]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched.c
Merge branch 'nfs-for-2.6.35' of git://git.linux-nfs.org/projects/trondmy/nfs-2.6
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
75
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78
79 #include "sched_cpupri.h"
80
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/sched.h>
83
84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93 /*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102 /*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
110 /*
111 * These are the 'tuning knobs' of the scheduler:
112 *
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
115 */
116 #define DEF_TIMESLICE (100 * HZ / 1000)
117
118 /*
119 * single value that denotes runtime == period, ie unlimited time.
120 */
121 #define RUNTIME_INF ((u64)~0ULL)
122
123 static inline int rt_policy(int policy)
124 {
125 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
126 return 1;
127 return 0;
128 }
129
130 static inline int task_has_rt_policy(struct task_struct *p)
131 {
132 return rt_policy(p->policy);
133 }
134
135 /*
136 * This is the priority-queue data structure of the RT scheduling class:
137 */
138 struct rt_prio_array {
139 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
140 struct list_head queue[MAX_RT_PRIO];
141 };
142
143 struct rt_bandwidth {
144 /* nests inside the rq lock: */
145 raw_spinlock_t rt_runtime_lock;
146 ktime_t rt_period;
147 u64 rt_runtime;
148 struct hrtimer rt_period_timer;
149 };
150
151 static struct rt_bandwidth def_rt_bandwidth;
152
153 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154
155 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 {
157 struct rt_bandwidth *rt_b =
158 container_of(timer, struct rt_bandwidth, rt_period_timer);
159 ktime_t now;
160 int overrun;
161 int idle = 0;
162
163 for (;;) {
164 now = hrtimer_cb_get_time(timer);
165 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166
167 if (!overrun)
168 break;
169
170 idle = do_sched_rt_period_timer(rt_b, overrun);
171 }
172
173 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
174 }
175
176 static
177 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 {
179 rt_b->rt_period = ns_to_ktime(period);
180 rt_b->rt_runtime = runtime;
181
182 raw_spin_lock_init(&rt_b->rt_runtime_lock);
183
184 hrtimer_init(&rt_b->rt_period_timer,
185 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
186 rt_b->rt_period_timer.function = sched_rt_period_timer;
187 }
188
189 static inline int rt_bandwidth_enabled(void)
190 {
191 return sysctl_sched_rt_runtime >= 0;
192 }
193
194 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 {
196 ktime_t now;
197
198 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
199 return;
200
201 if (hrtimer_active(&rt_b->rt_period_timer))
202 return;
203
204 raw_spin_lock(&rt_b->rt_runtime_lock);
205 for (;;) {
206 unsigned long delta;
207 ktime_t soft, hard;
208
209 if (hrtimer_active(&rt_b->rt_period_timer))
210 break;
211
212 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
213 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214
215 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
216 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
217 delta = ktime_to_ns(ktime_sub(hard, soft));
218 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
219 HRTIMER_MODE_ABS_PINNED, 0);
220 }
221 raw_spin_unlock(&rt_b->rt_runtime_lock);
222 }
223
224 #ifdef CONFIG_RT_GROUP_SCHED
225 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 {
227 hrtimer_cancel(&rt_b->rt_period_timer);
228 }
229 #endif
230
231 /*
232 * sched_domains_mutex serializes calls to arch_init_sched_domains,
233 * detach_destroy_domains and partition_sched_domains.
234 */
235 static DEFINE_MUTEX(sched_domains_mutex);
236
237 #ifdef CONFIG_CGROUP_SCHED
238
239 #include <linux/cgroup.h>
240
241 struct cfs_rq;
242
243 static LIST_HEAD(task_groups);
244
245 /* task group related information */
246 struct task_group {
247 struct cgroup_subsys_state css;
248
249 #ifdef CONFIG_FAIR_GROUP_SCHED
250 /* schedulable entities of this group on each cpu */
251 struct sched_entity **se;
252 /* runqueue "owned" by this group on each cpu */
253 struct cfs_rq **cfs_rq;
254 unsigned long shares;
255 #endif
256
257 #ifdef CONFIG_RT_GROUP_SCHED
258 struct sched_rt_entity **rt_se;
259 struct rt_rq **rt_rq;
260
261 struct rt_bandwidth rt_bandwidth;
262 #endif
263
264 struct rcu_head rcu;
265 struct list_head list;
266
267 struct task_group *parent;
268 struct list_head siblings;
269 struct list_head children;
270 };
271
272 #define root_task_group init_task_group
273
274 /* task_group_lock serializes add/remove of task groups and also changes to
275 * a task group's cpu shares.
276 */
277 static DEFINE_SPINLOCK(task_group_lock);
278
279 #ifdef CONFIG_FAIR_GROUP_SCHED
280
281 #ifdef CONFIG_SMP
282 static int root_task_group_empty(void)
283 {
284 return list_empty(&root_task_group.children);
285 }
286 #endif
287
288 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
289
290 /*
291 * A weight of 0 or 1 can cause arithmetics problems.
292 * A weight of a cfs_rq is the sum of weights of which entities
293 * are queued on this cfs_rq, so a weight of a entity should not be
294 * too large, so as the shares value of a task group.
295 * (The default weight is 1024 - so there's no practical
296 * limitation from this.)
297 */
298 #define MIN_SHARES 2
299 #define MAX_SHARES (1UL << 18)
300
301 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
302 #endif
303
304 /* Default task group.
305 * Every task in system belong to this group at bootup.
306 */
307 struct task_group init_task_group;
308
309 /* return group to which a task belongs */
310 static inline struct task_group *task_group(struct task_struct *p)
311 {
312 struct task_group *tg;
313
314 #ifdef CONFIG_CGROUP_SCHED
315 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
316 struct task_group, css);
317 #else
318 tg = &init_task_group;
319 #endif
320 return tg;
321 }
322
323 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
324 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
325 {
326 /*
327 * Strictly speaking this rcu_read_lock() is not needed since the
328 * task_group is tied to the cgroup, which in turn can never go away
329 * as long as there are tasks attached to it.
330 *
331 * However since task_group() uses task_subsys_state() which is an
332 * rcu_dereference() user, this quiets CONFIG_PROVE_RCU.
333 */
334 rcu_read_lock();
335 #ifdef CONFIG_FAIR_GROUP_SCHED
336 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
337 p->se.parent = task_group(p)->se[cpu];
338 #endif
339
340 #ifdef CONFIG_RT_GROUP_SCHED
341 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
342 p->rt.parent = task_group(p)->rt_se[cpu];
343 #endif
344 rcu_read_unlock();
345 }
346
347 #else
348
349 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
350 static inline struct task_group *task_group(struct task_struct *p)
351 {
352 return NULL;
353 }
354
355 #endif /* CONFIG_CGROUP_SCHED */
356
357 /* CFS-related fields in a runqueue */
358 struct cfs_rq {
359 struct load_weight load;
360 unsigned long nr_running;
361
362 u64 exec_clock;
363 u64 min_vruntime;
364
365 struct rb_root tasks_timeline;
366 struct rb_node *rb_leftmost;
367
368 struct list_head tasks;
369 struct list_head *balance_iterator;
370
371 /*
372 * 'curr' points to currently running entity on this cfs_rq.
373 * It is set to NULL otherwise (i.e when none are currently running).
374 */
375 struct sched_entity *curr, *next, *last;
376
377 unsigned int nr_spread_over;
378
379 #ifdef CONFIG_FAIR_GROUP_SCHED
380 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
381
382 /*
383 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
384 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
385 * (like users, containers etc.)
386 *
387 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
388 * list is used during load balance.
389 */
390 struct list_head leaf_cfs_rq_list;
391 struct task_group *tg; /* group that "owns" this runqueue */
392
393 #ifdef CONFIG_SMP
394 /*
395 * the part of load.weight contributed by tasks
396 */
397 unsigned long task_weight;
398
399 /*
400 * h_load = weight * f(tg)
401 *
402 * Where f(tg) is the recursive weight fraction assigned to
403 * this group.
404 */
405 unsigned long h_load;
406
407 /*
408 * this cpu's part of tg->shares
409 */
410 unsigned long shares;
411
412 /*
413 * load.weight at the time we set shares
414 */
415 unsigned long rq_weight;
416 #endif
417 #endif
418 };
419
420 /* Real-Time classes' related field in a runqueue: */
421 struct rt_rq {
422 struct rt_prio_array active;
423 unsigned long rt_nr_running;
424 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
425 struct {
426 int curr; /* highest queued rt task prio */
427 #ifdef CONFIG_SMP
428 int next; /* next highest */
429 #endif
430 } highest_prio;
431 #endif
432 #ifdef CONFIG_SMP
433 unsigned long rt_nr_migratory;
434 unsigned long rt_nr_total;
435 int overloaded;
436 struct plist_head pushable_tasks;
437 #endif
438 int rt_throttled;
439 u64 rt_time;
440 u64 rt_runtime;
441 /* Nests inside the rq lock: */
442 raw_spinlock_t rt_runtime_lock;
443
444 #ifdef CONFIG_RT_GROUP_SCHED
445 unsigned long rt_nr_boosted;
446
447 struct rq *rq;
448 struct list_head leaf_rt_rq_list;
449 struct task_group *tg;
450 #endif
451 };
452
453 #ifdef CONFIG_SMP
454
455 /*
456 * We add the notion of a root-domain which will be used to define per-domain
457 * variables. Each exclusive cpuset essentially defines an island domain by
458 * fully partitioning the member cpus from any other cpuset. Whenever a new
459 * exclusive cpuset is created, we also create and attach a new root-domain
460 * object.
461 *
462 */
463 struct root_domain {
464 atomic_t refcount;
465 cpumask_var_t span;
466 cpumask_var_t online;
467
468 /*
469 * The "RT overload" flag: it gets set if a CPU has more than
470 * one runnable RT task.
471 */
472 cpumask_var_t rto_mask;
473 atomic_t rto_count;
474 #ifdef CONFIG_SMP
475 struct cpupri cpupri;
476 #endif
477 };
478
479 /*
480 * By default the system creates a single root-domain with all cpus as
481 * members (mimicking the global state we have today).
482 */
483 static struct root_domain def_root_domain;
484
485 #endif
486
487 /*
488 * This is the main, per-CPU runqueue data structure.
489 *
490 * Locking rule: those places that want to lock multiple runqueues
491 * (such as the load balancing or the thread migration code), lock
492 * acquire operations must be ordered by ascending &runqueue.
493 */
494 struct rq {
495 /* runqueue lock: */
496 raw_spinlock_t lock;
497
498 /*
499 * nr_running and cpu_load should be in the same cacheline because
500 * remote CPUs use both these fields when doing load calculation.
501 */
502 unsigned long nr_running;
503 #define CPU_LOAD_IDX_MAX 5
504 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
505 #ifdef CONFIG_NO_HZ
506 u64 nohz_stamp;
507 unsigned char in_nohz_recently;
508 #endif
509 unsigned int skip_clock_update;
510
511 /* capture load from *all* tasks on this cpu: */
512 struct load_weight load;
513 unsigned long nr_load_updates;
514 u64 nr_switches;
515
516 struct cfs_rq cfs;
517 struct rt_rq rt;
518
519 #ifdef CONFIG_FAIR_GROUP_SCHED
520 /* list of leaf cfs_rq on this cpu: */
521 struct list_head leaf_cfs_rq_list;
522 #endif
523 #ifdef CONFIG_RT_GROUP_SCHED
524 struct list_head leaf_rt_rq_list;
525 #endif
526
527 /*
528 * This is part of a global counter where only the total sum
529 * over all CPUs matters. A task can increase this counter on
530 * one CPU and if it got migrated afterwards it may decrease
531 * it on another CPU. Always updated under the runqueue lock:
532 */
533 unsigned long nr_uninterruptible;
534
535 struct task_struct *curr, *idle;
536 unsigned long next_balance;
537 struct mm_struct *prev_mm;
538
539 u64 clock;
540
541 atomic_t nr_iowait;
542
543 #ifdef CONFIG_SMP
544 struct root_domain *rd;
545 struct sched_domain *sd;
546
547 unsigned char idle_at_tick;
548 /* For active balancing */
549 int post_schedule;
550 int active_balance;
551 int push_cpu;
552 struct cpu_stop_work active_balance_work;
553 /* cpu of this runqueue: */
554 int cpu;
555 int online;
556
557 unsigned long avg_load_per_task;
558
559 u64 rt_avg;
560 u64 age_stamp;
561 u64 idle_stamp;
562 u64 avg_idle;
563 #endif
564
565 /* calc_load related fields */
566 unsigned long calc_load_update;
567 long calc_load_active;
568
569 #ifdef CONFIG_SCHED_HRTICK
570 #ifdef CONFIG_SMP
571 int hrtick_csd_pending;
572 struct call_single_data hrtick_csd;
573 #endif
574 struct hrtimer hrtick_timer;
575 #endif
576
577 #ifdef CONFIG_SCHEDSTATS
578 /* latency stats */
579 struct sched_info rq_sched_info;
580 unsigned long long rq_cpu_time;
581 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
582
583 /* sys_sched_yield() stats */
584 unsigned int yld_count;
585
586 /* schedule() stats */
587 unsigned int sched_switch;
588 unsigned int sched_count;
589 unsigned int sched_goidle;
590
591 /* try_to_wake_up() stats */
592 unsigned int ttwu_count;
593 unsigned int ttwu_local;
594
595 /* BKL stats */
596 unsigned int bkl_count;
597 #endif
598 };
599
600 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
601
602 static inline
603 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
604 {
605 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
606
607 /*
608 * A queue event has occurred, and we're going to schedule. In
609 * this case, we can save a useless back to back clock update.
610 */
611 if (test_tsk_need_resched(p))
612 rq->skip_clock_update = 1;
613 }
614
615 static inline int cpu_of(struct rq *rq)
616 {
617 #ifdef CONFIG_SMP
618 return rq->cpu;
619 #else
620 return 0;
621 #endif
622 }
623
624 #define rcu_dereference_check_sched_domain(p) \
625 rcu_dereference_check((p), \
626 rcu_read_lock_sched_held() || \
627 lockdep_is_held(&sched_domains_mutex))
628
629 /*
630 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
631 * See detach_destroy_domains: synchronize_sched for details.
632 *
633 * The domain tree of any CPU may only be accessed from within
634 * preempt-disabled sections.
635 */
636 #define for_each_domain(cpu, __sd) \
637 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
638
639 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
640 #define this_rq() (&__get_cpu_var(runqueues))
641 #define task_rq(p) cpu_rq(task_cpu(p))
642 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
643 #define raw_rq() (&__raw_get_cpu_var(runqueues))
644
645 inline void update_rq_clock(struct rq *rq)
646 {
647 if (!rq->skip_clock_update)
648 rq->clock = sched_clock_cpu(cpu_of(rq));
649 }
650
651 /*
652 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
653 */
654 #ifdef CONFIG_SCHED_DEBUG
655 # define const_debug __read_mostly
656 #else
657 # define const_debug static const
658 #endif
659
660 /**
661 * runqueue_is_locked
662 * @cpu: the processor in question.
663 *
664 * Returns true if the current cpu runqueue is locked.
665 * This interface allows printk to be called with the runqueue lock
666 * held and know whether or not it is OK to wake up the klogd.
667 */
668 int runqueue_is_locked(int cpu)
669 {
670 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
671 }
672
673 /*
674 * Debugging: various feature bits
675 */
676
677 #define SCHED_FEAT(name, enabled) \
678 __SCHED_FEAT_##name ,
679
680 enum {
681 #include "sched_features.h"
682 };
683
684 #undef SCHED_FEAT
685
686 #define SCHED_FEAT(name, enabled) \
687 (1UL << __SCHED_FEAT_##name) * enabled |
688
689 const_debug unsigned int sysctl_sched_features =
690 #include "sched_features.h"
691 0;
692
693 #undef SCHED_FEAT
694
695 #ifdef CONFIG_SCHED_DEBUG
696 #define SCHED_FEAT(name, enabled) \
697 #name ,
698
699 static __read_mostly char *sched_feat_names[] = {
700 #include "sched_features.h"
701 NULL
702 };
703
704 #undef SCHED_FEAT
705
706 static int sched_feat_show(struct seq_file *m, void *v)
707 {
708 int i;
709
710 for (i = 0; sched_feat_names[i]; i++) {
711 if (!(sysctl_sched_features & (1UL << i)))
712 seq_puts(m, "NO_");
713 seq_printf(m, "%s ", sched_feat_names[i]);
714 }
715 seq_puts(m, "\n");
716
717 return 0;
718 }
719
720 static ssize_t
721 sched_feat_write(struct file *filp, const char __user *ubuf,
722 size_t cnt, loff_t *ppos)
723 {
724 char buf[64];
725 char *cmp = buf;
726 int neg = 0;
727 int i;
728
729 if (cnt > 63)
730 cnt = 63;
731
732 if (copy_from_user(&buf, ubuf, cnt))
733 return -EFAULT;
734
735 buf[cnt] = 0;
736
737 if (strncmp(buf, "NO_", 3) == 0) {
738 neg = 1;
739 cmp += 3;
740 }
741
742 for (i = 0; sched_feat_names[i]; i++) {
743 int len = strlen(sched_feat_names[i]);
744
745 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
746 if (neg)
747 sysctl_sched_features &= ~(1UL << i);
748 else
749 sysctl_sched_features |= (1UL << i);
750 break;
751 }
752 }
753
754 if (!sched_feat_names[i])
755 return -EINVAL;
756
757 *ppos += cnt;
758
759 return cnt;
760 }
761
762 static int sched_feat_open(struct inode *inode, struct file *filp)
763 {
764 return single_open(filp, sched_feat_show, NULL);
765 }
766
767 static const struct file_operations sched_feat_fops = {
768 .open = sched_feat_open,
769 .write = sched_feat_write,
770 .read = seq_read,
771 .llseek = seq_lseek,
772 .release = single_release,
773 };
774
775 static __init int sched_init_debug(void)
776 {
777 debugfs_create_file("sched_features", 0644, NULL, NULL,
778 &sched_feat_fops);
779
780 return 0;
781 }
782 late_initcall(sched_init_debug);
783
784 #endif
785
786 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
787
788 /*
789 * Number of tasks to iterate in a single balance run.
790 * Limited because this is done with IRQs disabled.
791 */
792 const_debug unsigned int sysctl_sched_nr_migrate = 32;
793
794 /*
795 * ratelimit for updating the group shares.
796 * default: 0.25ms
797 */
798 unsigned int sysctl_sched_shares_ratelimit = 250000;
799 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
800
801 /*
802 * Inject some fuzzyness into changing the per-cpu group shares
803 * this avoids remote rq-locks at the expense of fairness.
804 * default: 4
805 */
806 unsigned int sysctl_sched_shares_thresh = 4;
807
808 /*
809 * period over which we average the RT time consumption, measured
810 * in ms.
811 *
812 * default: 1s
813 */
814 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
815
816 /*
817 * period over which we measure -rt task cpu usage in us.
818 * default: 1s
819 */
820 unsigned int sysctl_sched_rt_period = 1000000;
821
822 static __read_mostly int scheduler_running;
823
824 /*
825 * part of the period that we allow rt tasks to run in us.
826 * default: 0.95s
827 */
828 int sysctl_sched_rt_runtime = 950000;
829
830 static inline u64 global_rt_period(void)
831 {
832 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
833 }
834
835 static inline u64 global_rt_runtime(void)
836 {
837 if (sysctl_sched_rt_runtime < 0)
838 return RUNTIME_INF;
839
840 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
841 }
842
843 #ifndef prepare_arch_switch
844 # define prepare_arch_switch(next) do { } while (0)
845 #endif
846 #ifndef finish_arch_switch
847 # define finish_arch_switch(prev) do { } while (0)
848 #endif
849
850 static inline int task_current(struct rq *rq, struct task_struct *p)
851 {
852 return rq->curr == p;
853 }
854
855 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
856 static inline int task_running(struct rq *rq, struct task_struct *p)
857 {
858 return task_current(rq, p);
859 }
860
861 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
862 {
863 }
864
865 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
866 {
867 #ifdef CONFIG_DEBUG_SPINLOCK
868 /* this is a valid case when another task releases the spinlock */
869 rq->lock.owner = current;
870 #endif
871 /*
872 * If we are tracking spinlock dependencies then we have to
873 * fix up the runqueue lock - which gets 'carried over' from
874 * prev into current:
875 */
876 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
877
878 raw_spin_unlock_irq(&rq->lock);
879 }
880
881 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
882 static inline int task_running(struct rq *rq, struct task_struct *p)
883 {
884 #ifdef CONFIG_SMP
885 return p->oncpu;
886 #else
887 return task_current(rq, p);
888 #endif
889 }
890
891 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
892 {
893 #ifdef CONFIG_SMP
894 /*
895 * We can optimise this out completely for !SMP, because the
896 * SMP rebalancing from interrupt is the only thing that cares
897 * here.
898 */
899 next->oncpu = 1;
900 #endif
901 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
902 raw_spin_unlock_irq(&rq->lock);
903 #else
904 raw_spin_unlock(&rq->lock);
905 #endif
906 }
907
908 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
909 {
910 #ifdef CONFIG_SMP
911 /*
912 * After ->oncpu is cleared, the task can be moved to a different CPU.
913 * We must ensure this doesn't happen until the switch is completely
914 * finished.
915 */
916 smp_wmb();
917 prev->oncpu = 0;
918 #endif
919 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
920 local_irq_enable();
921 #endif
922 }
923 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
924
925 /*
926 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
927 * against ttwu().
928 */
929 static inline int task_is_waking(struct task_struct *p)
930 {
931 return unlikely(p->state == TASK_WAKING);
932 }
933
934 /*
935 * __task_rq_lock - lock the runqueue a given task resides on.
936 * Must be called interrupts disabled.
937 */
938 static inline struct rq *__task_rq_lock(struct task_struct *p)
939 __acquires(rq->lock)
940 {
941 struct rq *rq;
942
943 for (;;) {
944 rq = task_rq(p);
945 raw_spin_lock(&rq->lock);
946 if (likely(rq == task_rq(p)))
947 return rq;
948 raw_spin_unlock(&rq->lock);
949 }
950 }
951
952 /*
953 * task_rq_lock - lock the runqueue a given task resides on and disable
954 * interrupts. Note the ordering: we can safely lookup the task_rq without
955 * explicitly disabling preemption.
956 */
957 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
958 __acquires(rq->lock)
959 {
960 struct rq *rq;
961
962 for (;;) {
963 local_irq_save(*flags);
964 rq = task_rq(p);
965 raw_spin_lock(&rq->lock);
966 if (likely(rq == task_rq(p)))
967 return rq;
968 raw_spin_unlock_irqrestore(&rq->lock, *flags);
969 }
970 }
971
972 void task_rq_unlock_wait(struct task_struct *p)
973 {
974 struct rq *rq = task_rq(p);
975
976 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
977 raw_spin_unlock_wait(&rq->lock);
978 }
979
980 static void __task_rq_unlock(struct rq *rq)
981 __releases(rq->lock)
982 {
983 raw_spin_unlock(&rq->lock);
984 }
985
986 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
987 __releases(rq->lock)
988 {
989 raw_spin_unlock_irqrestore(&rq->lock, *flags);
990 }
991
992 /*
993 * this_rq_lock - lock this runqueue and disable interrupts.
994 */
995 static struct rq *this_rq_lock(void)
996 __acquires(rq->lock)
997 {
998 struct rq *rq;
999
1000 local_irq_disable();
1001 rq = this_rq();
1002 raw_spin_lock(&rq->lock);
1003
1004 return rq;
1005 }
1006
1007 #ifdef CONFIG_SCHED_HRTICK
1008 /*
1009 * Use HR-timers to deliver accurate preemption points.
1010 *
1011 * Its all a bit involved since we cannot program an hrt while holding the
1012 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1013 * reschedule event.
1014 *
1015 * When we get rescheduled we reprogram the hrtick_timer outside of the
1016 * rq->lock.
1017 */
1018
1019 /*
1020 * Use hrtick when:
1021 * - enabled by features
1022 * - hrtimer is actually high res
1023 */
1024 static inline int hrtick_enabled(struct rq *rq)
1025 {
1026 if (!sched_feat(HRTICK))
1027 return 0;
1028 if (!cpu_active(cpu_of(rq)))
1029 return 0;
1030 return hrtimer_is_hres_active(&rq->hrtick_timer);
1031 }
1032
1033 static void hrtick_clear(struct rq *rq)
1034 {
1035 if (hrtimer_active(&rq->hrtick_timer))
1036 hrtimer_cancel(&rq->hrtick_timer);
1037 }
1038
1039 /*
1040 * High-resolution timer tick.
1041 * Runs from hardirq context with interrupts disabled.
1042 */
1043 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1044 {
1045 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1046
1047 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1048
1049 raw_spin_lock(&rq->lock);
1050 update_rq_clock(rq);
1051 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1052 raw_spin_unlock(&rq->lock);
1053
1054 return HRTIMER_NORESTART;
1055 }
1056
1057 #ifdef CONFIG_SMP
1058 /*
1059 * called from hardirq (IPI) context
1060 */
1061 static void __hrtick_start(void *arg)
1062 {
1063 struct rq *rq = arg;
1064
1065 raw_spin_lock(&rq->lock);
1066 hrtimer_restart(&rq->hrtick_timer);
1067 rq->hrtick_csd_pending = 0;
1068 raw_spin_unlock(&rq->lock);
1069 }
1070
1071 /*
1072 * Called to set the hrtick timer state.
1073 *
1074 * called with rq->lock held and irqs disabled
1075 */
1076 static void hrtick_start(struct rq *rq, u64 delay)
1077 {
1078 struct hrtimer *timer = &rq->hrtick_timer;
1079 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1080
1081 hrtimer_set_expires(timer, time);
1082
1083 if (rq == this_rq()) {
1084 hrtimer_restart(timer);
1085 } else if (!rq->hrtick_csd_pending) {
1086 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1087 rq->hrtick_csd_pending = 1;
1088 }
1089 }
1090
1091 static int
1092 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1093 {
1094 int cpu = (int)(long)hcpu;
1095
1096 switch (action) {
1097 case CPU_UP_CANCELED:
1098 case CPU_UP_CANCELED_FROZEN:
1099 case CPU_DOWN_PREPARE:
1100 case CPU_DOWN_PREPARE_FROZEN:
1101 case CPU_DEAD:
1102 case CPU_DEAD_FROZEN:
1103 hrtick_clear(cpu_rq(cpu));
1104 return NOTIFY_OK;
1105 }
1106
1107 return NOTIFY_DONE;
1108 }
1109
1110 static __init void init_hrtick(void)
1111 {
1112 hotcpu_notifier(hotplug_hrtick, 0);
1113 }
1114 #else
1115 /*
1116 * Called to set the hrtick timer state.
1117 *
1118 * called with rq->lock held and irqs disabled
1119 */
1120 static void hrtick_start(struct rq *rq, u64 delay)
1121 {
1122 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1123 HRTIMER_MODE_REL_PINNED, 0);
1124 }
1125
1126 static inline void init_hrtick(void)
1127 {
1128 }
1129 #endif /* CONFIG_SMP */
1130
1131 static void init_rq_hrtick(struct rq *rq)
1132 {
1133 #ifdef CONFIG_SMP
1134 rq->hrtick_csd_pending = 0;
1135
1136 rq->hrtick_csd.flags = 0;
1137 rq->hrtick_csd.func = __hrtick_start;
1138 rq->hrtick_csd.info = rq;
1139 #endif
1140
1141 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1142 rq->hrtick_timer.function = hrtick;
1143 }
1144 #else /* CONFIG_SCHED_HRTICK */
1145 static inline void hrtick_clear(struct rq *rq)
1146 {
1147 }
1148
1149 static inline void init_rq_hrtick(struct rq *rq)
1150 {
1151 }
1152
1153 static inline void init_hrtick(void)
1154 {
1155 }
1156 #endif /* CONFIG_SCHED_HRTICK */
1157
1158 /*
1159 * resched_task - mark a task 'to be rescheduled now'.
1160 *
1161 * On UP this means the setting of the need_resched flag, on SMP it
1162 * might also involve a cross-CPU call to trigger the scheduler on
1163 * the target CPU.
1164 */
1165 #ifdef CONFIG_SMP
1166
1167 #ifndef tsk_is_polling
1168 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1169 #endif
1170
1171 static void resched_task(struct task_struct *p)
1172 {
1173 int cpu;
1174
1175 assert_raw_spin_locked(&task_rq(p)->lock);
1176
1177 if (test_tsk_need_resched(p))
1178 return;
1179
1180 set_tsk_need_resched(p);
1181
1182 cpu = task_cpu(p);
1183 if (cpu == smp_processor_id())
1184 return;
1185
1186 /* NEED_RESCHED must be visible before we test polling */
1187 smp_mb();
1188 if (!tsk_is_polling(p))
1189 smp_send_reschedule(cpu);
1190 }
1191
1192 static void resched_cpu(int cpu)
1193 {
1194 struct rq *rq = cpu_rq(cpu);
1195 unsigned long flags;
1196
1197 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1198 return;
1199 resched_task(cpu_curr(cpu));
1200 raw_spin_unlock_irqrestore(&rq->lock, flags);
1201 }
1202
1203 #ifdef CONFIG_NO_HZ
1204 /*
1205 * When add_timer_on() enqueues a timer into the timer wheel of an
1206 * idle CPU then this timer might expire before the next timer event
1207 * which is scheduled to wake up that CPU. In case of a completely
1208 * idle system the next event might even be infinite time into the
1209 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1210 * leaves the inner idle loop so the newly added timer is taken into
1211 * account when the CPU goes back to idle and evaluates the timer
1212 * wheel for the next timer event.
1213 */
1214 void wake_up_idle_cpu(int cpu)
1215 {
1216 struct rq *rq = cpu_rq(cpu);
1217
1218 if (cpu == smp_processor_id())
1219 return;
1220
1221 /*
1222 * This is safe, as this function is called with the timer
1223 * wheel base lock of (cpu) held. When the CPU is on the way
1224 * to idle and has not yet set rq->curr to idle then it will
1225 * be serialized on the timer wheel base lock and take the new
1226 * timer into account automatically.
1227 */
1228 if (rq->curr != rq->idle)
1229 return;
1230
1231 /*
1232 * We can set TIF_RESCHED on the idle task of the other CPU
1233 * lockless. The worst case is that the other CPU runs the
1234 * idle task through an additional NOOP schedule()
1235 */
1236 set_tsk_need_resched(rq->idle);
1237
1238 /* NEED_RESCHED must be visible before we test polling */
1239 smp_mb();
1240 if (!tsk_is_polling(rq->idle))
1241 smp_send_reschedule(cpu);
1242 }
1243
1244 int nohz_ratelimit(int cpu)
1245 {
1246 struct rq *rq = cpu_rq(cpu);
1247 u64 diff = rq->clock - rq->nohz_stamp;
1248
1249 rq->nohz_stamp = rq->clock;
1250
1251 return diff < (NSEC_PER_SEC / HZ) >> 1;
1252 }
1253
1254 #endif /* CONFIG_NO_HZ */
1255
1256 static u64 sched_avg_period(void)
1257 {
1258 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1259 }
1260
1261 static void sched_avg_update(struct rq *rq)
1262 {
1263 s64 period = sched_avg_period();
1264
1265 while ((s64)(rq->clock - rq->age_stamp) > period) {
1266 rq->age_stamp += period;
1267 rq->rt_avg /= 2;
1268 }
1269 }
1270
1271 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1272 {
1273 rq->rt_avg += rt_delta;
1274 sched_avg_update(rq);
1275 }
1276
1277 #else /* !CONFIG_SMP */
1278 static void resched_task(struct task_struct *p)
1279 {
1280 assert_raw_spin_locked(&task_rq(p)->lock);
1281 set_tsk_need_resched(p);
1282 }
1283
1284 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1285 {
1286 }
1287 #endif /* CONFIG_SMP */
1288
1289 #if BITS_PER_LONG == 32
1290 # define WMULT_CONST (~0UL)
1291 #else
1292 # define WMULT_CONST (1UL << 32)
1293 #endif
1294
1295 #define WMULT_SHIFT 32
1296
1297 /*
1298 * Shift right and round:
1299 */
1300 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1301
1302 /*
1303 * delta *= weight / lw
1304 */
1305 static unsigned long
1306 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1307 struct load_weight *lw)
1308 {
1309 u64 tmp;
1310
1311 if (!lw->inv_weight) {
1312 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1313 lw->inv_weight = 1;
1314 else
1315 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1316 / (lw->weight+1);
1317 }
1318
1319 tmp = (u64)delta_exec * weight;
1320 /*
1321 * Check whether we'd overflow the 64-bit multiplication:
1322 */
1323 if (unlikely(tmp > WMULT_CONST))
1324 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1325 WMULT_SHIFT/2);
1326 else
1327 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1328
1329 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1330 }
1331
1332 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1333 {
1334 lw->weight += inc;
1335 lw->inv_weight = 0;
1336 }
1337
1338 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1339 {
1340 lw->weight -= dec;
1341 lw->inv_weight = 0;
1342 }
1343
1344 /*
1345 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1346 * of tasks with abnormal "nice" values across CPUs the contribution that
1347 * each task makes to its run queue's load is weighted according to its
1348 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1349 * scaled version of the new time slice allocation that they receive on time
1350 * slice expiry etc.
1351 */
1352
1353 #define WEIGHT_IDLEPRIO 3
1354 #define WMULT_IDLEPRIO 1431655765
1355
1356 /*
1357 * Nice levels are multiplicative, with a gentle 10% change for every
1358 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1359 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1360 * that remained on nice 0.
1361 *
1362 * The "10% effect" is relative and cumulative: from _any_ nice level,
1363 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1364 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1365 * If a task goes up by ~10% and another task goes down by ~10% then
1366 * the relative distance between them is ~25%.)
1367 */
1368 static const int prio_to_weight[40] = {
1369 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1370 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1371 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1372 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1373 /* 0 */ 1024, 820, 655, 526, 423,
1374 /* 5 */ 335, 272, 215, 172, 137,
1375 /* 10 */ 110, 87, 70, 56, 45,
1376 /* 15 */ 36, 29, 23, 18, 15,
1377 };
1378
1379 /*
1380 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1381 *
1382 * In cases where the weight does not change often, we can use the
1383 * precalculated inverse to speed up arithmetics by turning divisions
1384 * into multiplications:
1385 */
1386 static const u32 prio_to_wmult[40] = {
1387 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1388 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1389 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1390 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1391 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1392 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1393 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1394 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1395 };
1396
1397 /* Time spent by the tasks of the cpu accounting group executing in ... */
1398 enum cpuacct_stat_index {
1399 CPUACCT_STAT_USER, /* ... user mode */
1400 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1401
1402 CPUACCT_STAT_NSTATS,
1403 };
1404
1405 #ifdef CONFIG_CGROUP_CPUACCT
1406 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1407 static void cpuacct_update_stats(struct task_struct *tsk,
1408 enum cpuacct_stat_index idx, cputime_t val);
1409 #else
1410 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1411 static inline void cpuacct_update_stats(struct task_struct *tsk,
1412 enum cpuacct_stat_index idx, cputime_t val) {}
1413 #endif
1414
1415 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1416 {
1417 update_load_add(&rq->load, load);
1418 }
1419
1420 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1421 {
1422 update_load_sub(&rq->load, load);
1423 }
1424
1425 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1426 typedef int (*tg_visitor)(struct task_group *, void *);
1427
1428 /*
1429 * Iterate the full tree, calling @down when first entering a node and @up when
1430 * leaving it for the final time.
1431 */
1432 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1433 {
1434 struct task_group *parent, *child;
1435 int ret;
1436
1437 rcu_read_lock();
1438 parent = &root_task_group;
1439 down:
1440 ret = (*down)(parent, data);
1441 if (ret)
1442 goto out_unlock;
1443 list_for_each_entry_rcu(child, &parent->children, siblings) {
1444 parent = child;
1445 goto down;
1446
1447 up:
1448 continue;
1449 }
1450 ret = (*up)(parent, data);
1451 if (ret)
1452 goto out_unlock;
1453
1454 child = parent;
1455 parent = parent->parent;
1456 if (parent)
1457 goto up;
1458 out_unlock:
1459 rcu_read_unlock();
1460
1461 return ret;
1462 }
1463
1464 static int tg_nop(struct task_group *tg, void *data)
1465 {
1466 return 0;
1467 }
1468 #endif
1469
1470 #ifdef CONFIG_SMP
1471 /* Used instead of source_load when we know the type == 0 */
1472 static unsigned long weighted_cpuload(const int cpu)
1473 {
1474 return cpu_rq(cpu)->load.weight;
1475 }
1476
1477 /*
1478 * Return a low guess at the load of a migration-source cpu weighted
1479 * according to the scheduling class and "nice" value.
1480 *
1481 * We want to under-estimate the load of migration sources, to
1482 * balance conservatively.
1483 */
1484 static unsigned long source_load(int cpu, int type)
1485 {
1486 struct rq *rq = cpu_rq(cpu);
1487 unsigned long total = weighted_cpuload(cpu);
1488
1489 if (type == 0 || !sched_feat(LB_BIAS))
1490 return total;
1491
1492 return min(rq->cpu_load[type-1], total);
1493 }
1494
1495 /*
1496 * Return a high guess at the load of a migration-target cpu weighted
1497 * according to the scheduling class and "nice" value.
1498 */
1499 static unsigned long target_load(int cpu, int type)
1500 {
1501 struct rq *rq = cpu_rq(cpu);
1502 unsigned long total = weighted_cpuload(cpu);
1503
1504 if (type == 0 || !sched_feat(LB_BIAS))
1505 return total;
1506
1507 return max(rq->cpu_load[type-1], total);
1508 }
1509
1510 static struct sched_group *group_of(int cpu)
1511 {
1512 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1513
1514 if (!sd)
1515 return NULL;
1516
1517 return sd->groups;
1518 }
1519
1520 static unsigned long power_of(int cpu)
1521 {
1522 struct sched_group *group = group_of(cpu);
1523
1524 if (!group)
1525 return SCHED_LOAD_SCALE;
1526
1527 return group->cpu_power;
1528 }
1529
1530 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1531
1532 static unsigned long cpu_avg_load_per_task(int cpu)
1533 {
1534 struct rq *rq = cpu_rq(cpu);
1535 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1536
1537 if (nr_running)
1538 rq->avg_load_per_task = rq->load.weight / nr_running;
1539 else
1540 rq->avg_load_per_task = 0;
1541
1542 return rq->avg_load_per_task;
1543 }
1544
1545 #ifdef CONFIG_FAIR_GROUP_SCHED
1546
1547 static __read_mostly unsigned long __percpu *update_shares_data;
1548
1549 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1550
1551 /*
1552 * Calculate and set the cpu's group shares.
1553 */
1554 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1555 unsigned long sd_shares,
1556 unsigned long sd_rq_weight,
1557 unsigned long *usd_rq_weight)
1558 {
1559 unsigned long shares, rq_weight;
1560 int boost = 0;
1561
1562 rq_weight = usd_rq_weight[cpu];
1563 if (!rq_weight) {
1564 boost = 1;
1565 rq_weight = NICE_0_LOAD;
1566 }
1567
1568 /*
1569 * \Sum_j shares_j * rq_weight_i
1570 * shares_i = -----------------------------
1571 * \Sum_j rq_weight_j
1572 */
1573 shares = (sd_shares * rq_weight) / sd_rq_weight;
1574 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1575
1576 if (abs(shares - tg->se[cpu]->load.weight) >
1577 sysctl_sched_shares_thresh) {
1578 struct rq *rq = cpu_rq(cpu);
1579 unsigned long flags;
1580
1581 raw_spin_lock_irqsave(&rq->lock, flags);
1582 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1583 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1584 __set_se_shares(tg->se[cpu], shares);
1585 raw_spin_unlock_irqrestore(&rq->lock, flags);
1586 }
1587 }
1588
1589 /*
1590 * Re-compute the task group their per cpu shares over the given domain.
1591 * This needs to be done in a bottom-up fashion because the rq weight of a
1592 * parent group depends on the shares of its child groups.
1593 */
1594 static int tg_shares_up(struct task_group *tg, void *data)
1595 {
1596 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1597 unsigned long *usd_rq_weight;
1598 struct sched_domain *sd = data;
1599 unsigned long flags;
1600 int i;
1601
1602 if (!tg->se[0])
1603 return 0;
1604
1605 local_irq_save(flags);
1606 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1607
1608 for_each_cpu(i, sched_domain_span(sd)) {
1609 weight = tg->cfs_rq[i]->load.weight;
1610 usd_rq_weight[i] = weight;
1611
1612 rq_weight += weight;
1613 /*
1614 * If there are currently no tasks on the cpu pretend there
1615 * is one of average load so that when a new task gets to
1616 * run here it will not get delayed by group starvation.
1617 */
1618 if (!weight)
1619 weight = NICE_0_LOAD;
1620
1621 sum_weight += weight;
1622 shares += tg->cfs_rq[i]->shares;
1623 }
1624
1625 if (!rq_weight)
1626 rq_weight = sum_weight;
1627
1628 if ((!shares && rq_weight) || shares > tg->shares)
1629 shares = tg->shares;
1630
1631 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1632 shares = tg->shares;
1633
1634 for_each_cpu(i, sched_domain_span(sd))
1635 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1636
1637 local_irq_restore(flags);
1638
1639 return 0;
1640 }
1641
1642 /*
1643 * Compute the cpu's hierarchical load factor for each task group.
1644 * This needs to be done in a top-down fashion because the load of a child
1645 * group is a fraction of its parents load.
1646 */
1647 static int tg_load_down(struct task_group *tg, void *data)
1648 {
1649 unsigned long load;
1650 long cpu = (long)data;
1651
1652 if (!tg->parent) {
1653 load = cpu_rq(cpu)->load.weight;
1654 } else {
1655 load = tg->parent->cfs_rq[cpu]->h_load;
1656 load *= tg->cfs_rq[cpu]->shares;
1657 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1658 }
1659
1660 tg->cfs_rq[cpu]->h_load = load;
1661
1662 return 0;
1663 }
1664
1665 static void update_shares(struct sched_domain *sd)
1666 {
1667 s64 elapsed;
1668 u64 now;
1669
1670 if (root_task_group_empty())
1671 return;
1672
1673 now = cpu_clock(raw_smp_processor_id());
1674 elapsed = now - sd->last_update;
1675
1676 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1677 sd->last_update = now;
1678 walk_tg_tree(tg_nop, tg_shares_up, sd);
1679 }
1680 }
1681
1682 static void update_h_load(long cpu)
1683 {
1684 if (root_task_group_empty())
1685 return;
1686
1687 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1688 }
1689
1690 #else
1691
1692 static inline void update_shares(struct sched_domain *sd)
1693 {
1694 }
1695
1696 #endif
1697
1698 #ifdef CONFIG_PREEMPT
1699
1700 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1701
1702 /*
1703 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1704 * way at the expense of forcing extra atomic operations in all
1705 * invocations. This assures that the double_lock is acquired using the
1706 * same underlying policy as the spinlock_t on this architecture, which
1707 * reduces latency compared to the unfair variant below. However, it
1708 * also adds more overhead and therefore may reduce throughput.
1709 */
1710 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1711 __releases(this_rq->lock)
1712 __acquires(busiest->lock)
1713 __acquires(this_rq->lock)
1714 {
1715 raw_spin_unlock(&this_rq->lock);
1716 double_rq_lock(this_rq, busiest);
1717
1718 return 1;
1719 }
1720
1721 #else
1722 /*
1723 * Unfair double_lock_balance: Optimizes throughput at the expense of
1724 * latency by eliminating extra atomic operations when the locks are
1725 * already in proper order on entry. This favors lower cpu-ids and will
1726 * grant the double lock to lower cpus over higher ids under contention,
1727 * regardless of entry order into the function.
1728 */
1729 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1730 __releases(this_rq->lock)
1731 __acquires(busiest->lock)
1732 __acquires(this_rq->lock)
1733 {
1734 int ret = 0;
1735
1736 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1737 if (busiest < this_rq) {
1738 raw_spin_unlock(&this_rq->lock);
1739 raw_spin_lock(&busiest->lock);
1740 raw_spin_lock_nested(&this_rq->lock,
1741 SINGLE_DEPTH_NESTING);
1742 ret = 1;
1743 } else
1744 raw_spin_lock_nested(&busiest->lock,
1745 SINGLE_DEPTH_NESTING);
1746 }
1747 return ret;
1748 }
1749
1750 #endif /* CONFIG_PREEMPT */
1751
1752 /*
1753 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1754 */
1755 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1756 {
1757 if (unlikely(!irqs_disabled())) {
1758 /* printk() doesn't work good under rq->lock */
1759 raw_spin_unlock(&this_rq->lock);
1760 BUG_ON(1);
1761 }
1762
1763 return _double_lock_balance(this_rq, busiest);
1764 }
1765
1766 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1767 __releases(busiest->lock)
1768 {
1769 raw_spin_unlock(&busiest->lock);
1770 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1771 }
1772
1773 /*
1774 * double_rq_lock - safely lock two runqueues
1775 *
1776 * Note this does not disable interrupts like task_rq_lock,
1777 * you need to do so manually before calling.
1778 */
1779 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1780 __acquires(rq1->lock)
1781 __acquires(rq2->lock)
1782 {
1783 BUG_ON(!irqs_disabled());
1784 if (rq1 == rq2) {
1785 raw_spin_lock(&rq1->lock);
1786 __acquire(rq2->lock); /* Fake it out ;) */
1787 } else {
1788 if (rq1 < rq2) {
1789 raw_spin_lock(&rq1->lock);
1790 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1791 } else {
1792 raw_spin_lock(&rq2->lock);
1793 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1794 }
1795 }
1796 }
1797
1798 /*
1799 * double_rq_unlock - safely unlock two runqueues
1800 *
1801 * Note this does not restore interrupts like task_rq_unlock,
1802 * you need to do so manually after calling.
1803 */
1804 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1805 __releases(rq1->lock)
1806 __releases(rq2->lock)
1807 {
1808 raw_spin_unlock(&rq1->lock);
1809 if (rq1 != rq2)
1810 raw_spin_unlock(&rq2->lock);
1811 else
1812 __release(rq2->lock);
1813 }
1814
1815 #endif
1816
1817 #ifdef CONFIG_FAIR_GROUP_SCHED
1818 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1819 {
1820 #ifdef CONFIG_SMP
1821 cfs_rq->shares = shares;
1822 #endif
1823 }
1824 #endif
1825
1826 static void calc_load_account_idle(struct rq *this_rq);
1827 static void update_sysctl(void);
1828 static int get_update_sysctl_factor(void);
1829
1830 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1831 {
1832 set_task_rq(p, cpu);
1833 #ifdef CONFIG_SMP
1834 /*
1835 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1836 * successfuly executed on another CPU. We must ensure that updates of
1837 * per-task data have been completed by this moment.
1838 */
1839 smp_wmb();
1840 task_thread_info(p)->cpu = cpu;
1841 #endif
1842 }
1843
1844 static const struct sched_class rt_sched_class;
1845
1846 #define sched_class_highest (&rt_sched_class)
1847 #define for_each_class(class) \
1848 for (class = sched_class_highest; class; class = class->next)
1849
1850 #include "sched_stats.h"
1851
1852 static void inc_nr_running(struct rq *rq)
1853 {
1854 rq->nr_running++;
1855 }
1856
1857 static void dec_nr_running(struct rq *rq)
1858 {
1859 rq->nr_running--;
1860 }
1861
1862 static void set_load_weight(struct task_struct *p)
1863 {
1864 if (task_has_rt_policy(p)) {
1865 p->se.load.weight = prio_to_weight[0] * 2;
1866 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1867 return;
1868 }
1869
1870 /*
1871 * SCHED_IDLE tasks get minimal weight:
1872 */
1873 if (p->policy == SCHED_IDLE) {
1874 p->se.load.weight = WEIGHT_IDLEPRIO;
1875 p->se.load.inv_weight = WMULT_IDLEPRIO;
1876 return;
1877 }
1878
1879 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1880 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1881 }
1882
1883 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1884 {
1885 update_rq_clock(rq);
1886 sched_info_queued(p);
1887 p->sched_class->enqueue_task(rq, p, flags);
1888 p->se.on_rq = 1;
1889 }
1890
1891 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1892 {
1893 update_rq_clock(rq);
1894 sched_info_dequeued(p);
1895 p->sched_class->dequeue_task(rq, p, flags);
1896 p->se.on_rq = 0;
1897 }
1898
1899 /*
1900 * activate_task - move a task to the runqueue.
1901 */
1902 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1903 {
1904 if (task_contributes_to_load(p))
1905 rq->nr_uninterruptible--;
1906
1907 enqueue_task(rq, p, flags);
1908 inc_nr_running(rq);
1909 }
1910
1911 /*
1912 * deactivate_task - remove a task from the runqueue.
1913 */
1914 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1915 {
1916 if (task_contributes_to_load(p))
1917 rq->nr_uninterruptible++;
1918
1919 dequeue_task(rq, p, flags);
1920 dec_nr_running(rq);
1921 }
1922
1923 #include "sched_idletask.c"
1924 #include "sched_fair.c"
1925 #include "sched_rt.c"
1926 #ifdef CONFIG_SCHED_DEBUG
1927 # include "sched_debug.c"
1928 #endif
1929
1930 /*
1931 * __normal_prio - return the priority that is based on the static prio
1932 */
1933 static inline int __normal_prio(struct task_struct *p)
1934 {
1935 return p->static_prio;
1936 }
1937
1938 /*
1939 * Calculate the expected normal priority: i.e. priority
1940 * without taking RT-inheritance into account. Might be
1941 * boosted by interactivity modifiers. Changes upon fork,
1942 * setprio syscalls, and whenever the interactivity
1943 * estimator recalculates.
1944 */
1945 static inline int normal_prio(struct task_struct *p)
1946 {
1947 int prio;
1948
1949 if (task_has_rt_policy(p))
1950 prio = MAX_RT_PRIO-1 - p->rt_priority;
1951 else
1952 prio = __normal_prio(p);
1953 return prio;
1954 }
1955
1956 /*
1957 * Calculate the current priority, i.e. the priority
1958 * taken into account by the scheduler. This value might
1959 * be boosted by RT tasks, or might be boosted by
1960 * interactivity modifiers. Will be RT if the task got
1961 * RT-boosted. If not then it returns p->normal_prio.
1962 */
1963 static int effective_prio(struct task_struct *p)
1964 {
1965 p->normal_prio = normal_prio(p);
1966 /*
1967 * If we are RT tasks or we were boosted to RT priority,
1968 * keep the priority unchanged. Otherwise, update priority
1969 * to the normal priority:
1970 */
1971 if (!rt_prio(p->prio))
1972 return p->normal_prio;
1973 return p->prio;
1974 }
1975
1976 /**
1977 * task_curr - is this task currently executing on a CPU?
1978 * @p: the task in question.
1979 */
1980 inline int task_curr(const struct task_struct *p)
1981 {
1982 return cpu_curr(task_cpu(p)) == p;
1983 }
1984
1985 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1986 const struct sched_class *prev_class,
1987 int oldprio, int running)
1988 {
1989 if (prev_class != p->sched_class) {
1990 if (prev_class->switched_from)
1991 prev_class->switched_from(rq, p, running);
1992 p->sched_class->switched_to(rq, p, running);
1993 } else
1994 p->sched_class->prio_changed(rq, p, oldprio, running);
1995 }
1996
1997 #ifdef CONFIG_SMP
1998 /*
1999 * Is this task likely cache-hot:
2000 */
2001 static int
2002 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2003 {
2004 s64 delta;
2005
2006 if (p->sched_class != &fair_sched_class)
2007 return 0;
2008
2009 /*
2010 * Buddy candidates are cache hot:
2011 */
2012 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2013 (&p->se == cfs_rq_of(&p->se)->next ||
2014 &p->se == cfs_rq_of(&p->se)->last))
2015 return 1;
2016
2017 if (sysctl_sched_migration_cost == -1)
2018 return 1;
2019 if (sysctl_sched_migration_cost == 0)
2020 return 0;
2021
2022 delta = now - p->se.exec_start;
2023
2024 return delta < (s64)sysctl_sched_migration_cost;
2025 }
2026
2027 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2028 {
2029 #ifdef CONFIG_SCHED_DEBUG
2030 /*
2031 * We should never call set_task_cpu() on a blocked task,
2032 * ttwu() will sort out the placement.
2033 */
2034 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2035 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2036 #endif
2037
2038 trace_sched_migrate_task(p, new_cpu);
2039
2040 if (task_cpu(p) != new_cpu) {
2041 p->se.nr_migrations++;
2042 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2043 }
2044
2045 __set_task_cpu(p, new_cpu);
2046 }
2047
2048 struct migration_arg {
2049 struct task_struct *task;
2050 int dest_cpu;
2051 };
2052
2053 static int migration_cpu_stop(void *data);
2054
2055 /*
2056 * The task's runqueue lock must be held.
2057 * Returns true if you have to wait for migration thread.
2058 */
2059 static bool migrate_task(struct task_struct *p, int dest_cpu)
2060 {
2061 struct rq *rq = task_rq(p);
2062
2063 /*
2064 * If the task is not on a runqueue (and not running), then
2065 * the next wake-up will properly place the task.
2066 */
2067 return p->se.on_rq || task_running(rq, p);
2068 }
2069
2070 /*
2071 * wait_task_inactive - wait for a thread to unschedule.
2072 *
2073 * If @match_state is nonzero, it's the @p->state value just checked and
2074 * not expected to change. If it changes, i.e. @p might have woken up,
2075 * then return zero. When we succeed in waiting for @p to be off its CPU,
2076 * we return a positive number (its total switch count). If a second call
2077 * a short while later returns the same number, the caller can be sure that
2078 * @p has remained unscheduled the whole time.
2079 *
2080 * The caller must ensure that the task *will* unschedule sometime soon,
2081 * else this function might spin for a *long* time. This function can't
2082 * be called with interrupts off, or it may introduce deadlock with
2083 * smp_call_function() if an IPI is sent by the same process we are
2084 * waiting to become inactive.
2085 */
2086 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2087 {
2088 unsigned long flags;
2089 int running, on_rq;
2090 unsigned long ncsw;
2091 struct rq *rq;
2092
2093 for (;;) {
2094 /*
2095 * We do the initial early heuristics without holding
2096 * any task-queue locks at all. We'll only try to get
2097 * the runqueue lock when things look like they will
2098 * work out!
2099 */
2100 rq = task_rq(p);
2101
2102 /*
2103 * If the task is actively running on another CPU
2104 * still, just relax and busy-wait without holding
2105 * any locks.
2106 *
2107 * NOTE! Since we don't hold any locks, it's not
2108 * even sure that "rq" stays as the right runqueue!
2109 * But we don't care, since "task_running()" will
2110 * return false if the runqueue has changed and p
2111 * is actually now running somewhere else!
2112 */
2113 while (task_running(rq, p)) {
2114 if (match_state && unlikely(p->state != match_state))
2115 return 0;
2116 cpu_relax();
2117 }
2118
2119 /*
2120 * Ok, time to look more closely! We need the rq
2121 * lock now, to be *sure*. If we're wrong, we'll
2122 * just go back and repeat.
2123 */
2124 rq = task_rq_lock(p, &flags);
2125 trace_sched_wait_task(p);
2126 running = task_running(rq, p);
2127 on_rq = p->se.on_rq;
2128 ncsw = 0;
2129 if (!match_state || p->state == match_state)
2130 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2131 task_rq_unlock(rq, &flags);
2132
2133 /*
2134 * If it changed from the expected state, bail out now.
2135 */
2136 if (unlikely(!ncsw))
2137 break;
2138
2139 /*
2140 * Was it really running after all now that we
2141 * checked with the proper locks actually held?
2142 *
2143 * Oops. Go back and try again..
2144 */
2145 if (unlikely(running)) {
2146 cpu_relax();
2147 continue;
2148 }
2149
2150 /*
2151 * It's not enough that it's not actively running,
2152 * it must be off the runqueue _entirely_, and not
2153 * preempted!
2154 *
2155 * So if it was still runnable (but just not actively
2156 * running right now), it's preempted, and we should
2157 * yield - it could be a while.
2158 */
2159 if (unlikely(on_rq)) {
2160 schedule_timeout_uninterruptible(1);
2161 continue;
2162 }
2163
2164 /*
2165 * Ahh, all good. It wasn't running, and it wasn't
2166 * runnable, which means that it will never become
2167 * running in the future either. We're all done!
2168 */
2169 break;
2170 }
2171
2172 return ncsw;
2173 }
2174
2175 /***
2176 * kick_process - kick a running thread to enter/exit the kernel
2177 * @p: the to-be-kicked thread
2178 *
2179 * Cause a process which is running on another CPU to enter
2180 * kernel-mode, without any delay. (to get signals handled.)
2181 *
2182 * NOTE: this function doesnt have to take the runqueue lock,
2183 * because all it wants to ensure is that the remote task enters
2184 * the kernel. If the IPI races and the task has been migrated
2185 * to another CPU then no harm is done and the purpose has been
2186 * achieved as well.
2187 */
2188 void kick_process(struct task_struct *p)
2189 {
2190 int cpu;
2191
2192 preempt_disable();
2193 cpu = task_cpu(p);
2194 if ((cpu != smp_processor_id()) && task_curr(p))
2195 smp_send_reschedule(cpu);
2196 preempt_enable();
2197 }
2198 EXPORT_SYMBOL_GPL(kick_process);
2199 #endif /* CONFIG_SMP */
2200
2201 /**
2202 * task_oncpu_function_call - call a function on the cpu on which a task runs
2203 * @p: the task to evaluate
2204 * @func: the function to be called
2205 * @info: the function call argument
2206 *
2207 * Calls the function @func when the task is currently running. This might
2208 * be on the current CPU, which just calls the function directly
2209 */
2210 void task_oncpu_function_call(struct task_struct *p,
2211 void (*func) (void *info), void *info)
2212 {
2213 int cpu;
2214
2215 preempt_disable();
2216 cpu = task_cpu(p);
2217 if (task_curr(p))
2218 smp_call_function_single(cpu, func, info, 1);
2219 preempt_enable();
2220 }
2221
2222 #ifdef CONFIG_SMP
2223 /*
2224 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2225 */
2226 static int select_fallback_rq(int cpu, struct task_struct *p)
2227 {
2228 int dest_cpu;
2229 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2230
2231 /* Look for allowed, online CPU in same node. */
2232 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2233 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2234 return dest_cpu;
2235
2236 /* Any allowed, online CPU? */
2237 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2238 if (dest_cpu < nr_cpu_ids)
2239 return dest_cpu;
2240
2241 /* No more Mr. Nice Guy. */
2242 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2243 dest_cpu = cpuset_cpus_allowed_fallback(p);
2244 /*
2245 * Don't tell them about moving exiting tasks or
2246 * kernel threads (both mm NULL), since they never
2247 * leave kernel.
2248 */
2249 if (p->mm && printk_ratelimit()) {
2250 printk(KERN_INFO "process %d (%s) no "
2251 "longer affine to cpu%d\n",
2252 task_pid_nr(p), p->comm, cpu);
2253 }
2254 }
2255
2256 return dest_cpu;
2257 }
2258
2259 /*
2260 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2261 */
2262 static inline
2263 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2264 {
2265 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2266
2267 /*
2268 * In order not to call set_task_cpu() on a blocking task we need
2269 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2270 * cpu.
2271 *
2272 * Since this is common to all placement strategies, this lives here.
2273 *
2274 * [ this allows ->select_task() to simply return task_cpu(p) and
2275 * not worry about this generic constraint ]
2276 */
2277 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2278 !cpu_online(cpu)))
2279 cpu = select_fallback_rq(task_cpu(p), p);
2280
2281 return cpu;
2282 }
2283
2284 static void update_avg(u64 *avg, u64 sample)
2285 {
2286 s64 diff = sample - *avg;
2287 *avg += diff >> 3;
2288 }
2289 #endif
2290
2291 /***
2292 * try_to_wake_up - wake up a thread
2293 * @p: the to-be-woken-up thread
2294 * @state: the mask of task states that can be woken
2295 * @sync: do a synchronous wakeup?
2296 *
2297 * Put it on the run-queue if it's not already there. The "current"
2298 * thread is always on the run-queue (except when the actual
2299 * re-schedule is in progress), and as such you're allowed to do
2300 * the simpler "current->state = TASK_RUNNING" to mark yourself
2301 * runnable without the overhead of this.
2302 *
2303 * returns failure only if the task is already active.
2304 */
2305 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2306 int wake_flags)
2307 {
2308 int cpu, orig_cpu, this_cpu, success = 0;
2309 unsigned long flags;
2310 unsigned long en_flags = ENQUEUE_WAKEUP;
2311 struct rq *rq;
2312
2313 this_cpu = get_cpu();
2314
2315 smp_wmb();
2316 rq = task_rq_lock(p, &flags);
2317 if (!(p->state & state))
2318 goto out;
2319
2320 if (p->se.on_rq)
2321 goto out_running;
2322
2323 cpu = task_cpu(p);
2324 orig_cpu = cpu;
2325
2326 #ifdef CONFIG_SMP
2327 if (unlikely(task_running(rq, p)))
2328 goto out_activate;
2329
2330 /*
2331 * In order to handle concurrent wakeups and release the rq->lock
2332 * we put the task in TASK_WAKING state.
2333 *
2334 * First fix up the nr_uninterruptible count:
2335 */
2336 if (task_contributes_to_load(p)) {
2337 if (likely(cpu_online(orig_cpu)))
2338 rq->nr_uninterruptible--;
2339 else
2340 this_rq()->nr_uninterruptible--;
2341 }
2342 p->state = TASK_WAKING;
2343
2344 if (p->sched_class->task_waking) {
2345 p->sched_class->task_waking(rq, p);
2346 en_flags |= ENQUEUE_WAKING;
2347 }
2348
2349 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2350 if (cpu != orig_cpu)
2351 set_task_cpu(p, cpu);
2352 __task_rq_unlock(rq);
2353
2354 rq = cpu_rq(cpu);
2355 raw_spin_lock(&rq->lock);
2356
2357 /*
2358 * We migrated the task without holding either rq->lock, however
2359 * since the task is not on the task list itself, nobody else
2360 * will try and migrate the task, hence the rq should match the
2361 * cpu we just moved it to.
2362 */
2363 WARN_ON(task_cpu(p) != cpu);
2364 WARN_ON(p->state != TASK_WAKING);
2365
2366 #ifdef CONFIG_SCHEDSTATS
2367 schedstat_inc(rq, ttwu_count);
2368 if (cpu == this_cpu)
2369 schedstat_inc(rq, ttwu_local);
2370 else {
2371 struct sched_domain *sd;
2372 for_each_domain(this_cpu, sd) {
2373 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2374 schedstat_inc(sd, ttwu_wake_remote);
2375 break;
2376 }
2377 }
2378 }
2379 #endif /* CONFIG_SCHEDSTATS */
2380
2381 out_activate:
2382 #endif /* CONFIG_SMP */
2383 schedstat_inc(p, se.statistics.nr_wakeups);
2384 if (wake_flags & WF_SYNC)
2385 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2386 if (orig_cpu != cpu)
2387 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2388 if (cpu == this_cpu)
2389 schedstat_inc(p, se.statistics.nr_wakeups_local);
2390 else
2391 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2392 activate_task(rq, p, en_flags);
2393 success = 1;
2394
2395 out_running:
2396 trace_sched_wakeup(p, success);
2397 check_preempt_curr(rq, p, wake_flags);
2398
2399 p->state = TASK_RUNNING;
2400 #ifdef CONFIG_SMP
2401 if (p->sched_class->task_woken)
2402 p->sched_class->task_woken(rq, p);
2403
2404 if (unlikely(rq->idle_stamp)) {
2405 u64 delta = rq->clock - rq->idle_stamp;
2406 u64 max = 2*sysctl_sched_migration_cost;
2407
2408 if (delta > max)
2409 rq->avg_idle = max;
2410 else
2411 update_avg(&rq->avg_idle, delta);
2412 rq->idle_stamp = 0;
2413 }
2414 #endif
2415 out:
2416 task_rq_unlock(rq, &flags);
2417 put_cpu();
2418
2419 return success;
2420 }
2421
2422 /**
2423 * wake_up_process - Wake up a specific process
2424 * @p: The process to be woken up.
2425 *
2426 * Attempt to wake up the nominated process and move it to the set of runnable
2427 * processes. Returns 1 if the process was woken up, 0 if it was already
2428 * running.
2429 *
2430 * It may be assumed that this function implies a write memory barrier before
2431 * changing the task state if and only if any tasks are woken up.
2432 */
2433 int wake_up_process(struct task_struct *p)
2434 {
2435 return try_to_wake_up(p, TASK_ALL, 0);
2436 }
2437 EXPORT_SYMBOL(wake_up_process);
2438
2439 int wake_up_state(struct task_struct *p, unsigned int state)
2440 {
2441 return try_to_wake_up(p, state, 0);
2442 }
2443
2444 /*
2445 * Perform scheduler related setup for a newly forked process p.
2446 * p is forked by current.
2447 *
2448 * __sched_fork() is basic setup used by init_idle() too:
2449 */
2450 static void __sched_fork(struct task_struct *p)
2451 {
2452 p->se.exec_start = 0;
2453 p->se.sum_exec_runtime = 0;
2454 p->se.prev_sum_exec_runtime = 0;
2455 p->se.nr_migrations = 0;
2456
2457 #ifdef CONFIG_SCHEDSTATS
2458 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2459 #endif
2460
2461 INIT_LIST_HEAD(&p->rt.run_list);
2462 p->se.on_rq = 0;
2463 INIT_LIST_HEAD(&p->se.group_node);
2464
2465 #ifdef CONFIG_PREEMPT_NOTIFIERS
2466 INIT_HLIST_HEAD(&p->preempt_notifiers);
2467 #endif
2468 }
2469
2470 /*
2471 * fork()/clone()-time setup:
2472 */
2473 void sched_fork(struct task_struct *p, int clone_flags)
2474 {
2475 int cpu = get_cpu();
2476
2477 __sched_fork(p);
2478 /*
2479 * We mark the process as running here. This guarantees that
2480 * nobody will actually run it, and a signal or other external
2481 * event cannot wake it up and insert it on the runqueue either.
2482 */
2483 p->state = TASK_RUNNING;
2484
2485 /*
2486 * Revert to default priority/policy on fork if requested.
2487 */
2488 if (unlikely(p->sched_reset_on_fork)) {
2489 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2490 p->policy = SCHED_NORMAL;
2491 p->normal_prio = p->static_prio;
2492 }
2493
2494 if (PRIO_TO_NICE(p->static_prio) < 0) {
2495 p->static_prio = NICE_TO_PRIO(0);
2496 p->normal_prio = p->static_prio;
2497 set_load_weight(p);
2498 }
2499
2500 /*
2501 * We don't need the reset flag anymore after the fork. It has
2502 * fulfilled its duty:
2503 */
2504 p->sched_reset_on_fork = 0;
2505 }
2506
2507 /*
2508 * Make sure we do not leak PI boosting priority to the child.
2509 */
2510 p->prio = current->normal_prio;
2511
2512 if (!rt_prio(p->prio))
2513 p->sched_class = &fair_sched_class;
2514
2515 if (p->sched_class->task_fork)
2516 p->sched_class->task_fork(p);
2517
2518 set_task_cpu(p, cpu);
2519
2520 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2521 if (likely(sched_info_on()))
2522 memset(&p->sched_info, 0, sizeof(p->sched_info));
2523 #endif
2524 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2525 p->oncpu = 0;
2526 #endif
2527 #ifdef CONFIG_PREEMPT
2528 /* Want to start with kernel preemption disabled. */
2529 task_thread_info(p)->preempt_count = 1;
2530 #endif
2531 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2532
2533 put_cpu();
2534 }
2535
2536 /*
2537 * wake_up_new_task - wake up a newly created task for the first time.
2538 *
2539 * This function will do some initial scheduler statistics housekeeping
2540 * that must be done for every newly created context, then puts the task
2541 * on the runqueue and wakes it.
2542 */
2543 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2544 {
2545 unsigned long flags;
2546 struct rq *rq;
2547 int cpu __maybe_unused = get_cpu();
2548
2549 #ifdef CONFIG_SMP
2550 rq = task_rq_lock(p, &flags);
2551 p->state = TASK_WAKING;
2552
2553 /*
2554 * Fork balancing, do it here and not earlier because:
2555 * - cpus_allowed can change in the fork path
2556 * - any previously selected cpu might disappear through hotplug
2557 *
2558 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2559 * without people poking at ->cpus_allowed.
2560 */
2561 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2562 set_task_cpu(p, cpu);
2563
2564 p->state = TASK_RUNNING;
2565 task_rq_unlock(rq, &flags);
2566 #endif
2567
2568 rq = task_rq_lock(p, &flags);
2569 activate_task(rq, p, 0);
2570 trace_sched_wakeup_new(p, 1);
2571 check_preempt_curr(rq, p, WF_FORK);
2572 #ifdef CONFIG_SMP
2573 if (p->sched_class->task_woken)
2574 p->sched_class->task_woken(rq, p);
2575 #endif
2576 task_rq_unlock(rq, &flags);
2577 put_cpu();
2578 }
2579
2580 #ifdef CONFIG_PREEMPT_NOTIFIERS
2581
2582 /**
2583 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2584 * @notifier: notifier struct to register
2585 */
2586 void preempt_notifier_register(struct preempt_notifier *notifier)
2587 {
2588 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2589 }
2590 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2591
2592 /**
2593 * preempt_notifier_unregister - no longer interested in preemption notifications
2594 * @notifier: notifier struct to unregister
2595 *
2596 * This is safe to call from within a preemption notifier.
2597 */
2598 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2599 {
2600 hlist_del(&notifier->link);
2601 }
2602 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2603
2604 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2605 {
2606 struct preempt_notifier *notifier;
2607 struct hlist_node *node;
2608
2609 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2610 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2611 }
2612
2613 static void
2614 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2615 struct task_struct *next)
2616 {
2617 struct preempt_notifier *notifier;
2618 struct hlist_node *node;
2619
2620 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2621 notifier->ops->sched_out(notifier, next);
2622 }
2623
2624 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2625
2626 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2627 {
2628 }
2629
2630 static void
2631 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2632 struct task_struct *next)
2633 {
2634 }
2635
2636 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2637
2638 /**
2639 * prepare_task_switch - prepare to switch tasks
2640 * @rq: the runqueue preparing to switch
2641 * @prev: the current task that is being switched out
2642 * @next: the task we are going to switch to.
2643 *
2644 * This is called with the rq lock held and interrupts off. It must
2645 * be paired with a subsequent finish_task_switch after the context
2646 * switch.
2647 *
2648 * prepare_task_switch sets up locking and calls architecture specific
2649 * hooks.
2650 */
2651 static inline void
2652 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2653 struct task_struct *next)
2654 {
2655 fire_sched_out_preempt_notifiers(prev, next);
2656 prepare_lock_switch(rq, next);
2657 prepare_arch_switch(next);
2658 }
2659
2660 /**
2661 * finish_task_switch - clean up after a task-switch
2662 * @rq: runqueue associated with task-switch
2663 * @prev: the thread we just switched away from.
2664 *
2665 * finish_task_switch must be called after the context switch, paired
2666 * with a prepare_task_switch call before the context switch.
2667 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2668 * and do any other architecture-specific cleanup actions.
2669 *
2670 * Note that we may have delayed dropping an mm in context_switch(). If
2671 * so, we finish that here outside of the runqueue lock. (Doing it
2672 * with the lock held can cause deadlocks; see schedule() for
2673 * details.)
2674 */
2675 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2676 __releases(rq->lock)
2677 {
2678 struct mm_struct *mm = rq->prev_mm;
2679 long prev_state;
2680
2681 rq->prev_mm = NULL;
2682
2683 /*
2684 * A task struct has one reference for the use as "current".
2685 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2686 * schedule one last time. The schedule call will never return, and
2687 * the scheduled task must drop that reference.
2688 * The test for TASK_DEAD must occur while the runqueue locks are
2689 * still held, otherwise prev could be scheduled on another cpu, die
2690 * there before we look at prev->state, and then the reference would
2691 * be dropped twice.
2692 * Manfred Spraul <manfred@colorfullife.com>
2693 */
2694 prev_state = prev->state;
2695 finish_arch_switch(prev);
2696 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2697 local_irq_disable();
2698 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2699 perf_event_task_sched_in(current);
2700 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2701 local_irq_enable();
2702 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2703 finish_lock_switch(rq, prev);
2704
2705 fire_sched_in_preempt_notifiers(current);
2706 if (mm)
2707 mmdrop(mm);
2708 if (unlikely(prev_state == TASK_DEAD)) {
2709 /*
2710 * Remove function-return probe instances associated with this
2711 * task and put them back on the free list.
2712 */
2713 kprobe_flush_task(prev);
2714 put_task_struct(prev);
2715 }
2716 }
2717
2718 #ifdef CONFIG_SMP
2719
2720 /* assumes rq->lock is held */
2721 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2722 {
2723 if (prev->sched_class->pre_schedule)
2724 prev->sched_class->pre_schedule(rq, prev);
2725 }
2726
2727 /* rq->lock is NOT held, but preemption is disabled */
2728 static inline void post_schedule(struct rq *rq)
2729 {
2730 if (rq->post_schedule) {
2731 unsigned long flags;
2732
2733 raw_spin_lock_irqsave(&rq->lock, flags);
2734 if (rq->curr->sched_class->post_schedule)
2735 rq->curr->sched_class->post_schedule(rq);
2736 raw_spin_unlock_irqrestore(&rq->lock, flags);
2737
2738 rq->post_schedule = 0;
2739 }
2740 }
2741
2742 #else
2743
2744 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2745 {
2746 }
2747
2748 static inline void post_schedule(struct rq *rq)
2749 {
2750 }
2751
2752 #endif
2753
2754 /**
2755 * schedule_tail - first thing a freshly forked thread must call.
2756 * @prev: the thread we just switched away from.
2757 */
2758 asmlinkage void schedule_tail(struct task_struct *prev)
2759 __releases(rq->lock)
2760 {
2761 struct rq *rq = this_rq();
2762
2763 finish_task_switch(rq, prev);
2764
2765 /*
2766 * FIXME: do we need to worry about rq being invalidated by the
2767 * task_switch?
2768 */
2769 post_schedule(rq);
2770
2771 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2772 /* In this case, finish_task_switch does not reenable preemption */
2773 preempt_enable();
2774 #endif
2775 if (current->set_child_tid)
2776 put_user(task_pid_vnr(current), current->set_child_tid);
2777 }
2778
2779 /*
2780 * context_switch - switch to the new MM and the new
2781 * thread's register state.
2782 */
2783 static inline void
2784 context_switch(struct rq *rq, struct task_struct *prev,
2785 struct task_struct *next)
2786 {
2787 struct mm_struct *mm, *oldmm;
2788
2789 prepare_task_switch(rq, prev, next);
2790 trace_sched_switch(prev, next);
2791 mm = next->mm;
2792 oldmm = prev->active_mm;
2793 /*
2794 * For paravirt, this is coupled with an exit in switch_to to
2795 * combine the page table reload and the switch backend into
2796 * one hypercall.
2797 */
2798 arch_start_context_switch(prev);
2799
2800 if (likely(!mm)) {
2801 next->active_mm = oldmm;
2802 atomic_inc(&oldmm->mm_count);
2803 enter_lazy_tlb(oldmm, next);
2804 } else
2805 switch_mm(oldmm, mm, next);
2806
2807 if (likely(!prev->mm)) {
2808 prev->active_mm = NULL;
2809 rq->prev_mm = oldmm;
2810 }
2811 /*
2812 * Since the runqueue lock will be released by the next
2813 * task (which is an invalid locking op but in the case
2814 * of the scheduler it's an obvious special-case), so we
2815 * do an early lockdep release here:
2816 */
2817 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2818 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2819 #endif
2820
2821 /* Here we just switch the register state and the stack. */
2822 switch_to(prev, next, prev);
2823
2824 barrier();
2825 /*
2826 * this_rq must be evaluated again because prev may have moved
2827 * CPUs since it called schedule(), thus the 'rq' on its stack
2828 * frame will be invalid.
2829 */
2830 finish_task_switch(this_rq(), prev);
2831 }
2832
2833 /*
2834 * nr_running, nr_uninterruptible and nr_context_switches:
2835 *
2836 * externally visible scheduler statistics: current number of runnable
2837 * threads, current number of uninterruptible-sleeping threads, total
2838 * number of context switches performed since bootup.
2839 */
2840 unsigned long nr_running(void)
2841 {
2842 unsigned long i, sum = 0;
2843
2844 for_each_online_cpu(i)
2845 sum += cpu_rq(i)->nr_running;
2846
2847 return sum;
2848 }
2849
2850 unsigned long nr_uninterruptible(void)
2851 {
2852 unsigned long i, sum = 0;
2853
2854 for_each_possible_cpu(i)
2855 sum += cpu_rq(i)->nr_uninterruptible;
2856
2857 /*
2858 * Since we read the counters lockless, it might be slightly
2859 * inaccurate. Do not allow it to go below zero though:
2860 */
2861 if (unlikely((long)sum < 0))
2862 sum = 0;
2863
2864 return sum;
2865 }
2866
2867 unsigned long long nr_context_switches(void)
2868 {
2869 int i;
2870 unsigned long long sum = 0;
2871
2872 for_each_possible_cpu(i)
2873 sum += cpu_rq(i)->nr_switches;
2874
2875 return sum;
2876 }
2877
2878 unsigned long nr_iowait(void)
2879 {
2880 unsigned long i, sum = 0;
2881
2882 for_each_possible_cpu(i)
2883 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2884
2885 return sum;
2886 }
2887
2888 unsigned long nr_iowait_cpu(void)
2889 {
2890 struct rq *this = this_rq();
2891 return atomic_read(&this->nr_iowait);
2892 }
2893
2894 unsigned long this_cpu_load(void)
2895 {
2896 struct rq *this = this_rq();
2897 return this->cpu_load[0];
2898 }
2899
2900
2901 /* Variables and functions for calc_load */
2902 static atomic_long_t calc_load_tasks;
2903 static unsigned long calc_load_update;
2904 unsigned long avenrun[3];
2905 EXPORT_SYMBOL(avenrun);
2906
2907 static long calc_load_fold_active(struct rq *this_rq)
2908 {
2909 long nr_active, delta = 0;
2910
2911 nr_active = this_rq->nr_running;
2912 nr_active += (long) this_rq->nr_uninterruptible;
2913
2914 if (nr_active != this_rq->calc_load_active) {
2915 delta = nr_active - this_rq->calc_load_active;
2916 this_rq->calc_load_active = nr_active;
2917 }
2918
2919 return delta;
2920 }
2921
2922 #ifdef CONFIG_NO_HZ
2923 /*
2924 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2925 *
2926 * When making the ILB scale, we should try to pull this in as well.
2927 */
2928 static atomic_long_t calc_load_tasks_idle;
2929
2930 static void calc_load_account_idle(struct rq *this_rq)
2931 {
2932 long delta;
2933
2934 delta = calc_load_fold_active(this_rq);
2935 if (delta)
2936 atomic_long_add(delta, &calc_load_tasks_idle);
2937 }
2938
2939 static long calc_load_fold_idle(void)
2940 {
2941 long delta = 0;
2942
2943 /*
2944 * Its got a race, we don't care...
2945 */
2946 if (atomic_long_read(&calc_load_tasks_idle))
2947 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2948
2949 return delta;
2950 }
2951 #else
2952 static void calc_load_account_idle(struct rq *this_rq)
2953 {
2954 }
2955
2956 static inline long calc_load_fold_idle(void)
2957 {
2958 return 0;
2959 }
2960 #endif
2961
2962 /**
2963 * get_avenrun - get the load average array
2964 * @loads: pointer to dest load array
2965 * @offset: offset to add
2966 * @shift: shift count to shift the result left
2967 *
2968 * These values are estimates at best, so no need for locking.
2969 */
2970 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2971 {
2972 loads[0] = (avenrun[0] + offset) << shift;
2973 loads[1] = (avenrun[1] + offset) << shift;
2974 loads[2] = (avenrun[2] + offset) << shift;
2975 }
2976
2977 static unsigned long
2978 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2979 {
2980 load *= exp;
2981 load += active * (FIXED_1 - exp);
2982 return load >> FSHIFT;
2983 }
2984
2985 /*
2986 * calc_load - update the avenrun load estimates 10 ticks after the
2987 * CPUs have updated calc_load_tasks.
2988 */
2989 void calc_global_load(void)
2990 {
2991 unsigned long upd = calc_load_update + 10;
2992 long active;
2993
2994 if (time_before(jiffies, upd))
2995 return;
2996
2997 active = atomic_long_read(&calc_load_tasks);
2998 active = active > 0 ? active * FIXED_1 : 0;
2999
3000 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3001 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3002 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3003
3004 calc_load_update += LOAD_FREQ;
3005 }
3006
3007 /*
3008 * Called from update_cpu_load() to periodically update this CPU's
3009 * active count.
3010 */
3011 static void calc_load_account_active(struct rq *this_rq)
3012 {
3013 long delta;
3014
3015 if (time_before(jiffies, this_rq->calc_load_update))
3016 return;
3017
3018 delta = calc_load_fold_active(this_rq);
3019 delta += calc_load_fold_idle();
3020 if (delta)
3021 atomic_long_add(delta, &calc_load_tasks);
3022
3023 this_rq->calc_load_update += LOAD_FREQ;
3024 }
3025
3026 /*
3027 * Update rq->cpu_load[] statistics. This function is usually called every
3028 * scheduler tick (TICK_NSEC).
3029 */
3030 static void update_cpu_load(struct rq *this_rq)
3031 {
3032 unsigned long this_load = this_rq->load.weight;
3033 int i, scale;
3034
3035 this_rq->nr_load_updates++;
3036
3037 /* Update our load: */
3038 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3039 unsigned long old_load, new_load;
3040
3041 /* scale is effectively 1 << i now, and >> i divides by scale */
3042
3043 old_load = this_rq->cpu_load[i];
3044 new_load = this_load;
3045 /*
3046 * Round up the averaging division if load is increasing. This
3047 * prevents us from getting stuck on 9 if the load is 10, for
3048 * example.
3049 */
3050 if (new_load > old_load)
3051 new_load += scale-1;
3052 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3053 }
3054
3055 calc_load_account_active(this_rq);
3056 }
3057
3058 #ifdef CONFIG_SMP
3059
3060 /*
3061 * sched_exec - execve() is a valuable balancing opportunity, because at
3062 * this point the task has the smallest effective memory and cache footprint.
3063 */
3064 void sched_exec(void)
3065 {
3066 struct task_struct *p = current;
3067 unsigned long flags;
3068 struct rq *rq;
3069 int dest_cpu;
3070
3071 rq = task_rq_lock(p, &flags);
3072 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3073 if (dest_cpu == smp_processor_id())
3074 goto unlock;
3075
3076 /*
3077 * select_task_rq() can race against ->cpus_allowed
3078 */
3079 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3080 likely(cpu_active(dest_cpu)) && migrate_task(p, dest_cpu)) {
3081 struct migration_arg arg = { p, dest_cpu };
3082
3083 task_rq_unlock(rq, &flags);
3084 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
3085 return;
3086 }
3087 unlock:
3088 task_rq_unlock(rq, &flags);
3089 }
3090
3091 #endif
3092
3093 DEFINE_PER_CPU(struct kernel_stat, kstat);
3094
3095 EXPORT_PER_CPU_SYMBOL(kstat);
3096
3097 /*
3098 * Return any ns on the sched_clock that have not yet been accounted in
3099 * @p in case that task is currently running.
3100 *
3101 * Called with task_rq_lock() held on @rq.
3102 */
3103 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3104 {
3105 u64 ns = 0;
3106
3107 if (task_current(rq, p)) {
3108 update_rq_clock(rq);
3109 ns = rq->clock - p->se.exec_start;
3110 if ((s64)ns < 0)
3111 ns = 0;
3112 }
3113
3114 return ns;
3115 }
3116
3117 unsigned long long task_delta_exec(struct task_struct *p)
3118 {
3119 unsigned long flags;
3120 struct rq *rq;
3121 u64 ns = 0;
3122
3123 rq = task_rq_lock(p, &flags);
3124 ns = do_task_delta_exec(p, rq);
3125 task_rq_unlock(rq, &flags);
3126
3127 return ns;
3128 }
3129
3130 /*
3131 * Return accounted runtime for the task.
3132 * In case the task is currently running, return the runtime plus current's
3133 * pending runtime that have not been accounted yet.
3134 */
3135 unsigned long long task_sched_runtime(struct task_struct *p)
3136 {
3137 unsigned long flags;
3138 struct rq *rq;
3139 u64 ns = 0;
3140
3141 rq = task_rq_lock(p, &flags);
3142 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3143 task_rq_unlock(rq, &flags);
3144
3145 return ns;
3146 }
3147
3148 /*
3149 * Return sum_exec_runtime for the thread group.
3150 * In case the task is currently running, return the sum plus current's
3151 * pending runtime that have not been accounted yet.
3152 *
3153 * Note that the thread group might have other running tasks as well,
3154 * so the return value not includes other pending runtime that other
3155 * running tasks might have.
3156 */
3157 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3158 {
3159 struct task_cputime totals;
3160 unsigned long flags;
3161 struct rq *rq;
3162 u64 ns;
3163
3164 rq = task_rq_lock(p, &flags);
3165 thread_group_cputime(p, &totals);
3166 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3167 task_rq_unlock(rq, &flags);
3168
3169 return ns;
3170 }
3171
3172 /*
3173 * Account user cpu time to a process.
3174 * @p: the process that the cpu time gets accounted to
3175 * @cputime: the cpu time spent in user space since the last update
3176 * @cputime_scaled: cputime scaled by cpu frequency
3177 */
3178 void account_user_time(struct task_struct *p, cputime_t cputime,
3179 cputime_t cputime_scaled)
3180 {
3181 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3182 cputime64_t tmp;
3183
3184 /* Add user time to process. */
3185 p->utime = cputime_add(p->utime, cputime);
3186 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3187 account_group_user_time(p, cputime);
3188
3189 /* Add user time to cpustat. */
3190 tmp = cputime_to_cputime64(cputime);
3191 if (TASK_NICE(p) > 0)
3192 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3193 else
3194 cpustat->user = cputime64_add(cpustat->user, tmp);
3195
3196 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3197 /* Account for user time used */
3198 acct_update_integrals(p);
3199 }
3200
3201 /*
3202 * Account guest cpu time to a process.
3203 * @p: the process that the cpu time gets accounted to
3204 * @cputime: the cpu time spent in virtual machine since the last update
3205 * @cputime_scaled: cputime scaled by cpu frequency
3206 */
3207 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3208 cputime_t cputime_scaled)
3209 {
3210 cputime64_t tmp;
3211 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3212
3213 tmp = cputime_to_cputime64(cputime);
3214
3215 /* Add guest time to process. */
3216 p->utime = cputime_add(p->utime, cputime);
3217 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3218 account_group_user_time(p, cputime);
3219 p->gtime = cputime_add(p->gtime, cputime);
3220
3221 /* Add guest time to cpustat. */
3222 if (TASK_NICE(p) > 0) {
3223 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3224 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3225 } else {
3226 cpustat->user = cputime64_add(cpustat->user, tmp);
3227 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3228 }
3229 }
3230
3231 /*
3232 * Account system cpu time to a process.
3233 * @p: the process that the cpu time gets accounted to
3234 * @hardirq_offset: the offset to subtract from hardirq_count()
3235 * @cputime: the cpu time spent in kernel space since the last update
3236 * @cputime_scaled: cputime scaled by cpu frequency
3237 */
3238 void account_system_time(struct task_struct *p, int hardirq_offset,
3239 cputime_t cputime, cputime_t cputime_scaled)
3240 {
3241 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3242 cputime64_t tmp;
3243
3244 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3245 account_guest_time(p, cputime, cputime_scaled);
3246 return;
3247 }
3248
3249 /* Add system time to process. */
3250 p->stime = cputime_add(p->stime, cputime);
3251 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3252 account_group_system_time(p, cputime);
3253
3254 /* Add system time to cpustat. */
3255 tmp = cputime_to_cputime64(cputime);
3256 if (hardirq_count() - hardirq_offset)
3257 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3258 else if (softirq_count())
3259 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3260 else
3261 cpustat->system = cputime64_add(cpustat->system, tmp);
3262
3263 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3264
3265 /* Account for system time used */
3266 acct_update_integrals(p);
3267 }
3268
3269 /*
3270 * Account for involuntary wait time.
3271 * @steal: the cpu time spent in involuntary wait
3272 */
3273 void account_steal_time(cputime_t cputime)
3274 {
3275 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3276 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3277
3278 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3279 }
3280
3281 /*
3282 * Account for idle time.
3283 * @cputime: the cpu time spent in idle wait
3284 */
3285 void account_idle_time(cputime_t cputime)
3286 {
3287 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3288 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3289 struct rq *rq = this_rq();
3290
3291 if (atomic_read(&rq->nr_iowait) > 0)
3292 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3293 else
3294 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3295 }
3296
3297 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3298
3299 /*
3300 * Account a single tick of cpu time.
3301 * @p: the process that the cpu time gets accounted to
3302 * @user_tick: indicates if the tick is a user or a system tick
3303 */
3304 void account_process_tick(struct task_struct *p, int user_tick)
3305 {
3306 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3307 struct rq *rq = this_rq();
3308
3309 if (user_tick)
3310 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3311 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3312 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3313 one_jiffy_scaled);
3314 else
3315 account_idle_time(cputime_one_jiffy);
3316 }
3317
3318 /*
3319 * Account multiple ticks of steal time.
3320 * @p: the process from which the cpu time has been stolen
3321 * @ticks: number of stolen ticks
3322 */
3323 void account_steal_ticks(unsigned long ticks)
3324 {
3325 account_steal_time(jiffies_to_cputime(ticks));
3326 }
3327
3328 /*
3329 * Account multiple ticks of idle time.
3330 * @ticks: number of stolen ticks
3331 */
3332 void account_idle_ticks(unsigned long ticks)
3333 {
3334 account_idle_time(jiffies_to_cputime(ticks));
3335 }
3336
3337 #endif
3338
3339 /*
3340 * Use precise platform statistics if available:
3341 */
3342 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3343 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3344 {
3345 *ut = p->utime;
3346 *st = p->stime;
3347 }
3348
3349 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3350 {
3351 struct task_cputime cputime;
3352
3353 thread_group_cputime(p, &cputime);
3354
3355 *ut = cputime.utime;
3356 *st = cputime.stime;
3357 }
3358 #else
3359
3360 #ifndef nsecs_to_cputime
3361 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3362 #endif
3363
3364 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3365 {
3366 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3367
3368 /*
3369 * Use CFS's precise accounting:
3370 */
3371 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3372
3373 if (total) {
3374 u64 temp;
3375
3376 temp = (u64)(rtime * utime);
3377 do_div(temp, total);
3378 utime = (cputime_t)temp;
3379 } else
3380 utime = rtime;
3381
3382 /*
3383 * Compare with previous values, to keep monotonicity:
3384 */
3385 p->prev_utime = max(p->prev_utime, utime);
3386 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3387
3388 *ut = p->prev_utime;
3389 *st = p->prev_stime;
3390 }
3391
3392 /*
3393 * Must be called with siglock held.
3394 */
3395 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3396 {
3397 struct signal_struct *sig = p->signal;
3398 struct task_cputime cputime;
3399 cputime_t rtime, utime, total;
3400
3401 thread_group_cputime(p, &cputime);
3402
3403 total = cputime_add(cputime.utime, cputime.stime);
3404 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3405
3406 if (total) {
3407 u64 temp;
3408
3409 temp = (u64)(rtime * cputime.utime);
3410 do_div(temp, total);
3411 utime = (cputime_t)temp;
3412 } else
3413 utime = rtime;
3414
3415 sig->prev_utime = max(sig->prev_utime, utime);
3416 sig->prev_stime = max(sig->prev_stime,
3417 cputime_sub(rtime, sig->prev_utime));
3418
3419 *ut = sig->prev_utime;
3420 *st = sig->prev_stime;
3421 }
3422 #endif
3423
3424 /*
3425 * This function gets called by the timer code, with HZ frequency.
3426 * We call it with interrupts disabled.
3427 *
3428 * It also gets called by the fork code, when changing the parent's
3429 * timeslices.
3430 */
3431 void scheduler_tick(void)
3432 {
3433 int cpu = smp_processor_id();
3434 struct rq *rq = cpu_rq(cpu);
3435 struct task_struct *curr = rq->curr;
3436
3437 sched_clock_tick();
3438
3439 raw_spin_lock(&rq->lock);
3440 update_rq_clock(rq);
3441 update_cpu_load(rq);
3442 curr->sched_class->task_tick(rq, curr, 0);
3443 raw_spin_unlock(&rq->lock);
3444
3445 perf_event_task_tick(curr);
3446
3447 #ifdef CONFIG_SMP
3448 rq->idle_at_tick = idle_cpu(cpu);
3449 trigger_load_balance(rq, cpu);
3450 #endif
3451 }
3452
3453 notrace unsigned long get_parent_ip(unsigned long addr)
3454 {
3455 if (in_lock_functions(addr)) {
3456 addr = CALLER_ADDR2;
3457 if (in_lock_functions(addr))
3458 addr = CALLER_ADDR3;
3459 }
3460 return addr;
3461 }
3462
3463 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3464 defined(CONFIG_PREEMPT_TRACER))
3465
3466 void __kprobes add_preempt_count(int val)
3467 {
3468 #ifdef CONFIG_DEBUG_PREEMPT
3469 /*
3470 * Underflow?
3471 */
3472 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3473 return;
3474 #endif
3475 preempt_count() += val;
3476 #ifdef CONFIG_DEBUG_PREEMPT
3477 /*
3478 * Spinlock count overflowing soon?
3479 */
3480 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3481 PREEMPT_MASK - 10);
3482 #endif
3483 if (preempt_count() == val)
3484 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3485 }
3486 EXPORT_SYMBOL(add_preempt_count);
3487
3488 void __kprobes sub_preempt_count(int val)
3489 {
3490 #ifdef CONFIG_DEBUG_PREEMPT
3491 /*
3492 * Underflow?
3493 */
3494 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3495 return;
3496 /*
3497 * Is the spinlock portion underflowing?
3498 */
3499 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3500 !(preempt_count() & PREEMPT_MASK)))
3501 return;
3502 #endif
3503
3504 if (preempt_count() == val)
3505 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3506 preempt_count() -= val;
3507 }
3508 EXPORT_SYMBOL(sub_preempt_count);
3509
3510 #endif
3511
3512 /*
3513 * Print scheduling while atomic bug:
3514 */
3515 static noinline void __schedule_bug(struct task_struct *prev)
3516 {
3517 struct pt_regs *regs = get_irq_regs();
3518
3519 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3520 prev->comm, prev->pid, preempt_count());
3521
3522 debug_show_held_locks(prev);
3523 print_modules();
3524 if (irqs_disabled())
3525 print_irqtrace_events(prev);
3526
3527 if (regs)
3528 show_regs(regs);
3529 else
3530 dump_stack();
3531 }
3532
3533 /*
3534 * Various schedule()-time debugging checks and statistics:
3535 */
3536 static inline void schedule_debug(struct task_struct *prev)
3537 {
3538 /*
3539 * Test if we are atomic. Since do_exit() needs to call into
3540 * schedule() atomically, we ignore that path for now.
3541 * Otherwise, whine if we are scheduling when we should not be.
3542 */
3543 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3544 __schedule_bug(prev);
3545
3546 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3547
3548 schedstat_inc(this_rq(), sched_count);
3549 #ifdef CONFIG_SCHEDSTATS
3550 if (unlikely(prev->lock_depth >= 0)) {
3551 schedstat_inc(this_rq(), bkl_count);
3552 schedstat_inc(prev, sched_info.bkl_count);
3553 }
3554 #endif
3555 }
3556
3557 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3558 {
3559 if (prev->se.on_rq)
3560 update_rq_clock(rq);
3561 rq->skip_clock_update = 0;
3562 prev->sched_class->put_prev_task(rq, prev);
3563 }
3564
3565 /*
3566 * Pick up the highest-prio task:
3567 */
3568 static inline struct task_struct *
3569 pick_next_task(struct rq *rq)
3570 {
3571 const struct sched_class *class;
3572 struct task_struct *p;
3573
3574 /*
3575 * Optimization: we know that if all tasks are in
3576 * the fair class we can call that function directly:
3577 */
3578 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3579 p = fair_sched_class.pick_next_task(rq);
3580 if (likely(p))
3581 return p;
3582 }
3583
3584 class = sched_class_highest;
3585 for ( ; ; ) {
3586 p = class->pick_next_task(rq);
3587 if (p)
3588 return p;
3589 /*
3590 * Will never be NULL as the idle class always
3591 * returns a non-NULL p:
3592 */
3593 class = class->next;
3594 }
3595 }
3596
3597 /*
3598 * schedule() is the main scheduler function.
3599 */
3600 asmlinkage void __sched schedule(void)
3601 {
3602 struct task_struct *prev, *next;
3603 unsigned long *switch_count;
3604 struct rq *rq;
3605 int cpu;
3606
3607 need_resched:
3608 preempt_disable();
3609 cpu = smp_processor_id();
3610 rq = cpu_rq(cpu);
3611 rcu_note_context_switch(cpu);
3612 prev = rq->curr;
3613 switch_count = &prev->nivcsw;
3614
3615 release_kernel_lock(prev);
3616 need_resched_nonpreemptible:
3617
3618 schedule_debug(prev);
3619
3620 if (sched_feat(HRTICK))
3621 hrtick_clear(rq);
3622
3623 raw_spin_lock_irq(&rq->lock);
3624 clear_tsk_need_resched(prev);
3625
3626 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3627 if (unlikely(signal_pending_state(prev->state, prev)))
3628 prev->state = TASK_RUNNING;
3629 else
3630 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3631 switch_count = &prev->nvcsw;
3632 }
3633
3634 pre_schedule(rq, prev);
3635
3636 if (unlikely(!rq->nr_running))
3637 idle_balance(cpu, rq);
3638
3639 put_prev_task(rq, prev);
3640 next = pick_next_task(rq);
3641
3642 if (likely(prev != next)) {
3643 sched_info_switch(prev, next);
3644 perf_event_task_sched_out(prev, next);
3645
3646 rq->nr_switches++;
3647 rq->curr = next;
3648 ++*switch_count;
3649
3650 context_switch(rq, prev, next); /* unlocks the rq */
3651 /*
3652 * the context switch might have flipped the stack from under
3653 * us, hence refresh the local variables.
3654 */
3655 cpu = smp_processor_id();
3656 rq = cpu_rq(cpu);
3657 } else
3658 raw_spin_unlock_irq(&rq->lock);
3659
3660 post_schedule(rq);
3661
3662 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3663 prev = rq->curr;
3664 switch_count = &prev->nivcsw;
3665 goto need_resched_nonpreemptible;
3666 }
3667
3668 preempt_enable_no_resched();
3669 if (need_resched())
3670 goto need_resched;
3671 }
3672 EXPORT_SYMBOL(schedule);
3673
3674 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3675 /*
3676 * Look out! "owner" is an entirely speculative pointer
3677 * access and not reliable.
3678 */
3679 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3680 {
3681 unsigned int cpu;
3682 struct rq *rq;
3683
3684 if (!sched_feat(OWNER_SPIN))
3685 return 0;
3686
3687 #ifdef CONFIG_DEBUG_PAGEALLOC
3688 /*
3689 * Need to access the cpu field knowing that
3690 * DEBUG_PAGEALLOC could have unmapped it if
3691 * the mutex owner just released it and exited.
3692 */
3693 if (probe_kernel_address(&owner->cpu, cpu))
3694 return 0;
3695 #else
3696 cpu = owner->cpu;
3697 #endif
3698
3699 /*
3700 * Even if the access succeeded (likely case),
3701 * the cpu field may no longer be valid.
3702 */
3703 if (cpu >= nr_cpumask_bits)
3704 return 0;
3705
3706 /*
3707 * We need to validate that we can do a
3708 * get_cpu() and that we have the percpu area.
3709 */
3710 if (!cpu_online(cpu))
3711 return 0;
3712
3713 rq = cpu_rq(cpu);
3714
3715 for (;;) {
3716 /*
3717 * Owner changed, break to re-assess state.
3718 */
3719 if (lock->owner != owner)
3720 break;
3721
3722 /*
3723 * Is that owner really running on that cpu?
3724 */
3725 if (task_thread_info(rq->curr) != owner || need_resched())
3726 return 0;
3727
3728 cpu_relax();
3729 }
3730
3731 return 1;
3732 }
3733 #endif
3734
3735 #ifdef CONFIG_PREEMPT
3736 /*
3737 * this is the entry point to schedule() from in-kernel preemption
3738 * off of preempt_enable. Kernel preemptions off return from interrupt
3739 * occur there and call schedule directly.
3740 */
3741 asmlinkage void __sched preempt_schedule(void)
3742 {
3743 struct thread_info *ti = current_thread_info();
3744
3745 /*
3746 * If there is a non-zero preempt_count or interrupts are disabled,
3747 * we do not want to preempt the current task. Just return..
3748 */
3749 if (likely(ti->preempt_count || irqs_disabled()))
3750 return;
3751
3752 do {
3753 add_preempt_count(PREEMPT_ACTIVE);
3754 schedule();
3755 sub_preempt_count(PREEMPT_ACTIVE);
3756
3757 /*
3758 * Check again in case we missed a preemption opportunity
3759 * between schedule and now.
3760 */
3761 barrier();
3762 } while (need_resched());
3763 }
3764 EXPORT_SYMBOL(preempt_schedule);
3765
3766 /*
3767 * this is the entry point to schedule() from kernel preemption
3768 * off of irq context.
3769 * Note, that this is called and return with irqs disabled. This will
3770 * protect us against recursive calling from irq.
3771 */
3772 asmlinkage void __sched preempt_schedule_irq(void)
3773 {
3774 struct thread_info *ti = current_thread_info();
3775
3776 /* Catch callers which need to be fixed */
3777 BUG_ON(ti->preempt_count || !irqs_disabled());
3778
3779 do {
3780 add_preempt_count(PREEMPT_ACTIVE);
3781 local_irq_enable();
3782 schedule();
3783 local_irq_disable();
3784 sub_preempt_count(PREEMPT_ACTIVE);
3785
3786 /*
3787 * Check again in case we missed a preemption opportunity
3788 * between schedule and now.
3789 */
3790 barrier();
3791 } while (need_resched());
3792 }
3793
3794 #endif /* CONFIG_PREEMPT */
3795
3796 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3797 void *key)
3798 {
3799 return try_to_wake_up(curr->private, mode, wake_flags);
3800 }
3801 EXPORT_SYMBOL(default_wake_function);
3802
3803 /*
3804 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3805 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3806 * number) then we wake all the non-exclusive tasks and one exclusive task.
3807 *
3808 * There are circumstances in which we can try to wake a task which has already
3809 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3810 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3811 */
3812 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3813 int nr_exclusive, int wake_flags, void *key)
3814 {
3815 wait_queue_t *curr, *next;
3816
3817 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3818 unsigned flags = curr->flags;
3819
3820 if (curr->func(curr, mode, wake_flags, key) &&
3821 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3822 break;
3823 }
3824 }
3825
3826 /**
3827 * __wake_up - wake up threads blocked on a waitqueue.
3828 * @q: the waitqueue
3829 * @mode: which threads
3830 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3831 * @key: is directly passed to the wakeup function
3832 *
3833 * It may be assumed that this function implies a write memory barrier before
3834 * changing the task state if and only if any tasks are woken up.
3835 */
3836 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3837 int nr_exclusive, void *key)
3838 {
3839 unsigned long flags;
3840
3841 spin_lock_irqsave(&q->lock, flags);
3842 __wake_up_common(q, mode, nr_exclusive, 0, key);
3843 spin_unlock_irqrestore(&q->lock, flags);
3844 }
3845 EXPORT_SYMBOL(__wake_up);
3846
3847 /*
3848 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3849 */
3850 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3851 {
3852 __wake_up_common(q, mode, 1, 0, NULL);
3853 }
3854
3855 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3856 {
3857 __wake_up_common(q, mode, 1, 0, key);
3858 }
3859
3860 /**
3861 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3862 * @q: the waitqueue
3863 * @mode: which threads
3864 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3865 * @key: opaque value to be passed to wakeup targets
3866 *
3867 * The sync wakeup differs that the waker knows that it will schedule
3868 * away soon, so while the target thread will be woken up, it will not
3869 * be migrated to another CPU - ie. the two threads are 'synchronized'
3870 * with each other. This can prevent needless bouncing between CPUs.
3871 *
3872 * On UP it can prevent extra preemption.
3873 *
3874 * It may be assumed that this function implies a write memory barrier before
3875 * changing the task state if and only if any tasks are woken up.
3876 */
3877 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3878 int nr_exclusive, void *key)
3879 {
3880 unsigned long flags;
3881 int wake_flags = WF_SYNC;
3882
3883 if (unlikely(!q))
3884 return;
3885
3886 if (unlikely(!nr_exclusive))
3887 wake_flags = 0;
3888
3889 spin_lock_irqsave(&q->lock, flags);
3890 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3891 spin_unlock_irqrestore(&q->lock, flags);
3892 }
3893 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3894
3895 /*
3896 * __wake_up_sync - see __wake_up_sync_key()
3897 */
3898 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3899 {
3900 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3901 }
3902 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3903
3904 /**
3905 * complete: - signals a single thread waiting on this completion
3906 * @x: holds the state of this particular completion
3907 *
3908 * This will wake up a single thread waiting on this completion. Threads will be
3909 * awakened in the same order in which they were queued.
3910 *
3911 * See also complete_all(), wait_for_completion() and related routines.
3912 *
3913 * It may be assumed that this function implies a write memory barrier before
3914 * changing the task state if and only if any tasks are woken up.
3915 */
3916 void complete(struct completion *x)
3917 {
3918 unsigned long flags;
3919
3920 spin_lock_irqsave(&x->wait.lock, flags);
3921 x->done++;
3922 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3923 spin_unlock_irqrestore(&x->wait.lock, flags);
3924 }
3925 EXPORT_SYMBOL(complete);
3926
3927 /**
3928 * complete_all: - signals all threads waiting on this completion
3929 * @x: holds the state of this particular completion
3930 *
3931 * This will wake up all threads waiting on this particular completion event.
3932 *
3933 * It may be assumed that this function implies a write memory barrier before
3934 * changing the task state if and only if any tasks are woken up.
3935 */
3936 void complete_all(struct completion *x)
3937 {
3938 unsigned long flags;
3939
3940 spin_lock_irqsave(&x->wait.lock, flags);
3941 x->done += UINT_MAX/2;
3942 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3943 spin_unlock_irqrestore(&x->wait.lock, flags);
3944 }
3945 EXPORT_SYMBOL(complete_all);
3946
3947 static inline long __sched
3948 do_wait_for_common(struct completion *x, long timeout, int state)
3949 {
3950 if (!x->done) {
3951 DECLARE_WAITQUEUE(wait, current);
3952
3953 __add_wait_queue_tail_exclusive(&x->wait, &wait);
3954 do {
3955 if (signal_pending_state(state, current)) {
3956 timeout = -ERESTARTSYS;
3957 break;
3958 }
3959 __set_current_state(state);
3960 spin_unlock_irq(&x->wait.lock);
3961 timeout = schedule_timeout(timeout);
3962 spin_lock_irq(&x->wait.lock);
3963 } while (!x->done && timeout);
3964 __remove_wait_queue(&x->wait, &wait);
3965 if (!x->done)
3966 return timeout;
3967 }
3968 x->done--;
3969 return timeout ?: 1;
3970 }
3971
3972 static long __sched
3973 wait_for_common(struct completion *x, long timeout, int state)
3974 {
3975 might_sleep();
3976
3977 spin_lock_irq(&x->wait.lock);
3978 timeout = do_wait_for_common(x, timeout, state);
3979 spin_unlock_irq(&x->wait.lock);
3980 return timeout;
3981 }
3982
3983 /**
3984 * wait_for_completion: - waits for completion of a task
3985 * @x: holds the state of this particular completion
3986 *
3987 * This waits to be signaled for completion of a specific task. It is NOT
3988 * interruptible and there is no timeout.
3989 *
3990 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3991 * and interrupt capability. Also see complete().
3992 */
3993 void __sched wait_for_completion(struct completion *x)
3994 {
3995 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3996 }
3997 EXPORT_SYMBOL(wait_for_completion);
3998
3999 /**
4000 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4001 * @x: holds the state of this particular completion
4002 * @timeout: timeout value in jiffies
4003 *
4004 * This waits for either a completion of a specific task to be signaled or for a
4005 * specified timeout to expire. The timeout is in jiffies. It is not
4006 * interruptible.
4007 */
4008 unsigned long __sched
4009 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4010 {
4011 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4012 }
4013 EXPORT_SYMBOL(wait_for_completion_timeout);
4014
4015 /**
4016 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4017 * @x: holds the state of this particular completion
4018 *
4019 * This waits for completion of a specific task to be signaled. It is
4020 * interruptible.
4021 */
4022 int __sched wait_for_completion_interruptible(struct completion *x)
4023 {
4024 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4025 if (t == -ERESTARTSYS)
4026 return t;
4027 return 0;
4028 }
4029 EXPORT_SYMBOL(wait_for_completion_interruptible);
4030
4031 /**
4032 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4033 * @x: holds the state of this particular completion
4034 * @timeout: timeout value in jiffies
4035 *
4036 * This waits for either a completion of a specific task to be signaled or for a
4037 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4038 */
4039 unsigned long __sched
4040 wait_for_completion_interruptible_timeout(struct completion *x,
4041 unsigned long timeout)
4042 {
4043 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4044 }
4045 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4046
4047 /**
4048 * wait_for_completion_killable: - waits for completion of a task (killable)
4049 * @x: holds the state of this particular completion
4050 *
4051 * This waits to be signaled for completion of a specific task. It can be
4052 * interrupted by a kill signal.
4053 */
4054 int __sched wait_for_completion_killable(struct completion *x)
4055 {
4056 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4057 if (t == -ERESTARTSYS)
4058 return t;
4059 return 0;
4060 }
4061 EXPORT_SYMBOL(wait_for_completion_killable);
4062
4063 /**
4064 * try_wait_for_completion - try to decrement a completion without blocking
4065 * @x: completion structure
4066 *
4067 * Returns: 0 if a decrement cannot be done without blocking
4068 * 1 if a decrement succeeded.
4069 *
4070 * If a completion is being used as a counting completion,
4071 * attempt to decrement the counter without blocking. This
4072 * enables us to avoid waiting if the resource the completion
4073 * is protecting is not available.
4074 */
4075 bool try_wait_for_completion(struct completion *x)
4076 {
4077 unsigned long flags;
4078 int ret = 1;
4079
4080 spin_lock_irqsave(&x->wait.lock, flags);
4081 if (!x->done)
4082 ret = 0;
4083 else
4084 x->done--;
4085 spin_unlock_irqrestore(&x->wait.lock, flags);
4086 return ret;
4087 }
4088 EXPORT_SYMBOL(try_wait_for_completion);
4089
4090 /**
4091 * completion_done - Test to see if a completion has any waiters
4092 * @x: completion structure
4093 *
4094 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4095 * 1 if there are no waiters.
4096 *
4097 */
4098 bool completion_done(struct completion *x)
4099 {
4100 unsigned long flags;
4101 int ret = 1;
4102
4103 spin_lock_irqsave(&x->wait.lock, flags);
4104 if (!x->done)
4105 ret = 0;
4106 spin_unlock_irqrestore(&x->wait.lock, flags);
4107 return ret;
4108 }
4109 EXPORT_SYMBOL(completion_done);
4110
4111 static long __sched
4112 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4113 {
4114 unsigned long flags;
4115 wait_queue_t wait;
4116
4117 init_waitqueue_entry(&wait, current);
4118
4119 __set_current_state(state);
4120
4121 spin_lock_irqsave(&q->lock, flags);
4122 __add_wait_queue(q, &wait);
4123 spin_unlock(&q->lock);
4124 timeout = schedule_timeout(timeout);
4125 spin_lock_irq(&q->lock);
4126 __remove_wait_queue(q, &wait);
4127 spin_unlock_irqrestore(&q->lock, flags);
4128
4129 return timeout;
4130 }
4131
4132 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4133 {
4134 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4135 }
4136 EXPORT_SYMBOL(interruptible_sleep_on);
4137
4138 long __sched
4139 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4140 {
4141 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4142 }
4143 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4144
4145 void __sched sleep_on(wait_queue_head_t *q)
4146 {
4147 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4148 }
4149 EXPORT_SYMBOL(sleep_on);
4150
4151 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4152 {
4153 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4154 }
4155 EXPORT_SYMBOL(sleep_on_timeout);
4156
4157 #ifdef CONFIG_RT_MUTEXES
4158
4159 /*
4160 * rt_mutex_setprio - set the current priority of a task
4161 * @p: task
4162 * @prio: prio value (kernel-internal form)
4163 *
4164 * This function changes the 'effective' priority of a task. It does
4165 * not touch ->normal_prio like __setscheduler().
4166 *
4167 * Used by the rt_mutex code to implement priority inheritance logic.
4168 */
4169 void rt_mutex_setprio(struct task_struct *p, int prio)
4170 {
4171 unsigned long flags;
4172 int oldprio, on_rq, running;
4173 struct rq *rq;
4174 const struct sched_class *prev_class;
4175
4176 BUG_ON(prio < 0 || prio > MAX_PRIO);
4177
4178 rq = task_rq_lock(p, &flags);
4179
4180 oldprio = p->prio;
4181 prev_class = p->sched_class;
4182 on_rq = p->se.on_rq;
4183 running = task_current(rq, p);
4184 if (on_rq)
4185 dequeue_task(rq, p, 0);
4186 if (running)
4187 p->sched_class->put_prev_task(rq, p);
4188
4189 if (rt_prio(prio))
4190 p->sched_class = &rt_sched_class;
4191 else
4192 p->sched_class = &fair_sched_class;
4193
4194 p->prio = prio;
4195
4196 if (running)
4197 p->sched_class->set_curr_task(rq);
4198 if (on_rq) {
4199 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
4200
4201 check_class_changed(rq, p, prev_class, oldprio, running);
4202 }
4203 task_rq_unlock(rq, &flags);
4204 }
4205
4206 #endif
4207
4208 void set_user_nice(struct task_struct *p, long nice)
4209 {
4210 int old_prio, delta, on_rq;
4211 unsigned long flags;
4212 struct rq *rq;
4213
4214 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4215 return;
4216 /*
4217 * We have to be careful, if called from sys_setpriority(),
4218 * the task might be in the middle of scheduling on another CPU.
4219 */
4220 rq = task_rq_lock(p, &flags);
4221 /*
4222 * The RT priorities are set via sched_setscheduler(), but we still
4223 * allow the 'normal' nice value to be set - but as expected
4224 * it wont have any effect on scheduling until the task is
4225 * SCHED_FIFO/SCHED_RR:
4226 */
4227 if (task_has_rt_policy(p)) {
4228 p->static_prio = NICE_TO_PRIO(nice);
4229 goto out_unlock;
4230 }
4231 on_rq = p->se.on_rq;
4232 if (on_rq)
4233 dequeue_task(rq, p, 0);
4234
4235 p->static_prio = NICE_TO_PRIO(nice);
4236 set_load_weight(p);
4237 old_prio = p->prio;
4238 p->prio = effective_prio(p);
4239 delta = p->prio - old_prio;
4240
4241 if (on_rq) {
4242 enqueue_task(rq, p, 0);
4243 /*
4244 * If the task increased its priority or is running and
4245 * lowered its priority, then reschedule its CPU:
4246 */
4247 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4248 resched_task(rq->curr);
4249 }
4250 out_unlock:
4251 task_rq_unlock(rq, &flags);
4252 }
4253 EXPORT_SYMBOL(set_user_nice);
4254
4255 /*
4256 * can_nice - check if a task can reduce its nice value
4257 * @p: task
4258 * @nice: nice value
4259 */
4260 int can_nice(const struct task_struct *p, const int nice)
4261 {
4262 /* convert nice value [19,-20] to rlimit style value [1,40] */
4263 int nice_rlim = 20 - nice;
4264
4265 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4266 capable(CAP_SYS_NICE));
4267 }
4268
4269 #ifdef __ARCH_WANT_SYS_NICE
4270
4271 /*
4272 * sys_nice - change the priority of the current process.
4273 * @increment: priority increment
4274 *
4275 * sys_setpriority is a more generic, but much slower function that
4276 * does similar things.
4277 */
4278 SYSCALL_DEFINE1(nice, int, increment)
4279 {
4280 long nice, retval;
4281
4282 /*
4283 * Setpriority might change our priority at the same moment.
4284 * We don't have to worry. Conceptually one call occurs first
4285 * and we have a single winner.
4286 */
4287 if (increment < -40)
4288 increment = -40;
4289 if (increment > 40)
4290 increment = 40;
4291
4292 nice = TASK_NICE(current) + increment;
4293 if (nice < -20)
4294 nice = -20;
4295 if (nice > 19)
4296 nice = 19;
4297
4298 if (increment < 0 && !can_nice(current, nice))
4299 return -EPERM;
4300
4301 retval = security_task_setnice(current, nice);
4302 if (retval)
4303 return retval;
4304
4305 set_user_nice(current, nice);
4306 return 0;
4307 }
4308
4309 #endif
4310
4311 /**
4312 * task_prio - return the priority value of a given task.
4313 * @p: the task in question.
4314 *
4315 * This is the priority value as seen by users in /proc.
4316 * RT tasks are offset by -200. Normal tasks are centered
4317 * around 0, value goes from -16 to +15.
4318 */
4319 int task_prio(const struct task_struct *p)
4320 {
4321 return p->prio - MAX_RT_PRIO;
4322 }
4323
4324 /**
4325 * task_nice - return the nice value of a given task.
4326 * @p: the task in question.
4327 */
4328 int task_nice(const struct task_struct *p)
4329 {
4330 return TASK_NICE(p);
4331 }
4332 EXPORT_SYMBOL(task_nice);
4333
4334 /**
4335 * idle_cpu - is a given cpu idle currently?
4336 * @cpu: the processor in question.
4337 */
4338 int idle_cpu(int cpu)
4339 {
4340 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4341 }
4342
4343 /**
4344 * idle_task - return the idle task for a given cpu.
4345 * @cpu: the processor in question.
4346 */
4347 struct task_struct *idle_task(int cpu)
4348 {
4349 return cpu_rq(cpu)->idle;
4350 }
4351
4352 /**
4353 * find_process_by_pid - find a process with a matching PID value.
4354 * @pid: the pid in question.
4355 */
4356 static struct task_struct *find_process_by_pid(pid_t pid)
4357 {
4358 return pid ? find_task_by_vpid(pid) : current;
4359 }
4360
4361 /* Actually do priority change: must hold rq lock. */
4362 static void
4363 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4364 {
4365 BUG_ON(p->se.on_rq);
4366
4367 p->policy = policy;
4368 p->rt_priority = prio;
4369 p->normal_prio = normal_prio(p);
4370 /* we are holding p->pi_lock already */
4371 p->prio = rt_mutex_getprio(p);
4372 if (rt_prio(p->prio))
4373 p->sched_class = &rt_sched_class;
4374 else
4375 p->sched_class = &fair_sched_class;
4376 set_load_weight(p);
4377 }
4378
4379 /*
4380 * check the target process has a UID that matches the current process's
4381 */
4382 static bool check_same_owner(struct task_struct *p)
4383 {
4384 const struct cred *cred = current_cred(), *pcred;
4385 bool match;
4386
4387 rcu_read_lock();
4388 pcred = __task_cred(p);
4389 match = (cred->euid == pcred->euid ||
4390 cred->euid == pcred->uid);
4391 rcu_read_unlock();
4392 return match;
4393 }
4394
4395 static int __sched_setscheduler(struct task_struct *p, int policy,
4396 struct sched_param *param, bool user)
4397 {
4398 int retval, oldprio, oldpolicy = -1, on_rq, running;
4399 unsigned long flags;
4400 const struct sched_class *prev_class;
4401 struct rq *rq;
4402 int reset_on_fork;
4403
4404 /* may grab non-irq protected spin_locks */
4405 BUG_ON(in_interrupt());
4406 recheck:
4407 /* double check policy once rq lock held */
4408 if (policy < 0) {
4409 reset_on_fork = p->sched_reset_on_fork;
4410 policy = oldpolicy = p->policy;
4411 } else {
4412 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4413 policy &= ~SCHED_RESET_ON_FORK;
4414
4415 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4416 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4417 policy != SCHED_IDLE)
4418 return -EINVAL;
4419 }
4420
4421 /*
4422 * Valid priorities for SCHED_FIFO and SCHED_RR are
4423 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4424 * SCHED_BATCH and SCHED_IDLE is 0.
4425 */
4426 if (param->sched_priority < 0 ||
4427 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4428 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4429 return -EINVAL;
4430 if (rt_policy(policy) != (param->sched_priority != 0))
4431 return -EINVAL;
4432
4433 /*
4434 * Allow unprivileged RT tasks to decrease priority:
4435 */
4436 if (user && !capable(CAP_SYS_NICE)) {
4437 if (rt_policy(policy)) {
4438 unsigned long rlim_rtprio;
4439
4440 if (!lock_task_sighand(p, &flags))
4441 return -ESRCH;
4442 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4443 unlock_task_sighand(p, &flags);
4444
4445 /* can't set/change the rt policy */
4446 if (policy != p->policy && !rlim_rtprio)
4447 return -EPERM;
4448
4449 /* can't increase priority */
4450 if (param->sched_priority > p->rt_priority &&
4451 param->sched_priority > rlim_rtprio)
4452 return -EPERM;
4453 }
4454 /*
4455 * Like positive nice levels, dont allow tasks to
4456 * move out of SCHED_IDLE either:
4457 */
4458 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4459 return -EPERM;
4460
4461 /* can't change other user's priorities */
4462 if (!check_same_owner(p))
4463 return -EPERM;
4464
4465 /* Normal users shall not reset the sched_reset_on_fork flag */
4466 if (p->sched_reset_on_fork && !reset_on_fork)
4467 return -EPERM;
4468 }
4469
4470 if (user) {
4471 #ifdef CONFIG_RT_GROUP_SCHED
4472 /*
4473 * Do not allow realtime tasks into groups that have no runtime
4474 * assigned.
4475 */
4476 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4477 task_group(p)->rt_bandwidth.rt_runtime == 0)
4478 return -EPERM;
4479 #endif
4480
4481 retval = security_task_setscheduler(p, policy, param);
4482 if (retval)
4483 return retval;
4484 }
4485
4486 /*
4487 * make sure no PI-waiters arrive (or leave) while we are
4488 * changing the priority of the task:
4489 */
4490 raw_spin_lock_irqsave(&p->pi_lock, flags);
4491 /*
4492 * To be able to change p->policy safely, the apropriate
4493 * runqueue lock must be held.
4494 */
4495 rq = __task_rq_lock(p);
4496 /* recheck policy now with rq lock held */
4497 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4498 policy = oldpolicy = -1;
4499 __task_rq_unlock(rq);
4500 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4501 goto recheck;
4502 }
4503 on_rq = p->se.on_rq;
4504 running = task_current(rq, p);
4505 if (on_rq)
4506 deactivate_task(rq, p, 0);
4507 if (running)
4508 p->sched_class->put_prev_task(rq, p);
4509
4510 p->sched_reset_on_fork = reset_on_fork;
4511
4512 oldprio = p->prio;
4513 prev_class = p->sched_class;
4514 __setscheduler(rq, p, policy, param->sched_priority);
4515
4516 if (running)
4517 p->sched_class->set_curr_task(rq);
4518 if (on_rq) {
4519 activate_task(rq, p, 0);
4520
4521 check_class_changed(rq, p, prev_class, oldprio, running);
4522 }
4523 __task_rq_unlock(rq);
4524 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4525
4526 rt_mutex_adjust_pi(p);
4527
4528 return 0;
4529 }
4530
4531 /**
4532 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4533 * @p: the task in question.
4534 * @policy: new policy.
4535 * @param: structure containing the new RT priority.
4536 *
4537 * NOTE that the task may be already dead.
4538 */
4539 int sched_setscheduler(struct task_struct *p, int policy,
4540 struct sched_param *param)
4541 {
4542 return __sched_setscheduler(p, policy, param, true);
4543 }
4544 EXPORT_SYMBOL_GPL(sched_setscheduler);
4545
4546 /**
4547 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4548 * @p: the task in question.
4549 * @policy: new policy.
4550 * @param: structure containing the new RT priority.
4551 *
4552 * Just like sched_setscheduler, only don't bother checking if the
4553 * current context has permission. For example, this is needed in
4554 * stop_machine(): we create temporary high priority worker threads,
4555 * but our caller might not have that capability.
4556 */
4557 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4558 struct sched_param *param)
4559 {
4560 return __sched_setscheduler(p, policy, param, false);
4561 }
4562
4563 static int
4564 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4565 {
4566 struct sched_param lparam;
4567 struct task_struct *p;
4568 int retval;
4569
4570 if (!param || pid < 0)
4571 return -EINVAL;
4572 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4573 return -EFAULT;
4574
4575 rcu_read_lock();
4576 retval = -ESRCH;
4577 p = find_process_by_pid(pid);
4578 if (p != NULL)
4579 retval = sched_setscheduler(p, policy, &lparam);
4580 rcu_read_unlock();
4581
4582 return retval;
4583 }
4584
4585 /**
4586 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4587 * @pid: the pid in question.
4588 * @policy: new policy.
4589 * @param: structure containing the new RT priority.
4590 */
4591 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4592 struct sched_param __user *, param)
4593 {
4594 /* negative values for policy are not valid */
4595 if (policy < 0)
4596 return -EINVAL;
4597
4598 return do_sched_setscheduler(pid, policy, param);
4599 }
4600
4601 /**
4602 * sys_sched_setparam - set/change the RT priority of a thread
4603 * @pid: the pid in question.
4604 * @param: structure containing the new RT priority.
4605 */
4606 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4607 {
4608 return do_sched_setscheduler(pid, -1, param);
4609 }
4610
4611 /**
4612 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4613 * @pid: the pid in question.
4614 */
4615 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4616 {
4617 struct task_struct *p;
4618 int retval;
4619
4620 if (pid < 0)
4621 return -EINVAL;
4622
4623 retval = -ESRCH;
4624 rcu_read_lock();
4625 p = find_process_by_pid(pid);
4626 if (p) {
4627 retval = security_task_getscheduler(p);
4628 if (!retval)
4629 retval = p->policy
4630 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4631 }
4632 rcu_read_unlock();
4633 return retval;
4634 }
4635
4636 /**
4637 * sys_sched_getparam - get the RT priority of a thread
4638 * @pid: the pid in question.
4639 * @param: structure containing the RT priority.
4640 */
4641 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4642 {
4643 struct sched_param lp;
4644 struct task_struct *p;
4645 int retval;
4646
4647 if (!param || pid < 0)
4648 return -EINVAL;
4649
4650 rcu_read_lock();
4651 p = find_process_by_pid(pid);
4652 retval = -ESRCH;
4653 if (!p)
4654 goto out_unlock;
4655
4656 retval = security_task_getscheduler(p);
4657 if (retval)
4658 goto out_unlock;
4659
4660 lp.sched_priority = p->rt_priority;
4661 rcu_read_unlock();
4662
4663 /*
4664 * This one might sleep, we cannot do it with a spinlock held ...
4665 */
4666 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4667
4668 return retval;
4669
4670 out_unlock:
4671 rcu_read_unlock();
4672 return retval;
4673 }
4674
4675 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4676 {
4677 cpumask_var_t cpus_allowed, new_mask;
4678 struct task_struct *p;
4679 int retval;
4680
4681 get_online_cpus();
4682 rcu_read_lock();
4683
4684 p = find_process_by_pid(pid);
4685 if (!p) {
4686 rcu_read_unlock();
4687 put_online_cpus();
4688 return -ESRCH;
4689 }
4690
4691 /* Prevent p going away */
4692 get_task_struct(p);
4693 rcu_read_unlock();
4694
4695 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4696 retval = -ENOMEM;
4697 goto out_put_task;
4698 }
4699 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4700 retval = -ENOMEM;
4701 goto out_free_cpus_allowed;
4702 }
4703 retval = -EPERM;
4704 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4705 goto out_unlock;
4706
4707 retval = security_task_setscheduler(p, 0, NULL);
4708 if (retval)
4709 goto out_unlock;
4710
4711 cpuset_cpus_allowed(p, cpus_allowed);
4712 cpumask_and(new_mask, in_mask, cpus_allowed);
4713 again:
4714 retval = set_cpus_allowed_ptr(p, new_mask);
4715
4716 if (!retval) {
4717 cpuset_cpus_allowed(p, cpus_allowed);
4718 if (!cpumask_subset(new_mask, cpus_allowed)) {
4719 /*
4720 * We must have raced with a concurrent cpuset
4721 * update. Just reset the cpus_allowed to the
4722 * cpuset's cpus_allowed
4723 */
4724 cpumask_copy(new_mask, cpus_allowed);
4725 goto again;
4726 }
4727 }
4728 out_unlock:
4729 free_cpumask_var(new_mask);
4730 out_free_cpus_allowed:
4731 free_cpumask_var(cpus_allowed);
4732 out_put_task:
4733 put_task_struct(p);
4734 put_online_cpus();
4735 return retval;
4736 }
4737
4738 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4739 struct cpumask *new_mask)
4740 {
4741 if (len < cpumask_size())
4742 cpumask_clear(new_mask);
4743 else if (len > cpumask_size())
4744 len = cpumask_size();
4745
4746 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4747 }
4748
4749 /**
4750 * sys_sched_setaffinity - set the cpu affinity of a process
4751 * @pid: pid of the process
4752 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4753 * @user_mask_ptr: user-space pointer to the new cpu mask
4754 */
4755 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4756 unsigned long __user *, user_mask_ptr)
4757 {
4758 cpumask_var_t new_mask;
4759 int retval;
4760
4761 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4762 return -ENOMEM;
4763
4764 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4765 if (retval == 0)
4766 retval = sched_setaffinity(pid, new_mask);
4767 free_cpumask_var(new_mask);
4768 return retval;
4769 }
4770
4771 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4772 {
4773 struct task_struct *p;
4774 unsigned long flags;
4775 struct rq *rq;
4776 int retval;
4777
4778 get_online_cpus();
4779 rcu_read_lock();
4780
4781 retval = -ESRCH;
4782 p = find_process_by_pid(pid);
4783 if (!p)
4784 goto out_unlock;
4785
4786 retval = security_task_getscheduler(p);
4787 if (retval)
4788 goto out_unlock;
4789
4790 rq = task_rq_lock(p, &flags);
4791 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4792 task_rq_unlock(rq, &flags);
4793
4794 out_unlock:
4795 rcu_read_unlock();
4796 put_online_cpus();
4797
4798 return retval;
4799 }
4800
4801 /**
4802 * sys_sched_getaffinity - get the cpu affinity of a process
4803 * @pid: pid of the process
4804 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4805 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4806 */
4807 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4808 unsigned long __user *, user_mask_ptr)
4809 {
4810 int ret;
4811 cpumask_var_t mask;
4812
4813 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
4814 return -EINVAL;
4815 if (len & (sizeof(unsigned long)-1))
4816 return -EINVAL;
4817
4818 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4819 return -ENOMEM;
4820
4821 ret = sched_getaffinity(pid, mask);
4822 if (ret == 0) {
4823 size_t retlen = min_t(size_t, len, cpumask_size());
4824
4825 if (copy_to_user(user_mask_ptr, mask, retlen))
4826 ret = -EFAULT;
4827 else
4828 ret = retlen;
4829 }
4830 free_cpumask_var(mask);
4831
4832 return ret;
4833 }
4834
4835 /**
4836 * sys_sched_yield - yield the current processor to other threads.
4837 *
4838 * This function yields the current CPU to other tasks. If there are no
4839 * other threads running on this CPU then this function will return.
4840 */
4841 SYSCALL_DEFINE0(sched_yield)
4842 {
4843 struct rq *rq = this_rq_lock();
4844
4845 schedstat_inc(rq, yld_count);
4846 current->sched_class->yield_task(rq);
4847
4848 /*
4849 * Since we are going to call schedule() anyway, there's
4850 * no need to preempt or enable interrupts:
4851 */
4852 __release(rq->lock);
4853 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4854 do_raw_spin_unlock(&rq->lock);
4855 preempt_enable_no_resched();
4856
4857 schedule();
4858
4859 return 0;
4860 }
4861
4862 static inline int should_resched(void)
4863 {
4864 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4865 }
4866
4867 static void __cond_resched(void)
4868 {
4869 add_preempt_count(PREEMPT_ACTIVE);
4870 schedule();
4871 sub_preempt_count(PREEMPT_ACTIVE);
4872 }
4873
4874 int __sched _cond_resched(void)
4875 {
4876 if (should_resched()) {
4877 __cond_resched();
4878 return 1;
4879 }
4880 return 0;
4881 }
4882 EXPORT_SYMBOL(_cond_resched);
4883
4884 /*
4885 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4886 * call schedule, and on return reacquire the lock.
4887 *
4888 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4889 * operations here to prevent schedule() from being called twice (once via
4890 * spin_unlock(), once by hand).
4891 */
4892 int __cond_resched_lock(spinlock_t *lock)
4893 {
4894 int resched = should_resched();
4895 int ret = 0;
4896
4897 lockdep_assert_held(lock);
4898
4899 if (spin_needbreak(lock) || resched) {
4900 spin_unlock(lock);
4901 if (resched)
4902 __cond_resched();
4903 else
4904 cpu_relax();
4905 ret = 1;
4906 spin_lock(lock);
4907 }
4908 return ret;
4909 }
4910 EXPORT_SYMBOL(__cond_resched_lock);
4911
4912 int __sched __cond_resched_softirq(void)
4913 {
4914 BUG_ON(!in_softirq());
4915
4916 if (should_resched()) {
4917 local_bh_enable();
4918 __cond_resched();
4919 local_bh_disable();
4920 return 1;
4921 }
4922 return 0;
4923 }
4924 EXPORT_SYMBOL(__cond_resched_softirq);
4925
4926 /**
4927 * yield - yield the current processor to other threads.
4928 *
4929 * This is a shortcut for kernel-space yielding - it marks the
4930 * thread runnable and calls sys_sched_yield().
4931 */
4932 void __sched yield(void)
4933 {
4934 set_current_state(TASK_RUNNING);
4935 sys_sched_yield();
4936 }
4937 EXPORT_SYMBOL(yield);
4938
4939 /*
4940 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4941 * that process accounting knows that this is a task in IO wait state.
4942 */
4943 void __sched io_schedule(void)
4944 {
4945 struct rq *rq = raw_rq();
4946
4947 delayacct_blkio_start();
4948 atomic_inc(&rq->nr_iowait);
4949 current->in_iowait = 1;
4950 schedule();
4951 current->in_iowait = 0;
4952 atomic_dec(&rq->nr_iowait);
4953 delayacct_blkio_end();
4954 }
4955 EXPORT_SYMBOL(io_schedule);
4956
4957 long __sched io_schedule_timeout(long timeout)
4958 {
4959 struct rq *rq = raw_rq();
4960 long ret;
4961
4962 delayacct_blkio_start();
4963 atomic_inc(&rq->nr_iowait);
4964 current->in_iowait = 1;
4965 ret = schedule_timeout(timeout);
4966 current->in_iowait = 0;
4967 atomic_dec(&rq->nr_iowait);
4968 delayacct_blkio_end();
4969 return ret;
4970 }
4971
4972 /**
4973 * sys_sched_get_priority_max - return maximum RT priority.
4974 * @policy: scheduling class.
4975 *
4976 * this syscall returns the maximum rt_priority that can be used
4977 * by a given scheduling class.
4978 */
4979 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4980 {
4981 int ret = -EINVAL;
4982
4983 switch (policy) {
4984 case SCHED_FIFO:
4985 case SCHED_RR:
4986 ret = MAX_USER_RT_PRIO-1;
4987 break;
4988 case SCHED_NORMAL:
4989 case SCHED_BATCH:
4990 case SCHED_IDLE:
4991 ret = 0;
4992 break;
4993 }
4994 return ret;
4995 }
4996
4997 /**
4998 * sys_sched_get_priority_min - return minimum RT priority.
4999 * @policy: scheduling class.
5000 *
5001 * this syscall returns the minimum rt_priority that can be used
5002 * by a given scheduling class.
5003 */
5004 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5005 {
5006 int ret = -EINVAL;
5007
5008 switch (policy) {
5009 case SCHED_FIFO:
5010 case SCHED_RR:
5011 ret = 1;
5012 break;
5013 case SCHED_NORMAL:
5014 case SCHED_BATCH:
5015 case SCHED_IDLE:
5016 ret = 0;
5017 }
5018 return ret;
5019 }
5020
5021 /**
5022 * sys_sched_rr_get_interval - return the default timeslice of a process.
5023 * @pid: pid of the process.
5024 * @interval: userspace pointer to the timeslice value.
5025 *
5026 * this syscall writes the default timeslice value of a given process
5027 * into the user-space timespec buffer. A value of '0' means infinity.
5028 */
5029 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5030 struct timespec __user *, interval)
5031 {
5032 struct task_struct *p;
5033 unsigned int time_slice;
5034 unsigned long flags;
5035 struct rq *rq;
5036 int retval;
5037 struct timespec t;
5038
5039 if (pid < 0)
5040 return -EINVAL;
5041
5042 retval = -ESRCH;
5043 rcu_read_lock();
5044 p = find_process_by_pid(pid);
5045 if (!p)
5046 goto out_unlock;
5047
5048 retval = security_task_getscheduler(p);
5049 if (retval)
5050 goto out_unlock;
5051
5052 rq = task_rq_lock(p, &flags);
5053 time_slice = p->sched_class->get_rr_interval(rq, p);
5054 task_rq_unlock(rq, &flags);
5055
5056 rcu_read_unlock();
5057 jiffies_to_timespec(time_slice, &t);
5058 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5059 return retval;
5060
5061 out_unlock:
5062 rcu_read_unlock();
5063 return retval;
5064 }
5065
5066 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5067
5068 void sched_show_task(struct task_struct *p)
5069 {
5070 unsigned long free = 0;
5071 unsigned state;
5072
5073 state = p->state ? __ffs(p->state) + 1 : 0;
5074 printk(KERN_INFO "%-13.13s %c", p->comm,
5075 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5076 #if BITS_PER_LONG == 32
5077 if (state == TASK_RUNNING)
5078 printk(KERN_CONT " running ");
5079 else
5080 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5081 #else
5082 if (state == TASK_RUNNING)
5083 printk(KERN_CONT " running task ");
5084 else
5085 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5086 #endif
5087 #ifdef CONFIG_DEBUG_STACK_USAGE
5088 free = stack_not_used(p);
5089 #endif
5090 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5091 task_pid_nr(p), task_pid_nr(p->real_parent),
5092 (unsigned long)task_thread_info(p)->flags);
5093
5094 show_stack(p, NULL);
5095 }
5096
5097 void show_state_filter(unsigned long state_filter)
5098 {
5099 struct task_struct *g, *p;
5100
5101 #if BITS_PER_LONG == 32
5102 printk(KERN_INFO
5103 " task PC stack pid father\n");
5104 #else
5105 printk(KERN_INFO
5106 " task PC stack pid father\n");
5107 #endif
5108 read_lock(&tasklist_lock);
5109 do_each_thread(g, p) {
5110 /*
5111 * reset the NMI-timeout, listing all files on a slow
5112 * console might take alot of time:
5113 */
5114 touch_nmi_watchdog();
5115 if (!state_filter || (p->state & state_filter))
5116 sched_show_task(p);
5117 } while_each_thread(g, p);
5118
5119 touch_all_softlockup_watchdogs();
5120
5121 #ifdef CONFIG_SCHED_DEBUG
5122 sysrq_sched_debug_show();
5123 #endif
5124 read_unlock(&tasklist_lock);
5125 /*
5126 * Only show locks if all tasks are dumped:
5127 */
5128 if (!state_filter)
5129 debug_show_all_locks();
5130 }
5131
5132 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5133 {
5134 idle->sched_class = &idle_sched_class;
5135 }
5136
5137 /**
5138 * init_idle - set up an idle thread for a given CPU
5139 * @idle: task in question
5140 * @cpu: cpu the idle task belongs to
5141 *
5142 * NOTE: this function does not set the idle thread's NEED_RESCHED
5143 * flag, to make booting more robust.
5144 */
5145 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5146 {
5147 struct rq *rq = cpu_rq(cpu);
5148 unsigned long flags;
5149
5150 raw_spin_lock_irqsave(&rq->lock, flags);
5151
5152 __sched_fork(idle);
5153 idle->state = TASK_RUNNING;
5154 idle->se.exec_start = sched_clock();
5155
5156 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5157 __set_task_cpu(idle, cpu);
5158
5159 rq->curr = rq->idle = idle;
5160 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5161 idle->oncpu = 1;
5162 #endif
5163 raw_spin_unlock_irqrestore(&rq->lock, flags);
5164
5165 /* Set the preempt count _outside_ the spinlocks! */
5166 #if defined(CONFIG_PREEMPT)
5167 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5168 #else
5169 task_thread_info(idle)->preempt_count = 0;
5170 #endif
5171 /*
5172 * The idle tasks have their own, simple scheduling class:
5173 */
5174 idle->sched_class = &idle_sched_class;
5175 ftrace_graph_init_task(idle);
5176 }
5177
5178 /*
5179 * In a system that switches off the HZ timer nohz_cpu_mask
5180 * indicates which cpus entered this state. This is used
5181 * in the rcu update to wait only for active cpus. For system
5182 * which do not switch off the HZ timer nohz_cpu_mask should
5183 * always be CPU_BITS_NONE.
5184 */
5185 cpumask_var_t nohz_cpu_mask;
5186
5187 /*
5188 * Increase the granularity value when there are more CPUs,
5189 * because with more CPUs the 'effective latency' as visible
5190 * to users decreases. But the relationship is not linear,
5191 * so pick a second-best guess by going with the log2 of the
5192 * number of CPUs.
5193 *
5194 * This idea comes from the SD scheduler of Con Kolivas:
5195 */
5196 static int get_update_sysctl_factor(void)
5197 {
5198 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5199 unsigned int factor;
5200
5201 switch (sysctl_sched_tunable_scaling) {
5202 case SCHED_TUNABLESCALING_NONE:
5203 factor = 1;
5204 break;
5205 case SCHED_TUNABLESCALING_LINEAR:
5206 factor = cpus;
5207 break;
5208 case SCHED_TUNABLESCALING_LOG:
5209 default:
5210 factor = 1 + ilog2(cpus);
5211 break;
5212 }
5213
5214 return factor;
5215 }
5216
5217 static void update_sysctl(void)
5218 {
5219 unsigned int factor = get_update_sysctl_factor();
5220
5221 #define SET_SYSCTL(name) \
5222 (sysctl_##name = (factor) * normalized_sysctl_##name)
5223 SET_SYSCTL(sched_min_granularity);
5224 SET_SYSCTL(sched_latency);
5225 SET_SYSCTL(sched_wakeup_granularity);
5226 SET_SYSCTL(sched_shares_ratelimit);
5227 #undef SET_SYSCTL
5228 }
5229
5230 static inline void sched_init_granularity(void)
5231 {
5232 update_sysctl();
5233 }
5234
5235 #ifdef CONFIG_SMP
5236 /*
5237 * This is how migration works:
5238 *
5239 * 1) we invoke migration_cpu_stop() on the target CPU using
5240 * stop_one_cpu().
5241 * 2) stopper starts to run (implicitly forcing the migrated thread
5242 * off the CPU)
5243 * 3) it checks whether the migrated task is still in the wrong runqueue.
5244 * 4) if it's in the wrong runqueue then the migration thread removes
5245 * it and puts it into the right queue.
5246 * 5) stopper completes and stop_one_cpu() returns and the migration
5247 * is done.
5248 */
5249
5250 /*
5251 * Change a given task's CPU affinity. Migrate the thread to a
5252 * proper CPU and schedule it away if the CPU it's executing on
5253 * is removed from the allowed bitmask.
5254 *
5255 * NOTE: the caller must have a valid reference to the task, the
5256 * task must not exit() & deallocate itself prematurely. The
5257 * call is not atomic; no spinlocks may be held.
5258 */
5259 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5260 {
5261 unsigned long flags;
5262 struct rq *rq;
5263 unsigned int dest_cpu;
5264 int ret = 0;
5265
5266 /*
5267 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5268 * drop the rq->lock and still rely on ->cpus_allowed.
5269 */
5270 again:
5271 while (task_is_waking(p))
5272 cpu_relax();
5273 rq = task_rq_lock(p, &flags);
5274 if (task_is_waking(p)) {
5275 task_rq_unlock(rq, &flags);
5276 goto again;
5277 }
5278
5279 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5280 ret = -EINVAL;
5281 goto out;
5282 }
5283
5284 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5285 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5286 ret = -EINVAL;
5287 goto out;
5288 }
5289
5290 if (p->sched_class->set_cpus_allowed)
5291 p->sched_class->set_cpus_allowed(p, new_mask);
5292 else {
5293 cpumask_copy(&p->cpus_allowed, new_mask);
5294 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5295 }
5296
5297 /* Can the task run on the task's current CPU? If so, we're done */
5298 if (cpumask_test_cpu(task_cpu(p), new_mask))
5299 goto out;
5300
5301 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
5302 if (migrate_task(p, dest_cpu)) {
5303 struct migration_arg arg = { p, dest_cpu };
5304 /* Need help from migration thread: drop lock and wait. */
5305 task_rq_unlock(rq, &flags);
5306 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
5307 tlb_migrate_finish(p->mm);
5308 return 0;
5309 }
5310 out:
5311 task_rq_unlock(rq, &flags);
5312
5313 return ret;
5314 }
5315 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5316
5317 /*
5318 * Move (not current) task off this cpu, onto dest cpu. We're doing
5319 * this because either it can't run here any more (set_cpus_allowed()
5320 * away from this CPU, or CPU going down), or because we're
5321 * attempting to rebalance this task on exec (sched_exec).
5322 *
5323 * So we race with normal scheduler movements, but that's OK, as long
5324 * as the task is no longer on this CPU.
5325 *
5326 * Returns non-zero if task was successfully migrated.
5327 */
5328 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5329 {
5330 struct rq *rq_dest, *rq_src;
5331 int ret = 0;
5332
5333 if (unlikely(!cpu_active(dest_cpu)))
5334 return ret;
5335
5336 rq_src = cpu_rq(src_cpu);
5337 rq_dest = cpu_rq(dest_cpu);
5338
5339 double_rq_lock(rq_src, rq_dest);
5340 /* Already moved. */
5341 if (task_cpu(p) != src_cpu)
5342 goto done;
5343 /* Affinity changed (again). */
5344 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5345 goto fail;
5346
5347 /*
5348 * If we're not on a rq, the next wake-up will ensure we're
5349 * placed properly.
5350 */
5351 if (p->se.on_rq) {
5352 deactivate_task(rq_src, p, 0);
5353 set_task_cpu(p, dest_cpu);
5354 activate_task(rq_dest, p, 0);
5355 check_preempt_curr(rq_dest, p, 0);
5356 }
5357 done:
5358 ret = 1;
5359 fail:
5360 double_rq_unlock(rq_src, rq_dest);
5361 return ret;
5362 }
5363
5364 /*
5365 * migration_cpu_stop - this will be executed by a highprio stopper thread
5366 * and performs thread migration by bumping thread off CPU then
5367 * 'pushing' onto another runqueue.
5368 */
5369 static int migration_cpu_stop(void *data)
5370 {
5371 struct migration_arg *arg = data;
5372
5373 /*
5374 * The original target cpu might have gone down and we might
5375 * be on another cpu but it doesn't matter.
5376 */
5377 local_irq_disable();
5378 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
5379 local_irq_enable();
5380 return 0;
5381 }
5382
5383 #ifdef CONFIG_HOTPLUG_CPU
5384 /*
5385 * Figure out where task on dead CPU should go, use force if necessary.
5386 */
5387 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5388 {
5389 struct rq *rq = cpu_rq(dead_cpu);
5390 int needs_cpu, uninitialized_var(dest_cpu);
5391 unsigned long flags;
5392
5393 local_irq_save(flags);
5394
5395 raw_spin_lock(&rq->lock);
5396 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5397 if (needs_cpu)
5398 dest_cpu = select_fallback_rq(dead_cpu, p);
5399 raw_spin_unlock(&rq->lock);
5400 /*
5401 * It can only fail if we race with set_cpus_allowed(),
5402 * in the racer should migrate the task anyway.
5403 */
5404 if (needs_cpu)
5405 __migrate_task(p, dead_cpu, dest_cpu);
5406 local_irq_restore(flags);
5407 }
5408
5409 /*
5410 * While a dead CPU has no uninterruptible tasks queued at this point,
5411 * it might still have a nonzero ->nr_uninterruptible counter, because
5412 * for performance reasons the counter is not stricly tracking tasks to
5413 * their home CPUs. So we just add the counter to another CPU's counter,
5414 * to keep the global sum constant after CPU-down:
5415 */
5416 static void migrate_nr_uninterruptible(struct rq *rq_src)
5417 {
5418 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5419 unsigned long flags;
5420
5421 local_irq_save(flags);
5422 double_rq_lock(rq_src, rq_dest);
5423 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5424 rq_src->nr_uninterruptible = 0;
5425 double_rq_unlock(rq_src, rq_dest);
5426 local_irq_restore(flags);
5427 }
5428
5429 /* Run through task list and migrate tasks from the dead cpu. */
5430 static void migrate_live_tasks(int src_cpu)
5431 {
5432 struct task_struct *p, *t;
5433
5434 read_lock(&tasklist_lock);
5435
5436 do_each_thread(t, p) {
5437 if (p == current)
5438 continue;
5439
5440 if (task_cpu(p) == src_cpu)
5441 move_task_off_dead_cpu(src_cpu, p);
5442 } while_each_thread(t, p);
5443
5444 read_unlock(&tasklist_lock);
5445 }
5446
5447 /*
5448 * Schedules idle task to be the next runnable task on current CPU.
5449 * It does so by boosting its priority to highest possible.
5450 * Used by CPU offline code.
5451 */
5452 void sched_idle_next(void)
5453 {
5454 int this_cpu = smp_processor_id();
5455 struct rq *rq = cpu_rq(this_cpu);
5456 struct task_struct *p = rq->idle;
5457 unsigned long flags;
5458
5459 /* cpu has to be offline */
5460 BUG_ON(cpu_online(this_cpu));
5461
5462 /*
5463 * Strictly not necessary since rest of the CPUs are stopped by now
5464 * and interrupts disabled on the current cpu.
5465 */
5466 raw_spin_lock_irqsave(&rq->lock, flags);
5467
5468 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5469
5470 activate_task(rq, p, 0);
5471
5472 raw_spin_unlock_irqrestore(&rq->lock, flags);
5473 }
5474
5475 /*
5476 * Ensures that the idle task is using init_mm right before its cpu goes
5477 * offline.
5478 */
5479 void idle_task_exit(void)
5480 {
5481 struct mm_struct *mm = current->active_mm;
5482
5483 BUG_ON(cpu_online(smp_processor_id()));
5484
5485 if (mm != &init_mm)
5486 switch_mm(mm, &init_mm, current);
5487 mmdrop(mm);
5488 }
5489
5490 /* called under rq->lock with disabled interrupts */
5491 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5492 {
5493 struct rq *rq = cpu_rq(dead_cpu);
5494
5495 /* Must be exiting, otherwise would be on tasklist. */
5496 BUG_ON(!p->exit_state);
5497
5498 /* Cannot have done final schedule yet: would have vanished. */
5499 BUG_ON(p->state == TASK_DEAD);
5500
5501 get_task_struct(p);
5502
5503 /*
5504 * Drop lock around migration; if someone else moves it,
5505 * that's OK. No task can be added to this CPU, so iteration is
5506 * fine.
5507 */
5508 raw_spin_unlock_irq(&rq->lock);
5509 move_task_off_dead_cpu(dead_cpu, p);
5510 raw_spin_lock_irq(&rq->lock);
5511
5512 put_task_struct(p);
5513 }
5514
5515 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5516 static void migrate_dead_tasks(unsigned int dead_cpu)
5517 {
5518 struct rq *rq = cpu_rq(dead_cpu);
5519 struct task_struct *next;
5520
5521 for ( ; ; ) {
5522 if (!rq->nr_running)
5523 break;
5524 next = pick_next_task(rq);
5525 if (!next)
5526 break;
5527 next->sched_class->put_prev_task(rq, next);
5528 migrate_dead(dead_cpu, next);
5529
5530 }
5531 }
5532
5533 /*
5534 * remove the tasks which were accounted by rq from calc_load_tasks.
5535 */
5536 static void calc_global_load_remove(struct rq *rq)
5537 {
5538 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5539 rq->calc_load_active = 0;
5540 }
5541 #endif /* CONFIG_HOTPLUG_CPU */
5542
5543 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5544
5545 static struct ctl_table sd_ctl_dir[] = {
5546 {
5547 .procname = "sched_domain",
5548 .mode = 0555,
5549 },
5550 {}
5551 };
5552
5553 static struct ctl_table sd_ctl_root[] = {
5554 {
5555 .procname = "kernel",
5556 .mode = 0555,
5557 .child = sd_ctl_dir,
5558 },
5559 {}
5560 };
5561
5562 static struct ctl_table *sd_alloc_ctl_entry(int n)
5563 {
5564 struct ctl_table *entry =
5565 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5566
5567 return entry;
5568 }
5569
5570 static void sd_free_ctl_entry(struct ctl_table **tablep)
5571 {
5572 struct ctl_table *entry;
5573
5574 /*
5575 * In the intermediate directories, both the child directory and
5576 * procname are dynamically allocated and could fail but the mode
5577 * will always be set. In the lowest directory the names are
5578 * static strings and all have proc handlers.
5579 */
5580 for (entry = *tablep; entry->mode; entry++) {
5581 if (entry->child)
5582 sd_free_ctl_entry(&entry->child);
5583 if (entry->proc_handler == NULL)
5584 kfree(entry->procname);
5585 }
5586
5587 kfree(*tablep);
5588 *tablep = NULL;
5589 }
5590
5591 static void
5592 set_table_entry(struct ctl_table *entry,
5593 const char *procname, void *data, int maxlen,
5594 mode_t mode, proc_handler *proc_handler)
5595 {
5596 entry->procname = procname;
5597 entry->data = data;
5598 entry->maxlen = maxlen;
5599 entry->mode = mode;
5600 entry->proc_handler = proc_handler;
5601 }
5602
5603 static struct ctl_table *
5604 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5605 {
5606 struct ctl_table *table = sd_alloc_ctl_entry(13);
5607
5608 if (table == NULL)
5609 return NULL;
5610
5611 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5612 sizeof(long), 0644, proc_doulongvec_minmax);
5613 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5614 sizeof(long), 0644, proc_doulongvec_minmax);
5615 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5616 sizeof(int), 0644, proc_dointvec_minmax);
5617 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5618 sizeof(int), 0644, proc_dointvec_minmax);
5619 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5620 sizeof(int), 0644, proc_dointvec_minmax);
5621 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5622 sizeof(int), 0644, proc_dointvec_minmax);
5623 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5624 sizeof(int), 0644, proc_dointvec_minmax);
5625 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5626 sizeof(int), 0644, proc_dointvec_minmax);
5627 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5628 sizeof(int), 0644, proc_dointvec_minmax);
5629 set_table_entry(&table[9], "cache_nice_tries",
5630 &sd->cache_nice_tries,
5631 sizeof(int), 0644, proc_dointvec_minmax);
5632 set_table_entry(&table[10], "flags", &sd->flags,
5633 sizeof(int), 0644, proc_dointvec_minmax);
5634 set_table_entry(&table[11], "name", sd->name,
5635 CORENAME_MAX_SIZE, 0444, proc_dostring);
5636 /* &table[12] is terminator */
5637
5638 return table;
5639 }
5640
5641 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5642 {
5643 struct ctl_table *entry, *table;
5644 struct sched_domain *sd;
5645 int domain_num = 0, i;
5646 char buf[32];
5647
5648 for_each_domain(cpu, sd)
5649 domain_num++;
5650 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5651 if (table == NULL)
5652 return NULL;
5653
5654 i = 0;
5655 for_each_domain(cpu, sd) {
5656 snprintf(buf, 32, "domain%d", i);
5657 entry->procname = kstrdup(buf, GFP_KERNEL);
5658 entry->mode = 0555;
5659 entry->child = sd_alloc_ctl_domain_table(sd);
5660 entry++;
5661 i++;
5662 }
5663 return table;
5664 }
5665
5666 static struct ctl_table_header *sd_sysctl_header;
5667 static void register_sched_domain_sysctl(void)
5668 {
5669 int i, cpu_num = num_possible_cpus();
5670 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5671 char buf[32];
5672
5673 WARN_ON(sd_ctl_dir[0].child);
5674 sd_ctl_dir[0].child = entry;
5675
5676 if (entry == NULL)
5677 return;
5678
5679 for_each_possible_cpu(i) {
5680 snprintf(buf, 32, "cpu%d", i);
5681 entry->procname = kstrdup(buf, GFP_KERNEL);
5682 entry->mode = 0555;
5683 entry->child = sd_alloc_ctl_cpu_table(i);
5684 entry++;
5685 }
5686
5687 WARN_ON(sd_sysctl_header);
5688 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5689 }
5690
5691 /* may be called multiple times per register */
5692 static void unregister_sched_domain_sysctl(void)
5693 {
5694 if (sd_sysctl_header)
5695 unregister_sysctl_table(sd_sysctl_header);
5696 sd_sysctl_header = NULL;
5697 if (sd_ctl_dir[0].child)
5698 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5699 }
5700 #else
5701 static void register_sched_domain_sysctl(void)
5702 {
5703 }
5704 static void unregister_sched_domain_sysctl(void)
5705 {
5706 }
5707 #endif
5708
5709 static void set_rq_online(struct rq *rq)
5710 {
5711 if (!rq->online) {
5712 const struct sched_class *class;
5713
5714 cpumask_set_cpu(rq->cpu, rq->rd->online);
5715 rq->online = 1;
5716
5717 for_each_class(class) {
5718 if (class->rq_online)
5719 class->rq_online(rq);
5720 }
5721 }
5722 }
5723
5724 static void set_rq_offline(struct rq *rq)
5725 {
5726 if (rq->online) {
5727 const struct sched_class *class;
5728
5729 for_each_class(class) {
5730 if (class->rq_offline)
5731 class->rq_offline(rq);
5732 }
5733
5734 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5735 rq->online = 0;
5736 }
5737 }
5738
5739 /*
5740 * migration_call - callback that gets triggered when a CPU is added.
5741 * Here we can start up the necessary migration thread for the new CPU.
5742 */
5743 static int __cpuinit
5744 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5745 {
5746 int cpu = (long)hcpu;
5747 unsigned long flags;
5748 struct rq *rq = cpu_rq(cpu);
5749
5750 switch (action) {
5751
5752 case CPU_UP_PREPARE:
5753 case CPU_UP_PREPARE_FROZEN:
5754 rq->calc_load_update = calc_load_update;
5755 break;
5756
5757 case CPU_ONLINE:
5758 case CPU_ONLINE_FROZEN:
5759 /* Update our root-domain */
5760 raw_spin_lock_irqsave(&rq->lock, flags);
5761 if (rq->rd) {
5762 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5763
5764 set_rq_online(rq);
5765 }
5766 raw_spin_unlock_irqrestore(&rq->lock, flags);
5767 break;
5768
5769 #ifdef CONFIG_HOTPLUG_CPU
5770 case CPU_DEAD:
5771 case CPU_DEAD_FROZEN:
5772 migrate_live_tasks(cpu);
5773 /* Idle task back to normal (off runqueue, low prio) */
5774 raw_spin_lock_irq(&rq->lock);
5775 deactivate_task(rq, rq->idle, 0);
5776 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5777 rq->idle->sched_class = &idle_sched_class;
5778 migrate_dead_tasks(cpu);
5779 raw_spin_unlock_irq(&rq->lock);
5780 migrate_nr_uninterruptible(rq);
5781 BUG_ON(rq->nr_running != 0);
5782 calc_global_load_remove(rq);
5783 break;
5784
5785 case CPU_DYING:
5786 case CPU_DYING_FROZEN:
5787 /* Update our root-domain */
5788 raw_spin_lock_irqsave(&rq->lock, flags);
5789 if (rq->rd) {
5790 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5791 set_rq_offline(rq);
5792 }
5793 raw_spin_unlock_irqrestore(&rq->lock, flags);
5794 break;
5795 #endif
5796 }
5797 return NOTIFY_OK;
5798 }
5799
5800 /*
5801 * Register at high priority so that task migration (migrate_all_tasks)
5802 * happens before everything else. This has to be lower priority than
5803 * the notifier in the perf_event subsystem, though.
5804 */
5805 static struct notifier_block __cpuinitdata migration_notifier = {
5806 .notifier_call = migration_call,
5807 .priority = 10
5808 };
5809
5810 static int __init migration_init(void)
5811 {
5812 void *cpu = (void *)(long)smp_processor_id();
5813 int err;
5814
5815 /* Start one for the boot CPU: */
5816 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5817 BUG_ON(err == NOTIFY_BAD);
5818 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5819 register_cpu_notifier(&migration_notifier);
5820
5821 return 0;
5822 }
5823 early_initcall(migration_init);
5824 #endif
5825
5826 #ifdef CONFIG_SMP
5827
5828 #ifdef CONFIG_SCHED_DEBUG
5829
5830 static __read_mostly int sched_domain_debug_enabled;
5831
5832 static int __init sched_domain_debug_setup(char *str)
5833 {
5834 sched_domain_debug_enabled = 1;
5835
5836 return 0;
5837 }
5838 early_param("sched_debug", sched_domain_debug_setup);
5839
5840 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5841 struct cpumask *groupmask)
5842 {
5843 struct sched_group *group = sd->groups;
5844 char str[256];
5845
5846 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5847 cpumask_clear(groupmask);
5848
5849 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5850
5851 if (!(sd->flags & SD_LOAD_BALANCE)) {
5852 printk("does not load-balance\n");
5853 if (sd->parent)
5854 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5855 " has parent");
5856 return -1;
5857 }
5858
5859 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5860
5861 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5862 printk(KERN_ERR "ERROR: domain->span does not contain "
5863 "CPU%d\n", cpu);
5864 }
5865 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5866 printk(KERN_ERR "ERROR: domain->groups does not contain"
5867 " CPU%d\n", cpu);
5868 }
5869
5870 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5871 do {
5872 if (!group) {
5873 printk("\n");
5874 printk(KERN_ERR "ERROR: group is NULL\n");
5875 break;
5876 }
5877
5878 if (!group->cpu_power) {
5879 printk(KERN_CONT "\n");
5880 printk(KERN_ERR "ERROR: domain->cpu_power not "
5881 "set\n");
5882 break;
5883 }
5884
5885 if (!cpumask_weight(sched_group_cpus(group))) {
5886 printk(KERN_CONT "\n");
5887 printk(KERN_ERR "ERROR: empty group\n");
5888 break;
5889 }
5890
5891 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5892 printk(KERN_CONT "\n");
5893 printk(KERN_ERR "ERROR: repeated CPUs\n");
5894 break;
5895 }
5896
5897 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5898
5899 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5900
5901 printk(KERN_CONT " %s", str);
5902 if (group->cpu_power != SCHED_LOAD_SCALE) {
5903 printk(KERN_CONT " (cpu_power = %d)",
5904 group->cpu_power);
5905 }
5906
5907 group = group->next;
5908 } while (group != sd->groups);
5909 printk(KERN_CONT "\n");
5910
5911 if (!cpumask_equal(sched_domain_span(sd), groupmask))
5912 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5913
5914 if (sd->parent &&
5915 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
5916 printk(KERN_ERR "ERROR: parent span is not a superset "
5917 "of domain->span\n");
5918 return 0;
5919 }
5920
5921 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5922 {
5923 cpumask_var_t groupmask;
5924 int level = 0;
5925
5926 if (!sched_domain_debug_enabled)
5927 return;
5928
5929 if (!sd) {
5930 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5931 return;
5932 }
5933
5934 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5935
5936 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
5937 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
5938 return;
5939 }
5940
5941 for (;;) {
5942 if (sched_domain_debug_one(sd, cpu, level, groupmask))
5943 break;
5944 level++;
5945 sd = sd->parent;
5946 if (!sd)
5947 break;
5948 }
5949 free_cpumask_var(groupmask);
5950 }
5951 #else /* !CONFIG_SCHED_DEBUG */
5952 # define sched_domain_debug(sd, cpu) do { } while (0)
5953 #endif /* CONFIG_SCHED_DEBUG */
5954
5955 static int sd_degenerate(struct sched_domain *sd)
5956 {
5957 if (cpumask_weight(sched_domain_span(sd)) == 1)
5958 return 1;
5959
5960 /* Following flags need at least 2 groups */
5961 if (sd->flags & (SD_LOAD_BALANCE |
5962 SD_BALANCE_NEWIDLE |
5963 SD_BALANCE_FORK |
5964 SD_BALANCE_EXEC |
5965 SD_SHARE_CPUPOWER |
5966 SD_SHARE_PKG_RESOURCES)) {
5967 if (sd->groups != sd->groups->next)
5968 return 0;
5969 }
5970
5971 /* Following flags don't use groups */
5972 if (sd->flags & (SD_WAKE_AFFINE))
5973 return 0;
5974
5975 return 1;
5976 }
5977
5978 static int
5979 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5980 {
5981 unsigned long cflags = sd->flags, pflags = parent->flags;
5982
5983 if (sd_degenerate(parent))
5984 return 1;
5985
5986 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
5987 return 0;
5988
5989 /* Flags needing groups don't count if only 1 group in parent */
5990 if (parent->groups == parent->groups->next) {
5991 pflags &= ~(SD_LOAD_BALANCE |
5992 SD_BALANCE_NEWIDLE |
5993 SD_BALANCE_FORK |
5994 SD_BALANCE_EXEC |
5995 SD_SHARE_CPUPOWER |
5996 SD_SHARE_PKG_RESOURCES);
5997 if (nr_node_ids == 1)
5998 pflags &= ~SD_SERIALIZE;
5999 }
6000 if (~cflags & pflags)
6001 return 0;
6002
6003 return 1;
6004 }
6005
6006 static void free_rootdomain(struct root_domain *rd)
6007 {
6008 synchronize_sched();
6009
6010 cpupri_cleanup(&rd->cpupri);
6011
6012 free_cpumask_var(rd->rto_mask);
6013 free_cpumask_var(rd->online);
6014 free_cpumask_var(rd->span);
6015 kfree(rd);
6016 }
6017
6018 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6019 {
6020 struct root_domain *old_rd = NULL;
6021 unsigned long flags;
6022
6023 raw_spin_lock_irqsave(&rq->lock, flags);
6024
6025 if (rq->rd) {
6026 old_rd = rq->rd;
6027
6028 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6029 set_rq_offline(rq);
6030
6031 cpumask_clear_cpu(rq->cpu, old_rd->span);
6032
6033 /*
6034 * If we dont want to free the old_rt yet then
6035 * set old_rd to NULL to skip the freeing later
6036 * in this function:
6037 */
6038 if (!atomic_dec_and_test(&old_rd->refcount))
6039 old_rd = NULL;
6040 }
6041
6042 atomic_inc(&rd->refcount);
6043 rq->rd = rd;
6044
6045 cpumask_set_cpu(rq->cpu, rd->span);
6046 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6047 set_rq_online(rq);
6048
6049 raw_spin_unlock_irqrestore(&rq->lock, flags);
6050
6051 if (old_rd)
6052 free_rootdomain(old_rd);
6053 }
6054
6055 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6056 {
6057 gfp_t gfp = GFP_KERNEL;
6058
6059 memset(rd, 0, sizeof(*rd));
6060
6061 if (bootmem)
6062 gfp = GFP_NOWAIT;
6063
6064 if (!alloc_cpumask_var(&rd->span, gfp))
6065 goto out;
6066 if (!alloc_cpumask_var(&rd->online, gfp))
6067 goto free_span;
6068 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6069 goto free_online;
6070
6071 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6072 goto free_rto_mask;
6073 return 0;
6074
6075 free_rto_mask:
6076 free_cpumask_var(rd->rto_mask);
6077 free_online:
6078 free_cpumask_var(rd->online);
6079 free_span:
6080 free_cpumask_var(rd->span);
6081 out:
6082 return -ENOMEM;
6083 }
6084
6085 static void init_defrootdomain(void)
6086 {
6087 init_rootdomain(&def_root_domain, true);
6088
6089 atomic_set(&def_root_domain.refcount, 1);
6090 }
6091
6092 static struct root_domain *alloc_rootdomain(void)
6093 {
6094 struct root_domain *rd;
6095
6096 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6097 if (!rd)
6098 return NULL;
6099
6100 if (init_rootdomain(rd, false) != 0) {
6101 kfree(rd);
6102 return NULL;
6103 }
6104
6105 return rd;
6106 }
6107
6108 /*
6109 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6110 * hold the hotplug lock.
6111 */
6112 static void
6113 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6114 {
6115 struct rq *rq = cpu_rq(cpu);
6116 struct sched_domain *tmp;
6117
6118 for (tmp = sd; tmp; tmp = tmp->parent)
6119 tmp->span_weight = cpumask_weight(sched_domain_span(tmp));
6120
6121 /* Remove the sched domains which do not contribute to scheduling. */
6122 for (tmp = sd; tmp; ) {
6123 struct sched_domain *parent = tmp->parent;
6124 if (!parent)
6125 break;
6126
6127 if (sd_parent_degenerate(tmp, parent)) {
6128 tmp->parent = parent->parent;
6129 if (parent->parent)
6130 parent->parent->child = tmp;
6131 } else
6132 tmp = tmp->parent;
6133 }
6134
6135 if (sd && sd_degenerate(sd)) {
6136 sd = sd->parent;
6137 if (sd)
6138 sd->child = NULL;
6139 }
6140
6141 sched_domain_debug(sd, cpu);
6142
6143 rq_attach_root(rq, rd);
6144 rcu_assign_pointer(rq->sd, sd);
6145 }
6146
6147 /* cpus with isolated domains */
6148 static cpumask_var_t cpu_isolated_map;
6149
6150 /* Setup the mask of cpus configured for isolated domains */
6151 static int __init isolated_cpu_setup(char *str)
6152 {
6153 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6154 cpulist_parse(str, cpu_isolated_map);
6155 return 1;
6156 }
6157
6158 __setup("isolcpus=", isolated_cpu_setup);
6159
6160 /*
6161 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6162 * to a function which identifies what group(along with sched group) a CPU
6163 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6164 * (due to the fact that we keep track of groups covered with a struct cpumask).
6165 *
6166 * init_sched_build_groups will build a circular linked list of the groups
6167 * covered by the given span, and will set each group's ->cpumask correctly,
6168 * and ->cpu_power to 0.
6169 */
6170 static void
6171 init_sched_build_groups(const struct cpumask *span,
6172 const struct cpumask *cpu_map,
6173 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6174 struct sched_group **sg,
6175 struct cpumask *tmpmask),
6176 struct cpumask *covered, struct cpumask *tmpmask)
6177 {
6178 struct sched_group *first = NULL, *last = NULL;
6179 int i;
6180
6181 cpumask_clear(covered);
6182
6183 for_each_cpu(i, span) {
6184 struct sched_group *sg;
6185 int group = group_fn(i, cpu_map, &sg, tmpmask);
6186 int j;
6187
6188 if (cpumask_test_cpu(i, covered))
6189 continue;
6190
6191 cpumask_clear(sched_group_cpus(sg));
6192 sg->cpu_power = 0;
6193
6194 for_each_cpu(j, span) {
6195 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6196 continue;
6197
6198 cpumask_set_cpu(j, covered);
6199 cpumask_set_cpu(j, sched_group_cpus(sg));
6200 }
6201 if (!first)
6202 first = sg;
6203 if (last)
6204 last->next = sg;
6205 last = sg;
6206 }
6207 last->next = first;
6208 }
6209
6210 #define SD_NODES_PER_DOMAIN 16
6211
6212 #ifdef CONFIG_NUMA
6213
6214 /**
6215 * find_next_best_node - find the next node to include in a sched_domain
6216 * @node: node whose sched_domain we're building
6217 * @used_nodes: nodes already in the sched_domain
6218 *
6219 * Find the next node to include in a given scheduling domain. Simply
6220 * finds the closest node not already in the @used_nodes map.
6221 *
6222 * Should use nodemask_t.
6223 */
6224 static int find_next_best_node(int node, nodemask_t *used_nodes)
6225 {
6226 int i, n, val, min_val, best_node = 0;
6227
6228 min_val = INT_MAX;
6229
6230 for (i = 0; i < nr_node_ids; i++) {
6231 /* Start at @node */
6232 n = (node + i) % nr_node_ids;
6233
6234 if (!nr_cpus_node(n))
6235 continue;
6236
6237 /* Skip already used nodes */
6238 if (node_isset(n, *used_nodes))
6239 continue;
6240
6241 /* Simple min distance search */
6242 val = node_distance(node, n);
6243
6244 if (val < min_val) {
6245 min_val = val;
6246 best_node = n;
6247 }
6248 }
6249
6250 node_set(best_node, *used_nodes);
6251 return best_node;
6252 }
6253
6254 /**
6255 * sched_domain_node_span - get a cpumask for a node's sched_domain
6256 * @node: node whose cpumask we're constructing
6257 * @span: resulting cpumask
6258 *
6259 * Given a node, construct a good cpumask for its sched_domain to span. It
6260 * should be one that prevents unnecessary balancing, but also spreads tasks
6261 * out optimally.
6262 */
6263 static void sched_domain_node_span(int node, struct cpumask *span)
6264 {
6265 nodemask_t used_nodes;
6266 int i;
6267
6268 cpumask_clear(span);
6269 nodes_clear(used_nodes);
6270
6271 cpumask_or(span, span, cpumask_of_node(node));
6272 node_set(node, used_nodes);
6273
6274 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6275 int next_node = find_next_best_node(node, &used_nodes);
6276
6277 cpumask_or(span, span, cpumask_of_node(next_node));
6278 }
6279 }
6280 #endif /* CONFIG_NUMA */
6281
6282 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6283
6284 /*
6285 * The cpus mask in sched_group and sched_domain hangs off the end.
6286 *
6287 * ( See the the comments in include/linux/sched.h:struct sched_group
6288 * and struct sched_domain. )
6289 */
6290 struct static_sched_group {
6291 struct sched_group sg;
6292 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6293 };
6294
6295 struct static_sched_domain {
6296 struct sched_domain sd;
6297 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6298 };
6299
6300 struct s_data {
6301 #ifdef CONFIG_NUMA
6302 int sd_allnodes;
6303 cpumask_var_t domainspan;
6304 cpumask_var_t covered;
6305 cpumask_var_t notcovered;
6306 #endif
6307 cpumask_var_t nodemask;
6308 cpumask_var_t this_sibling_map;
6309 cpumask_var_t this_core_map;
6310 cpumask_var_t send_covered;
6311 cpumask_var_t tmpmask;
6312 struct sched_group **sched_group_nodes;
6313 struct root_domain *rd;
6314 };
6315
6316 enum s_alloc {
6317 sa_sched_groups = 0,
6318 sa_rootdomain,
6319 sa_tmpmask,
6320 sa_send_covered,
6321 sa_this_core_map,
6322 sa_this_sibling_map,
6323 sa_nodemask,
6324 sa_sched_group_nodes,
6325 #ifdef CONFIG_NUMA
6326 sa_notcovered,
6327 sa_covered,
6328 sa_domainspan,
6329 #endif
6330 sa_none,
6331 };
6332
6333 /*
6334 * SMT sched-domains:
6335 */
6336 #ifdef CONFIG_SCHED_SMT
6337 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6338 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6339
6340 static int
6341 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6342 struct sched_group **sg, struct cpumask *unused)
6343 {
6344 if (sg)
6345 *sg = &per_cpu(sched_groups, cpu).sg;
6346 return cpu;
6347 }
6348 #endif /* CONFIG_SCHED_SMT */
6349
6350 /*
6351 * multi-core sched-domains:
6352 */
6353 #ifdef CONFIG_SCHED_MC
6354 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6355 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6356 #endif /* CONFIG_SCHED_MC */
6357
6358 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6359 static int
6360 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6361 struct sched_group **sg, struct cpumask *mask)
6362 {
6363 int group;
6364
6365 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6366 group = cpumask_first(mask);
6367 if (sg)
6368 *sg = &per_cpu(sched_group_core, group).sg;
6369 return group;
6370 }
6371 #elif defined(CONFIG_SCHED_MC)
6372 static int
6373 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6374 struct sched_group **sg, struct cpumask *unused)
6375 {
6376 if (sg)
6377 *sg = &per_cpu(sched_group_core, cpu).sg;
6378 return cpu;
6379 }
6380 #endif
6381
6382 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6383 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6384
6385 static int
6386 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6387 struct sched_group **sg, struct cpumask *mask)
6388 {
6389 int group;
6390 #ifdef CONFIG_SCHED_MC
6391 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6392 group = cpumask_first(mask);
6393 #elif defined(CONFIG_SCHED_SMT)
6394 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6395 group = cpumask_first(mask);
6396 #else
6397 group = cpu;
6398 #endif
6399 if (sg)
6400 *sg = &per_cpu(sched_group_phys, group).sg;
6401 return group;
6402 }
6403
6404 #ifdef CONFIG_NUMA
6405 /*
6406 * The init_sched_build_groups can't handle what we want to do with node
6407 * groups, so roll our own. Now each node has its own list of groups which
6408 * gets dynamically allocated.
6409 */
6410 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6411 static struct sched_group ***sched_group_nodes_bycpu;
6412
6413 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6414 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6415
6416 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6417 struct sched_group **sg,
6418 struct cpumask *nodemask)
6419 {
6420 int group;
6421
6422 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6423 group = cpumask_first(nodemask);
6424
6425 if (sg)
6426 *sg = &per_cpu(sched_group_allnodes, group).sg;
6427 return group;
6428 }
6429
6430 static void init_numa_sched_groups_power(struct sched_group *group_head)
6431 {
6432 struct sched_group *sg = group_head;
6433 int j;
6434
6435 if (!sg)
6436 return;
6437 do {
6438 for_each_cpu(j, sched_group_cpus(sg)) {
6439 struct sched_domain *sd;
6440
6441 sd = &per_cpu(phys_domains, j).sd;
6442 if (j != group_first_cpu(sd->groups)) {
6443 /*
6444 * Only add "power" once for each
6445 * physical package.
6446 */
6447 continue;
6448 }
6449
6450 sg->cpu_power += sd->groups->cpu_power;
6451 }
6452 sg = sg->next;
6453 } while (sg != group_head);
6454 }
6455
6456 static int build_numa_sched_groups(struct s_data *d,
6457 const struct cpumask *cpu_map, int num)
6458 {
6459 struct sched_domain *sd;
6460 struct sched_group *sg, *prev;
6461 int n, j;
6462
6463 cpumask_clear(d->covered);
6464 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6465 if (cpumask_empty(d->nodemask)) {
6466 d->sched_group_nodes[num] = NULL;
6467 goto out;
6468 }
6469
6470 sched_domain_node_span(num, d->domainspan);
6471 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6472
6473 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6474 GFP_KERNEL, num);
6475 if (!sg) {
6476 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6477 num);
6478 return -ENOMEM;
6479 }
6480 d->sched_group_nodes[num] = sg;
6481
6482 for_each_cpu(j, d->nodemask) {
6483 sd = &per_cpu(node_domains, j).sd;
6484 sd->groups = sg;
6485 }
6486
6487 sg->cpu_power = 0;
6488 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6489 sg->next = sg;
6490 cpumask_or(d->covered, d->covered, d->nodemask);
6491
6492 prev = sg;
6493 for (j = 0; j < nr_node_ids; j++) {
6494 n = (num + j) % nr_node_ids;
6495 cpumask_complement(d->notcovered, d->covered);
6496 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6497 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6498 if (cpumask_empty(d->tmpmask))
6499 break;
6500 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6501 if (cpumask_empty(d->tmpmask))
6502 continue;
6503 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6504 GFP_KERNEL, num);
6505 if (!sg) {
6506 printk(KERN_WARNING
6507 "Can not alloc domain group for node %d\n", j);
6508 return -ENOMEM;
6509 }
6510 sg->cpu_power = 0;
6511 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6512 sg->next = prev->next;
6513 cpumask_or(d->covered, d->covered, d->tmpmask);
6514 prev->next = sg;
6515 prev = sg;
6516 }
6517 out:
6518 return 0;
6519 }
6520 #endif /* CONFIG_NUMA */
6521
6522 #ifdef CONFIG_NUMA
6523 /* Free memory allocated for various sched_group structures */
6524 static void free_sched_groups(const struct cpumask *cpu_map,
6525 struct cpumask *nodemask)
6526 {
6527 int cpu, i;
6528
6529 for_each_cpu(cpu, cpu_map) {
6530 struct sched_group **sched_group_nodes
6531 = sched_group_nodes_bycpu[cpu];
6532
6533 if (!sched_group_nodes)
6534 continue;
6535
6536 for (i = 0; i < nr_node_ids; i++) {
6537 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6538
6539 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6540 if (cpumask_empty(nodemask))
6541 continue;
6542
6543 if (sg == NULL)
6544 continue;
6545 sg = sg->next;
6546 next_sg:
6547 oldsg = sg;
6548 sg = sg->next;
6549 kfree(oldsg);
6550 if (oldsg != sched_group_nodes[i])
6551 goto next_sg;
6552 }
6553 kfree(sched_group_nodes);
6554 sched_group_nodes_bycpu[cpu] = NULL;
6555 }
6556 }
6557 #else /* !CONFIG_NUMA */
6558 static void free_sched_groups(const struct cpumask *cpu_map,
6559 struct cpumask *nodemask)
6560 {
6561 }
6562 #endif /* CONFIG_NUMA */
6563
6564 /*
6565 * Initialize sched groups cpu_power.
6566 *
6567 * cpu_power indicates the capacity of sched group, which is used while
6568 * distributing the load between different sched groups in a sched domain.
6569 * Typically cpu_power for all the groups in a sched domain will be same unless
6570 * there are asymmetries in the topology. If there are asymmetries, group
6571 * having more cpu_power will pickup more load compared to the group having
6572 * less cpu_power.
6573 */
6574 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6575 {
6576 struct sched_domain *child;
6577 struct sched_group *group;
6578 long power;
6579 int weight;
6580
6581 WARN_ON(!sd || !sd->groups);
6582
6583 if (cpu != group_first_cpu(sd->groups))
6584 return;
6585
6586 child = sd->child;
6587
6588 sd->groups->cpu_power = 0;
6589
6590 if (!child) {
6591 power = SCHED_LOAD_SCALE;
6592 weight = cpumask_weight(sched_domain_span(sd));
6593 /*
6594 * SMT siblings share the power of a single core.
6595 * Usually multiple threads get a better yield out of
6596 * that one core than a single thread would have,
6597 * reflect that in sd->smt_gain.
6598 */
6599 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6600 power *= sd->smt_gain;
6601 power /= weight;
6602 power >>= SCHED_LOAD_SHIFT;
6603 }
6604 sd->groups->cpu_power += power;
6605 return;
6606 }
6607
6608 /*
6609 * Add cpu_power of each child group to this groups cpu_power.
6610 */
6611 group = child->groups;
6612 do {
6613 sd->groups->cpu_power += group->cpu_power;
6614 group = group->next;
6615 } while (group != child->groups);
6616 }
6617
6618 /*
6619 * Initializers for schedule domains
6620 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6621 */
6622
6623 #ifdef CONFIG_SCHED_DEBUG
6624 # define SD_INIT_NAME(sd, type) sd->name = #type
6625 #else
6626 # define SD_INIT_NAME(sd, type) do { } while (0)
6627 #endif
6628
6629 #define SD_INIT(sd, type) sd_init_##type(sd)
6630
6631 #define SD_INIT_FUNC(type) \
6632 static noinline void sd_init_##type(struct sched_domain *sd) \
6633 { \
6634 memset(sd, 0, sizeof(*sd)); \
6635 *sd = SD_##type##_INIT; \
6636 sd->level = SD_LV_##type; \
6637 SD_INIT_NAME(sd, type); \
6638 }
6639
6640 SD_INIT_FUNC(CPU)
6641 #ifdef CONFIG_NUMA
6642 SD_INIT_FUNC(ALLNODES)
6643 SD_INIT_FUNC(NODE)
6644 #endif
6645 #ifdef CONFIG_SCHED_SMT
6646 SD_INIT_FUNC(SIBLING)
6647 #endif
6648 #ifdef CONFIG_SCHED_MC
6649 SD_INIT_FUNC(MC)
6650 #endif
6651
6652 static int default_relax_domain_level = -1;
6653
6654 static int __init setup_relax_domain_level(char *str)
6655 {
6656 unsigned long val;
6657
6658 val = simple_strtoul(str, NULL, 0);
6659 if (val < SD_LV_MAX)
6660 default_relax_domain_level = val;
6661
6662 return 1;
6663 }
6664 __setup("relax_domain_level=", setup_relax_domain_level);
6665
6666 static void set_domain_attribute(struct sched_domain *sd,
6667 struct sched_domain_attr *attr)
6668 {
6669 int request;
6670
6671 if (!attr || attr->relax_domain_level < 0) {
6672 if (default_relax_domain_level < 0)
6673 return;
6674 else
6675 request = default_relax_domain_level;
6676 } else
6677 request = attr->relax_domain_level;
6678 if (request < sd->level) {
6679 /* turn off idle balance on this domain */
6680 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6681 } else {
6682 /* turn on idle balance on this domain */
6683 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6684 }
6685 }
6686
6687 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6688 const struct cpumask *cpu_map)
6689 {
6690 switch (what) {
6691 case sa_sched_groups:
6692 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6693 d->sched_group_nodes = NULL;
6694 case sa_rootdomain:
6695 free_rootdomain(d->rd); /* fall through */
6696 case sa_tmpmask:
6697 free_cpumask_var(d->tmpmask); /* fall through */
6698 case sa_send_covered:
6699 free_cpumask_var(d->send_covered); /* fall through */
6700 case sa_this_core_map:
6701 free_cpumask_var(d->this_core_map); /* fall through */
6702 case sa_this_sibling_map:
6703 free_cpumask_var(d->this_sibling_map); /* fall through */
6704 case sa_nodemask:
6705 free_cpumask_var(d->nodemask); /* fall through */
6706 case sa_sched_group_nodes:
6707 #ifdef CONFIG_NUMA
6708 kfree(d->sched_group_nodes); /* fall through */
6709 case sa_notcovered:
6710 free_cpumask_var(d->notcovered); /* fall through */
6711 case sa_covered:
6712 free_cpumask_var(d->covered); /* fall through */
6713 case sa_domainspan:
6714 free_cpumask_var(d->domainspan); /* fall through */
6715 #endif
6716 case sa_none:
6717 break;
6718 }
6719 }
6720
6721 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6722 const struct cpumask *cpu_map)
6723 {
6724 #ifdef CONFIG_NUMA
6725 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6726 return sa_none;
6727 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6728 return sa_domainspan;
6729 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6730 return sa_covered;
6731 /* Allocate the per-node list of sched groups */
6732 d->sched_group_nodes = kcalloc(nr_node_ids,
6733 sizeof(struct sched_group *), GFP_KERNEL);
6734 if (!d->sched_group_nodes) {
6735 printk(KERN_WARNING "Can not alloc sched group node list\n");
6736 return sa_notcovered;
6737 }
6738 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6739 #endif
6740 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6741 return sa_sched_group_nodes;
6742 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6743 return sa_nodemask;
6744 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6745 return sa_this_sibling_map;
6746 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6747 return sa_this_core_map;
6748 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6749 return sa_send_covered;
6750 d->rd = alloc_rootdomain();
6751 if (!d->rd) {
6752 printk(KERN_WARNING "Cannot alloc root domain\n");
6753 return sa_tmpmask;
6754 }
6755 return sa_rootdomain;
6756 }
6757
6758 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6759 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6760 {
6761 struct sched_domain *sd = NULL;
6762 #ifdef CONFIG_NUMA
6763 struct sched_domain *parent;
6764
6765 d->sd_allnodes = 0;
6766 if (cpumask_weight(cpu_map) >
6767 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6768 sd = &per_cpu(allnodes_domains, i).sd;
6769 SD_INIT(sd, ALLNODES);
6770 set_domain_attribute(sd, attr);
6771 cpumask_copy(sched_domain_span(sd), cpu_map);
6772 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6773 d->sd_allnodes = 1;
6774 }
6775 parent = sd;
6776
6777 sd = &per_cpu(node_domains, i).sd;
6778 SD_INIT(sd, NODE);
6779 set_domain_attribute(sd, attr);
6780 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6781 sd->parent = parent;
6782 if (parent)
6783 parent->child = sd;
6784 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6785 #endif
6786 return sd;
6787 }
6788
6789 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6790 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6791 struct sched_domain *parent, int i)
6792 {
6793 struct sched_domain *sd;
6794 sd = &per_cpu(phys_domains, i).sd;
6795 SD_INIT(sd, CPU);
6796 set_domain_attribute(sd, attr);
6797 cpumask_copy(sched_domain_span(sd), d->nodemask);
6798 sd->parent = parent;
6799 if (parent)
6800 parent->child = sd;
6801 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6802 return sd;
6803 }
6804
6805 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6806 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6807 struct sched_domain *parent, int i)
6808 {
6809 struct sched_domain *sd = parent;
6810 #ifdef CONFIG_SCHED_MC
6811 sd = &per_cpu(core_domains, i).sd;
6812 SD_INIT(sd, MC);
6813 set_domain_attribute(sd, attr);
6814 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6815 sd->parent = parent;
6816 parent->child = sd;
6817 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6818 #endif
6819 return sd;
6820 }
6821
6822 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6823 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6824 struct sched_domain *parent, int i)
6825 {
6826 struct sched_domain *sd = parent;
6827 #ifdef CONFIG_SCHED_SMT
6828 sd = &per_cpu(cpu_domains, i).sd;
6829 SD_INIT(sd, SIBLING);
6830 set_domain_attribute(sd, attr);
6831 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6832 sd->parent = parent;
6833 parent->child = sd;
6834 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6835 #endif
6836 return sd;
6837 }
6838
6839 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6840 const struct cpumask *cpu_map, int cpu)
6841 {
6842 switch (l) {
6843 #ifdef CONFIG_SCHED_SMT
6844 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6845 cpumask_and(d->this_sibling_map, cpu_map,
6846 topology_thread_cpumask(cpu));
6847 if (cpu == cpumask_first(d->this_sibling_map))
6848 init_sched_build_groups(d->this_sibling_map, cpu_map,
6849 &cpu_to_cpu_group,
6850 d->send_covered, d->tmpmask);
6851 break;
6852 #endif
6853 #ifdef CONFIG_SCHED_MC
6854 case SD_LV_MC: /* set up multi-core groups */
6855 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6856 if (cpu == cpumask_first(d->this_core_map))
6857 init_sched_build_groups(d->this_core_map, cpu_map,
6858 &cpu_to_core_group,
6859 d->send_covered, d->tmpmask);
6860 break;
6861 #endif
6862 case SD_LV_CPU: /* set up physical groups */
6863 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6864 if (!cpumask_empty(d->nodemask))
6865 init_sched_build_groups(d->nodemask, cpu_map,
6866 &cpu_to_phys_group,
6867 d->send_covered, d->tmpmask);
6868 break;
6869 #ifdef CONFIG_NUMA
6870 case SD_LV_ALLNODES:
6871 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6872 d->send_covered, d->tmpmask);
6873 break;
6874 #endif
6875 default:
6876 break;
6877 }
6878 }
6879
6880 /*
6881 * Build sched domains for a given set of cpus and attach the sched domains
6882 * to the individual cpus
6883 */
6884 static int __build_sched_domains(const struct cpumask *cpu_map,
6885 struct sched_domain_attr *attr)
6886 {
6887 enum s_alloc alloc_state = sa_none;
6888 struct s_data d;
6889 struct sched_domain *sd;
6890 int i;
6891 #ifdef CONFIG_NUMA
6892 d.sd_allnodes = 0;
6893 #endif
6894
6895 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6896 if (alloc_state != sa_rootdomain)
6897 goto error;
6898 alloc_state = sa_sched_groups;
6899
6900 /*
6901 * Set up domains for cpus specified by the cpu_map.
6902 */
6903 for_each_cpu(i, cpu_map) {
6904 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6905 cpu_map);
6906
6907 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
6908 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
6909 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
6910 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
6911 }
6912
6913 for_each_cpu(i, cpu_map) {
6914 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
6915 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
6916 }
6917
6918 /* Set up physical groups */
6919 for (i = 0; i < nr_node_ids; i++)
6920 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
6921
6922 #ifdef CONFIG_NUMA
6923 /* Set up node groups */
6924 if (d.sd_allnodes)
6925 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
6926
6927 for (i = 0; i < nr_node_ids; i++)
6928 if (build_numa_sched_groups(&d, cpu_map, i))
6929 goto error;
6930 #endif
6931
6932 /* Calculate CPU power for physical packages and nodes */
6933 #ifdef CONFIG_SCHED_SMT
6934 for_each_cpu(i, cpu_map) {
6935 sd = &per_cpu(cpu_domains, i).sd;
6936 init_sched_groups_power(i, sd);
6937 }
6938 #endif
6939 #ifdef CONFIG_SCHED_MC
6940 for_each_cpu(i, cpu_map) {
6941 sd = &per_cpu(core_domains, i).sd;
6942 init_sched_groups_power(i, sd);
6943 }
6944 #endif
6945
6946 for_each_cpu(i, cpu_map) {
6947 sd = &per_cpu(phys_domains, i).sd;
6948 init_sched_groups_power(i, sd);
6949 }
6950
6951 #ifdef CONFIG_NUMA
6952 for (i = 0; i < nr_node_ids; i++)
6953 init_numa_sched_groups_power(d.sched_group_nodes[i]);
6954
6955 if (d.sd_allnodes) {
6956 struct sched_group *sg;
6957
6958 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
6959 d.tmpmask);
6960 init_numa_sched_groups_power(sg);
6961 }
6962 #endif
6963
6964 /* Attach the domains */
6965 for_each_cpu(i, cpu_map) {
6966 #ifdef CONFIG_SCHED_SMT
6967 sd = &per_cpu(cpu_domains, i).sd;
6968 #elif defined(CONFIG_SCHED_MC)
6969 sd = &per_cpu(core_domains, i).sd;
6970 #else
6971 sd = &per_cpu(phys_domains, i).sd;
6972 #endif
6973 cpu_attach_domain(sd, d.rd, i);
6974 }
6975
6976 d.sched_group_nodes = NULL; /* don't free this we still need it */
6977 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
6978 return 0;
6979
6980 error:
6981 __free_domain_allocs(&d, alloc_state, cpu_map);
6982 return -ENOMEM;
6983 }
6984
6985 static int build_sched_domains(const struct cpumask *cpu_map)
6986 {
6987 return __build_sched_domains(cpu_map, NULL);
6988 }
6989
6990 static cpumask_var_t *doms_cur; /* current sched domains */
6991 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6992 static struct sched_domain_attr *dattr_cur;
6993 /* attribues of custom domains in 'doms_cur' */
6994
6995 /*
6996 * Special case: If a kmalloc of a doms_cur partition (array of
6997 * cpumask) fails, then fallback to a single sched domain,
6998 * as determined by the single cpumask fallback_doms.
6999 */
7000 static cpumask_var_t fallback_doms;
7001
7002 /*
7003 * arch_update_cpu_topology lets virtualized architectures update the
7004 * cpu core maps. It is supposed to return 1 if the topology changed
7005 * or 0 if it stayed the same.
7006 */
7007 int __attribute__((weak)) arch_update_cpu_topology(void)
7008 {
7009 return 0;
7010 }
7011
7012 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7013 {
7014 int i;
7015 cpumask_var_t *doms;
7016
7017 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7018 if (!doms)
7019 return NULL;
7020 for (i = 0; i < ndoms; i++) {
7021 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7022 free_sched_domains(doms, i);
7023 return NULL;
7024 }
7025 }
7026 return doms;
7027 }
7028
7029 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7030 {
7031 unsigned int i;
7032 for (i = 0; i < ndoms; i++)
7033 free_cpumask_var(doms[i]);
7034 kfree(doms);
7035 }
7036
7037 /*
7038 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7039 * For now this just excludes isolated cpus, but could be used to
7040 * exclude other special cases in the future.
7041 */
7042 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7043 {
7044 int err;
7045
7046 arch_update_cpu_topology();
7047 ndoms_cur = 1;
7048 doms_cur = alloc_sched_domains(ndoms_cur);
7049 if (!doms_cur)
7050 doms_cur = &fallback_doms;
7051 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7052 dattr_cur = NULL;
7053 err = build_sched_domains(doms_cur[0]);
7054 register_sched_domain_sysctl();
7055
7056 return err;
7057 }
7058
7059 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7060 struct cpumask *tmpmask)
7061 {
7062 free_sched_groups(cpu_map, tmpmask);
7063 }
7064
7065 /*
7066 * Detach sched domains from a group of cpus specified in cpu_map
7067 * These cpus will now be attached to the NULL domain
7068 */
7069 static void detach_destroy_domains(const struct cpumask *cpu_map)
7070 {
7071 /* Save because hotplug lock held. */
7072 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7073 int i;
7074
7075 for_each_cpu(i, cpu_map)
7076 cpu_attach_domain(NULL, &def_root_domain, i);
7077 synchronize_sched();
7078 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7079 }
7080
7081 /* handle null as "default" */
7082 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7083 struct sched_domain_attr *new, int idx_new)
7084 {
7085 struct sched_domain_attr tmp;
7086
7087 /* fast path */
7088 if (!new && !cur)
7089 return 1;
7090
7091 tmp = SD_ATTR_INIT;
7092 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7093 new ? (new + idx_new) : &tmp,
7094 sizeof(struct sched_domain_attr));
7095 }
7096
7097 /*
7098 * Partition sched domains as specified by the 'ndoms_new'
7099 * cpumasks in the array doms_new[] of cpumasks. This compares
7100 * doms_new[] to the current sched domain partitioning, doms_cur[].
7101 * It destroys each deleted domain and builds each new domain.
7102 *
7103 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7104 * The masks don't intersect (don't overlap.) We should setup one
7105 * sched domain for each mask. CPUs not in any of the cpumasks will
7106 * not be load balanced. If the same cpumask appears both in the
7107 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7108 * it as it is.
7109 *
7110 * The passed in 'doms_new' should be allocated using
7111 * alloc_sched_domains. This routine takes ownership of it and will
7112 * free_sched_domains it when done with it. If the caller failed the
7113 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7114 * and partition_sched_domains() will fallback to the single partition
7115 * 'fallback_doms', it also forces the domains to be rebuilt.
7116 *
7117 * If doms_new == NULL it will be replaced with cpu_online_mask.
7118 * ndoms_new == 0 is a special case for destroying existing domains,
7119 * and it will not create the default domain.
7120 *
7121 * Call with hotplug lock held
7122 */
7123 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7124 struct sched_domain_attr *dattr_new)
7125 {
7126 int i, j, n;
7127 int new_topology;
7128
7129 mutex_lock(&sched_domains_mutex);
7130
7131 /* always unregister in case we don't destroy any domains */
7132 unregister_sched_domain_sysctl();
7133
7134 /* Let architecture update cpu core mappings. */
7135 new_topology = arch_update_cpu_topology();
7136
7137 n = doms_new ? ndoms_new : 0;
7138
7139 /* Destroy deleted domains */
7140 for (i = 0; i < ndoms_cur; i++) {
7141 for (j = 0; j < n && !new_topology; j++) {
7142 if (cpumask_equal(doms_cur[i], doms_new[j])
7143 && dattrs_equal(dattr_cur, i, dattr_new, j))
7144 goto match1;
7145 }
7146 /* no match - a current sched domain not in new doms_new[] */
7147 detach_destroy_domains(doms_cur[i]);
7148 match1:
7149 ;
7150 }
7151
7152 if (doms_new == NULL) {
7153 ndoms_cur = 0;
7154 doms_new = &fallback_doms;
7155 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7156 WARN_ON_ONCE(dattr_new);
7157 }
7158
7159 /* Build new domains */
7160 for (i = 0; i < ndoms_new; i++) {
7161 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7162 if (cpumask_equal(doms_new[i], doms_cur[j])
7163 && dattrs_equal(dattr_new, i, dattr_cur, j))
7164 goto match2;
7165 }
7166 /* no match - add a new doms_new */
7167 __build_sched_domains(doms_new[i],
7168 dattr_new ? dattr_new + i : NULL);
7169 match2:
7170 ;
7171 }
7172
7173 /* Remember the new sched domains */
7174 if (doms_cur != &fallback_doms)
7175 free_sched_domains(doms_cur, ndoms_cur);
7176 kfree(dattr_cur); /* kfree(NULL) is safe */
7177 doms_cur = doms_new;
7178 dattr_cur = dattr_new;
7179 ndoms_cur = ndoms_new;
7180
7181 register_sched_domain_sysctl();
7182
7183 mutex_unlock(&sched_domains_mutex);
7184 }
7185
7186 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7187 static void arch_reinit_sched_domains(void)
7188 {
7189 get_online_cpus();
7190
7191 /* Destroy domains first to force the rebuild */
7192 partition_sched_domains(0, NULL, NULL);
7193
7194 rebuild_sched_domains();
7195 put_online_cpus();
7196 }
7197
7198 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7199 {
7200 unsigned int level = 0;
7201
7202 if (sscanf(buf, "%u", &level) != 1)
7203 return -EINVAL;
7204
7205 /*
7206 * level is always be positive so don't check for
7207 * level < POWERSAVINGS_BALANCE_NONE which is 0
7208 * What happens on 0 or 1 byte write,
7209 * need to check for count as well?
7210 */
7211
7212 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7213 return -EINVAL;
7214
7215 if (smt)
7216 sched_smt_power_savings = level;
7217 else
7218 sched_mc_power_savings = level;
7219
7220 arch_reinit_sched_domains();
7221
7222 return count;
7223 }
7224
7225 #ifdef CONFIG_SCHED_MC
7226 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7227 struct sysdev_class_attribute *attr,
7228 char *page)
7229 {
7230 return sprintf(page, "%u\n", sched_mc_power_savings);
7231 }
7232 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7233 struct sysdev_class_attribute *attr,
7234 const char *buf, size_t count)
7235 {
7236 return sched_power_savings_store(buf, count, 0);
7237 }
7238 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7239 sched_mc_power_savings_show,
7240 sched_mc_power_savings_store);
7241 #endif
7242
7243 #ifdef CONFIG_SCHED_SMT
7244 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7245 struct sysdev_class_attribute *attr,
7246 char *page)
7247 {
7248 return sprintf(page, "%u\n", sched_smt_power_savings);
7249 }
7250 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7251 struct sysdev_class_attribute *attr,
7252 const char *buf, size_t count)
7253 {
7254 return sched_power_savings_store(buf, count, 1);
7255 }
7256 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7257 sched_smt_power_savings_show,
7258 sched_smt_power_savings_store);
7259 #endif
7260
7261 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7262 {
7263 int err = 0;
7264
7265 #ifdef CONFIG_SCHED_SMT
7266 if (smt_capable())
7267 err = sysfs_create_file(&cls->kset.kobj,
7268 &attr_sched_smt_power_savings.attr);
7269 #endif
7270 #ifdef CONFIG_SCHED_MC
7271 if (!err && mc_capable())
7272 err = sysfs_create_file(&cls->kset.kobj,
7273 &attr_sched_mc_power_savings.attr);
7274 #endif
7275 return err;
7276 }
7277 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7278
7279 #ifndef CONFIG_CPUSETS
7280 /*
7281 * Add online and remove offline CPUs from the scheduler domains.
7282 * When cpusets are enabled they take over this function.
7283 */
7284 static int update_sched_domains(struct notifier_block *nfb,
7285 unsigned long action, void *hcpu)
7286 {
7287 switch (action) {
7288 case CPU_ONLINE:
7289 case CPU_ONLINE_FROZEN:
7290 case CPU_DOWN_PREPARE:
7291 case CPU_DOWN_PREPARE_FROZEN:
7292 case CPU_DOWN_FAILED:
7293 case CPU_DOWN_FAILED_FROZEN:
7294 partition_sched_domains(1, NULL, NULL);
7295 return NOTIFY_OK;
7296
7297 default:
7298 return NOTIFY_DONE;
7299 }
7300 }
7301 #endif
7302
7303 static int update_runtime(struct notifier_block *nfb,
7304 unsigned long action, void *hcpu)
7305 {
7306 int cpu = (int)(long)hcpu;
7307
7308 switch (action) {
7309 case CPU_DOWN_PREPARE:
7310 case CPU_DOWN_PREPARE_FROZEN:
7311 disable_runtime(cpu_rq(cpu));
7312 return NOTIFY_OK;
7313
7314 case CPU_DOWN_FAILED:
7315 case CPU_DOWN_FAILED_FROZEN:
7316 case CPU_ONLINE:
7317 case CPU_ONLINE_FROZEN:
7318 enable_runtime(cpu_rq(cpu));
7319 return NOTIFY_OK;
7320
7321 default:
7322 return NOTIFY_DONE;
7323 }
7324 }
7325
7326 void __init sched_init_smp(void)
7327 {
7328 cpumask_var_t non_isolated_cpus;
7329
7330 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7331 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7332
7333 #if defined(CONFIG_NUMA)
7334 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7335 GFP_KERNEL);
7336 BUG_ON(sched_group_nodes_bycpu == NULL);
7337 #endif
7338 get_online_cpus();
7339 mutex_lock(&sched_domains_mutex);
7340 arch_init_sched_domains(cpu_active_mask);
7341 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7342 if (cpumask_empty(non_isolated_cpus))
7343 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7344 mutex_unlock(&sched_domains_mutex);
7345 put_online_cpus();
7346
7347 #ifndef CONFIG_CPUSETS
7348 /* XXX: Theoretical race here - CPU may be hotplugged now */
7349 hotcpu_notifier(update_sched_domains, 0);
7350 #endif
7351
7352 /* RT runtime code needs to handle some hotplug events */
7353 hotcpu_notifier(update_runtime, 0);
7354
7355 init_hrtick();
7356
7357 /* Move init over to a non-isolated CPU */
7358 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7359 BUG();
7360 sched_init_granularity();
7361 free_cpumask_var(non_isolated_cpus);
7362
7363 init_sched_rt_class();
7364 }
7365 #else
7366 void __init sched_init_smp(void)
7367 {
7368 sched_init_granularity();
7369 }
7370 #endif /* CONFIG_SMP */
7371
7372 const_debug unsigned int sysctl_timer_migration = 1;
7373
7374 int in_sched_functions(unsigned long addr)
7375 {
7376 return in_lock_functions(addr) ||
7377 (addr >= (unsigned long)__sched_text_start
7378 && addr < (unsigned long)__sched_text_end);
7379 }
7380
7381 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7382 {
7383 cfs_rq->tasks_timeline = RB_ROOT;
7384 INIT_LIST_HEAD(&cfs_rq->tasks);
7385 #ifdef CONFIG_FAIR_GROUP_SCHED
7386 cfs_rq->rq = rq;
7387 #endif
7388 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7389 }
7390
7391 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7392 {
7393 struct rt_prio_array *array;
7394 int i;
7395
7396 array = &rt_rq->active;
7397 for (i = 0; i < MAX_RT_PRIO; i++) {
7398 INIT_LIST_HEAD(array->queue + i);
7399 __clear_bit(i, array->bitmap);
7400 }
7401 /* delimiter for bitsearch: */
7402 __set_bit(MAX_RT_PRIO, array->bitmap);
7403
7404 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7405 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7406 #ifdef CONFIG_SMP
7407 rt_rq->highest_prio.next = MAX_RT_PRIO;
7408 #endif
7409 #endif
7410 #ifdef CONFIG_SMP
7411 rt_rq->rt_nr_migratory = 0;
7412 rt_rq->overloaded = 0;
7413 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7414 #endif
7415
7416 rt_rq->rt_time = 0;
7417 rt_rq->rt_throttled = 0;
7418 rt_rq->rt_runtime = 0;
7419 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7420
7421 #ifdef CONFIG_RT_GROUP_SCHED
7422 rt_rq->rt_nr_boosted = 0;
7423 rt_rq->rq = rq;
7424 #endif
7425 }
7426
7427 #ifdef CONFIG_FAIR_GROUP_SCHED
7428 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7429 struct sched_entity *se, int cpu, int add,
7430 struct sched_entity *parent)
7431 {
7432 struct rq *rq = cpu_rq(cpu);
7433 tg->cfs_rq[cpu] = cfs_rq;
7434 init_cfs_rq(cfs_rq, rq);
7435 cfs_rq->tg = tg;
7436 if (add)
7437 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7438
7439 tg->se[cpu] = se;
7440 /* se could be NULL for init_task_group */
7441 if (!se)
7442 return;
7443
7444 if (!parent)
7445 se->cfs_rq = &rq->cfs;
7446 else
7447 se->cfs_rq = parent->my_q;
7448
7449 se->my_q = cfs_rq;
7450 se->load.weight = tg->shares;
7451 se->load.inv_weight = 0;
7452 se->parent = parent;
7453 }
7454 #endif
7455
7456 #ifdef CONFIG_RT_GROUP_SCHED
7457 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7458 struct sched_rt_entity *rt_se, int cpu, int add,
7459 struct sched_rt_entity *parent)
7460 {
7461 struct rq *rq = cpu_rq(cpu);
7462
7463 tg->rt_rq[cpu] = rt_rq;
7464 init_rt_rq(rt_rq, rq);
7465 rt_rq->tg = tg;
7466 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7467 if (add)
7468 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7469
7470 tg->rt_se[cpu] = rt_se;
7471 if (!rt_se)
7472 return;
7473
7474 if (!parent)
7475 rt_se->rt_rq = &rq->rt;
7476 else
7477 rt_se->rt_rq = parent->my_q;
7478
7479 rt_se->my_q = rt_rq;
7480 rt_se->parent = parent;
7481 INIT_LIST_HEAD(&rt_se->run_list);
7482 }
7483 #endif
7484
7485 void __init sched_init(void)
7486 {
7487 int i, j;
7488 unsigned long alloc_size = 0, ptr;
7489
7490 #ifdef CONFIG_FAIR_GROUP_SCHED
7491 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7492 #endif
7493 #ifdef CONFIG_RT_GROUP_SCHED
7494 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7495 #endif
7496 #ifdef CONFIG_CPUMASK_OFFSTACK
7497 alloc_size += num_possible_cpus() * cpumask_size();
7498 #endif
7499 if (alloc_size) {
7500 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7501
7502 #ifdef CONFIG_FAIR_GROUP_SCHED
7503 init_task_group.se = (struct sched_entity **)ptr;
7504 ptr += nr_cpu_ids * sizeof(void **);
7505
7506 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7507 ptr += nr_cpu_ids * sizeof(void **);
7508
7509 #endif /* CONFIG_FAIR_GROUP_SCHED */
7510 #ifdef CONFIG_RT_GROUP_SCHED
7511 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7512 ptr += nr_cpu_ids * sizeof(void **);
7513
7514 init_task_group.rt_rq = (struct rt_rq **)ptr;
7515 ptr += nr_cpu_ids * sizeof(void **);
7516
7517 #endif /* CONFIG_RT_GROUP_SCHED */
7518 #ifdef CONFIG_CPUMASK_OFFSTACK
7519 for_each_possible_cpu(i) {
7520 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7521 ptr += cpumask_size();
7522 }
7523 #endif /* CONFIG_CPUMASK_OFFSTACK */
7524 }
7525
7526 #ifdef CONFIG_SMP
7527 init_defrootdomain();
7528 #endif
7529
7530 init_rt_bandwidth(&def_rt_bandwidth,
7531 global_rt_period(), global_rt_runtime());
7532
7533 #ifdef CONFIG_RT_GROUP_SCHED
7534 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7535 global_rt_period(), global_rt_runtime());
7536 #endif /* CONFIG_RT_GROUP_SCHED */
7537
7538 #ifdef CONFIG_CGROUP_SCHED
7539 list_add(&init_task_group.list, &task_groups);
7540 INIT_LIST_HEAD(&init_task_group.children);
7541
7542 #endif /* CONFIG_CGROUP_SCHED */
7543
7544 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7545 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7546 __alignof__(unsigned long));
7547 #endif
7548 for_each_possible_cpu(i) {
7549 struct rq *rq;
7550
7551 rq = cpu_rq(i);
7552 raw_spin_lock_init(&rq->lock);
7553 rq->nr_running = 0;
7554 rq->calc_load_active = 0;
7555 rq->calc_load_update = jiffies + LOAD_FREQ;
7556 init_cfs_rq(&rq->cfs, rq);
7557 init_rt_rq(&rq->rt, rq);
7558 #ifdef CONFIG_FAIR_GROUP_SCHED
7559 init_task_group.shares = init_task_group_load;
7560 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7561 #ifdef CONFIG_CGROUP_SCHED
7562 /*
7563 * How much cpu bandwidth does init_task_group get?
7564 *
7565 * In case of task-groups formed thr' the cgroup filesystem, it
7566 * gets 100% of the cpu resources in the system. This overall
7567 * system cpu resource is divided among the tasks of
7568 * init_task_group and its child task-groups in a fair manner,
7569 * based on each entity's (task or task-group's) weight
7570 * (se->load.weight).
7571 *
7572 * In other words, if init_task_group has 10 tasks of weight
7573 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7574 * then A0's share of the cpu resource is:
7575 *
7576 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7577 *
7578 * We achieve this by letting init_task_group's tasks sit
7579 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7580 */
7581 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7582 #endif
7583 #endif /* CONFIG_FAIR_GROUP_SCHED */
7584
7585 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7586 #ifdef CONFIG_RT_GROUP_SCHED
7587 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7588 #ifdef CONFIG_CGROUP_SCHED
7589 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7590 #endif
7591 #endif
7592
7593 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7594 rq->cpu_load[j] = 0;
7595 #ifdef CONFIG_SMP
7596 rq->sd = NULL;
7597 rq->rd = NULL;
7598 rq->post_schedule = 0;
7599 rq->active_balance = 0;
7600 rq->next_balance = jiffies;
7601 rq->push_cpu = 0;
7602 rq->cpu = i;
7603 rq->online = 0;
7604 rq->idle_stamp = 0;
7605 rq->avg_idle = 2*sysctl_sched_migration_cost;
7606 rq_attach_root(rq, &def_root_domain);
7607 #endif
7608 init_rq_hrtick(rq);
7609 atomic_set(&rq->nr_iowait, 0);
7610 }
7611
7612 set_load_weight(&init_task);
7613
7614 #ifdef CONFIG_PREEMPT_NOTIFIERS
7615 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7616 #endif
7617
7618 #ifdef CONFIG_SMP
7619 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7620 #endif
7621
7622 #ifdef CONFIG_RT_MUTEXES
7623 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7624 #endif
7625
7626 /*
7627 * The boot idle thread does lazy MMU switching as well:
7628 */
7629 atomic_inc(&init_mm.mm_count);
7630 enter_lazy_tlb(&init_mm, current);
7631
7632 /*
7633 * Make us the idle thread. Technically, schedule() should not be
7634 * called from this thread, however somewhere below it might be,
7635 * but because we are the idle thread, we just pick up running again
7636 * when this runqueue becomes "idle".
7637 */
7638 init_idle(current, smp_processor_id());
7639
7640 calc_load_update = jiffies + LOAD_FREQ;
7641
7642 /*
7643 * During early bootup we pretend to be a normal task:
7644 */
7645 current->sched_class = &fair_sched_class;
7646
7647 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7648 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7649 #ifdef CONFIG_SMP
7650 #ifdef CONFIG_NO_HZ
7651 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7652 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7653 #endif
7654 /* May be allocated at isolcpus cmdline parse time */
7655 if (cpu_isolated_map == NULL)
7656 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7657 #endif /* SMP */
7658
7659 perf_event_init();
7660
7661 scheduler_running = 1;
7662 }
7663
7664 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7665 static inline int preempt_count_equals(int preempt_offset)
7666 {
7667 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7668
7669 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7670 }
7671
7672 void __might_sleep(const char *file, int line, int preempt_offset)
7673 {
7674 #ifdef in_atomic
7675 static unsigned long prev_jiffy; /* ratelimiting */
7676
7677 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7678 system_state != SYSTEM_RUNNING || oops_in_progress)
7679 return;
7680 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7681 return;
7682 prev_jiffy = jiffies;
7683
7684 printk(KERN_ERR
7685 "BUG: sleeping function called from invalid context at %s:%d\n",
7686 file, line);
7687 printk(KERN_ERR
7688 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7689 in_atomic(), irqs_disabled(),
7690 current->pid, current->comm);
7691
7692 debug_show_held_locks(current);
7693 if (irqs_disabled())
7694 print_irqtrace_events(current);
7695 dump_stack();
7696 #endif
7697 }
7698 EXPORT_SYMBOL(__might_sleep);
7699 #endif
7700
7701 #ifdef CONFIG_MAGIC_SYSRQ
7702 static void normalize_task(struct rq *rq, struct task_struct *p)
7703 {
7704 int on_rq;
7705
7706 on_rq = p->se.on_rq;
7707 if (on_rq)
7708 deactivate_task(rq, p, 0);
7709 __setscheduler(rq, p, SCHED_NORMAL, 0);
7710 if (on_rq) {
7711 activate_task(rq, p, 0);
7712 resched_task(rq->curr);
7713 }
7714 }
7715
7716 void normalize_rt_tasks(void)
7717 {
7718 struct task_struct *g, *p;
7719 unsigned long flags;
7720 struct rq *rq;
7721
7722 read_lock_irqsave(&tasklist_lock, flags);
7723 do_each_thread(g, p) {
7724 /*
7725 * Only normalize user tasks:
7726 */
7727 if (!p->mm)
7728 continue;
7729
7730 p->se.exec_start = 0;
7731 #ifdef CONFIG_SCHEDSTATS
7732 p->se.statistics.wait_start = 0;
7733 p->se.statistics.sleep_start = 0;
7734 p->se.statistics.block_start = 0;
7735 #endif
7736
7737 if (!rt_task(p)) {
7738 /*
7739 * Renice negative nice level userspace
7740 * tasks back to 0:
7741 */
7742 if (TASK_NICE(p) < 0 && p->mm)
7743 set_user_nice(p, 0);
7744 continue;
7745 }
7746
7747 raw_spin_lock(&p->pi_lock);
7748 rq = __task_rq_lock(p);
7749
7750 normalize_task(rq, p);
7751
7752 __task_rq_unlock(rq);
7753 raw_spin_unlock(&p->pi_lock);
7754 } while_each_thread(g, p);
7755
7756 read_unlock_irqrestore(&tasklist_lock, flags);
7757 }
7758
7759 #endif /* CONFIG_MAGIC_SYSRQ */
7760
7761 #ifdef CONFIG_IA64
7762 /*
7763 * These functions are only useful for the IA64 MCA handling.
7764 *
7765 * They can only be called when the whole system has been
7766 * stopped - every CPU needs to be quiescent, and no scheduling
7767 * activity can take place. Using them for anything else would
7768 * be a serious bug, and as a result, they aren't even visible
7769 * under any other configuration.
7770 */
7771
7772 /**
7773 * curr_task - return the current task for a given cpu.
7774 * @cpu: the processor in question.
7775 *
7776 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7777 */
7778 struct task_struct *curr_task(int cpu)
7779 {
7780 return cpu_curr(cpu);
7781 }
7782
7783 /**
7784 * set_curr_task - set the current task for a given cpu.
7785 * @cpu: the processor in question.
7786 * @p: the task pointer to set.
7787 *
7788 * Description: This function must only be used when non-maskable interrupts
7789 * are serviced on a separate stack. It allows the architecture to switch the
7790 * notion of the current task on a cpu in a non-blocking manner. This function
7791 * must be called with all CPU's synchronized, and interrupts disabled, the
7792 * and caller must save the original value of the current task (see
7793 * curr_task() above) and restore that value before reenabling interrupts and
7794 * re-starting the system.
7795 *
7796 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7797 */
7798 void set_curr_task(int cpu, struct task_struct *p)
7799 {
7800 cpu_curr(cpu) = p;
7801 }
7802
7803 #endif
7804
7805 #ifdef CONFIG_FAIR_GROUP_SCHED
7806 static void free_fair_sched_group(struct task_group *tg)
7807 {
7808 int i;
7809
7810 for_each_possible_cpu(i) {
7811 if (tg->cfs_rq)
7812 kfree(tg->cfs_rq[i]);
7813 if (tg->se)
7814 kfree(tg->se[i]);
7815 }
7816
7817 kfree(tg->cfs_rq);
7818 kfree(tg->se);
7819 }
7820
7821 static
7822 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7823 {
7824 struct cfs_rq *cfs_rq;
7825 struct sched_entity *se;
7826 struct rq *rq;
7827 int i;
7828
7829 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7830 if (!tg->cfs_rq)
7831 goto err;
7832 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7833 if (!tg->se)
7834 goto err;
7835
7836 tg->shares = NICE_0_LOAD;
7837
7838 for_each_possible_cpu(i) {
7839 rq = cpu_rq(i);
7840
7841 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7842 GFP_KERNEL, cpu_to_node(i));
7843 if (!cfs_rq)
7844 goto err;
7845
7846 se = kzalloc_node(sizeof(struct sched_entity),
7847 GFP_KERNEL, cpu_to_node(i));
7848 if (!se)
7849 goto err_free_rq;
7850
7851 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7852 }
7853
7854 return 1;
7855
7856 err_free_rq:
7857 kfree(cfs_rq);
7858 err:
7859 return 0;
7860 }
7861
7862 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7863 {
7864 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7865 &cpu_rq(cpu)->leaf_cfs_rq_list);
7866 }
7867
7868 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7869 {
7870 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7871 }
7872 #else /* !CONFG_FAIR_GROUP_SCHED */
7873 static inline void free_fair_sched_group(struct task_group *tg)
7874 {
7875 }
7876
7877 static inline
7878 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7879 {
7880 return 1;
7881 }
7882
7883 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7884 {
7885 }
7886
7887 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7888 {
7889 }
7890 #endif /* CONFIG_FAIR_GROUP_SCHED */
7891
7892 #ifdef CONFIG_RT_GROUP_SCHED
7893 static void free_rt_sched_group(struct task_group *tg)
7894 {
7895 int i;
7896
7897 destroy_rt_bandwidth(&tg->rt_bandwidth);
7898
7899 for_each_possible_cpu(i) {
7900 if (tg->rt_rq)
7901 kfree(tg->rt_rq[i]);
7902 if (tg->rt_se)
7903 kfree(tg->rt_se[i]);
7904 }
7905
7906 kfree(tg->rt_rq);
7907 kfree(tg->rt_se);
7908 }
7909
7910 static
7911 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7912 {
7913 struct rt_rq *rt_rq;
7914 struct sched_rt_entity *rt_se;
7915 struct rq *rq;
7916 int i;
7917
7918 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
7919 if (!tg->rt_rq)
7920 goto err;
7921 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
7922 if (!tg->rt_se)
7923 goto err;
7924
7925 init_rt_bandwidth(&tg->rt_bandwidth,
7926 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7927
7928 for_each_possible_cpu(i) {
7929 rq = cpu_rq(i);
7930
7931 rt_rq = kzalloc_node(sizeof(struct rt_rq),
7932 GFP_KERNEL, cpu_to_node(i));
7933 if (!rt_rq)
7934 goto err;
7935
7936 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
7937 GFP_KERNEL, cpu_to_node(i));
7938 if (!rt_se)
7939 goto err_free_rq;
7940
7941 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
7942 }
7943
7944 return 1;
7945
7946 err_free_rq:
7947 kfree(rt_rq);
7948 err:
7949 return 0;
7950 }
7951
7952 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7953 {
7954 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7955 &cpu_rq(cpu)->leaf_rt_rq_list);
7956 }
7957
7958 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7959 {
7960 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7961 }
7962 #else /* !CONFIG_RT_GROUP_SCHED */
7963 static inline void free_rt_sched_group(struct task_group *tg)
7964 {
7965 }
7966
7967 static inline
7968 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7969 {
7970 return 1;
7971 }
7972
7973 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7974 {
7975 }
7976
7977 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7978 {
7979 }
7980 #endif /* CONFIG_RT_GROUP_SCHED */
7981
7982 #ifdef CONFIG_CGROUP_SCHED
7983 static void free_sched_group(struct task_group *tg)
7984 {
7985 free_fair_sched_group(tg);
7986 free_rt_sched_group(tg);
7987 kfree(tg);
7988 }
7989
7990 /* allocate runqueue etc for a new task group */
7991 struct task_group *sched_create_group(struct task_group *parent)
7992 {
7993 struct task_group *tg;
7994 unsigned long flags;
7995 int i;
7996
7997 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7998 if (!tg)
7999 return ERR_PTR(-ENOMEM);
8000
8001 if (!alloc_fair_sched_group(tg, parent))
8002 goto err;
8003
8004 if (!alloc_rt_sched_group(tg, parent))
8005 goto err;
8006
8007 spin_lock_irqsave(&task_group_lock, flags);
8008 for_each_possible_cpu(i) {
8009 register_fair_sched_group(tg, i);
8010 register_rt_sched_group(tg, i);
8011 }
8012 list_add_rcu(&tg->list, &task_groups);
8013
8014 WARN_ON(!parent); /* root should already exist */
8015
8016 tg->parent = parent;
8017 INIT_LIST_HEAD(&tg->children);
8018 list_add_rcu(&tg->siblings, &parent->children);
8019 spin_unlock_irqrestore(&task_group_lock, flags);
8020
8021 return tg;
8022
8023 err:
8024 free_sched_group(tg);
8025 return ERR_PTR(-ENOMEM);
8026 }
8027
8028 /* rcu callback to free various structures associated with a task group */
8029 static void free_sched_group_rcu(struct rcu_head *rhp)
8030 {
8031 /* now it should be safe to free those cfs_rqs */
8032 free_sched_group(container_of(rhp, struct task_group, rcu));
8033 }
8034
8035 /* Destroy runqueue etc associated with a task group */
8036 void sched_destroy_group(struct task_group *tg)
8037 {
8038 unsigned long flags;
8039 int i;
8040
8041 spin_lock_irqsave(&task_group_lock, flags);
8042 for_each_possible_cpu(i) {
8043 unregister_fair_sched_group(tg, i);
8044 unregister_rt_sched_group(tg, i);
8045 }
8046 list_del_rcu(&tg->list);
8047 list_del_rcu(&tg->siblings);
8048 spin_unlock_irqrestore(&task_group_lock, flags);
8049
8050 /* wait for possible concurrent references to cfs_rqs complete */
8051 call_rcu(&tg->rcu, free_sched_group_rcu);
8052 }
8053
8054 /* change task's runqueue when it moves between groups.
8055 * The caller of this function should have put the task in its new group
8056 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8057 * reflect its new group.
8058 */
8059 void sched_move_task(struct task_struct *tsk)
8060 {
8061 int on_rq, running;
8062 unsigned long flags;
8063 struct rq *rq;
8064
8065 rq = task_rq_lock(tsk, &flags);
8066
8067 running = task_current(rq, tsk);
8068 on_rq = tsk->se.on_rq;
8069
8070 if (on_rq)
8071 dequeue_task(rq, tsk, 0);
8072 if (unlikely(running))
8073 tsk->sched_class->put_prev_task(rq, tsk);
8074
8075 set_task_rq(tsk, task_cpu(tsk));
8076
8077 #ifdef CONFIG_FAIR_GROUP_SCHED
8078 if (tsk->sched_class->moved_group)
8079 tsk->sched_class->moved_group(tsk, on_rq);
8080 #endif
8081
8082 if (unlikely(running))
8083 tsk->sched_class->set_curr_task(rq);
8084 if (on_rq)
8085 enqueue_task(rq, tsk, 0);
8086
8087 task_rq_unlock(rq, &flags);
8088 }
8089 #endif /* CONFIG_CGROUP_SCHED */
8090
8091 #ifdef CONFIG_FAIR_GROUP_SCHED
8092 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8093 {
8094 struct cfs_rq *cfs_rq = se->cfs_rq;
8095 int on_rq;
8096
8097 on_rq = se->on_rq;
8098 if (on_rq)
8099 dequeue_entity(cfs_rq, se, 0);
8100
8101 se->load.weight = shares;
8102 se->load.inv_weight = 0;
8103
8104 if (on_rq)
8105 enqueue_entity(cfs_rq, se, 0);
8106 }
8107
8108 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8109 {
8110 struct cfs_rq *cfs_rq = se->cfs_rq;
8111 struct rq *rq = cfs_rq->rq;
8112 unsigned long flags;
8113
8114 raw_spin_lock_irqsave(&rq->lock, flags);
8115 __set_se_shares(se, shares);
8116 raw_spin_unlock_irqrestore(&rq->lock, flags);
8117 }
8118
8119 static DEFINE_MUTEX(shares_mutex);
8120
8121 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8122 {
8123 int i;
8124 unsigned long flags;
8125
8126 /*
8127 * We can't change the weight of the root cgroup.
8128 */
8129 if (!tg->se[0])
8130 return -EINVAL;
8131
8132 if (shares < MIN_SHARES)
8133 shares = MIN_SHARES;
8134 else if (shares > MAX_SHARES)
8135 shares = MAX_SHARES;
8136
8137 mutex_lock(&shares_mutex);
8138 if (tg->shares == shares)
8139 goto done;
8140
8141 spin_lock_irqsave(&task_group_lock, flags);
8142 for_each_possible_cpu(i)
8143 unregister_fair_sched_group(tg, i);
8144 list_del_rcu(&tg->siblings);
8145 spin_unlock_irqrestore(&task_group_lock, flags);
8146
8147 /* wait for any ongoing reference to this group to finish */
8148 synchronize_sched();
8149
8150 /*
8151 * Now we are free to modify the group's share on each cpu
8152 * w/o tripping rebalance_share or load_balance_fair.
8153 */
8154 tg->shares = shares;
8155 for_each_possible_cpu(i) {
8156 /*
8157 * force a rebalance
8158 */
8159 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8160 set_se_shares(tg->se[i], shares);
8161 }
8162
8163 /*
8164 * Enable load balance activity on this group, by inserting it back on
8165 * each cpu's rq->leaf_cfs_rq_list.
8166 */
8167 spin_lock_irqsave(&task_group_lock, flags);
8168 for_each_possible_cpu(i)
8169 register_fair_sched_group(tg, i);
8170 list_add_rcu(&tg->siblings, &tg->parent->children);
8171 spin_unlock_irqrestore(&task_group_lock, flags);
8172 done:
8173 mutex_unlock(&shares_mutex);
8174 return 0;
8175 }
8176
8177 unsigned long sched_group_shares(struct task_group *tg)
8178 {
8179 return tg->shares;
8180 }
8181 #endif
8182
8183 #ifdef CONFIG_RT_GROUP_SCHED
8184 /*
8185 * Ensure that the real time constraints are schedulable.
8186 */
8187 static DEFINE_MUTEX(rt_constraints_mutex);
8188
8189 static unsigned long to_ratio(u64 period, u64 runtime)
8190 {
8191 if (runtime == RUNTIME_INF)
8192 return 1ULL << 20;
8193
8194 return div64_u64(runtime << 20, period);
8195 }
8196
8197 /* Must be called with tasklist_lock held */
8198 static inline int tg_has_rt_tasks(struct task_group *tg)
8199 {
8200 struct task_struct *g, *p;
8201
8202 do_each_thread(g, p) {
8203 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8204 return 1;
8205 } while_each_thread(g, p);
8206
8207 return 0;
8208 }
8209
8210 struct rt_schedulable_data {
8211 struct task_group *tg;
8212 u64 rt_period;
8213 u64 rt_runtime;
8214 };
8215
8216 static int tg_schedulable(struct task_group *tg, void *data)
8217 {
8218 struct rt_schedulable_data *d = data;
8219 struct task_group *child;
8220 unsigned long total, sum = 0;
8221 u64 period, runtime;
8222
8223 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8224 runtime = tg->rt_bandwidth.rt_runtime;
8225
8226 if (tg == d->tg) {
8227 period = d->rt_period;
8228 runtime = d->rt_runtime;
8229 }
8230
8231 /*
8232 * Cannot have more runtime than the period.
8233 */
8234 if (runtime > period && runtime != RUNTIME_INF)
8235 return -EINVAL;
8236
8237 /*
8238 * Ensure we don't starve existing RT tasks.
8239 */
8240 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8241 return -EBUSY;
8242
8243 total = to_ratio(period, runtime);
8244
8245 /*
8246 * Nobody can have more than the global setting allows.
8247 */
8248 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8249 return -EINVAL;
8250
8251 /*
8252 * The sum of our children's runtime should not exceed our own.
8253 */
8254 list_for_each_entry_rcu(child, &tg->children, siblings) {
8255 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8256 runtime = child->rt_bandwidth.rt_runtime;
8257
8258 if (child == d->tg) {
8259 period = d->rt_period;
8260 runtime = d->rt_runtime;
8261 }
8262
8263 sum += to_ratio(period, runtime);
8264 }
8265
8266 if (sum > total)
8267 return -EINVAL;
8268
8269 return 0;
8270 }
8271
8272 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8273 {
8274 struct rt_schedulable_data data = {
8275 .tg = tg,
8276 .rt_period = period,
8277 .rt_runtime = runtime,
8278 };
8279
8280 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8281 }
8282
8283 static int tg_set_bandwidth(struct task_group *tg,
8284 u64 rt_period, u64 rt_runtime)
8285 {
8286 int i, err = 0;
8287
8288 mutex_lock(&rt_constraints_mutex);
8289 read_lock(&tasklist_lock);
8290 err = __rt_schedulable(tg, rt_period, rt_runtime);
8291 if (err)
8292 goto unlock;
8293
8294 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8295 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8296 tg->rt_bandwidth.rt_runtime = rt_runtime;
8297
8298 for_each_possible_cpu(i) {
8299 struct rt_rq *rt_rq = tg->rt_rq[i];
8300
8301 raw_spin_lock(&rt_rq->rt_runtime_lock);
8302 rt_rq->rt_runtime = rt_runtime;
8303 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8304 }
8305 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8306 unlock:
8307 read_unlock(&tasklist_lock);
8308 mutex_unlock(&rt_constraints_mutex);
8309
8310 return err;
8311 }
8312
8313 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8314 {
8315 u64 rt_runtime, rt_period;
8316
8317 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8318 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8319 if (rt_runtime_us < 0)
8320 rt_runtime = RUNTIME_INF;
8321
8322 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8323 }
8324
8325 long sched_group_rt_runtime(struct task_group *tg)
8326 {
8327 u64 rt_runtime_us;
8328
8329 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8330 return -1;
8331
8332 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8333 do_div(rt_runtime_us, NSEC_PER_USEC);
8334 return rt_runtime_us;
8335 }
8336
8337 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8338 {
8339 u64 rt_runtime, rt_period;
8340
8341 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8342 rt_runtime = tg->rt_bandwidth.rt_runtime;
8343
8344 if (rt_period == 0)
8345 return -EINVAL;
8346
8347 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8348 }
8349
8350 long sched_group_rt_period(struct task_group *tg)
8351 {
8352 u64 rt_period_us;
8353
8354 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8355 do_div(rt_period_us, NSEC_PER_USEC);
8356 return rt_period_us;
8357 }
8358
8359 static int sched_rt_global_constraints(void)
8360 {
8361 u64 runtime, period;
8362 int ret = 0;
8363
8364 if (sysctl_sched_rt_period <= 0)
8365 return -EINVAL;
8366
8367 runtime = global_rt_runtime();
8368 period = global_rt_period();
8369
8370 /*
8371 * Sanity check on the sysctl variables.
8372 */
8373 if (runtime > period && runtime != RUNTIME_INF)
8374 return -EINVAL;
8375
8376 mutex_lock(&rt_constraints_mutex);
8377 read_lock(&tasklist_lock);
8378 ret = __rt_schedulable(NULL, 0, 0);
8379 read_unlock(&tasklist_lock);
8380 mutex_unlock(&rt_constraints_mutex);
8381
8382 return ret;
8383 }
8384
8385 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8386 {
8387 /* Don't accept realtime tasks when there is no way for them to run */
8388 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8389 return 0;
8390
8391 return 1;
8392 }
8393
8394 #else /* !CONFIG_RT_GROUP_SCHED */
8395 static int sched_rt_global_constraints(void)
8396 {
8397 unsigned long flags;
8398 int i;
8399
8400 if (sysctl_sched_rt_period <= 0)
8401 return -EINVAL;
8402
8403 /*
8404 * There's always some RT tasks in the root group
8405 * -- migration, kstopmachine etc..
8406 */
8407 if (sysctl_sched_rt_runtime == 0)
8408 return -EBUSY;
8409
8410 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8411 for_each_possible_cpu(i) {
8412 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8413
8414 raw_spin_lock(&rt_rq->rt_runtime_lock);
8415 rt_rq->rt_runtime = global_rt_runtime();
8416 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8417 }
8418 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8419
8420 return 0;
8421 }
8422 #endif /* CONFIG_RT_GROUP_SCHED */
8423
8424 int sched_rt_handler(struct ctl_table *table, int write,
8425 void __user *buffer, size_t *lenp,
8426 loff_t *ppos)
8427 {
8428 int ret;
8429 int old_period, old_runtime;
8430 static DEFINE_MUTEX(mutex);
8431
8432 mutex_lock(&mutex);
8433 old_period = sysctl_sched_rt_period;
8434 old_runtime = sysctl_sched_rt_runtime;
8435
8436 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8437
8438 if (!ret && write) {
8439 ret = sched_rt_global_constraints();
8440 if (ret) {
8441 sysctl_sched_rt_period = old_period;
8442 sysctl_sched_rt_runtime = old_runtime;
8443 } else {
8444 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8445 def_rt_bandwidth.rt_period =
8446 ns_to_ktime(global_rt_period());
8447 }
8448 }
8449 mutex_unlock(&mutex);
8450
8451 return ret;
8452 }
8453
8454 #ifdef CONFIG_CGROUP_SCHED
8455
8456 /* return corresponding task_group object of a cgroup */
8457 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8458 {
8459 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8460 struct task_group, css);
8461 }
8462
8463 static struct cgroup_subsys_state *
8464 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8465 {
8466 struct task_group *tg, *parent;
8467
8468 if (!cgrp->parent) {
8469 /* This is early initialization for the top cgroup */
8470 return &init_task_group.css;
8471 }
8472
8473 parent = cgroup_tg(cgrp->parent);
8474 tg = sched_create_group(parent);
8475 if (IS_ERR(tg))
8476 return ERR_PTR(-ENOMEM);
8477
8478 return &tg->css;
8479 }
8480
8481 static void
8482 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8483 {
8484 struct task_group *tg = cgroup_tg(cgrp);
8485
8486 sched_destroy_group(tg);
8487 }
8488
8489 static int
8490 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8491 {
8492 #ifdef CONFIG_RT_GROUP_SCHED
8493 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8494 return -EINVAL;
8495 #else
8496 /* We don't support RT-tasks being in separate groups */
8497 if (tsk->sched_class != &fair_sched_class)
8498 return -EINVAL;
8499 #endif
8500 return 0;
8501 }
8502
8503 static int
8504 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8505 struct task_struct *tsk, bool threadgroup)
8506 {
8507 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8508 if (retval)
8509 return retval;
8510 if (threadgroup) {
8511 struct task_struct *c;
8512 rcu_read_lock();
8513 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8514 retval = cpu_cgroup_can_attach_task(cgrp, c);
8515 if (retval) {
8516 rcu_read_unlock();
8517 return retval;
8518 }
8519 }
8520 rcu_read_unlock();
8521 }
8522 return 0;
8523 }
8524
8525 static void
8526 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8527 struct cgroup *old_cont, struct task_struct *tsk,
8528 bool threadgroup)
8529 {
8530 sched_move_task(tsk);
8531 if (threadgroup) {
8532 struct task_struct *c;
8533 rcu_read_lock();
8534 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8535 sched_move_task(c);
8536 }
8537 rcu_read_unlock();
8538 }
8539 }
8540
8541 #ifdef CONFIG_FAIR_GROUP_SCHED
8542 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8543 u64 shareval)
8544 {
8545 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8546 }
8547
8548 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8549 {
8550 struct task_group *tg = cgroup_tg(cgrp);
8551
8552 return (u64) tg->shares;
8553 }
8554 #endif /* CONFIG_FAIR_GROUP_SCHED */
8555
8556 #ifdef CONFIG_RT_GROUP_SCHED
8557 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8558 s64 val)
8559 {
8560 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8561 }
8562
8563 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8564 {
8565 return sched_group_rt_runtime(cgroup_tg(cgrp));
8566 }
8567
8568 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8569 u64 rt_period_us)
8570 {
8571 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8572 }
8573
8574 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8575 {
8576 return sched_group_rt_period(cgroup_tg(cgrp));
8577 }
8578 #endif /* CONFIG_RT_GROUP_SCHED */
8579
8580 static struct cftype cpu_files[] = {
8581 #ifdef CONFIG_FAIR_GROUP_SCHED
8582 {
8583 .name = "shares",
8584 .read_u64 = cpu_shares_read_u64,
8585 .write_u64 = cpu_shares_write_u64,
8586 },
8587 #endif
8588 #ifdef CONFIG_RT_GROUP_SCHED
8589 {
8590 .name = "rt_runtime_us",
8591 .read_s64 = cpu_rt_runtime_read,
8592 .write_s64 = cpu_rt_runtime_write,
8593 },
8594 {
8595 .name = "rt_period_us",
8596 .read_u64 = cpu_rt_period_read_uint,
8597 .write_u64 = cpu_rt_period_write_uint,
8598 },
8599 #endif
8600 };
8601
8602 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8603 {
8604 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8605 }
8606
8607 struct cgroup_subsys cpu_cgroup_subsys = {
8608 .name = "cpu",
8609 .create = cpu_cgroup_create,
8610 .destroy = cpu_cgroup_destroy,
8611 .can_attach = cpu_cgroup_can_attach,
8612 .attach = cpu_cgroup_attach,
8613 .populate = cpu_cgroup_populate,
8614 .subsys_id = cpu_cgroup_subsys_id,
8615 .early_init = 1,
8616 };
8617
8618 #endif /* CONFIG_CGROUP_SCHED */
8619
8620 #ifdef CONFIG_CGROUP_CPUACCT
8621
8622 /*
8623 * CPU accounting code for task groups.
8624 *
8625 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8626 * (balbir@in.ibm.com).
8627 */
8628
8629 /* track cpu usage of a group of tasks and its child groups */
8630 struct cpuacct {
8631 struct cgroup_subsys_state css;
8632 /* cpuusage holds pointer to a u64-type object on every cpu */
8633 u64 __percpu *cpuusage;
8634 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8635 struct cpuacct *parent;
8636 };
8637
8638 struct cgroup_subsys cpuacct_subsys;
8639
8640 /* return cpu accounting group corresponding to this container */
8641 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8642 {
8643 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8644 struct cpuacct, css);
8645 }
8646
8647 /* return cpu accounting group to which this task belongs */
8648 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8649 {
8650 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8651 struct cpuacct, css);
8652 }
8653
8654 /* create a new cpu accounting group */
8655 static struct cgroup_subsys_state *cpuacct_create(
8656 struct cgroup_subsys *ss, struct cgroup *cgrp)
8657 {
8658 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8659 int i;
8660
8661 if (!ca)
8662 goto out;
8663
8664 ca->cpuusage = alloc_percpu(u64);
8665 if (!ca->cpuusage)
8666 goto out_free_ca;
8667
8668 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8669 if (percpu_counter_init(&ca->cpustat[i], 0))
8670 goto out_free_counters;
8671
8672 if (cgrp->parent)
8673 ca->parent = cgroup_ca(cgrp->parent);
8674
8675 return &ca->css;
8676
8677 out_free_counters:
8678 while (--i >= 0)
8679 percpu_counter_destroy(&ca->cpustat[i]);
8680 free_percpu(ca->cpuusage);
8681 out_free_ca:
8682 kfree(ca);
8683 out:
8684 return ERR_PTR(-ENOMEM);
8685 }
8686
8687 /* destroy an existing cpu accounting group */
8688 static void
8689 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8690 {
8691 struct cpuacct *ca = cgroup_ca(cgrp);
8692 int i;
8693
8694 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8695 percpu_counter_destroy(&ca->cpustat[i]);
8696 free_percpu(ca->cpuusage);
8697 kfree(ca);
8698 }
8699
8700 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8701 {
8702 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8703 u64 data;
8704
8705 #ifndef CONFIG_64BIT
8706 /*
8707 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8708 */
8709 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8710 data = *cpuusage;
8711 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8712 #else
8713 data = *cpuusage;
8714 #endif
8715
8716 return data;
8717 }
8718
8719 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8720 {
8721 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8722
8723 #ifndef CONFIG_64BIT
8724 /*
8725 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8726 */
8727 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8728 *cpuusage = val;
8729 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8730 #else
8731 *cpuusage = val;
8732 #endif
8733 }
8734
8735 /* return total cpu usage (in nanoseconds) of a group */
8736 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8737 {
8738 struct cpuacct *ca = cgroup_ca(cgrp);
8739 u64 totalcpuusage = 0;
8740 int i;
8741
8742 for_each_present_cpu(i)
8743 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8744
8745 return totalcpuusage;
8746 }
8747
8748 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8749 u64 reset)
8750 {
8751 struct cpuacct *ca = cgroup_ca(cgrp);
8752 int err = 0;
8753 int i;
8754
8755 if (reset) {
8756 err = -EINVAL;
8757 goto out;
8758 }
8759
8760 for_each_present_cpu(i)
8761 cpuacct_cpuusage_write(ca, i, 0);
8762
8763 out:
8764 return err;
8765 }
8766
8767 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8768 struct seq_file *m)
8769 {
8770 struct cpuacct *ca = cgroup_ca(cgroup);
8771 u64 percpu;
8772 int i;
8773
8774 for_each_present_cpu(i) {
8775 percpu = cpuacct_cpuusage_read(ca, i);
8776 seq_printf(m, "%llu ", (unsigned long long) percpu);
8777 }
8778 seq_printf(m, "\n");
8779 return 0;
8780 }
8781
8782 static const char *cpuacct_stat_desc[] = {
8783 [CPUACCT_STAT_USER] = "user",
8784 [CPUACCT_STAT_SYSTEM] = "system",
8785 };
8786
8787 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8788 struct cgroup_map_cb *cb)
8789 {
8790 struct cpuacct *ca = cgroup_ca(cgrp);
8791 int i;
8792
8793 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8794 s64 val = percpu_counter_read(&ca->cpustat[i]);
8795 val = cputime64_to_clock_t(val);
8796 cb->fill(cb, cpuacct_stat_desc[i], val);
8797 }
8798 return 0;
8799 }
8800
8801 static struct cftype files[] = {
8802 {
8803 .name = "usage",
8804 .read_u64 = cpuusage_read,
8805 .write_u64 = cpuusage_write,
8806 },
8807 {
8808 .name = "usage_percpu",
8809 .read_seq_string = cpuacct_percpu_seq_read,
8810 },
8811 {
8812 .name = "stat",
8813 .read_map = cpuacct_stats_show,
8814 },
8815 };
8816
8817 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8818 {
8819 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8820 }
8821
8822 /*
8823 * charge this task's execution time to its accounting group.
8824 *
8825 * called with rq->lock held.
8826 */
8827 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8828 {
8829 struct cpuacct *ca;
8830 int cpu;
8831
8832 if (unlikely(!cpuacct_subsys.active))
8833 return;
8834
8835 cpu = task_cpu(tsk);
8836
8837 rcu_read_lock();
8838
8839 ca = task_ca(tsk);
8840
8841 for (; ca; ca = ca->parent) {
8842 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8843 *cpuusage += cputime;
8844 }
8845
8846 rcu_read_unlock();
8847 }
8848
8849 /*
8850 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8851 * in cputime_t units. As a result, cpuacct_update_stats calls
8852 * percpu_counter_add with values large enough to always overflow the
8853 * per cpu batch limit causing bad SMP scalability.
8854 *
8855 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8856 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8857 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8858 */
8859 #ifdef CONFIG_SMP
8860 #define CPUACCT_BATCH \
8861 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8862 #else
8863 #define CPUACCT_BATCH 0
8864 #endif
8865
8866 /*
8867 * Charge the system/user time to the task's accounting group.
8868 */
8869 static void cpuacct_update_stats(struct task_struct *tsk,
8870 enum cpuacct_stat_index idx, cputime_t val)
8871 {
8872 struct cpuacct *ca;
8873 int batch = CPUACCT_BATCH;
8874
8875 if (unlikely(!cpuacct_subsys.active))
8876 return;
8877
8878 rcu_read_lock();
8879 ca = task_ca(tsk);
8880
8881 do {
8882 __percpu_counter_add(&ca->cpustat[idx], val, batch);
8883 ca = ca->parent;
8884 } while (ca);
8885 rcu_read_unlock();
8886 }
8887
8888 struct cgroup_subsys cpuacct_subsys = {
8889 .name = "cpuacct",
8890 .create = cpuacct_create,
8891 .destroy = cpuacct_destroy,
8892 .populate = cpuacct_populate,
8893 .subsys_id = cpuacct_subsys_id,
8894 };
8895 #endif /* CONFIG_CGROUP_CPUACCT */
8896
8897 #ifndef CONFIG_SMP
8898
8899 void synchronize_sched_expedited(void)
8900 {
8901 barrier();
8902 }
8903 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8904
8905 #else /* #ifndef CONFIG_SMP */
8906
8907 static atomic_t synchronize_sched_expedited_count = ATOMIC_INIT(0);
8908
8909 static int synchronize_sched_expedited_cpu_stop(void *data)
8910 {
8911 /*
8912 * There must be a full memory barrier on each affected CPU
8913 * between the time that try_stop_cpus() is called and the
8914 * time that it returns.
8915 *
8916 * In the current initial implementation of cpu_stop, the
8917 * above condition is already met when the control reaches
8918 * this point and the following smp_mb() is not strictly
8919 * necessary. Do smp_mb() anyway for documentation and
8920 * robustness against future implementation changes.
8921 */
8922 smp_mb(); /* See above comment block. */
8923 return 0;
8924 }
8925
8926 /*
8927 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
8928 * approach to force grace period to end quickly. This consumes
8929 * significant time on all CPUs, and is thus not recommended for
8930 * any sort of common-case code.
8931 *
8932 * Note that it is illegal to call this function while holding any
8933 * lock that is acquired by a CPU-hotplug notifier. Failing to
8934 * observe this restriction will result in deadlock.
8935 */
8936 void synchronize_sched_expedited(void)
8937 {
8938 int snap, trycount = 0;
8939
8940 smp_mb(); /* ensure prior mod happens before capturing snap. */
8941 snap = atomic_read(&synchronize_sched_expedited_count) + 1;
8942 get_online_cpus();
8943 while (try_stop_cpus(cpu_online_mask,
8944 synchronize_sched_expedited_cpu_stop,
8945 NULL) == -EAGAIN) {
8946 put_online_cpus();
8947 if (trycount++ < 10)
8948 udelay(trycount * num_online_cpus());
8949 else {
8950 synchronize_sched();
8951 return;
8952 }
8953 if (atomic_read(&synchronize_sched_expedited_count) - snap > 0) {
8954 smp_mb(); /* ensure test happens before caller kfree */
8955 return;
8956 }
8957 get_online_cpus();
8958 }
8959 atomic_inc(&synchronize_sched_expedited_count);
8960 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
8961 put_online_cpus();
8962 }
8963 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8964
8965 #endif /* #else #ifndef CONFIG_SMP */