]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/roland...
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/debug_locks.h>
34 #include <linux/security.h>
35 #include <linux/notifier.h>
36 #include <linux/profile.h>
37 #include <linux/freezer.h>
38 #include <linux/vmalloc.h>
39 #include <linux/blkdev.h>
40 #include <linux/delay.h>
41 #include <linux/smp.h>
42 #include <linux/threads.h>
43 #include <linux/timer.h>
44 #include <linux/rcupdate.h>
45 #include <linux/cpu.h>
46 #include <linux/cpuset.h>
47 #include <linux/percpu.h>
48 #include <linux/kthread.h>
49 #include <linux/seq_file.h>
50 #include <linux/syscalls.h>
51 #include <linux/times.h>
52 #include <linux/tsacct_kern.h>
53 #include <linux/kprobes.h>
54 #include <linux/delayacct.h>
55 #include <linux/reciprocal_div.h>
56
57 #include <asm/tlb.h>
58 #include <asm/unistd.h>
59
60 /*
61 * Scheduler clock - returns current time in nanosec units.
62 * This is default implementation.
63 * Architectures and sub-architectures can override this.
64 */
65 unsigned long long __attribute__((weak)) sched_clock(void)
66 {
67 return (unsigned long long)jiffies * (1000000000 / HZ);
68 }
69
70 /*
71 * Convert user-nice values [ -20 ... 0 ... 19 ]
72 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
73 * and back.
74 */
75 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
76 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
77 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
78
79 /*
80 * 'User priority' is the nice value converted to something we
81 * can work with better when scaling various scheduler parameters,
82 * it's a [ 0 ... 39 ] range.
83 */
84 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
85 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
86 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
87
88 /*
89 * Some helpers for converting nanosecond timing to jiffy resolution
90 */
91 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
92 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
93
94 /*
95 * These are the 'tuning knobs' of the scheduler:
96 *
97 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
98 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
99 * Timeslices get refilled after they expire.
100 */
101 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
102 #define DEF_TIMESLICE (100 * HZ / 1000)
103 #define ON_RUNQUEUE_WEIGHT 30
104 #define CHILD_PENALTY 95
105 #define PARENT_PENALTY 100
106 #define EXIT_WEIGHT 3
107 #define PRIO_BONUS_RATIO 25
108 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
109 #define INTERACTIVE_DELTA 2
110 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
111 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
112 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
113
114 /*
115 * If a task is 'interactive' then we reinsert it in the active
116 * array after it has expired its current timeslice. (it will not
117 * continue to run immediately, it will still roundrobin with
118 * other interactive tasks.)
119 *
120 * This part scales the interactivity limit depending on niceness.
121 *
122 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
123 * Here are a few examples of different nice levels:
124 *
125 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
126 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
127 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
128 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
129 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
130 *
131 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
132 * priority range a task can explore, a value of '1' means the
133 * task is rated interactive.)
134 *
135 * Ie. nice +19 tasks can never get 'interactive' enough to be
136 * reinserted into the active array. And only heavily CPU-hog nice -20
137 * tasks will be expired. Default nice 0 tasks are somewhere between,
138 * it takes some effort for them to get interactive, but it's not
139 * too hard.
140 */
141
142 #define CURRENT_BONUS(p) \
143 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
144 MAX_SLEEP_AVG)
145
146 #define GRANULARITY (10 * HZ / 1000 ? : 1)
147
148 #ifdef CONFIG_SMP
149 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
150 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
151 num_online_cpus())
152 #else
153 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
154 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
155 #endif
156
157 #define SCALE(v1,v1_max,v2_max) \
158 (v1) * (v2_max) / (v1_max)
159
160 #define DELTA(p) \
161 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
162 INTERACTIVE_DELTA)
163
164 #define TASK_INTERACTIVE(p) \
165 ((p)->prio <= (p)->static_prio - DELTA(p))
166
167 #define INTERACTIVE_SLEEP(p) \
168 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
169 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
170
171 #define TASK_PREEMPTS_CURR(p, rq) \
172 ((p)->prio < (rq)->curr->prio)
173
174 #define SCALE_PRIO(x, prio) \
175 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
176
177 static unsigned int static_prio_timeslice(int static_prio)
178 {
179 if (static_prio < NICE_TO_PRIO(0))
180 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
181 else
182 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
183 }
184
185 #ifdef CONFIG_SMP
186 /*
187 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
188 * Since cpu_power is a 'constant', we can use a reciprocal divide.
189 */
190 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
191 {
192 return reciprocal_divide(load, sg->reciprocal_cpu_power);
193 }
194
195 /*
196 * Each time a sched group cpu_power is changed,
197 * we must compute its reciprocal value
198 */
199 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
200 {
201 sg->__cpu_power += val;
202 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
203 }
204 #endif
205
206 /*
207 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
208 * to time slice values: [800ms ... 100ms ... 5ms]
209 *
210 * The higher a thread's priority, the bigger timeslices
211 * it gets during one round of execution. But even the lowest
212 * priority thread gets MIN_TIMESLICE worth of execution time.
213 */
214
215 static inline unsigned int task_timeslice(struct task_struct *p)
216 {
217 return static_prio_timeslice(p->static_prio);
218 }
219
220 /*
221 * These are the runqueue data structures:
222 */
223
224 struct prio_array {
225 unsigned int nr_active;
226 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
227 struct list_head queue[MAX_PRIO];
228 };
229
230 /*
231 * This is the main, per-CPU runqueue data structure.
232 *
233 * Locking rule: those places that want to lock multiple runqueues
234 * (such as the load balancing or the thread migration code), lock
235 * acquire operations must be ordered by ascending &runqueue.
236 */
237 struct rq {
238 spinlock_t lock;
239
240 /*
241 * nr_running and cpu_load should be in the same cacheline because
242 * remote CPUs use both these fields when doing load calculation.
243 */
244 unsigned long nr_running;
245 unsigned long raw_weighted_load;
246 #ifdef CONFIG_SMP
247 unsigned long cpu_load[3];
248 unsigned char idle_at_tick;
249 #ifdef CONFIG_NO_HZ
250 unsigned char in_nohz_recently;
251 #endif
252 #endif
253 unsigned long long nr_switches;
254
255 /*
256 * This is part of a global counter where only the total sum
257 * over all CPUs matters. A task can increase this counter on
258 * one CPU and if it got migrated afterwards it may decrease
259 * it on another CPU. Always updated under the runqueue lock:
260 */
261 unsigned long nr_uninterruptible;
262
263 unsigned long expired_timestamp;
264 /* Cached timestamp set by update_cpu_clock() */
265 unsigned long long most_recent_timestamp;
266 struct task_struct *curr, *idle;
267 unsigned long next_balance;
268 struct mm_struct *prev_mm;
269 struct prio_array *active, *expired, arrays[2];
270 int best_expired_prio;
271 atomic_t nr_iowait;
272
273 #ifdef CONFIG_SMP
274 struct sched_domain *sd;
275
276 /* For active balancing */
277 int active_balance;
278 int push_cpu;
279 int cpu; /* cpu of this runqueue */
280
281 struct task_struct *migration_thread;
282 struct list_head migration_queue;
283 #endif
284
285 #ifdef CONFIG_SCHEDSTATS
286 /* latency stats */
287 struct sched_info rq_sched_info;
288
289 /* sys_sched_yield() stats */
290 unsigned long yld_exp_empty;
291 unsigned long yld_act_empty;
292 unsigned long yld_both_empty;
293 unsigned long yld_cnt;
294
295 /* schedule() stats */
296 unsigned long sched_switch;
297 unsigned long sched_cnt;
298 unsigned long sched_goidle;
299
300 /* try_to_wake_up() stats */
301 unsigned long ttwu_cnt;
302 unsigned long ttwu_local;
303 #endif
304 struct lock_class_key rq_lock_key;
305 };
306
307 static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
308 static DEFINE_MUTEX(sched_hotcpu_mutex);
309
310 static inline int cpu_of(struct rq *rq)
311 {
312 #ifdef CONFIG_SMP
313 return rq->cpu;
314 #else
315 return 0;
316 #endif
317 }
318
319 /*
320 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
321 * See detach_destroy_domains: synchronize_sched for details.
322 *
323 * The domain tree of any CPU may only be accessed from within
324 * preempt-disabled sections.
325 */
326 #define for_each_domain(cpu, __sd) \
327 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
328
329 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
330 #define this_rq() (&__get_cpu_var(runqueues))
331 #define task_rq(p) cpu_rq(task_cpu(p))
332 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
333
334 #ifndef prepare_arch_switch
335 # define prepare_arch_switch(next) do { } while (0)
336 #endif
337 #ifndef finish_arch_switch
338 # define finish_arch_switch(prev) do { } while (0)
339 #endif
340
341 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
342 static inline int task_running(struct rq *rq, struct task_struct *p)
343 {
344 return rq->curr == p;
345 }
346
347 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
348 {
349 }
350
351 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
352 {
353 #ifdef CONFIG_DEBUG_SPINLOCK
354 /* this is a valid case when another task releases the spinlock */
355 rq->lock.owner = current;
356 #endif
357 /*
358 * If we are tracking spinlock dependencies then we have to
359 * fix up the runqueue lock - which gets 'carried over' from
360 * prev into current:
361 */
362 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
363
364 spin_unlock_irq(&rq->lock);
365 }
366
367 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
368 static inline int task_running(struct rq *rq, struct task_struct *p)
369 {
370 #ifdef CONFIG_SMP
371 return p->oncpu;
372 #else
373 return rq->curr == p;
374 #endif
375 }
376
377 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
378 {
379 #ifdef CONFIG_SMP
380 /*
381 * We can optimise this out completely for !SMP, because the
382 * SMP rebalancing from interrupt is the only thing that cares
383 * here.
384 */
385 next->oncpu = 1;
386 #endif
387 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
388 spin_unlock_irq(&rq->lock);
389 #else
390 spin_unlock(&rq->lock);
391 #endif
392 }
393
394 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
395 {
396 #ifdef CONFIG_SMP
397 /*
398 * After ->oncpu is cleared, the task can be moved to a different CPU.
399 * We must ensure this doesn't happen until the switch is completely
400 * finished.
401 */
402 smp_wmb();
403 prev->oncpu = 0;
404 #endif
405 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
406 local_irq_enable();
407 #endif
408 }
409 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
410
411 /*
412 * __task_rq_lock - lock the runqueue a given task resides on.
413 * Must be called interrupts disabled.
414 */
415 static inline struct rq *__task_rq_lock(struct task_struct *p)
416 __acquires(rq->lock)
417 {
418 struct rq *rq;
419
420 repeat_lock_task:
421 rq = task_rq(p);
422 spin_lock(&rq->lock);
423 if (unlikely(rq != task_rq(p))) {
424 spin_unlock(&rq->lock);
425 goto repeat_lock_task;
426 }
427 return rq;
428 }
429
430 /*
431 * task_rq_lock - lock the runqueue a given task resides on and disable
432 * interrupts. Note the ordering: we can safely lookup the task_rq without
433 * explicitly disabling preemption.
434 */
435 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
436 __acquires(rq->lock)
437 {
438 struct rq *rq;
439
440 repeat_lock_task:
441 local_irq_save(*flags);
442 rq = task_rq(p);
443 spin_lock(&rq->lock);
444 if (unlikely(rq != task_rq(p))) {
445 spin_unlock_irqrestore(&rq->lock, *flags);
446 goto repeat_lock_task;
447 }
448 return rq;
449 }
450
451 static inline void __task_rq_unlock(struct rq *rq)
452 __releases(rq->lock)
453 {
454 spin_unlock(&rq->lock);
455 }
456
457 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
458 __releases(rq->lock)
459 {
460 spin_unlock_irqrestore(&rq->lock, *flags);
461 }
462
463 #ifdef CONFIG_SCHEDSTATS
464 /*
465 * bump this up when changing the output format or the meaning of an existing
466 * format, so that tools can adapt (or abort)
467 */
468 #define SCHEDSTAT_VERSION 14
469
470 static int show_schedstat(struct seq_file *seq, void *v)
471 {
472 int cpu;
473
474 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
475 seq_printf(seq, "timestamp %lu\n", jiffies);
476 for_each_online_cpu(cpu) {
477 struct rq *rq = cpu_rq(cpu);
478 #ifdef CONFIG_SMP
479 struct sched_domain *sd;
480 int dcnt = 0;
481 #endif
482
483 /* runqueue-specific stats */
484 seq_printf(seq,
485 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
486 cpu, rq->yld_both_empty,
487 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
488 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
489 rq->ttwu_cnt, rq->ttwu_local,
490 rq->rq_sched_info.cpu_time,
491 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
492
493 seq_printf(seq, "\n");
494
495 #ifdef CONFIG_SMP
496 /* domain-specific stats */
497 preempt_disable();
498 for_each_domain(cpu, sd) {
499 enum idle_type itype;
500 char mask_str[NR_CPUS];
501
502 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
503 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
504 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
505 itype++) {
506 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu "
507 "%lu",
508 sd->lb_cnt[itype],
509 sd->lb_balanced[itype],
510 sd->lb_failed[itype],
511 sd->lb_imbalance[itype],
512 sd->lb_gained[itype],
513 sd->lb_hot_gained[itype],
514 sd->lb_nobusyq[itype],
515 sd->lb_nobusyg[itype]);
516 }
517 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu"
518 " %lu %lu %lu\n",
519 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
520 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
521 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
522 sd->ttwu_wake_remote, sd->ttwu_move_affine,
523 sd->ttwu_move_balance);
524 }
525 preempt_enable();
526 #endif
527 }
528 return 0;
529 }
530
531 static int schedstat_open(struct inode *inode, struct file *file)
532 {
533 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
534 char *buf = kmalloc(size, GFP_KERNEL);
535 struct seq_file *m;
536 int res;
537
538 if (!buf)
539 return -ENOMEM;
540 res = single_open(file, show_schedstat, NULL);
541 if (!res) {
542 m = file->private_data;
543 m->buf = buf;
544 m->size = size;
545 } else
546 kfree(buf);
547 return res;
548 }
549
550 const struct file_operations proc_schedstat_operations = {
551 .open = schedstat_open,
552 .read = seq_read,
553 .llseek = seq_lseek,
554 .release = single_release,
555 };
556
557 /*
558 * Expects runqueue lock to be held for atomicity of update
559 */
560 static inline void
561 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
562 {
563 if (rq) {
564 rq->rq_sched_info.run_delay += delta_jiffies;
565 rq->rq_sched_info.pcnt++;
566 }
567 }
568
569 /*
570 * Expects runqueue lock to be held for atomicity of update
571 */
572 static inline void
573 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
574 {
575 if (rq)
576 rq->rq_sched_info.cpu_time += delta_jiffies;
577 }
578 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
579 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
580 #else /* !CONFIG_SCHEDSTATS */
581 static inline void
582 rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
583 {}
584 static inline void
585 rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
586 {}
587 # define schedstat_inc(rq, field) do { } while (0)
588 # define schedstat_add(rq, field, amt) do { } while (0)
589 #endif
590
591 /*
592 * this_rq_lock - lock this runqueue and disable interrupts.
593 */
594 static inline struct rq *this_rq_lock(void)
595 __acquires(rq->lock)
596 {
597 struct rq *rq;
598
599 local_irq_disable();
600 rq = this_rq();
601 spin_lock(&rq->lock);
602
603 return rq;
604 }
605
606 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
607 /*
608 * Called when a process is dequeued from the active array and given
609 * the cpu. We should note that with the exception of interactive
610 * tasks, the expired queue will become the active queue after the active
611 * queue is empty, without explicitly dequeuing and requeuing tasks in the
612 * expired queue. (Interactive tasks may be requeued directly to the
613 * active queue, thus delaying tasks in the expired queue from running;
614 * see scheduler_tick()).
615 *
616 * This function is only called from sched_info_arrive(), rather than
617 * dequeue_task(). Even though a task may be queued and dequeued multiple
618 * times as it is shuffled about, we're really interested in knowing how
619 * long it was from the *first* time it was queued to the time that it
620 * finally hit a cpu.
621 */
622 static inline void sched_info_dequeued(struct task_struct *t)
623 {
624 t->sched_info.last_queued = 0;
625 }
626
627 /*
628 * Called when a task finally hits the cpu. We can now calculate how
629 * long it was waiting to run. We also note when it began so that we
630 * can keep stats on how long its timeslice is.
631 */
632 static void sched_info_arrive(struct task_struct *t)
633 {
634 unsigned long now = jiffies, delta_jiffies = 0;
635
636 if (t->sched_info.last_queued)
637 delta_jiffies = now - t->sched_info.last_queued;
638 sched_info_dequeued(t);
639 t->sched_info.run_delay += delta_jiffies;
640 t->sched_info.last_arrival = now;
641 t->sched_info.pcnt++;
642
643 rq_sched_info_arrive(task_rq(t), delta_jiffies);
644 }
645
646 /*
647 * Called when a process is queued into either the active or expired
648 * array. The time is noted and later used to determine how long we
649 * had to wait for us to reach the cpu. Since the expired queue will
650 * become the active queue after active queue is empty, without dequeuing
651 * and requeuing any tasks, we are interested in queuing to either. It
652 * is unusual but not impossible for tasks to be dequeued and immediately
653 * requeued in the same or another array: this can happen in sched_yield(),
654 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
655 * to runqueue.
656 *
657 * This function is only called from enqueue_task(), but also only updates
658 * the timestamp if it is already not set. It's assumed that
659 * sched_info_dequeued() will clear that stamp when appropriate.
660 */
661 static inline void sched_info_queued(struct task_struct *t)
662 {
663 if (unlikely(sched_info_on()))
664 if (!t->sched_info.last_queued)
665 t->sched_info.last_queued = jiffies;
666 }
667
668 /*
669 * Called when a process ceases being the active-running process, either
670 * voluntarily or involuntarily. Now we can calculate how long we ran.
671 */
672 static inline void sched_info_depart(struct task_struct *t)
673 {
674 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
675
676 t->sched_info.cpu_time += delta_jiffies;
677 rq_sched_info_depart(task_rq(t), delta_jiffies);
678 }
679
680 /*
681 * Called when tasks are switched involuntarily due, typically, to expiring
682 * their time slice. (This may also be called when switching to or from
683 * the idle task.) We are only called when prev != next.
684 */
685 static inline void
686 __sched_info_switch(struct task_struct *prev, struct task_struct *next)
687 {
688 struct rq *rq = task_rq(prev);
689
690 /*
691 * prev now departs the cpu. It's not interesting to record
692 * stats about how efficient we were at scheduling the idle
693 * process, however.
694 */
695 if (prev != rq->idle)
696 sched_info_depart(prev);
697
698 if (next != rq->idle)
699 sched_info_arrive(next);
700 }
701 static inline void
702 sched_info_switch(struct task_struct *prev, struct task_struct *next)
703 {
704 if (unlikely(sched_info_on()))
705 __sched_info_switch(prev, next);
706 }
707 #else
708 #define sched_info_queued(t) do { } while (0)
709 #define sched_info_switch(t, next) do { } while (0)
710 #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
711
712 /*
713 * Adding/removing a task to/from a priority array:
714 */
715 static void dequeue_task(struct task_struct *p, struct prio_array *array)
716 {
717 array->nr_active--;
718 list_del(&p->run_list);
719 if (list_empty(array->queue + p->prio))
720 __clear_bit(p->prio, array->bitmap);
721 }
722
723 static void enqueue_task(struct task_struct *p, struct prio_array *array)
724 {
725 sched_info_queued(p);
726 list_add_tail(&p->run_list, array->queue + p->prio);
727 __set_bit(p->prio, array->bitmap);
728 array->nr_active++;
729 p->array = array;
730 }
731
732 /*
733 * Put task to the end of the run list without the overhead of dequeue
734 * followed by enqueue.
735 */
736 static void requeue_task(struct task_struct *p, struct prio_array *array)
737 {
738 list_move_tail(&p->run_list, array->queue + p->prio);
739 }
740
741 static inline void
742 enqueue_task_head(struct task_struct *p, struct prio_array *array)
743 {
744 list_add(&p->run_list, array->queue + p->prio);
745 __set_bit(p->prio, array->bitmap);
746 array->nr_active++;
747 p->array = array;
748 }
749
750 /*
751 * __normal_prio - return the priority that is based on the static
752 * priority but is modified by bonuses/penalties.
753 *
754 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
755 * into the -5 ... 0 ... +5 bonus/penalty range.
756 *
757 * We use 25% of the full 0...39 priority range so that:
758 *
759 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
760 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
761 *
762 * Both properties are important to certain workloads.
763 */
764
765 static inline int __normal_prio(struct task_struct *p)
766 {
767 int bonus, prio;
768
769 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
770
771 prio = p->static_prio - bonus;
772 if (prio < MAX_RT_PRIO)
773 prio = MAX_RT_PRIO;
774 if (prio > MAX_PRIO-1)
775 prio = MAX_PRIO-1;
776 return prio;
777 }
778
779 /*
780 * To aid in avoiding the subversion of "niceness" due to uneven distribution
781 * of tasks with abnormal "nice" values across CPUs the contribution that
782 * each task makes to its run queue's load is weighted according to its
783 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
784 * scaled version of the new time slice allocation that they receive on time
785 * slice expiry etc.
786 */
787
788 /*
789 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
790 * If static_prio_timeslice() is ever changed to break this assumption then
791 * this code will need modification
792 */
793 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
794 #define LOAD_WEIGHT(lp) \
795 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
796 #define PRIO_TO_LOAD_WEIGHT(prio) \
797 LOAD_WEIGHT(static_prio_timeslice(prio))
798 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
799 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
800
801 static void set_load_weight(struct task_struct *p)
802 {
803 if (has_rt_policy(p)) {
804 #ifdef CONFIG_SMP
805 if (p == task_rq(p)->migration_thread)
806 /*
807 * The migration thread does the actual balancing.
808 * Giving its load any weight will skew balancing
809 * adversely.
810 */
811 p->load_weight = 0;
812 else
813 #endif
814 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
815 } else
816 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
817 }
818
819 static inline void
820 inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
821 {
822 rq->raw_weighted_load += p->load_weight;
823 }
824
825 static inline void
826 dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
827 {
828 rq->raw_weighted_load -= p->load_weight;
829 }
830
831 static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
832 {
833 rq->nr_running++;
834 inc_raw_weighted_load(rq, p);
835 }
836
837 static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
838 {
839 rq->nr_running--;
840 dec_raw_weighted_load(rq, p);
841 }
842
843 /*
844 * Calculate the expected normal priority: i.e. priority
845 * without taking RT-inheritance into account. Might be
846 * boosted by interactivity modifiers. Changes upon fork,
847 * setprio syscalls, and whenever the interactivity
848 * estimator recalculates.
849 */
850 static inline int normal_prio(struct task_struct *p)
851 {
852 int prio;
853
854 if (has_rt_policy(p))
855 prio = MAX_RT_PRIO-1 - p->rt_priority;
856 else
857 prio = __normal_prio(p);
858 return prio;
859 }
860
861 /*
862 * Calculate the current priority, i.e. the priority
863 * taken into account by the scheduler. This value might
864 * be boosted by RT tasks, or might be boosted by
865 * interactivity modifiers. Will be RT if the task got
866 * RT-boosted. If not then it returns p->normal_prio.
867 */
868 static int effective_prio(struct task_struct *p)
869 {
870 p->normal_prio = normal_prio(p);
871 /*
872 * If we are RT tasks or we were boosted to RT priority,
873 * keep the priority unchanged. Otherwise, update priority
874 * to the normal priority:
875 */
876 if (!rt_prio(p->prio))
877 return p->normal_prio;
878 return p->prio;
879 }
880
881 /*
882 * __activate_task - move a task to the runqueue.
883 */
884 static void __activate_task(struct task_struct *p, struct rq *rq)
885 {
886 struct prio_array *target = rq->active;
887
888 if (batch_task(p))
889 target = rq->expired;
890 enqueue_task(p, target);
891 inc_nr_running(p, rq);
892 }
893
894 /*
895 * __activate_idle_task - move idle task to the _front_ of runqueue.
896 */
897 static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
898 {
899 enqueue_task_head(p, rq->active);
900 inc_nr_running(p, rq);
901 }
902
903 /*
904 * Recalculate p->normal_prio and p->prio after having slept,
905 * updating the sleep-average too:
906 */
907 static int recalc_task_prio(struct task_struct *p, unsigned long long now)
908 {
909 /* Caller must always ensure 'now >= p->timestamp' */
910 unsigned long sleep_time = now - p->timestamp;
911
912 if (batch_task(p))
913 sleep_time = 0;
914
915 if (likely(sleep_time > 0)) {
916 /*
917 * This ceiling is set to the lowest priority that would allow
918 * a task to be reinserted into the active array on timeslice
919 * completion.
920 */
921 unsigned long ceiling = INTERACTIVE_SLEEP(p);
922
923 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
924 /*
925 * Prevents user tasks from achieving best priority
926 * with one single large enough sleep.
927 */
928 p->sleep_avg = ceiling;
929 /*
930 * Using INTERACTIVE_SLEEP() as a ceiling places a
931 * nice(0) task 1ms sleep away from promotion, and
932 * gives it 700ms to round-robin with no chance of
933 * being demoted. This is more than generous, so
934 * mark this sleep as non-interactive to prevent the
935 * on-runqueue bonus logic from intervening should
936 * this task not receive cpu immediately.
937 */
938 p->sleep_type = SLEEP_NONINTERACTIVE;
939 } else {
940 /*
941 * Tasks waking from uninterruptible sleep are
942 * limited in their sleep_avg rise as they
943 * are likely to be waiting on I/O
944 */
945 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
946 if (p->sleep_avg >= ceiling)
947 sleep_time = 0;
948 else if (p->sleep_avg + sleep_time >=
949 ceiling) {
950 p->sleep_avg = ceiling;
951 sleep_time = 0;
952 }
953 }
954
955 /*
956 * This code gives a bonus to interactive tasks.
957 *
958 * The boost works by updating the 'average sleep time'
959 * value here, based on ->timestamp. The more time a
960 * task spends sleeping, the higher the average gets -
961 * and the higher the priority boost gets as well.
962 */
963 p->sleep_avg += sleep_time;
964
965 }
966 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
967 p->sleep_avg = NS_MAX_SLEEP_AVG;
968 }
969
970 return effective_prio(p);
971 }
972
973 /*
974 * activate_task - move a task to the runqueue and do priority recalculation
975 *
976 * Update all the scheduling statistics stuff. (sleep average
977 * calculation, priority modifiers, etc.)
978 */
979 static void activate_task(struct task_struct *p, struct rq *rq, int local)
980 {
981 unsigned long long now;
982
983 if (rt_task(p))
984 goto out;
985
986 now = sched_clock();
987 #ifdef CONFIG_SMP
988 if (!local) {
989 /* Compensate for drifting sched_clock */
990 struct rq *this_rq = this_rq();
991 now = (now - this_rq->most_recent_timestamp)
992 + rq->most_recent_timestamp;
993 }
994 #endif
995
996 /*
997 * Sleep time is in units of nanosecs, so shift by 20 to get a
998 * milliseconds-range estimation of the amount of time that the task
999 * spent sleeping:
1000 */
1001 if (unlikely(prof_on == SLEEP_PROFILING)) {
1002 if (p->state == TASK_UNINTERRUPTIBLE)
1003 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
1004 (now - p->timestamp) >> 20);
1005 }
1006
1007 p->prio = recalc_task_prio(p, now);
1008
1009 /*
1010 * This checks to make sure it's not an uninterruptible task
1011 * that is now waking up.
1012 */
1013 if (p->sleep_type == SLEEP_NORMAL) {
1014 /*
1015 * Tasks which were woken up by interrupts (ie. hw events)
1016 * are most likely of interactive nature. So we give them
1017 * the credit of extending their sleep time to the period
1018 * of time they spend on the runqueue, waiting for execution
1019 * on a CPU, first time around:
1020 */
1021 if (in_interrupt())
1022 p->sleep_type = SLEEP_INTERRUPTED;
1023 else {
1024 /*
1025 * Normal first-time wakeups get a credit too for
1026 * on-runqueue time, but it will be weighted down:
1027 */
1028 p->sleep_type = SLEEP_INTERACTIVE;
1029 }
1030 }
1031 p->timestamp = now;
1032 out:
1033 __activate_task(p, rq);
1034 }
1035
1036 /*
1037 * deactivate_task - remove a task from the runqueue.
1038 */
1039 static void deactivate_task(struct task_struct *p, struct rq *rq)
1040 {
1041 dec_nr_running(p, rq);
1042 dequeue_task(p, p->array);
1043 p->array = NULL;
1044 }
1045
1046 /*
1047 * resched_task - mark a task 'to be rescheduled now'.
1048 *
1049 * On UP this means the setting of the need_resched flag, on SMP it
1050 * might also involve a cross-CPU call to trigger the scheduler on
1051 * the target CPU.
1052 */
1053 #ifdef CONFIG_SMP
1054
1055 #ifndef tsk_is_polling
1056 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1057 #endif
1058
1059 static void resched_task(struct task_struct *p)
1060 {
1061 int cpu;
1062
1063 assert_spin_locked(&task_rq(p)->lock);
1064
1065 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1066 return;
1067
1068 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1069
1070 cpu = task_cpu(p);
1071 if (cpu == smp_processor_id())
1072 return;
1073
1074 /* NEED_RESCHED must be visible before we test polling */
1075 smp_mb();
1076 if (!tsk_is_polling(p))
1077 smp_send_reschedule(cpu);
1078 }
1079
1080 static void resched_cpu(int cpu)
1081 {
1082 struct rq *rq = cpu_rq(cpu);
1083 unsigned long flags;
1084
1085 if (!spin_trylock_irqsave(&rq->lock, flags))
1086 return;
1087 resched_task(cpu_curr(cpu));
1088 spin_unlock_irqrestore(&rq->lock, flags);
1089 }
1090 #else
1091 static inline void resched_task(struct task_struct *p)
1092 {
1093 assert_spin_locked(&task_rq(p)->lock);
1094 set_tsk_need_resched(p);
1095 }
1096 #endif
1097
1098 /**
1099 * task_curr - is this task currently executing on a CPU?
1100 * @p: the task in question.
1101 */
1102 inline int task_curr(const struct task_struct *p)
1103 {
1104 return cpu_curr(task_cpu(p)) == p;
1105 }
1106
1107 /* Used instead of source_load when we know the type == 0 */
1108 unsigned long weighted_cpuload(const int cpu)
1109 {
1110 return cpu_rq(cpu)->raw_weighted_load;
1111 }
1112
1113 #ifdef CONFIG_SMP
1114 struct migration_req {
1115 struct list_head list;
1116
1117 struct task_struct *task;
1118 int dest_cpu;
1119
1120 struct completion done;
1121 };
1122
1123 /*
1124 * The task's runqueue lock must be held.
1125 * Returns true if you have to wait for migration thread.
1126 */
1127 static int
1128 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1129 {
1130 struct rq *rq = task_rq(p);
1131
1132 /*
1133 * If the task is not on a runqueue (and not running), then
1134 * it is sufficient to simply update the task's cpu field.
1135 */
1136 if (!p->array && !task_running(rq, p)) {
1137 set_task_cpu(p, dest_cpu);
1138 return 0;
1139 }
1140
1141 init_completion(&req->done);
1142 req->task = p;
1143 req->dest_cpu = dest_cpu;
1144 list_add(&req->list, &rq->migration_queue);
1145
1146 return 1;
1147 }
1148
1149 /*
1150 * wait_task_inactive - wait for a thread to unschedule.
1151 *
1152 * The caller must ensure that the task *will* unschedule sometime soon,
1153 * else this function might spin for a *long* time. This function can't
1154 * be called with interrupts off, or it may introduce deadlock with
1155 * smp_call_function() if an IPI is sent by the same process we are
1156 * waiting to become inactive.
1157 */
1158 void wait_task_inactive(struct task_struct *p)
1159 {
1160 unsigned long flags;
1161 struct rq *rq;
1162 struct prio_array *array;
1163 int running;
1164
1165 repeat:
1166 /*
1167 * We do the initial early heuristics without holding
1168 * any task-queue locks at all. We'll only try to get
1169 * the runqueue lock when things look like they will
1170 * work out!
1171 */
1172 rq = task_rq(p);
1173
1174 /*
1175 * If the task is actively running on another CPU
1176 * still, just relax and busy-wait without holding
1177 * any locks.
1178 *
1179 * NOTE! Since we don't hold any locks, it's not
1180 * even sure that "rq" stays as the right runqueue!
1181 * But we don't care, since "task_running()" will
1182 * return false if the runqueue has changed and p
1183 * is actually now running somewhere else!
1184 */
1185 while (task_running(rq, p))
1186 cpu_relax();
1187
1188 /*
1189 * Ok, time to look more closely! We need the rq
1190 * lock now, to be *sure*. If we're wrong, we'll
1191 * just go back and repeat.
1192 */
1193 rq = task_rq_lock(p, &flags);
1194 running = task_running(rq, p);
1195 array = p->array;
1196 task_rq_unlock(rq, &flags);
1197
1198 /*
1199 * Was it really running after all now that we
1200 * checked with the proper locks actually held?
1201 *
1202 * Oops. Go back and try again..
1203 */
1204 if (unlikely(running)) {
1205 cpu_relax();
1206 goto repeat;
1207 }
1208
1209 /*
1210 * It's not enough that it's not actively running,
1211 * it must be off the runqueue _entirely_, and not
1212 * preempted!
1213 *
1214 * So if it wa still runnable (but just not actively
1215 * running right now), it's preempted, and we should
1216 * yield - it could be a while.
1217 */
1218 if (unlikely(array)) {
1219 yield();
1220 goto repeat;
1221 }
1222
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 }
1229
1230 /***
1231 * kick_process - kick a running thread to enter/exit the kernel
1232 * @p: the to-be-kicked thread
1233 *
1234 * Cause a process which is running on another CPU to enter
1235 * kernel-mode, without any delay. (to get signals handled.)
1236 *
1237 * NOTE: this function doesnt have to take the runqueue lock,
1238 * because all it wants to ensure is that the remote task enters
1239 * the kernel. If the IPI races and the task has been migrated
1240 * to another CPU then no harm is done and the purpose has been
1241 * achieved as well.
1242 */
1243 void kick_process(struct task_struct *p)
1244 {
1245 int cpu;
1246
1247 preempt_disable();
1248 cpu = task_cpu(p);
1249 if ((cpu != smp_processor_id()) && task_curr(p))
1250 smp_send_reschedule(cpu);
1251 preempt_enable();
1252 }
1253
1254 /*
1255 * Return a low guess at the load of a migration-source cpu weighted
1256 * according to the scheduling class and "nice" value.
1257 *
1258 * We want to under-estimate the load of migration sources, to
1259 * balance conservatively.
1260 */
1261 static inline unsigned long source_load(int cpu, int type)
1262 {
1263 struct rq *rq = cpu_rq(cpu);
1264
1265 if (type == 0)
1266 return rq->raw_weighted_load;
1267
1268 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1269 }
1270
1271 /*
1272 * Return a high guess at the load of a migration-target cpu weighted
1273 * according to the scheduling class and "nice" value.
1274 */
1275 static inline unsigned long target_load(int cpu, int type)
1276 {
1277 struct rq *rq = cpu_rq(cpu);
1278
1279 if (type == 0)
1280 return rq->raw_weighted_load;
1281
1282 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1283 }
1284
1285 /*
1286 * Return the average load per task on the cpu's run queue
1287 */
1288 static inline unsigned long cpu_avg_load_per_task(int cpu)
1289 {
1290 struct rq *rq = cpu_rq(cpu);
1291 unsigned long n = rq->nr_running;
1292
1293 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1294 }
1295
1296 /*
1297 * find_idlest_group finds and returns the least busy CPU group within the
1298 * domain.
1299 */
1300 static struct sched_group *
1301 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1302 {
1303 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1304 unsigned long min_load = ULONG_MAX, this_load = 0;
1305 int load_idx = sd->forkexec_idx;
1306 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1307
1308 do {
1309 unsigned long load, avg_load;
1310 int local_group;
1311 int i;
1312
1313 /* Skip over this group if it has no CPUs allowed */
1314 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1315 goto nextgroup;
1316
1317 local_group = cpu_isset(this_cpu, group->cpumask);
1318
1319 /* Tally up the load of all CPUs in the group */
1320 avg_load = 0;
1321
1322 for_each_cpu_mask(i, group->cpumask) {
1323 /* Bias balancing toward cpus of our domain */
1324 if (local_group)
1325 load = source_load(i, load_idx);
1326 else
1327 load = target_load(i, load_idx);
1328
1329 avg_load += load;
1330 }
1331
1332 /* Adjust by relative CPU power of the group */
1333 avg_load = sg_div_cpu_power(group,
1334 avg_load * SCHED_LOAD_SCALE);
1335
1336 if (local_group) {
1337 this_load = avg_load;
1338 this = group;
1339 } else if (avg_load < min_load) {
1340 min_load = avg_load;
1341 idlest = group;
1342 }
1343 nextgroup:
1344 group = group->next;
1345 } while (group != sd->groups);
1346
1347 if (!idlest || 100*this_load < imbalance*min_load)
1348 return NULL;
1349 return idlest;
1350 }
1351
1352 /*
1353 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1354 */
1355 static int
1356 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1357 {
1358 cpumask_t tmp;
1359 unsigned long load, min_load = ULONG_MAX;
1360 int idlest = -1;
1361 int i;
1362
1363 /* Traverse only the allowed CPUs */
1364 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1365
1366 for_each_cpu_mask(i, tmp) {
1367 load = weighted_cpuload(i);
1368
1369 if (load < min_load || (load == min_load && i == this_cpu)) {
1370 min_load = load;
1371 idlest = i;
1372 }
1373 }
1374
1375 return idlest;
1376 }
1377
1378 /*
1379 * sched_balance_self: balance the current task (running on cpu) in domains
1380 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1381 * SD_BALANCE_EXEC.
1382 *
1383 * Balance, ie. select the least loaded group.
1384 *
1385 * Returns the target CPU number, or the same CPU if no balancing is needed.
1386 *
1387 * preempt must be disabled.
1388 */
1389 static int sched_balance_self(int cpu, int flag)
1390 {
1391 struct task_struct *t = current;
1392 struct sched_domain *tmp, *sd = NULL;
1393
1394 for_each_domain(cpu, tmp) {
1395 /*
1396 * If power savings logic is enabled for a domain, stop there.
1397 */
1398 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1399 break;
1400 if (tmp->flags & flag)
1401 sd = tmp;
1402 }
1403
1404 while (sd) {
1405 cpumask_t span;
1406 struct sched_group *group;
1407 int new_cpu, weight;
1408
1409 if (!(sd->flags & flag)) {
1410 sd = sd->child;
1411 continue;
1412 }
1413
1414 span = sd->span;
1415 group = find_idlest_group(sd, t, cpu);
1416 if (!group) {
1417 sd = sd->child;
1418 continue;
1419 }
1420
1421 new_cpu = find_idlest_cpu(group, t, cpu);
1422 if (new_cpu == -1 || new_cpu == cpu) {
1423 /* Now try balancing at a lower domain level of cpu */
1424 sd = sd->child;
1425 continue;
1426 }
1427
1428 /* Now try balancing at a lower domain level of new_cpu */
1429 cpu = new_cpu;
1430 sd = NULL;
1431 weight = cpus_weight(span);
1432 for_each_domain(cpu, tmp) {
1433 if (weight <= cpus_weight(tmp->span))
1434 break;
1435 if (tmp->flags & flag)
1436 sd = tmp;
1437 }
1438 /* while loop will break here if sd == NULL */
1439 }
1440
1441 return cpu;
1442 }
1443
1444 #endif /* CONFIG_SMP */
1445
1446 /*
1447 * wake_idle() will wake a task on an idle cpu if task->cpu is
1448 * not idle and an idle cpu is available. The span of cpus to
1449 * search starts with cpus closest then further out as needed,
1450 * so we always favor a closer, idle cpu.
1451 *
1452 * Returns the CPU we should wake onto.
1453 */
1454 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1455 static int wake_idle(int cpu, struct task_struct *p)
1456 {
1457 cpumask_t tmp;
1458 struct sched_domain *sd;
1459 int i;
1460
1461 /*
1462 * If it is idle, then it is the best cpu to run this task.
1463 *
1464 * This cpu is also the best, if it has more than one task already.
1465 * Siblings must be also busy(in most cases) as they didn't already
1466 * pickup the extra load from this cpu and hence we need not check
1467 * sibling runqueue info. This will avoid the checks and cache miss
1468 * penalities associated with that.
1469 */
1470 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1471 return cpu;
1472
1473 for_each_domain(cpu, sd) {
1474 if (sd->flags & SD_WAKE_IDLE) {
1475 cpus_and(tmp, sd->span, p->cpus_allowed);
1476 for_each_cpu_mask(i, tmp) {
1477 if (idle_cpu(i))
1478 return i;
1479 }
1480 }
1481 else
1482 break;
1483 }
1484 return cpu;
1485 }
1486 #else
1487 static inline int wake_idle(int cpu, struct task_struct *p)
1488 {
1489 return cpu;
1490 }
1491 #endif
1492
1493 /***
1494 * try_to_wake_up - wake up a thread
1495 * @p: the to-be-woken-up thread
1496 * @state: the mask of task states that can be woken
1497 * @sync: do a synchronous wakeup?
1498 *
1499 * Put it on the run-queue if it's not already there. The "current"
1500 * thread is always on the run-queue (except when the actual
1501 * re-schedule is in progress), and as such you're allowed to do
1502 * the simpler "current->state = TASK_RUNNING" to mark yourself
1503 * runnable without the overhead of this.
1504 *
1505 * returns failure only if the task is already active.
1506 */
1507 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1508 {
1509 int cpu, this_cpu, success = 0;
1510 unsigned long flags;
1511 long old_state;
1512 struct rq *rq;
1513 #ifdef CONFIG_SMP
1514 struct sched_domain *sd, *this_sd = NULL;
1515 unsigned long load, this_load;
1516 int new_cpu;
1517 #endif
1518
1519 rq = task_rq_lock(p, &flags);
1520 old_state = p->state;
1521 if (!(old_state & state))
1522 goto out;
1523
1524 if (p->array)
1525 goto out_running;
1526
1527 cpu = task_cpu(p);
1528 this_cpu = smp_processor_id();
1529
1530 #ifdef CONFIG_SMP
1531 if (unlikely(task_running(rq, p)))
1532 goto out_activate;
1533
1534 new_cpu = cpu;
1535
1536 schedstat_inc(rq, ttwu_cnt);
1537 if (cpu == this_cpu) {
1538 schedstat_inc(rq, ttwu_local);
1539 goto out_set_cpu;
1540 }
1541
1542 for_each_domain(this_cpu, sd) {
1543 if (cpu_isset(cpu, sd->span)) {
1544 schedstat_inc(sd, ttwu_wake_remote);
1545 this_sd = sd;
1546 break;
1547 }
1548 }
1549
1550 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1551 goto out_set_cpu;
1552
1553 /*
1554 * Check for affine wakeup and passive balancing possibilities.
1555 */
1556 if (this_sd) {
1557 int idx = this_sd->wake_idx;
1558 unsigned int imbalance;
1559
1560 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1561
1562 load = source_load(cpu, idx);
1563 this_load = target_load(this_cpu, idx);
1564
1565 new_cpu = this_cpu; /* Wake to this CPU if we can */
1566
1567 if (this_sd->flags & SD_WAKE_AFFINE) {
1568 unsigned long tl = this_load;
1569 unsigned long tl_per_task;
1570
1571 tl_per_task = cpu_avg_load_per_task(this_cpu);
1572
1573 /*
1574 * If sync wakeup then subtract the (maximum possible)
1575 * effect of the currently running task from the load
1576 * of the current CPU:
1577 */
1578 if (sync)
1579 tl -= current->load_weight;
1580
1581 if ((tl <= load &&
1582 tl + target_load(cpu, idx) <= tl_per_task) ||
1583 100*(tl + p->load_weight) <= imbalance*load) {
1584 /*
1585 * This domain has SD_WAKE_AFFINE and
1586 * p is cache cold in this domain, and
1587 * there is no bad imbalance.
1588 */
1589 schedstat_inc(this_sd, ttwu_move_affine);
1590 goto out_set_cpu;
1591 }
1592 }
1593
1594 /*
1595 * Start passive balancing when half the imbalance_pct
1596 * limit is reached.
1597 */
1598 if (this_sd->flags & SD_WAKE_BALANCE) {
1599 if (imbalance*this_load <= 100*load) {
1600 schedstat_inc(this_sd, ttwu_move_balance);
1601 goto out_set_cpu;
1602 }
1603 }
1604 }
1605
1606 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1607 out_set_cpu:
1608 new_cpu = wake_idle(new_cpu, p);
1609 if (new_cpu != cpu) {
1610 set_task_cpu(p, new_cpu);
1611 task_rq_unlock(rq, &flags);
1612 /* might preempt at this point */
1613 rq = task_rq_lock(p, &flags);
1614 old_state = p->state;
1615 if (!(old_state & state))
1616 goto out;
1617 if (p->array)
1618 goto out_running;
1619
1620 this_cpu = smp_processor_id();
1621 cpu = task_cpu(p);
1622 }
1623
1624 out_activate:
1625 #endif /* CONFIG_SMP */
1626 if (old_state == TASK_UNINTERRUPTIBLE) {
1627 rq->nr_uninterruptible--;
1628 /*
1629 * Tasks on involuntary sleep don't earn
1630 * sleep_avg beyond just interactive state.
1631 */
1632 p->sleep_type = SLEEP_NONINTERACTIVE;
1633 } else
1634
1635 /*
1636 * Tasks that have marked their sleep as noninteractive get
1637 * woken up with their sleep average not weighted in an
1638 * interactive way.
1639 */
1640 if (old_state & TASK_NONINTERACTIVE)
1641 p->sleep_type = SLEEP_NONINTERACTIVE;
1642
1643
1644 activate_task(p, rq, cpu == this_cpu);
1645 /*
1646 * Sync wakeups (i.e. those types of wakeups where the waker
1647 * has indicated that it will leave the CPU in short order)
1648 * don't trigger a preemption, if the woken up task will run on
1649 * this cpu. (in this case the 'I will reschedule' promise of
1650 * the waker guarantees that the freshly woken up task is going
1651 * to be considered on this CPU.)
1652 */
1653 if (!sync || cpu != this_cpu) {
1654 if (TASK_PREEMPTS_CURR(p, rq))
1655 resched_task(rq->curr);
1656 }
1657 success = 1;
1658
1659 out_running:
1660 p->state = TASK_RUNNING;
1661 out:
1662 task_rq_unlock(rq, &flags);
1663
1664 return success;
1665 }
1666
1667 int fastcall wake_up_process(struct task_struct *p)
1668 {
1669 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1670 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1671 }
1672 EXPORT_SYMBOL(wake_up_process);
1673
1674 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1675 {
1676 return try_to_wake_up(p, state, 0);
1677 }
1678
1679 static void task_running_tick(struct rq *rq, struct task_struct *p);
1680 /*
1681 * Perform scheduler related setup for a newly forked process p.
1682 * p is forked by current.
1683 */
1684 void fastcall sched_fork(struct task_struct *p, int clone_flags)
1685 {
1686 int cpu = get_cpu();
1687
1688 #ifdef CONFIG_SMP
1689 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1690 #endif
1691 set_task_cpu(p, cpu);
1692
1693 /*
1694 * We mark the process as running here, but have not actually
1695 * inserted it onto the runqueue yet. This guarantees that
1696 * nobody will actually run it, and a signal or other external
1697 * event cannot wake it up and insert it on the runqueue either.
1698 */
1699 p->state = TASK_RUNNING;
1700
1701 /*
1702 * Make sure we do not leak PI boosting priority to the child:
1703 */
1704 p->prio = current->normal_prio;
1705
1706 INIT_LIST_HEAD(&p->run_list);
1707 p->array = NULL;
1708 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1709 if (unlikely(sched_info_on()))
1710 memset(&p->sched_info, 0, sizeof(p->sched_info));
1711 #endif
1712 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1713 p->oncpu = 0;
1714 #endif
1715 #ifdef CONFIG_PREEMPT
1716 /* Want to start with kernel preemption disabled. */
1717 task_thread_info(p)->preempt_count = 1;
1718 #endif
1719 /*
1720 * Share the timeslice between parent and child, thus the
1721 * total amount of pending timeslices in the system doesn't change,
1722 * resulting in more scheduling fairness.
1723 */
1724 local_irq_disable();
1725 p->time_slice = (current->time_slice + 1) >> 1;
1726 /*
1727 * The remainder of the first timeslice might be recovered by
1728 * the parent if the child exits early enough.
1729 */
1730 p->first_time_slice = 1;
1731 current->time_slice >>= 1;
1732 p->timestamp = sched_clock();
1733 if (unlikely(!current->time_slice)) {
1734 /*
1735 * This case is rare, it happens when the parent has only
1736 * a single jiffy left from its timeslice. Taking the
1737 * runqueue lock is not a problem.
1738 */
1739 current->time_slice = 1;
1740 task_running_tick(cpu_rq(cpu), current);
1741 }
1742 local_irq_enable();
1743 put_cpu();
1744 }
1745
1746 /*
1747 * wake_up_new_task - wake up a newly created task for the first time.
1748 *
1749 * This function will do some initial scheduler statistics housekeeping
1750 * that must be done for every newly created context, then puts the task
1751 * on the runqueue and wakes it.
1752 */
1753 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1754 {
1755 struct rq *rq, *this_rq;
1756 unsigned long flags;
1757 int this_cpu, cpu;
1758
1759 rq = task_rq_lock(p, &flags);
1760 BUG_ON(p->state != TASK_RUNNING);
1761 this_cpu = smp_processor_id();
1762 cpu = task_cpu(p);
1763
1764 /*
1765 * We decrease the sleep average of forking parents
1766 * and children as well, to keep max-interactive tasks
1767 * from forking tasks that are max-interactive. The parent
1768 * (current) is done further down, under its lock.
1769 */
1770 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1771 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1772
1773 p->prio = effective_prio(p);
1774
1775 if (likely(cpu == this_cpu)) {
1776 if (!(clone_flags & CLONE_VM)) {
1777 /*
1778 * The VM isn't cloned, so we're in a good position to
1779 * do child-runs-first in anticipation of an exec. This
1780 * usually avoids a lot of COW overhead.
1781 */
1782 if (unlikely(!current->array))
1783 __activate_task(p, rq);
1784 else {
1785 p->prio = current->prio;
1786 p->normal_prio = current->normal_prio;
1787 list_add_tail(&p->run_list, &current->run_list);
1788 p->array = current->array;
1789 p->array->nr_active++;
1790 inc_nr_running(p, rq);
1791 }
1792 set_need_resched();
1793 } else
1794 /* Run child last */
1795 __activate_task(p, rq);
1796 /*
1797 * We skip the following code due to cpu == this_cpu
1798 *
1799 * task_rq_unlock(rq, &flags);
1800 * this_rq = task_rq_lock(current, &flags);
1801 */
1802 this_rq = rq;
1803 } else {
1804 this_rq = cpu_rq(this_cpu);
1805
1806 /*
1807 * Not the local CPU - must adjust timestamp. This should
1808 * get optimised away in the !CONFIG_SMP case.
1809 */
1810 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1811 + rq->most_recent_timestamp;
1812 __activate_task(p, rq);
1813 if (TASK_PREEMPTS_CURR(p, rq))
1814 resched_task(rq->curr);
1815
1816 /*
1817 * Parent and child are on different CPUs, now get the
1818 * parent runqueue to update the parent's ->sleep_avg:
1819 */
1820 task_rq_unlock(rq, &flags);
1821 this_rq = task_rq_lock(current, &flags);
1822 }
1823 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1824 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1825 task_rq_unlock(this_rq, &flags);
1826 }
1827
1828 /*
1829 * Potentially available exiting-child timeslices are
1830 * retrieved here - this way the parent does not get
1831 * penalized for creating too many threads.
1832 *
1833 * (this cannot be used to 'generate' timeslices
1834 * artificially, because any timeslice recovered here
1835 * was given away by the parent in the first place.)
1836 */
1837 void fastcall sched_exit(struct task_struct *p)
1838 {
1839 unsigned long flags;
1840 struct rq *rq;
1841
1842 /*
1843 * If the child was a (relative-) CPU hog then decrease
1844 * the sleep_avg of the parent as well.
1845 */
1846 rq = task_rq_lock(p->parent, &flags);
1847 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1848 p->parent->time_slice += p->time_slice;
1849 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1850 p->parent->time_slice = task_timeslice(p);
1851 }
1852 if (p->sleep_avg < p->parent->sleep_avg)
1853 p->parent->sleep_avg = p->parent->sleep_avg /
1854 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1855 (EXIT_WEIGHT + 1);
1856 task_rq_unlock(rq, &flags);
1857 }
1858
1859 /**
1860 * prepare_task_switch - prepare to switch tasks
1861 * @rq: the runqueue preparing to switch
1862 * @next: the task we are going to switch to.
1863 *
1864 * This is called with the rq lock held and interrupts off. It must
1865 * be paired with a subsequent finish_task_switch after the context
1866 * switch.
1867 *
1868 * prepare_task_switch sets up locking and calls architecture specific
1869 * hooks.
1870 */
1871 static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1872 {
1873 prepare_lock_switch(rq, next);
1874 prepare_arch_switch(next);
1875 }
1876
1877 /**
1878 * finish_task_switch - clean up after a task-switch
1879 * @rq: runqueue associated with task-switch
1880 * @prev: the thread we just switched away from.
1881 *
1882 * finish_task_switch must be called after the context switch, paired
1883 * with a prepare_task_switch call before the context switch.
1884 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1885 * and do any other architecture-specific cleanup actions.
1886 *
1887 * Note that we may have delayed dropping an mm in context_switch(). If
1888 * so, we finish that here outside of the runqueue lock. (Doing it
1889 * with the lock held can cause deadlocks; see schedule() for
1890 * details.)
1891 */
1892 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1893 __releases(rq->lock)
1894 {
1895 struct mm_struct *mm = rq->prev_mm;
1896 long prev_state;
1897
1898 rq->prev_mm = NULL;
1899
1900 /*
1901 * A task struct has one reference for the use as "current".
1902 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1903 * schedule one last time. The schedule call will never return, and
1904 * the scheduled task must drop that reference.
1905 * The test for TASK_DEAD must occur while the runqueue locks are
1906 * still held, otherwise prev could be scheduled on another cpu, die
1907 * there before we look at prev->state, and then the reference would
1908 * be dropped twice.
1909 * Manfred Spraul <manfred@colorfullife.com>
1910 */
1911 prev_state = prev->state;
1912 finish_arch_switch(prev);
1913 finish_lock_switch(rq, prev);
1914 if (mm)
1915 mmdrop(mm);
1916 if (unlikely(prev_state == TASK_DEAD)) {
1917 /*
1918 * Remove function-return probe instances associated with this
1919 * task and put them back on the free list.
1920 */
1921 kprobe_flush_task(prev);
1922 put_task_struct(prev);
1923 }
1924 }
1925
1926 /**
1927 * schedule_tail - first thing a freshly forked thread must call.
1928 * @prev: the thread we just switched away from.
1929 */
1930 asmlinkage void schedule_tail(struct task_struct *prev)
1931 __releases(rq->lock)
1932 {
1933 struct rq *rq = this_rq();
1934
1935 finish_task_switch(rq, prev);
1936 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1937 /* In this case, finish_task_switch does not reenable preemption */
1938 preempt_enable();
1939 #endif
1940 if (current->set_child_tid)
1941 put_user(current->pid, current->set_child_tid);
1942 }
1943
1944 /*
1945 * context_switch - switch to the new MM and the new
1946 * thread's register state.
1947 */
1948 static inline struct task_struct *
1949 context_switch(struct rq *rq, struct task_struct *prev,
1950 struct task_struct *next)
1951 {
1952 struct mm_struct *mm = next->mm;
1953 struct mm_struct *oldmm = prev->active_mm;
1954
1955 /*
1956 * For paravirt, this is coupled with an exit in switch_to to
1957 * combine the page table reload and the switch backend into
1958 * one hypercall.
1959 */
1960 arch_enter_lazy_cpu_mode();
1961
1962 if (!mm) {
1963 next->active_mm = oldmm;
1964 atomic_inc(&oldmm->mm_count);
1965 enter_lazy_tlb(oldmm, next);
1966 } else
1967 switch_mm(oldmm, mm, next);
1968
1969 if (!prev->mm) {
1970 prev->active_mm = NULL;
1971 WARN_ON(rq->prev_mm);
1972 rq->prev_mm = oldmm;
1973 }
1974 /*
1975 * Since the runqueue lock will be released by the next
1976 * task (which is an invalid locking op but in the case
1977 * of the scheduler it's an obvious special-case), so we
1978 * do an early lockdep release here:
1979 */
1980 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1981 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1982 #endif
1983
1984 /* Here we just switch the register state and the stack. */
1985 switch_to(prev, next, prev);
1986
1987 return prev;
1988 }
1989
1990 /*
1991 * nr_running, nr_uninterruptible and nr_context_switches:
1992 *
1993 * externally visible scheduler statistics: current number of runnable
1994 * threads, current number of uninterruptible-sleeping threads, total
1995 * number of context switches performed since bootup.
1996 */
1997 unsigned long nr_running(void)
1998 {
1999 unsigned long i, sum = 0;
2000
2001 for_each_online_cpu(i)
2002 sum += cpu_rq(i)->nr_running;
2003
2004 return sum;
2005 }
2006
2007 unsigned long nr_uninterruptible(void)
2008 {
2009 unsigned long i, sum = 0;
2010
2011 for_each_possible_cpu(i)
2012 sum += cpu_rq(i)->nr_uninterruptible;
2013
2014 /*
2015 * Since we read the counters lockless, it might be slightly
2016 * inaccurate. Do not allow it to go below zero though:
2017 */
2018 if (unlikely((long)sum < 0))
2019 sum = 0;
2020
2021 return sum;
2022 }
2023
2024 unsigned long long nr_context_switches(void)
2025 {
2026 int i;
2027 unsigned long long sum = 0;
2028
2029 for_each_possible_cpu(i)
2030 sum += cpu_rq(i)->nr_switches;
2031
2032 return sum;
2033 }
2034
2035 unsigned long nr_iowait(void)
2036 {
2037 unsigned long i, sum = 0;
2038
2039 for_each_possible_cpu(i)
2040 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2041
2042 return sum;
2043 }
2044
2045 unsigned long nr_active(void)
2046 {
2047 unsigned long i, running = 0, uninterruptible = 0;
2048
2049 for_each_online_cpu(i) {
2050 running += cpu_rq(i)->nr_running;
2051 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2052 }
2053
2054 if (unlikely((long)uninterruptible < 0))
2055 uninterruptible = 0;
2056
2057 return running + uninterruptible;
2058 }
2059
2060 #ifdef CONFIG_SMP
2061
2062 /*
2063 * Is this task likely cache-hot:
2064 */
2065 static inline int
2066 task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
2067 {
2068 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
2069 }
2070
2071 /*
2072 * double_rq_lock - safely lock two runqueues
2073 *
2074 * Note this does not disable interrupts like task_rq_lock,
2075 * you need to do so manually before calling.
2076 */
2077 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2078 __acquires(rq1->lock)
2079 __acquires(rq2->lock)
2080 {
2081 BUG_ON(!irqs_disabled());
2082 if (rq1 == rq2) {
2083 spin_lock(&rq1->lock);
2084 __acquire(rq2->lock); /* Fake it out ;) */
2085 } else {
2086 if (rq1 < rq2) {
2087 spin_lock(&rq1->lock);
2088 spin_lock(&rq2->lock);
2089 } else {
2090 spin_lock(&rq2->lock);
2091 spin_lock(&rq1->lock);
2092 }
2093 }
2094 }
2095
2096 /*
2097 * double_rq_unlock - safely unlock two runqueues
2098 *
2099 * Note this does not restore interrupts like task_rq_unlock,
2100 * you need to do so manually after calling.
2101 */
2102 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2103 __releases(rq1->lock)
2104 __releases(rq2->lock)
2105 {
2106 spin_unlock(&rq1->lock);
2107 if (rq1 != rq2)
2108 spin_unlock(&rq2->lock);
2109 else
2110 __release(rq2->lock);
2111 }
2112
2113 /*
2114 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2115 */
2116 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2117 __releases(this_rq->lock)
2118 __acquires(busiest->lock)
2119 __acquires(this_rq->lock)
2120 {
2121 if (unlikely(!irqs_disabled())) {
2122 /* printk() doesn't work good under rq->lock */
2123 spin_unlock(&this_rq->lock);
2124 BUG_ON(1);
2125 }
2126 if (unlikely(!spin_trylock(&busiest->lock))) {
2127 if (busiest < this_rq) {
2128 spin_unlock(&this_rq->lock);
2129 spin_lock(&busiest->lock);
2130 spin_lock(&this_rq->lock);
2131 } else
2132 spin_lock(&busiest->lock);
2133 }
2134 }
2135
2136 /*
2137 * If dest_cpu is allowed for this process, migrate the task to it.
2138 * This is accomplished by forcing the cpu_allowed mask to only
2139 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2140 * the cpu_allowed mask is restored.
2141 */
2142 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2143 {
2144 struct migration_req req;
2145 unsigned long flags;
2146 struct rq *rq;
2147
2148 rq = task_rq_lock(p, &flags);
2149 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2150 || unlikely(cpu_is_offline(dest_cpu)))
2151 goto out;
2152
2153 /* force the process onto the specified CPU */
2154 if (migrate_task(p, dest_cpu, &req)) {
2155 /* Need to wait for migration thread (might exit: take ref). */
2156 struct task_struct *mt = rq->migration_thread;
2157
2158 get_task_struct(mt);
2159 task_rq_unlock(rq, &flags);
2160 wake_up_process(mt);
2161 put_task_struct(mt);
2162 wait_for_completion(&req.done);
2163
2164 return;
2165 }
2166 out:
2167 task_rq_unlock(rq, &flags);
2168 }
2169
2170 /*
2171 * sched_exec - execve() is a valuable balancing opportunity, because at
2172 * this point the task has the smallest effective memory and cache footprint.
2173 */
2174 void sched_exec(void)
2175 {
2176 int new_cpu, this_cpu = get_cpu();
2177 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2178 put_cpu();
2179 if (new_cpu != this_cpu)
2180 sched_migrate_task(current, new_cpu);
2181 }
2182
2183 /*
2184 * pull_task - move a task from a remote runqueue to the local runqueue.
2185 * Both runqueues must be locked.
2186 */
2187 static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2188 struct task_struct *p, struct rq *this_rq,
2189 struct prio_array *this_array, int this_cpu)
2190 {
2191 dequeue_task(p, src_array);
2192 dec_nr_running(p, src_rq);
2193 set_task_cpu(p, this_cpu);
2194 inc_nr_running(p, this_rq);
2195 enqueue_task(p, this_array);
2196 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2197 + this_rq->most_recent_timestamp;
2198 /*
2199 * Note that idle threads have a prio of MAX_PRIO, for this test
2200 * to be always true for them.
2201 */
2202 if (TASK_PREEMPTS_CURR(p, this_rq))
2203 resched_task(this_rq->curr);
2204 }
2205
2206 /*
2207 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2208 */
2209 static
2210 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2211 struct sched_domain *sd, enum idle_type idle,
2212 int *all_pinned)
2213 {
2214 /*
2215 * We do not migrate tasks that are:
2216 * 1) running (obviously), or
2217 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2218 * 3) are cache-hot on their current CPU.
2219 */
2220 if (!cpu_isset(this_cpu, p->cpus_allowed))
2221 return 0;
2222 *all_pinned = 0;
2223
2224 if (task_running(rq, p))
2225 return 0;
2226
2227 /*
2228 * Aggressive migration if:
2229 * 1) task is cache cold, or
2230 * 2) too many balance attempts have failed.
2231 */
2232
2233 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2234 #ifdef CONFIG_SCHEDSTATS
2235 if (task_hot(p, rq->most_recent_timestamp, sd))
2236 schedstat_inc(sd, lb_hot_gained[idle]);
2237 #endif
2238 return 1;
2239 }
2240
2241 if (task_hot(p, rq->most_recent_timestamp, sd))
2242 return 0;
2243 return 1;
2244 }
2245
2246 #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
2247
2248 /*
2249 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2250 * load from busiest to this_rq, as part of a balancing operation within
2251 * "domain". Returns the number of tasks moved.
2252 *
2253 * Called with both runqueues locked.
2254 */
2255 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2256 unsigned long max_nr_move, unsigned long max_load_move,
2257 struct sched_domain *sd, enum idle_type idle,
2258 int *all_pinned)
2259 {
2260 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2261 best_prio_seen, skip_for_load;
2262 struct prio_array *array, *dst_array;
2263 struct list_head *head, *curr;
2264 struct task_struct *tmp;
2265 long rem_load_move;
2266
2267 if (max_nr_move == 0 || max_load_move == 0)
2268 goto out;
2269
2270 rem_load_move = max_load_move;
2271 pinned = 1;
2272 this_best_prio = rq_best_prio(this_rq);
2273 best_prio = rq_best_prio(busiest);
2274 /*
2275 * Enable handling of the case where there is more than one task
2276 * with the best priority. If the current running task is one
2277 * of those with prio==best_prio we know it won't be moved
2278 * and therefore it's safe to override the skip (based on load) of
2279 * any task we find with that prio.
2280 */
2281 best_prio_seen = best_prio == busiest->curr->prio;
2282
2283 /*
2284 * We first consider expired tasks. Those will likely not be
2285 * executed in the near future, and they are most likely to
2286 * be cache-cold, thus switching CPUs has the least effect
2287 * on them.
2288 */
2289 if (busiest->expired->nr_active) {
2290 array = busiest->expired;
2291 dst_array = this_rq->expired;
2292 } else {
2293 array = busiest->active;
2294 dst_array = this_rq->active;
2295 }
2296
2297 new_array:
2298 /* Start searching at priority 0: */
2299 idx = 0;
2300 skip_bitmap:
2301 if (!idx)
2302 idx = sched_find_first_bit(array->bitmap);
2303 else
2304 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2305 if (idx >= MAX_PRIO) {
2306 if (array == busiest->expired && busiest->active->nr_active) {
2307 array = busiest->active;
2308 dst_array = this_rq->active;
2309 goto new_array;
2310 }
2311 goto out;
2312 }
2313
2314 head = array->queue + idx;
2315 curr = head->prev;
2316 skip_queue:
2317 tmp = list_entry(curr, struct task_struct, run_list);
2318
2319 curr = curr->prev;
2320
2321 /*
2322 * To help distribute high priority tasks accross CPUs we don't
2323 * skip a task if it will be the highest priority task (i.e. smallest
2324 * prio value) on its new queue regardless of its load weight
2325 */
2326 skip_for_load = tmp->load_weight > rem_load_move;
2327 if (skip_for_load && idx < this_best_prio)
2328 skip_for_load = !best_prio_seen && idx == best_prio;
2329 if (skip_for_load ||
2330 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
2331
2332 best_prio_seen |= idx == best_prio;
2333 if (curr != head)
2334 goto skip_queue;
2335 idx++;
2336 goto skip_bitmap;
2337 }
2338
2339 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2340 pulled++;
2341 rem_load_move -= tmp->load_weight;
2342
2343 /*
2344 * We only want to steal up to the prescribed number of tasks
2345 * and the prescribed amount of weighted load.
2346 */
2347 if (pulled < max_nr_move && rem_load_move > 0) {
2348 if (idx < this_best_prio)
2349 this_best_prio = idx;
2350 if (curr != head)
2351 goto skip_queue;
2352 idx++;
2353 goto skip_bitmap;
2354 }
2355 out:
2356 /*
2357 * Right now, this is the only place pull_task() is called,
2358 * so we can safely collect pull_task() stats here rather than
2359 * inside pull_task().
2360 */
2361 schedstat_add(sd, lb_gained[idle], pulled);
2362
2363 if (all_pinned)
2364 *all_pinned = pinned;
2365 return pulled;
2366 }
2367
2368 /*
2369 * find_busiest_group finds and returns the busiest CPU group within the
2370 * domain. It calculates and returns the amount of weighted load which
2371 * should be moved to restore balance via the imbalance parameter.
2372 */
2373 static struct sched_group *
2374 find_busiest_group(struct sched_domain *sd, int this_cpu,
2375 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
2376 cpumask_t *cpus, int *balance)
2377 {
2378 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2379 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2380 unsigned long max_pull;
2381 unsigned long busiest_load_per_task, busiest_nr_running;
2382 unsigned long this_load_per_task, this_nr_running;
2383 int load_idx;
2384 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2385 int power_savings_balance = 1;
2386 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2387 unsigned long min_nr_running = ULONG_MAX;
2388 struct sched_group *group_min = NULL, *group_leader = NULL;
2389 #endif
2390
2391 max_load = this_load = total_load = total_pwr = 0;
2392 busiest_load_per_task = busiest_nr_running = 0;
2393 this_load_per_task = this_nr_running = 0;
2394 if (idle == NOT_IDLE)
2395 load_idx = sd->busy_idx;
2396 else if (idle == NEWLY_IDLE)
2397 load_idx = sd->newidle_idx;
2398 else
2399 load_idx = sd->idle_idx;
2400
2401 do {
2402 unsigned long load, group_capacity;
2403 int local_group;
2404 int i;
2405 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2406 unsigned long sum_nr_running, sum_weighted_load;
2407
2408 local_group = cpu_isset(this_cpu, group->cpumask);
2409
2410 if (local_group)
2411 balance_cpu = first_cpu(group->cpumask);
2412
2413 /* Tally up the load of all CPUs in the group */
2414 sum_weighted_load = sum_nr_running = avg_load = 0;
2415
2416 for_each_cpu_mask(i, group->cpumask) {
2417 struct rq *rq;
2418
2419 if (!cpu_isset(i, *cpus))
2420 continue;
2421
2422 rq = cpu_rq(i);
2423
2424 if (*sd_idle && !idle_cpu(i))
2425 *sd_idle = 0;
2426
2427 /* Bias balancing toward cpus of our domain */
2428 if (local_group) {
2429 if (idle_cpu(i) && !first_idle_cpu) {
2430 first_idle_cpu = 1;
2431 balance_cpu = i;
2432 }
2433
2434 load = target_load(i, load_idx);
2435 } else
2436 load = source_load(i, load_idx);
2437
2438 avg_load += load;
2439 sum_nr_running += rq->nr_running;
2440 sum_weighted_load += rq->raw_weighted_load;
2441 }
2442
2443 /*
2444 * First idle cpu or the first cpu(busiest) in this sched group
2445 * is eligible for doing load balancing at this and above
2446 * domains.
2447 */
2448 if (local_group && balance_cpu != this_cpu && balance) {
2449 *balance = 0;
2450 goto ret;
2451 }
2452
2453 total_load += avg_load;
2454 total_pwr += group->__cpu_power;
2455
2456 /* Adjust by relative CPU power of the group */
2457 avg_load = sg_div_cpu_power(group,
2458 avg_load * SCHED_LOAD_SCALE);
2459
2460 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2461
2462 if (local_group) {
2463 this_load = avg_load;
2464 this = group;
2465 this_nr_running = sum_nr_running;
2466 this_load_per_task = sum_weighted_load;
2467 } else if (avg_load > max_load &&
2468 sum_nr_running > group_capacity) {
2469 max_load = avg_load;
2470 busiest = group;
2471 busiest_nr_running = sum_nr_running;
2472 busiest_load_per_task = sum_weighted_load;
2473 }
2474
2475 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2476 /*
2477 * Busy processors will not participate in power savings
2478 * balance.
2479 */
2480 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2481 goto group_next;
2482
2483 /*
2484 * If the local group is idle or completely loaded
2485 * no need to do power savings balance at this domain
2486 */
2487 if (local_group && (this_nr_running >= group_capacity ||
2488 !this_nr_running))
2489 power_savings_balance = 0;
2490
2491 /*
2492 * If a group is already running at full capacity or idle,
2493 * don't include that group in power savings calculations
2494 */
2495 if (!power_savings_balance || sum_nr_running >= group_capacity
2496 || !sum_nr_running)
2497 goto group_next;
2498
2499 /*
2500 * Calculate the group which has the least non-idle load.
2501 * This is the group from where we need to pick up the load
2502 * for saving power
2503 */
2504 if ((sum_nr_running < min_nr_running) ||
2505 (sum_nr_running == min_nr_running &&
2506 first_cpu(group->cpumask) <
2507 first_cpu(group_min->cpumask))) {
2508 group_min = group;
2509 min_nr_running = sum_nr_running;
2510 min_load_per_task = sum_weighted_load /
2511 sum_nr_running;
2512 }
2513
2514 /*
2515 * Calculate the group which is almost near its
2516 * capacity but still has some space to pick up some load
2517 * from other group and save more power
2518 */
2519 if (sum_nr_running <= group_capacity - 1) {
2520 if (sum_nr_running > leader_nr_running ||
2521 (sum_nr_running == leader_nr_running &&
2522 first_cpu(group->cpumask) >
2523 first_cpu(group_leader->cpumask))) {
2524 group_leader = group;
2525 leader_nr_running = sum_nr_running;
2526 }
2527 }
2528 group_next:
2529 #endif
2530 group = group->next;
2531 } while (group != sd->groups);
2532
2533 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2534 goto out_balanced;
2535
2536 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2537
2538 if (this_load >= avg_load ||
2539 100*max_load <= sd->imbalance_pct*this_load)
2540 goto out_balanced;
2541
2542 busiest_load_per_task /= busiest_nr_running;
2543 /*
2544 * We're trying to get all the cpus to the average_load, so we don't
2545 * want to push ourselves above the average load, nor do we wish to
2546 * reduce the max loaded cpu below the average load, as either of these
2547 * actions would just result in more rebalancing later, and ping-pong
2548 * tasks around. Thus we look for the minimum possible imbalance.
2549 * Negative imbalances (*we* are more loaded than anyone else) will
2550 * be counted as no imbalance for these purposes -- we can't fix that
2551 * by pulling tasks to us. Be careful of negative numbers as they'll
2552 * appear as very large values with unsigned longs.
2553 */
2554 if (max_load <= busiest_load_per_task)
2555 goto out_balanced;
2556
2557 /*
2558 * In the presence of smp nice balancing, certain scenarios can have
2559 * max load less than avg load(as we skip the groups at or below
2560 * its cpu_power, while calculating max_load..)
2561 */
2562 if (max_load < avg_load) {
2563 *imbalance = 0;
2564 goto small_imbalance;
2565 }
2566
2567 /* Don't want to pull so many tasks that a group would go idle */
2568 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2569
2570 /* How much load to actually move to equalise the imbalance */
2571 *imbalance = min(max_pull * busiest->__cpu_power,
2572 (avg_load - this_load) * this->__cpu_power)
2573 / SCHED_LOAD_SCALE;
2574
2575 /*
2576 * if *imbalance is less than the average load per runnable task
2577 * there is no gaurantee that any tasks will be moved so we'll have
2578 * a think about bumping its value to force at least one task to be
2579 * moved
2580 */
2581 if (*imbalance < busiest_load_per_task) {
2582 unsigned long tmp, pwr_now, pwr_move;
2583 unsigned int imbn;
2584
2585 small_imbalance:
2586 pwr_move = pwr_now = 0;
2587 imbn = 2;
2588 if (this_nr_running) {
2589 this_load_per_task /= this_nr_running;
2590 if (busiest_load_per_task > this_load_per_task)
2591 imbn = 1;
2592 } else
2593 this_load_per_task = SCHED_LOAD_SCALE;
2594
2595 if (max_load - this_load >= busiest_load_per_task * imbn) {
2596 *imbalance = busiest_load_per_task;
2597 return busiest;
2598 }
2599
2600 /*
2601 * OK, we don't have enough imbalance to justify moving tasks,
2602 * however we may be able to increase total CPU power used by
2603 * moving them.
2604 */
2605
2606 pwr_now += busiest->__cpu_power *
2607 min(busiest_load_per_task, max_load);
2608 pwr_now += this->__cpu_power *
2609 min(this_load_per_task, this_load);
2610 pwr_now /= SCHED_LOAD_SCALE;
2611
2612 /* Amount of load we'd subtract */
2613 tmp = sg_div_cpu_power(busiest,
2614 busiest_load_per_task * SCHED_LOAD_SCALE);
2615 if (max_load > tmp)
2616 pwr_move += busiest->__cpu_power *
2617 min(busiest_load_per_task, max_load - tmp);
2618
2619 /* Amount of load we'd add */
2620 if (max_load * busiest->__cpu_power <
2621 busiest_load_per_task * SCHED_LOAD_SCALE)
2622 tmp = sg_div_cpu_power(this,
2623 max_load * busiest->__cpu_power);
2624 else
2625 tmp = sg_div_cpu_power(this,
2626 busiest_load_per_task * SCHED_LOAD_SCALE);
2627 pwr_move += this->__cpu_power *
2628 min(this_load_per_task, this_load + tmp);
2629 pwr_move /= SCHED_LOAD_SCALE;
2630
2631 /* Move if we gain throughput */
2632 if (pwr_move <= pwr_now)
2633 goto out_balanced;
2634
2635 *imbalance = busiest_load_per_task;
2636 }
2637
2638 return busiest;
2639
2640 out_balanced:
2641 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2642 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2643 goto ret;
2644
2645 if (this == group_leader && group_leader != group_min) {
2646 *imbalance = min_load_per_task;
2647 return group_min;
2648 }
2649 #endif
2650 ret:
2651 *imbalance = 0;
2652 return NULL;
2653 }
2654
2655 /*
2656 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2657 */
2658 static struct rq *
2659 find_busiest_queue(struct sched_group *group, enum idle_type idle,
2660 unsigned long imbalance, cpumask_t *cpus)
2661 {
2662 struct rq *busiest = NULL, *rq;
2663 unsigned long max_load = 0;
2664 int i;
2665
2666 for_each_cpu_mask(i, group->cpumask) {
2667
2668 if (!cpu_isset(i, *cpus))
2669 continue;
2670
2671 rq = cpu_rq(i);
2672
2673 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2674 continue;
2675
2676 if (rq->raw_weighted_load > max_load) {
2677 max_load = rq->raw_weighted_load;
2678 busiest = rq;
2679 }
2680 }
2681
2682 return busiest;
2683 }
2684
2685 /*
2686 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2687 * so long as it is large enough.
2688 */
2689 #define MAX_PINNED_INTERVAL 512
2690
2691 static inline unsigned long minus_1_or_zero(unsigned long n)
2692 {
2693 return n > 0 ? n - 1 : 0;
2694 }
2695
2696 /*
2697 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2698 * tasks if there is an imbalance.
2699 */
2700 static int load_balance(int this_cpu, struct rq *this_rq,
2701 struct sched_domain *sd, enum idle_type idle,
2702 int *balance)
2703 {
2704 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2705 struct sched_group *group;
2706 unsigned long imbalance;
2707 struct rq *busiest;
2708 cpumask_t cpus = CPU_MASK_ALL;
2709 unsigned long flags;
2710
2711 /*
2712 * When power savings policy is enabled for the parent domain, idle
2713 * sibling can pick up load irrespective of busy siblings. In this case,
2714 * let the state of idle sibling percolate up as IDLE, instead of
2715 * portraying it as NOT_IDLE.
2716 */
2717 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2718 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2719 sd_idle = 1;
2720
2721 schedstat_inc(sd, lb_cnt[idle]);
2722
2723 redo:
2724 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2725 &cpus, balance);
2726
2727 if (*balance == 0)
2728 goto out_balanced;
2729
2730 if (!group) {
2731 schedstat_inc(sd, lb_nobusyg[idle]);
2732 goto out_balanced;
2733 }
2734
2735 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2736 if (!busiest) {
2737 schedstat_inc(sd, lb_nobusyq[idle]);
2738 goto out_balanced;
2739 }
2740
2741 BUG_ON(busiest == this_rq);
2742
2743 schedstat_add(sd, lb_imbalance[idle], imbalance);
2744
2745 nr_moved = 0;
2746 if (busiest->nr_running > 1) {
2747 /*
2748 * Attempt to move tasks. If find_busiest_group has found
2749 * an imbalance but busiest->nr_running <= 1, the group is
2750 * still unbalanced. nr_moved simply stays zero, so it is
2751 * correctly treated as an imbalance.
2752 */
2753 local_irq_save(flags);
2754 double_rq_lock(this_rq, busiest);
2755 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2756 minus_1_or_zero(busiest->nr_running),
2757 imbalance, sd, idle, &all_pinned);
2758 double_rq_unlock(this_rq, busiest);
2759 local_irq_restore(flags);
2760
2761 /*
2762 * some other cpu did the load balance for us.
2763 */
2764 if (nr_moved && this_cpu != smp_processor_id())
2765 resched_cpu(this_cpu);
2766
2767 /* All tasks on this runqueue were pinned by CPU affinity */
2768 if (unlikely(all_pinned)) {
2769 cpu_clear(cpu_of(busiest), cpus);
2770 if (!cpus_empty(cpus))
2771 goto redo;
2772 goto out_balanced;
2773 }
2774 }
2775
2776 if (!nr_moved) {
2777 schedstat_inc(sd, lb_failed[idle]);
2778 sd->nr_balance_failed++;
2779
2780 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2781
2782 spin_lock_irqsave(&busiest->lock, flags);
2783
2784 /* don't kick the migration_thread, if the curr
2785 * task on busiest cpu can't be moved to this_cpu
2786 */
2787 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2788 spin_unlock_irqrestore(&busiest->lock, flags);
2789 all_pinned = 1;
2790 goto out_one_pinned;
2791 }
2792
2793 if (!busiest->active_balance) {
2794 busiest->active_balance = 1;
2795 busiest->push_cpu = this_cpu;
2796 active_balance = 1;
2797 }
2798 spin_unlock_irqrestore(&busiest->lock, flags);
2799 if (active_balance)
2800 wake_up_process(busiest->migration_thread);
2801
2802 /*
2803 * We've kicked active balancing, reset the failure
2804 * counter.
2805 */
2806 sd->nr_balance_failed = sd->cache_nice_tries+1;
2807 }
2808 } else
2809 sd->nr_balance_failed = 0;
2810
2811 if (likely(!active_balance)) {
2812 /* We were unbalanced, so reset the balancing interval */
2813 sd->balance_interval = sd->min_interval;
2814 } else {
2815 /*
2816 * If we've begun active balancing, start to back off. This
2817 * case may not be covered by the all_pinned logic if there
2818 * is only 1 task on the busy runqueue (because we don't call
2819 * move_tasks).
2820 */
2821 if (sd->balance_interval < sd->max_interval)
2822 sd->balance_interval *= 2;
2823 }
2824
2825 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2826 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2827 return -1;
2828 return nr_moved;
2829
2830 out_balanced:
2831 schedstat_inc(sd, lb_balanced[idle]);
2832
2833 sd->nr_balance_failed = 0;
2834
2835 out_one_pinned:
2836 /* tune up the balancing interval */
2837 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2838 (sd->balance_interval < sd->max_interval))
2839 sd->balance_interval *= 2;
2840
2841 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2842 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2843 return -1;
2844 return 0;
2845 }
2846
2847 /*
2848 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2849 * tasks if there is an imbalance.
2850 *
2851 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2852 * this_rq is locked.
2853 */
2854 static int
2855 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2856 {
2857 struct sched_group *group;
2858 struct rq *busiest = NULL;
2859 unsigned long imbalance;
2860 int nr_moved = 0;
2861 int sd_idle = 0;
2862 cpumask_t cpus = CPU_MASK_ALL;
2863
2864 /*
2865 * When power savings policy is enabled for the parent domain, idle
2866 * sibling can pick up load irrespective of busy siblings. In this case,
2867 * let the state of idle sibling percolate up as IDLE, instead of
2868 * portraying it as NOT_IDLE.
2869 */
2870 if (sd->flags & SD_SHARE_CPUPOWER &&
2871 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2872 sd_idle = 1;
2873
2874 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2875 redo:
2876 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
2877 &sd_idle, &cpus, NULL);
2878 if (!group) {
2879 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2880 goto out_balanced;
2881 }
2882
2883 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2884 &cpus);
2885 if (!busiest) {
2886 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2887 goto out_balanced;
2888 }
2889
2890 BUG_ON(busiest == this_rq);
2891
2892 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2893
2894 nr_moved = 0;
2895 if (busiest->nr_running > 1) {
2896 /* Attempt to move tasks */
2897 double_lock_balance(this_rq, busiest);
2898 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2899 minus_1_or_zero(busiest->nr_running),
2900 imbalance, sd, NEWLY_IDLE, NULL);
2901 spin_unlock(&busiest->lock);
2902
2903 if (!nr_moved) {
2904 cpu_clear(cpu_of(busiest), cpus);
2905 if (!cpus_empty(cpus))
2906 goto redo;
2907 }
2908 }
2909
2910 if (!nr_moved) {
2911 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2912 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2913 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2914 return -1;
2915 } else
2916 sd->nr_balance_failed = 0;
2917
2918 return nr_moved;
2919
2920 out_balanced:
2921 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2922 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2923 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2924 return -1;
2925 sd->nr_balance_failed = 0;
2926
2927 return 0;
2928 }
2929
2930 /*
2931 * idle_balance is called by schedule() if this_cpu is about to become
2932 * idle. Attempts to pull tasks from other CPUs.
2933 */
2934 static void idle_balance(int this_cpu, struct rq *this_rq)
2935 {
2936 struct sched_domain *sd;
2937 int pulled_task = 0;
2938 unsigned long next_balance = jiffies + 60 * HZ;
2939
2940 for_each_domain(this_cpu, sd) {
2941 if (sd->flags & SD_BALANCE_NEWIDLE) {
2942 /* If we've pulled tasks over stop searching: */
2943 pulled_task = load_balance_newidle(this_cpu,
2944 this_rq, sd);
2945 if (time_after(next_balance,
2946 sd->last_balance + sd->balance_interval))
2947 next_balance = sd->last_balance
2948 + sd->balance_interval;
2949 if (pulled_task)
2950 break;
2951 }
2952 }
2953 if (!pulled_task)
2954 /*
2955 * We are going idle. next_balance may be set based on
2956 * a busy processor. So reset next_balance.
2957 */
2958 this_rq->next_balance = next_balance;
2959 }
2960
2961 /*
2962 * active_load_balance is run by migration threads. It pushes running tasks
2963 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2964 * running on each physical CPU where possible, and avoids physical /
2965 * logical imbalances.
2966 *
2967 * Called with busiest_rq locked.
2968 */
2969 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2970 {
2971 int target_cpu = busiest_rq->push_cpu;
2972 struct sched_domain *sd;
2973 struct rq *target_rq;
2974
2975 /* Is there any task to move? */
2976 if (busiest_rq->nr_running <= 1)
2977 return;
2978
2979 target_rq = cpu_rq(target_cpu);
2980
2981 /*
2982 * This condition is "impossible", if it occurs
2983 * we need to fix it. Originally reported by
2984 * Bjorn Helgaas on a 128-cpu setup.
2985 */
2986 BUG_ON(busiest_rq == target_rq);
2987
2988 /* move a task from busiest_rq to target_rq */
2989 double_lock_balance(busiest_rq, target_rq);
2990
2991 /* Search for an sd spanning us and the target CPU. */
2992 for_each_domain(target_cpu, sd) {
2993 if ((sd->flags & SD_LOAD_BALANCE) &&
2994 cpu_isset(busiest_cpu, sd->span))
2995 break;
2996 }
2997
2998 if (likely(sd)) {
2999 schedstat_inc(sd, alb_cnt);
3000
3001 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
3002 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
3003 NULL))
3004 schedstat_inc(sd, alb_pushed);
3005 else
3006 schedstat_inc(sd, alb_failed);
3007 }
3008 spin_unlock(&target_rq->lock);
3009 }
3010
3011 static void update_load(struct rq *this_rq)
3012 {
3013 unsigned long this_load;
3014 unsigned int i, scale;
3015
3016 this_load = this_rq->raw_weighted_load;
3017
3018 /* Update our load: */
3019 for (i = 0, scale = 1; i < 3; i++, scale += scale) {
3020 unsigned long old_load, new_load;
3021
3022 /* scale is effectively 1 << i now, and >> i divides by scale */
3023
3024 old_load = this_rq->cpu_load[i];
3025 new_load = this_load;
3026 /*
3027 * Round up the averaging division if load is increasing. This
3028 * prevents us from getting stuck on 9 if the load is 10, for
3029 * example.
3030 */
3031 if (new_load > old_load)
3032 new_load += scale-1;
3033 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3034 }
3035 }
3036
3037 #ifdef CONFIG_NO_HZ
3038 static struct {
3039 atomic_t load_balancer;
3040 cpumask_t cpu_mask;
3041 } nohz ____cacheline_aligned = {
3042 .load_balancer = ATOMIC_INIT(-1),
3043 .cpu_mask = CPU_MASK_NONE,
3044 };
3045
3046 /*
3047 * This routine will try to nominate the ilb (idle load balancing)
3048 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3049 * load balancing on behalf of all those cpus. If all the cpus in the system
3050 * go into this tickless mode, then there will be no ilb owner (as there is
3051 * no need for one) and all the cpus will sleep till the next wakeup event
3052 * arrives...
3053 *
3054 * For the ilb owner, tick is not stopped. And this tick will be used
3055 * for idle load balancing. ilb owner will still be part of
3056 * nohz.cpu_mask..
3057 *
3058 * While stopping the tick, this cpu will become the ilb owner if there
3059 * is no other owner. And will be the owner till that cpu becomes busy
3060 * or if all cpus in the system stop their ticks at which point
3061 * there is no need for ilb owner.
3062 *
3063 * When the ilb owner becomes busy, it nominates another owner, during the
3064 * next busy scheduler_tick()
3065 */
3066 int select_nohz_load_balancer(int stop_tick)
3067 {
3068 int cpu = smp_processor_id();
3069
3070 if (stop_tick) {
3071 cpu_set(cpu, nohz.cpu_mask);
3072 cpu_rq(cpu)->in_nohz_recently = 1;
3073
3074 /*
3075 * If we are going offline and still the leader, give up!
3076 */
3077 if (cpu_is_offline(cpu) &&
3078 atomic_read(&nohz.load_balancer) == cpu) {
3079 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3080 BUG();
3081 return 0;
3082 }
3083
3084 /* time for ilb owner also to sleep */
3085 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3086 if (atomic_read(&nohz.load_balancer) == cpu)
3087 atomic_set(&nohz.load_balancer, -1);
3088 return 0;
3089 }
3090
3091 if (atomic_read(&nohz.load_balancer) == -1) {
3092 /* make me the ilb owner */
3093 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3094 return 1;
3095 } else if (atomic_read(&nohz.load_balancer) == cpu)
3096 return 1;
3097 } else {
3098 if (!cpu_isset(cpu, nohz.cpu_mask))
3099 return 0;
3100
3101 cpu_clear(cpu, nohz.cpu_mask);
3102
3103 if (atomic_read(&nohz.load_balancer) == cpu)
3104 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3105 BUG();
3106 }
3107 return 0;
3108 }
3109 #endif
3110
3111 static DEFINE_SPINLOCK(balancing);
3112
3113 /*
3114 * It checks each scheduling domain to see if it is due to be balanced,
3115 * and initiates a balancing operation if so.
3116 *
3117 * Balancing parameters are set up in arch_init_sched_domains.
3118 */
3119 static inline void rebalance_domains(int cpu, enum idle_type idle)
3120 {
3121 int balance = 1;
3122 struct rq *rq = cpu_rq(cpu);
3123 unsigned long interval;
3124 struct sched_domain *sd;
3125 /* Earliest time when we have to do rebalance again */
3126 unsigned long next_balance = jiffies + 60*HZ;
3127
3128 for_each_domain(cpu, sd) {
3129 if (!(sd->flags & SD_LOAD_BALANCE))
3130 continue;
3131
3132 interval = sd->balance_interval;
3133 if (idle != SCHED_IDLE)
3134 interval *= sd->busy_factor;
3135
3136 /* scale ms to jiffies */
3137 interval = msecs_to_jiffies(interval);
3138 if (unlikely(!interval))
3139 interval = 1;
3140
3141 if (sd->flags & SD_SERIALIZE) {
3142 if (!spin_trylock(&balancing))
3143 goto out;
3144 }
3145
3146 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3147 if (load_balance(cpu, rq, sd, idle, &balance)) {
3148 /*
3149 * We've pulled tasks over so either we're no
3150 * longer idle, or one of our SMT siblings is
3151 * not idle.
3152 */
3153 idle = NOT_IDLE;
3154 }
3155 sd->last_balance = jiffies;
3156 }
3157 if (sd->flags & SD_SERIALIZE)
3158 spin_unlock(&balancing);
3159 out:
3160 if (time_after(next_balance, sd->last_balance + interval))
3161 next_balance = sd->last_balance + interval;
3162
3163 /*
3164 * Stop the load balance at this level. There is another
3165 * CPU in our sched group which is doing load balancing more
3166 * actively.
3167 */
3168 if (!balance)
3169 break;
3170 }
3171 rq->next_balance = next_balance;
3172 }
3173
3174 /*
3175 * run_rebalance_domains is triggered when needed from the scheduler tick.
3176 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3177 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3178 */
3179 static void run_rebalance_domains(struct softirq_action *h)
3180 {
3181 int local_cpu = smp_processor_id();
3182 struct rq *local_rq = cpu_rq(local_cpu);
3183 enum idle_type idle = local_rq->idle_at_tick ? SCHED_IDLE : NOT_IDLE;
3184
3185 rebalance_domains(local_cpu, idle);
3186
3187 #ifdef CONFIG_NO_HZ
3188 /*
3189 * If this cpu is the owner for idle load balancing, then do the
3190 * balancing on behalf of the other idle cpus whose ticks are
3191 * stopped.
3192 */
3193 if (local_rq->idle_at_tick &&
3194 atomic_read(&nohz.load_balancer) == local_cpu) {
3195 cpumask_t cpus = nohz.cpu_mask;
3196 struct rq *rq;
3197 int balance_cpu;
3198
3199 cpu_clear(local_cpu, cpus);
3200 for_each_cpu_mask(balance_cpu, cpus) {
3201 /*
3202 * If this cpu gets work to do, stop the load balancing
3203 * work being done for other cpus. Next load
3204 * balancing owner will pick it up.
3205 */
3206 if (need_resched())
3207 break;
3208
3209 rebalance_domains(balance_cpu, SCHED_IDLE);
3210
3211 rq = cpu_rq(balance_cpu);
3212 if (time_after(local_rq->next_balance, rq->next_balance))
3213 local_rq->next_balance = rq->next_balance;
3214 }
3215 }
3216 #endif
3217 }
3218
3219 /*
3220 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3221 *
3222 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3223 * idle load balancing owner or decide to stop the periodic load balancing,
3224 * if the whole system is idle.
3225 */
3226 static inline void trigger_load_balance(int cpu)
3227 {
3228 struct rq *rq = cpu_rq(cpu);
3229 #ifdef CONFIG_NO_HZ
3230 /*
3231 * If we were in the nohz mode recently and busy at the current
3232 * scheduler tick, then check if we need to nominate new idle
3233 * load balancer.
3234 */
3235 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3236 rq->in_nohz_recently = 0;
3237
3238 if (atomic_read(&nohz.load_balancer) == cpu) {
3239 cpu_clear(cpu, nohz.cpu_mask);
3240 atomic_set(&nohz.load_balancer, -1);
3241 }
3242
3243 if (atomic_read(&nohz.load_balancer) == -1) {
3244 /*
3245 * simple selection for now: Nominate the
3246 * first cpu in the nohz list to be the next
3247 * ilb owner.
3248 *
3249 * TBD: Traverse the sched domains and nominate
3250 * the nearest cpu in the nohz.cpu_mask.
3251 */
3252 int ilb = first_cpu(nohz.cpu_mask);
3253
3254 if (ilb != NR_CPUS)
3255 resched_cpu(ilb);
3256 }
3257 }
3258
3259 /*
3260 * If this cpu is idle and doing idle load balancing for all the
3261 * cpus with ticks stopped, is it time for that to stop?
3262 */
3263 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3264 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3265 resched_cpu(cpu);
3266 return;
3267 }
3268
3269 /*
3270 * If this cpu is idle and the idle load balancing is done by
3271 * someone else, then no need raise the SCHED_SOFTIRQ
3272 */
3273 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3274 cpu_isset(cpu, nohz.cpu_mask))
3275 return;
3276 #endif
3277 if (time_after_eq(jiffies, rq->next_balance))
3278 raise_softirq(SCHED_SOFTIRQ);
3279 }
3280 #else
3281 /*
3282 * on UP we do not need to balance between CPUs:
3283 */
3284 static inline void idle_balance(int cpu, struct rq *rq)
3285 {
3286 }
3287 #endif
3288
3289 DEFINE_PER_CPU(struct kernel_stat, kstat);
3290
3291 EXPORT_PER_CPU_SYMBOL(kstat);
3292
3293 /*
3294 * This is called on clock ticks and on context switches.
3295 * Bank in p->sched_time the ns elapsed since the last tick or switch.
3296 */
3297 static inline void
3298 update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
3299 {
3300 p->sched_time += now - p->last_ran;
3301 p->last_ran = rq->most_recent_timestamp = now;
3302 }
3303
3304 /*
3305 * Return current->sched_time plus any more ns on the sched_clock
3306 * that have not yet been banked.
3307 */
3308 unsigned long long current_sched_time(const struct task_struct *p)
3309 {
3310 unsigned long long ns;
3311 unsigned long flags;
3312
3313 local_irq_save(flags);
3314 ns = p->sched_time + sched_clock() - p->last_ran;
3315 local_irq_restore(flags);
3316
3317 return ns;
3318 }
3319
3320 /*
3321 * We place interactive tasks back into the active array, if possible.
3322 *
3323 * To guarantee that this does not starve expired tasks we ignore the
3324 * interactivity of a task if the first expired task had to wait more
3325 * than a 'reasonable' amount of time. This deadline timeout is
3326 * load-dependent, as the frequency of array switched decreases with
3327 * increasing number of running tasks. We also ignore the interactivity
3328 * if a better static_prio task has expired:
3329 */
3330 static inline int expired_starving(struct rq *rq)
3331 {
3332 if (rq->curr->static_prio > rq->best_expired_prio)
3333 return 1;
3334 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3335 return 0;
3336 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3337 return 1;
3338 return 0;
3339 }
3340
3341 /*
3342 * Account user cpu time to a process.
3343 * @p: the process that the cpu time gets accounted to
3344 * @hardirq_offset: the offset to subtract from hardirq_count()
3345 * @cputime: the cpu time spent in user space since the last update
3346 */
3347 void account_user_time(struct task_struct *p, cputime_t cputime)
3348 {
3349 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3350 cputime64_t tmp;
3351
3352 p->utime = cputime_add(p->utime, cputime);
3353
3354 /* Add user time to cpustat. */
3355 tmp = cputime_to_cputime64(cputime);
3356 if (TASK_NICE(p) > 0)
3357 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3358 else
3359 cpustat->user = cputime64_add(cpustat->user, tmp);
3360 }
3361
3362 /*
3363 * Account system cpu time to a process.
3364 * @p: the process that the cpu time gets accounted to
3365 * @hardirq_offset: the offset to subtract from hardirq_count()
3366 * @cputime: the cpu time spent in kernel space since the last update
3367 */
3368 void account_system_time(struct task_struct *p, int hardirq_offset,
3369 cputime_t cputime)
3370 {
3371 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3372 struct rq *rq = this_rq();
3373 cputime64_t tmp;
3374
3375 p->stime = cputime_add(p->stime, cputime);
3376
3377 /* Add system time to cpustat. */
3378 tmp = cputime_to_cputime64(cputime);
3379 if (hardirq_count() - hardirq_offset)
3380 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3381 else if (softirq_count())
3382 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3383 else if (p != rq->idle)
3384 cpustat->system = cputime64_add(cpustat->system, tmp);
3385 else if (atomic_read(&rq->nr_iowait) > 0)
3386 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3387 else
3388 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3389 /* Account for system time used */
3390 acct_update_integrals(p);
3391 }
3392
3393 /*
3394 * Account for involuntary wait time.
3395 * @p: the process from which the cpu time has been stolen
3396 * @steal: the cpu time spent in involuntary wait
3397 */
3398 void account_steal_time(struct task_struct *p, cputime_t steal)
3399 {
3400 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3401 cputime64_t tmp = cputime_to_cputime64(steal);
3402 struct rq *rq = this_rq();
3403
3404 if (p == rq->idle) {
3405 p->stime = cputime_add(p->stime, steal);
3406 if (atomic_read(&rq->nr_iowait) > 0)
3407 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3408 else
3409 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3410 } else
3411 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3412 }
3413
3414 static void task_running_tick(struct rq *rq, struct task_struct *p)
3415 {
3416 if (p->array != rq->active) {
3417 /* Task has expired but was not scheduled yet */
3418 set_tsk_need_resched(p);
3419 return;
3420 }
3421 spin_lock(&rq->lock);
3422 /*
3423 * The task was running during this tick - update the
3424 * time slice counter. Note: we do not update a thread's
3425 * priority until it either goes to sleep or uses up its
3426 * timeslice. This makes it possible for interactive tasks
3427 * to use up their timeslices at their highest priority levels.
3428 */
3429 if (rt_task(p)) {
3430 /*
3431 * RR tasks need a special form of timeslice management.
3432 * FIFO tasks have no timeslices.
3433 */
3434 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3435 p->time_slice = task_timeslice(p);
3436 p->first_time_slice = 0;
3437 set_tsk_need_resched(p);
3438
3439 /* put it at the end of the queue: */
3440 requeue_task(p, rq->active);
3441 }
3442 goto out_unlock;
3443 }
3444 if (!--p->time_slice) {
3445 dequeue_task(p, rq->active);
3446 set_tsk_need_resched(p);
3447 p->prio = effective_prio(p);
3448 p->time_slice = task_timeslice(p);
3449 p->first_time_slice = 0;
3450
3451 if (!rq->expired_timestamp)
3452 rq->expired_timestamp = jiffies;
3453 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
3454 enqueue_task(p, rq->expired);
3455 if (p->static_prio < rq->best_expired_prio)
3456 rq->best_expired_prio = p->static_prio;
3457 } else
3458 enqueue_task(p, rq->active);
3459 } else {
3460 /*
3461 * Prevent a too long timeslice allowing a task to monopolize
3462 * the CPU. We do this by splitting up the timeslice into
3463 * smaller pieces.
3464 *
3465 * Note: this does not mean the task's timeslices expire or
3466 * get lost in any way, they just might be preempted by
3467 * another task of equal priority. (one with higher
3468 * priority would have preempted this task already.) We
3469 * requeue this task to the end of the list on this priority
3470 * level, which is in essence a round-robin of tasks with
3471 * equal priority.
3472 *
3473 * This only applies to tasks in the interactive
3474 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3475 */
3476 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3477 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3478 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3479 (p->array == rq->active)) {
3480
3481 requeue_task(p, rq->active);
3482 set_tsk_need_resched(p);
3483 }
3484 }
3485 out_unlock:
3486 spin_unlock(&rq->lock);
3487 }
3488
3489 /*
3490 * This function gets called by the timer code, with HZ frequency.
3491 * We call it with interrupts disabled.
3492 *
3493 * It also gets called by the fork code, when changing the parent's
3494 * timeslices.
3495 */
3496 void scheduler_tick(void)
3497 {
3498 unsigned long long now = sched_clock();
3499 struct task_struct *p = current;
3500 int cpu = smp_processor_id();
3501 int idle_at_tick = idle_cpu(cpu);
3502 struct rq *rq = cpu_rq(cpu);
3503
3504 update_cpu_clock(p, rq, now);
3505
3506 if (!idle_at_tick)
3507 task_running_tick(rq, p);
3508 #ifdef CONFIG_SMP
3509 update_load(rq);
3510 rq->idle_at_tick = idle_at_tick;
3511 trigger_load_balance(cpu);
3512 #endif
3513 }
3514
3515 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3516
3517 void fastcall add_preempt_count(int val)
3518 {
3519 /*
3520 * Underflow?
3521 */
3522 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3523 return;
3524 preempt_count() += val;
3525 /*
3526 * Spinlock count overflowing soon?
3527 */
3528 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3529 PREEMPT_MASK - 10);
3530 }
3531 EXPORT_SYMBOL(add_preempt_count);
3532
3533 void fastcall sub_preempt_count(int val)
3534 {
3535 /*
3536 * Underflow?
3537 */
3538 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3539 return;
3540 /*
3541 * Is the spinlock portion underflowing?
3542 */
3543 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3544 !(preempt_count() & PREEMPT_MASK)))
3545 return;
3546
3547 preempt_count() -= val;
3548 }
3549 EXPORT_SYMBOL(sub_preempt_count);
3550
3551 #endif
3552
3553 static inline int interactive_sleep(enum sleep_type sleep_type)
3554 {
3555 return (sleep_type == SLEEP_INTERACTIVE ||
3556 sleep_type == SLEEP_INTERRUPTED);
3557 }
3558
3559 /*
3560 * schedule() is the main scheduler function.
3561 */
3562 asmlinkage void __sched schedule(void)
3563 {
3564 struct task_struct *prev, *next;
3565 struct prio_array *array;
3566 struct list_head *queue;
3567 unsigned long long now;
3568 unsigned long run_time;
3569 int cpu, idx, new_prio;
3570 long *switch_count;
3571 struct rq *rq;
3572
3573 /*
3574 * Test if we are atomic. Since do_exit() needs to call into
3575 * schedule() atomically, we ignore that path for now.
3576 * Otherwise, whine if we are scheduling when we should not be.
3577 */
3578 if (unlikely(in_atomic() && !current->exit_state)) {
3579 printk(KERN_ERR "BUG: scheduling while atomic: "
3580 "%s/0x%08x/%d\n",
3581 current->comm, preempt_count(), current->pid);
3582 debug_show_held_locks(current);
3583 if (irqs_disabled())
3584 print_irqtrace_events(current);
3585 dump_stack();
3586 }
3587 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3588
3589 need_resched:
3590 preempt_disable();
3591 prev = current;
3592 release_kernel_lock(prev);
3593 need_resched_nonpreemptible:
3594 rq = this_rq();
3595
3596 /*
3597 * The idle thread is not allowed to schedule!
3598 * Remove this check after it has been exercised a bit.
3599 */
3600 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3601 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3602 dump_stack();
3603 }
3604
3605 schedstat_inc(rq, sched_cnt);
3606 now = sched_clock();
3607 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
3608 run_time = now - prev->timestamp;
3609 if (unlikely((long long)(now - prev->timestamp) < 0))
3610 run_time = 0;
3611 } else
3612 run_time = NS_MAX_SLEEP_AVG;
3613
3614 /*
3615 * Tasks charged proportionately less run_time at high sleep_avg to
3616 * delay them losing their interactive status
3617 */
3618 run_time /= (CURRENT_BONUS(prev) ? : 1);
3619
3620 spin_lock_irq(&rq->lock);
3621
3622 switch_count = &prev->nivcsw;
3623 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3624 switch_count = &prev->nvcsw;
3625 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3626 unlikely(signal_pending(prev))))
3627 prev->state = TASK_RUNNING;
3628 else {
3629 if (prev->state == TASK_UNINTERRUPTIBLE)
3630 rq->nr_uninterruptible++;
3631 deactivate_task(prev, rq);
3632 }
3633 }
3634
3635 cpu = smp_processor_id();
3636 if (unlikely(!rq->nr_running)) {
3637 idle_balance(cpu, rq);
3638 if (!rq->nr_running) {
3639 next = rq->idle;
3640 rq->expired_timestamp = 0;
3641 goto switch_tasks;
3642 }
3643 }
3644
3645 array = rq->active;
3646 if (unlikely(!array->nr_active)) {
3647 /*
3648 * Switch the active and expired arrays.
3649 */
3650 schedstat_inc(rq, sched_switch);
3651 rq->active = rq->expired;
3652 rq->expired = array;
3653 array = rq->active;
3654 rq->expired_timestamp = 0;
3655 rq->best_expired_prio = MAX_PRIO;
3656 }
3657
3658 idx = sched_find_first_bit(array->bitmap);
3659 queue = array->queue + idx;
3660 next = list_entry(queue->next, struct task_struct, run_list);
3661
3662 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
3663 unsigned long long delta = now - next->timestamp;
3664 if (unlikely((long long)(now - next->timestamp) < 0))
3665 delta = 0;
3666
3667 if (next->sleep_type == SLEEP_INTERACTIVE)
3668 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3669
3670 array = next->array;
3671 new_prio = recalc_task_prio(next, next->timestamp + delta);
3672
3673 if (unlikely(next->prio != new_prio)) {
3674 dequeue_task(next, array);
3675 next->prio = new_prio;
3676 enqueue_task(next, array);
3677 }
3678 }
3679 next->sleep_type = SLEEP_NORMAL;
3680 switch_tasks:
3681 if (next == rq->idle)
3682 schedstat_inc(rq, sched_goidle);
3683 prefetch(next);
3684 prefetch_stack(next);
3685 clear_tsk_need_resched(prev);
3686 rcu_qsctr_inc(task_cpu(prev));
3687
3688 update_cpu_clock(prev, rq, now);
3689
3690 prev->sleep_avg -= run_time;
3691 if ((long)prev->sleep_avg <= 0)
3692 prev->sleep_avg = 0;
3693 prev->timestamp = prev->last_ran = now;
3694
3695 sched_info_switch(prev, next);
3696 if (likely(prev != next)) {
3697 next->timestamp = next->last_ran = now;
3698 rq->nr_switches++;
3699 rq->curr = next;
3700 ++*switch_count;
3701
3702 prepare_task_switch(rq, next);
3703 prev = context_switch(rq, prev, next);
3704 barrier();
3705 /*
3706 * this_rq must be evaluated again because prev may have moved
3707 * CPUs since it called schedule(), thus the 'rq' on its stack
3708 * frame will be invalid.
3709 */
3710 finish_task_switch(this_rq(), prev);
3711 } else
3712 spin_unlock_irq(&rq->lock);
3713
3714 prev = current;
3715 if (unlikely(reacquire_kernel_lock(prev) < 0))
3716 goto need_resched_nonpreemptible;
3717 preempt_enable_no_resched();
3718 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3719 goto need_resched;
3720 }
3721 EXPORT_SYMBOL(schedule);
3722
3723 #ifdef CONFIG_PREEMPT
3724 /*
3725 * this is the entry point to schedule() from in-kernel preemption
3726 * off of preempt_enable. Kernel preemptions off return from interrupt
3727 * occur there and call schedule directly.
3728 */
3729 asmlinkage void __sched preempt_schedule(void)
3730 {
3731 struct thread_info *ti = current_thread_info();
3732 #ifdef CONFIG_PREEMPT_BKL
3733 struct task_struct *task = current;
3734 int saved_lock_depth;
3735 #endif
3736 /*
3737 * If there is a non-zero preempt_count or interrupts are disabled,
3738 * we do not want to preempt the current task. Just return..
3739 */
3740 if (likely(ti->preempt_count || irqs_disabled()))
3741 return;
3742
3743 need_resched:
3744 add_preempt_count(PREEMPT_ACTIVE);
3745 /*
3746 * We keep the big kernel semaphore locked, but we
3747 * clear ->lock_depth so that schedule() doesnt
3748 * auto-release the semaphore:
3749 */
3750 #ifdef CONFIG_PREEMPT_BKL
3751 saved_lock_depth = task->lock_depth;
3752 task->lock_depth = -1;
3753 #endif
3754 schedule();
3755 #ifdef CONFIG_PREEMPT_BKL
3756 task->lock_depth = saved_lock_depth;
3757 #endif
3758 sub_preempt_count(PREEMPT_ACTIVE);
3759
3760 /* we could miss a preemption opportunity between schedule and now */
3761 barrier();
3762 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3763 goto need_resched;
3764 }
3765 EXPORT_SYMBOL(preempt_schedule);
3766
3767 /*
3768 * this is the entry point to schedule() from kernel preemption
3769 * off of irq context.
3770 * Note, that this is called and return with irqs disabled. This will
3771 * protect us against recursive calling from irq.
3772 */
3773 asmlinkage void __sched preempt_schedule_irq(void)
3774 {
3775 struct thread_info *ti = current_thread_info();
3776 #ifdef CONFIG_PREEMPT_BKL
3777 struct task_struct *task = current;
3778 int saved_lock_depth;
3779 #endif
3780 /* Catch callers which need to be fixed */
3781 BUG_ON(ti->preempt_count || !irqs_disabled());
3782
3783 need_resched:
3784 add_preempt_count(PREEMPT_ACTIVE);
3785 /*
3786 * We keep the big kernel semaphore locked, but we
3787 * clear ->lock_depth so that schedule() doesnt
3788 * auto-release the semaphore:
3789 */
3790 #ifdef CONFIG_PREEMPT_BKL
3791 saved_lock_depth = task->lock_depth;
3792 task->lock_depth = -1;
3793 #endif
3794 local_irq_enable();
3795 schedule();
3796 local_irq_disable();
3797 #ifdef CONFIG_PREEMPT_BKL
3798 task->lock_depth = saved_lock_depth;
3799 #endif
3800 sub_preempt_count(PREEMPT_ACTIVE);
3801
3802 /* we could miss a preemption opportunity between schedule and now */
3803 barrier();
3804 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3805 goto need_resched;
3806 }
3807
3808 #endif /* CONFIG_PREEMPT */
3809
3810 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3811 void *key)
3812 {
3813 return try_to_wake_up(curr->private, mode, sync);
3814 }
3815 EXPORT_SYMBOL(default_wake_function);
3816
3817 /*
3818 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3819 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3820 * number) then we wake all the non-exclusive tasks and one exclusive task.
3821 *
3822 * There are circumstances in which we can try to wake a task which has already
3823 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3824 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3825 */
3826 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3827 int nr_exclusive, int sync, void *key)
3828 {
3829 struct list_head *tmp, *next;
3830
3831 list_for_each_safe(tmp, next, &q->task_list) {
3832 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3833 unsigned flags = curr->flags;
3834
3835 if (curr->func(curr, mode, sync, key) &&
3836 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3837 break;
3838 }
3839 }
3840
3841 /**
3842 * __wake_up - wake up threads blocked on a waitqueue.
3843 * @q: the waitqueue
3844 * @mode: which threads
3845 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3846 * @key: is directly passed to the wakeup function
3847 */
3848 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3849 int nr_exclusive, void *key)
3850 {
3851 unsigned long flags;
3852
3853 spin_lock_irqsave(&q->lock, flags);
3854 __wake_up_common(q, mode, nr_exclusive, 0, key);
3855 spin_unlock_irqrestore(&q->lock, flags);
3856 }
3857 EXPORT_SYMBOL(__wake_up);
3858
3859 /*
3860 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3861 */
3862 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3863 {
3864 __wake_up_common(q, mode, 1, 0, NULL);
3865 }
3866
3867 /**
3868 * __wake_up_sync - wake up threads blocked on a waitqueue.
3869 * @q: the waitqueue
3870 * @mode: which threads
3871 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3872 *
3873 * The sync wakeup differs that the waker knows that it will schedule
3874 * away soon, so while the target thread will be woken up, it will not
3875 * be migrated to another CPU - ie. the two threads are 'synchronized'
3876 * with each other. This can prevent needless bouncing between CPUs.
3877 *
3878 * On UP it can prevent extra preemption.
3879 */
3880 void fastcall
3881 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3882 {
3883 unsigned long flags;
3884 int sync = 1;
3885
3886 if (unlikely(!q))
3887 return;
3888
3889 if (unlikely(!nr_exclusive))
3890 sync = 0;
3891
3892 spin_lock_irqsave(&q->lock, flags);
3893 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3894 spin_unlock_irqrestore(&q->lock, flags);
3895 }
3896 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3897
3898 void fastcall complete(struct completion *x)
3899 {
3900 unsigned long flags;
3901
3902 spin_lock_irqsave(&x->wait.lock, flags);
3903 x->done++;
3904 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3905 1, 0, NULL);
3906 spin_unlock_irqrestore(&x->wait.lock, flags);
3907 }
3908 EXPORT_SYMBOL(complete);
3909
3910 void fastcall complete_all(struct completion *x)
3911 {
3912 unsigned long flags;
3913
3914 spin_lock_irqsave(&x->wait.lock, flags);
3915 x->done += UINT_MAX/2;
3916 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3917 0, 0, NULL);
3918 spin_unlock_irqrestore(&x->wait.lock, flags);
3919 }
3920 EXPORT_SYMBOL(complete_all);
3921
3922 void fastcall __sched wait_for_completion(struct completion *x)
3923 {
3924 might_sleep();
3925
3926 spin_lock_irq(&x->wait.lock);
3927 if (!x->done) {
3928 DECLARE_WAITQUEUE(wait, current);
3929
3930 wait.flags |= WQ_FLAG_EXCLUSIVE;
3931 __add_wait_queue_tail(&x->wait, &wait);
3932 do {
3933 __set_current_state(TASK_UNINTERRUPTIBLE);
3934 spin_unlock_irq(&x->wait.lock);
3935 schedule();
3936 spin_lock_irq(&x->wait.lock);
3937 } while (!x->done);
3938 __remove_wait_queue(&x->wait, &wait);
3939 }
3940 x->done--;
3941 spin_unlock_irq(&x->wait.lock);
3942 }
3943 EXPORT_SYMBOL(wait_for_completion);
3944
3945 unsigned long fastcall __sched
3946 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3947 {
3948 might_sleep();
3949
3950 spin_lock_irq(&x->wait.lock);
3951 if (!x->done) {
3952 DECLARE_WAITQUEUE(wait, current);
3953
3954 wait.flags |= WQ_FLAG_EXCLUSIVE;
3955 __add_wait_queue_tail(&x->wait, &wait);
3956 do {
3957 __set_current_state(TASK_UNINTERRUPTIBLE);
3958 spin_unlock_irq(&x->wait.lock);
3959 timeout = schedule_timeout(timeout);
3960 spin_lock_irq(&x->wait.lock);
3961 if (!timeout) {
3962 __remove_wait_queue(&x->wait, &wait);
3963 goto out;
3964 }
3965 } while (!x->done);
3966 __remove_wait_queue(&x->wait, &wait);
3967 }
3968 x->done--;
3969 out:
3970 spin_unlock_irq(&x->wait.lock);
3971 return timeout;
3972 }
3973 EXPORT_SYMBOL(wait_for_completion_timeout);
3974
3975 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3976 {
3977 int ret = 0;
3978
3979 might_sleep();
3980
3981 spin_lock_irq(&x->wait.lock);
3982 if (!x->done) {
3983 DECLARE_WAITQUEUE(wait, current);
3984
3985 wait.flags |= WQ_FLAG_EXCLUSIVE;
3986 __add_wait_queue_tail(&x->wait, &wait);
3987 do {
3988 if (signal_pending(current)) {
3989 ret = -ERESTARTSYS;
3990 __remove_wait_queue(&x->wait, &wait);
3991 goto out;
3992 }
3993 __set_current_state(TASK_INTERRUPTIBLE);
3994 spin_unlock_irq(&x->wait.lock);
3995 schedule();
3996 spin_lock_irq(&x->wait.lock);
3997 } while (!x->done);
3998 __remove_wait_queue(&x->wait, &wait);
3999 }
4000 x->done--;
4001 out:
4002 spin_unlock_irq(&x->wait.lock);
4003
4004 return ret;
4005 }
4006 EXPORT_SYMBOL(wait_for_completion_interruptible);
4007
4008 unsigned long fastcall __sched
4009 wait_for_completion_interruptible_timeout(struct completion *x,
4010 unsigned long timeout)
4011 {
4012 might_sleep();
4013
4014 spin_lock_irq(&x->wait.lock);
4015 if (!x->done) {
4016 DECLARE_WAITQUEUE(wait, current);
4017
4018 wait.flags |= WQ_FLAG_EXCLUSIVE;
4019 __add_wait_queue_tail(&x->wait, &wait);
4020 do {
4021 if (signal_pending(current)) {
4022 timeout = -ERESTARTSYS;
4023 __remove_wait_queue(&x->wait, &wait);
4024 goto out;
4025 }
4026 __set_current_state(TASK_INTERRUPTIBLE);
4027 spin_unlock_irq(&x->wait.lock);
4028 timeout = schedule_timeout(timeout);
4029 spin_lock_irq(&x->wait.lock);
4030 if (!timeout) {
4031 __remove_wait_queue(&x->wait, &wait);
4032 goto out;
4033 }
4034 } while (!x->done);
4035 __remove_wait_queue(&x->wait, &wait);
4036 }
4037 x->done--;
4038 out:
4039 spin_unlock_irq(&x->wait.lock);
4040 return timeout;
4041 }
4042 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4043
4044
4045 #define SLEEP_ON_VAR \
4046 unsigned long flags; \
4047 wait_queue_t wait; \
4048 init_waitqueue_entry(&wait, current);
4049
4050 #define SLEEP_ON_HEAD \
4051 spin_lock_irqsave(&q->lock,flags); \
4052 __add_wait_queue(q, &wait); \
4053 spin_unlock(&q->lock);
4054
4055 #define SLEEP_ON_TAIL \
4056 spin_lock_irq(&q->lock); \
4057 __remove_wait_queue(q, &wait); \
4058 spin_unlock_irqrestore(&q->lock, flags);
4059
4060 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
4061 {
4062 SLEEP_ON_VAR
4063
4064 current->state = TASK_INTERRUPTIBLE;
4065
4066 SLEEP_ON_HEAD
4067 schedule();
4068 SLEEP_ON_TAIL
4069 }
4070 EXPORT_SYMBOL(interruptible_sleep_on);
4071
4072 long fastcall __sched
4073 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4074 {
4075 SLEEP_ON_VAR
4076
4077 current->state = TASK_INTERRUPTIBLE;
4078
4079 SLEEP_ON_HEAD
4080 timeout = schedule_timeout(timeout);
4081 SLEEP_ON_TAIL
4082
4083 return timeout;
4084 }
4085 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4086
4087 void fastcall __sched sleep_on(wait_queue_head_t *q)
4088 {
4089 SLEEP_ON_VAR
4090
4091 current->state = TASK_UNINTERRUPTIBLE;
4092
4093 SLEEP_ON_HEAD
4094 schedule();
4095 SLEEP_ON_TAIL
4096 }
4097 EXPORT_SYMBOL(sleep_on);
4098
4099 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4100 {
4101 SLEEP_ON_VAR
4102
4103 current->state = TASK_UNINTERRUPTIBLE;
4104
4105 SLEEP_ON_HEAD
4106 timeout = schedule_timeout(timeout);
4107 SLEEP_ON_TAIL
4108
4109 return timeout;
4110 }
4111
4112 EXPORT_SYMBOL(sleep_on_timeout);
4113
4114 #ifdef CONFIG_RT_MUTEXES
4115
4116 /*
4117 * rt_mutex_setprio - set the current priority of a task
4118 * @p: task
4119 * @prio: prio value (kernel-internal form)
4120 *
4121 * This function changes the 'effective' priority of a task. It does
4122 * not touch ->normal_prio like __setscheduler().
4123 *
4124 * Used by the rt_mutex code to implement priority inheritance logic.
4125 */
4126 void rt_mutex_setprio(struct task_struct *p, int prio)
4127 {
4128 struct prio_array *array;
4129 unsigned long flags;
4130 struct rq *rq;
4131 int oldprio;
4132
4133 BUG_ON(prio < 0 || prio > MAX_PRIO);
4134
4135 rq = task_rq_lock(p, &flags);
4136
4137 oldprio = p->prio;
4138 array = p->array;
4139 if (array)
4140 dequeue_task(p, array);
4141 p->prio = prio;
4142
4143 if (array) {
4144 /*
4145 * If changing to an RT priority then queue it
4146 * in the active array!
4147 */
4148 if (rt_task(p))
4149 array = rq->active;
4150 enqueue_task(p, array);
4151 /*
4152 * Reschedule if we are currently running on this runqueue and
4153 * our priority decreased, or if we are not currently running on
4154 * this runqueue and our priority is higher than the current's
4155 */
4156 if (task_running(rq, p)) {
4157 if (p->prio > oldprio)
4158 resched_task(rq->curr);
4159 } else if (TASK_PREEMPTS_CURR(p, rq))
4160 resched_task(rq->curr);
4161 }
4162 task_rq_unlock(rq, &flags);
4163 }
4164
4165 #endif
4166
4167 void set_user_nice(struct task_struct *p, long nice)
4168 {
4169 struct prio_array *array;
4170 int old_prio, delta;
4171 unsigned long flags;
4172 struct rq *rq;
4173
4174 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4175 return;
4176 /*
4177 * We have to be careful, if called from sys_setpriority(),
4178 * the task might be in the middle of scheduling on another CPU.
4179 */
4180 rq = task_rq_lock(p, &flags);
4181 /*
4182 * The RT priorities are set via sched_setscheduler(), but we still
4183 * allow the 'normal' nice value to be set - but as expected
4184 * it wont have any effect on scheduling until the task is
4185 * not SCHED_NORMAL/SCHED_BATCH:
4186 */
4187 if (has_rt_policy(p)) {
4188 p->static_prio = NICE_TO_PRIO(nice);
4189 goto out_unlock;
4190 }
4191 array = p->array;
4192 if (array) {
4193 dequeue_task(p, array);
4194 dec_raw_weighted_load(rq, p);
4195 }
4196
4197 p->static_prio = NICE_TO_PRIO(nice);
4198 set_load_weight(p);
4199 old_prio = p->prio;
4200 p->prio = effective_prio(p);
4201 delta = p->prio - old_prio;
4202
4203 if (array) {
4204 enqueue_task(p, array);
4205 inc_raw_weighted_load(rq, p);
4206 /*
4207 * If the task increased its priority or is running and
4208 * lowered its priority, then reschedule its CPU:
4209 */
4210 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4211 resched_task(rq->curr);
4212 }
4213 out_unlock:
4214 task_rq_unlock(rq, &flags);
4215 }
4216 EXPORT_SYMBOL(set_user_nice);
4217
4218 /*
4219 * can_nice - check if a task can reduce its nice value
4220 * @p: task
4221 * @nice: nice value
4222 */
4223 int can_nice(const struct task_struct *p, const int nice)
4224 {
4225 /* convert nice value [19,-20] to rlimit style value [1,40] */
4226 int nice_rlim = 20 - nice;
4227
4228 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4229 capable(CAP_SYS_NICE));
4230 }
4231
4232 #ifdef __ARCH_WANT_SYS_NICE
4233
4234 /*
4235 * sys_nice - change the priority of the current process.
4236 * @increment: priority increment
4237 *
4238 * sys_setpriority is a more generic, but much slower function that
4239 * does similar things.
4240 */
4241 asmlinkage long sys_nice(int increment)
4242 {
4243 long nice, retval;
4244
4245 /*
4246 * Setpriority might change our priority at the same moment.
4247 * We don't have to worry. Conceptually one call occurs first
4248 * and we have a single winner.
4249 */
4250 if (increment < -40)
4251 increment = -40;
4252 if (increment > 40)
4253 increment = 40;
4254
4255 nice = PRIO_TO_NICE(current->static_prio) + increment;
4256 if (nice < -20)
4257 nice = -20;
4258 if (nice > 19)
4259 nice = 19;
4260
4261 if (increment < 0 && !can_nice(current, nice))
4262 return -EPERM;
4263
4264 retval = security_task_setnice(current, nice);
4265 if (retval)
4266 return retval;
4267
4268 set_user_nice(current, nice);
4269 return 0;
4270 }
4271
4272 #endif
4273
4274 /**
4275 * task_prio - return the priority value of a given task.
4276 * @p: the task in question.
4277 *
4278 * This is the priority value as seen by users in /proc.
4279 * RT tasks are offset by -200. Normal tasks are centered
4280 * around 0, value goes from -16 to +15.
4281 */
4282 int task_prio(const struct task_struct *p)
4283 {
4284 return p->prio - MAX_RT_PRIO;
4285 }
4286
4287 /**
4288 * task_nice - return the nice value of a given task.
4289 * @p: the task in question.
4290 */
4291 int task_nice(const struct task_struct *p)
4292 {
4293 return TASK_NICE(p);
4294 }
4295 EXPORT_SYMBOL_GPL(task_nice);
4296
4297 /**
4298 * idle_cpu - is a given cpu idle currently?
4299 * @cpu: the processor in question.
4300 */
4301 int idle_cpu(int cpu)
4302 {
4303 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4304 }
4305
4306 /**
4307 * idle_task - return the idle task for a given cpu.
4308 * @cpu: the processor in question.
4309 */
4310 struct task_struct *idle_task(int cpu)
4311 {
4312 return cpu_rq(cpu)->idle;
4313 }
4314
4315 /**
4316 * find_process_by_pid - find a process with a matching PID value.
4317 * @pid: the pid in question.
4318 */
4319 static inline struct task_struct *find_process_by_pid(pid_t pid)
4320 {
4321 return pid ? find_task_by_pid(pid) : current;
4322 }
4323
4324 /* Actually do priority change: must hold rq lock. */
4325 static void __setscheduler(struct task_struct *p, int policy, int prio)
4326 {
4327 BUG_ON(p->array);
4328
4329 p->policy = policy;
4330 p->rt_priority = prio;
4331 p->normal_prio = normal_prio(p);
4332 /* we are holding p->pi_lock already */
4333 p->prio = rt_mutex_getprio(p);
4334 /*
4335 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4336 */
4337 if (policy == SCHED_BATCH)
4338 p->sleep_avg = 0;
4339 set_load_weight(p);
4340 }
4341
4342 /**
4343 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4344 * @p: the task in question.
4345 * @policy: new policy.
4346 * @param: structure containing the new RT priority.
4347 *
4348 * NOTE that the task may be already dead.
4349 */
4350 int sched_setscheduler(struct task_struct *p, int policy,
4351 struct sched_param *param)
4352 {
4353 int retval, oldprio, oldpolicy = -1;
4354 struct prio_array *array;
4355 unsigned long flags;
4356 struct rq *rq;
4357
4358 /* may grab non-irq protected spin_locks */
4359 BUG_ON(in_interrupt());
4360 recheck:
4361 /* double check policy once rq lock held */
4362 if (policy < 0)
4363 policy = oldpolicy = p->policy;
4364 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4365 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4366 return -EINVAL;
4367 /*
4368 * Valid priorities for SCHED_FIFO and SCHED_RR are
4369 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4370 * SCHED_BATCH is 0.
4371 */
4372 if (param->sched_priority < 0 ||
4373 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4374 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4375 return -EINVAL;
4376 if (is_rt_policy(policy) != (param->sched_priority != 0))
4377 return -EINVAL;
4378
4379 /*
4380 * Allow unprivileged RT tasks to decrease priority:
4381 */
4382 if (!capable(CAP_SYS_NICE)) {
4383 if (is_rt_policy(policy)) {
4384 unsigned long rlim_rtprio;
4385 unsigned long flags;
4386
4387 if (!lock_task_sighand(p, &flags))
4388 return -ESRCH;
4389 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4390 unlock_task_sighand(p, &flags);
4391
4392 /* can't set/change the rt policy */
4393 if (policy != p->policy && !rlim_rtprio)
4394 return -EPERM;
4395
4396 /* can't increase priority */
4397 if (param->sched_priority > p->rt_priority &&
4398 param->sched_priority > rlim_rtprio)
4399 return -EPERM;
4400 }
4401
4402 /* can't change other user's priorities */
4403 if ((current->euid != p->euid) &&
4404 (current->euid != p->uid))
4405 return -EPERM;
4406 }
4407
4408 retval = security_task_setscheduler(p, policy, param);
4409 if (retval)
4410 return retval;
4411 /*
4412 * make sure no PI-waiters arrive (or leave) while we are
4413 * changing the priority of the task:
4414 */
4415 spin_lock_irqsave(&p->pi_lock, flags);
4416 /*
4417 * To be able to change p->policy safely, the apropriate
4418 * runqueue lock must be held.
4419 */
4420 rq = __task_rq_lock(p);
4421 /* recheck policy now with rq lock held */
4422 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4423 policy = oldpolicy = -1;
4424 __task_rq_unlock(rq);
4425 spin_unlock_irqrestore(&p->pi_lock, flags);
4426 goto recheck;
4427 }
4428 array = p->array;
4429 if (array)
4430 deactivate_task(p, rq);
4431 oldprio = p->prio;
4432 __setscheduler(p, policy, param->sched_priority);
4433 if (array) {
4434 __activate_task(p, rq);
4435 /*
4436 * Reschedule if we are currently running on this runqueue and
4437 * our priority decreased, or if we are not currently running on
4438 * this runqueue and our priority is higher than the current's
4439 */
4440 if (task_running(rq, p)) {
4441 if (p->prio > oldprio)
4442 resched_task(rq->curr);
4443 } else if (TASK_PREEMPTS_CURR(p, rq))
4444 resched_task(rq->curr);
4445 }
4446 __task_rq_unlock(rq);
4447 spin_unlock_irqrestore(&p->pi_lock, flags);
4448
4449 rt_mutex_adjust_pi(p);
4450
4451 return 0;
4452 }
4453 EXPORT_SYMBOL_GPL(sched_setscheduler);
4454
4455 static int
4456 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4457 {
4458 struct sched_param lparam;
4459 struct task_struct *p;
4460 int retval;
4461
4462 if (!param || pid < 0)
4463 return -EINVAL;
4464 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4465 return -EFAULT;
4466
4467 rcu_read_lock();
4468 retval = -ESRCH;
4469 p = find_process_by_pid(pid);
4470 if (p != NULL)
4471 retval = sched_setscheduler(p, policy, &lparam);
4472 rcu_read_unlock();
4473
4474 return retval;
4475 }
4476
4477 /**
4478 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4479 * @pid: the pid in question.
4480 * @policy: new policy.
4481 * @param: structure containing the new RT priority.
4482 */
4483 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4484 struct sched_param __user *param)
4485 {
4486 /* negative values for policy are not valid */
4487 if (policy < 0)
4488 return -EINVAL;
4489
4490 return do_sched_setscheduler(pid, policy, param);
4491 }
4492
4493 /**
4494 * sys_sched_setparam - set/change the RT priority of a thread
4495 * @pid: the pid in question.
4496 * @param: structure containing the new RT priority.
4497 */
4498 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4499 {
4500 return do_sched_setscheduler(pid, -1, param);
4501 }
4502
4503 /**
4504 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4505 * @pid: the pid in question.
4506 */
4507 asmlinkage long sys_sched_getscheduler(pid_t pid)
4508 {
4509 struct task_struct *p;
4510 int retval = -EINVAL;
4511
4512 if (pid < 0)
4513 goto out_nounlock;
4514
4515 retval = -ESRCH;
4516 read_lock(&tasklist_lock);
4517 p = find_process_by_pid(pid);
4518 if (p) {
4519 retval = security_task_getscheduler(p);
4520 if (!retval)
4521 retval = p->policy;
4522 }
4523 read_unlock(&tasklist_lock);
4524
4525 out_nounlock:
4526 return retval;
4527 }
4528
4529 /**
4530 * sys_sched_getscheduler - get the RT priority of a thread
4531 * @pid: the pid in question.
4532 * @param: structure containing the RT priority.
4533 */
4534 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4535 {
4536 struct sched_param lp;
4537 struct task_struct *p;
4538 int retval = -EINVAL;
4539
4540 if (!param || pid < 0)
4541 goto out_nounlock;
4542
4543 read_lock(&tasklist_lock);
4544 p = find_process_by_pid(pid);
4545 retval = -ESRCH;
4546 if (!p)
4547 goto out_unlock;
4548
4549 retval = security_task_getscheduler(p);
4550 if (retval)
4551 goto out_unlock;
4552
4553 lp.sched_priority = p->rt_priority;
4554 read_unlock(&tasklist_lock);
4555
4556 /*
4557 * This one might sleep, we cannot do it with a spinlock held ...
4558 */
4559 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4560
4561 out_nounlock:
4562 return retval;
4563
4564 out_unlock:
4565 read_unlock(&tasklist_lock);
4566 return retval;
4567 }
4568
4569 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4570 {
4571 cpumask_t cpus_allowed;
4572 struct task_struct *p;
4573 int retval;
4574
4575 mutex_lock(&sched_hotcpu_mutex);
4576 read_lock(&tasklist_lock);
4577
4578 p = find_process_by_pid(pid);
4579 if (!p) {
4580 read_unlock(&tasklist_lock);
4581 mutex_unlock(&sched_hotcpu_mutex);
4582 return -ESRCH;
4583 }
4584
4585 /*
4586 * It is not safe to call set_cpus_allowed with the
4587 * tasklist_lock held. We will bump the task_struct's
4588 * usage count and then drop tasklist_lock.
4589 */
4590 get_task_struct(p);
4591 read_unlock(&tasklist_lock);
4592
4593 retval = -EPERM;
4594 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4595 !capable(CAP_SYS_NICE))
4596 goto out_unlock;
4597
4598 retval = security_task_setscheduler(p, 0, NULL);
4599 if (retval)
4600 goto out_unlock;
4601
4602 cpus_allowed = cpuset_cpus_allowed(p);
4603 cpus_and(new_mask, new_mask, cpus_allowed);
4604 retval = set_cpus_allowed(p, new_mask);
4605
4606 out_unlock:
4607 put_task_struct(p);
4608 mutex_unlock(&sched_hotcpu_mutex);
4609 return retval;
4610 }
4611
4612 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4613 cpumask_t *new_mask)
4614 {
4615 if (len < sizeof(cpumask_t)) {
4616 memset(new_mask, 0, sizeof(cpumask_t));
4617 } else if (len > sizeof(cpumask_t)) {
4618 len = sizeof(cpumask_t);
4619 }
4620 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4621 }
4622
4623 /**
4624 * sys_sched_setaffinity - set the cpu affinity of a process
4625 * @pid: pid of the process
4626 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4627 * @user_mask_ptr: user-space pointer to the new cpu mask
4628 */
4629 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4630 unsigned long __user *user_mask_ptr)
4631 {
4632 cpumask_t new_mask;
4633 int retval;
4634
4635 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4636 if (retval)
4637 return retval;
4638
4639 return sched_setaffinity(pid, new_mask);
4640 }
4641
4642 /*
4643 * Represents all cpu's present in the system
4644 * In systems capable of hotplug, this map could dynamically grow
4645 * as new cpu's are detected in the system via any platform specific
4646 * method, such as ACPI for e.g.
4647 */
4648
4649 cpumask_t cpu_present_map __read_mostly;
4650 EXPORT_SYMBOL(cpu_present_map);
4651
4652 #ifndef CONFIG_SMP
4653 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4654 EXPORT_SYMBOL(cpu_online_map);
4655
4656 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4657 EXPORT_SYMBOL(cpu_possible_map);
4658 #endif
4659
4660 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4661 {
4662 struct task_struct *p;
4663 int retval;
4664
4665 mutex_lock(&sched_hotcpu_mutex);
4666 read_lock(&tasklist_lock);
4667
4668 retval = -ESRCH;
4669 p = find_process_by_pid(pid);
4670 if (!p)
4671 goto out_unlock;
4672
4673 retval = security_task_getscheduler(p);
4674 if (retval)
4675 goto out_unlock;
4676
4677 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4678
4679 out_unlock:
4680 read_unlock(&tasklist_lock);
4681 mutex_unlock(&sched_hotcpu_mutex);
4682 if (retval)
4683 return retval;
4684
4685 return 0;
4686 }
4687
4688 /**
4689 * sys_sched_getaffinity - get the cpu affinity of a process
4690 * @pid: pid of the process
4691 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4692 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4693 */
4694 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4695 unsigned long __user *user_mask_ptr)
4696 {
4697 int ret;
4698 cpumask_t mask;
4699
4700 if (len < sizeof(cpumask_t))
4701 return -EINVAL;
4702
4703 ret = sched_getaffinity(pid, &mask);
4704 if (ret < 0)
4705 return ret;
4706
4707 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4708 return -EFAULT;
4709
4710 return sizeof(cpumask_t);
4711 }
4712
4713 /**
4714 * sys_sched_yield - yield the current processor to other threads.
4715 *
4716 * This function yields the current CPU by moving the calling thread
4717 * to the expired array. If there are no other threads running on this
4718 * CPU then this function will return.
4719 */
4720 asmlinkage long sys_sched_yield(void)
4721 {
4722 struct rq *rq = this_rq_lock();
4723 struct prio_array *array = current->array, *target = rq->expired;
4724
4725 schedstat_inc(rq, yld_cnt);
4726 /*
4727 * We implement yielding by moving the task into the expired
4728 * queue.
4729 *
4730 * (special rule: RT tasks will just roundrobin in the active
4731 * array.)
4732 */
4733 if (rt_task(current))
4734 target = rq->active;
4735
4736 if (array->nr_active == 1) {
4737 schedstat_inc(rq, yld_act_empty);
4738 if (!rq->expired->nr_active)
4739 schedstat_inc(rq, yld_both_empty);
4740 } else if (!rq->expired->nr_active)
4741 schedstat_inc(rq, yld_exp_empty);
4742
4743 if (array != target) {
4744 dequeue_task(current, array);
4745 enqueue_task(current, target);
4746 } else
4747 /*
4748 * requeue_task is cheaper so perform that if possible.
4749 */
4750 requeue_task(current, array);
4751
4752 /*
4753 * Since we are going to call schedule() anyway, there's
4754 * no need to preempt or enable interrupts:
4755 */
4756 __release(rq->lock);
4757 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4758 _raw_spin_unlock(&rq->lock);
4759 preempt_enable_no_resched();
4760
4761 schedule();
4762
4763 return 0;
4764 }
4765
4766 static void __cond_resched(void)
4767 {
4768 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4769 __might_sleep(__FILE__, __LINE__);
4770 #endif
4771 /*
4772 * The BKS might be reacquired before we have dropped
4773 * PREEMPT_ACTIVE, which could trigger a second
4774 * cond_resched() call.
4775 */
4776 do {
4777 add_preempt_count(PREEMPT_ACTIVE);
4778 schedule();
4779 sub_preempt_count(PREEMPT_ACTIVE);
4780 } while (need_resched());
4781 }
4782
4783 int __sched cond_resched(void)
4784 {
4785 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4786 system_state == SYSTEM_RUNNING) {
4787 __cond_resched();
4788 return 1;
4789 }
4790 return 0;
4791 }
4792 EXPORT_SYMBOL(cond_resched);
4793
4794 /*
4795 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4796 * call schedule, and on return reacquire the lock.
4797 *
4798 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4799 * operations here to prevent schedule() from being called twice (once via
4800 * spin_unlock(), once by hand).
4801 */
4802 int cond_resched_lock(spinlock_t *lock)
4803 {
4804 int ret = 0;
4805
4806 if (need_lockbreak(lock)) {
4807 spin_unlock(lock);
4808 cpu_relax();
4809 ret = 1;
4810 spin_lock(lock);
4811 }
4812 if (need_resched() && system_state == SYSTEM_RUNNING) {
4813 spin_release(&lock->dep_map, 1, _THIS_IP_);
4814 _raw_spin_unlock(lock);
4815 preempt_enable_no_resched();
4816 __cond_resched();
4817 ret = 1;
4818 spin_lock(lock);
4819 }
4820 return ret;
4821 }
4822 EXPORT_SYMBOL(cond_resched_lock);
4823
4824 int __sched cond_resched_softirq(void)
4825 {
4826 BUG_ON(!in_softirq());
4827
4828 if (need_resched() && system_state == SYSTEM_RUNNING) {
4829 local_bh_enable();
4830 __cond_resched();
4831 local_bh_disable();
4832 return 1;
4833 }
4834 return 0;
4835 }
4836 EXPORT_SYMBOL(cond_resched_softirq);
4837
4838 /**
4839 * yield - yield the current processor to other threads.
4840 *
4841 * This is a shortcut for kernel-space yielding - it marks the
4842 * thread runnable and calls sys_sched_yield().
4843 */
4844 void __sched yield(void)
4845 {
4846 set_current_state(TASK_RUNNING);
4847 sys_sched_yield();
4848 }
4849 EXPORT_SYMBOL(yield);
4850
4851 /*
4852 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4853 * that process accounting knows that this is a task in IO wait state.
4854 *
4855 * But don't do that if it is a deliberate, throttling IO wait (this task
4856 * has set its backing_dev_info: the queue against which it should throttle)
4857 */
4858 void __sched io_schedule(void)
4859 {
4860 struct rq *rq = &__raw_get_cpu_var(runqueues);
4861
4862 delayacct_blkio_start();
4863 atomic_inc(&rq->nr_iowait);
4864 schedule();
4865 atomic_dec(&rq->nr_iowait);
4866 delayacct_blkio_end();
4867 }
4868 EXPORT_SYMBOL(io_schedule);
4869
4870 long __sched io_schedule_timeout(long timeout)
4871 {
4872 struct rq *rq = &__raw_get_cpu_var(runqueues);
4873 long ret;
4874
4875 delayacct_blkio_start();
4876 atomic_inc(&rq->nr_iowait);
4877 ret = schedule_timeout(timeout);
4878 atomic_dec(&rq->nr_iowait);
4879 delayacct_blkio_end();
4880 return ret;
4881 }
4882
4883 /**
4884 * sys_sched_get_priority_max - return maximum RT priority.
4885 * @policy: scheduling class.
4886 *
4887 * this syscall returns the maximum rt_priority that can be used
4888 * by a given scheduling class.
4889 */
4890 asmlinkage long sys_sched_get_priority_max(int policy)
4891 {
4892 int ret = -EINVAL;
4893
4894 switch (policy) {
4895 case SCHED_FIFO:
4896 case SCHED_RR:
4897 ret = MAX_USER_RT_PRIO-1;
4898 break;
4899 case SCHED_NORMAL:
4900 case SCHED_BATCH:
4901 ret = 0;
4902 break;
4903 }
4904 return ret;
4905 }
4906
4907 /**
4908 * sys_sched_get_priority_min - return minimum RT priority.
4909 * @policy: scheduling class.
4910 *
4911 * this syscall returns the minimum rt_priority that can be used
4912 * by a given scheduling class.
4913 */
4914 asmlinkage long sys_sched_get_priority_min(int policy)
4915 {
4916 int ret = -EINVAL;
4917
4918 switch (policy) {
4919 case SCHED_FIFO:
4920 case SCHED_RR:
4921 ret = 1;
4922 break;
4923 case SCHED_NORMAL:
4924 case SCHED_BATCH:
4925 ret = 0;
4926 }
4927 return ret;
4928 }
4929
4930 /**
4931 * sys_sched_rr_get_interval - return the default timeslice of a process.
4932 * @pid: pid of the process.
4933 * @interval: userspace pointer to the timeslice value.
4934 *
4935 * this syscall writes the default timeslice value of a given process
4936 * into the user-space timespec buffer. A value of '0' means infinity.
4937 */
4938 asmlinkage
4939 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4940 {
4941 struct task_struct *p;
4942 int retval = -EINVAL;
4943 struct timespec t;
4944
4945 if (pid < 0)
4946 goto out_nounlock;
4947
4948 retval = -ESRCH;
4949 read_lock(&tasklist_lock);
4950 p = find_process_by_pid(pid);
4951 if (!p)
4952 goto out_unlock;
4953
4954 retval = security_task_getscheduler(p);
4955 if (retval)
4956 goto out_unlock;
4957
4958 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4959 0 : task_timeslice(p), &t);
4960 read_unlock(&tasklist_lock);
4961 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4962 out_nounlock:
4963 return retval;
4964 out_unlock:
4965 read_unlock(&tasklist_lock);
4966 return retval;
4967 }
4968
4969 static const char stat_nam[] = "RSDTtZX";
4970
4971 static void show_task(struct task_struct *p)
4972 {
4973 unsigned long free = 0;
4974 unsigned state;
4975
4976 state = p->state ? __ffs(p->state) + 1 : 0;
4977 printk("%-13.13s %c", p->comm,
4978 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4979 #if (BITS_PER_LONG == 32)
4980 if (state == TASK_RUNNING)
4981 printk(" running ");
4982 else
4983 printk(" %08lX ", thread_saved_pc(p));
4984 #else
4985 if (state == TASK_RUNNING)
4986 printk(" running task ");
4987 else
4988 printk(" %016lx ", thread_saved_pc(p));
4989 #endif
4990 #ifdef CONFIG_DEBUG_STACK_USAGE
4991 {
4992 unsigned long *n = end_of_stack(p);
4993 while (!*n)
4994 n++;
4995 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4996 }
4997 #endif
4998 printk("%5lu %5d %6d", free, p->pid, p->parent->pid);
4999 if (!p->mm)
5000 printk(" (L-TLB)\n");
5001 else
5002 printk(" (NOTLB)\n");
5003
5004 if (state != TASK_RUNNING)
5005 show_stack(p, NULL);
5006 }
5007
5008 void show_state_filter(unsigned long state_filter)
5009 {
5010 struct task_struct *g, *p;
5011
5012 #if (BITS_PER_LONG == 32)
5013 printk("\n"
5014 " free sibling\n");
5015 printk(" task PC stack pid father child younger older\n");
5016 #else
5017 printk("\n"
5018 " free sibling\n");
5019 printk(" task PC stack pid father child younger older\n");
5020 #endif
5021 read_lock(&tasklist_lock);
5022 do_each_thread(g, p) {
5023 /*
5024 * reset the NMI-timeout, listing all files on a slow
5025 * console might take alot of time:
5026 */
5027 touch_nmi_watchdog();
5028 if (!state_filter || (p->state & state_filter))
5029 show_task(p);
5030 } while_each_thread(g, p);
5031
5032 touch_all_softlockup_watchdogs();
5033
5034 read_unlock(&tasklist_lock);
5035 /*
5036 * Only show locks if all tasks are dumped:
5037 */
5038 if (state_filter == -1)
5039 debug_show_all_locks();
5040 }
5041
5042 /**
5043 * init_idle - set up an idle thread for a given CPU
5044 * @idle: task in question
5045 * @cpu: cpu the idle task belongs to
5046 *
5047 * NOTE: this function does not set the idle thread's NEED_RESCHED
5048 * flag, to make booting more robust.
5049 */
5050 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5051 {
5052 struct rq *rq = cpu_rq(cpu);
5053 unsigned long flags;
5054
5055 idle->timestamp = sched_clock();
5056 idle->sleep_avg = 0;
5057 idle->array = NULL;
5058 idle->prio = idle->normal_prio = MAX_PRIO;
5059 idle->state = TASK_RUNNING;
5060 idle->cpus_allowed = cpumask_of_cpu(cpu);
5061 set_task_cpu(idle, cpu);
5062
5063 spin_lock_irqsave(&rq->lock, flags);
5064 rq->curr = rq->idle = idle;
5065 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5066 idle->oncpu = 1;
5067 #endif
5068 spin_unlock_irqrestore(&rq->lock, flags);
5069
5070 /* Set the preempt count _outside_ the spinlocks! */
5071 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
5072 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5073 #else
5074 task_thread_info(idle)->preempt_count = 0;
5075 #endif
5076 }
5077
5078 /*
5079 * In a system that switches off the HZ timer nohz_cpu_mask
5080 * indicates which cpus entered this state. This is used
5081 * in the rcu update to wait only for active cpus. For system
5082 * which do not switch off the HZ timer nohz_cpu_mask should
5083 * always be CPU_MASK_NONE.
5084 */
5085 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5086
5087 #ifdef CONFIG_SMP
5088 /*
5089 * This is how migration works:
5090 *
5091 * 1) we queue a struct migration_req structure in the source CPU's
5092 * runqueue and wake up that CPU's migration thread.
5093 * 2) we down() the locked semaphore => thread blocks.
5094 * 3) migration thread wakes up (implicitly it forces the migrated
5095 * thread off the CPU)
5096 * 4) it gets the migration request and checks whether the migrated
5097 * task is still in the wrong runqueue.
5098 * 5) if it's in the wrong runqueue then the migration thread removes
5099 * it and puts it into the right queue.
5100 * 6) migration thread up()s the semaphore.
5101 * 7) we wake up and the migration is done.
5102 */
5103
5104 /*
5105 * Change a given task's CPU affinity. Migrate the thread to a
5106 * proper CPU and schedule it away if the CPU it's executing on
5107 * is removed from the allowed bitmask.
5108 *
5109 * NOTE: the caller must have a valid reference to the task, the
5110 * task must not exit() & deallocate itself prematurely. The
5111 * call is not atomic; no spinlocks may be held.
5112 */
5113 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5114 {
5115 struct migration_req req;
5116 unsigned long flags;
5117 struct rq *rq;
5118 int ret = 0;
5119
5120 rq = task_rq_lock(p, &flags);
5121 if (!cpus_intersects(new_mask, cpu_online_map)) {
5122 ret = -EINVAL;
5123 goto out;
5124 }
5125
5126 p->cpus_allowed = new_mask;
5127 /* Can the task run on the task's current CPU? If so, we're done */
5128 if (cpu_isset(task_cpu(p), new_mask))
5129 goto out;
5130
5131 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5132 /* Need help from migration thread: drop lock and wait. */
5133 task_rq_unlock(rq, &flags);
5134 wake_up_process(rq->migration_thread);
5135 wait_for_completion(&req.done);
5136 tlb_migrate_finish(p->mm);
5137 return 0;
5138 }
5139 out:
5140 task_rq_unlock(rq, &flags);
5141
5142 return ret;
5143 }
5144 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5145
5146 /*
5147 * Move (not current) task off this cpu, onto dest cpu. We're doing
5148 * this because either it can't run here any more (set_cpus_allowed()
5149 * away from this CPU, or CPU going down), or because we're
5150 * attempting to rebalance this task on exec (sched_exec).
5151 *
5152 * So we race with normal scheduler movements, but that's OK, as long
5153 * as the task is no longer on this CPU.
5154 *
5155 * Returns non-zero if task was successfully migrated.
5156 */
5157 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5158 {
5159 struct rq *rq_dest, *rq_src;
5160 int ret = 0;
5161
5162 if (unlikely(cpu_is_offline(dest_cpu)))
5163 return ret;
5164
5165 rq_src = cpu_rq(src_cpu);
5166 rq_dest = cpu_rq(dest_cpu);
5167
5168 double_rq_lock(rq_src, rq_dest);
5169 /* Already moved. */
5170 if (task_cpu(p) != src_cpu)
5171 goto out;
5172 /* Affinity changed (again). */
5173 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5174 goto out;
5175
5176 set_task_cpu(p, dest_cpu);
5177 if (p->array) {
5178 /*
5179 * Sync timestamp with rq_dest's before activating.
5180 * The same thing could be achieved by doing this step
5181 * afterwards, and pretending it was a local activate.
5182 * This way is cleaner and logically correct.
5183 */
5184 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5185 + rq_dest->most_recent_timestamp;
5186 deactivate_task(p, rq_src);
5187 __activate_task(p, rq_dest);
5188 if (TASK_PREEMPTS_CURR(p, rq_dest))
5189 resched_task(rq_dest->curr);
5190 }
5191 ret = 1;
5192 out:
5193 double_rq_unlock(rq_src, rq_dest);
5194 return ret;
5195 }
5196
5197 /*
5198 * migration_thread - this is a highprio system thread that performs
5199 * thread migration by bumping thread off CPU then 'pushing' onto
5200 * another runqueue.
5201 */
5202 static int migration_thread(void *data)
5203 {
5204 int cpu = (long)data;
5205 struct rq *rq;
5206
5207 rq = cpu_rq(cpu);
5208 BUG_ON(rq->migration_thread != current);
5209
5210 set_current_state(TASK_INTERRUPTIBLE);
5211 while (!kthread_should_stop()) {
5212 struct migration_req *req;
5213 struct list_head *head;
5214
5215 try_to_freeze();
5216
5217 spin_lock_irq(&rq->lock);
5218
5219 if (cpu_is_offline(cpu)) {
5220 spin_unlock_irq(&rq->lock);
5221 goto wait_to_die;
5222 }
5223
5224 if (rq->active_balance) {
5225 active_load_balance(rq, cpu);
5226 rq->active_balance = 0;
5227 }
5228
5229 head = &rq->migration_queue;
5230
5231 if (list_empty(head)) {
5232 spin_unlock_irq(&rq->lock);
5233 schedule();
5234 set_current_state(TASK_INTERRUPTIBLE);
5235 continue;
5236 }
5237 req = list_entry(head->next, struct migration_req, list);
5238 list_del_init(head->next);
5239
5240 spin_unlock(&rq->lock);
5241 __migrate_task(req->task, cpu, req->dest_cpu);
5242 local_irq_enable();
5243
5244 complete(&req->done);
5245 }
5246 __set_current_state(TASK_RUNNING);
5247 return 0;
5248
5249 wait_to_die:
5250 /* Wait for kthread_stop */
5251 set_current_state(TASK_INTERRUPTIBLE);
5252 while (!kthread_should_stop()) {
5253 schedule();
5254 set_current_state(TASK_INTERRUPTIBLE);
5255 }
5256 __set_current_state(TASK_RUNNING);
5257 return 0;
5258 }
5259
5260 #ifdef CONFIG_HOTPLUG_CPU
5261 /*
5262 * Figure out where task on dead CPU should go, use force if neccessary.
5263 * NOTE: interrupts should be disabled by the caller
5264 */
5265 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5266 {
5267 unsigned long flags;
5268 cpumask_t mask;
5269 struct rq *rq;
5270 int dest_cpu;
5271
5272 restart:
5273 /* On same node? */
5274 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5275 cpus_and(mask, mask, p->cpus_allowed);
5276 dest_cpu = any_online_cpu(mask);
5277
5278 /* On any allowed CPU? */
5279 if (dest_cpu == NR_CPUS)
5280 dest_cpu = any_online_cpu(p->cpus_allowed);
5281
5282 /* No more Mr. Nice Guy. */
5283 if (dest_cpu == NR_CPUS) {
5284 rq = task_rq_lock(p, &flags);
5285 cpus_setall(p->cpus_allowed);
5286 dest_cpu = any_online_cpu(p->cpus_allowed);
5287 task_rq_unlock(rq, &flags);
5288
5289 /*
5290 * Don't tell them about moving exiting tasks or
5291 * kernel threads (both mm NULL), since they never
5292 * leave kernel.
5293 */
5294 if (p->mm && printk_ratelimit())
5295 printk(KERN_INFO "process %d (%s) no "
5296 "longer affine to cpu%d\n",
5297 p->pid, p->comm, dead_cpu);
5298 }
5299 if (!__migrate_task(p, dead_cpu, dest_cpu))
5300 goto restart;
5301 }
5302
5303 /*
5304 * While a dead CPU has no uninterruptible tasks queued at this point,
5305 * it might still have a nonzero ->nr_uninterruptible counter, because
5306 * for performance reasons the counter is not stricly tracking tasks to
5307 * their home CPUs. So we just add the counter to another CPU's counter,
5308 * to keep the global sum constant after CPU-down:
5309 */
5310 static void migrate_nr_uninterruptible(struct rq *rq_src)
5311 {
5312 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5313 unsigned long flags;
5314
5315 local_irq_save(flags);
5316 double_rq_lock(rq_src, rq_dest);
5317 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5318 rq_src->nr_uninterruptible = 0;
5319 double_rq_unlock(rq_src, rq_dest);
5320 local_irq_restore(flags);
5321 }
5322
5323 /* Run through task list and migrate tasks from the dead cpu. */
5324 static void migrate_live_tasks(int src_cpu)
5325 {
5326 struct task_struct *p, *t;
5327
5328 write_lock_irq(&tasklist_lock);
5329
5330 do_each_thread(t, p) {
5331 if (p == current)
5332 continue;
5333
5334 if (task_cpu(p) == src_cpu)
5335 move_task_off_dead_cpu(src_cpu, p);
5336 } while_each_thread(t, p);
5337
5338 write_unlock_irq(&tasklist_lock);
5339 }
5340
5341 /* Schedules idle task to be the next runnable task on current CPU.
5342 * It does so by boosting its priority to highest possible and adding it to
5343 * the _front_ of the runqueue. Used by CPU offline code.
5344 */
5345 void sched_idle_next(void)
5346 {
5347 int this_cpu = smp_processor_id();
5348 struct rq *rq = cpu_rq(this_cpu);
5349 struct task_struct *p = rq->idle;
5350 unsigned long flags;
5351
5352 /* cpu has to be offline */
5353 BUG_ON(cpu_online(this_cpu));
5354
5355 /*
5356 * Strictly not necessary since rest of the CPUs are stopped by now
5357 * and interrupts disabled on the current cpu.
5358 */
5359 spin_lock_irqsave(&rq->lock, flags);
5360
5361 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5362
5363 /* Add idle task to the _front_ of its priority queue: */
5364 __activate_idle_task(p, rq);
5365
5366 spin_unlock_irqrestore(&rq->lock, flags);
5367 }
5368
5369 /*
5370 * Ensures that the idle task is using init_mm right before its cpu goes
5371 * offline.
5372 */
5373 void idle_task_exit(void)
5374 {
5375 struct mm_struct *mm = current->active_mm;
5376
5377 BUG_ON(cpu_online(smp_processor_id()));
5378
5379 if (mm != &init_mm)
5380 switch_mm(mm, &init_mm, current);
5381 mmdrop(mm);
5382 }
5383
5384 /* called under rq->lock with disabled interrupts */
5385 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5386 {
5387 struct rq *rq = cpu_rq(dead_cpu);
5388
5389 /* Must be exiting, otherwise would be on tasklist. */
5390 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5391
5392 /* Cannot have done final schedule yet: would have vanished. */
5393 BUG_ON(p->state == TASK_DEAD);
5394
5395 get_task_struct(p);
5396
5397 /*
5398 * Drop lock around migration; if someone else moves it,
5399 * that's OK. No task can be added to this CPU, so iteration is
5400 * fine.
5401 * NOTE: interrupts should be left disabled --dev@
5402 */
5403 spin_unlock(&rq->lock);
5404 move_task_off_dead_cpu(dead_cpu, p);
5405 spin_lock(&rq->lock);
5406
5407 put_task_struct(p);
5408 }
5409
5410 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5411 static void migrate_dead_tasks(unsigned int dead_cpu)
5412 {
5413 struct rq *rq = cpu_rq(dead_cpu);
5414 unsigned int arr, i;
5415
5416 for (arr = 0; arr < 2; arr++) {
5417 for (i = 0; i < MAX_PRIO; i++) {
5418 struct list_head *list = &rq->arrays[arr].queue[i];
5419
5420 while (!list_empty(list))
5421 migrate_dead(dead_cpu, list_entry(list->next,
5422 struct task_struct, run_list));
5423 }
5424 }
5425 }
5426 #endif /* CONFIG_HOTPLUG_CPU */
5427
5428 /*
5429 * migration_call - callback that gets triggered when a CPU is added.
5430 * Here we can start up the necessary migration thread for the new CPU.
5431 */
5432 static int __cpuinit
5433 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5434 {
5435 struct task_struct *p;
5436 int cpu = (long)hcpu;
5437 unsigned long flags;
5438 struct rq *rq;
5439
5440 switch (action) {
5441 case CPU_LOCK_ACQUIRE:
5442 mutex_lock(&sched_hotcpu_mutex);
5443 break;
5444
5445 case CPU_UP_PREPARE:
5446 case CPU_UP_PREPARE_FROZEN:
5447 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5448 if (IS_ERR(p))
5449 return NOTIFY_BAD;
5450 p->flags |= PF_NOFREEZE;
5451 kthread_bind(p, cpu);
5452 /* Must be high prio: stop_machine expects to yield to it. */
5453 rq = task_rq_lock(p, &flags);
5454 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5455 task_rq_unlock(rq, &flags);
5456 cpu_rq(cpu)->migration_thread = p;
5457 break;
5458
5459 case CPU_ONLINE:
5460 case CPU_ONLINE_FROZEN:
5461 /* Strictly unneccessary, as first user will wake it. */
5462 wake_up_process(cpu_rq(cpu)->migration_thread);
5463 break;
5464
5465 #ifdef CONFIG_HOTPLUG_CPU
5466 case CPU_UP_CANCELED:
5467 case CPU_UP_CANCELED_FROZEN:
5468 if (!cpu_rq(cpu)->migration_thread)
5469 break;
5470 /* Unbind it from offline cpu so it can run. Fall thru. */
5471 kthread_bind(cpu_rq(cpu)->migration_thread,
5472 any_online_cpu(cpu_online_map));
5473 kthread_stop(cpu_rq(cpu)->migration_thread);
5474 cpu_rq(cpu)->migration_thread = NULL;
5475 break;
5476
5477 case CPU_DEAD:
5478 case CPU_DEAD_FROZEN:
5479 migrate_live_tasks(cpu);
5480 rq = cpu_rq(cpu);
5481 kthread_stop(rq->migration_thread);
5482 rq->migration_thread = NULL;
5483 /* Idle task back to normal (off runqueue, low prio) */
5484 rq = task_rq_lock(rq->idle, &flags);
5485 deactivate_task(rq->idle, rq);
5486 rq->idle->static_prio = MAX_PRIO;
5487 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5488 migrate_dead_tasks(cpu);
5489 task_rq_unlock(rq, &flags);
5490 migrate_nr_uninterruptible(rq);
5491 BUG_ON(rq->nr_running != 0);
5492
5493 /* No need to migrate the tasks: it was best-effort if
5494 * they didn't take sched_hotcpu_mutex. Just wake up
5495 * the requestors. */
5496 spin_lock_irq(&rq->lock);
5497 while (!list_empty(&rq->migration_queue)) {
5498 struct migration_req *req;
5499
5500 req = list_entry(rq->migration_queue.next,
5501 struct migration_req, list);
5502 list_del_init(&req->list);
5503 complete(&req->done);
5504 }
5505 spin_unlock_irq(&rq->lock);
5506 break;
5507 #endif
5508 case CPU_LOCK_RELEASE:
5509 mutex_unlock(&sched_hotcpu_mutex);
5510 break;
5511 }
5512 return NOTIFY_OK;
5513 }
5514
5515 /* Register at highest priority so that task migration (migrate_all_tasks)
5516 * happens before everything else.
5517 */
5518 static struct notifier_block __cpuinitdata migration_notifier = {
5519 .notifier_call = migration_call,
5520 .priority = 10
5521 };
5522
5523 int __init migration_init(void)
5524 {
5525 void *cpu = (void *)(long)smp_processor_id();
5526 int err;
5527
5528 /* Start one for the boot CPU: */
5529 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5530 BUG_ON(err == NOTIFY_BAD);
5531 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5532 register_cpu_notifier(&migration_notifier);
5533
5534 return 0;
5535 }
5536 #endif
5537
5538 #ifdef CONFIG_SMP
5539
5540 /* Number of possible processor ids */
5541 int nr_cpu_ids __read_mostly = NR_CPUS;
5542 EXPORT_SYMBOL(nr_cpu_ids);
5543
5544 #undef SCHED_DOMAIN_DEBUG
5545 #ifdef SCHED_DOMAIN_DEBUG
5546 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5547 {
5548 int level = 0;
5549
5550 if (!sd) {
5551 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5552 return;
5553 }
5554
5555 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5556
5557 do {
5558 int i;
5559 char str[NR_CPUS];
5560 struct sched_group *group = sd->groups;
5561 cpumask_t groupmask;
5562
5563 cpumask_scnprintf(str, NR_CPUS, sd->span);
5564 cpus_clear(groupmask);
5565
5566 printk(KERN_DEBUG);
5567 for (i = 0; i < level + 1; i++)
5568 printk(" ");
5569 printk("domain %d: ", level);
5570
5571 if (!(sd->flags & SD_LOAD_BALANCE)) {
5572 printk("does not load-balance\n");
5573 if (sd->parent)
5574 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5575 " has parent");
5576 break;
5577 }
5578
5579 printk("span %s\n", str);
5580
5581 if (!cpu_isset(cpu, sd->span))
5582 printk(KERN_ERR "ERROR: domain->span does not contain "
5583 "CPU%d\n", cpu);
5584 if (!cpu_isset(cpu, group->cpumask))
5585 printk(KERN_ERR "ERROR: domain->groups does not contain"
5586 " CPU%d\n", cpu);
5587
5588 printk(KERN_DEBUG);
5589 for (i = 0; i < level + 2; i++)
5590 printk(" ");
5591 printk("groups:");
5592 do {
5593 if (!group) {
5594 printk("\n");
5595 printk(KERN_ERR "ERROR: group is NULL\n");
5596 break;
5597 }
5598
5599 if (!group->__cpu_power) {
5600 printk("\n");
5601 printk(KERN_ERR "ERROR: domain->cpu_power not "
5602 "set\n");
5603 }
5604
5605 if (!cpus_weight(group->cpumask)) {
5606 printk("\n");
5607 printk(KERN_ERR "ERROR: empty group\n");
5608 }
5609
5610 if (cpus_intersects(groupmask, group->cpumask)) {
5611 printk("\n");
5612 printk(KERN_ERR "ERROR: repeated CPUs\n");
5613 }
5614
5615 cpus_or(groupmask, groupmask, group->cpumask);
5616
5617 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5618 printk(" %s", str);
5619
5620 group = group->next;
5621 } while (group != sd->groups);
5622 printk("\n");
5623
5624 if (!cpus_equal(sd->span, groupmask))
5625 printk(KERN_ERR "ERROR: groups don't span "
5626 "domain->span\n");
5627
5628 level++;
5629 sd = sd->parent;
5630 if (!sd)
5631 continue;
5632
5633 if (!cpus_subset(groupmask, sd->span))
5634 printk(KERN_ERR "ERROR: parent span is not a superset "
5635 "of domain->span\n");
5636
5637 } while (sd);
5638 }
5639 #else
5640 # define sched_domain_debug(sd, cpu) do { } while (0)
5641 #endif
5642
5643 static int sd_degenerate(struct sched_domain *sd)
5644 {
5645 if (cpus_weight(sd->span) == 1)
5646 return 1;
5647
5648 /* Following flags need at least 2 groups */
5649 if (sd->flags & (SD_LOAD_BALANCE |
5650 SD_BALANCE_NEWIDLE |
5651 SD_BALANCE_FORK |
5652 SD_BALANCE_EXEC |
5653 SD_SHARE_CPUPOWER |
5654 SD_SHARE_PKG_RESOURCES)) {
5655 if (sd->groups != sd->groups->next)
5656 return 0;
5657 }
5658
5659 /* Following flags don't use groups */
5660 if (sd->flags & (SD_WAKE_IDLE |
5661 SD_WAKE_AFFINE |
5662 SD_WAKE_BALANCE))
5663 return 0;
5664
5665 return 1;
5666 }
5667
5668 static int
5669 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5670 {
5671 unsigned long cflags = sd->flags, pflags = parent->flags;
5672
5673 if (sd_degenerate(parent))
5674 return 1;
5675
5676 if (!cpus_equal(sd->span, parent->span))
5677 return 0;
5678
5679 /* Does parent contain flags not in child? */
5680 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5681 if (cflags & SD_WAKE_AFFINE)
5682 pflags &= ~SD_WAKE_BALANCE;
5683 /* Flags needing groups don't count if only 1 group in parent */
5684 if (parent->groups == parent->groups->next) {
5685 pflags &= ~(SD_LOAD_BALANCE |
5686 SD_BALANCE_NEWIDLE |
5687 SD_BALANCE_FORK |
5688 SD_BALANCE_EXEC |
5689 SD_SHARE_CPUPOWER |
5690 SD_SHARE_PKG_RESOURCES);
5691 }
5692 if (~cflags & pflags)
5693 return 0;
5694
5695 return 1;
5696 }
5697
5698 /*
5699 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5700 * hold the hotplug lock.
5701 */
5702 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5703 {
5704 struct rq *rq = cpu_rq(cpu);
5705 struct sched_domain *tmp;
5706
5707 /* Remove the sched domains which do not contribute to scheduling. */
5708 for (tmp = sd; tmp; tmp = tmp->parent) {
5709 struct sched_domain *parent = tmp->parent;
5710 if (!parent)
5711 break;
5712 if (sd_parent_degenerate(tmp, parent)) {
5713 tmp->parent = parent->parent;
5714 if (parent->parent)
5715 parent->parent->child = tmp;
5716 }
5717 }
5718
5719 if (sd && sd_degenerate(sd)) {
5720 sd = sd->parent;
5721 if (sd)
5722 sd->child = NULL;
5723 }
5724
5725 sched_domain_debug(sd, cpu);
5726
5727 rcu_assign_pointer(rq->sd, sd);
5728 }
5729
5730 /* cpus with isolated domains */
5731 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5732
5733 /* Setup the mask of cpus configured for isolated domains */
5734 static int __init isolated_cpu_setup(char *str)
5735 {
5736 int ints[NR_CPUS], i;
5737
5738 str = get_options(str, ARRAY_SIZE(ints), ints);
5739 cpus_clear(cpu_isolated_map);
5740 for (i = 1; i <= ints[0]; i++)
5741 if (ints[i] < NR_CPUS)
5742 cpu_set(ints[i], cpu_isolated_map);
5743 return 1;
5744 }
5745
5746 __setup ("isolcpus=", isolated_cpu_setup);
5747
5748 /*
5749 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5750 * to a function which identifies what group(along with sched group) a CPU
5751 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5752 * (due to the fact that we keep track of groups covered with a cpumask_t).
5753 *
5754 * init_sched_build_groups will build a circular linked list of the groups
5755 * covered by the given span, and will set each group's ->cpumask correctly,
5756 * and ->cpu_power to 0.
5757 */
5758 static void
5759 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5760 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5761 struct sched_group **sg))
5762 {
5763 struct sched_group *first = NULL, *last = NULL;
5764 cpumask_t covered = CPU_MASK_NONE;
5765 int i;
5766
5767 for_each_cpu_mask(i, span) {
5768 struct sched_group *sg;
5769 int group = group_fn(i, cpu_map, &sg);
5770 int j;
5771
5772 if (cpu_isset(i, covered))
5773 continue;
5774
5775 sg->cpumask = CPU_MASK_NONE;
5776 sg->__cpu_power = 0;
5777
5778 for_each_cpu_mask(j, span) {
5779 if (group_fn(j, cpu_map, NULL) != group)
5780 continue;
5781
5782 cpu_set(j, covered);
5783 cpu_set(j, sg->cpumask);
5784 }
5785 if (!first)
5786 first = sg;
5787 if (last)
5788 last->next = sg;
5789 last = sg;
5790 }
5791 last->next = first;
5792 }
5793
5794 #define SD_NODES_PER_DOMAIN 16
5795
5796 /*
5797 * Self-tuning task migration cost measurement between source and target CPUs.
5798 *
5799 * This is done by measuring the cost of manipulating buffers of varying
5800 * sizes. For a given buffer-size here are the steps that are taken:
5801 *
5802 * 1) the source CPU reads+dirties a shared buffer
5803 * 2) the target CPU reads+dirties the same shared buffer
5804 *
5805 * We measure how long they take, in the following 4 scenarios:
5806 *
5807 * - source: CPU1, target: CPU2 | cost1
5808 * - source: CPU2, target: CPU1 | cost2
5809 * - source: CPU1, target: CPU1 | cost3
5810 * - source: CPU2, target: CPU2 | cost4
5811 *
5812 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5813 * the cost of migration.
5814 *
5815 * We then start off from a small buffer-size and iterate up to larger
5816 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5817 * doing a maximum search for the cost. (The maximum cost for a migration
5818 * normally occurs when the working set size is around the effective cache
5819 * size.)
5820 */
5821 #define SEARCH_SCOPE 2
5822 #define MIN_CACHE_SIZE (64*1024U)
5823 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5824 #define ITERATIONS 1
5825 #define SIZE_THRESH 130
5826 #define COST_THRESH 130
5827
5828 /*
5829 * The migration cost is a function of 'domain distance'. Domain
5830 * distance is the number of steps a CPU has to iterate down its
5831 * domain tree to share a domain with the other CPU. The farther
5832 * two CPUs are from each other, the larger the distance gets.
5833 *
5834 * Note that we use the distance only to cache measurement results,
5835 * the distance value is not used numerically otherwise. When two
5836 * CPUs have the same distance it is assumed that the migration
5837 * cost is the same. (this is a simplification but quite practical)
5838 */
5839 #define MAX_DOMAIN_DISTANCE 32
5840
5841 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5842 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5843 /*
5844 * Architectures may override the migration cost and thus avoid
5845 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5846 * virtualized hardware:
5847 */
5848 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5849 CONFIG_DEFAULT_MIGRATION_COST
5850 #else
5851 -1LL
5852 #endif
5853 };
5854
5855 /*
5856 * Allow override of migration cost - in units of microseconds.
5857 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5858 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5859 */
5860 static int __init migration_cost_setup(char *str)
5861 {
5862 int ints[MAX_DOMAIN_DISTANCE+1], i;
5863
5864 str = get_options(str, ARRAY_SIZE(ints), ints);
5865
5866 printk("#ints: %d\n", ints[0]);
5867 for (i = 1; i <= ints[0]; i++) {
5868 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5869 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5870 }
5871 return 1;
5872 }
5873
5874 __setup ("migration_cost=", migration_cost_setup);
5875
5876 /*
5877 * Global multiplier (divisor) for migration-cutoff values,
5878 * in percentiles. E.g. use a value of 150 to get 1.5 times
5879 * longer cache-hot cutoff times.
5880 *
5881 * (We scale it from 100 to 128 to long long handling easier.)
5882 */
5883
5884 #define MIGRATION_FACTOR_SCALE 128
5885
5886 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5887
5888 static int __init setup_migration_factor(char *str)
5889 {
5890 get_option(&str, &migration_factor);
5891 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5892 return 1;
5893 }
5894
5895 __setup("migration_factor=", setup_migration_factor);
5896
5897 /*
5898 * Estimated distance of two CPUs, measured via the number of domains
5899 * we have to pass for the two CPUs to be in the same span:
5900 */
5901 static unsigned long domain_distance(int cpu1, int cpu2)
5902 {
5903 unsigned long distance = 0;
5904 struct sched_domain *sd;
5905
5906 for_each_domain(cpu1, sd) {
5907 WARN_ON(!cpu_isset(cpu1, sd->span));
5908 if (cpu_isset(cpu2, sd->span))
5909 return distance;
5910 distance++;
5911 }
5912 if (distance >= MAX_DOMAIN_DISTANCE) {
5913 WARN_ON(1);
5914 distance = MAX_DOMAIN_DISTANCE-1;
5915 }
5916
5917 return distance;
5918 }
5919
5920 static unsigned int migration_debug;
5921
5922 static int __init setup_migration_debug(char *str)
5923 {
5924 get_option(&str, &migration_debug);
5925 return 1;
5926 }
5927
5928 __setup("migration_debug=", setup_migration_debug);
5929
5930 /*
5931 * Maximum cache-size that the scheduler should try to measure.
5932 * Architectures with larger caches should tune this up during
5933 * bootup. Gets used in the domain-setup code (i.e. during SMP
5934 * bootup).
5935 */
5936 unsigned int max_cache_size;
5937
5938 static int __init setup_max_cache_size(char *str)
5939 {
5940 get_option(&str, &max_cache_size);
5941 return 1;
5942 }
5943
5944 __setup("max_cache_size=", setup_max_cache_size);
5945
5946 /*
5947 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5948 * is the operation that is timed, so we try to generate unpredictable
5949 * cachemisses that still end up filling the L2 cache:
5950 */
5951 static void touch_cache(void *__cache, unsigned long __size)
5952 {
5953 unsigned long size = __size / sizeof(long);
5954 unsigned long chunk1 = size / 3;
5955 unsigned long chunk2 = 2 * size / 3;
5956 unsigned long *cache = __cache;
5957 int i;
5958
5959 for (i = 0; i < size/6; i += 8) {
5960 switch (i % 6) {
5961 case 0: cache[i]++;
5962 case 1: cache[size-1-i]++;
5963 case 2: cache[chunk1-i]++;
5964 case 3: cache[chunk1+i]++;
5965 case 4: cache[chunk2-i]++;
5966 case 5: cache[chunk2+i]++;
5967 }
5968 }
5969 }
5970
5971 /*
5972 * Measure the cache-cost of one task migration. Returns in units of nsec.
5973 */
5974 static unsigned long long
5975 measure_one(void *cache, unsigned long size, int source, int target)
5976 {
5977 cpumask_t mask, saved_mask;
5978 unsigned long long t0, t1, t2, t3, cost;
5979
5980 saved_mask = current->cpus_allowed;
5981
5982 /*
5983 * Flush source caches to RAM and invalidate them:
5984 */
5985 sched_cacheflush();
5986
5987 /*
5988 * Migrate to the source CPU:
5989 */
5990 mask = cpumask_of_cpu(source);
5991 set_cpus_allowed(current, mask);
5992 WARN_ON(smp_processor_id() != source);
5993
5994 /*
5995 * Dirty the working set:
5996 */
5997 t0 = sched_clock();
5998 touch_cache(cache, size);
5999 t1 = sched_clock();
6000
6001 /*
6002 * Migrate to the target CPU, dirty the L2 cache and access
6003 * the shared buffer. (which represents the working set
6004 * of a migrated task.)
6005 */
6006 mask = cpumask_of_cpu(target);
6007 set_cpus_allowed(current, mask);
6008 WARN_ON(smp_processor_id() != target);
6009
6010 t2 = sched_clock();
6011 touch_cache(cache, size);
6012 t3 = sched_clock();
6013
6014 cost = t1-t0 + t3-t2;
6015
6016 if (migration_debug >= 2)
6017 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
6018 source, target, t1-t0, t1-t0, t3-t2, cost);
6019 /*
6020 * Flush target caches to RAM and invalidate them:
6021 */
6022 sched_cacheflush();
6023
6024 set_cpus_allowed(current, saved_mask);
6025
6026 return cost;
6027 }
6028
6029 /*
6030 * Measure a series of task migrations and return the average
6031 * result. Since this code runs early during bootup the system
6032 * is 'undisturbed' and the average latency makes sense.
6033 *
6034 * The algorithm in essence auto-detects the relevant cache-size,
6035 * so it will properly detect different cachesizes for different
6036 * cache-hierarchies, depending on how the CPUs are connected.
6037 *
6038 * Architectures can prime the upper limit of the search range via
6039 * max_cache_size, otherwise the search range defaults to 20MB...64K.
6040 */
6041 static unsigned long long
6042 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
6043 {
6044 unsigned long long cost1, cost2;
6045 int i;
6046
6047 /*
6048 * Measure the migration cost of 'size' bytes, over an
6049 * average of 10 runs:
6050 *
6051 * (We perturb the cache size by a small (0..4k)
6052 * value to compensate size/alignment related artifacts.
6053 * We also subtract the cost of the operation done on
6054 * the same CPU.)
6055 */
6056 cost1 = 0;
6057
6058 /*
6059 * dry run, to make sure we start off cache-cold on cpu1,
6060 * and to get any vmalloc pagefaults in advance:
6061 */
6062 measure_one(cache, size, cpu1, cpu2);
6063 for (i = 0; i < ITERATIONS; i++)
6064 cost1 += measure_one(cache, size - i * 1024, cpu1, cpu2);
6065
6066 measure_one(cache, size, cpu2, cpu1);
6067 for (i = 0; i < ITERATIONS; i++)
6068 cost1 += measure_one(cache, size - i * 1024, cpu2, cpu1);
6069
6070 /*
6071 * (We measure the non-migrating [cached] cost on both
6072 * cpu1 and cpu2, to handle CPUs with different speeds)
6073 */
6074 cost2 = 0;
6075
6076 measure_one(cache, size, cpu1, cpu1);
6077 for (i = 0; i < ITERATIONS; i++)
6078 cost2 += measure_one(cache, size - i * 1024, cpu1, cpu1);
6079
6080 measure_one(cache, size, cpu2, cpu2);
6081 for (i = 0; i < ITERATIONS; i++)
6082 cost2 += measure_one(cache, size - i * 1024, cpu2, cpu2);
6083
6084 /*
6085 * Get the per-iteration migration cost:
6086 */
6087 do_div(cost1, 2 * ITERATIONS);
6088 do_div(cost2, 2 * ITERATIONS);
6089
6090 return cost1 - cost2;
6091 }
6092
6093 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
6094 {
6095 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
6096 unsigned int max_size, size, size_found = 0;
6097 long long cost = 0, prev_cost;
6098 void *cache;
6099
6100 /*
6101 * Search from max_cache_size*5 down to 64K - the real relevant
6102 * cachesize has to lie somewhere inbetween.
6103 */
6104 if (max_cache_size) {
6105 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
6106 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
6107 } else {
6108 /*
6109 * Since we have no estimation about the relevant
6110 * search range
6111 */
6112 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
6113 size = MIN_CACHE_SIZE;
6114 }
6115
6116 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
6117 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
6118 return 0;
6119 }
6120
6121 /*
6122 * Allocate the working set:
6123 */
6124 cache = vmalloc(max_size);
6125 if (!cache) {
6126 printk("could not vmalloc %d bytes for cache!\n", 2 * max_size);
6127 return 1000000; /* return 1 msec on very small boxen */
6128 }
6129
6130 while (size <= max_size) {
6131 prev_cost = cost;
6132 cost = measure_cost(cpu1, cpu2, cache, size);
6133
6134 /*
6135 * Update the max:
6136 */
6137 if (cost > 0) {
6138 if (max_cost < cost) {
6139 max_cost = cost;
6140 size_found = size;
6141 }
6142 }
6143 /*
6144 * Calculate average fluctuation, we use this to prevent
6145 * noise from triggering an early break out of the loop:
6146 */
6147 fluct = abs(cost - prev_cost);
6148 avg_fluct = (avg_fluct + fluct)/2;
6149
6150 if (migration_debug)
6151 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): "
6152 "(%8Ld %8Ld)\n",
6153 cpu1, cpu2, size,
6154 (long)cost / 1000000,
6155 ((long)cost / 100000) % 10,
6156 (long)max_cost / 1000000,
6157 ((long)max_cost / 100000) % 10,
6158 domain_distance(cpu1, cpu2),
6159 cost, avg_fluct);
6160
6161 /*
6162 * If we iterated at least 20% past the previous maximum,
6163 * and the cost has dropped by more than 20% already,
6164 * (taking fluctuations into account) then we assume to
6165 * have found the maximum and break out of the loop early:
6166 */
6167 if (size_found && (size*100 > size_found*SIZE_THRESH))
6168 if (cost+avg_fluct <= 0 ||
6169 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
6170
6171 if (migration_debug)
6172 printk("-> found max.\n");
6173 break;
6174 }
6175 /*
6176 * Increase the cachesize in 10% steps:
6177 */
6178 size = size * 10 / 9;
6179 }
6180
6181 if (migration_debug)
6182 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
6183 cpu1, cpu2, size_found, max_cost);
6184
6185 vfree(cache);
6186
6187 /*
6188 * A task is considered 'cache cold' if at least 2 times
6189 * the worst-case cost of migration has passed.
6190 *
6191 * (this limit is only listened to if the load-balancing
6192 * situation is 'nice' - if there is a large imbalance we
6193 * ignore it for the sake of CPU utilization and
6194 * processing fairness.)
6195 */
6196 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
6197 }
6198
6199 static void calibrate_migration_costs(const cpumask_t *cpu_map)
6200 {
6201 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
6202 unsigned long j0, j1, distance, max_distance = 0;
6203 struct sched_domain *sd;
6204
6205 j0 = jiffies;
6206
6207 /*
6208 * First pass - calculate the cacheflush times:
6209 */
6210 for_each_cpu_mask(cpu1, *cpu_map) {
6211 for_each_cpu_mask(cpu2, *cpu_map) {
6212 if (cpu1 == cpu2)
6213 continue;
6214 distance = domain_distance(cpu1, cpu2);
6215 max_distance = max(max_distance, distance);
6216 /*
6217 * No result cached yet?
6218 */
6219 if (migration_cost[distance] == -1LL)
6220 migration_cost[distance] =
6221 measure_migration_cost(cpu1, cpu2);
6222 }
6223 }
6224 /*
6225 * Second pass - update the sched domain hierarchy with
6226 * the new cache-hot-time estimations:
6227 */
6228 for_each_cpu_mask(cpu, *cpu_map) {
6229 distance = 0;
6230 for_each_domain(cpu, sd) {
6231 sd->cache_hot_time = migration_cost[distance];
6232 distance++;
6233 }
6234 }
6235 /*
6236 * Print the matrix:
6237 */
6238 if (migration_debug)
6239 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6240 max_cache_size,
6241 #ifdef CONFIG_X86
6242 cpu_khz/1000
6243 #else
6244 -1
6245 #endif
6246 );
6247 if (system_state == SYSTEM_BOOTING && num_online_cpus() > 1) {
6248 printk("migration_cost=");
6249 for (distance = 0; distance <= max_distance; distance++) {
6250 if (distance)
6251 printk(",");
6252 printk("%ld", (long)migration_cost[distance] / 1000);
6253 }
6254 printk("\n");
6255 }
6256 j1 = jiffies;
6257 if (migration_debug)
6258 printk("migration: %ld seconds\n", (j1-j0) / HZ);
6259
6260 /*
6261 * Move back to the original CPU. NUMA-Q gets confused
6262 * if we migrate to another quad during bootup.
6263 */
6264 if (raw_smp_processor_id() != orig_cpu) {
6265 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6266 saved_mask = current->cpus_allowed;
6267
6268 set_cpus_allowed(current, mask);
6269 set_cpus_allowed(current, saved_mask);
6270 }
6271 }
6272
6273 #ifdef CONFIG_NUMA
6274
6275 /**
6276 * find_next_best_node - find the next node to include in a sched_domain
6277 * @node: node whose sched_domain we're building
6278 * @used_nodes: nodes already in the sched_domain
6279 *
6280 * Find the next node to include in a given scheduling domain. Simply
6281 * finds the closest node not already in the @used_nodes map.
6282 *
6283 * Should use nodemask_t.
6284 */
6285 static int find_next_best_node(int node, unsigned long *used_nodes)
6286 {
6287 int i, n, val, min_val, best_node = 0;
6288
6289 min_val = INT_MAX;
6290
6291 for (i = 0; i < MAX_NUMNODES; i++) {
6292 /* Start at @node */
6293 n = (node + i) % MAX_NUMNODES;
6294
6295 if (!nr_cpus_node(n))
6296 continue;
6297
6298 /* Skip already used nodes */
6299 if (test_bit(n, used_nodes))
6300 continue;
6301
6302 /* Simple min distance search */
6303 val = node_distance(node, n);
6304
6305 if (val < min_val) {
6306 min_val = val;
6307 best_node = n;
6308 }
6309 }
6310
6311 set_bit(best_node, used_nodes);
6312 return best_node;
6313 }
6314
6315 /**
6316 * sched_domain_node_span - get a cpumask for a node's sched_domain
6317 * @node: node whose cpumask we're constructing
6318 * @size: number of nodes to include in this span
6319 *
6320 * Given a node, construct a good cpumask for its sched_domain to span. It
6321 * should be one that prevents unnecessary balancing, but also spreads tasks
6322 * out optimally.
6323 */
6324 static cpumask_t sched_domain_node_span(int node)
6325 {
6326 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6327 cpumask_t span, nodemask;
6328 int i;
6329
6330 cpus_clear(span);
6331 bitmap_zero(used_nodes, MAX_NUMNODES);
6332
6333 nodemask = node_to_cpumask(node);
6334 cpus_or(span, span, nodemask);
6335 set_bit(node, used_nodes);
6336
6337 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6338 int next_node = find_next_best_node(node, used_nodes);
6339
6340 nodemask = node_to_cpumask(next_node);
6341 cpus_or(span, span, nodemask);
6342 }
6343
6344 return span;
6345 }
6346 #endif
6347
6348 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6349
6350 /*
6351 * SMT sched-domains:
6352 */
6353 #ifdef CONFIG_SCHED_SMT
6354 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6355 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6356
6357 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6358 struct sched_group **sg)
6359 {
6360 if (sg)
6361 *sg = &per_cpu(sched_group_cpus, cpu);
6362 return cpu;
6363 }
6364 #endif
6365
6366 /*
6367 * multi-core sched-domains:
6368 */
6369 #ifdef CONFIG_SCHED_MC
6370 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6371 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6372 #endif
6373
6374 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6375 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6376 struct sched_group **sg)
6377 {
6378 int group;
6379 cpumask_t mask = cpu_sibling_map[cpu];
6380 cpus_and(mask, mask, *cpu_map);
6381 group = first_cpu(mask);
6382 if (sg)
6383 *sg = &per_cpu(sched_group_core, group);
6384 return group;
6385 }
6386 #elif defined(CONFIG_SCHED_MC)
6387 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6388 struct sched_group **sg)
6389 {
6390 if (sg)
6391 *sg = &per_cpu(sched_group_core, cpu);
6392 return cpu;
6393 }
6394 #endif
6395
6396 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6397 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6398
6399 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6400 struct sched_group **sg)
6401 {
6402 int group;
6403 #ifdef CONFIG_SCHED_MC
6404 cpumask_t mask = cpu_coregroup_map(cpu);
6405 cpus_and(mask, mask, *cpu_map);
6406 group = first_cpu(mask);
6407 #elif defined(CONFIG_SCHED_SMT)
6408 cpumask_t mask = cpu_sibling_map[cpu];
6409 cpus_and(mask, mask, *cpu_map);
6410 group = first_cpu(mask);
6411 #else
6412 group = cpu;
6413 #endif
6414 if (sg)
6415 *sg = &per_cpu(sched_group_phys, group);
6416 return group;
6417 }
6418
6419 #ifdef CONFIG_NUMA
6420 /*
6421 * The init_sched_build_groups can't handle what we want to do with node
6422 * groups, so roll our own. Now each node has its own list of groups which
6423 * gets dynamically allocated.
6424 */
6425 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6426 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6427
6428 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6429 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6430
6431 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6432 struct sched_group **sg)
6433 {
6434 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6435 int group;
6436
6437 cpus_and(nodemask, nodemask, *cpu_map);
6438 group = first_cpu(nodemask);
6439
6440 if (sg)
6441 *sg = &per_cpu(sched_group_allnodes, group);
6442 return group;
6443 }
6444
6445 static void init_numa_sched_groups_power(struct sched_group *group_head)
6446 {
6447 struct sched_group *sg = group_head;
6448 int j;
6449
6450 if (!sg)
6451 return;
6452 next_sg:
6453 for_each_cpu_mask(j, sg->cpumask) {
6454 struct sched_domain *sd;
6455
6456 sd = &per_cpu(phys_domains, j);
6457 if (j != first_cpu(sd->groups->cpumask)) {
6458 /*
6459 * Only add "power" once for each
6460 * physical package.
6461 */
6462 continue;
6463 }
6464
6465 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6466 }
6467 sg = sg->next;
6468 if (sg != group_head)
6469 goto next_sg;
6470 }
6471 #endif
6472
6473 #ifdef CONFIG_NUMA
6474 /* Free memory allocated for various sched_group structures */
6475 static void free_sched_groups(const cpumask_t *cpu_map)
6476 {
6477 int cpu, i;
6478
6479 for_each_cpu_mask(cpu, *cpu_map) {
6480 struct sched_group **sched_group_nodes
6481 = sched_group_nodes_bycpu[cpu];
6482
6483 if (!sched_group_nodes)
6484 continue;
6485
6486 for (i = 0; i < MAX_NUMNODES; i++) {
6487 cpumask_t nodemask = node_to_cpumask(i);
6488 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6489
6490 cpus_and(nodemask, nodemask, *cpu_map);
6491 if (cpus_empty(nodemask))
6492 continue;
6493
6494 if (sg == NULL)
6495 continue;
6496 sg = sg->next;
6497 next_sg:
6498 oldsg = sg;
6499 sg = sg->next;
6500 kfree(oldsg);
6501 if (oldsg != sched_group_nodes[i])
6502 goto next_sg;
6503 }
6504 kfree(sched_group_nodes);
6505 sched_group_nodes_bycpu[cpu] = NULL;
6506 }
6507 }
6508 #else
6509 static void free_sched_groups(const cpumask_t *cpu_map)
6510 {
6511 }
6512 #endif
6513
6514 /*
6515 * Initialize sched groups cpu_power.
6516 *
6517 * cpu_power indicates the capacity of sched group, which is used while
6518 * distributing the load between different sched groups in a sched domain.
6519 * Typically cpu_power for all the groups in a sched domain will be same unless
6520 * there are asymmetries in the topology. If there are asymmetries, group
6521 * having more cpu_power will pickup more load compared to the group having
6522 * less cpu_power.
6523 *
6524 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6525 * the maximum number of tasks a group can handle in the presence of other idle
6526 * or lightly loaded groups in the same sched domain.
6527 */
6528 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6529 {
6530 struct sched_domain *child;
6531 struct sched_group *group;
6532
6533 WARN_ON(!sd || !sd->groups);
6534
6535 if (cpu != first_cpu(sd->groups->cpumask))
6536 return;
6537
6538 child = sd->child;
6539
6540 sd->groups->__cpu_power = 0;
6541
6542 /*
6543 * For perf policy, if the groups in child domain share resources
6544 * (for example cores sharing some portions of the cache hierarchy
6545 * or SMT), then set this domain groups cpu_power such that each group
6546 * can handle only one task, when there are other idle groups in the
6547 * same sched domain.
6548 */
6549 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6550 (child->flags &
6551 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6552 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6553 return;
6554 }
6555
6556 /*
6557 * add cpu_power of each child group to this groups cpu_power
6558 */
6559 group = child->groups;
6560 do {
6561 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6562 group = group->next;
6563 } while (group != child->groups);
6564 }
6565
6566 /*
6567 * Build sched domains for a given set of cpus and attach the sched domains
6568 * to the individual cpus
6569 */
6570 static int build_sched_domains(const cpumask_t *cpu_map)
6571 {
6572 int i;
6573 struct sched_domain *sd;
6574 #ifdef CONFIG_NUMA
6575 struct sched_group **sched_group_nodes = NULL;
6576 int sd_allnodes = 0;
6577
6578 /*
6579 * Allocate the per-node list of sched groups
6580 */
6581 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
6582 GFP_KERNEL);
6583 if (!sched_group_nodes) {
6584 printk(KERN_WARNING "Can not alloc sched group node list\n");
6585 return -ENOMEM;
6586 }
6587 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6588 #endif
6589
6590 /*
6591 * Set up domains for cpus specified by the cpu_map.
6592 */
6593 for_each_cpu_mask(i, *cpu_map) {
6594 struct sched_domain *sd = NULL, *p;
6595 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6596
6597 cpus_and(nodemask, nodemask, *cpu_map);
6598
6599 #ifdef CONFIG_NUMA
6600 if (cpus_weight(*cpu_map)
6601 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6602 sd = &per_cpu(allnodes_domains, i);
6603 *sd = SD_ALLNODES_INIT;
6604 sd->span = *cpu_map;
6605 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6606 p = sd;
6607 sd_allnodes = 1;
6608 } else
6609 p = NULL;
6610
6611 sd = &per_cpu(node_domains, i);
6612 *sd = SD_NODE_INIT;
6613 sd->span = sched_domain_node_span(cpu_to_node(i));
6614 sd->parent = p;
6615 if (p)
6616 p->child = sd;
6617 cpus_and(sd->span, sd->span, *cpu_map);
6618 #endif
6619
6620 p = sd;
6621 sd = &per_cpu(phys_domains, i);
6622 *sd = SD_CPU_INIT;
6623 sd->span = nodemask;
6624 sd->parent = p;
6625 if (p)
6626 p->child = sd;
6627 cpu_to_phys_group(i, cpu_map, &sd->groups);
6628
6629 #ifdef CONFIG_SCHED_MC
6630 p = sd;
6631 sd = &per_cpu(core_domains, i);
6632 *sd = SD_MC_INIT;
6633 sd->span = cpu_coregroup_map(i);
6634 cpus_and(sd->span, sd->span, *cpu_map);
6635 sd->parent = p;
6636 p->child = sd;
6637 cpu_to_core_group(i, cpu_map, &sd->groups);
6638 #endif
6639
6640 #ifdef CONFIG_SCHED_SMT
6641 p = sd;
6642 sd = &per_cpu(cpu_domains, i);
6643 *sd = SD_SIBLING_INIT;
6644 sd->span = cpu_sibling_map[i];
6645 cpus_and(sd->span, sd->span, *cpu_map);
6646 sd->parent = p;
6647 p->child = sd;
6648 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6649 #endif
6650 }
6651
6652 #ifdef CONFIG_SCHED_SMT
6653 /* Set up CPU (sibling) groups */
6654 for_each_cpu_mask(i, *cpu_map) {
6655 cpumask_t this_sibling_map = cpu_sibling_map[i];
6656 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6657 if (i != first_cpu(this_sibling_map))
6658 continue;
6659
6660 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
6661 }
6662 #endif
6663
6664 #ifdef CONFIG_SCHED_MC
6665 /* Set up multi-core groups */
6666 for_each_cpu_mask(i, *cpu_map) {
6667 cpumask_t this_core_map = cpu_coregroup_map(i);
6668 cpus_and(this_core_map, this_core_map, *cpu_map);
6669 if (i != first_cpu(this_core_map))
6670 continue;
6671 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
6672 }
6673 #endif
6674
6675
6676 /* Set up physical groups */
6677 for (i = 0; i < MAX_NUMNODES; i++) {
6678 cpumask_t nodemask = node_to_cpumask(i);
6679
6680 cpus_and(nodemask, nodemask, *cpu_map);
6681 if (cpus_empty(nodemask))
6682 continue;
6683
6684 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6685 }
6686
6687 #ifdef CONFIG_NUMA
6688 /* Set up node groups */
6689 if (sd_allnodes)
6690 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
6691
6692 for (i = 0; i < MAX_NUMNODES; i++) {
6693 /* Set up node groups */
6694 struct sched_group *sg, *prev;
6695 cpumask_t nodemask = node_to_cpumask(i);
6696 cpumask_t domainspan;
6697 cpumask_t covered = CPU_MASK_NONE;
6698 int j;
6699
6700 cpus_and(nodemask, nodemask, *cpu_map);
6701 if (cpus_empty(nodemask)) {
6702 sched_group_nodes[i] = NULL;
6703 continue;
6704 }
6705
6706 domainspan = sched_domain_node_span(i);
6707 cpus_and(domainspan, domainspan, *cpu_map);
6708
6709 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6710 if (!sg) {
6711 printk(KERN_WARNING "Can not alloc domain group for "
6712 "node %d\n", i);
6713 goto error;
6714 }
6715 sched_group_nodes[i] = sg;
6716 for_each_cpu_mask(j, nodemask) {
6717 struct sched_domain *sd;
6718 sd = &per_cpu(node_domains, j);
6719 sd->groups = sg;
6720 }
6721 sg->__cpu_power = 0;
6722 sg->cpumask = nodemask;
6723 sg->next = sg;
6724 cpus_or(covered, covered, nodemask);
6725 prev = sg;
6726
6727 for (j = 0; j < MAX_NUMNODES; j++) {
6728 cpumask_t tmp, notcovered;
6729 int n = (i + j) % MAX_NUMNODES;
6730
6731 cpus_complement(notcovered, covered);
6732 cpus_and(tmp, notcovered, *cpu_map);
6733 cpus_and(tmp, tmp, domainspan);
6734 if (cpus_empty(tmp))
6735 break;
6736
6737 nodemask = node_to_cpumask(n);
6738 cpus_and(tmp, tmp, nodemask);
6739 if (cpus_empty(tmp))
6740 continue;
6741
6742 sg = kmalloc_node(sizeof(struct sched_group),
6743 GFP_KERNEL, i);
6744 if (!sg) {
6745 printk(KERN_WARNING
6746 "Can not alloc domain group for node %d\n", j);
6747 goto error;
6748 }
6749 sg->__cpu_power = 0;
6750 sg->cpumask = tmp;
6751 sg->next = prev->next;
6752 cpus_or(covered, covered, tmp);
6753 prev->next = sg;
6754 prev = sg;
6755 }
6756 }
6757 #endif
6758
6759 /* Calculate CPU power for physical packages and nodes */
6760 #ifdef CONFIG_SCHED_SMT
6761 for_each_cpu_mask(i, *cpu_map) {
6762 sd = &per_cpu(cpu_domains, i);
6763 init_sched_groups_power(i, sd);
6764 }
6765 #endif
6766 #ifdef CONFIG_SCHED_MC
6767 for_each_cpu_mask(i, *cpu_map) {
6768 sd = &per_cpu(core_domains, i);
6769 init_sched_groups_power(i, sd);
6770 }
6771 #endif
6772
6773 for_each_cpu_mask(i, *cpu_map) {
6774 sd = &per_cpu(phys_domains, i);
6775 init_sched_groups_power(i, sd);
6776 }
6777
6778 #ifdef CONFIG_NUMA
6779 for (i = 0; i < MAX_NUMNODES; i++)
6780 init_numa_sched_groups_power(sched_group_nodes[i]);
6781
6782 if (sd_allnodes) {
6783 struct sched_group *sg;
6784
6785 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6786 init_numa_sched_groups_power(sg);
6787 }
6788 #endif
6789
6790 /* Attach the domains */
6791 for_each_cpu_mask(i, *cpu_map) {
6792 struct sched_domain *sd;
6793 #ifdef CONFIG_SCHED_SMT
6794 sd = &per_cpu(cpu_domains, i);
6795 #elif defined(CONFIG_SCHED_MC)
6796 sd = &per_cpu(core_domains, i);
6797 #else
6798 sd = &per_cpu(phys_domains, i);
6799 #endif
6800 cpu_attach_domain(sd, i);
6801 }
6802 /*
6803 * Tune cache-hot values:
6804 */
6805 calibrate_migration_costs(cpu_map);
6806
6807 return 0;
6808
6809 #ifdef CONFIG_NUMA
6810 error:
6811 free_sched_groups(cpu_map);
6812 return -ENOMEM;
6813 #endif
6814 }
6815 /*
6816 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6817 */
6818 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6819 {
6820 cpumask_t cpu_default_map;
6821 int err;
6822
6823 /*
6824 * Setup mask for cpus without special case scheduling requirements.
6825 * For now this just excludes isolated cpus, but could be used to
6826 * exclude other special cases in the future.
6827 */
6828 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6829
6830 err = build_sched_domains(&cpu_default_map);
6831
6832 return err;
6833 }
6834
6835 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6836 {
6837 free_sched_groups(cpu_map);
6838 }
6839
6840 /*
6841 * Detach sched domains from a group of cpus specified in cpu_map
6842 * These cpus will now be attached to the NULL domain
6843 */
6844 static void detach_destroy_domains(const cpumask_t *cpu_map)
6845 {
6846 int i;
6847
6848 for_each_cpu_mask(i, *cpu_map)
6849 cpu_attach_domain(NULL, i);
6850 synchronize_sched();
6851 arch_destroy_sched_domains(cpu_map);
6852 }
6853
6854 /*
6855 * Partition sched domains as specified by the cpumasks below.
6856 * This attaches all cpus from the cpumasks to the NULL domain,
6857 * waits for a RCU quiescent period, recalculates sched
6858 * domain information and then attaches them back to the
6859 * correct sched domains
6860 * Call with hotplug lock held
6861 */
6862 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6863 {
6864 cpumask_t change_map;
6865 int err = 0;
6866
6867 cpus_and(*partition1, *partition1, cpu_online_map);
6868 cpus_and(*partition2, *partition2, cpu_online_map);
6869 cpus_or(change_map, *partition1, *partition2);
6870
6871 /* Detach sched domains from all of the affected cpus */
6872 detach_destroy_domains(&change_map);
6873 if (!cpus_empty(*partition1))
6874 err = build_sched_domains(partition1);
6875 if (!err && !cpus_empty(*partition2))
6876 err = build_sched_domains(partition2);
6877
6878 return err;
6879 }
6880
6881 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6882 int arch_reinit_sched_domains(void)
6883 {
6884 int err;
6885
6886 mutex_lock(&sched_hotcpu_mutex);
6887 detach_destroy_domains(&cpu_online_map);
6888 err = arch_init_sched_domains(&cpu_online_map);
6889 mutex_unlock(&sched_hotcpu_mutex);
6890
6891 return err;
6892 }
6893
6894 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6895 {
6896 int ret;
6897
6898 if (buf[0] != '0' && buf[0] != '1')
6899 return -EINVAL;
6900
6901 if (smt)
6902 sched_smt_power_savings = (buf[0] == '1');
6903 else
6904 sched_mc_power_savings = (buf[0] == '1');
6905
6906 ret = arch_reinit_sched_domains();
6907
6908 return ret ? ret : count;
6909 }
6910
6911 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6912 {
6913 int err = 0;
6914
6915 #ifdef CONFIG_SCHED_SMT
6916 if (smt_capable())
6917 err = sysfs_create_file(&cls->kset.kobj,
6918 &attr_sched_smt_power_savings.attr);
6919 #endif
6920 #ifdef CONFIG_SCHED_MC
6921 if (!err && mc_capable())
6922 err = sysfs_create_file(&cls->kset.kobj,
6923 &attr_sched_mc_power_savings.attr);
6924 #endif
6925 return err;
6926 }
6927 #endif
6928
6929 #ifdef CONFIG_SCHED_MC
6930 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6931 {
6932 return sprintf(page, "%u\n", sched_mc_power_savings);
6933 }
6934 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6935 const char *buf, size_t count)
6936 {
6937 return sched_power_savings_store(buf, count, 0);
6938 }
6939 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6940 sched_mc_power_savings_store);
6941 #endif
6942
6943 #ifdef CONFIG_SCHED_SMT
6944 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6945 {
6946 return sprintf(page, "%u\n", sched_smt_power_savings);
6947 }
6948 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6949 const char *buf, size_t count)
6950 {
6951 return sched_power_savings_store(buf, count, 1);
6952 }
6953 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6954 sched_smt_power_savings_store);
6955 #endif
6956
6957 /*
6958 * Force a reinitialization of the sched domains hierarchy. The domains
6959 * and groups cannot be updated in place without racing with the balancing
6960 * code, so we temporarily attach all running cpus to the NULL domain
6961 * which will prevent rebalancing while the sched domains are recalculated.
6962 */
6963 static int update_sched_domains(struct notifier_block *nfb,
6964 unsigned long action, void *hcpu)
6965 {
6966 switch (action) {
6967 case CPU_UP_PREPARE:
6968 case CPU_UP_PREPARE_FROZEN:
6969 case CPU_DOWN_PREPARE:
6970 case CPU_DOWN_PREPARE_FROZEN:
6971 detach_destroy_domains(&cpu_online_map);
6972 return NOTIFY_OK;
6973
6974 case CPU_UP_CANCELED:
6975 case CPU_UP_CANCELED_FROZEN:
6976 case CPU_DOWN_FAILED:
6977 case CPU_DOWN_FAILED_FROZEN:
6978 case CPU_ONLINE:
6979 case CPU_ONLINE_FROZEN:
6980 case CPU_DEAD:
6981 case CPU_DEAD_FROZEN:
6982 /*
6983 * Fall through and re-initialise the domains.
6984 */
6985 break;
6986 default:
6987 return NOTIFY_DONE;
6988 }
6989
6990 /* The hotplug lock is already held by cpu_up/cpu_down */
6991 arch_init_sched_domains(&cpu_online_map);
6992
6993 return NOTIFY_OK;
6994 }
6995
6996 void __init sched_init_smp(void)
6997 {
6998 cpumask_t non_isolated_cpus;
6999
7000 mutex_lock(&sched_hotcpu_mutex);
7001 arch_init_sched_domains(&cpu_online_map);
7002 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7003 if (cpus_empty(non_isolated_cpus))
7004 cpu_set(smp_processor_id(), non_isolated_cpus);
7005 mutex_unlock(&sched_hotcpu_mutex);
7006 /* XXX: Theoretical race here - CPU may be hotplugged now */
7007 hotcpu_notifier(update_sched_domains, 0);
7008
7009 /* Move init over to a non-isolated CPU */
7010 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7011 BUG();
7012 }
7013 #else
7014 void __init sched_init_smp(void)
7015 {
7016 }
7017 #endif /* CONFIG_SMP */
7018
7019 int in_sched_functions(unsigned long addr)
7020 {
7021 /* Linker adds these: start and end of __sched functions */
7022 extern char __sched_text_start[], __sched_text_end[];
7023
7024 return in_lock_functions(addr) ||
7025 (addr >= (unsigned long)__sched_text_start
7026 && addr < (unsigned long)__sched_text_end);
7027 }
7028
7029 void __init sched_init(void)
7030 {
7031 int i, j, k;
7032 int highest_cpu = 0;
7033
7034 for_each_possible_cpu(i) {
7035 struct prio_array *array;
7036 struct rq *rq;
7037
7038 rq = cpu_rq(i);
7039 spin_lock_init(&rq->lock);
7040 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7041 rq->nr_running = 0;
7042 rq->active = rq->arrays;
7043 rq->expired = rq->arrays + 1;
7044 rq->best_expired_prio = MAX_PRIO;
7045
7046 #ifdef CONFIG_SMP
7047 rq->sd = NULL;
7048 for (j = 1; j < 3; j++)
7049 rq->cpu_load[j] = 0;
7050 rq->active_balance = 0;
7051 rq->push_cpu = 0;
7052 rq->cpu = i;
7053 rq->migration_thread = NULL;
7054 INIT_LIST_HEAD(&rq->migration_queue);
7055 #endif
7056 atomic_set(&rq->nr_iowait, 0);
7057
7058 for (j = 0; j < 2; j++) {
7059 array = rq->arrays + j;
7060 for (k = 0; k < MAX_PRIO; k++) {
7061 INIT_LIST_HEAD(array->queue + k);
7062 __clear_bit(k, array->bitmap);
7063 }
7064 // delimiter for bitsearch
7065 __set_bit(MAX_PRIO, array->bitmap);
7066 }
7067 highest_cpu = i;
7068 }
7069
7070 set_load_weight(&init_task);
7071
7072 #ifdef CONFIG_SMP
7073 nr_cpu_ids = highest_cpu + 1;
7074 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7075 #endif
7076
7077 #ifdef CONFIG_RT_MUTEXES
7078 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7079 #endif
7080
7081 /*
7082 * The boot idle thread does lazy MMU switching as well:
7083 */
7084 atomic_inc(&init_mm.mm_count);
7085 enter_lazy_tlb(&init_mm, current);
7086
7087 /*
7088 * Make us the idle thread. Technically, schedule() should not be
7089 * called from this thread, however somewhere below it might be,
7090 * but because we are the idle thread, we just pick up running again
7091 * when this runqueue becomes "idle".
7092 */
7093 init_idle(current, smp_processor_id());
7094 }
7095
7096 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7097 void __might_sleep(char *file, int line)
7098 {
7099 #ifdef in_atomic
7100 static unsigned long prev_jiffy; /* ratelimiting */
7101
7102 if ((in_atomic() || irqs_disabled()) &&
7103 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7104 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7105 return;
7106 prev_jiffy = jiffies;
7107 printk(KERN_ERR "BUG: sleeping function called from invalid"
7108 " context at %s:%d\n", file, line);
7109 printk("in_atomic():%d, irqs_disabled():%d\n",
7110 in_atomic(), irqs_disabled());
7111 debug_show_held_locks(current);
7112 if (irqs_disabled())
7113 print_irqtrace_events(current);
7114 dump_stack();
7115 }
7116 #endif
7117 }
7118 EXPORT_SYMBOL(__might_sleep);
7119 #endif
7120
7121 #ifdef CONFIG_MAGIC_SYSRQ
7122 void normalize_rt_tasks(void)
7123 {
7124 struct prio_array *array;
7125 struct task_struct *g, *p;
7126 unsigned long flags;
7127 struct rq *rq;
7128
7129 read_lock_irq(&tasklist_lock);
7130
7131 do_each_thread(g, p) {
7132 if (!rt_task(p))
7133 continue;
7134
7135 spin_lock_irqsave(&p->pi_lock, flags);
7136 rq = __task_rq_lock(p);
7137
7138 array = p->array;
7139 if (array)
7140 deactivate_task(p, task_rq(p));
7141 __setscheduler(p, SCHED_NORMAL, 0);
7142 if (array) {
7143 __activate_task(p, task_rq(p));
7144 resched_task(rq->curr);
7145 }
7146
7147 __task_rq_unlock(rq);
7148 spin_unlock_irqrestore(&p->pi_lock, flags);
7149 } while_each_thread(g, p);
7150
7151 read_unlock_irq(&tasklist_lock);
7152 }
7153
7154 #endif /* CONFIG_MAGIC_SYSRQ */
7155
7156 #ifdef CONFIG_IA64
7157 /*
7158 * These functions are only useful for the IA64 MCA handling.
7159 *
7160 * They can only be called when the whole system has been
7161 * stopped - every CPU needs to be quiescent, and no scheduling
7162 * activity can take place. Using them for anything else would
7163 * be a serious bug, and as a result, they aren't even visible
7164 * under any other configuration.
7165 */
7166
7167 /**
7168 * curr_task - return the current task for a given cpu.
7169 * @cpu: the processor in question.
7170 *
7171 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7172 */
7173 struct task_struct *curr_task(int cpu)
7174 {
7175 return cpu_curr(cpu);
7176 }
7177
7178 /**
7179 * set_curr_task - set the current task for a given cpu.
7180 * @cpu: the processor in question.
7181 * @p: the task pointer to set.
7182 *
7183 * Description: This function must only be used when non-maskable interrupts
7184 * are serviced on a separate stack. It allows the architecture to switch the
7185 * notion of the current task on a cpu in a non-blocking manner. This function
7186 * must be called with all CPU's synchronized, and interrupts disabled, the
7187 * and caller must save the original value of the current task (see
7188 * curr_task() above) and restore that value before reenabling interrupts and
7189 * re-starting the system.
7190 *
7191 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7192 */
7193 void set_curr_task(int cpu, struct task_struct *p)
7194 {
7195 cpu_curr(cpu) = p;
7196 }
7197
7198 #endif