]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched.c
sched: Remove unused PF_ALIGNWARN flag
[mirror_ubuntu-kernels.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
81
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
84
85 /*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94 /*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103 /*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
111 /*
112 * These are the 'tuning knobs' of the scheduler:
113 *
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
116 */
117 #define DEF_TIMESLICE (100 * HZ / 1000)
118
119 /*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122 #define RUNTIME_INF ((u64)~0ULL)
123
124 static inline int rt_policy(int policy)
125 {
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 return 1;
128 return 0;
129 }
130
131 static inline int task_has_rt_policy(struct task_struct *p)
132 {
133 return rt_policy(p->policy);
134 }
135
136 /*
137 * This is the priority-queue data structure of the RT scheduling class:
138 */
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
142 };
143
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
150 };
151
152 static struct rt_bandwidth def_rt_bandwidth;
153
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
155
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
157 {
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
163
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
167
168 if (!overrun)
169 break;
170
171 idle = do_sched_rt_period_timer(rt_b, overrun);
172 }
173
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 }
176
177 static
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
179 {
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
182
183 raw_spin_lock_init(&rt_b->rt_runtime_lock);
184
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 }
189
190 static inline int rt_bandwidth_enabled(void)
191 {
192 return sysctl_sched_rt_runtime >= 0;
193 }
194
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
196 {
197 ktime_t now;
198
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 return;
201
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
204
205 raw_spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
207 unsigned long delta;
208 ktime_t soft, hard;
209
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
212
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
215
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
221 }
222 raw_spin_unlock(&rt_b->rt_runtime_lock);
223 }
224
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
227 {
228 hrtimer_cancel(&rt_b->rt_period_timer);
229 }
230 #endif
231
232 /*
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
235 */
236 static DEFINE_MUTEX(sched_domains_mutex);
237
238 #ifdef CONFIG_CGROUP_SCHED
239
240 #include <linux/cgroup.h>
241
242 struct cfs_rq;
243
244 static LIST_HEAD(task_groups);
245
246 /* task group related information */
247 struct task_group {
248 struct cgroup_subsys_state css;
249
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity **se;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq **cfs_rq;
255 unsigned long shares;
256 #endif
257
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity **rt_se;
260 struct rt_rq **rt_rq;
261
262 struct rt_bandwidth rt_bandwidth;
263 #endif
264
265 struct rcu_head rcu;
266 struct list_head list;
267
268 struct task_group *parent;
269 struct list_head siblings;
270 struct list_head children;
271 };
272
273 #define root_task_group init_task_group
274
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
277 */
278 static DEFINE_SPINLOCK(task_group_lock);
279
280 #ifdef CONFIG_FAIR_GROUP_SCHED
281
282 #ifdef CONFIG_SMP
283 static int root_task_group_empty(void)
284 {
285 return list_empty(&root_task_group.children);
286 }
287 #endif
288
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
290
291 /*
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
298 */
299 #define MIN_SHARES 2
300 #define MAX_SHARES (1UL << 18)
301
302 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
303 #endif
304
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
307 */
308 struct task_group init_task_group;
309
310 #endif /* CONFIG_CGROUP_SCHED */
311
312 /* CFS-related fields in a runqueue */
313 struct cfs_rq {
314 struct load_weight load;
315 unsigned long nr_running;
316
317 u64 exec_clock;
318 u64 min_vruntime;
319
320 struct rb_root tasks_timeline;
321 struct rb_node *rb_leftmost;
322
323 struct list_head tasks;
324 struct list_head *balance_iterator;
325
326 /*
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
329 */
330 struct sched_entity *curr, *next, *last;
331
332 unsigned int nr_spread_over;
333
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
336
337 /*
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
341 *
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
344 */
345 struct list_head leaf_cfs_rq_list;
346 struct task_group *tg; /* group that "owns" this runqueue */
347
348 #ifdef CONFIG_SMP
349 /*
350 * the part of load.weight contributed by tasks
351 */
352 unsigned long task_weight;
353
354 /*
355 * h_load = weight * f(tg)
356 *
357 * Where f(tg) is the recursive weight fraction assigned to
358 * this group.
359 */
360 unsigned long h_load;
361
362 /*
363 * this cpu's part of tg->shares
364 */
365 unsigned long shares;
366
367 /*
368 * load.weight at the time we set shares
369 */
370 unsigned long rq_weight;
371 #endif
372 #endif
373 };
374
375 /* Real-Time classes' related field in a runqueue: */
376 struct rt_rq {
377 struct rt_prio_array active;
378 unsigned long rt_nr_running;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
380 struct {
381 int curr; /* highest queued rt task prio */
382 #ifdef CONFIG_SMP
383 int next; /* next highest */
384 #endif
385 } highest_prio;
386 #endif
387 #ifdef CONFIG_SMP
388 unsigned long rt_nr_migratory;
389 unsigned long rt_nr_total;
390 int overloaded;
391 struct plist_head pushable_tasks;
392 #endif
393 int rt_throttled;
394 u64 rt_time;
395 u64 rt_runtime;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock;
398
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted;
401
402 struct rq *rq;
403 struct list_head leaf_rt_rq_list;
404 struct task_group *tg;
405 #endif
406 };
407
408 #ifdef CONFIG_SMP
409
410 /*
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
415 * object.
416 *
417 */
418 struct root_domain {
419 atomic_t refcount;
420 cpumask_var_t span;
421 cpumask_var_t online;
422
423 /*
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
426 */
427 cpumask_var_t rto_mask;
428 atomic_t rto_count;
429 struct cpupri cpupri;
430 };
431
432 /*
433 * By default the system creates a single root-domain with all cpus as
434 * members (mimicking the global state we have today).
435 */
436 static struct root_domain def_root_domain;
437
438 #endif /* CONFIG_SMP */
439
440 /*
441 * This is the main, per-CPU runqueue data structure.
442 *
443 * Locking rule: those places that want to lock multiple runqueues
444 * (such as the load balancing or the thread migration code), lock
445 * acquire operations must be ordered by ascending &runqueue.
446 */
447 struct rq {
448 /* runqueue lock: */
449 raw_spinlock_t lock;
450
451 /*
452 * nr_running and cpu_load should be in the same cacheline because
453 * remote CPUs use both these fields when doing load calculation.
454 */
455 unsigned long nr_running;
456 #define CPU_LOAD_IDX_MAX 5
457 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
458 unsigned long last_load_update_tick;
459 #ifdef CONFIG_NO_HZ
460 u64 nohz_stamp;
461 unsigned char nohz_balance_kick;
462 #endif
463 unsigned int skip_clock_update;
464
465 /* capture load from *all* tasks on this cpu: */
466 struct load_weight load;
467 unsigned long nr_load_updates;
468 u64 nr_switches;
469
470 struct cfs_rq cfs;
471 struct rt_rq rt;
472
473 #ifdef CONFIG_FAIR_GROUP_SCHED
474 /* list of leaf cfs_rq on this cpu: */
475 struct list_head leaf_cfs_rq_list;
476 #endif
477 #ifdef CONFIG_RT_GROUP_SCHED
478 struct list_head leaf_rt_rq_list;
479 #endif
480
481 /*
482 * This is part of a global counter where only the total sum
483 * over all CPUs matters. A task can increase this counter on
484 * one CPU and if it got migrated afterwards it may decrease
485 * it on another CPU. Always updated under the runqueue lock:
486 */
487 unsigned long nr_uninterruptible;
488
489 struct task_struct *curr, *idle;
490 unsigned long next_balance;
491 struct mm_struct *prev_mm;
492
493 u64 clock;
494
495 atomic_t nr_iowait;
496
497 #ifdef CONFIG_SMP
498 struct root_domain *rd;
499 struct sched_domain *sd;
500
501 unsigned long cpu_power;
502
503 unsigned char idle_at_tick;
504 /* For active balancing */
505 int post_schedule;
506 int active_balance;
507 int push_cpu;
508 struct cpu_stop_work active_balance_work;
509 /* cpu of this runqueue: */
510 int cpu;
511 int online;
512
513 unsigned long avg_load_per_task;
514
515 u64 rt_avg;
516 u64 age_stamp;
517 u64 idle_stamp;
518 u64 avg_idle;
519 #endif
520
521 /* calc_load related fields */
522 unsigned long calc_load_update;
523 long calc_load_active;
524
525 #ifdef CONFIG_SCHED_HRTICK
526 #ifdef CONFIG_SMP
527 int hrtick_csd_pending;
528 struct call_single_data hrtick_csd;
529 #endif
530 struct hrtimer hrtick_timer;
531 #endif
532
533 #ifdef CONFIG_SCHEDSTATS
534 /* latency stats */
535 struct sched_info rq_sched_info;
536 unsigned long long rq_cpu_time;
537 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
538
539 /* sys_sched_yield() stats */
540 unsigned int yld_count;
541
542 /* schedule() stats */
543 unsigned int sched_switch;
544 unsigned int sched_count;
545 unsigned int sched_goidle;
546
547 /* try_to_wake_up() stats */
548 unsigned int ttwu_count;
549 unsigned int ttwu_local;
550
551 /* BKL stats */
552 unsigned int bkl_count;
553 #endif
554 };
555
556 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
557
558 static inline
559 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
560 {
561 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
562
563 /*
564 * A queue event has occurred, and we're going to schedule. In
565 * this case, we can save a useless back to back clock update.
566 */
567 if (test_tsk_need_resched(p))
568 rq->skip_clock_update = 1;
569 }
570
571 static inline int cpu_of(struct rq *rq)
572 {
573 #ifdef CONFIG_SMP
574 return rq->cpu;
575 #else
576 return 0;
577 #endif
578 }
579
580 #define rcu_dereference_check_sched_domain(p) \
581 rcu_dereference_check((p), \
582 rcu_read_lock_sched_held() || \
583 lockdep_is_held(&sched_domains_mutex))
584
585 /*
586 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
587 * See detach_destroy_domains: synchronize_sched for details.
588 *
589 * The domain tree of any CPU may only be accessed from within
590 * preempt-disabled sections.
591 */
592 #define for_each_domain(cpu, __sd) \
593 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
594
595 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
596 #define this_rq() (&__get_cpu_var(runqueues))
597 #define task_rq(p) cpu_rq(task_cpu(p))
598 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
599 #define raw_rq() (&__raw_get_cpu_var(runqueues))
600
601 #ifdef CONFIG_CGROUP_SCHED
602
603 /*
604 * Return the group to which this tasks belongs.
605 *
606 * We use task_subsys_state_check() and extend the RCU verification
607 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
608 * holds that lock for each task it moves into the cgroup. Therefore
609 * by holding that lock, we pin the task to the current cgroup.
610 */
611 static inline struct task_group *task_group(struct task_struct *p)
612 {
613 struct cgroup_subsys_state *css;
614
615 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
616 lockdep_is_held(&task_rq(p)->lock));
617 return container_of(css, struct task_group, css);
618 }
619
620 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
621 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
622 {
623 #ifdef CONFIG_FAIR_GROUP_SCHED
624 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
625 p->se.parent = task_group(p)->se[cpu];
626 #endif
627
628 #ifdef CONFIG_RT_GROUP_SCHED
629 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
630 p->rt.parent = task_group(p)->rt_se[cpu];
631 #endif
632 }
633
634 #else /* CONFIG_CGROUP_SCHED */
635
636 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
637 static inline struct task_group *task_group(struct task_struct *p)
638 {
639 return NULL;
640 }
641
642 #endif /* CONFIG_CGROUP_SCHED */
643
644 inline void update_rq_clock(struct rq *rq)
645 {
646 if (!rq->skip_clock_update)
647 rq->clock = sched_clock_cpu(cpu_of(rq));
648 }
649
650 /*
651 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
652 */
653 #ifdef CONFIG_SCHED_DEBUG
654 # define const_debug __read_mostly
655 #else
656 # define const_debug static const
657 #endif
658
659 /**
660 * runqueue_is_locked
661 * @cpu: the processor in question.
662 *
663 * Returns true if the current cpu runqueue is locked.
664 * This interface allows printk to be called with the runqueue lock
665 * held and know whether or not it is OK to wake up the klogd.
666 */
667 int runqueue_is_locked(int cpu)
668 {
669 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
670 }
671
672 /*
673 * Debugging: various feature bits
674 */
675
676 #define SCHED_FEAT(name, enabled) \
677 __SCHED_FEAT_##name ,
678
679 enum {
680 #include "sched_features.h"
681 };
682
683 #undef SCHED_FEAT
684
685 #define SCHED_FEAT(name, enabled) \
686 (1UL << __SCHED_FEAT_##name) * enabled |
687
688 const_debug unsigned int sysctl_sched_features =
689 #include "sched_features.h"
690 0;
691
692 #undef SCHED_FEAT
693
694 #ifdef CONFIG_SCHED_DEBUG
695 #define SCHED_FEAT(name, enabled) \
696 #name ,
697
698 static __read_mostly char *sched_feat_names[] = {
699 #include "sched_features.h"
700 NULL
701 };
702
703 #undef SCHED_FEAT
704
705 static int sched_feat_show(struct seq_file *m, void *v)
706 {
707 int i;
708
709 for (i = 0; sched_feat_names[i]; i++) {
710 if (!(sysctl_sched_features & (1UL << i)))
711 seq_puts(m, "NO_");
712 seq_printf(m, "%s ", sched_feat_names[i]);
713 }
714 seq_puts(m, "\n");
715
716 return 0;
717 }
718
719 static ssize_t
720 sched_feat_write(struct file *filp, const char __user *ubuf,
721 size_t cnt, loff_t *ppos)
722 {
723 char buf[64];
724 char *cmp = buf;
725 int neg = 0;
726 int i;
727
728 if (cnt > 63)
729 cnt = 63;
730
731 if (copy_from_user(&buf, ubuf, cnt))
732 return -EFAULT;
733
734 buf[cnt] = 0;
735
736 if (strncmp(buf, "NO_", 3) == 0) {
737 neg = 1;
738 cmp += 3;
739 }
740
741 for (i = 0; sched_feat_names[i]; i++) {
742 int len = strlen(sched_feat_names[i]);
743
744 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
745 if (neg)
746 sysctl_sched_features &= ~(1UL << i);
747 else
748 sysctl_sched_features |= (1UL << i);
749 break;
750 }
751 }
752
753 if (!sched_feat_names[i])
754 return -EINVAL;
755
756 *ppos += cnt;
757
758 return cnt;
759 }
760
761 static int sched_feat_open(struct inode *inode, struct file *filp)
762 {
763 return single_open(filp, sched_feat_show, NULL);
764 }
765
766 static const struct file_operations sched_feat_fops = {
767 .open = sched_feat_open,
768 .write = sched_feat_write,
769 .read = seq_read,
770 .llseek = seq_lseek,
771 .release = single_release,
772 };
773
774 static __init int sched_init_debug(void)
775 {
776 debugfs_create_file("sched_features", 0644, NULL, NULL,
777 &sched_feat_fops);
778
779 return 0;
780 }
781 late_initcall(sched_init_debug);
782
783 #endif
784
785 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
786
787 /*
788 * Number of tasks to iterate in a single balance run.
789 * Limited because this is done with IRQs disabled.
790 */
791 const_debug unsigned int sysctl_sched_nr_migrate = 32;
792
793 /*
794 * ratelimit for updating the group shares.
795 * default: 0.25ms
796 */
797 unsigned int sysctl_sched_shares_ratelimit = 250000;
798 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
799
800 /*
801 * Inject some fuzzyness into changing the per-cpu group shares
802 * this avoids remote rq-locks at the expense of fairness.
803 * default: 4
804 */
805 unsigned int sysctl_sched_shares_thresh = 4;
806
807 /*
808 * period over which we average the RT time consumption, measured
809 * in ms.
810 *
811 * default: 1s
812 */
813 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
814
815 /*
816 * period over which we measure -rt task cpu usage in us.
817 * default: 1s
818 */
819 unsigned int sysctl_sched_rt_period = 1000000;
820
821 static __read_mostly int scheduler_running;
822
823 /*
824 * part of the period that we allow rt tasks to run in us.
825 * default: 0.95s
826 */
827 int sysctl_sched_rt_runtime = 950000;
828
829 static inline u64 global_rt_period(void)
830 {
831 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
832 }
833
834 static inline u64 global_rt_runtime(void)
835 {
836 if (sysctl_sched_rt_runtime < 0)
837 return RUNTIME_INF;
838
839 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
840 }
841
842 #ifndef prepare_arch_switch
843 # define prepare_arch_switch(next) do { } while (0)
844 #endif
845 #ifndef finish_arch_switch
846 # define finish_arch_switch(prev) do { } while (0)
847 #endif
848
849 static inline int task_current(struct rq *rq, struct task_struct *p)
850 {
851 return rq->curr == p;
852 }
853
854 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
855 static inline int task_running(struct rq *rq, struct task_struct *p)
856 {
857 return task_current(rq, p);
858 }
859
860 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
861 {
862 }
863
864 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
865 {
866 #ifdef CONFIG_DEBUG_SPINLOCK
867 /* this is a valid case when another task releases the spinlock */
868 rq->lock.owner = current;
869 #endif
870 /*
871 * If we are tracking spinlock dependencies then we have to
872 * fix up the runqueue lock - which gets 'carried over' from
873 * prev into current:
874 */
875 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
876
877 raw_spin_unlock_irq(&rq->lock);
878 }
879
880 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
881 static inline int task_running(struct rq *rq, struct task_struct *p)
882 {
883 #ifdef CONFIG_SMP
884 return p->oncpu;
885 #else
886 return task_current(rq, p);
887 #endif
888 }
889
890 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
891 {
892 #ifdef CONFIG_SMP
893 /*
894 * We can optimise this out completely for !SMP, because the
895 * SMP rebalancing from interrupt is the only thing that cares
896 * here.
897 */
898 next->oncpu = 1;
899 #endif
900 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
901 raw_spin_unlock_irq(&rq->lock);
902 #else
903 raw_spin_unlock(&rq->lock);
904 #endif
905 }
906
907 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
908 {
909 #ifdef CONFIG_SMP
910 /*
911 * After ->oncpu is cleared, the task can be moved to a different CPU.
912 * We must ensure this doesn't happen until the switch is completely
913 * finished.
914 */
915 smp_wmb();
916 prev->oncpu = 0;
917 #endif
918 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 local_irq_enable();
920 #endif
921 }
922 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
923
924 /*
925 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
926 * against ttwu().
927 */
928 static inline int task_is_waking(struct task_struct *p)
929 {
930 return unlikely(p->state == TASK_WAKING);
931 }
932
933 /*
934 * __task_rq_lock - lock the runqueue a given task resides on.
935 * Must be called interrupts disabled.
936 */
937 static inline struct rq *__task_rq_lock(struct task_struct *p)
938 __acquires(rq->lock)
939 {
940 struct rq *rq;
941
942 for (;;) {
943 rq = task_rq(p);
944 raw_spin_lock(&rq->lock);
945 if (likely(rq == task_rq(p)))
946 return rq;
947 raw_spin_unlock(&rq->lock);
948 }
949 }
950
951 /*
952 * task_rq_lock - lock the runqueue a given task resides on and disable
953 * interrupts. Note the ordering: we can safely lookup the task_rq without
954 * explicitly disabling preemption.
955 */
956 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
957 __acquires(rq->lock)
958 {
959 struct rq *rq;
960
961 for (;;) {
962 local_irq_save(*flags);
963 rq = task_rq(p);
964 raw_spin_lock(&rq->lock);
965 if (likely(rq == task_rq(p)))
966 return rq;
967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
968 }
969 }
970
971 static void __task_rq_unlock(struct rq *rq)
972 __releases(rq->lock)
973 {
974 raw_spin_unlock(&rq->lock);
975 }
976
977 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
978 __releases(rq->lock)
979 {
980 raw_spin_unlock_irqrestore(&rq->lock, *flags);
981 }
982
983 /*
984 * this_rq_lock - lock this runqueue and disable interrupts.
985 */
986 static struct rq *this_rq_lock(void)
987 __acquires(rq->lock)
988 {
989 struct rq *rq;
990
991 local_irq_disable();
992 rq = this_rq();
993 raw_spin_lock(&rq->lock);
994
995 return rq;
996 }
997
998 #ifdef CONFIG_SCHED_HRTICK
999 /*
1000 * Use HR-timers to deliver accurate preemption points.
1001 *
1002 * Its all a bit involved since we cannot program an hrt while holding the
1003 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1004 * reschedule event.
1005 *
1006 * When we get rescheduled we reprogram the hrtick_timer outside of the
1007 * rq->lock.
1008 */
1009
1010 /*
1011 * Use hrtick when:
1012 * - enabled by features
1013 * - hrtimer is actually high res
1014 */
1015 static inline int hrtick_enabled(struct rq *rq)
1016 {
1017 if (!sched_feat(HRTICK))
1018 return 0;
1019 if (!cpu_active(cpu_of(rq)))
1020 return 0;
1021 return hrtimer_is_hres_active(&rq->hrtick_timer);
1022 }
1023
1024 static void hrtick_clear(struct rq *rq)
1025 {
1026 if (hrtimer_active(&rq->hrtick_timer))
1027 hrtimer_cancel(&rq->hrtick_timer);
1028 }
1029
1030 /*
1031 * High-resolution timer tick.
1032 * Runs from hardirq context with interrupts disabled.
1033 */
1034 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1035 {
1036 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1037
1038 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1039
1040 raw_spin_lock(&rq->lock);
1041 update_rq_clock(rq);
1042 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1043 raw_spin_unlock(&rq->lock);
1044
1045 return HRTIMER_NORESTART;
1046 }
1047
1048 #ifdef CONFIG_SMP
1049 /*
1050 * called from hardirq (IPI) context
1051 */
1052 static void __hrtick_start(void *arg)
1053 {
1054 struct rq *rq = arg;
1055
1056 raw_spin_lock(&rq->lock);
1057 hrtimer_restart(&rq->hrtick_timer);
1058 rq->hrtick_csd_pending = 0;
1059 raw_spin_unlock(&rq->lock);
1060 }
1061
1062 /*
1063 * Called to set the hrtick timer state.
1064 *
1065 * called with rq->lock held and irqs disabled
1066 */
1067 static void hrtick_start(struct rq *rq, u64 delay)
1068 {
1069 struct hrtimer *timer = &rq->hrtick_timer;
1070 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1071
1072 hrtimer_set_expires(timer, time);
1073
1074 if (rq == this_rq()) {
1075 hrtimer_restart(timer);
1076 } else if (!rq->hrtick_csd_pending) {
1077 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1078 rq->hrtick_csd_pending = 1;
1079 }
1080 }
1081
1082 static int
1083 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1084 {
1085 int cpu = (int)(long)hcpu;
1086
1087 switch (action) {
1088 case CPU_UP_CANCELED:
1089 case CPU_UP_CANCELED_FROZEN:
1090 case CPU_DOWN_PREPARE:
1091 case CPU_DOWN_PREPARE_FROZEN:
1092 case CPU_DEAD:
1093 case CPU_DEAD_FROZEN:
1094 hrtick_clear(cpu_rq(cpu));
1095 return NOTIFY_OK;
1096 }
1097
1098 return NOTIFY_DONE;
1099 }
1100
1101 static __init void init_hrtick(void)
1102 {
1103 hotcpu_notifier(hotplug_hrtick, 0);
1104 }
1105 #else
1106 /*
1107 * Called to set the hrtick timer state.
1108 *
1109 * called with rq->lock held and irqs disabled
1110 */
1111 static void hrtick_start(struct rq *rq, u64 delay)
1112 {
1113 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1114 HRTIMER_MODE_REL_PINNED, 0);
1115 }
1116
1117 static inline void init_hrtick(void)
1118 {
1119 }
1120 #endif /* CONFIG_SMP */
1121
1122 static void init_rq_hrtick(struct rq *rq)
1123 {
1124 #ifdef CONFIG_SMP
1125 rq->hrtick_csd_pending = 0;
1126
1127 rq->hrtick_csd.flags = 0;
1128 rq->hrtick_csd.func = __hrtick_start;
1129 rq->hrtick_csd.info = rq;
1130 #endif
1131
1132 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1133 rq->hrtick_timer.function = hrtick;
1134 }
1135 #else /* CONFIG_SCHED_HRTICK */
1136 static inline void hrtick_clear(struct rq *rq)
1137 {
1138 }
1139
1140 static inline void init_rq_hrtick(struct rq *rq)
1141 {
1142 }
1143
1144 static inline void init_hrtick(void)
1145 {
1146 }
1147 #endif /* CONFIG_SCHED_HRTICK */
1148
1149 /*
1150 * resched_task - mark a task 'to be rescheduled now'.
1151 *
1152 * On UP this means the setting of the need_resched flag, on SMP it
1153 * might also involve a cross-CPU call to trigger the scheduler on
1154 * the target CPU.
1155 */
1156 #ifdef CONFIG_SMP
1157
1158 #ifndef tsk_is_polling
1159 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1160 #endif
1161
1162 static void resched_task(struct task_struct *p)
1163 {
1164 int cpu;
1165
1166 assert_raw_spin_locked(&task_rq(p)->lock);
1167
1168 if (test_tsk_need_resched(p))
1169 return;
1170
1171 set_tsk_need_resched(p);
1172
1173 cpu = task_cpu(p);
1174 if (cpu == smp_processor_id())
1175 return;
1176
1177 /* NEED_RESCHED must be visible before we test polling */
1178 smp_mb();
1179 if (!tsk_is_polling(p))
1180 smp_send_reschedule(cpu);
1181 }
1182
1183 static void resched_cpu(int cpu)
1184 {
1185 struct rq *rq = cpu_rq(cpu);
1186 unsigned long flags;
1187
1188 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1189 return;
1190 resched_task(cpu_curr(cpu));
1191 raw_spin_unlock_irqrestore(&rq->lock, flags);
1192 }
1193
1194 #ifdef CONFIG_NO_HZ
1195 /*
1196 * In the semi idle case, use the nearest busy cpu for migrating timers
1197 * from an idle cpu. This is good for power-savings.
1198 *
1199 * We don't do similar optimization for completely idle system, as
1200 * selecting an idle cpu will add more delays to the timers than intended
1201 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1202 */
1203 int get_nohz_timer_target(void)
1204 {
1205 int cpu = smp_processor_id();
1206 int i;
1207 struct sched_domain *sd;
1208
1209 for_each_domain(cpu, sd) {
1210 for_each_cpu(i, sched_domain_span(sd))
1211 if (!idle_cpu(i))
1212 return i;
1213 }
1214 return cpu;
1215 }
1216 /*
1217 * When add_timer_on() enqueues a timer into the timer wheel of an
1218 * idle CPU then this timer might expire before the next timer event
1219 * which is scheduled to wake up that CPU. In case of a completely
1220 * idle system the next event might even be infinite time into the
1221 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1222 * leaves the inner idle loop so the newly added timer is taken into
1223 * account when the CPU goes back to idle and evaluates the timer
1224 * wheel for the next timer event.
1225 */
1226 void wake_up_idle_cpu(int cpu)
1227 {
1228 struct rq *rq = cpu_rq(cpu);
1229
1230 if (cpu == smp_processor_id())
1231 return;
1232
1233 /*
1234 * This is safe, as this function is called with the timer
1235 * wheel base lock of (cpu) held. When the CPU is on the way
1236 * to idle and has not yet set rq->curr to idle then it will
1237 * be serialized on the timer wheel base lock and take the new
1238 * timer into account automatically.
1239 */
1240 if (rq->curr != rq->idle)
1241 return;
1242
1243 /*
1244 * We can set TIF_RESCHED on the idle task of the other CPU
1245 * lockless. The worst case is that the other CPU runs the
1246 * idle task through an additional NOOP schedule()
1247 */
1248 set_tsk_need_resched(rq->idle);
1249
1250 /* NEED_RESCHED must be visible before we test polling */
1251 smp_mb();
1252 if (!tsk_is_polling(rq->idle))
1253 smp_send_reschedule(cpu);
1254 }
1255
1256 #endif /* CONFIG_NO_HZ */
1257
1258 static u64 sched_avg_period(void)
1259 {
1260 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1261 }
1262
1263 static void sched_avg_update(struct rq *rq)
1264 {
1265 s64 period = sched_avg_period();
1266
1267 while ((s64)(rq->clock - rq->age_stamp) > period) {
1268 /*
1269 * Inline assembly required to prevent the compiler
1270 * optimising this loop into a divmod call.
1271 * See __iter_div_u64_rem() for another example of this.
1272 */
1273 asm("" : "+rm" (rq->age_stamp));
1274 rq->age_stamp += period;
1275 rq->rt_avg /= 2;
1276 }
1277 }
1278
1279 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280 {
1281 rq->rt_avg += rt_delta;
1282 sched_avg_update(rq);
1283 }
1284
1285 #else /* !CONFIG_SMP */
1286 static void resched_task(struct task_struct *p)
1287 {
1288 assert_raw_spin_locked(&task_rq(p)->lock);
1289 set_tsk_need_resched(p);
1290 }
1291
1292 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1293 {
1294 }
1295 #endif /* CONFIG_SMP */
1296
1297 #if BITS_PER_LONG == 32
1298 # define WMULT_CONST (~0UL)
1299 #else
1300 # define WMULT_CONST (1UL << 32)
1301 #endif
1302
1303 #define WMULT_SHIFT 32
1304
1305 /*
1306 * Shift right and round:
1307 */
1308 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1309
1310 /*
1311 * delta *= weight / lw
1312 */
1313 static unsigned long
1314 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1315 struct load_weight *lw)
1316 {
1317 u64 tmp;
1318
1319 if (!lw->inv_weight) {
1320 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1321 lw->inv_weight = 1;
1322 else
1323 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1324 / (lw->weight+1);
1325 }
1326
1327 tmp = (u64)delta_exec * weight;
1328 /*
1329 * Check whether we'd overflow the 64-bit multiplication:
1330 */
1331 if (unlikely(tmp > WMULT_CONST))
1332 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1333 WMULT_SHIFT/2);
1334 else
1335 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1336
1337 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1338 }
1339
1340 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1341 {
1342 lw->weight += inc;
1343 lw->inv_weight = 0;
1344 }
1345
1346 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1347 {
1348 lw->weight -= dec;
1349 lw->inv_weight = 0;
1350 }
1351
1352 /*
1353 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1354 * of tasks with abnormal "nice" values across CPUs the contribution that
1355 * each task makes to its run queue's load is weighted according to its
1356 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1357 * scaled version of the new time slice allocation that they receive on time
1358 * slice expiry etc.
1359 */
1360
1361 #define WEIGHT_IDLEPRIO 3
1362 #define WMULT_IDLEPRIO 1431655765
1363
1364 /*
1365 * Nice levels are multiplicative, with a gentle 10% change for every
1366 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1367 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1368 * that remained on nice 0.
1369 *
1370 * The "10% effect" is relative and cumulative: from _any_ nice level,
1371 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1372 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1373 * If a task goes up by ~10% and another task goes down by ~10% then
1374 * the relative distance between them is ~25%.)
1375 */
1376 static const int prio_to_weight[40] = {
1377 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1378 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1379 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1380 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1381 /* 0 */ 1024, 820, 655, 526, 423,
1382 /* 5 */ 335, 272, 215, 172, 137,
1383 /* 10 */ 110, 87, 70, 56, 45,
1384 /* 15 */ 36, 29, 23, 18, 15,
1385 };
1386
1387 /*
1388 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1389 *
1390 * In cases where the weight does not change often, we can use the
1391 * precalculated inverse to speed up arithmetics by turning divisions
1392 * into multiplications:
1393 */
1394 static const u32 prio_to_wmult[40] = {
1395 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1396 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1397 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1398 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1399 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1400 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1401 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1402 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1403 };
1404
1405 /* Time spent by the tasks of the cpu accounting group executing in ... */
1406 enum cpuacct_stat_index {
1407 CPUACCT_STAT_USER, /* ... user mode */
1408 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1409
1410 CPUACCT_STAT_NSTATS,
1411 };
1412
1413 #ifdef CONFIG_CGROUP_CPUACCT
1414 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1415 static void cpuacct_update_stats(struct task_struct *tsk,
1416 enum cpuacct_stat_index idx, cputime_t val);
1417 #else
1418 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1419 static inline void cpuacct_update_stats(struct task_struct *tsk,
1420 enum cpuacct_stat_index idx, cputime_t val) {}
1421 #endif
1422
1423 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1424 {
1425 update_load_add(&rq->load, load);
1426 }
1427
1428 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1429 {
1430 update_load_sub(&rq->load, load);
1431 }
1432
1433 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1434 typedef int (*tg_visitor)(struct task_group *, void *);
1435
1436 /*
1437 * Iterate the full tree, calling @down when first entering a node and @up when
1438 * leaving it for the final time.
1439 */
1440 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1441 {
1442 struct task_group *parent, *child;
1443 int ret;
1444
1445 rcu_read_lock();
1446 parent = &root_task_group;
1447 down:
1448 ret = (*down)(parent, data);
1449 if (ret)
1450 goto out_unlock;
1451 list_for_each_entry_rcu(child, &parent->children, siblings) {
1452 parent = child;
1453 goto down;
1454
1455 up:
1456 continue;
1457 }
1458 ret = (*up)(parent, data);
1459 if (ret)
1460 goto out_unlock;
1461
1462 child = parent;
1463 parent = parent->parent;
1464 if (parent)
1465 goto up;
1466 out_unlock:
1467 rcu_read_unlock();
1468
1469 return ret;
1470 }
1471
1472 static int tg_nop(struct task_group *tg, void *data)
1473 {
1474 return 0;
1475 }
1476 #endif
1477
1478 #ifdef CONFIG_SMP
1479 /* Used instead of source_load when we know the type == 0 */
1480 static unsigned long weighted_cpuload(const int cpu)
1481 {
1482 return cpu_rq(cpu)->load.weight;
1483 }
1484
1485 /*
1486 * Return a low guess at the load of a migration-source cpu weighted
1487 * according to the scheduling class and "nice" value.
1488 *
1489 * We want to under-estimate the load of migration sources, to
1490 * balance conservatively.
1491 */
1492 static unsigned long source_load(int cpu, int type)
1493 {
1494 struct rq *rq = cpu_rq(cpu);
1495 unsigned long total = weighted_cpuload(cpu);
1496
1497 if (type == 0 || !sched_feat(LB_BIAS))
1498 return total;
1499
1500 return min(rq->cpu_load[type-1], total);
1501 }
1502
1503 /*
1504 * Return a high guess at the load of a migration-target cpu weighted
1505 * according to the scheduling class and "nice" value.
1506 */
1507 static unsigned long target_load(int cpu, int type)
1508 {
1509 struct rq *rq = cpu_rq(cpu);
1510 unsigned long total = weighted_cpuload(cpu);
1511
1512 if (type == 0 || !sched_feat(LB_BIAS))
1513 return total;
1514
1515 return max(rq->cpu_load[type-1], total);
1516 }
1517
1518 static unsigned long power_of(int cpu)
1519 {
1520 return cpu_rq(cpu)->cpu_power;
1521 }
1522
1523 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1524
1525 static unsigned long cpu_avg_load_per_task(int cpu)
1526 {
1527 struct rq *rq = cpu_rq(cpu);
1528 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1529
1530 if (nr_running)
1531 rq->avg_load_per_task = rq->load.weight / nr_running;
1532 else
1533 rq->avg_load_per_task = 0;
1534
1535 return rq->avg_load_per_task;
1536 }
1537
1538 #ifdef CONFIG_FAIR_GROUP_SCHED
1539
1540 static __read_mostly unsigned long __percpu *update_shares_data;
1541
1542 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1543
1544 /*
1545 * Calculate and set the cpu's group shares.
1546 */
1547 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1548 unsigned long sd_shares,
1549 unsigned long sd_rq_weight,
1550 unsigned long *usd_rq_weight)
1551 {
1552 unsigned long shares, rq_weight;
1553 int boost = 0;
1554
1555 rq_weight = usd_rq_weight[cpu];
1556 if (!rq_weight) {
1557 boost = 1;
1558 rq_weight = NICE_0_LOAD;
1559 }
1560
1561 /*
1562 * \Sum_j shares_j * rq_weight_i
1563 * shares_i = -----------------------------
1564 * \Sum_j rq_weight_j
1565 */
1566 shares = (sd_shares * rq_weight) / sd_rq_weight;
1567 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1568
1569 if (abs(shares - tg->se[cpu]->load.weight) >
1570 sysctl_sched_shares_thresh) {
1571 struct rq *rq = cpu_rq(cpu);
1572 unsigned long flags;
1573
1574 raw_spin_lock_irqsave(&rq->lock, flags);
1575 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1576 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1577 __set_se_shares(tg->se[cpu], shares);
1578 raw_spin_unlock_irqrestore(&rq->lock, flags);
1579 }
1580 }
1581
1582 /*
1583 * Re-compute the task group their per cpu shares over the given domain.
1584 * This needs to be done in a bottom-up fashion because the rq weight of a
1585 * parent group depends on the shares of its child groups.
1586 */
1587 static int tg_shares_up(struct task_group *tg, void *data)
1588 {
1589 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1590 unsigned long *usd_rq_weight;
1591 struct sched_domain *sd = data;
1592 unsigned long flags;
1593 int i;
1594
1595 if (!tg->se[0])
1596 return 0;
1597
1598 local_irq_save(flags);
1599 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1600
1601 for_each_cpu(i, sched_domain_span(sd)) {
1602 weight = tg->cfs_rq[i]->load.weight;
1603 usd_rq_weight[i] = weight;
1604
1605 rq_weight += weight;
1606 /*
1607 * If there are currently no tasks on the cpu pretend there
1608 * is one of average load so that when a new task gets to
1609 * run here it will not get delayed by group starvation.
1610 */
1611 if (!weight)
1612 weight = NICE_0_LOAD;
1613
1614 sum_weight += weight;
1615 shares += tg->cfs_rq[i]->shares;
1616 }
1617
1618 if (!rq_weight)
1619 rq_weight = sum_weight;
1620
1621 if ((!shares && rq_weight) || shares > tg->shares)
1622 shares = tg->shares;
1623
1624 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1625 shares = tg->shares;
1626
1627 for_each_cpu(i, sched_domain_span(sd))
1628 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1629
1630 local_irq_restore(flags);
1631
1632 return 0;
1633 }
1634
1635 /*
1636 * Compute the cpu's hierarchical load factor for each task group.
1637 * This needs to be done in a top-down fashion because the load of a child
1638 * group is a fraction of its parents load.
1639 */
1640 static int tg_load_down(struct task_group *tg, void *data)
1641 {
1642 unsigned long load;
1643 long cpu = (long)data;
1644
1645 if (!tg->parent) {
1646 load = cpu_rq(cpu)->load.weight;
1647 } else {
1648 load = tg->parent->cfs_rq[cpu]->h_load;
1649 load *= tg->cfs_rq[cpu]->shares;
1650 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1651 }
1652
1653 tg->cfs_rq[cpu]->h_load = load;
1654
1655 return 0;
1656 }
1657
1658 static void update_shares(struct sched_domain *sd)
1659 {
1660 s64 elapsed;
1661 u64 now;
1662
1663 if (root_task_group_empty())
1664 return;
1665
1666 now = local_clock();
1667 elapsed = now - sd->last_update;
1668
1669 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1670 sd->last_update = now;
1671 walk_tg_tree(tg_nop, tg_shares_up, sd);
1672 }
1673 }
1674
1675 static void update_h_load(long cpu)
1676 {
1677 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1678 }
1679
1680 #else
1681
1682 static inline void update_shares(struct sched_domain *sd)
1683 {
1684 }
1685
1686 #endif
1687
1688 #ifdef CONFIG_PREEMPT
1689
1690 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1691
1692 /*
1693 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1694 * way at the expense of forcing extra atomic operations in all
1695 * invocations. This assures that the double_lock is acquired using the
1696 * same underlying policy as the spinlock_t on this architecture, which
1697 * reduces latency compared to the unfair variant below. However, it
1698 * also adds more overhead and therefore may reduce throughput.
1699 */
1700 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1701 __releases(this_rq->lock)
1702 __acquires(busiest->lock)
1703 __acquires(this_rq->lock)
1704 {
1705 raw_spin_unlock(&this_rq->lock);
1706 double_rq_lock(this_rq, busiest);
1707
1708 return 1;
1709 }
1710
1711 #else
1712 /*
1713 * Unfair double_lock_balance: Optimizes throughput at the expense of
1714 * latency by eliminating extra atomic operations when the locks are
1715 * already in proper order on entry. This favors lower cpu-ids and will
1716 * grant the double lock to lower cpus over higher ids under contention,
1717 * regardless of entry order into the function.
1718 */
1719 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1720 __releases(this_rq->lock)
1721 __acquires(busiest->lock)
1722 __acquires(this_rq->lock)
1723 {
1724 int ret = 0;
1725
1726 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1727 if (busiest < this_rq) {
1728 raw_spin_unlock(&this_rq->lock);
1729 raw_spin_lock(&busiest->lock);
1730 raw_spin_lock_nested(&this_rq->lock,
1731 SINGLE_DEPTH_NESTING);
1732 ret = 1;
1733 } else
1734 raw_spin_lock_nested(&busiest->lock,
1735 SINGLE_DEPTH_NESTING);
1736 }
1737 return ret;
1738 }
1739
1740 #endif /* CONFIG_PREEMPT */
1741
1742 /*
1743 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1744 */
1745 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1746 {
1747 if (unlikely(!irqs_disabled())) {
1748 /* printk() doesn't work good under rq->lock */
1749 raw_spin_unlock(&this_rq->lock);
1750 BUG_ON(1);
1751 }
1752
1753 return _double_lock_balance(this_rq, busiest);
1754 }
1755
1756 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1757 __releases(busiest->lock)
1758 {
1759 raw_spin_unlock(&busiest->lock);
1760 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1761 }
1762
1763 /*
1764 * double_rq_lock - safely lock two runqueues
1765 *
1766 * Note this does not disable interrupts like task_rq_lock,
1767 * you need to do so manually before calling.
1768 */
1769 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1770 __acquires(rq1->lock)
1771 __acquires(rq2->lock)
1772 {
1773 BUG_ON(!irqs_disabled());
1774 if (rq1 == rq2) {
1775 raw_spin_lock(&rq1->lock);
1776 __acquire(rq2->lock); /* Fake it out ;) */
1777 } else {
1778 if (rq1 < rq2) {
1779 raw_spin_lock(&rq1->lock);
1780 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1781 } else {
1782 raw_spin_lock(&rq2->lock);
1783 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1784 }
1785 }
1786 }
1787
1788 /*
1789 * double_rq_unlock - safely unlock two runqueues
1790 *
1791 * Note this does not restore interrupts like task_rq_unlock,
1792 * you need to do so manually after calling.
1793 */
1794 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1795 __releases(rq1->lock)
1796 __releases(rq2->lock)
1797 {
1798 raw_spin_unlock(&rq1->lock);
1799 if (rq1 != rq2)
1800 raw_spin_unlock(&rq2->lock);
1801 else
1802 __release(rq2->lock);
1803 }
1804
1805 #endif
1806
1807 #ifdef CONFIG_FAIR_GROUP_SCHED
1808 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1809 {
1810 #ifdef CONFIG_SMP
1811 cfs_rq->shares = shares;
1812 #endif
1813 }
1814 #endif
1815
1816 static void calc_load_account_idle(struct rq *this_rq);
1817 static void update_sysctl(void);
1818 static int get_update_sysctl_factor(void);
1819 static void update_cpu_load(struct rq *this_rq);
1820
1821 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1822 {
1823 set_task_rq(p, cpu);
1824 #ifdef CONFIG_SMP
1825 /*
1826 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1827 * successfuly executed on another CPU. We must ensure that updates of
1828 * per-task data have been completed by this moment.
1829 */
1830 smp_wmb();
1831 task_thread_info(p)->cpu = cpu;
1832 #endif
1833 }
1834
1835 static const struct sched_class rt_sched_class;
1836
1837 #define sched_class_highest (&rt_sched_class)
1838 #define for_each_class(class) \
1839 for (class = sched_class_highest; class; class = class->next)
1840
1841 #include "sched_stats.h"
1842
1843 static void inc_nr_running(struct rq *rq)
1844 {
1845 rq->nr_running++;
1846 }
1847
1848 static void dec_nr_running(struct rq *rq)
1849 {
1850 rq->nr_running--;
1851 }
1852
1853 static void set_load_weight(struct task_struct *p)
1854 {
1855 if (task_has_rt_policy(p)) {
1856 p->se.load.weight = 0;
1857 p->se.load.inv_weight = WMULT_CONST;
1858 return;
1859 }
1860
1861 /*
1862 * SCHED_IDLE tasks get minimal weight:
1863 */
1864 if (p->policy == SCHED_IDLE) {
1865 p->se.load.weight = WEIGHT_IDLEPRIO;
1866 p->se.load.inv_weight = WMULT_IDLEPRIO;
1867 return;
1868 }
1869
1870 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1871 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1872 }
1873
1874 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1875 {
1876 update_rq_clock(rq);
1877 sched_info_queued(p);
1878 p->sched_class->enqueue_task(rq, p, flags);
1879 p->se.on_rq = 1;
1880 }
1881
1882 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1883 {
1884 update_rq_clock(rq);
1885 sched_info_dequeued(p);
1886 p->sched_class->dequeue_task(rq, p, flags);
1887 p->se.on_rq = 0;
1888 }
1889
1890 /*
1891 * activate_task - move a task to the runqueue.
1892 */
1893 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1894 {
1895 if (task_contributes_to_load(p))
1896 rq->nr_uninterruptible--;
1897
1898 enqueue_task(rq, p, flags);
1899 inc_nr_running(rq);
1900 }
1901
1902 /*
1903 * deactivate_task - remove a task from the runqueue.
1904 */
1905 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1906 {
1907 if (task_contributes_to_load(p))
1908 rq->nr_uninterruptible++;
1909
1910 dequeue_task(rq, p, flags);
1911 dec_nr_running(rq);
1912 }
1913
1914 #include "sched_idletask.c"
1915 #include "sched_fair.c"
1916 #include "sched_rt.c"
1917 #ifdef CONFIG_SCHED_DEBUG
1918 # include "sched_debug.c"
1919 #endif
1920
1921 /*
1922 * __normal_prio - return the priority that is based on the static prio
1923 */
1924 static inline int __normal_prio(struct task_struct *p)
1925 {
1926 return p->static_prio;
1927 }
1928
1929 /*
1930 * Calculate the expected normal priority: i.e. priority
1931 * without taking RT-inheritance into account. Might be
1932 * boosted by interactivity modifiers. Changes upon fork,
1933 * setprio syscalls, and whenever the interactivity
1934 * estimator recalculates.
1935 */
1936 static inline int normal_prio(struct task_struct *p)
1937 {
1938 int prio;
1939
1940 if (task_has_rt_policy(p))
1941 prio = MAX_RT_PRIO-1 - p->rt_priority;
1942 else
1943 prio = __normal_prio(p);
1944 return prio;
1945 }
1946
1947 /*
1948 * Calculate the current priority, i.e. the priority
1949 * taken into account by the scheduler. This value might
1950 * be boosted by RT tasks, or might be boosted by
1951 * interactivity modifiers. Will be RT if the task got
1952 * RT-boosted. If not then it returns p->normal_prio.
1953 */
1954 static int effective_prio(struct task_struct *p)
1955 {
1956 p->normal_prio = normal_prio(p);
1957 /*
1958 * If we are RT tasks or we were boosted to RT priority,
1959 * keep the priority unchanged. Otherwise, update priority
1960 * to the normal priority:
1961 */
1962 if (!rt_prio(p->prio))
1963 return p->normal_prio;
1964 return p->prio;
1965 }
1966
1967 /**
1968 * task_curr - is this task currently executing on a CPU?
1969 * @p: the task in question.
1970 */
1971 inline int task_curr(const struct task_struct *p)
1972 {
1973 return cpu_curr(task_cpu(p)) == p;
1974 }
1975
1976 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1977 const struct sched_class *prev_class,
1978 int oldprio, int running)
1979 {
1980 if (prev_class != p->sched_class) {
1981 if (prev_class->switched_from)
1982 prev_class->switched_from(rq, p, running);
1983 p->sched_class->switched_to(rq, p, running);
1984 } else
1985 p->sched_class->prio_changed(rq, p, oldprio, running);
1986 }
1987
1988 #ifdef CONFIG_SMP
1989 /*
1990 * Is this task likely cache-hot:
1991 */
1992 static int
1993 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1994 {
1995 s64 delta;
1996
1997 if (p->sched_class != &fair_sched_class)
1998 return 0;
1999
2000 /*
2001 * Buddy candidates are cache hot:
2002 */
2003 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2004 (&p->se == cfs_rq_of(&p->se)->next ||
2005 &p->se == cfs_rq_of(&p->se)->last))
2006 return 1;
2007
2008 if (sysctl_sched_migration_cost == -1)
2009 return 1;
2010 if (sysctl_sched_migration_cost == 0)
2011 return 0;
2012
2013 delta = now - p->se.exec_start;
2014
2015 return delta < (s64)sysctl_sched_migration_cost;
2016 }
2017
2018 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2019 {
2020 #ifdef CONFIG_SCHED_DEBUG
2021 /*
2022 * We should never call set_task_cpu() on a blocked task,
2023 * ttwu() will sort out the placement.
2024 */
2025 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2026 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2027 #endif
2028
2029 trace_sched_migrate_task(p, new_cpu);
2030
2031 if (task_cpu(p) != new_cpu) {
2032 p->se.nr_migrations++;
2033 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2034 }
2035
2036 __set_task_cpu(p, new_cpu);
2037 }
2038
2039 struct migration_arg {
2040 struct task_struct *task;
2041 int dest_cpu;
2042 };
2043
2044 static int migration_cpu_stop(void *data);
2045
2046 /*
2047 * The task's runqueue lock must be held.
2048 * Returns true if you have to wait for migration thread.
2049 */
2050 static bool migrate_task(struct task_struct *p, int dest_cpu)
2051 {
2052 struct rq *rq = task_rq(p);
2053
2054 /*
2055 * If the task is not on a runqueue (and not running), then
2056 * the next wake-up will properly place the task.
2057 */
2058 return p->se.on_rq || task_running(rq, p);
2059 }
2060
2061 /*
2062 * wait_task_inactive - wait for a thread to unschedule.
2063 *
2064 * If @match_state is nonzero, it's the @p->state value just checked and
2065 * not expected to change. If it changes, i.e. @p might have woken up,
2066 * then return zero. When we succeed in waiting for @p to be off its CPU,
2067 * we return a positive number (its total switch count). If a second call
2068 * a short while later returns the same number, the caller can be sure that
2069 * @p has remained unscheduled the whole time.
2070 *
2071 * The caller must ensure that the task *will* unschedule sometime soon,
2072 * else this function might spin for a *long* time. This function can't
2073 * be called with interrupts off, or it may introduce deadlock with
2074 * smp_call_function() if an IPI is sent by the same process we are
2075 * waiting to become inactive.
2076 */
2077 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2078 {
2079 unsigned long flags;
2080 int running, on_rq;
2081 unsigned long ncsw;
2082 struct rq *rq;
2083
2084 for (;;) {
2085 /*
2086 * We do the initial early heuristics without holding
2087 * any task-queue locks at all. We'll only try to get
2088 * the runqueue lock when things look like they will
2089 * work out!
2090 */
2091 rq = task_rq(p);
2092
2093 /*
2094 * If the task is actively running on another CPU
2095 * still, just relax and busy-wait without holding
2096 * any locks.
2097 *
2098 * NOTE! Since we don't hold any locks, it's not
2099 * even sure that "rq" stays as the right runqueue!
2100 * But we don't care, since "task_running()" will
2101 * return false if the runqueue has changed and p
2102 * is actually now running somewhere else!
2103 */
2104 while (task_running(rq, p)) {
2105 if (match_state && unlikely(p->state != match_state))
2106 return 0;
2107 cpu_relax();
2108 }
2109
2110 /*
2111 * Ok, time to look more closely! We need the rq
2112 * lock now, to be *sure*. If we're wrong, we'll
2113 * just go back and repeat.
2114 */
2115 rq = task_rq_lock(p, &flags);
2116 trace_sched_wait_task(p);
2117 running = task_running(rq, p);
2118 on_rq = p->se.on_rq;
2119 ncsw = 0;
2120 if (!match_state || p->state == match_state)
2121 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2122 task_rq_unlock(rq, &flags);
2123
2124 /*
2125 * If it changed from the expected state, bail out now.
2126 */
2127 if (unlikely(!ncsw))
2128 break;
2129
2130 /*
2131 * Was it really running after all now that we
2132 * checked with the proper locks actually held?
2133 *
2134 * Oops. Go back and try again..
2135 */
2136 if (unlikely(running)) {
2137 cpu_relax();
2138 continue;
2139 }
2140
2141 /*
2142 * It's not enough that it's not actively running,
2143 * it must be off the runqueue _entirely_, and not
2144 * preempted!
2145 *
2146 * So if it was still runnable (but just not actively
2147 * running right now), it's preempted, and we should
2148 * yield - it could be a while.
2149 */
2150 if (unlikely(on_rq)) {
2151 schedule_timeout_uninterruptible(1);
2152 continue;
2153 }
2154
2155 /*
2156 * Ahh, all good. It wasn't running, and it wasn't
2157 * runnable, which means that it will never become
2158 * running in the future either. We're all done!
2159 */
2160 break;
2161 }
2162
2163 return ncsw;
2164 }
2165
2166 /***
2167 * kick_process - kick a running thread to enter/exit the kernel
2168 * @p: the to-be-kicked thread
2169 *
2170 * Cause a process which is running on another CPU to enter
2171 * kernel-mode, without any delay. (to get signals handled.)
2172 *
2173 * NOTE: this function doesnt have to take the runqueue lock,
2174 * because all it wants to ensure is that the remote task enters
2175 * the kernel. If the IPI races and the task has been migrated
2176 * to another CPU then no harm is done and the purpose has been
2177 * achieved as well.
2178 */
2179 void kick_process(struct task_struct *p)
2180 {
2181 int cpu;
2182
2183 preempt_disable();
2184 cpu = task_cpu(p);
2185 if ((cpu != smp_processor_id()) && task_curr(p))
2186 smp_send_reschedule(cpu);
2187 preempt_enable();
2188 }
2189 EXPORT_SYMBOL_GPL(kick_process);
2190 #endif /* CONFIG_SMP */
2191
2192 /**
2193 * task_oncpu_function_call - call a function on the cpu on which a task runs
2194 * @p: the task to evaluate
2195 * @func: the function to be called
2196 * @info: the function call argument
2197 *
2198 * Calls the function @func when the task is currently running. This might
2199 * be on the current CPU, which just calls the function directly
2200 */
2201 void task_oncpu_function_call(struct task_struct *p,
2202 void (*func) (void *info), void *info)
2203 {
2204 int cpu;
2205
2206 preempt_disable();
2207 cpu = task_cpu(p);
2208 if (task_curr(p))
2209 smp_call_function_single(cpu, func, info, 1);
2210 preempt_enable();
2211 }
2212
2213 #ifdef CONFIG_SMP
2214 /*
2215 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2216 */
2217 static int select_fallback_rq(int cpu, struct task_struct *p)
2218 {
2219 int dest_cpu;
2220 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2221
2222 /* Look for allowed, online CPU in same node. */
2223 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2224 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2225 return dest_cpu;
2226
2227 /* Any allowed, online CPU? */
2228 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2229 if (dest_cpu < nr_cpu_ids)
2230 return dest_cpu;
2231
2232 /* No more Mr. Nice Guy. */
2233 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2234 dest_cpu = cpuset_cpus_allowed_fallback(p);
2235 /*
2236 * Don't tell them about moving exiting tasks or
2237 * kernel threads (both mm NULL), since they never
2238 * leave kernel.
2239 */
2240 if (p->mm && printk_ratelimit()) {
2241 printk(KERN_INFO "process %d (%s) no "
2242 "longer affine to cpu%d\n",
2243 task_pid_nr(p), p->comm, cpu);
2244 }
2245 }
2246
2247 return dest_cpu;
2248 }
2249
2250 /*
2251 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2252 */
2253 static inline
2254 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2255 {
2256 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2257
2258 /*
2259 * In order not to call set_task_cpu() on a blocking task we need
2260 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2261 * cpu.
2262 *
2263 * Since this is common to all placement strategies, this lives here.
2264 *
2265 * [ this allows ->select_task() to simply return task_cpu(p) and
2266 * not worry about this generic constraint ]
2267 */
2268 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2269 !cpu_online(cpu)))
2270 cpu = select_fallback_rq(task_cpu(p), p);
2271
2272 return cpu;
2273 }
2274
2275 static void update_avg(u64 *avg, u64 sample)
2276 {
2277 s64 diff = sample - *avg;
2278 *avg += diff >> 3;
2279 }
2280 #endif
2281
2282 static inline void ttwu_activate(struct task_struct *p, struct rq *rq,
2283 bool is_sync, bool is_migrate, bool is_local,
2284 unsigned long en_flags)
2285 {
2286 schedstat_inc(p, se.statistics.nr_wakeups);
2287 if (is_sync)
2288 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2289 if (is_migrate)
2290 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2291 if (is_local)
2292 schedstat_inc(p, se.statistics.nr_wakeups_local);
2293 else
2294 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2295
2296 activate_task(rq, p, en_flags);
2297 }
2298
2299 static inline void ttwu_post_activation(struct task_struct *p, struct rq *rq,
2300 int wake_flags, bool success)
2301 {
2302 trace_sched_wakeup(p, success);
2303 check_preempt_curr(rq, p, wake_flags);
2304
2305 p->state = TASK_RUNNING;
2306 #ifdef CONFIG_SMP
2307 if (p->sched_class->task_woken)
2308 p->sched_class->task_woken(rq, p);
2309
2310 if (unlikely(rq->idle_stamp)) {
2311 u64 delta = rq->clock - rq->idle_stamp;
2312 u64 max = 2*sysctl_sched_migration_cost;
2313
2314 if (delta > max)
2315 rq->avg_idle = max;
2316 else
2317 update_avg(&rq->avg_idle, delta);
2318 rq->idle_stamp = 0;
2319 }
2320 #endif
2321 /* if a worker is waking up, notify workqueue */
2322 if ((p->flags & PF_WQ_WORKER) && success)
2323 wq_worker_waking_up(p, cpu_of(rq));
2324 }
2325
2326 /**
2327 * try_to_wake_up - wake up a thread
2328 * @p: the thread to be awakened
2329 * @state: the mask of task states that can be woken
2330 * @wake_flags: wake modifier flags (WF_*)
2331 *
2332 * Put it on the run-queue if it's not already there. The "current"
2333 * thread is always on the run-queue (except when the actual
2334 * re-schedule is in progress), and as such you're allowed to do
2335 * the simpler "current->state = TASK_RUNNING" to mark yourself
2336 * runnable without the overhead of this.
2337 *
2338 * Returns %true if @p was woken up, %false if it was already running
2339 * or @state didn't match @p's state.
2340 */
2341 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2342 int wake_flags)
2343 {
2344 int cpu, orig_cpu, this_cpu, success = 0;
2345 unsigned long flags;
2346 unsigned long en_flags = ENQUEUE_WAKEUP;
2347 struct rq *rq;
2348
2349 this_cpu = get_cpu();
2350
2351 smp_wmb();
2352 rq = task_rq_lock(p, &flags);
2353 if (!(p->state & state))
2354 goto out;
2355
2356 if (p->se.on_rq)
2357 goto out_running;
2358
2359 cpu = task_cpu(p);
2360 orig_cpu = cpu;
2361
2362 #ifdef CONFIG_SMP
2363 if (unlikely(task_running(rq, p)))
2364 goto out_activate;
2365
2366 /*
2367 * In order to handle concurrent wakeups and release the rq->lock
2368 * we put the task in TASK_WAKING state.
2369 *
2370 * First fix up the nr_uninterruptible count:
2371 */
2372 if (task_contributes_to_load(p)) {
2373 if (likely(cpu_online(orig_cpu)))
2374 rq->nr_uninterruptible--;
2375 else
2376 this_rq()->nr_uninterruptible--;
2377 }
2378 p->state = TASK_WAKING;
2379
2380 if (p->sched_class->task_waking) {
2381 p->sched_class->task_waking(rq, p);
2382 en_flags |= ENQUEUE_WAKING;
2383 }
2384
2385 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2386 if (cpu != orig_cpu)
2387 set_task_cpu(p, cpu);
2388 __task_rq_unlock(rq);
2389
2390 rq = cpu_rq(cpu);
2391 raw_spin_lock(&rq->lock);
2392
2393 /*
2394 * We migrated the task without holding either rq->lock, however
2395 * since the task is not on the task list itself, nobody else
2396 * will try and migrate the task, hence the rq should match the
2397 * cpu we just moved it to.
2398 */
2399 WARN_ON(task_cpu(p) != cpu);
2400 WARN_ON(p->state != TASK_WAKING);
2401
2402 #ifdef CONFIG_SCHEDSTATS
2403 schedstat_inc(rq, ttwu_count);
2404 if (cpu == this_cpu)
2405 schedstat_inc(rq, ttwu_local);
2406 else {
2407 struct sched_domain *sd;
2408 for_each_domain(this_cpu, sd) {
2409 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2410 schedstat_inc(sd, ttwu_wake_remote);
2411 break;
2412 }
2413 }
2414 }
2415 #endif /* CONFIG_SCHEDSTATS */
2416
2417 out_activate:
2418 #endif /* CONFIG_SMP */
2419 ttwu_activate(p, rq, wake_flags & WF_SYNC, orig_cpu != cpu,
2420 cpu == this_cpu, en_flags);
2421 success = 1;
2422 out_running:
2423 ttwu_post_activation(p, rq, wake_flags, success);
2424 out:
2425 task_rq_unlock(rq, &flags);
2426 put_cpu();
2427
2428 return success;
2429 }
2430
2431 /**
2432 * try_to_wake_up_local - try to wake up a local task with rq lock held
2433 * @p: the thread to be awakened
2434 *
2435 * Put @p on the run-queue if it's not alredy there. The caller must
2436 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2437 * the current task. this_rq() stays locked over invocation.
2438 */
2439 static void try_to_wake_up_local(struct task_struct *p)
2440 {
2441 struct rq *rq = task_rq(p);
2442 bool success = false;
2443
2444 BUG_ON(rq != this_rq());
2445 BUG_ON(p == current);
2446 lockdep_assert_held(&rq->lock);
2447
2448 if (!(p->state & TASK_NORMAL))
2449 return;
2450
2451 if (!p->se.on_rq) {
2452 if (likely(!task_running(rq, p))) {
2453 schedstat_inc(rq, ttwu_count);
2454 schedstat_inc(rq, ttwu_local);
2455 }
2456 ttwu_activate(p, rq, false, false, true, ENQUEUE_WAKEUP);
2457 success = true;
2458 }
2459 ttwu_post_activation(p, rq, 0, success);
2460 }
2461
2462 /**
2463 * wake_up_process - Wake up a specific process
2464 * @p: The process to be woken up.
2465 *
2466 * Attempt to wake up the nominated process and move it to the set of runnable
2467 * processes. Returns 1 if the process was woken up, 0 if it was already
2468 * running.
2469 *
2470 * It may be assumed that this function implies a write memory barrier before
2471 * changing the task state if and only if any tasks are woken up.
2472 */
2473 int wake_up_process(struct task_struct *p)
2474 {
2475 return try_to_wake_up(p, TASK_ALL, 0);
2476 }
2477 EXPORT_SYMBOL(wake_up_process);
2478
2479 int wake_up_state(struct task_struct *p, unsigned int state)
2480 {
2481 return try_to_wake_up(p, state, 0);
2482 }
2483
2484 /*
2485 * Perform scheduler related setup for a newly forked process p.
2486 * p is forked by current.
2487 *
2488 * __sched_fork() is basic setup used by init_idle() too:
2489 */
2490 static void __sched_fork(struct task_struct *p)
2491 {
2492 p->se.exec_start = 0;
2493 p->se.sum_exec_runtime = 0;
2494 p->se.prev_sum_exec_runtime = 0;
2495 p->se.nr_migrations = 0;
2496
2497 #ifdef CONFIG_SCHEDSTATS
2498 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2499 #endif
2500
2501 INIT_LIST_HEAD(&p->rt.run_list);
2502 p->se.on_rq = 0;
2503 INIT_LIST_HEAD(&p->se.group_node);
2504
2505 #ifdef CONFIG_PREEMPT_NOTIFIERS
2506 INIT_HLIST_HEAD(&p->preempt_notifiers);
2507 #endif
2508 }
2509
2510 /*
2511 * fork()/clone()-time setup:
2512 */
2513 void sched_fork(struct task_struct *p, int clone_flags)
2514 {
2515 int cpu = get_cpu();
2516
2517 __sched_fork(p);
2518 /*
2519 * We mark the process as running here. This guarantees that
2520 * nobody will actually run it, and a signal or other external
2521 * event cannot wake it up and insert it on the runqueue either.
2522 */
2523 p->state = TASK_RUNNING;
2524
2525 /*
2526 * Revert to default priority/policy on fork if requested.
2527 */
2528 if (unlikely(p->sched_reset_on_fork)) {
2529 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2530 p->policy = SCHED_NORMAL;
2531 p->normal_prio = p->static_prio;
2532 }
2533
2534 if (PRIO_TO_NICE(p->static_prio) < 0) {
2535 p->static_prio = NICE_TO_PRIO(0);
2536 p->normal_prio = p->static_prio;
2537 set_load_weight(p);
2538 }
2539
2540 /*
2541 * We don't need the reset flag anymore after the fork. It has
2542 * fulfilled its duty:
2543 */
2544 p->sched_reset_on_fork = 0;
2545 }
2546
2547 /*
2548 * Make sure we do not leak PI boosting priority to the child.
2549 */
2550 p->prio = current->normal_prio;
2551
2552 if (!rt_prio(p->prio))
2553 p->sched_class = &fair_sched_class;
2554
2555 if (p->sched_class->task_fork)
2556 p->sched_class->task_fork(p);
2557
2558 /*
2559 * The child is not yet in the pid-hash so no cgroup attach races,
2560 * and the cgroup is pinned to this child due to cgroup_fork()
2561 * is ran before sched_fork().
2562 *
2563 * Silence PROVE_RCU.
2564 */
2565 rcu_read_lock();
2566 set_task_cpu(p, cpu);
2567 rcu_read_unlock();
2568
2569 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2570 if (likely(sched_info_on()))
2571 memset(&p->sched_info, 0, sizeof(p->sched_info));
2572 #endif
2573 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2574 p->oncpu = 0;
2575 #endif
2576 #ifdef CONFIG_PREEMPT
2577 /* Want to start with kernel preemption disabled. */
2578 task_thread_info(p)->preempt_count = 1;
2579 #endif
2580 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2581
2582 put_cpu();
2583 }
2584
2585 /*
2586 * wake_up_new_task - wake up a newly created task for the first time.
2587 *
2588 * This function will do some initial scheduler statistics housekeeping
2589 * that must be done for every newly created context, then puts the task
2590 * on the runqueue and wakes it.
2591 */
2592 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2593 {
2594 unsigned long flags;
2595 struct rq *rq;
2596 int cpu __maybe_unused = get_cpu();
2597
2598 #ifdef CONFIG_SMP
2599 rq = task_rq_lock(p, &flags);
2600 p->state = TASK_WAKING;
2601
2602 /*
2603 * Fork balancing, do it here and not earlier because:
2604 * - cpus_allowed can change in the fork path
2605 * - any previously selected cpu might disappear through hotplug
2606 *
2607 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2608 * without people poking at ->cpus_allowed.
2609 */
2610 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2611 set_task_cpu(p, cpu);
2612
2613 p->state = TASK_RUNNING;
2614 task_rq_unlock(rq, &flags);
2615 #endif
2616
2617 rq = task_rq_lock(p, &flags);
2618 activate_task(rq, p, 0);
2619 trace_sched_wakeup_new(p, 1);
2620 check_preempt_curr(rq, p, WF_FORK);
2621 #ifdef CONFIG_SMP
2622 if (p->sched_class->task_woken)
2623 p->sched_class->task_woken(rq, p);
2624 #endif
2625 task_rq_unlock(rq, &flags);
2626 put_cpu();
2627 }
2628
2629 #ifdef CONFIG_PREEMPT_NOTIFIERS
2630
2631 /**
2632 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2633 * @notifier: notifier struct to register
2634 */
2635 void preempt_notifier_register(struct preempt_notifier *notifier)
2636 {
2637 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2638 }
2639 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2640
2641 /**
2642 * preempt_notifier_unregister - no longer interested in preemption notifications
2643 * @notifier: notifier struct to unregister
2644 *
2645 * This is safe to call from within a preemption notifier.
2646 */
2647 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2648 {
2649 hlist_del(&notifier->link);
2650 }
2651 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2652
2653 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2654 {
2655 struct preempt_notifier *notifier;
2656 struct hlist_node *node;
2657
2658 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2659 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2660 }
2661
2662 static void
2663 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2664 struct task_struct *next)
2665 {
2666 struct preempt_notifier *notifier;
2667 struct hlist_node *node;
2668
2669 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2670 notifier->ops->sched_out(notifier, next);
2671 }
2672
2673 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2674
2675 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2676 {
2677 }
2678
2679 static void
2680 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2681 struct task_struct *next)
2682 {
2683 }
2684
2685 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2686
2687 /**
2688 * prepare_task_switch - prepare to switch tasks
2689 * @rq: the runqueue preparing to switch
2690 * @prev: the current task that is being switched out
2691 * @next: the task we are going to switch to.
2692 *
2693 * This is called with the rq lock held and interrupts off. It must
2694 * be paired with a subsequent finish_task_switch after the context
2695 * switch.
2696 *
2697 * prepare_task_switch sets up locking and calls architecture specific
2698 * hooks.
2699 */
2700 static inline void
2701 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2702 struct task_struct *next)
2703 {
2704 fire_sched_out_preempt_notifiers(prev, next);
2705 prepare_lock_switch(rq, next);
2706 prepare_arch_switch(next);
2707 }
2708
2709 /**
2710 * finish_task_switch - clean up after a task-switch
2711 * @rq: runqueue associated with task-switch
2712 * @prev: the thread we just switched away from.
2713 *
2714 * finish_task_switch must be called after the context switch, paired
2715 * with a prepare_task_switch call before the context switch.
2716 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2717 * and do any other architecture-specific cleanup actions.
2718 *
2719 * Note that we may have delayed dropping an mm in context_switch(). If
2720 * so, we finish that here outside of the runqueue lock. (Doing it
2721 * with the lock held can cause deadlocks; see schedule() for
2722 * details.)
2723 */
2724 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2725 __releases(rq->lock)
2726 {
2727 struct mm_struct *mm = rq->prev_mm;
2728 long prev_state;
2729
2730 rq->prev_mm = NULL;
2731
2732 /*
2733 * A task struct has one reference for the use as "current".
2734 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2735 * schedule one last time. The schedule call will never return, and
2736 * the scheduled task must drop that reference.
2737 * The test for TASK_DEAD must occur while the runqueue locks are
2738 * still held, otherwise prev could be scheduled on another cpu, die
2739 * there before we look at prev->state, and then the reference would
2740 * be dropped twice.
2741 * Manfred Spraul <manfred@colorfullife.com>
2742 */
2743 prev_state = prev->state;
2744 finish_arch_switch(prev);
2745 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2746 local_irq_disable();
2747 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2748 perf_event_task_sched_in(current);
2749 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2750 local_irq_enable();
2751 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2752 finish_lock_switch(rq, prev);
2753
2754 fire_sched_in_preempt_notifiers(current);
2755 if (mm)
2756 mmdrop(mm);
2757 if (unlikely(prev_state == TASK_DEAD)) {
2758 /*
2759 * Remove function-return probe instances associated with this
2760 * task and put them back on the free list.
2761 */
2762 kprobe_flush_task(prev);
2763 put_task_struct(prev);
2764 }
2765 }
2766
2767 #ifdef CONFIG_SMP
2768
2769 /* assumes rq->lock is held */
2770 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2771 {
2772 if (prev->sched_class->pre_schedule)
2773 prev->sched_class->pre_schedule(rq, prev);
2774 }
2775
2776 /* rq->lock is NOT held, but preemption is disabled */
2777 static inline void post_schedule(struct rq *rq)
2778 {
2779 if (rq->post_schedule) {
2780 unsigned long flags;
2781
2782 raw_spin_lock_irqsave(&rq->lock, flags);
2783 if (rq->curr->sched_class->post_schedule)
2784 rq->curr->sched_class->post_schedule(rq);
2785 raw_spin_unlock_irqrestore(&rq->lock, flags);
2786
2787 rq->post_schedule = 0;
2788 }
2789 }
2790
2791 #else
2792
2793 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2794 {
2795 }
2796
2797 static inline void post_schedule(struct rq *rq)
2798 {
2799 }
2800
2801 #endif
2802
2803 /**
2804 * schedule_tail - first thing a freshly forked thread must call.
2805 * @prev: the thread we just switched away from.
2806 */
2807 asmlinkage void schedule_tail(struct task_struct *prev)
2808 __releases(rq->lock)
2809 {
2810 struct rq *rq = this_rq();
2811
2812 finish_task_switch(rq, prev);
2813
2814 /*
2815 * FIXME: do we need to worry about rq being invalidated by the
2816 * task_switch?
2817 */
2818 post_schedule(rq);
2819
2820 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2821 /* In this case, finish_task_switch does not reenable preemption */
2822 preempt_enable();
2823 #endif
2824 if (current->set_child_tid)
2825 put_user(task_pid_vnr(current), current->set_child_tid);
2826 }
2827
2828 /*
2829 * context_switch - switch to the new MM and the new
2830 * thread's register state.
2831 */
2832 static inline void
2833 context_switch(struct rq *rq, struct task_struct *prev,
2834 struct task_struct *next)
2835 {
2836 struct mm_struct *mm, *oldmm;
2837
2838 prepare_task_switch(rq, prev, next);
2839 trace_sched_switch(prev, next);
2840 mm = next->mm;
2841 oldmm = prev->active_mm;
2842 /*
2843 * For paravirt, this is coupled with an exit in switch_to to
2844 * combine the page table reload and the switch backend into
2845 * one hypercall.
2846 */
2847 arch_start_context_switch(prev);
2848
2849 if (likely(!mm)) {
2850 next->active_mm = oldmm;
2851 atomic_inc(&oldmm->mm_count);
2852 enter_lazy_tlb(oldmm, next);
2853 } else
2854 switch_mm(oldmm, mm, next);
2855
2856 if (likely(!prev->mm)) {
2857 prev->active_mm = NULL;
2858 rq->prev_mm = oldmm;
2859 }
2860 /*
2861 * Since the runqueue lock will be released by the next
2862 * task (which is an invalid locking op but in the case
2863 * of the scheduler it's an obvious special-case), so we
2864 * do an early lockdep release here:
2865 */
2866 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2867 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2868 #endif
2869
2870 /* Here we just switch the register state and the stack. */
2871 switch_to(prev, next, prev);
2872
2873 barrier();
2874 /*
2875 * this_rq must be evaluated again because prev may have moved
2876 * CPUs since it called schedule(), thus the 'rq' on its stack
2877 * frame will be invalid.
2878 */
2879 finish_task_switch(this_rq(), prev);
2880 }
2881
2882 /*
2883 * nr_running, nr_uninterruptible and nr_context_switches:
2884 *
2885 * externally visible scheduler statistics: current number of runnable
2886 * threads, current number of uninterruptible-sleeping threads, total
2887 * number of context switches performed since bootup.
2888 */
2889 unsigned long nr_running(void)
2890 {
2891 unsigned long i, sum = 0;
2892
2893 for_each_online_cpu(i)
2894 sum += cpu_rq(i)->nr_running;
2895
2896 return sum;
2897 }
2898
2899 unsigned long nr_uninterruptible(void)
2900 {
2901 unsigned long i, sum = 0;
2902
2903 for_each_possible_cpu(i)
2904 sum += cpu_rq(i)->nr_uninterruptible;
2905
2906 /*
2907 * Since we read the counters lockless, it might be slightly
2908 * inaccurate. Do not allow it to go below zero though:
2909 */
2910 if (unlikely((long)sum < 0))
2911 sum = 0;
2912
2913 return sum;
2914 }
2915
2916 unsigned long long nr_context_switches(void)
2917 {
2918 int i;
2919 unsigned long long sum = 0;
2920
2921 for_each_possible_cpu(i)
2922 sum += cpu_rq(i)->nr_switches;
2923
2924 return sum;
2925 }
2926
2927 unsigned long nr_iowait(void)
2928 {
2929 unsigned long i, sum = 0;
2930
2931 for_each_possible_cpu(i)
2932 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2933
2934 return sum;
2935 }
2936
2937 unsigned long nr_iowait_cpu(int cpu)
2938 {
2939 struct rq *this = cpu_rq(cpu);
2940 return atomic_read(&this->nr_iowait);
2941 }
2942
2943 unsigned long this_cpu_load(void)
2944 {
2945 struct rq *this = this_rq();
2946 return this->cpu_load[0];
2947 }
2948
2949
2950 /* Variables and functions for calc_load */
2951 static atomic_long_t calc_load_tasks;
2952 static unsigned long calc_load_update;
2953 unsigned long avenrun[3];
2954 EXPORT_SYMBOL(avenrun);
2955
2956 static long calc_load_fold_active(struct rq *this_rq)
2957 {
2958 long nr_active, delta = 0;
2959
2960 nr_active = this_rq->nr_running;
2961 nr_active += (long) this_rq->nr_uninterruptible;
2962
2963 if (nr_active != this_rq->calc_load_active) {
2964 delta = nr_active - this_rq->calc_load_active;
2965 this_rq->calc_load_active = nr_active;
2966 }
2967
2968 return delta;
2969 }
2970
2971 #ifdef CONFIG_NO_HZ
2972 /*
2973 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2974 *
2975 * When making the ILB scale, we should try to pull this in as well.
2976 */
2977 static atomic_long_t calc_load_tasks_idle;
2978
2979 static void calc_load_account_idle(struct rq *this_rq)
2980 {
2981 long delta;
2982
2983 delta = calc_load_fold_active(this_rq);
2984 if (delta)
2985 atomic_long_add(delta, &calc_load_tasks_idle);
2986 }
2987
2988 static long calc_load_fold_idle(void)
2989 {
2990 long delta = 0;
2991
2992 /*
2993 * Its got a race, we don't care...
2994 */
2995 if (atomic_long_read(&calc_load_tasks_idle))
2996 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2997
2998 return delta;
2999 }
3000 #else
3001 static void calc_load_account_idle(struct rq *this_rq)
3002 {
3003 }
3004
3005 static inline long calc_load_fold_idle(void)
3006 {
3007 return 0;
3008 }
3009 #endif
3010
3011 /**
3012 * get_avenrun - get the load average array
3013 * @loads: pointer to dest load array
3014 * @offset: offset to add
3015 * @shift: shift count to shift the result left
3016 *
3017 * These values are estimates at best, so no need for locking.
3018 */
3019 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3020 {
3021 loads[0] = (avenrun[0] + offset) << shift;
3022 loads[1] = (avenrun[1] + offset) << shift;
3023 loads[2] = (avenrun[2] + offset) << shift;
3024 }
3025
3026 static unsigned long
3027 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3028 {
3029 load *= exp;
3030 load += active * (FIXED_1 - exp);
3031 return load >> FSHIFT;
3032 }
3033
3034 /*
3035 * calc_load - update the avenrun load estimates 10 ticks after the
3036 * CPUs have updated calc_load_tasks.
3037 */
3038 void calc_global_load(void)
3039 {
3040 unsigned long upd = calc_load_update + 10;
3041 long active;
3042
3043 if (time_before(jiffies, upd))
3044 return;
3045
3046 active = atomic_long_read(&calc_load_tasks);
3047 active = active > 0 ? active * FIXED_1 : 0;
3048
3049 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3050 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3051 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3052
3053 calc_load_update += LOAD_FREQ;
3054 }
3055
3056 /*
3057 * Called from update_cpu_load() to periodically update this CPU's
3058 * active count.
3059 */
3060 static void calc_load_account_active(struct rq *this_rq)
3061 {
3062 long delta;
3063
3064 if (time_before(jiffies, this_rq->calc_load_update))
3065 return;
3066
3067 delta = calc_load_fold_active(this_rq);
3068 delta += calc_load_fold_idle();
3069 if (delta)
3070 atomic_long_add(delta, &calc_load_tasks);
3071
3072 this_rq->calc_load_update += LOAD_FREQ;
3073 }
3074
3075 /*
3076 * The exact cpuload at various idx values, calculated at every tick would be
3077 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3078 *
3079 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3080 * on nth tick when cpu may be busy, then we have:
3081 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3082 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3083 *
3084 * decay_load_missed() below does efficient calculation of
3085 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3086 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3087 *
3088 * The calculation is approximated on a 128 point scale.
3089 * degrade_zero_ticks is the number of ticks after which load at any
3090 * particular idx is approximated to be zero.
3091 * degrade_factor is a precomputed table, a row for each load idx.
3092 * Each column corresponds to degradation factor for a power of two ticks,
3093 * based on 128 point scale.
3094 * Example:
3095 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3096 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3097 *
3098 * With this power of 2 load factors, we can degrade the load n times
3099 * by looking at 1 bits in n and doing as many mult/shift instead of
3100 * n mult/shifts needed by the exact degradation.
3101 */
3102 #define DEGRADE_SHIFT 7
3103 static const unsigned char
3104 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3105 static const unsigned char
3106 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3107 {0, 0, 0, 0, 0, 0, 0, 0},
3108 {64, 32, 8, 0, 0, 0, 0, 0},
3109 {96, 72, 40, 12, 1, 0, 0},
3110 {112, 98, 75, 43, 15, 1, 0},
3111 {120, 112, 98, 76, 45, 16, 2} };
3112
3113 /*
3114 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3115 * would be when CPU is idle and so we just decay the old load without
3116 * adding any new load.
3117 */
3118 static unsigned long
3119 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3120 {
3121 int j = 0;
3122
3123 if (!missed_updates)
3124 return load;
3125
3126 if (missed_updates >= degrade_zero_ticks[idx])
3127 return 0;
3128
3129 if (idx == 1)
3130 return load >> missed_updates;
3131
3132 while (missed_updates) {
3133 if (missed_updates % 2)
3134 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3135
3136 missed_updates >>= 1;
3137 j++;
3138 }
3139 return load;
3140 }
3141
3142 /*
3143 * Update rq->cpu_load[] statistics. This function is usually called every
3144 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3145 * every tick. We fix it up based on jiffies.
3146 */
3147 static void update_cpu_load(struct rq *this_rq)
3148 {
3149 unsigned long this_load = this_rq->load.weight;
3150 unsigned long curr_jiffies = jiffies;
3151 unsigned long pending_updates;
3152 int i, scale;
3153
3154 this_rq->nr_load_updates++;
3155
3156 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3157 if (curr_jiffies == this_rq->last_load_update_tick)
3158 return;
3159
3160 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3161 this_rq->last_load_update_tick = curr_jiffies;
3162
3163 /* Update our load: */
3164 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3165 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3166 unsigned long old_load, new_load;
3167
3168 /* scale is effectively 1 << i now, and >> i divides by scale */
3169
3170 old_load = this_rq->cpu_load[i];
3171 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3172 new_load = this_load;
3173 /*
3174 * Round up the averaging division if load is increasing. This
3175 * prevents us from getting stuck on 9 if the load is 10, for
3176 * example.
3177 */
3178 if (new_load > old_load)
3179 new_load += scale - 1;
3180
3181 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3182 }
3183 }
3184
3185 static void update_cpu_load_active(struct rq *this_rq)
3186 {
3187 update_cpu_load(this_rq);
3188
3189 calc_load_account_active(this_rq);
3190 }
3191
3192 #ifdef CONFIG_SMP
3193
3194 /*
3195 * sched_exec - execve() is a valuable balancing opportunity, because at
3196 * this point the task has the smallest effective memory and cache footprint.
3197 */
3198 void sched_exec(void)
3199 {
3200 struct task_struct *p = current;
3201 unsigned long flags;
3202 struct rq *rq;
3203 int dest_cpu;
3204
3205 rq = task_rq_lock(p, &flags);
3206 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3207 if (dest_cpu == smp_processor_id())
3208 goto unlock;
3209
3210 /*
3211 * select_task_rq() can race against ->cpus_allowed
3212 */
3213 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3214 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3215 struct migration_arg arg = { p, dest_cpu };
3216
3217 task_rq_unlock(rq, &flags);
3218 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3219 return;
3220 }
3221 unlock:
3222 task_rq_unlock(rq, &flags);
3223 }
3224
3225 #endif
3226
3227 DEFINE_PER_CPU(struct kernel_stat, kstat);
3228
3229 EXPORT_PER_CPU_SYMBOL(kstat);
3230
3231 /*
3232 * Return any ns on the sched_clock that have not yet been accounted in
3233 * @p in case that task is currently running.
3234 *
3235 * Called with task_rq_lock() held on @rq.
3236 */
3237 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3238 {
3239 u64 ns = 0;
3240
3241 if (task_current(rq, p)) {
3242 update_rq_clock(rq);
3243 ns = rq->clock - p->se.exec_start;
3244 if ((s64)ns < 0)
3245 ns = 0;
3246 }
3247
3248 return ns;
3249 }
3250
3251 unsigned long long task_delta_exec(struct task_struct *p)
3252 {
3253 unsigned long flags;
3254 struct rq *rq;
3255 u64 ns = 0;
3256
3257 rq = task_rq_lock(p, &flags);
3258 ns = do_task_delta_exec(p, rq);
3259 task_rq_unlock(rq, &flags);
3260
3261 return ns;
3262 }
3263
3264 /*
3265 * Return accounted runtime for the task.
3266 * In case the task is currently running, return the runtime plus current's
3267 * pending runtime that have not been accounted yet.
3268 */
3269 unsigned long long task_sched_runtime(struct task_struct *p)
3270 {
3271 unsigned long flags;
3272 struct rq *rq;
3273 u64 ns = 0;
3274
3275 rq = task_rq_lock(p, &flags);
3276 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3277 task_rq_unlock(rq, &flags);
3278
3279 return ns;
3280 }
3281
3282 /*
3283 * Return sum_exec_runtime for the thread group.
3284 * In case the task is currently running, return the sum plus current's
3285 * pending runtime that have not been accounted yet.
3286 *
3287 * Note that the thread group might have other running tasks as well,
3288 * so the return value not includes other pending runtime that other
3289 * running tasks might have.
3290 */
3291 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3292 {
3293 struct task_cputime totals;
3294 unsigned long flags;
3295 struct rq *rq;
3296 u64 ns;
3297
3298 rq = task_rq_lock(p, &flags);
3299 thread_group_cputime(p, &totals);
3300 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3301 task_rq_unlock(rq, &flags);
3302
3303 return ns;
3304 }
3305
3306 /*
3307 * Account user cpu time to a process.
3308 * @p: the process that the cpu time gets accounted to
3309 * @cputime: the cpu time spent in user space since the last update
3310 * @cputime_scaled: cputime scaled by cpu frequency
3311 */
3312 void account_user_time(struct task_struct *p, cputime_t cputime,
3313 cputime_t cputime_scaled)
3314 {
3315 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3316 cputime64_t tmp;
3317
3318 /* Add user time to process. */
3319 p->utime = cputime_add(p->utime, cputime);
3320 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3321 account_group_user_time(p, cputime);
3322
3323 /* Add user time to cpustat. */
3324 tmp = cputime_to_cputime64(cputime);
3325 if (TASK_NICE(p) > 0)
3326 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3327 else
3328 cpustat->user = cputime64_add(cpustat->user, tmp);
3329
3330 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3331 /* Account for user time used */
3332 acct_update_integrals(p);
3333 }
3334
3335 /*
3336 * Account guest cpu time to a process.
3337 * @p: the process that the cpu time gets accounted to
3338 * @cputime: the cpu time spent in virtual machine since the last update
3339 * @cputime_scaled: cputime scaled by cpu frequency
3340 */
3341 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3342 cputime_t cputime_scaled)
3343 {
3344 cputime64_t tmp;
3345 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3346
3347 tmp = cputime_to_cputime64(cputime);
3348
3349 /* Add guest time to process. */
3350 p->utime = cputime_add(p->utime, cputime);
3351 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3352 account_group_user_time(p, cputime);
3353 p->gtime = cputime_add(p->gtime, cputime);
3354
3355 /* Add guest time to cpustat. */
3356 if (TASK_NICE(p) > 0) {
3357 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3358 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3359 } else {
3360 cpustat->user = cputime64_add(cpustat->user, tmp);
3361 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3362 }
3363 }
3364
3365 /*
3366 * Account system cpu time to a process.
3367 * @p: the process that the cpu time gets accounted to
3368 * @hardirq_offset: the offset to subtract from hardirq_count()
3369 * @cputime: the cpu time spent in kernel space since the last update
3370 * @cputime_scaled: cputime scaled by cpu frequency
3371 */
3372 void account_system_time(struct task_struct *p, int hardirq_offset,
3373 cputime_t cputime, cputime_t cputime_scaled)
3374 {
3375 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3376 cputime64_t tmp;
3377
3378 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3379 account_guest_time(p, cputime, cputime_scaled);
3380 return;
3381 }
3382
3383 /* Add system time to process. */
3384 p->stime = cputime_add(p->stime, cputime);
3385 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3386 account_group_system_time(p, cputime);
3387
3388 /* Add system time to cpustat. */
3389 tmp = cputime_to_cputime64(cputime);
3390 if (hardirq_count() - hardirq_offset)
3391 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3392 else if (softirq_count())
3393 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3394 else
3395 cpustat->system = cputime64_add(cpustat->system, tmp);
3396
3397 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3398
3399 /* Account for system time used */
3400 acct_update_integrals(p);
3401 }
3402
3403 /*
3404 * Account for involuntary wait time.
3405 * @steal: the cpu time spent in involuntary wait
3406 */
3407 void account_steal_time(cputime_t cputime)
3408 {
3409 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3410 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3411
3412 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3413 }
3414
3415 /*
3416 * Account for idle time.
3417 * @cputime: the cpu time spent in idle wait
3418 */
3419 void account_idle_time(cputime_t cputime)
3420 {
3421 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3422 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3423 struct rq *rq = this_rq();
3424
3425 if (atomic_read(&rq->nr_iowait) > 0)
3426 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3427 else
3428 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3429 }
3430
3431 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3432
3433 /*
3434 * Account a single tick of cpu time.
3435 * @p: the process that the cpu time gets accounted to
3436 * @user_tick: indicates if the tick is a user or a system tick
3437 */
3438 void account_process_tick(struct task_struct *p, int user_tick)
3439 {
3440 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3441 struct rq *rq = this_rq();
3442
3443 if (user_tick)
3444 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3445 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3446 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3447 one_jiffy_scaled);
3448 else
3449 account_idle_time(cputime_one_jiffy);
3450 }
3451
3452 /*
3453 * Account multiple ticks of steal time.
3454 * @p: the process from which the cpu time has been stolen
3455 * @ticks: number of stolen ticks
3456 */
3457 void account_steal_ticks(unsigned long ticks)
3458 {
3459 account_steal_time(jiffies_to_cputime(ticks));
3460 }
3461
3462 /*
3463 * Account multiple ticks of idle time.
3464 * @ticks: number of stolen ticks
3465 */
3466 void account_idle_ticks(unsigned long ticks)
3467 {
3468 account_idle_time(jiffies_to_cputime(ticks));
3469 }
3470
3471 #endif
3472
3473 /*
3474 * Use precise platform statistics if available:
3475 */
3476 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3477 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3478 {
3479 *ut = p->utime;
3480 *st = p->stime;
3481 }
3482
3483 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3484 {
3485 struct task_cputime cputime;
3486
3487 thread_group_cputime(p, &cputime);
3488
3489 *ut = cputime.utime;
3490 *st = cputime.stime;
3491 }
3492 #else
3493
3494 #ifndef nsecs_to_cputime
3495 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3496 #endif
3497
3498 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3499 {
3500 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3501
3502 /*
3503 * Use CFS's precise accounting:
3504 */
3505 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3506
3507 if (total) {
3508 u64 temp;
3509
3510 temp = (u64)(rtime * utime);
3511 do_div(temp, total);
3512 utime = (cputime_t)temp;
3513 } else
3514 utime = rtime;
3515
3516 /*
3517 * Compare with previous values, to keep monotonicity:
3518 */
3519 p->prev_utime = max(p->prev_utime, utime);
3520 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3521
3522 *ut = p->prev_utime;
3523 *st = p->prev_stime;
3524 }
3525
3526 /*
3527 * Must be called with siglock held.
3528 */
3529 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3530 {
3531 struct signal_struct *sig = p->signal;
3532 struct task_cputime cputime;
3533 cputime_t rtime, utime, total;
3534
3535 thread_group_cputime(p, &cputime);
3536
3537 total = cputime_add(cputime.utime, cputime.stime);
3538 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3539
3540 if (total) {
3541 u64 temp;
3542
3543 temp = (u64)(rtime * cputime.utime);
3544 do_div(temp, total);
3545 utime = (cputime_t)temp;
3546 } else
3547 utime = rtime;
3548
3549 sig->prev_utime = max(sig->prev_utime, utime);
3550 sig->prev_stime = max(sig->prev_stime,
3551 cputime_sub(rtime, sig->prev_utime));
3552
3553 *ut = sig->prev_utime;
3554 *st = sig->prev_stime;
3555 }
3556 #endif
3557
3558 /*
3559 * This function gets called by the timer code, with HZ frequency.
3560 * We call it with interrupts disabled.
3561 *
3562 * It also gets called by the fork code, when changing the parent's
3563 * timeslices.
3564 */
3565 void scheduler_tick(void)
3566 {
3567 int cpu = smp_processor_id();
3568 struct rq *rq = cpu_rq(cpu);
3569 struct task_struct *curr = rq->curr;
3570
3571 sched_clock_tick();
3572
3573 raw_spin_lock(&rq->lock);
3574 update_rq_clock(rq);
3575 update_cpu_load_active(rq);
3576 curr->sched_class->task_tick(rq, curr, 0);
3577 raw_spin_unlock(&rq->lock);
3578
3579 perf_event_task_tick(curr);
3580
3581 #ifdef CONFIG_SMP
3582 rq->idle_at_tick = idle_cpu(cpu);
3583 trigger_load_balance(rq, cpu);
3584 #endif
3585 }
3586
3587 notrace unsigned long get_parent_ip(unsigned long addr)
3588 {
3589 if (in_lock_functions(addr)) {
3590 addr = CALLER_ADDR2;
3591 if (in_lock_functions(addr))
3592 addr = CALLER_ADDR3;
3593 }
3594 return addr;
3595 }
3596
3597 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3598 defined(CONFIG_PREEMPT_TRACER))
3599
3600 void __kprobes add_preempt_count(int val)
3601 {
3602 #ifdef CONFIG_DEBUG_PREEMPT
3603 /*
3604 * Underflow?
3605 */
3606 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3607 return;
3608 #endif
3609 preempt_count() += val;
3610 #ifdef CONFIG_DEBUG_PREEMPT
3611 /*
3612 * Spinlock count overflowing soon?
3613 */
3614 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3615 PREEMPT_MASK - 10);
3616 #endif
3617 if (preempt_count() == val)
3618 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3619 }
3620 EXPORT_SYMBOL(add_preempt_count);
3621
3622 void __kprobes sub_preempt_count(int val)
3623 {
3624 #ifdef CONFIG_DEBUG_PREEMPT
3625 /*
3626 * Underflow?
3627 */
3628 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3629 return;
3630 /*
3631 * Is the spinlock portion underflowing?
3632 */
3633 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3634 !(preempt_count() & PREEMPT_MASK)))
3635 return;
3636 #endif
3637
3638 if (preempt_count() == val)
3639 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3640 preempt_count() -= val;
3641 }
3642 EXPORT_SYMBOL(sub_preempt_count);
3643
3644 #endif
3645
3646 /*
3647 * Print scheduling while atomic bug:
3648 */
3649 static noinline void __schedule_bug(struct task_struct *prev)
3650 {
3651 struct pt_regs *regs = get_irq_regs();
3652
3653 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3654 prev->comm, prev->pid, preempt_count());
3655
3656 debug_show_held_locks(prev);
3657 print_modules();
3658 if (irqs_disabled())
3659 print_irqtrace_events(prev);
3660
3661 if (regs)
3662 show_regs(regs);
3663 else
3664 dump_stack();
3665 }
3666
3667 /*
3668 * Various schedule()-time debugging checks and statistics:
3669 */
3670 static inline void schedule_debug(struct task_struct *prev)
3671 {
3672 /*
3673 * Test if we are atomic. Since do_exit() needs to call into
3674 * schedule() atomically, we ignore that path for now.
3675 * Otherwise, whine if we are scheduling when we should not be.
3676 */
3677 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3678 __schedule_bug(prev);
3679
3680 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3681
3682 schedstat_inc(this_rq(), sched_count);
3683 #ifdef CONFIG_SCHEDSTATS
3684 if (unlikely(prev->lock_depth >= 0)) {
3685 schedstat_inc(this_rq(), bkl_count);
3686 schedstat_inc(prev, sched_info.bkl_count);
3687 }
3688 #endif
3689 }
3690
3691 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3692 {
3693 if (prev->se.on_rq)
3694 update_rq_clock(rq);
3695 rq->skip_clock_update = 0;
3696 prev->sched_class->put_prev_task(rq, prev);
3697 }
3698
3699 /*
3700 * Pick up the highest-prio task:
3701 */
3702 static inline struct task_struct *
3703 pick_next_task(struct rq *rq)
3704 {
3705 const struct sched_class *class;
3706 struct task_struct *p;
3707
3708 /*
3709 * Optimization: we know that if all tasks are in
3710 * the fair class we can call that function directly:
3711 */
3712 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3713 p = fair_sched_class.pick_next_task(rq);
3714 if (likely(p))
3715 return p;
3716 }
3717
3718 class = sched_class_highest;
3719 for ( ; ; ) {
3720 p = class->pick_next_task(rq);
3721 if (p)
3722 return p;
3723 /*
3724 * Will never be NULL as the idle class always
3725 * returns a non-NULL p:
3726 */
3727 class = class->next;
3728 }
3729 }
3730
3731 /*
3732 * schedule() is the main scheduler function.
3733 */
3734 asmlinkage void __sched schedule(void)
3735 {
3736 struct task_struct *prev, *next;
3737 unsigned long *switch_count;
3738 struct rq *rq;
3739 int cpu;
3740
3741 need_resched:
3742 preempt_disable();
3743 cpu = smp_processor_id();
3744 rq = cpu_rq(cpu);
3745 rcu_note_context_switch(cpu);
3746 prev = rq->curr;
3747
3748 release_kernel_lock(prev);
3749 need_resched_nonpreemptible:
3750
3751 schedule_debug(prev);
3752
3753 if (sched_feat(HRTICK))
3754 hrtick_clear(rq);
3755
3756 raw_spin_lock_irq(&rq->lock);
3757 clear_tsk_need_resched(prev);
3758
3759 switch_count = &prev->nivcsw;
3760 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3761 if (unlikely(signal_pending_state(prev->state, prev))) {
3762 prev->state = TASK_RUNNING;
3763 } else {
3764 /*
3765 * If a worker is going to sleep, notify and
3766 * ask workqueue whether it wants to wake up a
3767 * task to maintain concurrency. If so, wake
3768 * up the task.
3769 */
3770 if (prev->flags & PF_WQ_WORKER) {
3771 struct task_struct *to_wakeup;
3772
3773 to_wakeup = wq_worker_sleeping(prev, cpu);
3774 if (to_wakeup)
3775 try_to_wake_up_local(to_wakeup);
3776 }
3777 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3778 }
3779 switch_count = &prev->nvcsw;
3780 }
3781
3782 pre_schedule(rq, prev);
3783
3784 if (unlikely(!rq->nr_running))
3785 idle_balance(cpu, rq);
3786
3787 put_prev_task(rq, prev);
3788 next = pick_next_task(rq);
3789
3790 if (likely(prev != next)) {
3791 sched_info_switch(prev, next);
3792 perf_event_task_sched_out(prev, next);
3793
3794 rq->nr_switches++;
3795 rq->curr = next;
3796 ++*switch_count;
3797
3798 context_switch(rq, prev, next); /* unlocks the rq */
3799 /*
3800 * The context switch have flipped the stack from under us
3801 * and restored the local variables which were saved when
3802 * this task called schedule() in the past. prev == current
3803 * is still correct, but it can be moved to another cpu/rq.
3804 */
3805 cpu = smp_processor_id();
3806 rq = cpu_rq(cpu);
3807 } else
3808 raw_spin_unlock_irq(&rq->lock);
3809
3810 post_schedule(rq);
3811
3812 if (unlikely(reacquire_kernel_lock(prev)))
3813 goto need_resched_nonpreemptible;
3814
3815 preempt_enable_no_resched();
3816 if (need_resched())
3817 goto need_resched;
3818 }
3819 EXPORT_SYMBOL(schedule);
3820
3821 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3822 /*
3823 * Look out! "owner" is an entirely speculative pointer
3824 * access and not reliable.
3825 */
3826 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3827 {
3828 unsigned int cpu;
3829 struct rq *rq;
3830
3831 if (!sched_feat(OWNER_SPIN))
3832 return 0;
3833
3834 #ifdef CONFIG_DEBUG_PAGEALLOC
3835 /*
3836 * Need to access the cpu field knowing that
3837 * DEBUG_PAGEALLOC could have unmapped it if
3838 * the mutex owner just released it and exited.
3839 */
3840 if (probe_kernel_address(&owner->cpu, cpu))
3841 return 0;
3842 #else
3843 cpu = owner->cpu;
3844 #endif
3845
3846 /*
3847 * Even if the access succeeded (likely case),
3848 * the cpu field may no longer be valid.
3849 */
3850 if (cpu >= nr_cpumask_bits)
3851 return 0;
3852
3853 /*
3854 * We need to validate that we can do a
3855 * get_cpu() and that we have the percpu area.
3856 */
3857 if (!cpu_online(cpu))
3858 return 0;
3859
3860 rq = cpu_rq(cpu);
3861
3862 for (;;) {
3863 /*
3864 * Owner changed, break to re-assess state.
3865 */
3866 if (lock->owner != owner) {
3867 /*
3868 * If the lock has switched to a different owner,
3869 * we likely have heavy contention. Return 0 to quit
3870 * optimistic spinning and not contend further:
3871 */
3872 if (lock->owner)
3873 return 0;
3874 break;
3875 }
3876
3877 /*
3878 * Is that owner really running on that cpu?
3879 */
3880 if (task_thread_info(rq->curr) != owner || need_resched())
3881 return 0;
3882
3883 cpu_relax();
3884 }
3885
3886 return 1;
3887 }
3888 #endif
3889
3890 #ifdef CONFIG_PREEMPT
3891 /*
3892 * this is the entry point to schedule() from in-kernel preemption
3893 * off of preempt_enable. Kernel preemptions off return from interrupt
3894 * occur there and call schedule directly.
3895 */
3896 asmlinkage void __sched notrace preempt_schedule(void)
3897 {
3898 struct thread_info *ti = current_thread_info();
3899
3900 /*
3901 * If there is a non-zero preempt_count or interrupts are disabled,
3902 * we do not want to preempt the current task. Just return..
3903 */
3904 if (likely(ti->preempt_count || irqs_disabled()))
3905 return;
3906
3907 do {
3908 add_preempt_count_notrace(PREEMPT_ACTIVE);
3909 schedule();
3910 sub_preempt_count_notrace(PREEMPT_ACTIVE);
3911
3912 /*
3913 * Check again in case we missed a preemption opportunity
3914 * between schedule and now.
3915 */
3916 barrier();
3917 } while (need_resched());
3918 }
3919 EXPORT_SYMBOL(preempt_schedule);
3920
3921 /*
3922 * this is the entry point to schedule() from kernel preemption
3923 * off of irq context.
3924 * Note, that this is called and return with irqs disabled. This will
3925 * protect us against recursive calling from irq.
3926 */
3927 asmlinkage void __sched preempt_schedule_irq(void)
3928 {
3929 struct thread_info *ti = current_thread_info();
3930
3931 /* Catch callers which need to be fixed */
3932 BUG_ON(ti->preempt_count || !irqs_disabled());
3933
3934 do {
3935 add_preempt_count(PREEMPT_ACTIVE);
3936 local_irq_enable();
3937 schedule();
3938 local_irq_disable();
3939 sub_preempt_count(PREEMPT_ACTIVE);
3940
3941 /*
3942 * Check again in case we missed a preemption opportunity
3943 * between schedule and now.
3944 */
3945 barrier();
3946 } while (need_resched());
3947 }
3948
3949 #endif /* CONFIG_PREEMPT */
3950
3951 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3952 void *key)
3953 {
3954 return try_to_wake_up(curr->private, mode, wake_flags);
3955 }
3956 EXPORT_SYMBOL(default_wake_function);
3957
3958 /*
3959 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3960 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3961 * number) then we wake all the non-exclusive tasks and one exclusive task.
3962 *
3963 * There are circumstances in which we can try to wake a task which has already
3964 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3965 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3966 */
3967 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3968 int nr_exclusive, int wake_flags, void *key)
3969 {
3970 wait_queue_t *curr, *next;
3971
3972 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3973 unsigned flags = curr->flags;
3974
3975 if (curr->func(curr, mode, wake_flags, key) &&
3976 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3977 break;
3978 }
3979 }
3980
3981 /**
3982 * __wake_up - wake up threads blocked on a waitqueue.
3983 * @q: the waitqueue
3984 * @mode: which threads
3985 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3986 * @key: is directly passed to the wakeup function
3987 *
3988 * It may be assumed that this function implies a write memory barrier before
3989 * changing the task state if and only if any tasks are woken up.
3990 */
3991 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3992 int nr_exclusive, void *key)
3993 {
3994 unsigned long flags;
3995
3996 spin_lock_irqsave(&q->lock, flags);
3997 __wake_up_common(q, mode, nr_exclusive, 0, key);
3998 spin_unlock_irqrestore(&q->lock, flags);
3999 }
4000 EXPORT_SYMBOL(__wake_up);
4001
4002 /*
4003 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4004 */
4005 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4006 {
4007 __wake_up_common(q, mode, 1, 0, NULL);
4008 }
4009 EXPORT_SYMBOL_GPL(__wake_up_locked);
4010
4011 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4012 {
4013 __wake_up_common(q, mode, 1, 0, key);
4014 }
4015
4016 /**
4017 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4018 * @q: the waitqueue
4019 * @mode: which threads
4020 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4021 * @key: opaque value to be passed to wakeup targets
4022 *
4023 * The sync wakeup differs that the waker knows that it will schedule
4024 * away soon, so while the target thread will be woken up, it will not
4025 * be migrated to another CPU - ie. the two threads are 'synchronized'
4026 * with each other. This can prevent needless bouncing between CPUs.
4027 *
4028 * On UP it can prevent extra preemption.
4029 *
4030 * It may be assumed that this function implies a write memory barrier before
4031 * changing the task state if and only if any tasks are woken up.
4032 */
4033 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4034 int nr_exclusive, void *key)
4035 {
4036 unsigned long flags;
4037 int wake_flags = WF_SYNC;
4038
4039 if (unlikely(!q))
4040 return;
4041
4042 if (unlikely(!nr_exclusive))
4043 wake_flags = 0;
4044
4045 spin_lock_irqsave(&q->lock, flags);
4046 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4047 spin_unlock_irqrestore(&q->lock, flags);
4048 }
4049 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4050
4051 /*
4052 * __wake_up_sync - see __wake_up_sync_key()
4053 */
4054 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4055 {
4056 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4057 }
4058 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4059
4060 /**
4061 * complete: - signals a single thread waiting on this completion
4062 * @x: holds the state of this particular completion
4063 *
4064 * This will wake up a single thread waiting on this completion. Threads will be
4065 * awakened in the same order in which they were queued.
4066 *
4067 * See also complete_all(), wait_for_completion() and related routines.
4068 *
4069 * It may be assumed that this function implies a write memory barrier before
4070 * changing the task state if and only if any tasks are woken up.
4071 */
4072 void complete(struct completion *x)
4073 {
4074 unsigned long flags;
4075
4076 spin_lock_irqsave(&x->wait.lock, flags);
4077 x->done++;
4078 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4079 spin_unlock_irqrestore(&x->wait.lock, flags);
4080 }
4081 EXPORT_SYMBOL(complete);
4082
4083 /**
4084 * complete_all: - signals all threads waiting on this completion
4085 * @x: holds the state of this particular completion
4086 *
4087 * This will wake up all threads waiting on this particular completion event.
4088 *
4089 * It may be assumed that this function implies a write memory barrier before
4090 * changing the task state if and only if any tasks are woken up.
4091 */
4092 void complete_all(struct completion *x)
4093 {
4094 unsigned long flags;
4095
4096 spin_lock_irqsave(&x->wait.lock, flags);
4097 x->done += UINT_MAX/2;
4098 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4099 spin_unlock_irqrestore(&x->wait.lock, flags);
4100 }
4101 EXPORT_SYMBOL(complete_all);
4102
4103 static inline long __sched
4104 do_wait_for_common(struct completion *x, long timeout, int state)
4105 {
4106 if (!x->done) {
4107 DECLARE_WAITQUEUE(wait, current);
4108
4109 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4110 do {
4111 if (signal_pending_state(state, current)) {
4112 timeout = -ERESTARTSYS;
4113 break;
4114 }
4115 __set_current_state(state);
4116 spin_unlock_irq(&x->wait.lock);
4117 timeout = schedule_timeout(timeout);
4118 spin_lock_irq(&x->wait.lock);
4119 } while (!x->done && timeout);
4120 __remove_wait_queue(&x->wait, &wait);
4121 if (!x->done)
4122 return timeout;
4123 }
4124 x->done--;
4125 return timeout ?: 1;
4126 }
4127
4128 static long __sched
4129 wait_for_common(struct completion *x, long timeout, int state)
4130 {
4131 might_sleep();
4132
4133 spin_lock_irq(&x->wait.lock);
4134 timeout = do_wait_for_common(x, timeout, state);
4135 spin_unlock_irq(&x->wait.lock);
4136 return timeout;
4137 }
4138
4139 /**
4140 * wait_for_completion: - waits for completion of a task
4141 * @x: holds the state of this particular completion
4142 *
4143 * This waits to be signaled for completion of a specific task. It is NOT
4144 * interruptible and there is no timeout.
4145 *
4146 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4147 * and interrupt capability. Also see complete().
4148 */
4149 void __sched wait_for_completion(struct completion *x)
4150 {
4151 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4152 }
4153 EXPORT_SYMBOL(wait_for_completion);
4154
4155 /**
4156 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4157 * @x: holds the state of this particular completion
4158 * @timeout: timeout value in jiffies
4159 *
4160 * This waits for either a completion of a specific task to be signaled or for a
4161 * specified timeout to expire. The timeout is in jiffies. It is not
4162 * interruptible.
4163 */
4164 unsigned long __sched
4165 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4166 {
4167 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4168 }
4169 EXPORT_SYMBOL(wait_for_completion_timeout);
4170
4171 /**
4172 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4173 * @x: holds the state of this particular completion
4174 *
4175 * This waits for completion of a specific task to be signaled. It is
4176 * interruptible.
4177 */
4178 int __sched wait_for_completion_interruptible(struct completion *x)
4179 {
4180 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4181 if (t == -ERESTARTSYS)
4182 return t;
4183 return 0;
4184 }
4185 EXPORT_SYMBOL(wait_for_completion_interruptible);
4186
4187 /**
4188 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4189 * @x: holds the state of this particular completion
4190 * @timeout: timeout value in jiffies
4191 *
4192 * This waits for either a completion of a specific task to be signaled or for a
4193 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4194 */
4195 unsigned long __sched
4196 wait_for_completion_interruptible_timeout(struct completion *x,
4197 unsigned long timeout)
4198 {
4199 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4200 }
4201 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4202
4203 /**
4204 * wait_for_completion_killable: - waits for completion of a task (killable)
4205 * @x: holds the state of this particular completion
4206 *
4207 * This waits to be signaled for completion of a specific task. It can be
4208 * interrupted by a kill signal.
4209 */
4210 int __sched wait_for_completion_killable(struct completion *x)
4211 {
4212 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4213 if (t == -ERESTARTSYS)
4214 return t;
4215 return 0;
4216 }
4217 EXPORT_SYMBOL(wait_for_completion_killable);
4218
4219 /**
4220 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4221 * @x: holds the state of this particular completion
4222 * @timeout: timeout value in jiffies
4223 *
4224 * This waits for either a completion of a specific task to be
4225 * signaled or for a specified timeout to expire. It can be
4226 * interrupted by a kill signal. The timeout is in jiffies.
4227 */
4228 unsigned long __sched
4229 wait_for_completion_killable_timeout(struct completion *x,
4230 unsigned long timeout)
4231 {
4232 return wait_for_common(x, timeout, TASK_KILLABLE);
4233 }
4234 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4235
4236 /**
4237 * try_wait_for_completion - try to decrement a completion without blocking
4238 * @x: completion structure
4239 *
4240 * Returns: 0 if a decrement cannot be done without blocking
4241 * 1 if a decrement succeeded.
4242 *
4243 * If a completion is being used as a counting completion,
4244 * attempt to decrement the counter without blocking. This
4245 * enables us to avoid waiting if the resource the completion
4246 * is protecting is not available.
4247 */
4248 bool try_wait_for_completion(struct completion *x)
4249 {
4250 unsigned long flags;
4251 int ret = 1;
4252
4253 spin_lock_irqsave(&x->wait.lock, flags);
4254 if (!x->done)
4255 ret = 0;
4256 else
4257 x->done--;
4258 spin_unlock_irqrestore(&x->wait.lock, flags);
4259 return ret;
4260 }
4261 EXPORT_SYMBOL(try_wait_for_completion);
4262
4263 /**
4264 * completion_done - Test to see if a completion has any waiters
4265 * @x: completion structure
4266 *
4267 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4268 * 1 if there are no waiters.
4269 *
4270 */
4271 bool completion_done(struct completion *x)
4272 {
4273 unsigned long flags;
4274 int ret = 1;
4275
4276 spin_lock_irqsave(&x->wait.lock, flags);
4277 if (!x->done)
4278 ret = 0;
4279 spin_unlock_irqrestore(&x->wait.lock, flags);
4280 return ret;
4281 }
4282 EXPORT_SYMBOL(completion_done);
4283
4284 static long __sched
4285 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4286 {
4287 unsigned long flags;
4288 wait_queue_t wait;
4289
4290 init_waitqueue_entry(&wait, current);
4291
4292 __set_current_state(state);
4293
4294 spin_lock_irqsave(&q->lock, flags);
4295 __add_wait_queue(q, &wait);
4296 spin_unlock(&q->lock);
4297 timeout = schedule_timeout(timeout);
4298 spin_lock_irq(&q->lock);
4299 __remove_wait_queue(q, &wait);
4300 spin_unlock_irqrestore(&q->lock, flags);
4301
4302 return timeout;
4303 }
4304
4305 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4306 {
4307 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4308 }
4309 EXPORT_SYMBOL(interruptible_sleep_on);
4310
4311 long __sched
4312 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4313 {
4314 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4315 }
4316 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4317
4318 void __sched sleep_on(wait_queue_head_t *q)
4319 {
4320 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4321 }
4322 EXPORT_SYMBOL(sleep_on);
4323
4324 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4325 {
4326 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4327 }
4328 EXPORT_SYMBOL(sleep_on_timeout);
4329
4330 #ifdef CONFIG_RT_MUTEXES
4331
4332 /*
4333 * rt_mutex_setprio - set the current priority of a task
4334 * @p: task
4335 * @prio: prio value (kernel-internal form)
4336 *
4337 * This function changes the 'effective' priority of a task. It does
4338 * not touch ->normal_prio like __setscheduler().
4339 *
4340 * Used by the rt_mutex code to implement priority inheritance logic.
4341 */
4342 void rt_mutex_setprio(struct task_struct *p, int prio)
4343 {
4344 unsigned long flags;
4345 int oldprio, on_rq, running;
4346 struct rq *rq;
4347 const struct sched_class *prev_class;
4348
4349 BUG_ON(prio < 0 || prio > MAX_PRIO);
4350
4351 rq = task_rq_lock(p, &flags);
4352
4353 oldprio = p->prio;
4354 prev_class = p->sched_class;
4355 on_rq = p->se.on_rq;
4356 running = task_current(rq, p);
4357 if (on_rq)
4358 dequeue_task(rq, p, 0);
4359 if (running)
4360 p->sched_class->put_prev_task(rq, p);
4361
4362 if (rt_prio(prio))
4363 p->sched_class = &rt_sched_class;
4364 else
4365 p->sched_class = &fair_sched_class;
4366
4367 p->prio = prio;
4368
4369 if (running)
4370 p->sched_class->set_curr_task(rq);
4371 if (on_rq) {
4372 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4373
4374 check_class_changed(rq, p, prev_class, oldprio, running);
4375 }
4376 task_rq_unlock(rq, &flags);
4377 }
4378
4379 #endif
4380
4381 void set_user_nice(struct task_struct *p, long nice)
4382 {
4383 int old_prio, delta, on_rq;
4384 unsigned long flags;
4385 struct rq *rq;
4386
4387 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4388 return;
4389 /*
4390 * We have to be careful, if called from sys_setpriority(),
4391 * the task might be in the middle of scheduling on another CPU.
4392 */
4393 rq = task_rq_lock(p, &flags);
4394 /*
4395 * The RT priorities are set via sched_setscheduler(), but we still
4396 * allow the 'normal' nice value to be set - but as expected
4397 * it wont have any effect on scheduling until the task is
4398 * SCHED_FIFO/SCHED_RR:
4399 */
4400 if (task_has_rt_policy(p)) {
4401 p->static_prio = NICE_TO_PRIO(nice);
4402 goto out_unlock;
4403 }
4404 on_rq = p->se.on_rq;
4405 if (on_rq)
4406 dequeue_task(rq, p, 0);
4407
4408 p->static_prio = NICE_TO_PRIO(nice);
4409 set_load_weight(p);
4410 old_prio = p->prio;
4411 p->prio = effective_prio(p);
4412 delta = p->prio - old_prio;
4413
4414 if (on_rq) {
4415 enqueue_task(rq, p, 0);
4416 /*
4417 * If the task increased its priority or is running and
4418 * lowered its priority, then reschedule its CPU:
4419 */
4420 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4421 resched_task(rq->curr);
4422 }
4423 out_unlock:
4424 task_rq_unlock(rq, &flags);
4425 }
4426 EXPORT_SYMBOL(set_user_nice);
4427
4428 /*
4429 * can_nice - check if a task can reduce its nice value
4430 * @p: task
4431 * @nice: nice value
4432 */
4433 int can_nice(const struct task_struct *p, const int nice)
4434 {
4435 /* convert nice value [19,-20] to rlimit style value [1,40] */
4436 int nice_rlim = 20 - nice;
4437
4438 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4439 capable(CAP_SYS_NICE));
4440 }
4441
4442 #ifdef __ARCH_WANT_SYS_NICE
4443
4444 /*
4445 * sys_nice - change the priority of the current process.
4446 * @increment: priority increment
4447 *
4448 * sys_setpriority is a more generic, but much slower function that
4449 * does similar things.
4450 */
4451 SYSCALL_DEFINE1(nice, int, increment)
4452 {
4453 long nice, retval;
4454
4455 /*
4456 * Setpriority might change our priority at the same moment.
4457 * We don't have to worry. Conceptually one call occurs first
4458 * and we have a single winner.
4459 */
4460 if (increment < -40)
4461 increment = -40;
4462 if (increment > 40)
4463 increment = 40;
4464
4465 nice = TASK_NICE(current) + increment;
4466 if (nice < -20)
4467 nice = -20;
4468 if (nice > 19)
4469 nice = 19;
4470
4471 if (increment < 0 && !can_nice(current, nice))
4472 return -EPERM;
4473
4474 retval = security_task_setnice(current, nice);
4475 if (retval)
4476 return retval;
4477
4478 set_user_nice(current, nice);
4479 return 0;
4480 }
4481
4482 #endif
4483
4484 /**
4485 * task_prio - return the priority value of a given task.
4486 * @p: the task in question.
4487 *
4488 * This is the priority value as seen by users in /proc.
4489 * RT tasks are offset by -200. Normal tasks are centered
4490 * around 0, value goes from -16 to +15.
4491 */
4492 int task_prio(const struct task_struct *p)
4493 {
4494 return p->prio - MAX_RT_PRIO;
4495 }
4496
4497 /**
4498 * task_nice - return the nice value of a given task.
4499 * @p: the task in question.
4500 */
4501 int task_nice(const struct task_struct *p)
4502 {
4503 return TASK_NICE(p);
4504 }
4505 EXPORT_SYMBOL(task_nice);
4506
4507 /**
4508 * idle_cpu - is a given cpu idle currently?
4509 * @cpu: the processor in question.
4510 */
4511 int idle_cpu(int cpu)
4512 {
4513 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4514 }
4515
4516 /**
4517 * idle_task - return the idle task for a given cpu.
4518 * @cpu: the processor in question.
4519 */
4520 struct task_struct *idle_task(int cpu)
4521 {
4522 return cpu_rq(cpu)->idle;
4523 }
4524
4525 /**
4526 * find_process_by_pid - find a process with a matching PID value.
4527 * @pid: the pid in question.
4528 */
4529 static struct task_struct *find_process_by_pid(pid_t pid)
4530 {
4531 return pid ? find_task_by_vpid(pid) : current;
4532 }
4533
4534 /* Actually do priority change: must hold rq lock. */
4535 static void
4536 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4537 {
4538 BUG_ON(p->se.on_rq);
4539
4540 p->policy = policy;
4541 p->rt_priority = prio;
4542 p->normal_prio = normal_prio(p);
4543 /* we are holding p->pi_lock already */
4544 p->prio = rt_mutex_getprio(p);
4545 if (rt_prio(p->prio))
4546 p->sched_class = &rt_sched_class;
4547 else
4548 p->sched_class = &fair_sched_class;
4549 set_load_weight(p);
4550 }
4551
4552 /*
4553 * check the target process has a UID that matches the current process's
4554 */
4555 static bool check_same_owner(struct task_struct *p)
4556 {
4557 const struct cred *cred = current_cred(), *pcred;
4558 bool match;
4559
4560 rcu_read_lock();
4561 pcred = __task_cred(p);
4562 match = (cred->euid == pcred->euid ||
4563 cred->euid == pcred->uid);
4564 rcu_read_unlock();
4565 return match;
4566 }
4567
4568 static int __sched_setscheduler(struct task_struct *p, int policy,
4569 struct sched_param *param, bool user)
4570 {
4571 int retval, oldprio, oldpolicy = -1, on_rq, running;
4572 unsigned long flags;
4573 const struct sched_class *prev_class;
4574 struct rq *rq;
4575 int reset_on_fork;
4576
4577 /* may grab non-irq protected spin_locks */
4578 BUG_ON(in_interrupt());
4579 recheck:
4580 /* double check policy once rq lock held */
4581 if (policy < 0) {
4582 reset_on_fork = p->sched_reset_on_fork;
4583 policy = oldpolicy = p->policy;
4584 } else {
4585 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4586 policy &= ~SCHED_RESET_ON_FORK;
4587
4588 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4589 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4590 policy != SCHED_IDLE)
4591 return -EINVAL;
4592 }
4593
4594 /*
4595 * Valid priorities for SCHED_FIFO and SCHED_RR are
4596 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4597 * SCHED_BATCH and SCHED_IDLE is 0.
4598 */
4599 if (param->sched_priority < 0 ||
4600 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4601 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4602 return -EINVAL;
4603 if (rt_policy(policy) != (param->sched_priority != 0))
4604 return -EINVAL;
4605
4606 /*
4607 * Allow unprivileged RT tasks to decrease priority:
4608 */
4609 if (user && !capable(CAP_SYS_NICE)) {
4610 if (rt_policy(policy)) {
4611 unsigned long rlim_rtprio =
4612 task_rlimit(p, RLIMIT_RTPRIO);
4613
4614 /* can't set/change the rt policy */
4615 if (policy != p->policy && !rlim_rtprio)
4616 return -EPERM;
4617
4618 /* can't increase priority */
4619 if (param->sched_priority > p->rt_priority &&
4620 param->sched_priority > rlim_rtprio)
4621 return -EPERM;
4622 }
4623 /*
4624 * Like positive nice levels, dont allow tasks to
4625 * move out of SCHED_IDLE either:
4626 */
4627 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4628 return -EPERM;
4629
4630 /* can't change other user's priorities */
4631 if (!check_same_owner(p))
4632 return -EPERM;
4633
4634 /* Normal users shall not reset the sched_reset_on_fork flag */
4635 if (p->sched_reset_on_fork && !reset_on_fork)
4636 return -EPERM;
4637 }
4638
4639 if (user) {
4640 retval = security_task_setscheduler(p, policy, param);
4641 if (retval)
4642 return retval;
4643 }
4644
4645 /*
4646 * make sure no PI-waiters arrive (or leave) while we are
4647 * changing the priority of the task:
4648 */
4649 raw_spin_lock_irqsave(&p->pi_lock, flags);
4650 /*
4651 * To be able to change p->policy safely, the apropriate
4652 * runqueue lock must be held.
4653 */
4654 rq = __task_rq_lock(p);
4655
4656 #ifdef CONFIG_RT_GROUP_SCHED
4657 if (user) {
4658 /*
4659 * Do not allow realtime tasks into groups that have no runtime
4660 * assigned.
4661 */
4662 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4663 task_group(p)->rt_bandwidth.rt_runtime == 0) {
4664 __task_rq_unlock(rq);
4665 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4666 return -EPERM;
4667 }
4668 }
4669 #endif
4670
4671 /* recheck policy now with rq lock held */
4672 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4673 policy = oldpolicy = -1;
4674 __task_rq_unlock(rq);
4675 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4676 goto recheck;
4677 }
4678 on_rq = p->se.on_rq;
4679 running = task_current(rq, p);
4680 if (on_rq)
4681 deactivate_task(rq, p, 0);
4682 if (running)
4683 p->sched_class->put_prev_task(rq, p);
4684
4685 p->sched_reset_on_fork = reset_on_fork;
4686
4687 oldprio = p->prio;
4688 prev_class = p->sched_class;
4689 __setscheduler(rq, p, policy, param->sched_priority);
4690
4691 if (running)
4692 p->sched_class->set_curr_task(rq);
4693 if (on_rq) {
4694 activate_task(rq, p, 0);
4695
4696 check_class_changed(rq, p, prev_class, oldprio, running);
4697 }
4698 __task_rq_unlock(rq);
4699 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4700
4701 rt_mutex_adjust_pi(p);
4702
4703 return 0;
4704 }
4705
4706 /**
4707 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4708 * @p: the task in question.
4709 * @policy: new policy.
4710 * @param: structure containing the new RT priority.
4711 *
4712 * NOTE that the task may be already dead.
4713 */
4714 int sched_setscheduler(struct task_struct *p, int policy,
4715 struct sched_param *param)
4716 {
4717 return __sched_setscheduler(p, policy, param, true);
4718 }
4719 EXPORT_SYMBOL_GPL(sched_setscheduler);
4720
4721 /**
4722 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4723 * @p: the task in question.
4724 * @policy: new policy.
4725 * @param: structure containing the new RT priority.
4726 *
4727 * Just like sched_setscheduler, only don't bother checking if the
4728 * current context has permission. For example, this is needed in
4729 * stop_machine(): we create temporary high priority worker threads,
4730 * but our caller might not have that capability.
4731 */
4732 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4733 struct sched_param *param)
4734 {
4735 return __sched_setscheduler(p, policy, param, false);
4736 }
4737
4738 static int
4739 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4740 {
4741 struct sched_param lparam;
4742 struct task_struct *p;
4743 int retval;
4744
4745 if (!param || pid < 0)
4746 return -EINVAL;
4747 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4748 return -EFAULT;
4749
4750 rcu_read_lock();
4751 retval = -ESRCH;
4752 p = find_process_by_pid(pid);
4753 if (p != NULL)
4754 retval = sched_setscheduler(p, policy, &lparam);
4755 rcu_read_unlock();
4756
4757 return retval;
4758 }
4759
4760 /**
4761 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4762 * @pid: the pid in question.
4763 * @policy: new policy.
4764 * @param: structure containing the new RT priority.
4765 */
4766 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4767 struct sched_param __user *, param)
4768 {
4769 /* negative values for policy are not valid */
4770 if (policy < 0)
4771 return -EINVAL;
4772
4773 return do_sched_setscheduler(pid, policy, param);
4774 }
4775
4776 /**
4777 * sys_sched_setparam - set/change the RT priority of a thread
4778 * @pid: the pid in question.
4779 * @param: structure containing the new RT priority.
4780 */
4781 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4782 {
4783 return do_sched_setscheduler(pid, -1, param);
4784 }
4785
4786 /**
4787 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4788 * @pid: the pid in question.
4789 */
4790 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4791 {
4792 struct task_struct *p;
4793 int retval;
4794
4795 if (pid < 0)
4796 return -EINVAL;
4797
4798 retval = -ESRCH;
4799 rcu_read_lock();
4800 p = find_process_by_pid(pid);
4801 if (p) {
4802 retval = security_task_getscheduler(p);
4803 if (!retval)
4804 retval = p->policy
4805 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4806 }
4807 rcu_read_unlock();
4808 return retval;
4809 }
4810
4811 /**
4812 * sys_sched_getparam - get the RT priority of a thread
4813 * @pid: the pid in question.
4814 * @param: structure containing the RT priority.
4815 */
4816 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4817 {
4818 struct sched_param lp;
4819 struct task_struct *p;
4820 int retval;
4821
4822 if (!param || pid < 0)
4823 return -EINVAL;
4824
4825 rcu_read_lock();
4826 p = find_process_by_pid(pid);
4827 retval = -ESRCH;
4828 if (!p)
4829 goto out_unlock;
4830
4831 retval = security_task_getscheduler(p);
4832 if (retval)
4833 goto out_unlock;
4834
4835 lp.sched_priority = p->rt_priority;
4836 rcu_read_unlock();
4837
4838 /*
4839 * This one might sleep, we cannot do it with a spinlock held ...
4840 */
4841 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4842
4843 return retval;
4844
4845 out_unlock:
4846 rcu_read_unlock();
4847 return retval;
4848 }
4849
4850 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4851 {
4852 cpumask_var_t cpus_allowed, new_mask;
4853 struct task_struct *p;
4854 int retval;
4855
4856 get_online_cpus();
4857 rcu_read_lock();
4858
4859 p = find_process_by_pid(pid);
4860 if (!p) {
4861 rcu_read_unlock();
4862 put_online_cpus();
4863 return -ESRCH;
4864 }
4865
4866 /* Prevent p going away */
4867 get_task_struct(p);
4868 rcu_read_unlock();
4869
4870 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4871 retval = -ENOMEM;
4872 goto out_put_task;
4873 }
4874 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4875 retval = -ENOMEM;
4876 goto out_free_cpus_allowed;
4877 }
4878 retval = -EPERM;
4879 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4880 goto out_unlock;
4881
4882 retval = security_task_setscheduler(p, 0, NULL);
4883 if (retval)
4884 goto out_unlock;
4885
4886 cpuset_cpus_allowed(p, cpus_allowed);
4887 cpumask_and(new_mask, in_mask, cpus_allowed);
4888 again:
4889 retval = set_cpus_allowed_ptr(p, new_mask);
4890
4891 if (!retval) {
4892 cpuset_cpus_allowed(p, cpus_allowed);
4893 if (!cpumask_subset(new_mask, cpus_allowed)) {
4894 /*
4895 * We must have raced with a concurrent cpuset
4896 * update. Just reset the cpus_allowed to the
4897 * cpuset's cpus_allowed
4898 */
4899 cpumask_copy(new_mask, cpus_allowed);
4900 goto again;
4901 }
4902 }
4903 out_unlock:
4904 free_cpumask_var(new_mask);
4905 out_free_cpus_allowed:
4906 free_cpumask_var(cpus_allowed);
4907 out_put_task:
4908 put_task_struct(p);
4909 put_online_cpus();
4910 return retval;
4911 }
4912
4913 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4914 struct cpumask *new_mask)
4915 {
4916 if (len < cpumask_size())
4917 cpumask_clear(new_mask);
4918 else if (len > cpumask_size())
4919 len = cpumask_size();
4920
4921 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4922 }
4923
4924 /**
4925 * sys_sched_setaffinity - set the cpu affinity of a process
4926 * @pid: pid of the process
4927 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4928 * @user_mask_ptr: user-space pointer to the new cpu mask
4929 */
4930 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4931 unsigned long __user *, user_mask_ptr)
4932 {
4933 cpumask_var_t new_mask;
4934 int retval;
4935
4936 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4937 return -ENOMEM;
4938
4939 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4940 if (retval == 0)
4941 retval = sched_setaffinity(pid, new_mask);
4942 free_cpumask_var(new_mask);
4943 return retval;
4944 }
4945
4946 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4947 {
4948 struct task_struct *p;
4949 unsigned long flags;
4950 struct rq *rq;
4951 int retval;
4952
4953 get_online_cpus();
4954 rcu_read_lock();
4955
4956 retval = -ESRCH;
4957 p = find_process_by_pid(pid);
4958 if (!p)
4959 goto out_unlock;
4960
4961 retval = security_task_getscheduler(p);
4962 if (retval)
4963 goto out_unlock;
4964
4965 rq = task_rq_lock(p, &flags);
4966 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4967 task_rq_unlock(rq, &flags);
4968
4969 out_unlock:
4970 rcu_read_unlock();
4971 put_online_cpus();
4972
4973 return retval;
4974 }
4975
4976 /**
4977 * sys_sched_getaffinity - get the cpu affinity of a process
4978 * @pid: pid of the process
4979 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4980 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4981 */
4982 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4983 unsigned long __user *, user_mask_ptr)
4984 {
4985 int ret;
4986 cpumask_var_t mask;
4987
4988 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4989 return -EINVAL;
4990 if (len & (sizeof(unsigned long)-1))
4991 return -EINVAL;
4992
4993 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4994 return -ENOMEM;
4995
4996 ret = sched_getaffinity(pid, mask);
4997 if (ret == 0) {
4998 size_t retlen = min_t(size_t, len, cpumask_size());
4999
5000 if (copy_to_user(user_mask_ptr, mask, retlen))
5001 ret = -EFAULT;
5002 else
5003 ret = retlen;
5004 }
5005 free_cpumask_var(mask);
5006
5007 return ret;
5008 }
5009
5010 /**
5011 * sys_sched_yield - yield the current processor to other threads.
5012 *
5013 * This function yields the current CPU to other tasks. If there are no
5014 * other threads running on this CPU then this function will return.
5015 */
5016 SYSCALL_DEFINE0(sched_yield)
5017 {
5018 struct rq *rq = this_rq_lock();
5019
5020 schedstat_inc(rq, yld_count);
5021 current->sched_class->yield_task(rq);
5022
5023 /*
5024 * Since we are going to call schedule() anyway, there's
5025 * no need to preempt or enable interrupts:
5026 */
5027 __release(rq->lock);
5028 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5029 do_raw_spin_unlock(&rq->lock);
5030 preempt_enable_no_resched();
5031
5032 schedule();
5033
5034 return 0;
5035 }
5036
5037 static inline int should_resched(void)
5038 {
5039 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5040 }
5041
5042 static void __cond_resched(void)
5043 {
5044 add_preempt_count(PREEMPT_ACTIVE);
5045 schedule();
5046 sub_preempt_count(PREEMPT_ACTIVE);
5047 }
5048
5049 int __sched _cond_resched(void)
5050 {
5051 if (should_resched()) {
5052 __cond_resched();
5053 return 1;
5054 }
5055 return 0;
5056 }
5057 EXPORT_SYMBOL(_cond_resched);
5058
5059 /*
5060 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5061 * call schedule, and on return reacquire the lock.
5062 *
5063 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5064 * operations here to prevent schedule() from being called twice (once via
5065 * spin_unlock(), once by hand).
5066 */
5067 int __cond_resched_lock(spinlock_t *lock)
5068 {
5069 int resched = should_resched();
5070 int ret = 0;
5071
5072 lockdep_assert_held(lock);
5073
5074 if (spin_needbreak(lock) || resched) {
5075 spin_unlock(lock);
5076 if (resched)
5077 __cond_resched();
5078 else
5079 cpu_relax();
5080 ret = 1;
5081 spin_lock(lock);
5082 }
5083 return ret;
5084 }
5085 EXPORT_SYMBOL(__cond_resched_lock);
5086
5087 int __sched __cond_resched_softirq(void)
5088 {
5089 BUG_ON(!in_softirq());
5090
5091 if (should_resched()) {
5092 local_bh_enable();
5093 __cond_resched();
5094 local_bh_disable();
5095 return 1;
5096 }
5097 return 0;
5098 }
5099 EXPORT_SYMBOL(__cond_resched_softirq);
5100
5101 /**
5102 * yield - yield the current processor to other threads.
5103 *
5104 * This is a shortcut for kernel-space yielding - it marks the
5105 * thread runnable and calls sys_sched_yield().
5106 */
5107 void __sched yield(void)
5108 {
5109 set_current_state(TASK_RUNNING);
5110 sys_sched_yield();
5111 }
5112 EXPORT_SYMBOL(yield);
5113
5114 /*
5115 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5116 * that process accounting knows that this is a task in IO wait state.
5117 */
5118 void __sched io_schedule(void)
5119 {
5120 struct rq *rq = raw_rq();
5121
5122 delayacct_blkio_start();
5123 atomic_inc(&rq->nr_iowait);
5124 current->in_iowait = 1;
5125 schedule();
5126 current->in_iowait = 0;
5127 atomic_dec(&rq->nr_iowait);
5128 delayacct_blkio_end();
5129 }
5130 EXPORT_SYMBOL(io_schedule);
5131
5132 long __sched io_schedule_timeout(long timeout)
5133 {
5134 struct rq *rq = raw_rq();
5135 long ret;
5136
5137 delayacct_blkio_start();
5138 atomic_inc(&rq->nr_iowait);
5139 current->in_iowait = 1;
5140 ret = schedule_timeout(timeout);
5141 current->in_iowait = 0;
5142 atomic_dec(&rq->nr_iowait);
5143 delayacct_blkio_end();
5144 return ret;
5145 }
5146
5147 /**
5148 * sys_sched_get_priority_max - return maximum RT priority.
5149 * @policy: scheduling class.
5150 *
5151 * this syscall returns the maximum rt_priority that can be used
5152 * by a given scheduling class.
5153 */
5154 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5155 {
5156 int ret = -EINVAL;
5157
5158 switch (policy) {
5159 case SCHED_FIFO:
5160 case SCHED_RR:
5161 ret = MAX_USER_RT_PRIO-1;
5162 break;
5163 case SCHED_NORMAL:
5164 case SCHED_BATCH:
5165 case SCHED_IDLE:
5166 ret = 0;
5167 break;
5168 }
5169 return ret;
5170 }
5171
5172 /**
5173 * sys_sched_get_priority_min - return minimum RT priority.
5174 * @policy: scheduling class.
5175 *
5176 * this syscall returns the minimum rt_priority that can be used
5177 * by a given scheduling class.
5178 */
5179 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5180 {
5181 int ret = -EINVAL;
5182
5183 switch (policy) {
5184 case SCHED_FIFO:
5185 case SCHED_RR:
5186 ret = 1;
5187 break;
5188 case SCHED_NORMAL:
5189 case SCHED_BATCH:
5190 case SCHED_IDLE:
5191 ret = 0;
5192 }
5193 return ret;
5194 }
5195
5196 /**
5197 * sys_sched_rr_get_interval - return the default timeslice of a process.
5198 * @pid: pid of the process.
5199 * @interval: userspace pointer to the timeslice value.
5200 *
5201 * this syscall writes the default timeslice value of a given process
5202 * into the user-space timespec buffer. A value of '0' means infinity.
5203 */
5204 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5205 struct timespec __user *, interval)
5206 {
5207 struct task_struct *p;
5208 unsigned int time_slice;
5209 unsigned long flags;
5210 struct rq *rq;
5211 int retval;
5212 struct timespec t;
5213
5214 if (pid < 0)
5215 return -EINVAL;
5216
5217 retval = -ESRCH;
5218 rcu_read_lock();
5219 p = find_process_by_pid(pid);
5220 if (!p)
5221 goto out_unlock;
5222
5223 retval = security_task_getscheduler(p);
5224 if (retval)
5225 goto out_unlock;
5226
5227 rq = task_rq_lock(p, &flags);
5228 time_slice = p->sched_class->get_rr_interval(rq, p);
5229 task_rq_unlock(rq, &flags);
5230
5231 rcu_read_unlock();
5232 jiffies_to_timespec(time_slice, &t);
5233 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5234 return retval;
5235
5236 out_unlock:
5237 rcu_read_unlock();
5238 return retval;
5239 }
5240
5241 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5242
5243 void sched_show_task(struct task_struct *p)
5244 {
5245 unsigned long free = 0;
5246 unsigned state;
5247
5248 state = p->state ? __ffs(p->state) + 1 : 0;
5249 printk(KERN_INFO "%-13.13s %c", p->comm,
5250 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5251 #if BITS_PER_LONG == 32
5252 if (state == TASK_RUNNING)
5253 printk(KERN_CONT " running ");
5254 else
5255 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5256 #else
5257 if (state == TASK_RUNNING)
5258 printk(KERN_CONT " running task ");
5259 else
5260 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5261 #endif
5262 #ifdef CONFIG_DEBUG_STACK_USAGE
5263 free = stack_not_used(p);
5264 #endif
5265 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5266 task_pid_nr(p), task_pid_nr(p->real_parent),
5267 (unsigned long)task_thread_info(p)->flags);
5268
5269 show_stack(p, NULL);
5270 }
5271
5272 void show_state_filter(unsigned long state_filter)
5273 {
5274 struct task_struct *g, *p;
5275
5276 #if BITS_PER_LONG == 32
5277 printk(KERN_INFO
5278 " task PC stack pid father\n");
5279 #else
5280 printk(KERN_INFO
5281 " task PC stack pid father\n");
5282 #endif
5283 read_lock(&tasklist_lock);
5284 do_each_thread(g, p) {
5285 /*
5286 * reset the NMI-timeout, listing all files on a slow
5287 * console might take alot of time:
5288 */
5289 touch_nmi_watchdog();
5290 if (!state_filter || (p->state & state_filter))
5291 sched_show_task(p);
5292 } while_each_thread(g, p);
5293
5294 touch_all_softlockup_watchdogs();
5295
5296 #ifdef CONFIG_SCHED_DEBUG
5297 sysrq_sched_debug_show();
5298 #endif
5299 read_unlock(&tasklist_lock);
5300 /*
5301 * Only show locks if all tasks are dumped:
5302 */
5303 if (!state_filter)
5304 debug_show_all_locks();
5305 }
5306
5307 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5308 {
5309 idle->sched_class = &idle_sched_class;
5310 }
5311
5312 /**
5313 * init_idle - set up an idle thread for a given CPU
5314 * @idle: task in question
5315 * @cpu: cpu the idle task belongs to
5316 *
5317 * NOTE: this function does not set the idle thread's NEED_RESCHED
5318 * flag, to make booting more robust.
5319 */
5320 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5321 {
5322 struct rq *rq = cpu_rq(cpu);
5323 unsigned long flags;
5324
5325 raw_spin_lock_irqsave(&rq->lock, flags);
5326
5327 __sched_fork(idle);
5328 idle->state = TASK_RUNNING;
5329 idle->se.exec_start = sched_clock();
5330
5331 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5332 __set_task_cpu(idle, cpu);
5333
5334 rq->curr = rq->idle = idle;
5335 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5336 idle->oncpu = 1;
5337 #endif
5338 raw_spin_unlock_irqrestore(&rq->lock, flags);
5339
5340 /* Set the preempt count _outside_ the spinlocks! */
5341 #if defined(CONFIG_PREEMPT)
5342 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5343 #else
5344 task_thread_info(idle)->preempt_count = 0;
5345 #endif
5346 /*
5347 * The idle tasks have their own, simple scheduling class:
5348 */
5349 idle->sched_class = &idle_sched_class;
5350 ftrace_graph_init_task(idle);
5351 }
5352
5353 /*
5354 * In a system that switches off the HZ timer nohz_cpu_mask
5355 * indicates which cpus entered this state. This is used
5356 * in the rcu update to wait only for active cpus. For system
5357 * which do not switch off the HZ timer nohz_cpu_mask should
5358 * always be CPU_BITS_NONE.
5359 */
5360 cpumask_var_t nohz_cpu_mask;
5361
5362 /*
5363 * Increase the granularity value when there are more CPUs,
5364 * because with more CPUs the 'effective latency' as visible
5365 * to users decreases. But the relationship is not linear,
5366 * so pick a second-best guess by going with the log2 of the
5367 * number of CPUs.
5368 *
5369 * This idea comes from the SD scheduler of Con Kolivas:
5370 */
5371 static int get_update_sysctl_factor(void)
5372 {
5373 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5374 unsigned int factor;
5375
5376 switch (sysctl_sched_tunable_scaling) {
5377 case SCHED_TUNABLESCALING_NONE:
5378 factor = 1;
5379 break;
5380 case SCHED_TUNABLESCALING_LINEAR:
5381 factor = cpus;
5382 break;
5383 case SCHED_TUNABLESCALING_LOG:
5384 default:
5385 factor = 1 + ilog2(cpus);
5386 break;
5387 }
5388
5389 return factor;
5390 }
5391
5392 static void update_sysctl(void)
5393 {
5394 unsigned int factor = get_update_sysctl_factor();
5395
5396 #define SET_SYSCTL(name) \
5397 (sysctl_##name = (factor) * normalized_sysctl_##name)
5398 SET_SYSCTL(sched_min_granularity);
5399 SET_SYSCTL(sched_latency);
5400 SET_SYSCTL(sched_wakeup_granularity);
5401 SET_SYSCTL(sched_shares_ratelimit);
5402 #undef SET_SYSCTL
5403 }
5404
5405 static inline void sched_init_granularity(void)
5406 {
5407 update_sysctl();
5408 }
5409
5410 #ifdef CONFIG_SMP
5411 /*
5412 * This is how migration works:
5413 *
5414 * 1) we invoke migration_cpu_stop() on the target CPU using
5415 * stop_one_cpu().
5416 * 2) stopper starts to run (implicitly forcing the migrated thread
5417 * off the CPU)
5418 * 3) it checks whether the migrated task is still in the wrong runqueue.
5419 * 4) if it's in the wrong runqueue then the migration thread removes
5420 * it and puts it into the right queue.
5421 * 5) stopper completes and stop_one_cpu() returns and the migration
5422 * is done.
5423 */
5424
5425 /*
5426 * Change a given task's CPU affinity. Migrate the thread to a
5427 * proper CPU and schedule it away if the CPU it's executing on
5428 * is removed from the allowed bitmask.
5429 *
5430 * NOTE: the caller must have a valid reference to the task, the
5431 * task must not exit() & deallocate itself prematurely. The
5432 * call is not atomic; no spinlocks may be held.
5433 */
5434 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5435 {
5436 unsigned long flags;
5437 struct rq *rq;
5438 unsigned int dest_cpu;
5439 int ret = 0;
5440
5441 /*
5442 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5443 * drop the rq->lock and still rely on ->cpus_allowed.
5444 */
5445 again:
5446 while (task_is_waking(p))
5447 cpu_relax();
5448 rq = task_rq_lock(p, &flags);
5449 if (task_is_waking(p)) {
5450 task_rq_unlock(rq, &flags);
5451 goto again;
5452 }
5453
5454 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5455 ret = -EINVAL;
5456 goto out;
5457 }
5458
5459 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5460 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5461 ret = -EINVAL;
5462 goto out;
5463 }
5464
5465 if (p->sched_class->set_cpus_allowed)
5466 p->sched_class->set_cpus_allowed(p, new_mask);
5467 else {
5468 cpumask_copy(&p->cpus_allowed, new_mask);
5469 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5470 }
5471
5472 /* Can the task run on the task's current CPU? If so, we're done */
5473 if (cpumask_test_cpu(task_cpu(p), new_mask))
5474 goto out;
5475
5476 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5477 if (migrate_task(p, dest_cpu)) {
5478 struct migration_arg arg = { p, dest_cpu };
5479 /* Need help from migration thread: drop lock and wait. */
5480 task_rq_unlock(rq, &flags);
5481 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5482 tlb_migrate_finish(p->mm);
5483 return 0;
5484 }
5485 out:
5486 task_rq_unlock(rq, &flags);
5487
5488 return ret;
5489 }
5490 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5491
5492 /*
5493 * Move (not current) task off this cpu, onto dest cpu. We're doing
5494 * this because either it can't run here any more (set_cpus_allowed()
5495 * away from this CPU, or CPU going down), or because we're
5496 * attempting to rebalance this task on exec (sched_exec).
5497 *
5498 * So we race with normal scheduler movements, but that's OK, as long
5499 * as the task is no longer on this CPU.
5500 *
5501 * Returns non-zero if task was successfully migrated.
5502 */
5503 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5504 {
5505 struct rq *rq_dest, *rq_src;
5506 int ret = 0;
5507
5508 if (unlikely(!cpu_active(dest_cpu)))
5509 return ret;
5510
5511 rq_src = cpu_rq(src_cpu);
5512 rq_dest = cpu_rq(dest_cpu);
5513
5514 double_rq_lock(rq_src, rq_dest);
5515 /* Already moved. */
5516 if (task_cpu(p) != src_cpu)
5517 goto done;
5518 /* Affinity changed (again). */
5519 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5520 goto fail;
5521
5522 /*
5523 * If we're not on a rq, the next wake-up will ensure we're
5524 * placed properly.
5525 */
5526 if (p->se.on_rq) {
5527 deactivate_task(rq_src, p, 0);
5528 set_task_cpu(p, dest_cpu);
5529 activate_task(rq_dest, p, 0);
5530 check_preempt_curr(rq_dest, p, 0);
5531 }
5532 done:
5533 ret = 1;
5534 fail:
5535 double_rq_unlock(rq_src, rq_dest);
5536 return ret;
5537 }
5538
5539 /*
5540 * migration_cpu_stop - this will be executed by a highprio stopper thread
5541 * and performs thread migration by bumping thread off CPU then
5542 * 'pushing' onto another runqueue.
5543 */
5544 static int migration_cpu_stop(void *data)
5545 {
5546 struct migration_arg *arg = data;
5547
5548 /*
5549 * The original target cpu might have gone down and we might
5550 * be on another cpu but it doesn't matter.
5551 */
5552 local_irq_disable();
5553 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5554 local_irq_enable();
5555 return 0;
5556 }
5557
5558 #ifdef CONFIG_HOTPLUG_CPU
5559 /*
5560 * Figure out where task on dead CPU should go, use force if necessary.
5561 */
5562 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5563 {
5564 struct rq *rq = cpu_rq(dead_cpu);
5565 int needs_cpu, uninitialized_var(dest_cpu);
5566 unsigned long flags;
5567
5568 local_irq_save(flags);
5569
5570 raw_spin_lock(&rq->lock);
5571 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5572 if (needs_cpu)
5573 dest_cpu = select_fallback_rq(dead_cpu, p);
5574 raw_spin_unlock(&rq->lock);
5575 /*
5576 * It can only fail if we race with set_cpus_allowed(),
5577 * in the racer should migrate the task anyway.
5578 */
5579 if (needs_cpu)
5580 __migrate_task(p, dead_cpu, dest_cpu);
5581 local_irq_restore(flags);
5582 }
5583
5584 /*
5585 * While a dead CPU has no uninterruptible tasks queued at this point,
5586 * it might still have a nonzero ->nr_uninterruptible counter, because
5587 * for performance reasons the counter is not stricly tracking tasks to
5588 * their home CPUs. So we just add the counter to another CPU's counter,
5589 * to keep the global sum constant after CPU-down:
5590 */
5591 static void migrate_nr_uninterruptible(struct rq *rq_src)
5592 {
5593 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5594 unsigned long flags;
5595
5596 local_irq_save(flags);
5597 double_rq_lock(rq_src, rq_dest);
5598 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5599 rq_src->nr_uninterruptible = 0;
5600 double_rq_unlock(rq_src, rq_dest);
5601 local_irq_restore(flags);
5602 }
5603
5604 /* Run through task list and migrate tasks from the dead cpu. */
5605 static void migrate_live_tasks(int src_cpu)
5606 {
5607 struct task_struct *p, *t;
5608
5609 read_lock(&tasklist_lock);
5610
5611 do_each_thread(t, p) {
5612 if (p == current)
5613 continue;
5614
5615 if (task_cpu(p) == src_cpu)
5616 move_task_off_dead_cpu(src_cpu, p);
5617 } while_each_thread(t, p);
5618
5619 read_unlock(&tasklist_lock);
5620 }
5621
5622 /*
5623 * Schedules idle task to be the next runnable task on current CPU.
5624 * It does so by boosting its priority to highest possible.
5625 * Used by CPU offline code.
5626 */
5627 void sched_idle_next(void)
5628 {
5629 int this_cpu = smp_processor_id();
5630 struct rq *rq = cpu_rq(this_cpu);
5631 struct task_struct *p = rq->idle;
5632 unsigned long flags;
5633
5634 /* cpu has to be offline */
5635 BUG_ON(cpu_online(this_cpu));
5636
5637 /*
5638 * Strictly not necessary since rest of the CPUs are stopped by now
5639 * and interrupts disabled on the current cpu.
5640 */
5641 raw_spin_lock_irqsave(&rq->lock, flags);
5642
5643 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5644
5645 activate_task(rq, p, 0);
5646
5647 raw_spin_unlock_irqrestore(&rq->lock, flags);
5648 }
5649
5650 /*
5651 * Ensures that the idle task is using init_mm right before its cpu goes
5652 * offline.
5653 */
5654 void idle_task_exit(void)
5655 {
5656 struct mm_struct *mm = current->active_mm;
5657
5658 BUG_ON(cpu_online(smp_processor_id()));
5659
5660 if (mm != &init_mm)
5661 switch_mm(mm, &init_mm, current);
5662 mmdrop(mm);
5663 }
5664
5665 /* called under rq->lock with disabled interrupts */
5666 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5667 {
5668 struct rq *rq = cpu_rq(dead_cpu);
5669
5670 /* Must be exiting, otherwise would be on tasklist. */
5671 BUG_ON(!p->exit_state);
5672
5673 /* Cannot have done final schedule yet: would have vanished. */
5674 BUG_ON(p->state == TASK_DEAD);
5675
5676 get_task_struct(p);
5677
5678 /*
5679 * Drop lock around migration; if someone else moves it,
5680 * that's OK. No task can be added to this CPU, so iteration is
5681 * fine.
5682 */
5683 raw_spin_unlock_irq(&rq->lock);
5684 move_task_off_dead_cpu(dead_cpu, p);
5685 raw_spin_lock_irq(&rq->lock);
5686
5687 put_task_struct(p);
5688 }
5689
5690 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5691 static void migrate_dead_tasks(unsigned int dead_cpu)
5692 {
5693 struct rq *rq = cpu_rq(dead_cpu);
5694 struct task_struct *next;
5695
5696 for ( ; ; ) {
5697 if (!rq->nr_running)
5698 break;
5699 next = pick_next_task(rq);
5700 if (!next)
5701 break;
5702 next->sched_class->put_prev_task(rq, next);
5703 migrate_dead(dead_cpu, next);
5704
5705 }
5706 }
5707
5708 /*
5709 * remove the tasks which were accounted by rq from calc_load_tasks.
5710 */
5711 static void calc_global_load_remove(struct rq *rq)
5712 {
5713 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5714 rq->calc_load_active = 0;
5715 }
5716 #endif /* CONFIG_HOTPLUG_CPU */
5717
5718 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5719
5720 static struct ctl_table sd_ctl_dir[] = {
5721 {
5722 .procname = "sched_domain",
5723 .mode = 0555,
5724 },
5725 {}
5726 };
5727
5728 static struct ctl_table sd_ctl_root[] = {
5729 {
5730 .procname = "kernel",
5731 .mode = 0555,
5732 .child = sd_ctl_dir,
5733 },
5734 {}
5735 };
5736
5737 static struct ctl_table *sd_alloc_ctl_entry(int n)
5738 {
5739 struct ctl_table *entry =
5740 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5741
5742 return entry;
5743 }
5744
5745 static void sd_free_ctl_entry(struct ctl_table **tablep)
5746 {
5747 struct ctl_table *entry;
5748
5749 /*
5750 * In the intermediate directories, both the child directory and
5751 * procname are dynamically allocated and could fail but the mode
5752 * will always be set. In the lowest directory the names are
5753 * static strings and all have proc handlers.
5754 */
5755 for (entry = *tablep; entry->mode; entry++) {
5756 if (entry->child)
5757 sd_free_ctl_entry(&entry->child);
5758 if (entry->proc_handler == NULL)
5759 kfree(entry->procname);
5760 }
5761
5762 kfree(*tablep);
5763 *tablep = NULL;
5764 }
5765
5766 static void
5767 set_table_entry(struct ctl_table *entry,
5768 const char *procname, void *data, int maxlen,
5769 mode_t mode, proc_handler *proc_handler)
5770 {
5771 entry->procname = procname;
5772 entry->data = data;
5773 entry->maxlen = maxlen;
5774 entry->mode = mode;
5775 entry->proc_handler = proc_handler;
5776 }
5777
5778 static struct ctl_table *
5779 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5780 {
5781 struct ctl_table *table = sd_alloc_ctl_entry(13);
5782
5783 if (table == NULL)
5784 return NULL;
5785
5786 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5787 sizeof(long), 0644, proc_doulongvec_minmax);
5788 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5789 sizeof(long), 0644, proc_doulongvec_minmax);
5790 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5791 sizeof(int), 0644, proc_dointvec_minmax);
5792 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5793 sizeof(int), 0644, proc_dointvec_minmax);
5794 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5795 sizeof(int), 0644, proc_dointvec_minmax);
5796 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5797 sizeof(int), 0644, proc_dointvec_minmax);
5798 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5799 sizeof(int), 0644, proc_dointvec_minmax);
5800 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5801 sizeof(int), 0644, proc_dointvec_minmax);
5802 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5803 sizeof(int), 0644, proc_dointvec_minmax);
5804 set_table_entry(&table[9], "cache_nice_tries",
5805 &sd->cache_nice_tries,
5806 sizeof(int), 0644, proc_dointvec_minmax);
5807 set_table_entry(&table[10], "flags", &sd->flags,
5808 sizeof(int), 0644, proc_dointvec_minmax);
5809 set_table_entry(&table[11], "name", sd->name,
5810 CORENAME_MAX_SIZE, 0444, proc_dostring);
5811 /* &table[12] is terminator */
5812
5813 return table;
5814 }
5815
5816 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5817 {
5818 struct ctl_table *entry, *table;
5819 struct sched_domain *sd;
5820 int domain_num = 0, i;
5821 char buf[32];
5822
5823 for_each_domain(cpu, sd)
5824 domain_num++;
5825 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5826 if (table == NULL)
5827 return NULL;
5828
5829 i = 0;
5830 for_each_domain(cpu, sd) {
5831 snprintf(buf, 32, "domain%d", i);
5832 entry->procname = kstrdup(buf, GFP_KERNEL);
5833 entry->mode = 0555;
5834 entry->child = sd_alloc_ctl_domain_table(sd);
5835 entry++;
5836 i++;
5837 }
5838 return table;
5839 }
5840
5841 static struct ctl_table_header *sd_sysctl_header;
5842 static void register_sched_domain_sysctl(void)
5843 {
5844 int i, cpu_num = num_possible_cpus();
5845 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5846 char buf[32];
5847
5848 WARN_ON(sd_ctl_dir[0].child);
5849 sd_ctl_dir[0].child = entry;
5850
5851 if (entry == NULL)
5852 return;
5853
5854 for_each_possible_cpu(i) {
5855 snprintf(buf, 32, "cpu%d", i);
5856 entry->procname = kstrdup(buf, GFP_KERNEL);
5857 entry->mode = 0555;
5858 entry->child = sd_alloc_ctl_cpu_table(i);
5859 entry++;
5860 }
5861
5862 WARN_ON(sd_sysctl_header);
5863 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5864 }
5865
5866 /* may be called multiple times per register */
5867 static void unregister_sched_domain_sysctl(void)
5868 {
5869 if (sd_sysctl_header)
5870 unregister_sysctl_table(sd_sysctl_header);
5871 sd_sysctl_header = NULL;
5872 if (sd_ctl_dir[0].child)
5873 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5874 }
5875 #else
5876 static void register_sched_domain_sysctl(void)
5877 {
5878 }
5879 static void unregister_sched_domain_sysctl(void)
5880 {
5881 }
5882 #endif
5883
5884 static void set_rq_online(struct rq *rq)
5885 {
5886 if (!rq->online) {
5887 const struct sched_class *class;
5888
5889 cpumask_set_cpu(rq->cpu, rq->rd->online);
5890 rq->online = 1;
5891
5892 for_each_class(class) {
5893 if (class->rq_online)
5894 class->rq_online(rq);
5895 }
5896 }
5897 }
5898
5899 static void set_rq_offline(struct rq *rq)
5900 {
5901 if (rq->online) {
5902 const struct sched_class *class;
5903
5904 for_each_class(class) {
5905 if (class->rq_offline)
5906 class->rq_offline(rq);
5907 }
5908
5909 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5910 rq->online = 0;
5911 }
5912 }
5913
5914 /*
5915 * migration_call - callback that gets triggered when a CPU is added.
5916 * Here we can start up the necessary migration thread for the new CPU.
5917 */
5918 static int __cpuinit
5919 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5920 {
5921 int cpu = (long)hcpu;
5922 unsigned long flags;
5923 struct rq *rq = cpu_rq(cpu);
5924
5925 switch (action) {
5926
5927 case CPU_UP_PREPARE:
5928 case CPU_UP_PREPARE_FROZEN:
5929 rq->calc_load_update = calc_load_update;
5930 break;
5931
5932 case CPU_ONLINE:
5933 case CPU_ONLINE_FROZEN:
5934 /* Update our root-domain */
5935 raw_spin_lock_irqsave(&rq->lock, flags);
5936 if (rq->rd) {
5937 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5938
5939 set_rq_online(rq);
5940 }
5941 raw_spin_unlock_irqrestore(&rq->lock, flags);
5942 break;
5943
5944 #ifdef CONFIG_HOTPLUG_CPU
5945 case CPU_DEAD:
5946 case CPU_DEAD_FROZEN:
5947 migrate_live_tasks(cpu);
5948 /* Idle task back to normal (off runqueue, low prio) */
5949 raw_spin_lock_irq(&rq->lock);
5950 deactivate_task(rq, rq->idle, 0);
5951 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5952 rq->idle->sched_class = &idle_sched_class;
5953 migrate_dead_tasks(cpu);
5954 raw_spin_unlock_irq(&rq->lock);
5955 migrate_nr_uninterruptible(rq);
5956 BUG_ON(rq->nr_running != 0);
5957 calc_global_load_remove(rq);
5958 break;
5959
5960 case CPU_DYING:
5961 case CPU_DYING_FROZEN:
5962 /* Update our root-domain */
5963 raw_spin_lock_irqsave(&rq->lock, flags);
5964 if (rq->rd) {
5965 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5966 set_rq_offline(rq);
5967 }
5968 raw_spin_unlock_irqrestore(&rq->lock, flags);
5969 break;
5970 #endif
5971 }
5972 return NOTIFY_OK;
5973 }
5974
5975 /*
5976 * Register at high priority so that task migration (migrate_all_tasks)
5977 * happens before everything else. This has to be lower priority than
5978 * the notifier in the perf_event subsystem, though.
5979 */
5980 static struct notifier_block __cpuinitdata migration_notifier = {
5981 .notifier_call = migration_call,
5982 .priority = CPU_PRI_MIGRATION,
5983 };
5984
5985 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5986 unsigned long action, void *hcpu)
5987 {
5988 switch (action & ~CPU_TASKS_FROZEN) {
5989 case CPU_ONLINE:
5990 case CPU_DOWN_FAILED:
5991 set_cpu_active((long)hcpu, true);
5992 return NOTIFY_OK;
5993 default:
5994 return NOTIFY_DONE;
5995 }
5996 }
5997
5998 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5999 unsigned long action, void *hcpu)
6000 {
6001 switch (action & ~CPU_TASKS_FROZEN) {
6002 case CPU_DOWN_PREPARE:
6003 set_cpu_active((long)hcpu, false);
6004 return NOTIFY_OK;
6005 default:
6006 return NOTIFY_DONE;
6007 }
6008 }
6009
6010 static int __init migration_init(void)
6011 {
6012 void *cpu = (void *)(long)smp_processor_id();
6013 int err;
6014
6015 /* Initialize migration for the boot CPU */
6016 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6017 BUG_ON(err == NOTIFY_BAD);
6018 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6019 register_cpu_notifier(&migration_notifier);
6020
6021 /* Register cpu active notifiers */
6022 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6023 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6024
6025 return 0;
6026 }
6027 early_initcall(migration_init);
6028 #endif
6029
6030 #ifdef CONFIG_SMP
6031
6032 #ifdef CONFIG_SCHED_DEBUG
6033
6034 static __read_mostly int sched_domain_debug_enabled;
6035
6036 static int __init sched_domain_debug_setup(char *str)
6037 {
6038 sched_domain_debug_enabled = 1;
6039
6040 return 0;
6041 }
6042 early_param("sched_debug", sched_domain_debug_setup);
6043
6044 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6045 struct cpumask *groupmask)
6046 {
6047 struct sched_group *group = sd->groups;
6048 char str[256];
6049
6050 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6051 cpumask_clear(groupmask);
6052
6053 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6054
6055 if (!(sd->flags & SD_LOAD_BALANCE)) {
6056 printk("does not load-balance\n");
6057 if (sd->parent)
6058 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6059 " has parent");
6060 return -1;
6061 }
6062
6063 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6064
6065 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6066 printk(KERN_ERR "ERROR: domain->span does not contain "
6067 "CPU%d\n", cpu);
6068 }
6069 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6070 printk(KERN_ERR "ERROR: domain->groups does not contain"
6071 " CPU%d\n", cpu);
6072 }
6073
6074 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6075 do {
6076 if (!group) {
6077 printk("\n");
6078 printk(KERN_ERR "ERROR: group is NULL\n");
6079 break;
6080 }
6081
6082 if (!group->cpu_power) {
6083 printk(KERN_CONT "\n");
6084 printk(KERN_ERR "ERROR: domain->cpu_power not "
6085 "set\n");
6086 break;
6087 }
6088
6089 if (!cpumask_weight(sched_group_cpus(group))) {
6090 printk(KERN_CONT "\n");
6091 printk(KERN_ERR "ERROR: empty group\n");
6092 break;
6093 }
6094
6095 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6096 printk(KERN_CONT "\n");
6097 printk(KERN_ERR "ERROR: repeated CPUs\n");
6098 break;
6099 }
6100
6101 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6102
6103 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6104
6105 printk(KERN_CONT " %s", str);
6106 if (group->cpu_power != SCHED_LOAD_SCALE) {
6107 printk(KERN_CONT " (cpu_power = %d)",
6108 group->cpu_power);
6109 }
6110
6111 group = group->next;
6112 } while (group != sd->groups);
6113 printk(KERN_CONT "\n");
6114
6115 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6116 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6117
6118 if (sd->parent &&
6119 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6120 printk(KERN_ERR "ERROR: parent span is not a superset "
6121 "of domain->span\n");
6122 return 0;
6123 }
6124
6125 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6126 {
6127 cpumask_var_t groupmask;
6128 int level = 0;
6129
6130 if (!sched_domain_debug_enabled)
6131 return;
6132
6133 if (!sd) {
6134 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6135 return;
6136 }
6137
6138 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6139
6140 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6141 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6142 return;
6143 }
6144
6145 for (;;) {
6146 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6147 break;
6148 level++;
6149 sd = sd->parent;
6150 if (!sd)
6151 break;
6152 }
6153 free_cpumask_var(groupmask);
6154 }
6155 #else /* !CONFIG_SCHED_DEBUG */
6156 # define sched_domain_debug(sd, cpu) do { } while (0)
6157 #endif /* CONFIG_SCHED_DEBUG */
6158
6159 static int sd_degenerate(struct sched_domain *sd)
6160 {
6161 if (cpumask_weight(sched_domain_span(sd)) == 1)
6162 return 1;
6163
6164 /* Following flags need at least 2 groups */
6165 if (sd->flags & (SD_LOAD_BALANCE |
6166 SD_BALANCE_NEWIDLE |
6167 SD_BALANCE_FORK |
6168 SD_BALANCE_EXEC |
6169 SD_SHARE_CPUPOWER |
6170 SD_SHARE_PKG_RESOURCES)) {
6171 if (sd->groups != sd->groups->next)
6172 return 0;
6173 }
6174
6175 /* Following flags don't use groups */
6176 if (sd->flags & (SD_WAKE_AFFINE))
6177 return 0;
6178
6179 return 1;
6180 }
6181
6182 static int
6183 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6184 {
6185 unsigned long cflags = sd->flags, pflags = parent->flags;
6186
6187 if (sd_degenerate(parent))
6188 return 1;
6189
6190 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6191 return 0;
6192
6193 /* Flags needing groups don't count if only 1 group in parent */
6194 if (parent->groups == parent->groups->next) {
6195 pflags &= ~(SD_LOAD_BALANCE |
6196 SD_BALANCE_NEWIDLE |
6197 SD_BALANCE_FORK |
6198 SD_BALANCE_EXEC |
6199 SD_SHARE_CPUPOWER |
6200 SD_SHARE_PKG_RESOURCES);
6201 if (nr_node_ids == 1)
6202 pflags &= ~SD_SERIALIZE;
6203 }
6204 if (~cflags & pflags)
6205 return 0;
6206
6207 return 1;
6208 }
6209
6210 static void free_rootdomain(struct root_domain *rd)
6211 {
6212 synchronize_sched();
6213
6214 cpupri_cleanup(&rd->cpupri);
6215
6216 free_cpumask_var(rd->rto_mask);
6217 free_cpumask_var(rd->online);
6218 free_cpumask_var(rd->span);
6219 kfree(rd);
6220 }
6221
6222 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6223 {
6224 struct root_domain *old_rd = NULL;
6225 unsigned long flags;
6226
6227 raw_spin_lock_irqsave(&rq->lock, flags);
6228
6229 if (rq->rd) {
6230 old_rd = rq->rd;
6231
6232 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6233 set_rq_offline(rq);
6234
6235 cpumask_clear_cpu(rq->cpu, old_rd->span);
6236
6237 /*
6238 * If we dont want to free the old_rt yet then
6239 * set old_rd to NULL to skip the freeing later
6240 * in this function:
6241 */
6242 if (!atomic_dec_and_test(&old_rd->refcount))
6243 old_rd = NULL;
6244 }
6245
6246 atomic_inc(&rd->refcount);
6247 rq->rd = rd;
6248
6249 cpumask_set_cpu(rq->cpu, rd->span);
6250 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6251 set_rq_online(rq);
6252
6253 raw_spin_unlock_irqrestore(&rq->lock, flags);
6254
6255 if (old_rd)
6256 free_rootdomain(old_rd);
6257 }
6258
6259 static int init_rootdomain(struct root_domain *rd)
6260 {
6261 memset(rd, 0, sizeof(*rd));
6262
6263 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6264 goto out;
6265 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6266 goto free_span;
6267 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6268 goto free_online;
6269
6270 if (cpupri_init(&rd->cpupri) != 0)
6271 goto free_rto_mask;
6272 return 0;
6273
6274 free_rto_mask:
6275 free_cpumask_var(rd->rto_mask);
6276 free_online:
6277 free_cpumask_var(rd->online);
6278 free_span:
6279 free_cpumask_var(rd->span);
6280 out:
6281 return -ENOMEM;
6282 }
6283
6284 static void init_defrootdomain(void)
6285 {
6286 init_rootdomain(&def_root_domain);
6287
6288 atomic_set(&def_root_domain.refcount, 1);
6289 }
6290
6291 static struct root_domain *alloc_rootdomain(void)
6292 {
6293 struct root_domain *rd;
6294
6295 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6296 if (!rd)
6297 return NULL;
6298
6299 if (init_rootdomain(rd) != 0) {
6300 kfree(rd);
6301 return NULL;
6302 }
6303
6304 return rd;
6305 }
6306
6307 /*
6308 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6309 * hold the hotplug lock.
6310 */
6311 static void
6312 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6313 {
6314 struct rq *rq = cpu_rq(cpu);
6315 struct sched_domain *tmp;
6316
6317 for (tmp = sd; tmp; tmp = tmp->parent)
6318 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6319
6320 /* Remove the sched domains which do not contribute to scheduling. */
6321 for (tmp = sd; tmp; ) {
6322 struct sched_domain *parent = tmp->parent;
6323 if (!parent)
6324 break;
6325
6326 if (sd_parent_degenerate(tmp, parent)) {
6327 tmp->parent = parent->parent;
6328 if (parent->parent)
6329 parent->parent->child = tmp;
6330 } else
6331 tmp = tmp->parent;
6332 }
6333
6334 if (sd && sd_degenerate(sd)) {
6335 sd = sd->parent;
6336 if (sd)
6337 sd->child = NULL;
6338 }
6339
6340 sched_domain_debug(sd, cpu);
6341
6342 rq_attach_root(rq, rd);
6343 rcu_assign_pointer(rq->sd, sd);
6344 }
6345
6346 /* cpus with isolated domains */
6347 static cpumask_var_t cpu_isolated_map;
6348
6349 /* Setup the mask of cpus configured for isolated domains */
6350 static int __init isolated_cpu_setup(char *str)
6351 {
6352 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6353 cpulist_parse(str, cpu_isolated_map);
6354 return 1;
6355 }
6356
6357 __setup("isolcpus=", isolated_cpu_setup);
6358
6359 /*
6360 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6361 * to a function which identifies what group(along with sched group) a CPU
6362 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6363 * (due to the fact that we keep track of groups covered with a struct cpumask).
6364 *
6365 * init_sched_build_groups will build a circular linked list of the groups
6366 * covered by the given span, and will set each group's ->cpumask correctly,
6367 * and ->cpu_power to 0.
6368 */
6369 static void
6370 init_sched_build_groups(const struct cpumask *span,
6371 const struct cpumask *cpu_map,
6372 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6373 struct sched_group **sg,
6374 struct cpumask *tmpmask),
6375 struct cpumask *covered, struct cpumask *tmpmask)
6376 {
6377 struct sched_group *first = NULL, *last = NULL;
6378 int i;
6379
6380 cpumask_clear(covered);
6381
6382 for_each_cpu(i, span) {
6383 struct sched_group *sg;
6384 int group = group_fn(i, cpu_map, &sg, tmpmask);
6385 int j;
6386
6387 if (cpumask_test_cpu(i, covered))
6388 continue;
6389
6390 cpumask_clear(sched_group_cpus(sg));
6391 sg->cpu_power = 0;
6392
6393 for_each_cpu(j, span) {
6394 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6395 continue;
6396
6397 cpumask_set_cpu(j, covered);
6398 cpumask_set_cpu(j, sched_group_cpus(sg));
6399 }
6400 if (!first)
6401 first = sg;
6402 if (last)
6403 last->next = sg;
6404 last = sg;
6405 }
6406 last->next = first;
6407 }
6408
6409 #define SD_NODES_PER_DOMAIN 16
6410
6411 #ifdef CONFIG_NUMA
6412
6413 /**
6414 * find_next_best_node - find the next node to include in a sched_domain
6415 * @node: node whose sched_domain we're building
6416 * @used_nodes: nodes already in the sched_domain
6417 *
6418 * Find the next node to include in a given scheduling domain. Simply
6419 * finds the closest node not already in the @used_nodes map.
6420 *
6421 * Should use nodemask_t.
6422 */
6423 static int find_next_best_node(int node, nodemask_t *used_nodes)
6424 {
6425 int i, n, val, min_val, best_node = 0;
6426
6427 min_val = INT_MAX;
6428
6429 for (i = 0; i < nr_node_ids; i++) {
6430 /* Start at @node */
6431 n = (node + i) % nr_node_ids;
6432
6433 if (!nr_cpus_node(n))
6434 continue;
6435
6436 /* Skip already used nodes */
6437 if (node_isset(n, *used_nodes))
6438 continue;
6439
6440 /* Simple min distance search */
6441 val = node_distance(node, n);
6442
6443 if (val < min_val) {
6444 min_val = val;
6445 best_node = n;
6446 }
6447 }
6448
6449 node_set(best_node, *used_nodes);
6450 return best_node;
6451 }
6452
6453 /**
6454 * sched_domain_node_span - get a cpumask for a node's sched_domain
6455 * @node: node whose cpumask we're constructing
6456 * @span: resulting cpumask
6457 *
6458 * Given a node, construct a good cpumask for its sched_domain to span. It
6459 * should be one that prevents unnecessary balancing, but also spreads tasks
6460 * out optimally.
6461 */
6462 static void sched_domain_node_span(int node, struct cpumask *span)
6463 {
6464 nodemask_t used_nodes;
6465 int i;
6466
6467 cpumask_clear(span);
6468 nodes_clear(used_nodes);
6469
6470 cpumask_or(span, span, cpumask_of_node(node));
6471 node_set(node, used_nodes);
6472
6473 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6474 int next_node = find_next_best_node(node, &used_nodes);
6475
6476 cpumask_or(span, span, cpumask_of_node(next_node));
6477 }
6478 }
6479 #endif /* CONFIG_NUMA */
6480
6481 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6482
6483 /*
6484 * The cpus mask in sched_group and sched_domain hangs off the end.
6485 *
6486 * ( See the the comments in include/linux/sched.h:struct sched_group
6487 * and struct sched_domain. )
6488 */
6489 struct static_sched_group {
6490 struct sched_group sg;
6491 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6492 };
6493
6494 struct static_sched_domain {
6495 struct sched_domain sd;
6496 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6497 };
6498
6499 struct s_data {
6500 #ifdef CONFIG_NUMA
6501 int sd_allnodes;
6502 cpumask_var_t domainspan;
6503 cpumask_var_t covered;
6504 cpumask_var_t notcovered;
6505 #endif
6506 cpumask_var_t nodemask;
6507 cpumask_var_t this_sibling_map;
6508 cpumask_var_t this_core_map;
6509 cpumask_var_t this_book_map;
6510 cpumask_var_t send_covered;
6511 cpumask_var_t tmpmask;
6512 struct sched_group **sched_group_nodes;
6513 struct root_domain *rd;
6514 };
6515
6516 enum s_alloc {
6517 sa_sched_groups = 0,
6518 sa_rootdomain,
6519 sa_tmpmask,
6520 sa_send_covered,
6521 sa_this_book_map,
6522 sa_this_core_map,
6523 sa_this_sibling_map,
6524 sa_nodemask,
6525 sa_sched_group_nodes,
6526 #ifdef CONFIG_NUMA
6527 sa_notcovered,
6528 sa_covered,
6529 sa_domainspan,
6530 #endif
6531 sa_none,
6532 };
6533
6534 /*
6535 * SMT sched-domains:
6536 */
6537 #ifdef CONFIG_SCHED_SMT
6538 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6539 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6540
6541 static int
6542 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6543 struct sched_group **sg, struct cpumask *unused)
6544 {
6545 if (sg)
6546 *sg = &per_cpu(sched_groups, cpu).sg;
6547 return cpu;
6548 }
6549 #endif /* CONFIG_SCHED_SMT */
6550
6551 /*
6552 * multi-core sched-domains:
6553 */
6554 #ifdef CONFIG_SCHED_MC
6555 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6556 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6557
6558 static int
6559 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6560 struct sched_group **sg, struct cpumask *mask)
6561 {
6562 int group;
6563 #ifdef CONFIG_SCHED_SMT
6564 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6565 group = cpumask_first(mask);
6566 #else
6567 group = cpu;
6568 #endif
6569 if (sg)
6570 *sg = &per_cpu(sched_group_core, group).sg;
6571 return group;
6572 }
6573 #endif /* CONFIG_SCHED_MC */
6574
6575 /*
6576 * book sched-domains:
6577 */
6578 #ifdef CONFIG_SCHED_BOOK
6579 static DEFINE_PER_CPU(struct static_sched_domain, book_domains);
6580 static DEFINE_PER_CPU(struct static_sched_group, sched_group_book);
6581
6582 static int
6583 cpu_to_book_group(int cpu, const struct cpumask *cpu_map,
6584 struct sched_group **sg, struct cpumask *mask)
6585 {
6586 int group = cpu;
6587 #ifdef CONFIG_SCHED_MC
6588 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6589 group = cpumask_first(mask);
6590 #elif defined(CONFIG_SCHED_SMT)
6591 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6592 group = cpumask_first(mask);
6593 #endif
6594 if (sg)
6595 *sg = &per_cpu(sched_group_book, group).sg;
6596 return group;
6597 }
6598 #endif /* CONFIG_SCHED_BOOK */
6599
6600 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6601 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6602
6603 static int
6604 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6605 struct sched_group **sg, struct cpumask *mask)
6606 {
6607 int group;
6608 #ifdef CONFIG_SCHED_BOOK
6609 cpumask_and(mask, cpu_book_mask(cpu), cpu_map);
6610 group = cpumask_first(mask);
6611 #elif defined(CONFIG_SCHED_MC)
6612 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6613 group = cpumask_first(mask);
6614 #elif defined(CONFIG_SCHED_SMT)
6615 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6616 group = cpumask_first(mask);
6617 #else
6618 group = cpu;
6619 #endif
6620 if (sg)
6621 *sg = &per_cpu(sched_group_phys, group).sg;
6622 return group;
6623 }
6624
6625 #ifdef CONFIG_NUMA
6626 /*
6627 * The init_sched_build_groups can't handle what we want to do with node
6628 * groups, so roll our own. Now each node has its own list of groups which
6629 * gets dynamically allocated.
6630 */
6631 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6632 static struct sched_group ***sched_group_nodes_bycpu;
6633
6634 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6635 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6636
6637 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6638 struct sched_group **sg,
6639 struct cpumask *nodemask)
6640 {
6641 int group;
6642
6643 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6644 group = cpumask_first(nodemask);
6645
6646 if (sg)
6647 *sg = &per_cpu(sched_group_allnodes, group).sg;
6648 return group;
6649 }
6650
6651 static void init_numa_sched_groups_power(struct sched_group *group_head)
6652 {
6653 struct sched_group *sg = group_head;
6654 int j;
6655
6656 if (!sg)
6657 return;
6658 do {
6659 for_each_cpu(j, sched_group_cpus(sg)) {
6660 struct sched_domain *sd;
6661
6662 sd = &per_cpu(phys_domains, j).sd;
6663 if (j != group_first_cpu(sd->groups)) {
6664 /*
6665 * Only add "power" once for each
6666 * physical package.
6667 */
6668 continue;
6669 }
6670
6671 sg->cpu_power += sd->groups->cpu_power;
6672 }
6673 sg = sg->next;
6674 } while (sg != group_head);
6675 }
6676
6677 static int build_numa_sched_groups(struct s_data *d,
6678 const struct cpumask *cpu_map, int num)
6679 {
6680 struct sched_domain *sd;
6681 struct sched_group *sg, *prev;
6682 int n, j;
6683
6684 cpumask_clear(d->covered);
6685 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6686 if (cpumask_empty(d->nodemask)) {
6687 d->sched_group_nodes[num] = NULL;
6688 goto out;
6689 }
6690
6691 sched_domain_node_span(num, d->domainspan);
6692 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6693
6694 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6695 GFP_KERNEL, num);
6696 if (!sg) {
6697 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6698 num);
6699 return -ENOMEM;
6700 }
6701 d->sched_group_nodes[num] = sg;
6702
6703 for_each_cpu(j, d->nodemask) {
6704 sd = &per_cpu(node_domains, j).sd;
6705 sd->groups = sg;
6706 }
6707
6708 sg->cpu_power = 0;
6709 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6710 sg->next = sg;
6711 cpumask_or(d->covered, d->covered, d->nodemask);
6712
6713 prev = sg;
6714 for (j = 0; j < nr_node_ids; j++) {
6715 n = (num + j) % nr_node_ids;
6716 cpumask_complement(d->notcovered, d->covered);
6717 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6718 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6719 if (cpumask_empty(d->tmpmask))
6720 break;
6721 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6722 if (cpumask_empty(d->tmpmask))
6723 continue;
6724 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6725 GFP_KERNEL, num);
6726 if (!sg) {
6727 printk(KERN_WARNING
6728 "Can not alloc domain group for node %d\n", j);
6729 return -ENOMEM;
6730 }
6731 sg->cpu_power = 0;
6732 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6733 sg->next = prev->next;
6734 cpumask_or(d->covered, d->covered, d->tmpmask);
6735 prev->next = sg;
6736 prev = sg;
6737 }
6738 out:
6739 return 0;
6740 }
6741 #endif /* CONFIG_NUMA */
6742
6743 #ifdef CONFIG_NUMA
6744 /* Free memory allocated for various sched_group structures */
6745 static void free_sched_groups(const struct cpumask *cpu_map,
6746 struct cpumask *nodemask)
6747 {
6748 int cpu, i;
6749
6750 for_each_cpu(cpu, cpu_map) {
6751 struct sched_group **sched_group_nodes
6752 = sched_group_nodes_bycpu[cpu];
6753
6754 if (!sched_group_nodes)
6755 continue;
6756
6757 for (i = 0; i < nr_node_ids; i++) {
6758 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6759
6760 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6761 if (cpumask_empty(nodemask))
6762 continue;
6763
6764 if (sg == NULL)
6765 continue;
6766 sg = sg->next;
6767 next_sg:
6768 oldsg = sg;
6769 sg = sg->next;
6770 kfree(oldsg);
6771 if (oldsg != sched_group_nodes[i])
6772 goto next_sg;
6773 }
6774 kfree(sched_group_nodes);
6775 sched_group_nodes_bycpu[cpu] = NULL;
6776 }
6777 }
6778 #else /* !CONFIG_NUMA */
6779 static void free_sched_groups(const struct cpumask *cpu_map,
6780 struct cpumask *nodemask)
6781 {
6782 }
6783 #endif /* CONFIG_NUMA */
6784
6785 /*
6786 * Initialize sched groups cpu_power.
6787 *
6788 * cpu_power indicates the capacity of sched group, which is used while
6789 * distributing the load between different sched groups in a sched domain.
6790 * Typically cpu_power for all the groups in a sched domain will be same unless
6791 * there are asymmetries in the topology. If there are asymmetries, group
6792 * having more cpu_power will pickup more load compared to the group having
6793 * less cpu_power.
6794 */
6795 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6796 {
6797 struct sched_domain *child;
6798 struct sched_group *group;
6799 long power;
6800 int weight;
6801
6802 WARN_ON(!sd || !sd->groups);
6803
6804 if (cpu != group_first_cpu(sd->groups))
6805 return;
6806
6807 child = sd->child;
6808
6809 sd->groups->cpu_power = 0;
6810
6811 if (!child) {
6812 power = SCHED_LOAD_SCALE;
6813 weight = cpumask_weight(sched_domain_span(sd));
6814 /*
6815 * SMT siblings share the power of a single core.
6816 * Usually multiple threads get a better yield out of
6817 * that one core than a single thread would have,
6818 * reflect that in sd->smt_gain.
6819 */
6820 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6821 power *= sd->smt_gain;
6822 power /= weight;
6823 power >>= SCHED_LOAD_SHIFT;
6824 }
6825 sd->groups->cpu_power += power;
6826 return;
6827 }
6828
6829 /*
6830 * Add cpu_power of each child group to this groups cpu_power.
6831 */
6832 group = child->groups;
6833 do {
6834 sd->groups->cpu_power += group->cpu_power;
6835 group = group->next;
6836 } while (group != child->groups);
6837 }
6838
6839 /*
6840 * Initializers for schedule domains
6841 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6842 */
6843
6844 #ifdef CONFIG_SCHED_DEBUG
6845 # define SD_INIT_NAME(sd, type) sd->name = #type
6846 #else
6847 # define SD_INIT_NAME(sd, type) do { } while (0)
6848 #endif
6849
6850 #define SD_INIT(sd, type) sd_init_##type(sd)
6851
6852 #define SD_INIT_FUNC(type) \
6853 static noinline void sd_init_##type(struct sched_domain *sd) \
6854 { \
6855 memset(sd, 0, sizeof(*sd)); \
6856 *sd = SD_##type##_INIT; \
6857 sd->level = SD_LV_##type; \
6858 SD_INIT_NAME(sd, type); \
6859 }
6860
6861 SD_INIT_FUNC(CPU)
6862 #ifdef CONFIG_NUMA
6863 SD_INIT_FUNC(ALLNODES)
6864 SD_INIT_FUNC(NODE)
6865 #endif
6866 #ifdef CONFIG_SCHED_SMT
6867 SD_INIT_FUNC(SIBLING)
6868 #endif
6869 #ifdef CONFIG_SCHED_MC
6870 SD_INIT_FUNC(MC)
6871 #endif
6872 #ifdef CONFIG_SCHED_BOOK
6873 SD_INIT_FUNC(BOOK)
6874 #endif
6875
6876 static int default_relax_domain_level = -1;
6877
6878 static int __init setup_relax_domain_level(char *str)
6879 {
6880 unsigned long val;
6881
6882 val = simple_strtoul(str, NULL, 0);
6883 if (val < SD_LV_MAX)
6884 default_relax_domain_level = val;
6885
6886 return 1;
6887 }
6888 __setup("relax_domain_level=", setup_relax_domain_level);
6889
6890 static void set_domain_attribute(struct sched_domain *sd,
6891 struct sched_domain_attr *attr)
6892 {
6893 int request;
6894
6895 if (!attr || attr->relax_domain_level < 0) {
6896 if (default_relax_domain_level < 0)
6897 return;
6898 else
6899 request = default_relax_domain_level;
6900 } else
6901 request = attr->relax_domain_level;
6902 if (request < sd->level) {
6903 /* turn off idle balance on this domain */
6904 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6905 } else {
6906 /* turn on idle balance on this domain */
6907 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6908 }
6909 }
6910
6911 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6912 const struct cpumask *cpu_map)
6913 {
6914 switch (what) {
6915 case sa_sched_groups:
6916 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6917 d->sched_group_nodes = NULL;
6918 case sa_rootdomain:
6919 free_rootdomain(d->rd); /* fall through */
6920 case sa_tmpmask:
6921 free_cpumask_var(d->tmpmask); /* fall through */
6922 case sa_send_covered:
6923 free_cpumask_var(d->send_covered); /* fall through */
6924 case sa_this_book_map:
6925 free_cpumask_var(d->this_book_map); /* fall through */
6926 case sa_this_core_map:
6927 free_cpumask_var(d->this_core_map); /* fall through */
6928 case sa_this_sibling_map:
6929 free_cpumask_var(d->this_sibling_map); /* fall through */
6930 case sa_nodemask:
6931 free_cpumask_var(d->nodemask); /* fall through */
6932 case sa_sched_group_nodes:
6933 #ifdef CONFIG_NUMA
6934 kfree(d->sched_group_nodes); /* fall through */
6935 case sa_notcovered:
6936 free_cpumask_var(d->notcovered); /* fall through */
6937 case sa_covered:
6938 free_cpumask_var(d->covered); /* fall through */
6939 case sa_domainspan:
6940 free_cpumask_var(d->domainspan); /* fall through */
6941 #endif
6942 case sa_none:
6943 break;
6944 }
6945 }
6946
6947 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6948 const struct cpumask *cpu_map)
6949 {
6950 #ifdef CONFIG_NUMA
6951 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6952 return sa_none;
6953 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6954 return sa_domainspan;
6955 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6956 return sa_covered;
6957 /* Allocate the per-node list of sched groups */
6958 d->sched_group_nodes = kcalloc(nr_node_ids,
6959 sizeof(struct sched_group *), GFP_KERNEL);
6960 if (!d->sched_group_nodes) {
6961 printk(KERN_WARNING "Can not alloc sched group node list\n");
6962 return sa_notcovered;
6963 }
6964 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6965 #endif
6966 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6967 return sa_sched_group_nodes;
6968 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6969 return sa_nodemask;
6970 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6971 return sa_this_sibling_map;
6972 if (!alloc_cpumask_var(&d->this_book_map, GFP_KERNEL))
6973 return sa_this_core_map;
6974 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6975 return sa_this_book_map;
6976 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6977 return sa_send_covered;
6978 d->rd = alloc_rootdomain();
6979 if (!d->rd) {
6980 printk(KERN_WARNING "Cannot alloc root domain\n");
6981 return sa_tmpmask;
6982 }
6983 return sa_rootdomain;
6984 }
6985
6986 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6987 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6988 {
6989 struct sched_domain *sd = NULL;
6990 #ifdef CONFIG_NUMA
6991 struct sched_domain *parent;
6992
6993 d->sd_allnodes = 0;
6994 if (cpumask_weight(cpu_map) >
6995 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6996 sd = &per_cpu(allnodes_domains, i).sd;
6997 SD_INIT(sd, ALLNODES);
6998 set_domain_attribute(sd, attr);
6999 cpumask_copy(sched_domain_span(sd), cpu_map);
7000 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
7001 d->sd_allnodes = 1;
7002 }
7003 parent = sd;
7004
7005 sd = &per_cpu(node_domains, i).sd;
7006 SD_INIT(sd, NODE);
7007 set_domain_attribute(sd, attr);
7008 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
7009 sd->parent = parent;
7010 if (parent)
7011 parent->child = sd;
7012 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
7013 #endif
7014 return sd;
7015 }
7016
7017 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
7018 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7019 struct sched_domain *parent, int i)
7020 {
7021 struct sched_domain *sd;
7022 sd = &per_cpu(phys_domains, i).sd;
7023 SD_INIT(sd, CPU);
7024 set_domain_attribute(sd, attr);
7025 cpumask_copy(sched_domain_span(sd), d->nodemask);
7026 sd->parent = parent;
7027 if (parent)
7028 parent->child = sd;
7029 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
7030 return sd;
7031 }
7032
7033 static struct sched_domain *__build_book_sched_domain(struct s_data *d,
7034 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7035 struct sched_domain *parent, int i)
7036 {
7037 struct sched_domain *sd = parent;
7038 #ifdef CONFIG_SCHED_BOOK
7039 sd = &per_cpu(book_domains, i).sd;
7040 SD_INIT(sd, BOOK);
7041 set_domain_attribute(sd, attr);
7042 cpumask_and(sched_domain_span(sd), cpu_map, cpu_book_mask(i));
7043 sd->parent = parent;
7044 parent->child = sd;
7045 cpu_to_book_group(i, cpu_map, &sd->groups, d->tmpmask);
7046 #endif
7047 return sd;
7048 }
7049
7050 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
7051 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7052 struct sched_domain *parent, int i)
7053 {
7054 struct sched_domain *sd = parent;
7055 #ifdef CONFIG_SCHED_MC
7056 sd = &per_cpu(core_domains, i).sd;
7057 SD_INIT(sd, MC);
7058 set_domain_attribute(sd, attr);
7059 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
7060 sd->parent = parent;
7061 parent->child = sd;
7062 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
7063 #endif
7064 return sd;
7065 }
7066
7067 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
7068 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
7069 struct sched_domain *parent, int i)
7070 {
7071 struct sched_domain *sd = parent;
7072 #ifdef CONFIG_SCHED_SMT
7073 sd = &per_cpu(cpu_domains, i).sd;
7074 SD_INIT(sd, SIBLING);
7075 set_domain_attribute(sd, attr);
7076 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
7077 sd->parent = parent;
7078 parent->child = sd;
7079 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
7080 #endif
7081 return sd;
7082 }
7083
7084 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
7085 const struct cpumask *cpu_map, int cpu)
7086 {
7087 switch (l) {
7088 #ifdef CONFIG_SCHED_SMT
7089 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
7090 cpumask_and(d->this_sibling_map, cpu_map,
7091 topology_thread_cpumask(cpu));
7092 if (cpu == cpumask_first(d->this_sibling_map))
7093 init_sched_build_groups(d->this_sibling_map, cpu_map,
7094 &cpu_to_cpu_group,
7095 d->send_covered, d->tmpmask);
7096 break;
7097 #endif
7098 #ifdef CONFIG_SCHED_MC
7099 case SD_LV_MC: /* set up multi-core groups */
7100 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
7101 if (cpu == cpumask_first(d->this_core_map))
7102 init_sched_build_groups(d->this_core_map, cpu_map,
7103 &cpu_to_core_group,
7104 d->send_covered, d->tmpmask);
7105 break;
7106 #endif
7107 #ifdef CONFIG_SCHED_BOOK
7108 case SD_LV_BOOK: /* set up book groups */
7109 cpumask_and(d->this_book_map, cpu_map, cpu_book_mask(cpu));
7110 if (cpu == cpumask_first(d->this_book_map))
7111 init_sched_build_groups(d->this_book_map, cpu_map,
7112 &cpu_to_book_group,
7113 d->send_covered, d->tmpmask);
7114 break;
7115 #endif
7116 case SD_LV_CPU: /* set up physical groups */
7117 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
7118 if (!cpumask_empty(d->nodemask))
7119 init_sched_build_groups(d->nodemask, cpu_map,
7120 &cpu_to_phys_group,
7121 d->send_covered, d->tmpmask);
7122 break;
7123 #ifdef CONFIG_NUMA
7124 case SD_LV_ALLNODES:
7125 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
7126 d->send_covered, d->tmpmask);
7127 break;
7128 #endif
7129 default:
7130 break;
7131 }
7132 }
7133
7134 /*
7135 * Build sched domains for a given set of cpus and attach the sched domains
7136 * to the individual cpus
7137 */
7138 static int __build_sched_domains(const struct cpumask *cpu_map,
7139 struct sched_domain_attr *attr)
7140 {
7141 enum s_alloc alloc_state = sa_none;
7142 struct s_data d;
7143 struct sched_domain *sd;
7144 int i;
7145 #ifdef CONFIG_NUMA
7146 d.sd_allnodes = 0;
7147 #endif
7148
7149 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7150 if (alloc_state != sa_rootdomain)
7151 goto error;
7152 alloc_state = sa_sched_groups;
7153
7154 /*
7155 * Set up domains for cpus specified by the cpu_map.
7156 */
7157 for_each_cpu(i, cpu_map) {
7158 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7159 cpu_map);
7160
7161 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7162 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7163 sd = __build_book_sched_domain(&d, cpu_map, attr, sd, i);
7164 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7165 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7166 }
7167
7168 for_each_cpu(i, cpu_map) {
7169 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7170 build_sched_groups(&d, SD_LV_BOOK, cpu_map, i);
7171 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7172 }
7173
7174 /* Set up physical groups */
7175 for (i = 0; i < nr_node_ids; i++)
7176 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7177
7178 #ifdef CONFIG_NUMA
7179 /* Set up node groups */
7180 if (d.sd_allnodes)
7181 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7182
7183 for (i = 0; i < nr_node_ids; i++)
7184 if (build_numa_sched_groups(&d, cpu_map, i))
7185 goto error;
7186 #endif
7187
7188 /* Calculate CPU power for physical packages and nodes */
7189 #ifdef CONFIG_SCHED_SMT
7190 for_each_cpu(i, cpu_map) {
7191 sd = &per_cpu(cpu_domains, i).sd;
7192 init_sched_groups_power(i, sd);
7193 }
7194 #endif
7195 #ifdef CONFIG_SCHED_MC
7196 for_each_cpu(i, cpu_map) {
7197 sd = &per_cpu(core_domains, i).sd;
7198 init_sched_groups_power(i, sd);
7199 }
7200 #endif
7201 #ifdef CONFIG_SCHED_BOOK
7202 for_each_cpu(i, cpu_map) {
7203 sd = &per_cpu(book_domains, i).sd;
7204 init_sched_groups_power(i, sd);
7205 }
7206 #endif
7207
7208 for_each_cpu(i, cpu_map) {
7209 sd = &per_cpu(phys_domains, i).sd;
7210 init_sched_groups_power(i, sd);
7211 }
7212
7213 #ifdef CONFIG_NUMA
7214 for (i = 0; i < nr_node_ids; i++)
7215 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7216
7217 if (d.sd_allnodes) {
7218 struct sched_group *sg;
7219
7220 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7221 d.tmpmask);
7222 init_numa_sched_groups_power(sg);
7223 }
7224 #endif
7225
7226 /* Attach the domains */
7227 for_each_cpu(i, cpu_map) {
7228 #ifdef CONFIG_SCHED_SMT
7229 sd = &per_cpu(cpu_domains, i).sd;
7230 #elif defined(CONFIG_SCHED_MC)
7231 sd = &per_cpu(core_domains, i).sd;
7232 #elif defined(CONFIG_SCHED_BOOK)
7233 sd = &per_cpu(book_domains, i).sd;
7234 #else
7235 sd = &per_cpu(phys_domains, i).sd;
7236 #endif
7237 cpu_attach_domain(sd, d.rd, i);
7238 }
7239
7240 d.sched_group_nodes = NULL; /* don't free this we still need it */
7241 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7242 return 0;
7243
7244 error:
7245 __free_domain_allocs(&d, alloc_state, cpu_map);
7246 return -ENOMEM;
7247 }
7248
7249 static int build_sched_domains(const struct cpumask *cpu_map)
7250 {
7251 return __build_sched_domains(cpu_map, NULL);
7252 }
7253
7254 static cpumask_var_t *doms_cur; /* current sched domains */
7255 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7256 static struct sched_domain_attr *dattr_cur;
7257 /* attribues of custom domains in 'doms_cur' */
7258
7259 /*
7260 * Special case: If a kmalloc of a doms_cur partition (array of
7261 * cpumask) fails, then fallback to a single sched domain,
7262 * as determined by the single cpumask fallback_doms.
7263 */
7264 static cpumask_var_t fallback_doms;
7265
7266 /*
7267 * arch_update_cpu_topology lets virtualized architectures update the
7268 * cpu core maps. It is supposed to return 1 if the topology changed
7269 * or 0 if it stayed the same.
7270 */
7271 int __attribute__((weak)) arch_update_cpu_topology(void)
7272 {
7273 return 0;
7274 }
7275
7276 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7277 {
7278 int i;
7279 cpumask_var_t *doms;
7280
7281 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7282 if (!doms)
7283 return NULL;
7284 for (i = 0; i < ndoms; i++) {
7285 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7286 free_sched_domains(doms, i);
7287 return NULL;
7288 }
7289 }
7290 return doms;
7291 }
7292
7293 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7294 {
7295 unsigned int i;
7296 for (i = 0; i < ndoms; i++)
7297 free_cpumask_var(doms[i]);
7298 kfree(doms);
7299 }
7300
7301 /*
7302 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7303 * For now this just excludes isolated cpus, but could be used to
7304 * exclude other special cases in the future.
7305 */
7306 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7307 {
7308 int err;
7309
7310 arch_update_cpu_topology();
7311 ndoms_cur = 1;
7312 doms_cur = alloc_sched_domains(ndoms_cur);
7313 if (!doms_cur)
7314 doms_cur = &fallback_doms;
7315 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7316 dattr_cur = NULL;
7317 err = build_sched_domains(doms_cur[0]);
7318 register_sched_domain_sysctl();
7319
7320 return err;
7321 }
7322
7323 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7324 struct cpumask *tmpmask)
7325 {
7326 free_sched_groups(cpu_map, tmpmask);
7327 }
7328
7329 /*
7330 * Detach sched domains from a group of cpus specified in cpu_map
7331 * These cpus will now be attached to the NULL domain
7332 */
7333 static void detach_destroy_domains(const struct cpumask *cpu_map)
7334 {
7335 /* Save because hotplug lock held. */
7336 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7337 int i;
7338
7339 for_each_cpu(i, cpu_map)
7340 cpu_attach_domain(NULL, &def_root_domain, i);
7341 synchronize_sched();
7342 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7343 }
7344
7345 /* handle null as "default" */
7346 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7347 struct sched_domain_attr *new, int idx_new)
7348 {
7349 struct sched_domain_attr tmp;
7350
7351 /* fast path */
7352 if (!new && !cur)
7353 return 1;
7354
7355 tmp = SD_ATTR_INIT;
7356 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7357 new ? (new + idx_new) : &tmp,
7358 sizeof(struct sched_domain_attr));
7359 }
7360
7361 /*
7362 * Partition sched domains as specified by the 'ndoms_new'
7363 * cpumasks in the array doms_new[] of cpumasks. This compares
7364 * doms_new[] to the current sched domain partitioning, doms_cur[].
7365 * It destroys each deleted domain and builds each new domain.
7366 *
7367 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7368 * The masks don't intersect (don't overlap.) We should setup one
7369 * sched domain for each mask. CPUs not in any of the cpumasks will
7370 * not be load balanced. If the same cpumask appears both in the
7371 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7372 * it as it is.
7373 *
7374 * The passed in 'doms_new' should be allocated using
7375 * alloc_sched_domains. This routine takes ownership of it and will
7376 * free_sched_domains it when done with it. If the caller failed the
7377 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7378 * and partition_sched_domains() will fallback to the single partition
7379 * 'fallback_doms', it also forces the domains to be rebuilt.
7380 *
7381 * If doms_new == NULL it will be replaced with cpu_online_mask.
7382 * ndoms_new == 0 is a special case for destroying existing domains,
7383 * and it will not create the default domain.
7384 *
7385 * Call with hotplug lock held
7386 */
7387 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7388 struct sched_domain_attr *dattr_new)
7389 {
7390 int i, j, n;
7391 int new_topology;
7392
7393 mutex_lock(&sched_domains_mutex);
7394
7395 /* always unregister in case we don't destroy any domains */
7396 unregister_sched_domain_sysctl();
7397
7398 /* Let architecture update cpu core mappings. */
7399 new_topology = arch_update_cpu_topology();
7400
7401 n = doms_new ? ndoms_new : 0;
7402
7403 /* Destroy deleted domains */
7404 for (i = 0; i < ndoms_cur; i++) {
7405 for (j = 0; j < n && !new_topology; j++) {
7406 if (cpumask_equal(doms_cur[i], doms_new[j])
7407 && dattrs_equal(dattr_cur, i, dattr_new, j))
7408 goto match1;
7409 }
7410 /* no match - a current sched domain not in new doms_new[] */
7411 detach_destroy_domains(doms_cur[i]);
7412 match1:
7413 ;
7414 }
7415
7416 if (doms_new == NULL) {
7417 ndoms_cur = 0;
7418 doms_new = &fallback_doms;
7419 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7420 WARN_ON_ONCE(dattr_new);
7421 }
7422
7423 /* Build new domains */
7424 for (i = 0; i < ndoms_new; i++) {
7425 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7426 if (cpumask_equal(doms_new[i], doms_cur[j])
7427 && dattrs_equal(dattr_new, i, dattr_cur, j))
7428 goto match2;
7429 }
7430 /* no match - add a new doms_new */
7431 __build_sched_domains(doms_new[i],
7432 dattr_new ? dattr_new + i : NULL);
7433 match2:
7434 ;
7435 }
7436
7437 /* Remember the new sched domains */
7438 if (doms_cur != &fallback_doms)
7439 free_sched_domains(doms_cur, ndoms_cur);
7440 kfree(dattr_cur); /* kfree(NULL) is safe */
7441 doms_cur = doms_new;
7442 dattr_cur = dattr_new;
7443 ndoms_cur = ndoms_new;
7444
7445 register_sched_domain_sysctl();
7446
7447 mutex_unlock(&sched_domains_mutex);
7448 }
7449
7450 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7451 static void arch_reinit_sched_domains(void)
7452 {
7453 get_online_cpus();
7454
7455 /* Destroy domains first to force the rebuild */
7456 partition_sched_domains(0, NULL, NULL);
7457
7458 rebuild_sched_domains();
7459 put_online_cpus();
7460 }
7461
7462 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7463 {
7464 unsigned int level = 0;
7465
7466 if (sscanf(buf, "%u", &level) != 1)
7467 return -EINVAL;
7468
7469 /*
7470 * level is always be positive so don't check for
7471 * level < POWERSAVINGS_BALANCE_NONE which is 0
7472 * What happens on 0 or 1 byte write,
7473 * need to check for count as well?
7474 */
7475
7476 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7477 return -EINVAL;
7478
7479 if (smt)
7480 sched_smt_power_savings = level;
7481 else
7482 sched_mc_power_savings = level;
7483
7484 arch_reinit_sched_domains();
7485
7486 return count;
7487 }
7488
7489 #ifdef CONFIG_SCHED_MC
7490 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7491 struct sysdev_class_attribute *attr,
7492 char *page)
7493 {
7494 return sprintf(page, "%u\n", sched_mc_power_savings);
7495 }
7496 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7497 struct sysdev_class_attribute *attr,
7498 const char *buf, size_t count)
7499 {
7500 return sched_power_savings_store(buf, count, 0);
7501 }
7502 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7503 sched_mc_power_savings_show,
7504 sched_mc_power_savings_store);
7505 #endif
7506
7507 #ifdef CONFIG_SCHED_SMT
7508 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7509 struct sysdev_class_attribute *attr,
7510 char *page)
7511 {
7512 return sprintf(page, "%u\n", sched_smt_power_savings);
7513 }
7514 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7515 struct sysdev_class_attribute *attr,
7516 const char *buf, size_t count)
7517 {
7518 return sched_power_savings_store(buf, count, 1);
7519 }
7520 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7521 sched_smt_power_savings_show,
7522 sched_smt_power_savings_store);
7523 #endif
7524
7525 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7526 {
7527 int err = 0;
7528
7529 #ifdef CONFIG_SCHED_SMT
7530 if (smt_capable())
7531 err = sysfs_create_file(&cls->kset.kobj,
7532 &attr_sched_smt_power_savings.attr);
7533 #endif
7534 #ifdef CONFIG_SCHED_MC
7535 if (!err && mc_capable())
7536 err = sysfs_create_file(&cls->kset.kobj,
7537 &attr_sched_mc_power_savings.attr);
7538 #endif
7539 return err;
7540 }
7541 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7542
7543 /*
7544 * Update cpusets according to cpu_active mask. If cpusets are
7545 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7546 * around partition_sched_domains().
7547 */
7548 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7549 void *hcpu)
7550 {
7551 switch (action & ~CPU_TASKS_FROZEN) {
7552 case CPU_ONLINE:
7553 case CPU_DOWN_FAILED:
7554 cpuset_update_active_cpus();
7555 return NOTIFY_OK;
7556 default:
7557 return NOTIFY_DONE;
7558 }
7559 }
7560
7561 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7562 void *hcpu)
7563 {
7564 switch (action & ~CPU_TASKS_FROZEN) {
7565 case CPU_DOWN_PREPARE:
7566 cpuset_update_active_cpus();
7567 return NOTIFY_OK;
7568 default:
7569 return NOTIFY_DONE;
7570 }
7571 }
7572
7573 static int update_runtime(struct notifier_block *nfb,
7574 unsigned long action, void *hcpu)
7575 {
7576 int cpu = (int)(long)hcpu;
7577
7578 switch (action) {
7579 case CPU_DOWN_PREPARE:
7580 case CPU_DOWN_PREPARE_FROZEN:
7581 disable_runtime(cpu_rq(cpu));
7582 return NOTIFY_OK;
7583
7584 case CPU_DOWN_FAILED:
7585 case CPU_DOWN_FAILED_FROZEN:
7586 case CPU_ONLINE:
7587 case CPU_ONLINE_FROZEN:
7588 enable_runtime(cpu_rq(cpu));
7589 return NOTIFY_OK;
7590
7591 default:
7592 return NOTIFY_DONE;
7593 }
7594 }
7595
7596 void __init sched_init_smp(void)
7597 {
7598 cpumask_var_t non_isolated_cpus;
7599
7600 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7601 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7602
7603 #if defined(CONFIG_NUMA)
7604 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7605 GFP_KERNEL);
7606 BUG_ON(sched_group_nodes_bycpu == NULL);
7607 #endif
7608 get_online_cpus();
7609 mutex_lock(&sched_domains_mutex);
7610 arch_init_sched_domains(cpu_active_mask);
7611 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7612 if (cpumask_empty(non_isolated_cpus))
7613 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7614 mutex_unlock(&sched_domains_mutex);
7615 put_online_cpus();
7616
7617 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7618 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
7619
7620 /* RT runtime code needs to handle some hotplug events */
7621 hotcpu_notifier(update_runtime, 0);
7622
7623 init_hrtick();
7624
7625 /* Move init over to a non-isolated CPU */
7626 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7627 BUG();
7628 sched_init_granularity();
7629 free_cpumask_var(non_isolated_cpus);
7630
7631 init_sched_rt_class();
7632 }
7633 #else
7634 void __init sched_init_smp(void)
7635 {
7636 sched_init_granularity();
7637 }
7638 #endif /* CONFIG_SMP */
7639
7640 const_debug unsigned int sysctl_timer_migration = 1;
7641
7642 int in_sched_functions(unsigned long addr)
7643 {
7644 return in_lock_functions(addr) ||
7645 (addr >= (unsigned long)__sched_text_start
7646 && addr < (unsigned long)__sched_text_end);
7647 }
7648
7649 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7650 {
7651 cfs_rq->tasks_timeline = RB_ROOT;
7652 INIT_LIST_HEAD(&cfs_rq->tasks);
7653 #ifdef CONFIG_FAIR_GROUP_SCHED
7654 cfs_rq->rq = rq;
7655 #endif
7656 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7657 }
7658
7659 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7660 {
7661 struct rt_prio_array *array;
7662 int i;
7663
7664 array = &rt_rq->active;
7665 for (i = 0; i < MAX_RT_PRIO; i++) {
7666 INIT_LIST_HEAD(array->queue + i);
7667 __clear_bit(i, array->bitmap);
7668 }
7669 /* delimiter for bitsearch: */
7670 __set_bit(MAX_RT_PRIO, array->bitmap);
7671
7672 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7673 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7674 #ifdef CONFIG_SMP
7675 rt_rq->highest_prio.next = MAX_RT_PRIO;
7676 #endif
7677 #endif
7678 #ifdef CONFIG_SMP
7679 rt_rq->rt_nr_migratory = 0;
7680 rt_rq->overloaded = 0;
7681 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7682 #endif
7683
7684 rt_rq->rt_time = 0;
7685 rt_rq->rt_throttled = 0;
7686 rt_rq->rt_runtime = 0;
7687 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7688
7689 #ifdef CONFIG_RT_GROUP_SCHED
7690 rt_rq->rt_nr_boosted = 0;
7691 rt_rq->rq = rq;
7692 #endif
7693 }
7694
7695 #ifdef CONFIG_FAIR_GROUP_SCHED
7696 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7697 struct sched_entity *se, int cpu, int add,
7698 struct sched_entity *parent)
7699 {
7700 struct rq *rq = cpu_rq(cpu);
7701 tg->cfs_rq[cpu] = cfs_rq;
7702 init_cfs_rq(cfs_rq, rq);
7703 cfs_rq->tg = tg;
7704 if (add)
7705 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7706
7707 tg->se[cpu] = se;
7708 /* se could be NULL for init_task_group */
7709 if (!se)
7710 return;
7711
7712 if (!parent)
7713 se->cfs_rq = &rq->cfs;
7714 else
7715 se->cfs_rq = parent->my_q;
7716
7717 se->my_q = cfs_rq;
7718 se->load.weight = tg->shares;
7719 se->load.inv_weight = 0;
7720 se->parent = parent;
7721 }
7722 #endif
7723
7724 #ifdef CONFIG_RT_GROUP_SCHED
7725 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7726 struct sched_rt_entity *rt_se, int cpu, int add,
7727 struct sched_rt_entity *parent)
7728 {
7729 struct rq *rq = cpu_rq(cpu);
7730
7731 tg->rt_rq[cpu] = rt_rq;
7732 init_rt_rq(rt_rq, rq);
7733 rt_rq->tg = tg;
7734 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7735 if (add)
7736 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7737
7738 tg->rt_se[cpu] = rt_se;
7739 if (!rt_se)
7740 return;
7741
7742 if (!parent)
7743 rt_se->rt_rq = &rq->rt;
7744 else
7745 rt_se->rt_rq = parent->my_q;
7746
7747 rt_se->my_q = rt_rq;
7748 rt_se->parent = parent;
7749 INIT_LIST_HEAD(&rt_se->run_list);
7750 }
7751 #endif
7752
7753 void __init sched_init(void)
7754 {
7755 int i, j;
7756 unsigned long alloc_size = 0, ptr;
7757
7758 #ifdef CONFIG_FAIR_GROUP_SCHED
7759 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7760 #endif
7761 #ifdef CONFIG_RT_GROUP_SCHED
7762 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7763 #endif
7764 #ifdef CONFIG_CPUMASK_OFFSTACK
7765 alloc_size += num_possible_cpus() * cpumask_size();
7766 #endif
7767 if (alloc_size) {
7768 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7769
7770 #ifdef CONFIG_FAIR_GROUP_SCHED
7771 init_task_group.se = (struct sched_entity **)ptr;
7772 ptr += nr_cpu_ids * sizeof(void **);
7773
7774 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7775 ptr += nr_cpu_ids * sizeof(void **);
7776
7777 #endif /* CONFIG_FAIR_GROUP_SCHED */
7778 #ifdef CONFIG_RT_GROUP_SCHED
7779 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7780 ptr += nr_cpu_ids * sizeof(void **);
7781
7782 init_task_group.rt_rq = (struct rt_rq **)ptr;
7783 ptr += nr_cpu_ids * sizeof(void **);
7784
7785 #endif /* CONFIG_RT_GROUP_SCHED */
7786 #ifdef CONFIG_CPUMASK_OFFSTACK
7787 for_each_possible_cpu(i) {
7788 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7789 ptr += cpumask_size();
7790 }
7791 #endif /* CONFIG_CPUMASK_OFFSTACK */
7792 }
7793
7794 #ifdef CONFIG_SMP
7795 init_defrootdomain();
7796 #endif
7797
7798 init_rt_bandwidth(&def_rt_bandwidth,
7799 global_rt_period(), global_rt_runtime());
7800
7801 #ifdef CONFIG_RT_GROUP_SCHED
7802 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7803 global_rt_period(), global_rt_runtime());
7804 #endif /* CONFIG_RT_GROUP_SCHED */
7805
7806 #ifdef CONFIG_CGROUP_SCHED
7807 list_add(&init_task_group.list, &task_groups);
7808 INIT_LIST_HEAD(&init_task_group.children);
7809
7810 #endif /* CONFIG_CGROUP_SCHED */
7811
7812 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7813 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7814 __alignof__(unsigned long));
7815 #endif
7816 for_each_possible_cpu(i) {
7817 struct rq *rq;
7818
7819 rq = cpu_rq(i);
7820 raw_spin_lock_init(&rq->lock);
7821 rq->nr_running = 0;
7822 rq->calc_load_active = 0;
7823 rq->calc_load_update = jiffies + LOAD_FREQ;
7824 init_cfs_rq(&rq->cfs, rq);
7825 init_rt_rq(&rq->rt, rq);
7826 #ifdef CONFIG_FAIR_GROUP_SCHED
7827 init_task_group.shares = init_task_group_load;
7828 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7829 #ifdef CONFIG_CGROUP_SCHED
7830 /*
7831 * How much cpu bandwidth does init_task_group get?
7832 *
7833 * In case of task-groups formed thr' the cgroup filesystem, it
7834 * gets 100% of the cpu resources in the system. This overall
7835 * system cpu resource is divided among the tasks of
7836 * init_task_group and its child task-groups in a fair manner,
7837 * based on each entity's (task or task-group's) weight
7838 * (se->load.weight).
7839 *
7840 * In other words, if init_task_group has 10 tasks of weight
7841 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7842 * then A0's share of the cpu resource is:
7843 *
7844 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7845 *
7846 * We achieve this by letting init_task_group's tasks sit
7847 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7848 */
7849 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7850 #endif
7851 #endif /* CONFIG_FAIR_GROUP_SCHED */
7852
7853 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7854 #ifdef CONFIG_RT_GROUP_SCHED
7855 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7856 #ifdef CONFIG_CGROUP_SCHED
7857 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7858 #endif
7859 #endif
7860
7861 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7862 rq->cpu_load[j] = 0;
7863
7864 rq->last_load_update_tick = jiffies;
7865
7866 #ifdef CONFIG_SMP
7867 rq->sd = NULL;
7868 rq->rd = NULL;
7869 rq->cpu_power = SCHED_LOAD_SCALE;
7870 rq->post_schedule = 0;
7871 rq->active_balance = 0;
7872 rq->next_balance = jiffies;
7873 rq->push_cpu = 0;
7874 rq->cpu = i;
7875 rq->online = 0;
7876 rq->idle_stamp = 0;
7877 rq->avg_idle = 2*sysctl_sched_migration_cost;
7878 rq_attach_root(rq, &def_root_domain);
7879 #ifdef CONFIG_NO_HZ
7880 rq->nohz_balance_kick = 0;
7881 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb, i));
7882 #endif
7883 #endif
7884 init_rq_hrtick(rq);
7885 atomic_set(&rq->nr_iowait, 0);
7886 }
7887
7888 set_load_weight(&init_task);
7889
7890 #ifdef CONFIG_PREEMPT_NOTIFIERS
7891 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7892 #endif
7893
7894 #ifdef CONFIG_SMP
7895 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7896 #endif
7897
7898 #ifdef CONFIG_RT_MUTEXES
7899 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7900 #endif
7901
7902 /*
7903 * The boot idle thread does lazy MMU switching as well:
7904 */
7905 atomic_inc(&init_mm.mm_count);
7906 enter_lazy_tlb(&init_mm, current);
7907
7908 /*
7909 * Make us the idle thread. Technically, schedule() should not be
7910 * called from this thread, however somewhere below it might be,
7911 * but because we are the idle thread, we just pick up running again
7912 * when this runqueue becomes "idle".
7913 */
7914 init_idle(current, smp_processor_id());
7915
7916 calc_load_update = jiffies + LOAD_FREQ;
7917
7918 /*
7919 * During early bootup we pretend to be a normal task:
7920 */
7921 current->sched_class = &fair_sched_class;
7922
7923 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7924 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7925 #ifdef CONFIG_SMP
7926 #ifdef CONFIG_NO_HZ
7927 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
7928 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
7929 atomic_set(&nohz.load_balancer, nr_cpu_ids);
7930 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
7931 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
7932 #endif
7933 /* May be allocated at isolcpus cmdline parse time */
7934 if (cpu_isolated_map == NULL)
7935 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7936 #endif /* SMP */
7937
7938 perf_event_init();
7939
7940 scheduler_running = 1;
7941 }
7942
7943 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7944 static inline int preempt_count_equals(int preempt_offset)
7945 {
7946 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7947
7948 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7949 }
7950
7951 void __might_sleep(const char *file, int line, int preempt_offset)
7952 {
7953 #ifdef in_atomic
7954 static unsigned long prev_jiffy; /* ratelimiting */
7955
7956 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7957 system_state != SYSTEM_RUNNING || oops_in_progress)
7958 return;
7959 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7960 return;
7961 prev_jiffy = jiffies;
7962
7963 printk(KERN_ERR
7964 "BUG: sleeping function called from invalid context at %s:%d\n",
7965 file, line);
7966 printk(KERN_ERR
7967 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7968 in_atomic(), irqs_disabled(),
7969 current->pid, current->comm);
7970
7971 debug_show_held_locks(current);
7972 if (irqs_disabled())
7973 print_irqtrace_events(current);
7974 dump_stack();
7975 #endif
7976 }
7977 EXPORT_SYMBOL(__might_sleep);
7978 #endif
7979
7980 #ifdef CONFIG_MAGIC_SYSRQ
7981 static void normalize_task(struct rq *rq, struct task_struct *p)
7982 {
7983 int on_rq;
7984
7985 on_rq = p->se.on_rq;
7986 if (on_rq)
7987 deactivate_task(rq, p, 0);
7988 __setscheduler(rq, p, SCHED_NORMAL, 0);
7989 if (on_rq) {
7990 activate_task(rq, p, 0);
7991 resched_task(rq->curr);
7992 }
7993 }
7994
7995 void normalize_rt_tasks(void)
7996 {
7997 struct task_struct *g, *p;
7998 unsigned long flags;
7999 struct rq *rq;
8000
8001 read_lock_irqsave(&tasklist_lock, flags);
8002 do_each_thread(g, p) {
8003 /*
8004 * Only normalize user tasks:
8005 */
8006 if (!p->mm)
8007 continue;
8008
8009 p->se.exec_start = 0;
8010 #ifdef CONFIG_SCHEDSTATS
8011 p->se.statistics.wait_start = 0;
8012 p->se.statistics.sleep_start = 0;
8013 p->se.statistics.block_start = 0;
8014 #endif
8015
8016 if (!rt_task(p)) {
8017 /*
8018 * Renice negative nice level userspace
8019 * tasks back to 0:
8020 */
8021 if (TASK_NICE(p) < 0 && p->mm)
8022 set_user_nice(p, 0);
8023 continue;
8024 }
8025
8026 raw_spin_lock(&p->pi_lock);
8027 rq = __task_rq_lock(p);
8028
8029 normalize_task(rq, p);
8030
8031 __task_rq_unlock(rq);
8032 raw_spin_unlock(&p->pi_lock);
8033 } while_each_thread(g, p);
8034
8035 read_unlock_irqrestore(&tasklist_lock, flags);
8036 }
8037
8038 #endif /* CONFIG_MAGIC_SYSRQ */
8039
8040 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8041 /*
8042 * These functions are only useful for the IA64 MCA handling, or kdb.
8043 *
8044 * They can only be called when the whole system has been
8045 * stopped - every CPU needs to be quiescent, and no scheduling
8046 * activity can take place. Using them for anything else would
8047 * be a serious bug, and as a result, they aren't even visible
8048 * under any other configuration.
8049 */
8050
8051 /**
8052 * curr_task - return the current task for a given cpu.
8053 * @cpu: the processor in question.
8054 *
8055 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8056 */
8057 struct task_struct *curr_task(int cpu)
8058 {
8059 return cpu_curr(cpu);
8060 }
8061
8062 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8063
8064 #ifdef CONFIG_IA64
8065 /**
8066 * set_curr_task - set the current task for a given cpu.
8067 * @cpu: the processor in question.
8068 * @p: the task pointer to set.
8069 *
8070 * Description: This function must only be used when non-maskable interrupts
8071 * are serviced on a separate stack. It allows the architecture to switch the
8072 * notion of the current task on a cpu in a non-blocking manner. This function
8073 * must be called with all CPU's synchronized, and interrupts disabled, the
8074 * and caller must save the original value of the current task (see
8075 * curr_task() above) and restore that value before reenabling interrupts and
8076 * re-starting the system.
8077 *
8078 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8079 */
8080 void set_curr_task(int cpu, struct task_struct *p)
8081 {
8082 cpu_curr(cpu) = p;
8083 }
8084
8085 #endif
8086
8087 #ifdef CONFIG_FAIR_GROUP_SCHED
8088 static void free_fair_sched_group(struct task_group *tg)
8089 {
8090 int i;
8091
8092 for_each_possible_cpu(i) {
8093 if (tg->cfs_rq)
8094 kfree(tg->cfs_rq[i]);
8095 if (tg->se)
8096 kfree(tg->se[i]);
8097 }
8098
8099 kfree(tg->cfs_rq);
8100 kfree(tg->se);
8101 }
8102
8103 static
8104 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8105 {
8106 struct cfs_rq *cfs_rq;
8107 struct sched_entity *se;
8108 struct rq *rq;
8109 int i;
8110
8111 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8112 if (!tg->cfs_rq)
8113 goto err;
8114 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8115 if (!tg->se)
8116 goto err;
8117
8118 tg->shares = NICE_0_LOAD;
8119
8120 for_each_possible_cpu(i) {
8121 rq = cpu_rq(i);
8122
8123 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8124 GFP_KERNEL, cpu_to_node(i));
8125 if (!cfs_rq)
8126 goto err;
8127
8128 se = kzalloc_node(sizeof(struct sched_entity),
8129 GFP_KERNEL, cpu_to_node(i));
8130 if (!se)
8131 goto err_free_rq;
8132
8133 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
8134 }
8135
8136 return 1;
8137
8138 err_free_rq:
8139 kfree(cfs_rq);
8140 err:
8141 return 0;
8142 }
8143
8144 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8145 {
8146 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8147 &cpu_rq(cpu)->leaf_cfs_rq_list);
8148 }
8149
8150 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8151 {
8152 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8153 }
8154 #else /* !CONFG_FAIR_GROUP_SCHED */
8155 static inline void free_fair_sched_group(struct task_group *tg)
8156 {
8157 }
8158
8159 static inline
8160 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8161 {
8162 return 1;
8163 }
8164
8165 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8166 {
8167 }
8168
8169 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8170 {
8171 }
8172 #endif /* CONFIG_FAIR_GROUP_SCHED */
8173
8174 #ifdef CONFIG_RT_GROUP_SCHED
8175 static void free_rt_sched_group(struct task_group *tg)
8176 {
8177 int i;
8178
8179 destroy_rt_bandwidth(&tg->rt_bandwidth);
8180
8181 for_each_possible_cpu(i) {
8182 if (tg->rt_rq)
8183 kfree(tg->rt_rq[i]);
8184 if (tg->rt_se)
8185 kfree(tg->rt_se[i]);
8186 }
8187
8188 kfree(tg->rt_rq);
8189 kfree(tg->rt_se);
8190 }
8191
8192 static
8193 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8194 {
8195 struct rt_rq *rt_rq;
8196 struct sched_rt_entity *rt_se;
8197 struct rq *rq;
8198 int i;
8199
8200 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8201 if (!tg->rt_rq)
8202 goto err;
8203 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8204 if (!tg->rt_se)
8205 goto err;
8206
8207 init_rt_bandwidth(&tg->rt_bandwidth,
8208 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8209
8210 for_each_possible_cpu(i) {
8211 rq = cpu_rq(i);
8212
8213 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8214 GFP_KERNEL, cpu_to_node(i));
8215 if (!rt_rq)
8216 goto err;
8217
8218 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8219 GFP_KERNEL, cpu_to_node(i));
8220 if (!rt_se)
8221 goto err_free_rq;
8222
8223 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8224 }
8225
8226 return 1;
8227
8228 err_free_rq:
8229 kfree(rt_rq);
8230 err:
8231 return 0;
8232 }
8233
8234 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8235 {
8236 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8237 &cpu_rq(cpu)->leaf_rt_rq_list);
8238 }
8239
8240 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8241 {
8242 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8243 }
8244 #else /* !CONFIG_RT_GROUP_SCHED */
8245 static inline void free_rt_sched_group(struct task_group *tg)
8246 {
8247 }
8248
8249 static inline
8250 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8251 {
8252 return 1;
8253 }
8254
8255 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8256 {
8257 }
8258
8259 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8260 {
8261 }
8262 #endif /* CONFIG_RT_GROUP_SCHED */
8263
8264 #ifdef CONFIG_CGROUP_SCHED
8265 static void free_sched_group(struct task_group *tg)
8266 {
8267 free_fair_sched_group(tg);
8268 free_rt_sched_group(tg);
8269 kfree(tg);
8270 }
8271
8272 /* allocate runqueue etc for a new task group */
8273 struct task_group *sched_create_group(struct task_group *parent)
8274 {
8275 struct task_group *tg;
8276 unsigned long flags;
8277 int i;
8278
8279 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8280 if (!tg)
8281 return ERR_PTR(-ENOMEM);
8282
8283 if (!alloc_fair_sched_group(tg, parent))
8284 goto err;
8285
8286 if (!alloc_rt_sched_group(tg, parent))
8287 goto err;
8288
8289 spin_lock_irqsave(&task_group_lock, flags);
8290 for_each_possible_cpu(i) {
8291 register_fair_sched_group(tg, i);
8292 register_rt_sched_group(tg, i);
8293 }
8294 list_add_rcu(&tg->list, &task_groups);
8295
8296 WARN_ON(!parent); /* root should already exist */
8297
8298 tg->parent = parent;
8299 INIT_LIST_HEAD(&tg->children);
8300 list_add_rcu(&tg->siblings, &parent->children);
8301 spin_unlock_irqrestore(&task_group_lock, flags);
8302
8303 return tg;
8304
8305 err:
8306 free_sched_group(tg);
8307 return ERR_PTR(-ENOMEM);
8308 }
8309
8310 /* rcu callback to free various structures associated with a task group */
8311 static void free_sched_group_rcu(struct rcu_head *rhp)
8312 {
8313 /* now it should be safe to free those cfs_rqs */
8314 free_sched_group(container_of(rhp, struct task_group, rcu));
8315 }
8316
8317 /* Destroy runqueue etc associated with a task group */
8318 void sched_destroy_group(struct task_group *tg)
8319 {
8320 unsigned long flags;
8321 int i;
8322
8323 spin_lock_irqsave(&task_group_lock, flags);
8324 for_each_possible_cpu(i) {
8325 unregister_fair_sched_group(tg, i);
8326 unregister_rt_sched_group(tg, i);
8327 }
8328 list_del_rcu(&tg->list);
8329 list_del_rcu(&tg->siblings);
8330 spin_unlock_irqrestore(&task_group_lock, flags);
8331
8332 /* wait for possible concurrent references to cfs_rqs complete */
8333 call_rcu(&tg->rcu, free_sched_group_rcu);
8334 }
8335
8336 /* change task's runqueue when it moves between groups.
8337 * The caller of this function should have put the task in its new group
8338 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8339 * reflect its new group.
8340 */
8341 void sched_move_task(struct task_struct *tsk)
8342 {
8343 int on_rq, running;
8344 unsigned long flags;
8345 struct rq *rq;
8346
8347 rq = task_rq_lock(tsk, &flags);
8348
8349 running = task_current(rq, tsk);
8350 on_rq = tsk->se.on_rq;
8351
8352 if (on_rq)
8353 dequeue_task(rq, tsk, 0);
8354 if (unlikely(running))
8355 tsk->sched_class->put_prev_task(rq, tsk);
8356
8357 set_task_rq(tsk, task_cpu(tsk));
8358
8359 #ifdef CONFIG_FAIR_GROUP_SCHED
8360 if (tsk->sched_class->moved_group)
8361 tsk->sched_class->moved_group(tsk, on_rq);
8362 #endif
8363
8364 if (unlikely(running))
8365 tsk->sched_class->set_curr_task(rq);
8366 if (on_rq)
8367 enqueue_task(rq, tsk, 0);
8368
8369 task_rq_unlock(rq, &flags);
8370 }
8371 #endif /* CONFIG_CGROUP_SCHED */
8372
8373 #ifdef CONFIG_FAIR_GROUP_SCHED
8374 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8375 {
8376 struct cfs_rq *cfs_rq = se->cfs_rq;
8377 int on_rq;
8378
8379 on_rq = se->on_rq;
8380 if (on_rq)
8381 dequeue_entity(cfs_rq, se, 0);
8382
8383 se->load.weight = shares;
8384 se->load.inv_weight = 0;
8385
8386 if (on_rq)
8387 enqueue_entity(cfs_rq, se, 0);
8388 }
8389
8390 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8391 {
8392 struct cfs_rq *cfs_rq = se->cfs_rq;
8393 struct rq *rq = cfs_rq->rq;
8394 unsigned long flags;
8395
8396 raw_spin_lock_irqsave(&rq->lock, flags);
8397 __set_se_shares(se, shares);
8398 raw_spin_unlock_irqrestore(&rq->lock, flags);
8399 }
8400
8401 static DEFINE_MUTEX(shares_mutex);
8402
8403 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8404 {
8405 int i;
8406 unsigned long flags;
8407
8408 /*
8409 * We can't change the weight of the root cgroup.
8410 */
8411 if (!tg->se[0])
8412 return -EINVAL;
8413
8414 if (shares < MIN_SHARES)
8415 shares = MIN_SHARES;
8416 else if (shares > MAX_SHARES)
8417 shares = MAX_SHARES;
8418
8419 mutex_lock(&shares_mutex);
8420 if (tg->shares == shares)
8421 goto done;
8422
8423 spin_lock_irqsave(&task_group_lock, flags);
8424 for_each_possible_cpu(i)
8425 unregister_fair_sched_group(tg, i);
8426 list_del_rcu(&tg->siblings);
8427 spin_unlock_irqrestore(&task_group_lock, flags);
8428
8429 /* wait for any ongoing reference to this group to finish */
8430 synchronize_sched();
8431
8432 /*
8433 * Now we are free to modify the group's share on each cpu
8434 * w/o tripping rebalance_share or load_balance_fair.
8435 */
8436 tg->shares = shares;
8437 for_each_possible_cpu(i) {
8438 /*
8439 * force a rebalance
8440 */
8441 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8442 set_se_shares(tg->se[i], shares);
8443 }
8444
8445 /*
8446 * Enable load balance activity on this group, by inserting it back on
8447 * each cpu's rq->leaf_cfs_rq_list.
8448 */
8449 spin_lock_irqsave(&task_group_lock, flags);
8450 for_each_possible_cpu(i)
8451 register_fair_sched_group(tg, i);
8452 list_add_rcu(&tg->siblings, &tg->parent->children);
8453 spin_unlock_irqrestore(&task_group_lock, flags);
8454 done:
8455 mutex_unlock(&shares_mutex);
8456 return 0;
8457 }
8458
8459 unsigned long sched_group_shares(struct task_group *tg)
8460 {
8461 return tg->shares;
8462 }
8463 #endif
8464
8465 #ifdef CONFIG_RT_GROUP_SCHED
8466 /*
8467 * Ensure that the real time constraints are schedulable.
8468 */
8469 static DEFINE_MUTEX(rt_constraints_mutex);
8470
8471 static unsigned long to_ratio(u64 period, u64 runtime)
8472 {
8473 if (runtime == RUNTIME_INF)
8474 return 1ULL << 20;
8475
8476 return div64_u64(runtime << 20, period);
8477 }
8478
8479 /* Must be called with tasklist_lock held */
8480 static inline int tg_has_rt_tasks(struct task_group *tg)
8481 {
8482 struct task_struct *g, *p;
8483
8484 do_each_thread(g, p) {
8485 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8486 return 1;
8487 } while_each_thread(g, p);
8488
8489 return 0;
8490 }
8491
8492 struct rt_schedulable_data {
8493 struct task_group *tg;
8494 u64 rt_period;
8495 u64 rt_runtime;
8496 };
8497
8498 static int tg_schedulable(struct task_group *tg, void *data)
8499 {
8500 struct rt_schedulable_data *d = data;
8501 struct task_group *child;
8502 unsigned long total, sum = 0;
8503 u64 period, runtime;
8504
8505 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8506 runtime = tg->rt_bandwidth.rt_runtime;
8507
8508 if (tg == d->tg) {
8509 period = d->rt_period;
8510 runtime = d->rt_runtime;
8511 }
8512
8513 /*
8514 * Cannot have more runtime than the period.
8515 */
8516 if (runtime > period && runtime != RUNTIME_INF)
8517 return -EINVAL;
8518
8519 /*
8520 * Ensure we don't starve existing RT tasks.
8521 */
8522 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8523 return -EBUSY;
8524
8525 total = to_ratio(period, runtime);
8526
8527 /*
8528 * Nobody can have more than the global setting allows.
8529 */
8530 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8531 return -EINVAL;
8532
8533 /*
8534 * The sum of our children's runtime should not exceed our own.
8535 */
8536 list_for_each_entry_rcu(child, &tg->children, siblings) {
8537 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8538 runtime = child->rt_bandwidth.rt_runtime;
8539
8540 if (child == d->tg) {
8541 period = d->rt_period;
8542 runtime = d->rt_runtime;
8543 }
8544
8545 sum += to_ratio(period, runtime);
8546 }
8547
8548 if (sum > total)
8549 return -EINVAL;
8550
8551 return 0;
8552 }
8553
8554 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8555 {
8556 struct rt_schedulable_data data = {
8557 .tg = tg,
8558 .rt_period = period,
8559 .rt_runtime = runtime,
8560 };
8561
8562 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8563 }
8564
8565 static int tg_set_bandwidth(struct task_group *tg,
8566 u64 rt_period, u64 rt_runtime)
8567 {
8568 int i, err = 0;
8569
8570 mutex_lock(&rt_constraints_mutex);
8571 read_lock(&tasklist_lock);
8572 err = __rt_schedulable(tg, rt_period, rt_runtime);
8573 if (err)
8574 goto unlock;
8575
8576 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8577 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8578 tg->rt_bandwidth.rt_runtime = rt_runtime;
8579
8580 for_each_possible_cpu(i) {
8581 struct rt_rq *rt_rq = tg->rt_rq[i];
8582
8583 raw_spin_lock(&rt_rq->rt_runtime_lock);
8584 rt_rq->rt_runtime = rt_runtime;
8585 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8586 }
8587 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8588 unlock:
8589 read_unlock(&tasklist_lock);
8590 mutex_unlock(&rt_constraints_mutex);
8591
8592 return err;
8593 }
8594
8595 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8596 {
8597 u64 rt_runtime, rt_period;
8598
8599 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8600 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8601 if (rt_runtime_us < 0)
8602 rt_runtime = RUNTIME_INF;
8603
8604 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8605 }
8606
8607 long sched_group_rt_runtime(struct task_group *tg)
8608 {
8609 u64 rt_runtime_us;
8610
8611 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8612 return -1;
8613
8614 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8615 do_div(rt_runtime_us, NSEC_PER_USEC);
8616 return rt_runtime_us;
8617 }
8618
8619 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8620 {
8621 u64 rt_runtime, rt_period;
8622
8623 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8624 rt_runtime = tg->rt_bandwidth.rt_runtime;
8625
8626 if (rt_period == 0)
8627 return -EINVAL;
8628
8629 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8630 }
8631
8632 long sched_group_rt_period(struct task_group *tg)
8633 {
8634 u64 rt_period_us;
8635
8636 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8637 do_div(rt_period_us, NSEC_PER_USEC);
8638 return rt_period_us;
8639 }
8640
8641 static int sched_rt_global_constraints(void)
8642 {
8643 u64 runtime, period;
8644 int ret = 0;
8645
8646 if (sysctl_sched_rt_period <= 0)
8647 return -EINVAL;
8648
8649 runtime = global_rt_runtime();
8650 period = global_rt_period();
8651
8652 /*
8653 * Sanity check on the sysctl variables.
8654 */
8655 if (runtime > period && runtime != RUNTIME_INF)
8656 return -EINVAL;
8657
8658 mutex_lock(&rt_constraints_mutex);
8659 read_lock(&tasklist_lock);
8660 ret = __rt_schedulable(NULL, 0, 0);
8661 read_unlock(&tasklist_lock);
8662 mutex_unlock(&rt_constraints_mutex);
8663
8664 return ret;
8665 }
8666
8667 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8668 {
8669 /* Don't accept realtime tasks when there is no way for them to run */
8670 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8671 return 0;
8672
8673 return 1;
8674 }
8675
8676 #else /* !CONFIG_RT_GROUP_SCHED */
8677 static int sched_rt_global_constraints(void)
8678 {
8679 unsigned long flags;
8680 int i;
8681
8682 if (sysctl_sched_rt_period <= 0)
8683 return -EINVAL;
8684
8685 /*
8686 * There's always some RT tasks in the root group
8687 * -- migration, kstopmachine etc..
8688 */
8689 if (sysctl_sched_rt_runtime == 0)
8690 return -EBUSY;
8691
8692 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8693 for_each_possible_cpu(i) {
8694 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8695
8696 raw_spin_lock(&rt_rq->rt_runtime_lock);
8697 rt_rq->rt_runtime = global_rt_runtime();
8698 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8699 }
8700 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8701
8702 return 0;
8703 }
8704 #endif /* CONFIG_RT_GROUP_SCHED */
8705
8706 int sched_rt_handler(struct ctl_table *table, int write,
8707 void __user *buffer, size_t *lenp,
8708 loff_t *ppos)
8709 {
8710 int ret;
8711 int old_period, old_runtime;
8712 static DEFINE_MUTEX(mutex);
8713
8714 mutex_lock(&mutex);
8715 old_period = sysctl_sched_rt_period;
8716 old_runtime = sysctl_sched_rt_runtime;
8717
8718 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8719
8720 if (!ret && write) {
8721 ret = sched_rt_global_constraints();
8722 if (ret) {
8723 sysctl_sched_rt_period = old_period;
8724 sysctl_sched_rt_runtime = old_runtime;
8725 } else {
8726 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8727 def_rt_bandwidth.rt_period =
8728 ns_to_ktime(global_rt_period());
8729 }
8730 }
8731 mutex_unlock(&mutex);
8732
8733 return ret;
8734 }
8735
8736 #ifdef CONFIG_CGROUP_SCHED
8737
8738 /* return corresponding task_group object of a cgroup */
8739 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8740 {
8741 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8742 struct task_group, css);
8743 }
8744
8745 static struct cgroup_subsys_state *
8746 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8747 {
8748 struct task_group *tg, *parent;
8749
8750 if (!cgrp->parent) {
8751 /* This is early initialization for the top cgroup */
8752 return &init_task_group.css;
8753 }
8754
8755 parent = cgroup_tg(cgrp->parent);
8756 tg = sched_create_group(parent);
8757 if (IS_ERR(tg))
8758 return ERR_PTR(-ENOMEM);
8759
8760 return &tg->css;
8761 }
8762
8763 static void
8764 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8765 {
8766 struct task_group *tg = cgroup_tg(cgrp);
8767
8768 sched_destroy_group(tg);
8769 }
8770
8771 static int
8772 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8773 {
8774 #ifdef CONFIG_RT_GROUP_SCHED
8775 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8776 return -EINVAL;
8777 #else
8778 /* We don't support RT-tasks being in separate groups */
8779 if (tsk->sched_class != &fair_sched_class)
8780 return -EINVAL;
8781 #endif
8782 return 0;
8783 }
8784
8785 static int
8786 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8787 struct task_struct *tsk, bool threadgroup)
8788 {
8789 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8790 if (retval)
8791 return retval;
8792 if (threadgroup) {
8793 struct task_struct *c;
8794 rcu_read_lock();
8795 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8796 retval = cpu_cgroup_can_attach_task(cgrp, c);
8797 if (retval) {
8798 rcu_read_unlock();
8799 return retval;
8800 }
8801 }
8802 rcu_read_unlock();
8803 }
8804 return 0;
8805 }
8806
8807 static void
8808 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8809 struct cgroup *old_cont, struct task_struct *tsk,
8810 bool threadgroup)
8811 {
8812 sched_move_task(tsk);
8813 if (threadgroup) {
8814 struct task_struct *c;
8815 rcu_read_lock();
8816 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8817 sched_move_task(c);
8818 }
8819 rcu_read_unlock();
8820 }
8821 }
8822
8823 #ifdef CONFIG_FAIR_GROUP_SCHED
8824 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8825 u64 shareval)
8826 {
8827 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8828 }
8829
8830 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8831 {
8832 struct task_group *tg = cgroup_tg(cgrp);
8833
8834 return (u64) tg->shares;
8835 }
8836 #endif /* CONFIG_FAIR_GROUP_SCHED */
8837
8838 #ifdef CONFIG_RT_GROUP_SCHED
8839 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8840 s64 val)
8841 {
8842 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8843 }
8844
8845 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8846 {
8847 return sched_group_rt_runtime(cgroup_tg(cgrp));
8848 }
8849
8850 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8851 u64 rt_period_us)
8852 {
8853 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8854 }
8855
8856 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8857 {
8858 return sched_group_rt_period(cgroup_tg(cgrp));
8859 }
8860 #endif /* CONFIG_RT_GROUP_SCHED */
8861
8862 static struct cftype cpu_files[] = {
8863 #ifdef CONFIG_FAIR_GROUP_SCHED
8864 {
8865 .name = "shares",
8866 .read_u64 = cpu_shares_read_u64,
8867 .write_u64 = cpu_shares_write_u64,
8868 },
8869 #endif
8870 #ifdef CONFIG_RT_GROUP_SCHED
8871 {
8872 .name = "rt_runtime_us",
8873 .read_s64 = cpu_rt_runtime_read,
8874 .write_s64 = cpu_rt_runtime_write,
8875 },
8876 {
8877 .name = "rt_period_us",
8878 .read_u64 = cpu_rt_period_read_uint,
8879 .write_u64 = cpu_rt_period_write_uint,
8880 },
8881 #endif
8882 };
8883
8884 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8885 {
8886 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8887 }
8888
8889 struct cgroup_subsys cpu_cgroup_subsys = {
8890 .name = "cpu",
8891 .create = cpu_cgroup_create,
8892 .destroy = cpu_cgroup_destroy,
8893 .can_attach = cpu_cgroup_can_attach,
8894 .attach = cpu_cgroup_attach,
8895 .populate = cpu_cgroup_populate,
8896 .subsys_id = cpu_cgroup_subsys_id,
8897 .early_init = 1,
8898 };
8899
8900 #endif /* CONFIG_CGROUP_SCHED */
8901
8902 #ifdef CONFIG_CGROUP_CPUACCT
8903
8904 /*
8905 * CPU accounting code for task groups.
8906 *
8907 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8908 * (balbir@in.ibm.com).
8909 */
8910
8911 /* track cpu usage of a group of tasks and its child groups */
8912 struct cpuacct {
8913 struct cgroup_subsys_state css;
8914 /* cpuusage holds pointer to a u64-type object on every cpu */
8915 u64 __percpu *cpuusage;
8916 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8917 struct cpuacct *parent;
8918 };
8919
8920 struct cgroup_subsys cpuacct_subsys;
8921
8922 /* return cpu accounting group corresponding to this container */
8923 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8924 {
8925 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8926 struct cpuacct, css);
8927 }
8928
8929 /* return cpu accounting group to which this task belongs */
8930 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8931 {
8932 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8933 struct cpuacct, css);
8934 }
8935
8936 /* create a new cpu accounting group */
8937 static struct cgroup_subsys_state *cpuacct_create(
8938 struct cgroup_subsys *ss, struct cgroup *cgrp)
8939 {
8940 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8941 int i;
8942
8943 if (!ca)
8944 goto out;
8945
8946 ca->cpuusage = alloc_percpu(u64);
8947 if (!ca->cpuusage)
8948 goto out_free_ca;
8949
8950 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8951 if (percpu_counter_init(&ca->cpustat[i], 0))
8952 goto out_free_counters;
8953
8954 if (cgrp->parent)
8955 ca->parent = cgroup_ca(cgrp->parent);
8956
8957 return &ca->css;
8958
8959 out_free_counters:
8960 while (--i >= 0)
8961 percpu_counter_destroy(&ca->cpustat[i]);
8962 free_percpu(ca->cpuusage);
8963 out_free_ca:
8964 kfree(ca);
8965 out:
8966 return ERR_PTR(-ENOMEM);
8967 }
8968
8969 /* destroy an existing cpu accounting group */
8970 static void
8971 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8972 {
8973 struct cpuacct *ca = cgroup_ca(cgrp);
8974 int i;
8975
8976 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8977 percpu_counter_destroy(&ca->cpustat[i]);
8978 free_percpu(ca->cpuusage);
8979 kfree(ca);
8980 }
8981
8982 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8983 {
8984 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8985 u64 data;
8986
8987 #ifndef CONFIG_64BIT
8988 /*
8989 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8990 */
8991 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8992 data = *cpuusage;
8993 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8994 #else
8995 data = *cpuusage;
8996 #endif
8997
8998 return data;
8999 }
9000
9001 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9002 {
9003 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9004
9005 #ifndef CONFIG_64BIT
9006 /*
9007 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9008 */
9009 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9010 *cpuusage = val;
9011 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9012 #else
9013 *cpuusage = val;
9014 #endif
9015 }
9016
9017 /* return total cpu usage (in nanoseconds) of a group */
9018 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9019 {
9020 struct cpuacct *ca = cgroup_ca(cgrp);
9021 u64 totalcpuusage = 0;
9022 int i;
9023
9024 for_each_present_cpu(i)
9025 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9026
9027 return totalcpuusage;
9028 }
9029
9030 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9031 u64 reset)
9032 {
9033 struct cpuacct *ca = cgroup_ca(cgrp);
9034 int err = 0;
9035 int i;
9036
9037 if (reset) {
9038 err = -EINVAL;
9039 goto out;
9040 }
9041
9042 for_each_present_cpu(i)
9043 cpuacct_cpuusage_write(ca, i, 0);
9044
9045 out:
9046 return err;
9047 }
9048
9049 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9050 struct seq_file *m)
9051 {
9052 struct cpuacct *ca = cgroup_ca(cgroup);
9053 u64 percpu;
9054 int i;
9055
9056 for_each_present_cpu(i) {
9057 percpu = cpuacct_cpuusage_read(ca, i);
9058 seq_printf(m, "%llu ", (unsigned long long) percpu);
9059 }
9060 seq_printf(m, "\n");
9061 return 0;
9062 }
9063
9064 static const char *cpuacct_stat_desc[] = {
9065 [CPUACCT_STAT_USER] = "user",
9066 [CPUACCT_STAT_SYSTEM] = "system",
9067 };
9068
9069 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9070 struct cgroup_map_cb *cb)
9071 {
9072 struct cpuacct *ca = cgroup_ca(cgrp);
9073 int i;
9074
9075 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9076 s64 val = percpu_counter_read(&ca->cpustat[i]);
9077 val = cputime64_to_clock_t(val);
9078 cb->fill(cb, cpuacct_stat_desc[i], val);
9079 }
9080 return 0;
9081 }
9082
9083 static struct cftype files[] = {
9084 {
9085 .name = "usage",
9086 .read_u64 = cpuusage_read,
9087 .write_u64 = cpuusage_write,
9088 },
9089 {
9090 .name = "usage_percpu",
9091 .read_seq_string = cpuacct_percpu_seq_read,
9092 },
9093 {
9094 .name = "stat",
9095 .read_map = cpuacct_stats_show,
9096 },
9097 };
9098
9099 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9100 {
9101 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9102 }
9103
9104 /*
9105 * charge this task's execution time to its accounting group.
9106 *
9107 * called with rq->lock held.
9108 */
9109 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9110 {
9111 struct cpuacct *ca;
9112 int cpu;
9113
9114 if (unlikely(!cpuacct_subsys.active))
9115 return;
9116
9117 cpu = task_cpu(tsk);
9118
9119 rcu_read_lock();
9120
9121 ca = task_ca(tsk);
9122
9123 for (; ca; ca = ca->parent) {
9124 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9125 *cpuusage += cputime;
9126 }
9127
9128 rcu_read_unlock();
9129 }
9130
9131 /*
9132 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9133 * in cputime_t units. As a result, cpuacct_update_stats calls
9134 * percpu_counter_add with values large enough to always overflow the
9135 * per cpu batch limit causing bad SMP scalability.
9136 *
9137 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9138 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9139 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9140 */
9141 #ifdef CONFIG_SMP
9142 #define CPUACCT_BATCH \
9143 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9144 #else
9145 #define CPUACCT_BATCH 0
9146 #endif
9147
9148 /*
9149 * Charge the system/user time to the task's accounting group.
9150 */
9151 static void cpuacct_update_stats(struct task_struct *tsk,
9152 enum cpuacct_stat_index idx, cputime_t val)
9153 {
9154 struct cpuacct *ca;
9155 int batch = CPUACCT_BATCH;
9156
9157 if (unlikely(!cpuacct_subsys.active))
9158 return;
9159
9160 rcu_read_lock();
9161 ca = task_ca(tsk);
9162
9163 do {
9164 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9165 ca = ca->parent;
9166 } while (ca);
9167 rcu_read_unlock();
9168 }
9169
9170 struct cgroup_subsys cpuacct_subsys = {
9171 .name = "cpuacct",
9172 .create = cpuacct_create,
9173 .destroy = cpuacct_destroy,
9174 .populate = cpuacct_populate,
9175 .subsys_id = cpuacct_subsys_id,
9176 };
9177 #endif /* CONFIG_CGROUP_CPUACCT */
9178
9179 #ifndef CONFIG_SMP
9180
9181 void synchronize_sched_expedited(void)
9182 {
9183 barrier();
9184 }
9185 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9186
9187 #else /* #ifndef CONFIG_SMP */
9188
9189 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
9190
9191 static int synchronize_sched_expedited_cpu_stop(void *data)
9192 {
9193 /*
9194 * There must be a full memory barrier on each affected CPU
9195 * between the time that try_stop_cpus() is called and the
9196 * time that it returns.
9197 *
9198 * In the current initial implementation of cpu_stop, the
9199 * above condition is already met when the control reaches
9200 * this point and the following smp_mb() is not strictly
9201 * necessary. Do smp_mb() anyway for documentation and
9202 * robustness against future implementation changes.
9203 */
9204 smp_mb(); /* See above comment block. */
9205 return 0;
9206 }
9207
9208 /*
9209 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9210 * approach to force grace period to end quickly. This consumes
9211 * significant time on all CPUs, and is thus not recommended for
9212 * any sort of common-case code.
9213 *
9214 * Note that it is illegal to call this function while holding any
9215 * lock that is acquired by a CPU-hotplug notifier. Failing to
9216 * observe this restriction will result in deadlock.
9217 */
9218 void synchronize_sched_expedited(void)
9219 {
9220 int snap, trycount = 0;
9221
9222 smp_mb(); /* ensure prior mod happens before capturing snap. */
9223 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
9224 get_online_cpus();
9225 while (try_stop_cpus(cpu_online_mask,
9226 synchronize_sched_expedited_cpu_stop,
9227 NULL) == -EAGAIN) {
9228 put_online_cpus();
9229 if (trycount++ < 10)
9230 udelay(trycount * num_online_cpus());
9231 else {
9232 synchronize_sched();
9233 return;
9234 }
9235 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
9236 smp_mb(); /* ensure test happens before caller kfree */
9237 return;
9238 }
9239 get_online_cpus();
9240 }
9241 atomic_inc(&synchronize_sched_expedited_count);
9242 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9243 put_online_cpus();
9244 }
9245 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9246
9247 #endif /* #else #ifndef CONFIG_SMP */