]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched.c
Merge branch 'merge' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
[mirror_ubuntu-kernels.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64
65 #include <asm/tlb.h>
66
67 /*
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72 unsigned long long __attribute__((weak)) sched_clock(void)
73 {
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75 }
76
77 /*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86 /*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95 /*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
101 #define NICE_0_LOAD SCHED_LOAD_SCALE
102 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
104 /*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112 #define DEF_TIMESLICE (100 * HZ / 1000)
113
114 #ifdef CONFIG_SMP
115 /*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120 {
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122 }
123
124 /*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129 {
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132 }
133 #endif
134
135 #define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
137
138 /*
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
141 */
142 static unsigned int static_prio_timeslice(int static_prio)
143 {
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
151 }
152
153 static inline int rt_policy(int policy)
154 {
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158 }
159
160 static inline int task_has_rt_policy(struct task_struct *p)
161 {
162 return rt_policy(p->policy);
163 }
164
165 /*
166 * This is the priority-queue data structure of the RT scheduling class:
167 */
168 struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171 };
172
173 struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177 };
178
179 /* CFS-related fields in a runqueue */
180 struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193 #ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208 #endif
209 };
210
211 /* Real-Time classes' related field in a runqueue: */
212 struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216 };
217
218 /*
219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
225 struct rq {
226 spinlock_t lock; /* runqueue lock */
227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235 unsigned char idle_at_tick;
236 #ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238 #endif
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244 #ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
246 #endif
247 struct rt_rq rt;
248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
257 struct task_struct *curr, *idle;
258 unsigned long next_balance;
259 struct mm_struct *prev_mm;
260
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
266
267 atomic_t nr_iowait;
268
269 #ifdef CONFIG_SMP
270 struct sched_domain *sd;
271
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
275 int cpu; /* cpu of this runqueue */
276
277 struct task_struct *migration_thread;
278 struct list_head migration_queue;
279 #endif
280
281 #ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
284
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
290
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
295
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299 #endif
300 struct lock_class_key rq_lock_key;
301 };
302
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
304 static DEFINE_MUTEX(sched_hotcpu_mutex);
305
306 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
307 {
308 rq->curr->sched_class->check_preempt_curr(rq, p);
309 }
310
311 static inline int cpu_of(struct rq *rq)
312 {
313 #ifdef CONFIG_SMP
314 return rq->cpu;
315 #else
316 return 0;
317 #endif
318 }
319
320 /*
321 * Per-runqueue clock, as finegrained as the platform can give us:
322 */
323 static unsigned long long __rq_clock(struct rq *rq)
324 {
325 u64 prev_raw = rq->prev_clock_raw;
326 u64 now = sched_clock();
327 s64 delta = now - prev_raw;
328 u64 clock = rq->clock;
329
330 /*
331 * Protect against sched_clock() occasionally going backwards:
332 */
333 if (unlikely(delta < 0)) {
334 clock++;
335 rq->clock_warps++;
336 } else {
337 /*
338 * Catch too large forward jumps too:
339 */
340 if (unlikely(delta > 2*TICK_NSEC)) {
341 clock++;
342 rq->clock_overflows++;
343 } else {
344 if (unlikely(delta > rq->clock_max_delta))
345 rq->clock_max_delta = delta;
346 clock += delta;
347 }
348 }
349
350 rq->prev_clock_raw = now;
351 rq->clock = clock;
352
353 return clock;
354 }
355
356 static inline unsigned long long rq_clock(struct rq *rq)
357 {
358 int this_cpu = smp_processor_id();
359
360 if (this_cpu == cpu_of(rq))
361 return __rq_clock(rq);
362
363 return rq->clock;
364 }
365
366 /*
367 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
368 * See detach_destroy_domains: synchronize_sched for details.
369 *
370 * The domain tree of any CPU may only be accessed from within
371 * preempt-disabled sections.
372 */
373 #define for_each_domain(cpu, __sd) \
374 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
375
376 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
377 #define this_rq() (&__get_cpu_var(runqueues))
378 #define task_rq(p) cpu_rq(task_cpu(p))
379 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
380
381 /*
382 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
383 * clock constructed from sched_clock():
384 */
385 unsigned long long cpu_clock(int cpu)
386 {
387 unsigned long long now;
388 unsigned long flags;
389
390 local_irq_save(flags);
391 now = rq_clock(cpu_rq(cpu));
392 local_irq_restore(flags);
393
394 return now;
395 }
396
397 #ifdef CONFIG_FAIR_GROUP_SCHED
398 /* Change a task's ->cfs_rq if it moves across CPUs */
399 static inline void set_task_cfs_rq(struct task_struct *p)
400 {
401 p->se.cfs_rq = &task_rq(p)->cfs;
402 }
403 #else
404 static inline void set_task_cfs_rq(struct task_struct *p)
405 {
406 }
407 #endif
408
409 #ifndef prepare_arch_switch
410 # define prepare_arch_switch(next) do { } while (0)
411 #endif
412 #ifndef finish_arch_switch
413 # define finish_arch_switch(prev) do { } while (0)
414 #endif
415
416 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
417 static inline int task_running(struct rq *rq, struct task_struct *p)
418 {
419 return rq->curr == p;
420 }
421
422 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
423 {
424 }
425
426 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
427 {
428 #ifdef CONFIG_DEBUG_SPINLOCK
429 /* this is a valid case when another task releases the spinlock */
430 rq->lock.owner = current;
431 #endif
432 /*
433 * If we are tracking spinlock dependencies then we have to
434 * fix up the runqueue lock - which gets 'carried over' from
435 * prev into current:
436 */
437 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
438
439 spin_unlock_irq(&rq->lock);
440 }
441
442 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
443 static inline int task_running(struct rq *rq, struct task_struct *p)
444 {
445 #ifdef CONFIG_SMP
446 return p->oncpu;
447 #else
448 return rq->curr == p;
449 #endif
450 }
451
452 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
453 {
454 #ifdef CONFIG_SMP
455 /*
456 * We can optimise this out completely for !SMP, because the
457 * SMP rebalancing from interrupt is the only thing that cares
458 * here.
459 */
460 next->oncpu = 1;
461 #endif
462 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
463 spin_unlock_irq(&rq->lock);
464 #else
465 spin_unlock(&rq->lock);
466 #endif
467 }
468
469 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
470 {
471 #ifdef CONFIG_SMP
472 /*
473 * After ->oncpu is cleared, the task can be moved to a different CPU.
474 * We must ensure this doesn't happen until the switch is completely
475 * finished.
476 */
477 smp_wmb();
478 prev->oncpu = 0;
479 #endif
480 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
481 local_irq_enable();
482 #endif
483 }
484 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
485
486 /*
487 * __task_rq_lock - lock the runqueue a given task resides on.
488 * Must be called interrupts disabled.
489 */
490 static inline struct rq *__task_rq_lock(struct task_struct *p)
491 __acquires(rq->lock)
492 {
493 struct rq *rq;
494
495 repeat_lock_task:
496 rq = task_rq(p);
497 spin_lock(&rq->lock);
498 if (unlikely(rq != task_rq(p))) {
499 spin_unlock(&rq->lock);
500 goto repeat_lock_task;
501 }
502 return rq;
503 }
504
505 /*
506 * task_rq_lock - lock the runqueue a given task resides on and disable
507 * interrupts. Note the ordering: we can safely lookup the task_rq without
508 * explicitly disabling preemption.
509 */
510 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
511 __acquires(rq->lock)
512 {
513 struct rq *rq;
514
515 repeat_lock_task:
516 local_irq_save(*flags);
517 rq = task_rq(p);
518 spin_lock(&rq->lock);
519 if (unlikely(rq != task_rq(p))) {
520 spin_unlock_irqrestore(&rq->lock, *flags);
521 goto repeat_lock_task;
522 }
523 return rq;
524 }
525
526 static inline void __task_rq_unlock(struct rq *rq)
527 __releases(rq->lock)
528 {
529 spin_unlock(&rq->lock);
530 }
531
532 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
533 __releases(rq->lock)
534 {
535 spin_unlock_irqrestore(&rq->lock, *flags);
536 }
537
538 /*
539 * this_rq_lock - lock this runqueue and disable interrupts.
540 */
541 static inline struct rq *this_rq_lock(void)
542 __acquires(rq->lock)
543 {
544 struct rq *rq;
545
546 local_irq_disable();
547 rq = this_rq();
548 spin_lock(&rq->lock);
549
550 return rq;
551 }
552
553 /*
554 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
555 */
556 void sched_clock_unstable_event(void)
557 {
558 unsigned long flags;
559 struct rq *rq;
560
561 rq = task_rq_lock(current, &flags);
562 rq->prev_clock_raw = sched_clock();
563 rq->clock_unstable_events++;
564 task_rq_unlock(rq, &flags);
565 }
566
567 /*
568 * resched_task - mark a task 'to be rescheduled now'.
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
574 #ifdef CONFIG_SMP
575
576 #ifndef tsk_is_polling
577 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
578 #endif
579
580 static void resched_task(struct task_struct *p)
581 {
582 int cpu;
583
584 assert_spin_locked(&task_rq(p)->lock);
585
586 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
587 return;
588
589 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
590
591 cpu = task_cpu(p);
592 if (cpu == smp_processor_id())
593 return;
594
595 /* NEED_RESCHED must be visible before we test polling */
596 smp_mb();
597 if (!tsk_is_polling(p))
598 smp_send_reschedule(cpu);
599 }
600
601 static void resched_cpu(int cpu)
602 {
603 struct rq *rq = cpu_rq(cpu);
604 unsigned long flags;
605
606 if (!spin_trylock_irqsave(&rq->lock, flags))
607 return;
608 resched_task(cpu_curr(cpu));
609 spin_unlock_irqrestore(&rq->lock, flags);
610 }
611 #else
612 static inline void resched_task(struct task_struct *p)
613 {
614 assert_spin_locked(&task_rq(p)->lock);
615 set_tsk_need_resched(p);
616 }
617 #endif
618
619 static u64 div64_likely32(u64 divident, unsigned long divisor)
620 {
621 #if BITS_PER_LONG == 32
622 if (likely(divident <= 0xffffffffULL))
623 return (u32)divident / divisor;
624 do_div(divident, divisor);
625
626 return divident;
627 #else
628 return divident / divisor;
629 #endif
630 }
631
632 #if BITS_PER_LONG == 32
633 # define WMULT_CONST (~0UL)
634 #else
635 # define WMULT_CONST (1UL << 32)
636 #endif
637
638 #define WMULT_SHIFT 32
639
640 static inline unsigned long
641 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
642 struct load_weight *lw)
643 {
644 u64 tmp;
645
646 if (unlikely(!lw->inv_weight))
647 lw->inv_weight = WMULT_CONST / lw->weight;
648
649 tmp = (u64)delta_exec * weight;
650 /*
651 * Check whether we'd overflow the 64-bit multiplication:
652 */
653 if (unlikely(tmp > WMULT_CONST)) {
654 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
655 >> (WMULT_SHIFT/2);
656 } else {
657 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
658 }
659
660 return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
661 }
662
663 static inline unsigned long
664 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
665 {
666 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
667 }
668
669 static void update_load_add(struct load_weight *lw, unsigned long inc)
670 {
671 lw->weight += inc;
672 lw->inv_weight = 0;
673 }
674
675 static void update_load_sub(struct load_weight *lw, unsigned long dec)
676 {
677 lw->weight -= dec;
678 lw->inv_weight = 0;
679 }
680
681 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
682 {
683 if (rq->curr != rq->idle && ls->load.weight) {
684 ls->delta_exec += ls->delta_stat;
685 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
686 ls->delta_stat = 0;
687 }
688 }
689
690 /*
691 * Update delta_exec, delta_fair fields for rq.
692 *
693 * delta_fair clock advances at a rate inversely proportional to
694 * total load (rq->ls.load.weight) on the runqueue, while
695 * delta_exec advances at the same rate as wall-clock (provided
696 * cpu is not idle).
697 *
698 * delta_exec / delta_fair is a measure of the (smoothened) load on this
699 * runqueue over any given interval. This (smoothened) load is used
700 * during load balance.
701 *
702 * This function is called /before/ updating rq->ls.load
703 * and when switching tasks.
704 */
705 static void update_curr_load(struct rq *rq, u64 now)
706 {
707 struct load_stat *ls = &rq->ls;
708 u64 start;
709
710 start = ls->load_update_start;
711 ls->load_update_start = now;
712 ls->delta_stat += now - start;
713 /*
714 * Stagger updates to ls->delta_fair. Very frequent updates
715 * can be expensive.
716 */
717 if (ls->delta_stat >= sysctl_sched_stat_granularity)
718 __update_curr_load(rq, ls);
719 }
720
721 /*
722 * To aid in avoiding the subversion of "niceness" due to uneven distribution
723 * of tasks with abnormal "nice" values across CPUs the contribution that
724 * each task makes to its run queue's load is weighted according to its
725 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
726 * scaled version of the new time slice allocation that they receive on time
727 * slice expiry etc.
728 */
729
730 /*
731 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
732 * If static_prio_timeslice() is ever changed to break this assumption then
733 * this code will need modification
734 */
735 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
736 #define load_weight(lp) \
737 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
738 #define PRIO_TO_LOAD_WEIGHT(prio) \
739 load_weight(static_prio_timeslice(prio))
740 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
741 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))
742
743 #define WEIGHT_IDLEPRIO 2
744 #define WMULT_IDLEPRIO (1 << 31)
745
746 /*
747 * Nice levels are multiplicative, with a gentle 10% change for every
748 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
749 * nice 1, it will get ~10% less CPU time than another CPU-bound task
750 * that remained on nice 0.
751 *
752 * The "10% effect" is relative and cumulative: from _any_ nice level,
753 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
754 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
755 * If a task goes up by ~10% and another task goes down by ~10% then
756 * the relative distance between them is ~25%.)
757 */
758 static const int prio_to_weight[40] = {
759 /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
760 /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
761 /* 0 */ NICE_0_LOAD /* 1024 */,
762 /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
763 /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
764 };
765
766 /*
767 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
768 *
769 * In cases where the weight does not change often, we can use the
770 * precalculated inverse to speed up arithmetics by turning divisions
771 * into multiplications:
772 */
773 static const u32 prio_to_wmult[40] = {
774 /* -20 */ 48356, 60446, 75558, 94446, 118058,
775 /* -15 */ 147573, 184467, 230589, 288233, 360285,
776 /* -10 */ 450347, 562979, 703746, 879575, 1099582,
777 /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
778 /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
779 /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
780 /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
781 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
782 };
783
784 static inline void
785 inc_load(struct rq *rq, const struct task_struct *p, u64 now)
786 {
787 update_curr_load(rq, now);
788 update_load_add(&rq->ls.load, p->se.load.weight);
789 }
790
791 static inline void
792 dec_load(struct rq *rq, const struct task_struct *p, u64 now)
793 {
794 update_curr_load(rq, now);
795 update_load_sub(&rq->ls.load, p->se.load.weight);
796 }
797
798 static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
799 {
800 rq->nr_running++;
801 inc_load(rq, p, now);
802 }
803
804 static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
805 {
806 rq->nr_running--;
807 dec_load(rq, p, now);
808 }
809
810 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
811
812 /*
813 * runqueue iterator, to support SMP load-balancing between different
814 * scheduling classes, without having to expose their internal data
815 * structures to the load-balancing proper:
816 */
817 struct rq_iterator {
818 void *arg;
819 struct task_struct *(*start)(void *);
820 struct task_struct *(*next)(void *);
821 };
822
823 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
824 unsigned long max_nr_move, unsigned long max_load_move,
825 struct sched_domain *sd, enum cpu_idle_type idle,
826 int *all_pinned, unsigned long *load_moved,
827 int this_best_prio, int best_prio, int best_prio_seen,
828 struct rq_iterator *iterator);
829
830 #include "sched_stats.h"
831 #include "sched_rt.c"
832 #include "sched_fair.c"
833 #include "sched_idletask.c"
834 #ifdef CONFIG_SCHED_DEBUG
835 # include "sched_debug.c"
836 #endif
837
838 #define sched_class_highest (&rt_sched_class)
839
840 static void set_load_weight(struct task_struct *p)
841 {
842 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
843 p->se.wait_runtime = 0;
844
845 if (task_has_rt_policy(p)) {
846 p->se.load.weight = prio_to_weight[0] * 2;
847 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
848 return;
849 }
850
851 /*
852 * SCHED_IDLE tasks get minimal weight:
853 */
854 if (p->policy == SCHED_IDLE) {
855 p->se.load.weight = WEIGHT_IDLEPRIO;
856 p->se.load.inv_weight = WMULT_IDLEPRIO;
857 return;
858 }
859
860 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
861 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
862 }
863
864 static void
865 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
866 {
867 sched_info_queued(p);
868 p->sched_class->enqueue_task(rq, p, wakeup, now);
869 p->se.on_rq = 1;
870 }
871
872 static void
873 dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
874 {
875 p->sched_class->dequeue_task(rq, p, sleep, now);
876 p->se.on_rq = 0;
877 }
878
879 /*
880 * __normal_prio - return the priority that is based on the static prio
881 */
882 static inline int __normal_prio(struct task_struct *p)
883 {
884 return p->static_prio;
885 }
886
887 /*
888 * Calculate the expected normal priority: i.e. priority
889 * without taking RT-inheritance into account. Might be
890 * boosted by interactivity modifiers. Changes upon fork,
891 * setprio syscalls, and whenever the interactivity
892 * estimator recalculates.
893 */
894 static inline int normal_prio(struct task_struct *p)
895 {
896 int prio;
897
898 if (task_has_rt_policy(p))
899 prio = MAX_RT_PRIO-1 - p->rt_priority;
900 else
901 prio = __normal_prio(p);
902 return prio;
903 }
904
905 /*
906 * Calculate the current priority, i.e. the priority
907 * taken into account by the scheduler. This value might
908 * be boosted by RT tasks, or might be boosted by
909 * interactivity modifiers. Will be RT if the task got
910 * RT-boosted. If not then it returns p->normal_prio.
911 */
912 static int effective_prio(struct task_struct *p)
913 {
914 p->normal_prio = normal_prio(p);
915 /*
916 * If we are RT tasks or we were boosted to RT priority,
917 * keep the priority unchanged. Otherwise, update priority
918 * to the normal priority:
919 */
920 if (!rt_prio(p->prio))
921 return p->normal_prio;
922 return p->prio;
923 }
924
925 /*
926 * activate_task - move a task to the runqueue.
927 */
928 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
929 {
930 u64 now = rq_clock(rq);
931
932 if (p->state == TASK_UNINTERRUPTIBLE)
933 rq->nr_uninterruptible--;
934
935 enqueue_task(rq, p, wakeup, now);
936 inc_nr_running(p, rq, now);
937 }
938
939 /*
940 * activate_idle_task - move idle task to the _front_ of runqueue.
941 */
942 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
943 {
944 u64 now = rq_clock(rq);
945
946 if (p->state == TASK_UNINTERRUPTIBLE)
947 rq->nr_uninterruptible--;
948
949 enqueue_task(rq, p, 0, now);
950 inc_nr_running(p, rq, now);
951 }
952
953 /*
954 * deactivate_task - remove a task from the runqueue.
955 */
956 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
957 {
958 u64 now = rq_clock(rq);
959
960 if (p->state == TASK_UNINTERRUPTIBLE)
961 rq->nr_uninterruptible++;
962
963 dequeue_task(rq, p, sleep, now);
964 dec_nr_running(p, rq, now);
965 }
966
967 /**
968 * task_curr - is this task currently executing on a CPU?
969 * @p: the task in question.
970 */
971 inline int task_curr(const struct task_struct *p)
972 {
973 return cpu_curr(task_cpu(p)) == p;
974 }
975
976 /* Used instead of source_load when we know the type == 0 */
977 unsigned long weighted_cpuload(const int cpu)
978 {
979 return cpu_rq(cpu)->ls.load.weight;
980 }
981
982 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
983 {
984 #ifdef CONFIG_SMP
985 task_thread_info(p)->cpu = cpu;
986 set_task_cfs_rq(p);
987 #endif
988 }
989
990 #ifdef CONFIG_SMP
991
992 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
993 {
994 int old_cpu = task_cpu(p);
995 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
996 u64 clock_offset, fair_clock_offset;
997
998 clock_offset = old_rq->clock - new_rq->clock;
999 fair_clock_offset = old_rq->cfs.fair_clock -
1000 new_rq->cfs.fair_clock;
1001 if (p->se.wait_start)
1002 p->se.wait_start -= clock_offset;
1003 if (p->se.wait_start_fair)
1004 p->se.wait_start_fair -= fair_clock_offset;
1005 if (p->se.sleep_start)
1006 p->se.sleep_start -= clock_offset;
1007 if (p->se.block_start)
1008 p->se.block_start -= clock_offset;
1009 if (p->se.sleep_start_fair)
1010 p->se.sleep_start_fair -= fair_clock_offset;
1011
1012 __set_task_cpu(p, new_cpu);
1013 }
1014
1015 struct migration_req {
1016 struct list_head list;
1017
1018 struct task_struct *task;
1019 int dest_cpu;
1020
1021 struct completion done;
1022 };
1023
1024 /*
1025 * The task's runqueue lock must be held.
1026 * Returns true if you have to wait for migration thread.
1027 */
1028 static int
1029 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1030 {
1031 struct rq *rq = task_rq(p);
1032
1033 /*
1034 * If the task is not on a runqueue (and not running), then
1035 * it is sufficient to simply update the task's cpu field.
1036 */
1037 if (!p->se.on_rq && !task_running(rq, p)) {
1038 set_task_cpu(p, dest_cpu);
1039 return 0;
1040 }
1041
1042 init_completion(&req->done);
1043 req->task = p;
1044 req->dest_cpu = dest_cpu;
1045 list_add(&req->list, &rq->migration_queue);
1046
1047 return 1;
1048 }
1049
1050 /*
1051 * wait_task_inactive - wait for a thread to unschedule.
1052 *
1053 * The caller must ensure that the task *will* unschedule sometime soon,
1054 * else this function might spin for a *long* time. This function can't
1055 * be called with interrupts off, or it may introduce deadlock with
1056 * smp_call_function() if an IPI is sent by the same process we are
1057 * waiting to become inactive.
1058 */
1059 void wait_task_inactive(struct task_struct *p)
1060 {
1061 unsigned long flags;
1062 int running, on_rq;
1063 struct rq *rq;
1064
1065 repeat:
1066 /*
1067 * We do the initial early heuristics without holding
1068 * any task-queue locks at all. We'll only try to get
1069 * the runqueue lock when things look like they will
1070 * work out!
1071 */
1072 rq = task_rq(p);
1073
1074 /*
1075 * If the task is actively running on another CPU
1076 * still, just relax and busy-wait without holding
1077 * any locks.
1078 *
1079 * NOTE! Since we don't hold any locks, it's not
1080 * even sure that "rq" stays as the right runqueue!
1081 * But we don't care, since "task_running()" will
1082 * return false if the runqueue has changed and p
1083 * is actually now running somewhere else!
1084 */
1085 while (task_running(rq, p))
1086 cpu_relax();
1087
1088 /*
1089 * Ok, time to look more closely! We need the rq
1090 * lock now, to be *sure*. If we're wrong, we'll
1091 * just go back and repeat.
1092 */
1093 rq = task_rq_lock(p, &flags);
1094 running = task_running(rq, p);
1095 on_rq = p->se.on_rq;
1096 task_rq_unlock(rq, &flags);
1097
1098 /*
1099 * Was it really running after all now that we
1100 * checked with the proper locks actually held?
1101 *
1102 * Oops. Go back and try again..
1103 */
1104 if (unlikely(running)) {
1105 cpu_relax();
1106 goto repeat;
1107 }
1108
1109 /*
1110 * It's not enough that it's not actively running,
1111 * it must be off the runqueue _entirely_, and not
1112 * preempted!
1113 *
1114 * So if it wa still runnable (but just not actively
1115 * running right now), it's preempted, and we should
1116 * yield - it could be a while.
1117 */
1118 if (unlikely(on_rq)) {
1119 yield();
1120 goto repeat;
1121 }
1122
1123 /*
1124 * Ahh, all good. It wasn't running, and it wasn't
1125 * runnable, which means that it will never become
1126 * running in the future either. We're all done!
1127 */
1128 }
1129
1130 /***
1131 * kick_process - kick a running thread to enter/exit the kernel
1132 * @p: the to-be-kicked thread
1133 *
1134 * Cause a process which is running on another CPU to enter
1135 * kernel-mode, without any delay. (to get signals handled.)
1136 *
1137 * NOTE: this function doesnt have to take the runqueue lock,
1138 * because all it wants to ensure is that the remote task enters
1139 * the kernel. If the IPI races and the task has been migrated
1140 * to another CPU then no harm is done and the purpose has been
1141 * achieved as well.
1142 */
1143 void kick_process(struct task_struct *p)
1144 {
1145 int cpu;
1146
1147 preempt_disable();
1148 cpu = task_cpu(p);
1149 if ((cpu != smp_processor_id()) && task_curr(p))
1150 smp_send_reschedule(cpu);
1151 preempt_enable();
1152 }
1153
1154 /*
1155 * Return a low guess at the load of a migration-source cpu weighted
1156 * according to the scheduling class and "nice" value.
1157 *
1158 * We want to under-estimate the load of migration sources, to
1159 * balance conservatively.
1160 */
1161 static inline unsigned long source_load(int cpu, int type)
1162 {
1163 struct rq *rq = cpu_rq(cpu);
1164 unsigned long total = weighted_cpuload(cpu);
1165
1166 if (type == 0)
1167 return total;
1168
1169 return min(rq->cpu_load[type-1], total);
1170 }
1171
1172 /*
1173 * Return a high guess at the load of a migration-target cpu weighted
1174 * according to the scheduling class and "nice" value.
1175 */
1176 static inline unsigned long target_load(int cpu, int type)
1177 {
1178 struct rq *rq = cpu_rq(cpu);
1179 unsigned long total = weighted_cpuload(cpu);
1180
1181 if (type == 0)
1182 return total;
1183
1184 return max(rq->cpu_load[type-1], total);
1185 }
1186
1187 /*
1188 * Return the average load per task on the cpu's run queue
1189 */
1190 static inline unsigned long cpu_avg_load_per_task(int cpu)
1191 {
1192 struct rq *rq = cpu_rq(cpu);
1193 unsigned long total = weighted_cpuload(cpu);
1194 unsigned long n = rq->nr_running;
1195
1196 return n ? total / n : SCHED_LOAD_SCALE;
1197 }
1198
1199 /*
1200 * find_idlest_group finds and returns the least busy CPU group within the
1201 * domain.
1202 */
1203 static struct sched_group *
1204 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1205 {
1206 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1207 unsigned long min_load = ULONG_MAX, this_load = 0;
1208 int load_idx = sd->forkexec_idx;
1209 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1210
1211 do {
1212 unsigned long load, avg_load;
1213 int local_group;
1214 int i;
1215
1216 /* Skip over this group if it has no CPUs allowed */
1217 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1218 goto nextgroup;
1219
1220 local_group = cpu_isset(this_cpu, group->cpumask);
1221
1222 /* Tally up the load of all CPUs in the group */
1223 avg_load = 0;
1224
1225 for_each_cpu_mask(i, group->cpumask) {
1226 /* Bias balancing toward cpus of our domain */
1227 if (local_group)
1228 load = source_load(i, load_idx);
1229 else
1230 load = target_load(i, load_idx);
1231
1232 avg_load += load;
1233 }
1234
1235 /* Adjust by relative CPU power of the group */
1236 avg_load = sg_div_cpu_power(group,
1237 avg_load * SCHED_LOAD_SCALE);
1238
1239 if (local_group) {
1240 this_load = avg_load;
1241 this = group;
1242 } else if (avg_load < min_load) {
1243 min_load = avg_load;
1244 idlest = group;
1245 }
1246 nextgroup:
1247 group = group->next;
1248 } while (group != sd->groups);
1249
1250 if (!idlest || 100*this_load < imbalance*min_load)
1251 return NULL;
1252 return idlest;
1253 }
1254
1255 /*
1256 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1257 */
1258 static int
1259 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1260 {
1261 cpumask_t tmp;
1262 unsigned long load, min_load = ULONG_MAX;
1263 int idlest = -1;
1264 int i;
1265
1266 /* Traverse only the allowed CPUs */
1267 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1268
1269 for_each_cpu_mask(i, tmp) {
1270 load = weighted_cpuload(i);
1271
1272 if (load < min_load || (load == min_load && i == this_cpu)) {
1273 min_load = load;
1274 idlest = i;
1275 }
1276 }
1277
1278 return idlest;
1279 }
1280
1281 /*
1282 * sched_balance_self: balance the current task (running on cpu) in domains
1283 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1284 * SD_BALANCE_EXEC.
1285 *
1286 * Balance, ie. select the least loaded group.
1287 *
1288 * Returns the target CPU number, or the same CPU if no balancing is needed.
1289 *
1290 * preempt must be disabled.
1291 */
1292 static int sched_balance_self(int cpu, int flag)
1293 {
1294 struct task_struct *t = current;
1295 struct sched_domain *tmp, *sd = NULL;
1296
1297 for_each_domain(cpu, tmp) {
1298 /*
1299 * If power savings logic is enabled for a domain, stop there.
1300 */
1301 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1302 break;
1303 if (tmp->flags & flag)
1304 sd = tmp;
1305 }
1306
1307 while (sd) {
1308 cpumask_t span;
1309 struct sched_group *group;
1310 int new_cpu, weight;
1311
1312 if (!(sd->flags & flag)) {
1313 sd = sd->child;
1314 continue;
1315 }
1316
1317 span = sd->span;
1318 group = find_idlest_group(sd, t, cpu);
1319 if (!group) {
1320 sd = sd->child;
1321 continue;
1322 }
1323
1324 new_cpu = find_idlest_cpu(group, t, cpu);
1325 if (new_cpu == -1 || new_cpu == cpu) {
1326 /* Now try balancing at a lower domain level of cpu */
1327 sd = sd->child;
1328 continue;
1329 }
1330
1331 /* Now try balancing at a lower domain level of new_cpu */
1332 cpu = new_cpu;
1333 sd = NULL;
1334 weight = cpus_weight(span);
1335 for_each_domain(cpu, tmp) {
1336 if (weight <= cpus_weight(tmp->span))
1337 break;
1338 if (tmp->flags & flag)
1339 sd = tmp;
1340 }
1341 /* while loop will break here if sd == NULL */
1342 }
1343
1344 return cpu;
1345 }
1346
1347 #endif /* CONFIG_SMP */
1348
1349 /*
1350 * wake_idle() will wake a task on an idle cpu if task->cpu is
1351 * not idle and an idle cpu is available. The span of cpus to
1352 * search starts with cpus closest then further out as needed,
1353 * so we always favor a closer, idle cpu.
1354 *
1355 * Returns the CPU we should wake onto.
1356 */
1357 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1358 static int wake_idle(int cpu, struct task_struct *p)
1359 {
1360 cpumask_t tmp;
1361 struct sched_domain *sd;
1362 int i;
1363
1364 /*
1365 * If it is idle, then it is the best cpu to run this task.
1366 *
1367 * This cpu is also the best, if it has more than one task already.
1368 * Siblings must be also busy(in most cases) as they didn't already
1369 * pickup the extra load from this cpu and hence we need not check
1370 * sibling runqueue info. This will avoid the checks and cache miss
1371 * penalities associated with that.
1372 */
1373 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1374 return cpu;
1375
1376 for_each_domain(cpu, sd) {
1377 if (sd->flags & SD_WAKE_IDLE) {
1378 cpus_and(tmp, sd->span, p->cpus_allowed);
1379 for_each_cpu_mask(i, tmp) {
1380 if (idle_cpu(i))
1381 return i;
1382 }
1383 } else {
1384 break;
1385 }
1386 }
1387 return cpu;
1388 }
1389 #else
1390 static inline int wake_idle(int cpu, struct task_struct *p)
1391 {
1392 return cpu;
1393 }
1394 #endif
1395
1396 /***
1397 * try_to_wake_up - wake up a thread
1398 * @p: the to-be-woken-up thread
1399 * @state: the mask of task states that can be woken
1400 * @sync: do a synchronous wakeup?
1401 *
1402 * Put it on the run-queue if it's not already there. The "current"
1403 * thread is always on the run-queue (except when the actual
1404 * re-schedule is in progress), and as such you're allowed to do
1405 * the simpler "current->state = TASK_RUNNING" to mark yourself
1406 * runnable without the overhead of this.
1407 *
1408 * returns failure only if the task is already active.
1409 */
1410 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1411 {
1412 int cpu, this_cpu, success = 0;
1413 unsigned long flags;
1414 long old_state;
1415 struct rq *rq;
1416 #ifdef CONFIG_SMP
1417 struct sched_domain *sd, *this_sd = NULL;
1418 unsigned long load, this_load;
1419 int new_cpu;
1420 #endif
1421
1422 rq = task_rq_lock(p, &flags);
1423 old_state = p->state;
1424 if (!(old_state & state))
1425 goto out;
1426
1427 if (p->se.on_rq)
1428 goto out_running;
1429
1430 cpu = task_cpu(p);
1431 this_cpu = smp_processor_id();
1432
1433 #ifdef CONFIG_SMP
1434 if (unlikely(task_running(rq, p)))
1435 goto out_activate;
1436
1437 new_cpu = cpu;
1438
1439 schedstat_inc(rq, ttwu_cnt);
1440 if (cpu == this_cpu) {
1441 schedstat_inc(rq, ttwu_local);
1442 goto out_set_cpu;
1443 }
1444
1445 for_each_domain(this_cpu, sd) {
1446 if (cpu_isset(cpu, sd->span)) {
1447 schedstat_inc(sd, ttwu_wake_remote);
1448 this_sd = sd;
1449 break;
1450 }
1451 }
1452
1453 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1454 goto out_set_cpu;
1455
1456 /*
1457 * Check for affine wakeup and passive balancing possibilities.
1458 */
1459 if (this_sd) {
1460 int idx = this_sd->wake_idx;
1461 unsigned int imbalance;
1462
1463 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1464
1465 load = source_load(cpu, idx);
1466 this_load = target_load(this_cpu, idx);
1467
1468 new_cpu = this_cpu; /* Wake to this CPU if we can */
1469
1470 if (this_sd->flags & SD_WAKE_AFFINE) {
1471 unsigned long tl = this_load;
1472 unsigned long tl_per_task;
1473
1474 tl_per_task = cpu_avg_load_per_task(this_cpu);
1475
1476 /*
1477 * If sync wakeup then subtract the (maximum possible)
1478 * effect of the currently running task from the load
1479 * of the current CPU:
1480 */
1481 if (sync)
1482 tl -= current->se.load.weight;
1483
1484 if ((tl <= load &&
1485 tl + target_load(cpu, idx) <= tl_per_task) ||
1486 100*(tl + p->se.load.weight) <= imbalance*load) {
1487 /*
1488 * This domain has SD_WAKE_AFFINE and
1489 * p is cache cold in this domain, and
1490 * there is no bad imbalance.
1491 */
1492 schedstat_inc(this_sd, ttwu_move_affine);
1493 goto out_set_cpu;
1494 }
1495 }
1496
1497 /*
1498 * Start passive balancing when half the imbalance_pct
1499 * limit is reached.
1500 */
1501 if (this_sd->flags & SD_WAKE_BALANCE) {
1502 if (imbalance*this_load <= 100*load) {
1503 schedstat_inc(this_sd, ttwu_move_balance);
1504 goto out_set_cpu;
1505 }
1506 }
1507 }
1508
1509 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1510 out_set_cpu:
1511 new_cpu = wake_idle(new_cpu, p);
1512 if (new_cpu != cpu) {
1513 set_task_cpu(p, new_cpu);
1514 task_rq_unlock(rq, &flags);
1515 /* might preempt at this point */
1516 rq = task_rq_lock(p, &flags);
1517 old_state = p->state;
1518 if (!(old_state & state))
1519 goto out;
1520 if (p->se.on_rq)
1521 goto out_running;
1522
1523 this_cpu = smp_processor_id();
1524 cpu = task_cpu(p);
1525 }
1526
1527 out_activate:
1528 #endif /* CONFIG_SMP */
1529 activate_task(rq, p, 1);
1530 /*
1531 * Sync wakeups (i.e. those types of wakeups where the waker
1532 * has indicated that it will leave the CPU in short order)
1533 * don't trigger a preemption, if the woken up task will run on
1534 * this cpu. (in this case the 'I will reschedule' promise of
1535 * the waker guarantees that the freshly woken up task is going
1536 * to be considered on this CPU.)
1537 */
1538 if (!sync || cpu != this_cpu)
1539 check_preempt_curr(rq, p);
1540 success = 1;
1541
1542 out_running:
1543 p->state = TASK_RUNNING;
1544 out:
1545 task_rq_unlock(rq, &flags);
1546
1547 return success;
1548 }
1549
1550 int fastcall wake_up_process(struct task_struct *p)
1551 {
1552 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1553 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1554 }
1555 EXPORT_SYMBOL(wake_up_process);
1556
1557 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1558 {
1559 return try_to_wake_up(p, state, 0);
1560 }
1561
1562 /*
1563 * Perform scheduler related setup for a newly forked process p.
1564 * p is forked by current.
1565 *
1566 * __sched_fork() is basic setup used by init_idle() too:
1567 */
1568 static void __sched_fork(struct task_struct *p)
1569 {
1570 p->se.wait_start_fair = 0;
1571 p->se.wait_start = 0;
1572 p->se.exec_start = 0;
1573 p->se.sum_exec_runtime = 0;
1574 p->se.delta_exec = 0;
1575 p->se.delta_fair_run = 0;
1576 p->se.delta_fair_sleep = 0;
1577 p->se.wait_runtime = 0;
1578 p->se.sum_wait_runtime = 0;
1579 p->se.sum_sleep_runtime = 0;
1580 p->se.sleep_start = 0;
1581 p->se.sleep_start_fair = 0;
1582 p->se.block_start = 0;
1583 p->se.sleep_max = 0;
1584 p->se.block_max = 0;
1585 p->se.exec_max = 0;
1586 p->se.wait_max = 0;
1587 p->se.wait_runtime_overruns = 0;
1588 p->se.wait_runtime_underruns = 0;
1589
1590 INIT_LIST_HEAD(&p->run_list);
1591 p->se.on_rq = 0;
1592
1593 #ifdef CONFIG_PREEMPT_NOTIFIERS
1594 INIT_HLIST_HEAD(&p->preempt_notifiers);
1595 #endif
1596
1597 /*
1598 * We mark the process as running here, but have not actually
1599 * inserted it onto the runqueue yet. This guarantees that
1600 * nobody will actually run it, and a signal or other external
1601 * event cannot wake it up and insert it on the runqueue either.
1602 */
1603 p->state = TASK_RUNNING;
1604 }
1605
1606 /*
1607 * fork()/clone()-time setup:
1608 */
1609 void sched_fork(struct task_struct *p, int clone_flags)
1610 {
1611 int cpu = get_cpu();
1612
1613 __sched_fork(p);
1614
1615 #ifdef CONFIG_SMP
1616 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1617 #endif
1618 __set_task_cpu(p, cpu);
1619
1620 /*
1621 * Make sure we do not leak PI boosting priority to the child:
1622 */
1623 p->prio = current->normal_prio;
1624
1625 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1626 if (likely(sched_info_on()))
1627 memset(&p->sched_info, 0, sizeof(p->sched_info));
1628 #endif
1629 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1630 p->oncpu = 0;
1631 #endif
1632 #ifdef CONFIG_PREEMPT
1633 /* Want to start with kernel preemption disabled. */
1634 task_thread_info(p)->preempt_count = 1;
1635 #endif
1636 put_cpu();
1637 }
1638
1639 /*
1640 * After fork, child runs first. (default) If set to 0 then
1641 * parent will (try to) run first.
1642 */
1643 unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1644
1645 /*
1646 * wake_up_new_task - wake up a newly created task for the first time.
1647 *
1648 * This function will do some initial scheduler statistics housekeeping
1649 * that must be done for every newly created context, then puts the task
1650 * on the runqueue and wakes it.
1651 */
1652 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1653 {
1654 unsigned long flags;
1655 struct rq *rq;
1656 int this_cpu;
1657
1658 rq = task_rq_lock(p, &flags);
1659 BUG_ON(p->state != TASK_RUNNING);
1660 this_cpu = smp_processor_id(); /* parent's CPU */
1661
1662 p->prio = effective_prio(p);
1663
1664 if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
1665 task_cpu(p) != this_cpu || !current->se.on_rq) {
1666 activate_task(rq, p, 0);
1667 } else {
1668 /*
1669 * Let the scheduling class do new task startup
1670 * management (if any):
1671 */
1672 p->sched_class->task_new(rq, p);
1673 }
1674 check_preempt_curr(rq, p);
1675 task_rq_unlock(rq, &flags);
1676 }
1677
1678 #ifdef CONFIG_PREEMPT_NOTIFIERS
1679
1680 /**
1681 * preempt_notifier_register - tell me when current is being being preempted
1682 * and rescheduled
1683 */
1684 void preempt_notifier_register(struct preempt_notifier *notifier)
1685 {
1686 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1687 }
1688 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1689
1690 /**
1691 * preempt_notifier_unregister - no longer interested in preemption notifications
1692 *
1693 * This is safe to call from within a preemption notifier.
1694 */
1695 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1696 {
1697 hlist_del(&notifier->link);
1698 }
1699 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1700
1701 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1702 {
1703 struct preempt_notifier *notifier;
1704 struct hlist_node *node;
1705
1706 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1707 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1708 }
1709
1710 static void
1711 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1712 struct task_struct *next)
1713 {
1714 struct preempt_notifier *notifier;
1715 struct hlist_node *node;
1716
1717 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1718 notifier->ops->sched_out(notifier, next);
1719 }
1720
1721 #else
1722
1723 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1724 {
1725 }
1726
1727 static void
1728 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1729 struct task_struct *next)
1730 {
1731 }
1732
1733 #endif
1734
1735 /**
1736 * prepare_task_switch - prepare to switch tasks
1737 * @rq: the runqueue preparing to switch
1738 * @next: the task we are going to switch to.
1739 *
1740 * This is called with the rq lock held and interrupts off. It must
1741 * be paired with a subsequent finish_task_switch after the context
1742 * switch.
1743 *
1744 * prepare_task_switch sets up locking and calls architecture specific
1745 * hooks.
1746 */
1747 static inline void
1748 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1749 struct task_struct *next)
1750 {
1751 fire_sched_out_preempt_notifiers(prev, next);
1752 prepare_lock_switch(rq, next);
1753 prepare_arch_switch(next);
1754 }
1755
1756 /**
1757 * finish_task_switch - clean up after a task-switch
1758 * @rq: runqueue associated with task-switch
1759 * @prev: the thread we just switched away from.
1760 *
1761 * finish_task_switch must be called after the context switch, paired
1762 * with a prepare_task_switch call before the context switch.
1763 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1764 * and do any other architecture-specific cleanup actions.
1765 *
1766 * Note that we may have delayed dropping an mm in context_switch(). If
1767 * so, we finish that here outside of the runqueue lock. (Doing it
1768 * with the lock held can cause deadlocks; see schedule() for
1769 * details.)
1770 */
1771 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1772 __releases(rq->lock)
1773 {
1774 struct mm_struct *mm = rq->prev_mm;
1775 long prev_state;
1776
1777 rq->prev_mm = NULL;
1778
1779 /*
1780 * A task struct has one reference for the use as "current".
1781 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1782 * schedule one last time. The schedule call will never return, and
1783 * the scheduled task must drop that reference.
1784 * The test for TASK_DEAD must occur while the runqueue locks are
1785 * still held, otherwise prev could be scheduled on another cpu, die
1786 * there before we look at prev->state, and then the reference would
1787 * be dropped twice.
1788 * Manfred Spraul <manfred@colorfullife.com>
1789 */
1790 prev_state = prev->state;
1791 finish_arch_switch(prev);
1792 finish_lock_switch(rq, prev);
1793 fire_sched_in_preempt_notifiers(current);
1794 if (mm)
1795 mmdrop(mm);
1796 if (unlikely(prev_state == TASK_DEAD)) {
1797 /*
1798 * Remove function-return probe instances associated with this
1799 * task and put them back on the free list.
1800 */
1801 kprobe_flush_task(prev);
1802 put_task_struct(prev);
1803 }
1804 }
1805
1806 /**
1807 * schedule_tail - first thing a freshly forked thread must call.
1808 * @prev: the thread we just switched away from.
1809 */
1810 asmlinkage void schedule_tail(struct task_struct *prev)
1811 __releases(rq->lock)
1812 {
1813 struct rq *rq = this_rq();
1814
1815 finish_task_switch(rq, prev);
1816 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1817 /* In this case, finish_task_switch does not reenable preemption */
1818 preempt_enable();
1819 #endif
1820 if (current->set_child_tid)
1821 put_user(current->pid, current->set_child_tid);
1822 }
1823
1824 /*
1825 * context_switch - switch to the new MM and the new
1826 * thread's register state.
1827 */
1828 static inline void
1829 context_switch(struct rq *rq, struct task_struct *prev,
1830 struct task_struct *next)
1831 {
1832 struct mm_struct *mm, *oldmm;
1833
1834 prepare_task_switch(rq, prev, next);
1835 mm = next->mm;
1836 oldmm = prev->active_mm;
1837 /*
1838 * For paravirt, this is coupled with an exit in switch_to to
1839 * combine the page table reload and the switch backend into
1840 * one hypercall.
1841 */
1842 arch_enter_lazy_cpu_mode();
1843
1844 if (unlikely(!mm)) {
1845 next->active_mm = oldmm;
1846 atomic_inc(&oldmm->mm_count);
1847 enter_lazy_tlb(oldmm, next);
1848 } else
1849 switch_mm(oldmm, mm, next);
1850
1851 if (unlikely(!prev->mm)) {
1852 prev->active_mm = NULL;
1853 rq->prev_mm = oldmm;
1854 }
1855 /*
1856 * Since the runqueue lock will be released by the next
1857 * task (which is an invalid locking op but in the case
1858 * of the scheduler it's an obvious special-case), so we
1859 * do an early lockdep release here:
1860 */
1861 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1862 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1863 #endif
1864
1865 /* Here we just switch the register state and the stack. */
1866 switch_to(prev, next, prev);
1867
1868 barrier();
1869 /*
1870 * this_rq must be evaluated again because prev may have moved
1871 * CPUs since it called schedule(), thus the 'rq' on its stack
1872 * frame will be invalid.
1873 */
1874 finish_task_switch(this_rq(), prev);
1875 }
1876
1877 /*
1878 * nr_running, nr_uninterruptible and nr_context_switches:
1879 *
1880 * externally visible scheduler statistics: current number of runnable
1881 * threads, current number of uninterruptible-sleeping threads, total
1882 * number of context switches performed since bootup.
1883 */
1884 unsigned long nr_running(void)
1885 {
1886 unsigned long i, sum = 0;
1887
1888 for_each_online_cpu(i)
1889 sum += cpu_rq(i)->nr_running;
1890
1891 return sum;
1892 }
1893
1894 unsigned long nr_uninterruptible(void)
1895 {
1896 unsigned long i, sum = 0;
1897
1898 for_each_possible_cpu(i)
1899 sum += cpu_rq(i)->nr_uninterruptible;
1900
1901 /*
1902 * Since we read the counters lockless, it might be slightly
1903 * inaccurate. Do not allow it to go below zero though:
1904 */
1905 if (unlikely((long)sum < 0))
1906 sum = 0;
1907
1908 return sum;
1909 }
1910
1911 unsigned long long nr_context_switches(void)
1912 {
1913 int i;
1914 unsigned long long sum = 0;
1915
1916 for_each_possible_cpu(i)
1917 sum += cpu_rq(i)->nr_switches;
1918
1919 return sum;
1920 }
1921
1922 unsigned long nr_iowait(void)
1923 {
1924 unsigned long i, sum = 0;
1925
1926 for_each_possible_cpu(i)
1927 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1928
1929 return sum;
1930 }
1931
1932 unsigned long nr_active(void)
1933 {
1934 unsigned long i, running = 0, uninterruptible = 0;
1935
1936 for_each_online_cpu(i) {
1937 running += cpu_rq(i)->nr_running;
1938 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1939 }
1940
1941 if (unlikely((long)uninterruptible < 0))
1942 uninterruptible = 0;
1943
1944 return running + uninterruptible;
1945 }
1946
1947 /*
1948 * Update rq->cpu_load[] statistics. This function is usually called every
1949 * scheduler tick (TICK_NSEC).
1950 */
1951 static void update_cpu_load(struct rq *this_rq)
1952 {
1953 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1954 unsigned long total_load = this_rq->ls.load.weight;
1955 unsigned long this_load = total_load;
1956 struct load_stat *ls = &this_rq->ls;
1957 u64 now = __rq_clock(this_rq);
1958 int i, scale;
1959
1960 this_rq->nr_load_updates++;
1961 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1962 goto do_avg;
1963
1964 /* Update delta_fair/delta_exec fields first */
1965 update_curr_load(this_rq, now);
1966
1967 fair_delta64 = ls->delta_fair + 1;
1968 ls->delta_fair = 0;
1969
1970 exec_delta64 = ls->delta_exec + 1;
1971 ls->delta_exec = 0;
1972
1973 sample_interval64 = now - ls->load_update_last;
1974 ls->load_update_last = now;
1975
1976 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1977 sample_interval64 = TICK_NSEC;
1978
1979 if (exec_delta64 > sample_interval64)
1980 exec_delta64 = sample_interval64;
1981
1982 idle_delta64 = sample_interval64 - exec_delta64;
1983
1984 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1985 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1986
1987 this_load = (unsigned long)tmp64;
1988
1989 do_avg:
1990
1991 /* Update our load: */
1992 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1993 unsigned long old_load, new_load;
1994
1995 /* scale is effectively 1 << i now, and >> i divides by scale */
1996
1997 old_load = this_rq->cpu_load[i];
1998 new_load = this_load;
1999
2000 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2001 }
2002 }
2003
2004 #ifdef CONFIG_SMP
2005
2006 /*
2007 * double_rq_lock - safely lock two runqueues
2008 *
2009 * Note this does not disable interrupts like task_rq_lock,
2010 * you need to do so manually before calling.
2011 */
2012 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2013 __acquires(rq1->lock)
2014 __acquires(rq2->lock)
2015 {
2016 BUG_ON(!irqs_disabled());
2017 if (rq1 == rq2) {
2018 spin_lock(&rq1->lock);
2019 __acquire(rq2->lock); /* Fake it out ;) */
2020 } else {
2021 if (rq1 < rq2) {
2022 spin_lock(&rq1->lock);
2023 spin_lock(&rq2->lock);
2024 } else {
2025 spin_lock(&rq2->lock);
2026 spin_lock(&rq1->lock);
2027 }
2028 }
2029 }
2030
2031 /*
2032 * double_rq_unlock - safely unlock two runqueues
2033 *
2034 * Note this does not restore interrupts like task_rq_unlock,
2035 * you need to do so manually after calling.
2036 */
2037 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2038 __releases(rq1->lock)
2039 __releases(rq2->lock)
2040 {
2041 spin_unlock(&rq1->lock);
2042 if (rq1 != rq2)
2043 spin_unlock(&rq2->lock);
2044 else
2045 __release(rq2->lock);
2046 }
2047
2048 /*
2049 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2050 */
2051 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2052 __releases(this_rq->lock)
2053 __acquires(busiest->lock)
2054 __acquires(this_rq->lock)
2055 {
2056 if (unlikely(!irqs_disabled())) {
2057 /* printk() doesn't work good under rq->lock */
2058 spin_unlock(&this_rq->lock);
2059 BUG_ON(1);
2060 }
2061 if (unlikely(!spin_trylock(&busiest->lock))) {
2062 if (busiest < this_rq) {
2063 spin_unlock(&this_rq->lock);
2064 spin_lock(&busiest->lock);
2065 spin_lock(&this_rq->lock);
2066 } else
2067 spin_lock(&busiest->lock);
2068 }
2069 }
2070
2071 /*
2072 * If dest_cpu is allowed for this process, migrate the task to it.
2073 * This is accomplished by forcing the cpu_allowed mask to only
2074 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2075 * the cpu_allowed mask is restored.
2076 */
2077 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2078 {
2079 struct migration_req req;
2080 unsigned long flags;
2081 struct rq *rq;
2082
2083 rq = task_rq_lock(p, &flags);
2084 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2085 || unlikely(cpu_is_offline(dest_cpu)))
2086 goto out;
2087
2088 /* force the process onto the specified CPU */
2089 if (migrate_task(p, dest_cpu, &req)) {
2090 /* Need to wait for migration thread (might exit: take ref). */
2091 struct task_struct *mt = rq->migration_thread;
2092
2093 get_task_struct(mt);
2094 task_rq_unlock(rq, &flags);
2095 wake_up_process(mt);
2096 put_task_struct(mt);
2097 wait_for_completion(&req.done);
2098
2099 return;
2100 }
2101 out:
2102 task_rq_unlock(rq, &flags);
2103 }
2104
2105 /*
2106 * sched_exec - execve() is a valuable balancing opportunity, because at
2107 * this point the task has the smallest effective memory and cache footprint.
2108 */
2109 void sched_exec(void)
2110 {
2111 int new_cpu, this_cpu = get_cpu();
2112 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2113 put_cpu();
2114 if (new_cpu != this_cpu)
2115 sched_migrate_task(current, new_cpu);
2116 }
2117
2118 /*
2119 * pull_task - move a task from a remote runqueue to the local runqueue.
2120 * Both runqueues must be locked.
2121 */
2122 static void pull_task(struct rq *src_rq, struct task_struct *p,
2123 struct rq *this_rq, int this_cpu)
2124 {
2125 deactivate_task(src_rq, p, 0);
2126 set_task_cpu(p, this_cpu);
2127 activate_task(this_rq, p, 0);
2128 /*
2129 * Note that idle threads have a prio of MAX_PRIO, for this test
2130 * to be always true for them.
2131 */
2132 check_preempt_curr(this_rq, p);
2133 }
2134
2135 /*
2136 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2137 */
2138 static
2139 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2140 struct sched_domain *sd, enum cpu_idle_type idle,
2141 int *all_pinned)
2142 {
2143 /*
2144 * We do not migrate tasks that are:
2145 * 1) running (obviously), or
2146 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2147 * 3) are cache-hot on their current CPU.
2148 */
2149 if (!cpu_isset(this_cpu, p->cpus_allowed))
2150 return 0;
2151 *all_pinned = 0;
2152
2153 if (task_running(rq, p))
2154 return 0;
2155
2156 /*
2157 * Aggressive migration if too many balance attempts have failed:
2158 */
2159 if (sd->nr_balance_failed > sd->cache_nice_tries)
2160 return 1;
2161
2162 return 1;
2163 }
2164
2165 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2166 unsigned long max_nr_move, unsigned long max_load_move,
2167 struct sched_domain *sd, enum cpu_idle_type idle,
2168 int *all_pinned, unsigned long *load_moved,
2169 int this_best_prio, int best_prio, int best_prio_seen,
2170 struct rq_iterator *iterator)
2171 {
2172 int pulled = 0, pinned = 0, skip_for_load;
2173 struct task_struct *p;
2174 long rem_load_move = max_load_move;
2175
2176 if (max_nr_move == 0 || max_load_move == 0)
2177 goto out;
2178
2179 pinned = 1;
2180
2181 /*
2182 * Start the load-balancing iterator:
2183 */
2184 p = iterator->start(iterator->arg);
2185 next:
2186 if (!p)
2187 goto out;
2188 /*
2189 * To help distribute high priority tasks accross CPUs we don't
2190 * skip a task if it will be the highest priority task (i.e. smallest
2191 * prio value) on its new queue regardless of its load weight
2192 */
2193 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2194 SCHED_LOAD_SCALE_FUZZ;
2195 if (skip_for_load && p->prio < this_best_prio)
2196 skip_for_load = !best_prio_seen && p->prio == best_prio;
2197 if (skip_for_load ||
2198 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2199
2200 best_prio_seen |= p->prio == best_prio;
2201 p = iterator->next(iterator->arg);
2202 goto next;
2203 }
2204
2205 pull_task(busiest, p, this_rq, this_cpu);
2206 pulled++;
2207 rem_load_move -= p->se.load.weight;
2208
2209 /*
2210 * We only want to steal up to the prescribed number of tasks
2211 * and the prescribed amount of weighted load.
2212 */
2213 if (pulled < max_nr_move && rem_load_move > 0) {
2214 if (p->prio < this_best_prio)
2215 this_best_prio = p->prio;
2216 p = iterator->next(iterator->arg);
2217 goto next;
2218 }
2219 out:
2220 /*
2221 * Right now, this is the only place pull_task() is called,
2222 * so we can safely collect pull_task() stats here rather than
2223 * inside pull_task().
2224 */
2225 schedstat_add(sd, lb_gained[idle], pulled);
2226
2227 if (all_pinned)
2228 *all_pinned = pinned;
2229 *load_moved = max_load_move - rem_load_move;
2230 return pulled;
2231 }
2232
2233 /*
2234 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2235 * load from busiest to this_rq, as part of a balancing operation within
2236 * "domain". Returns the number of tasks moved.
2237 *
2238 * Called with both runqueues locked.
2239 */
2240 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2241 unsigned long max_nr_move, unsigned long max_load_move,
2242 struct sched_domain *sd, enum cpu_idle_type idle,
2243 int *all_pinned)
2244 {
2245 struct sched_class *class = sched_class_highest;
2246 unsigned long load_moved, total_nr_moved = 0, nr_moved;
2247 long rem_load_move = max_load_move;
2248
2249 do {
2250 nr_moved = class->load_balance(this_rq, this_cpu, busiest,
2251 max_nr_move, (unsigned long)rem_load_move,
2252 sd, idle, all_pinned, &load_moved);
2253 total_nr_moved += nr_moved;
2254 max_nr_move -= nr_moved;
2255 rem_load_move -= load_moved;
2256 class = class->next;
2257 } while (class && max_nr_move && rem_load_move > 0);
2258
2259 return total_nr_moved;
2260 }
2261
2262 /*
2263 * find_busiest_group finds and returns the busiest CPU group within the
2264 * domain. It calculates and returns the amount of weighted load which
2265 * should be moved to restore balance via the imbalance parameter.
2266 */
2267 static struct sched_group *
2268 find_busiest_group(struct sched_domain *sd, int this_cpu,
2269 unsigned long *imbalance, enum cpu_idle_type idle,
2270 int *sd_idle, cpumask_t *cpus, int *balance)
2271 {
2272 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2273 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2274 unsigned long max_pull;
2275 unsigned long busiest_load_per_task, busiest_nr_running;
2276 unsigned long this_load_per_task, this_nr_running;
2277 int load_idx;
2278 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2279 int power_savings_balance = 1;
2280 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2281 unsigned long min_nr_running = ULONG_MAX;
2282 struct sched_group *group_min = NULL, *group_leader = NULL;
2283 #endif
2284
2285 max_load = this_load = total_load = total_pwr = 0;
2286 busiest_load_per_task = busiest_nr_running = 0;
2287 this_load_per_task = this_nr_running = 0;
2288 if (idle == CPU_NOT_IDLE)
2289 load_idx = sd->busy_idx;
2290 else if (idle == CPU_NEWLY_IDLE)
2291 load_idx = sd->newidle_idx;
2292 else
2293 load_idx = sd->idle_idx;
2294
2295 do {
2296 unsigned long load, group_capacity;
2297 int local_group;
2298 int i;
2299 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2300 unsigned long sum_nr_running, sum_weighted_load;
2301
2302 local_group = cpu_isset(this_cpu, group->cpumask);
2303
2304 if (local_group)
2305 balance_cpu = first_cpu(group->cpumask);
2306
2307 /* Tally up the load of all CPUs in the group */
2308 sum_weighted_load = sum_nr_running = avg_load = 0;
2309
2310 for_each_cpu_mask(i, group->cpumask) {
2311 struct rq *rq;
2312
2313 if (!cpu_isset(i, *cpus))
2314 continue;
2315
2316 rq = cpu_rq(i);
2317
2318 if (*sd_idle && rq->nr_running)
2319 *sd_idle = 0;
2320
2321 /* Bias balancing toward cpus of our domain */
2322 if (local_group) {
2323 if (idle_cpu(i) && !first_idle_cpu) {
2324 first_idle_cpu = 1;
2325 balance_cpu = i;
2326 }
2327
2328 load = target_load(i, load_idx);
2329 } else
2330 load = source_load(i, load_idx);
2331
2332 avg_load += load;
2333 sum_nr_running += rq->nr_running;
2334 sum_weighted_load += weighted_cpuload(i);
2335 }
2336
2337 /*
2338 * First idle cpu or the first cpu(busiest) in this sched group
2339 * is eligible for doing load balancing at this and above
2340 * domains. In the newly idle case, we will allow all the cpu's
2341 * to do the newly idle load balance.
2342 */
2343 if (idle != CPU_NEWLY_IDLE && local_group &&
2344 balance_cpu != this_cpu && balance) {
2345 *balance = 0;
2346 goto ret;
2347 }
2348
2349 total_load += avg_load;
2350 total_pwr += group->__cpu_power;
2351
2352 /* Adjust by relative CPU power of the group */
2353 avg_load = sg_div_cpu_power(group,
2354 avg_load * SCHED_LOAD_SCALE);
2355
2356 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2357
2358 if (local_group) {
2359 this_load = avg_load;
2360 this = group;
2361 this_nr_running = sum_nr_running;
2362 this_load_per_task = sum_weighted_load;
2363 } else if (avg_load > max_load &&
2364 sum_nr_running > group_capacity) {
2365 max_load = avg_load;
2366 busiest = group;
2367 busiest_nr_running = sum_nr_running;
2368 busiest_load_per_task = sum_weighted_load;
2369 }
2370
2371 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2372 /*
2373 * Busy processors will not participate in power savings
2374 * balance.
2375 */
2376 if (idle == CPU_NOT_IDLE ||
2377 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2378 goto group_next;
2379
2380 /*
2381 * If the local group is idle or completely loaded
2382 * no need to do power savings balance at this domain
2383 */
2384 if (local_group && (this_nr_running >= group_capacity ||
2385 !this_nr_running))
2386 power_savings_balance = 0;
2387
2388 /*
2389 * If a group is already running at full capacity or idle,
2390 * don't include that group in power savings calculations
2391 */
2392 if (!power_savings_balance || sum_nr_running >= group_capacity
2393 || !sum_nr_running)
2394 goto group_next;
2395
2396 /*
2397 * Calculate the group which has the least non-idle load.
2398 * This is the group from where we need to pick up the load
2399 * for saving power
2400 */
2401 if ((sum_nr_running < min_nr_running) ||
2402 (sum_nr_running == min_nr_running &&
2403 first_cpu(group->cpumask) <
2404 first_cpu(group_min->cpumask))) {
2405 group_min = group;
2406 min_nr_running = sum_nr_running;
2407 min_load_per_task = sum_weighted_load /
2408 sum_nr_running;
2409 }
2410
2411 /*
2412 * Calculate the group which is almost near its
2413 * capacity but still has some space to pick up some load
2414 * from other group and save more power
2415 */
2416 if (sum_nr_running <= group_capacity - 1) {
2417 if (sum_nr_running > leader_nr_running ||
2418 (sum_nr_running == leader_nr_running &&
2419 first_cpu(group->cpumask) >
2420 first_cpu(group_leader->cpumask))) {
2421 group_leader = group;
2422 leader_nr_running = sum_nr_running;
2423 }
2424 }
2425 group_next:
2426 #endif
2427 group = group->next;
2428 } while (group != sd->groups);
2429
2430 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2431 goto out_balanced;
2432
2433 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2434
2435 if (this_load >= avg_load ||
2436 100*max_load <= sd->imbalance_pct*this_load)
2437 goto out_balanced;
2438
2439 busiest_load_per_task /= busiest_nr_running;
2440 /*
2441 * We're trying to get all the cpus to the average_load, so we don't
2442 * want to push ourselves above the average load, nor do we wish to
2443 * reduce the max loaded cpu below the average load, as either of these
2444 * actions would just result in more rebalancing later, and ping-pong
2445 * tasks around. Thus we look for the minimum possible imbalance.
2446 * Negative imbalances (*we* are more loaded than anyone else) will
2447 * be counted as no imbalance for these purposes -- we can't fix that
2448 * by pulling tasks to us. Be careful of negative numbers as they'll
2449 * appear as very large values with unsigned longs.
2450 */
2451 if (max_load <= busiest_load_per_task)
2452 goto out_balanced;
2453
2454 /*
2455 * In the presence of smp nice balancing, certain scenarios can have
2456 * max load less than avg load(as we skip the groups at or below
2457 * its cpu_power, while calculating max_load..)
2458 */
2459 if (max_load < avg_load) {
2460 *imbalance = 0;
2461 goto small_imbalance;
2462 }
2463
2464 /* Don't want to pull so many tasks that a group would go idle */
2465 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2466
2467 /* How much load to actually move to equalise the imbalance */
2468 *imbalance = min(max_pull * busiest->__cpu_power,
2469 (avg_load - this_load) * this->__cpu_power)
2470 / SCHED_LOAD_SCALE;
2471
2472 /*
2473 * if *imbalance is less than the average load per runnable task
2474 * there is no gaurantee that any tasks will be moved so we'll have
2475 * a think about bumping its value to force at least one task to be
2476 * moved
2477 */
2478 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2479 unsigned long tmp, pwr_now, pwr_move;
2480 unsigned int imbn;
2481
2482 small_imbalance:
2483 pwr_move = pwr_now = 0;
2484 imbn = 2;
2485 if (this_nr_running) {
2486 this_load_per_task /= this_nr_running;
2487 if (busiest_load_per_task > this_load_per_task)
2488 imbn = 1;
2489 } else
2490 this_load_per_task = SCHED_LOAD_SCALE;
2491
2492 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2493 busiest_load_per_task * imbn) {
2494 *imbalance = busiest_load_per_task;
2495 return busiest;
2496 }
2497
2498 /*
2499 * OK, we don't have enough imbalance to justify moving tasks,
2500 * however we may be able to increase total CPU power used by
2501 * moving them.
2502 */
2503
2504 pwr_now += busiest->__cpu_power *
2505 min(busiest_load_per_task, max_load);
2506 pwr_now += this->__cpu_power *
2507 min(this_load_per_task, this_load);
2508 pwr_now /= SCHED_LOAD_SCALE;
2509
2510 /* Amount of load we'd subtract */
2511 tmp = sg_div_cpu_power(busiest,
2512 busiest_load_per_task * SCHED_LOAD_SCALE);
2513 if (max_load > tmp)
2514 pwr_move += busiest->__cpu_power *
2515 min(busiest_load_per_task, max_load - tmp);
2516
2517 /* Amount of load we'd add */
2518 if (max_load * busiest->__cpu_power <
2519 busiest_load_per_task * SCHED_LOAD_SCALE)
2520 tmp = sg_div_cpu_power(this,
2521 max_load * busiest->__cpu_power);
2522 else
2523 tmp = sg_div_cpu_power(this,
2524 busiest_load_per_task * SCHED_LOAD_SCALE);
2525 pwr_move += this->__cpu_power *
2526 min(this_load_per_task, this_load + tmp);
2527 pwr_move /= SCHED_LOAD_SCALE;
2528
2529 /* Move if we gain throughput */
2530 if (pwr_move <= pwr_now)
2531 goto out_balanced;
2532
2533 *imbalance = busiest_load_per_task;
2534 }
2535
2536 return busiest;
2537
2538 out_balanced:
2539 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2540 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2541 goto ret;
2542
2543 if (this == group_leader && group_leader != group_min) {
2544 *imbalance = min_load_per_task;
2545 return group_min;
2546 }
2547 #endif
2548 ret:
2549 *imbalance = 0;
2550 return NULL;
2551 }
2552
2553 /*
2554 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2555 */
2556 static struct rq *
2557 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2558 unsigned long imbalance, cpumask_t *cpus)
2559 {
2560 struct rq *busiest = NULL, *rq;
2561 unsigned long max_load = 0;
2562 int i;
2563
2564 for_each_cpu_mask(i, group->cpumask) {
2565 unsigned long wl;
2566
2567 if (!cpu_isset(i, *cpus))
2568 continue;
2569
2570 rq = cpu_rq(i);
2571 wl = weighted_cpuload(i);
2572
2573 if (rq->nr_running == 1 && wl > imbalance)
2574 continue;
2575
2576 if (wl > max_load) {
2577 max_load = wl;
2578 busiest = rq;
2579 }
2580 }
2581
2582 return busiest;
2583 }
2584
2585 /*
2586 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2587 * so long as it is large enough.
2588 */
2589 #define MAX_PINNED_INTERVAL 512
2590
2591 static inline unsigned long minus_1_or_zero(unsigned long n)
2592 {
2593 return n > 0 ? n - 1 : 0;
2594 }
2595
2596 /*
2597 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2598 * tasks if there is an imbalance.
2599 */
2600 static int load_balance(int this_cpu, struct rq *this_rq,
2601 struct sched_domain *sd, enum cpu_idle_type idle,
2602 int *balance)
2603 {
2604 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2605 struct sched_group *group;
2606 unsigned long imbalance;
2607 struct rq *busiest;
2608 cpumask_t cpus = CPU_MASK_ALL;
2609 unsigned long flags;
2610
2611 /*
2612 * When power savings policy is enabled for the parent domain, idle
2613 * sibling can pick up load irrespective of busy siblings. In this case,
2614 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2615 * portraying it as CPU_NOT_IDLE.
2616 */
2617 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2618 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2619 sd_idle = 1;
2620
2621 schedstat_inc(sd, lb_cnt[idle]);
2622
2623 redo:
2624 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2625 &cpus, balance);
2626
2627 if (*balance == 0)
2628 goto out_balanced;
2629
2630 if (!group) {
2631 schedstat_inc(sd, lb_nobusyg[idle]);
2632 goto out_balanced;
2633 }
2634
2635 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2636 if (!busiest) {
2637 schedstat_inc(sd, lb_nobusyq[idle]);
2638 goto out_balanced;
2639 }
2640
2641 BUG_ON(busiest == this_rq);
2642
2643 schedstat_add(sd, lb_imbalance[idle], imbalance);
2644
2645 nr_moved = 0;
2646 if (busiest->nr_running > 1) {
2647 /*
2648 * Attempt to move tasks. If find_busiest_group has found
2649 * an imbalance but busiest->nr_running <= 1, the group is
2650 * still unbalanced. nr_moved simply stays zero, so it is
2651 * correctly treated as an imbalance.
2652 */
2653 local_irq_save(flags);
2654 double_rq_lock(this_rq, busiest);
2655 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2656 minus_1_or_zero(busiest->nr_running),
2657 imbalance, sd, idle, &all_pinned);
2658 double_rq_unlock(this_rq, busiest);
2659 local_irq_restore(flags);
2660
2661 /*
2662 * some other cpu did the load balance for us.
2663 */
2664 if (nr_moved && this_cpu != smp_processor_id())
2665 resched_cpu(this_cpu);
2666
2667 /* All tasks on this runqueue were pinned by CPU affinity */
2668 if (unlikely(all_pinned)) {
2669 cpu_clear(cpu_of(busiest), cpus);
2670 if (!cpus_empty(cpus))
2671 goto redo;
2672 goto out_balanced;
2673 }
2674 }
2675
2676 if (!nr_moved) {
2677 schedstat_inc(sd, lb_failed[idle]);
2678 sd->nr_balance_failed++;
2679
2680 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2681
2682 spin_lock_irqsave(&busiest->lock, flags);
2683
2684 /* don't kick the migration_thread, if the curr
2685 * task on busiest cpu can't be moved to this_cpu
2686 */
2687 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2688 spin_unlock_irqrestore(&busiest->lock, flags);
2689 all_pinned = 1;
2690 goto out_one_pinned;
2691 }
2692
2693 if (!busiest->active_balance) {
2694 busiest->active_balance = 1;
2695 busiest->push_cpu = this_cpu;
2696 active_balance = 1;
2697 }
2698 spin_unlock_irqrestore(&busiest->lock, flags);
2699 if (active_balance)
2700 wake_up_process(busiest->migration_thread);
2701
2702 /*
2703 * We've kicked active balancing, reset the failure
2704 * counter.
2705 */
2706 sd->nr_balance_failed = sd->cache_nice_tries+1;
2707 }
2708 } else
2709 sd->nr_balance_failed = 0;
2710
2711 if (likely(!active_balance)) {
2712 /* We were unbalanced, so reset the balancing interval */
2713 sd->balance_interval = sd->min_interval;
2714 } else {
2715 /*
2716 * If we've begun active balancing, start to back off. This
2717 * case may not be covered by the all_pinned logic if there
2718 * is only 1 task on the busy runqueue (because we don't call
2719 * move_tasks).
2720 */
2721 if (sd->balance_interval < sd->max_interval)
2722 sd->balance_interval *= 2;
2723 }
2724
2725 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2726 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2727 return -1;
2728 return nr_moved;
2729
2730 out_balanced:
2731 schedstat_inc(sd, lb_balanced[idle]);
2732
2733 sd->nr_balance_failed = 0;
2734
2735 out_one_pinned:
2736 /* tune up the balancing interval */
2737 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2738 (sd->balance_interval < sd->max_interval))
2739 sd->balance_interval *= 2;
2740
2741 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2742 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2743 return -1;
2744 return 0;
2745 }
2746
2747 /*
2748 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2749 * tasks if there is an imbalance.
2750 *
2751 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2752 * this_rq is locked.
2753 */
2754 static int
2755 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2756 {
2757 struct sched_group *group;
2758 struct rq *busiest = NULL;
2759 unsigned long imbalance;
2760 int nr_moved = 0;
2761 int sd_idle = 0;
2762 int all_pinned = 0;
2763 cpumask_t cpus = CPU_MASK_ALL;
2764
2765 /*
2766 * When power savings policy is enabled for the parent domain, idle
2767 * sibling can pick up load irrespective of busy siblings. In this case,
2768 * let the state of idle sibling percolate up as IDLE, instead of
2769 * portraying it as CPU_NOT_IDLE.
2770 */
2771 if (sd->flags & SD_SHARE_CPUPOWER &&
2772 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2773 sd_idle = 1;
2774
2775 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2776 redo:
2777 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2778 &sd_idle, &cpus, NULL);
2779 if (!group) {
2780 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2781 goto out_balanced;
2782 }
2783
2784 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2785 &cpus);
2786 if (!busiest) {
2787 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2788 goto out_balanced;
2789 }
2790
2791 BUG_ON(busiest == this_rq);
2792
2793 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2794
2795 nr_moved = 0;
2796 if (busiest->nr_running > 1) {
2797 /* Attempt to move tasks */
2798 double_lock_balance(this_rq, busiest);
2799 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2800 minus_1_or_zero(busiest->nr_running),
2801 imbalance, sd, CPU_NEWLY_IDLE,
2802 &all_pinned);
2803 spin_unlock(&busiest->lock);
2804
2805 if (unlikely(all_pinned)) {
2806 cpu_clear(cpu_of(busiest), cpus);
2807 if (!cpus_empty(cpus))
2808 goto redo;
2809 }
2810 }
2811
2812 if (!nr_moved) {
2813 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2814 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2815 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2816 return -1;
2817 } else
2818 sd->nr_balance_failed = 0;
2819
2820 return nr_moved;
2821
2822 out_balanced:
2823 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2824 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2825 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2826 return -1;
2827 sd->nr_balance_failed = 0;
2828
2829 return 0;
2830 }
2831
2832 /*
2833 * idle_balance is called by schedule() if this_cpu is about to become
2834 * idle. Attempts to pull tasks from other CPUs.
2835 */
2836 static void idle_balance(int this_cpu, struct rq *this_rq)
2837 {
2838 struct sched_domain *sd;
2839 int pulled_task = -1;
2840 unsigned long next_balance = jiffies + HZ;
2841
2842 for_each_domain(this_cpu, sd) {
2843 unsigned long interval;
2844
2845 if (!(sd->flags & SD_LOAD_BALANCE))
2846 continue;
2847
2848 if (sd->flags & SD_BALANCE_NEWIDLE)
2849 /* If we've pulled tasks over stop searching: */
2850 pulled_task = load_balance_newidle(this_cpu,
2851 this_rq, sd);
2852
2853 interval = msecs_to_jiffies(sd->balance_interval);
2854 if (time_after(next_balance, sd->last_balance + interval))
2855 next_balance = sd->last_balance + interval;
2856 if (pulled_task)
2857 break;
2858 }
2859 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2860 /*
2861 * We are going idle. next_balance may be set based on
2862 * a busy processor. So reset next_balance.
2863 */
2864 this_rq->next_balance = next_balance;
2865 }
2866 }
2867
2868 /*
2869 * active_load_balance is run by migration threads. It pushes running tasks
2870 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2871 * running on each physical CPU where possible, and avoids physical /
2872 * logical imbalances.
2873 *
2874 * Called with busiest_rq locked.
2875 */
2876 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2877 {
2878 int target_cpu = busiest_rq->push_cpu;
2879 struct sched_domain *sd;
2880 struct rq *target_rq;
2881
2882 /* Is there any task to move? */
2883 if (busiest_rq->nr_running <= 1)
2884 return;
2885
2886 target_rq = cpu_rq(target_cpu);
2887
2888 /*
2889 * This condition is "impossible", if it occurs
2890 * we need to fix it. Originally reported by
2891 * Bjorn Helgaas on a 128-cpu setup.
2892 */
2893 BUG_ON(busiest_rq == target_rq);
2894
2895 /* move a task from busiest_rq to target_rq */
2896 double_lock_balance(busiest_rq, target_rq);
2897
2898 /* Search for an sd spanning us and the target CPU. */
2899 for_each_domain(target_cpu, sd) {
2900 if ((sd->flags & SD_LOAD_BALANCE) &&
2901 cpu_isset(busiest_cpu, sd->span))
2902 break;
2903 }
2904
2905 if (likely(sd)) {
2906 schedstat_inc(sd, alb_cnt);
2907
2908 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2909 RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
2910 NULL))
2911 schedstat_inc(sd, alb_pushed);
2912 else
2913 schedstat_inc(sd, alb_failed);
2914 }
2915 spin_unlock(&target_rq->lock);
2916 }
2917
2918 #ifdef CONFIG_NO_HZ
2919 static struct {
2920 atomic_t load_balancer;
2921 cpumask_t cpu_mask;
2922 } nohz ____cacheline_aligned = {
2923 .load_balancer = ATOMIC_INIT(-1),
2924 .cpu_mask = CPU_MASK_NONE,
2925 };
2926
2927 /*
2928 * This routine will try to nominate the ilb (idle load balancing)
2929 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2930 * load balancing on behalf of all those cpus. If all the cpus in the system
2931 * go into this tickless mode, then there will be no ilb owner (as there is
2932 * no need for one) and all the cpus will sleep till the next wakeup event
2933 * arrives...
2934 *
2935 * For the ilb owner, tick is not stopped. And this tick will be used
2936 * for idle load balancing. ilb owner will still be part of
2937 * nohz.cpu_mask..
2938 *
2939 * While stopping the tick, this cpu will become the ilb owner if there
2940 * is no other owner. And will be the owner till that cpu becomes busy
2941 * or if all cpus in the system stop their ticks at which point
2942 * there is no need for ilb owner.
2943 *
2944 * When the ilb owner becomes busy, it nominates another owner, during the
2945 * next busy scheduler_tick()
2946 */
2947 int select_nohz_load_balancer(int stop_tick)
2948 {
2949 int cpu = smp_processor_id();
2950
2951 if (stop_tick) {
2952 cpu_set(cpu, nohz.cpu_mask);
2953 cpu_rq(cpu)->in_nohz_recently = 1;
2954
2955 /*
2956 * If we are going offline and still the leader, give up!
2957 */
2958 if (cpu_is_offline(cpu) &&
2959 atomic_read(&nohz.load_balancer) == cpu) {
2960 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2961 BUG();
2962 return 0;
2963 }
2964
2965 /* time for ilb owner also to sleep */
2966 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2967 if (atomic_read(&nohz.load_balancer) == cpu)
2968 atomic_set(&nohz.load_balancer, -1);
2969 return 0;
2970 }
2971
2972 if (atomic_read(&nohz.load_balancer) == -1) {
2973 /* make me the ilb owner */
2974 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2975 return 1;
2976 } else if (atomic_read(&nohz.load_balancer) == cpu)
2977 return 1;
2978 } else {
2979 if (!cpu_isset(cpu, nohz.cpu_mask))
2980 return 0;
2981
2982 cpu_clear(cpu, nohz.cpu_mask);
2983
2984 if (atomic_read(&nohz.load_balancer) == cpu)
2985 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2986 BUG();
2987 }
2988 return 0;
2989 }
2990 #endif
2991
2992 static DEFINE_SPINLOCK(balancing);
2993
2994 /*
2995 * It checks each scheduling domain to see if it is due to be balanced,
2996 * and initiates a balancing operation if so.
2997 *
2998 * Balancing parameters are set up in arch_init_sched_domains.
2999 */
3000 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3001 {
3002 int balance = 1;
3003 struct rq *rq = cpu_rq(cpu);
3004 unsigned long interval;
3005 struct sched_domain *sd;
3006 /* Earliest time when we have to do rebalance again */
3007 unsigned long next_balance = jiffies + 60*HZ;
3008
3009 for_each_domain(cpu, sd) {
3010 if (!(sd->flags & SD_LOAD_BALANCE))
3011 continue;
3012
3013 interval = sd->balance_interval;
3014 if (idle != CPU_IDLE)
3015 interval *= sd->busy_factor;
3016
3017 /* scale ms to jiffies */
3018 interval = msecs_to_jiffies(interval);
3019 if (unlikely(!interval))
3020 interval = 1;
3021 if (interval > HZ*NR_CPUS/10)
3022 interval = HZ*NR_CPUS/10;
3023
3024
3025 if (sd->flags & SD_SERIALIZE) {
3026 if (!spin_trylock(&balancing))
3027 goto out;
3028 }
3029
3030 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3031 if (load_balance(cpu, rq, sd, idle, &balance)) {
3032 /*
3033 * We've pulled tasks over so either we're no
3034 * longer idle, or one of our SMT siblings is
3035 * not idle.
3036 */
3037 idle = CPU_NOT_IDLE;
3038 }
3039 sd->last_balance = jiffies;
3040 }
3041 if (sd->flags & SD_SERIALIZE)
3042 spin_unlock(&balancing);
3043 out:
3044 if (time_after(next_balance, sd->last_balance + interval))
3045 next_balance = sd->last_balance + interval;
3046
3047 /*
3048 * Stop the load balance at this level. There is another
3049 * CPU in our sched group which is doing load balancing more
3050 * actively.
3051 */
3052 if (!balance)
3053 break;
3054 }
3055 rq->next_balance = next_balance;
3056 }
3057
3058 /*
3059 * run_rebalance_domains is triggered when needed from the scheduler tick.
3060 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3061 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3062 */
3063 static void run_rebalance_domains(struct softirq_action *h)
3064 {
3065 int this_cpu = smp_processor_id();
3066 struct rq *this_rq = cpu_rq(this_cpu);
3067 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3068 CPU_IDLE : CPU_NOT_IDLE;
3069
3070 rebalance_domains(this_cpu, idle);
3071
3072 #ifdef CONFIG_NO_HZ
3073 /*
3074 * If this cpu is the owner for idle load balancing, then do the
3075 * balancing on behalf of the other idle cpus whose ticks are
3076 * stopped.
3077 */
3078 if (this_rq->idle_at_tick &&
3079 atomic_read(&nohz.load_balancer) == this_cpu) {
3080 cpumask_t cpus = nohz.cpu_mask;
3081 struct rq *rq;
3082 int balance_cpu;
3083
3084 cpu_clear(this_cpu, cpus);
3085 for_each_cpu_mask(balance_cpu, cpus) {
3086 /*
3087 * If this cpu gets work to do, stop the load balancing
3088 * work being done for other cpus. Next load
3089 * balancing owner will pick it up.
3090 */
3091 if (need_resched())
3092 break;
3093
3094 rebalance_domains(balance_cpu, SCHED_IDLE);
3095
3096 rq = cpu_rq(balance_cpu);
3097 if (time_after(this_rq->next_balance, rq->next_balance))
3098 this_rq->next_balance = rq->next_balance;
3099 }
3100 }
3101 #endif
3102 }
3103
3104 /*
3105 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3106 *
3107 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3108 * idle load balancing owner or decide to stop the periodic load balancing,
3109 * if the whole system is idle.
3110 */
3111 static inline void trigger_load_balance(struct rq *rq, int cpu)
3112 {
3113 #ifdef CONFIG_NO_HZ
3114 /*
3115 * If we were in the nohz mode recently and busy at the current
3116 * scheduler tick, then check if we need to nominate new idle
3117 * load balancer.
3118 */
3119 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3120 rq->in_nohz_recently = 0;
3121
3122 if (atomic_read(&nohz.load_balancer) == cpu) {
3123 cpu_clear(cpu, nohz.cpu_mask);
3124 atomic_set(&nohz.load_balancer, -1);
3125 }
3126
3127 if (atomic_read(&nohz.load_balancer) == -1) {
3128 /*
3129 * simple selection for now: Nominate the
3130 * first cpu in the nohz list to be the next
3131 * ilb owner.
3132 *
3133 * TBD: Traverse the sched domains and nominate
3134 * the nearest cpu in the nohz.cpu_mask.
3135 */
3136 int ilb = first_cpu(nohz.cpu_mask);
3137
3138 if (ilb != NR_CPUS)
3139 resched_cpu(ilb);
3140 }
3141 }
3142
3143 /*
3144 * If this cpu is idle and doing idle load balancing for all the
3145 * cpus with ticks stopped, is it time for that to stop?
3146 */
3147 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3148 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3149 resched_cpu(cpu);
3150 return;
3151 }
3152
3153 /*
3154 * If this cpu is idle and the idle load balancing is done by
3155 * someone else, then no need raise the SCHED_SOFTIRQ
3156 */
3157 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3158 cpu_isset(cpu, nohz.cpu_mask))
3159 return;
3160 #endif
3161 if (time_after_eq(jiffies, rq->next_balance))
3162 raise_softirq(SCHED_SOFTIRQ);
3163 }
3164
3165 #else /* CONFIG_SMP */
3166
3167 /*
3168 * on UP we do not need to balance between CPUs:
3169 */
3170 static inline void idle_balance(int cpu, struct rq *rq)
3171 {
3172 }
3173
3174 /* Avoid "used but not defined" warning on UP */
3175 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3176 unsigned long max_nr_move, unsigned long max_load_move,
3177 struct sched_domain *sd, enum cpu_idle_type idle,
3178 int *all_pinned, unsigned long *load_moved,
3179 int this_best_prio, int best_prio, int best_prio_seen,
3180 struct rq_iterator *iterator)
3181 {
3182 *load_moved = 0;
3183
3184 return 0;
3185 }
3186
3187 #endif
3188
3189 DEFINE_PER_CPU(struct kernel_stat, kstat);
3190
3191 EXPORT_PER_CPU_SYMBOL(kstat);
3192
3193 /*
3194 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3195 * that have not yet been banked in case the task is currently running.
3196 */
3197 unsigned long long task_sched_runtime(struct task_struct *p)
3198 {
3199 unsigned long flags;
3200 u64 ns, delta_exec;
3201 struct rq *rq;
3202
3203 rq = task_rq_lock(p, &flags);
3204 ns = p->se.sum_exec_runtime;
3205 if (rq->curr == p) {
3206 delta_exec = rq_clock(rq) - p->se.exec_start;
3207 if ((s64)delta_exec > 0)
3208 ns += delta_exec;
3209 }
3210 task_rq_unlock(rq, &flags);
3211
3212 return ns;
3213 }
3214
3215 /*
3216 * Account user cpu time to a process.
3217 * @p: the process that the cpu time gets accounted to
3218 * @hardirq_offset: the offset to subtract from hardirq_count()
3219 * @cputime: the cpu time spent in user space since the last update
3220 */
3221 void account_user_time(struct task_struct *p, cputime_t cputime)
3222 {
3223 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3224 cputime64_t tmp;
3225
3226 p->utime = cputime_add(p->utime, cputime);
3227
3228 /* Add user time to cpustat. */
3229 tmp = cputime_to_cputime64(cputime);
3230 if (TASK_NICE(p) > 0)
3231 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3232 else
3233 cpustat->user = cputime64_add(cpustat->user, tmp);
3234 }
3235
3236 /*
3237 * Account system cpu time to a process.
3238 * @p: the process that the cpu time gets accounted to
3239 * @hardirq_offset: the offset to subtract from hardirq_count()
3240 * @cputime: the cpu time spent in kernel space since the last update
3241 */
3242 void account_system_time(struct task_struct *p, int hardirq_offset,
3243 cputime_t cputime)
3244 {
3245 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3246 struct rq *rq = this_rq();
3247 cputime64_t tmp;
3248
3249 p->stime = cputime_add(p->stime, cputime);
3250
3251 /* Add system time to cpustat. */
3252 tmp = cputime_to_cputime64(cputime);
3253 if (hardirq_count() - hardirq_offset)
3254 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3255 else if (softirq_count())
3256 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3257 else if (p != rq->idle)
3258 cpustat->system = cputime64_add(cpustat->system, tmp);
3259 else if (atomic_read(&rq->nr_iowait) > 0)
3260 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3261 else
3262 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3263 /* Account for system time used */
3264 acct_update_integrals(p);
3265 }
3266
3267 /*
3268 * Account for involuntary wait time.
3269 * @p: the process from which the cpu time has been stolen
3270 * @steal: the cpu time spent in involuntary wait
3271 */
3272 void account_steal_time(struct task_struct *p, cputime_t steal)
3273 {
3274 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3275 cputime64_t tmp = cputime_to_cputime64(steal);
3276 struct rq *rq = this_rq();
3277
3278 if (p == rq->idle) {
3279 p->stime = cputime_add(p->stime, steal);
3280 if (atomic_read(&rq->nr_iowait) > 0)
3281 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3282 else
3283 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3284 } else
3285 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3286 }
3287
3288 /*
3289 * This function gets called by the timer code, with HZ frequency.
3290 * We call it with interrupts disabled.
3291 *
3292 * It also gets called by the fork code, when changing the parent's
3293 * timeslices.
3294 */
3295 void scheduler_tick(void)
3296 {
3297 int cpu = smp_processor_id();
3298 struct rq *rq = cpu_rq(cpu);
3299 struct task_struct *curr = rq->curr;
3300
3301 spin_lock(&rq->lock);
3302 if (curr != rq->idle) /* FIXME: needed? */
3303 curr->sched_class->task_tick(rq, curr);
3304 update_cpu_load(rq);
3305 spin_unlock(&rq->lock);
3306
3307 #ifdef CONFIG_SMP
3308 rq->idle_at_tick = idle_cpu(cpu);
3309 trigger_load_balance(rq, cpu);
3310 #endif
3311 }
3312
3313 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3314
3315 void fastcall add_preempt_count(int val)
3316 {
3317 /*
3318 * Underflow?
3319 */
3320 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3321 return;
3322 preempt_count() += val;
3323 /*
3324 * Spinlock count overflowing soon?
3325 */
3326 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3327 PREEMPT_MASK - 10);
3328 }
3329 EXPORT_SYMBOL(add_preempt_count);
3330
3331 void fastcall sub_preempt_count(int val)
3332 {
3333 /*
3334 * Underflow?
3335 */
3336 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3337 return;
3338 /*
3339 * Is the spinlock portion underflowing?
3340 */
3341 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3342 !(preempt_count() & PREEMPT_MASK)))
3343 return;
3344
3345 preempt_count() -= val;
3346 }
3347 EXPORT_SYMBOL(sub_preempt_count);
3348
3349 #endif
3350
3351 /*
3352 * Print scheduling while atomic bug:
3353 */
3354 static noinline void __schedule_bug(struct task_struct *prev)
3355 {
3356 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3357 prev->comm, preempt_count(), prev->pid);
3358 debug_show_held_locks(prev);
3359 if (irqs_disabled())
3360 print_irqtrace_events(prev);
3361 dump_stack();
3362 }
3363
3364 /*
3365 * Various schedule()-time debugging checks and statistics:
3366 */
3367 static inline void schedule_debug(struct task_struct *prev)
3368 {
3369 /*
3370 * Test if we are atomic. Since do_exit() needs to call into
3371 * schedule() atomically, we ignore that path for now.
3372 * Otherwise, whine if we are scheduling when we should not be.
3373 */
3374 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3375 __schedule_bug(prev);
3376
3377 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3378
3379 schedstat_inc(this_rq(), sched_cnt);
3380 }
3381
3382 /*
3383 * Pick up the highest-prio task:
3384 */
3385 static inline struct task_struct *
3386 pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3387 {
3388 struct sched_class *class;
3389 struct task_struct *p;
3390
3391 /*
3392 * Optimization: we know that if all tasks are in
3393 * the fair class we can call that function directly:
3394 */
3395 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3396 p = fair_sched_class.pick_next_task(rq, now);
3397 if (likely(p))
3398 return p;
3399 }
3400
3401 class = sched_class_highest;
3402 for ( ; ; ) {
3403 p = class->pick_next_task(rq, now);
3404 if (p)
3405 return p;
3406 /*
3407 * Will never be NULL as the idle class always
3408 * returns a non-NULL p:
3409 */
3410 class = class->next;
3411 }
3412 }
3413
3414 /*
3415 * schedule() is the main scheduler function.
3416 */
3417 asmlinkage void __sched schedule(void)
3418 {
3419 struct task_struct *prev, *next;
3420 long *switch_count;
3421 struct rq *rq;
3422 u64 now;
3423 int cpu;
3424
3425 need_resched:
3426 preempt_disable();
3427 cpu = smp_processor_id();
3428 rq = cpu_rq(cpu);
3429 rcu_qsctr_inc(cpu);
3430 prev = rq->curr;
3431 switch_count = &prev->nivcsw;
3432
3433 release_kernel_lock(prev);
3434 need_resched_nonpreemptible:
3435
3436 schedule_debug(prev);
3437
3438 spin_lock_irq(&rq->lock);
3439 clear_tsk_need_resched(prev);
3440
3441 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3442 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3443 unlikely(signal_pending(prev)))) {
3444 prev->state = TASK_RUNNING;
3445 } else {
3446 deactivate_task(rq, prev, 1);
3447 }
3448 switch_count = &prev->nvcsw;
3449 }
3450
3451 if (unlikely(!rq->nr_running))
3452 idle_balance(cpu, rq);
3453
3454 now = __rq_clock(rq);
3455 prev->sched_class->put_prev_task(rq, prev, now);
3456 next = pick_next_task(rq, prev, now);
3457
3458 sched_info_switch(prev, next);
3459
3460 if (likely(prev != next)) {
3461 rq->nr_switches++;
3462 rq->curr = next;
3463 ++*switch_count;
3464
3465 context_switch(rq, prev, next); /* unlocks the rq */
3466 } else
3467 spin_unlock_irq(&rq->lock);
3468
3469 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3470 cpu = smp_processor_id();
3471 rq = cpu_rq(cpu);
3472 goto need_resched_nonpreemptible;
3473 }
3474 preempt_enable_no_resched();
3475 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3476 goto need_resched;
3477 }
3478 EXPORT_SYMBOL(schedule);
3479
3480 #ifdef CONFIG_PREEMPT
3481 /*
3482 * this is the entry point to schedule() from in-kernel preemption
3483 * off of preempt_enable. Kernel preemptions off return from interrupt
3484 * occur there and call schedule directly.
3485 */
3486 asmlinkage void __sched preempt_schedule(void)
3487 {
3488 struct thread_info *ti = current_thread_info();
3489 #ifdef CONFIG_PREEMPT_BKL
3490 struct task_struct *task = current;
3491 int saved_lock_depth;
3492 #endif
3493 /*
3494 * If there is a non-zero preempt_count or interrupts are disabled,
3495 * we do not want to preempt the current task. Just return..
3496 */
3497 if (likely(ti->preempt_count || irqs_disabled()))
3498 return;
3499
3500 need_resched:
3501 add_preempt_count(PREEMPT_ACTIVE);
3502 /*
3503 * We keep the big kernel semaphore locked, but we
3504 * clear ->lock_depth so that schedule() doesnt
3505 * auto-release the semaphore:
3506 */
3507 #ifdef CONFIG_PREEMPT_BKL
3508 saved_lock_depth = task->lock_depth;
3509 task->lock_depth = -1;
3510 #endif
3511 schedule();
3512 #ifdef CONFIG_PREEMPT_BKL
3513 task->lock_depth = saved_lock_depth;
3514 #endif
3515 sub_preempt_count(PREEMPT_ACTIVE);
3516
3517 /* we could miss a preemption opportunity between schedule and now */
3518 barrier();
3519 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3520 goto need_resched;
3521 }
3522 EXPORT_SYMBOL(preempt_schedule);
3523
3524 /*
3525 * this is the entry point to schedule() from kernel preemption
3526 * off of irq context.
3527 * Note, that this is called and return with irqs disabled. This will
3528 * protect us against recursive calling from irq.
3529 */
3530 asmlinkage void __sched preempt_schedule_irq(void)
3531 {
3532 struct thread_info *ti = current_thread_info();
3533 #ifdef CONFIG_PREEMPT_BKL
3534 struct task_struct *task = current;
3535 int saved_lock_depth;
3536 #endif
3537 /* Catch callers which need to be fixed */
3538 BUG_ON(ti->preempt_count || !irqs_disabled());
3539
3540 need_resched:
3541 add_preempt_count(PREEMPT_ACTIVE);
3542 /*
3543 * We keep the big kernel semaphore locked, but we
3544 * clear ->lock_depth so that schedule() doesnt
3545 * auto-release the semaphore:
3546 */
3547 #ifdef CONFIG_PREEMPT_BKL
3548 saved_lock_depth = task->lock_depth;
3549 task->lock_depth = -1;
3550 #endif
3551 local_irq_enable();
3552 schedule();
3553 local_irq_disable();
3554 #ifdef CONFIG_PREEMPT_BKL
3555 task->lock_depth = saved_lock_depth;
3556 #endif
3557 sub_preempt_count(PREEMPT_ACTIVE);
3558
3559 /* we could miss a preemption opportunity between schedule and now */
3560 barrier();
3561 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3562 goto need_resched;
3563 }
3564
3565 #endif /* CONFIG_PREEMPT */
3566
3567 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3568 void *key)
3569 {
3570 return try_to_wake_up(curr->private, mode, sync);
3571 }
3572 EXPORT_SYMBOL(default_wake_function);
3573
3574 /*
3575 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3576 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3577 * number) then we wake all the non-exclusive tasks and one exclusive task.
3578 *
3579 * There are circumstances in which we can try to wake a task which has already
3580 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3581 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3582 */
3583 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3584 int nr_exclusive, int sync, void *key)
3585 {
3586 struct list_head *tmp, *next;
3587
3588 list_for_each_safe(tmp, next, &q->task_list) {
3589 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3590 unsigned flags = curr->flags;
3591
3592 if (curr->func(curr, mode, sync, key) &&
3593 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3594 break;
3595 }
3596 }
3597
3598 /**
3599 * __wake_up - wake up threads blocked on a waitqueue.
3600 * @q: the waitqueue
3601 * @mode: which threads
3602 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3603 * @key: is directly passed to the wakeup function
3604 */
3605 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3606 int nr_exclusive, void *key)
3607 {
3608 unsigned long flags;
3609
3610 spin_lock_irqsave(&q->lock, flags);
3611 __wake_up_common(q, mode, nr_exclusive, 0, key);
3612 spin_unlock_irqrestore(&q->lock, flags);
3613 }
3614 EXPORT_SYMBOL(__wake_up);
3615
3616 /*
3617 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3618 */
3619 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3620 {
3621 __wake_up_common(q, mode, 1, 0, NULL);
3622 }
3623
3624 /**
3625 * __wake_up_sync - wake up threads blocked on a waitqueue.
3626 * @q: the waitqueue
3627 * @mode: which threads
3628 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3629 *
3630 * The sync wakeup differs that the waker knows that it will schedule
3631 * away soon, so while the target thread will be woken up, it will not
3632 * be migrated to another CPU - ie. the two threads are 'synchronized'
3633 * with each other. This can prevent needless bouncing between CPUs.
3634 *
3635 * On UP it can prevent extra preemption.
3636 */
3637 void fastcall
3638 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3639 {
3640 unsigned long flags;
3641 int sync = 1;
3642
3643 if (unlikely(!q))
3644 return;
3645
3646 if (unlikely(!nr_exclusive))
3647 sync = 0;
3648
3649 spin_lock_irqsave(&q->lock, flags);
3650 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3651 spin_unlock_irqrestore(&q->lock, flags);
3652 }
3653 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3654
3655 void fastcall complete(struct completion *x)
3656 {
3657 unsigned long flags;
3658
3659 spin_lock_irqsave(&x->wait.lock, flags);
3660 x->done++;
3661 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3662 1, 0, NULL);
3663 spin_unlock_irqrestore(&x->wait.lock, flags);
3664 }
3665 EXPORT_SYMBOL(complete);
3666
3667 void fastcall complete_all(struct completion *x)
3668 {
3669 unsigned long flags;
3670
3671 spin_lock_irqsave(&x->wait.lock, flags);
3672 x->done += UINT_MAX/2;
3673 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3674 0, 0, NULL);
3675 spin_unlock_irqrestore(&x->wait.lock, flags);
3676 }
3677 EXPORT_SYMBOL(complete_all);
3678
3679 void fastcall __sched wait_for_completion(struct completion *x)
3680 {
3681 might_sleep();
3682
3683 spin_lock_irq(&x->wait.lock);
3684 if (!x->done) {
3685 DECLARE_WAITQUEUE(wait, current);
3686
3687 wait.flags |= WQ_FLAG_EXCLUSIVE;
3688 __add_wait_queue_tail(&x->wait, &wait);
3689 do {
3690 __set_current_state(TASK_UNINTERRUPTIBLE);
3691 spin_unlock_irq(&x->wait.lock);
3692 schedule();
3693 spin_lock_irq(&x->wait.lock);
3694 } while (!x->done);
3695 __remove_wait_queue(&x->wait, &wait);
3696 }
3697 x->done--;
3698 spin_unlock_irq(&x->wait.lock);
3699 }
3700 EXPORT_SYMBOL(wait_for_completion);
3701
3702 unsigned long fastcall __sched
3703 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3704 {
3705 might_sleep();
3706
3707 spin_lock_irq(&x->wait.lock);
3708 if (!x->done) {
3709 DECLARE_WAITQUEUE(wait, current);
3710
3711 wait.flags |= WQ_FLAG_EXCLUSIVE;
3712 __add_wait_queue_tail(&x->wait, &wait);
3713 do {
3714 __set_current_state(TASK_UNINTERRUPTIBLE);
3715 spin_unlock_irq(&x->wait.lock);
3716 timeout = schedule_timeout(timeout);
3717 spin_lock_irq(&x->wait.lock);
3718 if (!timeout) {
3719 __remove_wait_queue(&x->wait, &wait);
3720 goto out;
3721 }
3722 } while (!x->done);
3723 __remove_wait_queue(&x->wait, &wait);
3724 }
3725 x->done--;
3726 out:
3727 spin_unlock_irq(&x->wait.lock);
3728 return timeout;
3729 }
3730 EXPORT_SYMBOL(wait_for_completion_timeout);
3731
3732 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3733 {
3734 int ret = 0;
3735
3736 might_sleep();
3737
3738 spin_lock_irq(&x->wait.lock);
3739 if (!x->done) {
3740 DECLARE_WAITQUEUE(wait, current);
3741
3742 wait.flags |= WQ_FLAG_EXCLUSIVE;
3743 __add_wait_queue_tail(&x->wait, &wait);
3744 do {
3745 if (signal_pending(current)) {
3746 ret = -ERESTARTSYS;
3747 __remove_wait_queue(&x->wait, &wait);
3748 goto out;
3749 }
3750 __set_current_state(TASK_INTERRUPTIBLE);
3751 spin_unlock_irq(&x->wait.lock);
3752 schedule();
3753 spin_lock_irq(&x->wait.lock);
3754 } while (!x->done);
3755 __remove_wait_queue(&x->wait, &wait);
3756 }
3757 x->done--;
3758 out:
3759 spin_unlock_irq(&x->wait.lock);
3760
3761 return ret;
3762 }
3763 EXPORT_SYMBOL(wait_for_completion_interruptible);
3764
3765 unsigned long fastcall __sched
3766 wait_for_completion_interruptible_timeout(struct completion *x,
3767 unsigned long timeout)
3768 {
3769 might_sleep();
3770
3771 spin_lock_irq(&x->wait.lock);
3772 if (!x->done) {
3773 DECLARE_WAITQUEUE(wait, current);
3774
3775 wait.flags |= WQ_FLAG_EXCLUSIVE;
3776 __add_wait_queue_tail(&x->wait, &wait);
3777 do {
3778 if (signal_pending(current)) {
3779 timeout = -ERESTARTSYS;
3780 __remove_wait_queue(&x->wait, &wait);
3781 goto out;
3782 }
3783 __set_current_state(TASK_INTERRUPTIBLE);
3784 spin_unlock_irq(&x->wait.lock);
3785 timeout = schedule_timeout(timeout);
3786 spin_lock_irq(&x->wait.lock);
3787 if (!timeout) {
3788 __remove_wait_queue(&x->wait, &wait);
3789 goto out;
3790 }
3791 } while (!x->done);
3792 __remove_wait_queue(&x->wait, &wait);
3793 }
3794 x->done--;
3795 out:
3796 spin_unlock_irq(&x->wait.lock);
3797 return timeout;
3798 }
3799 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3800
3801 static inline void
3802 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3803 {
3804 spin_lock_irqsave(&q->lock, *flags);
3805 __add_wait_queue(q, wait);
3806 spin_unlock(&q->lock);
3807 }
3808
3809 static inline void
3810 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3811 {
3812 spin_lock_irq(&q->lock);
3813 __remove_wait_queue(q, wait);
3814 spin_unlock_irqrestore(&q->lock, *flags);
3815 }
3816
3817 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3818 {
3819 unsigned long flags;
3820 wait_queue_t wait;
3821
3822 init_waitqueue_entry(&wait, current);
3823
3824 current->state = TASK_INTERRUPTIBLE;
3825
3826 sleep_on_head(q, &wait, &flags);
3827 schedule();
3828 sleep_on_tail(q, &wait, &flags);
3829 }
3830 EXPORT_SYMBOL(interruptible_sleep_on);
3831
3832 long __sched
3833 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3834 {
3835 unsigned long flags;
3836 wait_queue_t wait;
3837
3838 init_waitqueue_entry(&wait, current);
3839
3840 current->state = TASK_INTERRUPTIBLE;
3841
3842 sleep_on_head(q, &wait, &flags);
3843 timeout = schedule_timeout(timeout);
3844 sleep_on_tail(q, &wait, &flags);
3845
3846 return timeout;
3847 }
3848 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3849
3850 void __sched sleep_on(wait_queue_head_t *q)
3851 {
3852 unsigned long flags;
3853 wait_queue_t wait;
3854
3855 init_waitqueue_entry(&wait, current);
3856
3857 current->state = TASK_UNINTERRUPTIBLE;
3858
3859 sleep_on_head(q, &wait, &flags);
3860 schedule();
3861 sleep_on_tail(q, &wait, &flags);
3862 }
3863 EXPORT_SYMBOL(sleep_on);
3864
3865 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3866 {
3867 unsigned long flags;
3868 wait_queue_t wait;
3869
3870 init_waitqueue_entry(&wait, current);
3871
3872 current->state = TASK_UNINTERRUPTIBLE;
3873
3874 sleep_on_head(q, &wait, &flags);
3875 timeout = schedule_timeout(timeout);
3876 sleep_on_tail(q, &wait, &flags);
3877
3878 return timeout;
3879 }
3880 EXPORT_SYMBOL(sleep_on_timeout);
3881
3882 #ifdef CONFIG_RT_MUTEXES
3883
3884 /*
3885 * rt_mutex_setprio - set the current priority of a task
3886 * @p: task
3887 * @prio: prio value (kernel-internal form)
3888 *
3889 * This function changes the 'effective' priority of a task. It does
3890 * not touch ->normal_prio like __setscheduler().
3891 *
3892 * Used by the rt_mutex code to implement priority inheritance logic.
3893 */
3894 void rt_mutex_setprio(struct task_struct *p, int prio)
3895 {
3896 unsigned long flags;
3897 int oldprio, on_rq;
3898 struct rq *rq;
3899 u64 now;
3900
3901 BUG_ON(prio < 0 || prio > MAX_PRIO);
3902
3903 rq = task_rq_lock(p, &flags);
3904 now = rq_clock(rq);
3905
3906 oldprio = p->prio;
3907 on_rq = p->se.on_rq;
3908 if (on_rq)
3909 dequeue_task(rq, p, 0, now);
3910
3911 if (rt_prio(prio))
3912 p->sched_class = &rt_sched_class;
3913 else
3914 p->sched_class = &fair_sched_class;
3915
3916 p->prio = prio;
3917
3918 if (on_rq) {
3919 enqueue_task(rq, p, 0, now);
3920 /*
3921 * Reschedule if we are currently running on this runqueue and
3922 * our priority decreased, or if we are not currently running on
3923 * this runqueue and our priority is higher than the current's
3924 */
3925 if (task_running(rq, p)) {
3926 if (p->prio > oldprio)
3927 resched_task(rq->curr);
3928 } else {
3929 check_preempt_curr(rq, p);
3930 }
3931 }
3932 task_rq_unlock(rq, &flags);
3933 }
3934
3935 #endif
3936
3937 void set_user_nice(struct task_struct *p, long nice)
3938 {
3939 int old_prio, delta, on_rq;
3940 unsigned long flags;
3941 struct rq *rq;
3942 u64 now;
3943
3944 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3945 return;
3946 /*
3947 * We have to be careful, if called from sys_setpriority(),
3948 * the task might be in the middle of scheduling on another CPU.
3949 */
3950 rq = task_rq_lock(p, &flags);
3951 now = rq_clock(rq);
3952 /*
3953 * The RT priorities are set via sched_setscheduler(), but we still
3954 * allow the 'normal' nice value to be set - but as expected
3955 * it wont have any effect on scheduling until the task is
3956 * SCHED_FIFO/SCHED_RR:
3957 */
3958 if (task_has_rt_policy(p)) {
3959 p->static_prio = NICE_TO_PRIO(nice);
3960 goto out_unlock;
3961 }
3962 on_rq = p->se.on_rq;
3963 if (on_rq) {
3964 dequeue_task(rq, p, 0, now);
3965 dec_load(rq, p, now);
3966 }
3967
3968 p->static_prio = NICE_TO_PRIO(nice);
3969 set_load_weight(p);
3970 old_prio = p->prio;
3971 p->prio = effective_prio(p);
3972 delta = p->prio - old_prio;
3973
3974 if (on_rq) {
3975 enqueue_task(rq, p, 0, now);
3976 inc_load(rq, p, now);
3977 /*
3978 * If the task increased its priority or is running and
3979 * lowered its priority, then reschedule its CPU:
3980 */
3981 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3982 resched_task(rq->curr);
3983 }
3984 out_unlock:
3985 task_rq_unlock(rq, &flags);
3986 }
3987 EXPORT_SYMBOL(set_user_nice);
3988
3989 /*
3990 * can_nice - check if a task can reduce its nice value
3991 * @p: task
3992 * @nice: nice value
3993 */
3994 int can_nice(const struct task_struct *p, const int nice)
3995 {
3996 /* convert nice value [19,-20] to rlimit style value [1,40] */
3997 int nice_rlim = 20 - nice;
3998
3999 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4000 capable(CAP_SYS_NICE));
4001 }
4002
4003 #ifdef __ARCH_WANT_SYS_NICE
4004
4005 /*
4006 * sys_nice - change the priority of the current process.
4007 * @increment: priority increment
4008 *
4009 * sys_setpriority is a more generic, but much slower function that
4010 * does similar things.
4011 */
4012 asmlinkage long sys_nice(int increment)
4013 {
4014 long nice, retval;
4015
4016 /*
4017 * Setpriority might change our priority at the same moment.
4018 * We don't have to worry. Conceptually one call occurs first
4019 * and we have a single winner.
4020 */
4021 if (increment < -40)
4022 increment = -40;
4023 if (increment > 40)
4024 increment = 40;
4025
4026 nice = PRIO_TO_NICE(current->static_prio) + increment;
4027 if (nice < -20)
4028 nice = -20;
4029 if (nice > 19)
4030 nice = 19;
4031
4032 if (increment < 0 && !can_nice(current, nice))
4033 return -EPERM;
4034
4035 retval = security_task_setnice(current, nice);
4036 if (retval)
4037 return retval;
4038
4039 set_user_nice(current, nice);
4040 return 0;
4041 }
4042
4043 #endif
4044
4045 /**
4046 * task_prio - return the priority value of a given task.
4047 * @p: the task in question.
4048 *
4049 * This is the priority value as seen by users in /proc.
4050 * RT tasks are offset by -200. Normal tasks are centered
4051 * around 0, value goes from -16 to +15.
4052 */
4053 int task_prio(const struct task_struct *p)
4054 {
4055 return p->prio - MAX_RT_PRIO;
4056 }
4057
4058 /**
4059 * task_nice - return the nice value of a given task.
4060 * @p: the task in question.
4061 */
4062 int task_nice(const struct task_struct *p)
4063 {
4064 return TASK_NICE(p);
4065 }
4066 EXPORT_SYMBOL_GPL(task_nice);
4067
4068 /**
4069 * idle_cpu - is a given cpu idle currently?
4070 * @cpu: the processor in question.
4071 */
4072 int idle_cpu(int cpu)
4073 {
4074 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4075 }
4076
4077 /**
4078 * idle_task - return the idle task for a given cpu.
4079 * @cpu: the processor in question.
4080 */
4081 struct task_struct *idle_task(int cpu)
4082 {
4083 return cpu_rq(cpu)->idle;
4084 }
4085
4086 /**
4087 * find_process_by_pid - find a process with a matching PID value.
4088 * @pid: the pid in question.
4089 */
4090 static inline struct task_struct *find_process_by_pid(pid_t pid)
4091 {
4092 return pid ? find_task_by_pid(pid) : current;
4093 }
4094
4095 /* Actually do priority change: must hold rq lock. */
4096 static void
4097 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4098 {
4099 BUG_ON(p->se.on_rq);
4100
4101 p->policy = policy;
4102 switch (p->policy) {
4103 case SCHED_NORMAL:
4104 case SCHED_BATCH:
4105 case SCHED_IDLE:
4106 p->sched_class = &fair_sched_class;
4107 break;
4108 case SCHED_FIFO:
4109 case SCHED_RR:
4110 p->sched_class = &rt_sched_class;
4111 break;
4112 }
4113
4114 p->rt_priority = prio;
4115 p->normal_prio = normal_prio(p);
4116 /* we are holding p->pi_lock already */
4117 p->prio = rt_mutex_getprio(p);
4118 set_load_weight(p);
4119 }
4120
4121 /**
4122 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4123 * @p: the task in question.
4124 * @policy: new policy.
4125 * @param: structure containing the new RT priority.
4126 *
4127 * NOTE that the task may be already dead.
4128 */
4129 int sched_setscheduler(struct task_struct *p, int policy,
4130 struct sched_param *param)
4131 {
4132 int retval, oldprio, oldpolicy = -1, on_rq;
4133 unsigned long flags;
4134 struct rq *rq;
4135
4136 /* may grab non-irq protected spin_locks */
4137 BUG_ON(in_interrupt());
4138 recheck:
4139 /* double check policy once rq lock held */
4140 if (policy < 0)
4141 policy = oldpolicy = p->policy;
4142 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4143 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4144 policy != SCHED_IDLE)
4145 return -EINVAL;
4146 /*
4147 * Valid priorities for SCHED_FIFO and SCHED_RR are
4148 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4149 * SCHED_BATCH and SCHED_IDLE is 0.
4150 */
4151 if (param->sched_priority < 0 ||
4152 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4153 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4154 return -EINVAL;
4155 if (rt_policy(policy) != (param->sched_priority != 0))
4156 return -EINVAL;
4157
4158 /*
4159 * Allow unprivileged RT tasks to decrease priority:
4160 */
4161 if (!capable(CAP_SYS_NICE)) {
4162 if (rt_policy(policy)) {
4163 unsigned long rlim_rtprio;
4164
4165 if (!lock_task_sighand(p, &flags))
4166 return -ESRCH;
4167 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4168 unlock_task_sighand(p, &flags);
4169
4170 /* can't set/change the rt policy */
4171 if (policy != p->policy && !rlim_rtprio)
4172 return -EPERM;
4173
4174 /* can't increase priority */
4175 if (param->sched_priority > p->rt_priority &&
4176 param->sched_priority > rlim_rtprio)
4177 return -EPERM;
4178 }
4179 /*
4180 * Like positive nice levels, dont allow tasks to
4181 * move out of SCHED_IDLE either:
4182 */
4183 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4184 return -EPERM;
4185
4186 /* can't change other user's priorities */
4187 if ((current->euid != p->euid) &&
4188 (current->euid != p->uid))
4189 return -EPERM;
4190 }
4191
4192 retval = security_task_setscheduler(p, policy, param);
4193 if (retval)
4194 return retval;
4195 /*
4196 * make sure no PI-waiters arrive (or leave) while we are
4197 * changing the priority of the task:
4198 */
4199 spin_lock_irqsave(&p->pi_lock, flags);
4200 /*
4201 * To be able to change p->policy safely, the apropriate
4202 * runqueue lock must be held.
4203 */
4204 rq = __task_rq_lock(p);
4205 /* recheck policy now with rq lock held */
4206 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4207 policy = oldpolicy = -1;
4208 __task_rq_unlock(rq);
4209 spin_unlock_irqrestore(&p->pi_lock, flags);
4210 goto recheck;
4211 }
4212 on_rq = p->se.on_rq;
4213 if (on_rq)
4214 deactivate_task(rq, p, 0);
4215 oldprio = p->prio;
4216 __setscheduler(rq, p, policy, param->sched_priority);
4217 if (on_rq) {
4218 activate_task(rq, p, 0);
4219 /*
4220 * Reschedule if we are currently running on this runqueue and
4221 * our priority decreased, or if we are not currently running on
4222 * this runqueue and our priority is higher than the current's
4223 */
4224 if (task_running(rq, p)) {
4225 if (p->prio > oldprio)
4226 resched_task(rq->curr);
4227 } else {
4228 check_preempt_curr(rq, p);
4229 }
4230 }
4231 __task_rq_unlock(rq);
4232 spin_unlock_irqrestore(&p->pi_lock, flags);
4233
4234 rt_mutex_adjust_pi(p);
4235
4236 return 0;
4237 }
4238 EXPORT_SYMBOL_GPL(sched_setscheduler);
4239
4240 static int
4241 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4242 {
4243 struct sched_param lparam;
4244 struct task_struct *p;
4245 int retval;
4246
4247 if (!param || pid < 0)
4248 return -EINVAL;
4249 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4250 return -EFAULT;
4251
4252 rcu_read_lock();
4253 retval = -ESRCH;
4254 p = find_process_by_pid(pid);
4255 if (p != NULL)
4256 retval = sched_setscheduler(p, policy, &lparam);
4257 rcu_read_unlock();
4258
4259 return retval;
4260 }
4261
4262 /**
4263 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4264 * @pid: the pid in question.
4265 * @policy: new policy.
4266 * @param: structure containing the new RT priority.
4267 */
4268 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4269 struct sched_param __user *param)
4270 {
4271 /* negative values for policy are not valid */
4272 if (policy < 0)
4273 return -EINVAL;
4274
4275 return do_sched_setscheduler(pid, policy, param);
4276 }
4277
4278 /**
4279 * sys_sched_setparam - set/change the RT priority of a thread
4280 * @pid: the pid in question.
4281 * @param: structure containing the new RT priority.
4282 */
4283 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4284 {
4285 return do_sched_setscheduler(pid, -1, param);
4286 }
4287
4288 /**
4289 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4290 * @pid: the pid in question.
4291 */
4292 asmlinkage long sys_sched_getscheduler(pid_t pid)
4293 {
4294 struct task_struct *p;
4295 int retval = -EINVAL;
4296
4297 if (pid < 0)
4298 goto out_nounlock;
4299
4300 retval = -ESRCH;
4301 read_lock(&tasklist_lock);
4302 p = find_process_by_pid(pid);
4303 if (p) {
4304 retval = security_task_getscheduler(p);
4305 if (!retval)
4306 retval = p->policy;
4307 }
4308 read_unlock(&tasklist_lock);
4309
4310 out_nounlock:
4311 return retval;
4312 }
4313
4314 /**
4315 * sys_sched_getscheduler - get the RT priority of a thread
4316 * @pid: the pid in question.
4317 * @param: structure containing the RT priority.
4318 */
4319 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4320 {
4321 struct sched_param lp;
4322 struct task_struct *p;
4323 int retval = -EINVAL;
4324
4325 if (!param || pid < 0)
4326 goto out_nounlock;
4327
4328 read_lock(&tasklist_lock);
4329 p = find_process_by_pid(pid);
4330 retval = -ESRCH;
4331 if (!p)
4332 goto out_unlock;
4333
4334 retval = security_task_getscheduler(p);
4335 if (retval)
4336 goto out_unlock;
4337
4338 lp.sched_priority = p->rt_priority;
4339 read_unlock(&tasklist_lock);
4340
4341 /*
4342 * This one might sleep, we cannot do it with a spinlock held ...
4343 */
4344 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4345
4346 out_nounlock:
4347 return retval;
4348
4349 out_unlock:
4350 read_unlock(&tasklist_lock);
4351 return retval;
4352 }
4353
4354 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4355 {
4356 cpumask_t cpus_allowed;
4357 struct task_struct *p;
4358 int retval;
4359
4360 mutex_lock(&sched_hotcpu_mutex);
4361 read_lock(&tasklist_lock);
4362
4363 p = find_process_by_pid(pid);
4364 if (!p) {
4365 read_unlock(&tasklist_lock);
4366 mutex_unlock(&sched_hotcpu_mutex);
4367 return -ESRCH;
4368 }
4369
4370 /*
4371 * It is not safe to call set_cpus_allowed with the
4372 * tasklist_lock held. We will bump the task_struct's
4373 * usage count and then drop tasklist_lock.
4374 */
4375 get_task_struct(p);
4376 read_unlock(&tasklist_lock);
4377
4378 retval = -EPERM;
4379 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4380 !capable(CAP_SYS_NICE))
4381 goto out_unlock;
4382
4383 retval = security_task_setscheduler(p, 0, NULL);
4384 if (retval)
4385 goto out_unlock;
4386
4387 cpus_allowed = cpuset_cpus_allowed(p);
4388 cpus_and(new_mask, new_mask, cpus_allowed);
4389 retval = set_cpus_allowed(p, new_mask);
4390
4391 out_unlock:
4392 put_task_struct(p);
4393 mutex_unlock(&sched_hotcpu_mutex);
4394 return retval;
4395 }
4396
4397 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4398 cpumask_t *new_mask)
4399 {
4400 if (len < sizeof(cpumask_t)) {
4401 memset(new_mask, 0, sizeof(cpumask_t));
4402 } else if (len > sizeof(cpumask_t)) {
4403 len = sizeof(cpumask_t);
4404 }
4405 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4406 }
4407
4408 /**
4409 * sys_sched_setaffinity - set the cpu affinity of a process
4410 * @pid: pid of the process
4411 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4412 * @user_mask_ptr: user-space pointer to the new cpu mask
4413 */
4414 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4415 unsigned long __user *user_mask_ptr)
4416 {
4417 cpumask_t new_mask;
4418 int retval;
4419
4420 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4421 if (retval)
4422 return retval;
4423
4424 return sched_setaffinity(pid, new_mask);
4425 }
4426
4427 /*
4428 * Represents all cpu's present in the system
4429 * In systems capable of hotplug, this map could dynamically grow
4430 * as new cpu's are detected in the system via any platform specific
4431 * method, such as ACPI for e.g.
4432 */
4433
4434 cpumask_t cpu_present_map __read_mostly;
4435 EXPORT_SYMBOL(cpu_present_map);
4436
4437 #ifndef CONFIG_SMP
4438 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4439 EXPORT_SYMBOL(cpu_online_map);
4440
4441 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4442 EXPORT_SYMBOL(cpu_possible_map);
4443 #endif
4444
4445 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4446 {
4447 struct task_struct *p;
4448 int retval;
4449
4450 mutex_lock(&sched_hotcpu_mutex);
4451 read_lock(&tasklist_lock);
4452
4453 retval = -ESRCH;
4454 p = find_process_by_pid(pid);
4455 if (!p)
4456 goto out_unlock;
4457
4458 retval = security_task_getscheduler(p);
4459 if (retval)
4460 goto out_unlock;
4461
4462 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4463
4464 out_unlock:
4465 read_unlock(&tasklist_lock);
4466 mutex_unlock(&sched_hotcpu_mutex);
4467 if (retval)
4468 return retval;
4469
4470 return 0;
4471 }
4472
4473 /**
4474 * sys_sched_getaffinity - get the cpu affinity of a process
4475 * @pid: pid of the process
4476 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4477 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4478 */
4479 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4480 unsigned long __user *user_mask_ptr)
4481 {
4482 int ret;
4483 cpumask_t mask;
4484
4485 if (len < sizeof(cpumask_t))
4486 return -EINVAL;
4487
4488 ret = sched_getaffinity(pid, &mask);
4489 if (ret < 0)
4490 return ret;
4491
4492 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4493 return -EFAULT;
4494
4495 return sizeof(cpumask_t);
4496 }
4497
4498 /**
4499 * sys_sched_yield - yield the current processor to other threads.
4500 *
4501 * This function yields the current CPU to other tasks. If there are no
4502 * other threads running on this CPU then this function will return.
4503 */
4504 asmlinkage long sys_sched_yield(void)
4505 {
4506 struct rq *rq = this_rq_lock();
4507
4508 schedstat_inc(rq, yld_cnt);
4509 if (unlikely(rq->nr_running == 1))
4510 schedstat_inc(rq, yld_act_empty);
4511 else
4512 current->sched_class->yield_task(rq, current);
4513
4514 /*
4515 * Since we are going to call schedule() anyway, there's
4516 * no need to preempt or enable interrupts:
4517 */
4518 __release(rq->lock);
4519 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4520 _raw_spin_unlock(&rq->lock);
4521 preempt_enable_no_resched();
4522
4523 schedule();
4524
4525 return 0;
4526 }
4527
4528 static void __cond_resched(void)
4529 {
4530 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4531 __might_sleep(__FILE__, __LINE__);
4532 #endif
4533 /*
4534 * The BKS might be reacquired before we have dropped
4535 * PREEMPT_ACTIVE, which could trigger a second
4536 * cond_resched() call.
4537 */
4538 do {
4539 add_preempt_count(PREEMPT_ACTIVE);
4540 schedule();
4541 sub_preempt_count(PREEMPT_ACTIVE);
4542 } while (need_resched());
4543 }
4544
4545 int __sched cond_resched(void)
4546 {
4547 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4548 system_state == SYSTEM_RUNNING) {
4549 __cond_resched();
4550 return 1;
4551 }
4552 return 0;
4553 }
4554 EXPORT_SYMBOL(cond_resched);
4555
4556 /*
4557 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4558 * call schedule, and on return reacquire the lock.
4559 *
4560 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4561 * operations here to prevent schedule() from being called twice (once via
4562 * spin_unlock(), once by hand).
4563 */
4564 int cond_resched_lock(spinlock_t *lock)
4565 {
4566 int ret = 0;
4567
4568 if (need_lockbreak(lock)) {
4569 spin_unlock(lock);
4570 cpu_relax();
4571 ret = 1;
4572 spin_lock(lock);
4573 }
4574 if (need_resched() && system_state == SYSTEM_RUNNING) {
4575 spin_release(&lock->dep_map, 1, _THIS_IP_);
4576 _raw_spin_unlock(lock);
4577 preempt_enable_no_resched();
4578 __cond_resched();
4579 ret = 1;
4580 spin_lock(lock);
4581 }
4582 return ret;
4583 }
4584 EXPORT_SYMBOL(cond_resched_lock);
4585
4586 int __sched cond_resched_softirq(void)
4587 {
4588 BUG_ON(!in_softirq());
4589
4590 if (need_resched() && system_state == SYSTEM_RUNNING) {
4591 local_bh_enable();
4592 __cond_resched();
4593 local_bh_disable();
4594 return 1;
4595 }
4596 return 0;
4597 }
4598 EXPORT_SYMBOL(cond_resched_softirq);
4599
4600 /**
4601 * yield - yield the current processor to other threads.
4602 *
4603 * This is a shortcut for kernel-space yielding - it marks the
4604 * thread runnable and calls sys_sched_yield().
4605 */
4606 void __sched yield(void)
4607 {
4608 set_current_state(TASK_RUNNING);
4609 sys_sched_yield();
4610 }
4611 EXPORT_SYMBOL(yield);
4612
4613 /*
4614 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4615 * that process accounting knows that this is a task in IO wait state.
4616 *
4617 * But don't do that if it is a deliberate, throttling IO wait (this task
4618 * has set its backing_dev_info: the queue against which it should throttle)
4619 */
4620 void __sched io_schedule(void)
4621 {
4622 struct rq *rq = &__raw_get_cpu_var(runqueues);
4623
4624 delayacct_blkio_start();
4625 atomic_inc(&rq->nr_iowait);
4626 schedule();
4627 atomic_dec(&rq->nr_iowait);
4628 delayacct_blkio_end();
4629 }
4630 EXPORT_SYMBOL(io_schedule);
4631
4632 long __sched io_schedule_timeout(long timeout)
4633 {
4634 struct rq *rq = &__raw_get_cpu_var(runqueues);
4635 long ret;
4636
4637 delayacct_blkio_start();
4638 atomic_inc(&rq->nr_iowait);
4639 ret = schedule_timeout(timeout);
4640 atomic_dec(&rq->nr_iowait);
4641 delayacct_blkio_end();
4642 return ret;
4643 }
4644
4645 /**
4646 * sys_sched_get_priority_max - return maximum RT priority.
4647 * @policy: scheduling class.
4648 *
4649 * this syscall returns the maximum rt_priority that can be used
4650 * by a given scheduling class.
4651 */
4652 asmlinkage long sys_sched_get_priority_max(int policy)
4653 {
4654 int ret = -EINVAL;
4655
4656 switch (policy) {
4657 case SCHED_FIFO:
4658 case SCHED_RR:
4659 ret = MAX_USER_RT_PRIO-1;
4660 break;
4661 case SCHED_NORMAL:
4662 case SCHED_BATCH:
4663 case SCHED_IDLE:
4664 ret = 0;
4665 break;
4666 }
4667 return ret;
4668 }
4669
4670 /**
4671 * sys_sched_get_priority_min - return minimum RT priority.
4672 * @policy: scheduling class.
4673 *
4674 * this syscall returns the minimum rt_priority that can be used
4675 * by a given scheduling class.
4676 */
4677 asmlinkage long sys_sched_get_priority_min(int policy)
4678 {
4679 int ret = -EINVAL;
4680
4681 switch (policy) {
4682 case SCHED_FIFO:
4683 case SCHED_RR:
4684 ret = 1;
4685 break;
4686 case SCHED_NORMAL:
4687 case SCHED_BATCH:
4688 case SCHED_IDLE:
4689 ret = 0;
4690 }
4691 return ret;
4692 }
4693
4694 /**
4695 * sys_sched_rr_get_interval - return the default timeslice of a process.
4696 * @pid: pid of the process.
4697 * @interval: userspace pointer to the timeslice value.
4698 *
4699 * this syscall writes the default timeslice value of a given process
4700 * into the user-space timespec buffer. A value of '0' means infinity.
4701 */
4702 asmlinkage
4703 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4704 {
4705 struct task_struct *p;
4706 int retval = -EINVAL;
4707 struct timespec t;
4708
4709 if (pid < 0)
4710 goto out_nounlock;
4711
4712 retval = -ESRCH;
4713 read_lock(&tasklist_lock);
4714 p = find_process_by_pid(pid);
4715 if (!p)
4716 goto out_unlock;
4717
4718 retval = security_task_getscheduler(p);
4719 if (retval)
4720 goto out_unlock;
4721
4722 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4723 0 : static_prio_timeslice(p->static_prio), &t);
4724 read_unlock(&tasklist_lock);
4725 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4726 out_nounlock:
4727 return retval;
4728 out_unlock:
4729 read_unlock(&tasklist_lock);
4730 return retval;
4731 }
4732
4733 static const char stat_nam[] = "RSDTtZX";
4734
4735 static void show_task(struct task_struct *p)
4736 {
4737 unsigned long free = 0;
4738 unsigned state;
4739
4740 state = p->state ? __ffs(p->state) + 1 : 0;
4741 printk("%-13.13s %c", p->comm,
4742 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4743 #if BITS_PER_LONG == 32
4744 if (state == TASK_RUNNING)
4745 printk(" running ");
4746 else
4747 printk(" %08lx ", thread_saved_pc(p));
4748 #else
4749 if (state == TASK_RUNNING)
4750 printk(" running task ");
4751 else
4752 printk(" %016lx ", thread_saved_pc(p));
4753 #endif
4754 #ifdef CONFIG_DEBUG_STACK_USAGE
4755 {
4756 unsigned long *n = end_of_stack(p);
4757 while (!*n)
4758 n++;
4759 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4760 }
4761 #endif
4762 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4763
4764 if (state != TASK_RUNNING)
4765 show_stack(p, NULL);
4766 }
4767
4768 void show_state_filter(unsigned long state_filter)
4769 {
4770 struct task_struct *g, *p;
4771
4772 #if BITS_PER_LONG == 32
4773 printk(KERN_INFO
4774 " task PC stack pid father\n");
4775 #else
4776 printk(KERN_INFO
4777 " task PC stack pid father\n");
4778 #endif
4779 read_lock(&tasklist_lock);
4780 do_each_thread(g, p) {
4781 /*
4782 * reset the NMI-timeout, listing all files on a slow
4783 * console might take alot of time:
4784 */
4785 touch_nmi_watchdog();
4786 if (!state_filter || (p->state & state_filter))
4787 show_task(p);
4788 } while_each_thread(g, p);
4789
4790 touch_all_softlockup_watchdogs();
4791
4792 #ifdef CONFIG_SCHED_DEBUG
4793 sysrq_sched_debug_show();
4794 #endif
4795 read_unlock(&tasklist_lock);
4796 /*
4797 * Only show locks if all tasks are dumped:
4798 */
4799 if (state_filter == -1)
4800 debug_show_all_locks();
4801 }
4802
4803 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4804 {
4805 idle->sched_class = &idle_sched_class;
4806 }
4807
4808 /**
4809 * init_idle - set up an idle thread for a given CPU
4810 * @idle: task in question
4811 * @cpu: cpu the idle task belongs to
4812 *
4813 * NOTE: this function does not set the idle thread's NEED_RESCHED
4814 * flag, to make booting more robust.
4815 */
4816 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4817 {
4818 struct rq *rq = cpu_rq(cpu);
4819 unsigned long flags;
4820
4821 __sched_fork(idle);
4822 idle->se.exec_start = sched_clock();
4823
4824 idle->prio = idle->normal_prio = MAX_PRIO;
4825 idle->cpus_allowed = cpumask_of_cpu(cpu);
4826 __set_task_cpu(idle, cpu);
4827
4828 spin_lock_irqsave(&rq->lock, flags);
4829 rq->curr = rq->idle = idle;
4830 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4831 idle->oncpu = 1;
4832 #endif
4833 spin_unlock_irqrestore(&rq->lock, flags);
4834
4835 /* Set the preempt count _outside_ the spinlocks! */
4836 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4837 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4838 #else
4839 task_thread_info(idle)->preempt_count = 0;
4840 #endif
4841 /*
4842 * The idle tasks have their own, simple scheduling class:
4843 */
4844 idle->sched_class = &idle_sched_class;
4845 }
4846
4847 /*
4848 * In a system that switches off the HZ timer nohz_cpu_mask
4849 * indicates which cpus entered this state. This is used
4850 * in the rcu update to wait only for active cpus. For system
4851 * which do not switch off the HZ timer nohz_cpu_mask should
4852 * always be CPU_MASK_NONE.
4853 */
4854 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4855
4856 /*
4857 * Increase the granularity value when there are more CPUs,
4858 * because with more CPUs the 'effective latency' as visible
4859 * to users decreases. But the relationship is not linear,
4860 * so pick a second-best guess by going with the log2 of the
4861 * number of CPUs.
4862 *
4863 * This idea comes from the SD scheduler of Con Kolivas:
4864 */
4865 static inline void sched_init_granularity(void)
4866 {
4867 unsigned int factor = 1 + ilog2(num_online_cpus());
4868 const unsigned long gran_limit = 100000000;
4869
4870 sysctl_sched_granularity *= factor;
4871 if (sysctl_sched_granularity > gran_limit)
4872 sysctl_sched_granularity = gran_limit;
4873
4874 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4875 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4876 }
4877
4878 #ifdef CONFIG_SMP
4879 /*
4880 * This is how migration works:
4881 *
4882 * 1) we queue a struct migration_req structure in the source CPU's
4883 * runqueue and wake up that CPU's migration thread.
4884 * 2) we down() the locked semaphore => thread blocks.
4885 * 3) migration thread wakes up (implicitly it forces the migrated
4886 * thread off the CPU)
4887 * 4) it gets the migration request and checks whether the migrated
4888 * task is still in the wrong runqueue.
4889 * 5) if it's in the wrong runqueue then the migration thread removes
4890 * it and puts it into the right queue.
4891 * 6) migration thread up()s the semaphore.
4892 * 7) we wake up and the migration is done.
4893 */
4894
4895 /*
4896 * Change a given task's CPU affinity. Migrate the thread to a
4897 * proper CPU and schedule it away if the CPU it's executing on
4898 * is removed from the allowed bitmask.
4899 *
4900 * NOTE: the caller must have a valid reference to the task, the
4901 * task must not exit() & deallocate itself prematurely. The
4902 * call is not atomic; no spinlocks may be held.
4903 */
4904 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4905 {
4906 struct migration_req req;
4907 unsigned long flags;
4908 struct rq *rq;
4909 int ret = 0;
4910
4911 rq = task_rq_lock(p, &flags);
4912 if (!cpus_intersects(new_mask, cpu_online_map)) {
4913 ret = -EINVAL;
4914 goto out;
4915 }
4916
4917 p->cpus_allowed = new_mask;
4918 /* Can the task run on the task's current CPU? If so, we're done */
4919 if (cpu_isset(task_cpu(p), new_mask))
4920 goto out;
4921
4922 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4923 /* Need help from migration thread: drop lock and wait. */
4924 task_rq_unlock(rq, &flags);
4925 wake_up_process(rq->migration_thread);
4926 wait_for_completion(&req.done);
4927 tlb_migrate_finish(p->mm);
4928 return 0;
4929 }
4930 out:
4931 task_rq_unlock(rq, &flags);
4932
4933 return ret;
4934 }
4935 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4936
4937 /*
4938 * Move (not current) task off this cpu, onto dest cpu. We're doing
4939 * this because either it can't run here any more (set_cpus_allowed()
4940 * away from this CPU, or CPU going down), or because we're
4941 * attempting to rebalance this task on exec (sched_exec).
4942 *
4943 * So we race with normal scheduler movements, but that's OK, as long
4944 * as the task is no longer on this CPU.
4945 *
4946 * Returns non-zero if task was successfully migrated.
4947 */
4948 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4949 {
4950 struct rq *rq_dest, *rq_src;
4951 int ret = 0, on_rq;
4952
4953 if (unlikely(cpu_is_offline(dest_cpu)))
4954 return ret;
4955
4956 rq_src = cpu_rq(src_cpu);
4957 rq_dest = cpu_rq(dest_cpu);
4958
4959 double_rq_lock(rq_src, rq_dest);
4960 /* Already moved. */
4961 if (task_cpu(p) != src_cpu)
4962 goto out;
4963 /* Affinity changed (again). */
4964 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4965 goto out;
4966
4967 on_rq = p->se.on_rq;
4968 if (on_rq)
4969 deactivate_task(rq_src, p, 0);
4970 set_task_cpu(p, dest_cpu);
4971 if (on_rq) {
4972 activate_task(rq_dest, p, 0);
4973 check_preempt_curr(rq_dest, p);
4974 }
4975 ret = 1;
4976 out:
4977 double_rq_unlock(rq_src, rq_dest);
4978 return ret;
4979 }
4980
4981 /*
4982 * migration_thread - this is a highprio system thread that performs
4983 * thread migration by bumping thread off CPU then 'pushing' onto
4984 * another runqueue.
4985 */
4986 static int migration_thread(void *data)
4987 {
4988 int cpu = (long)data;
4989 struct rq *rq;
4990
4991 rq = cpu_rq(cpu);
4992 BUG_ON(rq->migration_thread != current);
4993
4994 set_current_state(TASK_INTERRUPTIBLE);
4995 while (!kthread_should_stop()) {
4996 struct migration_req *req;
4997 struct list_head *head;
4998
4999 spin_lock_irq(&rq->lock);
5000
5001 if (cpu_is_offline(cpu)) {
5002 spin_unlock_irq(&rq->lock);
5003 goto wait_to_die;
5004 }
5005
5006 if (rq->active_balance) {
5007 active_load_balance(rq, cpu);
5008 rq->active_balance = 0;
5009 }
5010
5011 head = &rq->migration_queue;
5012
5013 if (list_empty(head)) {
5014 spin_unlock_irq(&rq->lock);
5015 schedule();
5016 set_current_state(TASK_INTERRUPTIBLE);
5017 continue;
5018 }
5019 req = list_entry(head->next, struct migration_req, list);
5020 list_del_init(head->next);
5021
5022 spin_unlock(&rq->lock);
5023 __migrate_task(req->task, cpu, req->dest_cpu);
5024 local_irq_enable();
5025
5026 complete(&req->done);
5027 }
5028 __set_current_state(TASK_RUNNING);
5029 return 0;
5030
5031 wait_to_die:
5032 /* Wait for kthread_stop */
5033 set_current_state(TASK_INTERRUPTIBLE);
5034 while (!kthread_should_stop()) {
5035 schedule();
5036 set_current_state(TASK_INTERRUPTIBLE);
5037 }
5038 __set_current_state(TASK_RUNNING);
5039 return 0;
5040 }
5041
5042 #ifdef CONFIG_HOTPLUG_CPU
5043 /*
5044 * Figure out where task on dead CPU should go, use force if neccessary.
5045 * NOTE: interrupts should be disabled by the caller
5046 */
5047 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5048 {
5049 unsigned long flags;
5050 cpumask_t mask;
5051 struct rq *rq;
5052 int dest_cpu;
5053
5054 restart:
5055 /* On same node? */
5056 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5057 cpus_and(mask, mask, p->cpus_allowed);
5058 dest_cpu = any_online_cpu(mask);
5059
5060 /* On any allowed CPU? */
5061 if (dest_cpu == NR_CPUS)
5062 dest_cpu = any_online_cpu(p->cpus_allowed);
5063
5064 /* No more Mr. Nice Guy. */
5065 if (dest_cpu == NR_CPUS) {
5066 rq = task_rq_lock(p, &flags);
5067 cpus_setall(p->cpus_allowed);
5068 dest_cpu = any_online_cpu(p->cpus_allowed);
5069 task_rq_unlock(rq, &flags);
5070
5071 /*
5072 * Don't tell them about moving exiting tasks or
5073 * kernel threads (both mm NULL), since they never
5074 * leave kernel.
5075 */
5076 if (p->mm && printk_ratelimit())
5077 printk(KERN_INFO "process %d (%s) no "
5078 "longer affine to cpu%d\n",
5079 p->pid, p->comm, dead_cpu);
5080 }
5081 if (!__migrate_task(p, dead_cpu, dest_cpu))
5082 goto restart;
5083 }
5084
5085 /*
5086 * While a dead CPU has no uninterruptible tasks queued at this point,
5087 * it might still have a nonzero ->nr_uninterruptible counter, because
5088 * for performance reasons the counter is not stricly tracking tasks to
5089 * their home CPUs. So we just add the counter to another CPU's counter,
5090 * to keep the global sum constant after CPU-down:
5091 */
5092 static void migrate_nr_uninterruptible(struct rq *rq_src)
5093 {
5094 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5095 unsigned long flags;
5096
5097 local_irq_save(flags);
5098 double_rq_lock(rq_src, rq_dest);
5099 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5100 rq_src->nr_uninterruptible = 0;
5101 double_rq_unlock(rq_src, rq_dest);
5102 local_irq_restore(flags);
5103 }
5104
5105 /* Run through task list and migrate tasks from the dead cpu. */
5106 static void migrate_live_tasks(int src_cpu)
5107 {
5108 struct task_struct *p, *t;
5109
5110 write_lock_irq(&tasklist_lock);
5111
5112 do_each_thread(t, p) {
5113 if (p == current)
5114 continue;
5115
5116 if (task_cpu(p) == src_cpu)
5117 move_task_off_dead_cpu(src_cpu, p);
5118 } while_each_thread(t, p);
5119
5120 write_unlock_irq(&tasklist_lock);
5121 }
5122
5123 /*
5124 * Schedules idle task to be the next runnable task on current CPU.
5125 * It does so by boosting its priority to highest possible and adding it to
5126 * the _front_ of the runqueue. Used by CPU offline code.
5127 */
5128 void sched_idle_next(void)
5129 {
5130 int this_cpu = smp_processor_id();
5131 struct rq *rq = cpu_rq(this_cpu);
5132 struct task_struct *p = rq->idle;
5133 unsigned long flags;
5134
5135 /* cpu has to be offline */
5136 BUG_ON(cpu_online(this_cpu));
5137
5138 /*
5139 * Strictly not necessary since rest of the CPUs are stopped by now
5140 * and interrupts disabled on the current cpu.
5141 */
5142 spin_lock_irqsave(&rq->lock, flags);
5143
5144 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5145
5146 /* Add idle task to the _front_ of its priority queue: */
5147 activate_idle_task(p, rq);
5148
5149 spin_unlock_irqrestore(&rq->lock, flags);
5150 }
5151
5152 /*
5153 * Ensures that the idle task is using init_mm right before its cpu goes
5154 * offline.
5155 */
5156 void idle_task_exit(void)
5157 {
5158 struct mm_struct *mm = current->active_mm;
5159
5160 BUG_ON(cpu_online(smp_processor_id()));
5161
5162 if (mm != &init_mm)
5163 switch_mm(mm, &init_mm, current);
5164 mmdrop(mm);
5165 }
5166
5167 /* called under rq->lock with disabled interrupts */
5168 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5169 {
5170 struct rq *rq = cpu_rq(dead_cpu);
5171
5172 /* Must be exiting, otherwise would be on tasklist. */
5173 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5174
5175 /* Cannot have done final schedule yet: would have vanished. */
5176 BUG_ON(p->state == TASK_DEAD);
5177
5178 get_task_struct(p);
5179
5180 /*
5181 * Drop lock around migration; if someone else moves it,
5182 * that's OK. No task can be added to this CPU, so iteration is
5183 * fine.
5184 * NOTE: interrupts should be left disabled --dev@
5185 */
5186 spin_unlock(&rq->lock);
5187 move_task_off_dead_cpu(dead_cpu, p);
5188 spin_lock(&rq->lock);
5189
5190 put_task_struct(p);
5191 }
5192
5193 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5194 static void migrate_dead_tasks(unsigned int dead_cpu)
5195 {
5196 struct rq *rq = cpu_rq(dead_cpu);
5197 struct task_struct *next;
5198
5199 for ( ; ; ) {
5200 if (!rq->nr_running)
5201 break;
5202 next = pick_next_task(rq, rq->curr, rq_clock(rq));
5203 if (!next)
5204 break;
5205 migrate_dead(dead_cpu, next);
5206
5207 }
5208 }
5209 #endif /* CONFIG_HOTPLUG_CPU */
5210
5211 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5212
5213 static struct ctl_table sd_ctl_dir[] = {
5214 {CTL_UNNUMBERED, "sched_domain", NULL, 0, 0755, NULL, },
5215 {0,},
5216 };
5217
5218 static struct ctl_table sd_ctl_root[] = {
5219 {CTL_UNNUMBERED, "kernel", NULL, 0, 0755, sd_ctl_dir, },
5220 {0,},
5221 };
5222
5223 static struct ctl_table *sd_alloc_ctl_entry(int n)
5224 {
5225 struct ctl_table *entry =
5226 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5227
5228 BUG_ON(!entry);
5229 memset(entry, 0, n * sizeof(struct ctl_table));
5230
5231 return entry;
5232 }
5233
5234 static void
5235 set_table_entry(struct ctl_table *entry, int ctl_name,
5236 const char *procname, void *data, int maxlen,
5237 mode_t mode, proc_handler *proc_handler)
5238 {
5239 entry->ctl_name = ctl_name;
5240 entry->procname = procname;
5241 entry->data = data;
5242 entry->maxlen = maxlen;
5243 entry->mode = mode;
5244 entry->proc_handler = proc_handler;
5245 }
5246
5247 static struct ctl_table *
5248 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5249 {
5250 struct ctl_table *table = sd_alloc_ctl_entry(14);
5251
5252 set_table_entry(&table[0], 1, "min_interval", &sd->min_interval,
5253 sizeof(long), 0644, proc_doulongvec_minmax);
5254 set_table_entry(&table[1], 2, "max_interval", &sd->max_interval,
5255 sizeof(long), 0644, proc_doulongvec_minmax);
5256 set_table_entry(&table[2], 3, "busy_idx", &sd->busy_idx,
5257 sizeof(int), 0644, proc_dointvec_minmax);
5258 set_table_entry(&table[3], 4, "idle_idx", &sd->idle_idx,
5259 sizeof(int), 0644, proc_dointvec_minmax);
5260 set_table_entry(&table[4], 5, "newidle_idx", &sd->newidle_idx,
5261 sizeof(int), 0644, proc_dointvec_minmax);
5262 set_table_entry(&table[5], 6, "wake_idx", &sd->wake_idx,
5263 sizeof(int), 0644, proc_dointvec_minmax);
5264 set_table_entry(&table[6], 7, "forkexec_idx", &sd->forkexec_idx,
5265 sizeof(int), 0644, proc_dointvec_minmax);
5266 set_table_entry(&table[7], 8, "busy_factor", &sd->busy_factor,
5267 sizeof(int), 0644, proc_dointvec_minmax);
5268 set_table_entry(&table[8], 9, "imbalance_pct", &sd->imbalance_pct,
5269 sizeof(int), 0644, proc_dointvec_minmax);
5270 set_table_entry(&table[9], 10, "cache_hot_time", &sd->cache_hot_time,
5271 sizeof(long long), 0644, proc_doulongvec_minmax);
5272 set_table_entry(&table[10], 11, "cache_nice_tries",
5273 &sd->cache_nice_tries,
5274 sizeof(int), 0644, proc_dointvec_minmax);
5275 set_table_entry(&table[12], 13, "flags", &sd->flags,
5276 sizeof(int), 0644, proc_dointvec_minmax);
5277
5278 return table;
5279 }
5280
5281 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5282 {
5283 struct ctl_table *entry, *table;
5284 struct sched_domain *sd;
5285 int domain_num = 0, i;
5286 char buf[32];
5287
5288 for_each_domain(cpu, sd)
5289 domain_num++;
5290 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5291
5292 i = 0;
5293 for_each_domain(cpu, sd) {
5294 snprintf(buf, 32, "domain%d", i);
5295 entry->ctl_name = i + 1;
5296 entry->procname = kstrdup(buf, GFP_KERNEL);
5297 entry->mode = 0755;
5298 entry->child = sd_alloc_ctl_domain_table(sd);
5299 entry++;
5300 i++;
5301 }
5302 return table;
5303 }
5304
5305 static struct ctl_table_header *sd_sysctl_header;
5306 static void init_sched_domain_sysctl(void)
5307 {
5308 int i, cpu_num = num_online_cpus();
5309 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5310 char buf[32];
5311
5312 sd_ctl_dir[0].child = entry;
5313
5314 for (i = 0; i < cpu_num; i++, entry++) {
5315 snprintf(buf, 32, "cpu%d", i);
5316 entry->ctl_name = i + 1;
5317 entry->procname = kstrdup(buf, GFP_KERNEL);
5318 entry->mode = 0755;
5319 entry->child = sd_alloc_ctl_cpu_table(i);
5320 }
5321 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5322 }
5323 #else
5324 static void init_sched_domain_sysctl(void)
5325 {
5326 }
5327 #endif
5328
5329 /*
5330 * migration_call - callback that gets triggered when a CPU is added.
5331 * Here we can start up the necessary migration thread for the new CPU.
5332 */
5333 static int __cpuinit
5334 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5335 {
5336 struct task_struct *p;
5337 int cpu = (long)hcpu;
5338 unsigned long flags;
5339 struct rq *rq;
5340
5341 switch (action) {
5342 case CPU_LOCK_ACQUIRE:
5343 mutex_lock(&sched_hotcpu_mutex);
5344 break;
5345
5346 case CPU_UP_PREPARE:
5347 case CPU_UP_PREPARE_FROZEN:
5348 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5349 if (IS_ERR(p))
5350 return NOTIFY_BAD;
5351 kthread_bind(p, cpu);
5352 /* Must be high prio: stop_machine expects to yield to it. */
5353 rq = task_rq_lock(p, &flags);
5354 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5355 task_rq_unlock(rq, &flags);
5356 cpu_rq(cpu)->migration_thread = p;
5357 break;
5358
5359 case CPU_ONLINE:
5360 case CPU_ONLINE_FROZEN:
5361 /* Strictly unneccessary, as first user will wake it. */
5362 wake_up_process(cpu_rq(cpu)->migration_thread);
5363 break;
5364
5365 #ifdef CONFIG_HOTPLUG_CPU
5366 case CPU_UP_CANCELED:
5367 case CPU_UP_CANCELED_FROZEN:
5368 if (!cpu_rq(cpu)->migration_thread)
5369 break;
5370 /* Unbind it from offline cpu so it can run. Fall thru. */
5371 kthread_bind(cpu_rq(cpu)->migration_thread,
5372 any_online_cpu(cpu_online_map));
5373 kthread_stop(cpu_rq(cpu)->migration_thread);
5374 cpu_rq(cpu)->migration_thread = NULL;
5375 break;
5376
5377 case CPU_DEAD:
5378 case CPU_DEAD_FROZEN:
5379 migrate_live_tasks(cpu);
5380 rq = cpu_rq(cpu);
5381 kthread_stop(rq->migration_thread);
5382 rq->migration_thread = NULL;
5383 /* Idle task back to normal (off runqueue, low prio) */
5384 rq = task_rq_lock(rq->idle, &flags);
5385 deactivate_task(rq, rq->idle, 0);
5386 rq->idle->static_prio = MAX_PRIO;
5387 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5388 rq->idle->sched_class = &idle_sched_class;
5389 migrate_dead_tasks(cpu);
5390 task_rq_unlock(rq, &flags);
5391 migrate_nr_uninterruptible(rq);
5392 BUG_ON(rq->nr_running != 0);
5393
5394 /* No need to migrate the tasks: it was best-effort if
5395 * they didn't take sched_hotcpu_mutex. Just wake up
5396 * the requestors. */
5397 spin_lock_irq(&rq->lock);
5398 while (!list_empty(&rq->migration_queue)) {
5399 struct migration_req *req;
5400
5401 req = list_entry(rq->migration_queue.next,
5402 struct migration_req, list);
5403 list_del_init(&req->list);
5404 complete(&req->done);
5405 }
5406 spin_unlock_irq(&rq->lock);
5407 break;
5408 #endif
5409 case CPU_LOCK_RELEASE:
5410 mutex_unlock(&sched_hotcpu_mutex);
5411 break;
5412 }
5413 return NOTIFY_OK;
5414 }
5415
5416 /* Register at highest priority so that task migration (migrate_all_tasks)
5417 * happens before everything else.
5418 */
5419 static struct notifier_block __cpuinitdata migration_notifier = {
5420 .notifier_call = migration_call,
5421 .priority = 10
5422 };
5423
5424 int __init migration_init(void)
5425 {
5426 void *cpu = (void *)(long)smp_processor_id();
5427 int err;
5428
5429 /* Start one for the boot CPU: */
5430 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5431 BUG_ON(err == NOTIFY_BAD);
5432 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5433 register_cpu_notifier(&migration_notifier);
5434
5435 return 0;
5436 }
5437 #endif
5438
5439 #ifdef CONFIG_SMP
5440
5441 /* Number of possible processor ids */
5442 int nr_cpu_ids __read_mostly = NR_CPUS;
5443 EXPORT_SYMBOL(nr_cpu_ids);
5444
5445 #undef SCHED_DOMAIN_DEBUG
5446 #ifdef SCHED_DOMAIN_DEBUG
5447 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5448 {
5449 int level = 0;
5450
5451 if (!sd) {
5452 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5453 return;
5454 }
5455
5456 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5457
5458 do {
5459 int i;
5460 char str[NR_CPUS];
5461 struct sched_group *group = sd->groups;
5462 cpumask_t groupmask;
5463
5464 cpumask_scnprintf(str, NR_CPUS, sd->span);
5465 cpus_clear(groupmask);
5466
5467 printk(KERN_DEBUG);
5468 for (i = 0; i < level + 1; i++)
5469 printk(" ");
5470 printk("domain %d: ", level);
5471
5472 if (!(sd->flags & SD_LOAD_BALANCE)) {
5473 printk("does not load-balance\n");
5474 if (sd->parent)
5475 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5476 " has parent");
5477 break;
5478 }
5479
5480 printk("span %s\n", str);
5481
5482 if (!cpu_isset(cpu, sd->span))
5483 printk(KERN_ERR "ERROR: domain->span does not contain "
5484 "CPU%d\n", cpu);
5485 if (!cpu_isset(cpu, group->cpumask))
5486 printk(KERN_ERR "ERROR: domain->groups does not contain"
5487 " CPU%d\n", cpu);
5488
5489 printk(KERN_DEBUG);
5490 for (i = 0; i < level + 2; i++)
5491 printk(" ");
5492 printk("groups:");
5493 do {
5494 if (!group) {
5495 printk("\n");
5496 printk(KERN_ERR "ERROR: group is NULL\n");
5497 break;
5498 }
5499
5500 if (!group->__cpu_power) {
5501 printk("\n");
5502 printk(KERN_ERR "ERROR: domain->cpu_power not "
5503 "set\n");
5504 }
5505
5506 if (!cpus_weight(group->cpumask)) {
5507 printk("\n");
5508 printk(KERN_ERR "ERROR: empty group\n");
5509 }
5510
5511 if (cpus_intersects(groupmask, group->cpumask)) {
5512 printk("\n");
5513 printk(KERN_ERR "ERROR: repeated CPUs\n");
5514 }
5515
5516 cpus_or(groupmask, groupmask, group->cpumask);
5517
5518 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5519 printk(" %s", str);
5520
5521 group = group->next;
5522 } while (group != sd->groups);
5523 printk("\n");
5524
5525 if (!cpus_equal(sd->span, groupmask))
5526 printk(KERN_ERR "ERROR: groups don't span "
5527 "domain->span\n");
5528
5529 level++;
5530 sd = sd->parent;
5531 if (!sd)
5532 continue;
5533
5534 if (!cpus_subset(groupmask, sd->span))
5535 printk(KERN_ERR "ERROR: parent span is not a superset "
5536 "of domain->span\n");
5537
5538 } while (sd);
5539 }
5540 #else
5541 # define sched_domain_debug(sd, cpu) do { } while (0)
5542 #endif
5543
5544 static int sd_degenerate(struct sched_domain *sd)
5545 {
5546 if (cpus_weight(sd->span) == 1)
5547 return 1;
5548
5549 /* Following flags need at least 2 groups */
5550 if (sd->flags & (SD_LOAD_BALANCE |
5551 SD_BALANCE_NEWIDLE |
5552 SD_BALANCE_FORK |
5553 SD_BALANCE_EXEC |
5554 SD_SHARE_CPUPOWER |
5555 SD_SHARE_PKG_RESOURCES)) {
5556 if (sd->groups != sd->groups->next)
5557 return 0;
5558 }
5559
5560 /* Following flags don't use groups */
5561 if (sd->flags & (SD_WAKE_IDLE |
5562 SD_WAKE_AFFINE |
5563 SD_WAKE_BALANCE))
5564 return 0;
5565
5566 return 1;
5567 }
5568
5569 static int
5570 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5571 {
5572 unsigned long cflags = sd->flags, pflags = parent->flags;
5573
5574 if (sd_degenerate(parent))
5575 return 1;
5576
5577 if (!cpus_equal(sd->span, parent->span))
5578 return 0;
5579
5580 /* Does parent contain flags not in child? */
5581 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5582 if (cflags & SD_WAKE_AFFINE)
5583 pflags &= ~SD_WAKE_BALANCE;
5584 /* Flags needing groups don't count if only 1 group in parent */
5585 if (parent->groups == parent->groups->next) {
5586 pflags &= ~(SD_LOAD_BALANCE |
5587 SD_BALANCE_NEWIDLE |
5588 SD_BALANCE_FORK |
5589 SD_BALANCE_EXEC |
5590 SD_SHARE_CPUPOWER |
5591 SD_SHARE_PKG_RESOURCES);
5592 }
5593 if (~cflags & pflags)
5594 return 0;
5595
5596 return 1;
5597 }
5598
5599 /*
5600 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5601 * hold the hotplug lock.
5602 */
5603 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5604 {
5605 struct rq *rq = cpu_rq(cpu);
5606 struct sched_domain *tmp;
5607
5608 /* Remove the sched domains which do not contribute to scheduling. */
5609 for (tmp = sd; tmp; tmp = tmp->parent) {
5610 struct sched_domain *parent = tmp->parent;
5611 if (!parent)
5612 break;
5613 if (sd_parent_degenerate(tmp, parent)) {
5614 tmp->parent = parent->parent;
5615 if (parent->parent)
5616 parent->parent->child = tmp;
5617 }
5618 }
5619
5620 if (sd && sd_degenerate(sd)) {
5621 sd = sd->parent;
5622 if (sd)
5623 sd->child = NULL;
5624 }
5625
5626 sched_domain_debug(sd, cpu);
5627
5628 rcu_assign_pointer(rq->sd, sd);
5629 }
5630
5631 /* cpus with isolated domains */
5632 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5633
5634 /* Setup the mask of cpus configured for isolated domains */
5635 static int __init isolated_cpu_setup(char *str)
5636 {
5637 int ints[NR_CPUS], i;
5638
5639 str = get_options(str, ARRAY_SIZE(ints), ints);
5640 cpus_clear(cpu_isolated_map);
5641 for (i = 1; i <= ints[0]; i++)
5642 if (ints[i] < NR_CPUS)
5643 cpu_set(ints[i], cpu_isolated_map);
5644 return 1;
5645 }
5646
5647 __setup ("isolcpus=", isolated_cpu_setup);
5648
5649 /*
5650 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5651 * to a function which identifies what group(along with sched group) a CPU
5652 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5653 * (due to the fact that we keep track of groups covered with a cpumask_t).
5654 *
5655 * init_sched_build_groups will build a circular linked list of the groups
5656 * covered by the given span, and will set each group's ->cpumask correctly,
5657 * and ->cpu_power to 0.
5658 */
5659 static void
5660 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5661 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5662 struct sched_group **sg))
5663 {
5664 struct sched_group *first = NULL, *last = NULL;
5665 cpumask_t covered = CPU_MASK_NONE;
5666 int i;
5667
5668 for_each_cpu_mask(i, span) {
5669 struct sched_group *sg;
5670 int group = group_fn(i, cpu_map, &sg);
5671 int j;
5672
5673 if (cpu_isset(i, covered))
5674 continue;
5675
5676 sg->cpumask = CPU_MASK_NONE;
5677 sg->__cpu_power = 0;
5678
5679 for_each_cpu_mask(j, span) {
5680 if (group_fn(j, cpu_map, NULL) != group)
5681 continue;
5682
5683 cpu_set(j, covered);
5684 cpu_set(j, sg->cpumask);
5685 }
5686 if (!first)
5687 first = sg;
5688 if (last)
5689 last->next = sg;
5690 last = sg;
5691 }
5692 last->next = first;
5693 }
5694
5695 #define SD_NODES_PER_DOMAIN 16
5696
5697 #ifdef CONFIG_NUMA
5698
5699 /**
5700 * find_next_best_node - find the next node to include in a sched_domain
5701 * @node: node whose sched_domain we're building
5702 * @used_nodes: nodes already in the sched_domain
5703 *
5704 * Find the next node to include in a given scheduling domain. Simply
5705 * finds the closest node not already in the @used_nodes map.
5706 *
5707 * Should use nodemask_t.
5708 */
5709 static int find_next_best_node(int node, unsigned long *used_nodes)
5710 {
5711 int i, n, val, min_val, best_node = 0;
5712
5713 min_val = INT_MAX;
5714
5715 for (i = 0; i < MAX_NUMNODES; i++) {
5716 /* Start at @node */
5717 n = (node + i) % MAX_NUMNODES;
5718
5719 if (!nr_cpus_node(n))
5720 continue;
5721
5722 /* Skip already used nodes */
5723 if (test_bit(n, used_nodes))
5724 continue;
5725
5726 /* Simple min distance search */
5727 val = node_distance(node, n);
5728
5729 if (val < min_val) {
5730 min_val = val;
5731 best_node = n;
5732 }
5733 }
5734
5735 set_bit(best_node, used_nodes);
5736 return best_node;
5737 }
5738
5739 /**
5740 * sched_domain_node_span - get a cpumask for a node's sched_domain
5741 * @node: node whose cpumask we're constructing
5742 * @size: number of nodes to include in this span
5743 *
5744 * Given a node, construct a good cpumask for its sched_domain to span. It
5745 * should be one that prevents unnecessary balancing, but also spreads tasks
5746 * out optimally.
5747 */
5748 static cpumask_t sched_domain_node_span(int node)
5749 {
5750 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5751 cpumask_t span, nodemask;
5752 int i;
5753
5754 cpus_clear(span);
5755 bitmap_zero(used_nodes, MAX_NUMNODES);
5756
5757 nodemask = node_to_cpumask(node);
5758 cpus_or(span, span, nodemask);
5759 set_bit(node, used_nodes);
5760
5761 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5762 int next_node = find_next_best_node(node, used_nodes);
5763
5764 nodemask = node_to_cpumask(next_node);
5765 cpus_or(span, span, nodemask);
5766 }
5767
5768 return span;
5769 }
5770 #endif
5771
5772 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5773
5774 /*
5775 * SMT sched-domains:
5776 */
5777 #ifdef CONFIG_SCHED_SMT
5778 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5779 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5780
5781 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5782 struct sched_group **sg)
5783 {
5784 if (sg)
5785 *sg = &per_cpu(sched_group_cpus, cpu);
5786 return cpu;
5787 }
5788 #endif
5789
5790 /*
5791 * multi-core sched-domains:
5792 */
5793 #ifdef CONFIG_SCHED_MC
5794 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5795 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5796 #endif
5797
5798 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5799 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5800 struct sched_group **sg)
5801 {
5802 int group;
5803 cpumask_t mask = cpu_sibling_map[cpu];
5804 cpus_and(mask, mask, *cpu_map);
5805 group = first_cpu(mask);
5806 if (sg)
5807 *sg = &per_cpu(sched_group_core, group);
5808 return group;
5809 }
5810 #elif defined(CONFIG_SCHED_MC)
5811 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5812 struct sched_group **sg)
5813 {
5814 if (sg)
5815 *sg = &per_cpu(sched_group_core, cpu);
5816 return cpu;
5817 }
5818 #endif
5819
5820 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5821 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5822
5823 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5824 struct sched_group **sg)
5825 {
5826 int group;
5827 #ifdef CONFIG_SCHED_MC
5828 cpumask_t mask = cpu_coregroup_map(cpu);
5829 cpus_and(mask, mask, *cpu_map);
5830 group = first_cpu(mask);
5831 #elif defined(CONFIG_SCHED_SMT)
5832 cpumask_t mask = cpu_sibling_map[cpu];
5833 cpus_and(mask, mask, *cpu_map);
5834 group = first_cpu(mask);
5835 #else
5836 group = cpu;
5837 #endif
5838 if (sg)
5839 *sg = &per_cpu(sched_group_phys, group);
5840 return group;
5841 }
5842
5843 #ifdef CONFIG_NUMA
5844 /*
5845 * The init_sched_build_groups can't handle what we want to do with node
5846 * groups, so roll our own. Now each node has its own list of groups which
5847 * gets dynamically allocated.
5848 */
5849 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5850 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5851
5852 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5853 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5854
5855 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5856 struct sched_group **sg)
5857 {
5858 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5859 int group;
5860
5861 cpus_and(nodemask, nodemask, *cpu_map);
5862 group = first_cpu(nodemask);
5863
5864 if (sg)
5865 *sg = &per_cpu(sched_group_allnodes, group);
5866 return group;
5867 }
5868
5869 static void init_numa_sched_groups_power(struct sched_group *group_head)
5870 {
5871 struct sched_group *sg = group_head;
5872 int j;
5873
5874 if (!sg)
5875 return;
5876 next_sg:
5877 for_each_cpu_mask(j, sg->cpumask) {
5878 struct sched_domain *sd;
5879
5880 sd = &per_cpu(phys_domains, j);
5881 if (j != first_cpu(sd->groups->cpumask)) {
5882 /*
5883 * Only add "power" once for each
5884 * physical package.
5885 */
5886 continue;
5887 }
5888
5889 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5890 }
5891 sg = sg->next;
5892 if (sg != group_head)
5893 goto next_sg;
5894 }
5895 #endif
5896
5897 #ifdef CONFIG_NUMA
5898 /* Free memory allocated for various sched_group structures */
5899 static void free_sched_groups(const cpumask_t *cpu_map)
5900 {
5901 int cpu, i;
5902
5903 for_each_cpu_mask(cpu, *cpu_map) {
5904 struct sched_group **sched_group_nodes
5905 = sched_group_nodes_bycpu[cpu];
5906
5907 if (!sched_group_nodes)
5908 continue;
5909
5910 for (i = 0; i < MAX_NUMNODES; i++) {
5911 cpumask_t nodemask = node_to_cpumask(i);
5912 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5913
5914 cpus_and(nodemask, nodemask, *cpu_map);
5915 if (cpus_empty(nodemask))
5916 continue;
5917
5918 if (sg == NULL)
5919 continue;
5920 sg = sg->next;
5921 next_sg:
5922 oldsg = sg;
5923 sg = sg->next;
5924 kfree(oldsg);
5925 if (oldsg != sched_group_nodes[i])
5926 goto next_sg;
5927 }
5928 kfree(sched_group_nodes);
5929 sched_group_nodes_bycpu[cpu] = NULL;
5930 }
5931 }
5932 #else
5933 static void free_sched_groups(const cpumask_t *cpu_map)
5934 {
5935 }
5936 #endif
5937
5938 /*
5939 * Initialize sched groups cpu_power.
5940 *
5941 * cpu_power indicates the capacity of sched group, which is used while
5942 * distributing the load between different sched groups in a sched domain.
5943 * Typically cpu_power for all the groups in a sched domain will be same unless
5944 * there are asymmetries in the topology. If there are asymmetries, group
5945 * having more cpu_power will pickup more load compared to the group having
5946 * less cpu_power.
5947 *
5948 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5949 * the maximum number of tasks a group can handle in the presence of other idle
5950 * or lightly loaded groups in the same sched domain.
5951 */
5952 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5953 {
5954 struct sched_domain *child;
5955 struct sched_group *group;
5956
5957 WARN_ON(!sd || !sd->groups);
5958
5959 if (cpu != first_cpu(sd->groups->cpumask))
5960 return;
5961
5962 child = sd->child;
5963
5964 sd->groups->__cpu_power = 0;
5965
5966 /*
5967 * For perf policy, if the groups in child domain share resources
5968 * (for example cores sharing some portions of the cache hierarchy
5969 * or SMT), then set this domain groups cpu_power such that each group
5970 * can handle only one task, when there are other idle groups in the
5971 * same sched domain.
5972 */
5973 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5974 (child->flags &
5975 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5976 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5977 return;
5978 }
5979
5980 /*
5981 * add cpu_power of each child group to this groups cpu_power
5982 */
5983 group = child->groups;
5984 do {
5985 sg_inc_cpu_power(sd->groups, group->__cpu_power);
5986 group = group->next;
5987 } while (group != child->groups);
5988 }
5989
5990 /*
5991 * Build sched domains for a given set of cpus and attach the sched domains
5992 * to the individual cpus
5993 */
5994 static int build_sched_domains(const cpumask_t *cpu_map)
5995 {
5996 int i;
5997 #ifdef CONFIG_NUMA
5998 struct sched_group **sched_group_nodes = NULL;
5999 int sd_allnodes = 0;
6000
6001 /*
6002 * Allocate the per-node list of sched groups
6003 */
6004 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6005 GFP_KERNEL);
6006 if (!sched_group_nodes) {
6007 printk(KERN_WARNING "Can not alloc sched group node list\n");
6008 return -ENOMEM;
6009 }
6010 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6011 #endif
6012
6013 /*
6014 * Set up domains for cpus specified by the cpu_map.
6015 */
6016 for_each_cpu_mask(i, *cpu_map) {
6017 struct sched_domain *sd = NULL, *p;
6018 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6019
6020 cpus_and(nodemask, nodemask, *cpu_map);
6021
6022 #ifdef CONFIG_NUMA
6023 if (cpus_weight(*cpu_map) >
6024 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6025 sd = &per_cpu(allnodes_domains, i);
6026 *sd = SD_ALLNODES_INIT;
6027 sd->span = *cpu_map;
6028 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6029 p = sd;
6030 sd_allnodes = 1;
6031 } else
6032 p = NULL;
6033
6034 sd = &per_cpu(node_domains, i);
6035 *sd = SD_NODE_INIT;
6036 sd->span = sched_domain_node_span(cpu_to_node(i));
6037 sd->parent = p;
6038 if (p)
6039 p->child = sd;
6040 cpus_and(sd->span, sd->span, *cpu_map);
6041 #endif
6042
6043 p = sd;
6044 sd = &per_cpu(phys_domains, i);
6045 *sd = SD_CPU_INIT;
6046 sd->span = nodemask;
6047 sd->parent = p;
6048 if (p)
6049 p->child = sd;
6050 cpu_to_phys_group(i, cpu_map, &sd->groups);
6051
6052 #ifdef CONFIG_SCHED_MC
6053 p = sd;
6054 sd = &per_cpu(core_domains, i);
6055 *sd = SD_MC_INIT;
6056 sd->span = cpu_coregroup_map(i);
6057 cpus_and(sd->span, sd->span, *cpu_map);
6058 sd->parent = p;
6059 p->child = sd;
6060 cpu_to_core_group(i, cpu_map, &sd->groups);
6061 #endif
6062
6063 #ifdef CONFIG_SCHED_SMT
6064 p = sd;
6065 sd = &per_cpu(cpu_domains, i);
6066 *sd = SD_SIBLING_INIT;
6067 sd->span = cpu_sibling_map[i];
6068 cpus_and(sd->span, sd->span, *cpu_map);
6069 sd->parent = p;
6070 p->child = sd;
6071 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6072 #endif
6073 }
6074
6075 #ifdef CONFIG_SCHED_SMT
6076 /* Set up CPU (sibling) groups */
6077 for_each_cpu_mask(i, *cpu_map) {
6078 cpumask_t this_sibling_map = cpu_sibling_map[i];
6079 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6080 if (i != first_cpu(this_sibling_map))
6081 continue;
6082
6083 init_sched_build_groups(this_sibling_map, cpu_map,
6084 &cpu_to_cpu_group);
6085 }
6086 #endif
6087
6088 #ifdef CONFIG_SCHED_MC
6089 /* Set up multi-core groups */
6090 for_each_cpu_mask(i, *cpu_map) {
6091 cpumask_t this_core_map = cpu_coregroup_map(i);
6092 cpus_and(this_core_map, this_core_map, *cpu_map);
6093 if (i != first_cpu(this_core_map))
6094 continue;
6095 init_sched_build_groups(this_core_map, cpu_map,
6096 &cpu_to_core_group);
6097 }
6098 #endif
6099
6100 /* Set up physical groups */
6101 for (i = 0; i < MAX_NUMNODES; i++) {
6102 cpumask_t nodemask = node_to_cpumask(i);
6103
6104 cpus_and(nodemask, nodemask, *cpu_map);
6105 if (cpus_empty(nodemask))
6106 continue;
6107
6108 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6109 }
6110
6111 #ifdef CONFIG_NUMA
6112 /* Set up node groups */
6113 if (sd_allnodes)
6114 init_sched_build_groups(*cpu_map, cpu_map,
6115 &cpu_to_allnodes_group);
6116
6117 for (i = 0; i < MAX_NUMNODES; i++) {
6118 /* Set up node groups */
6119 struct sched_group *sg, *prev;
6120 cpumask_t nodemask = node_to_cpumask(i);
6121 cpumask_t domainspan;
6122 cpumask_t covered = CPU_MASK_NONE;
6123 int j;
6124
6125 cpus_and(nodemask, nodemask, *cpu_map);
6126 if (cpus_empty(nodemask)) {
6127 sched_group_nodes[i] = NULL;
6128 continue;
6129 }
6130
6131 domainspan = sched_domain_node_span(i);
6132 cpus_and(domainspan, domainspan, *cpu_map);
6133
6134 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6135 if (!sg) {
6136 printk(KERN_WARNING "Can not alloc domain group for "
6137 "node %d\n", i);
6138 goto error;
6139 }
6140 sched_group_nodes[i] = sg;
6141 for_each_cpu_mask(j, nodemask) {
6142 struct sched_domain *sd;
6143
6144 sd = &per_cpu(node_domains, j);
6145 sd->groups = sg;
6146 }
6147 sg->__cpu_power = 0;
6148 sg->cpumask = nodemask;
6149 sg->next = sg;
6150 cpus_or(covered, covered, nodemask);
6151 prev = sg;
6152
6153 for (j = 0; j < MAX_NUMNODES; j++) {
6154 cpumask_t tmp, notcovered;
6155 int n = (i + j) % MAX_NUMNODES;
6156
6157 cpus_complement(notcovered, covered);
6158 cpus_and(tmp, notcovered, *cpu_map);
6159 cpus_and(tmp, tmp, domainspan);
6160 if (cpus_empty(tmp))
6161 break;
6162
6163 nodemask = node_to_cpumask(n);
6164 cpus_and(tmp, tmp, nodemask);
6165 if (cpus_empty(tmp))
6166 continue;
6167
6168 sg = kmalloc_node(sizeof(struct sched_group),
6169 GFP_KERNEL, i);
6170 if (!sg) {
6171 printk(KERN_WARNING
6172 "Can not alloc domain group for node %d\n", j);
6173 goto error;
6174 }
6175 sg->__cpu_power = 0;
6176 sg->cpumask = tmp;
6177 sg->next = prev->next;
6178 cpus_or(covered, covered, tmp);
6179 prev->next = sg;
6180 prev = sg;
6181 }
6182 }
6183 #endif
6184
6185 /* Calculate CPU power for physical packages and nodes */
6186 #ifdef CONFIG_SCHED_SMT
6187 for_each_cpu_mask(i, *cpu_map) {
6188 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6189
6190 init_sched_groups_power(i, sd);
6191 }
6192 #endif
6193 #ifdef CONFIG_SCHED_MC
6194 for_each_cpu_mask(i, *cpu_map) {
6195 struct sched_domain *sd = &per_cpu(core_domains, i);
6196
6197 init_sched_groups_power(i, sd);
6198 }
6199 #endif
6200
6201 for_each_cpu_mask(i, *cpu_map) {
6202 struct sched_domain *sd = &per_cpu(phys_domains, i);
6203
6204 init_sched_groups_power(i, sd);
6205 }
6206
6207 #ifdef CONFIG_NUMA
6208 for (i = 0; i < MAX_NUMNODES; i++)
6209 init_numa_sched_groups_power(sched_group_nodes[i]);
6210
6211 if (sd_allnodes) {
6212 struct sched_group *sg;
6213
6214 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6215 init_numa_sched_groups_power(sg);
6216 }
6217 #endif
6218
6219 /* Attach the domains */
6220 for_each_cpu_mask(i, *cpu_map) {
6221 struct sched_domain *sd;
6222 #ifdef CONFIG_SCHED_SMT
6223 sd = &per_cpu(cpu_domains, i);
6224 #elif defined(CONFIG_SCHED_MC)
6225 sd = &per_cpu(core_domains, i);
6226 #else
6227 sd = &per_cpu(phys_domains, i);
6228 #endif
6229 cpu_attach_domain(sd, i);
6230 }
6231
6232 return 0;
6233
6234 #ifdef CONFIG_NUMA
6235 error:
6236 free_sched_groups(cpu_map);
6237 return -ENOMEM;
6238 #endif
6239 }
6240 /*
6241 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6242 */
6243 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6244 {
6245 cpumask_t cpu_default_map;
6246 int err;
6247
6248 /*
6249 * Setup mask for cpus without special case scheduling requirements.
6250 * For now this just excludes isolated cpus, but could be used to
6251 * exclude other special cases in the future.
6252 */
6253 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6254
6255 err = build_sched_domains(&cpu_default_map);
6256
6257 return err;
6258 }
6259
6260 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6261 {
6262 free_sched_groups(cpu_map);
6263 }
6264
6265 /*
6266 * Detach sched domains from a group of cpus specified in cpu_map
6267 * These cpus will now be attached to the NULL domain
6268 */
6269 static void detach_destroy_domains(const cpumask_t *cpu_map)
6270 {
6271 int i;
6272
6273 for_each_cpu_mask(i, *cpu_map)
6274 cpu_attach_domain(NULL, i);
6275 synchronize_sched();
6276 arch_destroy_sched_domains(cpu_map);
6277 }
6278
6279 /*
6280 * Partition sched domains as specified by the cpumasks below.
6281 * This attaches all cpus from the cpumasks to the NULL domain,
6282 * waits for a RCU quiescent period, recalculates sched
6283 * domain information and then attaches them back to the
6284 * correct sched domains
6285 * Call with hotplug lock held
6286 */
6287 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6288 {
6289 cpumask_t change_map;
6290 int err = 0;
6291
6292 cpus_and(*partition1, *partition1, cpu_online_map);
6293 cpus_and(*partition2, *partition2, cpu_online_map);
6294 cpus_or(change_map, *partition1, *partition2);
6295
6296 /* Detach sched domains from all of the affected cpus */
6297 detach_destroy_domains(&change_map);
6298 if (!cpus_empty(*partition1))
6299 err = build_sched_domains(partition1);
6300 if (!err && !cpus_empty(*partition2))
6301 err = build_sched_domains(partition2);
6302
6303 return err;
6304 }
6305
6306 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6307 int arch_reinit_sched_domains(void)
6308 {
6309 int err;
6310
6311 mutex_lock(&sched_hotcpu_mutex);
6312 detach_destroy_domains(&cpu_online_map);
6313 err = arch_init_sched_domains(&cpu_online_map);
6314 mutex_unlock(&sched_hotcpu_mutex);
6315
6316 return err;
6317 }
6318
6319 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6320 {
6321 int ret;
6322
6323 if (buf[0] != '0' && buf[0] != '1')
6324 return -EINVAL;
6325
6326 if (smt)
6327 sched_smt_power_savings = (buf[0] == '1');
6328 else
6329 sched_mc_power_savings = (buf[0] == '1');
6330
6331 ret = arch_reinit_sched_domains();
6332
6333 return ret ? ret : count;
6334 }
6335
6336 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6337 {
6338 int err = 0;
6339
6340 #ifdef CONFIG_SCHED_SMT
6341 if (smt_capable())
6342 err = sysfs_create_file(&cls->kset.kobj,
6343 &attr_sched_smt_power_savings.attr);
6344 #endif
6345 #ifdef CONFIG_SCHED_MC
6346 if (!err && mc_capable())
6347 err = sysfs_create_file(&cls->kset.kobj,
6348 &attr_sched_mc_power_savings.attr);
6349 #endif
6350 return err;
6351 }
6352 #endif
6353
6354 #ifdef CONFIG_SCHED_MC
6355 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6356 {
6357 return sprintf(page, "%u\n", sched_mc_power_savings);
6358 }
6359 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6360 const char *buf, size_t count)
6361 {
6362 return sched_power_savings_store(buf, count, 0);
6363 }
6364 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6365 sched_mc_power_savings_store);
6366 #endif
6367
6368 #ifdef CONFIG_SCHED_SMT
6369 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6370 {
6371 return sprintf(page, "%u\n", sched_smt_power_savings);
6372 }
6373 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6374 const char *buf, size_t count)
6375 {
6376 return sched_power_savings_store(buf, count, 1);
6377 }
6378 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6379 sched_smt_power_savings_store);
6380 #endif
6381
6382 /*
6383 * Force a reinitialization of the sched domains hierarchy. The domains
6384 * and groups cannot be updated in place without racing with the balancing
6385 * code, so we temporarily attach all running cpus to the NULL domain
6386 * which will prevent rebalancing while the sched domains are recalculated.
6387 */
6388 static int update_sched_domains(struct notifier_block *nfb,
6389 unsigned long action, void *hcpu)
6390 {
6391 switch (action) {
6392 case CPU_UP_PREPARE:
6393 case CPU_UP_PREPARE_FROZEN:
6394 case CPU_DOWN_PREPARE:
6395 case CPU_DOWN_PREPARE_FROZEN:
6396 detach_destroy_domains(&cpu_online_map);
6397 return NOTIFY_OK;
6398
6399 case CPU_UP_CANCELED:
6400 case CPU_UP_CANCELED_FROZEN:
6401 case CPU_DOWN_FAILED:
6402 case CPU_DOWN_FAILED_FROZEN:
6403 case CPU_ONLINE:
6404 case CPU_ONLINE_FROZEN:
6405 case CPU_DEAD:
6406 case CPU_DEAD_FROZEN:
6407 /*
6408 * Fall through and re-initialise the domains.
6409 */
6410 break;
6411 default:
6412 return NOTIFY_DONE;
6413 }
6414
6415 /* The hotplug lock is already held by cpu_up/cpu_down */
6416 arch_init_sched_domains(&cpu_online_map);
6417
6418 return NOTIFY_OK;
6419 }
6420
6421 void __init sched_init_smp(void)
6422 {
6423 cpumask_t non_isolated_cpus;
6424
6425 mutex_lock(&sched_hotcpu_mutex);
6426 arch_init_sched_domains(&cpu_online_map);
6427 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6428 if (cpus_empty(non_isolated_cpus))
6429 cpu_set(smp_processor_id(), non_isolated_cpus);
6430 mutex_unlock(&sched_hotcpu_mutex);
6431 /* XXX: Theoretical race here - CPU may be hotplugged now */
6432 hotcpu_notifier(update_sched_domains, 0);
6433
6434 init_sched_domain_sysctl();
6435
6436 /* Move init over to a non-isolated CPU */
6437 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6438 BUG();
6439 sched_init_granularity();
6440 }
6441 #else
6442 void __init sched_init_smp(void)
6443 {
6444 sched_init_granularity();
6445 }
6446 #endif /* CONFIG_SMP */
6447
6448 int in_sched_functions(unsigned long addr)
6449 {
6450 /* Linker adds these: start and end of __sched functions */
6451 extern char __sched_text_start[], __sched_text_end[];
6452
6453 return in_lock_functions(addr) ||
6454 (addr >= (unsigned long)__sched_text_start
6455 && addr < (unsigned long)__sched_text_end);
6456 }
6457
6458 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6459 {
6460 cfs_rq->tasks_timeline = RB_ROOT;
6461 cfs_rq->fair_clock = 1;
6462 #ifdef CONFIG_FAIR_GROUP_SCHED
6463 cfs_rq->rq = rq;
6464 #endif
6465 }
6466
6467 void __init sched_init(void)
6468 {
6469 u64 now = sched_clock();
6470 int highest_cpu = 0;
6471 int i, j;
6472
6473 /*
6474 * Link up the scheduling class hierarchy:
6475 */
6476 rt_sched_class.next = &fair_sched_class;
6477 fair_sched_class.next = &idle_sched_class;
6478 idle_sched_class.next = NULL;
6479
6480 for_each_possible_cpu(i) {
6481 struct rt_prio_array *array;
6482 struct rq *rq;
6483
6484 rq = cpu_rq(i);
6485 spin_lock_init(&rq->lock);
6486 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6487 rq->nr_running = 0;
6488 rq->clock = 1;
6489 init_cfs_rq(&rq->cfs, rq);
6490 #ifdef CONFIG_FAIR_GROUP_SCHED
6491 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6492 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6493 #endif
6494 rq->ls.load_update_last = now;
6495 rq->ls.load_update_start = now;
6496
6497 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6498 rq->cpu_load[j] = 0;
6499 #ifdef CONFIG_SMP
6500 rq->sd = NULL;
6501 rq->active_balance = 0;
6502 rq->next_balance = jiffies;
6503 rq->push_cpu = 0;
6504 rq->cpu = i;
6505 rq->migration_thread = NULL;
6506 INIT_LIST_HEAD(&rq->migration_queue);
6507 #endif
6508 atomic_set(&rq->nr_iowait, 0);
6509
6510 array = &rq->rt.active;
6511 for (j = 0; j < MAX_RT_PRIO; j++) {
6512 INIT_LIST_HEAD(array->queue + j);
6513 __clear_bit(j, array->bitmap);
6514 }
6515 highest_cpu = i;
6516 /* delimiter for bitsearch: */
6517 __set_bit(MAX_RT_PRIO, array->bitmap);
6518 }
6519
6520 set_load_weight(&init_task);
6521
6522 #ifdef CONFIG_PREEMPT_NOTIFIERS
6523 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6524 #endif
6525
6526 #ifdef CONFIG_SMP
6527 nr_cpu_ids = highest_cpu + 1;
6528 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6529 #endif
6530
6531 #ifdef CONFIG_RT_MUTEXES
6532 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6533 #endif
6534
6535 /*
6536 * The boot idle thread does lazy MMU switching as well:
6537 */
6538 atomic_inc(&init_mm.mm_count);
6539 enter_lazy_tlb(&init_mm, current);
6540
6541 /*
6542 * Make us the idle thread. Technically, schedule() should not be
6543 * called from this thread, however somewhere below it might be,
6544 * but because we are the idle thread, we just pick up running again
6545 * when this runqueue becomes "idle".
6546 */
6547 init_idle(current, smp_processor_id());
6548 /*
6549 * During early bootup we pretend to be a normal task:
6550 */
6551 current->sched_class = &fair_sched_class;
6552 }
6553
6554 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6555 void __might_sleep(char *file, int line)
6556 {
6557 #ifdef in_atomic
6558 static unsigned long prev_jiffy; /* ratelimiting */
6559
6560 if ((in_atomic() || irqs_disabled()) &&
6561 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6562 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6563 return;
6564 prev_jiffy = jiffies;
6565 printk(KERN_ERR "BUG: sleeping function called from invalid"
6566 " context at %s:%d\n", file, line);
6567 printk("in_atomic():%d, irqs_disabled():%d\n",
6568 in_atomic(), irqs_disabled());
6569 debug_show_held_locks(current);
6570 if (irqs_disabled())
6571 print_irqtrace_events(current);
6572 dump_stack();
6573 }
6574 #endif
6575 }
6576 EXPORT_SYMBOL(__might_sleep);
6577 #endif
6578
6579 #ifdef CONFIG_MAGIC_SYSRQ
6580 void normalize_rt_tasks(void)
6581 {
6582 struct task_struct *g, *p;
6583 unsigned long flags;
6584 struct rq *rq;
6585 int on_rq;
6586
6587 read_lock_irq(&tasklist_lock);
6588 do_each_thread(g, p) {
6589 p->se.fair_key = 0;
6590 p->se.wait_runtime = 0;
6591 p->se.wait_start_fair = 0;
6592 p->se.wait_start = 0;
6593 p->se.exec_start = 0;
6594 p->se.sleep_start = 0;
6595 p->se.sleep_start_fair = 0;
6596 p->se.block_start = 0;
6597 task_rq(p)->cfs.fair_clock = 0;
6598 task_rq(p)->clock = 0;
6599
6600 if (!rt_task(p)) {
6601 /*
6602 * Renice negative nice level userspace
6603 * tasks back to 0:
6604 */
6605 if (TASK_NICE(p) < 0 && p->mm)
6606 set_user_nice(p, 0);
6607 continue;
6608 }
6609
6610 spin_lock_irqsave(&p->pi_lock, flags);
6611 rq = __task_rq_lock(p);
6612 #ifdef CONFIG_SMP
6613 /*
6614 * Do not touch the migration thread:
6615 */
6616 if (p == rq->migration_thread)
6617 goto out_unlock;
6618 #endif
6619
6620 on_rq = p->se.on_rq;
6621 if (on_rq)
6622 deactivate_task(task_rq(p), p, 0);
6623 __setscheduler(rq, p, SCHED_NORMAL, 0);
6624 if (on_rq) {
6625 activate_task(task_rq(p), p, 0);
6626 resched_task(rq->curr);
6627 }
6628 #ifdef CONFIG_SMP
6629 out_unlock:
6630 #endif
6631 __task_rq_unlock(rq);
6632 spin_unlock_irqrestore(&p->pi_lock, flags);
6633 } while_each_thread(g, p);
6634
6635 read_unlock_irq(&tasklist_lock);
6636 }
6637
6638 #endif /* CONFIG_MAGIC_SYSRQ */
6639
6640 #ifdef CONFIG_IA64
6641 /*
6642 * These functions are only useful for the IA64 MCA handling.
6643 *
6644 * They can only be called when the whole system has been
6645 * stopped - every CPU needs to be quiescent, and no scheduling
6646 * activity can take place. Using them for anything else would
6647 * be a serious bug, and as a result, they aren't even visible
6648 * under any other configuration.
6649 */
6650
6651 /**
6652 * curr_task - return the current task for a given cpu.
6653 * @cpu: the processor in question.
6654 *
6655 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6656 */
6657 struct task_struct *curr_task(int cpu)
6658 {
6659 return cpu_curr(cpu);
6660 }
6661
6662 /**
6663 * set_curr_task - set the current task for a given cpu.
6664 * @cpu: the processor in question.
6665 * @p: the task pointer to set.
6666 *
6667 * Description: This function must only be used when non-maskable interrupts
6668 * are serviced on a separate stack. It allows the architecture to switch the
6669 * notion of the current task on a cpu in a non-blocking manner. This function
6670 * must be called with all CPU's synchronized, and interrupts disabled, the
6671 * and caller must save the original value of the current task (see
6672 * curr_task() above) and restore that value before reenabling interrupts and
6673 * re-starting the system.
6674 *
6675 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6676 */
6677 void set_curr_task(int cpu, struct task_struct *p)
6678 {
6679 cpu_curr(cpu) = p;
6680 }
6681
6682 #endif