]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched.c
sched: introduce SCHED_FEAT_SYNC_WAKEUPS, turn it off
[mirror_ubuntu-kernels.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70
71 #include <asm/tlb.h>
72 #include <asm/irq_regs.h>
73
74 /*
75 * Scheduler clock - returns current time in nanosec units.
76 * This is default implementation.
77 * Architectures and sub-architectures can override this.
78 */
79 unsigned long long __attribute__((weak)) sched_clock(void)
80 {
81 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
82 }
83
84 /*
85 * Convert user-nice values [ -20 ... 0 ... 19 ]
86 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
87 * and back.
88 */
89 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
90 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
91 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
92
93 /*
94 * 'User priority' is the nice value converted to something we
95 * can work with better when scaling various scheduler parameters,
96 * it's a [ 0 ... 39 ] range.
97 */
98 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
99 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
100 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
101
102 /*
103 * Helpers for converting nanosecond timing to jiffy resolution
104 */
105 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106
107 #define NICE_0_LOAD SCHED_LOAD_SCALE
108 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
109
110 /*
111 * These are the 'tuning knobs' of the scheduler:
112 *
113 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
114 * Timeslices get refilled after they expire.
115 */
116 #define DEF_TIMESLICE (100 * HZ / 1000)
117
118 #ifdef CONFIG_SMP
119 /*
120 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
121 * Since cpu_power is a 'constant', we can use a reciprocal divide.
122 */
123 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
124 {
125 return reciprocal_divide(load, sg->reciprocal_cpu_power);
126 }
127
128 /*
129 * Each time a sched group cpu_power is changed,
130 * we must compute its reciprocal value
131 */
132 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
133 {
134 sg->__cpu_power += val;
135 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
136 }
137 #endif
138
139 static inline int rt_policy(int policy)
140 {
141 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
142 return 1;
143 return 0;
144 }
145
146 static inline int task_has_rt_policy(struct task_struct *p)
147 {
148 return rt_policy(p->policy);
149 }
150
151 /*
152 * This is the priority-queue data structure of the RT scheduling class:
153 */
154 struct rt_prio_array {
155 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
156 struct list_head queue[MAX_RT_PRIO];
157 };
158
159 #ifdef CONFIG_GROUP_SCHED
160
161 #include <linux/cgroup.h>
162
163 struct cfs_rq;
164
165 static LIST_HEAD(task_groups);
166
167 /* task group related information */
168 struct task_group {
169 #ifdef CONFIG_CGROUP_SCHED
170 struct cgroup_subsys_state css;
171 #endif
172
173 #ifdef CONFIG_FAIR_GROUP_SCHED
174 /* schedulable entities of this group on each cpu */
175 struct sched_entity **se;
176 /* runqueue "owned" by this group on each cpu */
177 struct cfs_rq **cfs_rq;
178 unsigned long shares;
179 #endif
180
181 #ifdef CONFIG_RT_GROUP_SCHED
182 struct sched_rt_entity **rt_se;
183 struct rt_rq **rt_rq;
184
185 u64 rt_runtime;
186 #endif
187
188 struct rcu_head rcu;
189 struct list_head list;
190 };
191
192 #ifdef CONFIG_FAIR_GROUP_SCHED
193 /* Default task group's sched entity on each cpu */
194 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
195 /* Default task group's cfs_rq on each cpu */
196 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
197
198 static struct sched_entity *init_sched_entity_p[NR_CPUS];
199 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
200 #endif
201
202 #ifdef CONFIG_RT_GROUP_SCHED
203 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
204 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
205
206 static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
207 static struct rt_rq *init_rt_rq_p[NR_CPUS];
208 #endif
209
210 /* task_group_lock serializes add/remove of task groups and also changes to
211 * a task group's cpu shares.
212 */
213 static DEFINE_SPINLOCK(task_group_lock);
214
215 /* doms_cur_mutex serializes access to doms_cur[] array */
216 static DEFINE_MUTEX(doms_cur_mutex);
217
218 #ifdef CONFIG_FAIR_GROUP_SCHED
219 #ifdef CONFIG_USER_SCHED
220 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
221 #else
222 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
223 #endif
224
225 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
226 #endif
227
228 /* Default task group.
229 * Every task in system belong to this group at bootup.
230 */
231 struct task_group init_task_group = {
232 #ifdef CONFIG_FAIR_GROUP_SCHED
233 .se = init_sched_entity_p,
234 .cfs_rq = init_cfs_rq_p,
235 #endif
236
237 #ifdef CONFIG_RT_GROUP_SCHED
238 .rt_se = init_sched_rt_entity_p,
239 .rt_rq = init_rt_rq_p,
240 #endif
241 };
242
243 /* return group to which a task belongs */
244 static inline struct task_group *task_group(struct task_struct *p)
245 {
246 struct task_group *tg;
247
248 #ifdef CONFIG_USER_SCHED
249 tg = p->user->tg;
250 #elif defined(CONFIG_CGROUP_SCHED)
251 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
252 struct task_group, css);
253 #else
254 tg = &init_task_group;
255 #endif
256 return tg;
257 }
258
259 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
260 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
261 {
262 #ifdef CONFIG_FAIR_GROUP_SCHED
263 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
264 p->se.parent = task_group(p)->se[cpu];
265 #endif
266
267 #ifdef CONFIG_RT_GROUP_SCHED
268 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
269 p->rt.parent = task_group(p)->rt_se[cpu];
270 #endif
271 }
272
273 static inline void lock_doms_cur(void)
274 {
275 mutex_lock(&doms_cur_mutex);
276 }
277
278 static inline void unlock_doms_cur(void)
279 {
280 mutex_unlock(&doms_cur_mutex);
281 }
282
283 #else
284
285 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
286 static inline void lock_doms_cur(void) { }
287 static inline void unlock_doms_cur(void) { }
288
289 #endif /* CONFIG_GROUP_SCHED */
290
291 /* CFS-related fields in a runqueue */
292 struct cfs_rq {
293 struct load_weight load;
294 unsigned long nr_running;
295
296 u64 exec_clock;
297 u64 min_vruntime;
298
299 struct rb_root tasks_timeline;
300 struct rb_node *rb_leftmost;
301 struct rb_node *rb_load_balance_curr;
302 /* 'curr' points to currently running entity on this cfs_rq.
303 * It is set to NULL otherwise (i.e when none are currently running).
304 */
305 struct sched_entity *curr, *next;
306
307 unsigned long nr_spread_over;
308
309 #ifdef CONFIG_FAIR_GROUP_SCHED
310 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
311
312 /*
313 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
314 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
315 * (like users, containers etc.)
316 *
317 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
318 * list is used during load balance.
319 */
320 struct list_head leaf_cfs_rq_list;
321 struct task_group *tg; /* group that "owns" this runqueue */
322 #endif
323 };
324
325 /* Real-Time classes' related field in a runqueue: */
326 struct rt_rq {
327 struct rt_prio_array active;
328 unsigned long rt_nr_running;
329 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
330 int highest_prio; /* highest queued rt task prio */
331 #endif
332 #ifdef CONFIG_SMP
333 unsigned long rt_nr_migratory;
334 int overloaded;
335 #endif
336 int rt_throttled;
337 u64 rt_time;
338
339 #ifdef CONFIG_RT_GROUP_SCHED
340 unsigned long rt_nr_boosted;
341
342 struct rq *rq;
343 struct list_head leaf_rt_rq_list;
344 struct task_group *tg;
345 struct sched_rt_entity *rt_se;
346 #endif
347 };
348
349 #ifdef CONFIG_SMP
350
351 /*
352 * We add the notion of a root-domain which will be used to define per-domain
353 * variables. Each exclusive cpuset essentially defines an island domain by
354 * fully partitioning the member cpus from any other cpuset. Whenever a new
355 * exclusive cpuset is created, we also create and attach a new root-domain
356 * object.
357 *
358 */
359 struct root_domain {
360 atomic_t refcount;
361 cpumask_t span;
362 cpumask_t online;
363
364 /*
365 * The "RT overload" flag: it gets set if a CPU has more than
366 * one runnable RT task.
367 */
368 cpumask_t rto_mask;
369 atomic_t rto_count;
370 };
371
372 /*
373 * By default the system creates a single root-domain with all cpus as
374 * members (mimicking the global state we have today).
375 */
376 static struct root_domain def_root_domain;
377
378 #endif
379
380 /*
381 * This is the main, per-CPU runqueue data structure.
382 *
383 * Locking rule: those places that want to lock multiple runqueues
384 * (such as the load balancing or the thread migration code), lock
385 * acquire operations must be ordered by ascending &runqueue.
386 */
387 struct rq {
388 /* runqueue lock: */
389 spinlock_t lock;
390
391 /*
392 * nr_running and cpu_load should be in the same cacheline because
393 * remote CPUs use both these fields when doing load calculation.
394 */
395 unsigned long nr_running;
396 #define CPU_LOAD_IDX_MAX 5
397 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
398 unsigned char idle_at_tick;
399 #ifdef CONFIG_NO_HZ
400 unsigned long last_tick_seen;
401 unsigned char in_nohz_recently;
402 #endif
403 /* capture load from *all* tasks on this cpu: */
404 struct load_weight load;
405 unsigned long nr_load_updates;
406 u64 nr_switches;
407
408 struct cfs_rq cfs;
409 struct rt_rq rt;
410 u64 rt_period_expire;
411 int rt_throttled;
412
413 #ifdef CONFIG_FAIR_GROUP_SCHED
414 /* list of leaf cfs_rq on this cpu: */
415 struct list_head leaf_cfs_rq_list;
416 #endif
417 #ifdef CONFIG_RT_GROUP_SCHED
418 struct list_head leaf_rt_rq_list;
419 #endif
420
421 /*
422 * This is part of a global counter where only the total sum
423 * over all CPUs matters. A task can increase this counter on
424 * one CPU and if it got migrated afterwards it may decrease
425 * it on another CPU. Always updated under the runqueue lock:
426 */
427 unsigned long nr_uninterruptible;
428
429 struct task_struct *curr, *idle;
430 unsigned long next_balance;
431 struct mm_struct *prev_mm;
432
433 u64 clock, prev_clock_raw;
434 s64 clock_max_delta;
435
436 unsigned int clock_warps, clock_overflows, clock_underflows;
437 u64 idle_clock;
438 unsigned int clock_deep_idle_events;
439 u64 tick_timestamp;
440
441 atomic_t nr_iowait;
442
443 #ifdef CONFIG_SMP
444 struct root_domain *rd;
445 struct sched_domain *sd;
446
447 /* For active balancing */
448 int active_balance;
449 int push_cpu;
450 /* cpu of this runqueue: */
451 int cpu;
452
453 struct task_struct *migration_thread;
454 struct list_head migration_queue;
455 #endif
456
457 #ifdef CONFIG_SCHED_HRTICK
458 unsigned long hrtick_flags;
459 ktime_t hrtick_expire;
460 struct hrtimer hrtick_timer;
461 #endif
462
463 #ifdef CONFIG_SCHEDSTATS
464 /* latency stats */
465 struct sched_info rq_sched_info;
466
467 /* sys_sched_yield() stats */
468 unsigned int yld_exp_empty;
469 unsigned int yld_act_empty;
470 unsigned int yld_both_empty;
471 unsigned int yld_count;
472
473 /* schedule() stats */
474 unsigned int sched_switch;
475 unsigned int sched_count;
476 unsigned int sched_goidle;
477
478 /* try_to_wake_up() stats */
479 unsigned int ttwu_count;
480 unsigned int ttwu_local;
481
482 /* BKL stats */
483 unsigned int bkl_count;
484 #endif
485 struct lock_class_key rq_lock_key;
486 };
487
488 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
489
490 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
491 {
492 rq->curr->sched_class->check_preempt_curr(rq, p);
493 }
494
495 static inline int cpu_of(struct rq *rq)
496 {
497 #ifdef CONFIG_SMP
498 return rq->cpu;
499 #else
500 return 0;
501 #endif
502 }
503
504 #ifdef CONFIG_NO_HZ
505 static inline bool nohz_on(int cpu)
506 {
507 return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
508 }
509
510 static inline u64 max_skipped_ticks(struct rq *rq)
511 {
512 return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
513 }
514
515 static inline void update_last_tick_seen(struct rq *rq)
516 {
517 rq->last_tick_seen = jiffies;
518 }
519 #else
520 static inline u64 max_skipped_ticks(struct rq *rq)
521 {
522 return 1;
523 }
524
525 static inline void update_last_tick_seen(struct rq *rq)
526 {
527 }
528 #endif
529
530 /*
531 * Update the per-runqueue clock, as finegrained as the platform can give
532 * us, but without assuming monotonicity, etc.:
533 */
534 static void __update_rq_clock(struct rq *rq)
535 {
536 u64 prev_raw = rq->prev_clock_raw;
537 u64 now = sched_clock();
538 s64 delta = now - prev_raw;
539 u64 clock = rq->clock;
540
541 #ifdef CONFIG_SCHED_DEBUG
542 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
543 #endif
544 /*
545 * Protect against sched_clock() occasionally going backwards:
546 */
547 if (unlikely(delta < 0)) {
548 clock++;
549 rq->clock_warps++;
550 } else {
551 /*
552 * Catch too large forward jumps too:
553 */
554 u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
555 u64 max_time = rq->tick_timestamp + max_jump;
556
557 if (unlikely(clock + delta > max_time)) {
558 if (clock < max_time)
559 clock = max_time;
560 else
561 clock++;
562 rq->clock_overflows++;
563 } else {
564 if (unlikely(delta > rq->clock_max_delta))
565 rq->clock_max_delta = delta;
566 clock += delta;
567 }
568 }
569
570 rq->prev_clock_raw = now;
571 rq->clock = clock;
572 }
573
574 static void update_rq_clock(struct rq *rq)
575 {
576 if (likely(smp_processor_id() == cpu_of(rq)))
577 __update_rq_clock(rq);
578 }
579
580 /*
581 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
582 * See detach_destroy_domains: synchronize_sched for details.
583 *
584 * The domain tree of any CPU may only be accessed from within
585 * preempt-disabled sections.
586 */
587 #define for_each_domain(cpu, __sd) \
588 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
589
590 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
591 #define this_rq() (&__get_cpu_var(runqueues))
592 #define task_rq(p) cpu_rq(task_cpu(p))
593 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
594
595 unsigned long rt_needs_cpu(int cpu)
596 {
597 struct rq *rq = cpu_rq(cpu);
598 u64 delta;
599
600 if (!rq->rt_throttled)
601 return 0;
602
603 if (rq->clock > rq->rt_period_expire)
604 return 1;
605
606 delta = rq->rt_period_expire - rq->clock;
607 do_div(delta, NSEC_PER_SEC / HZ);
608
609 return (unsigned long)delta;
610 }
611
612 /*
613 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
614 */
615 #ifdef CONFIG_SCHED_DEBUG
616 # define const_debug __read_mostly
617 #else
618 # define const_debug static const
619 #endif
620
621 /*
622 * Debugging: various feature bits
623 */
624 enum {
625 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
626 SCHED_FEAT_WAKEUP_PREEMPT = 2,
627 SCHED_FEAT_START_DEBIT = 4,
628 SCHED_FEAT_HRTICK = 8,
629 SCHED_FEAT_DOUBLE_TICK = 16,
630 SCHED_FEAT_SYNC_WAKEUPS = 32,
631 };
632
633 const_debug unsigned int sysctl_sched_features =
634 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
635 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
636 SCHED_FEAT_START_DEBIT * 1 |
637 SCHED_FEAT_HRTICK * 1 |
638 SCHED_FEAT_DOUBLE_TICK * 0 |
639 SCHED_FEAT_SYNC_WAKEUPS * 0;
640
641 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
642
643 /*
644 * Number of tasks to iterate in a single balance run.
645 * Limited because this is done with IRQs disabled.
646 */
647 const_debug unsigned int sysctl_sched_nr_migrate = 32;
648
649 /*
650 * period over which we measure -rt task cpu usage in us.
651 * default: 1s
652 */
653 unsigned int sysctl_sched_rt_period = 1000000;
654
655 static __read_mostly int scheduler_running;
656
657 /*
658 * part of the period that we allow rt tasks to run in us.
659 * default: 0.95s
660 */
661 int sysctl_sched_rt_runtime = 950000;
662
663 /*
664 * single value that denotes runtime == period, ie unlimited time.
665 */
666 #define RUNTIME_INF ((u64)~0ULL)
667
668 static const unsigned long long time_sync_thresh = 100000;
669
670 static DEFINE_PER_CPU(unsigned long long, time_offset);
671 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
672
673 /*
674 * Global lock which we take every now and then to synchronize
675 * the CPUs time. This method is not warp-safe, but it's good
676 * enough to synchronize slowly diverging time sources and thus
677 * it's good enough for tracing:
678 */
679 static DEFINE_SPINLOCK(time_sync_lock);
680 static unsigned long long prev_global_time;
681
682 static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
683 {
684 unsigned long flags;
685
686 spin_lock_irqsave(&time_sync_lock, flags);
687
688 if (time < prev_global_time) {
689 per_cpu(time_offset, cpu) += prev_global_time - time;
690 time = prev_global_time;
691 } else {
692 prev_global_time = time;
693 }
694
695 spin_unlock_irqrestore(&time_sync_lock, flags);
696
697 return time;
698 }
699
700 static unsigned long long __cpu_clock(int cpu)
701 {
702 unsigned long long now;
703 unsigned long flags;
704 struct rq *rq;
705
706 /*
707 * Only call sched_clock() if the scheduler has already been
708 * initialized (some code might call cpu_clock() very early):
709 */
710 if (unlikely(!scheduler_running))
711 return 0;
712
713 local_irq_save(flags);
714 rq = cpu_rq(cpu);
715 update_rq_clock(rq);
716 now = rq->clock;
717 local_irq_restore(flags);
718
719 return now;
720 }
721
722 /*
723 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
724 * clock constructed from sched_clock():
725 */
726 unsigned long long cpu_clock(int cpu)
727 {
728 unsigned long long prev_cpu_time, time, delta_time;
729
730 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
731 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
732 delta_time = time-prev_cpu_time;
733
734 if (unlikely(delta_time > time_sync_thresh))
735 time = __sync_cpu_clock(time, cpu);
736
737 return time;
738 }
739 EXPORT_SYMBOL_GPL(cpu_clock);
740
741 #ifndef prepare_arch_switch
742 # define prepare_arch_switch(next) do { } while (0)
743 #endif
744 #ifndef finish_arch_switch
745 # define finish_arch_switch(prev) do { } while (0)
746 #endif
747
748 static inline int task_current(struct rq *rq, struct task_struct *p)
749 {
750 return rq->curr == p;
751 }
752
753 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
754 static inline int task_running(struct rq *rq, struct task_struct *p)
755 {
756 return task_current(rq, p);
757 }
758
759 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
760 {
761 }
762
763 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
764 {
765 #ifdef CONFIG_DEBUG_SPINLOCK
766 /* this is a valid case when another task releases the spinlock */
767 rq->lock.owner = current;
768 #endif
769 /*
770 * If we are tracking spinlock dependencies then we have to
771 * fix up the runqueue lock - which gets 'carried over' from
772 * prev into current:
773 */
774 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
775
776 spin_unlock_irq(&rq->lock);
777 }
778
779 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
780 static inline int task_running(struct rq *rq, struct task_struct *p)
781 {
782 #ifdef CONFIG_SMP
783 return p->oncpu;
784 #else
785 return task_current(rq, p);
786 #endif
787 }
788
789 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
790 {
791 #ifdef CONFIG_SMP
792 /*
793 * We can optimise this out completely for !SMP, because the
794 * SMP rebalancing from interrupt is the only thing that cares
795 * here.
796 */
797 next->oncpu = 1;
798 #endif
799 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
800 spin_unlock_irq(&rq->lock);
801 #else
802 spin_unlock(&rq->lock);
803 #endif
804 }
805
806 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
807 {
808 #ifdef CONFIG_SMP
809 /*
810 * After ->oncpu is cleared, the task can be moved to a different CPU.
811 * We must ensure this doesn't happen until the switch is completely
812 * finished.
813 */
814 smp_wmb();
815 prev->oncpu = 0;
816 #endif
817 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
818 local_irq_enable();
819 #endif
820 }
821 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
822
823 /*
824 * __task_rq_lock - lock the runqueue a given task resides on.
825 * Must be called interrupts disabled.
826 */
827 static inline struct rq *__task_rq_lock(struct task_struct *p)
828 __acquires(rq->lock)
829 {
830 for (;;) {
831 struct rq *rq = task_rq(p);
832 spin_lock(&rq->lock);
833 if (likely(rq == task_rq(p)))
834 return rq;
835 spin_unlock(&rq->lock);
836 }
837 }
838
839 /*
840 * task_rq_lock - lock the runqueue a given task resides on and disable
841 * interrupts. Note the ordering: we can safely lookup the task_rq without
842 * explicitly disabling preemption.
843 */
844 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
845 __acquires(rq->lock)
846 {
847 struct rq *rq;
848
849 for (;;) {
850 local_irq_save(*flags);
851 rq = task_rq(p);
852 spin_lock(&rq->lock);
853 if (likely(rq == task_rq(p)))
854 return rq;
855 spin_unlock_irqrestore(&rq->lock, *flags);
856 }
857 }
858
859 static void __task_rq_unlock(struct rq *rq)
860 __releases(rq->lock)
861 {
862 spin_unlock(&rq->lock);
863 }
864
865 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
866 __releases(rq->lock)
867 {
868 spin_unlock_irqrestore(&rq->lock, *flags);
869 }
870
871 /*
872 * this_rq_lock - lock this runqueue and disable interrupts.
873 */
874 static struct rq *this_rq_lock(void)
875 __acquires(rq->lock)
876 {
877 struct rq *rq;
878
879 local_irq_disable();
880 rq = this_rq();
881 spin_lock(&rq->lock);
882
883 return rq;
884 }
885
886 /*
887 * We are going deep-idle (irqs are disabled):
888 */
889 void sched_clock_idle_sleep_event(void)
890 {
891 struct rq *rq = cpu_rq(smp_processor_id());
892
893 spin_lock(&rq->lock);
894 __update_rq_clock(rq);
895 spin_unlock(&rq->lock);
896 rq->clock_deep_idle_events++;
897 }
898 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
899
900 /*
901 * We just idled delta nanoseconds (called with irqs disabled):
902 */
903 void sched_clock_idle_wakeup_event(u64 delta_ns)
904 {
905 struct rq *rq = cpu_rq(smp_processor_id());
906 u64 now = sched_clock();
907
908 rq->idle_clock += delta_ns;
909 /*
910 * Override the previous timestamp and ignore all
911 * sched_clock() deltas that occured while we idled,
912 * and use the PM-provided delta_ns to advance the
913 * rq clock:
914 */
915 spin_lock(&rq->lock);
916 rq->prev_clock_raw = now;
917 rq->clock += delta_ns;
918 spin_unlock(&rq->lock);
919 touch_softlockup_watchdog();
920 }
921 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
922
923 static void __resched_task(struct task_struct *p, int tif_bit);
924
925 static inline void resched_task(struct task_struct *p)
926 {
927 __resched_task(p, TIF_NEED_RESCHED);
928 }
929
930 #ifdef CONFIG_SCHED_HRTICK
931 /*
932 * Use HR-timers to deliver accurate preemption points.
933 *
934 * Its all a bit involved since we cannot program an hrt while holding the
935 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
936 * reschedule event.
937 *
938 * When we get rescheduled we reprogram the hrtick_timer outside of the
939 * rq->lock.
940 */
941 static inline void resched_hrt(struct task_struct *p)
942 {
943 __resched_task(p, TIF_HRTICK_RESCHED);
944 }
945
946 static inline void resched_rq(struct rq *rq)
947 {
948 unsigned long flags;
949
950 spin_lock_irqsave(&rq->lock, flags);
951 resched_task(rq->curr);
952 spin_unlock_irqrestore(&rq->lock, flags);
953 }
954
955 enum {
956 HRTICK_SET, /* re-programm hrtick_timer */
957 HRTICK_RESET, /* not a new slice */
958 };
959
960 /*
961 * Use hrtick when:
962 * - enabled by features
963 * - hrtimer is actually high res
964 */
965 static inline int hrtick_enabled(struct rq *rq)
966 {
967 if (!sched_feat(HRTICK))
968 return 0;
969 return hrtimer_is_hres_active(&rq->hrtick_timer);
970 }
971
972 /*
973 * Called to set the hrtick timer state.
974 *
975 * called with rq->lock held and irqs disabled
976 */
977 static void hrtick_start(struct rq *rq, u64 delay, int reset)
978 {
979 assert_spin_locked(&rq->lock);
980
981 /*
982 * preempt at: now + delay
983 */
984 rq->hrtick_expire =
985 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
986 /*
987 * indicate we need to program the timer
988 */
989 __set_bit(HRTICK_SET, &rq->hrtick_flags);
990 if (reset)
991 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
992
993 /*
994 * New slices are called from the schedule path and don't need a
995 * forced reschedule.
996 */
997 if (reset)
998 resched_hrt(rq->curr);
999 }
1000
1001 static void hrtick_clear(struct rq *rq)
1002 {
1003 if (hrtimer_active(&rq->hrtick_timer))
1004 hrtimer_cancel(&rq->hrtick_timer);
1005 }
1006
1007 /*
1008 * Update the timer from the possible pending state.
1009 */
1010 static void hrtick_set(struct rq *rq)
1011 {
1012 ktime_t time;
1013 int set, reset;
1014 unsigned long flags;
1015
1016 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1017
1018 spin_lock_irqsave(&rq->lock, flags);
1019 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1020 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1021 time = rq->hrtick_expire;
1022 clear_thread_flag(TIF_HRTICK_RESCHED);
1023 spin_unlock_irqrestore(&rq->lock, flags);
1024
1025 if (set) {
1026 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1027 if (reset && !hrtimer_active(&rq->hrtick_timer))
1028 resched_rq(rq);
1029 } else
1030 hrtick_clear(rq);
1031 }
1032
1033 /*
1034 * High-resolution timer tick.
1035 * Runs from hardirq context with interrupts disabled.
1036 */
1037 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1038 {
1039 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1040
1041 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1042
1043 spin_lock(&rq->lock);
1044 __update_rq_clock(rq);
1045 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1046 spin_unlock(&rq->lock);
1047
1048 return HRTIMER_NORESTART;
1049 }
1050
1051 static inline void init_rq_hrtick(struct rq *rq)
1052 {
1053 rq->hrtick_flags = 0;
1054 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1055 rq->hrtick_timer.function = hrtick;
1056 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1057 }
1058
1059 void hrtick_resched(void)
1060 {
1061 struct rq *rq;
1062 unsigned long flags;
1063
1064 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1065 return;
1066
1067 local_irq_save(flags);
1068 rq = cpu_rq(smp_processor_id());
1069 hrtick_set(rq);
1070 local_irq_restore(flags);
1071 }
1072 #else
1073 static inline void hrtick_clear(struct rq *rq)
1074 {
1075 }
1076
1077 static inline void hrtick_set(struct rq *rq)
1078 {
1079 }
1080
1081 static inline void init_rq_hrtick(struct rq *rq)
1082 {
1083 }
1084
1085 void hrtick_resched(void)
1086 {
1087 }
1088 #endif
1089
1090 /*
1091 * resched_task - mark a task 'to be rescheduled now'.
1092 *
1093 * On UP this means the setting of the need_resched flag, on SMP it
1094 * might also involve a cross-CPU call to trigger the scheduler on
1095 * the target CPU.
1096 */
1097 #ifdef CONFIG_SMP
1098
1099 #ifndef tsk_is_polling
1100 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1101 #endif
1102
1103 static void __resched_task(struct task_struct *p, int tif_bit)
1104 {
1105 int cpu;
1106
1107 assert_spin_locked(&task_rq(p)->lock);
1108
1109 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1110 return;
1111
1112 set_tsk_thread_flag(p, tif_bit);
1113
1114 cpu = task_cpu(p);
1115 if (cpu == smp_processor_id())
1116 return;
1117
1118 /* NEED_RESCHED must be visible before we test polling */
1119 smp_mb();
1120 if (!tsk_is_polling(p))
1121 smp_send_reschedule(cpu);
1122 }
1123
1124 static void resched_cpu(int cpu)
1125 {
1126 struct rq *rq = cpu_rq(cpu);
1127 unsigned long flags;
1128
1129 if (!spin_trylock_irqsave(&rq->lock, flags))
1130 return;
1131 resched_task(cpu_curr(cpu));
1132 spin_unlock_irqrestore(&rq->lock, flags);
1133 }
1134
1135 #ifdef CONFIG_NO_HZ
1136 /*
1137 * When add_timer_on() enqueues a timer into the timer wheel of an
1138 * idle CPU then this timer might expire before the next timer event
1139 * which is scheduled to wake up that CPU. In case of a completely
1140 * idle system the next event might even be infinite time into the
1141 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1142 * leaves the inner idle loop so the newly added timer is taken into
1143 * account when the CPU goes back to idle and evaluates the timer
1144 * wheel for the next timer event.
1145 */
1146 void wake_up_idle_cpu(int cpu)
1147 {
1148 struct rq *rq = cpu_rq(cpu);
1149
1150 if (cpu == smp_processor_id())
1151 return;
1152
1153 /*
1154 * This is safe, as this function is called with the timer
1155 * wheel base lock of (cpu) held. When the CPU is on the way
1156 * to idle and has not yet set rq->curr to idle then it will
1157 * be serialized on the timer wheel base lock and take the new
1158 * timer into account automatically.
1159 */
1160 if (rq->curr != rq->idle)
1161 return;
1162
1163 /*
1164 * We can set TIF_RESCHED on the idle task of the other CPU
1165 * lockless. The worst case is that the other CPU runs the
1166 * idle task through an additional NOOP schedule()
1167 */
1168 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1169
1170 /* NEED_RESCHED must be visible before we test polling */
1171 smp_mb();
1172 if (!tsk_is_polling(rq->idle))
1173 smp_send_reschedule(cpu);
1174 }
1175 #endif
1176
1177 #else
1178 static void __resched_task(struct task_struct *p, int tif_bit)
1179 {
1180 assert_spin_locked(&task_rq(p)->lock);
1181 set_tsk_thread_flag(p, tif_bit);
1182 }
1183 #endif
1184
1185 #if BITS_PER_LONG == 32
1186 # define WMULT_CONST (~0UL)
1187 #else
1188 # define WMULT_CONST (1UL << 32)
1189 #endif
1190
1191 #define WMULT_SHIFT 32
1192
1193 /*
1194 * Shift right and round:
1195 */
1196 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1197
1198 static unsigned long
1199 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1200 struct load_weight *lw)
1201 {
1202 u64 tmp;
1203
1204 if (unlikely(!lw->inv_weight))
1205 lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
1206
1207 tmp = (u64)delta_exec * weight;
1208 /*
1209 * Check whether we'd overflow the 64-bit multiplication:
1210 */
1211 if (unlikely(tmp > WMULT_CONST))
1212 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1213 WMULT_SHIFT/2);
1214 else
1215 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1216
1217 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1218 }
1219
1220 static inline unsigned long
1221 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1222 {
1223 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1224 }
1225
1226 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1227 {
1228 lw->weight += inc;
1229 lw->inv_weight = 0;
1230 }
1231
1232 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1233 {
1234 lw->weight -= dec;
1235 lw->inv_weight = 0;
1236 }
1237
1238 /*
1239 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1240 * of tasks with abnormal "nice" values across CPUs the contribution that
1241 * each task makes to its run queue's load is weighted according to its
1242 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1243 * scaled version of the new time slice allocation that they receive on time
1244 * slice expiry etc.
1245 */
1246
1247 #define WEIGHT_IDLEPRIO 2
1248 #define WMULT_IDLEPRIO (1 << 31)
1249
1250 /*
1251 * Nice levels are multiplicative, with a gentle 10% change for every
1252 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1253 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1254 * that remained on nice 0.
1255 *
1256 * The "10% effect" is relative and cumulative: from _any_ nice level,
1257 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1258 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1259 * If a task goes up by ~10% and another task goes down by ~10% then
1260 * the relative distance between them is ~25%.)
1261 */
1262 static const int prio_to_weight[40] = {
1263 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1264 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1265 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1266 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1267 /* 0 */ 1024, 820, 655, 526, 423,
1268 /* 5 */ 335, 272, 215, 172, 137,
1269 /* 10 */ 110, 87, 70, 56, 45,
1270 /* 15 */ 36, 29, 23, 18, 15,
1271 };
1272
1273 /*
1274 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1275 *
1276 * In cases where the weight does not change often, we can use the
1277 * precalculated inverse to speed up arithmetics by turning divisions
1278 * into multiplications:
1279 */
1280 static const u32 prio_to_wmult[40] = {
1281 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1282 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1283 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1284 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1285 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1286 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1287 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1288 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1289 };
1290
1291 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1292
1293 /*
1294 * runqueue iterator, to support SMP load-balancing between different
1295 * scheduling classes, without having to expose their internal data
1296 * structures to the load-balancing proper:
1297 */
1298 struct rq_iterator {
1299 void *arg;
1300 struct task_struct *(*start)(void *);
1301 struct task_struct *(*next)(void *);
1302 };
1303
1304 #ifdef CONFIG_SMP
1305 static unsigned long
1306 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1307 unsigned long max_load_move, struct sched_domain *sd,
1308 enum cpu_idle_type idle, int *all_pinned,
1309 int *this_best_prio, struct rq_iterator *iterator);
1310
1311 static int
1312 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1313 struct sched_domain *sd, enum cpu_idle_type idle,
1314 struct rq_iterator *iterator);
1315 #endif
1316
1317 #ifdef CONFIG_CGROUP_CPUACCT
1318 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1319 #else
1320 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1321 #endif
1322
1323 #ifdef CONFIG_SMP
1324 static unsigned long source_load(int cpu, int type);
1325 static unsigned long target_load(int cpu, int type);
1326 static unsigned long cpu_avg_load_per_task(int cpu);
1327 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1328 #endif /* CONFIG_SMP */
1329
1330 #include "sched_stats.h"
1331 #include "sched_idletask.c"
1332 #include "sched_fair.c"
1333 #include "sched_rt.c"
1334 #ifdef CONFIG_SCHED_DEBUG
1335 # include "sched_debug.c"
1336 #endif
1337
1338 #define sched_class_highest (&rt_sched_class)
1339
1340 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1341 {
1342 update_load_add(&rq->load, p->se.load.weight);
1343 }
1344
1345 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1346 {
1347 update_load_sub(&rq->load, p->se.load.weight);
1348 }
1349
1350 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1351 {
1352 rq->nr_running++;
1353 inc_load(rq, p);
1354 }
1355
1356 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1357 {
1358 rq->nr_running--;
1359 dec_load(rq, p);
1360 }
1361
1362 static void set_load_weight(struct task_struct *p)
1363 {
1364 if (task_has_rt_policy(p)) {
1365 p->se.load.weight = prio_to_weight[0] * 2;
1366 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1367 return;
1368 }
1369
1370 /*
1371 * SCHED_IDLE tasks get minimal weight:
1372 */
1373 if (p->policy == SCHED_IDLE) {
1374 p->se.load.weight = WEIGHT_IDLEPRIO;
1375 p->se.load.inv_weight = WMULT_IDLEPRIO;
1376 return;
1377 }
1378
1379 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1380 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1381 }
1382
1383 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1384 {
1385 sched_info_queued(p);
1386 p->sched_class->enqueue_task(rq, p, wakeup);
1387 p->se.on_rq = 1;
1388 }
1389
1390 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1391 {
1392 p->sched_class->dequeue_task(rq, p, sleep);
1393 p->se.on_rq = 0;
1394 }
1395
1396 /*
1397 * __normal_prio - return the priority that is based on the static prio
1398 */
1399 static inline int __normal_prio(struct task_struct *p)
1400 {
1401 return p->static_prio;
1402 }
1403
1404 /*
1405 * Calculate the expected normal priority: i.e. priority
1406 * without taking RT-inheritance into account. Might be
1407 * boosted by interactivity modifiers. Changes upon fork,
1408 * setprio syscalls, and whenever the interactivity
1409 * estimator recalculates.
1410 */
1411 static inline int normal_prio(struct task_struct *p)
1412 {
1413 int prio;
1414
1415 if (task_has_rt_policy(p))
1416 prio = MAX_RT_PRIO-1 - p->rt_priority;
1417 else
1418 prio = __normal_prio(p);
1419 return prio;
1420 }
1421
1422 /*
1423 * Calculate the current priority, i.e. the priority
1424 * taken into account by the scheduler. This value might
1425 * be boosted by RT tasks, or might be boosted by
1426 * interactivity modifiers. Will be RT if the task got
1427 * RT-boosted. If not then it returns p->normal_prio.
1428 */
1429 static int effective_prio(struct task_struct *p)
1430 {
1431 p->normal_prio = normal_prio(p);
1432 /*
1433 * If we are RT tasks or we were boosted to RT priority,
1434 * keep the priority unchanged. Otherwise, update priority
1435 * to the normal priority:
1436 */
1437 if (!rt_prio(p->prio))
1438 return p->normal_prio;
1439 return p->prio;
1440 }
1441
1442 /*
1443 * activate_task - move a task to the runqueue.
1444 */
1445 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1446 {
1447 if (task_contributes_to_load(p))
1448 rq->nr_uninterruptible--;
1449
1450 enqueue_task(rq, p, wakeup);
1451 inc_nr_running(p, rq);
1452 }
1453
1454 /*
1455 * deactivate_task - remove a task from the runqueue.
1456 */
1457 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1458 {
1459 if (task_contributes_to_load(p))
1460 rq->nr_uninterruptible++;
1461
1462 dequeue_task(rq, p, sleep);
1463 dec_nr_running(p, rq);
1464 }
1465
1466 /**
1467 * task_curr - is this task currently executing on a CPU?
1468 * @p: the task in question.
1469 */
1470 inline int task_curr(const struct task_struct *p)
1471 {
1472 return cpu_curr(task_cpu(p)) == p;
1473 }
1474
1475 /* Used instead of source_load when we know the type == 0 */
1476 unsigned long weighted_cpuload(const int cpu)
1477 {
1478 return cpu_rq(cpu)->load.weight;
1479 }
1480
1481 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1482 {
1483 set_task_rq(p, cpu);
1484 #ifdef CONFIG_SMP
1485 /*
1486 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1487 * successfuly executed on another CPU. We must ensure that updates of
1488 * per-task data have been completed by this moment.
1489 */
1490 smp_wmb();
1491 task_thread_info(p)->cpu = cpu;
1492 #endif
1493 }
1494
1495 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1496 const struct sched_class *prev_class,
1497 int oldprio, int running)
1498 {
1499 if (prev_class != p->sched_class) {
1500 if (prev_class->switched_from)
1501 prev_class->switched_from(rq, p, running);
1502 p->sched_class->switched_to(rq, p, running);
1503 } else
1504 p->sched_class->prio_changed(rq, p, oldprio, running);
1505 }
1506
1507 #ifdef CONFIG_SMP
1508
1509 /*
1510 * Is this task likely cache-hot:
1511 */
1512 static int
1513 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1514 {
1515 s64 delta;
1516
1517 /*
1518 * Buddy candidates are cache hot:
1519 */
1520 if (&p->se == cfs_rq_of(&p->se)->next)
1521 return 1;
1522
1523 if (p->sched_class != &fair_sched_class)
1524 return 0;
1525
1526 if (sysctl_sched_migration_cost == -1)
1527 return 1;
1528 if (sysctl_sched_migration_cost == 0)
1529 return 0;
1530
1531 delta = now - p->se.exec_start;
1532
1533 return delta < (s64)sysctl_sched_migration_cost;
1534 }
1535
1536
1537 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1538 {
1539 int old_cpu = task_cpu(p);
1540 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1541 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1542 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1543 u64 clock_offset;
1544
1545 clock_offset = old_rq->clock - new_rq->clock;
1546
1547 #ifdef CONFIG_SCHEDSTATS
1548 if (p->se.wait_start)
1549 p->se.wait_start -= clock_offset;
1550 if (p->se.sleep_start)
1551 p->se.sleep_start -= clock_offset;
1552 if (p->se.block_start)
1553 p->se.block_start -= clock_offset;
1554 if (old_cpu != new_cpu) {
1555 schedstat_inc(p, se.nr_migrations);
1556 if (task_hot(p, old_rq->clock, NULL))
1557 schedstat_inc(p, se.nr_forced2_migrations);
1558 }
1559 #endif
1560 p->se.vruntime -= old_cfsrq->min_vruntime -
1561 new_cfsrq->min_vruntime;
1562
1563 __set_task_cpu(p, new_cpu);
1564 }
1565
1566 struct migration_req {
1567 struct list_head list;
1568
1569 struct task_struct *task;
1570 int dest_cpu;
1571
1572 struct completion done;
1573 };
1574
1575 /*
1576 * The task's runqueue lock must be held.
1577 * Returns true if you have to wait for migration thread.
1578 */
1579 static int
1580 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1581 {
1582 struct rq *rq = task_rq(p);
1583
1584 /*
1585 * If the task is not on a runqueue (and not running), then
1586 * it is sufficient to simply update the task's cpu field.
1587 */
1588 if (!p->se.on_rq && !task_running(rq, p)) {
1589 set_task_cpu(p, dest_cpu);
1590 return 0;
1591 }
1592
1593 init_completion(&req->done);
1594 req->task = p;
1595 req->dest_cpu = dest_cpu;
1596 list_add(&req->list, &rq->migration_queue);
1597
1598 return 1;
1599 }
1600
1601 /*
1602 * wait_task_inactive - wait for a thread to unschedule.
1603 *
1604 * The caller must ensure that the task *will* unschedule sometime soon,
1605 * else this function might spin for a *long* time. This function can't
1606 * be called with interrupts off, or it may introduce deadlock with
1607 * smp_call_function() if an IPI is sent by the same process we are
1608 * waiting to become inactive.
1609 */
1610 void wait_task_inactive(struct task_struct *p)
1611 {
1612 unsigned long flags;
1613 int running, on_rq;
1614 struct rq *rq;
1615
1616 for (;;) {
1617 /*
1618 * We do the initial early heuristics without holding
1619 * any task-queue locks at all. We'll only try to get
1620 * the runqueue lock when things look like they will
1621 * work out!
1622 */
1623 rq = task_rq(p);
1624
1625 /*
1626 * If the task is actively running on another CPU
1627 * still, just relax and busy-wait without holding
1628 * any locks.
1629 *
1630 * NOTE! Since we don't hold any locks, it's not
1631 * even sure that "rq" stays as the right runqueue!
1632 * But we don't care, since "task_running()" will
1633 * return false if the runqueue has changed and p
1634 * is actually now running somewhere else!
1635 */
1636 while (task_running(rq, p))
1637 cpu_relax();
1638
1639 /*
1640 * Ok, time to look more closely! We need the rq
1641 * lock now, to be *sure*. If we're wrong, we'll
1642 * just go back and repeat.
1643 */
1644 rq = task_rq_lock(p, &flags);
1645 running = task_running(rq, p);
1646 on_rq = p->se.on_rq;
1647 task_rq_unlock(rq, &flags);
1648
1649 /*
1650 * Was it really running after all now that we
1651 * checked with the proper locks actually held?
1652 *
1653 * Oops. Go back and try again..
1654 */
1655 if (unlikely(running)) {
1656 cpu_relax();
1657 continue;
1658 }
1659
1660 /*
1661 * It's not enough that it's not actively running,
1662 * it must be off the runqueue _entirely_, and not
1663 * preempted!
1664 *
1665 * So if it wa still runnable (but just not actively
1666 * running right now), it's preempted, and we should
1667 * yield - it could be a while.
1668 */
1669 if (unlikely(on_rq)) {
1670 schedule_timeout_uninterruptible(1);
1671 continue;
1672 }
1673
1674 /*
1675 * Ahh, all good. It wasn't running, and it wasn't
1676 * runnable, which means that it will never become
1677 * running in the future either. We're all done!
1678 */
1679 break;
1680 }
1681 }
1682
1683 /***
1684 * kick_process - kick a running thread to enter/exit the kernel
1685 * @p: the to-be-kicked thread
1686 *
1687 * Cause a process which is running on another CPU to enter
1688 * kernel-mode, without any delay. (to get signals handled.)
1689 *
1690 * NOTE: this function doesnt have to take the runqueue lock,
1691 * because all it wants to ensure is that the remote task enters
1692 * the kernel. If the IPI races and the task has been migrated
1693 * to another CPU then no harm is done and the purpose has been
1694 * achieved as well.
1695 */
1696 void kick_process(struct task_struct *p)
1697 {
1698 int cpu;
1699
1700 preempt_disable();
1701 cpu = task_cpu(p);
1702 if ((cpu != smp_processor_id()) && task_curr(p))
1703 smp_send_reschedule(cpu);
1704 preempt_enable();
1705 }
1706
1707 /*
1708 * Return a low guess at the load of a migration-source cpu weighted
1709 * according to the scheduling class and "nice" value.
1710 *
1711 * We want to under-estimate the load of migration sources, to
1712 * balance conservatively.
1713 */
1714 static unsigned long source_load(int cpu, int type)
1715 {
1716 struct rq *rq = cpu_rq(cpu);
1717 unsigned long total = weighted_cpuload(cpu);
1718
1719 if (type == 0)
1720 return total;
1721
1722 return min(rq->cpu_load[type-1], total);
1723 }
1724
1725 /*
1726 * Return a high guess at the load of a migration-target cpu weighted
1727 * according to the scheduling class and "nice" value.
1728 */
1729 static unsigned long target_load(int cpu, int type)
1730 {
1731 struct rq *rq = cpu_rq(cpu);
1732 unsigned long total = weighted_cpuload(cpu);
1733
1734 if (type == 0)
1735 return total;
1736
1737 return max(rq->cpu_load[type-1], total);
1738 }
1739
1740 /*
1741 * Return the average load per task on the cpu's run queue
1742 */
1743 static unsigned long cpu_avg_load_per_task(int cpu)
1744 {
1745 struct rq *rq = cpu_rq(cpu);
1746 unsigned long total = weighted_cpuload(cpu);
1747 unsigned long n = rq->nr_running;
1748
1749 return n ? total / n : SCHED_LOAD_SCALE;
1750 }
1751
1752 /*
1753 * find_idlest_group finds and returns the least busy CPU group within the
1754 * domain.
1755 */
1756 static struct sched_group *
1757 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1758 {
1759 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1760 unsigned long min_load = ULONG_MAX, this_load = 0;
1761 int load_idx = sd->forkexec_idx;
1762 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1763
1764 do {
1765 unsigned long load, avg_load;
1766 int local_group;
1767 int i;
1768
1769 /* Skip over this group if it has no CPUs allowed */
1770 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1771 continue;
1772
1773 local_group = cpu_isset(this_cpu, group->cpumask);
1774
1775 /* Tally up the load of all CPUs in the group */
1776 avg_load = 0;
1777
1778 for_each_cpu_mask(i, group->cpumask) {
1779 /* Bias balancing toward cpus of our domain */
1780 if (local_group)
1781 load = source_load(i, load_idx);
1782 else
1783 load = target_load(i, load_idx);
1784
1785 avg_load += load;
1786 }
1787
1788 /* Adjust by relative CPU power of the group */
1789 avg_load = sg_div_cpu_power(group,
1790 avg_load * SCHED_LOAD_SCALE);
1791
1792 if (local_group) {
1793 this_load = avg_load;
1794 this = group;
1795 } else if (avg_load < min_load) {
1796 min_load = avg_load;
1797 idlest = group;
1798 }
1799 } while (group = group->next, group != sd->groups);
1800
1801 if (!idlest || 100*this_load < imbalance*min_load)
1802 return NULL;
1803 return idlest;
1804 }
1805
1806 /*
1807 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1808 */
1809 static int
1810 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1811 {
1812 cpumask_t tmp;
1813 unsigned long load, min_load = ULONG_MAX;
1814 int idlest = -1;
1815 int i;
1816
1817 /* Traverse only the allowed CPUs */
1818 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1819
1820 for_each_cpu_mask(i, tmp) {
1821 load = weighted_cpuload(i);
1822
1823 if (load < min_load || (load == min_load && i == this_cpu)) {
1824 min_load = load;
1825 idlest = i;
1826 }
1827 }
1828
1829 return idlest;
1830 }
1831
1832 /*
1833 * sched_balance_self: balance the current task (running on cpu) in domains
1834 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1835 * SD_BALANCE_EXEC.
1836 *
1837 * Balance, ie. select the least loaded group.
1838 *
1839 * Returns the target CPU number, or the same CPU if no balancing is needed.
1840 *
1841 * preempt must be disabled.
1842 */
1843 static int sched_balance_self(int cpu, int flag)
1844 {
1845 struct task_struct *t = current;
1846 struct sched_domain *tmp, *sd = NULL;
1847
1848 for_each_domain(cpu, tmp) {
1849 /*
1850 * If power savings logic is enabled for a domain, stop there.
1851 */
1852 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1853 break;
1854 if (tmp->flags & flag)
1855 sd = tmp;
1856 }
1857
1858 while (sd) {
1859 cpumask_t span;
1860 struct sched_group *group;
1861 int new_cpu, weight;
1862
1863 if (!(sd->flags & flag)) {
1864 sd = sd->child;
1865 continue;
1866 }
1867
1868 span = sd->span;
1869 group = find_idlest_group(sd, t, cpu);
1870 if (!group) {
1871 sd = sd->child;
1872 continue;
1873 }
1874
1875 new_cpu = find_idlest_cpu(group, t, cpu);
1876 if (new_cpu == -1 || new_cpu == cpu) {
1877 /* Now try balancing at a lower domain level of cpu */
1878 sd = sd->child;
1879 continue;
1880 }
1881
1882 /* Now try balancing at a lower domain level of new_cpu */
1883 cpu = new_cpu;
1884 sd = NULL;
1885 weight = cpus_weight(span);
1886 for_each_domain(cpu, tmp) {
1887 if (weight <= cpus_weight(tmp->span))
1888 break;
1889 if (tmp->flags & flag)
1890 sd = tmp;
1891 }
1892 /* while loop will break here if sd == NULL */
1893 }
1894
1895 return cpu;
1896 }
1897
1898 #endif /* CONFIG_SMP */
1899
1900 /***
1901 * try_to_wake_up - wake up a thread
1902 * @p: the to-be-woken-up thread
1903 * @state: the mask of task states that can be woken
1904 * @sync: do a synchronous wakeup?
1905 *
1906 * Put it on the run-queue if it's not already there. The "current"
1907 * thread is always on the run-queue (except when the actual
1908 * re-schedule is in progress), and as such you're allowed to do
1909 * the simpler "current->state = TASK_RUNNING" to mark yourself
1910 * runnable without the overhead of this.
1911 *
1912 * returns failure only if the task is already active.
1913 */
1914 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1915 {
1916 int cpu, orig_cpu, this_cpu, success = 0;
1917 unsigned long flags;
1918 long old_state;
1919 struct rq *rq;
1920
1921 if (!sched_feat(SYNC_WAKEUPS))
1922 sync = 0;
1923
1924 smp_wmb();
1925 rq = task_rq_lock(p, &flags);
1926 old_state = p->state;
1927 if (!(old_state & state))
1928 goto out;
1929
1930 if (p->se.on_rq)
1931 goto out_running;
1932
1933 cpu = task_cpu(p);
1934 orig_cpu = cpu;
1935 this_cpu = smp_processor_id();
1936
1937 #ifdef CONFIG_SMP
1938 if (unlikely(task_running(rq, p)))
1939 goto out_activate;
1940
1941 cpu = p->sched_class->select_task_rq(p, sync);
1942 if (cpu != orig_cpu) {
1943 set_task_cpu(p, cpu);
1944 task_rq_unlock(rq, &flags);
1945 /* might preempt at this point */
1946 rq = task_rq_lock(p, &flags);
1947 old_state = p->state;
1948 if (!(old_state & state))
1949 goto out;
1950 if (p->se.on_rq)
1951 goto out_running;
1952
1953 this_cpu = smp_processor_id();
1954 cpu = task_cpu(p);
1955 }
1956
1957 #ifdef CONFIG_SCHEDSTATS
1958 schedstat_inc(rq, ttwu_count);
1959 if (cpu == this_cpu)
1960 schedstat_inc(rq, ttwu_local);
1961 else {
1962 struct sched_domain *sd;
1963 for_each_domain(this_cpu, sd) {
1964 if (cpu_isset(cpu, sd->span)) {
1965 schedstat_inc(sd, ttwu_wake_remote);
1966 break;
1967 }
1968 }
1969 }
1970 #endif
1971
1972 out_activate:
1973 #endif /* CONFIG_SMP */
1974 schedstat_inc(p, se.nr_wakeups);
1975 if (sync)
1976 schedstat_inc(p, se.nr_wakeups_sync);
1977 if (orig_cpu != cpu)
1978 schedstat_inc(p, se.nr_wakeups_migrate);
1979 if (cpu == this_cpu)
1980 schedstat_inc(p, se.nr_wakeups_local);
1981 else
1982 schedstat_inc(p, se.nr_wakeups_remote);
1983 update_rq_clock(rq);
1984 activate_task(rq, p, 1);
1985 success = 1;
1986
1987 out_running:
1988 check_preempt_curr(rq, p);
1989
1990 p->state = TASK_RUNNING;
1991 #ifdef CONFIG_SMP
1992 if (p->sched_class->task_wake_up)
1993 p->sched_class->task_wake_up(rq, p);
1994 #endif
1995 out:
1996 task_rq_unlock(rq, &flags);
1997
1998 return success;
1999 }
2000
2001 int wake_up_process(struct task_struct *p)
2002 {
2003 return try_to_wake_up(p, TASK_ALL, 0);
2004 }
2005 EXPORT_SYMBOL(wake_up_process);
2006
2007 int wake_up_state(struct task_struct *p, unsigned int state)
2008 {
2009 return try_to_wake_up(p, state, 0);
2010 }
2011
2012 /*
2013 * Perform scheduler related setup for a newly forked process p.
2014 * p is forked by current.
2015 *
2016 * __sched_fork() is basic setup used by init_idle() too:
2017 */
2018 static void __sched_fork(struct task_struct *p)
2019 {
2020 p->se.exec_start = 0;
2021 p->se.sum_exec_runtime = 0;
2022 p->se.prev_sum_exec_runtime = 0;
2023 p->se.last_wakeup = 0;
2024 p->se.avg_overlap = 0;
2025
2026 #ifdef CONFIG_SCHEDSTATS
2027 p->se.wait_start = 0;
2028 p->se.sum_sleep_runtime = 0;
2029 p->se.sleep_start = 0;
2030 p->se.block_start = 0;
2031 p->se.sleep_max = 0;
2032 p->se.block_max = 0;
2033 p->se.exec_max = 0;
2034 p->se.slice_max = 0;
2035 p->se.wait_max = 0;
2036 #endif
2037
2038 INIT_LIST_HEAD(&p->rt.run_list);
2039 p->se.on_rq = 0;
2040
2041 #ifdef CONFIG_PREEMPT_NOTIFIERS
2042 INIT_HLIST_HEAD(&p->preempt_notifiers);
2043 #endif
2044
2045 /*
2046 * We mark the process as running here, but have not actually
2047 * inserted it onto the runqueue yet. This guarantees that
2048 * nobody will actually run it, and a signal or other external
2049 * event cannot wake it up and insert it on the runqueue either.
2050 */
2051 p->state = TASK_RUNNING;
2052 }
2053
2054 /*
2055 * fork()/clone()-time setup:
2056 */
2057 void sched_fork(struct task_struct *p, int clone_flags)
2058 {
2059 int cpu = get_cpu();
2060
2061 __sched_fork(p);
2062
2063 #ifdef CONFIG_SMP
2064 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2065 #endif
2066 set_task_cpu(p, cpu);
2067
2068 /*
2069 * Make sure we do not leak PI boosting priority to the child:
2070 */
2071 p->prio = current->normal_prio;
2072 if (!rt_prio(p->prio))
2073 p->sched_class = &fair_sched_class;
2074
2075 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2076 if (likely(sched_info_on()))
2077 memset(&p->sched_info, 0, sizeof(p->sched_info));
2078 #endif
2079 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2080 p->oncpu = 0;
2081 #endif
2082 #ifdef CONFIG_PREEMPT
2083 /* Want to start with kernel preemption disabled. */
2084 task_thread_info(p)->preempt_count = 1;
2085 #endif
2086 put_cpu();
2087 }
2088
2089 /*
2090 * wake_up_new_task - wake up a newly created task for the first time.
2091 *
2092 * This function will do some initial scheduler statistics housekeeping
2093 * that must be done for every newly created context, then puts the task
2094 * on the runqueue and wakes it.
2095 */
2096 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2097 {
2098 unsigned long flags;
2099 struct rq *rq;
2100
2101 rq = task_rq_lock(p, &flags);
2102 BUG_ON(p->state != TASK_RUNNING);
2103 update_rq_clock(rq);
2104
2105 p->prio = effective_prio(p);
2106
2107 if (!p->sched_class->task_new || !current->se.on_rq) {
2108 activate_task(rq, p, 0);
2109 } else {
2110 /*
2111 * Let the scheduling class do new task startup
2112 * management (if any):
2113 */
2114 p->sched_class->task_new(rq, p);
2115 inc_nr_running(p, rq);
2116 }
2117 check_preempt_curr(rq, p);
2118 #ifdef CONFIG_SMP
2119 if (p->sched_class->task_wake_up)
2120 p->sched_class->task_wake_up(rq, p);
2121 #endif
2122 task_rq_unlock(rq, &flags);
2123 }
2124
2125 #ifdef CONFIG_PREEMPT_NOTIFIERS
2126
2127 /**
2128 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2129 * @notifier: notifier struct to register
2130 */
2131 void preempt_notifier_register(struct preempt_notifier *notifier)
2132 {
2133 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2134 }
2135 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2136
2137 /**
2138 * preempt_notifier_unregister - no longer interested in preemption notifications
2139 * @notifier: notifier struct to unregister
2140 *
2141 * This is safe to call from within a preemption notifier.
2142 */
2143 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2144 {
2145 hlist_del(&notifier->link);
2146 }
2147 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2148
2149 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2150 {
2151 struct preempt_notifier *notifier;
2152 struct hlist_node *node;
2153
2154 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2155 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2156 }
2157
2158 static void
2159 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2160 struct task_struct *next)
2161 {
2162 struct preempt_notifier *notifier;
2163 struct hlist_node *node;
2164
2165 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2166 notifier->ops->sched_out(notifier, next);
2167 }
2168
2169 #else
2170
2171 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2172 {
2173 }
2174
2175 static void
2176 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2177 struct task_struct *next)
2178 {
2179 }
2180
2181 #endif
2182
2183 /**
2184 * prepare_task_switch - prepare to switch tasks
2185 * @rq: the runqueue preparing to switch
2186 * @prev: the current task that is being switched out
2187 * @next: the task we are going to switch to.
2188 *
2189 * This is called with the rq lock held and interrupts off. It must
2190 * be paired with a subsequent finish_task_switch after the context
2191 * switch.
2192 *
2193 * prepare_task_switch sets up locking and calls architecture specific
2194 * hooks.
2195 */
2196 static inline void
2197 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2198 struct task_struct *next)
2199 {
2200 fire_sched_out_preempt_notifiers(prev, next);
2201 prepare_lock_switch(rq, next);
2202 prepare_arch_switch(next);
2203 }
2204
2205 /**
2206 * finish_task_switch - clean up after a task-switch
2207 * @rq: runqueue associated with task-switch
2208 * @prev: the thread we just switched away from.
2209 *
2210 * finish_task_switch must be called after the context switch, paired
2211 * with a prepare_task_switch call before the context switch.
2212 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2213 * and do any other architecture-specific cleanup actions.
2214 *
2215 * Note that we may have delayed dropping an mm in context_switch(). If
2216 * so, we finish that here outside of the runqueue lock. (Doing it
2217 * with the lock held can cause deadlocks; see schedule() for
2218 * details.)
2219 */
2220 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2221 __releases(rq->lock)
2222 {
2223 struct mm_struct *mm = rq->prev_mm;
2224 long prev_state;
2225
2226 rq->prev_mm = NULL;
2227
2228 /*
2229 * A task struct has one reference for the use as "current".
2230 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2231 * schedule one last time. The schedule call will never return, and
2232 * the scheduled task must drop that reference.
2233 * The test for TASK_DEAD must occur while the runqueue locks are
2234 * still held, otherwise prev could be scheduled on another cpu, die
2235 * there before we look at prev->state, and then the reference would
2236 * be dropped twice.
2237 * Manfred Spraul <manfred@colorfullife.com>
2238 */
2239 prev_state = prev->state;
2240 finish_arch_switch(prev);
2241 finish_lock_switch(rq, prev);
2242 #ifdef CONFIG_SMP
2243 if (current->sched_class->post_schedule)
2244 current->sched_class->post_schedule(rq);
2245 #endif
2246
2247 fire_sched_in_preempt_notifiers(current);
2248 if (mm)
2249 mmdrop(mm);
2250 if (unlikely(prev_state == TASK_DEAD)) {
2251 /*
2252 * Remove function-return probe instances associated with this
2253 * task and put them back on the free list.
2254 */
2255 kprobe_flush_task(prev);
2256 put_task_struct(prev);
2257 }
2258 }
2259
2260 /**
2261 * schedule_tail - first thing a freshly forked thread must call.
2262 * @prev: the thread we just switched away from.
2263 */
2264 asmlinkage void schedule_tail(struct task_struct *prev)
2265 __releases(rq->lock)
2266 {
2267 struct rq *rq = this_rq();
2268
2269 finish_task_switch(rq, prev);
2270 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2271 /* In this case, finish_task_switch does not reenable preemption */
2272 preempt_enable();
2273 #endif
2274 if (current->set_child_tid)
2275 put_user(task_pid_vnr(current), current->set_child_tid);
2276 }
2277
2278 /*
2279 * context_switch - switch to the new MM and the new
2280 * thread's register state.
2281 */
2282 static inline void
2283 context_switch(struct rq *rq, struct task_struct *prev,
2284 struct task_struct *next)
2285 {
2286 struct mm_struct *mm, *oldmm;
2287
2288 prepare_task_switch(rq, prev, next);
2289 mm = next->mm;
2290 oldmm = prev->active_mm;
2291 /*
2292 * For paravirt, this is coupled with an exit in switch_to to
2293 * combine the page table reload and the switch backend into
2294 * one hypercall.
2295 */
2296 arch_enter_lazy_cpu_mode();
2297
2298 if (unlikely(!mm)) {
2299 next->active_mm = oldmm;
2300 atomic_inc(&oldmm->mm_count);
2301 enter_lazy_tlb(oldmm, next);
2302 } else
2303 switch_mm(oldmm, mm, next);
2304
2305 if (unlikely(!prev->mm)) {
2306 prev->active_mm = NULL;
2307 rq->prev_mm = oldmm;
2308 }
2309 /*
2310 * Since the runqueue lock will be released by the next
2311 * task (which is an invalid locking op but in the case
2312 * of the scheduler it's an obvious special-case), so we
2313 * do an early lockdep release here:
2314 */
2315 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2316 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2317 #endif
2318
2319 /* Here we just switch the register state and the stack. */
2320 switch_to(prev, next, prev);
2321
2322 barrier();
2323 /*
2324 * this_rq must be evaluated again because prev may have moved
2325 * CPUs since it called schedule(), thus the 'rq' on its stack
2326 * frame will be invalid.
2327 */
2328 finish_task_switch(this_rq(), prev);
2329 }
2330
2331 /*
2332 * nr_running, nr_uninterruptible and nr_context_switches:
2333 *
2334 * externally visible scheduler statistics: current number of runnable
2335 * threads, current number of uninterruptible-sleeping threads, total
2336 * number of context switches performed since bootup.
2337 */
2338 unsigned long nr_running(void)
2339 {
2340 unsigned long i, sum = 0;
2341
2342 for_each_online_cpu(i)
2343 sum += cpu_rq(i)->nr_running;
2344
2345 return sum;
2346 }
2347
2348 unsigned long nr_uninterruptible(void)
2349 {
2350 unsigned long i, sum = 0;
2351
2352 for_each_possible_cpu(i)
2353 sum += cpu_rq(i)->nr_uninterruptible;
2354
2355 /*
2356 * Since we read the counters lockless, it might be slightly
2357 * inaccurate. Do not allow it to go below zero though:
2358 */
2359 if (unlikely((long)sum < 0))
2360 sum = 0;
2361
2362 return sum;
2363 }
2364
2365 unsigned long long nr_context_switches(void)
2366 {
2367 int i;
2368 unsigned long long sum = 0;
2369
2370 for_each_possible_cpu(i)
2371 sum += cpu_rq(i)->nr_switches;
2372
2373 return sum;
2374 }
2375
2376 unsigned long nr_iowait(void)
2377 {
2378 unsigned long i, sum = 0;
2379
2380 for_each_possible_cpu(i)
2381 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2382
2383 return sum;
2384 }
2385
2386 unsigned long nr_active(void)
2387 {
2388 unsigned long i, running = 0, uninterruptible = 0;
2389
2390 for_each_online_cpu(i) {
2391 running += cpu_rq(i)->nr_running;
2392 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2393 }
2394
2395 if (unlikely((long)uninterruptible < 0))
2396 uninterruptible = 0;
2397
2398 return running + uninterruptible;
2399 }
2400
2401 /*
2402 * Update rq->cpu_load[] statistics. This function is usually called every
2403 * scheduler tick (TICK_NSEC).
2404 */
2405 static void update_cpu_load(struct rq *this_rq)
2406 {
2407 unsigned long this_load = this_rq->load.weight;
2408 int i, scale;
2409
2410 this_rq->nr_load_updates++;
2411
2412 /* Update our load: */
2413 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2414 unsigned long old_load, new_load;
2415
2416 /* scale is effectively 1 << i now, and >> i divides by scale */
2417
2418 old_load = this_rq->cpu_load[i];
2419 new_load = this_load;
2420 /*
2421 * Round up the averaging division if load is increasing. This
2422 * prevents us from getting stuck on 9 if the load is 10, for
2423 * example.
2424 */
2425 if (new_load > old_load)
2426 new_load += scale-1;
2427 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2428 }
2429 }
2430
2431 #ifdef CONFIG_SMP
2432
2433 /*
2434 * double_rq_lock - safely lock two runqueues
2435 *
2436 * Note this does not disable interrupts like task_rq_lock,
2437 * you need to do so manually before calling.
2438 */
2439 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2440 __acquires(rq1->lock)
2441 __acquires(rq2->lock)
2442 {
2443 BUG_ON(!irqs_disabled());
2444 if (rq1 == rq2) {
2445 spin_lock(&rq1->lock);
2446 __acquire(rq2->lock); /* Fake it out ;) */
2447 } else {
2448 if (rq1 < rq2) {
2449 spin_lock(&rq1->lock);
2450 spin_lock(&rq2->lock);
2451 } else {
2452 spin_lock(&rq2->lock);
2453 spin_lock(&rq1->lock);
2454 }
2455 }
2456 update_rq_clock(rq1);
2457 update_rq_clock(rq2);
2458 }
2459
2460 /*
2461 * double_rq_unlock - safely unlock two runqueues
2462 *
2463 * Note this does not restore interrupts like task_rq_unlock,
2464 * you need to do so manually after calling.
2465 */
2466 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2467 __releases(rq1->lock)
2468 __releases(rq2->lock)
2469 {
2470 spin_unlock(&rq1->lock);
2471 if (rq1 != rq2)
2472 spin_unlock(&rq2->lock);
2473 else
2474 __release(rq2->lock);
2475 }
2476
2477 /*
2478 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2479 */
2480 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2481 __releases(this_rq->lock)
2482 __acquires(busiest->lock)
2483 __acquires(this_rq->lock)
2484 {
2485 int ret = 0;
2486
2487 if (unlikely(!irqs_disabled())) {
2488 /* printk() doesn't work good under rq->lock */
2489 spin_unlock(&this_rq->lock);
2490 BUG_ON(1);
2491 }
2492 if (unlikely(!spin_trylock(&busiest->lock))) {
2493 if (busiest < this_rq) {
2494 spin_unlock(&this_rq->lock);
2495 spin_lock(&busiest->lock);
2496 spin_lock(&this_rq->lock);
2497 ret = 1;
2498 } else
2499 spin_lock(&busiest->lock);
2500 }
2501 return ret;
2502 }
2503
2504 /*
2505 * If dest_cpu is allowed for this process, migrate the task to it.
2506 * This is accomplished by forcing the cpu_allowed mask to only
2507 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2508 * the cpu_allowed mask is restored.
2509 */
2510 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2511 {
2512 struct migration_req req;
2513 unsigned long flags;
2514 struct rq *rq;
2515
2516 rq = task_rq_lock(p, &flags);
2517 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2518 || unlikely(cpu_is_offline(dest_cpu)))
2519 goto out;
2520
2521 /* force the process onto the specified CPU */
2522 if (migrate_task(p, dest_cpu, &req)) {
2523 /* Need to wait for migration thread (might exit: take ref). */
2524 struct task_struct *mt = rq->migration_thread;
2525
2526 get_task_struct(mt);
2527 task_rq_unlock(rq, &flags);
2528 wake_up_process(mt);
2529 put_task_struct(mt);
2530 wait_for_completion(&req.done);
2531
2532 return;
2533 }
2534 out:
2535 task_rq_unlock(rq, &flags);
2536 }
2537
2538 /*
2539 * sched_exec - execve() is a valuable balancing opportunity, because at
2540 * this point the task has the smallest effective memory and cache footprint.
2541 */
2542 void sched_exec(void)
2543 {
2544 int new_cpu, this_cpu = get_cpu();
2545 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2546 put_cpu();
2547 if (new_cpu != this_cpu)
2548 sched_migrate_task(current, new_cpu);
2549 }
2550
2551 /*
2552 * pull_task - move a task from a remote runqueue to the local runqueue.
2553 * Both runqueues must be locked.
2554 */
2555 static void pull_task(struct rq *src_rq, struct task_struct *p,
2556 struct rq *this_rq, int this_cpu)
2557 {
2558 deactivate_task(src_rq, p, 0);
2559 set_task_cpu(p, this_cpu);
2560 activate_task(this_rq, p, 0);
2561 /*
2562 * Note that idle threads have a prio of MAX_PRIO, for this test
2563 * to be always true for them.
2564 */
2565 check_preempt_curr(this_rq, p);
2566 }
2567
2568 /*
2569 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2570 */
2571 static
2572 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2573 struct sched_domain *sd, enum cpu_idle_type idle,
2574 int *all_pinned)
2575 {
2576 /*
2577 * We do not migrate tasks that are:
2578 * 1) running (obviously), or
2579 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2580 * 3) are cache-hot on their current CPU.
2581 */
2582 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2583 schedstat_inc(p, se.nr_failed_migrations_affine);
2584 return 0;
2585 }
2586 *all_pinned = 0;
2587
2588 if (task_running(rq, p)) {
2589 schedstat_inc(p, se.nr_failed_migrations_running);
2590 return 0;
2591 }
2592
2593 /*
2594 * Aggressive migration if:
2595 * 1) task is cache cold, or
2596 * 2) too many balance attempts have failed.
2597 */
2598
2599 if (!task_hot(p, rq->clock, sd) ||
2600 sd->nr_balance_failed > sd->cache_nice_tries) {
2601 #ifdef CONFIG_SCHEDSTATS
2602 if (task_hot(p, rq->clock, sd)) {
2603 schedstat_inc(sd, lb_hot_gained[idle]);
2604 schedstat_inc(p, se.nr_forced_migrations);
2605 }
2606 #endif
2607 return 1;
2608 }
2609
2610 if (task_hot(p, rq->clock, sd)) {
2611 schedstat_inc(p, se.nr_failed_migrations_hot);
2612 return 0;
2613 }
2614 return 1;
2615 }
2616
2617 static unsigned long
2618 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2619 unsigned long max_load_move, struct sched_domain *sd,
2620 enum cpu_idle_type idle, int *all_pinned,
2621 int *this_best_prio, struct rq_iterator *iterator)
2622 {
2623 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2624 struct task_struct *p;
2625 long rem_load_move = max_load_move;
2626
2627 if (max_load_move == 0)
2628 goto out;
2629
2630 pinned = 1;
2631
2632 /*
2633 * Start the load-balancing iterator:
2634 */
2635 p = iterator->start(iterator->arg);
2636 next:
2637 if (!p || loops++ > sysctl_sched_nr_migrate)
2638 goto out;
2639 /*
2640 * To help distribute high priority tasks across CPUs we don't
2641 * skip a task if it will be the highest priority task (i.e. smallest
2642 * prio value) on its new queue regardless of its load weight
2643 */
2644 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2645 SCHED_LOAD_SCALE_FUZZ;
2646 if ((skip_for_load && p->prio >= *this_best_prio) ||
2647 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2648 p = iterator->next(iterator->arg);
2649 goto next;
2650 }
2651
2652 pull_task(busiest, p, this_rq, this_cpu);
2653 pulled++;
2654 rem_load_move -= p->se.load.weight;
2655
2656 /*
2657 * We only want to steal up to the prescribed amount of weighted load.
2658 */
2659 if (rem_load_move > 0) {
2660 if (p->prio < *this_best_prio)
2661 *this_best_prio = p->prio;
2662 p = iterator->next(iterator->arg);
2663 goto next;
2664 }
2665 out:
2666 /*
2667 * Right now, this is one of only two places pull_task() is called,
2668 * so we can safely collect pull_task() stats here rather than
2669 * inside pull_task().
2670 */
2671 schedstat_add(sd, lb_gained[idle], pulled);
2672
2673 if (all_pinned)
2674 *all_pinned = pinned;
2675
2676 return max_load_move - rem_load_move;
2677 }
2678
2679 /*
2680 * move_tasks tries to move up to max_load_move weighted load from busiest to
2681 * this_rq, as part of a balancing operation within domain "sd".
2682 * Returns 1 if successful and 0 otherwise.
2683 *
2684 * Called with both runqueues locked.
2685 */
2686 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2687 unsigned long max_load_move,
2688 struct sched_domain *sd, enum cpu_idle_type idle,
2689 int *all_pinned)
2690 {
2691 const struct sched_class *class = sched_class_highest;
2692 unsigned long total_load_moved = 0;
2693 int this_best_prio = this_rq->curr->prio;
2694
2695 do {
2696 total_load_moved +=
2697 class->load_balance(this_rq, this_cpu, busiest,
2698 max_load_move - total_load_moved,
2699 sd, idle, all_pinned, &this_best_prio);
2700 class = class->next;
2701 } while (class && max_load_move > total_load_moved);
2702
2703 return total_load_moved > 0;
2704 }
2705
2706 static int
2707 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2708 struct sched_domain *sd, enum cpu_idle_type idle,
2709 struct rq_iterator *iterator)
2710 {
2711 struct task_struct *p = iterator->start(iterator->arg);
2712 int pinned = 0;
2713
2714 while (p) {
2715 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2716 pull_task(busiest, p, this_rq, this_cpu);
2717 /*
2718 * Right now, this is only the second place pull_task()
2719 * is called, so we can safely collect pull_task()
2720 * stats here rather than inside pull_task().
2721 */
2722 schedstat_inc(sd, lb_gained[idle]);
2723
2724 return 1;
2725 }
2726 p = iterator->next(iterator->arg);
2727 }
2728
2729 return 0;
2730 }
2731
2732 /*
2733 * move_one_task tries to move exactly one task from busiest to this_rq, as
2734 * part of active balancing operations within "domain".
2735 * Returns 1 if successful and 0 otherwise.
2736 *
2737 * Called with both runqueues locked.
2738 */
2739 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2740 struct sched_domain *sd, enum cpu_idle_type idle)
2741 {
2742 const struct sched_class *class;
2743
2744 for (class = sched_class_highest; class; class = class->next)
2745 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2746 return 1;
2747
2748 return 0;
2749 }
2750
2751 /*
2752 * find_busiest_group finds and returns the busiest CPU group within the
2753 * domain. It calculates and returns the amount of weighted load which
2754 * should be moved to restore balance via the imbalance parameter.
2755 */
2756 static struct sched_group *
2757 find_busiest_group(struct sched_domain *sd, int this_cpu,
2758 unsigned long *imbalance, enum cpu_idle_type idle,
2759 int *sd_idle, cpumask_t *cpus, int *balance)
2760 {
2761 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2762 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2763 unsigned long max_pull;
2764 unsigned long busiest_load_per_task, busiest_nr_running;
2765 unsigned long this_load_per_task, this_nr_running;
2766 int load_idx, group_imb = 0;
2767 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2768 int power_savings_balance = 1;
2769 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2770 unsigned long min_nr_running = ULONG_MAX;
2771 struct sched_group *group_min = NULL, *group_leader = NULL;
2772 #endif
2773
2774 max_load = this_load = total_load = total_pwr = 0;
2775 busiest_load_per_task = busiest_nr_running = 0;
2776 this_load_per_task = this_nr_running = 0;
2777 if (idle == CPU_NOT_IDLE)
2778 load_idx = sd->busy_idx;
2779 else if (idle == CPU_NEWLY_IDLE)
2780 load_idx = sd->newidle_idx;
2781 else
2782 load_idx = sd->idle_idx;
2783
2784 do {
2785 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2786 int local_group;
2787 int i;
2788 int __group_imb = 0;
2789 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2790 unsigned long sum_nr_running, sum_weighted_load;
2791
2792 local_group = cpu_isset(this_cpu, group->cpumask);
2793
2794 if (local_group)
2795 balance_cpu = first_cpu(group->cpumask);
2796
2797 /* Tally up the load of all CPUs in the group */
2798 sum_weighted_load = sum_nr_running = avg_load = 0;
2799 max_cpu_load = 0;
2800 min_cpu_load = ~0UL;
2801
2802 for_each_cpu_mask(i, group->cpumask) {
2803 struct rq *rq;
2804
2805 if (!cpu_isset(i, *cpus))
2806 continue;
2807
2808 rq = cpu_rq(i);
2809
2810 if (*sd_idle && rq->nr_running)
2811 *sd_idle = 0;
2812
2813 /* Bias balancing toward cpus of our domain */
2814 if (local_group) {
2815 if (idle_cpu(i) && !first_idle_cpu) {
2816 first_idle_cpu = 1;
2817 balance_cpu = i;
2818 }
2819
2820 load = target_load(i, load_idx);
2821 } else {
2822 load = source_load(i, load_idx);
2823 if (load > max_cpu_load)
2824 max_cpu_load = load;
2825 if (min_cpu_load > load)
2826 min_cpu_load = load;
2827 }
2828
2829 avg_load += load;
2830 sum_nr_running += rq->nr_running;
2831 sum_weighted_load += weighted_cpuload(i);
2832 }
2833
2834 /*
2835 * First idle cpu or the first cpu(busiest) in this sched group
2836 * is eligible for doing load balancing at this and above
2837 * domains. In the newly idle case, we will allow all the cpu's
2838 * to do the newly idle load balance.
2839 */
2840 if (idle != CPU_NEWLY_IDLE && local_group &&
2841 balance_cpu != this_cpu && balance) {
2842 *balance = 0;
2843 goto ret;
2844 }
2845
2846 total_load += avg_load;
2847 total_pwr += group->__cpu_power;
2848
2849 /* Adjust by relative CPU power of the group */
2850 avg_load = sg_div_cpu_power(group,
2851 avg_load * SCHED_LOAD_SCALE);
2852
2853 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2854 __group_imb = 1;
2855
2856 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2857
2858 if (local_group) {
2859 this_load = avg_load;
2860 this = group;
2861 this_nr_running = sum_nr_running;
2862 this_load_per_task = sum_weighted_load;
2863 } else if (avg_load > max_load &&
2864 (sum_nr_running > group_capacity || __group_imb)) {
2865 max_load = avg_load;
2866 busiest = group;
2867 busiest_nr_running = sum_nr_running;
2868 busiest_load_per_task = sum_weighted_load;
2869 group_imb = __group_imb;
2870 }
2871
2872 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2873 /*
2874 * Busy processors will not participate in power savings
2875 * balance.
2876 */
2877 if (idle == CPU_NOT_IDLE ||
2878 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2879 goto group_next;
2880
2881 /*
2882 * If the local group is idle or completely loaded
2883 * no need to do power savings balance at this domain
2884 */
2885 if (local_group && (this_nr_running >= group_capacity ||
2886 !this_nr_running))
2887 power_savings_balance = 0;
2888
2889 /*
2890 * If a group is already running at full capacity or idle,
2891 * don't include that group in power savings calculations
2892 */
2893 if (!power_savings_balance || sum_nr_running >= group_capacity
2894 || !sum_nr_running)
2895 goto group_next;
2896
2897 /*
2898 * Calculate the group which has the least non-idle load.
2899 * This is the group from where we need to pick up the load
2900 * for saving power
2901 */
2902 if ((sum_nr_running < min_nr_running) ||
2903 (sum_nr_running == min_nr_running &&
2904 first_cpu(group->cpumask) <
2905 first_cpu(group_min->cpumask))) {
2906 group_min = group;
2907 min_nr_running = sum_nr_running;
2908 min_load_per_task = sum_weighted_load /
2909 sum_nr_running;
2910 }
2911
2912 /*
2913 * Calculate the group which is almost near its
2914 * capacity but still has some space to pick up some load
2915 * from other group and save more power
2916 */
2917 if (sum_nr_running <= group_capacity - 1) {
2918 if (sum_nr_running > leader_nr_running ||
2919 (sum_nr_running == leader_nr_running &&
2920 first_cpu(group->cpumask) >
2921 first_cpu(group_leader->cpumask))) {
2922 group_leader = group;
2923 leader_nr_running = sum_nr_running;
2924 }
2925 }
2926 group_next:
2927 #endif
2928 group = group->next;
2929 } while (group != sd->groups);
2930
2931 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2932 goto out_balanced;
2933
2934 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2935
2936 if (this_load >= avg_load ||
2937 100*max_load <= sd->imbalance_pct*this_load)
2938 goto out_balanced;
2939
2940 busiest_load_per_task /= busiest_nr_running;
2941 if (group_imb)
2942 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2943
2944 /*
2945 * We're trying to get all the cpus to the average_load, so we don't
2946 * want to push ourselves above the average load, nor do we wish to
2947 * reduce the max loaded cpu below the average load, as either of these
2948 * actions would just result in more rebalancing later, and ping-pong
2949 * tasks around. Thus we look for the minimum possible imbalance.
2950 * Negative imbalances (*we* are more loaded than anyone else) will
2951 * be counted as no imbalance for these purposes -- we can't fix that
2952 * by pulling tasks to us. Be careful of negative numbers as they'll
2953 * appear as very large values with unsigned longs.
2954 */
2955 if (max_load <= busiest_load_per_task)
2956 goto out_balanced;
2957
2958 /*
2959 * In the presence of smp nice balancing, certain scenarios can have
2960 * max load less than avg load(as we skip the groups at or below
2961 * its cpu_power, while calculating max_load..)
2962 */
2963 if (max_load < avg_load) {
2964 *imbalance = 0;
2965 goto small_imbalance;
2966 }
2967
2968 /* Don't want to pull so many tasks that a group would go idle */
2969 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2970
2971 /* How much load to actually move to equalise the imbalance */
2972 *imbalance = min(max_pull * busiest->__cpu_power,
2973 (avg_load - this_load) * this->__cpu_power)
2974 / SCHED_LOAD_SCALE;
2975
2976 /*
2977 * if *imbalance is less than the average load per runnable task
2978 * there is no gaurantee that any tasks will be moved so we'll have
2979 * a think about bumping its value to force at least one task to be
2980 * moved
2981 */
2982 if (*imbalance < busiest_load_per_task) {
2983 unsigned long tmp, pwr_now, pwr_move;
2984 unsigned int imbn;
2985
2986 small_imbalance:
2987 pwr_move = pwr_now = 0;
2988 imbn = 2;
2989 if (this_nr_running) {
2990 this_load_per_task /= this_nr_running;
2991 if (busiest_load_per_task > this_load_per_task)
2992 imbn = 1;
2993 } else
2994 this_load_per_task = SCHED_LOAD_SCALE;
2995
2996 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2997 busiest_load_per_task * imbn) {
2998 *imbalance = busiest_load_per_task;
2999 return busiest;
3000 }
3001
3002 /*
3003 * OK, we don't have enough imbalance to justify moving tasks,
3004 * however we may be able to increase total CPU power used by
3005 * moving them.
3006 */
3007
3008 pwr_now += busiest->__cpu_power *
3009 min(busiest_load_per_task, max_load);
3010 pwr_now += this->__cpu_power *
3011 min(this_load_per_task, this_load);
3012 pwr_now /= SCHED_LOAD_SCALE;
3013
3014 /* Amount of load we'd subtract */
3015 tmp = sg_div_cpu_power(busiest,
3016 busiest_load_per_task * SCHED_LOAD_SCALE);
3017 if (max_load > tmp)
3018 pwr_move += busiest->__cpu_power *
3019 min(busiest_load_per_task, max_load - tmp);
3020
3021 /* Amount of load we'd add */
3022 if (max_load * busiest->__cpu_power <
3023 busiest_load_per_task * SCHED_LOAD_SCALE)
3024 tmp = sg_div_cpu_power(this,
3025 max_load * busiest->__cpu_power);
3026 else
3027 tmp = sg_div_cpu_power(this,
3028 busiest_load_per_task * SCHED_LOAD_SCALE);
3029 pwr_move += this->__cpu_power *
3030 min(this_load_per_task, this_load + tmp);
3031 pwr_move /= SCHED_LOAD_SCALE;
3032
3033 /* Move if we gain throughput */
3034 if (pwr_move > pwr_now)
3035 *imbalance = busiest_load_per_task;
3036 }
3037
3038 return busiest;
3039
3040 out_balanced:
3041 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3042 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3043 goto ret;
3044
3045 if (this == group_leader && group_leader != group_min) {
3046 *imbalance = min_load_per_task;
3047 return group_min;
3048 }
3049 #endif
3050 ret:
3051 *imbalance = 0;
3052 return NULL;
3053 }
3054
3055 /*
3056 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3057 */
3058 static struct rq *
3059 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3060 unsigned long imbalance, cpumask_t *cpus)
3061 {
3062 struct rq *busiest = NULL, *rq;
3063 unsigned long max_load = 0;
3064 int i;
3065
3066 for_each_cpu_mask(i, group->cpumask) {
3067 unsigned long wl;
3068
3069 if (!cpu_isset(i, *cpus))
3070 continue;
3071
3072 rq = cpu_rq(i);
3073 wl = weighted_cpuload(i);
3074
3075 if (rq->nr_running == 1 && wl > imbalance)
3076 continue;
3077
3078 if (wl > max_load) {
3079 max_load = wl;
3080 busiest = rq;
3081 }
3082 }
3083
3084 return busiest;
3085 }
3086
3087 /*
3088 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3089 * so long as it is large enough.
3090 */
3091 #define MAX_PINNED_INTERVAL 512
3092
3093 /*
3094 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3095 * tasks if there is an imbalance.
3096 */
3097 static int load_balance(int this_cpu, struct rq *this_rq,
3098 struct sched_domain *sd, enum cpu_idle_type idle,
3099 int *balance)
3100 {
3101 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3102 struct sched_group *group;
3103 unsigned long imbalance;
3104 struct rq *busiest;
3105 cpumask_t cpus = CPU_MASK_ALL;
3106 unsigned long flags;
3107
3108 /*
3109 * When power savings policy is enabled for the parent domain, idle
3110 * sibling can pick up load irrespective of busy siblings. In this case,
3111 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3112 * portraying it as CPU_NOT_IDLE.
3113 */
3114 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3115 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3116 sd_idle = 1;
3117
3118 schedstat_inc(sd, lb_count[idle]);
3119
3120 redo:
3121 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3122 &cpus, balance);
3123
3124 if (*balance == 0)
3125 goto out_balanced;
3126
3127 if (!group) {
3128 schedstat_inc(sd, lb_nobusyg[idle]);
3129 goto out_balanced;
3130 }
3131
3132 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
3133 if (!busiest) {
3134 schedstat_inc(sd, lb_nobusyq[idle]);
3135 goto out_balanced;
3136 }
3137
3138 BUG_ON(busiest == this_rq);
3139
3140 schedstat_add(sd, lb_imbalance[idle], imbalance);
3141
3142 ld_moved = 0;
3143 if (busiest->nr_running > 1) {
3144 /*
3145 * Attempt to move tasks. If find_busiest_group has found
3146 * an imbalance but busiest->nr_running <= 1, the group is
3147 * still unbalanced. ld_moved simply stays zero, so it is
3148 * correctly treated as an imbalance.
3149 */
3150 local_irq_save(flags);
3151 double_rq_lock(this_rq, busiest);
3152 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3153 imbalance, sd, idle, &all_pinned);
3154 double_rq_unlock(this_rq, busiest);
3155 local_irq_restore(flags);
3156
3157 /*
3158 * some other cpu did the load balance for us.
3159 */
3160 if (ld_moved && this_cpu != smp_processor_id())
3161 resched_cpu(this_cpu);
3162
3163 /* All tasks on this runqueue were pinned by CPU affinity */
3164 if (unlikely(all_pinned)) {
3165 cpu_clear(cpu_of(busiest), cpus);
3166 if (!cpus_empty(cpus))
3167 goto redo;
3168 goto out_balanced;
3169 }
3170 }
3171
3172 if (!ld_moved) {
3173 schedstat_inc(sd, lb_failed[idle]);
3174 sd->nr_balance_failed++;
3175
3176 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3177
3178 spin_lock_irqsave(&busiest->lock, flags);
3179
3180 /* don't kick the migration_thread, if the curr
3181 * task on busiest cpu can't be moved to this_cpu
3182 */
3183 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3184 spin_unlock_irqrestore(&busiest->lock, flags);
3185 all_pinned = 1;
3186 goto out_one_pinned;
3187 }
3188
3189 if (!busiest->active_balance) {
3190 busiest->active_balance = 1;
3191 busiest->push_cpu = this_cpu;
3192 active_balance = 1;
3193 }
3194 spin_unlock_irqrestore(&busiest->lock, flags);
3195 if (active_balance)
3196 wake_up_process(busiest->migration_thread);
3197
3198 /*
3199 * We've kicked active balancing, reset the failure
3200 * counter.
3201 */
3202 sd->nr_balance_failed = sd->cache_nice_tries+1;
3203 }
3204 } else
3205 sd->nr_balance_failed = 0;
3206
3207 if (likely(!active_balance)) {
3208 /* We were unbalanced, so reset the balancing interval */
3209 sd->balance_interval = sd->min_interval;
3210 } else {
3211 /*
3212 * If we've begun active balancing, start to back off. This
3213 * case may not be covered by the all_pinned logic if there
3214 * is only 1 task on the busy runqueue (because we don't call
3215 * move_tasks).
3216 */
3217 if (sd->balance_interval < sd->max_interval)
3218 sd->balance_interval *= 2;
3219 }
3220
3221 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3222 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3223 return -1;
3224 return ld_moved;
3225
3226 out_balanced:
3227 schedstat_inc(sd, lb_balanced[idle]);
3228
3229 sd->nr_balance_failed = 0;
3230
3231 out_one_pinned:
3232 /* tune up the balancing interval */
3233 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3234 (sd->balance_interval < sd->max_interval))
3235 sd->balance_interval *= 2;
3236
3237 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3238 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3239 return -1;
3240 return 0;
3241 }
3242
3243 /*
3244 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3245 * tasks if there is an imbalance.
3246 *
3247 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3248 * this_rq is locked.
3249 */
3250 static int
3251 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3252 {
3253 struct sched_group *group;
3254 struct rq *busiest = NULL;
3255 unsigned long imbalance;
3256 int ld_moved = 0;
3257 int sd_idle = 0;
3258 int all_pinned = 0;
3259 cpumask_t cpus = CPU_MASK_ALL;
3260
3261 /*
3262 * When power savings policy is enabled for the parent domain, idle
3263 * sibling can pick up load irrespective of busy siblings. In this case,
3264 * let the state of idle sibling percolate up as IDLE, instead of
3265 * portraying it as CPU_NOT_IDLE.
3266 */
3267 if (sd->flags & SD_SHARE_CPUPOWER &&
3268 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3269 sd_idle = 1;
3270
3271 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3272 redo:
3273 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3274 &sd_idle, &cpus, NULL);
3275 if (!group) {
3276 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3277 goto out_balanced;
3278 }
3279
3280 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3281 &cpus);
3282 if (!busiest) {
3283 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3284 goto out_balanced;
3285 }
3286
3287 BUG_ON(busiest == this_rq);
3288
3289 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3290
3291 ld_moved = 0;
3292 if (busiest->nr_running > 1) {
3293 /* Attempt to move tasks */
3294 double_lock_balance(this_rq, busiest);
3295 /* this_rq->clock is already updated */
3296 update_rq_clock(busiest);
3297 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3298 imbalance, sd, CPU_NEWLY_IDLE,
3299 &all_pinned);
3300 spin_unlock(&busiest->lock);
3301
3302 if (unlikely(all_pinned)) {
3303 cpu_clear(cpu_of(busiest), cpus);
3304 if (!cpus_empty(cpus))
3305 goto redo;
3306 }
3307 }
3308
3309 if (!ld_moved) {
3310 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3311 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3312 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3313 return -1;
3314 } else
3315 sd->nr_balance_failed = 0;
3316
3317 return ld_moved;
3318
3319 out_balanced:
3320 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3321 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3322 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3323 return -1;
3324 sd->nr_balance_failed = 0;
3325
3326 return 0;
3327 }
3328
3329 /*
3330 * idle_balance is called by schedule() if this_cpu is about to become
3331 * idle. Attempts to pull tasks from other CPUs.
3332 */
3333 static void idle_balance(int this_cpu, struct rq *this_rq)
3334 {
3335 struct sched_domain *sd;
3336 int pulled_task = -1;
3337 unsigned long next_balance = jiffies + HZ;
3338
3339 for_each_domain(this_cpu, sd) {
3340 unsigned long interval;
3341
3342 if (!(sd->flags & SD_LOAD_BALANCE))
3343 continue;
3344
3345 if (sd->flags & SD_BALANCE_NEWIDLE)
3346 /* If we've pulled tasks over stop searching: */
3347 pulled_task = load_balance_newidle(this_cpu,
3348 this_rq, sd);
3349
3350 interval = msecs_to_jiffies(sd->balance_interval);
3351 if (time_after(next_balance, sd->last_balance + interval))
3352 next_balance = sd->last_balance + interval;
3353 if (pulled_task)
3354 break;
3355 }
3356 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3357 /*
3358 * We are going idle. next_balance may be set based on
3359 * a busy processor. So reset next_balance.
3360 */
3361 this_rq->next_balance = next_balance;
3362 }
3363 }
3364
3365 /*
3366 * active_load_balance is run by migration threads. It pushes running tasks
3367 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3368 * running on each physical CPU where possible, and avoids physical /
3369 * logical imbalances.
3370 *
3371 * Called with busiest_rq locked.
3372 */
3373 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3374 {
3375 int target_cpu = busiest_rq->push_cpu;
3376 struct sched_domain *sd;
3377 struct rq *target_rq;
3378
3379 /* Is there any task to move? */
3380 if (busiest_rq->nr_running <= 1)
3381 return;
3382
3383 target_rq = cpu_rq(target_cpu);
3384
3385 /*
3386 * This condition is "impossible", if it occurs
3387 * we need to fix it. Originally reported by
3388 * Bjorn Helgaas on a 128-cpu setup.
3389 */
3390 BUG_ON(busiest_rq == target_rq);
3391
3392 /* move a task from busiest_rq to target_rq */
3393 double_lock_balance(busiest_rq, target_rq);
3394 update_rq_clock(busiest_rq);
3395 update_rq_clock(target_rq);
3396
3397 /* Search for an sd spanning us and the target CPU. */
3398 for_each_domain(target_cpu, sd) {
3399 if ((sd->flags & SD_LOAD_BALANCE) &&
3400 cpu_isset(busiest_cpu, sd->span))
3401 break;
3402 }
3403
3404 if (likely(sd)) {
3405 schedstat_inc(sd, alb_count);
3406
3407 if (move_one_task(target_rq, target_cpu, busiest_rq,
3408 sd, CPU_IDLE))
3409 schedstat_inc(sd, alb_pushed);
3410 else
3411 schedstat_inc(sd, alb_failed);
3412 }
3413 spin_unlock(&target_rq->lock);
3414 }
3415
3416 #ifdef CONFIG_NO_HZ
3417 static struct {
3418 atomic_t load_balancer;
3419 cpumask_t cpu_mask;
3420 } nohz ____cacheline_aligned = {
3421 .load_balancer = ATOMIC_INIT(-1),
3422 .cpu_mask = CPU_MASK_NONE,
3423 };
3424
3425 /*
3426 * This routine will try to nominate the ilb (idle load balancing)
3427 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3428 * load balancing on behalf of all those cpus. If all the cpus in the system
3429 * go into this tickless mode, then there will be no ilb owner (as there is
3430 * no need for one) and all the cpus will sleep till the next wakeup event
3431 * arrives...
3432 *
3433 * For the ilb owner, tick is not stopped. And this tick will be used
3434 * for idle load balancing. ilb owner will still be part of
3435 * nohz.cpu_mask..
3436 *
3437 * While stopping the tick, this cpu will become the ilb owner if there
3438 * is no other owner. And will be the owner till that cpu becomes busy
3439 * or if all cpus in the system stop their ticks at which point
3440 * there is no need for ilb owner.
3441 *
3442 * When the ilb owner becomes busy, it nominates another owner, during the
3443 * next busy scheduler_tick()
3444 */
3445 int select_nohz_load_balancer(int stop_tick)
3446 {
3447 int cpu = smp_processor_id();
3448
3449 if (stop_tick) {
3450 cpu_set(cpu, nohz.cpu_mask);
3451 cpu_rq(cpu)->in_nohz_recently = 1;
3452
3453 /*
3454 * If we are going offline and still the leader, give up!
3455 */
3456 if (cpu_is_offline(cpu) &&
3457 atomic_read(&nohz.load_balancer) == cpu) {
3458 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3459 BUG();
3460 return 0;
3461 }
3462
3463 /* time for ilb owner also to sleep */
3464 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3465 if (atomic_read(&nohz.load_balancer) == cpu)
3466 atomic_set(&nohz.load_balancer, -1);
3467 return 0;
3468 }
3469
3470 if (atomic_read(&nohz.load_balancer) == -1) {
3471 /* make me the ilb owner */
3472 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3473 return 1;
3474 } else if (atomic_read(&nohz.load_balancer) == cpu)
3475 return 1;
3476 } else {
3477 if (!cpu_isset(cpu, nohz.cpu_mask))
3478 return 0;
3479
3480 cpu_clear(cpu, nohz.cpu_mask);
3481
3482 if (atomic_read(&nohz.load_balancer) == cpu)
3483 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3484 BUG();
3485 }
3486 return 0;
3487 }
3488 #endif
3489
3490 static DEFINE_SPINLOCK(balancing);
3491
3492 /*
3493 * It checks each scheduling domain to see if it is due to be balanced,
3494 * and initiates a balancing operation if so.
3495 *
3496 * Balancing parameters are set up in arch_init_sched_domains.
3497 */
3498 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3499 {
3500 int balance = 1;
3501 struct rq *rq = cpu_rq(cpu);
3502 unsigned long interval;
3503 struct sched_domain *sd;
3504 /* Earliest time when we have to do rebalance again */
3505 unsigned long next_balance = jiffies + 60*HZ;
3506 int update_next_balance = 0;
3507
3508 for_each_domain(cpu, sd) {
3509 if (!(sd->flags & SD_LOAD_BALANCE))
3510 continue;
3511
3512 interval = sd->balance_interval;
3513 if (idle != CPU_IDLE)
3514 interval *= sd->busy_factor;
3515
3516 /* scale ms to jiffies */
3517 interval = msecs_to_jiffies(interval);
3518 if (unlikely(!interval))
3519 interval = 1;
3520 if (interval > HZ*NR_CPUS/10)
3521 interval = HZ*NR_CPUS/10;
3522
3523
3524 if (sd->flags & SD_SERIALIZE) {
3525 if (!spin_trylock(&balancing))
3526 goto out;
3527 }
3528
3529 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3530 if (load_balance(cpu, rq, sd, idle, &balance)) {
3531 /*
3532 * We've pulled tasks over so either we're no
3533 * longer idle, or one of our SMT siblings is
3534 * not idle.
3535 */
3536 idle = CPU_NOT_IDLE;
3537 }
3538 sd->last_balance = jiffies;
3539 }
3540 if (sd->flags & SD_SERIALIZE)
3541 spin_unlock(&balancing);
3542 out:
3543 if (time_after(next_balance, sd->last_balance + interval)) {
3544 next_balance = sd->last_balance + interval;
3545 update_next_balance = 1;
3546 }
3547
3548 /*
3549 * Stop the load balance at this level. There is another
3550 * CPU in our sched group which is doing load balancing more
3551 * actively.
3552 */
3553 if (!balance)
3554 break;
3555 }
3556
3557 /*
3558 * next_balance will be updated only when there is a need.
3559 * When the cpu is attached to null domain for ex, it will not be
3560 * updated.
3561 */
3562 if (likely(update_next_balance))
3563 rq->next_balance = next_balance;
3564 }
3565
3566 /*
3567 * run_rebalance_domains is triggered when needed from the scheduler tick.
3568 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3569 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3570 */
3571 static void run_rebalance_domains(struct softirq_action *h)
3572 {
3573 int this_cpu = smp_processor_id();
3574 struct rq *this_rq = cpu_rq(this_cpu);
3575 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3576 CPU_IDLE : CPU_NOT_IDLE;
3577
3578 rebalance_domains(this_cpu, idle);
3579
3580 #ifdef CONFIG_NO_HZ
3581 /*
3582 * If this cpu is the owner for idle load balancing, then do the
3583 * balancing on behalf of the other idle cpus whose ticks are
3584 * stopped.
3585 */
3586 if (this_rq->idle_at_tick &&
3587 atomic_read(&nohz.load_balancer) == this_cpu) {
3588 cpumask_t cpus = nohz.cpu_mask;
3589 struct rq *rq;
3590 int balance_cpu;
3591
3592 cpu_clear(this_cpu, cpus);
3593 for_each_cpu_mask(balance_cpu, cpus) {
3594 /*
3595 * If this cpu gets work to do, stop the load balancing
3596 * work being done for other cpus. Next load
3597 * balancing owner will pick it up.
3598 */
3599 if (need_resched())
3600 break;
3601
3602 rebalance_domains(balance_cpu, CPU_IDLE);
3603
3604 rq = cpu_rq(balance_cpu);
3605 if (time_after(this_rq->next_balance, rq->next_balance))
3606 this_rq->next_balance = rq->next_balance;
3607 }
3608 }
3609 #endif
3610 }
3611
3612 /*
3613 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3614 *
3615 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3616 * idle load balancing owner or decide to stop the periodic load balancing,
3617 * if the whole system is idle.
3618 */
3619 static inline void trigger_load_balance(struct rq *rq, int cpu)
3620 {
3621 #ifdef CONFIG_NO_HZ
3622 /*
3623 * If we were in the nohz mode recently and busy at the current
3624 * scheduler tick, then check if we need to nominate new idle
3625 * load balancer.
3626 */
3627 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3628 rq->in_nohz_recently = 0;
3629
3630 if (atomic_read(&nohz.load_balancer) == cpu) {
3631 cpu_clear(cpu, nohz.cpu_mask);
3632 atomic_set(&nohz.load_balancer, -1);
3633 }
3634
3635 if (atomic_read(&nohz.load_balancer) == -1) {
3636 /*
3637 * simple selection for now: Nominate the
3638 * first cpu in the nohz list to be the next
3639 * ilb owner.
3640 *
3641 * TBD: Traverse the sched domains and nominate
3642 * the nearest cpu in the nohz.cpu_mask.
3643 */
3644 int ilb = first_cpu(nohz.cpu_mask);
3645
3646 if (ilb != NR_CPUS)
3647 resched_cpu(ilb);
3648 }
3649 }
3650
3651 /*
3652 * If this cpu is idle and doing idle load balancing for all the
3653 * cpus with ticks stopped, is it time for that to stop?
3654 */
3655 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3656 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3657 resched_cpu(cpu);
3658 return;
3659 }
3660
3661 /*
3662 * If this cpu is idle and the idle load balancing is done by
3663 * someone else, then no need raise the SCHED_SOFTIRQ
3664 */
3665 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3666 cpu_isset(cpu, nohz.cpu_mask))
3667 return;
3668 #endif
3669 if (time_after_eq(jiffies, rq->next_balance))
3670 raise_softirq(SCHED_SOFTIRQ);
3671 }
3672
3673 #else /* CONFIG_SMP */
3674
3675 /*
3676 * on UP we do not need to balance between CPUs:
3677 */
3678 static inline void idle_balance(int cpu, struct rq *rq)
3679 {
3680 }
3681
3682 #endif
3683
3684 DEFINE_PER_CPU(struct kernel_stat, kstat);
3685
3686 EXPORT_PER_CPU_SYMBOL(kstat);
3687
3688 /*
3689 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3690 * that have not yet been banked in case the task is currently running.
3691 */
3692 unsigned long long task_sched_runtime(struct task_struct *p)
3693 {
3694 unsigned long flags;
3695 u64 ns, delta_exec;
3696 struct rq *rq;
3697
3698 rq = task_rq_lock(p, &flags);
3699 ns = p->se.sum_exec_runtime;
3700 if (task_current(rq, p)) {
3701 update_rq_clock(rq);
3702 delta_exec = rq->clock - p->se.exec_start;
3703 if ((s64)delta_exec > 0)
3704 ns += delta_exec;
3705 }
3706 task_rq_unlock(rq, &flags);
3707
3708 return ns;
3709 }
3710
3711 /*
3712 * Account user cpu time to a process.
3713 * @p: the process that the cpu time gets accounted to
3714 * @cputime: the cpu time spent in user space since the last update
3715 */
3716 void account_user_time(struct task_struct *p, cputime_t cputime)
3717 {
3718 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3719 cputime64_t tmp;
3720
3721 p->utime = cputime_add(p->utime, cputime);
3722
3723 /* Add user time to cpustat. */
3724 tmp = cputime_to_cputime64(cputime);
3725 if (TASK_NICE(p) > 0)
3726 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3727 else
3728 cpustat->user = cputime64_add(cpustat->user, tmp);
3729 }
3730
3731 /*
3732 * Account guest cpu time to a process.
3733 * @p: the process that the cpu time gets accounted to
3734 * @cputime: the cpu time spent in virtual machine since the last update
3735 */
3736 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3737 {
3738 cputime64_t tmp;
3739 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3740
3741 tmp = cputime_to_cputime64(cputime);
3742
3743 p->utime = cputime_add(p->utime, cputime);
3744 p->gtime = cputime_add(p->gtime, cputime);
3745
3746 cpustat->user = cputime64_add(cpustat->user, tmp);
3747 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3748 }
3749
3750 /*
3751 * Account scaled user cpu time to a process.
3752 * @p: the process that the cpu time gets accounted to
3753 * @cputime: the cpu time spent in user space since the last update
3754 */
3755 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3756 {
3757 p->utimescaled = cputime_add(p->utimescaled, cputime);
3758 }
3759
3760 /*
3761 * Account system cpu time to a process.
3762 * @p: the process that the cpu time gets accounted to
3763 * @hardirq_offset: the offset to subtract from hardirq_count()
3764 * @cputime: the cpu time spent in kernel space since the last update
3765 */
3766 void account_system_time(struct task_struct *p, int hardirq_offset,
3767 cputime_t cputime)
3768 {
3769 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3770 struct rq *rq = this_rq();
3771 cputime64_t tmp;
3772
3773 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3774 return account_guest_time(p, cputime);
3775
3776 p->stime = cputime_add(p->stime, cputime);
3777
3778 /* Add system time to cpustat. */
3779 tmp = cputime_to_cputime64(cputime);
3780 if (hardirq_count() - hardirq_offset)
3781 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3782 else if (softirq_count())
3783 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3784 else if (p != rq->idle)
3785 cpustat->system = cputime64_add(cpustat->system, tmp);
3786 else if (atomic_read(&rq->nr_iowait) > 0)
3787 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3788 else
3789 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3790 /* Account for system time used */
3791 acct_update_integrals(p);
3792 }
3793
3794 /*
3795 * Account scaled system cpu time to a process.
3796 * @p: the process that the cpu time gets accounted to
3797 * @hardirq_offset: the offset to subtract from hardirq_count()
3798 * @cputime: the cpu time spent in kernel space since the last update
3799 */
3800 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3801 {
3802 p->stimescaled = cputime_add(p->stimescaled, cputime);
3803 }
3804
3805 /*
3806 * Account for involuntary wait time.
3807 * @p: the process from which the cpu time has been stolen
3808 * @steal: the cpu time spent in involuntary wait
3809 */
3810 void account_steal_time(struct task_struct *p, cputime_t steal)
3811 {
3812 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3813 cputime64_t tmp = cputime_to_cputime64(steal);
3814 struct rq *rq = this_rq();
3815
3816 if (p == rq->idle) {
3817 p->stime = cputime_add(p->stime, steal);
3818 if (atomic_read(&rq->nr_iowait) > 0)
3819 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3820 else
3821 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3822 } else
3823 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3824 }
3825
3826 /*
3827 * This function gets called by the timer code, with HZ frequency.
3828 * We call it with interrupts disabled.
3829 *
3830 * It also gets called by the fork code, when changing the parent's
3831 * timeslices.
3832 */
3833 void scheduler_tick(void)
3834 {
3835 int cpu = smp_processor_id();
3836 struct rq *rq = cpu_rq(cpu);
3837 struct task_struct *curr = rq->curr;
3838 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3839
3840 spin_lock(&rq->lock);
3841 __update_rq_clock(rq);
3842 /*
3843 * Let rq->clock advance by at least TICK_NSEC:
3844 */
3845 if (unlikely(rq->clock < next_tick)) {
3846 rq->clock = next_tick;
3847 rq->clock_underflows++;
3848 }
3849 rq->tick_timestamp = rq->clock;
3850 update_last_tick_seen(rq);
3851 update_cpu_load(rq);
3852 curr->sched_class->task_tick(rq, curr, 0);
3853 update_sched_rt_period(rq);
3854 spin_unlock(&rq->lock);
3855
3856 #ifdef CONFIG_SMP
3857 rq->idle_at_tick = idle_cpu(cpu);
3858 trigger_load_balance(rq, cpu);
3859 #endif
3860 }
3861
3862 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3863
3864 void __kprobes add_preempt_count(int val)
3865 {
3866 /*
3867 * Underflow?
3868 */
3869 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3870 return;
3871 preempt_count() += val;
3872 /*
3873 * Spinlock count overflowing soon?
3874 */
3875 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3876 PREEMPT_MASK - 10);
3877 }
3878 EXPORT_SYMBOL(add_preempt_count);
3879
3880 void __kprobes sub_preempt_count(int val)
3881 {
3882 /*
3883 * Underflow?
3884 */
3885 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3886 return;
3887 /*
3888 * Is the spinlock portion underflowing?
3889 */
3890 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3891 !(preempt_count() & PREEMPT_MASK)))
3892 return;
3893
3894 preempt_count() -= val;
3895 }
3896 EXPORT_SYMBOL(sub_preempt_count);
3897
3898 #endif
3899
3900 /*
3901 * Print scheduling while atomic bug:
3902 */
3903 static noinline void __schedule_bug(struct task_struct *prev)
3904 {
3905 struct pt_regs *regs = get_irq_regs();
3906
3907 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3908 prev->comm, prev->pid, preempt_count());
3909
3910 debug_show_held_locks(prev);
3911 if (irqs_disabled())
3912 print_irqtrace_events(prev);
3913
3914 if (regs)
3915 show_regs(regs);
3916 else
3917 dump_stack();
3918 }
3919
3920 /*
3921 * Various schedule()-time debugging checks and statistics:
3922 */
3923 static inline void schedule_debug(struct task_struct *prev)
3924 {
3925 /*
3926 * Test if we are atomic. Since do_exit() needs to call into
3927 * schedule() atomically, we ignore that path for now.
3928 * Otherwise, whine if we are scheduling when we should not be.
3929 */
3930 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3931 __schedule_bug(prev);
3932
3933 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3934
3935 schedstat_inc(this_rq(), sched_count);
3936 #ifdef CONFIG_SCHEDSTATS
3937 if (unlikely(prev->lock_depth >= 0)) {
3938 schedstat_inc(this_rq(), bkl_count);
3939 schedstat_inc(prev, sched_info.bkl_count);
3940 }
3941 #endif
3942 }
3943
3944 /*
3945 * Pick up the highest-prio task:
3946 */
3947 static inline struct task_struct *
3948 pick_next_task(struct rq *rq, struct task_struct *prev)
3949 {
3950 const struct sched_class *class;
3951 struct task_struct *p;
3952
3953 /*
3954 * Optimization: we know that if all tasks are in
3955 * the fair class we can call that function directly:
3956 */
3957 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3958 p = fair_sched_class.pick_next_task(rq);
3959 if (likely(p))
3960 return p;
3961 }
3962
3963 class = sched_class_highest;
3964 for ( ; ; ) {
3965 p = class->pick_next_task(rq);
3966 if (p)
3967 return p;
3968 /*
3969 * Will never be NULL as the idle class always
3970 * returns a non-NULL p:
3971 */
3972 class = class->next;
3973 }
3974 }
3975
3976 /*
3977 * schedule() is the main scheduler function.
3978 */
3979 asmlinkage void __sched schedule(void)
3980 {
3981 struct task_struct *prev, *next;
3982 unsigned long *switch_count;
3983 struct rq *rq;
3984 int cpu;
3985
3986 need_resched:
3987 preempt_disable();
3988 cpu = smp_processor_id();
3989 rq = cpu_rq(cpu);
3990 rcu_qsctr_inc(cpu);
3991 prev = rq->curr;
3992 switch_count = &prev->nivcsw;
3993
3994 release_kernel_lock(prev);
3995 need_resched_nonpreemptible:
3996
3997 schedule_debug(prev);
3998
3999 hrtick_clear(rq);
4000
4001 /*
4002 * Do the rq-clock update outside the rq lock:
4003 */
4004 local_irq_disable();
4005 __update_rq_clock(rq);
4006 spin_lock(&rq->lock);
4007 clear_tsk_need_resched(prev);
4008
4009 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4010 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4011 signal_pending(prev))) {
4012 prev->state = TASK_RUNNING;
4013 } else {
4014 deactivate_task(rq, prev, 1);
4015 }
4016 switch_count = &prev->nvcsw;
4017 }
4018
4019 #ifdef CONFIG_SMP
4020 if (prev->sched_class->pre_schedule)
4021 prev->sched_class->pre_schedule(rq, prev);
4022 #endif
4023
4024 if (unlikely(!rq->nr_running))
4025 idle_balance(cpu, rq);
4026
4027 prev->sched_class->put_prev_task(rq, prev);
4028 next = pick_next_task(rq, prev);
4029
4030 sched_info_switch(prev, next);
4031
4032 if (likely(prev != next)) {
4033 rq->nr_switches++;
4034 rq->curr = next;
4035 ++*switch_count;
4036
4037 context_switch(rq, prev, next); /* unlocks the rq */
4038 /*
4039 * the context switch might have flipped the stack from under
4040 * us, hence refresh the local variables.
4041 */
4042 cpu = smp_processor_id();
4043 rq = cpu_rq(cpu);
4044 } else
4045 spin_unlock_irq(&rq->lock);
4046
4047 hrtick_set(rq);
4048
4049 if (unlikely(reacquire_kernel_lock(current) < 0))
4050 goto need_resched_nonpreemptible;
4051
4052 preempt_enable_no_resched();
4053 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4054 goto need_resched;
4055 }
4056 EXPORT_SYMBOL(schedule);
4057
4058 #ifdef CONFIG_PREEMPT
4059 /*
4060 * this is the entry point to schedule() from in-kernel preemption
4061 * off of preempt_enable. Kernel preemptions off return from interrupt
4062 * occur there and call schedule directly.
4063 */
4064 asmlinkage void __sched preempt_schedule(void)
4065 {
4066 struct thread_info *ti = current_thread_info();
4067 struct task_struct *task = current;
4068 int saved_lock_depth;
4069
4070 /*
4071 * If there is a non-zero preempt_count or interrupts are disabled,
4072 * we do not want to preempt the current task. Just return..
4073 */
4074 if (likely(ti->preempt_count || irqs_disabled()))
4075 return;
4076
4077 do {
4078 add_preempt_count(PREEMPT_ACTIVE);
4079
4080 /*
4081 * We keep the big kernel semaphore locked, but we
4082 * clear ->lock_depth so that schedule() doesnt
4083 * auto-release the semaphore:
4084 */
4085 saved_lock_depth = task->lock_depth;
4086 task->lock_depth = -1;
4087 schedule();
4088 task->lock_depth = saved_lock_depth;
4089 sub_preempt_count(PREEMPT_ACTIVE);
4090
4091 /*
4092 * Check again in case we missed a preemption opportunity
4093 * between schedule and now.
4094 */
4095 barrier();
4096 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4097 }
4098 EXPORT_SYMBOL(preempt_schedule);
4099
4100 /*
4101 * this is the entry point to schedule() from kernel preemption
4102 * off of irq context.
4103 * Note, that this is called and return with irqs disabled. This will
4104 * protect us against recursive calling from irq.
4105 */
4106 asmlinkage void __sched preempt_schedule_irq(void)
4107 {
4108 struct thread_info *ti = current_thread_info();
4109 struct task_struct *task = current;
4110 int saved_lock_depth;
4111
4112 /* Catch callers which need to be fixed */
4113 BUG_ON(ti->preempt_count || !irqs_disabled());
4114
4115 do {
4116 add_preempt_count(PREEMPT_ACTIVE);
4117
4118 /*
4119 * We keep the big kernel semaphore locked, but we
4120 * clear ->lock_depth so that schedule() doesnt
4121 * auto-release the semaphore:
4122 */
4123 saved_lock_depth = task->lock_depth;
4124 task->lock_depth = -1;
4125 local_irq_enable();
4126 schedule();
4127 local_irq_disable();
4128 task->lock_depth = saved_lock_depth;
4129 sub_preempt_count(PREEMPT_ACTIVE);
4130
4131 /*
4132 * Check again in case we missed a preemption opportunity
4133 * between schedule and now.
4134 */
4135 barrier();
4136 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4137 }
4138
4139 #endif /* CONFIG_PREEMPT */
4140
4141 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4142 void *key)
4143 {
4144 return try_to_wake_up(curr->private, mode, sync);
4145 }
4146 EXPORT_SYMBOL(default_wake_function);
4147
4148 /*
4149 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4150 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4151 * number) then we wake all the non-exclusive tasks and one exclusive task.
4152 *
4153 * There are circumstances in which we can try to wake a task which has already
4154 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4155 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4156 */
4157 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4158 int nr_exclusive, int sync, void *key)
4159 {
4160 wait_queue_t *curr, *next;
4161
4162 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4163 unsigned flags = curr->flags;
4164
4165 if (curr->func(curr, mode, sync, key) &&
4166 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4167 break;
4168 }
4169 }
4170
4171 /**
4172 * __wake_up - wake up threads blocked on a waitqueue.
4173 * @q: the waitqueue
4174 * @mode: which threads
4175 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4176 * @key: is directly passed to the wakeup function
4177 */
4178 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4179 int nr_exclusive, void *key)
4180 {
4181 unsigned long flags;
4182
4183 spin_lock_irqsave(&q->lock, flags);
4184 __wake_up_common(q, mode, nr_exclusive, 0, key);
4185 spin_unlock_irqrestore(&q->lock, flags);
4186 }
4187 EXPORT_SYMBOL(__wake_up);
4188
4189 /*
4190 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4191 */
4192 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4193 {
4194 __wake_up_common(q, mode, 1, 0, NULL);
4195 }
4196
4197 /**
4198 * __wake_up_sync - wake up threads blocked on a waitqueue.
4199 * @q: the waitqueue
4200 * @mode: which threads
4201 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4202 *
4203 * The sync wakeup differs that the waker knows that it will schedule
4204 * away soon, so while the target thread will be woken up, it will not
4205 * be migrated to another CPU - ie. the two threads are 'synchronized'
4206 * with each other. This can prevent needless bouncing between CPUs.
4207 *
4208 * On UP it can prevent extra preemption.
4209 */
4210 void
4211 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4212 {
4213 unsigned long flags;
4214 int sync = 1;
4215
4216 if (unlikely(!q))
4217 return;
4218
4219 if (unlikely(!nr_exclusive))
4220 sync = 0;
4221
4222 spin_lock_irqsave(&q->lock, flags);
4223 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4224 spin_unlock_irqrestore(&q->lock, flags);
4225 }
4226 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4227
4228 void complete(struct completion *x)
4229 {
4230 unsigned long flags;
4231
4232 spin_lock_irqsave(&x->wait.lock, flags);
4233 x->done++;
4234 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4235 spin_unlock_irqrestore(&x->wait.lock, flags);
4236 }
4237 EXPORT_SYMBOL(complete);
4238
4239 void complete_all(struct completion *x)
4240 {
4241 unsigned long flags;
4242
4243 spin_lock_irqsave(&x->wait.lock, flags);
4244 x->done += UINT_MAX/2;
4245 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4246 spin_unlock_irqrestore(&x->wait.lock, flags);
4247 }
4248 EXPORT_SYMBOL(complete_all);
4249
4250 static inline long __sched
4251 do_wait_for_common(struct completion *x, long timeout, int state)
4252 {
4253 if (!x->done) {
4254 DECLARE_WAITQUEUE(wait, current);
4255
4256 wait.flags |= WQ_FLAG_EXCLUSIVE;
4257 __add_wait_queue_tail(&x->wait, &wait);
4258 do {
4259 if ((state == TASK_INTERRUPTIBLE &&
4260 signal_pending(current)) ||
4261 (state == TASK_KILLABLE &&
4262 fatal_signal_pending(current))) {
4263 __remove_wait_queue(&x->wait, &wait);
4264 return -ERESTARTSYS;
4265 }
4266 __set_current_state(state);
4267 spin_unlock_irq(&x->wait.lock);
4268 timeout = schedule_timeout(timeout);
4269 spin_lock_irq(&x->wait.lock);
4270 if (!timeout) {
4271 __remove_wait_queue(&x->wait, &wait);
4272 return timeout;
4273 }
4274 } while (!x->done);
4275 __remove_wait_queue(&x->wait, &wait);
4276 }
4277 x->done--;
4278 return timeout;
4279 }
4280
4281 static long __sched
4282 wait_for_common(struct completion *x, long timeout, int state)
4283 {
4284 might_sleep();
4285
4286 spin_lock_irq(&x->wait.lock);
4287 timeout = do_wait_for_common(x, timeout, state);
4288 spin_unlock_irq(&x->wait.lock);
4289 return timeout;
4290 }
4291
4292 void __sched wait_for_completion(struct completion *x)
4293 {
4294 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4295 }
4296 EXPORT_SYMBOL(wait_for_completion);
4297
4298 unsigned long __sched
4299 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4300 {
4301 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4302 }
4303 EXPORT_SYMBOL(wait_for_completion_timeout);
4304
4305 int __sched wait_for_completion_interruptible(struct completion *x)
4306 {
4307 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4308 if (t == -ERESTARTSYS)
4309 return t;
4310 return 0;
4311 }
4312 EXPORT_SYMBOL(wait_for_completion_interruptible);
4313
4314 unsigned long __sched
4315 wait_for_completion_interruptible_timeout(struct completion *x,
4316 unsigned long timeout)
4317 {
4318 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4319 }
4320 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4321
4322 int __sched wait_for_completion_killable(struct completion *x)
4323 {
4324 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4325 if (t == -ERESTARTSYS)
4326 return t;
4327 return 0;
4328 }
4329 EXPORT_SYMBOL(wait_for_completion_killable);
4330
4331 static long __sched
4332 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4333 {
4334 unsigned long flags;
4335 wait_queue_t wait;
4336
4337 init_waitqueue_entry(&wait, current);
4338
4339 __set_current_state(state);
4340
4341 spin_lock_irqsave(&q->lock, flags);
4342 __add_wait_queue(q, &wait);
4343 spin_unlock(&q->lock);
4344 timeout = schedule_timeout(timeout);
4345 spin_lock_irq(&q->lock);
4346 __remove_wait_queue(q, &wait);
4347 spin_unlock_irqrestore(&q->lock, flags);
4348
4349 return timeout;
4350 }
4351
4352 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4353 {
4354 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4355 }
4356 EXPORT_SYMBOL(interruptible_sleep_on);
4357
4358 long __sched
4359 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4360 {
4361 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4362 }
4363 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4364
4365 void __sched sleep_on(wait_queue_head_t *q)
4366 {
4367 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4368 }
4369 EXPORT_SYMBOL(sleep_on);
4370
4371 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4372 {
4373 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4374 }
4375 EXPORT_SYMBOL(sleep_on_timeout);
4376
4377 #ifdef CONFIG_RT_MUTEXES
4378
4379 /*
4380 * rt_mutex_setprio - set the current priority of a task
4381 * @p: task
4382 * @prio: prio value (kernel-internal form)
4383 *
4384 * This function changes the 'effective' priority of a task. It does
4385 * not touch ->normal_prio like __setscheduler().
4386 *
4387 * Used by the rt_mutex code to implement priority inheritance logic.
4388 */
4389 void rt_mutex_setprio(struct task_struct *p, int prio)
4390 {
4391 unsigned long flags;
4392 int oldprio, on_rq, running;
4393 struct rq *rq;
4394 const struct sched_class *prev_class = p->sched_class;
4395
4396 BUG_ON(prio < 0 || prio > MAX_PRIO);
4397
4398 rq = task_rq_lock(p, &flags);
4399 update_rq_clock(rq);
4400
4401 oldprio = p->prio;
4402 on_rq = p->se.on_rq;
4403 running = task_current(rq, p);
4404 if (on_rq)
4405 dequeue_task(rq, p, 0);
4406 if (running)
4407 p->sched_class->put_prev_task(rq, p);
4408
4409 if (rt_prio(prio))
4410 p->sched_class = &rt_sched_class;
4411 else
4412 p->sched_class = &fair_sched_class;
4413
4414 p->prio = prio;
4415
4416 if (running)
4417 p->sched_class->set_curr_task(rq);
4418 if (on_rq) {
4419 enqueue_task(rq, p, 0);
4420
4421 check_class_changed(rq, p, prev_class, oldprio, running);
4422 }
4423 task_rq_unlock(rq, &flags);
4424 }
4425
4426 #endif
4427
4428 void set_user_nice(struct task_struct *p, long nice)
4429 {
4430 int old_prio, delta, on_rq;
4431 unsigned long flags;
4432 struct rq *rq;
4433
4434 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4435 return;
4436 /*
4437 * We have to be careful, if called from sys_setpriority(),
4438 * the task might be in the middle of scheduling on another CPU.
4439 */
4440 rq = task_rq_lock(p, &flags);
4441 update_rq_clock(rq);
4442 /*
4443 * The RT priorities are set via sched_setscheduler(), but we still
4444 * allow the 'normal' nice value to be set - but as expected
4445 * it wont have any effect on scheduling until the task is
4446 * SCHED_FIFO/SCHED_RR:
4447 */
4448 if (task_has_rt_policy(p)) {
4449 p->static_prio = NICE_TO_PRIO(nice);
4450 goto out_unlock;
4451 }
4452 on_rq = p->se.on_rq;
4453 if (on_rq) {
4454 dequeue_task(rq, p, 0);
4455 dec_load(rq, p);
4456 }
4457
4458 p->static_prio = NICE_TO_PRIO(nice);
4459 set_load_weight(p);
4460 old_prio = p->prio;
4461 p->prio = effective_prio(p);
4462 delta = p->prio - old_prio;
4463
4464 if (on_rq) {
4465 enqueue_task(rq, p, 0);
4466 inc_load(rq, p);
4467 /*
4468 * If the task increased its priority or is running and
4469 * lowered its priority, then reschedule its CPU:
4470 */
4471 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4472 resched_task(rq->curr);
4473 }
4474 out_unlock:
4475 task_rq_unlock(rq, &flags);
4476 }
4477 EXPORT_SYMBOL(set_user_nice);
4478
4479 /*
4480 * can_nice - check if a task can reduce its nice value
4481 * @p: task
4482 * @nice: nice value
4483 */
4484 int can_nice(const struct task_struct *p, const int nice)
4485 {
4486 /* convert nice value [19,-20] to rlimit style value [1,40] */
4487 int nice_rlim = 20 - nice;
4488
4489 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4490 capable(CAP_SYS_NICE));
4491 }
4492
4493 #ifdef __ARCH_WANT_SYS_NICE
4494
4495 /*
4496 * sys_nice - change the priority of the current process.
4497 * @increment: priority increment
4498 *
4499 * sys_setpriority is a more generic, but much slower function that
4500 * does similar things.
4501 */
4502 asmlinkage long sys_nice(int increment)
4503 {
4504 long nice, retval;
4505
4506 /*
4507 * Setpriority might change our priority at the same moment.
4508 * We don't have to worry. Conceptually one call occurs first
4509 * and we have a single winner.
4510 */
4511 if (increment < -40)
4512 increment = -40;
4513 if (increment > 40)
4514 increment = 40;
4515
4516 nice = PRIO_TO_NICE(current->static_prio) + increment;
4517 if (nice < -20)
4518 nice = -20;
4519 if (nice > 19)
4520 nice = 19;
4521
4522 if (increment < 0 && !can_nice(current, nice))
4523 return -EPERM;
4524
4525 retval = security_task_setnice(current, nice);
4526 if (retval)
4527 return retval;
4528
4529 set_user_nice(current, nice);
4530 return 0;
4531 }
4532
4533 #endif
4534
4535 /**
4536 * task_prio - return the priority value of a given task.
4537 * @p: the task in question.
4538 *
4539 * This is the priority value as seen by users in /proc.
4540 * RT tasks are offset by -200. Normal tasks are centered
4541 * around 0, value goes from -16 to +15.
4542 */
4543 int task_prio(const struct task_struct *p)
4544 {
4545 return p->prio - MAX_RT_PRIO;
4546 }
4547
4548 /**
4549 * task_nice - return the nice value of a given task.
4550 * @p: the task in question.
4551 */
4552 int task_nice(const struct task_struct *p)
4553 {
4554 return TASK_NICE(p);
4555 }
4556 EXPORT_SYMBOL(task_nice);
4557
4558 /**
4559 * idle_cpu - is a given cpu idle currently?
4560 * @cpu: the processor in question.
4561 */
4562 int idle_cpu(int cpu)
4563 {
4564 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4565 }
4566
4567 /**
4568 * idle_task - return the idle task for a given cpu.
4569 * @cpu: the processor in question.
4570 */
4571 struct task_struct *idle_task(int cpu)
4572 {
4573 return cpu_rq(cpu)->idle;
4574 }
4575
4576 /**
4577 * find_process_by_pid - find a process with a matching PID value.
4578 * @pid: the pid in question.
4579 */
4580 static struct task_struct *find_process_by_pid(pid_t pid)
4581 {
4582 return pid ? find_task_by_vpid(pid) : current;
4583 }
4584
4585 /* Actually do priority change: must hold rq lock. */
4586 static void
4587 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4588 {
4589 BUG_ON(p->se.on_rq);
4590
4591 p->policy = policy;
4592 switch (p->policy) {
4593 case SCHED_NORMAL:
4594 case SCHED_BATCH:
4595 case SCHED_IDLE:
4596 p->sched_class = &fair_sched_class;
4597 break;
4598 case SCHED_FIFO:
4599 case SCHED_RR:
4600 p->sched_class = &rt_sched_class;
4601 break;
4602 }
4603
4604 p->rt_priority = prio;
4605 p->normal_prio = normal_prio(p);
4606 /* we are holding p->pi_lock already */
4607 p->prio = rt_mutex_getprio(p);
4608 set_load_weight(p);
4609 }
4610
4611 /**
4612 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4613 * @p: the task in question.
4614 * @policy: new policy.
4615 * @param: structure containing the new RT priority.
4616 *
4617 * NOTE that the task may be already dead.
4618 */
4619 int sched_setscheduler(struct task_struct *p, int policy,
4620 struct sched_param *param)
4621 {
4622 int retval, oldprio, oldpolicy = -1, on_rq, running;
4623 unsigned long flags;
4624 const struct sched_class *prev_class = p->sched_class;
4625 struct rq *rq;
4626
4627 /* may grab non-irq protected spin_locks */
4628 BUG_ON(in_interrupt());
4629 recheck:
4630 /* double check policy once rq lock held */
4631 if (policy < 0)
4632 policy = oldpolicy = p->policy;
4633 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4634 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4635 policy != SCHED_IDLE)
4636 return -EINVAL;
4637 /*
4638 * Valid priorities for SCHED_FIFO and SCHED_RR are
4639 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4640 * SCHED_BATCH and SCHED_IDLE is 0.
4641 */
4642 if (param->sched_priority < 0 ||
4643 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4644 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4645 return -EINVAL;
4646 if (rt_policy(policy) != (param->sched_priority != 0))
4647 return -EINVAL;
4648
4649 /*
4650 * Allow unprivileged RT tasks to decrease priority:
4651 */
4652 if (!capable(CAP_SYS_NICE)) {
4653 if (rt_policy(policy)) {
4654 unsigned long rlim_rtprio;
4655
4656 if (!lock_task_sighand(p, &flags))
4657 return -ESRCH;
4658 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4659 unlock_task_sighand(p, &flags);
4660
4661 /* can't set/change the rt policy */
4662 if (policy != p->policy && !rlim_rtprio)
4663 return -EPERM;
4664
4665 /* can't increase priority */
4666 if (param->sched_priority > p->rt_priority &&
4667 param->sched_priority > rlim_rtprio)
4668 return -EPERM;
4669 }
4670 /*
4671 * Like positive nice levels, dont allow tasks to
4672 * move out of SCHED_IDLE either:
4673 */
4674 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4675 return -EPERM;
4676
4677 /* can't change other user's priorities */
4678 if ((current->euid != p->euid) &&
4679 (current->euid != p->uid))
4680 return -EPERM;
4681 }
4682
4683 #ifdef CONFIG_RT_GROUP_SCHED
4684 /*
4685 * Do not allow realtime tasks into groups that have no runtime
4686 * assigned.
4687 */
4688 if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
4689 return -EPERM;
4690 #endif
4691
4692 retval = security_task_setscheduler(p, policy, param);
4693 if (retval)
4694 return retval;
4695 /*
4696 * make sure no PI-waiters arrive (or leave) while we are
4697 * changing the priority of the task:
4698 */
4699 spin_lock_irqsave(&p->pi_lock, flags);
4700 /*
4701 * To be able to change p->policy safely, the apropriate
4702 * runqueue lock must be held.
4703 */
4704 rq = __task_rq_lock(p);
4705 /* recheck policy now with rq lock held */
4706 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4707 policy = oldpolicy = -1;
4708 __task_rq_unlock(rq);
4709 spin_unlock_irqrestore(&p->pi_lock, flags);
4710 goto recheck;
4711 }
4712 update_rq_clock(rq);
4713 on_rq = p->se.on_rq;
4714 running = task_current(rq, p);
4715 if (on_rq)
4716 deactivate_task(rq, p, 0);
4717 if (running)
4718 p->sched_class->put_prev_task(rq, p);
4719
4720 oldprio = p->prio;
4721 __setscheduler(rq, p, policy, param->sched_priority);
4722
4723 if (running)
4724 p->sched_class->set_curr_task(rq);
4725 if (on_rq) {
4726 activate_task(rq, p, 0);
4727
4728 check_class_changed(rq, p, prev_class, oldprio, running);
4729 }
4730 __task_rq_unlock(rq);
4731 spin_unlock_irqrestore(&p->pi_lock, flags);
4732
4733 rt_mutex_adjust_pi(p);
4734
4735 return 0;
4736 }
4737 EXPORT_SYMBOL_GPL(sched_setscheduler);
4738
4739 static int
4740 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4741 {
4742 struct sched_param lparam;
4743 struct task_struct *p;
4744 int retval;
4745
4746 if (!param || pid < 0)
4747 return -EINVAL;
4748 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4749 return -EFAULT;
4750
4751 rcu_read_lock();
4752 retval = -ESRCH;
4753 p = find_process_by_pid(pid);
4754 if (p != NULL)
4755 retval = sched_setscheduler(p, policy, &lparam);
4756 rcu_read_unlock();
4757
4758 return retval;
4759 }
4760
4761 /**
4762 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4763 * @pid: the pid in question.
4764 * @policy: new policy.
4765 * @param: structure containing the new RT priority.
4766 */
4767 asmlinkage long
4768 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4769 {
4770 /* negative values for policy are not valid */
4771 if (policy < 0)
4772 return -EINVAL;
4773
4774 return do_sched_setscheduler(pid, policy, param);
4775 }
4776
4777 /**
4778 * sys_sched_setparam - set/change the RT priority of a thread
4779 * @pid: the pid in question.
4780 * @param: structure containing the new RT priority.
4781 */
4782 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4783 {
4784 return do_sched_setscheduler(pid, -1, param);
4785 }
4786
4787 /**
4788 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4789 * @pid: the pid in question.
4790 */
4791 asmlinkage long sys_sched_getscheduler(pid_t pid)
4792 {
4793 struct task_struct *p;
4794 int retval;
4795
4796 if (pid < 0)
4797 return -EINVAL;
4798
4799 retval = -ESRCH;
4800 read_lock(&tasklist_lock);
4801 p = find_process_by_pid(pid);
4802 if (p) {
4803 retval = security_task_getscheduler(p);
4804 if (!retval)
4805 retval = p->policy;
4806 }
4807 read_unlock(&tasklist_lock);
4808 return retval;
4809 }
4810
4811 /**
4812 * sys_sched_getscheduler - get the RT priority of a thread
4813 * @pid: the pid in question.
4814 * @param: structure containing the RT priority.
4815 */
4816 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4817 {
4818 struct sched_param lp;
4819 struct task_struct *p;
4820 int retval;
4821
4822 if (!param || pid < 0)
4823 return -EINVAL;
4824
4825 read_lock(&tasklist_lock);
4826 p = find_process_by_pid(pid);
4827 retval = -ESRCH;
4828 if (!p)
4829 goto out_unlock;
4830
4831 retval = security_task_getscheduler(p);
4832 if (retval)
4833 goto out_unlock;
4834
4835 lp.sched_priority = p->rt_priority;
4836 read_unlock(&tasklist_lock);
4837
4838 /*
4839 * This one might sleep, we cannot do it with a spinlock held ...
4840 */
4841 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4842
4843 return retval;
4844
4845 out_unlock:
4846 read_unlock(&tasklist_lock);
4847 return retval;
4848 }
4849
4850 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4851 {
4852 cpumask_t cpus_allowed;
4853 struct task_struct *p;
4854 int retval;
4855
4856 get_online_cpus();
4857 read_lock(&tasklist_lock);
4858
4859 p = find_process_by_pid(pid);
4860 if (!p) {
4861 read_unlock(&tasklist_lock);
4862 put_online_cpus();
4863 return -ESRCH;
4864 }
4865
4866 /*
4867 * It is not safe to call set_cpus_allowed with the
4868 * tasklist_lock held. We will bump the task_struct's
4869 * usage count and then drop tasklist_lock.
4870 */
4871 get_task_struct(p);
4872 read_unlock(&tasklist_lock);
4873
4874 retval = -EPERM;
4875 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4876 !capable(CAP_SYS_NICE))
4877 goto out_unlock;
4878
4879 retval = security_task_setscheduler(p, 0, NULL);
4880 if (retval)
4881 goto out_unlock;
4882
4883 cpus_allowed = cpuset_cpus_allowed(p);
4884 cpus_and(new_mask, new_mask, cpus_allowed);
4885 again:
4886 retval = set_cpus_allowed(p, new_mask);
4887
4888 if (!retval) {
4889 cpus_allowed = cpuset_cpus_allowed(p);
4890 if (!cpus_subset(new_mask, cpus_allowed)) {
4891 /*
4892 * We must have raced with a concurrent cpuset
4893 * update. Just reset the cpus_allowed to the
4894 * cpuset's cpus_allowed
4895 */
4896 new_mask = cpus_allowed;
4897 goto again;
4898 }
4899 }
4900 out_unlock:
4901 put_task_struct(p);
4902 put_online_cpus();
4903 return retval;
4904 }
4905
4906 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4907 cpumask_t *new_mask)
4908 {
4909 if (len < sizeof(cpumask_t)) {
4910 memset(new_mask, 0, sizeof(cpumask_t));
4911 } else if (len > sizeof(cpumask_t)) {
4912 len = sizeof(cpumask_t);
4913 }
4914 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4915 }
4916
4917 /**
4918 * sys_sched_setaffinity - set the cpu affinity of a process
4919 * @pid: pid of the process
4920 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4921 * @user_mask_ptr: user-space pointer to the new cpu mask
4922 */
4923 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4924 unsigned long __user *user_mask_ptr)
4925 {
4926 cpumask_t new_mask;
4927 int retval;
4928
4929 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4930 if (retval)
4931 return retval;
4932
4933 return sched_setaffinity(pid, new_mask);
4934 }
4935
4936 /*
4937 * Represents all cpu's present in the system
4938 * In systems capable of hotplug, this map could dynamically grow
4939 * as new cpu's are detected in the system via any platform specific
4940 * method, such as ACPI for e.g.
4941 */
4942
4943 cpumask_t cpu_present_map __read_mostly;
4944 EXPORT_SYMBOL(cpu_present_map);
4945
4946 #ifndef CONFIG_SMP
4947 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4948 EXPORT_SYMBOL(cpu_online_map);
4949
4950 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4951 EXPORT_SYMBOL(cpu_possible_map);
4952 #endif
4953
4954 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4955 {
4956 struct task_struct *p;
4957 int retval;
4958
4959 get_online_cpus();
4960 read_lock(&tasklist_lock);
4961
4962 retval = -ESRCH;
4963 p = find_process_by_pid(pid);
4964 if (!p)
4965 goto out_unlock;
4966
4967 retval = security_task_getscheduler(p);
4968 if (retval)
4969 goto out_unlock;
4970
4971 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4972
4973 out_unlock:
4974 read_unlock(&tasklist_lock);
4975 put_online_cpus();
4976
4977 return retval;
4978 }
4979
4980 /**
4981 * sys_sched_getaffinity - get the cpu affinity of a process
4982 * @pid: pid of the process
4983 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4984 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4985 */
4986 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4987 unsigned long __user *user_mask_ptr)
4988 {
4989 int ret;
4990 cpumask_t mask;
4991
4992 if (len < sizeof(cpumask_t))
4993 return -EINVAL;
4994
4995 ret = sched_getaffinity(pid, &mask);
4996 if (ret < 0)
4997 return ret;
4998
4999 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5000 return -EFAULT;
5001
5002 return sizeof(cpumask_t);
5003 }
5004
5005 /**
5006 * sys_sched_yield - yield the current processor to other threads.
5007 *
5008 * This function yields the current CPU to other tasks. If there are no
5009 * other threads running on this CPU then this function will return.
5010 */
5011 asmlinkage long sys_sched_yield(void)
5012 {
5013 struct rq *rq = this_rq_lock();
5014
5015 schedstat_inc(rq, yld_count);
5016 current->sched_class->yield_task(rq);
5017
5018 /*
5019 * Since we are going to call schedule() anyway, there's
5020 * no need to preempt or enable interrupts:
5021 */
5022 __release(rq->lock);
5023 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5024 _raw_spin_unlock(&rq->lock);
5025 preempt_enable_no_resched();
5026
5027 schedule();
5028
5029 return 0;
5030 }
5031
5032 static void __cond_resched(void)
5033 {
5034 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5035 __might_sleep(__FILE__, __LINE__);
5036 #endif
5037 /*
5038 * The BKS might be reacquired before we have dropped
5039 * PREEMPT_ACTIVE, which could trigger a second
5040 * cond_resched() call.
5041 */
5042 do {
5043 add_preempt_count(PREEMPT_ACTIVE);
5044 schedule();
5045 sub_preempt_count(PREEMPT_ACTIVE);
5046 } while (need_resched());
5047 }
5048
5049 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5050 int __sched _cond_resched(void)
5051 {
5052 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5053 system_state == SYSTEM_RUNNING) {
5054 __cond_resched();
5055 return 1;
5056 }
5057 return 0;
5058 }
5059 EXPORT_SYMBOL(_cond_resched);
5060 #endif
5061
5062 /*
5063 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5064 * call schedule, and on return reacquire the lock.
5065 *
5066 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5067 * operations here to prevent schedule() from being called twice (once via
5068 * spin_unlock(), once by hand).
5069 */
5070 int cond_resched_lock(spinlock_t *lock)
5071 {
5072 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5073 int ret = 0;
5074
5075 if (spin_needbreak(lock) || resched) {
5076 spin_unlock(lock);
5077 if (resched && need_resched())
5078 __cond_resched();
5079 else
5080 cpu_relax();
5081 ret = 1;
5082 spin_lock(lock);
5083 }
5084 return ret;
5085 }
5086 EXPORT_SYMBOL(cond_resched_lock);
5087
5088 int __sched cond_resched_softirq(void)
5089 {
5090 BUG_ON(!in_softirq());
5091
5092 if (need_resched() && system_state == SYSTEM_RUNNING) {
5093 local_bh_enable();
5094 __cond_resched();
5095 local_bh_disable();
5096 return 1;
5097 }
5098 return 0;
5099 }
5100 EXPORT_SYMBOL(cond_resched_softirq);
5101
5102 /**
5103 * yield - yield the current processor to other threads.
5104 *
5105 * This is a shortcut for kernel-space yielding - it marks the
5106 * thread runnable and calls sys_sched_yield().
5107 */
5108 void __sched yield(void)
5109 {
5110 set_current_state(TASK_RUNNING);
5111 sys_sched_yield();
5112 }
5113 EXPORT_SYMBOL(yield);
5114
5115 /*
5116 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5117 * that process accounting knows that this is a task in IO wait state.
5118 *
5119 * But don't do that if it is a deliberate, throttling IO wait (this task
5120 * has set its backing_dev_info: the queue against which it should throttle)
5121 */
5122 void __sched io_schedule(void)
5123 {
5124 struct rq *rq = &__raw_get_cpu_var(runqueues);
5125
5126 delayacct_blkio_start();
5127 atomic_inc(&rq->nr_iowait);
5128 schedule();
5129 atomic_dec(&rq->nr_iowait);
5130 delayacct_blkio_end();
5131 }
5132 EXPORT_SYMBOL(io_schedule);
5133
5134 long __sched io_schedule_timeout(long timeout)
5135 {
5136 struct rq *rq = &__raw_get_cpu_var(runqueues);
5137 long ret;
5138
5139 delayacct_blkio_start();
5140 atomic_inc(&rq->nr_iowait);
5141 ret = schedule_timeout(timeout);
5142 atomic_dec(&rq->nr_iowait);
5143 delayacct_blkio_end();
5144 return ret;
5145 }
5146
5147 /**
5148 * sys_sched_get_priority_max - return maximum RT priority.
5149 * @policy: scheduling class.
5150 *
5151 * this syscall returns the maximum rt_priority that can be used
5152 * by a given scheduling class.
5153 */
5154 asmlinkage long sys_sched_get_priority_max(int policy)
5155 {
5156 int ret = -EINVAL;
5157
5158 switch (policy) {
5159 case SCHED_FIFO:
5160 case SCHED_RR:
5161 ret = MAX_USER_RT_PRIO-1;
5162 break;
5163 case SCHED_NORMAL:
5164 case SCHED_BATCH:
5165 case SCHED_IDLE:
5166 ret = 0;
5167 break;
5168 }
5169 return ret;
5170 }
5171
5172 /**
5173 * sys_sched_get_priority_min - return minimum RT priority.
5174 * @policy: scheduling class.
5175 *
5176 * this syscall returns the minimum rt_priority that can be used
5177 * by a given scheduling class.
5178 */
5179 asmlinkage long sys_sched_get_priority_min(int policy)
5180 {
5181 int ret = -EINVAL;
5182
5183 switch (policy) {
5184 case SCHED_FIFO:
5185 case SCHED_RR:
5186 ret = 1;
5187 break;
5188 case SCHED_NORMAL:
5189 case SCHED_BATCH:
5190 case SCHED_IDLE:
5191 ret = 0;
5192 }
5193 return ret;
5194 }
5195
5196 /**
5197 * sys_sched_rr_get_interval - return the default timeslice of a process.
5198 * @pid: pid of the process.
5199 * @interval: userspace pointer to the timeslice value.
5200 *
5201 * this syscall writes the default timeslice value of a given process
5202 * into the user-space timespec buffer. A value of '0' means infinity.
5203 */
5204 asmlinkage
5205 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5206 {
5207 struct task_struct *p;
5208 unsigned int time_slice;
5209 int retval;
5210 struct timespec t;
5211
5212 if (pid < 0)
5213 return -EINVAL;
5214
5215 retval = -ESRCH;
5216 read_lock(&tasklist_lock);
5217 p = find_process_by_pid(pid);
5218 if (!p)
5219 goto out_unlock;
5220
5221 retval = security_task_getscheduler(p);
5222 if (retval)
5223 goto out_unlock;
5224
5225 /*
5226 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5227 * tasks that are on an otherwise idle runqueue:
5228 */
5229 time_slice = 0;
5230 if (p->policy == SCHED_RR) {
5231 time_slice = DEF_TIMESLICE;
5232 } else if (p->policy != SCHED_FIFO) {
5233 struct sched_entity *se = &p->se;
5234 unsigned long flags;
5235 struct rq *rq;
5236
5237 rq = task_rq_lock(p, &flags);
5238 if (rq->cfs.load.weight)
5239 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5240 task_rq_unlock(rq, &flags);
5241 }
5242 read_unlock(&tasklist_lock);
5243 jiffies_to_timespec(time_slice, &t);
5244 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5245 return retval;
5246
5247 out_unlock:
5248 read_unlock(&tasklist_lock);
5249 return retval;
5250 }
5251
5252 static const char stat_nam[] = "RSDTtZX";
5253
5254 void sched_show_task(struct task_struct *p)
5255 {
5256 unsigned long free = 0;
5257 unsigned state;
5258
5259 state = p->state ? __ffs(p->state) + 1 : 0;
5260 printk(KERN_INFO "%-13.13s %c", p->comm,
5261 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5262 #if BITS_PER_LONG == 32
5263 if (state == TASK_RUNNING)
5264 printk(KERN_CONT " running ");
5265 else
5266 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5267 #else
5268 if (state == TASK_RUNNING)
5269 printk(KERN_CONT " running task ");
5270 else
5271 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5272 #endif
5273 #ifdef CONFIG_DEBUG_STACK_USAGE
5274 {
5275 unsigned long *n = end_of_stack(p);
5276 while (!*n)
5277 n++;
5278 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5279 }
5280 #endif
5281 printk(KERN_CONT "%5lu %5d %6d\n", free,
5282 task_pid_nr(p), task_pid_nr(p->real_parent));
5283
5284 show_stack(p, NULL);
5285 }
5286
5287 void show_state_filter(unsigned long state_filter)
5288 {
5289 struct task_struct *g, *p;
5290
5291 #if BITS_PER_LONG == 32
5292 printk(KERN_INFO
5293 " task PC stack pid father\n");
5294 #else
5295 printk(KERN_INFO
5296 " task PC stack pid father\n");
5297 #endif
5298 read_lock(&tasklist_lock);
5299 do_each_thread(g, p) {
5300 /*
5301 * reset the NMI-timeout, listing all files on a slow
5302 * console might take alot of time:
5303 */
5304 touch_nmi_watchdog();
5305 if (!state_filter || (p->state & state_filter))
5306 sched_show_task(p);
5307 } while_each_thread(g, p);
5308
5309 touch_all_softlockup_watchdogs();
5310
5311 #ifdef CONFIG_SCHED_DEBUG
5312 sysrq_sched_debug_show();
5313 #endif
5314 read_unlock(&tasklist_lock);
5315 /*
5316 * Only show locks if all tasks are dumped:
5317 */
5318 if (state_filter == -1)
5319 debug_show_all_locks();
5320 }
5321
5322 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5323 {
5324 idle->sched_class = &idle_sched_class;
5325 }
5326
5327 /**
5328 * init_idle - set up an idle thread for a given CPU
5329 * @idle: task in question
5330 * @cpu: cpu the idle task belongs to
5331 *
5332 * NOTE: this function does not set the idle thread's NEED_RESCHED
5333 * flag, to make booting more robust.
5334 */
5335 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5336 {
5337 struct rq *rq = cpu_rq(cpu);
5338 unsigned long flags;
5339
5340 __sched_fork(idle);
5341 idle->se.exec_start = sched_clock();
5342
5343 idle->prio = idle->normal_prio = MAX_PRIO;
5344 idle->cpus_allowed = cpumask_of_cpu(cpu);
5345 __set_task_cpu(idle, cpu);
5346
5347 spin_lock_irqsave(&rq->lock, flags);
5348 rq->curr = rq->idle = idle;
5349 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5350 idle->oncpu = 1;
5351 #endif
5352 spin_unlock_irqrestore(&rq->lock, flags);
5353
5354 /* Set the preempt count _outside_ the spinlocks! */
5355 task_thread_info(idle)->preempt_count = 0;
5356
5357 /*
5358 * The idle tasks have their own, simple scheduling class:
5359 */
5360 idle->sched_class = &idle_sched_class;
5361 }
5362
5363 /*
5364 * In a system that switches off the HZ timer nohz_cpu_mask
5365 * indicates which cpus entered this state. This is used
5366 * in the rcu update to wait only for active cpus. For system
5367 * which do not switch off the HZ timer nohz_cpu_mask should
5368 * always be CPU_MASK_NONE.
5369 */
5370 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5371
5372 /*
5373 * Increase the granularity value when there are more CPUs,
5374 * because with more CPUs the 'effective latency' as visible
5375 * to users decreases. But the relationship is not linear,
5376 * so pick a second-best guess by going with the log2 of the
5377 * number of CPUs.
5378 *
5379 * This idea comes from the SD scheduler of Con Kolivas:
5380 */
5381 static inline void sched_init_granularity(void)
5382 {
5383 unsigned int factor = 1 + ilog2(num_online_cpus());
5384 const unsigned long limit = 200000000;
5385
5386 sysctl_sched_min_granularity *= factor;
5387 if (sysctl_sched_min_granularity > limit)
5388 sysctl_sched_min_granularity = limit;
5389
5390 sysctl_sched_latency *= factor;
5391 if (sysctl_sched_latency > limit)
5392 sysctl_sched_latency = limit;
5393
5394 sysctl_sched_wakeup_granularity *= factor;
5395 sysctl_sched_batch_wakeup_granularity *= factor;
5396 }
5397
5398 #ifdef CONFIG_SMP
5399 /*
5400 * This is how migration works:
5401 *
5402 * 1) we queue a struct migration_req structure in the source CPU's
5403 * runqueue and wake up that CPU's migration thread.
5404 * 2) we down() the locked semaphore => thread blocks.
5405 * 3) migration thread wakes up (implicitly it forces the migrated
5406 * thread off the CPU)
5407 * 4) it gets the migration request and checks whether the migrated
5408 * task is still in the wrong runqueue.
5409 * 5) if it's in the wrong runqueue then the migration thread removes
5410 * it and puts it into the right queue.
5411 * 6) migration thread up()s the semaphore.
5412 * 7) we wake up and the migration is done.
5413 */
5414
5415 /*
5416 * Change a given task's CPU affinity. Migrate the thread to a
5417 * proper CPU and schedule it away if the CPU it's executing on
5418 * is removed from the allowed bitmask.
5419 *
5420 * NOTE: the caller must have a valid reference to the task, the
5421 * task must not exit() & deallocate itself prematurely. The
5422 * call is not atomic; no spinlocks may be held.
5423 */
5424 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5425 {
5426 struct migration_req req;
5427 unsigned long flags;
5428 struct rq *rq;
5429 int ret = 0;
5430
5431 rq = task_rq_lock(p, &flags);
5432 if (!cpus_intersects(new_mask, cpu_online_map)) {
5433 ret = -EINVAL;
5434 goto out;
5435 }
5436
5437 if (p->sched_class->set_cpus_allowed)
5438 p->sched_class->set_cpus_allowed(p, &new_mask);
5439 else {
5440 p->cpus_allowed = new_mask;
5441 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5442 }
5443
5444 /* Can the task run on the task's current CPU? If so, we're done */
5445 if (cpu_isset(task_cpu(p), new_mask))
5446 goto out;
5447
5448 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5449 /* Need help from migration thread: drop lock and wait. */
5450 task_rq_unlock(rq, &flags);
5451 wake_up_process(rq->migration_thread);
5452 wait_for_completion(&req.done);
5453 tlb_migrate_finish(p->mm);
5454 return 0;
5455 }
5456 out:
5457 task_rq_unlock(rq, &flags);
5458
5459 return ret;
5460 }
5461 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5462
5463 /*
5464 * Move (not current) task off this cpu, onto dest cpu. We're doing
5465 * this because either it can't run here any more (set_cpus_allowed()
5466 * away from this CPU, or CPU going down), or because we're
5467 * attempting to rebalance this task on exec (sched_exec).
5468 *
5469 * So we race with normal scheduler movements, but that's OK, as long
5470 * as the task is no longer on this CPU.
5471 *
5472 * Returns non-zero if task was successfully migrated.
5473 */
5474 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5475 {
5476 struct rq *rq_dest, *rq_src;
5477 int ret = 0, on_rq;
5478
5479 if (unlikely(cpu_is_offline(dest_cpu)))
5480 return ret;
5481
5482 rq_src = cpu_rq(src_cpu);
5483 rq_dest = cpu_rq(dest_cpu);
5484
5485 double_rq_lock(rq_src, rq_dest);
5486 /* Already moved. */
5487 if (task_cpu(p) != src_cpu)
5488 goto out;
5489 /* Affinity changed (again). */
5490 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5491 goto out;
5492
5493 on_rq = p->se.on_rq;
5494 if (on_rq)
5495 deactivate_task(rq_src, p, 0);
5496
5497 set_task_cpu(p, dest_cpu);
5498 if (on_rq) {
5499 activate_task(rq_dest, p, 0);
5500 check_preempt_curr(rq_dest, p);
5501 }
5502 ret = 1;
5503 out:
5504 double_rq_unlock(rq_src, rq_dest);
5505 return ret;
5506 }
5507
5508 /*
5509 * migration_thread - this is a highprio system thread that performs
5510 * thread migration by bumping thread off CPU then 'pushing' onto
5511 * another runqueue.
5512 */
5513 static int migration_thread(void *data)
5514 {
5515 int cpu = (long)data;
5516 struct rq *rq;
5517
5518 rq = cpu_rq(cpu);
5519 BUG_ON(rq->migration_thread != current);
5520
5521 set_current_state(TASK_INTERRUPTIBLE);
5522 while (!kthread_should_stop()) {
5523 struct migration_req *req;
5524 struct list_head *head;
5525
5526 spin_lock_irq(&rq->lock);
5527
5528 if (cpu_is_offline(cpu)) {
5529 spin_unlock_irq(&rq->lock);
5530 goto wait_to_die;
5531 }
5532
5533 if (rq->active_balance) {
5534 active_load_balance(rq, cpu);
5535 rq->active_balance = 0;
5536 }
5537
5538 head = &rq->migration_queue;
5539
5540 if (list_empty(head)) {
5541 spin_unlock_irq(&rq->lock);
5542 schedule();
5543 set_current_state(TASK_INTERRUPTIBLE);
5544 continue;
5545 }
5546 req = list_entry(head->next, struct migration_req, list);
5547 list_del_init(head->next);
5548
5549 spin_unlock(&rq->lock);
5550 __migrate_task(req->task, cpu, req->dest_cpu);
5551 local_irq_enable();
5552
5553 complete(&req->done);
5554 }
5555 __set_current_state(TASK_RUNNING);
5556 return 0;
5557
5558 wait_to_die:
5559 /* Wait for kthread_stop */
5560 set_current_state(TASK_INTERRUPTIBLE);
5561 while (!kthread_should_stop()) {
5562 schedule();
5563 set_current_state(TASK_INTERRUPTIBLE);
5564 }
5565 __set_current_state(TASK_RUNNING);
5566 return 0;
5567 }
5568
5569 #ifdef CONFIG_HOTPLUG_CPU
5570
5571 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5572 {
5573 int ret;
5574
5575 local_irq_disable();
5576 ret = __migrate_task(p, src_cpu, dest_cpu);
5577 local_irq_enable();
5578 return ret;
5579 }
5580
5581 /*
5582 * Figure out where task on dead CPU should go, use force if necessary.
5583 * NOTE: interrupts should be disabled by the caller
5584 */
5585 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5586 {
5587 unsigned long flags;
5588 cpumask_t mask;
5589 struct rq *rq;
5590 int dest_cpu;
5591
5592 do {
5593 /* On same node? */
5594 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5595 cpus_and(mask, mask, p->cpus_allowed);
5596 dest_cpu = any_online_cpu(mask);
5597
5598 /* On any allowed CPU? */
5599 if (dest_cpu == NR_CPUS)
5600 dest_cpu = any_online_cpu(p->cpus_allowed);
5601
5602 /* No more Mr. Nice Guy. */
5603 if (dest_cpu == NR_CPUS) {
5604 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5605 /*
5606 * Try to stay on the same cpuset, where the
5607 * current cpuset may be a subset of all cpus.
5608 * The cpuset_cpus_allowed_locked() variant of
5609 * cpuset_cpus_allowed() will not block. It must be
5610 * called within calls to cpuset_lock/cpuset_unlock.
5611 */
5612 rq = task_rq_lock(p, &flags);
5613 p->cpus_allowed = cpus_allowed;
5614 dest_cpu = any_online_cpu(p->cpus_allowed);
5615 task_rq_unlock(rq, &flags);
5616
5617 /*
5618 * Don't tell them about moving exiting tasks or
5619 * kernel threads (both mm NULL), since they never
5620 * leave kernel.
5621 */
5622 if (p->mm && printk_ratelimit()) {
5623 printk(KERN_INFO "process %d (%s) no "
5624 "longer affine to cpu%d\n",
5625 task_pid_nr(p), p->comm, dead_cpu);
5626 }
5627 }
5628 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5629 }
5630
5631 /*
5632 * While a dead CPU has no uninterruptible tasks queued at this point,
5633 * it might still have a nonzero ->nr_uninterruptible counter, because
5634 * for performance reasons the counter is not stricly tracking tasks to
5635 * their home CPUs. So we just add the counter to another CPU's counter,
5636 * to keep the global sum constant after CPU-down:
5637 */
5638 static void migrate_nr_uninterruptible(struct rq *rq_src)
5639 {
5640 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5641 unsigned long flags;
5642
5643 local_irq_save(flags);
5644 double_rq_lock(rq_src, rq_dest);
5645 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5646 rq_src->nr_uninterruptible = 0;
5647 double_rq_unlock(rq_src, rq_dest);
5648 local_irq_restore(flags);
5649 }
5650
5651 /* Run through task list and migrate tasks from the dead cpu. */
5652 static void migrate_live_tasks(int src_cpu)
5653 {
5654 struct task_struct *p, *t;
5655
5656 read_lock(&tasklist_lock);
5657
5658 do_each_thread(t, p) {
5659 if (p == current)
5660 continue;
5661
5662 if (task_cpu(p) == src_cpu)
5663 move_task_off_dead_cpu(src_cpu, p);
5664 } while_each_thread(t, p);
5665
5666 read_unlock(&tasklist_lock);
5667 }
5668
5669 /*
5670 * Schedules idle task to be the next runnable task on current CPU.
5671 * It does so by boosting its priority to highest possible.
5672 * Used by CPU offline code.
5673 */
5674 void sched_idle_next(void)
5675 {
5676 int this_cpu = smp_processor_id();
5677 struct rq *rq = cpu_rq(this_cpu);
5678 struct task_struct *p = rq->idle;
5679 unsigned long flags;
5680
5681 /* cpu has to be offline */
5682 BUG_ON(cpu_online(this_cpu));
5683
5684 /*
5685 * Strictly not necessary since rest of the CPUs are stopped by now
5686 * and interrupts disabled on the current cpu.
5687 */
5688 spin_lock_irqsave(&rq->lock, flags);
5689
5690 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5691
5692 update_rq_clock(rq);
5693 activate_task(rq, p, 0);
5694
5695 spin_unlock_irqrestore(&rq->lock, flags);
5696 }
5697
5698 /*
5699 * Ensures that the idle task is using init_mm right before its cpu goes
5700 * offline.
5701 */
5702 void idle_task_exit(void)
5703 {
5704 struct mm_struct *mm = current->active_mm;
5705
5706 BUG_ON(cpu_online(smp_processor_id()));
5707
5708 if (mm != &init_mm)
5709 switch_mm(mm, &init_mm, current);
5710 mmdrop(mm);
5711 }
5712
5713 /* called under rq->lock with disabled interrupts */
5714 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5715 {
5716 struct rq *rq = cpu_rq(dead_cpu);
5717
5718 /* Must be exiting, otherwise would be on tasklist. */
5719 BUG_ON(!p->exit_state);
5720
5721 /* Cannot have done final schedule yet: would have vanished. */
5722 BUG_ON(p->state == TASK_DEAD);
5723
5724 get_task_struct(p);
5725
5726 /*
5727 * Drop lock around migration; if someone else moves it,
5728 * that's OK. No task can be added to this CPU, so iteration is
5729 * fine.
5730 */
5731 spin_unlock_irq(&rq->lock);
5732 move_task_off_dead_cpu(dead_cpu, p);
5733 spin_lock_irq(&rq->lock);
5734
5735 put_task_struct(p);
5736 }
5737
5738 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5739 static void migrate_dead_tasks(unsigned int dead_cpu)
5740 {
5741 struct rq *rq = cpu_rq(dead_cpu);
5742 struct task_struct *next;
5743
5744 for ( ; ; ) {
5745 if (!rq->nr_running)
5746 break;
5747 update_rq_clock(rq);
5748 next = pick_next_task(rq, rq->curr);
5749 if (!next)
5750 break;
5751 migrate_dead(dead_cpu, next);
5752
5753 }
5754 }
5755 #endif /* CONFIG_HOTPLUG_CPU */
5756
5757 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5758
5759 static struct ctl_table sd_ctl_dir[] = {
5760 {
5761 .procname = "sched_domain",
5762 .mode = 0555,
5763 },
5764 {0, },
5765 };
5766
5767 static struct ctl_table sd_ctl_root[] = {
5768 {
5769 .ctl_name = CTL_KERN,
5770 .procname = "kernel",
5771 .mode = 0555,
5772 .child = sd_ctl_dir,
5773 },
5774 {0, },
5775 };
5776
5777 static struct ctl_table *sd_alloc_ctl_entry(int n)
5778 {
5779 struct ctl_table *entry =
5780 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5781
5782 return entry;
5783 }
5784
5785 static void sd_free_ctl_entry(struct ctl_table **tablep)
5786 {
5787 struct ctl_table *entry;
5788
5789 /*
5790 * In the intermediate directories, both the child directory and
5791 * procname are dynamically allocated and could fail but the mode
5792 * will always be set. In the lowest directory the names are
5793 * static strings and all have proc handlers.
5794 */
5795 for (entry = *tablep; entry->mode; entry++) {
5796 if (entry->child)
5797 sd_free_ctl_entry(&entry->child);
5798 if (entry->proc_handler == NULL)
5799 kfree(entry->procname);
5800 }
5801
5802 kfree(*tablep);
5803 *tablep = NULL;
5804 }
5805
5806 static void
5807 set_table_entry(struct ctl_table *entry,
5808 const char *procname, void *data, int maxlen,
5809 mode_t mode, proc_handler *proc_handler)
5810 {
5811 entry->procname = procname;
5812 entry->data = data;
5813 entry->maxlen = maxlen;
5814 entry->mode = mode;
5815 entry->proc_handler = proc_handler;
5816 }
5817
5818 static struct ctl_table *
5819 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5820 {
5821 struct ctl_table *table = sd_alloc_ctl_entry(12);
5822
5823 if (table == NULL)
5824 return NULL;
5825
5826 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5827 sizeof(long), 0644, proc_doulongvec_minmax);
5828 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5829 sizeof(long), 0644, proc_doulongvec_minmax);
5830 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5831 sizeof(int), 0644, proc_dointvec_minmax);
5832 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5833 sizeof(int), 0644, proc_dointvec_minmax);
5834 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5835 sizeof(int), 0644, proc_dointvec_minmax);
5836 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5837 sizeof(int), 0644, proc_dointvec_minmax);
5838 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5839 sizeof(int), 0644, proc_dointvec_minmax);
5840 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5841 sizeof(int), 0644, proc_dointvec_minmax);
5842 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5843 sizeof(int), 0644, proc_dointvec_minmax);
5844 set_table_entry(&table[9], "cache_nice_tries",
5845 &sd->cache_nice_tries,
5846 sizeof(int), 0644, proc_dointvec_minmax);
5847 set_table_entry(&table[10], "flags", &sd->flags,
5848 sizeof(int), 0644, proc_dointvec_minmax);
5849 /* &table[11] is terminator */
5850
5851 return table;
5852 }
5853
5854 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5855 {
5856 struct ctl_table *entry, *table;
5857 struct sched_domain *sd;
5858 int domain_num = 0, i;
5859 char buf[32];
5860
5861 for_each_domain(cpu, sd)
5862 domain_num++;
5863 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5864 if (table == NULL)
5865 return NULL;
5866
5867 i = 0;
5868 for_each_domain(cpu, sd) {
5869 snprintf(buf, 32, "domain%d", i);
5870 entry->procname = kstrdup(buf, GFP_KERNEL);
5871 entry->mode = 0555;
5872 entry->child = sd_alloc_ctl_domain_table(sd);
5873 entry++;
5874 i++;
5875 }
5876 return table;
5877 }
5878
5879 static struct ctl_table_header *sd_sysctl_header;
5880 static void register_sched_domain_sysctl(void)
5881 {
5882 int i, cpu_num = num_online_cpus();
5883 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5884 char buf[32];
5885
5886 WARN_ON(sd_ctl_dir[0].child);
5887 sd_ctl_dir[0].child = entry;
5888
5889 if (entry == NULL)
5890 return;
5891
5892 for_each_online_cpu(i) {
5893 snprintf(buf, 32, "cpu%d", i);
5894 entry->procname = kstrdup(buf, GFP_KERNEL);
5895 entry->mode = 0555;
5896 entry->child = sd_alloc_ctl_cpu_table(i);
5897 entry++;
5898 }
5899
5900 WARN_ON(sd_sysctl_header);
5901 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5902 }
5903
5904 /* may be called multiple times per register */
5905 static void unregister_sched_domain_sysctl(void)
5906 {
5907 if (sd_sysctl_header)
5908 unregister_sysctl_table(sd_sysctl_header);
5909 sd_sysctl_header = NULL;
5910 if (sd_ctl_dir[0].child)
5911 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5912 }
5913 #else
5914 static void register_sched_domain_sysctl(void)
5915 {
5916 }
5917 static void unregister_sched_domain_sysctl(void)
5918 {
5919 }
5920 #endif
5921
5922 /*
5923 * migration_call - callback that gets triggered when a CPU is added.
5924 * Here we can start up the necessary migration thread for the new CPU.
5925 */
5926 static int __cpuinit
5927 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5928 {
5929 struct task_struct *p;
5930 int cpu = (long)hcpu;
5931 unsigned long flags;
5932 struct rq *rq;
5933
5934 switch (action) {
5935
5936 case CPU_UP_PREPARE:
5937 case CPU_UP_PREPARE_FROZEN:
5938 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5939 if (IS_ERR(p))
5940 return NOTIFY_BAD;
5941 kthread_bind(p, cpu);
5942 /* Must be high prio: stop_machine expects to yield to it. */
5943 rq = task_rq_lock(p, &flags);
5944 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5945 task_rq_unlock(rq, &flags);
5946 cpu_rq(cpu)->migration_thread = p;
5947 break;
5948
5949 case CPU_ONLINE:
5950 case CPU_ONLINE_FROZEN:
5951 /* Strictly unnecessary, as first user will wake it. */
5952 wake_up_process(cpu_rq(cpu)->migration_thread);
5953
5954 /* Update our root-domain */
5955 rq = cpu_rq(cpu);
5956 spin_lock_irqsave(&rq->lock, flags);
5957 if (rq->rd) {
5958 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5959 cpu_set(cpu, rq->rd->online);
5960 }
5961 spin_unlock_irqrestore(&rq->lock, flags);
5962 break;
5963
5964 #ifdef CONFIG_HOTPLUG_CPU
5965 case CPU_UP_CANCELED:
5966 case CPU_UP_CANCELED_FROZEN:
5967 if (!cpu_rq(cpu)->migration_thread)
5968 break;
5969 /* Unbind it from offline cpu so it can run. Fall thru. */
5970 kthread_bind(cpu_rq(cpu)->migration_thread,
5971 any_online_cpu(cpu_online_map));
5972 kthread_stop(cpu_rq(cpu)->migration_thread);
5973 cpu_rq(cpu)->migration_thread = NULL;
5974 break;
5975
5976 case CPU_DEAD:
5977 case CPU_DEAD_FROZEN:
5978 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5979 migrate_live_tasks(cpu);
5980 rq = cpu_rq(cpu);
5981 kthread_stop(rq->migration_thread);
5982 rq->migration_thread = NULL;
5983 /* Idle task back to normal (off runqueue, low prio) */
5984 spin_lock_irq(&rq->lock);
5985 update_rq_clock(rq);
5986 deactivate_task(rq, rq->idle, 0);
5987 rq->idle->static_prio = MAX_PRIO;
5988 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5989 rq->idle->sched_class = &idle_sched_class;
5990 migrate_dead_tasks(cpu);
5991 spin_unlock_irq(&rq->lock);
5992 cpuset_unlock();
5993 migrate_nr_uninterruptible(rq);
5994 BUG_ON(rq->nr_running != 0);
5995
5996 /*
5997 * No need to migrate the tasks: it was best-effort if
5998 * they didn't take sched_hotcpu_mutex. Just wake up
5999 * the requestors.
6000 */
6001 spin_lock_irq(&rq->lock);
6002 while (!list_empty(&rq->migration_queue)) {
6003 struct migration_req *req;
6004
6005 req = list_entry(rq->migration_queue.next,
6006 struct migration_req, list);
6007 list_del_init(&req->list);
6008 complete(&req->done);
6009 }
6010 spin_unlock_irq(&rq->lock);
6011 break;
6012
6013 case CPU_DYING:
6014 case CPU_DYING_FROZEN:
6015 /* Update our root-domain */
6016 rq = cpu_rq(cpu);
6017 spin_lock_irqsave(&rq->lock, flags);
6018 if (rq->rd) {
6019 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6020 cpu_clear(cpu, rq->rd->online);
6021 }
6022 spin_unlock_irqrestore(&rq->lock, flags);
6023 break;
6024 #endif
6025 }
6026 return NOTIFY_OK;
6027 }
6028
6029 /* Register at highest priority so that task migration (migrate_all_tasks)
6030 * happens before everything else.
6031 */
6032 static struct notifier_block __cpuinitdata migration_notifier = {
6033 .notifier_call = migration_call,
6034 .priority = 10
6035 };
6036
6037 void __init migration_init(void)
6038 {
6039 void *cpu = (void *)(long)smp_processor_id();
6040 int err;
6041
6042 /* Start one for the boot CPU: */
6043 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6044 BUG_ON(err == NOTIFY_BAD);
6045 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6046 register_cpu_notifier(&migration_notifier);
6047 }
6048 #endif
6049
6050 #ifdef CONFIG_SMP
6051
6052 /* Number of possible processor ids */
6053 int nr_cpu_ids __read_mostly = NR_CPUS;
6054 EXPORT_SYMBOL(nr_cpu_ids);
6055
6056 #ifdef CONFIG_SCHED_DEBUG
6057
6058 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
6059 {
6060 struct sched_group *group = sd->groups;
6061 cpumask_t groupmask;
6062 char str[NR_CPUS];
6063
6064 cpumask_scnprintf(str, NR_CPUS, sd->span);
6065 cpus_clear(groupmask);
6066
6067 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6068
6069 if (!(sd->flags & SD_LOAD_BALANCE)) {
6070 printk("does not load-balance\n");
6071 if (sd->parent)
6072 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6073 " has parent");
6074 return -1;
6075 }
6076
6077 printk(KERN_CONT "span %s\n", str);
6078
6079 if (!cpu_isset(cpu, sd->span)) {
6080 printk(KERN_ERR "ERROR: domain->span does not contain "
6081 "CPU%d\n", cpu);
6082 }
6083 if (!cpu_isset(cpu, group->cpumask)) {
6084 printk(KERN_ERR "ERROR: domain->groups does not contain"
6085 " CPU%d\n", cpu);
6086 }
6087
6088 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6089 do {
6090 if (!group) {
6091 printk("\n");
6092 printk(KERN_ERR "ERROR: group is NULL\n");
6093 break;
6094 }
6095
6096 if (!group->__cpu_power) {
6097 printk(KERN_CONT "\n");
6098 printk(KERN_ERR "ERROR: domain->cpu_power not "
6099 "set\n");
6100 break;
6101 }
6102
6103 if (!cpus_weight(group->cpumask)) {
6104 printk(KERN_CONT "\n");
6105 printk(KERN_ERR "ERROR: empty group\n");
6106 break;
6107 }
6108
6109 if (cpus_intersects(groupmask, group->cpumask)) {
6110 printk(KERN_CONT "\n");
6111 printk(KERN_ERR "ERROR: repeated CPUs\n");
6112 break;
6113 }
6114
6115 cpus_or(groupmask, groupmask, group->cpumask);
6116
6117 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
6118 printk(KERN_CONT " %s", str);
6119
6120 group = group->next;
6121 } while (group != sd->groups);
6122 printk(KERN_CONT "\n");
6123
6124 if (!cpus_equal(sd->span, groupmask))
6125 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6126
6127 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
6128 printk(KERN_ERR "ERROR: parent span is not a superset "
6129 "of domain->span\n");
6130 return 0;
6131 }
6132
6133 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6134 {
6135 int level = 0;
6136
6137 if (!sd) {
6138 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6139 return;
6140 }
6141
6142 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6143
6144 for (;;) {
6145 if (sched_domain_debug_one(sd, cpu, level))
6146 break;
6147 level++;
6148 sd = sd->parent;
6149 if (!sd)
6150 break;
6151 }
6152 }
6153 #else
6154 # define sched_domain_debug(sd, cpu) do { } while (0)
6155 #endif
6156
6157 static int sd_degenerate(struct sched_domain *sd)
6158 {
6159 if (cpus_weight(sd->span) == 1)
6160 return 1;
6161
6162 /* Following flags need at least 2 groups */
6163 if (sd->flags & (SD_LOAD_BALANCE |
6164 SD_BALANCE_NEWIDLE |
6165 SD_BALANCE_FORK |
6166 SD_BALANCE_EXEC |
6167 SD_SHARE_CPUPOWER |
6168 SD_SHARE_PKG_RESOURCES)) {
6169 if (sd->groups != sd->groups->next)
6170 return 0;
6171 }
6172
6173 /* Following flags don't use groups */
6174 if (sd->flags & (SD_WAKE_IDLE |
6175 SD_WAKE_AFFINE |
6176 SD_WAKE_BALANCE))
6177 return 0;
6178
6179 return 1;
6180 }
6181
6182 static int
6183 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6184 {
6185 unsigned long cflags = sd->flags, pflags = parent->flags;
6186
6187 if (sd_degenerate(parent))
6188 return 1;
6189
6190 if (!cpus_equal(sd->span, parent->span))
6191 return 0;
6192
6193 /* Does parent contain flags not in child? */
6194 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6195 if (cflags & SD_WAKE_AFFINE)
6196 pflags &= ~SD_WAKE_BALANCE;
6197 /* Flags needing groups don't count if only 1 group in parent */
6198 if (parent->groups == parent->groups->next) {
6199 pflags &= ~(SD_LOAD_BALANCE |
6200 SD_BALANCE_NEWIDLE |
6201 SD_BALANCE_FORK |
6202 SD_BALANCE_EXEC |
6203 SD_SHARE_CPUPOWER |
6204 SD_SHARE_PKG_RESOURCES);
6205 }
6206 if (~cflags & pflags)
6207 return 0;
6208
6209 return 1;
6210 }
6211
6212 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6213 {
6214 unsigned long flags;
6215 const struct sched_class *class;
6216
6217 spin_lock_irqsave(&rq->lock, flags);
6218
6219 if (rq->rd) {
6220 struct root_domain *old_rd = rq->rd;
6221
6222 for (class = sched_class_highest; class; class = class->next) {
6223 if (class->leave_domain)
6224 class->leave_domain(rq);
6225 }
6226
6227 cpu_clear(rq->cpu, old_rd->span);
6228 cpu_clear(rq->cpu, old_rd->online);
6229
6230 if (atomic_dec_and_test(&old_rd->refcount))
6231 kfree(old_rd);
6232 }
6233
6234 atomic_inc(&rd->refcount);
6235 rq->rd = rd;
6236
6237 cpu_set(rq->cpu, rd->span);
6238 if (cpu_isset(rq->cpu, cpu_online_map))
6239 cpu_set(rq->cpu, rd->online);
6240
6241 for (class = sched_class_highest; class; class = class->next) {
6242 if (class->join_domain)
6243 class->join_domain(rq);
6244 }
6245
6246 spin_unlock_irqrestore(&rq->lock, flags);
6247 }
6248
6249 static void init_rootdomain(struct root_domain *rd)
6250 {
6251 memset(rd, 0, sizeof(*rd));
6252
6253 cpus_clear(rd->span);
6254 cpus_clear(rd->online);
6255 }
6256
6257 static void init_defrootdomain(void)
6258 {
6259 init_rootdomain(&def_root_domain);
6260 atomic_set(&def_root_domain.refcount, 1);
6261 }
6262
6263 static struct root_domain *alloc_rootdomain(void)
6264 {
6265 struct root_domain *rd;
6266
6267 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6268 if (!rd)
6269 return NULL;
6270
6271 init_rootdomain(rd);
6272
6273 return rd;
6274 }
6275
6276 /*
6277 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6278 * hold the hotplug lock.
6279 */
6280 static void
6281 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6282 {
6283 struct rq *rq = cpu_rq(cpu);
6284 struct sched_domain *tmp;
6285
6286 /* Remove the sched domains which do not contribute to scheduling. */
6287 for (tmp = sd; tmp; tmp = tmp->parent) {
6288 struct sched_domain *parent = tmp->parent;
6289 if (!parent)
6290 break;
6291 if (sd_parent_degenerate(tmp, parent)) {
6292 tmp->parent = parent->parent;
6293 if (parent->parent)
6294 parent->parent->child = tmp;
6295 }
6296 }
6297
6298 if (sd && sd_degenerate(sd)) {
6299 sd = sd->parent;
6300 if (sd)
6301 sd->child = NULL;
6302 }
6303
6304 sched_domain_debug(sd, cpu);
6305
6306 rq_attach_root(rq, rd);
6307 rcu_assign_pointer(rq->sd, sd);
6308 }
6309
6310 /* cpus with isolated domains */
6311 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6312
6313 /* Setup the mask of cpus configured for isolated domains */
6314 static int __init isolated_cpu_setup(char *str)
6315 {
6316 int ints[NR_CPUS], i;
6317
6318 str = get_options(str, ARRAY_SIZE(ints), ints);
6319 cpus_clear(cpu_isolated_map);
6320 for (i = 1; i <= ints[0]; i++)
6321 if (ints[i] < NR_CPUS)
6322 cpu_set(ints[i], cpu_isolated_map);
6323 return 1;
6324 }
6325
6326 __setup("isolcpus=", isolated_cpu_setup);
6327
6328 /*
6329 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6330 * to a function which identifies what group(along with sched group) a CPU
6331 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6332 * (due to the fact that we keep track of groups covered with a cpumask_t).
6333 *
6334 * init_sched_build_groups will build a circular linked list of the groups
6335 * covered by the given span, and will set each group's ->cpumask correctly,
6336 * and ->cpu_power to 0.
6337 */
6338 static void
6339 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6340 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6341 struct sched_group **sg))
6342 {
6343 struct sched_group *first = NULL, *last = NULL;
6344 cpumask_t covered = CPU_MASK_NONE;
6345 int i;
6346
6347 for_each_cpu_mask(i, span) {
6348 struct sched_group *sg;
6349 int group = group_fn(i, cpu_map, &sg);
6350 int j;
6351
6352 if (cpu_isset(i, covered))
6353 continue;
6354
6355 sg->cpumask = CPU_MASK_NONE;
6356 sg->__cpu_power = 0;
6357
6358 for_each_cpu_mask(j, span) {
6359 if (group_fn(j, cpu_map, NULL) != group)
6360 continue;
6361
6362 cpu_set(j, covered);
6363 cpu_set(j, sg->cpumask);
6364 }
6365 if (!first)
6366 first = sg;
6367 if (last)
6368 last->next = sg;
6369 last = sg;
6370 }
6371 last->next = first;
6372 }
6373
6374 #define SD_NODES_PER_DOMAIN 16
6375
6376 #ifdef CONFIG_NUMA
6377
6378 /**
6379 * find_next_best_node - find the next node to include in a sched_domain
6380 * @node: node whose sched_domain we're building
6381 * @used_nodes: nodes already in the sched_domain
6382 *
6383 * Find the next node to include in a given scheduling domain. Simply
6384 * finds the closest node not already in the @used_nodes map.
6385 *
6386 * Should use nodemask_t.
6387 */
6388 static int find_next_best_node(int node, unsigned long *used_nodes)
6389 {
6390 int i, n, val, min_val, best_node = 0;
6391
6392 min_val = INT_MAX;
6393
6394 for (i = 0; i < MAX_NUMNODES; i++) {
6395 /* Start at @node */
6396 n = (node + i) % MAX_NUMNODES;
6397
6398 if (!nr_cpus_node(n))
6399 continue;
6400
6401 /* Skip already used nodes */
6402 if (test_bit(n, used_nodes))
6403 continue;
6404
6405 /* Simple min distance search */
6406 val = node_distance(node, n);
6407
6408 if (val < min_val) {
6409 min_val = val;
6410 best_node = n;
6411 }
6412 }
6413
6414 set_bit(best_node, used_nodes);
6415 return best_node;
6416 }
6417
6418 /**
6419 * sched_domain_node_span - get a cpumask for a node's sched_domain
6420 * @node: node whose cpumask we're constructing
6421 * @size: number of nodes to include in this span
6422 *
6423 * Given a node, construct a good cpumask for its sched_domain to span. It
6424 * should be one that prevents unnecessary balancing, but also spreads tasks
6425 * out optimally.
6426 */
6427 static cpumask_t sched_domain_node_span(int node)
6428 {
6429 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6430 cpumask_t span, nodemask;
6431 int i;
6432
6433 cpus_clear(span);
6434 bitmap_zero(used_nodes, MAX_NUMNODES);
6435
6436 nodemask = node_to_cpumask(node);
6437 cpus_or(span, span, nodemask);
6438 set_bit(node, used_nodes);
6439
6440 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6441 int next_node = find_next_best_node(node, used_nodes);
6442
6443 nodemask = node_to_cpumask(next_node);
6444 cpus_or(span, span, nodemask);
6445 }
6446
6447 return span;
6448 }
6449 #endif
6450
6451 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6452
6453 /*
6454 * SMT sched-domains:
6455 */
6456 #ifdef CONFIG_SCHED_SMT
6457 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6458 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6459
6460 static int
6461 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6462 {
6463 if (sg)
6464 *sg = &per_cpu(sched_group_cpus, cpu);
6465 return cpu;
6466 }
6467 #endif
6468
6469 /*
6470 * multi-core sched-domains:
6471 */
6472 #ifdef CONFIG_SCHED_MC
6473 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6474 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6475 #endif
6476
6477 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6478 static int
6479 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6480 {
6481 int group;
6482 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6483 cpus_and(mask, mask, *cpu_map);
6484 group = first_cpu(mask);
6485 if (sg)
6486 *sg = &per_cpu(sched_group_core, group);
6487 return group;
6488 }
6489 #elif defined(CONFIG_SCHED_MC)
6490 static int
6491 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6492 {
6493 if (sg)
6494 *sg = &per_cpu(sched_group_core, cpu);
6495 return cpu;
6496 }
6497 #endif
6498
6499 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6500 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6501
6502 static int
6503 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6504 {
6505 int group;
6506 #ifdef CONFIG_SCHED_MC
6507 cpumask_t mask = cpu_coregroup_map(cpu);
6508 cpus_and(mask, mask, *cpu_map);
6509 group = first_cpu(mask);
6510 #elif defined(CONFIG_SCHED_SMT)
6511 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6512 cpus_and(mask, mask, *cpu_map);
6513 group = first_cpu(mask);
6514 #else
6515 group = cpu;
6516 #endif
6517 if (sg)
6518 *sg = &per_cpu(sched_group_phys, group);
6519 return group;
6520 }
6521
6522 #ifdef CONFIG_NUMA
6523 /*
6524 * The init_sched_build_groups can't handle what we want to do with node
6525 * groups, so roll our own. Now each node has its own list of groups which
6526 * gets dynamically allocated.
6527 */
6528 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6529 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6530
6531 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6532 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6533
6534 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6535 struct sched_group **sg)
6536 {
6537 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6538 int group;
6539
6540 cpus_and(nodemask, nodemask, *cpu_map);
6541 group = first_cpu(nodemask);
6542
6543 if (sg)
6544 *sg = &per_cpu(sched_group_allnodes, group);
6545 return group;
6546 }
6547
6548 static void init_numa_sched_groups_power(struct sched_group *group_head)
6549 {
6550 struct sched_group *sg = group_head;
6551 int j;
6552
6553 if (!sg)
6554 return;
6555 do {
6556 for_each_cpu_mask(j, sg->cpumask) {
6557 struct sched_domain *sd;
6558
6559 sd = &per_cpu(phys_domains, j);
6560 if (j != first_cpu(sd->groups->cpumask)) {
6561 /*
6562 * Only add "power" once for each
6563 * physical package.
6564 */
6565 continue;
6566 }
6567
6568 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6569 }
6570 sg = sg->next;
6571 } while (sg != group_head);
6572 }
6573 #endif
6574
6575 #ifdef CONFIG_NUMA
6576 /* Free memory allocated for various sched_group structures */
6577 static void free_sched_groups(const cpumask_t *cpu_map)
6578 {
6579 int cpu, i;
6580
6581 for_each_cpu_mask(cpu, *cpu_map) {
6582 struct sched_group **sched_group_nodes
6583 = sched_group_nodes_bycpu[cpu];
6584
6585 if (!sched_group_nodes)
6586 continue;
6587
6588 for (i = 0; i < MAX_NUMNODES; i++) {
6589 cpumask_t nodemask = node_to_cpumask(i);
6590 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6591
6592 cpus_and(nodemask, nodemask, *cpu_map);
6593 if (cpus_empty(nodemask))
6594 continue;
6595
6596 if (sg == NULL)
6597 continue;
6598 sg = sg->next;
6599 next_sg:
6600 oldsg = sg;
6601 sg = sg->next;
6602 kfree(oldsg);
6603 if (oldsg != sched_group_nodes[i])
6604 goto next_sg;
6605 }
6606 kfree(sched_group_nodes);
6607 sched_group_nodes_bycpu[cpu] = NULL;
6608 }
6609 }
6610 #else
6611 static void free_sched_groups(const cpumask_t *cpu_map)
6612 {
6613 }
6614 #endif
6615
6616 /*
6617 * Initialize sched groups cpu_power.
6618 *
6619 * cpu_power indicates the capacity of sched group, which is used while
6620 * distributing the load between different sched groups in a sched domain.
6621 * Typically cpu_power for all the groups in a sched domain will be same unless
6622 * there are asymmetries in the topology. If there are asymmetries, group
6623 * having more cpu_power will pickup more load compared to the group having
6624 * less cpu_power.
6625 *
6626 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6627 * the maximum number of tasks a group can handle in the presence of other idle
6628 * or lightly loaded groups in the same sched domain.
6629 */
6630 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6631 {
6632 struct sched_domain *child;
6633 struct sched_group *group;
6634
6635 WARN_ON(!sd || !sd->groups);
6636
6637 if (cpu != first_cpu(sd->groups->cpumask))
6638 return;
6639
6640 child = sd->child;
6641
6642 sd->groups->__cpu_power = 0;
6643
6644 /*
6645 * For perf policy, if the groups in child domain share resources
6646 * (for example cores sharing some portions of the cache hierarchy
6647 * or SMT), then set this domain groups cpu_power such that each group
6648 * can handle only one task, when there are other idle groups in the
6649 * same sched domain.
6650 */
6651 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6652 (child->flags &
6653 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6654 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6655 return;
6656 }
6657
6658 /*
6659 * add cpu_power of each child group to this groups cpu_power
6660 */
6661 group = child->groups;
6662 do {
6663 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6664 group = group->next;
6665 } while (group != child->groups);
6666 }
6667
6668 /*
6669 * Build sched domains for a given set of cpus and attach the sched domains
6670 * to the individual cpus
6671 */
6672 static int build_sched_domains(const cpumask_t *cpu_map)
6673 {
6674 int i;
6675 struct root_domain *rd;
6676 #ifdef CONFIG_NUMA
6677 struct sched_group **sched_group_nodes = NULL;
6678 int sd_allnodes = 0;
6679
6680 /*
6681 * Allocate the per-node list of sched groups
6682 */
6683 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6684 GFP_KERNEL);
6685 if (!sched_group_nodes) {
6686 printk(KERN_WARNING "Can not alloc sched group node list\n");
6687 return -ENOMEM;
6688 }
6689 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6690 #endif
6691
6692 rd = alloc_rootdomain();
6693 if (!rd) {
6694 printk(KERN_WARNING "Cannot alloc root domain\n");
6695 return -ENOMEM;
6696 }
6697
6698 /*
6699 * Set up domains for cpus specified by the cpu_map.
6700 */
6701 for_each_cpu_mask(i, *cpu_map) {
6702 struct sched_domain *sd = NULL, *p;
6703 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6704
6705 cpus_and(nodemask, nodemask, *cpu_map);
6706
6707 #ifdef CONFIG_NUMA
6708 if (cpus_weight(*cpu_map) >
6709 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6710 sd = &per_cpu(allnodes_domains, i);
6711 *sd = SD_ALLNODES_INIT;
6712 sd->span = *cpu_map;
6713 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6714 p = sd;
6715 sd_allnodes = 1;
6716 } else
6717 p = NULL;
6718
6719 sd = &per_cpu(node_domains, i);
6720 *sd = SD_NODE_INIT;
6721 sd->span = sched_domain_node_span(cpu_to_node(i));
6722 sd->parent = p;
6723 if (p)
6724 p->child = sd;
6725 cpus_and(sd->span, sd->span, *cpu_map);
6726 #endif
6727
6728 p = sd;
6729 sd = &per_cpu(phys_domains, i);
6730 *sd = SD_CPU_INIT;
6731 sd->span = nodemask;
6732 sd->parent = p;
6733 if (p)
6734 p->child = sd;
6735 cpu_to_phys_group(i, cpu_map, &sd->groups);
6736
6737 #ifdef CONFIG_SCHED_MC
6738 p = sd;
6739 sd = &per_cpu(core_domains, i);
6740 *sd = SD_MC_INIT;
6741 sd->span = cpu_coregroup_map(i);
6742 cpus_and(sd->span, sd->span, *cpu_map);
6743 sd->parent = p;
6744 p->child = sd;
6745 cpu_to_core_group(i, cpu_map, &sd->groups);
6746 #endif
6747
6748 #ifdef CONFIG_SCHED_SMT
6749 p = sd;
6750 sd = &per_cpu(cpu_domains, i);
6751 *sd = SD_SIBLING_INIT;
6752 sd->span = per_cpu(cpu_sibling_map, i);
6753 cpus_and(sd->span, sd->span, *cpu_map);
6754 sd->parent = p;
6755 p->child = sd;
6756 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6757 #endif
6758 }
6759
6760 #ifdef CONFIG_SCHED_SMT
6761 /* Set up CPU (sibling) groups */
6762 for_each_cpu_mask(i, *cpu_map) {
6763 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6764 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6765 if (i != first_cpu(this_sibling_map))
6766 continue;
6767
6768 init_sched_build_groups(this_sibling_map, cpu_map,
6769 &cpu_to_cpu_group);
6770 }
6771 #endif
6772
6773 #ifdef CONFIG_SCHED_MC
6774 /* Set up multi-core groups */
6775 for_each_cpu_mask(i, *cpu_map) {
6776 cpumask_t this_core_map = cpu_coregroup_map(i);
6777 cpus_and(this_core_map, this_core_map, *cpu_map);
6778 if (i != first_cpu(this_core_map))
6779 continue;
6780 init_sched_build_groups(this_core_map, cpu_map,
6781 &cpu_to_core_group);
6782 }
6783 #endif
6784
6785 /* Set up physical groups */
6786 for (i = 0; i < MAX_NUMNODES; i++) {
6787 cpumask_t nodemask = node_to_cpumask(i);
6788
6789 cpus_and(nodemask, nodemask, *cpu_map);
6790 if (cpus_empty(nodemask))
6791 continue;
6792
6793 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6794 }
6795
6796 #ifdef CONFIG_NUMA
6797 /* Set up node groups */
6798 if (sd_allnodes)
6799 init_sched_build_groups(*cpu_map, cpu_map,
6800 &cpu_to_allnodes_group);
6801
6802 for (i = 0; i < MAX_NUMNODES; i++) {
6803 /* Set up node groups */
6804 struct sched_group *sg, *prev;
6805 cpumask_t nodemask = node_to_cpumask(i);
6806 cpumask_t domainspan;
6807 cpumask_t covered = CPU_MASK_NONE;
6808 int j;
6809
6810 cpus_and(nodemask, nodemask, *cpu_map);
6811 if (cpus_empty(nodemask)) {
6812 sched_group_nodes[i] = NULL;
6813 continue;
6814 }
6815
6816 domainspan = sched_domain_node_span(i);
6817 cpus_and(domainspan, domainspan, *cpu_map);
6818
6819 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6820 if (!sg) {
6821 printk(KERN_WARNING "Can not alloc domain group for "
6822 "node %d\n", i);
6823 goto error;
6824 }
6825 sched_group_nodes[i] = sg;
6826 for_each_cpu_mask(j, nodemask) {
6827 struct sched_domain *sd;
6828
6829 sd = &per_cpu(node_domains, j);
6830 sd->groups = sg;
6831 }
6832 sg->__cpu_power = 0;
6833 sg->cpumask = nodemask;
6834 sg->next = sg;
6835 cpus_or(covered, covered, nodemask);
6836 prev = sg;
6837
6838 for (j = 0; j < MAX_NUMNODES; j++) {
6839 cpumask_t tmp, notcovered;
6840 int n = (i + j) % MAX_NUMNODES;
6841
6842 cpus_complement(notcovered, covered);
6843 cpus_and(tmp, notcovered, *cpu_map);
6844 cpus_and(tmp, tmp, domainspan);
6845 if (cpus_empty(tmp))
6846 break;
6847
6848 nodemask = node_to_cpumask(n);
6849 cpus_and(tmp, tmp, nodemask);
6850 if (cpus_empty(tmp))
6851 continue;
6852
6853 sg = kmalloc_node(sizeof(struct sched_group),
6854 GFP_KERNEL, i);
6855 if (!sg) {
6856 printk(KERN_WARNING
6857 "Can not alloc domain group for node %d\n", j);
6858 goto error;
6859 }
6860 sg->__cpu_power = 0;
6861 sg->cpumask = tmp;
6862 sg->next = prev->next;
6863 cpus_or(covered, covered, tmp);
6864 prev->next = sg;
6865 prev = sg;
6866 }
6867 }
6868 #endif
6869
6870 /* Calculate CPU power for physical packages and nodes */
6871 #ifdef CONFIG_SCHED_SMT
6872 for_each_cpu_mask(i, *cpu_map) {
6873 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6874
6875 init_sched_groups_power(i, sd);
6876 }
6877 #endif
6878 #ifdef CONFIG_SCHED_MC
6879 for_each_cpu_mask(i, *cpu_map) {
6880 struct sched_domain *sd = &per_cpu(core_domains, i);
6881
6882 init_sched_groups_power(i, sd);
6883 }
6884 #endif
6885
6886 for_each_cpu_mask(i, *cpu_map) {
6887 struct sched_domain *sd = &per_cpu(phys_domains, i);
6888
6889 init_sched_groups_power(i, sd);
6890 }
6891
6892 #ifdef CONFIG_NUMA
6893 for (i = 0; i < MAX_NUMNODES; i++)
6894 init_numa_sched_groups_power(sched_group_nodes[i]);
6895
6896 if (sd_allnodes) {
6897 struct sched_group *sg;
6898
6899 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6900 init_numa_sched_groups_power(sg);
6901 }
6902 #endif
6903
6904 /* Attach the domains */
6905 for_each_cpu_mask(i, *cpu_map) {
6906 struct sched_domain *sd;
6907 #ifdef CONFIG_SCHED_SMT
6908 sd = &per_cpu(cpu_domains, i);
6909 #elif defined(CONFIG_SCHED_MC)
6910 sd = &per_cpu(core_domains, i);
6911 #else
6912 sd = &per_cpu(phys_domains, i);
6913 #endif
6914 cpu_attach_domain(sd, rd, i);
6915 }
6916
6917 return 0;
6918
6919 #ifdef CONFIG_NUMA
6920 error:
6921 free_sched_groups(cpu_map);
6922 return -ENOMEM;
6923 #endif
6924 }
6925
6926 static cpumask_t *doms_cur; /* current sched domains */
6927 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6928
6929 /*
6930 * Special case: If a kmalloc of a doms_cur partition (array of
6931 * cpumask_t) fails, then fallback to a single sched domain,
6932 * as determined by the single cpumask_t fallback_doms.
6933 */
6934 static cpumask_t fallback_doms;
6935
6936 void __attribute__((weak)) arch_update_cpu_topology(void)
6937 {
6938 }
6939
6940 /*
6941 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6942 * For now this just excludes isolated cpus, but could be used to
6943 * exclude other special cases in the future.
6944 */
6945 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6946 {
6947 int err;
6948
6949 arch_update_cpu_topology();
6950 ndoms_cur = 1;
6951 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6952 if (!doms_cur)
6953 doms_cur = &fallback_doms;
6954 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6955 err = build_sched_domains(doms_cur);
6956 register_sched_domain_sysctl();
6957
6958 return err;
6959 }
6960
6961 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6962 {
6963 free_sched_groups(cpu_map);
6964 }
6965
6966 /*
6967 * Detach sched domains from a group of cpus specified in cpu_map
6968 * These cpus will now be attached to the NULL domain
6969 */
6970 static void detach_destroy_domains(const cpumask_t *cpu_map)
6971 {
6972 int i;
6973
6974 unregister_sched_domain_sysctl();
6975
6976 for_each_cpu_mask(i, *cpu_map)
6977 cpu_attach_domain(NULL, &def_root_domain, i);
6978 synchronize_sched();
6979 arch_destroy_sched_domains(cpu_map);
6980 }
6981
6982 /*
6983 * Partition sched domains as specified by the 'ndoms_new'
6984 * cpumasks in the array doms_new[] of cpumasks. This compares
6985 * doms_new[] to the current sched domain partitioning, doms_cur[].
6986 * It destroys each deleted domain and builds each new domain.
6987 *
6988 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6989 * The masks don't intersect (don't overlap.) We should setup one
6990 * sched domain for each mask. CPUs not in any of the cpumasks will
6991 * not be load balanced. If the same cpumask appears both in the
6992 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6993 * it as it is.
6994 *
6995 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6996 * ownership of it and will kfree it when done with it. If the caller
6997 * failed the kmalloc call, then it can pass in doms_new == NULL,
6998 * and partition_sched_domains() will fallback to the single partition
6999 * 'fallback_doms'.
7000 *
7001 * Call with hotplug lock held
7002 */
7003 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
7004 {
7005 int i, j;
7006
7007 lock_doms_cur();
7008
7009 /* always unregister in case we don't destroy any domains */
7010 unregister_sched_domain_sysctl();
7011
7012 if (doms_new == NULL) {
7013 ndoms_new = 1;
7014 doms_new = &fallback_doms;
7015 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7016 }
7017
7018 /* Destroy deleted domains */
7019 for (i = 0; i < ndoms_cur; i++) {
7020 for (j = 0; j < ndoms_new; j++) {
7021 if (cpus_equal(doms_cur[i], doms_new[j]))
7022 goto match1;
7023 }
7024 /* no match - a current sched domain not in new doms_new[] */
7025 detach_destroy_domains(doms_cur + i);
7026 match1:
7027 ;
7028 }
7029
7030 /* Build new domains */
7031 for (i = 0; i < ndoms_new; i++) {
7032 for (j = 0; j < ndoms_cur; j++) {
7033 if (cpus_equal(doms_new[i], doms_cur[j]))
7034 goto match2;
7035 }
7036 /* no match - add a new doms_new */
7037 build_sched_domains(doms_new + i);
7038 match2:
7039 ;
7040 }
7041
7042 /* Remember the new sched domains */
7043 if (doms_cur != &fallback_doms)
7044 kfree(doms_cur);
7045 doms_cur = doms_new;
7046 ndoms_cur = ndoms_new;
7047
7048 register_sched_domain_sysctl();
7049
7050 unlock_doms_cur();
7051 }
7052
7053 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7054 int arch_reinit_sched_domains(void)
7055 {
7056 int err;
7057
7058 get_online_cpus();
7059 detach_destroy_domains(&cpu_online_map);
7060 err = arch_init_sched_domains(&cpu_online_map);
7061 put_online_cpus();
7062
7063 return err;
7064 }
7065
7066 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7067 {
7068 int ret;
7069
7070 if (buf[0] != '0' && buf[0] != '1')
7071 return -EINVAL;
7072
7073 if (smt)
7074 sched_smt_power_savings = (buf[0] == '1');
7075 else
7076 sched_mc_power_savings = (buf[0] == '1');
7077
7078 ret = arch_reinit_sched_domains();
7079
7080 return ret ? ret : count;
7081 }
7082
7083 #ifdef CONFIG_SCHED_MC
7084 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7085 {
7086 return sprintf(page, "%u\n", sched_mc_power_savings);
7087 }
7088 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7089 const char *buf, size_t count)
7090 {
7091 return sched_power_savings_store(buf, count, 0);
7092 }
7093 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7094 sched_mc_power_savings_store);
7095 #endif
7096
7097 #ifdef CONFIG_SCHED_SMT
7098 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7099 {
7100 return sprintf(page, "%u\n", sched_smt_power_savings);
7101 }
7102 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7103 const char *buf, size_t count)
7104 {
7105 return sched_power_savings_store(buf, count, 1);
7106 }
7107 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7108 sched_smt_power_savings_store);
7109 #endif
7110
7111 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7112 {
7113 int err = 0;
7114
7115 #ifdef CONFIG_SCHED_SMT
7116 if (smt_capable())
7117 err = sysfs_create_file(&cls->kset.kobj,
7118 &attr_sched_smt_power_savings.attr);
7119 #endif
7120 #ifdef CONFIG_SCHED_MC
7121 if (!err && mc_capable())
7122 err = sysfs_create_file(&cls->kset.kobj,
7123 &attr_sched_mc_power_savings.attr);
7124 #endif
7125 return err;
7126 }
7127 #endif
7128
7129 /*
7130 * Force a reinitialization of the sched domains hierarchy. The domains
7131 * and groups cannot be updated in place without racing with the balancing
7132 * code, so we temporarily attach all running cpus to the NULL domain
7133 * which will prevent rebalancing while the sched domains are recalculated.
7134 */
7135 static int update_sched_domains(struct notifier_block *nfb,
7136 unsigned long action, void *hcpu)
7137 {
7138 switch (action) {
7139 case CPU_UP_PREPARE:
7140 case CPU_UP_PREPARE_FROZEN:
7141 case CPU_DOWN_PREPARE:
7142 case CPU_DOWN_PREPARE_FROZEN:
7143 detach_destroy_domains(&cpu_online_map);
7144 return NOTIFY_OK;
7145
7146 case CPU_UP_CANCELED:
7147 case CPU_UP_CANCELED_FROZEN:
7148 case CPU_DOWN_FAILED:
7149 case CPU_DOWN_FAILED_FROZEN:
7150 case CPU_ONLINE:
7151 case CPU_ONLINE_FROZEN:
7152 case CPU_DEAD:
7153 case CPU_DEAD_FROZEN:
7154 /*
7155 * Fall through and re-initialise the domains.
7156 */
7157 break;
7158 default:
7159 return NOTIFY_DONE;
7160 }
7161
7162 /* The hotplug lock is already held by cpu_up/cpu_down */
7163 arch_init_sched_domains(&cpu_online_map);
7164
7165 return NOTIFY_OK;
7166 }
7167
7168 void __init sched_init_smp(void)
7169 {
7170 cpumask_t non_isolated_cpus;
7171
7172 get_online_cpus();
7173 arch_init_sched_domains(&cpu_online_map);
7174 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7175 if (cpus_empty(non_isolated_cpus))
7176 cpu_set(smp_processor_id(), non_isolated_cpus);
7177 put_online_cpus();
7178 /* XXX: Theoretical race here - CPU may be hotplugged now */
7179 hotcpu_notifier(update_sched_domains, 0);
7180
7181 /* Move init over to a non-isolated CPU */
7182 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7183 BUG();
7184 sched_init_granularity();
7185 }
7186 #else
7187 void __init sched_init_smp(void)
7188 {
7189 sched_init_granularity();
7190 }
7191 #endif /* CONFIG_SMP */
7192
7193 int in_sched_functions(unsigned long addr)
7194 {
7195 return in_lock_functions(addr) ||
7196 (addr >= (unsigned long)__sched_text_start
7197 && addr < (unsigned long)__sched_text_end);
7198 }
7199
7200 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7201 {
7202 cfs_rq->tasks_timeline = RB_ROOT;
7203 #ifdef CONFIG_FAIR_GROUP_SCHED
7204 cfs_rq->rq = rq;
7205 #endif
7206 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7207 }
7208
7209 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7210 {
7211 struct rt_prio_array *array;
7212 int i;
7213
7214 array = &rt_rq->active;
7215 for (i = 0; i < MAX_RT_PRIO; i++) {
7216 INIT_LIST_HEAD(array->queue + i);
7217 __clear_bit(i, array->bitmap);
7218 }
7219 /* delimiter for bitsearch: */
7220 __set_bit(MAX_RT_PRIO, array->bitmap);
7221
7222 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7223 rt_rq->highest_prio = MAX_RT_PRIO;
7224 #endif
7225 #ifdef CONFIG_SMP
7226 rt_rq->rt_nr_migratory = 0;
7227 rt_rq->overloaded = 0;
7228 #endif
7229
7230 rt_rq->rt_time = 0;
7231 rt_rq->rt_throttled = 0;
7232
7233 #ifdef CONFIG_RT_GROUP_SCHED
7234 rt_rq->rt_nr_boosted = 0;
7235 rt_rq->rq = rq;
7236 #endif
7237 }
7238
7239 #ifdef CONFIG_FAIR_GROUP_SCHED
7240 static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7241 struct cfs_rq *cfs_rq, struct sched_entity *se,
7242 int cpu, int add)
7243 {
7244 tg->cfs_rq[cpu] = cfs_rq;
7245 init_cfs_rq(cfs_rq, rq);
7246 cfs_rq->tg = tg;
7247 if (add)
7248 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7249
7250 tg->se[cpu] = se;
7251 se->cfs_rq = &rq->cfs;
7252 se->my_q = cfs_rq;
7253 se->load.weight = tg->shares;
7254 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7255 se->parent = NULL;
7256 }
7257 #endif
7258
7259 #ifdef CONFIG_RT_GROUP_SCHED
7260 static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7261 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7262 int cpu, int add)
7263 {
7264 tg->rt_rq[cpu] = rt_rq;
7265 init_rt_rq(rt_rq, rq);
7266 rt_rq->tg = tg;
7267 rt_rq->rt_se = rt_se;
7268 if (add)
7269 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7270
7271 tg->rt_se[cpu] = rt_se;
7272 rt_se->rt_rq = &rq->rt;
7273 rt_se->my_q = rt_rq;
7274 rt_se->parent = NULL;
7275 INIT_LIST_HEAD(&rt_se->run_list);
7276 }
7277 #endif
7278
7279 void __init sched_init(void)
7280 {
7281 int highest_cpu = 0;
7282 int i, j;
7283
7284 #ifdef CONFIG_SMP
7285 init_defrootdomain();
7286 #endif
7287
7288 #ifdef CONFIG_GROUP_SCHED
7289 list_add(&init_task_group.list, &task_groups);
7290 #endif
7291
7292 for_each_possible_cpu(i) {
7293 struct rq *rq;
7294
7295 rq = cpu_rq(i);
7296 spin_lock_init(&rq->lock);
7297 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7298 rq->nr_running = 0;
7299 rq->clock = 1;
7300 update_last_tick_seen(rq);
7301 init_cfs_rq(&rq->cfs, rq);
7302 init_rt_rq(&rq->rt, rq);
7303 #ifdef CONFIG_FAIR_GROUP_SCHED
7304 init_task_group.shares = init_task_group_load;
7305 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7306 init_tg_cfs_entry(rq, &init_task_group,
7307 &per_cpu(init_cfs_rq, i),
7308 &per_cpu(init_sched_entity, i), i, 1);
7309
7310 #endif
7311 #ifdef CONFIG_RT_GROUP_SCHED
7312 init_task_group.rt_runtime =
7313 sysctl_sched_rt_runtime * NSEC_PER_USEC;
7314 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7315 init_tg_rt_entry(rq, &init_task_group,
7316 &per_cpu(init_rt_rq, i),
7317 &per_cpu(init_sched_rt_entity, i), i, 1);
7318 #endif
7319 rq->rt_period_expire = 0;
7320 rq->rt_throttled = 0;
7321
7322 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7323 rq->cpu_load[j] = 0;
7324 #ifdef CONFIG_SMP
7325 rq->sd = NULL;
7326 rq->rd = NULL;
7327 rq->active_balance = 0;
7328 rq->next_balance = jiffies;
7329 rq->push_cpu = 0;
7330 rq->cpu = i;
7331 rq->migration_thread = NULL;
7332 INIT_LIST_HEAD(&rq->migration_queue);
7333 rq_attach_root(rq, &def_root_domain);
7334 #endif
7335 init_rq_hrtick(rq);
7336 atomic_set(&rq->nr_iowait, 0);
7337 highest_cpu = i;
7338 }
7339
7340 set_load_weight(&init_task);
7341
7342 #ifdef CONFIG_PREEMPT_NOTIFIERS
7343 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7344 #endif
7345
7346 #ifdef CONFIG_SMP
7347 nr_cpu_ids = highest_cpu + 1;
7348 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7349 #endif
7350
7351 #ifdef CONFIG_RT_MUTEXES
7352 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7353 #endif
7354
7355 /*
7356 * The boot idle thread does lazy MMU switching as well:
7357 */
7358 atomic_inc(&init_mm.mm_count);
7359 enter_lazy_tlb(&init_mm, current);
7360
7361 /*
7362 * Make us the idle thread. Technically, schedule() should not be
7363 * called from this thread, however somewhere below it might be,
7364 * but because we are the idle thread, we just pick up running again
7365 * when this runqueue becomes "idle".
7366 */
7367 init_idle(current, smp_processor_id());
7368 /*
7369 * During early bootup we pretend to be a normal task:
7370 */
7371 current->sched_class = &fair_sched_class;
7372
7373 scheduler_running = 1;
7374 }
7375
7376 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7377 void __might_sleep(char *file, int line)
7378 {
7379 #ifdef in_atomic
7380 static unsigned long prev_jiffy; /* ratelimiting */
7381
7382 if ((in_atomic() || irqs_disabled()) &&
7383 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7384 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7385 return;
7386 prev_jiffy = jiffies;
7387 printk(KERN_ERR "BUG: sleeping function called from invalid"
7388 " context at %s:%d\n", file, line);
7389 printk("in_atomic():%d, irqs_disabled():%d\n",
7390 in_atomic(), irqs_disabled());
7391 debug_show_held_locks(current);
7392 if (irqs_disabled())
7393 print_irqtrace_events(current);
7394 dump_stack();
7395 }
7396 #endif
7397 }
7398 EXPORT_SYMBOL(__might_sleep);
7399 #endif
7400
7401 #ifdef CONFIG_MAGIC_SYSRQ
7402 static void normalize_task(struct rq *rq, struct task_struct *p)
7403 {
7404 int on_rq;
7405 update_rq_clock(rq);
7406 on_rq = p->se.on_rq;
7407 if (on_rq)
7408 deactivate_task(rq, p, 0);
7409 __setscheduler(rq, p, SCHED_NORMAL, 0);
7410 if (on_rq) {
7411 activate_task(rq, p, 0);
7412 resched_task(rq->curr);
7413 }
7414 }
7415
7416 void normalize_rt_tasks(void)
7417 {
7418 struct task_struct *g, *p;
7419 unsigned long flags;
7420 struct rq *rq;
7421
7422 read_lock_irqsave(&tasklist_lock, flags);
7423 do_each_thread(g, p) {
7424 /*
7425 * Only normalize user tasks:
7426 */
7427 if (!p->mm)
7428 continue;
7429
7430 p->se.exec_start = 0;
7431 #ifdef CONFIG_SCHEDSTATS
7432 p->se.wait_start = 0;
7433 p->se.sleep_start = 0;
7434 p->se.block_start = 0;
7435 #endif
7436 task_rq(p)->clock = 0;
7437
7438 if (!rt_task(p)) {
7439 /*
7440 * Renice negative nice level userspace
7441 * tasks back to 0:
7442 */
7443 if (TASK_NICE(p) < 0 && p->mm)
7444 set_user_nice(p, 0);
7445 continue;
7446 }
7447
7448 spin_lock(&p->pi_lock);
7449 rq = __task_rq_lock(p);
7450
7451 normalize_task(rq, p);
7452
7453 __task_rq_unlock(rq);
7454 spin_unlock(&p->pi_lock);
7455 } while_each_thread(g, p);
7456
7457 read_unlock_irqrestore(&tasklist_lock, flags);
7458 }
7459
7460 #endif /* CONFIG_MAGIC_SYSRQ */
7461
7462 #ifdef CONFIG_IA64
7463 /*
7464 * These functions are only useful for the IA64 MCA handling.
7465 *
7466 * They can only be called when the whole system has been
7467 * stopped - every CPU needs to be quiescent, and no scheduling
7468 * activity can take place. Using them for anything else would
7469 * be a serious bug, and as a result, they aren't even visible
7470 * under any other configuration.
7471 */
7472
7473 /**
7474 * curr_task - return the current task for a given cpu.
7475 * @cpu: the processor in question.
7476 *
7477 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7478 */
7479 struct task_struct *curr_task(int cpu)
7480 {
7481 return cpu_curr(cpu);
7482 }
7483
7484 /**
7485 * set_curr_task - set the current task for a given cpu.
7486 * @cpu: the processor in question.
7487 * @p: the task pointer to set.
7488 *
7489 * Description: This function must only be used when non-maskable interrupts
7490 * are serviced on a separate stack. It allows the architecture to switch the
7491 * notion of the current task on a cpu in a non-blocking manner. This function
7492 * must be called with all CPU's synchronized, and interrupts disabled, the
7493 * and caller must save the original value of the current task (see
7494 * curr_task() above) and restore that value before reenabling interrupts and
7495 * re-starting the system.
7496 *
7497 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7498 */
7499 void set_curr_task(int cpu, struct task_struct *p)
7500 {
7501 cpu_curr(cpu) = p;
7502 }
7503
7504 #endif
7505
7506 #ifdef CONFIG_GROUP_SCHED
7507
7508 #ifdef CONFIG_FAIR_GROUP_SCHED
7509 static void free_fair_sched_group(struct task_group *tg)
7510 {
7511 int i;
7512
7513 for_each_possible_cpu(i) {
7514 if (tg->cfs_rq)
7515 kfree(tg->cfs_rq[i]);
7516 if (tg->se)
7517 kfree(tg->se[i]);
7518 }
7519
7520 kfree(tg->cfs_rq);
7521 kfree(tg->se);
7522 }
7523
7524 static int alloc_fair_sched_group(struct task_group *tg)
7525 {
7526 struct cfs_rq *cfs_rq;
7527 struct sched_entity *se;
7528 struct rq *rq;
7529 int i;
7530
7531 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7532 if (!tg->cfs_rq)
7533 goto err;
7534 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7535 if (!tg->se)
7536 goto err;
7537
7538 tg->shares = NICE_0_LOAD;
7539
7540 for_each_possible_cpu(i) {
7541 rq = cpu_rq(i);
7542
7543 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7544 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7545 if (!cfs_rq)
7546 goto err;
7547
7548 se = kmalloc_node(sizeof(struct sched_entity),
7549 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7550 if (!se)
7551 goto err;
7552
7553 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7554 }
7555
7556 return 1;
7557
7558 err:
7559 return 0;
7560 }
7561
7562 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7563 {
7564 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7565 &cpu_rq(cpu)->leaf_cfs_rq_list);
7566 }
7567
7568 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7569 {
7570 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7571 }
7572 #else
7573 static inline void free_fair_sched_group(struct task_group *tg)
7574 {
7575 }
7576
7577 static inline int alloc_fair_sched_group(struct task_group *tg)
7578 {
7579 return 1;
7580 }
7581
7582 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7583 {
7584 }
7585
7586 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7587 {
7588 }
7589 #endif
7590
7591 #ifdef CONFIG_RT_GROUP_SCHED
7592 static void free_rt_sched_group(struct task_group *tg)
7593 {
7594 int i;
7595
7596 for_each_possible_cpu(i) {
7597 if (tg->rt_rq)
7598 kfree(tg->rt_rq[i]);
7599 if (tg->rt_se)
7600 kfree(tg->rt_se[i]);
7601 }
7602
7603 kfree(tg->rt_rq);
7604 kfree(tg->rt_se);
7605 }
7606
7607 static int alloc_rt_sched_group(struct task_group *tg)
7608 {
7609 struct rt_rq *rt_rq;
7610 struct sched_rt_entity *rt_se;
7611 struct rq *rq;
7612 int i;
7613
7614 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7615 if (!tg->rt_rq)
7616 goto err;
7617 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7618 if (!tg->rt_se)
7619 goto err;
7620
7621 tg->rt_runtime = 0;
7622
7623 for_each_possible_cpu(i) {
7624 rq = cpu_rq(i);
7625
7626 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7627 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7628 if (!rt_rq)
7629 goto err;
7630
7631 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7632 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7633 if (!rt_se)
7634 goto err;
7635
7636 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
7637 }
7638
7639 return 1;
7640
7641 err:
7642 return 0;
7643 }
7644
7645 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7646 {
7647 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7648 &cpu_rq(cpu)->leaf_rt_rq_list);
7649 }
7650
7651 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7652 {
7653 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7654 }
7655 #else
7656 static inline void free_rt_sched_group(struct task_group *tg)
7657 {
7658 }
7659
7660 static inline int alloc_rt_sched_group(struct task_group *tg)
7661 {
7662 return 1;
7663 }
7664
7665 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7666 {
7667 }
7668
7669 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7670 {
7671 }
7672 #endif
7673
7674 static void free_sched_group(struct task_group *tg)
7675 {
7676 free_fair_sched_group(tg);
7677 free_rt_sched_group(tg);
7678 kfree(tg);
7679 }
7680
7681 /* allocate runqueue etc for a new task group */
7682 struct task_group *sched_create_group(void)
7683 {
7684 struct task_group *tg;
7685 unsigned long flags;
7686 int i;
7687
7688 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7689 if (!tg)
7690 return ERR_PTR(-ENOMEM);
7691
7692 if (!alloc_fair_sched_group(tg))
7693 goto err;
7694
7695 if (!alloc_rt_sched_group(tg))
7696 goto err;
7697
7698 spin_lock_irqsave(&task_group_lock, flags);
7699 for_each_possible_cpu(i) {
7700 register_fair_sched_group(tg, i);
7701 register_rt_sched_group(tg, i);
7702 }
7703 list_add_rcu(&tg->list, &task_groups);
7704 spin_unlock_irqrestore(&task_group_lock, flags);
7705
7706 return tg;
7707
7708 err:
7709 free_sched_group(tg);
7710 return ERR_PTR(-ENOMEM);
7711 }
7712
7713 /* rcu callback to free various structures associated with a task group */
7714 static void free_sched_group_rcu(struct rcu_head *rhp)
7715 {
7716 /* now it should be safe to free those cfs_rqs */
7717 free_sched_group(container_of(rhp, struct task_group, rcu));
7718 }
7719
7720 /* Destroy runqueue etc associated with a task group */
7721 void sched_destroy_group(struct task_group *tg)
7722 {
7723 unsigned long flags;
7724 int i;
7725
7726 spin_lock_irqsave(&task_group_lock, flags);
7727 for_each_possible_cpu(i) {
7728 unregister_fair_sched_group(tg, i);
7729 unregister_rt_sched_group(tg, i);
7730 }
7731 list_del_rcu(&tg->list);
7732 spin_unlock_irqrestore(&task_group_lock, flags);
7733
7734 /* wait for possible concurrent references to cfs_rqs complete */
7735 call_rcu(&tg->rcu, free_sched_group_rcu);
7736 }
7737
7738 /* change task's runqueue when it moves between groups.
7739 * The caller of this function should have put the task in its new group
7740 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7741 * reflect its new group.
7742 */
7743 void sched_move_task(struct task_struct *tsk)
7744 {
7745 int on_rq, running;
7746 unsigned long flags;
7747 struct rq *rq;
7748
7749 rq = task_rq_lock(tsk, &flags);
7750
7751 update_rq_clock(rq);
7752
7753 running = task_current(rq, tsk);
7754 on_rq = tsk->se.on_rq;
7755
7756 if (on_rq)
7757 dequeue_task(rq, tsk, 0);
7758 if (unlikely(running))
7759 tsk->sched_class->put_prev_task(rq, tsk);
7760
7761 set_task_rq(tsk, task_cpu(tsk));
7762
7763 #ifdef CONFIG_FAIR_GROUP_SCHED
7764 if (tsk->sched_class->moved_group)
7765 tsk->sched_class->moved_group(tsk);
7766 #endif
7767
7768 if (unlikely(running))
7769 tsk->sched_class->set_curr_task(rq);
7770 if (on_rq)
7771 enqueue_task(rq, tsk, 0);
7772
7773 task_rq_unlock(rq, &flags);
7774 }
7775
7776 #ifdef CONFIG_FAIR_GROUP_SCHED
7777 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7778 {
7779 struct cfs_rq *cfs_rq = se->cfs_rq;
7780 struct rq *rq = cfs_rq->rq;
7781 int on_rq;
7782
7783 spin_lock_irq(&rq->lock);
7784
7785 on_rq = se->on_rq;
7786 if (on_rq)
7787 dequeue_entity(cfs_rq, se, 0);
7788
7789 se->load.weight = shares;
7790 se->load.inv_weight = div64_64((1ULL<<32), shares);
7791
7792 if (on_rq)
7793 enqueue_entity(cfs_rq, se, 0);
7794
7795 spin_unlock_irq(&rq->lock);
7796 }
7797
7798 static DEFINE_MUTEX(shares_mutex);
7799
7800 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7801 {
7802 int i;
7803 unsigned long flags;
7804
7805 /*
7806 * A weight of 0 or 1 can cause arithmetics problems.
7807 * (The default weight is 1024 - so there's no practical
7808 * limitation from this.)
7809 */
7810 if (shares < 2)
7811 shares = 2;
7812
7813 mutex_lock(&shares_mutex);
7814 if (tg->shares == shares)
7815 goto done;
7816
7817 spin_lock_irqsave(&task_group_lock, flags);
7818 for_each_possible_cpu(i)
7819 unregister_fair_sched_group(tg, i);
7820 spin_unlock_irqrestore(&task_group_lock, flags);
7821
7822 /* wait for any ongoing reference to this group to finish */
7823 synchronize_sched();
7824
7825 /*
7826 * Now we are free to modify the group's share on each cpu
7827 * w/o tripping rebalance_share or load_balance_fair.
7828 */
7829 tg->shares = shares;
7830 for_each_possible_cpu(i)
7831 set_se_shares(tg->se[i], shares);
7832
7833 /*
7834 * Enable load balance activity on this group, by inserting it back on
7835 * each cpu's rq->leaf_cfs_rq_list.
7836 */
7837 spin_lock_irqsave(&task_group_lock, flags);
7838 for_each_possible_cpu(i)
7839 register_fair_sched_group(tg, i);
7840 spin_unlock_irqrestore(&task_group_lock, flags);
7841 done:
7842 mutex_unlock(&shares_mutex);
7843 return 0;
7844 }
7845
7846 unsigned long sched_group_shares(struct task_group *tg)
7847 {
7848 return tg->shares;
7849 }
7850 #endif
7851
7852 #ifdef CONFIG_RT_GROUP_SCHED
7853 /*
7854 * Ensure that the real time constraints are schedulable.
7855 */
7856 static DEFINE_MUTEX(rt_constraints_mutex);
7857
7858 static unsigned long to_ratio(u64 period, u64 runtime)
7859 {
7860 if (runtime == RUNTIME_INF)
7861 return 1ULL << 16;
7862
7863 return div64_64(runtime << 16, period);
7864 }
7865
7866 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7867 {
7868 struct task_group *tgi;
7869 unsigned long total = 0;
7870 unsigned long global_ratio =
7871 to_ratio(sysctl_sched_rt_period,
7872 sysctl_sched_rt_runtime < 0 ?
7873 RUNTIME_INF : sysctl_sched_rt_runtime);
7874
7875 rcu_read_lock();
7876 list_for_each_entry_rcu(tgi, &task_groups, list) {
7877 if (tgi == tg)
7878 continue;
7879
7880 total += to_ratio(period, tgi->rt_runtime);
7881 }
7882 rcu_read_unlock();
7883
7884 return total + to_ratio(period, runtime) < global_ratio;
7885 }
7886
7887 /* Must be called with tasklist_lock held */
7888 static inline int tg_has_rt_tasks(struct task_group *tg)
7889 {
7890 struct task_struct *g, *p;
7891 do_each_thread(g, p) {
7892 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
7893 return 1;
7894 } while_each_thread(g, p);
7895 return 0;
7896 }
7897
7898 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7899 {
7900 u64 rt_runtime, rt_period;
7901 int err = 0;
7902
7903 rt_period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
7904 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7905 if (rt_runtime_us == -1)
7906 rt_runtime = RUNTIME_INF;
7907
7908 mutex_lock(&rt_constraints_mutex);
7909 read_lock(&tasklist_lock);
7910 if (rt_runtime_us == 0 && tg_has_rt_tasks(tg)) {
7911 err = -EBUSY;
7912 goto unlock;
7913 }
7914 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
7915 err = -EINVAL;
7916 goto unlock;
7917 }
7918 tg->rt_runtime = rt_runtime;
7919 unlock:
7920 read_unlock(&tasklist_lock);
7921 mutex_unlock(&rt_constraints_mutex);
7922
7923 return err;
7924 }
7925
7926 long sched_group_rt_runtime(struct task_group *tg)
7927 {
7928 u64 rt_runtime_us;
7929
7930 if (tg->rt_runtime == RUNTIME_INF)
7931 return -1;
7932
7933 rt_runtime_us = tg->rt_runtime;
7934 do_div(rt_runtime_us, NSEC_PER_USEC);
7935 return rt_runtime_us;
7936 }
7937 #endif
7938 #endif /* CONFIG_GROUP_SCHED */
7939
7940 #ifdef CONFIG_CGROUP_SCHED
7941
7942 /* return corresponding task_group object of a cgroup */
7943 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7944 {
7945 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7946 struct task_group, css);
7947 }
7948
7949 static struct cgroup_subsys_state *
7950 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7951 {
7952 struct task_group *tg;
7953
7954 if (!cgrp->parent) {
7955 /* This is early initialization for the top cgroup */
7956 init_task_group.css.cgroup = cgrp;
7957 return &init_task_group.css;
7958 }
7959
7960 /* we support only 1-level deep hierarchical scheduler atm */
7961 if (cgrp->parent->parent)
7962 return ERR_PTR(-EINVAL);
7963
7964 tg = sched_create_group();
7965 if (IS_ERR(tg))
7966 return ERR_PTR(-ENOMEM);
7967
7968 /* Bind the cgroup to task_group object we just created */
7969 tg->css.cgroup = cgrp;
7970
7971 return &tg->css;
7972 }
7973
7974 static void
7975 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7976 {
7977 struct task_group *tg = cgroup_tg(cgrp);
7978
7979 sched_destroy_group(tg);
7980 }
7981
7982 static int
7983 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7984 struct task_struct *tsk)
7985 {
7986 #ifdef CONFIG_RT_GROUP_SCHED
7987 /* Don't accept realtime tasks when there is no way for them to run */
7988 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
7989 return -EINVAL;
7990 #else
7991 /* We don't support RT-tasks being in separate groups */
7992 if (tsk->sched_class != &fair_sched_class)
7993 return -EINVAL;
7994 #endif
7995
7996 return 0;
7997 }
7998
7999 static void
8000 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8001 struct cgroup *old_cont, struct task_struct *tsk)
8002 {
8003 sched_move_task(tsk);
8004 }
8005
8006 #ifdef CONFIG_FAIR_GROUP_SCHED
8007 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8008 u64 shareval)
8009 {
8010 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8011 }
8012
8013 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
8014 {
8015 struct task_group *tg = cgroup_tg(cgrp);
8016
8017 return (u64) tg->shares;
8018 }
8019 #endif
8020
8021 #ifdef CONFIG_RT_GROUP_SCHED
8022 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8023 struct file *file,
8024 const char __user *userbuf,
8025 size_t nbytes, loff_t *unused_ppos)
8026 {
8027 char buffer[64];
8028 int retval = 0;
8029 s64 val;
8030 char *end;
8031
8032 if (!nbytes)
8033 return -EINVAL;
8034 if (nbytes >= sizeof(buffer))
8035 return -E2BIG;
8036 if (copy_from_user(buffer, userbuf, nbytes))
8037 return -EFAULT;
8038
8039 buffer[nbytes] = 0; /* nul-terminate */
8040
8041 /* strip newline if necessary */
8042 if (nbytes && (buffer[nbytes-1] == '\n'))
8043 buffer[nbytes-1] = 0;
8044 val = simple_strtoll(buffer, &end, 0);
8045 if (*end)
8046 return -EINVAL;
8047
8048 /* Pass to subsystem */
8049 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8050 if (!retval)
8051 retval = nbytes;
8052 return retval;
8053 }
8054
8055 static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
8056 struct file *file,
8057 char __user *buf, size_t nbytes,
8058 loff_t *ppos)
8059 {
8060 char tmp[64];
8061 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
8062 int len = sprintf(tmp, "%ld\n", val);
8063
8064 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
8065 }
8066 #endif
8067
8068 static struct cftype cpu_files[] = {
8069 #ifdef CONFIG_FAIR_GROUP_SCHED
8070 {
8071 .name = "shares",
8072 .read_uint = cpu_shares_read_uint,
8073 .write_uint = cpu_shares_write_uint,
8074 },
8075 #endif
8076 #ifdef CONFIG_RT_GROUP_SCHED
8077 {
8078 .name = "rt_runtime_us",
8079 .read = cpu_rt_runtime_read,
8080 .write = cpu_rt_runtime_write,
8081 },
8082 #endif
8083 };
8084
8085 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8086 {
8087 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8088 }
8089
8090 struct cgroup_subsys cpu_cgroup_subsys = {
8091 .name = "cpu",
8092 .create = cpu_cgroup_create,
8093 .destroy = cpu_cgroup_destroy,
8094 .can_attach = cpu_cgroup_can_attach,
8095 .attach = cpu_cgroup_attach,
8096 .populate = cpu_cgroup_populate,
8097 .subsys_id = cpu_cgroup_subsys_id,
8098 .early_init = 1,
8099 };
8100
8101 #endif /* CONFIG_CGROUP_SCHED */
8102
8103 #ifdef CONFIG_CGROUP_CPUACCT
8104
8105 /*
8106 * CPU accounting code for task groups.
8107 *
8108 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8109 * (balbir@in.ibm.com).
8110 */
8111
8112 /* track cpu usage of a group of tasks */
8113 struct cpuacct {
8114 struct cgroup_subsys_state css;
8115 /* cpuusage holds pointer to a u64-type object on every cpu */
8116 u64 *cpuusage;
8117 };
8118
8119 struct cgroup_subsys cpuacct_subsys;
8120
8121 /* return cpu accounting group corresponding to this container */
8122 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
8123 {
8124 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
8125 struct cpuacct, css);
8126 }
8127
8128 /* return cpu accounting group to which this task belongs */
8129 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8130 {
8131 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8132 struct cpuacct, css);
8133 }
8134
8135 /* create a new cpu accounting group */
8136 static struct cgroup_subsys_state *cpuacct_create(
8137 struct cgroup_subsys *ss, struct cgroup *cont)
8138 {
8139 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8140
8141 if (!ca)
8142 return ERR_PTR(-ENOMEM);
8143
8144 ca->cpuusage = alloc_percpu(u64);
8145 if (!ca->cpuusage) {
8146 kfree(ca);
8147 return ERR_PTR(-ENOMEM);
8148 }
8149
8150 return &ca->css;
8151 }
8152
8153 /* destroy an existing cpu accounting group */
8154 static void
8155 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
8156 {
8157 struct cpuacct *ca = cgroup_ca(cont);
8158
8159 free_percpu(ca->cpuusage);
8160 kfree(ca);
8161 }
8162
8163 /* return total cpu usage (in nanoseconds) of a group */
8164 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
8165 {
8166 struct cpuacct *ca = cgroup_ca(cont);
8167 u64 totalcpuusage = 0;
8168 int i;
8169
8170 for_each_possible_cpu(i) {
8171 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8172
8173 /*
8174 * Take rq->lock to make 64-bit addition safe on 32-bit
8175 * platforms.
8176 */
8177 spin_lock_irq(&cpu_rq(i)->lock);
8178 totalcpuusage += *cpuusage;
8179 spin_unlock_irq(&cpu_rq(i)->lock);
8180 }
8181
8182 return totalcpuusage;
8183 }
8184
8185 static struct cftype files[] = {
8186 {
8187 .name = "usage",
8188 .read_uint = cpuusage_read,
8189 },
8190 };
8191
8192 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8193 {
8194 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
8195 }
8196
8197 /*
8198 * charge this task's execution time to its accounting group.
8199 *
8200 * called with rq->lock held.
8201 */
8202 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8203 {
8204 struct cpuacct *ca;
8205
8206 if (!cpuacct_subsys.active)
8207 return;
8208
8209 ca = task_ca(tsk);
8210 if (ca) {
8211 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8212
8213 *cpuusage += cputime;
8214 }
8215 }
8216
8217 struct cgroup_subsys cpuacct_subsys = {
8218 .name = "cpuacct",
8219 .create = cpuacct_create,
8220 .destroy = cpuacct_destroy,
8221 .populate = cpuacct_populate,
8222 .subsys_id = cpuacct_subsys_id,
8223 };
8224 #endif /* CONFIG_CGROUP_CPUACCT */