (!x->done)
4455 return timeout;
4456 }
4457 x->done--;
4458 return timeout ?: 1;
4459 }
4460
4461 static long __sched
4462 wait_for_common(struct completion *x, long timeout, int state)
4463 {
4464 might_sleep();
4465
4466 spin_lock_irq(&x->wait.lock);
4467 timeout = do_wait_for_common(x, timeout, state);
4468 spin_unlock_irq(&x->wait.lock);
4469 return timeout;
4470 }
4471
4472 /**
4473 * wait_for_completion: - waits for completion of a task
4474 * @x: holds the state of this particular completion
4475 *
4476 * This waits to be signaled for completion of a specific task. It is NOT
4477 * interruptible and there is no timeout.
4478 *
4479 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4480 * and interrupt capability. Also see complete().
4481 */
4482 void __sched wait_for_completion(struct completion *x)
4483 {
4484 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4485 }
4486 EXPORT_SYMBOL(wait_for_completion);
4487
4488 /**
4489 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4490 * @x: holds the state of this particular completion
4491 * @timeout: timeout value in jiffies
4492 *
4493 * This waits for either a completion of a specific task to be signaled or for a
4494 * specified timeout to expire. The timeout is in jiffies. It is not
4495 * interruptible.
4496 */
4497 unsigned long __sched
4498 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4499 {
4500 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4501 }
4502 EXPORT_SYMBOL(wait_for_completion_timeout);
4503
4504 /**
4505 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4506 * @x: holds the state of this particular completion
4507 *
4508 * This waits for completion of a specific task to be signaled. It is
4509 * interruptible.
4510 */
4511 int __sched wait_for_completion_interruptible(struct completion *x)
4512 {
4513 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4514 if (t == -ERESTARTSYS)
4515 return t;
4516 return 0;
4517 }
4518 EXPORT_SYMBOL(wait_for_completion_interruptible);
4519
4520 /**
4521 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4522 * @x: holds the state of this particular completion
4523 * @timeout: timeout value in jiffies
4524 *
4525 * This waits for either a completion of a specific task to be signaled or for a
4526 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4527 */
4528 long __sched
4529 wait_for_completion_interruptible_timeout(struct completion *x,
4530 unsigned long timeout)
4531 {
4532 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4533 }
4534 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4535
4536 /**
4537 * wait_for_completion_killable: - waits for completion of a task (killable)
4538 * @x: holds the state of this particular completion
4539 *
4540 * This waits to be signaled for completion of a specific task. It can be
4541 * interrupted by a kill signal.
4542 */
4543 int __sched wait_for_completion_killable(struct completion *x)
4544 {
4545 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4546 if (t == -ERESTARTSYS)
4547 return t;
4548 return 0;
4549 }
4550 EXPORT_SYMBOL(wait_for_completion_killable);
4551
4552 /**
4553 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4554 * @x: holds the state of this particular completion
4555 * @timeout: timeout value in jiffies
4556 *
4557 * This waits for either a completion of a specific task to be
4558 * signaled or for a specified timeout to expire. It can be
4559 * interrupted by a kill signal. The timeout is in jiffies.
4560 */
4561 long __sched
4562 wait_for_completion_killable_timeout(struct completion *x,
4563 unsigned long timeout)
4564 {
4565 return wait_for_common(x, timeout, TASK_KILLABLE);
4566 }
4567 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4568
4569 /**
4570 * try_wait_for_completion - try to decrement a completion without blocking
4571 * @x: completion structure
4572 *
4573 * Returns: 0 if a decrement cannot be done without blocking
4574 * 1 if a decrement succeeded.
4575 *
4576 * If a completion is being used as a counting completion,
4577 * attempt to decrement the counter without blocking. This
4578 * enables us to avoid waiting if the resource the completion
4579 * is protecting is not available.
4580 */
4581 bool try_wait_for_completion(struct completion *x)
4582 {
4583 unsigned long flags;
4584 int ret = 1;
4585
4586 spin_lock_irqsave(&x->wait.lock, flags);
4587 if (!x->done)
4588 ret = 0;
4589 else
4590 x->done--;
4591 spin_unlock_irqrestore(&x->wait.lock, flags);
4592 return ret;
4593 }
4594 EXPORT_SYMBOL(try_wait_for_completion);
4595
4596 /**
4597 * completion_done - Test to see if a completion has any waiters
4598 * @x: completion structure
4599 *
4600 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4601 * 1 if there are no waiters.
4602 *
4603 */
4604 bool completion_done(struct completion *x)
4605 {
4606 unsigned long flags;
4607 int ret = 1;
4608
4609 spin_lock_irqsave(&x->wait.lock, flags);
4610 if (!x->done)
4611 ret = 0;
4612 spin_unlock_irqrestore(&x->wait.lock, flags);
4613 return ret;
4614 }
4615 EXPORT_SYMBOL(completion_done);
4616
4617 static long __sched
4618 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4619 {
4620 unsigned long flags;
4621 wait_queue_t wait;
4622
4623 init_waitqueue_entry(&wait, current);
4624
4625 __set_current_state(state);
4626
4627 spin_lock_irqsave(&q->lock, flags);
4628 __add_wait_queue(q, &wait);
4629 spin_unlock(&q->lock);
4630 timeout = schedule_timeout(timeout);
4631 spin_lock_irq(&q->lock);
4632 __remove_wait_queue(q, &wait);
4633 spin_unlock_irqrestore(&q->lock, flags);
4634
4635 return timeout;
4636 }
4637
4638 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4639 {
4640 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4641 }
4642 EXPORT_SYMBOL(interruptible_sleep_on);
4643
4644 long __sched
4645 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4646 {
4647 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4648 }
4649 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4650
4651 void __sched sleep_on(wait_queue_head_t *q)
4652 {
4653 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4654 }
4655 EXPORT_SYMBOL(sleep_on);
4656
4657 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4658 {
4659 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4660 }
4661 EXPORT_SYMBOL(sleep_on_timeout);
4662
4663 #ifdef CONFIG_RT_MUTEXES
4664
4665 /*
4666 * rt_mutex_setprio - set the current priority of a task
4667 * @p: task
4668 * @prio: prio value (kernel-internal form)
4669 *
4670 * This function changes the 'effective' priority of a task. It does
4671 * not touch ->normal_prio like __setscheduler().
4672 *
4673 * Used by the rt_mutex code to implement priority inheritance logic.
4674 */
4675 void rt_mutex_setprio(struct task_struct *p, int prio)
4676 {
4677 unsigned long flags;
4678 int oldprio, on_rq, running;
4679 struct rq *rq;
4680 const struct sched_class *prev_class;
4681
4682 BUG_ON(prio < 0 || prio > MAX_PRIO);
4683
4684 rq = task_rq_lock(p, &flags);
4685
4686 trace_sched_pi_setprio(p, prio);
4687 oldprio = p->prio;
4688 prev_class = p->sched_class;
4689 on_rq = p->se.on_rq;
4690 running = task_current(rq, p);
4691 if (on_rq)
4692 dequeue_task(rq, p, 0);
4693 if (running)
4694 p->sched_class->put_prev_task(rq, p);
4695
4696 if (rt_prio(prio))
4697 p->sched_class = &rt_sched_class;
4698 else
4699 p->sched_class = &fair_sched_class;
4700
4701 p->prio = prio;
4702
4703 if (running)
4704 p->sched_class->set_curr_task(rq);
4705 if (on_rq)
4706 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4707
4708 check_class_changed(rq, p, prev_class, oldprio);
4709 task_rq_unlock(rq, &flags);
4710 }
4711
4712 #endif
4713
4714 void set_user_nice(struct task_struct *p, long nice)
4715 {
4716 int old_prio, delta, on_rq;
4717 unsigned long flags;
4718 struct rq *rq;
4719
4720 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4721 return;
4722 /*
4723 * We have to be careful, if called from sys_setpriority(),
4724 * the task might be in the middle of scheduling on another CPU.
4725 */
4726 rq = task_rq_lock(p, &flags);
4727 /*
4728 * The RT priorities are set via sched_setscheduler(), but we still
4729 * allow the 'normal' nice value to be set - but as expected
4730 * it wont have any effect on scheduling until the task is
4731 * SCHED_FIFO/SCHED_RR:
4732 */
4733 if (task_has_rt_policy(p)) {
4734 p->static_prio = NICE_TO_PRIO(nice);
4735 goto out_unlock;
4736 }
4737 on_rq = p->se.on_rq;
4738 if (on_rq)
4739 dequeue_task(rq, p, 0);
4740
4741 p->static_prio = NICE_TO_PRIO(nice);
4742 set_load_weight(p);
4743 old_prio = p->prio;
4744 p->prio = effective_prio(p);
4745 delta = p->prio - old_prio;
4746
4747 if (on_rq) {
4748 enqueue_task(rq, p, 0);
4749 /*
4750 * If the task increased its priority or is running and
4751 * lowered its priority, then reschedule its CPU:
4752 */
4753 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4754 resched_task(rq->curr);
4755 }
4756 out_unlock:
4757 task_rq_unlock(rq, &flags);
4758 }
4759 EXPORT_SYMBOL(set_user_nice);
4760
4761 /*
4762 * can_nice - check if a task can reduce its nice value
4763 * @p: task
4764 * @nice: nice value
4765 */
4766 int can_nice(const struct task_struct *p, const int nice)
4767 {
4768 /* convert nice value [19,-20] to rlimit style value [1,40] */
4769 int nice_rlim = 20 - nice;
4770
4771 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4772 capable(CAP_SYS_NICE));
4773 }
4774
4775 #ifdef __ARCH_WANT_SYS_NICE
4776
4777 /*
4778 * sys_nice - change the priority of the current process.
4779 * @increment: priority increment
4780 *
4781 * sys_setpriority is a more generic, but much slower function that
4782 * does similar things.
4783 */
4784 SYSCALL_DEFINE1(nice, int, increment)
4785 {
4786 long nice, retval;
4787
4788 /*
4789 * Setpriority might change our priority at the same moment.
4790 * We don't have to worry. Conceptually one call occurs first
4791 * and we have a single winner.
4792 */
4793 if (increment < -40)
4794 increment = -40;
4795 if (increment > 40)
4796 increment = 40;
4797
4798 nice = TASK_NICE(current) + increment;
4799 if (nice < -20)
4800 nice = -20;
4801 if (nice > 19)
4802 nice = 19;
4803
4804 if (increment < 0 && !can_nice(current, nice))
4805 return -EPERM;
4806
4807 retval = security_task_setnice(current, nice);
4808 if (retval)
4809 return retval;
4810
4811 set_user_nice(current, nice);
4812 return 0;
4813 }
4814
4815 #endif
4816
4817 /**
4818 * task_prio - return the priority value of a given task.
4819 * @p: the task in question.
4820 *
4821 * This is the priority value as seen by users in /proc.
4822 * RT tasks are offset by -200. Normal tasks are centered
4823 * around 0, value goes from -16 to +15.
4824 */
4825 int task_prio(const struct task_struct *p)
4826 {
4827 return p->prio - MAX_RT_PRIO;
4828 }
4829
4830 /**
4831 * task_nice - return the nice value of a given task.
4832 * @p: the task in question.
4833 */
4834 int task_nice(const struct task_struct *p)
4835 {
4836 return TASK_NICE(p);
4837 }
4838 EXPORT_SYMBOL(task_nice);
4839
4840 /**
4841 * idle_cpu - is a given cpu idle currently?
4842 * @cpu: the processor in question.
4843 */
4844 int idle_cpu(int cpu)
4845 {
4846 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4847 }
4848
4849 /**
4850 * idle_task - return the idle task for a given cpu.
4851 * @cpu: the processor in question.
4852 */
4853 struct task_struct *idle_task(int cpu)
4854 {
4855 return cpu_rq(cpu)->idle;
4856 }
4857
4858 /**
4859 * find_process_by_pid - find a process with a matching PID value.
4860 * @pid: the pid in question.
4861 */
4862 static struct task_struct *find_process_by_pid(pid_t pid)
4863 {
4864 return pid ? find_task_by_vpid(pid) : current;
4865 }
4866
4867 /* Actually do priority change: must hold rq lock. */
4868 static void
4869 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4870 {
4871 BUG_ON(p->se.on_rq);
4872
4873 p->policy = policy;
4874 p->rt_priority = prio;
4875 p->normal_prio = normal_prio(p);
4876 /* we are holding p->pi_lock already */
4877 p->prio = rt_mutex_getprio(p);
4878 if (rt_prio(p->prio))
4879 p->sched_class = &rt_sched_class;
4880 else
4881 p->sched_class = &fair_sched_class;
4882 set_load_weight(p);
4883 }
4884
4885 /*
4886 * check the target process has a UID that matches the current process's
4887 */
4888 static bool check_same_owner(struct task_struct *p)
4889 {
4890 const struct cred *cred = current_cred(), *pcred;
4891 bool match;
4892
4893 rcu_read_lock();
4894 pcred = __task_cred(p);
4895 match = (cred->euid == pcred->euid ||
4896 cred->euid == pcred->uid);
4897 rcu_read_unlock();
4898 return match;
4899 }
4900
4901 static int __sched_setscheduler(struct task_struct *p, int policy,
4902 const struct sched_param *param, bool user)
4903 {
4904 int retval, oldprio, oldpolicy = -1, on_rq, running;
4905 unsigned long flags;
4906 const struct sched_class *prev_class;
4907 struct rq *rq;
4908 int reset_on_fork;
4909
4910 /* may grab non-irq protected spin_locks */
4911 BUG_ON(in_interrupt());
4912 recheck:
4913 /* double check policy once rq lock held */
4914 if (policy < 0) {
4915 reset_on_fork = p->sched_reset_on_fork;
4916 policy = oldpolicy = p->policy;
4917 } else {
4918 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4919 policy &= ~SCHED_RESET_ON_FORK;
4920
4921 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4922 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4923 policy != SCHED_IDLE)
4924 return -EINVAL;
4925 }
4926
4927 /*
4928 * Valid priorities for SCHED_FIFO and SCHED_RR are
4929 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4930 * SCHED_BATCH and SCHED_IDLE is 0.
4931 */
4932 if (param->sched_priority < 0 ||
4933 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4934 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4935 return -EINVAL;
4936 if (rt_policy(policy) != (param->sched_priority != 0))
4937 return -EINVAL;
4938
4939 /*
4940 * Allow unprivileged RT tasks to decrease priority:
4941 */
4942 if (user && !capable(CAP_SYS_NICE)) {
4943 if (rt_policy(policy)) {
4944 unsigned long rlim_rtprio =
4945 task_rlimit(p, RLIMIT_RTPRIO);
4946
4947 /* can't set/change the rt policy */
4948 if (policy != p->policy && !rlim_rtprio)
4949 return -EPERM;
4950
4951 /* can't increase priority */
4952 if (param->sched_priority > p->rt_priority &&
4953 param->sched_priority > rlim_rtprio)
4954 return -EPERM;
4955 }
4956
4957 /*
4958 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4959 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
4960 */
4961 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4962 if (!can_nice(p, TASK_NICE(p)))
4963 return -EPERM;
4964 }
4965
4966 /* can't change other user's priorities */
4967 if (!check_same_owner(p))
4968 return -EPERM;
4969
4970 /* Normal users shall not reset the sched_reset_on_fork flag */
4971 if (p->sched_reset_on_fork && !reset_on_fork)
4972 return -EPERM;
4973 }
4974
4975 if (user) {
4976 retval = security_task_setscheduler(p);
4977 if (retval)
4978 return retval;
4979 }
4980
4981 /*
4982 * make sure no PI-waiters arrive (or leave) while we are
4983 * changing the priority of the task:
4984 */
4985 raw_spin_lock_irqsave(&p->pi_lock, flags);
4986 /*
4987 * To be able to change p->policy safely, the apropriate
4988 * runqueue lock must be held.
4989 */
4990 rq = __task_rq_lock(p);
4991
4992 /*
4993 * Changing the policy of the stop threads its a very bad idea
4994 */
4995 if (p == rq->stop) {
4996 __task_rq_unlock(rq);
4997 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4998 return -EINVAL;
4999 }
5000
5001 #ifdef CONFIG_RT_GROUP_SCHED
5002 if (user) {
5003 /*
5004 * Do not allow realtime tasks into groups that have no runtime
5005 * assigned.
5006 */
5007 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5008 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5009 !task_group_is_autogroup(task_group(p))) {
5010 __task_rq_unlock(rq);
5011 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5012 return -EPERM;
5013 }
5014 }
5015 #endif
5016
5017 /* recheck policy now with rq lock held */
5018 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5019 policy = oldpolicy = -1;
5020 __task_rq_unlock(rq);
5021 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5022 goto recheck;
5023 }
5024 on_rq = p->se.on_rq;
5025 running = task_current(rq, p);
5026 if (on_rq)
5027 deactivate_task(rq, p, 0);
5028 if (running)
5029 p->sched_class->put_prev_task(rq, p);
5030
5031 p->sched_reset_on_fork = reset_on_fork;
5032
5033 oldprio = p->prio;
5034 prev_class = p->sched_class;
5035 __setscheduler(rq, p, policy, param->sched_priority);
5036
5037 if (running)
5038 p->sched_class->set_curr_task(rq);
5039 if (on_rq)
5040 activate_task(rq, p, 0);
5041
5042 check_class_changed(rq, p, prev_class, oldprio);
5043 __task_rq_unlock(rq);
5044 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5045
5046 rt_mutex_adjust_pi(p);
5047
5048 return 0;
5049 }
5050
5051 /**
5052 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5053 * @p: the task in question.
5054 * @policy: new policy.
5055 * @param: structure containing the new RT priority.
5056 *
5057 * NOTE that the task may be already dead.
5058 */
5059 int sched_setscheduler(struct task_struct *p, int policy,
5060 const struct sched_param *param)
5061 {
5062 return __sched_setscheduler(p, policy, param, true);
5063 }
5064 EXPORT_SYMBOL_GPL(sched_setscheduler);
5065
5066 /**
5067 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5068 * @p: the task in question.
5069 * @policy: new policy.
5070 * @param: structure containing the new RT priority.
5071 *
5072 * Just like sched_setscheduler, only don't bother checking if the
5073 * current context has permission. For example, this is needed in
5074 * stop_machine(): we create temporary high priority worker threads,
5075 * but our caller might not have that capability.
5076 */
5077 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5078 const struct sched_param *param)
5079 {
5080 return __sched_setscheduler(p, policy, param, false);
5081 }
5082
5083 static int
5084 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5085 {
5086 struct sched_param lparam;
5087 struct task_struct *p;
5088 int retval;
5089
5090 if (!param || pid < 0)
5091 return -EINVAL;
5092 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5093 return -EFAULT;
5094
5095 rcu_read_lock();
5096 retval = -ESRCH;
5097 p = find_process_by_pid(pid);
5098 if (p != NULL)
5099 retval = sched_setscheduler(p, policy, &lparam);
5100 rcu_read_unlock();
5101
5102 return retval;
5103 }
5104
5105 /**
5106 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5107 * @pid: the pid in question.
5108 * @policy: new policy.
5109 * @param: structure containing the new RT priority.
5110 */
5111 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5112 struct sched_param __user *, param)
5113 {
5114 /* negative values for policy are not valid */
5115 if (policy < 0)
5116 return -EINVAL;
5117
5118 return do_sched_setscheduler(pid, policy, param);
5119 }
5120
5121 /**
5122 * sys_sched_setparam - set/change the RT priority of a thread
5123 * @pid: the pid in question.
5124 * @param: structure containing the new RT priority.
5125 */
5126 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5127 {
5128 return do_sched_setscheduler(pid, -1, param);
5129 }
5130
5131 /**
5132 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5133 * @pid: the pid in question.
5134 */
5135 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5136 {
5137 struct task_struct *p;
5138 int retval;
5139
5140 if (pid < 0)
5141 return -EINVAL;
5142
5143 retval = -ESRCH;
5144 rcu_read_lock();
5145 p = find_process_by_pid(pid);
5146 if (p) {
5147 retval = security_task_getscheduler(p);
5148 if (!retval)
5149 retval = p->policy
5150 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5151 }
5152 rcu_read_unlock();
5153 return retval;
5154 }
5155
5156 /**
5157 * sys_sched_getparam - get the RT priority of a thread
5158 * @pid: the pid in question.
5159 * @param: structure containing the RT priority.
5160 */
5161 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5162 {
5163 struct sched_param lp;
5164 struct task_struct *p;
5165 int retval;
5166
5167 if (!param || pid < 0)
5168 return -EINVAL;
5169
5170 rcu_read_lock();
5171 p = find_process_by_pid(pid);
5172 retval = -ESRCH;
5173 if (!p)
5174 goto out_unlock;
5175
5176 retval = security_task_getscheduler(p);
5177 if (retval)
5178 goto out_unlock;
5179
5180 lp.sched_priority = p->rt_priority;
5181 rcu_read_unlock();
5182
5183 /*
5184 * This one might sleep, we cannot do it with a spinlock held ...
5185 */
5186 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5187
5188 return retval;
5189
5190 out_unlock:
5191 rcu_read_unlock();
5192 return retval;
5193 }
5194
5195 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5196 {
5197 cpumask_var_t cpus_allowed, new_mask;
5198 struct task_struct *p;
5199 int retval;
5200
5201 get_online_cpus();
5202 rcu_read_lock();
5203
5204 p = find_process_by_pid(pid);
5205 if (!p) {
5206 rcu_read_unlock();
5207 put_online_cpus();
5208 return -ESRCH;
5209 }
5210
5211 /* Prevent p going away */
5212 get_task_struct(p);
5213 rcu_read_unlock();
5214
5215 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5216 retval = -ENOMEM;
5217 goto out_put_task;
5218 }
5219 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5220 retval = -ENOMEM;
5221 goto out_free_cpus_allowed;
5222 }
5223 retval = -EPERM;
5224 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
5225 goto out_unlock;
5226
5227 retval = security_task_setscheduler(p);
5228 if (retval)
5229 goto out_unlock;
5230
5231 cpuset_cpus_allowed(p, cpus_allowed);
5232 cpumask_and(new_mask, in_mask, cpus_allowed);
5233 again:
5234 retval = set_cpus_allowed_ptr(p, new_mask);
5235
5236 if (!retval) {
5237 cpuset_cpus_allowed(p, cpus_allowed);
5238 if (!cpumask_subset(new_mask, cpus_allowed)) {
5239 /*
5240 * We must have raced with a concurrent cpuset
5241 * update. Just reset the cpus_allowed to the
5242 * cpuset's cpus_allowed
5243 */
5244 cpumask_copy(new_mask, cpus_allowed);
5245 goto again;
5246 }
5247 }
5248 out_unlock:
5249 free_cpumask_var(new_mask);
5250 out_free_cpus_allowed:
5251 free_cpumask_var(cpus_allowed);
5252 out_put_task:
5253 put_task_struct(p);
5254 put_online_cpus();
5255 return retval;
5256 }
5257
5258 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5259 struct cpumask *new_mask)
5260 {
5261 if (len < cpumask_size())
5262 cpumask_clear(new_mask);
5263 else if (len > cpumask_size())
5264 len = cpumask_size();
5265
5266 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5267 }
5268
5269 /**
5270 * sys_sched_setaffinity - set the cpu affinity of a process
5271 * @pid: pid of the process
5272 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5273 * @user_mask_ptr: user-space pointer to the new cpu mask
5274 */
5275 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5276 unsigned long __user *, user_mask_ptr)
5277 {
5278 cpumask_var_t new_mask;
5279 int retval;
5280
5281 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5282 return -ENOMEM;
5283
5284 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5285 if (retval == 0)
5286 retval = sched_setaffinity(pid, new_mask);
5287 free_cpumask_var(new_mask);
5288 return retval;
5289 }
5290
5291 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5292 {
5293 struct task_struct *p;
5294 unsigned long flags;
5295 struct rq *rq;
5296 int retval;
5297
5298 get_online_cpus();
5299 rcu_read_lock();
5300
5301 retval = -ESRCH;
5302 p = find_process_by_pid(pid);
5303 if (!p)
5304 goto out_unlock;
5305
5306 retval = security_task_getscheduler(p);
5307 if (retval)
5308 goto out_unlock;
5309
5310 rq = task_rq_lock(p, &flags);
5311 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5312 task_rq_unlock(rq, &flags);
5313
5314 out_unlock:
5315 rcu_read_unlock();
5316 put_online_cpus();
5317
5318 return retval;
5319 }
5320
5321 /**
5322 * sys_sched_getaffinity - get the cpu affinity of a process
5323 * @pid: pid of the process
5324 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5325 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5326 */
5327 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5328 unsigned long __user *, user_mask_ptr)
5329 {
5330 int ret;
5331 cpumask_var_t mask;
5332
5333 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5334 return -EINVAL;
5335 if (len & (sizeof(unsigned long)-1))
5336 return -EINVAL;
5337
5338 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5339 return -ENOMEM;
5340
5341 ret = sched_getaffinity(pid, mask);
5342 if (ret == 0) {
5343 size_t retlen = min_t(size_t, len, cpumask_size());
5344
5345 if (copy_to_user(user_mask_ptr, mask, retlen))
5346 ret = -EFAULT;
5347 else
5348 ret = retlen;
5349 }
5350 free_cpumask_var(mask);
5351
5352 return ret;
5353 }
5354
5355 /**
5356 * sys_sched_yield - yield the current processor to other threads.
5357 *
5358 * This function yields the current CPU to other tasks. If there are no
5359 * other threads running on this CPU then this function will return.
5360 */
5361 SYSCALL_DEFINE0(sched_yield)
5362 {
5363 struct rq *rq = this_rq_lock();
5364
5365 schedstat_inc(rq, yld_count);
5366 current->sched_class->yield_task(rq);
5367
5368 /*
5369 * Since we are going to call schedule() anyway, there's
5370 * no need to preempt or enable interrupts:
5371 */
5372 __release(rq->lock);
5373 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5374 do_raw_spin_unlock(&rq->lock);
5375 preempt_enable_no_resched();
5376
5377 schedule();
5378
5379 return 0;
5380 }
5381
5382 static inline int should_resched(void)
5383 {
5384 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5385 }
5386
5387 static void __cond_resched(void)
5388 {
5389 add_preempt_count(PREEMPT_ACTIVE);
5390 schedule();
5391 sub_preempt_count(PREEMPT_ACTIVE);
5392 }
5393
5394 int __sched _cond_resched(void)
5395 {
5396 if (should_resched()) {
5397 __cond_resched();
5398 return 1;
5399 }
5400 return 0;
5401 }
5402 EXPORT_SYMBOL(_cond_resched);
5403
5404 /*
5405 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5406 * call schedule, and on return reacquire the lock.
5407 *
5408 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5409 * operations here to prevent schedule() from being called twice (once via
5410 * spin_unlock(), once by hand).
5411 */
5412 int __cond_resched_lock(spinlock_t *lock)
5413 {
5414 int resched = should_resched();
5415 int ret = 0;
5416
5417 lockdep_assert_held(lock);
5418
5419 if (spin_needbreak(lock) || resched) {
5420 spin_unlock(lock);
5421 if (resched)
5422 __cond_resched();
5423 else
5424 cpu_relax();
5425 ret = 1;
5426 spin_lock(lock);
5427 }
5428 return ret;
5429 }
5430 EXPORT_SYMBOL(__cond_resched_lock);
5431
5432 int __sched __cond_resched_softirq(void)
5433 {
5434 BUG_ON(!in_softirq());
5435
5436 if (should_resched()) {
5437 local_bh_enable();
5438 __cond_resched();
5439 local_bh_disable();
5440 return 1;
5441 }
5442 return 0;
5443 }
5444 EXPORT_SYMBOL(__cond_resched_softirq);
5445
5446 /**
5447 * yield - yield the current processor to other threads.
5448 *
5449 * This is a shortcut for kernel-space yielding - it marks the
5450 * thread runnable and calls sys_sched_yield().
5451 */
5452 void __sched yield(void)
5453 {
5454 set_current_state(TASK_RUNNING);
5455 sys_sched_yield();
5456 }
5457 EXPORT_SYMBOL(yield);
5458
5459 /**
5460 * yield_to - yield the current processor to another thread in
5461 * your thread group, or accelerate that thread toward the
5462 * processor it's on.
5463 *
5464 * It's the caller's job to ensure that the target task struct
5465 * can't go away on us before we can do any checks.
5466 *
5467 * Returns true if we indeed boosted the target task.
5468 */
5469 bool __sched yield_to(struct task_struct *p, bool preempt)
5470 {
5471 struct task_struct *curr = current;
5472 struct rq *rq, *p_rq;
5473 unsigned long flags;
5474 bool yielded = 0;
5475
5476 local_irq_save(flags);
5477 rq = this_rq();
5478
5479 again:
5480 p_rq = task_rq(p);
5481 double_rq_lock(rq, p_rq);
5482 while (task_rq(p) != p_rq) {
5483 double_rq_unlock(rq, p_rq);
5484 goto again;
5485 }
5486
5487 if (!curr->sched_class->yield_to_task)
5488 goto out;
5489
5490 if (curr->sched_class != p->sched_class)
5491 goto out;
5492
5493 if (task_running(p_rq, p) || p->state)
5494 goto out;
5495
5496 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5497 if (yielded) {
5498 schedstat_inc(rq, yld_count);
5499 /*
5500 * Make p's CPU reschedule; pick_next_entity takes care of
5501 * fairness.
5502 */
5503 if (preempt && rq != p_rq)
5504 resched_task(p_rq->curr);
5505 }
5506
5507 out:
5508 double_rq_unlock(rq, p_rq);
5509 local_irq_restore(flags);
5510
5511 if (yielded)
5512 schedule();
5513
5514 return yielded;
5515 }
5516 EXPORT_SYMBOL_GPL(yield_to);
5517
5518 /*
5519 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5520 * that process accounting knows that this is a task in IO wait state.
5521 */
5522 void __sched io_schedule(void)
5523 {
5524 struct rq *rq = raw_rq();
5525
5526 delayacct_blkio_start();
5527 atomic_inc(&rq->nr_iowait);
5528 current->in_iowait = 1;
5529 schedule();
5530 current->in_iowait = 0;
5531 atomic_dec(&rq->nr_iowait);
5532 delayacct_blkio_end();
5533 }
5534 EXPORT_SYMBOL(io_schedule);
5535
5536 long __sched io_schedule_timeout(long timeout)
5537 {
5538 struct rq *rq = raw_rq();
5539 long ret;
5540
5541 delayacct_blkio_start();
5542 atomic_inc(&rq->nr_iowait);
5543 current->in_iowait = 1;
5544 ret = schedule_timeout(timeout);
5545 current->in_iowait = 0;
5546 atomic_dec(&rq->nr_iowait);
5547 delayacct_blkio_end();
5548 return ret;
5549 }
5550
5551 /**
5552 * sys_sched_get_priority_max - return maximum RT priority.
5553 * @policy: scheduling class.
5554 *
5555 * this syscall returns the maximum rt_priority that can be used
5556 * by a given scheduling class.
5557 */
5558 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5559 {
5560 int ret = -EINVAL;
5561
5562 switch (policy) {
5563 case SCHED_FIFO:
5564 case SCHED_RR:
5565 ret = MAX_USER_RT_PRIO-1;
5566 break;
5567 case SCHED_NORMAL:
5568 case SCHED_BATCH:
5569 case SCHED_IDLE:
5570 ret = 0;
5571 break;
5572 }
5573 return ret;
5574 }
5575
5576 /**
5577 * sys_sched_get_priority_min - return minimum RT priority.
5578 * @policy: scheduling class.
5579 *
5580 * this syscall returns the minimum rt_priority that can be used
5581 * by a given scheduling class.
5582 */
5583 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5584 {
5585 int ret = -EINVAL;
5586
5587 switch (policy) {
5588 case SCHED_FIFO:
5589 case SCHED_RR:
5590 ret = 1;
5591 break;
5592 case SCHED_NORMAL:
5593 case SCHED_BATCH:
5594 case SCHED_IDLE:
5595 ret = 0;
5596 }
5597 return ret;
5598 }
5599
5600 /**
5601 * sys_sched_rr_get_interval - return the default timeslice of a process.
5602 * @pid: pid of the process.
5603 * @interval: userspace pointer to the timeslice value.
5604 *
5605 * this syscall writes the default timeslice value of a given process
5606 * into the user-space timespec buffer. A value of '0' means infinity.
5607 */
5608 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5609 struct timespec __user *, interval)
5610 {
5611 struct task_struct *p;
5612 unsigned int time_slice;
5613 unsigned long flags;
5614 struct rq *rq;
5615 int retval;
5616 struct timespec t;
5617
5618 if (pid < 0)
5619 return -EINVAL;
5620
5621 retval = -ESRCH;
5622 rcu_read_lock();
5623 p = find_process_by_pid(pid);
5624 if (!p)
5625 goto out_unlock;
5626
5627 retval = security_task_getscheduler(p);
5628 if (retval)
5629 goto out_unlock;
5630
5631 rq = task_rq_lock(p, &flags);
5632 time_slice = p->sched_class->get_rr_interval(rq, p);
5633 task_rq_unlock(rq, &flags);
5634
5635 rcu_read_unlock();
5636 jiffies_to_timespec(time_slice, &t);
5637 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5638 return retval;
5639
5640 out_unlock:
5641 rcu_read_unlock();
5642 return retval;
5643 }
5644
5645 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5646
5647 void sched_show_task(struct task_struct *p)
5648 {
5649 unsigned long free = 0;
5650 unsigned state;
5651
5652 state = p->state ? __ffs(p->state) + 1 : 0;
5653 printk(KERN_INFO "%-15.15s %c", p->comm,
5654 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5655 #if BITS_PER_LONG == 32
5656 if (state == TASK_RUNNING)
5657 printk(KERN_CONT " running ");
5658 else
5659 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5660 #else
5661 if (state == TASK_RUNNING)
5662 printk(KERN_CONT " running task ");
5663 else
5664 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5665 #endif
5666 #ifdef CONFIG_DEBUG_STACK_USAGE
5667 free = stack_not_used(p);
5668 #endif
5669 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5670 task_pid_nr(p), task_pid_nr(p->real_parent),
5671 (unsigned long)task_thread_info(p)->flags);
5672
5673 show_stack(p, NULL);
5674 }
5675
5676 void show_state_filter(unsigned long state_filter)
5677 {
5678 struct task_struct *g, *p;
5679
5680 #if BITS_PER_LONG == 32
5681 printk(KERN_INFO
5682 " task PC stack pid father\n");
5683 #else
5684 printk(KERN_INFO
5685 " task PC stack pid father\n");
5686 #endif
5687 read_lock(&tasklist_lock);
5688 do_each_thread(g, p) {
5689 /*
5690 * reset the NMI-timeout, listing all files on a slow
5691 * console might take alot of time:
5692 */
5693 touch_nmi_watchdog();
5694 if (!state_filter || (p->state & state_filter))
5695 sched_show_task(p);
5696 } while_each_thread(g, p);
5697
5698 touch_all_softlockup_watchdogs();
5699
5700 #ifdef CONFIG_SCHED_DEBUG
5701 sysrq_sched_debug_show();
5702 #endif
5703 read_unlock(&tasklist_lock);
5704 /*
5705 * Only show locks if all tasks are dumped:
5706 */
5707 if (!state_filter)
5708 debug_show_all_locks();
5709 }
5710
5711 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5712 {
5713 idle->sched_class = &idle_sched_class;
5714 }
5715
5716 /**
5717 * init_idle - set up an idle thread for a given CPU
5718 * @idle: task in question
5719 * @cpu: cpu the idle task belongs to
5720 *
5721 * NOTE: this function does not set the idle thread's NEED_RESCHED
5722 * flag, to make booting more robust.
5723 */
5724 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5725 {
5726 struct rq *rq = cpu_rq(cpu);
5727 unsigned long flags;
5728
5729 raw_spin_lock_irqsave(&rq->lock, flags);
5730
5731 __sched_fork(idle);
5732 idle->state = TASK_RUNNING;
5733 idle->se.exec_start = sched_clock();
5734
5735 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5736 /*
5737 * We're having a chicken and egg problem, even though we are
5738 * holding rq->lock, the cpu isn't yet set to this cpu so the
5739 * lockdep check in task_group() will fail.
5740 *
5741 * Similar case to sched_fork(). / Alternatively we could
5742 * use task_rq_lock() here and obtain the other rq->lock.
5743 *
5744 * Silence PROVE_RCU
5745 */
5746 rcu_read_lock();
5747 __set_task_cpu(idle, cpu);
5748 rcu_read_unlock();
5749
5750 rq->curr = rq->idle = idle;
5751 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5752 idle->oncpu = 1;
5753 #endif
5754 raw_spin_unlock_irqrestore(&rq->lock, flags);
5755
5756 /* Set the preempt count _outside_ the spinlocks! */
5757 #if defined(CONFIG_PREEMPT)
5758 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5759 #else
5760 task_thread_info(idle)->preempt_count = 0;
5761 #endif
5762 /*
5763 * The idle tasks have their own, simple scheduling class:
5764 */
5765 idle->sched_class = &idle_sched_class;
5766 ftrace_graph_init_idle_task(idle, cpu);
5767 }
5768
5769 /*
5770 * In a system that switches off the HZ timer nohz_cpu_mask
5771 * indicates which cpus entered this state. This is used
5772 * in the rcu update to wait only for active cpus. For system
5773 * which do not switch off the HZ timer nohz_cpu_mask should
5774 * always be CPU_BITS_NONE.
5775 */
5776 cpumask_var_t nohz_cpu_mask;
5777
5778 /*
5779 * Increase the granularity value when there are more CPUs,
5780 * because with more CPUs the 'effective latency' as visible
5781 * to users decreases. But the relationship is not linear,
5782 * so pick a second-best guess by going with the log2 of the
5783 * number of CPUs.
5784 *
5785 * This idea comes from the SD scheduler of Con Kolivas:
5786 */
5787 static int get_update_sysctl_factor(void)
5788 {
5789 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5790 unsigned int factor;
5791
5792 switch (sysctl_sched_tunable_scaling) {
5793 case SCHED_TUNABLESCALING_NONE:
5794 factor = 1;
5795 break;
5796 case SCHED_TUNABLESCALING_LINEAR:
5797 factor = cpus;
5798 break;
5799 case SCHED_TUNABLESCALING_LOG:
5800 default:
5801 factor = 1 + ilog2(cpus);
5802 break;
5803 }
5804
5805 return factor;
5806 }
5807
5808 static void update_sysctl(void)
5809 {
5810 unsigned int factor = get_update_sysctl_factor();
5811
5812 #define SET_SYSCTL(name) \
5813 (sysctl_##name = (factor) * normalized_sysctl_##name)
5814 SET_SYSCTL(sched_min_granularity);
5815 SET_SYSCTL(sched_latency);
5816 SET_SYSCTL(sched_wakeup_granularity);
5817 #undef SET_SYSCTL
5818 }
5819
5820 static inline void sched_init_granularity(void)
5821 {
5822 update_sysctl();
5823 }
5824
5825 #ifdef CONFIG_SMP
5826 /*
5827 * This is how migration works:
5828 *
5829 * 1) we invoke migration_cpu_stop() on the target CPU using
5830 * stop_one_cpu().
5831 * 2) stopper starts to run (implicitly forcing the migrated thread
5832 * off the CPU)
5833 * 3) it checks whether the migrated task is still in the wrong runqueue.
5834 * 4) if it's in the wrong runqueue then the migration thread removes
5835 * it and puts it into the right queue.
5836 * 5) stopper completes and stop_one_cpu() returns and the migration
5837 * is done.
5838 */
5839
5840 /*
5841 * Change a given task's CPU affinity. Migrate the thread to a
5842 * proper CPU and schedule it away if the CPU it's executing on
5843 * is removed from the allowed bitmask.
5844 *
5845 * NOTE: the caller must have a valid reference to the task, the
5846 * task must not exit() & deallocate itself prematurely. The
5847 * call is not atomic; no spinlocks may be held.
5848 */
5849 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5850 {
5851 unsigned long flags;
5852 struct rq *rq;
5853 unsigned int dest_cpu;
5854 int ret = 0;
5855
5856 /*
5857 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5858 * drop the rq->lock and still rely on ->cpus_allowed.
5859 */
5860 again:
5861 while (task_is_waking(p))
5862 cpu_relax();
5863 rq = task_rq_lock(p, &flags);
5864 if (task_is_waking(p)) {
5865 task_rq_unlock(rq, &flags);
5866 goto again;
5867 }
5868
5869 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5870 ret = -EINVAL;
5871 goto out;
5872 }
5873
5874 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5875 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5876 ret = -EINVAL;
5877 goto out;
5878 }
5879
5880 if (p->sched_class->set_cpus_allowed)
5881 p->sched_class->set_cpus_allowed(p, new_mask);
5882 else {
5883 cpumask_copy(&p->cpus_allowed, new_mask);
5884 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5885 }
5886
5887 /* Can the task run on the task's current CPU? If so, we're done */
5888 if (cpumask_test_cpu(task_cpu(p), new_mask))
5889 goto out;
5890
5891 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5892 if (migrate_task(p, rq)) {
5893 struct migration_arg arg = { p, dest_cpu };
5894 /* Need help from migration thread: drop lock and wait. */
5895 task_rq_unlock(rq, &flags);
5896 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5897 tlb_migrate_finish(p->mm);
5898 return 0;
5899 }
5900 out:
5901 task_rq_unlock(rq, &flags);
5902
5903 return ret;
5904 }
5905 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5906
5907 /*
5908 * Move (not current) task off this cpu, onto dest cpu. We're doing
5909 * this because either it can't run here any more (set_cpus_allowed()
5910 * away from this CPU, or CPU going down), or because we're
5911 * attempting to rebalance this task on exec (sched_exec).
5912 *
5913 * So we race with normal scheduler movements, but that's OK, as long
5914 * as the task is no longer on this CPU.
5915 *
5916 * Returns non-zero if task was successfully migrated.
5917 */
5918 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5919 {
5920 struct rq *rq_dest, *rq_src;
5921 int ret = 0;
5922
5923 if (unlikely(!cpu_active(dest_cpu)))
5924 return ret;
5925
5926 rq_src = cpu_rq(src_cpu);
5927 rq_dest = cpu_rq(dest_cpu);
5928
5929 double_rq_lock(rq_src, rq_dest);
5930 /* Already moved. */
5931 if (task_cpu(p) != src_cpu)
5932 goto done;
5933 /* Affinity changed (again). */
5934 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5935 goto fail;
5936
5937 /*
5938 * If we're not on a rq, the next wake-up will ensure we're
5939 * placed properly.
5940 */
5941 if (p->se.on_rq) {
5942 deactivate_task(rq_src, p, 0);
5943 set_task_cpu(p, dest_cpu);
5944 activate_task(rq_dest, p, 0);
5945 check_preempt_curr(rq_dest, p, 0);
5946 }
5947 done:
5948 ret = 1;
5949 fail:
5950 double_rq_unlock(rq_src, rq_dest);
5951 return ret;
5952 }
5953
5954 /*
5955 * migration_cpu_stop - this will be executed by a highprio stopper thread
5956 * and performs thread migration by bumping thread off CPU then
5957 * 'pushing' onto another runqueue.
5958 */
5959 static int migration_cpu_stop(void *data)
5960 {
5961 struct migration_arg *arg = data;
5962
5963 /*
5964 * The original target cpu might have gone down and we might
5965 * be on another cpu but it doesn't matter.
5966 */
5967 local_irq_disable();
5968 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5969 local_irq_enable();
5970 return 0;
5971 }
5972
5973 #ifdef CONFIG_HOTPLUG_CPU
5974
5975 /*
5976 * Ensures that the idle task is using init_mm right before its cpu goes
5977 * offline.
5978 */
5979 void idle_task_exit(void)
5980 {
5981 struct mm_struct *mm = current->active_mm;
5982
5983 BUG_ON(cpu_online(smp_processor_id()));
5984
5985 if (mm != &init_mm)
5986 switch_mm(mm, &init_mm, current);
5987 mmdrop(mm);
5988 }
5989
5990 /*
5991 * While a dead CPU has no uninterruptible tasks queued at this point,
5992 * it might still have a nonzero ->nr_uninterruptible counter, because
5993 * for performance reasons the counter is not stricly tracking tasks to
5994 * their home CPUs. So we just add the counter to another CPU's counter,
5995 * to keep the global sum constant after CPU-down:
5996 */
5997 static void migrate_nr_uninterruptible(struct rq *rq_src)
5998 {
5999 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6000
6001 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6002 rq_src->nr_uninterruptible = 0;
6003 }
6004
6005 /*
6006 * remove the tasks which were accounted by rq from calc_load_tasks.
6007 */
6008 static void calc_global_load_remove(struct rq *rq)
6009 {
6010 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6011 rq->calc_load_active = 0;
6012 }
6013
6014 /*
6015 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6016 * try_to_wake_up()->select_task_rq().
6017 *
6018 * Called with rq->lock held even though we'er in stop_machine() and
6019 * there's no concurrency possible, we hold the required locks anyway
6020 * because of lock validation efforts.
6021 */
6022 static void migrate_tasks(unsigned int dead_cpu)
6023 {
6024 struct rq *rq = cpu_rq(dead_cpu);
6025 struct task_struct *next, *stop = rq->stop;
6026 int dest_cpu;
6027
6028 /*
6029 * Fudge the rq selection such that the below task selection loop
6030 * doesn't get stuck on the currently eligible stop task.
6031 *
6032 * We're currently inside stop_machine() and the rq is either stuck
6033 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6034 * either way we should never end up calling schedule() until we're
6035 * done here.
6036 */
6037 rq->stop = NULL;
6038
6039 for ( ; ; ) {
6040 /*
6041 * There's this thread running, bail when that's the only
6042 * remaining thread.
6043 */
6044 if (rq->nr_running == 1)
6045 break;
6046
6047 next = pick_next_task(rq);
6048 BUG_ON(!next);
6049 next->sched_class->put_prev_task(rq, next);
6050
6051 /* Find suitable destination for @next, with force if needed. */
6052 dest_cpu = select_fallback_rq(dead_cpu, next);
6053 raw_spin_unlock(&rq->lock);
6054
6055 __migrate_task(next, dead_cpu, dest_cpu);
6056
6057 raw_spin_lock(&rq->lock);
6058 }
6059
6060 rq->stop = stop;
6061 }
6062
6063 #endif /* CONFIG_HOTPLUG_CPU */
6064
6065 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6066
6067 static struct ctl_table sd_ctl_dir[] = {
6068 {
6069 .procname = "sched_domain",
6070 .mode = 0555,
6071 },
6072 {}
6073 };
6074
6075 static struct ctl_table sd_ctl_root[] = {
6076 {
6077 .procname = "kernel",
6078 .mode = 0555,
6079 .child = sd_ctl_dir,
6080 },
6081 {}
6082 };
6083
6084 static struct ctl_table *sd_alloc_ctl_entry(int n)
6085 {
6086 struct ctl_table *entry =
6087 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6088
6089 return entry;
6090 }
6091
6092 static void sd_free_ctl_entry(struct ctl_table **tablep)
6093 {
6094 struct ctl_table *entry;
6095
6096 /*
6097 * In the intermediate directories, both the child directory and
6098 * procname are dynamically allocated and could fail but the mode
6099 * will always be set. In the lowest directory the names are
6100 * static strings and all have proc handlers.
6101 */
6102 for (entry = *tablep; entry->mode; entry++) {
6103 if (entry->child)
6104 sd_free_ctl_entry(&entry->child);
6105 if (entry->proc_handler == NULL)
6106 kfree(entry->procname);
6107 }
6108
6109 kfree(*tablep);
6110 *tablep = NULL;
6111 }
6112
6113 static void
6114 set_table_entry(struct ctl_table *entry,
6115 const char *procname, void *data, int maxlen,
6116 mode_t mode, proc_handler *proc_handler)
6117 {
6118 entry->procname = procname;
6119 entry->data = data;
6120 entry->maxlen = maxlen;
6121 entry->mode = mode;
6122 entry->proc_handler = proc_handler;
6123 }
6124
6125 static struct ctl_table *
6126 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6127 {
6128 struct ctl_table *table = sd_alloc_ctl_entry(13);
6129
6130 if (table == NULL)
6131 return NULL;
6132
6133 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6134 sizeof(long), 0644, proc_doulongvec_minmax);
6135 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6136 sizeof(long), 0644, proc_doulongvec_minmax);
6137 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6138 sizeof(int), 0644, proc_dointvec_minmax);
6139 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6140 sizeof(int), 0644, proc_dointvec_minmax);
6141 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6142 sizeof(int), 0644, proc_dointvec_minmax);
6143 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6144 sizeof(int), 0644, proc_dointvec_minmax);
6145 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6146 sizeof(int), 0644, proc_dointvec_minmax);
6147 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6148 sizeof(int), 0644, proc_dointvec_minmax);
6149 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6150 sizeof(int), 0644, proc_dointvec_minmax);
6151 set_table_entry(&table[9], "cache_nice_tries",
6152 &sd->cache_nice_tries,
6153 sizeof(int), 0644, proc_dointvec_minmax);
6154 set_table_entry(&table[10], "flags", &sd->flags,
6155 sizeof(int), 0644, proc_dointvec_minmax);
6156 set_table_entry(&table[11], "name", sd->name,
6157 CORENAME_MAX_SIZE, 0444, proc_dostring);
6158 /* &table[12] is terminator */
6159
6160 return table;
6161 }
6162
6163 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6164 {
6165 struct ctl_table *entry, *table;
6166 struct sched_domain *sd;
6167 int domain_num = 0, i;
6168 char buf[32];
6169
6170 for_each_domain(cpu, sd)
6171 domain_num++;
6172 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6173 if (table == NULL)
6174 return NULL;
6175
6176 i = 0;
6177 for_each_domain(cpu, sd) {
6178 snprintf(buf, 32, "domain%d", i);
6179 entry->procname = kstrdup(buf, GFP_KERNEL);
6180 entry->mode = 0555;
6181 entry->child = sd_alloc_ctl_domain_table(sd);
6182 entry++;
6183 i++;
6184 }
6185 return table;
6186 }
6187
6188 static struct ctl_table_header *sd_sysctl_header;
6189 static void register_sched_domain_sysctl(void)
6190 {
6191 int i, cpu_num = num_possible_cpus();
6192 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6193 char buf[32];
6194
6195 WARN_ON(sd_ctl_dir[0].child);
6196 sd_ctl_dir[0].child = entry;
6197
6198 if (entry == NULL)
6199 return;
6200
6201 for_each_possible_cpu(i) {
6202 snprintf(buf, 32, "cpu%d", i);
6203 entry->procname = kstrdup(buf, GFP_KERNEL);
6204 entry->mode = 0555;
6205 entry->child = sd_alloc_ctl_cpu_table(i);
6206 entry++;
6207 }
6208
6209 WARN_ON(sd_sysctl_header);
6210 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6211 }
6212
6213 /* may be called multiple times per register */
6214 static void unregister_sched_domain_sysctl(void)
6215 {
6216 if (sd_sysctl_header)
6217 unregister_sysctl_table(sd_sysctl_header);
6218 sd_sysctl_header = NULL;
6219 if (sd_ctl_dir[0].child)
6220 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6221 }
6222 #else
6223 static void register_sched_domain_sysctl(void)
6224 {
6225 }
6226 static void unregister_sched_domain_sysctl(void)
6227 {
6228 }
6229 #endif
6230
6231 static void set_rq_online(struct rq *rq)
6232 {
6233 if (!rq->online) {
6234 const struct sched_class *class;
6235
6236 cpumask_set_cpu(rq->cpu, rq->rd->online);
6237 rq->online = 1;
6238
6239 for_each_class(class) {
6240 if (class->rq_online)
6241 class->rq_online(rq);
6242 }
6243 }
6244 }
6245
6246 static void set_rq_offline(struct rq *rq)
6247 {
6248 if (rq->online) {
6249 const struct sched_class *class;
6250
6251 for_each_class(class) {
6252 if (class->rq_offline)
6253 class->rq_offline(rq);
6254 }
6255
6256 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6257 rq->online = 0;
6258 }
6259 }
6260
6261 /*
6262 * migration_call - callback that gets triggered when a CPU is added.
6263 * Here we can start up the necessary migration thread for the new CPU.
6264 */
6265 static int __cpuinit
6266 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6267 {
6268 int cpu = (long)hcpu;
6269 unsigned long flags;
6270 struct rq *rq = cpu_rq(cpu);
6271
6272 switch (action & ~CPU_TASKS_FROZEN) {
6273
6274 case CPU_UP_PREPARE:
6275 rq->calc_load_update = calc_load_update;
6276 break;
6277
6278 case CPU_ONLINE:
6279 /* Update our root-domain */
6280 raw_spin_lock_irqsave(&rq->lock, flags);
6281 if (rq->rd) {
6282 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6283
6284 set_rq_online(rq);
6285 }
6286 raw_spin_unlock_irqrestore(&rq->lock, flags);
6287 break;
6288
6289 #ifdef CONFIG_HOTPLUG_CPU
6290 case CPU_DYING:
6291 /* Update our root-domain */
6292 raw_spin_lock_irqsave(&rq->lock, flags);
6293 if (rq->rd) {
6294 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6295 set_rq_offline(rq);
6296 }
6297 migrate_tasks(cpu);
6298 BUG_ON(rq->nr_running != 1); /* the migration thread */
6299 raw_spin_unlock_irqrestore(&rq->lock, flags);
6300
6301 migrate_nr_uninterruptible(rq);
6302 calc_global_load_remove(rq);
6303 break;
6304 #endif
6305 }
6306 return NOTIFY_OK;
6307 }
6308
6309 /*
6310 * Register at high priority so that task migration (migrate_all_tasks)
6311 * happens before everything else. This has to be lower priority than
6312 * the notifier in the perf_event subsystem, though.
6313 */
6314 static struct notifier_block __cpuinitdata migration_notifier = {
6315 .notifier_call = migration_call,
6316 .priority = CPU_PRI_MIGRATION,
6317 };
6318
6319 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6320 unsigned long action, void *hcpu)
6321 {
6322 switch (action & ~CPU_TASKS_FROZEN) {
6323 case CPU_ONLINE:
6324 case CPU_DOWN_FAILED:
6325 set_cpu_active((long)hcpu, true);
6326 return NOTIFY_OK;
6327 default:
6328 return NOTIFY_DONE;
6329 }
6330 }
6331
6332 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6333 unsigned long action, void *hcpu)
6334 {
6335 switch (action & ~CPU_TASKS_FROZEN) {
6336 case CPU_DOWN_PREPARE:
6337 set_cpu_active((long)hcpu, false);
6338 return NOTIFY_OK;
6339 default:
6340 return NOTIFY_DONE;
6341 }
6342 }
6343
6344 static int __init migration_init(void)
6345 {
6346 void *cpu = (void *)(long)smp_processor_id();
6347 int err;
6348
6349 /* Initialize migration for the boot CPU */
6350 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6351 BUG_ON(err == NOTIFY_BAD);
6352 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6353 register_cpu_notifier(&migration_notifier);
6354
6355 /* Register cpu active notifiers */
6356 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6357 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6358
6359 return 0;
6360 }
6361 early_initcall(migration_init);
6362 #endif
6363
6364 #ifdef CONFIG_SMP
6365
6366 #ifdef CONFIG_SCHED_DEBUG
6367
6368 static __read_mostly int sched_domain_debug_enabled;
6369
6370 static int __init sched_domain_debug_setup(char *str)
6371 {
6372 sched_domain_debug_enabled = 1;
6373
6374 return 0;
6375 }
6376 early_param("sched_debug", sched_domain_debug_setup);
6377
6378 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6379 struct cpumask *groupmask)
6380 {
6381 struct sched_group *group = sd->groups;
6382 char str[256];
6383
6384 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6385 cpumask_clear(groupmask);
6386
6387 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6388
6389 if (!(sd->flags & SD_LOAD_BALANCE)) {
6390 printk("does not load-balance\n");
6391 if (sd->parent)
6392 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6393 " has parent");
6394 return -1;
6395 }
6396
6397 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6398
6399 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6400 printk(KERN_ERR "ERROR: domain->span does not contain "
6401 "CPU%d\n", cpu);
6402 }
6403 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6404 printk(KERN_ERR "ERROR: domain->groups does not contain"
6405 " CPU%d\n", cpu);
6406 }
6407
6408 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6409 do {
6410 if (!group) {
6411 printk("\n");
6412 printk(KERN_ERR "ERROR: group is NULL\n");
6413 break;
6414 }
6415
6416 if (!group->cpu_power) {
6417 printk(KERN_CONT "\n");
6418 printk(KERN_ERR "ERROR: domain->cpu_power not "
6419 "set\n");
6420 break;
6421 }
6422
6423 if (!cpumask_weight(sched_group_cpus(group))) {
6424 printk(KERN_CONT "\n");
6425 printk(KERN_ERR "ERROR: empty group\n");
6426 break;
6427 }
6428
6429 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6430 printk(KERN_CONT "\n");
6431 printk(KERN_ERR "ERROR: repeated CPUs\n");
6432 break;
6433 }
6434
6435 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6436
6437 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6438
6439 printk(KERN_CONT " %s", str);
6440 if (group->cpu_power != SCHED_LOAD_SCALE) {
6441 printk(KERN_CONT " (cpu_power = %d)",
6442 group->cpu_power);
6443 }
6444
6445 group = group->next;
6446 } while (group != sd->groups);
6447 printk(KERN_CONT "\n");
6448
6449 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6450 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6451
6452 if (sd->parent &&
6453 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6454 printk(KERN_ERR "ERROR: parent span is not a superset "
6455 "of domain->span\n");
6456 return 0;
6457 }
6458
6459 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6460 {
6461 cpumask_var_t groupmask;
6462 int level = 0;
6463
6464 if (!sched_domain_debug_enabled)
6465 return;
6466
6467 if (!sd) {
6468 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6469 return;
6470 }
6471
6472 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6473
6474 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6475 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6476 return;
6477 }
6478
6479 for (;;) {
6480 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6481 break;
6482 level++;
6483 sd = sd->parent;
6484 if (!sd)
6485 break;
6486 }
6487 free_cpumask_var(groupmask);
6488 }
6489 #else /* !CONFIG_SCHED_DEBUG */
6490 # define sched_domain_debug(sd, cpu) do { } while (0)
6491 #endif /* CONFIG_SCHED_DEBUG */
6492
6493 static int sd_degenerate(struct sched_domain *sd)
6494 {
6495 if (cpumask_weight(sched_domain_span(sd)) == 1)
6496 return 1;
6497
6498 /* Following flags need at least 2 groups */
6499 if (sd->flags & (SD_LOAD_BALANCE |
6500 SD_BALANCE_NEWIDLE |
6501 SD_BALANCE_FORK |
6502 SD_BALANCE_EXEC |
6503 SD_SHARE_CPUPOWER |
6504 SD_SHARE_PKG_RESOURCES)) {
6505 if (sd->groups != sd->groups->next)
6506 return 0;
6507 }
6508
6509 /* Following flags don't use groups */
6510 if (sd->flags & (SD_WAKE_AFFINE))
6511 return 0;
6512
6513 return 1;
6514 }
6515
6516 static int
6517 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6518 {
6519 unsigned long cflags = sd->flags, pflags = parent->flags;
6520
6521 if (sd_degenerate(parent))
6522 return 1;
6523
6524 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6525 return 0;
6526
6527 /* Flags needing groups don't count if only 1 group in parent */
6528 if (parent->groups == parent->groups->next) {
6529 pflags &= ~(SD_LOAD_BALANCE |
6530 SD_BALANCE_NEWIDLE |
6531 SD_BALANCE_FORK |
6532 SD_BALANCE_EXEC |
6533 SD_SHARE_CPUPOWER |
6534 SD_SHARE_PKG_RESOURCES);
6535 if (nr_node_ids == 1)
6536 pflags &= ~SD_SERIALIZE;
6537 }
6538 if (~cflags & pflags)
6539 return 0;
6540
6541 return 1;
6542 }
6543
6544 static void free_rootdomain(struct root_domain *rd)
6545 {
6546 synchronize_sched();
6547
6548 cpupri_cleanup(&rd->cpupri);
6549
6550 free_cpumask_var(rd->rto_mask);
6551 free_cpumask_var(rd->online);
6552 free_cpumask_var(rd->span);
6553 kfree(rd);
6554 }
6555
6556 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6557 {
6558 struct root_domain *old_rd = NULL;
6559 unsigned long flags;
6560
6561 raw_spin_lock_irqsave(&rq->lock, flags);
6562
6563 if (rq->rd) {
6564 old_rd = rq->rd;
6565
6566 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6567 set_rq_offline(rq);
6568
6569 cpumask_clear_cpu(rq->cpu, old_rd->span);
6570
6571 /*
6572 * If we dont want to free the old_rt yet then
6573 * set old_rd to NULL to skip the freeing later
6574 * in this function:
6575 */
6576 if (!atomic_dec_and_test(&old_rd->refcount))
6577 old_rd = NULL;
6578 }
6579
6580 atomic_inc(&rd->refcount);
6581 rq->rd = rd;
6582
6583 cpumask_set_cpu(rq->cpu, rd->span);
6584 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6585 set_rq_online(rq);
6586
6587 raw_spin_unlock_irqrestore(&rq->lock, flags);
6588
6589 if (old_rd)
6590 free_rootdomain(old_rd);
6591 }
6592
6593 static int init_rootdomain(struct root_domain *rd)
6594 {
6595 memset(rd, 0, sizeof(*rd));
6596
6597 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6598 goto out;
6599 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6600 goto free_span;
6601 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6602 goto free_online;
6603
6604 if (cpupri_init(&rd->cpupri) != 0)
6605 goto free_rto_mask;
6606 return 0;
6607
6608 free_rto_mask:
6609 free_cpumask_var(rd->rto_mask);
6610 free_online:
6611 free_cpumask_var(rd->online);
6612 free_span:
6613 free_cpumask_var(rd->span);
6614 out:
6615 return -ENOMEM;
6616 }
6617
6618 static void init_defrootdomain(void)
6619 {
6620 init_rootdomain(&def_root_domain);
6621
6622 atomic_set(&def_root_domain.refcount, 1);
6623 }
6624
6625 static struct root_domain *alloc_rootdomain(void)
6626 {
6627 struct root_domain *rd;
6628
6629 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6630 if (!rd)
6631 return NULL;
6632
6633 if (init_rootdomain(rd) != 0) {
6634 kfree(rd);
6635 return NULL;
6636 }
6637
6638 return rd;
6639 }
6640
6641 /*
6642 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6643 * hold the hotplug lock.
6644 */
6645 static void
6646 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6647 {
6648 struct rq *rq = cpu_rq(cpu);
6649 struct sched_domain *tmp;
6650
6651 for (tmp = sd; tmp; tmp = tmp->parent)
6652 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6653
6654 /* Remove the sched domains which do not contribute to scheduling. */
6655 for (tmp = sd; tmp; ) {
6656 struct sched_domain *parent = tmp->parent;
6657 if (!parent)
6658 break;
6659
6660 if (sd_parent_degenerate(tmp, parent)) {
6661 tmp->parent = parent->parent;
6662 if (parent->parent)
6663 parent->parent->child = tmp;
6664 } else
6665 tmp = tmp->parent;
6666 }
6667
6668 if (sd && sd_degenerate(sd)) {
6669 sd = sd->parent;
6670 if (sd)
6671 sd->child = NULL;
6672 }
6673
6674 sched_domain_debug(sd, cpu);
6675
6676 rq_attach_root(rq, rd);
6677 rcu_assign_pointer(rq->sd, sd);
6678 }
6679
6680 /* cpus with isolated domains */
6681 static cpumask_var_t cpu_isolated_map;
6682
6683 /* Setup the mask of cpus configured for isolated domains */
6684 static int __init isolated_cpu_setup(char *str)
6685 {
6686 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6687 cpulist_parse(str, cpu_isolated_map);
6688 return 1;
6689 }
6690
6691 __setup("isolcpus=", isolated_cpu_setup);
6692
6693 /*
6694 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6695 * to a function which identifies what group(along with sched group) a CPU
6696 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6697 * (due to the fact that we keep track of groups covered with a struct cpumask).
6698 *
6699 * init_sched_build_groups will build a circular linked list of the groups
6700 * covered by the given span, and will set each group's ->cpumask correctly,
6701 * and ->cpu_power to 0.
6702 */
6703 static void
6704 init_sched_build_groups(const struct cpumask *span,
6705 const struct cpumask *cpu_map,
6706 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6707 struct sched_group **sg,
6708 struct cpumask *tmpmask),
6709 struct cpumask *covered, struct cpumask *tmpmask)
6710 {
6711 struct sched_group *first = NULL, *last = NULL;
6712 int i;
6713
6714 cpumask_clear(covered);
6715
6716 for_each_cpu(i, span) {
6717 struct sched_group *sg;
6718 int group = group_fn(i, cpu_map, &sg, tmpmask);
6719 int j;
6720
6721 if (cpumask_test_cpu(i, covered))
6722 continue;
6723
6724 cpumask_clear(sched_group_cpus(sg));
6725 sg->cpu_power = 0;
6726
6727 for_each_cpu(j, span) {
6728 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6729 continue;
6730
6731 cpumask_set_cpu(j, covered);
6732 cpumask_set_cpu(j, sched_group_cpus(sg));
6733 }
6734 if (!first)
6735 first = sg;
6736 if (last)
6737 last->next = sg;
6738 last = sg;
6739 }
6740 last->next = first;
6741 }
6742
6743 #define SD_NODES_PER_DOMAIN 16
6744
6745 #ifdef CONFIG_NUMA
6746
6747 /**
6748 * find_next_best_node - find the next node to include in a sched_domain
6749 * @node: node whose sched_domain we're building
6750 * @used_nodes: nodes already in the sched_domain
6751 *
6752 * Find the next node to include in a given scheduling domain. Simply
6753 * finds the closest node not already in the @used_nodes map.
6754 *
6755 * Should use nodemask_t.
6756 */
6757 static int find_next_best_node(int node, nodemask_t *used_nodes)
6758 {
6759 int i, n, val, min_val, best_node = 0;
6760
6761 min_val = INT_MAX;
6762
6763 for (i = 0; i < nr_node_ids; i++) {
6764 /* Start at @node */
6765 n = (node + i) % nr_node_ids;
6766
6767 if (!nr_cpus_node(n))
6768 continue;
6769
6770 /* Skip already used nodes */
6771 if (node_isset(n, *used_nodes))
6772 continue;
6773
6774 /* Simple min distance search */
6775 val = node_distance(node, n);
6776
6777 if (val < min_val) {
6778 min_val = val;
6779 best_node = n;
6780 }
6781 }
6782
6783 node_set(best_node, *used_nodes);
6784 return best_node;
6785 }
6786
6787 /**
6788 * sched_domain_node_span - get a cpumask for a node's sched_domain
6789 * @node: node whose cpumask we're constructing
6790 * @span: resulting cpumask
6791 *
6792 * Given a node, construct a good cpumask for its sched_domain to span. It
6793 * should be one that prevents unnecessary balancing, but also spreads tasks
6794 * out optimally.
6795 */
6796 static void sched_domain_node_span(int node, struct cpumask *span)
6797 {
6798 nodemask_t used_nodes;
6799 int i;
6800
6801 cpumask_clear(span);
6802 nodes_clear(used_nodes);
6803
6804 cpumask_or(span, span, cpumask_of_node(node));
6805 node_set(node, used_nodes);
6806
6807 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6808 int next_node = find_next_best_node(node, &used_nodes);
6809
6810 cpumask_or(span, span, cpumask_of_node(next_node));
6811 }
6812 }
6813 #endif /* CONFIG_NUMA */
6814
6815 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6816
6817 /*
6818 * The cpus mask in sched_group and sched_domain hangs off the end.
6819 *
6820 * ( See the the comments in include/linux/sched.h:struct sched_group
6821 * and struct sched_domain. )
6822 */
6823 struct static_sched_group {
6824 struct sched_group sg;
6825 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6826 };
6827
6828 struct static_sched_domain {
6829 struct sched_domain sd;
6830 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6831 };
6832
6833 struct s_data {
6834 #ifdef CONFIG_NUMA
6835 int sd_allnodes;
6836 cpumask_var_t domainspan;
6837 cpumask_var_t covered;
6838 cpumask_var_t notcovered;
6839 #endif
6840 cpumask_var_t nodemask;
6841 cpumask_var_t this_sibling_map;
6842 cpumask_var_t this_core_map;
6843 cpumask_var_t this_book_map;
6844 cpumask_var_t send_covered;
6845 cpumask_var_t tmpmask;
6846 struct sched_group **sched_group_nodes;
6847 struct root_domain *rd;
6848 };
6849
6850 enum s_alloc {
6851 sa_sched_groups = 0,
6852 sa_rootdomain,
6853 sa_tmpmask,
6854 sa_send_covered,
6855 sa_this_book_map,
6856 sa_this_core_map,
6857 sa_this_sibling_map,
6858 sa_nodemask,
6859 sa_sched_group_nodes,
6860 #ifdef CONFIG_NUMA
6861 sa_notcovered,
6862 sa_covered,
6863 sa_domainspan,
6864 #endif
6865 sa_none,
6866 };
6867
6868 /*
6869 * SMT sched-domains:
6870 */
6871 #ifdef CONFIG_SCHED_SMT
6872 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6873 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6874
6875 static int
6876 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6877 struct sched_group **sg, struct cpumask *unused)
6878 {
6879 if (sg)
6880 *sg = &per_cpu(sched_groups, cpu).sg;
6881 return cpu;
6882 }
6883 #endif /* CONFIG_SCHED_SMT */
6884
6885 /*
6886 * multi-core sched-domains:
6887 */
6888 #ifdef CONFIG_SCHED_MC
6889 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6890 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6891
6892 static int
6893 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6894 struct sched_group **sg, struct cpumask *mask)
6895 {
6896 int group;
6897 #ifdef CONFIG_SCHED_SMT
6898 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6899 group = cpumask_first(mask);
6900 #else
6901 group = cpu;
6902 #endif
6903 if (sg)
6904 *sg = &per_cpu(sched_group_core, group).sg;
6905 return group;
6906 }
6907 #endif /* CONFIG_SCHED_MC */
6908
6909 /*
6910 * book sched-domains:
6911 */
6912 #ifdef CONFIG_SCHED_BOOK
6913 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6914 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6915
6916 static int
6917 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6918 struct sched_group **sg, struct cpumask *mask)
6919 {
6920 int group = cpu;
6921 #ifdef CONFIG_SCHED_MC
6922 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6923 group = cpumask_first(mask);
6924 #elif defined(CONFIG_SCHED_SMT)
6925 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6926 group = cpumask_first(mask);
6927 #endif
6928 if (sg)
6929 *sg = &per_cpu(sched_group_book, group).sg;
6930 return group;
6931 }
6932 #endif /* CONFIG_SCHED_BOOK */
6933
6934 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6935 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6936
6937 static int
6938 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6939 struct sched_group **sg, struct cpumask *mask)
6940 {
6941 int group;
6942 #ifdef CONFIG_SCHED_BOOK
6943 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6944 group = cpumask_first(mask);
6945 #elif defined(CONFIG_SCHED_MC)
6946 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6947 group = cpumask_first(mask);
6948 #elif defined(CONFIG_SCHED_SMT)
6949 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6950 group = cpumask_first(mask);
6951 #else
6952 group = cpu;
6953 #endif
6954 if (sg)
6955 *sg = &per_cpu(sched_group_phys, group).sg;
6956 return group;
6957 }
6958
6959 #ifdef CONFIG_NUMA
6960 /*
6961 * The init_sched_build_groups can't handle what we want to do with node
6962 * groups, so roll our own. Now each node has its own list of groups which
6963 * gets dynamically allocated.
6964 */
6965 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6966 static struct sched_group ***sched_group_nodes_bycpu;
6967
6968 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6969 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6970
6971 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6972 struct sched_group **sg,
6973 struct cpumask *nodemask)
6974 {
6975 int group;
6976
6977 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6978 group = cpumask_first(nodemask);
6979
6980 if (sg)
6981 *sg = &per_cpu(sched_group_allnodes, group).sg;
6982 return group;
6983 }
6984
6985 static void init_numa_sched_groups_power(struct sched_group *group_head)
6986 {
6987 struct sched_group *sg = group_head;
6988 int j;
6989
6990 if (!sg)
6991 return;
6992 do {
6993 for_each_cpu(j, sched_group_cpus(sg)) {
6994 struct sched_domain *sd;
6995
6996 sd = &per_cpu(phys_domains, j).sd;
6997 if (j != group_first_cpu(sd->groups)) {
6998 /*
6999 * Only add "power" once for each
7000 * physical package.
7001 */
7002 continue;
7003 }
7004
7005 sg->cpu_power += sd->groups->cpu_power;
7006 }
7007 sg = sg->next;
7008 } while (sg != group_head);
7009 }
7010
7011 static int build_numa_sched_groups(struct s_data *d,
7012 const struct cpumask *cpu_map, int num)
7013 {
7014 struct sched_domain *sd;
7015 struct sched_group *sg, *prev;
7016 int n, j;
7017
7018 cpumask_clear(d->covered);
7019 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
7020 if (cpumask_empty(d->nodemask)) {
7021 d->sched_group_nodes[num] = NULL;
7022 goto out;
7023 }
7024
7025 sched_domain_node_span(num, d->domainspan);
7026 cpumask_and(d->domainspan, d->domainspan, cpu_map);
7027
7028 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7029 GFP_KERNEL, num);
7030 if (!sg) {
7031 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
7032 num);
7033 return -ENOMEM;
7034 }
7035 d->sched_group_nodes[num] = sg;
7036
7037 for_each_cpu(j, d->nodemask) {
7038 sd = &per_cpu(node_domains, j).sd;
7039 sd->groups = sg;
7040 }
7041
7042 sg->cpu_power = 0;
7043 cpumask_copy(sched_group_cpus(sg), d->nodemask);
7044 sg->next = sg;
7045 cpumask_or(d->covered, d->covered, d->nodemask);
7046
7047 prev = sg;
7048 for (j = 0; j < nr_node_ids; j++) {
7049 n = (num + j) % nr_node_ids;
7050 cpumask_complement(d->notcovered, d->covered);
7051 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
7052 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
7053 if (cpumask_empty(d->tmpmask))
7054 break;
7055 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
7056 if (cpumask_empty(d->tmpmask))
7057 continue;
7058 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7059 GFP_KERNEL, num);
7060 if (!sg) {
7061 printk(KERN_WARNING
7062 "Can not alloc domain group for node %d\n", j);
7063 return -ENOMEM;
7064 }
7065 sg->cpu_power = 0;
7066 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
7067 sg->next = prev->next;
7068 cpumask_or(d->covered, d->covered, d->tmpmask);
7069 prev->next = sg;
7070 prev = sg;
7071 }
7072 out:
7073 return 0;
7074 }
7075 #endif /* CONFIG_NUMA */
7076
7077 #ifdef CONFIG_NUMA
7078 /* Free memory allocated for various sched_group structures */
7079 static void free_sched_groups(const struct cpumask *cpu_map,
7080 struct cpumask *nodemask)
7081 {
7082 int cpu, i;
7083
7084 for_each_cpu(cpu, cpu_map) {
7085 struct sched_group **sched_group_nodes
7086 = sched_group_nodes_bycpu[cpu];
7087
7088 if (!sched_group_nodes)
7089 continue;
7090
7091 for (i = 0; i < nr_node_ids; i++) {
7092 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7093
7094 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
7095 if (cpumask_empty(nodemask))
7096 continue;
7097
7098 if (sg == NULL)
7099 continue;
7100 sg = sg->next;
7101 next_sg:
7102 oldsg = sg;
7103 sg = sg->next;
7104 kfree(oldsg);
7105 if (oldsg != sched_group_nodes[i])
7106 goto next_sg;
7107 }
7108 kfree(sched_group_nodes);
7109 sched_group_nodes_bycpu[cpu] = NULL;
7110 }
7111 }
7112 #else /* !CONFIG_NUMA */
7113 static void free_sched_groups(const struct cpumask *cpu_map,
7114 struct cpumask *nodemask)
7115 {
7116 }
7117 #endif /* CONFIG_NUMA */
7118
7119 /*
7120 * Initialize sched groups cpu_power.
7121 *
7122 * cpu_power indicates the capacity of sched group, which is used while
7123 * distributing the load between different sched groups in a sched domain.
7124 * Typically cpu_power for all the groups in a sched domain will be same unless
7125 * there are asymmetries in the topology. If there are asymmetries, group
7126 * having more cpu_power will pickup more load compared to the group having
7127 * less cpu_power.
7128 */
7129 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7130 {
7131 struct sched_domain *child;
7132 struct sched_group *group;
7133 long power;
7134 int weight;
7135
7136 WARN_ON(!sd || !sd->groups);
7137
7138 if (cpu != group_first_cpu(sd->groups))
7139 return;
7140
7141 sd->groups->group_weight = cpumask_weight(sched_group_cpus(sd->groups));
7142
7143 child = sd->child;
7144
7145 sd->groups->cpu_power = 0;
7146
7147 if (!child) {
7148 power = SCHED_LOAD_SCALE;
7149 weight = cpumask_weight(sched_domain_span(sd));
7150 /*
7151 * SMT siblings share the power of a single core.
7152 * Usually multiple threads get a better yield out of
7153 * that one core than a single thread would have,
7154 * reflect that in sd->smt_gain.
7155 */
7156 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
7157 power *= sd->smt_gain;
7158 power /= weight;
7159 power >>= SCHED_LOAD_SHIFT;
7160 }
7161 sd->groups->cpu_power += power;
7162 return;
7163 }
7164
7165 /*
7166 * Add cpu_power of each child group to this groups cpu_power.
7167 */
7168 group = child->groups;
7169 do {
7170 sd->groups->cpu_power += group->cpu_power;
7171 group = group->next;
7172 } while (group != child->groups);
7173 }
7174
7175 /*
7176 * Initializers for schedule domains
7177 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7178 */
7179
7180 #ifdef CONFIG_SCHED_DEBUG
7181 # define SD_INIT_NAME(sd, type) sd->name = #type
7182 #else
7183 # define SD_INIT_NAME(sd, type) do { } while (0)
7184 #endif
7185
7186 #define SD_INIT(sd, type) sd_init_##type(sd)
7187
7188 #define SD_INIT_FUNC(type) \
7189 static noinline void sd_init_##type(struct sched_domain *sd) \
7190 { \
7191 memset(sd, 0, sizeof(*sd)); \
7192 *sd = SD_##type##_INIT; \
7193 sd->level = SD_LV_##type; \
7194 SD_INIT_NAME(sd, type); \
7195 }
7196
7197 SD_INIT_FUNC(CPU)
7198 #ifdef CONFIG_NUMA
7199 SD_INIT_FUNC(ALLNODES)
7200 SD_INIT_FUNC(NODE)
7201 #endif
7202 #ifdef CONFIG_SCHED_SMT
7203 SD_INIT_FUNC(SIBLING)
7204 #endif
7205 #ifdef CONFIG_SCHED_MC
7206 SD_INIT_FUNC(MC)
7207 #endif
7208 #ifdef CONFIG_SCHED_BOOK
7209 SD_INIT_FUNC(BOOK)
7210 #endif
7211
7212 static int default_relax_domain_level = -1;
7213
7214 static int __init setup_relax_domain_level(char *str)
7215 {
7216 unsigned long val;
7217
7218 val = simple_strtoul(str, NULL, 0);
7219 if (val < SD_LV_MAX)
7220 default_relax_domain_level = val;
7221
7222 return 1;
7223 }
7224 __setup("relax_domain_level=", setup_relax_domain_level);
7225
7226 static void set_domain_attribute(struct sched_domain *sd,
7227 struct sched_domain_attr *attr)
7228 {
7229 int request;
7230
7231 if (!attr || attr->relax_domain_level < 0) {
7232 if (default_relax_domain_level < 0)
7233 return;
7234 else
7235 request = default_relax_domain_level;
7236 } else
7237 request = attr->relax_domain_level;
7238 if (request < sd->level) {
7239 /* turn off idle balance on this domain */
7240 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7241 } else {
7242 /* turn on idle balance on this domain */
7243 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7244 }
7245 }
7246
7247 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7248 const struct cpumask *cpu_map)
7249 {
7250 switch (what) {
7251 case sa_sched_groups:
7252 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
7253 d->sched_group_nodes = NULL;
7254 case sa_rootdomain:
7255 free_rootdomain(d->rd); /* fall through */
7256 case sa_tmpmask:
7257 free_cpumask_var(d->tmpmask); /* fall through */
7258 case sa_send_covered:
7259 free_cpumask_var(d->send_covered); /* fall through */
7260 case sa_this_book_map:
7261 free_cpumask_var(d->this_book_map); /* fall through */
7262 case sa_this_core_map:
7263 free_cpumask_var(d->this_core_map); /* fall through */
7264 case sa_this_sibling_map:
7265 free_cpumask_var(d->this_sibling_map); /* fall through */
7266 case sa_nodemask:
7267 free_cpumask_var(d->nodemask); /* fall through */
7268 case sa_sched_group_nodes:
7269 #ifdef CONFIG_NUMA
7270 kfree(d->sched_group_nodes); /* fall through */
7271 case sa_notcovered:
7272 free_cpumask_var(d->notcovered); /* fall through */
7273 case sa_covered:
7274 free_cpumask_var(d->covered); /* fall through */
7275 case sa_domainspan:
7276 free_cpumask_var(d->domainspan); /* fall through */
7277 #endif
7278 case sa_none:
7279 break;
7280 }
7281 }
7282
7283 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7284 const struct cpumask *cpu_map)
7285 {
7286 #ifdef CONFIG_NUMA
7287 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
7288 return sa_none;
7289 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
7290 return sa_domainspan;
7291 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
7292 return sa_covered;
7293 /* Allocate the per-node list of sched groups */
7294 d->sched_group_nodes = kcalloc(nr_node_ids,
7295 sizeof(struct sched_group *), GFP_KERNEL);
7296 if (!d->sched_group_nodes) {
7297 printk(KERN_WARNING "Can not alloc sched group node list\n");
7298 return sa_notcovered;
7299 }
7300 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
7301 #endif
7302 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
7303 return sa_sched_group_nodes;
7304 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
7305 return sa_nodemask;
7306 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
7307 return sa_this_sibling_map;
7308 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
7309 return sa_this_core_map;
7310 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
7311 return sa_this_book_map;
7312 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
7313 return sa_send_covered;
7314 d->rd = alloc_rootdomain();
7315 if (!d->rd) {
7316 printk(KERN_WARNING "Cannot alloc root domain\n");
7317 return sa_tmpmask;
7318 }
7319 return sa_rootdomain;
7320 }
7321
7322 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
7323 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
7324 {
7325 struct sched_domain *sd = NULL;
7326 #ifdef CONFIG_NUMA
7327 struct sched_domain *parent;
7328
7329 d->sd_allnodes = 0;
7330 if (cpumask_weight(cpu_map) >
7331 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
7332 sd = &per_cpu(allnodes_domains, i).sd;
7333 SD_INIT(sd, ALLNODES);
7334 set_domain_attribute(sd, attr);
7335 cpumask_copy(sched_domain_span(sd), cpu_map);
7336 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7337 d->sd_allnodes = 1;
7338 }
7339 parent = sd;
7340
7341 sd = &per_cpu(node_domains, i).sd;
7342 SD_INIT(sd, NODE);
7343 set_domain_attribute(sd, attr);
7344 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7345 sd->parent = parent;
7346 if (parent)
7347 parent->child = sd;
7348 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7349 #endif
7350 return sd;
7351 }
7352
7353 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7354 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7355 struct sched_domain *parent, int i)
7356 {
7357 struct sched_domain *sd;
7358 sd = &per_cpu(phys_domains, i).sd;
7359 SD_INIT(sd, CPU);
7360 set_domain_attribute(sd, attr);
7361 cpumask_copy(sched_domain_span(sd), d->nodemask);
7362 sd->parent = parent;
7363 if (parent)
7364 parent->child = sd;
7365 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7366 return sd;
7367 }
7368
7369 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7370 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7371 struct sched_domain *parent, int i)
7372 {
7373 struct sched_domain *sd = parent;
7374 #ifdef CONFIG_SCHED_BOOK
7375 sd = &per_cpu(book_domains, i).sd;
7376 SD_INIT(sd, BOOK);
7377 set_domain_attribute(sd, attr);
7378 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7379 sd->parent = parent;
7380 parent->child = sd;
7381 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7382 #endif
7383 return sd;
7384 }
7385
7386 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7387 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7388 struct sched_domain *parent, int i)
7389 {
7390 struct sched_domain *sd = parent;
7391 #ifdef CONFIG_SCHED_MC
7392 sd = &per_cpu(core_domains, i).sd;
7393 SD_INIT(sd, MC);
7394 set_domain_attribute(sd, attr);
7395 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7396 sd->parent = parent;
7397 parent->child = sd;
7398 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7399 #endif
7400 return sd;
7401 }
7402
7403 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7404 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7405 struct sched_domain *parent, int i)
7406 {
7407 struct sched_domain *sd = parent;
7408 #ifdef CONFIG_SCHED_SMT
7409 sd = &per_cpu(cpu_domains, i).sd;
7410 SD_INIT(sd, SIBLING);
7411 set_domain_attribute(sd, attr);
7412 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7413 sd->parent = parent;
7414 parent->child = sd;
7415 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7416 #endif
7417 return sd;
7418 }
7419
7420 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7421 const struct cpumask *cpu_map, int cpu)
7422 {
7423 switch (l) {
7424 #ifdef CONFIG_SCHED_SMT
7425 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7426 cpumask_and(d->this_sibling_map, cpu_map,
7427 topology_thread_cpumask(cpu));
7428 if (cpu == cpumask_first(d->this_sibling_map))
7429 init_sched_build_groups(d->this_sibling_map, cpu_map,
7430 &cpu_to_cpu_group,
7431 d->send_covered, d->tmpmask);
7432 break;
7433 #endif
7434 #ifdef CONFIG_SCHED_MC
7435 case SD_LV_MC: /* set up multi-core groups */
7436 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7437 if (cpu == cpumask_first(d->this_core_map))
7438 init_sched_build_groups(d->this_core_map, cpu_map,
7439 &cpu_to_core_group,
7440 d->send_covered, d->tmpmask);
7441 break;
7442 #endif
7443 #ifdef CONFIG_SCHED_BOOK
7444 case SD_LV_BOOK: /* set up book groups */
7445 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7446 if (cpu == cpumask_first(d->this_book_map))
7447 init_sched_build_groups(d->this_book_map, cpu_map,
7448 &cpu_to_book_group,
7449 d->send_covered, d->tmpmask);
7450 break;
7451 #endif
7452 case SD_LV_CPU: /* set up physical groups */
7453 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7454 if (!cpumask_empty(d->nodemask))
7455 init_sched_build_groups(d->nodemask, cpu_map,
7456 &cpu_to_phys_group,
7457 d->send_covered, d->tmpmask);
7458 break;
7459 #ifdef CONFIG_NUMA
7460 case SD_LV_ALLNODES:
7461 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7462 d->send_covered, d->tmpmask);
7463 break;
7464 #endif
7465 default:
7466 break;
7467 }
7468 }
7469
7470 /*
7471 * Build sched domains for a given set of cpus and attach the sched domains
7472 * to the individual cpus
7473 */
7474 static int __build_sched_domains(const struct cpumask *cpu_map,
7475 struct sched_domain_attr *attr)
7476 {
7477 enum s_alloc alloc_state = sa_none;
7478 struct s_data d;
7479 struct sched_domain *sd;
7480 int i;
7481 #ifdef CONFIG_NUMA
7482 d.sd_allnodes = 0;
7483 #endif
7484
7485 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7486 if (alloc_state != sa_rootdomain)
7487 goto error;
7488 alloc_state = sa_sched_groups;
7489
7490 /*
7491 * Set up domains for cpus specified by the cpu_map.
7492 */
7493 for_each_cpu(i, cpu_map) {
7494 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7495 cpu_map);
7496
7497 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7498 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7499 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7500 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7501 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7502 }
7503
7504 for_each_cpu(i, cpu_map) {
7505 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7506 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7507 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7508 }
7509
7510 /* Set up physical groups */
7511 for (i = 0; i < nr_node_ids; i++)
7512 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7513
7514 #ifdef CONFIG_NUMA
7515 /* Set up node groups */
7516 if (d.sd_allnodes)
7517 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7518
7519 for (i = 0; i < nr_node_ids; i++)
7520 if (build_numa_sched_groups(&d, cpu_map, i))
7521 goto error;
7522 #endif
7523
7524 /* Calculate CPU power for physical packages and nodes */
7525 #ifdef CONFIG_SCHED_SMT
7526 for_each_cpu(i, cpu_map) {
7527 sd = &per_cpu(cpu_domains, i).sd;
7528 init_sched_groups_power(i, sd);
7529 }
7530 #endif
7531 #ifdef CONFIG_SCHED_MC
7532 for_each_cpu(i, cpu_map) {
7533 sd = &per_cpu(core_domains, i).sd;
7534 init_sched_groups_power(i, sd);
7535 }
7536 #endif
7537 #ifdef CONFIG_SCHED_BOOK
7538 for_each_cpu(i, cpu_map) {
7539 sd = &per_cpu(book_domains, i).sd;
7540 init_sched_groups_power(i, sd);
7541 }
7542 #endif
7543
7544 for_each_cpu(i, cpu_map) {
7545 sd = &per_cpu(phys_domains, i).sd;
7546 init_sched_groups_power(i, sd);
7547 }
7548
7549 #ifdef CONFIG_NUMA
7550 for (i = 0; i < nr_node_ids; i++)
7551 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7552
7553 if (d.sd_allnodes) {
7554 struct sched_group *sg;
7555
7556 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7557 d.tmpmask);
7558 init_numa_sched_groups_power(sg);
7559 }
7560 #endif
7561
7562 /* Attach the domains */
7563 for_each_cpu(i, cpu_map) {
7564 #ifdef CONFIG_SCHED_SMT
7565 sd = &per_cpu(cpu_domains, i).sd;
7566 #elif defined(CONFIG_SCHED_MC)
7567 sd = &per_cpu(core_domains, i).sd;
7568 #elif defined(CONFIG_SCHED_BOOK)
7569 sd = &per_cpu(book_domains, i).sd;
7570 #else
7571 sd = &per_cpu(phys_domains, i).sd;
7572 #endif
7573 cpu_attach_domain(sd, d.rd, i);
7574 }
7575
7576 d.sched_group_nodes = NULL; /* don't free this we still need it */
7577 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7578 return 0;
7579
7580 error:
7581 __free_domain_allocs(&d, alloc_state, cpu_map);
7582 return -ENOMEM;
7583 }
7584
7585 static int build_sched_domains(const struct cpumask *cpu_map)
7586 {
7587 return __build_sched_domains(cpu_map, NULL);
7588 }
7589
7590 static cpumask_var_t *doms_cur; /* current sched domains */
7591 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7592 static struct sched_domain_attr *dattr_cur;
7593 /* attribues of custom domains in 'doms_cur' */
7594
7595 /*
7596 * Special case: If a kmalloc of a doms_cur partition (array of
7597 * cpumask) fails, then fallback to a single sched domain,
7598 * as determined by the single cpumask fallback_doms.
7599 */
7600 static cpumask_var_t fallback_doms;
7601
7602 /*
7603 * arch_update_cpu_topology lets virtualized architectures update the
7604 * cpu core maps. It is supposed to return 1 if the topology changed
7605 * or 0 if it stayed the same.
7606 */
7607 int __attribute__((weak)) arch_update_cpu_topology(void)
7608 {
7609 return 0;
7610 }
7611
7612 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7613 {
7614 int i;
7615 cpumask_var_t *doms;
7616
7617 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7618 if (!doms)
7619 return NULL;
7620 for (i = 0; i < ndoms; i++) {
7621 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7622 free_sched_domains(doms, i);
7623 return NULL;
7624 }
7625 }
7626 return doms;
7627 }
7628
7629 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7630 {
7631 unsigned int i;
7632 for (i = 0; i < ndoms; i++)
7633 free_cpumask_var(doms[i]);
7634 kfree(doms);
7635 }
7636
7637 /*
7638 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7639 * For now this just excludes isolated cpus, but could be used to
7640 * exclude other special cases in the future.
7641 */
7642 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7643 {
7644 int err;
7645
7646 arch_update_cpu_topology();
7647 ndoms_cur = 1;
7648 doms_cur = alloc_sched_domains(ndoms_cur);
7649 if (!doms_cur)
7650 doms_cur = &fallback_doms;
7651 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7652 dattr_cur = NULL;
7653 err = build_sched_domains(doms_cur[0]);
7654 register_sched_domain_sysctl();
7655
7656 return err;
7657 }
7658
7659 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7660 struct cpumask *tmpmask)
7661 {
7662 free_sched_groups(cpu_map, tmpmask);
7663 }
7664
7665 /*
7666 * Detach sched domains from a group of cpus specified in cpu_map
7667 * These cpus will now be attached to the NULL domain
7668 */
7669 static void detach_destroy_domains(const struct cpumask *cpu_map)
7670 {
7671 /* Save because hotplug lock held. */
7672 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7673 int i;
7674
7675 for_each_cpu(i, cpu_map)
7676 cpu_attach_domain(NULL, &def_root_domain, i);
7677 synchronize_sched();
7678 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7679 }
7680
7681 /* handle null as "default" */
7682 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7683 struct sched_domain_attr *new, int idx_new)
7684 {
7685 struct sched_domain_attr tmp;
7686
7687 /* fast path */
7688 if (!new && !cur)
7689 return 1;
7690
7691 tmp = SD_ATTR_INIT;
7692 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7693 new ? (new + idx_new) : &tmp,
7694 sizeof(struct sched_domain_attr));
7695 }
7696
7697 /*
7698 * Partition sched domains as specified by the 'ndoms_new'
7699 * cpumasks in the array doms_new[] of cpumasks. This compares
7700 * doms_new[] to the current sched domain partitioning, doms_cur[].
7701 * It destroys each deleted domain and builds each new domain.
7702 *
7703 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7704 * The masks don't intersect (don't overlap.) We should setup one
7705 * sched domain for each mask. CPUs not in any of the cpumasks will
7706 * not be load balanced. If the same cpumask appears both in the
7707 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7708 * it as it is.
7709 *
7710 * The passed in 'doms_new' should be allocated using
7711 * alloc_sched_domains. This routine takes ownership of it and will
7712 * free_sched_domains it when done with it. If the caller failed the
7713 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7714 * and partition_sched_domains() will fallback to the single partition
7715 * 'fallback_doms', it also forces the domains to be rebuilt.
7716 *
7717 * If doms_new == NULL it will be replaced with cpu_online_mask.
7718 * ndoms_new == 0 is a special case for destroying existing domains,
7719 * and it will not create the default domain.
7720 *
7721 * Call with hotplug lock held
7722 */
7723 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7724 struct sched_domain_attr *dattr_new)
7725 {
7726 int i, j, n;
7727 int new_topology;
7728
7729 mutex_lock(&sched_domains_mutex);
7730
7731 /* always unregister in case we don't destroy any domains */
7732 unregister_sched_domain_sysctl();
7733
7734 /* Let architecture update cpu core mappings. */
7735 new_topology = arch_update_cpu_topology();
7736
7737 n = doms_new ? ndoms_new : 0;
7738
7739 /* Destroy deleted domains */
7740 for (i = 0; i < ndoms_cur; i++) {
7741 for (j = 0; j < n && !new_topology; j++) {
7742 if (cpumask_equal(doms_cur[i], doms_new[j])
7743 && dattrs_equal(dattr_cur, i, dattr_new, j))
7744 goto match1;
7745 }
7746 /* no match - a current sched domain not in new doms_new[] */
7747 detach_destroy_domains(doms_cur[i]);
7748 match1:
7749 ;
7750 }
7751
7752 if (doms_new == NULL) {
7753 ndoms_cur = 0;
7754 doms_new = &fallback_doms;
7755 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7756 WARN_ON_ONCE(dattr_new);
7757 }
7758
7759 /* Build new domains */
7760 for (i = 0; i < ndoms_new; i++) {
7761 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7762 if (cpumask_equal(doms_new[i], doms_cur[j])
7763 && dattrs_equal(dattr_new, i, dattr_cur, j))
7764 goto match2;
7765 }
7766 /* no match - add a new doms_new */
7767 __build_sched_domains(doms_new[i],
7768 dattr_new ? dattr_new + i : NULL);
7769 match2:
7770 ;
7771 }
7772
7773 /* Remember the new sched domains */
7774 if (doms_cur != &fallback_doms)
7775 free_sched_domains(doms_cur, ndoms_cur);
7776 kfree(dattr_cur); /* kfree(NULL) is safe */
7777 doms_cur = doms_new;
7778 dattr_cur = dattr_new;
7779 ndoms_cur = ndoms_new;
7780
7781 register_sched_domain_sysctl();
7782
7783 mutex_unlock(&sched_domains_mutex);
7784 }
7785
7786 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7787 static void arch_reinit_sched_domains(void)
7788 {
7789 get_online_cpus();
7790
7791 /* Destroy domains first to force the rebuild */
7792 partition_sched_domains(0, NULL, NULL);
7793
7794 rebuild_sched_domains();
7795 put_online_cpus();
7796 }
7797
7798 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7799 {
7800 unsigned int level = 0;
7801
7802 if (sscanf(buf, "%u", &level) != 1)
7803 return -EINVAL;
7804
7805 /*
7806 * level is always be positive so don't check for
7807 * level < POWERSAVINGS_BALANCE_NONE which is 0
7808 * What happens on 0 or 1 byte write,
7809 * need to check for count as well?
7810 */
7811
7812 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7813 return -EINVAL;
7814
7815 if (smt)
7816 sched_smt_power_savings = level;
7817 else
7818 sched_mc_power_savings = level;
7819
7820 arch_reinit_sched_domains();
7821
7822 return count;
7823 }
7824
7825 #ifdef CONFIG_SCHED_MC
7826 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7827 struct sysdev_class_attribute *attr,
7828 char *page)
7829 {
7830 return sprintf(page, "%u\n", sched_mc_power_savings);
7831 }
7832 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7833 struct sysdev_class_attribute *attr,
7834 const char *buf, size_t count)
7835 {
7836 return sched_power_savings_store(buf, count, 0);
7837 }
7838 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7839 sched_mc_power_savings_show,
7840 sched_mc_power_savings_store);
7841 #endif
7842
7843 #ifdef CONFIG_SCHED_SMT
7844 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7845 struct sysdev_class_attribute *attr,
7846 char *page)
7847 {
7848 return sprintf(page, "%u\n", sched_smt_power_savings);
7849 }
7850 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7851 struct sysdev_class_attribute *attr,
7852 const char *buf, size_t count)
7853 {
7854 return sched_power_savings_store(buf, count, 1);
7855 }
7856 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7857 sched_smt_power_savings_show,
7858 sched_smt_power_savings_store);
7859 #endif
7860
7861 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7862 {
7863 int err = 0;
7864
7865 #ifdef CONFIG_SCHED_SMT
7866 if (smt_capable())
7867 err = sysfs_create_file(&cls->kset.kobj,
7868 &attr_sched_smt_power_savings.attr);
7869 #endif
7870 #ifdef CONFIG_SCHED_MC
7871 if (!err && mc_capable())
7872 err = sysfs_create_file(&cls->kset.kobj,
7873 &attr_sched_mc_power_savings.attr);
7874 #endif
7875 return err;
7876 }
7877 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7878
7879 /*
7880 * Update cpusets according to cpu_active mask. If cpusets are
7881 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7882 * around partition_sched_domains().
7883 */
7884 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7885 void *hcpu)
7886 {
7887 switch (action & ~CPU_TASKS_FROZEN) {
7888 case CPU_ONLINE:
7889 case CPU_DOWN_FAILED:
7890 cpuset_update_active_cpus();
7891 return NOTIFY_OK;
7892 default:
7893 return NOTIFY_DONE;
7894 }
7895 }
7896
7897 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7898 void *hcpu)
7899 {
7900 switch (action & ~CPU_TASKS_FROZEN) {
7901 case CPU_DOWN_PREPARE:
7902 cpuset_update_active_cpus();
7903 return NOTIFY_OK;
7904 default:
7905 return NOTIFY_DONE;
7906 }
7907 }
7908
7909 static int update_runtime(struct notifier_block *nfb,
7910 unsigned long action, void *hcpu)
7911 {
7912 int cpu = (int)(long)hcpu;
7913
7914 switch (action) {
7915 case CPU_DOWN_PREPARE:
7916 case CPU_DOWN_PREPARE_FROZEN:
7917 disable_runtime(cpu_rq(cpu));
7918 return NOTIFY_OK;
7919
7920 case CPU_DOWN_FAILED:
7921 case CPU_DOWN_FAILED_FROZEN:
7922 case CPU_ONLINE:
7923 case CPU_ONLINE_FROZEN:
7924 enable_runtime(cpu_rq(cpu));
7925 return NOTIFY_OK;
7926
7927 default:
7928 return NOTIFY_DONE;
7929 }
7930 }
7931
7932 void __init sched_init_smp(void)
7933 {
7934 cpumask_var_t non_isolated_cpus;
7935
7936 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7937 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7938
7939 #if defined(CONFIG_NUMA)
7940 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7941 GFP_KERNEL);
7942 BUG_ON(sched_group_nodes_bycpu == NULL);
7943 #endif
7944 get_online_cpus();
7945 mutex_lock(&sched_domains_mutex);
7946 arch_init_sched_domains(cpu_active_mask);
7947 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7948 if (cpumask_empty(non_isolated_cpus))
7949 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7950 mutex_unlock(&sched_domains_mutex);
7951 put_online_cpus();
7952
7953 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7954 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7955
7956 /* RT runtime code needs to handle some hotplug events */
7957 hotcpu_notifier(update_runtime, 0);
7958
7959 init_hrtick();
7960
7961 /* Move init over to a non-isolated CPU */
7962 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7963 BUG();
7964 sched_init_granularity();
7965 free_cpumask_var(non_isolated_cpus);
7966
7967 init_sched_rt_class();
7968 }
7969 #else
7970 void __init sched_init_smp(void)
7971 {
7972 sched_init_granularity();
7973 }
7974 #endif /* CONFIG_SMP */
7975
7976 const_debug unsigned int sysctl_timer_migration = 1;
7977
7978 int in_sched_functions(unsigned long addr)
7979 {
7980 return in_lock_functions(addr) ||
7981 (addr >= (unsigned long)__sched_text_start
7982 && addr < (unsigned long)__sched_text_end);
7983 }
7984
7985 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7986 {
7987 cfs_rq->tasks_timeline = RB_ROOT;
7988 INIT_LIST_HEAD(&cfs_rq->tasks);
7989 #ifdef CONFIG_FAIR_GROUP_SCHED
7990 cfs_rq->rq = rq;
7991 /* allow initial update_cfs_load() to truncate */
7992 #ifdef CONFIG_SMP
7993 cfs_rq->load_stamp = 1;
7994 #endif
7995 #endif
7996 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7997 }
7998
7999 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8000 {
8001 struct rt_prio_array *array;
8002 int i;
8003
8004 array = &rt_rq->active;
8005 for (i = 0; i < MAX_RT_PRIO; i++) {
8006 INIT_LIST_HEAD(array->queue + i);
8007 __clear_bit(i, array->bitmap);
8008 }
8009 /* delimiter for bitsearch: */
8010 __set_bit(MAX_RT_PRIO, array->bitmap);
8011
8012 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
8013 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8014 #ifdef CONFIG_SMP
8015 rt_rq->highest_prio.next = MAX_RT_PRIO;
8016 #endif
8017 #endif
8018 #ifdef CONFIG_SMP
8019 rt_rq->rt_nr_migratory = 0;
8020 rt_rq->overloaded = 0;
8021 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
8022 #endif
8023
8024 rt_rq->rt_time = 0;
8025 rt_rq->rt_throttled = 0;
8026 rt_rq->rt_runtime = 0;
8027 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8028
8029 #ifdef CONFIG_RT_GROUP_SCHED
8030 rt_rq->rt_nr_boosted = 0;
8031 rt_rq->rq = rq;
8032 #endif
8033 }
8034
8035 #ifdef CONFIG_FAIR_GROUP_SCHED
8036 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8037 struct sched_entity *se, int cpu,
8038 struct sched_entity *parent)
8039 {
8040 struct rq *rq = cpu_rq(cpu);
8041 tg->cfs_rq[cpu] = cfs_rq;
8042 init_cfs_rq(cfs_rq, rq);
8043 cfs_rq->tg = tg;
8044
8045 tg->se[cpu] = se;
8046 /* se could be NULL for root_task_group */
8047 if (!se)
8048 return;
8049
8050 if (!parent)
8051 se->cfs_rq = &rq->cfs;
8052 else
8053 se->cfs_rq = parent->my_q;
8054
8055 se->my_q = cfs_rq;
8056 update_load_set(&se->load, 0);
8057 se->parent = parent;
8058 }
8059 #endif
8060
8061 #ifdef CONFIG_RT_GROUP_SCHED
8062 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8063 struct sched_rt_entity *rt_se, int cpu,
8064 struct sched_rt_entity *parent)
8065 {
8066 struct rq *rq = cpu_rq(cpu);
8067
8068 tg->rt_rq[cpu] = rt_rq;
8069 init_rt_rq(rt_rq, rq);
8070 rt_rq->tg = tg;
8071 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8072
8073 tg->rt_se[cpu] = rt_se;
8074 if (!rt_se)
8075 return;
8076
8077 if (!parent)
8078 rt_se->rt_rq = &rq->rt;
8079 else
8080 rt_se->rt_rq = parent->my_q;
8081
8082 rt_se->my_q = rt_rq;
8083 rt_se->parent = parent;
8084 INIT_LIST_HEAD(&rt_se->run_list);
8085 }
8086 #endif
8087
8088 void __init sched_init(void)
8089 {
8090 int i, j;
8091 unsigned long alloc_size = 0, ptr;
8092
8093 #ifdef CONFIG_FAIR_GROUP_SCHED
8094 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8095 #endif
8096 #ifdef CONFIG_RT_GROUP_SCHED
8097 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8098 #endif
8099 #ifdef CONFIG_CPUMASK_OFFSTACK
8100 alloc_size += num_possible_cpus() * cpumask_size();
8101 #endif
8102 if (alloc_size) {
8103 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8104
8105 #ifdef CONFIG_FAIR_GROUP_SCHED
8106 root_task_group.se = (struct sched_entity **)ptr;
8107 ptr += nr_cpu_ids * sizeof(void **);
8108
8109 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8110 ptr += nr_cpu_ids * sizeof(void **);
8111
8112 #endif /* CONFIG_FAIR_GROUP_SCHED */
8113 #ifdef CONFIG_RT_GROUP_SCHED
8114 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8115 ptr += nr_cpu_ids * sizeof(void **);
8116
8117 root_task_group.rt_rq = (struct rt_rq **)ptr;
8118 ptr += nr_cpu_ids * sizeof(void **);
8119
8120 #endif /* CONFIG_RT_GROUP_SCHED */
8121 #ifdef CONFIG_CPUMASK_OFFSTACK
8122 for_each_possible_cpu(i) {
8123 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8124 ptr += cpumask_size();
8125 }
8126 #endif /* CONFIG_CPUMASK_OFFSTACK */
8127 }
8128
8129 #ifdef CONFIG_SMP
8130 init_defrootdomain();
8131 #endif
8132
8133 init_rt_bandwidth(&def_rt_bandwidth,
8134 global_rt_period(), global_rt_runtime());
8135
8136 #ifdef CONFIG_RT_GROUP_SCHED
8137 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8138 global_rt_period(), global_rt_runtime());
8139 #endif /* CONFIG_RT_GROUP_SCHED */
8140
8141 #ifdef CONFIG_CGROUP_SCHED
8142 list_add(&root_task_group.list, &task_groups);
8143 INIT_LIST_HEAD(&root_task_group.children);
8144 autogroup_init(&init_task);
8145 #endif /* CONFIG_CGROUP_SCHED */
8146
8147 for_each_possible_cpu(i) {
8148 struct rq *rq;
8149
8150 rq = cpu_rq(i);
8151 raw_spin_lock_init(&rq->lock);
8152 rq->nr_running = 0;
8153 rq->calc_load_active = 0;
8154 rq->calc_load_update = jiffies + LOAD_FREQ;
8155 init_cfs_rq(&rq->cfs, rq);
8156 init_rt_rq(&rq->rt, rq);
8157 #ifdef CONFIG_FAIR_GROUP_SCHED
8158 root_task_group.shares = root_task_group_load;
8159 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8160 /*
8161 * How much cpu bandwidth does root_task_group get?
8162 *
8163 * In case of task-groups formed thr' the cgroup filesystem, it
8164 * gets 100% of the cpu resources in the system. This overall
8165 * system cpu resource is divided among the tasks of
8166 * root_task_group and its child task-groups in a fair manner,
8167 * based on each entity's (task or task-group's) weight
8168 * (se->load.weight).
8169 *
8170 * In other words, if root_task_group has 10 tasks of weight
8171 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8172 * then A0's share of the cpu resource is:
8173 *
8174 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8175 *
8176 * We achieve this by letting root_task_group's tasks sit
8177 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8178 */
8179 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8180 #endif /* CONFIG_FAIR_GROUP_SCHED */
8181
8182 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8183 #ifdef CONFIG_RT_GROUP_SCHED
8184 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8185 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8186 #endif
8187
8188 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8189 rq->cpu_load[j] = 0;
8190
8191 rq->last_load_update_tick = jiffies;
8192
8193 #ifdef CONFIG_SMP
8194 rq->sd = NULL;
8195 rq->rd = NULL;
8196 rq->cpu_power = SCHED_LOAD_SCALE;
8197 rq->post_schedule = 0;
8198 rq->active_balance = 0;
8199 rq->next_balance = jiffies;
8200 rq->push_cpu = 0;
8201 rq->cpu = i;
8202 rq->online = 0;
8203 rq->idle_stamp = 0;
8204 rq->avg_idle = 2*sysctl_sched_migration_cost;
8205 rq_attach_root(rq, &def_root_domain);
8206 #ifdef CONFIG_NO_HZ
8207 rq->nohz_balance_kick = 0;
8208 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
8209 #endif
8210 #endif
8211 init_rq_hrtick(rq);
8212 atomic_set(&rq->nr_iowait, 0);
8213 }
8214
8215 set_load_weight(&init_task);
8216
8217 #ifdef CONFIG_PREEMPT_NOTIFIERS
8218 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8219 #endif
8220
8221 #ifdef CONFIG_SMP
8222 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8223 #endif
8224
8225 #ifdef CONFIG_RT_MUTEXES
8226 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
8227 #endif
8228
8229 /*
8230 * The boot idle thread does lazy MMU switching as well:
8231 */
8232 atomic_inc(&init_mm.mm_count);
8233 enter_lazy_tlb(&init_mm, current);
8234
8235 /*
8236 * Make us the idle thread. Technically, schedule() should not be
8237 * called from this thread, however somewhere below it might be,
8238 * but because we are the idle thread, we just pick up running again
8239 * when this runqueue becomes "idle".
8240 */
8241 init_idle(current, smp_processor_id());
8242
8243 calc_load_update = jiffies + LOAD_FREQ;
8244
8245 /*
8246 * During early bootup we pretend to be a normal task:
8247 */
8248 current->sched_class = &fair_sched_class;
8249
8250 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8251 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
8252 #ifdef CONFIG_SMP
8253 #ifdef CONFIG_NO_HZ
8254 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8255 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8256 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8257 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8258 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8259 #endif
8260 /* May be allocated at isolcpus cmdline parse time */
8261 if (cpu_isolated_map == NULL)
8262 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8263 #endif /* SMP */
8264
8265 scheduler_running = 1;
8266 }
8267
8268 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8269 static inline int preempt_count_equals(int preempt_offset)
8270 {
8271 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8272
8273 return (nested == preempt_offset);
8274 }
8275
8276 void __might_sleep(const char *file, int line, int preempt_offset)
8277 {
8278 #ifdef in_atomic
8279 static unsigned long prev_jiffy; /* ratelimiting */
8280
8281 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8282 system_state != SYSTEM_RUNNING || oops_in_progress)
8283 return;
8284 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8285 return;
8286 prev_jiffy = jiffies;
8287
8288 printk(KERN_ERR
8289 "BUG: sleeping function called from invalid context at %s:%d\n",
8290 file, line);
8291 printk(KERN_ERR
8292 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8293 in_atomic(), irqs_disabled(),
8294 current->pid, current->comm);
8295
8296 debug_show_held_locks(current);
8297 if (irqs_disabled())
8298 print_irqtrace_events(current);
8299 dump_stack();
8300 #endif
8301 }
8302 EXPORT_SYMBOL(__might_sleep);
8303 #endif
8304
8305 #ifdef CONFIG_MAGIC_SYSRQ
8306 static void normalize_task(struct rq *rq, struct task_struct *p)
8307 {
8308 const struct sched_class *prev_class = p->sched_class;
8309 int old_prio = p->prio;
8310 int on_rq;
8311
8312 on_rq = p->se.on_rq;
8313 if (on_rq)
8314 deactivate_task(rq, p, 0);
8315 __setscheduler(rq, p, SCHED_NORMAL, 0);
8316 if (on_rq) {
8317 activate_task(rq, p, 0);
8318 resched_task(rq->curr);
8319 }
8320
8321 check_class_changed(rq, p, prev_class, old_prio);
8322 }
8323
8324 void normalize_rt_tasks(void)
8325 {
8326 struct task_struct *g, *p;
8327 unsigned long flags;
8328 struct rq *rq;
8329
8330 read_lock_irqsave(&tasklist_lock, flags);
8331 do_each_thread(g, p) {
8332 /*
8333 * Only normalize user tasks:
8334 */
8335 if (!p->mm)
8336 continue;
8337
8338 p->se.exec_start = 0;
8339 #ifdef CONFIG_SCHEDSTATS
8340 p->se.statistics.wait_start = 0;
8341 p->se.statistics.sleep_start = 0;
8342 p->se.statistics.block_start = 0;
8343 #endif
8344
8345 if (!rt_task(p)) {
8346 /*
8347 * Renice negative nice level userspace
8348 * tasks back to 0:
8349 */
8350 if (TASK_NICE(p) < 0 && p->mm)
8351 set_user_nice(p, 0);
8352 continue;
8353 }
8354
8355 raw_spin_lock(&p->pi_lock);
8356 rq = __task_rq_lock(p);
8357
8358 normalize_task(rq, p);
8359
8360 __task_rq_unlock(rq);
8361 raw_spin_unlock(&p->pi_lock);
8362 } while_each_thread(g, p);
8363
8364 read_unlock_irqrestore(&tasklist_lock, flags);
8365 }
8366
8367 #endif /* CONFIG_MAGIC_SYSRQ */
8368
8369 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8370 /*
8371 * These functions are only useful for the IA64 MCA handling, or kdb.
8372 *
8373 * They can only be called when the whole system has been
8374 * stopped - every CPU needs to be quiescent, and no scheduling
8375 * activity can take place. Using them for anything else would
8376 * be a serious bug, and as a result, they aren't even visible
8377 * under any other configuration.
8378 */
8379
8380 /**
8381 * curr_task - return the current task for a given cpu.
8382 * @cpu: the processor in question.
8383 *
8384 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8385 */
8386 struct task_struct *curr_task(int cpu)
8387 {
8388 return cpu_curr(cpu);
8389 }
8390
8391 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8392
8393 #ifdef CONFIG_IA64
8394 /**
8395 * set_curr_task - set the current task for a given cpu.
8396 * @cpu: the processor in question.
8397 * @p: the task pointer to set.
8398 *
8399 * Description: This function must only be used when non-maskable interrupts
8400 * are serviced on a separate stack. It allows the architecture to switch the
8401 * notion of the current task on a cpu in a non-blocking manner. This function
8402 * must be called with all CPU's synchronized, and interrupts disabled, the
8403 * and caller must save the original value of the current task (see
8404 * curr_task() above) and restore that value before reenabling interrupts and
8405 * re-starting the system.
8406 *
8407 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8408 */
8409 void set_curr_task(int cpu, struct task_struct *p)
8410 {
8411 cpu_curr(cpu) = p;
8412 }
8413
8414 #endif
8415
8416 #ifdef CONFIG_FAIR_GROUP_SCHED
8417 static void free_fair_sched_group(struct task_group *tg)
8418 {
8419 int i;
8420
8421 for_each_possible_cpu(i) {
8422 if (tg->cfs_rq)
8423 kfree(tg->cfs_rq[i]);
8424 if (tg->se)
8425 kfree(tg->se[i]);
8426 }
8427
8428 kfree(tg->cfs_rq);
8429 kfree(tg->se);
8430 }
8431
8432 static
8433 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8434 {
8435 struct cfs_rq *cfs_rq;
8436 struct sched_entity *se;
8437 struct rq *rq;
8438 int i;
8439
8440 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8441 if (!tg->cfs_rq)
8442 goto err;
8443 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8444 if (!tg->se)
8445 goto err;
8446
8447 tg->shares = NICE_0_LOAD;
8448
8449 for_each_possible_cpu(i) {
8450 rq = cpu_rq(i);
8451
8452 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8453 GFP_KERNEL, cpu_to_node(i));
8454 if (!cfs_rq)
8455 goto err;
8456
8457 se = kzalloc_node(sizeof(struct sched_entity),
8458 GFP_KERNEL, cpu_to_node(i));
8459 if (!se)
8460 goto err_free_rq;
8461
8462 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8463 }
8464
8465 return 1;
8466
8467 err_free_rq:
8468 kfree(cfs_rq);
8469 err:
8470 return 0;
8471 }
8472
8473 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8474 {
8475 struct rq *rq = cpu_rq(cpu);
8476 unsigned long flags;
8477
8478 /*
8479 * Only empty task groups can be destroyed; so we can speculatively
8480 * check on_list without danger of it being re-added.
8481 */
8482 if (!tg->cfs_rq[cpu]->on_list)
8483 return;
8484
8485 raw_spin_lock_irqsave(&rq->lock, flags);
8486 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8487 raw_spin_unlock_irqrestore(&rq->lock, flags);
8488 }
8489 #else /* !CONFG_FAIR_GROUP_SCHED */
8490 static inline void free_fair_sched_group(struct task_group *tg)
8491 {
8492 }
8493
8494 static inline
8495 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8496 {
8497 return 1;
8498 }
8499
8500 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8501 {
8502 }
8503 #endif /* CONFIG_FAIR_GROUP_SCHED */
8504
8505 #ifdef CONFIG_RT_GROUP_SCHED
8506 static void free_rt_sched_group(struct task_group *tg)
8507 {
8508 int i;
8509
8510 destroy_rt_bandwidth(&tg->rt_bandwidth);
8511
8512 for_each_possible_cpu(i) {
8513 if (tg->rt_rq)
8514 kfree(tg->rt_rq[i]);
8515 if (tg->rt_se)
8516 kfree(tg->rt_se[i]);
8517 }
8518
8519 kfree(tg->rt_rq);
8520 kfree(tg->rt_se);
8521 }
8522
8523 static
8524 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8525 {
8526 struct rt_rq *rt_rq;
8527 struct sched_rt_entity *rt_se;
8528 struct rq *rq;
8529 int i;
8530
8531 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8532 if (!tg->rt_rq)
8533 goto err;
8534 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8535 if (!tg->rt_se)
8536 goto err;
8537
8538 init_rt_bandwidth(&tg->rt_bandwidth,
8539 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8540
8541 for_each_possible_cpu(i) {
8542 rq = cpu_rq(i);
8543
8544 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8545 GFP_KERNEL, cpu_to_node(i));
8546 if (!rt_rq)
8547 goto err;
8548
8549 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8550 GFP_KERNEL, cpu_to_node(i));
8551 if (!rt_se)
8552 goto err_free_rq;
8553
8554 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8555 }
8556
8557 return 1;
8558
8559 err_free_rq:
8560 kfree(rt_rq);
8561 err:
8562 return 0;
8563 }
8564 #else /* !CONFIG_RT_GROUP_SCHED */
8565 static inline void free_rt_sched_group(struct task_group *tg)
8566 {
8567 }
8568
8569 static inline
8570 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8571 {
8572 return 1;
8573 }
8574 #endif /* CONFIG_RT_GROUP_SCHED */
8575
8576 #ifdef CONFIG_CGROUP_SCHED
8577 static void free_sched_group(struct task_group *tg)
8578 {
8579 free_fair_sched_group(tg);
8580 free_rt_sched_group(tg);
8581 autogroup_free(tg);
8582 kfree(tg);
8583 }
8584
8585 /* allocate runqueue etc for a new task group */
8586 struct task_group *sched_create_group(struct task_group *parent)
8587 {
8588 struct task_group *tg;
8589 unsigned long flags;
8590
8591 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8592 if (!tg)
8593 return ERR_PTR(-ENOMEM);
8594
8595 if (!alloc_fair_sched_group(tg, parent))
8596 goto err;
8597
8598 if (!alloc_rt_sched_group(tg, parent))
8599 goto err;
8600
8601 spin_lock_irqsave(&task_group_lock, flags);
8602 list_add_rcu(&tg->list, &task_groups);
8603
8604 WARN_ON(!parent); /* root should already exist */
8605
8606 tg->parent = parent;
8607 INIT_LIST_HEAD(&tg->children);
8608 list_add_rcu(&tg->siblings, &parent->children);
8609 spin_unlock_irqrestore(&task_group_lock, flags);
8610
8611 return tg;
8612
8613 err:
8614 free_sched_group(tg);
8615 return ERR_PTR(-ENOMEM);
8616 }
8617
8618 /* rcu callback to free various structures associated with a task group */
8619 static void free_sched_group_rcu(struct rcu_head *rhp)
8620 {
8621 /* now it should be safe to free those cfs_rqs */
8622 free_sched_group(container_of(rhp, struct task_group, rcu));
8623 }
8624
8625 /* Destroy runqueue etc associated with a task group */
8626 void sched_destroy_group(struct task_group *tg)
8627 {
8628 unsigned long flags;
8629 int i;
8630
8631 /* end participation in shares distribution */
8632 for_each_possible_cpu(i)
8633 unregister_fair_sched_group(tg, i);
8634
8635 spin_lock_irqsave(&task_group_lock, flags);
8636 list_del_rcu(&tg->list);
8637 list_del_rcu(&tg->siblings);
8638 spin_unlock_irqrestore(&task_group_lock, flags);
8639
8640 /* wait for possible concurrent references to cfs_rqs complete */
8641 call_rcu(&tg->rcu, free_sched_group_rcu);
8642 }
8643
8644 /* change task's runqueue when it moves between groups.
8645 * The caller of this function should have put the task in its new group
8646 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8647 * reflect its new group.
8648 */
8649 void sched_move_task(struct task_struct *tsk)
8650 {
8651 int on_rq, running;
8652 unsigned long flags;
8653 struct rq *rq;
8654
8655 rq = task_rq_lock(tsk, &flags);
8656
8657 running = task_current(rq, tsk);
8658 on_rq = tsk->se.on_rq;
8659
8660 if (on_rq)
8661 dequeue_task(rq, tsk, 0);
8662 if (unlikely(running))
8663 tsk->sched_class->put_prev_task(rq, tsk);
8664
8665 #ifdef CONFIG_FAIR_GROUP_SCHED
8666 if (tsk->sched_class->task_move_group)
8667 tsk->sched_class->task_move_group(tsk, on_rq);
8668 else
8669 #endif
8670 set_task_rq(tsk, task_cpu(tsk));
8671
8672 if (unlikely(running))
8673 tsk->sched_class->set_curr_task(rq);
8674 if (on_rq)
8675 enqueue_task(rq, tsk, 0);
8676
8677 task_rq_unlock(rq, &flags);
8678 }
8679 #endif /* CONFIG_CGROUP_SCHED */
8680
8681 #ifdef CONFIG_FAIR_GROUP_SCHED
8682 static DEFINE_MUTEX(shares_mutex);
8683
8684 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8685 {
8686 int i;
8687 unsigned long flags;
8688
8689 /*
8690 * We can't change the weight of the root cgroup.
8691 */
8692 if (!tg->se[0])
8693 return -EINVAL;
8694
8695 if (shares < MIN_SHARES)
8696 shares = MIN_SHARES;
8697 else if (shares > MAX_SHARES)
8698 shares = MAX_SHARES;
8699
8700 mutex_lock(&shares_mutex);
8701 if (tg->shares == shares)
8702 goto done;
8703
8704 tg->shares = shares;
8705 for_each_possible_cpu(i) {
8706 struct rq *rq = cpu_rq(i);
8707 struct sched_entity *se;
8708
8709 se = tg->se[i];
8710 /* Propagate contribution to hierarchy */
8711 raw_spin_lock_irqsave(&rq->lock, flags);
8712 for_each_sched_entity(se)
8713 update_cfs_shares(group_cfs_rq(se));
8714 raw_spin_unlock_irqrestore(&rq->lock, flags);
8715 }
8716
8717 done:
8718 mutex_unlock(&shares_mutex);
8719 return 0;
8720 }
8721
8722 unsigned long sched_group_shares(struct task_group *tg)
8723 {
8724 return tg->shares;
8725 }
8726 #endif
8727
8728 #ifdef CONFIG_RT_GROUP_SCHED
8729 /*
8730 * Ensure that the real time constraints are schedulable.
8731 */
8732 static DEFINE_MUTEX(rt_constraints_mutex);
8733
8734 static unsigned long to_ratio(u64 period, u64 runtime)
8735 {
8736 if (runtime == RUNTIME_INF)
8737 return 1ULL << 20;
8738
8739 return div64_u64(runtime << 20, period);
8740 }
8741
8742 /* Must be called with tasklist_lock held */
8743 static inline int tg_has_rt_tasks(struct task_group *tg)
8744 {
8745 struct task_struct *g, *p;
8746
8747 do_each_thread(g, p) {
8748 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8749 return 1;
8750 } while_each_thread(g, p);
8751
8752 return 0;
8753 }
8754
8755 struct rt_schedulable_data {
8756 struct task_group *tg;
8757 u64 rt_period;
8758 u64 rt_runtime;
8759 };
8760
8761 static int tg_schedulable(struct task_group *tg, void *data)
8762 {
8763 struct rt_schedulable_data *d = data;
8764 struct task_group *child;
8765 unsigned long total, sum = 0;
8766 u64 period, runtime;
8767
8768 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8769 runtime = tg->rt_bandwidth.rt_runtime;
8770
8771 if (tg == d->tg) {
8772 period = d->rt_period;
8773 runtime = d->rt_runtime;
8774 }
8775
8776 /*
8777 * Cannot have more runtime than the period.
8778 */
8779 if (runtime > period && runtime != RUNTIME_INF)
8780 return -EINVAL;
8781
8782 /*
8783 * Ensure we don't starve existing RT tasks.
8784 */
8785 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8786 return -EBUSY;
8787
8788 total = to_ratio(period, runtime);
8789
8790 /*
8791 * Nobody can have more than the global setting allows.
8792 */
8793 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8794 return -EINVAL;
8795
8796 /*
8797 * The sum of our children's runtime should not exceed our own.
8798 */
8799 list_for_each_entry_rcu(child, &tg->children, siblings) {
8800 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8801 runtime = child->rt_bandwidth.rt_runtime;
8802
8803 if (child == d->tg) {
8804 period = d->rt_period;
8805 runtime = d->rt_runtime;
8806 }
8807
8808 sum += to_ratio(period, runtime);
8809 }
8810
8811 if (sum > total)
8812 return -EINVAL;
8813
8814 return 0;
8815 }
8816
8817 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8818 {
8819 struct rt_schedulable_data data = {
8820 .tg = tg,
8821 .rt_period = period,
8822 .rt_runtime = runtime,
8823 };
8824
8825 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8826 }
8827
8828 static int tg_set_bandwidth(struct task_group *tg,
8829 u64 rt_period, u64 rt_runtime)
8830 {
8831 int i, err = 0;
8832
8833 mutex_lock(&rt_constraints_mutex);
8834 read_lock(&tasklist_lock);
8835 err = __rt_schedulable(tg, rt_period, rt_runtime);
8836 if (err)
8837 goto unlock;
8838
8839 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8840 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8841 tg->rt_bandwidth.rt_runtime = rt_runtime;
8842
8843 for_each_possible_cpu(i) {
8844 struct rt_rq *rt_rq = tg->rt_rq[i];
8845
8846 raw_spin_lock(&rt_rq->rt_runtime_lock);
8847 rt_rq->rt_runtime = rt_runtime;
8848 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8849 }
8850 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8851 unlock:
8852 read_unlock(&tasklist_lock);
8853 mutex_unlock(&rt_constraints_mutex);
8854
8855 return err;
8856 }
8857
8858 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8859 {
8860 u64 rt_runtime, rt_period;
8861
8862 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8863 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8864 if (rt_runtime_us < 0)
8865 rt_runtime = RUNTIME_INF;
8866
8867 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8868 }
8869
8870 long sched_group_rt_runtime(struct task_group *tg)
8871 {
8872 u64 rt_runtime_us;
8873
8874 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8875 return -1;
8876
8877 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8878 do_div(rt_runtime_us, NSEC_PER_USEC);
8879 return rt_runtime_us;
8880 }
8881
8882 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8883 {
8884 u64 rt_runtime, rt_period;
8885
8886 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8887 rt_runtime = tg->rt_bandwidth.rt_runtime;
8888
8889 if (rt_period == 0)
8890 return -EINVAL;
8891
8892 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8893 }
8894
8895 long sched_group_rt_period(struct task_group *tg)
8896 {
8897 u64 rt_period_us;
8898
8899 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8900 do_div(rt_period_us, NSEC_PER_USEC);
8901 return rt_period_us;
8902 }
8903
8904 static int sched_rt_global_constraints(void)
8905 {
8906 u64 runtime, period;
8907 int ret = 0;
8908
8909 if (sysctl_sched_rt_period <= 0)
8910 return -EINVAL;
8911
8912 runtime = global_rt_runtime();
8913 period = global_rt_period();
8914
8915 /*
8916 * Sanity check on the sysctl variables.
8917 */
8918 if (runtime > period && runtime != RUNTIME_INF)
8919 return -EINVAL;
8920
8921 mutex_lock(&rt_constraints_mutex);
8922 read_lock(&tasklist_lock);
8923 ret = __rt_schedulable(NULL, 0, 0);
8924 read_unlock(&tasklist_lock);
8925 mutex_unlock(&rt_constraints_mutex);
8926
8927 return ret;
8928 }
8929
8930 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8931 {
8932 /* Don't accept realtime tasks when there is no way for them to run */
8933 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8934 return 0;
8935
8936 return 1;
8937 }
8938
8939 #else /* !CONFIG_RT_GROUP_SCHED */
8940 static int sched_rt_global_constraints(void)
8941 {
8942 unsigned long flags;
8943 int i;
8944
8945 if (sysctl_sched_rt_period <= 0)
8946 return -EINVAL;
8947
8948 /*
8949 * There's always some RT tasks in the root group
8950 * -- migration, kstopmachine etc..
8951 */
8952 if (sysctl_sched_rt_runtime == 0)
8953 return -EBUSY;
8954
8955 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8956 for_each_possible_cpu(i) {
8957 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8958
8959 raw_spin_lock(&rt_rq->rt_runtime_lock);
8960 rt_rq->rt_runtime = global_rt_runtime();
8961 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8962 }
8963 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8964
8965 return 0;
8966 }
8967 #endif /* CONFIG_RT_GROUP_SCHED */
8968
8969 int sched_rt_handler(struct ctl_table *table, int write,
8970 void __user *buffer, size_t *lenp,
8971 loff_t *ppos)
8972 {
8973 int ret;
8974 int old_period, old_runtime;
8975 static DEFINE_MUTEX(mutex);
8976
8977 mutex_lock(&mutex);
8978 old_period = sysctl_sched_rt_period;
8979 old_runtime = sysctl_sched_rt_runtime;
8980
8981 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8982
8983 if (!ret && write) {
8984 ret = sched_rt_global_constraints();
8985 if (ret) {
8986 sysctl_sched_rt_period = old_period;
8987 sysctl_sched_rt_runtime = old_runtime;
8988 } else {
8989 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8990 def_rt_bandwidth.rt_period =
8991 ns_to_ktime(global_rt_period());
8992 }
8993 }
8994 mutex_unlock(&mutex);
8995
8996 return ret;
8997 }
8998
8999 #ifdef CONFIG_CGROUP_SCHED
9000
9001 /* return corresponding task_group object of a cgroup */
9002 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9003 {
9004 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9005 struct task_group, css);
9006 }
9007
9008 static struct cgroup_subsys_state *
9009 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9010 {
9011 struct task_group *tg, *parent;
9012
9013 if (!cgrp->parent) {
9014 /* This is early initialization for the top cgroup */
9015 return &root_task_group.css;
9016 }
9017
9018 parent = cgroup_tg(cgrp->parent);
9019 tg = sched_create_group(parent);
9020 if (IS_ERR(tg))
9021 return ERR_PTR(-ENOMEM);
9022
9023 return &tg->css;
9024 }
9025
9026 static void
9027 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9028 {
9029 struct task_group *tg = cgroup_tg(cgrp);
9030
9031 sched_destroy_group(tg);
9032 }
9033
9034 static int
9035 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9036 {
9037 #ifdef CONFIG_RT_GROUP_SCHED
9038 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9039 return -EINVAL;
9040 #else
9041 /* We don't support RT-tasks being in separate groups */
9042 if (tsk->sched_class != &fair_sched_class)
9043 return -EINVAL;
9044 #endif
9045 return 0;
9046 }
9047
9048 static int
9049 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9050 struct task_struct *tsk, bool threadgroup)
9051 {
9052 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
9053 if (retval)
9054 return retval;
9055 if (threadgroup) {
9056 struct task_struct *c;
9057 rcu_read_lock();
9058 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9059 retval = cpu_cgroup_can_attach_task(cgrp, c);
9060 if (retval) {
9061 rcu_read_unlock();
9062 return retval;
9063 }
9064 }
9065 rcu_read_unlock();
9066 }
9067 return 0;
9068 }
9069
9070 static void
9071 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9072 struct cgroup *old_cont, struct task_struct *tsk,
9073 bool threadgroup)
9074 {
9075 sched_move_task(tsk);
9076 if (threadgroup) {
9077 struct task_struct *c;
9078 rcu_read_lock();
9079 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
9080 sched_move_task(c);
9081 }
9082 rcu_read_unlock();
9083 }
9084 }
9085
9086 static void
9087 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9088 struct cgroup *old_cgrp, struct task_struct *task)
9089 {
9090 /*
9091 * cgroup_exit() is called in the copy_process() failure path.
9092 * Ignore this case since the task hasn't ran yet, this avoids
9093 * trying to poke a half freed task state from generic code.
9094 */
9095 if (!(task->flags & PF_EXITING))
9096 return;
9097
9098 sched_move_task(task);
9099 }
9100
9101 #ifdef CONFIG_FAIR_GROUP_SCHED
9102 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9103 u64 shareval)
9104 {
9105 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
9106 }
9107
9108 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9109 {
9110 struct task_group *tg = cgroup_tg(cgrp);
9111
9112 return (u64) tg->shares;
9113 }
9114 #endif /* CONFIG_FAIR_GROUP_SCHED */
9115
9116 #ifdef CONFIG_RT_GROUP_SCHED
9117 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9118 s64 val)
9119 {
9120 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9121 }
9122
9123 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9124 {
9125 return sched_group_rt_runtime(cgroup_tg(cgrp));
9126 }
9127
9128 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9129 u64 rt_period_us)
9130 {
9131 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9132 }
9133
9134 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9135 {
9136 return sched_group_rt_period(cgroup_tg(cgrp));
9137 }
9138 #endif /* CONFIG_RT_GROUP_SCHED */
9139
9140 static struct cftype cpu_files[] = {
9141 #ifdef CONFIG_FAIR_GROUP_SCHED
9142 {
9143 .name = "shares",
9144 .read_u64 = cpu_shares_read_u64,
9145 .write_u64 = cpu_shares_write_u64,
9146 },
9147 #endif
9148 #ifdef CONFIG_RT_GROUP_SCHED
9149 {
9150 .name = "rt_runtime_us",
9151 .read_s64 = cpu_rt_runtime_read,
9152 .write_s64 = cpu_rt_runtime_write,
9153 },
9154 {
9155 .name = "rt_period_us",
9156 .read_u64 = cpu_rt_period_read_uint,
9157 .write_u64 = cpu_rt_period_write_uint,
9158 },
9159 #endif
9160 };
9161
9162 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9163 {
9164 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9165 }
9166
9167 struct cgroup_subsys cpu_cgroup_subsys = {
9168 .name = "cpu",
9169 .create = cpu_cgroup_create,
9170 .destroy = cpu_cgroup_destroy,
9171 .can_attach = cpu_cgroup_can_attach,
9172 .attach = cpu_cgroup_attach,
9173 .exit = cpu_cgroup_exit,
9174 .populate = cpu_cgroup_populate,
9175 .subsys_id = cpu_cgroup_subsys_id,
9176 .early_init = 1,
9177 };
9178
9179 #endif /* CONFIG_CGROUP_SCHED */
9180
9181 #ifdef CONFIG_CGROUP_CPUACCT
9182
9183 /*
9184 * CPU accounting code for task groups.
9185 *
9186 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9187 * (balbir@in.ibm.com).
9188 */
9189
9190 /* track cpu usage of a group of tasks and its child groups */
9191 struct cpuacct {
9192 struct cgroup_subsys_state css;
9193 /* cpuusage holds pointer to a u64-type object on every cpu */
9194 u64 __percpu *cpuusage;
9195 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9196 struct cpuacct *parent;
9197 };
9198
9199 struct cgroup_subsys cpuacct_subsys;
9200
9201 /* return cpu accounting group corresponding to this container */
9202 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9203 {
9204 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9205 struct cpuacct, css);
9206 }
9207
9208 /* return cpu accounting group to which this task belongs */
9209 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9210 {
9211 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9212 struct cpuacct, css);
9213 }
9214
9215 /* create a new cpu accounting group */
9216 static struct cgroup_subsys_state *cpuacct_create(
9217 struct cgroup_subsys *ss, struct cgroup *cgrp)
9218 {
9219 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9220 int i;
9221
9222 if (!ca)
9223 goto out;
9224
9225 ca->cpuusage = alloc_percpu(u64);
9226 if (!ca->cpuusage)
9227 goto out_free_ca;
9228
9229 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9230 if (percpu_counter_init(&ca->cpustat[i], 0))
9231 goto out_free_counters;
9232
9233 if (cgrp->parent)
9234 ca->parent = cgroup_ca(cgrp->parent);
9235
9236 return &ca->css;
9237
9238 out_free_counters:
9239 while (--i >= 0)
9240 percpu_counter_destroy(&ca->cpustat[i]);
9241 free_percpu(ca->cpuusage);
9242 out_free_ca:
9243 kfree(ca);
9244 out:
9245 return ERR_PTR(-ENOMEM);
9246 }
9247
9248 /* destroy an existing cpu accounting group */
9249 static void
9250 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9251 {
9252 struct cpuacct *ca = cgroup_ca(cgrp);
9253 int i;
9254
9255 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9256 percpu_counter_destroy(&ca->cpustat[i]);
9257 free_percpu(ca->cpuusage);
9258 kfree(ca);
9259 }
9260
9261 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9262 {
9263 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9264 u64 data;
9265
9266 #ifndef CONFIG_64BIT
9267 /*
9268 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9269 */
9270 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9271 data = *cpuusage;
9272 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9273 #else
9274 data = *cpuusage;
9275 #endif
9276
9277 return data;
9278 }
9279
9280 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9281 {
9282 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9283
9284 #ifndef CONFIG_64BIT
9285 /*
9286 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9287 */
9288 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9289 *cpuusage = val;
9290 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9291 #else
9292 *cpuusage = val;
9293 #endif
9294 }
9295
9296 /* return total cpu usage (in nanoseconds) of a group */
9297 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9298 {
9299 struct cpuacct *ca = cgroup_ca(cgrp);
9300 u64 totalcpuusage = 0;
9301 int i;
9302
9303 for_each_present_cpu(i)
9304 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9305
9306 return totalcpuusage;
9307 }
9308
9309 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9310 u64 reset)
9311 {
9312 struct cpuacct *ca = cgroup_ca(cgrp);
9313 int err = 0;
9314 int i;
9315
9316 if (reset) {
9317 err = -EINVAL;
9318 goto out;
9319 }
9320
9321 for_each_present_cpu(i)
9322 cpuacct_cpuusage_write(ca, i, 0);
9323
9324 out:
9325 return err;
9326 }
9327
9328 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9329 struct seq_file *m)
9330 {
9331 struct cpuacct *ca = cgroup_ca(cgroup);
9332 u64 percpu;
9333 int i;
9334
9335 for_each_present_cpu(i) {
9336 percpu = cpuacct_cpuusage_read(ca, i);
9337 seq_printf(m, "%llu ", (unsigned long long) percpu);
9338 }
9339 seq_printf(m, "\n");
9340 return 0;
9341 }
9342
9343 static const char *cpuacct_stat_desc[] = {
9344 [CPUACCT_STAT_USER] = "user",
9345 [CPUACCT_STAT_SYSTEM] = "system",
9346 };
9347
9348 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9349 struct cgroup_map_cb *cb)
9350 {
9351 struct cpuacct *ca = cgroup_ca(cgrp);
9352 int i;
9353
9354 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9355 s64 val = percpu_counter_read(&ca->cpustat[i]);
9356 val = cputime64_to_clock_t(val);
9357 cb->fill(cb, cpuacct_stat_desc[i], val);
9358 }
9359 return 0;
9360 }
9361
9362 static struct cftype files[] = {
9363 {
9364 .name = "usage",
9365 .read_u64 = cpuusage_read,
9366 .write_u64 = cpuusage_write,
9367 },
9368 {
9369 .name = "usage_percpu",
9370 .read_seq_string = cpuacct_percpu_seq_read,
9371 },
9372 {
9373 .name = "stat",
9374 .read_map = cpuacct_stats_show,
9375 },
9376 };
9377
9378 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9379 {
9380 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9381 }
9382
9383 /*
9384 * charge this task's execution time to its accounting group.
9385 *
9386 * called with rq->lock held.
9387 */
9388 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9389 {
9390 struct cpuacct *ca;
9391 int cpu;
9392
9393 if (unlikely(!cpuacct_subsys.active))
9394 return;
9395
9396 cpu = task_cpu(tsk);
9397
9398 rcu_read_lock();
9399
9400 ca = task_ca(tsk);
9401
9402 for (; ca; ca = ca->parent) {
9403 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9404 *cpuusage += cputime;
9405 }
9406
9407 rcu_read_unlock();
9408 }
9409
9410 /*
9411 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9412 * in cputime_t units. As a result, cpuacct_update_stats calls
9413 * percpu_counter_add with values large enough to always overflow the
9414 * per cpu batch limit causing bad SMP scalability.
9415 *
9416 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9417 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9418 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9419 */
9420 #ifdef CONFIG_SMP
9421 #define CPUACCT_BATCH \
9422 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9423 #else
9424 #define CPUACCT_BATCH 0
9425 #endif
9426
9427 /*
9428 * Charge the system/user time to the task's accounting group.
9429 */
9430 static void cpuacct_update_stats(struct task_struct *tsk,
9431 enum cpuacct_stat_index idx, cputime_t val)
9432 {
9433 struct cpuacct *ca;
9434 int batch = CPUACCT_BATCH;
9435
9436 if (unlikely(!cpuacct_subsys.active))
9437 return;
9438
9439 rcu_read_lock();
9440 ca = task_ca(tsk);
9441
9442 do {
9443 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9444 ca = ca->parent;
9445 } while (ca);
9446 rcu_read_unlock();
9447 }
9448
9449 struct cgroup_subsys cpuacct_subsys = {
9450 .name = "cpuacct",
9451 .create = cpuacct_create,
9452 .destroy = cpuacct_destroy,
9453 .populate = cpuacct_populate,
9454 .subsys_id = cpuacct_subsys_id,
9455 };
9456 #endif /* CONFIG_CGROUP_CPUACCT */
9457