]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched.c
[PATCH] sched: change prio bias only if queued
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/completion.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/security.h>
33 #include <linux/notifier.h>
34 #include <linux/profile.h>
35 #include <linux/suspend.h>
36 #include <linux/blkdev.h>
37 #include <linux/delay.h>
38 #include <linux/smp.h>
39 #include <linux/threads.h>
40 #include <linux/timer.h>
41 #include <linux/rcupdate.h>
42 #include <linux/cpu.h>
43 #include <linux/cpuset.h>
44 #include <linux/percpu.h>
45 #include <linux/kthread.h>
46 #include <linux/seq_file.h>
47 #include <linux/syscalls.h>
48 #include <linux/times.h>
49 #include <linux/acct.h>
50 #include <asm/tlb.h>
51
52 #include <asm/unistd.h>
53
54 /*
55 * Convert user-nice values [ -20 ... 0 ... 19 ]
56 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
57 * and back.
58 */
59 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
60 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
61 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
62
63 /*
64 * 'User priority' is the nice value converted to something we
65 * can work with better when scaling various scheduler parameters,
66 * it's a [ 0 ... 39 ] range.
67 */
68 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
69 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
70 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
71
72 /*
73 * Some helpers for converting nanosecond timing to jiffy resolution
74 */
75 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
76 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
77
78 /*
79 * These are the 'tuning knobs' of the scheduler:
80 *
81 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
82 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
83 * Timeslices get refilled after they expire.
84 */
85 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
86 #define DEF_TIMESLICE (100 * HZ / 1000)
87 #define ON_RUNQUEUE_WEIGHT 30
88 #define CHILD_PENALTY 95
89 #define PARENT_PENALTY 100
90 #define EXIT_WEIGHT 3
91 #define PRIO_BONUS_RATIO 25
92 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
93 #define INTERACTIVE_DELTA 2
94 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
95 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
96 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
97
98 /*
99 * If a task is 'interactive' then we reinsert it in the active
100 * array after it has expired its current timeslice. (it will not
101 * continue to run immediately, it will still roundrobin with
102 * other interactive tasks.)
103 *
104 * This part scales the interactivity limit depending on niceness.
105 *
106 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
107 * Here are a few examples of different nice levels:
108 *
109 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
110 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
111 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
112 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
113 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
114 *
115 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
116 * priority range a task can explore, a value of '1' means the
117 * task is rated interactive.)
118 *
119 * Ie. nice +19 tasks can never get 'interactive' enough to be
120 * reinserted into the active array. And only heavily CPU-hog nice -20
121 * tasks will be expired. Default nice 0 tasks are somewhere between,
122 * it takes some effort for them to get interactive, but it's not
123 * too hard.
124 */
125
126 #define CURRENT_BONUS(p) \
127 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
128 MAX_SLEEP_AVG)
129
130 #define GRANULARITY (10 * HZ / 1000 ? : 1)
131
132 #ifdef CONFIG_SMP
133 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
134 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
135 num_online_cpus())
136 #else
137 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
138 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
139 #endif
140
141 #define SCALE(v1,v1_max,v2_max) \
142 (v1) * (v2_max) / (v1_max)
143
144 #define DELTA(p) \
145 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
146
147 #define TASK_INTERACTIVE(p) \
148 ((p)->prio <= (p)->static_prio - DELTA(p))
149
150 #define INTERACTIVE_SLEEP(p) \
151 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
152 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
153
154 #define TASK_PREEMPTS_CURR(p, rq) \
155 ((p)->prio < (rq)->curr->prio)
156
157 /*
158 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
159 * to time slice values: [800ms ... 100ms ... 5ms]
160 *
161 * The higher a thread's priority, the bigger timeslices
162 * it gets during one round of execution. But even the lowest
163 * priority thread gets MIN_TIMESLICE worth of execution time.
164 */
165
166 #define SCALE_PRIO(x, prio) \
167 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
168
169 static unsigned int task_timeslice(task_t *p)
170 {
171 if (p->static_prio < NICE_TO_PRIO(0))
172 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
173 else
174 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
175 }
176 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
177 < (long long) (sd)->cache_hot_time)
178
179 /*
180 * These are the runqueue data structures:
181 */
182
183 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
184
185 typedef struct runqueue runqueue_t;
186
187 struct prio_array {
188 unsigned int nr_active;
189 unsigned long bitmap[BITMAP_SIZE];
190 struct list_head queue[MAX_PRIO];
191 };
192
193 /*
194 * This is the main, per-CPU runqueue data structure.
195 *
196 * Locking rule: those places that want to lock multiple runqueues
197 * (such as the load balancing or the thread migration code), lock
198 * acquire operations must be ordered by ascending &runqueue.
199 */
200 struct runqueue {
201 spinlock_t lock;
202
203 /*
204 * nr_running and cpu_load should be in the same cacheline because
205 * remote CPUs use both these fields when doing load calculation.
206 */
207 unsigned long nr_running;
208 #ifdef CONFIG_SMP
209 unsigned long prio_bias;
210 unsigned long cpu_load[3];
211 #endif
212 unsigned long long nr_switches;
213
214 /*
215 * This is part of a global counter where only the total sum
216 * over all CPUs matters. A task can increase this counter on
217 * one CPU and if it got migrated afterwards it may decrease
218 * it on another CPU. Always updated under the runqueue lock:
219 */
220 unsigned long nr_uninterruptible;
221
222 unsigned long expired_timestamp;
223 unsigned long long timestamp_last_tick;
224 task_t *curr, *idle;
225 struct mm_struct *prev_mm;
226 prio_array_t *active, *expired, arrays[2];
227 int best_expired_prio;
228 atomic_t nr_iowait;
229
230 #ifdef CONFIG_SMP
231 struct sched_domain *sd;
232
233 /* For active balancing */
234 int active_balance;
235 int push_cpu;
236
237 task_t *migration_thread;
238 struct list_head migration_queue;
239 #endif
240
241 #ifdef CONFIG_SCHEDSTATS
242 /* latency stats */
243 struct sched_info rq_sched_info;
244
245 /* sys_sched_yield() stats */
246 unsigned long yld_exp_empty;
247 unsigned long yld_act_empty;
248 unsigned long yld_both_empty;
249 unsigned long yld_cnt;
250
251 /* schedule() stats */
252 unsigned long sched_switch;
253 unsigned long sched_cnt;
254 unsigned long sched_goidle;
255
256 /* try_to_wake_up() stats */
257 unsigned long ttwu_cnt;
258 unsigned long ttwu_local;
259 #endif
260 };
261
262 static DEFINE_PER_CPU(struct runqueue, runqueues);
263
264 /*
265 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
266 * See detach_destroy_domains: synchronize_sched for details.
267 *
268 * The domain tree of any CPU may only be accessed from within
269 * preempt-disabled sections.
270 */
271 #define for_each_domain(cpu, domain) \
272 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
273
274 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
275 #define this_rq() (&__get_cpu_var(runqueues))
276 #define task_rq(p) cpu_rq(task_cpu(p))
277 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
278
279 #ifndef prepare_arch_switch
280 # define prepare_arch_switch(next) do { } while (0)
281 #endif
282 #ifndef finish_arch_switch
283 # define finish_arch_switch(prev) do { } while (0)
284 #endif
285
286 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
287 static inline int task_running(runqueue_t *rq, task_t *p)
288 {
289 return rq->curr == p;
290 }
291
292 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
293 {
294 }
295
296 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
297 {
298 #ifdef CONFIG_DEBUG_SPINLOCK
299 /* this is a valid case when another task releases the spinlock */
300 rq->lock.owner = current;
301 #endif
302 spin_unlock_irq(&rq->lock);
303 }
304
305 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
306 static inline int task_running(runqueue_t *rq, task_t *p)
307 {
308 #ifdef CONFIG_SMP
309 return p->oncpu;
310 #else
311 return rq->curr == p;
312 #endif
313 }
314
315 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
316 {
317 #ifdef CONFIG_SMP
318 /*
319 * We can optimise this out completely for !SMP, because the
320 * SMP rebalancing from interrupt is the only thing that cares
321 * here.
322 */
323 next->oncpu = 1;
324 #endif
325 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
326 spin_unlock_irq(&rq->lock);
327 #else
328 spin_unlock(&rq->lock);
329 #endif
330 }
331
332 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
333 {
334 #ifdef CONFIG_SMP
335 /*
336 * After ->oncpu is cleared, the task can be moved to a different CPU.
337 * We must ensure this doesn't happen until the switch is completely
338 * finished.
339 */
340 smp_wmb();
341 prev->oncpu = 0;
342 #endif
343 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
344 local_irq_enable();
345 #endif
346 }
347 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
348
349 /*
350 * task_rq_lock - lock the runqueue a given task resides on and disable
351 * interrupts. Note the ordering: we can safely lookup the task_rq without
352 * explicitly disabling preemption.
353 */
354 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
355 __acquires(rq->lock)
356 {
357 struct runqueue *rq;
358
359 repeat_lock_task:
360 local_irq_save(*flags);
361 rq = task_rq(p);
362 spin_lock(&rq->lock);
363 if (unlikely(rq != task_rq(p))) {
364 spin_unlock_irqrestore(&rq->lock, *flags);
365 goto repeat_lock_task;
366 }
367 return rq;
368 }
369
370 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
371 __releases(rq->lock)
372 {
373 spin_unlock_irqrestore(&rq->lock, *flags);
374 }
375
376 #ifdef CONFIG_SCHEDSTATS
377 /*
378 * bump this up when changing the output format or the meaning of an existing
379 * format, so that tools can adapt (or abort)
380 */
381 #define SCHEDSTAT_VERSION 12
382
383 static int show_schedstat(struct seq_file *seq, void *v)
384 {
385 int cpu;
386
387 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
388 seq_printf(seq, "timestamp %lu\n", jiffies);
389 for_each_online_cpu(cpu) {
390 runqueue_t *rq = cpu_rq(cpu);
391 #ifdef CONFIG_SMP
392 struct sched_domain *sd;
393 int dcnt = 0;
394 #endif
395
396 /* runqueue-specific stats */
397 seq_printf(seq,
398 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
399 cpu, rq->yld_both_empty,
400 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
401 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
402 rq->ttwu_cnt, rq->ttwu_local,
403 rq->rq_sched_info.cpu_time,
404 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
405
406 seq_printf(seq, "\n");
407
408 #ifdef CONFIG_SMP
409 /* domain-specific stats */
410 preempt_disable();
411 for_each_domain(cpu, sd) {
412 enum idle_type itype;
413 char mask_str[NR_CPUS];
414
415 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
416 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
417 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
418 itype++) {
419 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
420 sd->lb_cnt[itype],
421 sd->lb_balanced[itype],
422 sd->lb_failed[itype],
423 sd->lb_imbalance[itype],
424 sd->lb_gained[itype],
425 sd->lb_hot_gained[itype],
426 sd->lb_nobusyq[itype],
427 sd->lb_nobusyg[itype]);
428 }
429 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
430 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
431 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
432 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
433 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
434 }
435 preempt_enable();
436 #endif
437 }
438 return 0;
439 }
440
441 static int schedstat_open(struct inode *inode, struct file *file)
442 {
443 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
444 char *buf = kmalloc(size, GFP_KERNEL);
445 struct seq_file *m;
446 int res;
447
448 if (!buf)
449 return -ENOMEM;
450 res = single_open(file, show_schedstat, NULL);
451 if (!res) {
452 m = file->private_data;
453 m->buf = buf;
454 m->size = size;
455 } else
456 kfree(buf);
457 return res;
458 }
459
460 struct file_operations proc_schedstat_operations = {
461 .open = schedstat_open,
462 .read = seq_read,
463 .llseek = seq_lseek,
464 .release = single_release,
465 };
466
467 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
468 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
469 #else /* !CONFIG_SCHEDSTATS */
470 # define schedstat_inc(rq, field) do { } while (0)
471 # define schedstat_add(rq, field, amt) do { } while (0)
472 #endif
473
474 /*
475 * rq_lock - lock a given runqueue and disable interrupts.
476 */
477 static inline runqueue_t *this_rq_lock(void)
478 __acquires(rq->lock)
479 {
480 runqueue_t *rq;
481
482 local_irq_disable();
483 rq = this_rq();
484 spin_lock(&rq->lock);
485
486 return rq;
487 }
488
489 #ifdef CONFIG_SCHEDSTATS
490 /*
491 * Called when a process is dequeued from the active array and given
492 * the cpu. We should note that with the exception of interactive
493 * tasks, the expired queue will become the active queue after the active
494 * queue is empty, without explicitly dequeuing and requeuing tasks in the
495 * expired queue. (Interactive tasks may be requeued directly to the
496 * active queue, thus delaying tasks in the expired queue from running;
497 * see scheduler_tick()).
498 *
499 * This function is only called from sched_info_arrive(), rather than
500 * dequeue_task(). Even though a task may be queued and dequeued multiple
501 * times as it is shuffled about, we're really interested in knowing how
502 * long it was from the *first* time it was queued to the time that it
503 * finally hit a cpu.
504 */
505 static inline void sched_info_dequeued(task_t *t)
506 {
507 t->sched_info.last_queued = 0;
508 }
509
510 /*
511 * Called when a task finally hits the cpu. We can now calculate how
512 * long it was waiting to run. We also note when it began so that we
513 * can keep stats on how long its timeslice is.
514 */
515 static inline void sched_info_arrive(task_t *t)
516 {
517 unsigned long now = jiffies, diff = 0;
518 struct runqueue *rq = task_rq(t);
519
520 if (t->sched_info.last_queued)
521 diff = now - t->sched_info.last_queued;
522 sched_info_dequeued(t);
523 t->sched_info.run_delay += diff;
524 t->sched_info.last_arrival = now;
525 t->sched_info.pcnt++;
526
527 if (!rq)
528 return;
529
530 rq->rq_sched_info.run_delay += diff;
531 rq->rq_sched_info.pcnt++;
532 }
533
534 /*
535 * Called when a process is queued into either the active or expired
536 * array. The time is noted and later used to determine how long we
537 * had to wait for us to reach the cpu. Since the expired queue will
538 * become the active queue after active queue is empty, without dequeuing
539 * and requeuing any tasks, we are interested in queuing to either. It
540 * is unusual but not impossible for tasks to be dequeued and immediately
541 * requeued in the same or another array: this can happen in sched_yield(),
542 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
543 * to runqueue.
544 *
545 * This function is only called from enqueue_task(), but also only updates
546 * the timestamp if it is already not set. It's assumed that
547 * sched_info_dequeued() will clear that stamp when appropriate.
548 */
549 static inline void sched_info_queued(task_t *t)
550 {
551 if (!t->sched_info.last_queued)
552 t->sched_info.last_queued = jiffies;
553 }
554
555 /*
556 * Called when a process ceases being the active-running process, either
557 * voluntarily or involuntarily. Now we can calculate how long we ran.
558 */
559 static inline void sched_info_depart(task_t *t)
560 {
561 struct runqueue *rq = task_rq(t);
562 unsigned long diff = jiffies - t->sched_info.last_arrival;
563
564 t->sched_info.cpu_time += diff;
565
566 if (rq)
567 rq->rq_sched_info.cpu_time += diff;
568 }
569
570 /*
571 * Called when tasks are switched involuntarily due, typically, to expiring
572 * their time slice. (This may also be called when switching to or from
573 * the idle task.) We are only called when prev != next.
574 */
575 static inline void sched_info_switch(task_t *prev, task_t *next)
576 {
577 struct runqueue *rq = task_rq(prev);
578
579 /*
580 * prev now departs the cpu. It's not interesting to record
581 * stats about how efficient we were at scheduling the idle
582 * process, however.
583 */
584 if (prev != rq->idle)
585 sched_info_depart(prev);
586
587 if (next != rq->idle)
588 sched_info_arrive(next);
589 }
590 #else
591 #define sched_info_queued(t) do { } while (0)
592 #define sched_info_switch(t, next) do { } while (0)
593 #endif /* CONFIG_SCHEDSTATS */
594
595 /*
596 * Adding/removing a task to/from a priority array:
597 */
598 static void dequeue_task(struct task_struct *p, prio_array_t *array)
599 {
600 array->nr_active--;
601 list_del(&p->run_list);
602 if (list_empty(array->queue + p->prio))
603 __clear_bit(p->prio, array->bitmap);
604 }
605
606 static void enqueue_task(struct task_struct *p, prio_array_t *array)
607 {
608 sched_info_queued(p);
609 list_add_tail(&p->run_list, array->queue + p->prio);
610 __set_bit(p->prio, array->bitmap);
611 array->nr_active++;
612 p->array = array;
613 }
614
615 /*
616 * Put task to the end of the run list without the overhead of dequeue
617 * followed by enqueue.
618 */
619 static void requeue_task(struct task_struct *p, prio_array_t *array)
620 {
621 list_move_tail(&p->run_list, array->queue + p->prio);
622 }
623
624 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
625 {
626 list_add(&p->run_list, array->queue + p->prio);
627 __set_bit(p->prio, array->bitmap);
628 array->nr_active++;
629 p->array = array;
630 }
631
632 /*
633 * effective_prio - return the priority that is based on the static
634 * priority but is modified by bonuses/penalties.
635 *
636 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
637 * into the -5 ... 0 ... +5 bonus/penalty range.
638 *
639 * We use 25% of the full 0...39 priority range so that:
640 *
641 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
642 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
643 *
644 * Both properties are important to certain workloads.
645 */
646 static int effective_prio(task_t *p)
647 {
648 int bonus, prio;
649
650 if (rt_task(p))
651 return p->prio;
652
653 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
654
655 prio = p->static_prio - bonus;
656 if (prio < MAX_RT_PRIO)
657 prio = MAX_RT_PRIO;
658 if (prio > MAX_PRIO-1)
659 prio = MAX_PRIO-1;
660 return prio;
661 }
662
663 #ifdef CONFIG_SMP
664 static inline void inc_prio_bias(runqueue_t *rq, int static_prio)
665 {
666 rq->prio_bias += MAX_PRIO - static_prio;
667 }
668
669 static inline void dec_prio_bias(runqueue_t *rq, int static_prio)
670 {
671 rq->prio_bias -= MAX_PRIO - static_prio;
672 }
673 #else
674 static inline void inc_prio_bias(runqueue_t *rq, int static_prio)
675 {
676 }
677
678 static inline void dec_prio_bias(runqueue_t *rq, int static_prio)
679 {
680 }
681 #endif
682
683 static inline void inc_nr_running(task_t *p, runqueue_t *rq)
684 {
685 rq->nr_running++;
686 inc_prio_bias(rq, p->static_prio);
687 }
688
689 static inline void dec_nr_running(task_t *p, runqueue_t *rq)
690 {
691 rq->nr_running--;
692 dec_prio_bias(rq, p->static_prio);
693 }
694
695 /*
696 * __activate_task - move a task to the runqueue.
697 */
698 static inline void __activate_task(task_t *p, runqueue_t *rq)
699 {
700 enqueue_task(p, rq->active);
701 inc_nr_running(p, rq);
702 }
703
704 /*
705 * __activate_idle_task - move idle task to the _front_ of runqueue.
706 */
707 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
708 {
709 enqueue_task_head(p, rq->active);
710 inc_nr_running(p, rq);
711 }
712
713 static int recalc_task_prio(task_t *p, unsigned long long now)
714 {
715 /* Caller must always ensure 'now >= p->timestamp' */
716 unsigned long long __sleep_time = now - p->timestamp;
717 unsigned long sleep_time;
718
719 if (__sleep_time > NS_MAX_SLEEP_AVG)
720 sleep_time = NS_MAX_SLEEP_AVG;
721 else
722 sleep_time = (unsigned long)__sleep_time;
723
724 if (likely(sleep_time > 0)) {
725 /*
726 * User tasks that sleep a long time are categorised as
727 * idle and will get just interactive status to stay active &
728 * prevent them suddenly becoming cpu hogs and starving
729 * other processes.
730 */
731 if (p->mm && p->activated != -1 &&
732 sleep_time > INTERACTIVE_SLEEP(p)) {
733 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
734 DEF_TIMESLICE);
735 } else {
736 /*
737 * The lower the sleep avg a task has the more
738 * rapidly it will rise with sleep time.
739 */
740 sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
741
742 /*
743 * Tasks waking from uninterruptible sleep are
744 * limited in their sleep_avg rise as they
745 * are likely to be waiting on I/O
746 */
747 if (p->activated == -1 && p->mm) {
748 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
749 sleep_time = 0;
750 else if (p->sleep_avg + sleep_time >=
751 INTERACTIVE_SLEEP(p)) {
752 p->sleep_avg = INTERACTIVE_SLEEP(p);
753 sleep_time = 0;
754 }
755 }
756
757 /*
758 * This code gives a bonus to interactive tasks.
759 *
760 * The boost works by updating the 'average sleep time'
761 * value here, based on ->timestamp. The more time a
762 * task spends sleeping, the higher the average gets -
763 * and the higher the priority boost gets as well.
764 */
765 p->sleep_avg += sleep_time;
766
767 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
768 p->sleep_avg = NS_MAX_SLEEP_AVG;
769 }
770 }
771
772 return effective_prio(p);
773 }
774
775 /*
776 * activate_task - move a task to the runqueue and do priority recalculation
777 *
778 * Update all the scheduling statistics stuff. (sleep average
779 * calculation, priority modifiers, etc.)
780 */
781 static void activate_task(task_t *p, runqueue_t *rq, int local)
782 {
783 unsigned long long now;
784
785 now = sched_clock();
786 #ifdef CONFIG_SMP
787 if (!local) {
788 /* Compensate for drifting sched_clock */
789 runqueue_t *this_rq = this_rq();
790 now = (now - this_rq->timestamp_last_tick)
791 + rq->timestamp_last_tick;
792 }
793 #endif
794
795 p->prio = recalc_task_prio(p, now);
796
797 /*
798 * This checks to make sure it's not an uninterruptible task
799 * that is now waking up.
800 */
801 if (!p->activated) {
802 /*
803 * Tasks which were woken up by interrupts (ie. hw events)
804 * are most likely of interactive nature. So we give them
805 * the credit of extending their sleep time to the period
806 * of time they spend on the runqueue, waiting for execution
807 * on a CPU, first time around:
808 */
809 if (in_interrupt())
810 p->activated = 2;
811 else {
812 /*
813 * Normal first-time wakeups get a credit too for
814 * on-runqueue time, but it will be weighted down:
815 */
816 p->activated = 1;
817 }
818 }
819 p->timestamp = now;
820
821 __activate_task(p, rq);
822 }
823
824 /*
825 * deactivate_task - remove a task from the runqueue.
826 */
827 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
828 {
829 dec_nr_running(p, rq);
830 dequeue_task(p, p->array);
831 p->array = NULL;
832 }
833
834 /*
835 * resched_task - mark a task 'to be rescheduled now'.
836 *
837 * On UP this means the setting of the need_resched flag, on SMP it
838 * might also involve a cross-CPU call to trigger the scheduler on
839 * the target CPU.
840 */
841 #ifdef CONFIG_SMP
842 static void resched_task(task_t *p)
843 {
844 int need_resched, nrpolling;
845
846 assert_spin_locked(&task_rq(p)->lock);
847
848 /* minimise the chance of sending an interrupt to poll_idle() */
849 nrpolling = test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
850 need_resched = test_and_set_tsk_thread_flag(p,TIF_NEED_RESCHED);
851 nrpolling |= test_tsk_thread_flag(p,TIF_POLLING_NRFLAG);
852
853 if (!need_resched && !nrpolling && (task_cpu(p) != smp_processor_id()))
854 smp_send_reschedule(task_cpu(p));
855 }
856 #else
857 static inline void resched_task(task_t *p)
858 {
859 set_tsk_need_resched(p);
860 }
861 #endif
862
863 /**
864 * task_curr - is this task currently executing on a CPU?
865 * @p: the task in question.
866 */
867 inline int task_curr(const task_t *p)
868 {
869 return cpu_curr(task_cpu(p)) == p;
870 }
871
872 #ifdef CONFIG_SMP
873 typedef struct {
874 struct list_head list;
875
876 task_t *task;
877 int dest_cpu;
878
879 struct completion done;
880 } migration_req_t;
881
882 /*
883 * The task's runqueue lock must be held.
884 * Returns true if you have to wait for migration thread.
885 */
886 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
887 {
888 runqueue_t *rq = task_rq(p);
889
890 /*
891 * If the task is not on a runqueue (and not running), then
892 * it is sufficient to simply update the task's cpu field.
893 */
894 if (!p->array && !task_running(rq, p)) {
895 set_task_cpu(p, dest_cpu);
896 return 0;
897 }
898
899 init_completion(&req->done);
900 req->task = p;
901 req->dest_cpu = dest_cpu;
902 list_add(&req->list, &rq->migration_queue);
903 return 1;
904 }
905
906 /*
907 * wait_task_inactive - wait for a thread to unschedule.
908 *
909 * The caller must ensure that the task *will* unschedule sometime soon,
910 * else this function might spin for a *long* time. This function can't
911 * be called with interrupts off, or it may introduce deadlock with
912 * smp_call_function() if an IPI is sent by the same process we are
913 * waiting to become inactive.
914 */
915 void wait_task_inactive(task_t *p)
916 {
917 unsigned long flags;
918 runqueue_t *rq;
919 int preempted;
920
921 repeat:
922 rq = task_rq_lock(p, &flags);
923 /* Must be off runqueue entirely, not preempted. */
924 if (unlikely(p->array || task_running(rq, p))) {
925 /* If it's preempted, we yield. It could be a while. */
926 preempted = !task_running(rq, p);
927 task_rq_unlock(rq, &flags);
928 cpu_relax();
929 if (preempted)
930 yield();
931 goto repeat;
932 }
933 task_rq_unlock(rq, &flags);
934 }
935
936 /***
937 * kick_process - kick a running thread to enter/exit the kernel
938 * @p: the to-be-kicked thread
939 *
940 * Cause a process which is running on another CPU to enter
941 * kernel-mode, without any delay. (to get signals handled.)
942 *
943 * NOTE: this function doesnt have to take the runqueue lock,
944 * because all it wants to ensure is that the remote task enters
945 * the kernel. If the IPI races and the task has been migrated
946 * to another CPU then no harm is done and the purpose has been
947 * achieved as well.
948 */
949 void kick_process(task_t *p)
950 {
951 int cpu;
952
953 preempt_disable();
954 cpu = task_cpu(p);
955 if ((cpu != smp_processor_id()) && task_curr(p))
956 smp_send_reschedule(cpu);
957 preempt_enable();
958 }
959
960 /*
961 * Return a low guess at the load of a migration-source cpu.
962 *
963 * We want to under-estimate the load of migration sources, to
964 * balance conservatively.
965 */
966 static inline unsigned long __source_load(int cpu, int type, enum idle_type idle)
967 {
968 runqueue_t *rq = cpu_rq(cpu);
969 unsigned long cpu_load = rq->cpu_load[type-1],
970 load_now = rq->nr_running * SCHED_LOAD_SCALE;
971
972 if (idle == NOT_IDLE) {
973 /*
974 * If we are balancing busy runqueues the load is biased by
975 * priority to create 'nice' support across cpus.
976 */
977 cpu_load *= rq->prio_bias;
978 load_now *= rq->prio_bias;
979 }
980
981 if (type == 0)
982 return load_now;
983
984 return min(cpu_load, load_now);
985 }
986
987 static inline unsigned long source_load(int cpu, int type)
988 {
989 return __source_load(cpu, type, NOT_IDLE);
990 }
991
992 /*
993 * Return a high guess at the load of a migration-target cpu
994 */
995 static inline unsigned long __target_load(int cpu, int type, enum idle_type idle)
996 {
997 runqueue_t *rq = cpu_rq(cpu);
998 unsigned long cpu_load = rq->cpu_load[type-1],
999 load_now = rq->nr_running * SCHED_LOAD_SCALE;
1000
1001 if (type == 0)
1002 return load_now;
1003
1004 if (idle == NOT_IDLE) {
1005 cpu_load *= rq->prio_bias;
1006 load_now *= rq->prio_bias;
1007 }
1008 return max(cpu_load, load_now);
1009 }
1010
1011 static inline unsigned long target_load(int cpu, int type)
1012 {
1013 return __target_load(cpu, type, NOT_IDLE);
1014 }
1015
1016 /*
1017 * find_idlest_group finds and returns the least busy CPU group within the
1018 * domain.
1019 */
1020 static struct sched_group *
1021 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1022 {
1023 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1024 unsigned long min_load = ULONG_MAX, this_load = 0;
1025 int load_idx = sd->forkexec_idx;
1026 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1027
1028 do {
1029 unsigned long load, avg_load;
1030 int local_group;
1031 int i;
1032
1033 /* Skip over this group if it has no CPUs allowed */
1034 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1035 goto nextgroup;
1036
1037 local_group = cpu_isset(this_cpu, group->cpumask);
1038
1039 /* Tally up the load of all CPUs in the group */
1040 avg_load = 0;
1041
1042 for_each_cpu_mask(i, group->cpumask) {
1043 /* Bias balancing toward cpus of our domain */
1044 if (local_group)
1045 load = source_load(i, load_idx);
1046 else
1047 load = target_load(i, load_idx);
1048
1049 avg_load += load;
1050 }
1051
1052 /* Adjust by relative CPU power of the group */
1053 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1054
1055 if (local_group) {
1056 this_load = avg_load;
1057 this = group;
1058 } else if (avg_load < min_load) {
1059 min_load = avg_load;
1060 idlest = group;
1061 }
1062 nextgroup:
1063 group = group->next;
1064 } while (group != sd->groups);
1065
1066 if (!idlest || 100*this_load < imbalance*min_load)
1067 return NULL;
1068 return idlest;
1069 }
1070
1071 /*
1072 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1073 */
1074 static int
1075 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1076 {
1077 cpumask_t tmp;
1078 unsigned long load, min_load = ULONG_MAX;
1079 int idlest = -1;
1080 int i;
1081
1082 /* Traverse only the allowed CPUs */
1083 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1084
1085 for_each_cpu_mask(i, tmp) {
1086 load = source_load(i, 0);
1087
1088 if (load < min_load || (load == min_load && i == this_cpu)) {
1089 min_load = load;
1090 idlest = i;
1091 }
1092 }
1093
1094 return idlest;
1095 }
1096
1097 /*
1098 * sched_balance_self: balance the current task (running on cpu) in domains
1099 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1100 * SD_BALANCE_EXEC.
1101 *
1102 * Balance, ie. select the least loaded group.
1103 *
1104 * Returns the target CPU number, or the same CPU if no balancing is needed.
1105 *
1106 * preempt must be disabled.
1107 */
1108 static int sched_balance_self(int cpu, int flag)
1109 {
1110 struct task_struct *t = current;
1111 struct sched_domain *tmp, *sd = NULL;
1112
1113 for_each_domain(cpu, tmp)
1114 if (tmp->flags & flag)
1115 sd = tmp;
1116
1117 while (sd) {
1118 cpumask_t span;
1119 struct sched_group *group;
1120 int new_cpu;
1121 int weight;
1122
1123 span = sd->span;
1124 group = find_idlest_group(sd, t, cpu);
1125 if (!group)
1126 goto nextlevel;
1127
1128 new_cpu = find_idlest_cpu(group, t, cpu);
1129 if (new_cpu == -1 || new_cpu == cpu)
1130 goto nextlevel;
1131
1132 /* Now try balancing at a lower domain level */
1133 cpu = new_cpu;
1134 nextlevel:
1135 sd = NULL;
1136 weight = cpus_weight(span);
1137 for_each_domain(cpu, tmp) {
1138 if (weight <= cpus_weight(tmp->span))
1139 break;
1140 if (tmp->flags & flag)
1141 sd = tmp;
1142 }
1143 /* while loop will break here if sd == NULL */
1144 }
1145
1146 return cpu;
1147 }
1148
1149 #endif /* CONFIG_SMP */
1150
1151 /*
1152 * wake_idle() will wake a task on an idle cpu if task->cpu is
1153 * not idle and an idle cpu is available. The span of cpus to
1154 * search starts with cpus closest then further out as needed,
1155 * so we always favor a closer, idle cpu.
1156 *
1157 * Returns the CPU we should wake onto.
1158 */
1159 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1160 static int wake_idle(int cpu, task_t *p)
1161 {
1162 cpumask_t tmp;
1163 struct sched_domain *sd;
1164 int i;
1165
1166 if (idle_cpu(cpu))
1167 return cpu;
1168
1169 for_each_domain(cpu, sd) {
1170 if (sd->flags & SD_WAKE_IDLE) {
1171 cpus_and(tmp, sd->span, p->cpus_allowed);
1172 for_each_cpu_mask(i, tmp) {
1173 if (idle_cpu(i))
1174 return i;
1175 }
1176 }
1177 else
1178 break;
1179 }
1180 return cpu;
1181 }
1182 #else
1183 static inline int wake_idle(int cpu, task_t *p)
1184 {
1185 return cpu;
1186 }
1187 #endif
1188
1189 /***
1190 * try_to_wake_up - wake up a thread
1191 * @p: the to-be-woken-up thread
1192 * @state: the mask of task states that can be woken
1193 * @sync: do a synchronous wakeup?
1194 *
1195 * Put it on the run-queue if it's not already there. The "current"
1196 * thread is always on the run-queue (except when the actual
1197 * re-schedule is in progress), and as such you're allowed to do
1198 * the simpler "current->state = TASK_RUNNING" to mark yourself
1199 * runnable without the overhead of this.
1200 *
1201 * returns failure only if the task is already active.
1202 */
1203 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1204 {
1205 int cpu, this_cpu, success = 0;
1206 unsigned long flags;
1207 long old_state;
1208 runqueue_t *rq;
1209 #ifdef CONFIG_SMP
1210 unsigned long load, this_load;
1211 struct sched_domain *sd, *this_sd = NULL;
1212 int new_cpu;
1213 #endif
1214
1215 rq = task_rq_lock(p, &flags);
1216 old_state = p->state;
1217 if (!(old_state & state))
1218 goto out;
1219
1220 if (p->array)
1221 goto out_running;
1222
1223 cpu = task_cpu(p);
1224 this_cpu = smp_processor_id();
1225
1226 #ifdef CONFIG_SMP
1227 if (unlikely(task_running(rq, p)))
1228 goto out_activate;
1229
1230 new_cpu = cpu;
1231
1232 schedstat_inc(rq, ttwu_cnt);
1233 if (cpu == this_cpu) {
1234 schedstat_inc(rq, ttwu_local);
1235 goto out_set_cpu;
1236 }
1237
1238 for_each_domain(this_cpu, sd) {
1239 if (cpu_isset(cpu, sd->span)) {
1240 schedstat_inc(sd, ttwu_wake_remote);
1241 this_sd = sd;
1242 break;
1243 }
1244 }
1245
1246 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1247 goto out_set_cpu;
1248
1249 /*
1250 * Check for affine wakeup and passive balancing possibilities.
1251 */
1252 if (this_sd) {
1253 int idx = this_sd->wake_idx;
1254 unsigned int imbalance;
1255
1256 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1257
1258 load = source_load(cpu, idx);
1259 this_load = target_load(this_cpu, idx);
1260
1261 new_cpu = this_cpu; /* Wake to this CPU if we can */
1262
1263 if (this_sd->flags & SD_WAKE_AFFINE) {
1264 unsigned long tl = this_load;
1265 /*
1266 * If sync wakeup then subtract the (maximum possible)
1267 * effect of the currently running task from the load
1268 * of the current CPU:
1269 */
1270 if (sync)
1271 tl -= SCHED_LOAD_SCALE;
1272
1273 if ((tl <= load &&
1274 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1275 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1276 /*
1277 * This domain has SD_WAKE_AFFINE and
1278 * p is cache cold in this domain, and
1279 * there is no bad imbalance.
1280 */
1281 schedstat_inc(this_sd, ttwu_move_affine);
1282 goto out_set_cpu;
1283 }
1284 }
1285
1286 /*
1287 * Start passive balancing when half the imbalance_pct
1288 * limit is reached.
1289 */
1290 if (this_sd->flags & SD_WAKE_BALANCE) {
1291 if (imbalance*this_load <= 100*load) {
1292 schedstat_inc(this_sd, ttwu_move_balance);
1293 goto out_set_cpu;
1294 }
1295 }
1296 }
1297
1298 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1299 out_set_cpu:
1300 new_cpu = wake_idle(new_cpu, p);
1301 if (new_cpu != cpu) {
1302 set_task_cpu(p, new_cpu);
1303 task_rq_unlock(rq, &flags);
1304 /* might preempt at this point */
1305 rq = task_rq_lock(p, &flags);
1306 old_state = p->state;
1307 if (!(old_state & state))
1308 goto out;
1309 if (p->array)
1310 goto out_running;
1311
1312 this_cpu = smp_processor_id();
1313 cpu = task_cpu(p);
1314 }
1315
1316 out_activate:
1317 #endif /* CONFIG_SMP */
1318 if (old_state == TASK_UNINTERRUPTIBLE) {
1319 rq->nr_uninterruptible--;
1320 /*
1321 * Tasks on involuntary sleep don't earn
1322 * sleep_avg beyond just interactive state.
1323 */
1324 p->activated = -1;
1325 }
1326
1327 /*
1328 * Tasks that have marked their sleep as noninteractive get
1329 * woken up without updating their sleep average. (i.e. their
1330 * sleep is handled in a priority-neutral manner, no priority
1331 * boost and no penalty.)
1332 */
1333 if (old_state & TASK_NONINTERACTIVE)
1334 __activate_task(p, rq);
1335 else
1336 activate_task(p, rq, cpu == this_cpu);
1337 /*
1338 * Sync wakeups (i.e. those types of wakeups where the waker
1339 * has indicated that it will leave the CPU in short order)
1340 * don't trigger a preemption, if the woken up task will run on
1341 * this cpu. (in this case the 'I will reschedule' promise of
1342 * the waker guarantees that the freshly woken up task is going
1343 * to be considered on this CPU.)
1344 */
1345 if (!sync || cpu != this_cpu) {
1346 if (TASK_PREEMPTS_CURR(p, rq))
1347 resched_task(rq->curr);
1348 }
1349 success = 1;
1350
1351 out_running:
1352 p->state = TASK_RUNNING;
1353 out:
1354 task_rq_unlock(rq, &flags);
1355
1356 return success;
1357 }
1358
1359 int fastcall wake_up_process(task_t *p)
1360 {
1361 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1362 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1363 }
1364
1365 EXPORT_SYMBOL(wake_up_process);
1366
1367 int fastcall wake_up_state(task_t *p, unsigned int state)
1368 {
1369 return try_to_wake_up(p, state, 0);
1370 }
1371
1372 /*
1373 * Perform scheduler related setup for a newly forked process p.
1374 * p is forked by current.
1375 */
1376 void fastcall sched_fork(task_t *p, int clone_flags)
1377 {
1378 int cpu = get_cpu();
1379
1380 #ifdef CONFIG_SMP
1381 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1382 #endif
1383 set_task_cpu(p, cpu);
1384
1385 /*
1386 * We mark the process as running here, but have not actually
1387 * inserted it onto the runqueue yet. This guarantees that
1388 * nobody will actually run it, and a signal or other external
1389 * event cannot wake it up and insert it on the runqueue either.
1390 */
1391 p->state = TASK_RUNNING;
1392 INIT_LIST_HEAD(&p->run_list);
1393 p->array = NULL;
1394 #ifdef CONFIG_SCHEDSTATS
1395 memset(&p->sched_info, 0, sizeof(p->sched_info));
1396 #endif
1397 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1398 p->oncpu = 0;
1399 #endif
1400 #ifdef CONFIG_PREEMPT
1401 /* Want to start with kernel preemption disabled. */
1402 p->thread_info->preempt_count = 1;
1403 #endif
1404 /*
1405 * Share the timeslice between parent and child, thus the
1406 * total amount of pending timeslices in the system doesn't change,
1407 * resulting in more scheduling fairness.
1408 */
1409 local_irq_disable();
1410 p->time_slice = (current->time_slice + 1) >> 1;
1411 /*
1412 * The remainder of the first timeslice might be recovered by
1413 * the parent if the child exits early enough.
1414 */
1415 p->first_time_slice = 1;
1416 current->time_slice >>= 1;
1417 p->timestamp = sched_clock();
1418 if (unlikely(!current->time_slice)) {
1419 /*
1420 * This case is rare, it happens when the parent has only
1421 * a single jiffy left from its timeslice. Taking the
1422 * runqueue lock is not a problem.
1423 */
1424 current->time_slice = 1;
1425 scheduler_tick();
1426 }
1427 local_irq_enable();
1428 put_cpu();
1429 }
1430
1431 /*
1432 * wake_up_new_task - wake up a newly created task for the first time.
1433 *
1434 * This function will do some initial scheduler statistics housekeeping
1435 * that must be done for every newly created context, then puts the task
1436 * on the runqueue and wakes it.
1437 */
1438 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1439 {
1440 unsigned long flags;
1441 int this_cpu, cpu;
1442 runqueue_t *rq, *this_rq;
1443
1444 rq = task_rq_lock(p, &flags);
1445 BUG_ON(p->state != TASK_RUNNING);
1446 this_cpu = smp_processor_id();
1447 cpu = task_cpu(p);
1448
1449 /*
1450 * We decrease the sleep average of forking parents
1451 * and children as well, to keep max-interactive tasks
1452 * from forking tasks that are max-interactive. The parent
1453 * (current) is done further down, under its lock.
1454 */
1455 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1456 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1457
1458 p->prio = effective_prio(p);
1459
1460 if (likely(cpu == this_cpu)) {
1461 if (!(clone_flags & CLONE_VM)) {
1462 /*
1463 * The VM isn't cloned, so we're in a good position to
1464 * do child-runs-first in anticipation of an exec. This
1465 * usually avoids a lot of COW overhead.
1466 */
1467 if (unlikely(!current->array))
1468 __activate_task(p, rq);
1469 else {
1470 p->prio = current->prio;
1471 list_add_tail(&p->run_list, &current->run_list);
1472 p->array = current->array;
1473 p->array->nr_active++;
1474 inc_nr_running(p, rq);
1475 }
1476 set_need_resched();
1477 } else
1478 /* Run child last */
1479 __activate_task(p, rq);
1480 /*
1481 * We skip the following code due to cpu == this_cpu
1482 *
1483 * task_rq_unlock(rq, &flags);
1484 * this_rq = task_rq_lock(current, &flags);
1485 */
1486 this_rq = rq;
1487 } else {
1488 this_rq = cpu_rq(this_cpu);
1489
1490 /*
1491 * Not the local CPU - must adjust timestamp. This should
1492 * get optimised away in the !CONFIG_SMP case.
1493 */
1494 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1495 + rq->timestamp_last_tick;
1496 __activate_task(p, rq);
1497 if (TASK_PREEMPTS_CURR(p, rq))
1498 resched_task(rq->curr);
1499
1500 /*
1501 * Parent and child are on different CPUs, now get the
1502 * parent runqueue to update the parent's ->sleep_avg:
1503 */
1504 task_rq_unlock(rq, &flags);
1505 this_rq = task_rq_lock(current, &flags);
1506 }
1507 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1508 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1509 task_rq_unlock(this_rq, &flags);
1510 }
1511
1512 /*
1513 * Potentially available exiting-child timeslices are
1514 * retrieved here - this way the parent does not get
1515 * penalized for creating too many threads.
1516 *
1517 * (this cannot be used to 'generate' timeslices
1518 * artificially, because any timeslice recovered here
1519 * was given away by the parent in the first place.)
1520 */
1521 void fastcall sched_exit(task_t *p)
1522 {
1523 unsigned long flags;
1524 runqueue_t *rq;
1525
1526 /*
1527 * If the child was a (relative-) CPU hog then decrease
1528 * the sleep_avg of the parent as well.
1529 */
1530 rq = task_rq_lock(p->parent, &flags);
1531 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1532 p->parent->time_slice += p->time_slice;
1533 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1534 p->parent->time_slice = task_timeslice(p);
1535 }
1536 if (p->sleep_avg < p->parent->sleep_avg)
1537 p->parent->sleep_avg = p->parent->sleep_avg /
1538 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1539 (EXIT_WEIGHT + 1);
1540 task_rq_unlock(rq, &flags);
1541 }
1542
1543 /**
1544 * prepare_task_switch - prepare to switch tasks
1545 * @rq: the runqueue preparing to switch
1546 * @next: the task we are going to switch to.
1547 *
1548 * This is called with the rq lock held and interrupts off. It must
1549 * be paired with a subsequent finish_task_switch after the context
1550 * switch.
1551 *
1552 * prepare_task_switch sets up locking and calls architecture specific
1553 * hooks.
1554 */
1555 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1556 {
1557 prepare_lock_switch(rq, next);
1558 prepare_arch_switch(next);
1559 }
1560
1561 /**
1562 * finish_task_switch - clean up after a task-switch
1563 * @rq: runqueue associated with task-switch
1564 * @prev: the thread we just switched away from.
1565 *
1566 * finish_task_switch must be called after the context switch, paired
1567 * with a prepare_task_switch call before the context switch.
1568 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1569 * and do any other architecture-specific cleanup actions.
1570 *
1571 * Note that we may have delayed dropping an mm in context_switch(). If
1572 * so, we finish that here outside of the runqueue lock. (Doing it
1573 * with the lock held can cause deadlocks; see schedule() for
1574 * details.)
1575 */
1576 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1577 __releases(rq->lock)
1578 {
1579 struct mm_struct *mm = rq->prev_mm;
1580 unsigned long prev_task_flags;
1581
1582 rq->prev_mm = NULL;
1583
1584 /*
1585 * A task struct has one reference for the use as "current".
1586 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1587 * calls schedule one last time. The schedule call will never return,
1588 * and the scheduled task must drop that reference.
1589 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1590 * still held, otherwise prev could be scheduled on another cpu, die
1591 * there before we look at prev->state, and then the reference would
1592 * be dropped twice.
1593 * Manfred Spraul <manfred@colorfullife.com>
1594 */
1595 prev_task_flags = prev->flags;
1596 finish_arch_switch(prev);
1597 finish_lock_switch(rq, prev);
1598 if (mm)
1599 mmdrop(mm);
1600 if (unlikely(prev_task_flags & PF_DEAD))
1601 put_task_struct(prev);
1602 }
1603
1604 /**
1605 * schedule_tail - first thing a freshly forked thread must call.
1606 * @prev: the thread we just switched away from.
1607 */
1608 asmlinkage void schedule_tail(task_t *prev)
1609 __releases(rq->lock)
1610 {
1611 runqueue_t *rq = this_rq();
1612 finish_task_switch(rq, prev);
1613 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1614 /* In this case, finish_task_switch does not reenable preemption */
1615 preempt_enable();
1616 #endif
1617 if (current->set_child_tid)
1618 put_user(current->pid, current->set_child_tid);
1619 }
1620
1621 /*
1622 * context_switch - switch to the new MM and the new
1623 * thread's register state.
1624 */
1625 static inline
1626 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1627 {
1628 struct mm_struct *mm = next->mm;
1629 struct mm_struct *oldmm = prev->active_mm;
1630
1631 if (unlikely(!mm)) {
1632 next->active_mm = oldmm;
1633 atomic_inc(&oldmm->mm_count);
1634 enter_lazy_tlb(oldmm, next);
1635 } else
1636 switch_mm(oldmm, mm, next);
1637
1638 if (unlikely(!prev->mm)) {
1639 prev->active_mm = NULL;
1640 WARN_ON(rq->prev_mm);
1641 rq->prev_mm = oldmm;
1642 }
1643
1644 /* Here we just switch the register state and the stack. */
1645 switch_to(prev, next, prev);
1646
1647 return prev;
1648 }
1649
1650 /*
1651 * nr_running, nr_uninterruptible and nr_context_switches:
1652 *
1653 * externally visible scheduler statistics: current number of runnable
1654 * threads, current number of uninterruptible-sleeping threads, total
1655 * number of context switches performed since bootup.
1656 */
1657 unsigned long nr_running(void)
1658 {
1659 unsigned long i, sum = 0;
1660
1661 for_each_online_cpu(i)
1662 sum += cpu_rq(i)->nr_running;
1663
1664 return sum;
1665 }
1666
1667 unsigned long nr_uninterruptible(void)
1668 {
1669 unsigned long i, sum = 0;
1670
1671 for_each_cpu(i)
1672 sum += cpu_rq(i)->nr_uninterruptible;
1673
1674 /*
1675 * Since we read the counters lockless, it might be slightly
1676 * inaccurate. Do not allow it to go below zero though:
1677 */
1678 if (unlikely((long)sum < 0))
1679 sum = 0;
1680
1681 return sum;
1682 }
1683
1684 unsigned long long nr_context_switches(void)
1685 {
1686 unsigned long long i, sum = 0;
1687
1688 for_each_cpu(i)
1689 sum += cpu_rq(i)->nr_switches;
1690
1691 return sum;
1692 }
1693
1694 unsigned long nr_iowait(void)
1695 {
1696 unsigned long i, sum = 0;
1697
1698 for_each_cpu(i)
1699 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1700
1701 return sum;
1702 }
1703
1704 #ifdef CONFIG_SMP
1705
1706 /*
1707 * double_rq_lock - safely lock two runqueues
1708 *
1709 * Note this does not disable interrupts like task_rq_lock,
1710 * you need to do so manually before calling.
1711 */
1712 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1713 __acquires(rq1->lock)
1714 __acquires(rq2->lock)
1715 {
1716 if (rq1 == rq2) {
1717 spin_lock(&rq1->lock);
1718 __acquire(rq2->lock); /* Fake it out ;) */
1719 } else {
1720 if (rq1 < rq2) {
1721 spin_lock(&rq1->lock);
1722 spin_lock(&rq2->lock);
1723 } else {
1724 spin_lock(&rq2->lock);
1725 spin_lock(&rq1->lock);
1726 }
1727 }
1728 }
1729
1730 /*
1731 * double_rq_unlock - safely unlock two runqueues
1732 *
1733 * Note this does not restore interrupts like task_rq_unlock,
1734 * you need to do so manually after calling.
1735 */
1736 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1737 __releases(rq1->lock)
1738 __releases(rq2->lock)
1739 {
1740 spin_unlock(&rq1->lock);
1741 if (rq1 != rq2)
1742 spin_unlock(&rq2->lock);
1743 else
1744 __release(rq2->lock);
1745 }
1746
1747 /*
1748 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1749 */
1750 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1751 __releases(this_rq->lock)
1752 __acquires(busiest->lock)
1753 __acquires(this_rq->lock)
1754 {
1755 if (unlikely(!spin_trylock(&busiest->lock))) {
1756 if (busiest < this_rq) {
1757 spin_unlock(&this_rq->lock);
1758 spin_lock(&busiest->lock);
1759 spin_lock(&this_rq->lock);
1760 } else
1761 spin_lock(&busiest->lock);
1762 }
1763 }
1764
1765 /*
1766 * If dest_cpu is allowed for this process, migrate the task to it.
1767 * This is accomplished by forcing the cpu_allowed mask to only
1768 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1769 * the cpu_allowed mask is restored.
1770 */
1771 static void sched_migrate_task(task_t *p, int dest_cpu)
1772 {
1773 migration_req_t req;
1774 runqueue_t *rq;
1775 unsigned long flags;
1776
1777 rq = task_rq_lock(p, &flags);
1778 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1779 || unlikely(cpu_is_offline(dest_cpu)))
1780 goto out;
1781
1782 /* force the process onto the specified CPU */
1783 if (migrate_task(p, dest_cpu, &req)) {
1784 /* Need to wait for migration thread (might exit: take ref). */
1785 struct task_struct *mt = rq->migration_thread;
1786 get_task_struct(mt);
1787 task_rq_unlock(rq, &flags);
1788 wake_up_process(mt);
1789 put_task_struct(mt);
1790 wait_for_completion(&req.done);
1791 return;
1792 }
1793 out:
1794 task_rq_unlock(rq, &flags);
1795 }
1796
1797 /*
1798 * sched_exec - execve() is a valuable balancing opportunity, because at
1799 * this point the task has the smallest effective memory and cache footprint.
1800 */
1801 void sched_exec(void)
1802 {
1803 int new_cpu, this_cpu = get_cpu();
1804 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1805 put_cpu();
1806 if (new_cpu != this_cpu)
1807 sched_migrate_task(current, new_cpu);
1808 }
1809
1810 /*
1811 * pull_task - move a task from a remote runqueue to the local runqueue.
1812 * Both runqueues must be locked.
1813 */
1814 static inline
1815 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1816 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1817 {
1818 dequeue_task(p, src_array);
1819 dec_nr_running(p, src_rq);
1820 set_task_cpu(p, this_cpu);
1821 inc_nr_running(p, this_rq);
1822 enqueue_task(p, this_array);
1823 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1824 + this_rq->timestamp_last_tick;
1825 /*
1826 * Note that idle threads have a prio of MAX_PRIO, for this test
1827 * to be always true for them.
1828 */
1829 if (TASK_PREEMPTS_CURR(p, this_rq))
1830 resched_task(this_rq->curr);
1831 }
1832
1833 /*
1834 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1835 */
1836 static inline
1837 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1838 struct sched_domain *sd, enum idle_type idle,
1839 int *all_pinned)
1840 {
1841 /*
1842 * We do not migrate tasks that are:
1843 * 1) running (obviously), or
1844 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1845 * 3) are cache-hot on their current CPU.
1846 */
1847 if (!cpu_isset(this_cpu, p->cpus_allowed))
1848 return 0;
1849 *all_pinned = 0;
1850
1851 if (task_running(rq, p))
1852 return 0;
1853
1854 /*
1855 * Aggressive migration if:
1856 * 1) task is cache cold, or
1857 * 2) too many balance attempts have failed.
1858 */
1859
1860 if (sd->nr_balance_failed > sd->cache_nice_tries)
1861 return 1;
1862
1863 if (task_hot(p, rq->timestamp_last_tick, sd))
1864 return 0;
1865 return 1;
1866 }
1867
1868 /*
1869 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1870 * as part of a balancing operation within "domain". Returns the number of
1871 * tasks moved.
1872 *
1873 * Called with both runqueues locked.
1874 */
1875 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1876 unsigned long max_nr_move, struct sched_domain *sd,
1877 enum idle_type idle, int *all_pinned)
1878 {
1879 prio_array_t *array, *dst_array;
1880 struct list_head *head, *curr;
1881 int idx, pulled = 0, pinned = 0;
1882 task_t *tmp;
1883
1884 if (max_nr_move == 0)
1885 goto out;
1886
1887 pinned = 1;
1888
1889 /*
1890 * We first consider expired tasks. Those will likely not be
1891 * executed in the near future, and they are most likely to
1892 * be cache-cold, thus switching CPUs has the least effect
1893 * on them.
1894 */
1895 if (busiest->expired->nr_active) {
1896 array = busiest->expired;
1897 dst_array = this_rq->expired;
1898 } else {
1899 array = busiest->active;
1900 dst_array = this_rq->active;
1901 }
1902
1903 new_array:
1904 /* Start searching at priority 0: */
1905 idx = 0;
1906 skip_bitmap:
1907 if (!idx)
1908 idx = sched_find_first_bit(array->bitmap);
1909 else
1910 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1911 if (idx >= MAX_PRIO) {
1912 if (array == busiest->expired && busiest->active->nr_active) {
1913 array = busiest->active;
1914 dst_array = this_rq->active;
1915 goto new_array;
1916 }
1917 goto out;
1918 }
1919
1920 head = array->queue + idx;
1921 curr = head->prev;
1922 skip_queue:
1923 tmp = list_entry(curr, task_t, run_list);
1924
1925 curr = curr->prev;
1926
1927 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1928 if (curr != head)
1929 goto skip_queue;
1930 idx++;
1931 goto skip_bitmap;
1932 }
1933
1934 #ifdef CONFIG_SCHEDSTATS
1935 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1936 schedstat_inc(sd, lb_hot_gained[idle]);
1937 #endif
1938
1939 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1940 pulled++;
1941
1942 /* We only want to steal up to the prescribed number of tasks. */
1943 if (pulled < max_nr_move) {
1944 if (curr != head)
1945 goto skip_queue;
1946 idx++;
1947 goto skip_bitmap;
1948 }
1949 out:
1950 /*
1951 * Right now, this is the only place pull_task() is called,
1952 * so we can safely collect pull_task() stats here rather than
1953 * inside pull_task().
1954 */
1955 schedstat_add(sd, lb_gained[idle], pulled);
1956
1957 if (all_pinned)
1958 *all_pinned = pinned;
1959 return pulled;
1960 }
1961
1962 /*
1963 * find_busiest_group finds and returns the busiest CPU group within the
1964 * domain. It calculates and returns the number of tasks which should be
1965 * moved to restore balance via the imbalance parameter.
1966 */
1967 static struct sched_group *
1968 find_busiest_group(struct sched_domain *sd, int this_cpu,
1969 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1970 {
1971 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1972 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1973 unsigned long max_pull;
1974 int load_idx;
1975
1976 max_load = this_load = total_load = total_pwr = 0;
1977 if (idle == NOT_IDLE)
1978 load_idx = sd->busy_idx;
1979 else if (idle == NEWLY_IDLE)
1980 load_idx = sd->newidle_idx;
1981 else
1982 load_idx = sd->idle_idx;
1983
1984 do {
1985 unsigned long load;
1986 int local_group;
1987 int i;
1988
1989 local_group = cpu_isset(this_cpu, group->cpumask);
1990
1991 /* Tally up the load of all CPUs in the group */
1992 avg_load = 0;
1993
1994 for_each_cpu_mask(i, group->cpumask) {
1995 if (*sd_idle && !idle_cpu(i))
1996 *sd_idle = 0;
1997
1998 /* Bias balancing toward cpus of our domain */
1999 if (local_group)
2000 load = __target_load(i, load_idx, idle);
2001 else
2002 load = __source_load(i, load_idx, idle);
2003
2004 avg_load += load;
2005 }
2006
2007 total_load += avg_load;
2008 total_pwr += group->cpu_power;
2009
2010 /* Adjust by relative CPU power of the group */
2011 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2012
2013 if (local_group) {
2014 this_load = avg_load;
2015 this = group;
2016 } else if (avg_load > max_load) {
2017 max_load = avg_load;
2018 busiest = group;
2019 }
2020 group = group->next;
2021 } while (group != sd->groups);
2022
2023 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
2024 goto out_balanced;
2025
2026 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2027
2028 if (this_load >= avg_load ||
2029 100*max_load <= sd->imbalance_pct*this_load)
2030 goto out_balanced;
2031
2032 /*
2033 * We're trying to get all the cpus to the average_load, so we don't
2034 * want to push ourselves above the average load, nor do we wish to
2035 * reduce the max loaded cpu below the average load, as either of these
2036 * actions would just result in more rebalancing later, and ping-pong
2037 * tasks around. Thus we look for the minimum possible imbalance.
2038 * Negative imbalances (*we* are more loaded than anyone else) will
2039 * be counted as no imbalance for these purposes -- we can't fix that
2040 * by pulling tasks to us. Be careful of negative numbers as they'll
2041 * appear as very large values with unsigned longs.
2042 */
2043
2044 /* Don't want to pull so many tasks that a group would go idle */
2045 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2046
2047 /* How much load to actually move to equalise the imbalance */
2048 *imbalance = min(max_pull * busiest->cpu_power,
2049 (avg_load - this_load) * this->cpu_power)
2050 / SCHED_LOAD_SCALE;
2051
2052 if (*imbalance < SCHED_LOAD_SCALE) {
2053 unsigned long pwr_now = 0, pwr_move = 0;
2054 unsigned long tmp;
2055
2056 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2057 *imbalance = 1;
2058 return busiest;
2059 }
2060
2061 /*
2062 * OK, we don't have enough imbalance to justify moving tasks,
2063 * however we may be able to increase total CPU power used by
2064 * moving them.
2065 */
2066
2067 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2068 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2069 pwr_now /= SCHED_LOAD_SCALE;
2070
2071 /* Amount of load we'd subtract */
2072 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2073 if (max_load > tmp)
2074 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2075 max_load - tmp);
2076
2077 /* Amount of load we'd add */
2078 if (max_load*busiest->cpu_power <
2079 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2080 tmp = max_load*busiest->cpu_power/this->cpu_power;
2081 else
2082 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2083 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2084 pwr_move /= SCHED_LOAD_SCALE;
2085
2086 /* Move if we gain throughput */
2087 if (pwr_move <= pwr_now)
2088 goto out_balanced;
2089
2090 *imbalance = 1;
2091 return busiest;
2092 }
2093
2094 /* Get rid of the scaling factor, rounding down as we divide */
2095 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2096 return busiest;
2097
2098 out_balanced:
2099
2100 *imbalance = 0;
2101 return NULL;
2102 }
2103
2104 /*
2105 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2106 */
2107 static runqueue_t *find_busiest_queue(struct sched_group *group,
2108 enum idle_type idle)
2109 {
2110 unsigned long load, max_load = 0;
2111 runqueue_t *busiest = NULL;
2112 int i;
2113
2114 for_each_cpu_mask(i, group->cpumask) {
2115 load = __source_load(i, 0, idle);
2116
2117 if (load > max_load) {
2118 max_load = load;
2119 busiest = cpu_rq(i);
2120 }
2121 }
2122
2123 return busiest;
2124 }
2125
2126 /*
2127 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2128 * so long as it is large enough.
2129 */
2130 #define MAX_PINNED_INTERVAL 512
2131
2132 /*
2133 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2134 * tasks if there is an imbalance.
2135 *
2136 * Called with this_rq unlocked.
2137 */
2138 static int load_balance(int this_cpu, runqueue_t *this_rq,
2139 struct sched_domain *sd, enum idle_type idle)
2140 {
2141 struct sched_group *group;
2142 runqueue_t *busiest;
2143 unsigned long imbalance;
2144 int nr_moved, all_pinned = 0;
2145 int active_balance = 0;
2146 int sd_idle = 0;
2147
2148 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2149 sd_idle = 1;
2150
2151 schedstat_inc(sd, lb_cnt[idle]);
2152
2153 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2154 if (!group) {
2155 schedstat_inc(sd, lb_nobusyg[idle]);
2156 goto out_balanced;
2157 }
2158
2159 busiest = find_busiest_queue(group, idle);
2160 if (!busiest) {
2161 schedstat_inc(sd, lb_nobusyq[idle]);
2162 goto out_balanced;
2163 }
2164
2165 BUG_ON(busiest == this_rq);
2166
2167 schedstat_add(sd, lb_imbalance[idle], imbalance);
2168
2169 nr_moved = 0;
2170 if (busiest->nr_running > 1) {
2171 /*
2172 * Attempt to move tasks. If find_busiest_group has found
2173 * an imbalance but busiest->nr_running <= 1, the group is
2174 * still unbalanced. nr_moved simply stays zero, so it is
2175 * correctly treated as an imbalance.
2176 */
2177 double_rq_lock(this_rq, busiest);
2178 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2179 imbalance, sd, idle, &all_pinned);
2180 double_rq_unlock(this_rq, busiest);
2181
2182 /* All tasks on this runqueue were pinned by CPU affinity */
2183 if (unlikely(all_pinned))
2184 goto out_balanced;
2185 }
2186
2187 if (!nr_moved) {
2188 schedstat_inc(sd, lb_failed[idle]);
2189 sd->nr_balance_failed++;
2190
2191 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2192
2193 spin_lock(&busiest->lock);
2194
2195 /* don't kick the migration_thread, if the curr
2196 * task on busiest cpu can't be moved to this_cpu
2197 */
2198 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2199 spin_unlock(&busiest->lock);
2200 all_pinned = 1;
2201 goto out_one_pinned;
2202 }
2203
2204 if (!busiest->active_balance) {
2205 busiest->active_balance = 1;
2206 busiest->push_cpu = this_cpu;
2207 active_balance = 1;
2208 }
2209 spin_unlock(&busiest->lock);
2210 if (active_balance)
2211 wake_up_process(busiest->migration_thread);
2212
2213 /*
2214 * We've kicked active balancing, reset the failure
2215 * counter.
2216 */
2217 sd->nr_balance_failed = sd->cache_nice_tries+1;
2218 }
2219 } else
2220 sd->nr_balance_failed = 0;
2221
2222 if (likely(!active_balance)) {
2223 /* We were unbalanced, so reset the balancing interval */
2224 sd->balance_interval = sd->min_interval;
2225 } else {
2226 /*
2227 * If we've begun active balancing, start to back off. This
2228 * case may not be covered by the all_pinned logic if there
2229 * is only 1 task on the busy runqueue (because we don't call
2230 * move_tasks).
2231 */
2232 if (sd->balance_interval < sd->max_interval)
2233 sd->balance_interval *= 2;
2234 }
2235
2236 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2237 return -1;
2238 return nr_moved;
2239
2240 out_balanced:
2241 schedstat_inc(sd, lb_balanced[idle]);
2242
2243 sd->nr_balance_failed = 0;
2244
2245 out_one_pinned:
2246 /* tune up the balancing interval */
2247 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2248 (sd->balance_interval < sd->max_interval))
2249 sd->balance_interval *= 2;
2250
2251 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2252 return -1;
2253 return 0;
2254 }
2255
2256 /*
2257 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2258 * tasks if there is an imbalance.
2259 *
2260 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2261 * this_rq is locked.
2262 */
2263 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2264 struct sched_domain *sd)
2265 {
2266 struct sched_group *group;
2267 runqueue_t *busiest = NULL;
2268 unsigned long imbalance;
2269 int nr_moved = 0;
2270 int sd_idle = 0;
2271
2272 if (sd->flags & SD_SHARE_CPUPOWER)
2273 sd_idle = 1;
2274
2275 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2276 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2277 if (!group) {
2278 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2279 goto out_balanced;
2280 }
2281
2282 busiest = find_busiest_queue(group, NEWLY_IDLE);
2283 if (!busiest) {
2284 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2285 goto out_balanced;
2286 }
2287
2288 BUG_ON(busiest == this_rq);
2289
2290 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2291
2292 nr_moved = 0;
2293 if (busiest->nr_running > 1) {
2294 /* Attempt to move tasks */
2295 double_lock_balance(this_rq, busiest);
2296 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2297 imbalance, sd, NEWLY_IDLE, NULL);
2298 spin_unlock(&busiest->lock);
2299 }
2300
2301 if (!nr_moved) {
2302 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2303 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2304 return -1;
2305 } else
2306 sd->nr_balance_failed = 0;
2307
2308 return nr_moved;
2309
2310 out_balanced:
2311 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2312 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2313 return -1;
2314 sd->nr_balance_failed = 0;
2315 return 0;
2316 }
2317
2318 /*
2319 * idle_balance is called by schedule() if this_cpu is about to become
2320 * idle. Attempts to pull tasks from other CPUs.
2321 */
2322 static inline void idle_balance(int this_cpu, runqueue_t *this_rq)
2323 {
2324 struct sched_domain *sd;
2325
2326 for_each_domain(this_cpu, sd) {
2327 if (sd->flags & SD_BALANCE_NEWIDLE) {
2328 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2329 /* We've pulled tasks over so stop searching */
2330 break;
2331 }
2332 }
2333 }
2334 }
2335
2336 /*
2337 * active_load_balance is run by migration threads. It pushes running tasks
2338 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2339 * running on each physical CPU where possible, and avoids physical /
2340 * logical imbalances.
2341 *
2342 * Called with busiest_rq locked.
2343 */
2344 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2345 {
2346 struct sched_domain *sd;
2347 runqueue_t *target_rq;
2348 int target_cpu = busiest_rq->push_cpu;
2349
2350 if (busiest_rq->nr_running <= 1)
2351 /* no task to move */
2352 return;
2353
2354 target_rq = cpu_rq(target_cpu);
2355
2356 /*
2357 * This condition is "impossible", if it occurs
2358 * we need to fix it. Originally reported by
2359 * Bjorn Helgaas on a 128-cpu setup.
2360 */
2361 BUG_ON(busiest_rq == target_rq);
2362
2363 /* move a task from busiest_rq to target_rq */
2364 double_lock_balance(busiest_rq, target_rq);
2365
2366 /* Search for an sd spanning us and the target CPU. */
2367 for_each_domain(target_cpu, sd)
2368 if ((sd->flags & SD_LOAD_BALANCE) &&
2369 cpu_isset(busiest_cpu, sd->span))
2370 break;
2371
2372 if (unlikely(sd == NULL))
2373 goto out;
2374
2375 schedstat_inc(sd, alb_cnt);
2376
2377 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2378 schedstat_inc(sd, alb_pushed);
2379 else
2380 schedstat_inc(sd, alb_failed);
2381 out:
2382 spin_unlock(&target_rq->lock);
2383 }
2384
2385 /*
2386 * rebalance_tick will get called every timer tick, on every CPU.
2387 *
2388 * It checks each scheduling domain to see if it is due to be balanced,
2389 * and initiates a balancing operation if so.
2390 *
2391 * Balancing parameters are set up in arch_init_sched_domains.
2392 */
2393
2394 /* Don't have all balancing operations going off at once */
2395 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2396
2397 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2398 enum idle_type idle)
2399 {
2400 unsigned long old_load, this_load;
2401 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2402 struct sched_domain *sd;
2403 int i;
2404
2405 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2406 /* Update our load */
2407 for (i = 0; i < 3; i++) {
2408 unsigned long new_load = this_load;
2409 int scale = 1 << i;
2410 old_load = this_rq->cpu_load[i];
2411 /*
2412 * Round up the averaging division if load is increasing. This
2413 * prevents us from getting stuck on 9 if the load is 10, for
2414 * example.
2415 */
2416 if (new_load > old_load)
2417 new_load += scale-1;
2418 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2419 }
2420
2421 for_each_domain(this_cpu, sd) {
2422 unsigned long interval;
2423
2424 if (!(sd->flags & SD_LOAD_BALANCE))
2425 continue;
2426
2427 interval = sd->balance_interval;
2428 if (idle != SCHED_IDLE)
2429 interval *= sd->busy_factor;
2430
2431 /* scale ms to jiffies */
2432 interval = msecs_to_jiffies(interval);
2433 if (unlikely(!interval))
2434 interval = 1;
2435
2436 if (j - sd->last_balance >= interval) {
2437 if (load_balance(this_cpu, this_rq, sd, idle)) {
2438 /*
2439 * We've pulled tasks over so either we're no
2440 * longer idle, or one of our SMT siblings is
2441 * not idle.
2442 */
2443 idle = NOT_IDLE;
2444 }
2445 sd->last_balance += interval;
2446 }
2447 }
2448 }
2449 #else
2450 /*
2451 * on UP we do not need to balance between CPUs:
2452 */
2453 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2454 {
2455 }
2456 static inline void idle_balance(int cpu, runqueue_t *rq)
2457 {
2458 }
2459 #endif
2460
2461 static inline int wake_priority_sleeper(runqueue_t *rq)
2462 {
2463 int ret = 0;
2464 #ifdef CONFIG_SCHED_SMT
2465 spin_lock(&rq->lock);
2466 /*
2467 * If an SMT sibling task has been put to sleep for priority
2468 * reasons reschedule the idle task to see if it can now run.
2469 */
2470 if (rq->nr_running) {
2471 resched_task(rq->idle);
2472 ret = 1;
2473 }
2474 spin_unlock(&rq->lock);
2475 #endif
2476 return ret;
2477 }
2478
2479 DEFINE_PER_CPU(struct kernel_stat, kstat);
2480
2481 EXPORT_PER_CPU_SYMBOL(kstat);
2482
2483 /*
2484 * This is called on clock ticks and on context switches.
2485 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2486 */
2487 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2488 unsigned long long now)
2489 {
2490 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2491 p->sched_time += now - last;
2492 }
2493
2494 /*
2495 * Return current->sched_time plus any more ns on the sched_clock
2496 * that have not yet been banked.
2497 */
2498 unsigned long long current_sched_time(const task_t *tsk)
2499 {
2500 unsigned long long ns;
2501 unsigned long flags;
2502 local_irq_save(flags);
2503 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2504 ns = tsk->sched_time + (sched_clock() - ns);
2505 local_irq_restore(flags);
2506 return ns;
2507 }
2508
2509 /*
2510 * We place interactive tasks back into the active array, if possible.
2511 *
2512 * To guarantee that this does not starve expired tasks we ignore the
2513 * interactivity of a task if the first expired task had to wait more
2514 * than a 'reasonable' amount of time. This deadline timeout is
2515 * load-dependent, as the frequency of array switched decreases with
2516 * increasing number of running tasks. We also ignore the interactivity
2517 * if a better static_prio task has expired:
2518 */
2519 #define EXPIRED_STARVING(rq) \
2520 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2521 (jiffies - (rq)->expired_timestamp >= \
2522 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2523 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2524
2525 /*
2526 * Account user cpu time to a process.
2527 * @p: the process that the cpu time gets accounted to
2528 * @hardirq_offset: the offset to subtract from hardirq_count()
2529 * @cputime: the cpu time spent in user space since the last update
2530 */
2531 void account_user_time(struct task_struct *p, cputime_t cputime)
2532 {
2533 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2534 cputime64_t tmp;
2535
2536 p->utime = cputime_add(p->utime, cputime);
2537
2538 /* Add user time to cpustat. */
2539 tmp = cputime_to_cputime64(cputime);
2540 if (TASK_NICE(p) > 0)
2541 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2542 else
2543 cpustat->user = cputime64_add(cpustat->user, tmp);
2544 }
2545
2546 /*
2547 * Account system cpu time to a process.
2548 * @p: the process that the cpu time gets accounted to
2549 * @hardirq_offset: the offset to subtract from hardirq_count()
2550 * @cputime: the cpu time spent in kernel space since the last update
2551 */
2552 void account_system_time(struct task_struct *p, int hardirq_offset,
2553 cputime_t cputime)
2554 {
2555 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2556 runqueue_t *rq = this_rq();
2557 cputime64_t tmp;
2558
2559 p->stime = cputime_add(p->stime, cputime);
2560
2561 /* Add system time to cpustat. */
2562 tmp = cputime_to_cputime64(cputime);
2563 if (hardirq_count() - hardirq_offset)
2564 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2565 else if (softirq_count())
2566 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2567 else if (p != rq->idle)
2568 cpustat->system = cputime64_add(cpustat->system, tmp);
2569 else if (atomic_read(&rq->nr_iowait) > 0)
2570 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2571 else
2572 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2573 /* Account for system time used */
2574 acct_update_integrals(p);
2575 }
2576
2577 /*
2578 * Account for involuntary wait time.
2579 * @p: the process from which the cpu time has been stolen
2580 * @steal: the cpu time spent in involuntary wait
2581 */
2582 void account_steal_time(struct task_struct *p, cputime_t steal)
2583 {
2584 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2585 cputime64_t tmp = cputime_to_cputime64(steal);
2586 runqueue_t *rq = this_rq();
2587
2588 if (p == rq->idle) {
2589 p->stime = cputime_add(p->stime, steal);
2590 if (atomic_read(&rq->nr_iowait) > 0)
2591 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2592 else
2593 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2594 } else
2595 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2596 }
2597
2598 /*
2599 * This function gets called by the timer code, with HZ frequency.
2600 * We call it with interrupts disabled.
2601 *
2602 * It also gets called by the fork code, when changing the parent's
2603 * timeslices.
2604 */
2605 void scheduler_tick(void)
2606 {
2607 int cpu = smp_processor_id();
2608 runqueue_t *rq = this_rq();
2609 task_t *p = current;
2610 unsigned long long now = sched_clock();
2611
2612 update_cpu_clock(p, rq, now);
2613
2614 rq->timestamp_last_tick = now;
2615
2616 if (p == rq->idle) {
2617 if (wake_priority_sleeper(rq))
2618 goto out;
2619 rebalance_tick(cpu, rq, SCHED_IDLE);
2620 return;
2621 }
2622
2623 /* Task might have expired already, but not scheduled off yet */
2624 if (p->array != rq->active) {
2625 set_tsk_need_resched(p);
2626 goto out;
2627 }
2628 spin_lock(&rq->lock);
2629 /*
2630 * The task was running during this tick - update the
2631 * time slice counter. Note: we do not update a thread's
2632 * priority until it either goes to sleep or uses up its
2633 * timeslice. This makes it possible for interactive tasks
2634 * to use up their timeslices at their highest priority levels.
2635 */
2636 if (rt_task(p)) {
2637 /*
2638 * RR tasks need a special form of timeslice management.
2639 * FIFO tasks have no timeslices.
2640 */
2641 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2642 p->time_slice = task_timeslice(p);
2643 p->first_time_slice = 0;
2644 set_tsk_need_resched(p);
2645
2646 /* put it at the end of the queue: */
2647 requeue_task(p, rq->active);
2648 }
2649 goto out_unlock;
2650 }
2651 if (!--p->time_slice) {
2652 dequeue_task(p, rq->active);
2653 set_tsk_need_resched(p);
2654 p->prio = effective_prio(p);
2655 p->time_slice = task_timeslice(p);
2656 p->first_time_slice = 0;
2657
2658 if (!rq->expired_timestamp)
2659 rq->expired_timestamp = jiffies;
2660 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2661 enqueue_task(p, rq->expired);
2662 if (p->static_prio < rq->best_expired_prio)
2663 rq->best_expired_prio = p->static_prio;
2664 } else
2665 enqueue_task(p, rq->active);
2666 } else {
2667 /*
2668 * Prevent a too long timeslice allowing a task to monopolize
2669 * the CPU. We do this by splitting up the timeslice into
2670 * smaller pieces.
2671 *
2672 * Note: this does not mean the task's timeslices expire or
2673 * get lost in any way, they just might be preempted by
2674 * another task of equal priority. (one with higher
2675 * priority would have preempted this task already.) We
2676 * requeue this task to the end of the list on this priority
2677 * level, which is in essence a round-robin of tasks with
2678 * equal priority.
2679 *
2680 * This only applies to tasks in the interactive
2681 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2682 */
2683 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2684 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2685 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2686 (p->array == rq->active)) {
2687
2688 requeue_task(p, rq->active);
2689 set_tsk_need_resched(p);
2690 }
2691 }
2692 out_unlock:
2693 spin_unlock(&rq->lock);
2694 out:
2695 rebalance_tick(cpu, rq, NOT_IDLE);
2696 }
2697
2698 #ifdef CONFIG_SCHED_SMT
2699 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2700 {
2701 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2702 if (rq->curr == rq->idle && rq->nr_running)
2703 resched_task(rq->idle);
2704 }
2705
2706 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2707 {
2708 struct sched_domain *tmp, *sd = NULL;
2709 cpumask_t sibling_map;
2710 int i;
2711
2712 for_each_domain(this_cpu, tmp)
2713 if (tmp->flags & SD_SHARE_CPUPOWER)
2714 sd = tmp;
2715
2716 if (!sd)
2717 return;
2718
2719 /*
2720 * Unlock the current runqueue because we have to lock in
2721 * CPU order to avoid deadlocks. Caller knows that we might
2722 * unlock. We keep IRQs disabled.
2723 */
2724 spin_unlock(&this_rq->lock);
2725
2726 sibling_map = sd->span;
2727
2728 for_each_cpu_mask(i, sibling_map)
2729 spin_lock(&cpu_rq(i)->lock);
2730 /*
2731 * We clear this CPU from the mask. This both simplifies the
2732 * inner loop and keps this_rq locked when we exit:
2733 */
2734 cpu_clear(this_cpu, sibling_map);
2735
2736 for_each_cpu_mask(i, sibling_map) {
2737 runqueue_t *smt_rq = cpu_rq(i);
2738
2739 wakeup_busy_runqueue(smt_rq);
2740 }
2741
2742 for_each_cpu_mask(i, sibling_map)
2743 spin_unlock(&cpu_rq(i)->lock);
2744 /*
2745 * We exit with this_cpu's rq still held and IRQs
2746 * still disabled:
2747 */
2748 }
2749
2750 /*
2751 * number of 'lost' timeslices this task wont be able to fully
2752 * utilize, if another task runs on a sibling. This models the
2753 * slowdown effect of other tasks running on siblings:
2754 */
2755 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2756 {
2757 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2758 }
2759
2760 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2761 {
2762 struct sched_domain *tmp, *sd = NULL;
2763 cpumask_t sibling_map;
2764 prio_array_t *array;
2765 int ret = 0, i;
2766 task_t *p;
2767
2768 for_each_domain(this_cpu, tmp)
2769 if (tmp->flags & SD_SHARE_CPUPOWER)
2770 sd = tmp;
2771
2772 if (!sd)
2773 return 0;
2774
2775 /*
2776 * The same locking rules and details apply as for
2777 * wake_sleeping_dependent():
2778 */
2779 spin_unlock(&this_rq->lock);
2780 sibling_map = sd->span;
2781 for_each_cpu_mask(i, sibling_map)
2782 spin_lock(&cpu_rq(i)->lock);
2783 cpu_clear(this_cpu, sibling_map);
2784
2785 /*
2786 * Establish next task to be run - it might have gone away because
2787 * we released the runqueue lock above:
2788 */
2789 if (!this_rq->nr_running)
2790 goto out_unlock;
2791 array = this_rq->active;
2792 if (!array->nr_active)
2793 array = this_rq->expired;
2794 BUG_ON(!array->nr_active);
2795
2796 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2797 task_t, run_list);
2798
2799 for_each_cpu_mask(i, sibling_map) {
2800 runqueue_t *smt_rq = cpu_rq(i);
2801 task_t *smt_curr = smt_rq->curr;
2802
2803 /* Kernel threads do not participate in dependent sleeping */
2804 if (!p->mm || !smt_curr->mm || rt_task(p))
2805 goto check_smt_task;
2806
2807 /*
2808 * If a user task with lower static priority than the
2809 * running task on the SMT sibling is trying to schedule,
2810 * delay it till there is proportionately less timeslice
2811 * left of the sibling task to prevent a lower priority
2812 * task from using an unfair proportion of the
2813 * physical cpu's resources. -ck
2814 */
2815 if (rt_task(smt_curr)) {
2816 /*
2817 * With real time tasks we run non-rt tasks only
2818 * per_cpu_gain% of the time.
2819 */
2820 if ((jiffies % DEF_TIMESLICE) >
2821 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2822 ret = 1;
2823 } else
2824 if (smt_curr->static_prio < p->static_prio &&
2825 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2826 smt_slice(smt_curr, sd) > task_timeslice(p))
2827 ret = 1;
2828
2829 check_smt_task:
2830 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2831 rt_task(smt_curr))
2832 continue;
2833 if (!p->mm) {
2834 wakeup_busy_runqueue(smt_rq);
2835 continue;
2836 }
2837
2838 /*
2839 * Reschedule a lower priority task on the SMT sibling for
2840 * it to be put to sleep, or wake it up if it has been put to
2841 * sleep for priority reasons to see if it should run now.
2842 */
2843 if (rt_task(p)) {
2844 if ((jiffies % DEF_TIMESLICE) >
2845 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2846 resched_task(smt_curr);
2847 } else {
2848 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2849 smt_slice(p, sd) > task_timeslice(smt_curr))
2850 resched_task(smt_curr);
2851 else
2852 wakeup_busy_runqueue(smt_rq);
2853 }
2854 }
2855 out_unlock:
2856 for_each_cpu_mask(i, sibling_map)
2857 spin_unlock(&cpu_rq(i)->lock);
2858 return ret;
2859 }
2860 #else
2861 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2862 {
2863 }
2864
2865 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2866 {
2867 return 0;
2868 }
2869 #endif
2870
2871 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2872
2873 void fastcall add_preempt_count(int val)
2874 {
2875 /*
2876 * Underflow?
2877 */
2878 BUG_ON((preempt_count() < 0));
2879 preempt_count() += val;
2880 /*
2881 * Spinlock count overflowing soon?
2882 */
2883 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2884 }
2885 EXPORT_SYMBOL(add_preempt_count);
2886
2887 void fastcall sub_preempt_count(int val)
2888 {
2889 /*
2890 * Underflow?
2891 */
2892 BUG_ON(val > preempt_count());
2893 /*
2894 * Is the spinlock portion underflowing?
2895 */
2896 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2897 preempt_count() -= val;
2898 }
2899 EXPORT_SYMBOL(sub_preempt_count);
2900
2901 #endif
2902
2903 /*
2904 * schedule() is the main scheduler function.
2905 */
2906 asmlinkage void __sched schedule(void)
2907 {
2908 long *switch_count;
2909 task_t *prev, *next;
2910 runqueue_t *rq;
2911 prio_array_t *array;
2912 struct list_head *queue;
2913 unsigned long long now;
2914 unsigned long run_time;
2915 int cpu, idx, new_prio;
2916
2917 /*
2918 * Test if we are atomic. Since do_exit() needs to call into
2919 * schedule() atomically, we ignore that path for now.
2920 * Otherwise, whine if we are scheduling when we should not be.
2921 */
2922 if (likely(!current->exit_state)) {
2923 if (unlikely(in_atomic())) {
2924 printk(KERN_ERR "scheduling while atomic: "
2925 "%s/0x%08x/%d\n",
2926 current->comm, preempt_count(), current->pid);
2927 dump_stack();
2928 }
2929 }
2930 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2931
2932 need_resched:
2933 preempt_disable();
2934 prev = current;
2935 release_kernel_lock(prev);
2936 need_resched_nonpreemptible:
2937 rq = this_rq();
2938
2939 /*
2940 * The idle thread is not allowed to schedule!
2941 * Remove this check after it has been exercised a bit.
2942 */
2943 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2944 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2945 dump_stack();
2946 }
2947
2948 schedstat_inc(rq, sched_cnt);
2949 now = sched_clock();
2950 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2951 run_time = now - prev->timestamp;
2952 if (unlikely((long long)(now - prev->timestamp) < 0))
2953 run_time = 0;
2954 } else
2955 run_time = NS_MAX_SLEEP_AVG;
2956
2957 /*
2958 * Tasks charged proportionately less run_time at high sleep_avg to
2959 * delay them losing their interactive status
2960 */
2961 run_time /= (CURRENT_BONUS(prev) ? : 1);
2962
2963 spin_lock_irq(&rq->lock);
2964
2965 if (unlikely(prev->flags & PF_DEAD))
2966 prev->state = EXIT_DEAD;
2967
2968 switch_count = &prev->nivcsw;
2969 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2970 switch_count = &prev->nvcsw;
2971 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2972 unlikely(signal_pending(prev))))
2973 prev->state = TASK_RUNNING;
2974 else {
2975 if (prev->state == TASK_UNINTERRUPTIBLE)
2976 rq->nr_uninterruptible++;
2977 deactivate_task(prev, rq);
2978 }
2979 }
2980
2981 cpu = smp_processor_id();
2982 if (unlikely(!rq->nr_running)) {
2983 go_idle:
2984 idle_balance(cpu, rq);
2985 if (!rq->nr_running) {
2986 next = rq->idle;
2987 rq->expired_timestamp = 0;
2988 wake_sleeping_dependent(cpu, rq);
2989 /*
2990 * wake_sleeping_dependent() might have released
2991 * the runqueue, so break out if we got new
2992 * tasks meanwhile:
2993 */
2994 if (!rq->nr_running)
2995 goto switch_tasks;
2996 }
2997 } else {
2998 if (dependent_sleeper(cpu, rq)) {
2999 next = rq->idle;
3000 goto switch_tasks;
3001 }
3002 /*
3003 * dependent_sleeper() releases and reacquires the runqueue
3004 * lock, hence go into the idle loop if the rq went
3005 * empty meanwhile:
3006 */
3007 if (unlikely(!rq->nr_running))
3008 goto go_idle;
3009 }
3010
3011 array = rq->active;
3012 if (unlikely(!array->nr_active)) {
3013 /*
3014 * Switch the active and expired arrays.
3015 */
3016 schedstat_inc(rq, sched_switch);
3017 rq->active = rq->expired;
3018 rq->expired = array;
3019 array = rq->active;
3020 rq->expired_timestamp = 0;
3021 rq->best_expired_prio = MAX_PRIO;
3022 }
3023
3024 idx = sched_find_first_bit(array->bitmap);
3025 queue = array->queue + idx;
3026 next = list_entry(queue->next, task_t, run_list);
3027
3028 if (!rt_task(next) && next->activated > 0) {
3029 unsigned long long delta = now - next->timestamp;
3030 if (unlikely((long long)(now - next->timestamp) < 0))
3031 delta = 0;
3032
3033 if (next->activated == 1)
3034 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3035
3036 array = next->array;
3037 new_prio = recalc_task_prio(next, next->timestamp + delta);
3038
3039 if (unlikely(next->prio != new_prio)) {
3040 dequeue_task(next, array);
3041 next->prio = new_prio;
3042 enqueue_task(next, array);
3043 } else
3044 requeue_task(next, array);
3045 }
3046 next->activated = 0;
3047 switch_tasks:
3048 if (next == rq->idle)
3049 schedstat_inc(rq, sched_goidle);
3050 prefetch(next);
3051 prefetch_stack(next);
3052 clear_tsk_need_resched(prev);
3053 rcu_qsctr_inc(task_cpu(prev));
3054
3055 update_cpu_clock(prev, rq, now);
3056
3057 prev->sleep_avg -= run_time;
3058 if ((long)prev->sleep_avg <= 0)
3059 prev->sleep_avg = 0;
3060 prev->timestamp = prev->last_ran = now;
3061
3062 sched_info_switch(prev, next);
3063 if (likely(prev != next)) {
3064 next->timestamp = now;
3065 rq->nr_switches++;
3066 rq->curr = next;
3067 ++*switch_count;
3068
3069 prepare_task_switch(rq, next);
3070 prev = context_switch(rq, prev, next);
3071 barrier();
3072 /*
3073 * this_rq must be evaluated again because prev may have moved
3074 * CPUs since it called schedule(), thus the 'rq' on its stack
3075 * frame will be invalid.
3076 */
3077 finish_task_switch(this_rq(), prev);
3078 } else
3079 spin_unlock_irq(&rq->lock);
3080
3081 prev = current;
3082 if (unlikely(reacquire_kernel_lock(prev) < 0))
3083 goto need_resched_nonpreemptible;
3084 preempt_enable_no_resched();
3085 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3086 goto need_resched;
3087 }
3088
3089 EXPORT_SYMBOL(schedule);
3090
3091 #ifdef CONFIG_PREEMPT
3092 /*
3093 * this is is the entry point to schedule() from in-kernel preemption
3094 * off of preempt_enable. Kernel preemptions off return from interrupt
3095 * occur there and call schedule directly.
3096 */
3097 asmlinkage void __sched preempt_schedule(void)
3098 {
3099 struct thread_info *ti = current_thread_info();
3100 #ifdef CONFIG_PREEMPT_BKL
3101 struct task_struct *task = current;
3102 int saved_lock_depth;
3103 #endif
3104 /*
3105 * If there is a non-zero preempt_count or interrupts are disabled,
3106 * we do not want to preempt the current task. Just return..
3107 */
3108 if (unlikely(ti->preempt_count || irqs_disabled()))
3109 return;
3110
3111 need_resched:
3112 add_preempt_count(PREEMPT_ACTIVE);
3113 /*
3114 * We keep the big kernel semaphore locked, but we
3115 * clear ->lock_depth so that schedule() doesnt
3116 * auto-release the semaphore:
3117 */
3118 #ifdef CONFIG_PREEMPT_BKL
3119 saved_lock_depth = task->lock_depth;
3120 task->lock_depth = -1;
3121 #endif
3122 schedule();
3123 #ifdef CONFIG_PREEMPT_BKL
3124 task->lock_depth = saved_lock_depth;
3125 #endif
3126 sub_preempt_count(PREEMPT_ACTIVE);
3127
3128 /* we could miss a preemption opportunity between schedule and now */
3129 barrier();
3130 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3131 goto need_resched;
3132 }
3133
3134 EXPORT_SYMBOL(preempt_schedule);
3135
3136 /*
3137 * this is is the entry point to schedule() from kernel preemption
3138 * off of irq context.
3139 * Note, that this is called and return with irqs disabled. This will
3140 * protect us against recursive calling from irq.
3141 */
3142 asmlinkage void __sched preempt_schedule_irq(void)
3143 {
3144 struct thread_info *ti = current_thread_info();
3145 #ifdef CONFIG_PREEMPT_BKL
3146 struct task_struct *task = current;
3147 int saved_lock_depth;
3148 #endif
3149 /* Catch callers which need to be fixed*/
3150 BUG_ON(ti->preempt_count || !irqs_disabled());
3151
3152 need_resched:
3153 add_preempt_count(PREEMPT_ACTIVE);
3154 /*
3155 * We keep the big kernel semaphore locked, but we
3156 * clear ->lock_depth so that schedule() doesnt
3157 * auto-release the semaphore:
3158 */
3159 #ifdef CONFIG_PREEMPT_BKL
3160 saved_lock_depth = task->lock_depth;
3161 task->lock_depth = -1;
3162 #endif
3163 local_irq_enable();
3164 schedule();
3165 local_irq_disable();
3166 #ifdef CONFIG_PREEMPT_BKL
3167 task->lock_depth = saved_lock_depth;
3168 #endif
3169 sub_preempt_count(PREEMPT_ACTIVE);
3170
3171 /* we could miss a preemption opportunity between schedule and now */
3172 barrier();
3173 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3174 goto need_resched;
3175 }
3176
3177 #endif /* CONFIG_PREEMPT */
3178
3179 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3180 void *key)
3181 {
3182 task_t *p = curr->private;
3183 return try_to_wake_up(p, mode, sync);
3184 }
3185
3186 EXPORT_SYMBOL(default_wake_function);
3187
3188 /*
3189 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3190 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3191 * number) then we wake all the non-exclusive tasks and one exclusive task.
3192 *
3193 * There are circumstances in which we can try to wake a task which has already
3194 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3195 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3196 */
3197 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3198 int nr_exclusive, int sync, void *key)
3199 {
3200 struct list_head *tmp, *next;
3201
3202 list_for_each_safe(tmp, next, &q->task_list) {
3203 wait_queue_t *curr;
3204 unsigned flags;
3205 curr = list_entry(tmp, wait_queue_t, task_list);
3206 flags = curr->flags;
3207 if (curr->func(curr, mode, sync, key) &&
3208 (flags & WQ_FLAG_EXCLUSIVE) &&
3209 !--nr_exclusive)
3210 break;
3211 }
3212 }
3213
3214 /**
3215 * __wake_up - wake up threads blocked on a waitqueue.
3216 * @q: the waitqueue
3217 * @mode: which threads
3218 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3219 * @key: is directly passed to the wakeup function
3220 */
3221 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3222 int nr_exclusive, void *key)
3223 {
3224 unsigned long flags;
3225
3226 spin_lock_irqsave(&q->lock, flags);
3227 __wake_up_common(q, mode, nr_exclusive, 0, key);
3228 spin_unlock_irqrestore(&q->lock, flags);
3229 }
3230
3231 EXPORT_SYMBOL(__wake_up);
3232
3233 /*
3234 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3235 */
3236 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3237 {
3238 __wake_up_common(q, mode, 1, 0, NULL);
3239 }
3240
3241 /**
3242 * __wake_up_sync - wake up threads blocked on a waitqueue.
3243 * @q: the waitqueue
3244 * @mode: which threads
3245 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3246 *
3247 * The sync wakeup differs that the waker knows that it will schedule
3248 * away soon, so while the target thread will be woken up, it will not
3249 * be migrated to another CPU - ie. the two threads are 'synchronized'
3250 * with each other. This can prevent needless bouncing between CPUs.
3251 *
3252 * On UP it can prevent extra preemption.
3253 */
3254 void fastcall
3255 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3256 {
3257 unsigned long flags;
3258 int sync = 1;
3259
3260 if (unlikely(!q))
3261 return;
3262
3263 if (unlikely(!nr_exclusive))
3264 sync = 0;
3265
3266 spin_lock_irqsave(&q->lock, flags);
3267 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3268 spin_unlock_irqrestore(&q->lock, flags);
3269 }
3270 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3271
3272 void fastcall complete(struct completion *x)
3273 {
3274 unsigned long flags;
3275
3276 spin_lock_irqsave(&x->wait.lock, flags);
3277 x->done++;
3278 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3279 1, 0, NULL);
3280 spin_unlock_irqrestore(&x->wait.lock, flags);
3281 }
3282 EXPORT_SYMBOL(complete);
3283
3284 void fastcall complete_all(struct completion *x)
3285 {
3286 unsigned long flags;
3287
3288 spin_lock_irqsave(&x->wait.lock, flags);
3289 x->done += UINT_MAX/2;
3290 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3291 0, 0, NULL);
3292 spin_unlock_irqrestore(&x->wait.lock, flags);
3293 }
3294 EXPORT_SYMBOL(complete_all);
3295
3296 void fastcall __sched wait_for_completion(struct completion *x)
3297 {
3298 might_sleep();
3299 spin_lock_irq(&x->wait.lock);
3300 if (!x->done) {
3301 DECLARE_WAITQUEUE(wait, current);
3302
3303 wait.flags |= WQ_FLAG_EXCLUSIVE;
3304 __add_wait_queue_tail(&x->wait, &wait);
3305 do {
3306 __set_current_state(TASK_UNINTERRUPTIBLE);
3307 spin_unlock_irq(&x->wait.lock);
3308 schedule();
3309 spin_lock_irq(&x->wait.lock);
3310 } while (!x->done);
3311 __remove_wait_queue(&x->wait, &wait);
3312 }
3313 x->done--;
3314 spin_unlock_irq(&x->wait.lock);
3315 }
3316 EXPORT_SYMBOL(wait_for_completion);
3317
3318 unsigned long fastcall __sched
3319 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3320 {
3321 might_sleep();
3322
3323 spin_lock_irq(&x->wait.lock);
3324 if (!x->done) {
3325 DECLARE_WAITQUEUE(wait, current);
3326
3327 wait.flags |= WQ_FLAG_EXCLUSIVE;
3328 __add_wait_queue_tail(&x->wait, &wait);
3329 do {
3330 __set_current_state(TASK_UNINTERRUPTIBLE);
3331 spin_unlock_irq(&x->wait.lock);
3332 timeout = schedule_timeout(timeout);
3333 spin_lock_irq(&x->wait.lock);
3334 if (!timeout) {
3335 __remove_wait_queue(&x->wait, &wait);
3336 goto out;
3337 }
3338 } while (!x->done);
3339 __remove_wait_queue(&x->wait, &wait);
3340 }
3341 x->done--;
3342 out:
3343 spin_unlock_irq(&x->wait.lock);
3344 return timeout;
3345 }
3346 EXPORT_SYMBOL(wait_for_completion_timeout);
3347
3348 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3349 {
3350 int ret = 0;
3351
3352 might_sleep();
3353
3354 spin_lock_irq(&x->wait.lock);
3355 if (!x->done) {
3356 DECLARE_WAITQUEUE(wait, current);
3357
3358 wait.flags |= WQ_FLAG_EXCLUSIVE;
3359 __add_wait_queue_tail(&x->wait, &wait);
3360 do {
3361 if (signal_pending(current)) {
3362 ret = -ERESTARTSYS;
3363 __remove_wait_queue(&x->wait, &wait);
3364 goto out;
3365 }
3366 __set_current_state(TASK_INTERRUPTIBLE);
3367 spin_unlock_irq(&x->wait.lock);
3368 schedule();
3369 spin_lock_irq(&x->wait.lock);
3370 } while (!x->done);
3371 __remove_wait_queue(&x->wait, &wait);
3372 }
3373 x->done--;
3374 out:
3375 spin_unlock_irq(&x->wait.lock);
3376
3377 return ret;
3378 }
3379 EXPORT_SYMBOL(wait_for_completion_interruptible);
3380
3381 unsigned long fastcall __sched
3382 wait_for_completion_interruptible_timeout(struct completion *x,
3383 unsigned long timeout)
3384 {
3385 might_sleep();
3386
3387 spin_lock_irq(&x->wait.lock);
3388 if (!x->done) {
3389 DECLARE_WAITQUEUE(wait, current);
3390
3391 wait.flags |= WQ_FLAG_EXCLUSIVE;
3392 __add_wait_queue_tail(&x->wait, &wait);
3393 do {
3394 if (signal_pending(current)) {
3395 timeout = -ERESTARTSYS;
3396 __remove_wait_queue(&x->wait, &wait);
3397 goto out;
3398 }
3399 __set_current_state(TASK_INTERRUPTIBLE);
3400 spin_unlock_irq(&x->wait.lock);
3401 timeout = schedule_timeout(timeout);
3402 spin_lock_irq(&x->wait.lock);
3403 if (!timeout) {
3404 __remove_wait_queue(&x->wait, &wait);
3405 goto out;
3406 }
3407 } while (!x->done);
3408 __remove_wait_queue(&x->wait, &wait);
3409 }
3410 x->done--;
3411 out:
3412 spin_unlock_irq(&x->wait.lock);
3413 return timeout;
3414 }
3415 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3416
3417
3418 #define SLEEP_ON_VAR \
3419 unsigned long flags; \
3420 wait_queue_t wait; \
3421 init_waitqueue_entry(&wait, current);
3422
3423 #define SLEEP_ON_HEAD \
3424 spin_lock_irqsave(&q->lock,flags); \
3425 __add_wait_queue(q, &wait); \
3426 spin_unlock(&q->lock);
3427
3428 #define SLEEP_ON_TAIL \
3429 spin_lock_irq(&q->lock); \
3430 __remove_wait_queue(q, &wait); \
3431 spin_unlock_irqrestore(&q->lock, flags);
3432
3433 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3434 {
3435 SLEEP_ON_VAR
3436
3437 current->state = TASK_INTERRUPTIBLE;
3438
3439 SLEEP_ON_HEAD
3440 schedule();
3441 SLEEP_ON_TAIL
3442 }
3443
3444 EXPORT_SYMBOL(interruptible_sleep_on);
3445
3446 long fastcall __sched
3447 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3448 {
3449 SLEEP_ON_VAR
3450
3451 current->state = TASK_INTERRUPTIBLE;
3452
3453 SLEEP_ON_HEAD
3454 timeout = schedule_timeout(timeout);
3455 SLEEP_ON_TAIL
3456
3457 return timeout;
3458 }
3459
3460 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3461
3462 void fastcall __sched sleep_on(wait_queue_head_t *q)
3463 {
3464 SLEEP_ON_VAR
3465
3466 current->state = TASK_UNINTERRUPTIBLE;
3467
3468 SLEEP_ON_HEAD
3469 schedule();
3470 SLEEP_ON_TAIL
3471 }
3472
3473 EXPORT_SYMBOL(sleep_on);
3474
3475 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3476 {
3477 SLEEP_ON_VAR
3478
3479 current->state = TASK_UNINTERRUPTIBLE;
3480
3481 SLEEP_ON_HEAD
3482 timeout = schedule_timeout(timeout);
3483 SLEEP_ON_TAIL
3484
3485 return timeout;
3486 }
3487
3488 EXPORT_SYMBOL(sleep_on_timeout);
3489
3490 void set_user_nice(task_t *p, long nice)
3491 {
3492 unsigned long flags;
3493 prio_array_t *array;
3494 runqueue_t *rq;
3495 int old_prio, new_prio, delta;
3496
3497 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3498 return;
3499 /*
3500 * We have to be careful, if called from sys_setpriority(),
3501 * the task might be in the middle of scheduling on another CPU.
3502 */
3503 rq = task_rq_lock(p, &flags);
3504 /*
3505 * The RT priorities are set via sched_setscheduler(), but we still
3506 * allow the 'normal' nice value to be set - but as expected
3507 * it wont have any effect on scheduling until the task is
3508 * not SCHED_NORMAL:
3509 */
3510 if (rt_task(p)) {
3511 p->static_prio = NICE_TO_PRIO(nice);
3512 goto out_unlock;
3513 }
3514 array = p->array;
3515 if (array) {
3516 dequeue_task(p, array);
3517 dec_prio_bias(rq, p->static_prio);
3518 }
3519
3520 old_prio = p->prio;
3521 new_prio = NICE_TO_PRIO(nice);
3522 delta = new_prio - old_prio;
3523 p->static_prio = NICE_TO_PRIO(nice);
3524 p->prio += delta;
3525
3526 if (array) {
3527 enqueue_task(p, array);
3528 inc_prio_bias(rq, p->static_prio);
3529 /*
3530 * If the task increased its priority or is running and
3531 * lowered its priority, then reschedule its CPU:
3532 */
3533 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3534 resched_task(rq->curr);
3535 }
3536 out_unlock:
3537 task_rq_unlock(rq, &flags);
3538 }
3539
3540 EXPORT_SYMBOL(set_user_nice);
3541
3542 /*
3543 * can_nice - check if a task can reduce its nice value
3544 * @p: task
3545 * @nice: nice value
3546 */
3547 int can_nice(const task_t *p, const int nice)
3548 {
3549 /* convert nice value [19,-20] to rlimit style value [1,40] */
3550 int nice_rlim = 20 - nice;
3551 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3552 capable(CAP_SYS_NICE));
3553 }
3554
3555 #ifdef __ARCH_WANT_SYS_NICE
3556
3557 /*
3558 * sys_nice - change the priority of the current process.
3559 * @increment: priority increment
3560 *
3561 * sys_setpriority is a more generic, but much slower function that
3562 * does similar things.
3563 */
3564 asmlinkage long sys_nice(int increment)
3565 {
3566 int retval;
3567 long nice;
3568
3569 /*
3570 * Setpriority might change our priority at the same moment.
3571 * We don't have to worry. Conceptually one call occurs first
3572 * and we have a single winner.
3573 */
3574 if (increment < -40)
3575 increment = -40;
3576 if (increment > 40)
3577 increment = 40;
3578
3579 nice = PRIO_TO_NICE(current->static_prio) + increment;
3580 if (nice < -20)
3581 nice = -20;
3582 if (nice > 19)
3583 nice = 19;
3584
3585 if (increment < 0 && !can_nice(current, nice))
3586 return -EPERM;
3587
3588 retval = security_task_setnice(current, nice);
3589 if (retval)
3590 return retval;
3591
3592 set_user_nice(current, nice);
3593 return 0;
3594 }
3595
3596 #endif
3597
3598 /**
3599 * task_prio - return the priority value of a given task.
3600 * @p: the task in question.
3601 *
3602 * This is the priority value as seen by users in /proc.
3603 * RT tasks are offset by -200. Normal tasks are centered
3604 * around 0, value goes from -16 to +15.
3605 */
3606 int task_prio(const task_t *p)
3607 {
3608 return p->prio - MAX_RT_PRIO;
3609 }
3610
3611 /**
3612 * task_nice - return the nice value of a given task.
3613 * @p: the task in question.
3614 */
3615 int task_nice(const task_t *p)
3616 {
3617 return TASK_NICE(p);
3618 }
3619 EXPORT_SYMBOL_GPL(task_nice);
3620
3621 /**
3622 * idle_cpu - is a given cpu idle currently?
3623 * @cpu: the processor in question.
3624 */
3625 int idle_cpu(int cpu)
3626 {
3627 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3628 }
3629
3630 /**
3631 * idle_task - return the idle task for a given cpu.
3632 * @cpu: the processor in question.
3633 */
3634 task_t *idle_task(int cpu)
3635 {
3636 return cpu_rq(cpu)->idle;
3637 }
3638
3639 /**
3640 * find_process_by_pid - find a process with a matching PID value.
3641 * @pid: the pid in question.
3642 */
3643 static inline task_t *find_process_by_pid(pid_t pid)
3644 {
3645 return pid ? find_task_by_pid(pid) : current;
3646 }
3647
3648 /* Actually do priority change: must hold rq lock. */
3649 static void __setscheduler(struct task_struct *p, int policy, int prio)
3650 {
3651 BUG_ON(p->array);
3652 p->policy = policy;
3653 p->rt_priority = prio;
3654 if (policy != SCHED_NORMAL)
3655 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3656 else
3657 p->prio = p->static_prio;
3658 }
3659
3660 /**
3661 * sched_setscheduler - change the scheduling policy and/or RT priority of
3662 * a thread.
3663 * @p: the task in question.
3664 * @policy: new policy.
3665 * @param: structure containing the new RT priority.
3666 */
3667 int sched_setscheduler(struct task_struct *p, int policy,
3668 struct sched_param *param)
3669 {
3670 int retval;
3671 int oldprio, oldpolicy = -1;
3672 prio_array_t *array;
3673 unsigned long flags;
3674 runqueue_t *rq;
3675
3676 recheck:
3677 /* double check policy once rq lock held */
3678 if (policy < 0)
3679 policy = oldpolicy = p->policy;
3680 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3681 policy != SCHED_NORMAL)
3682 return -EINVAL;
3683 /*
3684 * Valid priorities for SCHED_FIFO and SCHED_RR are
3685 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL is 0.
3686 */
3687 if (param->sched_priority < 0 ||
3688 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3689 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3690 return -EINVAL;
3691 if ((policy == SCHED_NORMAL) != (param->sched_priority == 0))
3692 return -EINVAL;
3693
3694 /*
3695 * Allow unprivileged RT tasks to decrease priority:
3696 */
3697 if (!capable(CAP_SYS_NICE)) {
3698 /* can't change policy */
3699 if (policy != p->policy &&
3700 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3701 return -EPERM;
3702 /* can't increase priority */
3703 if (policy != SCHED_NORMAL &&
3704 param->sched_priority > p->rt_priority &&
3705 param->sched_priority >
3706 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3707 return -EPERM;
3708 /* can't change other user's priorities */
3709 if ((current->euid != p->euid) &&
3710 (current->euid != p->uid))
3711 return -EPERM;
3712 }
3713
3714 retval = security_task_setscheduler(p, policy, param);
3715 if (retval)
3716 return retval;
3717 /*
3718 * To be able to change p->policy safely, the apropriate
3719 * runqueue lock must be held.
3720 */
3721 rq = task_rq_lock(p, &flags);
3722 /* recheck policy now with rq lock held */
3723 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3724 policy = oldpolicy = -1;
3725 task_rq_unlock(rq, &flags);
3726 goto recheck;
3727 }
3728 array = p->array;
3729 if (array)
3730 deactivate_task(p, rq);
3731 oldprio = p->prio;
3732 __setscheduler(p, policy, param->sched_priority);
3733 if (array) {
3734 __activate_task(p, rq);
3735 /*
3736 * Reschedule if we are currently running on this runqueue and
3737 * our priority decreased, or if we are not currently running on
3738 * this runqueue and our priority is higher than the current's
3739 */
3740 if (task_running(rq, p)) {
3741 if (p->prio > oldprio)
3742 resched_task(rq->curr);
3743 } else if (TASK_PREEMPTS_CURR(p, rq))
3744 resched_task(rq->curr);
3745 }
3746 task_rq_unlock(rq, &flags);
3747 return 0;
3748 }
3749 EXPORT_SYMBOL_GPL(sched_setscheduler);
3750
3751 static int
3752 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3753 {
3754 int retval;
3755 struct sched_param lparam;
3756 struct task_struct *p;
3757
3758 if (!param || pid < 0)
3759 return -EINVAL;
3760 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3761 return -EFAULT;
3762 read_lock_irq(&tasklist_lock);
3763 p = find_process_by_pid(pid);
3764 if (!p) {
3765 read_unlock_irq(&tasklist_lock);
3766 return -ESRCH;
3767 }
3768 retval = sched_setscheduler(p, policy, &lparam);
3769 read_unlock_irq(&tasklist_lock);
3770 return retval;
3771 }
3772
3773 /**
3774 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3775 * @pid: the pid in question.
3776 * @policy: new policy.
3777 * @param: structure containing the new RT priority.
3778 */
3779 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3780 struct sched_param __user *param)
3781 {
3782 return do_sched_setscheduler(pid, policy, param);
3783 }
3784
3785 /**
3786 * sys_sched_setparam - set/change the RT priority of a thread
3787 * @pid: the pid in question.
3788 * @param: structure containing the new RT priority.
3789 */
3790 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3791 {
3792 return do_sched_setscheduler(pid, -1, param);
3793 }
3794
3795 /**
3796 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3797 * @pid: the pid in question.
3798 */
3799 asmlinkage long sys_sched_getscheduler(pid_t pid)
3800 {
3801 int retval = -EINVAL;
3802 task_t *p;
3803
3804 if (pid < 0)
3805 goto out_nounlock;
3806
3807 retval = -ESRCH;
3808 read_lock(&tasklist_lock);
3809 p = find_process_by_pid(pid);
3810 if (p) {
3811 retval = security_task_getscheduler(p);
3812 if (!retval)
3813 retval = p->policy;
3814 }
3815 read_unlock(&tasklist_lock);
3816
3817 out_nounlock:
3818 return retval;
3819 }
3820
3821 /**
3822 * sys_sched_getscheduler - get the RT priority of a thread
3823 * @pid: the pid in question.
3824 * @param: structure containing the RT priority.
3825 */
3826 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3827 {
3828 struct sched_param lp;
3829 int retval = -EINVAL;
3830 task_t *p;
3831
3832 if (!param || pid < 0)
3833 goto out_nounlock;
3834
3835 read_lock(&tasklist_lock);
3836 p = find_process_by_pid(pid);
3837 retval = -ESRCH;
3838 if (!p)
3839 goto out_unlock;
3840
3841 retval = security_task_getscheduler(p);
3842 if (retval)
3843 goto out_unlock;
3844
3845 lp.sched_priority = p->rt_priority;
3846 read_unlock(&tasklist_lock);
3847
3848 /*
3849 * This one might sleep, we cannot do it with a spinlock held ...
3850 */
3851 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3852
3853 out_nounlock:
3854 return retval;
3855
3856 out_unlock:
3857 read_unlock(&tasklist_lock);
3858 return retval;
3859 }
3860
3861 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3862 {
3863 task_t *p;
3864 int retval;
3865 cpumask_t cpus_allowed;
3866
3867 lock_cpu_hotplug();
3868 read_lock(&tasklist_lock);
3869
3870 p = find_process_by_pid(pid);
3871 if (!p) {
3872 read_unlock(&tasklist_lock);
3873 unlock_cpu_hotplug();
3874 return -ESRCH;
3875 }
3876
3877 /*
3878 * It is not safe to call set_cpus_allowed with the
3879 * tasklist_lock held. We will bump the task_struct's
3880 * usage count and then drop tasklist_lock.
3881 */
3882 get_task_struct(p);
3883 read_unlock(&tasklist_lock);
3884
3885 retval = -EPERM;
3886 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3887 !capable(CAP_SYS_NICE))
3888 goto out_unlock;
3889
3890 cpus_allowed = cpuset_cpus_allowed(p);
3891 cpus_and(new_mask, new_mask, cpus_allowed);
3892 retval = set_cpus_allowed(p, new_mask);
3893
3894 out_unlock:
3895 put_task_struct(p);
3896 unlock_cpu_hotplug();
3897 return retval;
3898 }
3899
3900 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3901 cpumask_t *new_mask)
3902 {
3903 if (len < sizeof(cpumask_t)) {
3904 memset(new_mask, 0, sizeof(cpumask_t));
3905 } else if (len > sizeof(cpumask_t)) {
3906 len = sizeof(cpumask_t);
3907 }
3908 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3909 }
3910
3911 /**
3912 * sys_sched_setaffinity - set the cpu affinity of a process
3913 * @pid: pid of the process
3914 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3915 * @user_mask_ptr: user-space pointer to the new cpu mask
3916 */
3917 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3918 unsigned long __user *user_mask_ptr)
3919 {
3920 cpumask_t new_mask;
3921 int retval;
3922
3923 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3924 if (retval)
3925 return retval;
3926
3927 return sched_setaffinity(pid, new_mask);
3928 }
3929
3930 /*
3931 * Represents all cpu's present in the system
3932 * In systems capable of hotplug, this map could dynamically grow
3933 * as new cpu's are detected in the system via any platform specific
3934 * method, such as ACPI for e.g.
3935 */
3936
3937 cpumask_t cpu_present_map;
3938 EXPORT_SYMBOL(cpu_present_map);
3939
3940 #ifndef CONFIG_SMP
3941 cpumask_t cpu_online_map = CPU_MASK_ALL;
3942 cpumask_t cpu_possible_map = CPU_MASK_ALL;
3943 #endif
3944
3945 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3946 {
3947 int retval;
3948 task_t *p;
3949
3950 lock_cpu_hotplug();
3951 read_lock(&tasklist_lock);
3952
3953 retval = -ESRCH;
3954 p = find_process_by_pid(pid);
3955 if (!p)
3956 goto out_unlock;
3957
3958 retval = 0;
3959 cpus_and(*mask, p->cpus_allowed, cpu_possible_map);
3960
3961 out_unlock:
3962 read_unlock(&tasklist_lock);
3963 unlock_cpu_hotplug();
3964 if (retval)
3965 return retval;
3966
3967 return 0;
3968 }
3969
3970 /**
3971 * sys_sched_getaffinity - get the cpu affinity of a process
3972 * @pid: pid of the process
3973 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3974 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3975 */
3976 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3977 unsigned long __user *user_mask_ptr)
3978 {
3979 int ret;
3980 cpumask_t mask;
3981
3982 if (len < sizeof(cpumask_t))
3983 return -EINVAL;
3984
3985 ret = sched_getaffinity(pid, &mask);
3986 if (ret < 0)
3987 return ret;
3988
3989 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3990 return -EFAULT;
3991
3992 return sizeof(cpumask_t);
3993 }
3994
3995 /**
3996 * sys_sched_yield - yield the current processor to other threads.
3997 *
3998 * this function yields the current CPU by moving the calling thread
3999 * to the expired array. If there are no other threads running on this
4000 * CPU then this function will return.
4001 */
4002 asmlinkage long sys_sched_yield(void)
4003 {
4004 runqueue_t *rq = this_rq_lock();
4005 prio_array_t *array = current->array;
4006 prio_array_t *target = rq->expired;
4007
4008 schedstat_inc(rq, yld_cnt);
4009 /*
4010 * We implement yielding by moving the task into the expired
4011 * queue.
4012 *
4013 * (special rule: RT tasks will just roundrobin in the active
4014 * array.)
4015 */
4016 if (rt_task(current))
4017 target = rq->active;
4018
4019 if (array->nr_active == 1) {
4020 schedstat_inc(rq, yld_act_empty);
4021 if (!rq->expired->nr_active)
4022 schedstat_inc(rq, yld_both_empty);
4023 } else if (!rq->expired->nr_active)
4024 schedstat_inc(rq, yld_exp_empty);
4025
4026 if (array != target) {
4027 dequeue_task(current, array);
4028 enqueue_task(current, target);
4029 } else
4030 /*
4031 * requeue_task is cheaper so perform that if possible.
4032 */
4033 requeue_task(current, array);
4034
4035 /*
4036 * Since we are going to call schedule() anyway, there's
4037 * no need to preempt or enable interrupts:
4038 */
4039 __release(rq->lock);
4040 _raw_spin_unlock(&rq->lock);
4041 preempt_enable_no_resched();
4042
4043 schedule();
4044
4045 return 0;
4046 }
4047
4048 static inline void __cond_resched(void)
4049 {
4050 /*
4051 * The BKS might be reacquired before we have dropped
4052 * PREEMPT_ACTIVE, which could trigger a second
4053 * cond_resched() call.
4054 */
4055 if (unlikely(preempt_count()))
4056 return;
4057 do {
4058 add_preempt_count(PREEMPT_ACTIVE);
4059 schedule();
4060 sub_preempt_count(PREEMPT_ACTIVE);
4061 } while (need_resched());
4062 }
4063
4064 int __sched cond_resched(void)
4065 {
4066 if (need_resched()) {
4067 __cond_resched();
4068 return 1;
4069 }
4070 return 0;
4071 }
4072
4073 EXPORT_SYMBOL(cond_resched);
4074
4075 /*
4076 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4077 * call schedule, and on return reacquire the lock.
4078 *
4079 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4080 * operations here to prevent schedule() from being called twice (once via
4081 * spin_unlock(), once by hand).
4082 */
4083 int cond_resched_lock(spinlock_t *lock)
4084 {
4085 int ret = 0;
4086
4087 if (need_lockbreak(lock)) {
4088 spin_unlock(lock);
4089 cpu_relax();
4090 ret = 1;
4091 spin_lock(lock);
4092 }
4093 if (need_resched()) {
4094 _raw_spin_unlock(lock);
4095 preempt_enable_no_resched();
4096 __cond_resched();
4097 ret = 1;
4098 spin_lock(lock);
4099 }
4100 return ret;
4101 }
4102
4103 EXPORT_SYMBOL(cond_resched_lock);
4104
4105 int __sched cond_resched_softirq(void)
4106 {
4107 BUG_ON(!in_softirq());
4108
4109 if (need_resched()) {
4110 __local_bh_enable();
4111 __cond_resched();
4112 local_bh_disable();
4113 return 1;
4114 }
4115 return 0;
4116 }
4117
4118 EXPORT_SYMBOL(cond_resched_softirq);
4119
4120
4121 /**
4122 * yield - yield the current processor to other threads.
4123 *
4124 * this is a shortcut for kernel-space yielding - it marks the
4125 * thread runnable and calls sys_sched_yield().
4126 */
4127 void __sched yield(void)
4128 {
4129 set_current_state(TASK_RUNNING);
4130 sys_sched_yield();
4131 }
4132
4133 EXPORT_SYMBOL(yield);
4134
4135 /*
4136 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4137 * that process accounting knows that this is a task in IO wait state.
4138 *
4139 * But don't do that if it is a deliberate, throttling IO wait (this task
4140 * has set its backing_dev_info: the queue against which it should throttle)
4141 */
4142 void __sched io_schedule(void)
4143 {
4144 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4145
4146 atomic_inc(&rq->nr_iowait);
4147 schedule();
4148 atomic_dec(&rq->nr_iowait);
4149 }
4150
4151 EXPORT_SYMBOL(io_schedule);
4152
4153 long __sched io_schedule_timeout(long timeout)
4154 {
4155 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4156 long ret;
4157
4158 atomic_inc(&rq->nr_iowait);
4159 ret = schedule_timeout(timeout);
4160 atomic_dec(&rq->nr_iowait);
4161 return ret;
4162 }
4163
4164 /**
4165 * sys_sched_get_priority_max - return maximum RT priority.
4166 * @policy: scheduling class.
4167 *
4168 * this syscall returns the maximum rt_priority that can be used
4169 * by a given scheduling class.
4170 */
4171 asmlinkage long sys_sched_get_priority_max(int policy)
4172 {
4173 int ret = -EINVAL;
4174
4175 switch (policy) {
4176 case SCHED_FIFO:
4177 case SCHED_RR:
4178 ret = MAX_USER_RT_PRIO-1;
4179 break;
4180 case SCHED_NORMAL:
4181 ret = 0;
4182 break;
4183 }
4184 return ret;
4185 }
4186
4187 /**
4188 * sys_sched_get_priority_min - return minimum RT priority.
4189 * @policy: scheduling class.
4190 *
4191 * this syscall returns the minimum rt_priority that can be used
4192 * by a given scheduling class.
4193 */
4194 asmlinkage long sys_sched_get_priority_min(int policy)
4195 {
4196 int ret = -EINVAL;
4197
4198 switch (policy) {
4199 case SCHED_FIFO:
4200 case SCHED_RR:
4201 ret = 1;
4202 break;
4203 case SCHED_NORMAL:
4204 ret = 0;
4205 }
4206 return ret;
4207 }
4208
4209 /**
4210 * sys_sched_rr_get_interval - return the default timeslice of a process.
4211 * @pid: pid of the process.
4212 * @interval: userspace pointer to the timeslice value.
4213 *
4214 * this syscall writes the default timeslice value of a given process
4215 * into the user-space timespec buffer. A value of '0' means infinity.
4216 */
4217 asmlinkage
4218 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4219 {
4220 int retval = -EINVAL;
4221 struct timespec t;
4222 task_t *p;
4223
4224 if (pid < 0)
4225 goto out_nounlock;
4226
4227 retval = -ESRCH;
4228 read_lock(&tasklist_lock);
4229 p = find_process_by_pid(pid);
4230 if (!p)
4231 goto out_unlock;
4232
4233 retval = security_task_getscheduler(p);
4234 if (retval)
4235 goto out_unlock;
4236
4237 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4238 0 : task_timeslice(p), &t);
4239 read_unlock(&tasklist_lock);
4240 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4241 out_nounlock:
4242 return retval;
4243 out_unlock:
4244 read_unlock(&tasklist_lock);
4245 return retval;
4246 }
4247
4248 static inline struct task_struct *eldest_child(struct task_struct *p)
4249 {
4250 if (list_empty(&p->children)) return NULL;
4251 return list_entry(p->children.next,struct task_struct,sibling);
4252 }
4253
4254 static inline struct task_struct *older_sibling(struct task_struct *p)
4255 {
4256 if (p->sibling.prev==&p->parent->children) return NULL;
4257 return list_entry(p->sibling.prev,struct task_struct,sibling);
4258 }
4259
4260 static inline struct task_struct *younger_sibling(struct task_struct *p)
4261 {
4262 if (p->sibling.next==&p->parent->children) return NULL;
4263 return list_entry(p->sibling.next,struct task_struct,sibling);
4264 }
4265
4266 static void show_task(task_t *p)
4267 {
4268 task_t *relative;
4269 unsigned state;
4270 unsigned long free = 0;
4271 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4272
4273 printk("%-13.13s ", p->comm);
4274 state = p->state ? __ffs(p->state) + 1 : 0;
4275 if (state < ARRAY_SIZE(stat_nam))
4276 printk(stat_nam[state]);
4277 else
4278 printk("?");
4279 #if (BITS_PER_LONG == 32)
4280 if (state == TASK_RUNNING)
4281 printk(" running ");
4282 else
4283 printk(" %08lX ", thread_saved_pc(p));
4284 #else
4285 if (state == TASK_RUNNING)
4286 printk(" running task ");
4287 else
4288 printk(" %016lx ", thread_saved_pc(p));
4289 #endif
4290 #ifdef CONFIG_DEBUG_STACK_USAGE
4291 {
4292 unsigned long *n = (unsigned long *) (p->thread_info+1);
4293 while (!*n)
4294 n++;
4295 free = (unsigned long) n - (unsigned long)(p->thread_info+1);
4296 }
4297 #endif
4298 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4299 if ((relative = eldest_child(p)))
4300 printk("%5d ", relative->pid);
4301 else
4302 printk(" ");
4303 if ((relative = younger_sibling(p)))
4304 printk("%7d", relative->pid);
4305 else
4306 printk(" ");
4307 if ((relative = older_sibling(p)))
4308 printk(" %5d", relative->pid);
4309 else
4310 printk(" ");
4311 if (!p->mm)
4312 printk(" (L-TLB)\n");
4313 else
4314 printk(" (NOTLB)\n");
4315
4316 if (state != TASK_RUNNING)
4317 show_stack(p, NULL);
4318 }
4319
4320 void show_state(void)
4321 {
4322 task_t *g, *p;
4323
4324 #if (BITS_PER_LONG == 32)
4325 printk("\n"
4326 " sibling\n");
4327 printk(" task PC pid father child younger older\n");
4328 #else
4329 printk("\n"
4330 " sibling\n");
4331 printk(" task PC pid father child younger older\n");
4332 #endif
4333 read_lock(&tasklist_lock);
4334 do_each_thread(g, p) {
4335 /*
4336 * reset the NMI-timeout, listing all files on a slow
4337 * console might take alot of time:
4338 */
4339 touch_nmi_watchdog();
4340 show_task(p);
4341 } while_each_thread(g, p);
4342
4343 read_unlock(&tasklist_lock);
4344 }
4345
4346 /**
4347 * init_idle - set up an idle thread for a given CPU
4348 * @idle: task in question
4349 * @cpu: cpu the idle task belongs to
4350 *
4351 * NOTE: this function does not set the idle thread's NEED_RESCHED
4352 * flag, to make booting more robust.
4353 */
4354 void __devinit init_idle(task_t *idle, int cpu)
4355 {
4356 runqueue_t *rq = cpu_rq(cpu);
4357 unsigned long flags;
4358
4359 idle->sleep_avg = 0;
4360 idle->array = NULL;
4361 idle->prio = MAX_PRIO;
4362 idle->state = TASK_RUNNING;
4363 idle->cpus_allowed = cpumask_of_cpu(cpu);
4364 set_task_cpu(idle, cpu);
4365
4366 spin_lock_irqsave(&rq->lock, flags);
4367 rq->curr = rq->idle = idle;
4368 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4369 idle->oncpu = 1;
4370 #endif
4371 spin_unlock_irqrestore(&rq->lock, flags);
4372
4373 /* Set the preempt count _outside_ the spinlocks! */
4374 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4375 idle->thread_info->preempt_count = (idle->lock_depth >= 0);
4376 #else
4377 idle->thread_info->preempt_count = 0;
4378 #endif
4379 }
4380
4381 /*
4382 * In a system that switches off the HZ timer nohz_cpu_mask
4383 * indicates which cpus entered this state. This is used
4384 * in the rcu update to wait only for active cpus. For system
4385 * which do not switch off the HZ timer nohz_cpu_mask should
4386 * always be CPU_MASK_NONE.
4387 */
4388 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4389
4390 #ifdef CONFIG_SMP
4391 /*
4392 * This is how migration works:
4393 *
4394 * 1) we queue a migration_req_t structure in the source CPU's
4395 * runqueue and wake up that CPU's migration thread.
4396 * 2) we down() the locked semaphore => thread blocks.
4397 * 3) migration thread wakes up (implicitly it forces the migrated
4398 * thread off the CPU)
4399 * 4) it gets the migration request and checks whether the migrated
4400 * task is still in the wrong runqueue.
4401 * 5) if it's in the wrong runqueue then the migration thread removes
4402 * it and puts it into the right queue.
4403 * 6) migration thread up()s the semaphore.
4404 * 7) we wake up and the migration is done.
4405 */
4406
4407 /*
4408 * Change a given task's CPU affinity. Migrate the thread to a
4409 * proper CPU and schedule it away if the CPU it's executing on
4410 * is removed from the allowed bitmask.
4411 *
4412 * NOTE: the caller must have a valid reference to the task, the
4413 * task must not exit() & deallocate itself prematurely. The
4414 * call is not atomic; no spinlocks may be held.
4415 */
4416 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4417 {
4418 unsigned long flags;
4419 int ret = 0;
4420 migration_req_t req;
4421 runqueue_t *rq;
4422
4423 rq = task_rq_lock(p, &flags);
4424 if (!cpus_intersects(new_mask, cpu_online_map)) {
4425 ret = -EINVAL;
4426 goto out;
4427 }
4428
4429 p->cpus_allowed = new_mask;
4430 /* Can the task run on the task's current CPU? If so, we're done */
4431 if (cpu_isset(task_cpu(p), new_mask))
4432 goto out;
4433
4434 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4435 /* Need help from migration thread: drop lock and wait. */
4436 task_rq_unlock(rq, &flags);
4437 wake_up_process(rq->migration_thread);
4438 wait_for_completion(&req.done);
4439 tlb_migrate_finish(p->mm);
4440 return 0;
4441 }
4442 out:
4443 task_rq_unlock(rq, &flags);
4444 return ret;
4445 }
4446
4447 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4448
4449 /*
4450 * Move (not current) task off this cpu, onto dest cpu. We're doing
4451 * this because either it can't run here any more (set_cpus_allowed()
4452 * away from this CPU, or CPU going down), or because we're
4453 * attempting to rebalance this task on exec (sched_exec).
4454 *
4455 * So we race with normal scheduler movements, but that's OK, as long
4456 * as the task is no longer on this CPU.
4457 */
4458 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4459 {
4460 runqueue_t *rq_dest, *rq_src;
4461
4462 if (unlikely(cpu_is_offline(dest_cpu)))
4463 return;
4464
4465 rq_src = cpu_rq(src_cpu);
4466 rq_dest = cpu_rq(dest_cpu);
4467
4468 double_rq_lock(rq_src, rq_dest);
4469 /* Already moved. */
4470 if (task_cpu(p) != src_cpu)
4471 goto out;
4472 /* Affinity changed (again). */
4473 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4474 goto out;
4475
4476 set_task_cpu(p, dest_cpu);
4477 if (p->array) {
4478 /*
4479 * Sync timestamp with rq_dest's before activating.
4480 * The same thing could be achieved by doing this step
4481 * afterwards, and pretending it was a local activate.
4482 * This way is cleaner and logically correct.
4483 */
4484 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4485 + rq_dest->timestamp_last_tick;
4486 deactivate_task(p, rq_src);
4487 activate_task(p, rq_dest, 0);
4488 if (TASK_PREEMPTS_CURR(p, rq_dest))
4489 resched_task(rq_dest->curr);
4490 }
4491
4492 out:
4493 double_rq_unlock(rq_src, rq_dest);
4494 }
4495
4496 /*
4497 * migration_thread - this is a highprio system thread that performs
4498 * thread migration by bumping thread off CPU then 'pushing' onto
4499 * another runqueue.
4500 */
4501 static int migration_thread(void *data)
4502 {
4503 runqueue_t *rq;
4504 int cpu = (long)data;
4505
4506 rq = cpu_rq(cpu);
4507 BUG_ON(rq->migration_thread != current);
4508
4509 set_current_state(TASK_INTERRUPTIBLE);
4510 while (!kthread_should_stop()) {
4511 struct list_head *head;
4512 migration_req_t *req;
4513
4514 try_to_freeze();
4515
4516 spin_lock_irq(&rq->lock);
4517
4518 if (cpu_is_offline(cpu)) {
4519 spin_unlock_irq(&rq->lock);
4520 goto wait_to_die;
4521 }
4522
4523 if (rq->active_balance) {
4524 active_load_balance(rq, cpu);
4525 rq->active_balance = 0;
4526 }
4527
4528 head = &rq->migration_queue;
4529
4530 if (list_empty(head)) {
4531 spin_unlock_irq(&rq->lock);
4532 schedule();
4533 set_current_state(TASK_INTERRUPTIBLE);
4534 continue;
4535 }
4536 req = list_entry(head->next, migration_req_t, list);
4537 list_del_init(head->next);
4538
4539 spin_unlock(&rq->lock);
4540 __migrate_task(req->task, cpu, req->dest_cpu);
4541 local_irq_enable();
4542
4543 complete(&req->done);
4544 }
4545 __set_current_state(TASK_RUNNING);
4546 return 0;
4547
4548 wait_to_die:
4549 /* Wait for kthread_stop */
4550 set_current_state(TASK_INTERRUPTIBLE);
4551 while (!kthread_should_stop()) {
4552 schedule();
4553 set_current_state(TASK_INTERRUPTIBLE);
4554 }
4555 __set_current_state(TASK_RUNNING);
4556 return 0;
4557 }
4558
4559 #ifdef CONFIG_HOTPLUG_CPU
4560 /* Figure out where task on dead CPU should go, use force if neccessary. */
4561 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4562 {
4563 int dest_cpu;
4564 cpumask_t mask;
4565
4566 /* On same node? */
4567 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4568 cpus_and(mask, mask, tsk->cpus_allowed);
4569 dest_cpu = any_online_cpu(mask);
4570
4571 /* On any allowed CPU? */
4572 if (dest_cpu == NR_CPUS)
4573 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4574
4575 /* No more Mr. Nice Guy. */
4576 if (dest_cpu == NR_CPUS) {
4577 cpus_setall(tsk->cpus_allowed);
4578 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4579
4580 /*
4581 * Don't tell them about moving exiting tasks or
4582 * kernel threads (both mm NULL), since they never
4583 * leave kernel.
4584 */
4585 if (tsk->mm && printk_ratelimit())
4586 printk(KERN_INFO "process %d (%s) no "
4587 "longer affine to cpu%d\n",
4588 tsk->pid, tsk->comm, dead_cpu);
4589 }
4590 __migrate_task(tsk, dead_cpu, dest_cpu);
4591 }
4592
4593 /*
4594 * While a dead CPU has no uninterruptible tasks queued at this point,
4595 * it might still have a nonzero ->nr_uninterruptible counter, because
4596 * for performance reasons the counter is not stricly tracking tasks to
4597 * their home CPUs. So we just add the counter to another CPU's counter,
4598 * to keep the global sum constant after CPU-down:
4599 */
4600 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4601 {
4602 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4603 unsigned long flags;
4604
4605 local_irq_save(flags);
4606 double_rq_lock(rq_src, rq_dest);
4607 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4608 rq_src->nr_uninterruptible = 0;
4609 double_rq_unlock(rq_src, rq_dest);
4610 local_irq_restore(flags);
4611 }
4612
4613 /* Run through task list and migrate tasks from the dead cpu. */
4614 static void migrate_live_tasks(int src_cpu)
4615 {
4616 struct task_struct *tsk, *t;
4617
4618 write_lock_irq(&tasklist_lock);
4619
4620 do_each_thread(t, tsk) {
4621 if (tsk == current)
4622 continue;
4623
4624 if (task_cpu(tsk) == src_cpu)
4625 move_task_off_dead_cpu(src_cpu, tsk);
4626 } while_each_thread(t, tsk);
4627
4628 write_unlock_irq(&tasklist_lock);
4629 }
4630
4631 /* Schedules idle task to be the next runnable task on current CPU.
4632 * It does so by boosting its priority to highest possible and adding it to
4633 * the _front_ of runqueue. Used by CPU offline code.
4634 */
4635 void sched_idle_next(void)
4636 {
4637 int cpu = smp_processor_id();
4638 runqueue_t *rq = this_rq();
4639 struct task_struct *p = rq->idle;
4640 unsigned long flags;
4641
4642 /* cpu has to be offline */
4643 BUG_ON(cpu_online(cpu));
4644
4645 /* Strictly not necessary since rest of the CPUs are stopped by now
4646 * and interrupts disabled on current cpu.
4647 */
4648 spin_lock_irqsave(&rq->lock, flags);
4649
4650 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4651 /* Add idle task to _front_ of it's priority queue */
4652 __activate_idle_task(p, rq);
4653
4654 spin_unlock_irqrestore(&rq->lock, flags);
4655 }
4656
4657 /* Ensures that the idle task is using init_mm right before its cpu goes
4658 * offline.
4659 */
4660 void idle_task_exit(void)
4661 {
4662 struct mm_struct *mm = current->active_mm;
4663
4664 BUG_ON(cpu_online(smp_processor_id()));
4665
4666 if (mm != &init_mm)
4667 switch_mm(mm, &init_mm, current);
4668 mmdrop(mm);
4669 }
4670
4671 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4672 {
4673 struct runqueue *rq = cpu_rq(dead_cpu);
4674
4675 /* Must be exiting, otherwise would be on tasklist. */
4676 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4677
4678 /* Cannot have done final schedule yet: would have vanished. */
4679 BUG_ON(tsk->flags & PF_DEAD);
4680
4681 get_task_struct(tsk);
4682
4683 /*
4684 * Drop lock around migration; if someone else moves it,
4685 * that's OK. No task can be added to this CPU, so iteration is
4686 * fine.
4687 */
4688 spin_unlock_irq(&rq->lock);
4689 move_task_off_dead_cpu(dead_cpu, tsk);
4690 spin_lock_irq(&rq->lock);
4691
4692 put_task_struct(tsk);
4693 }
4694
4695 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4696 static void migrate_dead_tasks(unsigned int dead_cpu)
4697 {
4698 unsigned arr, i;
4699 struct runqueue *rq = cpu_rq(dead_cpu);
4700
4701 for (arr = 0; arr < 2; arr++) {
4702 for (i = 0; i < MAX_PRIO; i++) {
4703 struct list_head *list = &rq->arrays[arr].queue[i];
4704 while (!list_empty(list))
4705 migrate_dead(dead_cpu,
4706 list_entry(list->next, task_t,
4707 run_list));
4708 }
4709 }
4710 }
4711 #endif /* CONFIG_HOTPLUG_CPU */
4712
4713 /*
4714 * migration_call - callback that gets triggered when a CPU is added.
4715 * Here we can start up the necessary migration thread for the new CPU.
4716 */
4717 static int migration_call(struct notifier_block *nfb, unsigned long action,
4718 void *hcpu)
4719 {
4720 int cpu = (long)hcpu;
4721 struct task_struct *p;
4722 struct runqueue *rq;
4723 unsigned long flags;
4724
4725 switch (action) {
4726 case CPU_UP_PREPARE:
4727 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4728 if (IS_ERR(p))
4729 return NOTIFY_BAD;
4730 p->flags |= PF_NOFREEZE;
4731 kthread_bind(p, cpu);
4732 /* Must be high prio: stop_machine expects to yield to it. */
4733 rq = task_rq_lock(p, &flags);
4734 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4735 task_rq_unlock(rq, &flags);
4736 cpu_rq(cpu)->migration_thread = p;
4737 break;
4738 case CPU_ONLINE:
4739 /* Strictly unneccessary, as first user will wake it. */
4740 wake_up_process(cpu_rq(cpu)->migration_thread);
4741 break;
4742 #ifdef CONFIG_HOTPLUG_CPU
4743 case CPU_UP_CANCELED:
4744 /* Unbind it from offline cpu so it can run. Fall thru. */
4745 kthread_bind(cpu_rq(cpu)->migration_thread,
4746 any_online_cpu(cpu_online_map));
4747 kthread_stop(cpu_rq(cpu)->migration_thread);
4748 cpu_rq(cpu)->migration_thread = NULL;
4749 break;
4750 case CPU_DEAD:
4751 migrate_live_tasks(cpu);
4752 rq = cpu_rq(cpu);
4753 kthread_stop(rq->migration_thread);
4754 rq->migration_thread = NULL;
4755 /* Idle task back to normal (off runqueue, low prio) */
4756 rq = task_rq_lock(rq->idle, &flags);
4757 deactivate_task(rq->idle, rq);
4758 rq->idle->static_prio = MAX_PRIO;
4759 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4760 migrate_dead_tasks(cpu);
4761 task_rq_unlock(rq, &flags);
4762 migrate_nr_uninterruptible(rq);
4763 BUG_ON(rq->nr_running != 0);
4764
4765 /* No need to migrate the tasks: it was best-effort if
4766 * they didn't do lock_cpu_hotplug(). Just wake up
4767 * the requestors. */
4768 spin_lock_irq(&rq->lock);
4769 while (!list_empty(&rq->migration_queue)) {
4770 migration_req_t *req;
4771 req = list_entry(rq->migration_queue.next,
4772 migration_req_t, list);
4773 list_del_init(&req->list);
4774 complete(&req->done);
4775 }
4776 spin_unlock_irq(&rq->lock);
4777 break;
4778 #endif
4779 }
4780 return NOTIFY_OK;
4781 }
4782
4783 /* Register at highest priority so that task migration (migrate_all_tasks)
4784 * happens before everything else.
4785 */
4786 static struct notifier_block __devinitdata migration_notifier = {
4787 .notifier_call = migration_call,
4788 .priority = 10
4789 };
4790
4791 int __init migration_init(void)
4792 {
4793 void *cpu = (void *)(long)smp_processor_id();
4794 /* Start one for boot CPU. */
4795 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4796 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4797 register_cpu_notifier(&migration_notifier);
4798 return 0;
4799 }
4800 #endif
4801
4802 #ifdef CONFIG_SMP
4803 #undef SCHED_DOMAIN_DEBUG
4804 #ifdef SCHED_DOMAIN_DEBUG
4805 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4806 {
4807 int level = 0;
4808
4809 if (!sd) {
4810 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4811 return;
4812 }
4813
4814 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4815
4816 do {
4817 int i;
4818 char str[NR_CPUS];
4819 struct sched_group *group = sd->groups;
4820 cpumask_t groupmask;
4821
4822 cpumask_scnprintf(str, NR_CPUS, sd->span);
4823 cpus_clear(groupmask);
4824
4825 printk(KERN_DEBUG);
4826 for (i = 0; i < level + 1; i++)
4827 printk(" ");
4828 printk("domain %d: ", level);
4829
4830 if (!(sd->flags & SD_LOAD_BALANCE)) {
4831 printk("does not load-balance\n");
4832 if (sd->parent)
4833 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4834 break;
4835 }
4836
4837 printk("span %s\n", str);
4838
4839 if (!cpu_isset(cpu, sd->span))
4840 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4841 if (!cpu_isset(cpu, group->cpumask))
4842 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4843
4844 printk(KERN_DEBUG);
4845 for (i = 0; i < level + 2; i++)
4846 printk(" ");
4847 printk("groups:");
4848 do {
4849 if (!group) {
4850 printk("\n");
4851 printk(KERN_ERR "ERROR: group is NULL\n");
4852 break;
4853 }
4854
4855 if (!group->cpu_power) {
4856 printk("\n");
4857 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4858 }
4859
4860 if (!cpus_weight(group->cpumask)) {
4861 printk("\n");
4862 printk(KERN_ERR "ERROR: empty group\n");
4863 }
4864
4865 if (cpus_intersects(groupmask, group->cpumask)) {
4866 printk("\n");
4867 printk(KERN_ERR "ERROR: repeated CPUs\n");
4868 }
4869
4870 cpus_or(groupmask, groupmask, group->cpumask);
4871
4872 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4873 printk(" %s", str);
4874
4875 group = group->next;
4876 } while (group != sd->groups);
4877 printk("\n");
4878
4879 if (!cpus_equal(sd->span, groupmask))
4880 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4881
4882 level++;
4883 sd = sd->parent;
4884
4885 if (sd) {
4886 if (!cpus_subset(groupmask, sd->span))
4887 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4888 }
4889
4890 } while (sd);
4891 }
4892 #else
4893 #define sched_domain_debug(sd, cpu) {}
4894 #endif
4895
4896 static int sd_degenerate(struct sched_domain *sd)
4897 {
4898 if (cpus_weight(sd->span) == 1)
4899 return 1;
4900
4901 /* Following flags need at least 2 groups */
4902 if (sd->flags & (SD_LOAD_BALANCE |
4903 SD_BALANCE_NEWIDLE |
4904 SD_BALANCE_FORK |
4905 SD_BALANCE_EXEC)) {
4906 if (sd->groups != sd->groups->next)
4907 return 0;
4908 }
4909
4910 /* Following flags don't use groups */
4911 if (sd->flags & (SD_WAKE_IDLE |
4912 SD_WAKE_AFFINE |
4913 SD_WAKE_BALANCE))
4914 return 0;
4915
4916 return 1;
4917 }
4918
4919 static int sd_parent_degenerate(struct sched_domain *sd,
4920 struct sched_domain *parent)
4921 {
4922 unsigned long cflags = sd->flags, pflags = parent->flags;
4923
4924 if (sd_degenerate(parent))
4925 return 1;
4926
4927 if (!cpus_equal(sd->span, parent->span))
4928 return 0;
4929
4930 /* Does parent contain flags not in child? */
4931 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4932 if (cflags & SD_WAKE_AFFINE)
4933 pflags &= ~SD_WAKE_BALANCE;
4934 /* Flags needing groups don't count if only 1 group in parent */
4935 if (parent->groups == parent->groups->next) {
4936 pflags &= ~(SD_LOAD_BALANCE |
4937 SD_BALANCE_NEWIDLE |
4938 SD_BALANCE_FORK |
4939 SD_BALANCE_EXEC);
4940 }
4941 if (~cflags & pflags)
4942 return 0;
4943
4944 return 1;
4945 }
4946
4947 /*
4948 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4949 * hold the hotplug lock.
4950 */
4951 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4952 {
4953 runqueue_t *rq = cpu_rq(cpu);
4954 struct sched_domain *tmp;
4955
4956 /* Remove the sched domains which do not contribute to scheduling. */
4957 for (tmp = sd; tmp; tmp = tmp->parent) {
4958 struct sched_domain *parent = tmp->parent;
4959 if (!parent)
4960 break;
4961 if (sd_parent_degenerate(tmp, parent))
4962 tmp->parent = parent->parent;
4963 }
4964
4965 if (sd && sd_degenerate(sd))
4966 sd = sd->parent;
4967
4968 sched_domain_debug(sd, cpu);
4969
4970 rcu_assign_pointer(rq->sd, sd);
4971 }
4972
4973 /* cpus with isolated domains */
4974 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4975
4976 /* Setup the mask of cpus configured for isolated domains */
4977 static int __init isolated_cpu_setup(char *str)
4978 {
4979 int ints[NR_CPUS], i;
4980
4981 str = get_options(str, ARRAY_SIZE(ints), ints);
4982 cpus_clear(cpu_isolated_map);
4983 for (i = 1; i <= ints[0]; i++)
4984 if (ints[i] < NR_CPUS)
4985 cpu_set(ints[i], cpu_isolated_map);
4986 return 1;
4987 }
4988
4989 __setup ("isolcpus=", isolated_cpu_setup);
4990
4991 /*
4992 * init_sched_build_groups takes an array of groups, the cpumask we wish
4993 * to span, and a pointer to a function which identifies what group a CPU
4994 * belongs to. The return value of group_fn must be a valid index into the
4995 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4996 * keep track of groups covered with a cpumask_t).
4997 *
4998 * init_sched_build_groups will build a circular linked list of the groups
4999 * covered by the given span, and will set each group's ->cpumask correctly,
5000 * and ->cpu_power to 0.
5001 */
5002 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5003 int (*group_fn)(int cpu))
5004 {
5005 struct sched_group *first = NULL, *last = NULL;
5006 cpumask_t covered = CPU_MASK_NONE;
5007 int i;
5008
5009 for_each_cpu_mask(i, span) {
5010 int group = group_fn(i);
5011 struct sched_group *sg = &groups[group];
5012 int j;
5013
5014 if (cpu_isset(i, covered))
5015 continue;
5016
5017 sg->cpumask = CPU_MASK_NONE;
5018 sg->cpu_power = 0;
5019
5020 for_each_cpu_mask(j, span) {
5021 if (group_fn(j) != group)
5022 continue;
5023
5024 cpu_set(j, covered);
5025 cpu_set(j, sg->cpumask);
5026 }
5027 if (!first)
5028 first = sg;
5029 if (last)
5030 last->next = sg;
5031 last = sg;
5032 }
5033 last->next = first;
5034 }
5035
5036 #define SD_NODES_PER_DOMAIN 16
5037
5038 #ifdef CONFIG_NUMA
5039 /**
5040 * find_next_best_node - find the next node to include in a sched_domain
5041 * @node: node whose sched_domain we're building
5042 * @used_nodes: nodes already in the sched_domain
5043 *
5044 * Find the next node to include in a given scheduling domain. Simply
5045 * finds the closest node not already in the @used_nodes map.
5046 *
5047 * Should use nodemask_t.
5048 */
5049 static int find_next_best_node(int node, unsigned long *used_nodes)
5050 {
5051 int i, n, val, min_val, best_node = 0;
5052
5053 min_val = INT_MAX;
5054
5055 for (i = 0; i < MAX_NUMNODES; i++) {
5056 /* Start at @node */
5057 n = (node + i) % MAX_NUMNODES;
5058
5059 if (!nr_cpus_node(n))
5060 continue;
5061
5062 /* Skip already used nodes */
5063 if (test_bit(n, used_nodes))
5064 continue;
5065
5066 /* Simple min distance search */
5067 val = node_distance(node, n);
5068
5069 if (val < min_val) {
5070 min_val = val;
5071 best_node = n;
5072 }
5073 }
5074
5075 set_bit(best_node, used_nodes);
5076 return best_node;
5077 }
5078
5079 /**
5080 * sched_domain_node_span - get a cpumask for a node's sched_domain
5081 * @node: node whose cpumask we're constructing
5082 * @size: number of nodes to include in this span
5083 *
5084 * Given a node, construct a good cpumask for its sched_domain to span. It
5085 * should be one that prevents unnecessary balancing, but also spreads tasks
5086 * out optimally.
5087 */
5088 static cpumask_t sched_domain_node_span(int node)
5089 {
5090 int i;
5091 cpumask_t span, nodemask;
5092 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5093
5094 cpus_clear(span);
5095 bitmap_zero(used_nodes, MAX_NUMNODES);
5096
5097 nodemask = node_to_cpumask(node);
5098 cpus_or(span, span, nodemask);
5099 set_bit(node, used_nodes);
5100
5101 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5102 int next_node = find_next_best_node(node, used_nodes);
5103 nodemask = node_to_cpumask(next_node);
5104 cpus_or(span, span, nodemask);
5105 }
5106
5107 return span;
5108 }
5109 #endif
5110
5111 /*
5112 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5113 * can switch it on easily if needed.
5114 */
5115 #ifdef CONFIG_SCHED_SMT
5116 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5117 static struct sched_group sched_group_cpus[NR_CPUS];
5118 static int cpu_to_cpu_group(int cpu)
5119 {
5120 return cpu;
5121 }
5122 #endif
5123
5124 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5125 static struct sched_group sched_group_phys[NR_CPUS];
5126 static int cpu_to_phys_group(int cpu)
5127 {
5128 #ifdef CONFIG_SCHED_SMT
5129 return first_cpu(cpu_sibling_map[cpu]);
5130 #else
5131 return cpu;
5132 #endif
5133 }
5134
5135 #ifdef CONFIG_NUMA
5136 /*
5137 * The init_sched_build_groups can't handle what we want to do with node
5138 * groups, so roll our own. Now each node has its own list of groups which
5139 * gets dynamically allocated.
5140 */
5141 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5142 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5143
5144 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5145 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5146
5147 static int cpu_to_allnodes_group(int cpu)
5148 {
5149 return cpu_to_node(cpu);
5150 }
5151 #endif
5152
5153 /*
5154 * Build sched domains for a given set of cpus and attach the sched domains
5155 * to the individual cpus
5156 */
5157 void build_sched_domains(const cpumask_t *cpu_map)
5158 {
5159 int i;
5160 #ifdef CONFIG_NUMA
5161 struct sched_group **sched_group_nodes = NULL;
5162 struct sched_group *sched_group_allnodes = NULL;
5163
5164 /*
5165 * Allocate the per-node list of sched groups
5166 */
5167 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5168 GFP_ATOMIC);
5169 if (!sched_group_nodes) {
5170 printk(KERN_WARNING "Can not alloc sched group node list\n");
5171 return;
5172 }
5173 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5174 #endif
5175
5176 /*
5177 * Set up domains for cpus specified by the cpu_map.
5178 */
5179 for_each_cpu_mask(i, *cpu_map) {
5180 int group;
5181 struct sched_domain *sd = NULL, *p;
5182 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5183
5184 cpus_and(nodemask, nodemask, *cpu_map);
5185
5186 #ifdef CONFIG_NUMA
5187 if (cpus_weight(*cpu_map)
5188 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5189 if (!sched_group_allnodes) {
5190 sched_group_allnodes
5191 = kmalloc(sizeof(struct sched_group)
5192 * MAX_NUMNODES,
5193 GFP_KERNEL);
5194 if (!sched_group_allnodes) {
5195 printk(KERN_WARNING
5196 "Can not alloc allnodes sched group\n");
5197 break;
5198 }
5199 sched_group_allnodes_bycpu[i]
5200 = sched_group_allnodes;
5201 }
5202 sd = &per_cpu(allnodes_domains, i);
5203 *sd = SD_ALLNODES_INIT;
5204 sd->span = *cpu_map;
5205 group = cpu_to_allnodes_group(i);
5206 sd->groups = &sched_group_allnodes[group];
5207 p = sd;
5208 } else
5209 p = NULL;
5210
5211 sd = &per_cpu(node_domains, i);
5212 *sd = SD_NODE_INIT;
5213 sd->span = sched_domain_node_span(cpu_to_node(i));
5214 sd->parent = p;
5215 cpus_and(sd->span, sd->span, *cpu_map);
5216 #endif
5217
5218 p = sd;
5219 sd = &per_cpu(phys_domains, i);
5220 group = cpu_to_phys_group(i);
5221 *sd = SD_CPU_INIT;
5222 sd->span = nodemask;
5223 sd->parent = p;
5224 sd->groups = &sched_group_phys[group];
5225
5226 #ifdef CONFIG_SCHED_SMT
5227 p = sd;
5228 sd = &per_cpu(cpu_domains, i);
5229 group = cpu_to_cpu_group(i);
5230 *sd = SD_SIBLING_INIT;
5231 sd->span = cpu_sibling_map[i];
5232 cpus_and(sd->span, sd->span, *cpu_map);
5233 sd->parent = p;
5234 sd->groups = &sched_group_cpus[group];
5235 #endif
5236 }
5237
5238 #ifdef CONFIG_SCHED_SMT
5239 /* Set up CPU (sibling) groups */
5240 for_each_cpu_mask(i, *cpu_map) {
5241 cpumask_t this_sibling_map = cpu_sibling_map[i];
5242 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5243 if (i != first_cpu(this_sibling_map))
5244 continue;
5245
5246 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5247 &cpu_to_cpu_group);
5248 }
5249 #endif
5250
5251 /* Set up physical groups */
5252 for (i = 0; i < MAX_NUMNODES; i++) {
5253 cpumask_t nodemask = node_to_cpumask(i);
5254
5255 cpus_and(nodemask, nodemask, *cpu_map);
5256 if (cpus_empty(nodemask))
5257 continue;
5258
5259 init_sched_build_groups(sched_group_phys, nodemask,
5260 &cpu_to_phys_group);
5261 }
5262
5263 #ifdef CONFIG_NUMA
5264 /* Set up node groups */
5265 if (sched_group_allnodes)
5266 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5267 &cpu_to_allnodes_group);
5268
5269 for (i = 0; i < MAX_NUMNODES; i++) {
5270 /* Set up node groups */
5271 struct sched_group *sg, *prev;
5272 cpumask_t nodemask = node_to_cpumask(i);
5273 cpumask_t domainspan;
5274 cpumask_t covered = CPU_MASK_NONE;
5275 int j;
5276
5277 cpus_and(nodemask, nodemask, *cpu_map);
5278 if (cpus_empty(nodemask)) {
5279 sched_group_nodes[i] = NULL;
5280 continue;
5281 }
5282
5283 domainspan = sched_domain_node_span(i);
5284 cpus_and(domainspan, domainspan, *cpu_map);
5285
5286 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5287 sched_group_nodes[i] = sg;
5288 for_each_cpu_mask(j, nodemask) {
5289 struct sched_domain *sd;
5290 sd = &per_cpu(node_domains, j);
5291 sd->groups = sg;
5292 if (sd->groups == NULL) {
5293 /* Turn off balancing if we have no groups */
5294 sd->flags = 0;
5295 }
5296 }
5297 if (!sg) {
5298 printk(KERN_WARNING
5299 "Can not alloc domain group for node %d\n", i);
5300 continue;
5301 }
5302 sg->cpu_power = 0;
5303 sg->cpumask = nodemask;
5304 cpus_or(covered, covered, nodemask);
5305 prev = sg;
5306
5307 for (j = 0; j < MAX_NUMNODES; j++) {
5308 cpumask_t tmp, notcovered;
5309 int n = (i + j) % MAX_NUMNODES;
5310
5311 cpus_complement(notcovered, covered);
5312 cpus_and(tmp, notcovered, *cpu_map);
5313 cpus_and(tmp, tmp, domainspan);
5314 if (cpus_empty(tmp))
5315 break;
5316
5317 nodemask = node_to_cpumask(n);
5318 cpus_and(tmp, tmp, nodemask);
5319 if (cpus_empty(tmp))
5320 continue;
5321
5322 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5323 if (!sg) {
5324 printk(KERN_WARNING
5325 "Can not alloc domain group for node %d\n", j);
5326 break;
5327 }
5328 sg->cpu_power = 0;
5329 sg->cpumask = tmp;
5330 cpus_or(covered, covered, tmp);
5331 prev->next = sg;
5332 prev = sg;
5333 }
5334 prev->next = sched_group_nodes[i];
5335 }
5336 #endif
5337
5338 /* Calculate CPU power for physical packages and nodes */
5339 for_each_cpu_mask(i, *cpu_map) {
5340 int power;
5341 struct sched_domain *sd;
5342 #ifdef CONFIG_SCHED_SMT
5343 sd = &per_cpu(cpu_domains, i);
5344 power = SCHED_LOAD_SCALE;
5345 sd->groups->cpu_power = power;
5346 #endif
5347
5348 sd = &per_cpu(phys_domains, i);
5349 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5350 (cpus_weight(sd->groups->cpumask)-1) / 10;
5351 sd->groups->cpu_power = power;
5352
5353 #ifdef CONFIG_NUMA
5354 sd = &per_cpu(allnodes_domains, i);
5355 if (sd->groups) {
5356 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5357 (cpus_weight(sd->groups->cpumask)-1) / 10;
5358 sd->groups->cpu_power = power;
5359 }
5360 #endif
5361 }
5362
5363 #ifdef CONFIG_NUMA
5364 for (i = 0; i < MAX_NUMNODES; i++) {
5365 struct sched_group *sg = sched_group_nodes[i];
5366 int j;
5367
5368 if (sg == NULL)
5369 continue;
5370 next_sg:
5371 for_each_cpu_mask(j, sg->cpumask) {
5372 struct sched_domain *sd;
5373 int power;
5374
5375 sd = &per_cpu(phys_domains, j);
5376 if (j != first_cpu(sd->groups->cpumask)) {
5377 /*
5378 * Only add "power" once for each
5379 * physical package.
5380 */
5381 continue;
5382 }
5383 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5384 (cpus_weight(sd->groups->cpumask)-1) / 10;
5385
5386 sg->cpu_power += power;
5387 }
5388 sg = sg->next;
5389 if (sg != sched_group_nodes[i])
5390 goto next_sg;
5391 }
5392 #endif
5393
5394 /* Attach the domains */
5395 for_each_cpu_mask(i, *cpu_map) {
5396 struct sched_domain *sd;
5397 #ifdef CONFIG_SCHED_SMT
5398 sd = &per_cpu(cpu_domains, i);
5399 #else
5400 sd = &per_cpu(phys_domains, i);
5401 #endif
5402 cpu_attach_domain(sd, i);
5403 }
5404 }
5405 /*
5406 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5407 */
5408 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5409 {
5410 cpumask_t cpu_default_map;
5411
5412 /*
5413 * Setup mask for cpus without special case scheduling requirements.
5414 * For now this just excludes isolated cpus, but could be used to
5415 * exclude other special cases in the future.
5416 */
5417 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5418
5419 build_sched_domains(&cpu_default_map);
5420 }
5421
5422 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5423 {
5424 #ifdef CONFIG_NUMA
5425 int i;
5426 int cpu;
5427
5428 for_each_cpu_mask(cpu, *cpu_map) {
5429 struct sched_group *sched_group_allnodes
5430 = sched_group_allnodes_bycpu[cpu];
5431 struct sched_group **sched_group_nodes
5432 = sched_group_nodes_bycpu[cpu];
5433
5434 if (sched_group_allnodes) {
5435 kfree(sched_group_allnodes);
5436 sched_group_allnodes_bycpu[cpu] = NULL;
5437 }
5438
5439 if (!sched_group_nodes)
5440 continue;
5441
5442 for (i = 0; i < MAX_NUMNODES; i++) {
5443 cpumask_t nodemask = node_to_cpumask(i);
5444 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5445
5446 cpus_and(nodemask, nodemask, *cpu_map);
5447 if (cpus_empty(nodemask))
5448 continue;
5449
5450 if (sg == NULL)
5451 continue;
5452 sg = sg->next;
5453 next_sg:
5454 oldsg = sg;
5455 sg = sg->next;
5456 kfree(oldsg);
5457 if (oldsg != sched_group_nodes[i])
5458 goto next_sg;
5459 }
5460 kfree(sched_group_nodes);
5461 sched_group_nodes_bycpu[cpu] = NULL;
5462 }
5463 #endif
5464 }
5465
5466 /*
5467 * Detach sched domains from a group of cpus specified in cpu_map
5468 * These cpus will now be attached to the NULL domain
5469 */
5470 static inline void detach_destroy_domains(const cpumask_t *cpu_map)
5471 {
5472 int i;
5473
5474 for_each_cpu_mask(i, *cpu_map)
5475 cpu_attach_domain(NULL, i);
5476 synchronize_sched();
5477 arch_destroy_sched_domains(cpu_map);
5478 }
5479
5480 /*
5481 * Partition sched domains as specified by the cpumasks below.
5482 * This attaches all cpus from the cpumasks to the NULL domain,
5483 * waits for a RCU quiescent period, recalculates sched
5484 * domain information and then attaches them back to the
5485 * correct sched domains
5486 * Call with hotplug lock held
5487 */
5488 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5489 {
5490 cpumask_t change_map;
5491
5492 cpus_and(*partition1, *partition1, cpu_online_map);
5493 cpus_and(*partition2, *partition2, cpu_online_map);
5494 cpus_or(change_map, *partition1, *partition2);
5495
5496 /* Detach sched domains from all of the affected cpus */
5497 detach_destroy_domains(&change_map);
5498 if (!cpus_empty(*partition1))
5499 build_sched_domains(partition1);
5500 if (!cpus_empty(*partition2))
5501 build_sched_domains(partition2);
5502 }
5503
5504 #ifdef CONFIG_HOTPLUG_CPU
5505 /*
5506 * Force a reinitialization of the sched domains hierarchy. The domains
5507 * and groups cannot be updated in place without racing with the balancing
5508 * code, so we temporarily attach all running cpus to the NULL domain
5509 * which will prevent rebalancing while the sched domains are recalculated.
5510 */
5511 static int update_sched_domains(struct notifier_block *nfb,
5512 unsigned long action, void *hcpu)
5513 {
5514 switch (action) {
5515 case CPU_UP_PREPARE:
5516 case CPU_DOWN_PREPARE:
5517 detach_destroy_domains(&cpu_online_map);
5518 return NOTIFY_OK;
5519
5520 case CPU_UP_CANCELED:
5521 case CPU_DOWN_FAILED:
5522 case CPU_ONLINE:
5523 case CPU_DEAD:
5524 /*
5525 * Fall through and re-initialise the domains.
5526 */
5527 break;
5528 default:
5529 return NOTIFY_DONE;
5530 }
5531
5532 /* The hotplug lock is already held by cpu_up/cpu_down */
5533 arch_init_sched_domains(&cpu_online_map);
5534
5535 return NOTIFY_OK;
5536 }
5537 #endif
5538
5539 void __init sched_init_smp(void)
5540 {
5541 lock_cpu_hotplug();
5542 arch_init_sched_domains(&cpu_online_map);
5543 unlock_cpu_hotplug();
5544 /* XXX: Theoretical race here - CPU may be hotplugged now */
5545 hotcpu_notifier(update_sched_domains, 0);
5546 }
5547 #else
5548 void __init sched_init_smp(void)
5549 {
5550 }
5551 #endif /* CONFIG_SMP */
5552
5553 int in_sched_functions(unsigned long addr)
5554 {
5555 /* Linker adds these: start and end of __sched functions */
5556 extern char __sched_text_start[], __sched_text_end[];
5557 return in_lock_functions(addr) ||
5558 (addr >= (unsigned long)__sched_text_start
5559 && addr < (unsigned long)__sched_text_end);
5560 }
5561
5562 void __init sched_init(void)
5563 {
5564 runqueue_t *rq;
5565 int i, j, k;
5566
5567 for (i = 0; i < NR_CPUS; i++) {
5568 prio_array_t *array;
5569
5570 rq = cpu_rq(i);
5571 spin_lock_init(&rq->lock);
5572 rq->nr_running = 0;
5573 rq->active = rq->arrays;
5574 rq->expired = rq->arrays + 1;
5575 rq->best_expired_prio = MAX_PRIO;
5576
5577 #ifdef CONFIG_SMP
5578 rq->sd = NULL;
5579 for (j = 1; j < 3; j++)
5580 rq->cpu_load[j] = 0;
5581 rq->active_balance = 0;
5582 rq->push_cpu = 0;
5583 rq->migration_thread = NULL;
5584 INIT_LIST_HEAD(&rq->migration_queue);
5585 #endif
5586 atomic_set(&rq->nr_iowait, 0);
5587
5588 for (j = 0; j < 2; j++) {
5589 array = rq->arrays + j;
5590 for (k = 0; k < MAX_PRIO; k++) {
5591 INIT_LIST_HEAD(array->queue + k);
5592 __clear_bit(k, array->bitmap);
5593 }
5594 // delimiter for bitsearch
5595 __set_bit(MAX_PRIO, array->bitmap);
5596 }
5597 }
5598
5599 /*
5600 * The boot idle thread does lazy MMU switching as well:
5601 */
5602 atomic_inc(&init_mm.mm_count);
5603 enter_lazy_tlb(&init_mm, current);
5604
5605 /*
5606 * Make us the idle thread. Technically, schedule() should not be
5607 * called from this thread, however somewhere below it might be,
5608 * but because we are the idle thread, we just pick up running again
5609 * when this runqueue becomes "idle".
5610 */
5611 init_idle(current, smp_processor_id());
5612 }
5613
5614 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5615 void __might_sleep(char *file, int line)
5616 {
5617 #if defined(in_atomic)
5618 static unsigned long prev_jiffy; /* ratelimiting */
5619
5620 if ((in_atomic() || irqs_disabled()) &&
5621 system_state == SYSTEM_RUNNING && !oops_in_progress) {
5622 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
5623 return;
5624 prev_jiffy = jiffies;
5625 printk(KERN_ERR "Debug: sleeping function called from invalid"
5626 " context at %s:%d\n", file, line);
5627 printk("in_atomic():%d, irqs_disabled():%d\n",
5628 in_atomic(), irqs_disabled());
5629 dump_stack();
5630 }
5631 #endif
5632 }
5633 EXPORT_SYMBOL(__might_sleep);
5634 #endif
5635
5636 #ifdef CONFIG_MAGIC_SYSRQ
5637 void normalize_rt_tasks(void)
5638 {
5639 struct task_struct *p;
5640 prio_array_t *array;
5641 unsigned long flags;
5642 runqueue_t *rq;
5643
5644 read_lock_irq(&tasklist_lock);
5645 for_each_process (p) {
5646 if (!rt_task(p))
5647 continue;
5648
5649 rq = task_rq_lock(p, &flags);
5650
5651 array = p->array;
5652 if (array)
5653 deactivate_task(p, task_rq(p));
5654 __setscheduler(p, SCHED_NORMAL, 0);
5655 if (array) {
5656 __activate_task(p, task_rq(p));
5657 resched_task(rq->curr);
5658 }
5659
5660 task_rq_unlock(rq, &flags);
5661 }
5662 read_unlock_irq(&tasklist_lock);
5663 }
5664
5665 #endif /* CONFIG_MAGIC_SYSRQ */
5666
5667 #ifdef CONFIG_IA64
5668 /*
5669 * These functions are only useful for the IA64 MCA handling.
5670 *
5671 * They can only be called when the whole system has been
5672 * stopped - every CPU needs to be quiescent, and no scheduling
5673 * activity can take place. Using them for anything else would
5674 * be a serious bug, and as a result, they aren't even visible
5675 * under any other configuration.
5676 */
5677
5678 /**
5679 * curr_task - return the current task for a given cpu.
5680 * @cpu: the processor in question.
5681 *
5682 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5683 */
5684 task_t *curr_task(int cpu)
5685 {
5686 return cpu_curr(cpu);
5687 }
5688
5689 /**
5690 * set_curr_task - set the current task for a given cpu.
5691 * @cpu: the processor in question.
5692 * @p: the task pointer to set.
5693 *
5694 * Description: This function must only be used when non-maskable interrupts
5695 * are serviced on a separate stack. It allows the architecture to switch the
5696 * notion of the current task on a cpu in a non-blocking manner. This function
5697 * must be called with all CPU's synchronized, and interrupts disabled, the
5698 * and caller must save the original value of the current task (see
5699 * curr_task() above) and restore that value before reenabling interrupts and
5700 * re-starting the system.
5701 *
5702 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
5703 */
5704 void set_curr_task(int cpu, task_t *p)
5705 {
5706 cpu_curr(cpu) = p;
5707 }
5708
5709 #endif