]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched.c
sched: Document wait_for_completion_*() return values
[mirror_ubuntu-zesty-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77 #include <asm/mutex.h>
78 #ifdef CONFIG_PARAVIRT
79 #include <asm/paravirt.h>
80 #endif
81
82 #include "sched_cpupri.h"
83 #include "workqueue_sched.h"
84 #include "sched_autogroup.h"
85
86 #define CREATE_TRACE_POINTS
87 #include <trace/events/sched.h>
88
89 /*
90 * Convert user-nice values [ -20 ... 0 ... 19 ]
91 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
92 * and back.
93 */
94 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
95 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
96 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
97
98 /*
99 * 'User priority' is the nice value converted to something we
100 * can work with better when scaling various scheduler parameters,
101 * it's a [ 0 ... 39 ] range.
102 */
103 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
104 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
105 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
106
107 /*
108 * Helpers for converting nanosecond timing to jiffy resolution
109 */
110 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
111
112 #define NICE_0_LOAD SCHED_LOAD_SCALE
113 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
114
115 /*
116 * These are the 'tuning knobs' of the scheduler:
117 *
118 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
119 * Timeslices get refilled after they expire.
120 */
121 #define DEF_TIMESLICE (100 * HZ / 1000)
122
123 /*
124 * single value that denotes runtime == period, ie unlimited time.
125 */
126 #define RUNTIME_INF ((u64)~0ULL)
127
128 static inline int rt_policy(int policy)
129 {
130 if (policy == SCHED_FIFO || policy == SCHED_RR)
131 return 1;
132 return 0;
133 }
134
135 static inline int task_has_rt_policy(struct task_struct *p)
136 {
137 return rt_policy(p->policy);
138 }
139
140 /*
141 * This is the priority-queue data structure of the RT scheduling class:
142 */
143 struct rt_prio_array {
144 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
145 struct list_head queue[MAX_RT_PRIO];
146 };
147
148 struct rt_bandwidth {
149 /* nests inside the rq lock: */
150 raw_spinlock_t rt_runtime_lock;
151 ktime_t rt_period;
152 u64 rt_runtime;
153 struct hrtimer rt_period_timer;
154 };
155
156 static struct rt_bandwidth def_rt_bandwidth;
157
158 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
159
160 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
161 {
162 struct rt_bandwidth *rt_b =
163 container_of(timer, struct rt_bandwidth, rt_period_timer);
164 ktime_t now;
165 int overrun;
166 int idle = 0;
167
168 for (;;) {
169 now = hrtimer_cb_get_time(timer);
170 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
171
172 if (!overrun)
173 break;
174
175 idle = do_sched_rt_period_timer(rt_b, overrun);
176 }
177
178 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
179 }
180
181 static
182 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
183 {
184 rt_b->rt_period = ns_to_ktime(period);
185 rt_b->rt_runtime = runtime;
186
187 raw_spin_lock_init(&rt_b->rt_runtime_lock);
188
189 hrtimer_init(&rt_b->rt_period_timer,
190 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
191 rt_b->rt_period_timer.function = sched_rt_period_timer;
192 }
193
194 static inline int rt_bandwidth_enabled(void)
195 {
196 return sysctl_sched_rt_runtime >= 0;
197 }
198
199 static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
200 {
201 unsigned long delta;
202 ktime_t soft, hard, now;
203
204 for (;;) {
205 if (hrtimer_active(period_timer))
206 break;
207
208 now = hrtimer_cb_get_time(period_timer);
209 hrtimer_forward(period_timer, now, period);
210
211 soft = hrtimer_get_softexpires(period_timer);
212 hard = hrtimer_get_expires(period_timer);
213 delta = ktime_to_ns(ktime_sub(hard, soft));
214 __hrtimer_start_range_ns(period_timer, soft, delta,
215 HRTIMER_MODE_ABS_PINNED, 0);
216 }
217 }
218
219 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
220 {
221 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
222 return;
223
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 return;
226
227 raw_spin_lock(&rt_b->rt_runtime_lock);
228 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
229 raw_spin_unlock(&rt_b->rt_runtime_lock);
230 }
231
232 #ifdef CONFIG_RT_GROUP_SCHED
233 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
234 {
235 hrtimer_cancel(&rt_b->rt_period_timer);
236 }
237 #endif
238
239 /*
240 * sched_domains_mutex serializes calls to init_sched_domains,
241 * detach_destroy_domains and partition_sched_domains.
242 */
243 static DEFINE_MUTEX(sched_domains_mutex);
244
245 #ifdef CONFIG_CGROUP_SCHED
246
247 #include <linux/cgroup.h>
248
249 struct cfs_rq;
250
251 static LIST_HEAD(task_groups);
252
253 struct cfs_bandwidth {
254 #ifdef CONFIG_CFS_BANDWIDTH
255 raw_spinlock_t lock;
256 ktime_t period;
257 u64 quota, runtime;
258 s64 hierarchal_quota;
259 u64 runtime_expires;
260
261 int idle, timer_active;
262 struct hrtimer period_timer, slack_timer;
263 struct list_head throttled_cfs_rq;
264
265 /* statistics */
266 int nr_periods, nr_throttled;
267 u64 throttled_time;
268 #endif
269 };
270
271 /* task group related information */
272 struct task_group {
273 struct cgroup_subsys_state css;
274
275 #ifdef CONFIG_FAIR_GROUP_SCHED
276 /* schedulable entities of this group on each cpu */
277 struct sched_entity **se;
278 /* runqueue "owned" by this group on each cpu */
279 struct cfs_rq **cfs_rq;
280 unsigned long shares;
281
282 atomic_t load_weight;
283 #endif
284
285 #ifdef CONFIG_RT_GROUP_SCHED
286 struct sched_rt_entity **rt_se;
287 struct rt_rq **rt_rq;
288
289 struct rt_bandwidth rt_bandwidth;
290 #endif
291
292 struct rcu_head rcu;
293 struct list_head list;
294
295 struct task_group *parent;
296 struct list_head siblings;
297 struct list_head children;
298
299 #ifdef CONFIG_SCHED_AUTOGROUP
300 struct autogroup *autogroup;
301 #endif
302
303 struct cfs_bandwidth cfs_bandwidth;
304 };
305
306 /* task_group_lock serializes the addition/removal of task groups */
307 static DEFINE_SPINLOCK(task_group_lock);
308
309 #ifdef CONFIG_FAIR_GROUP_SCHED
310
311 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
312
313 /*
314 * A weight of 0 or 1 can cause arithmetics problems.
315 * A weight of a cfs_rq is the sum of weights of which entities
316 * are queued on this cfs_rq, so a weight of a entity should not be
317 * too large, so as the shares value of a task group.
318 * (The default weight is 1024 - so there's no practical
319 * limitation from this.)
320 */
321 #define MIN_SHARES (1UL << 1)
322 #define MAX_SHARES (1UL << 18)
323
324 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
325 #endif
326
327 /* Default task group.
328 * Every task in system belong to this group at bootup.
329 */
330 struct task_group root_task_group;
331
332 #endif /* CONFIG_CGROUP_SCHED */
333
334 /* CFS-related fields in a runqueue */
335 struct cfs_rq {
336 struct load_weight load;
337 unsigned long nr_running, h_nr_running;
338
339 u64 exec_clock;
340 u64 min_vruntime;
341 #ifndef CONFIG_64BIT
342 u64 min_vruntime_copy;
343 #endif
344
345 struct rb_root tasks_timeline;
346 struct rb_node *rb_leftmost;
347
348 struct list_head tasks;
349 struct list_head *balance_iterator;
350
351 /*
352 * 'curr' points to currently running entity on this cfs_rq.
353 * It is set to NULL otherwise (i.e when none are currently running).
354 */
355 struct sched_entity *curr, *next, *last, *skip;
356
357 #ifdef CONFIG_SCHED_DEBUG
358 unsigned int nr_spread_over;
359 #endif
360
361 #ifdef CONFIG_FAIR_GROUP_SCHED
362 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
363
364 /*
365 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
366 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
367 * (like users, containers etc.)
368 *
369 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
370 * list is used during load balance.
371 */
372 int on_list;
373 struct list_head leaf_cfs_rq_list;
374 struct task_group *tg; /* group that "owns" this runqueue */
375
376 #ifdef CONFIG_SMP
377 /*
378 * the part of load.weight contributed by tasks
379 */
380 unsigned long task_weight;
381
382 /*
383 * h_load = weight * f(tg)
384 *
385 * Where f(tg) is the recursive weight fraction assigned to
386 * this group.
387 */
388 unsigned long h_load;
389
390 /*
391 * Maintaining per-cpu shares distribution for group scheduling
392 *
393 * load_stamp is the last time we updated the load average
394 * load_last is the last time we updated the load average and saw load
395 * load_unacc_exec_time is currently unaccounted execution time
396 */
397 u64 load_avg;
398 u64 load_period;
399 u64 load_stamp, load_last, load_unacc_exec_time;
400
401 unsigned long load_contribution;
402 #endif
403 #ifdef CONFIG_CFS_BANDWIDTH
404 int runtime_enabled;
405 u64 runtime_expires;
406 s64 runtime_remaining;
407
408 u64 throttled_timestamp;
409 int throttled, throttle_count;
410 struct list_head throttled_list;
411 #endif
412 #endif
413 };
414
415 #ifdef CONFIG_FAIR_GROUP_SCHED
416 #ifdef CONFIG_CFS_BANDWIDTH
417 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
418 {
419 return &tg->cfs_bandwidth;
420 }
421
422 static inline u64 default_cfs_period(void);
423 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
424 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
425
426 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
427 {
428 struct cfs_bandwidth *cfs_b =
429 container_of(timer, struct cfs_bandwidth, slack_timer);
430 do_sched_cfs_slack_timer(cfs_b);
431
432 return HRTIMER_NORESTART;
433 }
434
435 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
436 {
437 struct cfs_bandwidth *cfs_b =
438 container_of(timer, struct cfs_bandwidth, period_timer);
439 ktime_t now;
440 int overrun;
441 int idle = 0;
442
443 for (;;) {
444 now = hrtimer_cb_get_time(timer);
445 overrun = hrtimer_forward(timer, now, cfs_b->period);
446
447 if (!overrun)
448 break;
449
450 idle = do_sched_cfs_period_timer(cfs_b, overrun);
451 }
452
453 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
454 }
455
456 static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
457 {
458 raw_spin_lock_init(&cfs_b->lock);
459 cfs_b->runtime = 0;
460 cfs_b->quota = RUNTIME_INF;
461 cfs_b->period = ns_to_ktime(default_cfs_period());
462
463 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
464 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
465 cfs_b->period_timer.function = sched_cfs_period_timer;
466 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
467 cfs_b->slack_timer.function = sched_cfs_slack_timer;
468 }
469
470 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
471 {
472 cfs_rq->runtime_enabled = 0;
473 INIT_LIST_HEAD(&cfs_rq->throttled_list);
474 }
475
476 /* requires cfs_b->lock, may release to reprogram timer */
477 static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
478 {
479 /*
480 * The timer may be active because we're trying to set a new bandwidth
481 * period or because we're racing with the tear-down path
482 * (timer_active==0 becomes visible before the hrtimer call-back
483 * terminates). In either case we ensure that it's re-programmed
484 */
485 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
486 raw_spin_unlock(&cfs_b->lock);
487 /* ensure cfs_b->lock is available while we wait */
488 hrtimer_cancel(&cfs_b->period_timer);
489
490 raw_spin_lock(&cfs_b->lock);
491 /* if someone else restarted the timer then we're done */
492 if (cfs_b->timer_active)
493 return;
494 }
495
496 cfs_b->timer_active = 1;
497 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
498 }
499
500 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
501 {
502 hrtimer_cancel(&cfs_b->period_timer);
503 hrtimer_cancel(&cfs_b->slack_timer);
504 }
505 #else
506 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
507 static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
508 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
509
510 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
511 {
512 return NULL;
513 }
514 #endif /* CONFIG_CFS_BANDWIDTH */
515 #endif /* CONFIG_FAIR_GROUP_SCHED */
516
517 /* Real-Time classes' related field in a runqueue: */
518 struct rt_rq {
519 struct rt_prio_array active;
520 unsigned long rt_nr_running;
521 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
522 struct {
523 int curr; /* highest queued rt task prio */
524 #ifdef CONFIG_SMP
525 int next; /* next highest */
526 #endif
527 } highest_prio;
528 #endif
529 #ifdef CONFIG_SMP
530 unsigned long rt_nr_migratory;
531 unsigned long rt_nr_total;
532 int overloaded;
533 struct plist_head pushable_tasks;
534 #endif
535 int rt_throttled;
536 u64 rt_time;
537 u64 rt_runtime;
538 /* Nests inside the rq lock: */
539 raw_spinlock_t rt_runtime_lock;
540
541 #ifdef CONFIG_RT_GROUP_SCHED
542 unsigned long rt_nr_boosted;
543
544 struct rq *rq;
545 struct list_head leaf_rt_rq_list;
546 struct task_group *tg;
547 #endif
548 };
549
550 #ifdef CONFIG_SMP
551
552 /*
553 * We add the notion of a root-domain which will be used to define per-domain
554 * variables. Each exclusive cpuset essentially defines an island domain by
555 * fully partitioning the member cpus from any other cpuset. Whenever a new
556 * exclusive cpuset is created, we also create and attach a new root-domain
557 * object.
558 *
559 */
560 struct root_domain {
561 atomic_t refcount;
562 atomic_t rto_count;
563 struct rcu_head rcu;
564 cpumask_var_t span;
565 cpumask_var_t online;
566
567 /*
568 * The "RT overload" flag: it gets set if a CPU has more than
569 * one runnable RT task.
570 */
571 cpumask_var_t rto_mask;
572 struct cpupri cpupri;
573 };
574
575 /*
576 * By default the system creates a single root-domain with all cpus as
577 * members (mimicking the global state we have today).
578 */
579 static struct root_domain def_root_domain;
580
581 #endif /* CONFIG_SMP */
582
583 /*
584 * This is the main, per-CPU runqueue data structure.
585 *
586 * Locking rule: those places that want to lock multiple runqueues
587 * (such as the load balancing or the thread migration code), lock
588 * acquire operations must be ordered by ascending &runqueue.
589 */
590 struct rq {
591 /* runqueue lock: */
592 raw_spinlock_t lock;
593
594 /*
595 * nr_running and cpu_load should be in the same cacheline because
596 * remote CPUs use both these fields when doing load calculation.
597 */
598 unsigned long nr_running;
599 #define CPU_LOAD_IDX_MAX 5
600 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
601 unsigned long last_load_update_tick;
602 #ifdef CONFIG_NO_HZ
603 u64 nohz_stamp;
604 unsigned char nohz_balance_kick;
605 #endif
606 int skip_clock_update;
607
608 /* capture load from *all* tasks on this cpu: */
609 struct load_weight load;
610 unsigned long nr_load_updates;
611 u64 nr_switches;
612
613 struct cfs_rq cfs;
614 struct rt_rq rt;
615
616 #ifdef CONFIG_FAIR_GROUP_SCHED
617 /* list of leaf cfs_rq on this cpu: */
618 struct list_head leaf_cfs_rq_list;
619 #endif
620 #ifdef CONFIG_RT_GROUP_SCHED
621 struct list_head leaf_rt_rq_list;
622 #endif
623
624 /*
625 * This is part of a global counter where only the total sum
626 * over all CPUs matters. A task can increase this counter on
627 * one CPU and if it got migrated afterwards it may decrease
628 * it on another CPU. Always updated under the runqueue lock:
629 */
630 unsigned long nr_uninterruptible;
631
632 struct task_struct *curr, *idle, *stop;
633 unsigned long next_balance;
634 struct mm_struct *prev_mm;
635
636 u64 clock;
637 u64 clock_task;
638
639 atomic_t nr_iowait;
640
641 #ifdef CONFIG_SMP
642 struct root_domain *rd;
643 struct sched_domain *sd;
644
645 unsigned long cpu_power;
646
647 unsigned char idle_balance;
648 /* For active balancing */
649 int post_schedule;
650 int active_balance;
651 int push_cpu;
652 struct cpu_stop_work active_balance_work;
653 /* cpu of this runqueue: */
654 int cpu;
655 int online;
656
657 u64 rt_avg;
658 u64 age_stamp;
659 u64 idle_stamp;
660 u64 avg_idle;
661 #endif
662
663 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
664 u64 prev_irq_time;
665 #endif
666 #ifdef CONFIG_PARAVIRT
667 u64 prev_steal_time;
668 #endif
669 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
670 u64 prev_steal_time_rq;
671 #endif
672
673 /* calc_load related fields */
674 unsigned long calc_load_update;
675 long calc_load_active;
676
677 #ifdef CONFIG_SCHED_HRTICK
678 #ifdef CONFIG_SMP
679 int hrtick_csd_pending;
680 struct call_single_data hrtick_csd;
681 #endif
682 struct hrtimer hrtick_timer;
683 #endif
684
685 #ifdef CONFIG_SCHEDSTATS
686 /* latency stats */
687 struct sched_info rq_sched_info;
688 unsigned long long rq_cpu_time;
689 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
690
691 /* sys_sched_yield() stats */
692 unsigned int yld_count;
693
694 /* schedule() stats */
695 unsigned int sched_switch;
696 unsigned int sched_count;
697 unsigned int sched_goidle;
698
699 /* try_to_wake_up() stats */
700 unsigned int ttwu_count;
701 unsigned int ttwu_local;
702 #endif
703
704 #ifdef CONFIG_SMP
705 struct llist_head wake_list;
706 #endif
707 };
708
709 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
710
711
712 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
713
714 static inline int cpu_of(struct rq *rq)
715 {
716 #ifdef CONFIG_SMP
717 return rq->cpu;
718 #else
719 return 0;
720 #endif
721 }
722
723 #define rcu_dereference_check_sched_domain(p) \
724 rcu_dereference_check((p), \
725 lockdep_is_held(&sched_domains_mutex))
726
727 /*
728 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
729 * See detach_destroy_domains: synchronize_sched for details.
730 *
731 * The domain tree of any CPU may only be accessed from within
732 * preempt-disabled sections.
733 */
734 #define for_each_domain(cpu, __sd) \
735 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
736
737 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
738 #define this_rq() (&__get_cpu_var(runqueues))
739 #define task_rq(p) cpu_rq(task_cpu(p))
740 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
741 #define raw_rq() (&__raw_get_cpu_var(runqueues))
742
743 #ifdef CONFIG_CGROUP_SCHED
744
745 /*
746 * Return the group to which this tasks belongs.
747 *
748 * We use task_subsys_state_check() and extend the RCU verification with
749 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
750 * task it moves into the cgroup. Therefore by holding either of those locks,
751 * we pin the task to the current cgroup.
752 */
753 static inline struct task_group *task_group(struct task_struct *p)
754 {
755 struct task_group *tg;
756 struct cgroup_subsys_state *css;
757
758 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
759 lockdep_is_held(&p->pi_lock) ||
760 lockdep_is_held(&task_rq(p)->lock));
761 tg = container_of(css, struct task_group, css);
762
763 return autogroup_task_group(p, tg);
764 }
765
766 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
767 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
768 {
769 #ifdef CONFIG_FAIR_GROUP_SCHED
770 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
771 p->se.parent = task_group(p)->se[cpu];
772 #endif
773
774 #ifdef CONFIG_RT_GROUP_SCHED
775 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
776 p->rt.parent = task_group(p)->rt_se[cpu];
777 #endif
778 }
779
780 #else /* CONFIG_CGROUP_SCHED */
781
782 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
783 static inline struct task_group *task_group(struct task_struct *p)
784 {
785 return NULL;
786 }
787
788 #endif /* CONFIG_CGROUP_SCHED */
789
790 static void update_rq_clock_task(struct rq *rq, s64 delta);
791
792 static void update_rq_clock(struct rq *rq)
793 {
794 s64 delta;
795
796 if (rq->skip_clock_update > 0)
797 return;
798
799 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
800 rq->clock += delta;
801 update_rq_clock_task(rq, delta);
802 }
803
804 /*
805 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
806 */
807 #ifdef CONFIG_SCHED_DEBUG
808 # define const_debug __read_mostly
809 #else
810 # define const_debug static const
811 #endif
812
813 /**
814 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
815 * @cpu: the processor in question.
816 *
817 * This interface allows printk to be called with the runqueue lock
818 * held and know whether or not it is OK to wake up the klogd.
819 */
820 int runqueue_is_locked(int cpu)
821 {
822 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
823 }
824
825 /*
826 * Debugging: various feature bits
827 */
828
829 #define SCHED_FEAT(name, enabled) \
830 __SCHED_FEAT_##name ,
831
832 enum {
833 #include "sched_features.h"
834 };
835
836 #undef SCHED_FEAT
837
838 #define SCHED_FEAT(name, enabled) \
839 (1UL << __SCHED_FEAT_##name) * enabled |
840
841 const_debug unsigned int sysctl_sched_features =
842 #include "sched_features.h"
843 0;
844
845 #undef SCHED_FEAT
846
847 #ifdef CONFIG_SCHED_DEBUG
848 #define SCHED_FEAT(name, enabled) \
849 #name ,
850
851 static __read_mostly char *sched_feat_names[] = {
852 #include "sched_features.h"
853 NULL
854 };
855
856 #undef SCHED_FEAT
857
858 static int sched_feat_show(struct seq_file *m, void *v)
859 {
860 int i;
861
862 for (i = 0; sched_feat_names[i]; i++) {
863 if (!(sysctl_sched_features & (1UL << i)))
864 seq_puts(m, "NO_");
865 seq_printf(m, "%s ", sched_feat_names[i]);
866 }
867 seq_puts(m, "\n");
868
869 return 0;
870 }
871
872 static ssize_t
873 sched_feat_write(struct file *filp, const char __user *ubuf,
874 size_t cnt, loff_t *ppos)
875 {
876 char buf[64];
877 char *cmp;
878 int neg = 0;
879 int i;
880
881 if (cnt > 63)
882 cnt = 63;
883
884 if (copy_from_user(&buf, ubuf, cnt))
885 return -EFAULT;
886
887 buf[cnt] = 0;
888 cmp = strstrip(buf);
889
890 if (strncmp(cmp, "NO_", 3) == 0) {
891 neg = 1;
892 cmp += 3;
893 }
894
895 for (i = 0; sched_feat_names[i]; i++) {
896 if (strcmp(cmp, sched_feat_names[i]) == 0) {
897 if (neg)
898 sysctl_sched_features &= ~(1UL << i);
899 else
900 sysctl_sched_features |= (1UL << i);
901 break;
902 }
903 }
904
905 if (!sched_feat_names[i])
906 return -EINVAL;
907
908 *ppos += cnt;
909
910 return cnt;
911 }
912
913 static int sched_feat_open(struct inode *inode, struct file *filp)
914 {
915 return single_open(filp, sched_feat_show, NULL);
916 }
917
918 static const struct file_operations sched_feat_fops = {
919 .open = sched_feat_open,
920 .write = sched_feat_write,
921 .read = seq_read,
922 .llseek = seq_lseek,
923 .release = single_release,
924 };
925
926 static __init int sched_init_debug(void)
927 {
928 debugfs_create_file("sched_features", 0644, NULL, NULL,
929 &sched_feat_fops);
930
931 return 0;
932 }
933 late_initcall(sched_init_debug);
934
935 #endif
936
937 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
938
939 /*
940 * Number of tasks to iterate in a single balance run.
941 * Limited because this is done with IRQs disabled.
942 */
943 const_debug unsigned int sysctl_sched_nr_migrate = 32;
944
945 /*
946 * period over which we average the RT time consumption, measured
947 * in ms.
948 *
949 * default: 1s
950 */
951 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
952
953 /*
954 * period over which we measure -rt task cpu usage in us.
955 * default: 1s
956 */
957 unsigned int sysctl_sched_rt_period = 1000000;
958
959 static __read_mostly int scheduler_running;
960
961 /*
962 * part of the period that we allow rt tasks to run in us.
963 * default: 0.95s
964 */
965 int sysctl_sched_rt_runtime = 950000;
966
967 static inline u64 global_rt_period(void)
968 {
969 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
970 }
971
972 static inline u64 global_rt_runtime(void)
973 {
974 if (sysctl_sched_rt_runtime < 0)
975 return RUNTIME_INF;
976
977 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
978 }
979
980 #ifndef prepare_arch_switch
981 # define prepare_arch_switch(next) do { } while (0)
982 #endif
983 #ifndef finish_arch_switch
984 # define finish_arch_switch(prev) do { } while (0)
985 #endif
986
987 static inline int task_current(struct rq *rq, struct task_struct *p)
988 {
989 return rq->curr == p;
990 }
991
992 static inline int task_running(struct rq *rq, struct task_struct *p)
993 {
994 #ifdef CONFIG_SMP
995 return p->on_cpu;
996 #else
997 return task_current(rq, p);
998 #endif
999 }
1000
1001 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1002 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1003 {
1004 #ifdef CONFIG_SMP
1005 /*
1006 * We can optimise this out completely for !SMP, because the
1007 * SMP rebalancing from interrupt is the only thing that cares
1008 * here.
1009 */
1010 next->on_cpu = 1;
1011 #endif
1012 }
1013
1014 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1015 {
1016 #ifdef CONFIG_SMP
1017 /*
1018 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1019 * We must ensure this doesn't happen until the switch is completely
1020 * finished.
1021 */
1022 smp_wmb();
1023 prev->on_cpu = 0;
1024 #endif
1025 #ifdef CONFIG_DEBUG_SPINLOCK
1026 /* this is a valid case when another task releases the spinlock */
1027 rq->lock.owner = current;
1028 #endif
1029 /*
1030 * If we are tracking spinlock dependencies then we have to
1031 * fix up the runqueue lock - which gets 'carried over' from
1032 * prev into current:
1033 */
1034 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1035
1036 raw_spin_unlock_irq(&rq->lock);
1037 }
1038
1039 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1040 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1041 {
1042 #ifdef CONFIG_SMP
1043 /*
1044 * We can optimise this out completely for !SMP, because the
1045 * SMP rebalancing from interrupt is the only thing that cares
1046 * here.
1047 */
1048 next->on_cpu = 1;
1049 #endif
1050 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1051 raw_spin_unlock_irq(&rq->lock);
1052 #else
1053 raw_spin_unlock(&rq->lock);
1054 #endif
1055 }
1056
1057 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1058 {
1059 #ifdef CONFIG_SMP
1060 /*
1061 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1062 * We must ensure this doesn't happen until the switch is completely
1063 * finished.
1064 */
1065 smp_wmb();
1066 prev->on_cpu = 0;
1067 #endif
1068 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1069 local_irq_enable();
1070 #endif
1071 }
1072 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1073
1074 /*
1075 * __task_rq_lock - lock the rq @p resides on.
1076 */
1077 static inline struct rq *__task_rq_lock(struct task_struct *p)
1078 __acquires(rq->lock)
1079 {
1080 struct rq *rq;
1081
1082 lockdep_assert_held(&p->pi_lock);
1083
1084 for (;;) {
1085 rq = task_rq(p);
1086 raw_spin_lock(&rq->lock);
1087 if (likely(rq == task_rq(p)))
1088 return rq;
1089 raw_spin_unlock(&rq->lock);
1090 }
1091 }
1092
1093 /*
1094 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1095 */
1096 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1097 __acquires(p->pi_lock)
1098 __acquires(rq->lock)
1099 {
1100 struct rq *rq;
1101
1102 for (;;) {
1103 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1104 rq = task_rq(p);
1105 raw_spin_lock(&rq->lock);
1106 if (likely(rq == task_rq(p)))
1107 return rq;
1108 raw_spin_unlock(&rq->lock);
1109 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1110 }
1111 }
1112
1113 static void __task_rq_unlock(struct rq *rq)
1114 __releases(rq->lock)
1115 {
1116 raw_spin_unlock(&rq->lock);
1117 }
1118
1119 static inline void
1120 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1121 __releases(rq->lock)
1122 __releases(p->pi_lock)
1123 {
1124 raw_spin_unlock(&rq->lock);
1125 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1126 }
1127
1128 /*
1129 * this_rq_lock - lock this runqueue and disable interrupts.
1130 */
1131 static struct rq *this_rq_lock(void)
1132 __acquires(rq->lock)
1133 {
1134 struct rq *rq;
1135
1136 local_irq_disable();
1137 rq = this_rq();
1138 raw_spin_lock(&rq->lock);
1139
1140 return rq;
1141 }
1142
1143 #ifdef CONFIG_SCHED_HRTICK
1144 /*
1145 * Use HR-timers to deliver accurate preemption points.
1146 *
1147 * Its all a bit involved since we cannot program an hrt while holding the
1148 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1149 * reschedule event.
1150 *
1151 * When we get rescheduled we reprogram the hrtick_timer outside of the
1152 * rq->lock.
1153 */
1154
1155 /*
1156 * Use hrtick when:
1157 * - enabled by features
1158 * - hrtimer is actually high res
1159 */
1160 static inline int hrtick_enabled(struct rq *rq)
1161 {
1162 if (!sched_feat(HRTICK))
1163 return 0;
1164 if (!cpu_active(cpu_of(rq)))
1165 return 0;
1166 return hrtimer_is_hres_active(&rq->hrtick_timer);
1167 }
1168
1169 static void hrtick_clear(struct rq *rq)
1170 {
1171 if (hrtimer_active(&rq->hrtick_timer))
1172 hrtimer_cancel(&rq->hrtick_timer);
1173 }
1174
1175 /*
1176 * High-resolution timer tick.
1177 * Runs from hardirq context with interrupts disabled.
1178 */
1179 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1180 {
1181 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1182
1183 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1184
1185 raw_spin_lock(&rq->lock);
1186 update_rq_clock(rq);
1187 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1188 raw_spin_unlock(&rq->lock);
1189
1190 return HRTIMER_NORESTART;
1191 }
1192
1193 #ifdef CONFIG_SMP
1194 /*
1195 * called from hardirq (IPI) context
1196 */
1197 static void __hrtick_start(void *arg)
1198 {
1199 struct rq *rq = arg;
1200
1201 raw_spin_lock(&rq->lock);
1202 hrtimer_restart(&rq->hrtick_timer);
1203 rq->hrtick_csd_pending = 0;
1204 raw_spin_unlock(&rq->lock);
1205 }
1206
1207 /*
1208 * Called to set the hrtick timer state.
1209 *
1210 * called with rq->lock held and irqs disabled
1211 */
1212 static void hrtick_start(struct rq *rq, u64 delay)
1213 {
1214 struct hrtimer *timer = &rq->hrtick_timer;
1215 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1216
1217 hrtimer_set_expires(timer, time);
1218
1219 if (rq == this_rq()) {
1220 hrtimer_restart(timer);
1221 } else if (!rq->hrtick_csd_pending) {
1222 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1223 rq->hrtick_csd_pending = 1;
1224 }
1225 }
1226
1227 static int
1228 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1229 {
1230 int cpu = (int)(long)hcpu;
1231
1232 switch (action) {
1233 case CPU_UP_CANCELED:
1234 case CPU_UP_CANCELED_FROZEN:
1235 case CPU_DOWN_PREPARE:
1236 case CPU_DOWN_PREPARE_FROZEN:
1237 case CPU_DEAD:
1238 case CPU_DEAD_FROZEN:
1239 hrtick_clear(cpu_rq(cpu));
1240 return NOTIFY_OK;
1241 }
1242
1243 return NOTIFY_DONE;
1244 }
1245
1246 static __init void init_hrtick(void)
1247 {
1248 hotcpu_notifier(hotplug_hrtick, 0);
1249 }
1250 #else
1251 /*
1252 * Called to set the hrtick timer state.
1253 *
1254 * called with rq->lock held and irqs disabled
1255 */
1256 static void hrtick_start(struct rq *rq, u64 delay)
1257 {
1258 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1259 HRTIMER_MODE_REL_PINNED, 0);
1260 }
1261
1262 static inline void init_hrtick(void)
1263 {
1264 }
1265 #endif /* CONFIG_SMP */
1266
1267 static void init_rq_hrtick(struct rq *rq)
1268 {
1269 #ifdef CONFIG_SMP
1270 rq->hrtick_csd_pending = 0;
1271
1272 rq->hrtick_csd.flags = 0;
1273 rq->hrtick_csd.func = __hrtick_start;
1274 rq->hrtick_csd.info = rq;
1275 #endif
1276
1277 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1278 rq->hrtick_timer.function = hrtick;
1279 }
1280 #else /* CONFIG_SCHED_HRTICK */
1281 static inline void hrtick_clear(struct rq *rq)
1282 {
1283 }
1284
1285 static inline void init_rq_hrtick(struct rq *rq)
1286 {
1287 }
1288
1289 static inline void init_hrtick(void)
1290 {
1291 }
1292 #endif /* CONFIG_SCHED_HRTICK */
1293
1294 /*
1295 * resched_task - mark a task 'to be rescheduled now'.
1296 *
1297 * On UP this means the setting of the need_resched flag, on SMP it
1298 * might also involve a cross-CPU call to trigger the scheduler on
1299 * the target CPU.
1300 */
1301 #ifdef CONFIG_SMP
1302
1303 #ifndef tsk_is_polling
1304 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1305 #endif
1306
1307 static void resched_task(struct task_struct *p)
1308 {
1309 int cpu;
1310
1311 assert_raw_spin_locked(&task_rq(p)->lock);
1312
1313 if (test_tsk_need_resched(p))
1314 return;
1315
1316 set_tsk_need_resched(p);
1317
1318 cpu = task_cpu(p);
1319 if (cpu == smp_processor_id())
1320 return;
1321
1322 /* NEED_RESCHED must be visible before we test polling */
1323 smp_mb();
1324 if (!tsk_is_polling(p))
1325 smp_send_reschedule(cpu);
1326 }
1327
1328 static void resched_cpu(int cpu)
1329 {
1330 struct rq *rq = cpu_rq(cpu);
1331 unsigned long flags;
1332
1333 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1334 return;
1335 resched_task(cpu_curr(cpu));
1336 raw_spin_unlock_irqrestore(&rq->lock, flags);
1337 }
1338
1339 #ifdef CONFIG_NO_HZ
1340 /*
1341 * In the semi idle case, use the nearest busy cpu for migrating timers
1342 * from an idle cpu. This is good for power-savings.
1343 *
1344 * We don't do similar optimization for completely idle system, as
1345 * selecting an idle cpu will add more delays to the timers than intended
1346 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1347 */
1348 int get_nohz_timer_target(void)
1349 {
1350 int cpu = smp_processor_id();
1351 int i;
1352 struct sched_domain *sd;
1353
1354 rcu_read_lock();
1355 for_each_domain(cpu, sd) {
1356 for_each_cpu(i, sched_domain_span(sd)) {
1357 if (!idle_cpu(i)) {
1358 cpu = i;
1359 goto unlock;
1360 }
1361 }
1362 }
1363 unlock:
1364 rcu_read_unlock();
1365 return cpu;
1366 }
1367 /*
1368 * When add_timer_on() enqueues a timer into the timer wheel of an
1369 * idle CPU then this timer might expire before the next timer event
1370 * which is scheduled to wake up that CPU. In case of a completely
1371 * idle system the next event might even be infinite time into the
1372 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1373 * leaves the inner idle loop so the newly added timer is taken into
1374 * account when the CPU goes back to idle and evaluates the timer
1375 * wheel for the next timer event.
1376 */
1377 void wake_up_idle_cpu(int cpu)
1378 {
1379 struct rq *rq = cpu_rq(cpu);
1380
1381 if (cpu == smp_processor_id())
1382 return;
1383
1384 /*
1385 * This is safe, as this function is called with the timer
1386 * wheel base lock of (cpu) held. When the CPU is on the way
1387 * to idle and has not yet set rq->curr to idle then it will
1388 * be serialized on the timer wheel base lock and take the new
1389 * timer into account automatically.
1390 */
1391 if (rq->curr != rq->idle)
1392 return;
1393
1394 /*
1395 * We can set TIF_RESCHED on the idle task of the other CPU
1396 * lockless. The worst case is that the other CPU runs the
1397 * idle task through an additional NOOP schedule()
1398 */
1399 set_tsk_need_resched(rq->idle);
1400
1401 /* NEED_RESCHED must be visible before we test polling */
1402 smp_mb();
1403 if (!tsk_is_polling(rq->idle))
1404 smp_send_reschedule(cpu);
1405 }
1406
1407 static inline bool got_nohz_idle_kick(void)
1408 {
1409 return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick;
1410 }
1411
1412 #else /* CONFIG_NO_HZ */
1413
1414 static inline bool got_nohz_idle_kick(void)
1415 {
1416 return false;
1417 }
1418
1419 #endif /* CONFIG_NO_HZ */
1420
1421 static u64 sched_avg_period(void)
1422 {
1423 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1424 }
1425
1426 static void sched_avg_update(struct rq *rq)
1427 {
1428 s64 period = sched_avg_period();
1429
1430 while ((s64)(rq->clock - rq->age_stamp) > period) {
1431 /*
1432 * Inline assembly required to prevent the compiler
1433 * optimising this loop into a divmod call.
1434 * See __iter_div_u64_rem() for another example of this.
1435 */
1436 asm("" : "+rm" (rq->age_stamp));
1437 rq->age_stamp += period;
1438 rq->rt_avg /= 2;
1439 }
1440 }
1441
1442 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1443 {
1444 rq->rt_avg += rt_delta;
1445 sched_avg_update(rq);
1446 }
1447
1448 #else /* !CONFIG_SMP */
1449 static void resched_task(struct task_struct *p)
1450 {
1451 assert_raw_spin_locked(&task_rq(p)->lock);
1452 set_tsk_need_resched(p);
1453 }
1454
1455 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1456 {
1457 }
1458
1459 static void sched_avg_update(struct rq *rq)
1460 {
1461 }
1462 #endif /* CONFIG_SMP */
1463
1464 #if BITS_PER_LONG == 32
1465 # define WMULT_CONST (~0UL)
1466 #else
1467 # define WMULT_CONST (1UL << 32)
1468 #endif
1469
1470 #define WMULT_SHIFT 32
1471
1472 /*
1473 * Shift right and round:
1474 */
1475 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1476
1477 /*
1478 * delta *= weight / lw
1479 */
1480 static unsigned long
1481 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1482 struct load_weight *lw)
1483 {
1484 u64 tmp;
1485
1486 /*
1487 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1488 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1489 * 2^SCHED_LOAD_RESOLUTION.
1490 */
1491 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1492 tmp = (u64)delta_exec * scale_load_down(weight);
1493 else
1494 tmp = (u64)delta_exec;
1495
1496 if (!lw->inv_weight) {
1497 unsigned long w = scale_load_down(lw->weight);
1498
1499 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1500 lw->inv_weight = 1;
1501 else if (unlikely(!w))
1502 lw->inv_weight = WMULT_CONST;
1503 else
1504 lw->inv_weight = WMULT_CONST / w;
1505 }
1506
1507 /*
1508 * Check whether we'd overflow the 64-bit multiplication:
1509 */
1510 if (unlikely(tmp > WMULT_CONST))
1511 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1512 WMULT_SHIFT/2);
1513 else
1514 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1515
1516 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1517 }
1518
1519 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1520 {
1521 lw->weight += inc;
1522 lw->inv_weight = 0;
1523 }
1524
1525 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1526 {
1527 lw->weight -= dec;
1528 lw->inv_weight = 0;
1529 }
1530
1531 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1532 {
1533 lw->weight = w;
1534 lw->inv_weight = 0;
1535 }
1536
1537 /*
1538 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1539 * of tasks with abnormal "nice" values across CPUs the contribution that
1540 * each task makes to its run queue's load is weighted according to its
1541 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1542 * scaled version of the new time slice allocation that they receive on time
1543 * slice expiry etc.
1544 */
1545
1546 #define WEIGHT_IDLEPRIO 3
1547 #define WMULT_IDLEPRIO 1431655765
1548
1549 /*
1550 * Nice levels are multiplicative, with a gentle 10% change for every
1551 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1552 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1553 * that remained on nice 0.
1554 *
1555 * The "10% effect" is relative and cumulative: from _any_ nice level,
1556 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1557 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1558 * If a task goes up by ~10% and another task goes down by ~10% then
1559 * the relative distance between them is ~25%.)
1560 */
1561 static const int prio_to_weight[40] = {
1562 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1563 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1564 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1565 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1566 /* 0 */ 1024, 820, 655, 526, 423,
1567 /* 5 */ 335, 272, 215, 172, 137,
1568 /* 10 */ 110, 87, 70, 56, 45,
1569 /* 15 */ 36, 29, 23, 18, 15,
1570 };
1571
1572 /*
1573 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1574 *
1575 * In cases where the weight does not change often, we can use the
1576 * precalculated inverse to speed up arithmetics by turning divisions
1577 * into multiplications:
1578 */
1579 static const u32 prio_to_wmult[40] = {
1580 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1581 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1582 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1583 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1584 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1585 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1586 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1587 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1588 };
1589
1590 /* Time spent by the tasks of the cpu accounting group executing in ... */
1591 enum cpuacct_stat_index {
1592 CPUACCT_STAT_USER, /* ... user mode */
1593 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1594
1595 CPUACCT_STAT_NSTATS,
1596 };
1597
1598 #ifdef CONFIG_CGROUP_CPUACCT
1599 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1600 static void cpuacct_update_stats(struct task_struct *tsk,
1601 enum cpuacct_stat_index idx, cputime_t val);
1602 #else
1603 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1604 static inline void cpuacct_update_stats(struct task_struct *tsk,
1605 enum cpuacct_stat_index idx, cputime_t val) {}
1606 #endif
1607
1608 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1609 {
1610 update_load_add(&rq->load, load);
1611 }
1612
1613 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1614 {
1615 update_load_sub(&rq->load, load);
1616 }
1617
1618 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1619 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1620 typedef int (*tg_visitor)(struct task_group *, void *);
1621
1622 /*
1623 * Iterate task_group tree rooted at *from, calling @down when first entering a
1624 * node and @up when leaving it for the final time.
1625 *
1626 * Caller must hold rcu_lock or sufficient equivalent.
1627 */
1628 static int walk_tg_tree_from(struct task_group *from,
1629 tg_visitor down, tg_visitor up, void *data)
1630 {
1631 struct task_group *parent, *child;
1632 int ret;
1633
1634 parent = from;
1635
1636 down:
1637 ret = (*down)(parent, data);
1638 if (ret)
1639 goto out;
1640 list_for_each_entry_rcu(child, &parent->children, siblings) {
1641 parent = child;
1642 goto down;
1643
1644 up:
1645 continue;
1646 }
1647 ret = (*up)(parent, data);
1648 if (ret || parent == from)
1649 goto out;
1650
1651 child = parent;
1652 parent = parent->parent;
1653 if (parent)
1654 goto up;
1655 out:
1656 return ret;
1657 }
1658
1659 /*
1660 * Iterate the full tree, calling @down when first entering a node and @up when
1661 * leaving it for the final time.
1662 *
1663 * Caller must hold rcu_lock or sufficient equivalent.
1664 */
1665
1666 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1667 {
1668 return walk_tg_tree_from(&root_task_group, down, up, data);
1669 }
1670
1671 static int tg_nop(struct task_group *tg, void *data)
1672 {
1673 return 0;
1674 }
1675 #endif
1676
1677 #ifdef CONFIG_SMP
1678 /* Used instead of source_load when we know the type == 0 */
1679 static unsigned long weighted_cpuload(const int cpu)
1680 {
1681 return cpu_rq(cpu)->load.weight;
1682 }
1683
1684 /*
1685 * Return a low guess at the load of a migration-source cpu weighted
1686 * according to the scheduling class and "nice" value.
1687 *
1688 * We want to under-estimate the load of migration sources, to
1689 * balance conservatively.
1690 */
1691 static unsigned long source_load(int cpu, int type)
1692 {
1693 struct rq *rq = cpu_rq(cpu);
1694 unsigned long total = weighted_cpuload(cpu);
1695
1696 if (type == 0 || !sched_feat(LB_BIAS))
1697 return total;
1698
1699 return min(rq->cpu_load[type-1], total);
1700 }
1701
1702 /*
1703 * Return a high guess at the load of a migration-target cpu weighted
1704 * according to the scheduling class and "nice" value.
1705 */
1706 static unsigned long target_load(int cpu, int type)
1707 {
1708 struct rq *rq = cpu_rq(cpu);
1709 unsigned long total = weighted_cpuload(cpu);
1710
1711 if (type == 0 || !sched_feat(LB_BIAS))
1712 return total;
1713
1714 return max(rq->cpu_load[type-1], total);
1715 }
1716
1717 static unsigned long power_of(int cpu)
1718 {
1719 return cpu_rq(cpu)->cpu_power;
1720 }
1721
1722 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1723
1724 static unsigned long cpu_avg_load_per_task(int cpu)
1725 {
1726 struct rq *rq = cpu_rq(cpu);
1727 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1728
1729 if (nr_running)
1730 return rq->load.weight / nr_running;
1731
1732 return 0;
1733 }
1734
1735 #ifdef CONFIG_PREEMPT
1736
1737 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1738
1739 /*
1740 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1741 * way at the expense of forcing extra atomic operations in all
1742 * invocations. This assures that the double_lock is acquired using the
1743 * same underlying policy as the spinlock_t on this architecture, which
1744 * reduces latency compared to the unfair variant below. However, it
1745 * also adds more overhead and therefore may reduce throughput.
1746 */
1747 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1748 __releases(this_rq->lock)
1749 __acquires(busiest->lock)
1750 __acquires(this_rq->lock)
1751 {
1752 raw_spin_unlock(&this_rq->lock);
1753 double_rq_lock(this_rq, busiest);
1754
1755 return 1;
1756 }
1757
1758 #else
1759 /*
1760 * Unfair double_lock_balance: Optimizes throughput at the expense of
1761 * latency by eliminating extra atomic operations when the locks are
1762 * already in proper order on entry. This favors lower cpu-ids and will
1763 * grant the double lock to lower cpus over higher ids under contention,
1764 * regardless of entry order into the function.
1765 */
1766 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1767 __releases(this_rq->lock)
1768 __acquires(busiest->lock)
1769 __acquires(this_rq->lock)
1770 {
1771 int ret = 0;
1772
1773 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1774 if (busiest < this_rq) {
1775 raw_spin_unlock(&this_rq->lock);
1776 raw_spin_lock(&busiest->lock);
1777 raw_spin_lock_nested(&this_rq->lock,
1778 SINGLE_DEPTH_NESTING);
1779 ret = 1;
1780 } else
1781 raw_spin_lock_nested(&busiest->lock,
1782 SINGLE_DEPTH_NESTING);
1783 }
1784 return ret;
1785 }
1786
1787 #endif /* CONFIG_PREEMPT */
1788
1789 /*
1790 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1791 */
1792 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1793 {
1794 if (unlikely(!irqs_disabled())) {
1795 /* printk() doesn't work good under rq->lock */
1796 raw_spin_unlock(&this_rq->lock);
1797 BUG_ON(1);
1798 }
1799
1800 return _double_lock_balance(this_rq, busiest);
1801 }
1802
1803 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1804 __releases(busiest->lock)
1805 {
1806 raw_spin_unlock(&busiest->lock);
1807 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1808 }
1809
1810 /*
1811 * double_rq_lock - safely lock two runqueues
1812 *
1813 * Note this does not disable interrupts like task_rq_lock,
1814 * you need to do so manually before calling.
1815 */
1816 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1817 __acquires(rq1->lock)
1818 __acquires(rq2->lock)
1819 {
1820 BUG_ON(!irqs_disabled());
1821 if (rq1 == rq2) {
1822 raw_spin_lock(&rq1->lock);
1823 __acquire(rq2->lock); /* Fake it out ;) */
1824 } else {
1825 if (rq1 < rq2) {
1826 raw_spin_lock(&rq1->lock);
1827 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1828 } else {
1829 raw_spin_lock(&rq2->lock);
1830 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1831 }
1832 }
1833 }
1834
1835 /*
1836 * double_rq_unlock - safely unlock two runqueues
1837 *
1838 * Note this does not restore interrupts like task_rq_unlock,
1839 * you need to do so manually after calling.
1840 */
1841 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1842 __releases(rq1->lock)
1843 __releases(rq2->lock)
1844 {
1845 raw_spin_unlock(&rq1->lock);
1846 if (rq1 != rq2)
1847 raw_spin_unlock(&rq2->lock);
1848 else
1849 __release(rq2->lock);
1850 }
1851
1852 #else /* CONFIG_SMP */
1853
1854 /*
1855 * double_rq_lock - safely lock two runqueues
1856 *
1857 * Note this does not disable interrupts like task_rq_lock,
1858 * you need to do so manually before calling.
1859 */
1860 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1861 __acquires(rq1->lock)
1862 __acquires(rq2->lock)
1863 {
1864 BUG_ON(!irqs_disabled());
1865 BUG_ON(rq1 != rq2);
1866 raw_spin_lock(&rq1->lock);
1867 __acquire(rq2->lock); /* Fake it out ;) */
1868 }
1869
1870 /*
1871 * double_rq_unlock - safely unlock two runqueues
1872 *
1873 * Note this does not restore interrupts like task_rq_unlock,
1874 * you need to do so manually after calling.
1875 */
1876 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1877 __releases(rq1->lock)
1878 __releases(rq2->lock)
1879 {
1880 BUG_ON(rq1 != rq2);
1881 raw_spin_unlock(&rq1->lock);
1882 __release(rq2->lock);
1883 }
1884
1885 #endif
1886
1887 static void calc_load_account_idle(struct rq *this_rq);
1888 static void update_sysctl(void);
1889 static int get_update_sysctl_factor(void);
1890 static void update_cpu_load(struct rq *this_rq);
1891
1892 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1893 {
1894 set_task_rq(p, cpu);
1895 #ifdef CONFIG_SMP
1896 /*
1897 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1898 * successfully executed on another CPU. We must ensure that updates of
1899 * per-task data have been completed by this moment.
1900 */
1901 smp_wmb();
1902 task_thread_info(p)->cpu = cpu;
1903 #endif
1904 }
1905
1906 static const struct sched_class rt_sched_class;
1907
1908 #define sched_class_highest (&stop_sched_class)
1909 #define for_each_class(class) \
1910 for (class = sched_class_highest; class; class = class->next)
1911
1912 #include "sched_stats.h"
1913
1914 static void inc_nr_running(struct rq *rq)
1915 {
1916 rq->nr_running++;
1917 }
1918
1919 static void dec_nr_running(struct rq *rq)
1920 {
1921 rq->nr_running--;
1922 }
1923
1924 static void set_load_weight(struct task_struct *p)
1925 {
1926 int prio = p->static_prio - MAX_RT_PRIO;
1927 struct load_weight *load = &p->se.load;
1928
1929 /*
1930 * SCHED_IDLE tasks get minimal weight:
1931 */
1932 if (p->policy == SCHED_IDLE) {
1933 load->weight = scale_load(WEIGHT_IDLEPRIO);
1934 load->inv_weight = WMULT_IDLEPRIO;
1935 return;
1936 }
1937
1938 load->weight = scale_load(prio_to_weight[prio]);
1939 load->inv_weight = prio_to_wmult[prio];
1940 }
1941
1942 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1943 {
1944 update_rq_clock(rq);
1945 sched_info_queued(p);
1946 p->sched_class->enqueue_task(rq, p, flags);
1947 }
1948
1949 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1950 {
1951 update_rq_clock(rq);
1952 sched_info_dequeued(p);
1953 p->sched_class->dequeue_task(rq, p, flags);
1954 }
1955
1956 /*
1957 * activate_task - move a task to the runqueue.
1958 */
1959 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1960 {
1961 if (task_contributes_to_load(p))
1962 rq->nr_uninterruptible--;
1963
1964 enqueue_task(rq, p, flags);
1965 }
1966
1967 /*
1968 * deactivate_task - remove a task from the runqueue.
1969 */
1970 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1971 {
1972 if (task_contributes_to_load(p))
1973 rq->nr_uninterruptible++;
1974
1975 dequeue_task(rq, p, flags);
1976 }
1977
1978 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1979
1980 /*
1981 * There are no locks covering percpu hardirq/softirq time.
1982 * They are only modified in account_system_vtime, on corresponding CPU
1983 * with interrupts disabled. So, writes are safe.
1984 * They are read and saved off onto struct rq in update_rq_clock().
1985 * This may result in other CPU reading this CPU's irq time and can
1986 * race with irq/account_system_vtime on this CPU. We would either get old
1987 * or new value with a side effect of accounting a slice of irq time to wrong
1988 * task when irq is in progress while we read rq->clock. That is a worthy
1989 * compromise in place of having locks on each irq in account_system_time.
1990 */
1991 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1992 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1993
1994 static DEFINE_PER_CPU(u64, irq_start_time);
1995 static int sched_clock_irqtime;
1996
1997 void enable_sched_clock_irqtime(void)
1998 {
1999 sched_clock_irqtime = 1;
2000 }
2001
2002 void disable_sched_clock_irqtime(void)
2003 {
2004 sched_clock_irqtime = 0;
2005 }
2006
2007 #ifndef CONFIG_64BIT
2008 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
2009
2010 static inline void irq_time_write_begin(void)
2011 {
2012 __this_cpu_inc(irq_time_seq.sequence);
2013 smp_wmb();
2014 }
2015
2016 static inline void irq_time_write_end(void)
2017 {
2018 smp_wmb();
2019 __this_cpu_inc(irq_time_seq.sequence);
2020 }
2021
2022 static inline u64 irq_time_read(int cpu)
2023 {
2024 u64 irq_time;
2025 unsigned seq;
2026
2027 do {
2028 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
2029 irq_time = per_cpu(cpu_softirq_time, cpu) +
2030 per_cpu(cpu_hardirq_time, cpu);
2031 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
2032
2033 return irq_time;
2034 }
2035 #else /* CONFIG_64BIT */
2036 static inline void irq_time_write_begin(void)
2037 {
2038 }
2039
2040 static inline void irq_time_write_end(void)
2041 {
2042 }
2043
2044 static inline u64 irq_time_read(int cpu)
2045 {
2046 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
2047 }
2048 #endif /* CONFIG_64BIT */
2049
2050 /*
2051 * Called before incrementing preempt_count on {soft,}irq_enter
2052 * and before decrementing preempt_count on {soft,}irq_exit.
2053 */
2054 void account_system_vtime(struct task_struct *curr)
2055 {
2056 unsigned long flags;
2057 s64 delta;
2058 int cpu;
2059
2060 if (!sched_clock_irqtime)
2061 return;
2062
2063 local_irq_save(flags);
2064
2065 cpu = smp_processor_id();
2066 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2067 __this_cpu_add(irq_start_time, delta);
2068
2069 irq_time_write_begin();
2070 /*
2071 * We do not account for softirq time from ksoftirqd here.
2072 * We want to continue accounting softirq time to ksoftirqd thread
2073 * in that case, so as not to confuse scheduler with a special task
2074 * that do not consume any time, but still wants to run.
2075 */
2076 if (hardirq_count())
2077 __this_cpu_add(cpu_hardirq_time, delta);
2078 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
2079 __this_cpu_add(cpu_softirq_time, delta);
2080
2081 irq_time_write_end();
2082 local_irq_restore(flags);
2083 }
2084 EXPORT_SYMBOL_GPL(account_system_vtime);
2085
2086 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2087
2088 #ifdef CONFIG_PARAVIRT
2089 static inline u64 steal_ticks(u64 steal)
2090 {
2091 if (unlikely(steal > NSEC_PER_SEC))
2092 return div_u64(steal, TICK_NSEC);
2093
2094 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
2095 }
2096 #endif
2097
2098 static void update_rq_clock_task(struct rq *rq, s64 delta)
2099 {
2100 /*
2101 * In theory, the compile should just see 0 here, and optimize out the call
2102 * to sched_rt_avg_update. But I don't trust it...
2103 */
2104 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2105 s64 steal = 0, irq_delta = 0;
2106 #endif
2107 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2108 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
2109
2110 /*
2111 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2112 * this case when a previous update_rq_clock() happened inside a
2113 * {soft,}irq region.
2114 *
2115 * When this happens, we stop ->clock_task and only update the
2116 * prev_irq_time stamp to account for the part that fit, so that a next
2117 * update will consume the rest. This ensures ->clock_task is
2118 * monotonic.
2119 *
2120 * It does however cause some slight miss-attribution of {soft,}irq
2121 * time, a more accurate solution would be to update the irq_time using
2122 * the current rq->clock timestamp, except that would require using
2123 * atomic ops.
2124 */
2125 if (irq_delta > delta)
2126 irq_delta = delta;
2127
2128 rq->prev_irq_time += irq_delta;
2129 delta -= irq_delta;
2130 #endif
2131 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2132 if (static_branch((&paravirt_steal_rq_enabled))) {
2133 u64 st;
2134
2135 steal = paravirt_steal_clock(cpu_of(rq));
2136 steal -= rq->prev_steal_time_rq;
2137
2138 if (unlikely(steal > delta))
2139 steal = delta;
2140
2141 st = steal_ticks(steal);
2142 steal = st * TICK_NSEC;
2143
2144 rq->prev_steal_time_rq += steal;
2145
2146 delta -= steal;
2147 }
2148 #endif
2149
2150 rq->clock_task += delta;
2151
2152 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2153 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2154 sched_rt_avg_update(rq, irq_delta + steal);
2155 #endif
2156 }
2157
2158 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2159 static int irqtime_account_hi_update(void)
2160 {
2161 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2162 unsigned long flags;
2163 u64 latest_ns;
2164 int ret = 0;
2165
2166 local_irq_save(flags);
2167 latest_ns = this_cpu_read(cpu_hardirq_time);
2168 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2169 ret = 1;
2170 local_irq_restore(flags);
2171 return ret;
2172 }
2173
2174 static int irqtime_account_si_update(void)
2175 {
2176 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2177 unsigned long flags;
2178 u64 latest_ns;
2179 int ret = 0;
2180
2181 local_irq_save(flags);
2182 latest_ns = this_cpu_read(cpu_softirq_time);
2183 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2184 ret = 1;
2185 local_irq_restore(flags);
2186 return ret;
2187 }
2188
2189 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2190
2191 #define sched_clock_irqtime (0)
2192
2193 #endif
2194
2195 #include "sched_idletask.c"
2196 #include "sched_fair.c"
2197 #include "sched_rt.c"
2198 #include "sched_autogroup.c"
2199 #include "sched_stoptask.c"
2200 #ifdef CONFIG_SCHED_DEBUG
2201 # include "sched_debug.c"
2202 #endif
2203
2204 void sched_set_stop_task(int cpu, struct task_struct *stop)
2205 {
2206 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2207 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2208
2209 if (stop) {
2210 /*
2211 * Make it appear like a SCHED_FIFO task, its something
2212 * userspace knows about and won't get confused about.
2213 *
2214 * Also, it will make PI more or less work without too
2215 * much confusion -- but then, stop work should not
2216 * rely on PI working anyway.
2217 */
2218 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2219
2220 stop->sched_class = &stop_sched_class;
2221 }
2222
2223 cpu_rq(cpu)->stop = stop;
2224
2225 if (old_stop) {
2226 /*
2227 * Reset it back to a normal scheduling class so that
2228 * it can die in pieces.
2229 */
2230 old_stop->sched_class = &rt_sched_class;
2231 }
2232 }
2233
2234 /*
2235 * __normal_prio - return the priority that is based on the static prio
2236 */
2237 static inline int __normal_prio(struct task_struct *p)
2238 {
2239 return p->static_prio;
2240 }
2241
2242 /*
2243 * Calculate the expected normal priority: i.e. priority
2244 * without taking RT-inheritance into account. Might be
2245 * boosted by interactivity modifiers. Changes upon fork,
2246 * setprio syscalls, and whenever the interactivity
2247 * estimator recalculates.
2248 */
2249 static inline int normal_prio(struct task_struct *p)
2250 {
2251 int prio;
2252
2253 if (task_has_rt_policy(p))
2254 prio = MAX_RT_PRIO-1 - p->rt_priority;
2255 else
2256 prio = __normal_prio(p);
2257 return prio;
2258 }
2259
2260 /*
2261 * Calculate the current priority, i.e. the priority
2262 * taken into account by the scheduler. This value might
2263 * be boosted by RT tasks, or might be boosted by
2264 * interactivity modifiers. Will be RT if the task got
2265 * RT-boosted. If not then it returns p->normal_prio.
2266 */
2267 static int effective_prio(struct task_struct *p)
2268 {
2269 p->normal_prio = normal_prio(p);
2270 /*
2271 * If we are RT tasks or we were boosted to RT priority,
2272 * keep the priority unchanged. Otherwise, update priority
2273 * to the normal priority:
2274 */
2275 if (!rt_prio(p->prio))
2276 return p->normal_prio;
2277 return p->prio;
2278 }
2279
2280 /**
2281 * task_curr - is this task currently executing on a CPU?
2282 * @p: the task in question.
2283 */
2284 inline int task_curr(const struct task_struct *p)
2285 {
2286 return cpu_curr(task_cpu(p)) == p;
2287 }
2288
2289 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2290 const struct sched_class *prev_class,
2291 int oldprio)
2292 {
2293 if (prev_class != p->sched_class) {
2294 if (prev_class->switched_from)
2295 prev_class->switched_from(rq, p);
2296 p->sched_class->switched_to(rq, p);
2297 } else if (oldprio != p->prio)
2298 p->sched_class->prio_changed(rq, p, oldprio);
2299 }
2300
2301 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2302 {
2303 const struct sched_class *class;
2304
2305 if (p->sched_class == rq->curr->sched_class) {
2306 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2307 } else {
2308 for_each_class(class) {
2309 if (class == rq->curr->sched_class)
2310 break;
2311 if (class == p->sched_class) {
2312 resched_task(rq->curr);
2313 break;
2314 }
2315 }
2316 }
2317
2318 /*
2319 * A queue event has occurred, and we're going to schedule. In
2320 * this case, we can save a useless back to back clock update.
2321 */
2322 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2323 rq->skip_clock_update = 1;
2324 }
2325
2326 #ifdef CONFIG_SMP
2327 /*
2328 * Is this task likely cache-hot:
2329 */
2330 static int
2331 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2332 {
2333 s64 delta;
2334
2335 if (p->sched_class != &fair_sched_class)
2336 return 0;
2337
2338 if (unlikely(p->policy == SCHED_IDLE))
2339 return 0;
2340
2341 /*
2342 * Buddy candidates are cache hot:
2343 */
2344 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2345 (&p->se == cfs_rq_of(&p->se)->next ||
2346 &p->se == cfs_rq_of(&p->se)->last))
2347 return 1;
2348
2349 if (sysctl_sched_migration_cost == -1)
2350 return 1;
2351 if (sysctl_sched_migration_cost == 0)
2352 return 0;
2353
2354 delta = now - p->se.exec_start;
2355
2356 return delta < (s64)sysctl_sched_migration_cost;
2357 }
2358
2359 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2360 {
2361 #ifdef CONFIG_SCHED_DEBUG
2362 /*
2363 * We should never call set_task_cpu() on a blocked task,
2364 * ttwu() will sort out the placement.
2365 */
2366 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2367 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2368
2369 #ifdef CONFIG_LOCKDEP
2370 /*
2371 * The caller should hold either p->pi_lock or rq->lock, when changing
2372 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2373 *
2374 * sched_move_task() holds both and thus holding either pins the cgroup,
2375 * see set_task_rq().
2376 *
2377 * Furthermore, all task_rq users should acquire both locks, see
2378 * task_rq_lock().
2379 */
2380 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2381 lockdep_is_held(&task_rq(p)->lock)));
2382 #endif
2383 #endif
2384
2385 trace_sched_migrate_task(p, new_cpu);
2386
2387 if (task_cpu(p) != new_cpu) {
2388 p->se.nr_migrations++;
2389 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
2390 }
2391
2392 __set_task_cpu(p, new_cpu);
2393 }
2394
2395 struct migration_arg {
2396 struct task_struct *task;
2397 int dest_cpu;
2398 };
2399
2400 static int migration_cpu_stop(void *data);
2401
2402 /*
2403 * wait_task_inactive - wait for a thread to unschedule.
2404 *
2405 * If @match_state is nonzero, it's the @p->state value just checked and
2406 * not expected to change. If it changes, i.e. @p might have woken up,
2407 * then return zero. When we succeed in waiting for @p to be off its CPU,
2408 * we return a positive number (its total switch count). If a second call
2409 * a short while later returns the same number, the caller can be sure that
2410 * @p has remained unscheduled the whole time.
2411 *
2412 * The caller must ensure that the task *will* unschedule sometime soon,
2413 * else this function might spin for a *long* time. This function can't
2414 * be called with interrupts off, or it may introduce deadlock with
2415 * smp_call_function() if an IPI is sent by the same process we are
2416 * waiting to become inactive.
2417 */
2418 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2419 {
2420 unsigned long flags;
2421 int running, on_rq;
2422 unsigned long ncsw;
2423 struct rq *rq;
2424
2425 for (;;) {
2426 /*
2427 * We do the initial early heuristics without holding
2428 * any task-queue locks at all. We'll only try to get
2429 * the runqueue lock when things look like they will
2430 * work out!
2431 */
2432 rq = task_rq(p);
2433
2434 /*
2435 * If the task is actively running on another CPU
2436 * still, just relax and busy-wait without holding
2437 * any locks.
2438 *
2439 * NOTE! Since we don't hold any locks, it's not
2440 * even sure that "rq" stays as the right runqueue!
2441 * But we don't care, since "task_running()" will
2442 * return false if the runqueue has changed and p
2443 * is actually now running somewhere else!
2444 */
2445 while (task_running(rq, p)) {
2446 if (match_state && unlikely(p->state != match_state))
2447 return 0;
2448 cpu_relax();
2449 }
2450
2451 /*
2452 * Ok, time to look more closely! We need the rq
2453 * lock now, to be *sure*. If we're wrong, we'll
2454 * just go back and repeat.
2455 */
2456 rq = task_rq_lock(p, &flags);
2457 trace_sched_wait_task(p);
2458 running = task_running(rq, p);
2459 on_rq = p->on_rq;
2460 ncsw = 0;
2461 if (!match_state || p->state == match_state)
2462 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2463 task_rq_unlock(rq, p, &flags);
2464
2465 /*
2466 * If it changed from the expected state, bail out now.
2467 */
2468 if (unlikely(!ncsw))
2469 break;
2470
2471 /*
2472 * Was it really running after all now that we
2473 * checked with the proper locks actually held?
2474 *
2475 * Oops. Go back and try again..
2476 */
2477 if (unlikely(running)) {
2478 cpu_relax();
2479 continue;
2480 }
2481
2482 /*
2483 * It's not enough that it's not actively running,
2484 * it must be off the runqueue _entirely_, and not
2485 * preempted!
2486 *
2487 * So if it was still runnable (but just not actively
2488 * running right now), it's preempted, and we should
2489 * yield - it could be a while.
2490 */
2491 if (unlikely(on_rq)) {
2492 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2493
2494 set_current_state(TASK_UNINTERRUPTIBLE);
2495 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2496 continue;
2497 }
2498
2499 /*
2500 * Ahh, all good. It wasn't running, and it wasn't
2501 * runnable, which means that it will never become
2502 * running in the future either. We're all done!
2503 */
2504 break;
2505 }
2506
2507 return ncsw;
2508 }
2509
2510 /***
2511 * kick_process - kick a running thread to enter/exit the kernel
2512 * @p: the to-be-kicked thread
2513 *
2514 * Cause a process which is running on another CPU to enter
2515 * kernel-mode, without any delay. (to get signals handled.)
2516 *
2517 * NOTE: this function doesn't have to take the runqueue lock,
2518 * because all it wants to ensure is that the remote task enters
2519 * the kernel. If the IPI races and the task has been migrated
2520 * to another CPU then no harm is done and the purpose has been
2521 * achieved as well.
2522 */
2523 void kick_process(struct task_struct *p)
2524 {
2525 int cpu;
2526
2527 preempt_disable();
2528 cpu = task_cpu(p);
2529 if ((cpu != smp_processor_id()) && task_curr(p))
2530 smp_send_reschedule(cpu);
2531 preempt_enable();
2532 }
2533 EXPORT_SYMBOL_GPL(kick_process);
2534 #endif /* CONFIG_SMP */
2535
2536 #ifdef CONFIG_SMP
2537 /*
2538 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2539 */
2540 static int select_fallback_rq(int cpu, struct task_struct *p)
2541 {
2542 int dest_cpu;
2543 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2544
2545 /* Look for allowed, online CPU in same node. */
2546 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2547 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
2548 return dest_cpu;
2549
2550 /* Any allowed, online CPU? */
2551 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
2552 if (dest_cpu < nr_cpu_ids)
2553 return dest_cpu;
2554
2555 /* No more Mr. Nice Guy. */
2556 dest_cpu = cpuset_cpus_allowed_fallback(p);
2557 /*
2558 * Don't tell them about moving exiting tasks or
2559 * kernel threads (both mm NULL), since they never
2560 * leave kernel.
2561 */
2562 if (p->mm && printk_ratelimit()) {
2563 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2564 task_pid_nr(p), p->comm, cpu);
2565 }
2566
2567 return dest_cpu;
2568 }
2569
2570 /*
2571 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2572 */
2573 static inline
2574 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2575 {
2576 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2577
2578 /*
2579 * In order not to call set_task_cpu() on a blocking task we need
2580 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2581 * cpu.
2582 *
2583 * Since this is common to all placement strategies, this lives here.
2584 *
2585 * [ this allows ->select_task() to simply return task_cpu(p) and
2586 * not worry about this generic constraint ]
2587 */
2588 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
2589 !cpu_online(cpu)))
2590 cpu = select_fallback_rq(task_cpu(p), p);
2591
2592 return cpu;
2593 }
2594
2595 static void update_avg(u64 *avg, u64 sample)
2596 {
2597 s64 diff = sample - *avg;
2598 *avg += diff >> 3;
2599 }
2600 #endif
2601
2602 static void
2603 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2604 {
2605 #ifdef CONFIG_SCHEDSTATS
2606 struct rq *rq = this_rq();
2607
2608 #ifdef CONFIG_SMP
2609 int this_cpu = smp_processor_id();
2610
2611 if (cpu == this_cpu) {
2612 schedstat_inc(rq, ttwu_local);
2613 schedstat_inc(p, se.statistics.nr_wakeups_local);
2614 } else {
2615 struct sched_domain *sd;
2616
2617 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2618 rcu_read_lock();
2619 for_each_domain(this_cpu, sd) {
2620 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2621 schedstat_inc(sd, ttwu_wake_remote);
2622 break;
2623 }
2624 }
2625 rcu_read_unlock();
2626 }
2627
2628 if (wake_flags & WF_MIGRATED)
2629 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2630
2631 #endif /* CONFIG_SMP */
2632
2633 schedstat_inc(rq, ttwu_count);
2634 schedstat_inc(p, se.statistics.nr_wakeups);
2635
2636 if (wake_flags & WF_SYNC)
2637 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2638
2639 #endif /* CONFIG_SCHEDSTATS */
2640 }
2641
2642 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2643 {
2644 activate_task(rq, p, en_flags);
2645 p->on_rq = 1;
2646
2647 /* if a worker is waking up, notify workqueue */
2648 if (p->flags & PF_WQ_WORKER)
2649 wq_worker_waking_up(p, cpu_of(rq));
2650 }
2651
2652 /*
2653 * Mark the task runnable and perform wakeup-preemption.
2654 */
2655 static void
2656 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2657 {
2658 trace_sched_wakeup(p, true);
2659 check_preempt_curr(rq, p, wake_flags);
2660
2661 p->state = TASK_RUNNING;
2662 #ifdef CONFIG_SMP
2663 if (p->sched_class->task_woken)
2664 p->sched_class->task_woken(rq, p);
2665
2666 if (rq->idle_stamp) {
2667 u64 delta = rq->clock - rq->idle_stamp;
2668 u64 max = 2*sysctl_sched_migration_cost;
2669
2670 if (delta > max)
2671 rq->avg_idle = max;
2672 else
2673 update_avg(&rq->avg_idle, delta);
2674 rq->idle_stamp = 0;
2675 }
2676 #endif
2677 }
2678
2679 static void
2680 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2681 {
2682 #ifdef CONFIG_SMP
2683 if (p->sched_contributes_to_load)
2684 rq->nr_uninterruptible--;
2685 #endif
2686
2687 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2688 ttwu_do_wakeup(rq, p, wake_flags);
2689 }
2690
2691 /*
2692 * Called in case the task @p isn't fully descheduled from its runqueue,
2693 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2694 * since all we need to do is flip p->state to TASK_RUNNING, since
2695 * the task is still ->on_rq.
2696 */
2697 static int ttwu_remote(struct task_struct *p, int wake_flags)
2698 {
2699 struct rq *rq;
2700 int ret = 0;
2701
2702 rq = __task_rq_lock(p);
2703 if (p->on_rq) {
2704 ttwu_do_wakeup(rq, p, wake_flags);
2705 ret = 1;
2706 }
2707 __task_rq_unlock(rq);
2708
2709 return ret;
2710 }
2711
2712 #ifdef CONFIG_SMP
2713 static void sched_ttwu_pending(void)
2714 {
2715 struct rq *rq = this_rq();
2716 struct llist_node *llist = llist_del_all(&rq->wake_list);
2717 struct task_struct *p;
2718
2719 raw_spin_lock(&rq->lock);
2720
2721 while (llist) {
2722 p = llist_entry(llist, struct task_struct, wake_entry);
2723 llist = llist_next(llist);
2724 ttwu_do_activate(rq, p, 0);
2725 }
2726
2727 raw_spin_unlock(&rq->lock);
2728 }
2729
2730 void scheduler_ipi(void)
2731 {
2732 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2733 return;
2734
2735 /*
2736 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2737 * traditionally all their work was done from the interrupt return
2738 * path. Now that we actually do some work, we need to make sure
2739 * we do call them.
2740 *
2741 * Some archs already do call them, luckily irq_enter/exit nest
2742 * properly.
2743 *
2744 * Arguably we should visit all archs and update all handlers,
2745 * however a fair share of IPIs are still resched only so this would
2746 * somewhat pessimize the simple resched case.
2747 */
2748 irq_enter();
2749 sched_ttwu_pending();
2750
2751 /*
2752 * Check if someone kicked us for doing the nohz idle load balance.
2753 */
2754 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
2755 this_rq()->idle_balance = 1;
2756 raise_softirq_irqoff(SCHED_SOFTIRQ);
2757 }
2758 irq_exit();
2759 }
2760
2761 static void ttwu_queue_remote(struct task_struct *p, int cpu)
2762 {
2763 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
2764 smp_send_reschedule(cpu);
2765 }
2766
2767 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2768 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2769 {
2770 struct rq *rq;
2771 int ret = 0;
2772
2773 rq = __task_rq_lock(p);
2774 if (p->on_cpu) {
2775 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2776 ttwu_do_wakeup(rq, p, wake_flags);
2777 ret = 1;
2778 }
2779 __task_rq_unlock(rq);
2780
2781 return ret;
2782
2783 }
2784 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2785 #endif /* CONFIG_SMP */
2786
2787 static void ttwu_queue(struct task_struct *p, int cpu)
2788 {
2789 struct rq *rq = cpu_rq(cpu);
2790
2791 #if defined(CONFIG_SMP)
2792 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2793 sched_clock_cpu(cpu); /* sync clocks x-cpu */
2794 ttwu_queue_remote(p, cpu);
2795 return;
2796 }
2797 #endif
2798
2799 raw_spin_lock(&rq->lock);
2800 ttwu_do_activate(rq, p, 0);
2801 raw_spin_unlock(&rq->lock);
2802 }
2803
2804 /**
2805 * try_to_wake_up - wake up a thread
2806 * @p: the thread to be awakened
2807 * @state: the mask of task states that can be woken
2808 * @wake_flags: wake modifier flags (WF_*)
2809 *
2810 * Put it on the run-queue if it's not already there. The "current"
2811 * thread is always on the run-queue (except when the actual
2812 * re-schedule is in progress), and as such you're allowed to do
2813 * the simpler "current->state = TASK_RUNNING" to mark yourself
2814 * runnable without the overhead of this.
2815 *
2816 * Returns %true if @p was woken up, %false if it was already running
2817 * or @state didn't match @p's state.
2818 */
2819 static int
2820 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2821 {
2822 unsigned long flags;
2823 int cpu, success = 0;
2824
2825 smp_wmb();
2826 raw_spin_lock_irqsave(&p->pi_lock, flags);
2827 if (!(p->state & state))
2828 goto out;
2829
2830 success = 1; /* we're going to change ->state */
2831 cpu = task_cpu(p);
2832
2833 if (p->on_rq && ttwu_remote(p, wake_flags))
2834 goto stat;
2835
2836 #ifdef CONFIG_SMP
2837 /*
2838 * If the owning (remote) cpu is still in the middle of schedule() with
2839 * this task as prev, wait until its done referencing the task.
2840 */
2841 while (p->on_cpu) {
2842 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2843 /*
2844 * In case the architecture enables interrupts in
2845 * context_switch(), we cannot busy wait, since that
2846 * would lead to deadlocks when an interrupt hits and
2847 * tries to wake up @prev. So bail and do a complete
2848 * remote wakeup.
2849 */
2850 if (ttwu_activate_remote(p, wake_flags))
2851 goto stat;
2852 #else
2853 cpu_relax();
2854 #endif
2855 }
2856 /*
2857 * Pairs with the smp_wmb() in finish_lock_switch().
2858 */
2859 smp_rmb();
2860
2861 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2862 p->state = TASK_WAKING;
2863
2864 if (p->sched_class->task_waking)
2865 p->sched_class->task_waking(p);
2866
2867 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2868 if (task_cpu(p) != cpu) {
2869 wake_flags |= WF_MIGRATED;
2870 set_task_cpu(p, cpu);
2871 }
2872 #endif /* CONFIG_SMP */
2873
2874 ttwu_queue(p, cpu);
2875 stat:
2876 ttwu_stat(p, cpu, wake_flags);
2877 out:
2878 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2879
2880 return success;
2881 }
2882
2883 /**
2884 * try_to_wake_up_local - try to wake up a local task with rq lock held
2885 * @p: the thread to be awakened
2886 *
2887 * Put @p on the run-queue if it's not already there. The caller must
2888 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2889 * the current task.
2890 */
2891 static void try_to_wake_up_local(struct task_struct *p)
2892 {
2893 struct rq *rq = task_rq(p);
2894
2895 BUG_ON(rq != this_rq());
2896 BUG_ON(p == current);
2897 lockdep_assert_held(&rq->lock);
2898
2899 if (!raw_spin_trylock(&p->pi_lock)) {
2900 raw_spin_unlock(&rq->lock);
2901 raw_spin_lock(&p->pi_lock);
2902 raw_spin_lock(&rq->lock);
2903 }
2904
2905 if (!(p->state & TASK_NORMAL))
2906 goto out;
2907
2908 if (!p->on_rq)
2909 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2910
2911 ttwu_do_wakeup(rq, p, 0);
2912 ttwu_stat(p, smp_processor_id(), 0);
2913 out:
2914 raw_spin_unlock(&p->pi_lock);
2915 }
2916
2917 /**
2918 * wake_up_process - Wake up a specific process
2919 * @p: The process to be woken up.
2920 *
2921 * Attempt to wake up the nominated process and move it to the set of runnable
2922 * processes. Returns 1 if the process was woken up, 0 if it was already
2923 * running.
2924 *
2925 * It may be assumed that this function implies a write memory barrier before
2926 * changing the task state if and only if any tasks are woken up.
2927 */
2928 int wake_up_process(struct task_struct *p)
2929 {
2930 return try_to_wake_up(p, TASK_ALL, 0);
2931 }
2932 EXPORT_SYMBOL(wake_up_process);
2933
2934 int wake_up_state(struct task_struct *p, unsigned int state)
2935 {
2936 return try_to_wake_up(p, state, 0);
2937 }
2938
2939 /*
2940 * Perform scheduler related setup for a newly forked process p.
2941 * p is forked by current.
2942 *
2943 * __sched_fork() is basic setup used by init_idle() too:
2944 */
2945 static void __sched_fork(struct task_struct *p)
2946 {
2947 p->on_rq = 0;
2948
2949 p->se.on_rq = 0;
2950 p->se.exec_start = 0;
2951 p->se.sum_exec_runtime = 0;
2952 p->se.prev_sum_exec_runtime = 0;
2953 p->se.nr_migrations = 0;
2954 p->se.vruntime = 0;
2955 INIT_LIST_HEAD(&p->se.group_node);
2956
2957 #ifdef CONFIG_SCHEDSTATS
2958 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2959 #endif
2960
2961 INIT_LIST_HEAD(&p->rt.run_list);
2962
2963 #ifdef CONFIG_PREEMPT_NOTIFIERS
2964 INIT_HLIST_HEAD(&p->preempt_notifiers);
2965 #endif
2966 }
2967
2968 /*
2969 * fork()/clone()-time setup:
2970 */
2971 void sched_fork(struct task_struct *p)
2972 {
2973 unsigned long flags;
2974 int cpu = get_cpu();
2975
2976 __sched_fork(p);
2977 /*
2978 * We mark the process as running here. This guarantees that
2979 * nobody will actually run it, and a signal or other external
2980 * event cannot wake it up and insert it on the runqueue either.
2981 */
2982 p->state = TASK_RUNNING;
2983
2984 /*
2985 * Make sure we do not leak PI boosting priority to the child.
2986 */
2987 p->prio = current->normal_prio;
2988
2989 /*
2990 * Revert to default priority/policy on fork if requested.
2991 */
2992 if (unlikely(p->sched_reset_on_fork)) {
2993 if (task_has_rt_policy(p)) {
2994 p->policy = SCHED_NORMAL;
2995 p->static_prio = NICE_TO_PRIO(0);
2996 p->rt_priority = 0;
2997 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2998 p->static_prio = NICE_TO_PRIO(0);
2999
3000 p->prio = p->normal_prio = __normal_prio(p);
3001 set_load_weight(p);
3002
3003 /*
3004 * We don't need the reset flag anymore after the fork. It has
3005 * fulfilled its duty:
3006 */
3007 p->sched_reset_on_fork = 0;
3008 }
3009
3010 if (!rt_prio(p->prio))
3011 p->sched_class = &fair_sched_class;
3012
3013 if (p->sched_class->task_fork)
3014 p->sched_class->task_fork(p);
3015
3016 /*
3017 * The child is not yet in the pid-hash so no cgroup attach races,
3018 * and the cgroup is pinned to this child due to cgroup_fork()
3019 * is ran before sched_fork().
3020 *
3021 * Silence PROVE_RCU.
3022 */
3023 raw_spin_lock_irqsave(&p->pi_lock, flags);
3024 set_task_cpu(p, cpu);
3025 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3026
3027 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
3028 if (likely(sched_info_on()))
3029 memset(&p->sched_info, 0, sizeof(p->sched_info));
3030 #endif
3031 #if defined(CONFIG_SMP)
3032 p->on_cpu = 0;
3033 #endif
3034 #ifdef CONFIG_PREEMPT_COUNT
3035 /* Want to start with kernel preemption disabled. */
3036 task_thread_info(p)->preempt_count = 1;
3037 #endif
3038 #ifdef CONFIG_SMP
3039 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3040 #endif
3041
3042 put_cpu();
3043 }
3044
3045 /*
3046 * wake_up_new_task - wake up a newly created task for the first time.
3047 *
3048 * This function will do some initial scheduler statistics housekeeping
3049 * that must be done for every newly created context, then puts the task
3050 * on the runqueue and wakes it.
3051 */
3052 void wake_up_new_task(struct task_struct *p)
3053 {
3054 unsigned long flags;
3055 struct rq *rq;
3056
3057 raw_spin_lock_irqsave(&p->pi_lock, flags);
3058 #ifdef CONFIG_SMP
3059 /*
3060 * Fork balancing, do it here and not earlier because:
3061 * - cpus_allowed can change in the fork path
3062 * - any previously selected cpu might disappear through hotplug
3063 */
3064 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
3065 #endif
3066
3067 rq = __task_rq_lock(p);
3068 activate_task(rq, p, 0);
3069 p->on_rq = 1;
3070 trace_sched_wakeup_new(p, true);
3071 check_preempt_curr(rq, p, WF_FORK);
3072 #ifdef CONFIG_SMP
3073 if (p->sched_class->task_woken)
3074 p->sched_class->task_woken(rq, p);
3075 #endif
3076 task_rq_unlock(rq, p, &flags);
3077 }
3078
3079 #ifdef CONFIG_PREEMPT_NOTIFIERS
3080
3081 /**
3082 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3083 * @notifier: notifier struct to register
3084 */
3085 void preempt_notifier_register(struct preempt_notifier *notifier)
3086 {
3087 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3088 }
3089 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3090
3091 /**
3092 * preempt_notifier_unregister - no longer interested in preemption notifications
3093 * @notifier: notifier struct to unregister
3094 *
3095 * This is safe to call from within a preemption notifier.
3096 */
3097 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3098 {
3099 hlist_del(&notifier->link);
3100 }
3101 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3102
3103 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3104 {
3105 struct preempt_notifier *notifier;
3106 struct hlist_node *node;
3107
3108 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3109 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3110 }
3111
3112 static void
3113 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3114 struct task_struct *next)
3115 {
3116 struct preempt_notifier *notifier;
3117 struct hlist_node *node;
3118
3119 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3120 notifier->ops->sched_out(notifier, next);
3121 }
3122
3123 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3124
3125 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3126 {
3127 }
3128
3129 static void
3130 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3131 struct task_struct *next)
3132 {
3133 }
3134
3135 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3136
3137 /**
3138 * prepare_task_switch - prepare to switch tasks
3139 * @rq: the runqueue preparing to switch
3140 * @prev: the current task that is being switched out
3141 * @next: the task we are going to switch to.
3142 *
3143 * This is called with the rq lock held and interrupts off. It must
3144 * be paired with a subsequent finish_task_switch after the context
3145 * switch.
3146 *
3147 * prepare_task_switch sets up locking and calls architecture specific
3148 * hooks.
3149 */
3150 static inline void
3151 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3152 struct task_struct *next)
3153 {
3154 sched_info_switch(prev, next);
3155 perf_event_task_sched_out(prev, next);
3156 fire_sched_out_preempt_notifiers(prev, next);
3157 prepare_lock_switch(rq, next);
3158 prepare_arch_switch(next);
3159 trace_sched_switch(prev, next);
3160 }
3161
3162 /**
3163 * finish_task_switch - clean up after a task-switch
3164 * @rq: runqueue associated with task-switch
3165 * @prev: the thread we just switched away from.
3166 *
3167 * finish_task_switch must be called after the context switch, paired
3168 * with a prepare_task_switch call before the context switch.
3169 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3170 * and do any other architecture-specific cleanup actions.
3171 *
3172 * Note that we may have delayed dropping an mm in context_switch(). If
3173 * so, we finish that here outside of the runqueue lock. (Doing it
3174 * with the lock held can cause deadlocks; see schedule() for
3175 * details.)
3176 */
3177 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
3178 __releases(rq->lock)
3179 {
3180 struct mm_struct *mm = rq->prev_mm;
3181 long prev_state;
3182
3183 rq->prev_mm = NULL;
3184
3185 /*
3186 * A task struct has one reference for the use as "current".
3187 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3188 * schedule one last time. The schedule call will never return, and
3189 * the scheduled task must drop that reference.
3190 * The test for TASK_DEAD must occur while the runqueue locks are
3191 * still held, otherwise prev could be scheduled on another cpu, die
3192 * there before we look at prev->state, and then the reference would
3193 * be dropped twice.
3194 * Manfred Spraul <manfred@colorfullife.com>
3195 */
3196 prev_state = prev->state;
3197 finish_arch_switch(prev);
3198 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3199 local_irq_disable();
3200 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3201 perf_event_task_sched_in(prev, current);
3202 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3203 local_irq_enable();
3204 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3205 finish_lock_switch(rq, prev);
3206
3207 fire_sched_in_preempt_notifiers(current);
3208 if (mm)
3209 mmdrop(mm);
3210 if (unlikely(prev_state == TASK_DEAD)) {
3211 /*
3212 * Remove function-return probe instances associated with this
3213 * task and put them back on the free list.
3214 */
3215 kprobe_flush_task(prev);
3216 put_task_struct(prev);
3217 }
3218 }
3219
3220 #ifdef CONFIG_SMP
3221
3222 /* assumes rq->lock is held */
3223 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3224 {
3225 if (prev->sched_class->pre_schedule)
3226 prev->sched_class->pre_schedule(rq, prev);
3227 }
3228
3229 /* rq->lock is NOT held, but preemption is disabled */
3230 static inline void post_schedule(struct rq *rq)
3231 {
3232 if (rq->post_schedule) {
3233 unsigned long flags;
3234
3235 raw_spin_lock_irqsave(&rq->lock, flags);
3236 if (rq->curr->sched_class->post_schedule)
3237 rq->curr->sched_class->post_schedule(rq);
3238 raw_spin_unlock_irqrestore(&rq->lock, flags);
3239
3240 rq->post_schedule = 0;
3241 }
3242 }
3243
3244 #else
3245
3246 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3247 {
3248 }
3249
3250 static inline void post_schedule(struct rq *rq)
3251 {
3252 }
3253
3254 #endif
3255
3256 /**
3257 * schedule_tail - first thing a freshly forked thread must call.
3258 * @prev: the thread we just switched away from.
3259 */
3260 asmlinkage void schedule_tail(struct task_struct *prev)
3261 __releases(rq->lock)
3262 {
3263 struct rq *rq = this_rq();
3264
3265 finish_task_switch(rq, prev);
3266
3267 /*
3268 * FIXME: do we need to worry about rq being invalidated by the
3269 * task_switch?
3270 */
3271 post_schedule(rq);
3272
3273 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3274 /* In this case, finish_task_switch does not reenable preemption */
3275 preempt_enable();
3276 #endif
3277 if (current->set_child_tid)
3278 put_user(task_pid_vnr(current), current->set_child_tid);
3279 }
3280
3281 /*
3282 * context_switch - switch to the new MM and the new
3283 * thread's register state.
3284 */
3285 static inline void
3286 context_switch(struct rq *rq, struct task_struct *prev,
3287 struct task_struct *next)
3288 {
3289 struct mm_struct *mm, *oldmm;
3290
3291 prepare_task_switch(rq, prev, next);
3292
3293 mm = next->mm;
3294 oldmm = prev->active_mm;
3295 /*
3296 * For paravirt, this is coupled with an exit in switch_to to
3297 * combine the page table reload and the switch backend into
3298 * one hypercall.
3299 */
3300 arch_start_context_switch(prev);
3301
3302 if (!mm) {
3303 next->active_mm = oldmm;
3304 atomic_inc(&oldmm->mm_count);
3305 enter_lazy_tlb(oldmm, next);
3306 } else
3307 switch_mm(oldmm, mm, next);
3308
3309 if (!prev->mm) {
3310 prev->active_mm = NULL;
3311 rq->prev_mm = oldmm;
3312 }
3313 /*
3314 * Since the runqueue lock will be released by the next
3315 * task (which is an invalid locking op but in the case
3316 * of the scheduler it's an obvious special-case), so we
3317 * do an early lockdep release here:
3318 */
3319 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3320 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3321 #endif
3322
3323 /* Here we just switch the register state and the stack. */
3324 switch_to(prev, next, prev);
3325
3326 barrier();
3327 /*
3328 * this_rq must be evaluated again because prev may have moved
3329 * CPUs since it called schedule(), thus the 'rq' on its stack
3330 * frame will be invalid.
3331 */
3332 finish_task_switch(this_rq(), prev);
3333 }
3334
3335 /*
3336 * nr_running, nr_uninterruptible and nr_context_switches:
3337 *
3338 * externally visible scheduler statistics: current number of runnable
3339 * threads, current number of uninterruptible-sleeping threads, total
3340 * number of context switches performed since bootup.
3341 */
3342 unsigned long nr_running(void)
3343 {
3344 unsigned long i, sum = 0;
3345
3346 for_each_online_cpu(i)
3347 sum += cpu_rq(i)->nr_running;
3348
3349 return sum;
3350 }
3351
3352 unsigned long nr_uninterruptible(void)
3353 {
3354 unsigned long i, sum = 0;
3355
3356 for_each_possible_cpu(i)
3357 sum += cpu_rq(i)->nr_uninterruptible;
3358
3359 /*
3360 * Since we read the counters lockless, it might be slightly
3361 * inaccurate. Do not allow it to go below zero though:
3362 */
3363 if (unlikely((long)sum < 0))
3364 sum = 0;
3365
3366 return sum;
3367 }
3368
3369 unsigned long long nr_context_switches(void)
3370 {
3371 int i;
3372 unsigned long long sum = 0;
3373
3374 for_each_possible_cpu(i)
3375 sum += cpu_rq(i)->nr_switches;
3376
3377 return sum;
3378 }
3379
3380 unsigned long nr_iowait(void)
3381 {
3382 unsigned long i, sum = 0;
3383
3384 for_each_possible_cpu(i)
3385 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3386
3387 return sum;
3388 }
3389
3390 unsigned long nr_iowait_cpu(int cpu)
3391 {
3392 struct rq *this = cpu_rq(cpu);
3393 return atomic_read(&this->nr_iowait);
3394 }
3395
3396 unsigned long this_cpu_load(void)
3397 {
3398 struct rq *this = this_rq();
3399 return this->cpu_load[0];
3400 }
3401
3402
3403 /* Variables and functions for calc_load */
3404 static atomic_long_t calc_load_tasks;
3405 static unsigned long calc_load_update;
3406 unsigned long avenrun[3];
3407 EXPORT_SYMBOL(avenrun);
3408
3409 static long calc_load_fold_active(struct rq *this_rq)
3410 {
3411 long nr_active, delta = 0;
3412
3413 nr_active = this_rq->nr_running;
3414 nr_active += (long) this_rq->nr_uninterruptible;
3415
3416 if (nr_active != this_rq->calc_load_active) {
3417 delta = nr_active - this_rq->calc_load_active;
3418 this_rq->calc_load_active = nr_active;
3419 }
3420
3421 return delta;
3422 }
3423
3424 static unsigned long
3425 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3426 {
3427 load *= exp;
3428 load += active * (FIXED_1 - exp);
3429 load += 1UL << (FSHIFT - 1);
3430 return load >> FSHIFT;
3431 }
3432
3433 #ifdef CONFIG_NO_HZ
3434 /*
3435 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3436 *
3437 * When making the ILB scale, we should try to pull this in as well.
3438 */
3439 static atomic_long_t calc_load_tasks_idle;
3440
3441 static void calc_load_account_idle(struct rq *this_rq)
3442 {
3443 long delta;
3444
3445 delta = calc_load_fold_active(this_rq);
3446 if (delta)
3447 atomic_long_add(delta, &calc_load_tasks_idle);
3448 }
3449
3450 static long calc_load_fold_idle(void)
3451 {
3452 long delta = 0;
3453
3454 /*
3455 * Its got a race, we don't care...
3456 */
3457 if (atomic_long_read(&calc_load_tasks_idle))
3458 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3459
3460 return delta;
3461 }
3462
3463 /**
3464 * fixed_power_int - compute: x^n, in O(log n) time
3465 *
3466 * @x: base of the power
3467 * @frac_bits: fractional bits of @x
3468 * @n: power to raise @x to.
3469 *
3470 * By exploiting the relation between the definition of the natural power
3471 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3472 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3473 * (where: n_i \elem {0, 1}, the binary vector representing n),
3474 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3475 * of course trivially computable in O(log_2 n), the length of our binary
3476 * vector.
3477 */
3478 static unsigned long
3479 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3480 {
3481 unsigned long result = 1UL << frac_bits;
3482
3483 if (n) for (;;) {
3484 if (n & 1) {
3485 result *= x;
3486 result += 1UL << (frac_bits - 1);
3487 result >>= frac_bits;
3488 }
3489 n >>= 1;
3490 if (!n)
3491 break;
3492 x *= x;
3493 x += 1UL << (frac_bits - 1);
3494 x >>= frac_bits;
3495 }
3496
3497 return result;
3498 }
3499
3500 /*
3501 * a1 = a0 * e + a * (1 - e)
3502 *
3503 * a2 = a1 * e + a * (1 - e)
3504 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3505 * = a0 * e^2 + a * (1 - e) * (1 + e)
3506 *
3507 * a3 = a2 * e + a * (1 - e)
3508 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3509 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3510 *
3511 * ...
3512 *
3513 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3514 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3515 * = a0 * e^n + a * (1 - e^n)
3516 *
3517 * [1] application of the geometric series:
3518 *
3519 * n 1 - x^(n+1)
3520 * S_n := \Sum x^i = -------------
3521 * i=0 1 - x
3522 */
3523 static unsigned long
3524 calc_load_n(unsigned long load, unsigned long exp,
3525 unsigned long active, unsigned int n)
3526 {
3527
3528 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3529 }
3530
3531 /*
3532 * NO_HZ can leave us missing all per-cpu ticks calling
3533 * calc_load_account_active(), but since an idle CPU folds its delta into
3534 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3535 * in the pending idle delta if our idle period crossed a load cycle boundary.
3536 *
3537 * Once we've updated the global active value, we need to apply the exponential
3538 * weights adjusted to the number of cycles missed.
3539 */
3540 static void calc_global_nohz(unsigned long ticks)
3541 {
3542 long delta, active, n;
3543
3544 if (time_before(jiffies, calc_load_update))
3545 return;
3546
3547 /*
3548 * If we crossed a calc_load_update boundary, make sure to fold
3549 * any pending idle changes, the respective CPUs might have
3550 * missed the tick driven calc_load_account_active() update
3551 * due to NO_HZ.
3552 */
3553 delta = calc_load_fold_idle();
3554 if (delta)
3555 atomic_long_add(delta, &calc_load_tasks);
3556
3557 /*
3558 * If we were idle for multiple load cycles, apply them.
3559 */
3560 if (ticks >= LOAD_FREQ) {
3561 n = ticks / LOAD_FREQ;
3562
3563 active = atomic_long_read(&calc_load_tasks);
3564 active = active > 0 ? active * FIXED_1 : 0;
3565
3566 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3567 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3568 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3569
3570 calc_load_update += n * LOAD_FREQ;
3571 }
3572
3573 /*
3574 * Its possible the remainder of the above division also crosses
3575 * a LOAD_FREQ period, the regular check in calc_global_load()
3576 * which comes after this will take care of that.
3577 *
3578 * Consider us being 11 ticks before a cycle completion, and us
3579 * sleeping for 4*LOAD_FREQ + 22 ticks, then the above code will
3580 * age us 4 cycles, and the test in calc_global_load() will
3581 * pick up the final one.
3582 */
3583 }
3584 #else
3585 static void calc_load_account_idle(struct rq *this_rq)
3586 {
3587 }
3588
3589 static inline long calc_load_fold_idle(void)
3590 {
3591 return 0;
3592 }
3593
3594 static void calc_global_nohz(unsigned long ticks)
3595 {
3596 }
3597 #endif
3598
3599 /**
3600 * get_avenrun - get the load average array
3601 * @loads: pointer to dest load array
3602 * @offset: offset to add
3603 * @shift: shift count to shift the result left
3604 *
3605 * These values are estimates at best, so no need for locking.
3606 */
3607 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3608 {
3609 loads[0] = (avenrun[0] + offset) << shift;
3610 loads[1] = (avenrun[1] + offset) << shift;
3611 loads[2] = (avenrun[2] + offset) << shift;
3612 }
3613
3614 /*
3615 * calc_load - update the avenrun load estimates 10 ticks after the
3616 * CPUs have updated calc_load_tasks.
3617 */
3618 void calc_global_load(unsigned long ticks)
3619 {
3620 long active;
3621
3622 calc_global_nohz(ticks);
3623
3624 if (time_before(jiffies, calc_load_update + 10))
3625 return;
3626
3627 active = atomic_long_read(&calc_load_tasks);
3628 active = active > 0 ? active * FIXED_1 : 0;
3629
3630 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3631 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3632 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3633
3634 calc_load_update += LOAD_FREQ;
3635 }
3636
3637 /*
3638 * Called from update_cpu_load() to periodically update this CPU's
3639 * active count.
3640 */
3641 static void calc_load_account_active(struct rq *this_rq)
3642 {
3643 long delta;
3644
3645 if (time_before(jiffies, this_rq->calc_load_update))
3646 return;
3647
3648 delta = calc_load_fold_active(this_rq);
3649 delta += calc_load_fold_idle();
3650 if (delta)
3651 atomic_long_add(delta, &calc_load_tasks);
3652
3653 this_rq->calc_load_update += LOAD_FREQ;
3654 }
3655
3656 /*
3657 * The exact cpuload at various idx values, calculated at every tick would be
3658 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3659 *
3660 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3661 * on nth tick when cpu may be busy, then we have:
3662 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3663 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3664 *
3665 * decay_load_missed() below does efficient calculation of
3666 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3667 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3668 *
3669 * The calculation is approximated on a 128 point scale.
3670 * degrade_zero_ticks is the number of ticks after which load at any
3671 * particular idx is approximated to be zero.
3672 * degrade_factor is a precomputed table, a row for each load idx.
3673 * Each column corresponds to degradation factor for a power of two ticks,
3674 * based on 128 point scale.
3675 * Example:
3676 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3677 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3678 *
3679 * With this power of 2 load factors, we can degrade the load n times
3680 * by looking at 1 bits in n and doing as many mult/shift instead of
3681 * n mult/shifts needed by the exact degradation.
3682 */
3683 #define DEGRADE_SHIFT 7
3684 static const unsigned char
3685 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3686 static const unsigned char
3687 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3688 {0, 0, 0, 0, 0, 0, 0, 0},
3689 {64, 32, 8, 0, 0, 0, 0, 0},
3690 {96, 72, 40, 12, 1, 0, 0},
3691 {112, 98, 75, 43, 15, 1, 0},
3692 {120, 112, 98, 76, 45, 16, 2} };
3693
3694 /*
3695 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3696 * would be when CPU is idle and so we just decay the old load without
3697 * adding any new load.
3698 */
3699 static unsigned long
3700 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3701 {
3702 int j = 0;
3703
3704 if (!missed_updates)
3705 return load;
3706
3707 if (missed_updates >= degrade_zero_ticks[idx])
3708 return 0;
3709
3710 if (idx == 1)
3711 return load >> missed_updates;
3712
3713 while (missed_updates) {
3714 if (missed_updates % 2)
3715 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3716
3717 missed_updates >>= 1;
3718 j++;
3719 }
3720 return load;
3721 }
3722
3723 /*
3724 * Update rq->cpu_load[] statistics. This function is usually called every
3725 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3726 * every tick. We fix it up based on jiffies.
3727 */
3728 static void update_cpu_load(struct rq *this_rq)
3729 {
3730 unsigned long this_load = this_rq->load.weight;
3731 unsigned long curr_jiffies = jiffies;
3732 unsigned long pending_updates;
3733 int i, scale;
3734
3735 this_rq->nr_load_updates++;
3736
3737 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3738 if (curr_jiffies == this_rq->last_load_update_tick)
3739 return;
3740
3741 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3742 this_rq->last_load_update_tick = curr_jiffies;
3743
3744 /* Update our load: */
3745 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3746 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3747 unsigned long old_load, new_load;
3748
3749 /* scale is effectively 1 << i now, and >> i divides by scale */
3750
3751 old_load = this_rq->cpu_load[i];
3752 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3753 new_load = this_load;
3754 /*
3755 * Round up the averaging division if load is increasing. This
3756 * prevents us from getting stuck on 9 if the load is 10, for
3757 * example.
3758 */
3759 if (new_load > old_load)
3760 new_load += scale - 1;
3761
3762 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3763 }
3764
3765 sched_avg_update(this_rq);
3766 }
3767
3768 static void update_cpu_load_active(struct rq *this_rq)
3769 {
3770 update_cpu_load(this_rq);
3771
3772 calc_load_account_active(this_rq);
3773 }
3774
3775 #ifdef CONFIG_SMP
3776
3777 /*
3778 * sched_exec - execve() is a valuable balancing opportunity, because at
3779 * this point the task has the smallest effective memory and cache footprint.
3780 */
3781 void sched_exec(void)
3782 {
3783 struct task_struct *p = current;
3784 unsigned long flags;
3785 int dest_cpu;
3786
3787 raw_spin_lock_irqsave(&p->pi_lock, flags);
3788 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3789 if (dest_cpu == smp_processor_id())
3790 goto unlock;
3791
3792 if (likely(cpu_active(dest_cpu))) {
3793 struct migration_arg arg = { p, dest_cpu };
3794
3795 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3796 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3797 return;
3798 }
3799 unlock:
3800 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3801 }
3802
3803 #endif
3804
3805 DEFINE_PER_CPU(struct kernel_stat, kstat);
3806
3807 EXPORT_PER_CPU_SYMBOL(kstat);
3808
3809 /*
3810 * Return any ns on the sched_clock that have not yet been accounted in
3811 * @p in case that task is currently running.
3812 *
3813 * Called with task_rq_lock() held on @rq.
3814 */
3815 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3816 {
3817 u64 ns = 0;
3818
3819 if (task_current(rq, p)) {
3820 update_rq_clock(rq);
3821 ns = rq->clock_task - p->se.exec_start;
3822 if ((s64)ns < 0)
3823 ns = 0;
3824 }
3825
3826 return ns;
3827 }
3828
3829 unsigned long long task_delta_exec(struct task_struct *p)
3830 {
3831 unsigned long flags;
3832 struct rq *rq;
3833 u64 ns = 0;
3834
3835 rq = task_rq_lock(p, &flags);
3836 ns = do_task_delta_exec(p, rq);
3837 task_rq_unlock(rq, p, &flags);
3838
3839 return ns;
3840 }
3841
3842 /*
3843 * Return accounted runtime for the task.
3844 * In case the task is currently running, return the runtime plus current's
3845 * pending runtime that have not been accounted yet.
3846 */
3847 unsigned long long task_sched_runtime(struct task_struct *p)
3848 {
3849 unsigned long flags;
3850 struct rq *rq;
3851 u64 ns = 0;
3852
3853 rq = task_rq_lock(p, &flags);
3854 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3855 task_rq_unlock(rq, p, &flags);
3856
3857 return ns;
3858 }
3859
3860 /*
3861 * Account user cpu time to a process.
3862 * @p: the process that the cpu time gets accounted to
3863 * @cputime: the cpu time spent in user space since the last update
3864 * @cputime_scaled: cputime scaled by cpu frequency
3865 */
3866 void account_user_time(struct task_struct *p, cputime_t cputime,
3867 cputime_t cputime_scaled)
3868 {
3869 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3870 cputime64_t tmp;
3871
3872 /* Add user time to process. */
3873 p->utime = cputime_add(p->utime, cputime);
3874 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3875 account_group_user_time(p, cputime);
3876
3877 /* Add user time to cpustat. */
3878 tmp = cputime_to_cputime64(cputime);
3879 if (TASK_NICE(p) > 0)
3880 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3881 else
3882 cpustat->user = cputime64_add(cpustat->user, tmp);
3883
3884 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3885 /* Account for user time used */
3886 acct_update_integrals(p);
3887 }
3888
3889 /*
3890 * Account guest cpu time to a process.
3891 * @p: the process that the cpu time gets accounted to
3892 * @cputime: the cpu time spent in virtual machine since the last update
3893 * @cputime_scaled: cputime scaled by cpu frequency
3894 */
3895 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3896 cputime_t cputime_scaled)
3897 {
3898 cputime64_t tmp;
3899 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3900
3901 tmp = cputime_to_cputime64(cputime);
3902
3903 /* Add guest time to process. */
3904 p->utime = cputime_add(p->utime, cputime);
3905 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3906 account_group_user_time(p, cputime);
3907 p->gtime = cputime_add(p->gtime, cputime);
3908
3909 /* Add guest time to cpustat. */
3910 if (TASK_NICE(p) > 0) {
3911 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3912 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3913 } else {
3914 cpustat->user = cputime64_add(cpustat->user, tmp);
3915 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3916 }
3917 }
3918
3919 /*
3920 * Account system cpu time to a process and desired cpustat field
3921 * @p: the process that the cpu time gets accounted to
3922 * @cputime: the cpu time spent in kernel space since the last update
3923 * @cputime_scaled: cputime scaled by cpu frequency
3924 * @target_cputime64: pointer to cpustat field that has to be updated
3925 */
3926 static inline
3927 void __account_system_time(struct task_struct *p, cputime_t cputime,
3928 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3929 {
3930 cputime64_t tmp = cputime_to_cputime64(cputime);
3931
3932 /* Add system time to process. */
3933 p->stime = cputime_add(p->stime, cputime);
3934 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3935 account_group_system_time(p, cputime);
3936
3937 /* Add system time to cpustat. */
3938 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3939 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3940
3941 /* Account for system time used */
3942 acct_update_integrals(p);
3943 }
3944
3945 /*
3946 * Account system cpu time to a process.
3947 * @p: the process that the cpu time gets accounted to
3948 * @hardirq_offset: the offset to subtract from hardirq_count()
3949 * @cputime: the cpu time spent in kernel space since the last update
3950 * @cputime_scaled: cputime scaled by cpu frequency
3951 */
3952 void account_system_time(struct task_struct *p, int hardirq_offset,
3953 cputime_t cputime, cputime_t cputime_scaled)
3954 {
3955 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3956 cputime64_t *target_cputime64;
3957
3958 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3959 account_guest_time(p, cputime, cputime_scaled);
3960 return;
3961 }
3962
3963 if (hardirq_count() - hardirq_offset)
3964 target_cputime64 = &cpustat->irq;
3965 else if (in_serving_softirq())
3966 target_cputime64 = &cpustat->softirq;
3967 else
3968 target_cputime64 = &cpustat->system;
3969
3970 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3971 }
3972
3973 /*
3974 * Account for involuntary wait time.
3975 * @cputime: the cpu time spent in involuntary wait
3976 */
3977 void account_steal_time(cputime_t cputime)
3978 {
3979 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3980 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3981
3982 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3983 }
3984
3985 /*
3986 * Account for idle time.
3987 * @cputime: the cpu time spent in idle wait
3988 */
3989 void account_idle_time(cputime_t cputime)
3990 {
3991 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3992 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3993 struct rq *rq = this_rq();
3994
3995 if (atomic_read(&rq->nr_iowait) > 0)
3996 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3997 else
3998 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3999 }
4000
4001 static __always_inline bool steal_account_process_tick(void)
4002 {
4003 #ifdef CONFIG_PARAVIRT
4004 if (static_branch(&paravirt_steal_enabled)) {
4005 u64 steal, st = 0;
4006
4007 steal = paravirt_steal_clock(smp_processor_id());
4008 steal -= this_rq()->prev_steal_time;
4009
4010 st = steal_ticks(steal);
4011 this_rq()->prev_steal_time += st * TICK_NSEC;
4012
4013 account_steal_time(st);
4014 return st;
4015 }
4016 #endif
4017 return false;
4018 }
4019
4020 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4021
4022 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
4023 /*
4024 * Account a tick to a process and cpustat
4025 * @p: the process that the cpu time gets accounted to
4026 * @user_tick: is the tick from userspace
4027 * @rq: the pointer to rq
4028 *
4029 * Tick demultiplexing follows the order
4030 * - pending hardirq update
4031 * - pending softirq update
4032 * - user_time
4033 * - idle_time
4034 * - system time
4035 * - check for guest_time
4036 * - else account as system_time
4037 *
4038 * Check for hardirq is done both for system and user time as there is
4039 * no timer going off while we are on hardirq and hence we may never get an
4040 * opportunity to update it solely in system time.
4041 * p->stime and friends are only updated on system time and not on irq
4042 * softirq as those do not count in task exec_runtime any more.
4043 */
4044 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4045 struct rq *rq)
4046 {
4047 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4048 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
4049 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4050
4051 if (steal_account_process_tick())
4052 return;
4053
4054 if (irqtime_account_hi_update()) {
4055 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4056 } else if (irqtime_account_si_update()) {
4057 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4058 } else if (this_cpu_ksoftirqd() == p) {
4059 /*
4060 * ksoftirqd time do not get accounted in cpu_softirq_time.
4061 * So, we have to handle it separately here.
4062 * Also, p->stime needs to be updated for ksoftirqd.
4063 */
4064 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4065 &cpustat->softirq);
4066 } else if (user_tick) {
4067 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4068 } else if (p == rq->idle) {
4069 account_idle_time(cputime_one_jiffy);
4070 } else if (p->flags & PF_VCPU) { /* System time or guest time */
4071 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
4072 } else {
4073 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4074 &cpustat->system);
4075 }
4076 }
4077
4078 static void irqtime_account_idle_ticks(int ticks)
4079 {
4080 int i;
4081 struct rq *rq = this_rq();
4082
4083 for (i = 0; i < ticks; i++)
4084 irqtime_account_process_tick(current, 0, rq);
4085 }
4086 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
4087 static void irqtime_account_idle_ticks(int ticks) {}
4088 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4089 struct rq *rq) {}
4090 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
4091
4092 /*
4093 * Account a single tick of cpu time.
4094 * @p: the process that the cpu time gets accounted to
4095 * @user_tick: indicates if the tick is a user or a system tick
4096 */
4097 void account_process_tick(struct task_struct *p, int user_tick)
4098 {
4099 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4100 struct rq *rq = this_rq();
4101
4102 if (sched_clock_irqtime) {
4103 irqtime_account_process_tick(p, user_tick, rq);
4104 return;
4105 }
4106
4107 if (steal_account_process_tick())
4108 return;
4109
4110 if (user_tick)
4111 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4112 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4113 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
4114 one_jiffy_scaled);
4115 else
4116 account_idle_time(cputime_one_jiffy);
4117 }
4118
4119 /*
4120 * Account multiple ticks of steal time.
4121 * @p: the process from which the cpu time has been stolen
4122 * @ticks: number of stolen ticks
4123 */
4124 void account_steal_ticks(unsigned long ticks)
4125 {
4126 account_steal_time(jiffies_to_cputime(ticks));
4127 }
4128
4129 /*
4130 * Account multiple ticks of idle time.
4131 * @ticks: number of stolen ticks
4132 */
4133 void account_idle_ticks(unsigned long ticks)
4134 {
4135
4136 if (sched_clock_irqtime) {
4137 irqtime_account_idle_ticks(ticks);
4138 return;
4139 }
4140
4141 account_idle_time(jiffies_to_cputime(ticks));
4142 }
4143
4144 #endif
4145
4146 /*
4147 * Use precise platform statistics if available:
4148 */
4149 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4150 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4151 {
4152 *ut = p->utime;
4153 *st = p->stime;
4154 }
4155
4156 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4157 {
4158 struct task_cputime cputime;
4159
4160 thread_group_cputime(p, &cputime);
4161
4162 *ut = cputime.utime;
4163 *st = cputime.stime;
4164 }
4165 #else
4166
4167 #ifndef nsecs_to_cputime
4168 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
4169 #endif
4170
4171 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4172 {
4173 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
4174
4175 /*
4176 * Use CFS's precise accounting:
4177 */
4178 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
4179
4180 if (total) {
4181 u64 temp = rtime;
4182
4183 temp *= utime;
4184 do_div(temp, total);
4185 utime = (cputime_t)temp;
4186 } else
4187 utime = rtime;
4188
4189 /*
4190 * Compare with previous values, to keep monotonicity:
4191 */
4192 p->prev_utime = max(p->prev_utime, utime);
4193 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4194
4195 *ut = p->prev_utime;
4196 *st = p->prev_stime;
4197 }
4198
4199 /*
4200 * Must be called with siglock held.
4201 */
4202 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4203 {
4204 struct signal_struct *sig = p->signal;
4205 struct task_cputime cputime;
4206 cputime_t rtime, utime, total;
4207
4208 thread_group_cputime(p, &cputime);
4209
4210 total = cputime_add(cputime.utime, cputime.stime);
4211 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4212
4213 if (total) {
4214 u64 temp = rtime;
4215
4216 temp *= cputime.utime;
4217 do_div(temp, total);
4218 utime = (cputime_t)temp;
4219 } else
4220 utime = rtime;
4221
4222 sig->prev_utime = max(sig->prev_utime, utime);
4223 sig->prev_stime = max(sig->prev_stime,
4224 cputime_sub(rtime, sig->prev_utime));
4225
4226 *ut = sig->prev_utime;
4227 *st = sig->prev_stime;
4228 }
4229 #endif
4230
4231 /*
4232 * This function gets called by the timer code, with HZ frequency.
4233 * We call it with interrupts disabled.
4234 */
4235 void scheduler_tick(void)
4236 {
4237 int cpu = smp_processor_id();
4238 struct rq *rq = cpu_rq(cpu);
4239 struct task_struct *curr = rq->curr;
4240
4241 sched_clock_tick();
4242
4243 raw_spin_lock(&rq->lock);
4244 update_rq_clock(rq);
4245 update_cpu_load_active(rq);
4246 curr->sched_class->task_tick(rq, curr, 0);
4247 raw_spin_unlock(&rq->lock);
4248
4249 perf_event_task_tick();
4250
4251 #ifdef CONFIG_SMP
4252 rq->idle_balance = idle_cpu(cpu);
4253 trigger_load_balance(rq, cpu);
4254 #endif
4255 }
4256
4257 notrace unsigned long get_parent_ip(unsigned long addr)
4258 {
4259 if (in_lock_functions(addr)) {
4260 addr = CALLER_ADDR2;
4261 if (in_lock_functions(addr))
4262 addr = CALLER_ADDR3;
4263 }
4264 return addr;
4265 }
4266
4267 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4268 defined(CONFIG_PREEMPT_TRACER))
4269
4270 void __kprobes add_preempt_count(int val)
4271 {
4272 #ifdef CONFIG_DEBUG_PREEMPT
4273 /*
4274 * Underflow?
4275 */
4276 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4277 return;
4278 #endif
4279 preempt_count() += val;
4280 #ifdef CONFIG_DEBUG_PREEMPT
4281 /*
4282 * Spinlock count overflowing soon?
4283 */
4284 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4285 PREEMPT_MASK - 10);
4286 #endif
4287 if (preempt_count() == val)
4288 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4289 }
4290 EXPORT_SYMBOL(add_preempt_count);
4291
4292 void __kprobes sub_preempt_count(int val)
4293 {
4294 #ifdef CONFIG_DEBUG_PREEMPT
4295 /*
4296 * Underflow?
4297 */
4298 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4299 return;
4300 /*
4301 * Is the spinlock portion underflowing?
4302 */
4303 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4304 !(preempt_count() & PREEMPT_MASK)))
4305 return;
4306 #endif
4307
4308 if (preempt_count() == val)
4309 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4310 preempt_count() -= val;
4311 }
4312 EXPORT_SYMBOL(sub_preempt_count);
4313
4314 #endif
4315
4316 /*
4317 * Print scheduling while atomic bug:
4318 */
4319 static noinline void __schedule_bug(struct task_struct *prev)
4320 {
4321 struct pt_regs *regs = get_irq_regs();
4322
4323 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4324 prev->comm, prev->pid, preempt_count());
4325
4326 debug_show_held_locks(prev);
4327 print_modules();
4328 if (irqs_disabled())
4329 print_irqtrace_events(prev);
4330
4331 if (regs)
4332 show_regs(regs);
4333 else
4334 dump_stack();
4335 }
4336
4337 /*
4338 * Various schedule()-time debugging checks and statistics:
4339 */
4340 static inline void schedule_debug(struct task_struct *prev)
4341 {
4342 /*
4343 * Test if we are atomic. Since do_exit() needs to call into
4344 * schedule() atomically, we ignore that path for now.
4345 * Otherwise, whine if we are scheduling when we should not be.
4346 */
4347 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4348 __schedule_bug(prev);
4349 rcu_sleep_check();
4350
4351 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4352
4353 schedstat_inc(this_rq(), sched_count);
4354 }
4355
4356 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4357 {
4358 if (prev->on_rq || rq->skip_clock_update < 0)
4359 update_rq_clock(rq);
4360 prev->sched_class->put_prev_task(rq, prev);
4361 }
4362
4363 /*
4364 * Pick up the highest-prio task:
4365 */
4366 static inline struct task_struct *
4367 pick_next_task(struct rq *rq)
4368 {
4369 const struct sched_class *class;
4370 struct task_struct *p;
4371
4372 /*
4373 * Optimization: we know that if all tasks are in
4374 * the fair class we can call that function directly:
4375 */
4376 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
4377 p = fair_sched_class.pick_next_task(rq);
4378 if (likely(p))
4379 return p;
4380 }
4381
4382 for_each_class(class) {
4383 p = class->pick_next_task(rq);
4384 if (p)
4385 return p;
4386 }
4387
4388 BUG(); /* the idle class will always have a runnable task */
4389 }
4390
4391 /*
4392 * __schedule() is the main scheduler function.
4393 */
4394 static void __sched __schedule(void)
4395 {
4396 struct task_struct *prev, *next;
4397 unsigned long *switch_count;
4398 struct rq *rq;
4399 int cpu;
4400
4401 need_resched:
4402 preempt_disable();
4403 cpu = smp_processor_id();
4404 rq = cpu_rq(cpu);
4405 rcu_note_context_switch(cpu);
4406 prev = rq->curr;
4407
4408 schedule_debug(prev);
4409
4410 if (sched_feat(HRTICK))
4411 hrtick_clear(rq);
4412
4413 raw_spin_lock_irq(&rq->lock);
4414
4415 switch_count = &prev->nivcsw;
4416 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4417 if (unlikely(signal_pending_state(prev->state, prev))) {
4418 prev->state = TASK_RUNNING;
4419 } else {
4420 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4421 prev->on_rq = 0;
4422
4423 /*
4424 * If a worker went to sleep, notify and ask workqueue
4425 * whether it wants to wake up a task to maintain
4426 * concurrency.
4427 */
4428 if (prev->flags & PF_WQ_WORKER) {
4429 struct task_struct *to_wakeup;
4430
4431 to_wakeup = wq_worker_sleeping(prev, cpu);
4432 if (to_wakeup)
4433 try_to_wake_up_local(to_wakeup);
4434 }
4435 }
4436 switch_count = &prev->nvcsw;
4437 }
4438
4439 pre_schedule(rq, prev);
4440
4441 if (unlikely(!rq->nr_running))
4442 idle_balance(cpu, rq);
4443
4444 put_prev_task(rq, prev);
4445 next = pick_next_task(rq);
4446 clear_tsk_need_resched(prev);
4447 rq->skip_clock_update = 0;
4448
4449 if (likely(prev != next)) {
4450 rq->nr_switches++;
4451 rq->curr = next;
4452 ++*switch_count;
4453
4454 context_switch(rq, prev, next); /* unlocks the rq */
4455 /*
4456 * The context switch have flipped the stack from under us
4457 * and restored the local variables which were saved when
4458 * this task called schedule() in the past. prev == current
4459 * is still correct, but it can be moved to another cpu/rq.
4460 */
4461 cpu = smp_processor_id();
4462 rq = cpu_rq(cpu);
4463 } else
4464 raw_spin_unlock_irq(&rq->lock);
4465
4466 post_schedule(rq);
4467
4468 preempt_enable_no_resched();
4469 if (need_resched())
4470 goto need_resched;
4471 }
4472
4473 static inline void sched_submit_work(struct task_struct *tsk)
4474 {
4475 if (!tsk->state)
4476 return;
4477 /*
4478 * If we are going to sleep and we have plugged IO queued,
4479 * make sure to submit it to avoid deadlocks.
4480 */
4481 if (blk_needs_flush_plug(tsk))
4482 blk_schedule_flush_plug(tsk);
4483 }
4484
4485 asmlinkage void __sched schedule(void)
4486 {
4487 struct task_struct *tsk = current;
4488
4489 sched_submit_work(tsk);
4490 __schedule();
4491 }
4492 EXPORT_SYMBOL(schedule);
4493
4494 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4495
4496 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4497 {
4498 if (lock->owner != owner)
4499 return false;
4500
4501 /*
4502 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4503 * lock->owner still matches owner, if that fails, owner might
4504 * point to free()d memory, if it still matches, the rcu_read_lock()
4505 * ensures the memory stays valid.
4506 */
4507 barrier();
4508
4509 return owner->on_cpu;
4510 }
4511
4512 /*
4513 * Look out! "owner" is an entirely speculative pointer
4514 * access and not reliable.
4515 */
4516 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4517 {
4518 if (!sched_feat(OWNER_SPIN))
4519 return 0;
4520
4521 rcu_read_lock();
4522 while (owner_running(lock, owner)) {
4523 if (need_resched())
4524 break;
4525
4526 arch_mutex_cpu_relax();
4527 }
4528 rcu_read_unlock();
4529
4530 /*
4531 * We break out the loop above on need_resched() and when the
4532 * owner changed, which is a sign for heavy contention. Return
4533 * success only when lock->owner is NULL.
4534 */
4535 return lock->owner == NULL;
4536 }
4537 #endif
4538
4539 #ifdef CONFIG_PREEMPT
4540 /*
4541 * this is the entry point to schedule() from in-kernel preemption
4542 * off of preempt_enable. Kernel preemptions off return from interrupt
4543 * occur there and call schedule directly.
4544 */
4545 asmlinkage void __sched notrace preempt_schedule(void)
4546 {
4547 struct thread_info *ti = current_thread_info();
4548
4549 /*
4550 * If there is a non-zero preempt_count or interrupts are disabled,
4551 * we do not want to preempt the current task. Just return..
4552 */
4553 if (likely(ti->preempt_count || irqs_disabled()))
4554 return;
4555
4556 do {
4557 add_preempt_count_notrace(PREEMPT_ACTIVE);
4558 __schedule();
4559 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4560
4561 /*
4562 * Check again in case we missed a preemption opportunity
4563 * between schedule and now.
4564 */
4565 barrier();
4566 } while (need_resched());
4567 }
4568 EXPORT_SYMBOL(preempt_schedule);
4569
4570 /*
4571 * this is the entry point to schedule() from kernel preemption
4572 * off of irq context.
4573 * Note, that this is called and return with irqs disabled. This will
4574 * protect us against recursive calling from irq.
4575 */
4576 asmlinkage void __sched preempt_schedule_irq(void)
4577 {
4578 struct thread_info *ti = current_thread_info();
4579
4580 /* Catch callers which need to be fixed */
4581 BUG_ON(ti->preempt_count || !irqs_disabled());
4582
4583 do {
4584 add_preempt_count(PREEMPT_ACTIVE);
4585 local_irq_enable();
4586 __schedule();
4587 local_irq_disable();
4588 sub_preempt_count(PREEMPT_ACTIVE);
4589
4590 /*
4591 * Check again in case we missed a preemption opportunity
4592 * between schedule and now.
4593 */
4594 barrier();
4595 } while (need_resched());
4596 }
4597
4598 #endif /* CONFIG_PREEMPT */
4599
4600 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4601 void *key)
4602 {
4603 return try_to_wake_up(curr->private, mode, wake_flags);
4604 }
4605 EXPORT_SYMBOL(default_wake_function);
4606
4607 /*
4608 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4609 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4610 * number) then we wake all the non-exclusive tasks and one exclusive task.
4611 *
4612 * There are circumstances in which we can try to wake a task which has already
4613 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4614 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4615 */
4616 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4617 int nr_exclusive, int wake_flags, void *key)
4618 {
4619 wait_queue_t *curr, *next;
4620
4621 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4622 unsigned flags = curr->flags;
4623
4624 if (curr->func(curr, mode, wake_flags, key) &&
4625 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4626 break;
4627 }
4628 }
4629
4630 /**
4631 * __wake_up - wake up threads blocked on a waitqueue.
4632 * @q: the waitqueue
4633 * @mode: which threads
4634 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4635 * @key: is directly passed to the wakeup function
4636 *
4637 * It may be assumed that this function implies a write memory barrier before
4638 * changing the task state if and only if any tasks are woken up.
4639 */
4640 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4641 int nr_exclusive, void *key)
4642 {
4643 unsigned long flags;
4644
4645 spin_lock_irqsave(&q->lock, flags);
4646 __wake_up_common(q, mode, nr_exclusive, 0, key);
4647 spin_unlock_irqrestore(&q->lock, flags);
4648 }
4649 EXPORT_SYMBOL(__wake_up);
4650
4651 /*
4652 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4653 */
4654 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4655 {
4656 __wake_up_common(q, mode, 1, 0, NULL);
4657 }
4658 EXPORT_SYMBOL_GPL(__wake_up_locked);
4659
4660 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4661 {
4662 __wake_up_common(q, mode, 1, 0, key);
4663 }
4664 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4665
4666 /**
4667 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4668 * @q: the waitqueue
4669 * @mode: which threads
4670 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4671 * @key: opaque value to be passed to wakeup targets
4672 *
4673 * The sync wakeup differs that the waker knows that it will schedule
4674 * away soon, so while the target thread will be woken up, it will not
4675 * be migrated to another CPU - ie. the two threads are 'synchronized'
4676 * with each other. This can prevent needless bouncing between CPUs.
4677 *
4678 * On UP it can prevent extra preemption.
4679 *
4680 * It may be assumed that this function implies a write memory barrier before
4681 * changing the task state if and only if any tasks are woken up.
4682 */
4683 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4684 int nr_exclusive, void *key)
4685 {
4686 unsigned long flags;
4687 int wake_flags = WF_SYNC;
4688
4689 if (unlikely(!q))
4690 return;
4691
4692 if (unlikely(!nr_exclusive))
4693 wake_flags = 0;
4694
4695 spin_lock_irqsave(&q->lock, flags);
4696 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4697 spin_unlock_irqrestore(&q->lock, flags);
4698 }
4699 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4700
4701 /*
4702 * __wake_up_sync - see __wake_up_sync_key()
4703 */
4704 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4705 {
4706 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4707 }
4708 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4709
4710 /**
4711 * complete: - signals a single thread waiting on this completion
4712 * @x: holds the state of this particular completion
4713 *
4714 * This will wake up a single thread waiting on this completion. Threads will be
4715 * awakened in the same order in which they were queued.
4716 *
4717 * See also complete_all(), wait_for_completion() and related routines.
4718 *
4719 * It may be assumed that this function implies a write memory barrier before
4720 * changing the task state if and only if any tasks are woken up.
4721 */
4722 void complete(struct completion *x)
4723 {
4724 unsigned long flags;
4725
4726 spin_lock_irqsave(&x->wait.lock, flags);
4727 x->done++;
4728 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4729 spin_unlock_irqrestore(&x->wait.lock, flags);
4730 }
4731 EXPORT_SYMBOL(complete);
4732
4733 /**
4734 * complete_all: - signals all threads waiting on this completion
4735 * @x: holds the state of this particular completion
4736 *
4737 * This will wake up all threads waiting on this particular completion event.
4738 *
4739 * It may be assumed that this function implies a write memory barrier before
4740 * changing the task state if and only if any tasks are woken up.
4741 */
4742 void complete_all(struct completion *x)
4743 {
4744 unsigned long flags;
4745
4746 spin_lock_irqsave(&x->wait.lock, flags);
4747 x->done += UINT_MAX/2;
4748 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4749 spin_unlock_irqrestore(&x->wait.lock, flags);
4750 }
4751 EXPORT_SYMBOL(complete_all);
4752
4753 static inline long __sched
4754 do_wait_for_common(struct completion *x, long timeout, int state)
4755 {
4756 if (!x->done) {
4757 DECLARE_WAITQUEUE(wait, current);
4758
4759 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4760 do {
4761 if (signal_pending_state(state, current)) {
4762 timeout = -ERESTARTSYS;
4763 break;
4764 }
4765 __set_current_state(state);
4766 spin_unlock_irq(&x->wait.lock);
4767 timeout = schedule_timeout(timeout);
4768 spin_lock_irq(&x->wait.lock);
4769 } while (!x->done && timeout);
4770 __remove_wait_queue(&x->wait, &wait);
4771 if (!x->done)
4772 return timeout;
4773 }
4774 x->done--;
4775 return timeout ?: 1;
4776 }
4777
4778 static long __sched
4779 wait_for_common(struct completion *x, long timeout, int state)
4780 {
4781 might_sleep();
4782
4783 spin_lock_irq(&x->wait.lock);
4784 timeout = do_wait_for_common(x, timeout, state);
4785 spin_unlock_irq(&x->wait.lock);
4786 return timeout;
4787 }
4788
4789 /**
4790 * wait_for_completion: - waits for completion of a task
4791 * @x: holds the state of this particular completion
4792 *
4793 * This waits to be signaled for completion of a specific task. It is NOT
4794 * interruptible and there is no timeout.
4795 *
4796 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4797 * and interrupt capability. Also see complete().
4798 */
4799 void __sched wait_for_completion(struct completion *x)
4800 {
4801 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4802 }
4803 EXPORT_SYMBOL(wait_for_completion);
4804
4805 /**
4806 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4807 * @x: holds the state of this particular completion
4808 * @timeout: timeout value in jiffies
4809 *
4810 * This waits for either a completion of a specific task to be signaled or for a
4811 * specified timeout to expire. The timeout is in jiffies. It is not
4812 * interruptible.
4813 *
4814 * The return value is 0 if timed out, and positive (at least 1, or number of
4815 * jiffies left till timeout) if completed.
4816 */
4817 unsigned long __sched
4818 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4819 {
4820 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4821 }
4822 EXPORT_SYMBOL(wait_for_completion_timeout);
4823
4824 /**
4825 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4826 * @x: holds the state of this particular completion
4827 *
4828 * This waits for completion of a specific task to be signaled. It is
4829 * interruptible.
4830 *
4831 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
4832 */
4833 int __sched wait_for_completion_interruptible(struct completion *x)
4834 {
4835 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4836 if (t == -ERESTARTSYS)
4837 return t;
4838 return 0;
4839 }
4840 EXPORT_SYMBOL(wait_for_completion_interruptible);
4841
4842 /**
4843 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4844 * @x: holds the state of this particular completion
4845 * @timeout: timeout value in jiffies
4846 *
4847 * This waits for either a completion of a specific task to be signaled or for a
4848 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4849 *
4850 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
4851 * positive (at least 1, or number of jiffies left till timeout) if completed.
4852 */
4853 long __sched
4854 wait_for_completion_interruptible_timeout(struct completion *x,
4855 unsigned long timeout)
4856 {
4857 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4858 }
4859 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4860
4861 /**
4862 * wait_for_completion_killable: - waits for completion of a task (killable)
4863 * @x: holds the state of this particular completion
4864 *
4865 * This waits to be signaled for completion of a specific task. It can be
4866 * interrupted by a kill signal.
4867 *
4868 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
4869 */
4870 int __sched wait_for_completion_killable(struct completion *x)
4871 {
4872 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4873 if (t == -ERESTARTSYS)
4874 return t;
4875 return 0;
4876 }
4877 EXPORT_SYMBOL(wait_for_completion_killable);
4878
4879 /**
4880 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4881 * @x: holds the state of this particular completion
4882 * @timeout: timeout value in jiffies
4883 *
4884 * This waits for either a completion of a specific task to be
4885 * signaled or for a specified timeout to expire. It can be
4886 * interrupted by a kill signal. The timeout is in jiffies.
4887 *
4888 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
4889 * positive (at least 1, or number of jiffies left till timeout) if completed.
4890 */
4891 long __sched
4892 wait_for_completion_killable_timeout(struct completion *x,
4893 unsigned long timeout)
4894 {
4895 return wait_for_common(x, timeout, TASK_KILLABLE);
4896 }
4897 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4898
4899 /**
4900 * try_wait_for_completion - try to decrement a completion without blocking
4901 * @x: completion structure
4902 *
4903 * Returns: 0 if a decrement cannot be done without blocking
4904 * 1 if a decrement succeeded.
4905 *
4906 * If a completion is being used as a counting completion,
4907 * attempt to decrement the counter without blocking. This
4908 * enables us to avoid waiting if the resource the completion
4909 * is protecting is not available.
4910 */
4911 bool try_wait_for_completion(struct completion *x)
4912 {
4913 unsigned long flags;
4914 int ret = 1;
4915
4916 spin_lock_irqsave(&x->wait.lock, flags);
4917 if (!x->done)
4918 ret = 0;
4919 else
4920 x->done--;
4921 spin_unlock_irqrestore(&x->wait.lock, flags);
4922 return ret;
4923 }
4924 EXPORT_SYMBOL(try_wait_for_completion);
4925
4926 /**
4927 * completion_done - Test to see if a completion has any waiters
4928 * @x: completion structure
4929 *
4930 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4931 * 1 if there are no waiters.
4932 *
4933 */
4934 bool completion_done(struct completion *x)
4935 {
4936 unsigned long flags;
4937 int ret = 1;
4938
4939 spin_lock_irqsave(&x->wait.lock, flags);
4940 if (!x->done)
4941 ret = 0;
4942 spin_unlock_irqrestore(&x->wait.lock, flags);
4943 return ret;
4944 }
4945 EXPORT_SYMBOL(completion_done);
4946
4947 static long __sched
4948 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4949 {
4950 unsigned long flags;
4951 wait_queue_t wait;
4952
4953 init_waitqueue_entry(&wait, current);
4954
4955 __set_current_state(state);
4956
4957 spin_lock_irqsave(&q->lock, flags);
4958 __add_wait_queue(q, &wait);
4959 spin_unlock(&q->lock);
4960 timeout = schedule_timeout(timeout);
4961 spin_lock_irq(&q->lock);
4962 __remove_wait_queue(q, &wait);
4963 spin_unlock_irqrestore(&q->lock, flags);
4964
4965 return timeout;
4966 }
4967
4968 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4969 {
4970 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4971 }
4972 EXPORT_SYMBOL(interruptible_sleep_on);
4973
4974 long __sched
4975 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4976 {
4977 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4978 }
4979 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4980
4981 void __sched sleep_on(wait_queue_head_t *q)
4982 {
4983 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4984 }
4985 EXPORT_SYMBOL(sleep_on);
4986
4987 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4988 {
4989 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4990 }
4991 EXPORT_SYMBOL(sleep_on_timeout);
4992
4993 #ifdef CONFIG_RT_MUTEXES
4994
4995 /*
4996 * rt_mutex_setprio - set the current priority of a task
4997 * @p: task
4998 * @prio: prio value (kernel-internal form)
4999 *
5000 * This function changes the 'effective' priority of a task. It does
5001 * not touch ->normal_prio like __setscheduler().
5002 *
5003 * Used by the rt_mutex code to implement priority inheritance logic.
5004 */
5005 void rt_mutex_setprio(struct task_struct *p, int prio)
5006 {
5007 int oldprio, on_rq, running;
5008 struct rq *rq;
5009 const struct sched_class *prev_class;
5010
5011 BUG_ON(prio < 0 || prio > MAX_PRIO);
5012
5013 rq = __task_rq_lock(p);
5014
5015 trace_sched_pi_setprio(p, prio);
5016 oldprio = p->prio;
5017 prev_class = p->sched_class;
5018 on_rq = p->on_rq;
5019 running = task_current(rq, p);
5020 if (on_rq)
5021 dequeue_task(rq, p, 0);
5022 if (running)
5023 p->sched_class->put_prev_task(rq, p);
5024
5025 if (rt_prio(prio))
5026 p->sched_class = &rt_sched_class;
5027 else
5028 p->sched_class = &fair_sched_class;
5029
5030 p->prio = prio;
5031
5032 if (running)
5033 p->sched_class->set_curr_task(rq);
5034 if (on_rq)
5035 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
5036
5037 check_class_changed(rq, p, prev_class, oldprio);
5038 __task_rq_unlock(rq);
5039 }
5040
5041 #endif
5042
5043 void set_user_nice(struct task_struct *p, long nice)
5044 {
5045 int old_prio, delta, on_rq;
5046 unsigned long flags;
5047 struct rq *rq;
5048
5049 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5050 return;
5051 /*
5052 * We have to be careful, if called from sys_setpriority(),
5053 * the task might be in the middle of scheduling on another CPU.
5054 */
5055 rq = task_rq_lock(p, &flags);
5056 /*
5057 * The RT priorities are set via sched_setscheduler(), but we still
5058 * allow the 'normal' nice value to be set - but as expected
5059 * it wont have any effect on scheduling until the task is
5060 * SCHED_FIFO/SCHED_RR:
5061 */
5062 if (task_has_rt_policy(p)) {
5063 p->static_prio = NICE_TO_PRIO(nice);
5064 goto out_unlock;
5065 }
5066 on_rq = p->on_rq;
5067 if (on_rq)
5068 dequeue_task(rq, p, 0);
5069
5070 p->static_prio = NICE_TO_PRIO(nice);
5071 set_load_weight(p);
5072 old_prio = p->prio;
5073 p->prio = effective_prio(p);
5074 delta = p->prio - old_prio;
5075
5076 if (on_rq) {
5077 enqueue_task(rq, p, 0);
5078 /*
5079 * If the task increased its priority or is running and
5080 * lowered its priority, then reschedule its CPU:
5081 */
5082 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5083 resched_task(rq->curr);
5084 }
5085 out_unlock:
5086 task_rq_unlock(rq, p, &flags);
5087 }
5088 EXPORT_SYMBOL(set_user_nice);
5089
5090 /*
5091 * can_nice - check if a task can reduce its nice value
5092 * @p: task
5093 * @nice: nice value
5094 */
5095 int can_nice(const struct task_struct *p, const int nice)
5096 {
5097 /* convert nice value [19,-20] to rlimit style value [1,40] */
5098 int nice_rlim = 20 - nice;
5099
5100 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5101 capable(CAP_SYS_NICE));
5102 }
5103
5104 #ifdef __ARCH_WANT_SYS_NICE
5105
5106 /*
5107 * sys_nice - change the priority of the current process.
5108 * @increment: priority increment
5109 *
5110 * sys_setpriority is a more generic, but much slower function that
5111 * does similar things.
5112 */
5113 SYSCALL_DEFINE1(nice, int, increment)
5114 {
5115 long nice, retval;
5116
5117 /*
5118 * Setpriority might change our priority at the same moment.
5119 * We don't have to worry. Conceptually one call occurs first
5120 * and we have a single winner.
5121 */
5122 if (increment < -40)
5123 increment = -40;
5124 if (increment > 40)
5125 increment = 40;
5126
5127 nice = TASK_NICE(current) + increment;
5128 if (nice < -20)
5129 nice = -20;
5130 if (nice > 19)
5131 nice = 19;
5132
5133 if (increment < 0 && !can_nice(current, nice))
5134 return -EPERM;
5135
5136 retval = security_task_setnice(current, nice);
5137 if (retval)
5138 return retval;
5139
5140 set_user_nice(current, nice);
5141 return 0;
5142 }
5143
5144 #endif
5145
5146 /**
5147 * task_prio - return the priority value of a given task.
5148 * @p: the task in question.
5149 *
5150 * This is the priority value as seen by users in /proc.
5151 * RT tasks are offset by -200. Normal tasks are centered
5152 * around 0, value goes from -16 to +15.
5153 */
5154 int task_prio(const struct task_struct *p)
5155 {
5156 return p->prio - MAX_RT_PRIO;
5157 }
5158
5159 /**
5160 * task_nice - return the nice value of a given task.
5161 * @p: the task in question.
5162 */
5163 int task_nice(const struct task_struct *p)
5164 {
5165 return TASK_NICE(p);
5166 }
5167 EXPORT_SYMBOL(task_nice);
5168
5169 /**
5170 * idle_cpu - is a given cpu idle currently?
5171 * @cpu: the processor in question.
5172 */
5173 int idle_cpu(int cpu)
5174 {
5175 struct rq *rq = cpu_rq(cpu);
5176
5177 if (rq->curr != rq->idle)
5178 return 0;
5179
5180 if (rq->nr_running)
5181 return 0;
5182
5183 #ifdef CONFIG_SMP
5184 if (!llist_empty(&rq->wake_list))
5185 return 0;
5186 #endif
5187
5188 return 1;
5189 }
5190
5191 /**
5192 * idle_task - return the idle task for a given cpu.
5193 * @cpu: the processor in question.
5194 */
5195 struct task_struct *idle_task(int cpu)
5196 {
5197 return cpu_rq(cpu)->idle;
5198 }
5199
5200 /**
5201 * find_process_by_pid - find a process with a matching PID value.
5202 * @pid: the pid in question.
5203 */
5204 static struct task_struct *find_process_by_pid(pid_t pid)
5205 {
5206 return pid ? find_task_by_vpid(pid) : current;
5207 }
5208
5209 /* Actually do priority change: must hold rq lock. */
5210 static void
5211 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5212 {
5213 p->policy = policy;
5214 p->rt_priority = prio;
5215 p->normal_prio = normal_prio(p);
5216 /* we are holding p->pi_lock already */
5217 p->prio = rt_mutex_getprio(p);
5218 if (rt_prio(p->prio))
5219 p->sched_class = &rt_sched_class;
5220 else
5221 p->sched_class = &fair_sched_class;
5222 set_load_weight(p);
5223 }
5224
5225 /*
5226 * check the target process has a UID that matches the current process's
5227 */
5228 static bool check_same_owner(struct task_struct *p)
5229 {
5230 const struct cred *cred = current_cred(), *pcred;
5231 bool match;
5232
5233 rcu_read_lock();
5234 pcred = __task_cred(p);
5235 if (cred->user->user_ns == pcred->user->user_ns)
5236 match = (cred->euid == pcred->euid ||
5237 cred->euid == pcred->uid);
5238 else
5239 match = false;
5240 rcu_read_unlock();
5241 return match;
5242 }
5243
5244 static int __sched_setscheduler(struct task_struct *p, int policy,
5245 const struct sched_param *param, bool user)
5246 {
5247 int retval, oldprio, oldpolicy = -1, on_rq, running;
5248 unsigned long flags;
5249 const struct sched_class *prev_class;
5250 struct rq *rq;
5251 int reset_on_fork;
5252
5253 /* may grab non-irq protected spin_locks */
5254 BUG_ON(in_interrupt());
5255 recheck:
5256 /* double check policy once rq lock held */
5257 if (policy < 0) {
5258 reset_on_fork = p->sched_reset_on_fork;
5259 policy = oldpolicy = p->policy;
5260 } else {
5261 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5262 policy &= ~SCHED_RESET_ON_FORK;
5263
5264 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5265 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5266 policy != SCHED_IDLE)
5267 return -EINVAL;
5268 }
5269
5270 /*
5271 * Valid priorities for SCHED_FIFO and SCHED_RR are
5272 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5273 * SCHED_BATCH and SCHED_IDLE is 0.
5274 */
5275 if (param->sched_priority < 0 ||
5276 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5277 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5278 return -EINVAL;
5279 if (rt_policy(policy) != (param->sched_priority != 0))
5280 return -EINVAL;
5281
5282 /*
5283 * Allow unprivileged RT tasks to decrease priority:
5284 */
5285 if (user && !capable(CAP_SYS_NICE)) {
5286 if (rt_policy(policy)) {
5287 unsigned long rlim_rtprio =
5288 task_rlimit(p, RLIMIT_RTPRIO);
5289
5290 /* can't set/change the rt policy */
5291 if (policy != p->policy && !rlim_rtprio)
5292 return -EPERM;
5293
5294 /* can't increase priority */
5295 if (param->sched_priority > p->rt_priority &&
5296 param->sched_priority > rlim_rtprio)
5297 return -EPERM;
5298 }
5299
5300 /*
5301 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5302 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5303 */
5304 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5305 if (!can_nice(p, TASK_NICE(p)))
5306 return -EPERM;
5307 }
5308
5309 /* can't change other user's priorities */
5310 if (!check_same_owner(p))
5311 return -EPERM;
5312
5313 /* Normal users shall not reset the sched_reset_on_fork flag */
5314 if (p->sched_reset_on_fork && !reset_on_fork)
5315 return -EPERM;
5316 }
5317
5318 if (user) {
5319 retval = security_task_setscheduler(p);
5320 if (retval)
5321 return retval;
5322 }
5323
5324 /*
5325 * make sure no PI-waiters arrive (or leave) while we are
5326 * changing the priority of the task:
5327 *
5328 * To be able to change p->policy safely, the appropriate
5329 * runqueue lock must be held.
5330 */
5331 rq = task_rq_lock(p, &flags);
5332
5333 /*
5334 * Changing the policy of the stop threads its a very bad idea
5335 */
5336 if (p == rq->stop) {
5337 task_rq_unlock(rq, p, &flags);
5338 return -EINVAL;
5339 }
5340
5341 /*
5342 * If not changing anything there's no need to proceed further:
5343 */
5344 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5345 param->sched_priority == p->rt_priority))) {
5346
5347 __task_rq_unlock(rq);
5348 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5349 return 0;
5350 }
5351
5352 #ifdef CONFIG_RT_GROUP_SCHED
5353 if (user) {
5354 /*
5355 * Do not allow realtime tasks into groups that have no runtime
5356 * assigned.
5357 */
5358 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5359 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5360 !task_group_is_autogroup(task_group(p))) {
5361 task_rq_unlock(rq, p, &flags);
5362 return -EPERM;
5363 }
5364 }
5365 #endif
5366
5367 /* recheck policy now with rq lock held */
5368 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5369 policy = oldpolicy = -1;
5370 task_rq_unlock(rq, p, &flags);
5371 goto recheck;
5372 }
5373 on_rq = p->on_rq;
5374 running = task_current(rq, p);
5375 if (on_rq)
5376 deactivate_task(rq, p, 0);
5377 if (running)
5378 p->sched_class->put_prev_task(rq, p);
5379
5380 p->sched_reset_on_fork = reset_on_fork;
5381
5382 oldprio = p->prio;
5383 prev_class = p->sched_class;
5384 __setscheduler(rq, p, policy, param->sched_priority);
5385
5386 if (running)
5387 p->sched_class->set_curr_task(rq);
5388 if (on_rq)
5389 activate_task(rq, p, 0);
5390
5391 check_class_changed(rq, p, prev_class, oldprio);
5392 task_rq_unlock(rq, p, &flags);
5393
5394 rt_mutex_adjust_pi(p);
5395
5396 return 0;
5397 }
5398
5399 /**
5400 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5401 * @p: the task in question.
5402 * @policy: new policy.
5403 * @param: structure containing the new RT priority.
5404 *
5405 * NOTE that the task may be already dead.
5406 */
5407 int sched_setscheduler(struct task_struct *p, int policy,
5408 const struct sched_param *param)
5409 {
5410 return __sched_setscheduler(p, policy, param, true);
5411 }
5412 EXPORT_SYMBOL_GPL(sched_setscheduler);
5413
5414 /**
5415 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5416 * @p: the task in question.
5417 * @policy: new policy.
5418 * @param: structure containing the new RT priority.
5419 *
5420 * Just like sched_setscheduler, only don't bother checking if the
5421 * current context has permission. For example, this is needed in
5422 * stop_machine(): we create temporary high priority worker threads,
5423 * but our caller might not have that capability.
5424 */
5425 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5426 const struct sched_param *param)
5427 {
5428 return __sched_setscheduler(p, policy, param, false);
5429 }
5430
5431 static int
5432 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5433 {
5434 struct sched_param lparam;
5435 struct task_struct *p;
5436 int retval;
5437
5438 if (!param || pid < 0)
5439 return -EINVAL;
5440 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5441 return -EFAULT;
5442
5443 rcu_read_lock();
5444 retval = -ESRCH;
5445 p = find_process_by_pid(pid);
5446 if (p != NULL)
5447 retval = sched_setscheduler(p, policy, &lparam);
5448 rcu_read_unlock();
5449
5450 return retval;
5451 }
5452
5453 /**
5454 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5455 * @pid: the pid in question.
5456 * @policy: new policy.
5457 * @param: structure containing the new RT priority.
5458 */
5459 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5460 struct sched_param __user *, param)
5461 {
5462 /* negative values for policy are not valid */
5463 if (policy < 0)
5464 return -EINVAL;
5465
5466 return do_sched_setscheduler(pid, policy, param);
5467 }
5468
5469 /**
5470 * sys_sched_setparam - set/change the RT priority of a thread
5471 * @pid: the pid in question.
5472 * @param: structure containing the new RT priority.
5473 */
5474 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5475 {
5476 return do_sched_setscheduler(pid, -1, param);
5477 }
5478
5479 /**
5480 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5481 * @pid: the pid in question.
5482 */
5483 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5484 {
5485 struct task_struct *p;
5486 int retval;
5487
5488 if (pid < 0)
5489 return -EINVAL;
5490
5491 retval = -ESRCH;
5492 rcu_read_lock();
5493 p = find_process_by_pid(pid);
5494 if (p) {
5495 retval = security_task_getscheduler(p);
5496 if (!retval)
5497 retval = p->policy
5498 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5499 }
5500 rcu_read_unlock();
5501 return retval;
5502 }
5503
5504 /**
5505 * sys_sched_getparam - get the RT priority of a thread
5506 * @pid: the pid in question.
5507 * @param: structure containing the RT priority.
5508 */
5509 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5510 {
5511 struct sched_param lp;
5512 struct task_struct *p;
5513 int retval;
5514
5515 if (!param || pid < 0)
5516 return -EINVAL;
5517
5518 rcu_read_lock();
5519 p = find_process_by_pid(pid);
5520 retval = -ESRCH;
5521 if (!p)
5522 goto out_unlock;
5523
5524 retval = security_task_getscheduler(p);
5525 if (retval)
5526 goto out_unlock;
5527
5528 lp.sched_priority = p->rt_priority;
5529 rcu_read_unlock();
5530
5531 /*
5532 * This one might sleep, we cannot do it with a spinlock held ...
5533 */
5534 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5535
5536 return retval;
5537
5538 out_unlock:
5539 rcu_read_unlock();
5540 return retval;
5541 }
5542
5543 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5544 {
5545 cpumask_var_t cpus_allowed, new_mask;
5546 struct task_struct *p;
5547 int retval;
5548
5549 get_online_cpus();
5550 rcu_read_lock();
5551
5552 p = find_process_by_pid(pid);
5553 if (!p) {
5554 rcu_read_unlock();
5555 put_online_cpus();
5556 return -ESRCH;
5557 }
5558
5559 /* Prevent p going away */
5560 get_task_struct(p);
5561 rcu_read_unlock();
5562
5563 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5564 retval = -ENOMEM;
5565 goto out_put_task;
5566 }
5567 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5568 retval = -ENOMEM;
5569 goto out_free_cpus_allowed;
5570 }
5571 retval = -EPERM;
5572 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5573 goto out_unlock;
5574
5575 retval = security_task_setscheduler(p);
5576 if (retval)
5577 goto out_unlock;
5578
5579 cpuset_cpus_allowed(p, cpus_allowed);
5580 cpumask_and(new_mask, in_mask, cpus_allowed);
5581 again:
5582 retval = set_cpus_allowed_ptr(p, new_mask);
5583
5584 if (!retval) {
5585 cpuset_cpus_allowed(p, cpus_allowed);
5586 if (!cpumask_subset(new_mask, cpus_allowed)) {
5587 /*
5588 * We must have raced with a concurrent cpuset
5589 * update. Just reset the cpus_allowed to the
5590 * cpuset's cpus_allowed
5591 */
5592 cpumask_copy(new_mask, cpus_allowed);
5593 goto again;
5594 }
5595 }
5596 out_unlock:
5597 free_cpumask_var(new_mask);
5598 out_free_cpus_allowed:
5599 free_cpumask_var(cpus_allowed);
5600 out_put_task:
5601 put_task_struct(p);
5602 put_online_cpus();
5603 return retval;
5604 }
5605
5606 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5607 struct cpumask *new_mask)
5608 {
5609 if (len < cpumask_size())
5610 cpumask_clear(new_mask);
5611 else if (len > cpumask_size())
5612 len = cpumask_size();
5613
5614 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5615 }
5616
5617 /**
5618 * sys_sched_setaffinity - set the cpu affinity of a process
5619 * @pid: pid of the process
5620 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5621 * @user_mask_ptr: user-space pointer to the new cpu mask
5622 */
5623 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5624 unsigned long __user *, user_mask_ptr)
5625 {
5626 cpumask_var_t new_mask;
5627 int retval;
5628
5629 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5630 return -ENOMEM;
5631
5632 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5633 if (retval == 0)
5634 retval = sched_setaffinity(pid, new_mask);
5635 free_cpumask_var(new_mask);
5636 return retval;
5637 }
5638
5639 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5640 {
5641 struct task_struct *p;
5642 unsigned long flags;
5643 int retval;
5644
5645 get_online_cpus();
5646 rcu_read_lock();
5647
5648 retval = -ESRCH;
5649 p = find_process_by_pid(pid);
5650 if (!p)
5651 goto out_unlock;
5652
5653 retval = security_task_getscheduler(p);
5654 if (retval)
5655 goto out_unlock;
5656
5657 raw_spin_lock_irqsave(&p->pi_lock, flags);
5658 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5659 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5660
5661 out_unlock:
5662 rcu_read_unlock();
5663 put_online_cpus();
5664
5665 return retval;
5666 }
5667
5668 /**
5669 * sys_sched_getaffinity - get the cpu affinity of a process
5670 * @pid: pid of the process
5671 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5672 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5673 */
5674 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5675 unsigned long __user *, user_mask_ptr)
5676 {
5677 int ret;
5678 cpumask_var_t mask;
5679
5680 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5681 return -EINVAL;
5682 if (len & (sizeof(unsigned long)-1))
5683 return -EINVAL;
5684
5685 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5686 return -ENOMEM;
5687
5688 ret = sched_getaffinity(pid, mask);
5689 if (ret == 0) {
5690 size_t retlen = min_t(size_t, len, cpumask_size());
5691
5692 if (copy_to_user(user_mask_ptr, mask, retlen))
5693 ret = -EFAULT;
5694 else
5695 ret = retlen;
5696 }
5697 free_cpumask_var(mask);
5698
5699 return ret;
5700 }
5701
5702 /**
5703 * sys_sched_yield - yield the current processor to other threads.
5704 *
5705 * This function yields the current CPU to other tasks. If there are no
5706 * other threads running on this CPU then this function will return.
5707 */
5708 SYSCALL_DEFINE0(sched_yield)
5709 {
5710 struct rq *rq = this_rq_lock();
5711
5712 schedstat_inc(rq, yld_count);
5713 current->sched_class->yield_task(rq);
5714
5715 /*
5716 * Since we are going to call schedule() anyway, there's
5717 * no need to preempt or enable interrupts:
5718 */
5719 __release(rq->lock);
5720 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5721 do_raw_spin_unlock(&rq->lock);
5722 preempt_enable_no_resched();
5723
5724 schedule();
5725
5726 return 0;
5727 }
5728
5729 static inline int should_resched(void)
5730 {
5731 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5732 }
5733
5734 static void __cond_resched(void)
5735 {
5736 add_preempt_count(PREEMPT_ACTIVE);
5737 __schedule();
5738 sub_preempt_count(PREEMPT_ACTIVE);
5739 }
5740
5741 int __sched _cond_resched(void)
5742 {
5743 if (should_resched()) {
5744 __cond_resched();
5745 return 1;
5746 }
5747 return 0;
5748 }
5749 EXPORT_SYMBOL(_cond_resched);
5750
5751 /*
5752 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5753 * call schedule, and on return reacquire the lock.
5754 *
5755 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5756 * operations here to prevent schedule() from being called twice (once via
5757 * spin_unlock(), once by hand).
5758 */
5759 int __cond_resched_lock(spinlock_t *lock)
5760 {
5761 int resched = should_resched();
5762 int ret = 0;
5763
5764 lockdep_assert_held(lock);
5765
5766 if (spin_needbreak(lock) || resched) {
5767 spin_unlock(lock);
5768 if (resched)
5769 __cond_resched();
5770 else
5771 cpu_relax();
5772 ret = 1;
5773 spin_lock(lock);
5774 }
5775 return ret;
5776 }
5777 EXPORT_SYMBOL(__cond_resched_lock);
5778
5779 int __sched __cond_resched_softirq(void)
5780 {
5781 BUG_ON(!in_softirq());
5782
5783 if (should_resched()) {
5784 local_bh_enable();
5785 __cond_resched();
5786 local_bh_disable();
5787 return 1;
5788 }
5789 return 0;
5790 }
5791 EXPORT_SYMBOL(__cond_resched_softirq);
5792
5793 /**
5794 * yield - yield the current processor to other threads.
5795 *
5796 * This is a shortcut for kernel-space yielding - it marks the
5797 * thread runnable and calls sys_sched_yield().
5798 */
5799 void __sched yield(void)
5800 {
5801 set_current_state(TASK_RUNNING);
5802 sys_sched_yield();
5803 }
5804 EXPORT_SYMBOL(yield);
5805
5806 /**
5807 * yield_to - yield the current processor to another thread in
5808 * your thread group, or accelerate that thread toward the
5809 * processor it's on.
5810 * @p: target task
5811 * @preempt: whether task preemption is allowed or not
5812 *
5813 * It's the caller's job to ensure that the target task struct
5814 * can't go away on us before we can do any checks.
5815 *
5816 * Returns true if we indeed boosted the target task.
5817 */
5818 bool __sched yield_to(struct task_struct *p, bool preempt)
5819 {
5820 struct task_struct *curr = current;
5821 struct rq *rq, *p_rq;
5822 unsigned long flags;
5823 bool yielded = 0;
5824
5825 local_irq_save(flags);
5826 rq = this_rq();
5827
5828 again:
5829 p_rq = task_rq(p);
5830 double_rq_lock(rq, p_rq);
5831 while (task_rq(p) != p_rq) {
5832 double_rq_unlock(rq, p_rq);
5833 goto again;
5834 }
5835
5836 if (!curr->sched_class->yield_to_task)
5837 goto out;
5838
5839 if (curr->sched_class != p->sched_class)
5840 goto out;
5841
5842 if (task_running(p_rq, p) || p->state)
5843 goto out;
5844
5845 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5846 if (yielded) {
5847 schedstat_inc(rq, yld_count);
5848 /*
5849 * Make p's CPU reschedule; pick_next_entity takes care of
5850 * fairness.
5851 */
5852 if (preempt && rq != p_rq)
5853 resched_task(p_rq->curr);
5854 }
5855
5856 out:
5857 double_rq_unlock(rq, p_rq);
5858 local_irq_restore(flags);
5859
5860 if (yielded)
5861 schedule();
5862
5863 return yielded;
5864 }
5865 EXPORT_SYMBOL_GPL(yield_to);
5866
5867 /*
5868 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5869 * that process accounting knows that this is a task in IO wait state.
5870 */
5871 void __sched io_schedule(void)
5872 {
5873 struct rq *rq = raw_rq();
5874
5875 delayacct_blkio_start();
5876 atomic_inc(&rq->nr_iowait);
5877 blk_flush_plug(current);
5878 current->in_iowait = 1;
5879 schedule();
5880 current->in_iowait = 0;
5881 atomic_dec(&rq->nr_iowait);
5882 delayacct_blkio_end();
5883 }
5884 EXPORT_SYMBOL(io_schedule);
5885
5886 long __sched io_schedule_timeout(long timeout)
5887 {
5888 struct rq *rq = raw_rq();
5889 long ret;
5890
5891 delayacct_blkio_start();
5892 atomic_inc(&rq->nr_iowait);
5893 blk_flush_plug(current);
5894 current->in_iowait = 1;
5895 ret = schedule_timeout(timeout);
5896 current->in_iowait = 0;
5897 atomic_dec(&rq->nr_iowait);
5898 delayacct_blkio_end();
5899 return ret;
5900 }
5901
5902 /**
5903 * sys_sched_get_priority_max - return maximum RT priority.
5904 * @policy: scheduling class.
5905 *
5906 * this syscall returns the maximum rt_priority that can be used
5907 * by a given scheduling class.
5908 */
5909 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5910 {
5911 int ret = -EINVAL;
5912
5913 switch (policy) {
5914 case SCHED_FIFO:
5915 case SCHED_RR:
5916 ret = MAX_USER_RT_PRIO-1;
5917 break;
5918 case SCHED_NORMAL:
5919 case SCHED_BATCH:
5920 case SCHED_IDLE:
5921 ret = 0;
5922 break;
5923 }
5924 return ret;
5925 }
5926
5927 /**
5928 * sys_sched_get_priority_min - return minimum RT priority.
5929 * @policy: scheduling class.
5930 *
5931 * this syscall returns the minimum rt_priority that can be used
5932 * by a given scheduling class.
5933 */
5934 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5935 {
5936 int ret = -EINVAL;
5937
5938 switch (policy) {
5939 case SCHED_FIFO:
5940 case SCHED_RR:
5941 ret = 1;
5942 break;
5943 case SCHED_NORMAL:
5944 case SCHED_BATCH:
5945 case SCHED_IDLE:
5946 ret = 0;
5947 }
5948 return ret;
5949 }
5950
5951 /**
5952 * sys_sched_rr_get_interval - return the default timeslice of a process.
5953 * @pid: pid of the process.
5954 * @interval: userspace pointer to the timeslice value.
5955 *
5956 * this syscall writes the default timeslice value of a given process
5957 * into the user-space timespec buffer. A value of '0' means infinity.
5958 */
5959 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5960 struct timespec __user *, interval)
5961 {
5962 struct task_struct *p;
5963 unsigned int time_slice;
5964 unsigned long flags;
5965 struct rq *rq;
5966 int retval;
5967 struct timespec t;
5968
5969 if (pid < 0)
5970 return -EINVAL;
5971
5972 retval = -ESRCH;
5973 rcu_read_lock();
5974 p = find_process_by_pid(pid);
5975 if (!p)
5976 goto out_unlock;
5977
5978 retval = security_task_getscheduler(p);
5979 if (retval)
5980 goto out_unlock;
5981
5982 rq = task_rq_lock(p, &flags);
5983 time_slice = p->sched_class->get_rr_interval(rq, p);
5984 task_rq_unlock(rq, p, &flags);
5985
5986 rcu_read_unlock();
5987 jiffies_to_timespec(time_slice, &t);
5988 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5989 return retval;
5990
5991 out_unlock:
5992 rcu_read_unlock();
5993 return retval;
5994 }
5995
5996 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5997
5998 void sched_show_task(struct task_struct *p)
5999 {
6000 unsigned long free = 0;
6001 unsigned state;
6002
6003 state = p->state ? __ffs(p->state) + 1 : 0;
6004 printk(KERN_INFO "%-15.15s %c", p->comm,
6005 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6006 #if BITS_PER_LONG == 32
6007 if (state == TASK_RUNNING)
6008 printk(KERN_CONT " running ");
6009 else
6010 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6011 #else
6012 if (state == TASK_RUNNING)
6013 printk(KERN_CONT " running task ");
6014 else
6015 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6016 #endif
6017 #ifdef CONFIG_DEBUG_STACK_USAGE
6018 free = stack_not_used(p);
6019 #endif
6020 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6021 task_pid_nr(p), task_pid_nr(p->real_parent),
6022 (unsigned long)task_thread_info(p)->flags);
6023
6024 show_stack(p, NULL);
6025 }
6026
6027 void show_state_filter(unsigned long state_filter)
6028 {
6029 struct task_struct *g, *p;
6030
6031 #if BITS_PER_LONG == 32
6032 printk(KERN_INFO
6033 " task PC stack pid father\n");
6034 #else
6035 printk(KERN_INFO
6036 " task PC stack pid father\n");
6037 #endif
6038 rcu_read_lock();
6039 do_each_thread(g, p) {
6040 /*
6041 * reset the NMI-timeout, listing all files on a slow
6042 * console might take a lot of time:
6043 */
6044 touch_nmi_watchdog();
6045 if (!state_filter || (p->state & state_filter))
6046 sched_show_task(p);
6047 } while_each_thread(g, p);
6048
6049 touch_all_softlockup_watchdogs();
6050
6051 #ifdef CONFIG_SCHED_DEBUG
6052 sysrq_sched_debug_show();
6053 #endif
6054 rcu_read_unlock();
6055 /*
6056 * Only show locks if all tasks are dumped:
6057 */
6058 if (!state_filter)
6059 debug_show_all_locks();
6060 }
6061
6062 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6063 {
6064 idle->sched_class = &idle_sched_class;
6065 }
6066
6067 /**
6068 * init_idle - set up an idle thread for a given CPU
6069 * @idle: task in question
6070 * @cpu: cpu the idle task belongs to
6071 *
6072 * NOTE: this function does not set the idle thread's NEED_RESCHED
6073 * flag, to make booting more robust.
6074 */
6075 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6076 {
6077 struct rq *rq = cpu_rq(cpu);
6078 unsigned long flags;
6079
6080 raw_spin_lock_irqsave(&rq->lock, flags);
6081
6082 __sched_fork(idle);
6083 idle->state = TASK_RUNNING;
6084 idle->se.exec_start = sched_clock();
6085
6086 do_set_cpus_allowed(idle, cpumask_of(cpu));
6087 /*
6088 * We're having a chicken and egg problem, even though we are
6089 * holding rq->lock, the cpu isn't yet set to this cpu so the
6090 * lockdep check in task_group() will fail.
6091 *
6092 * Similar case to sched_fork(). / Alternatively we could
6093 * use task_rq_lock() here and obtain the other rq->lock.
6094 *
6095 * Silence PROVE_RCU
6096 */
6097 rcu_read_lock();
6098 __set_task_cpu(idle, cpu);
6099 rcu_read_unlock();
6100
6101 rq->curr = rq->idle = idle;
6102 #if defined(CONFIG_SMP)
6103 idle->on_cpu = 1;
6104 #endif
6105 raw_spin_unlock_irqrestore(&rq->lock, flags);
6106
6107 /* Set the preempt count _outside_ the spinlocks! */
6108 task_thread_info(idle)->preempt_count = 0;
6109
6110 /*
6111 * The idle tasks have their own, simple scheduling class:
6112 */
6113 idle->sched_class = &idle_sched_class;
6114 ftrace_graph_init_idle_task(idle, cpu);
6115 }
6116
6117 /*
6118 * Increase the granularity value when there are more CPUs,
6119 * because with more CPUs the 'effective latency' as visible
6120 * to users decreases. But the relationship is not linear,
6121 * so pick a second-best guess by going with the log2 of the
6122 * number of CPUs.
6123 *
6124 * This idea comes from the SD scheduler of Con Kolivas:
6125 */
6126 static int get_update_sysctl_factor(void)
6127 {
6128 unsigned int cpus = min_t(int, num_online_cpus(), 8);
6129 unsigned int factor;
6130
6131 switch (sysctl_sched_tunable_scaling) {
6132 case SCHED_TUNABLESCALING_NONE:
6133 factor = 1;
6134 break;
6135 case SCHED_TUNABLESCALING_LINEAR:
6136 factor = cpus;
6137 break;
6138 case SCHED_TUNABLESCALING_LOG:
6139 default:
6140 factor = 1 + ilog2(cpus);
6141 break;
6142 }
6143
6144 return factor;
6145 }
6146
6147 static void update_sysctl(void)
6148 {
6149 unsigned int factor = get_update_sysctl_factor();
6150
6151 #define SET_SYSCTL(name) \
6152 (sysctl_##name = (factor) * normalized_sysctl_##name)
6153 SET_SYSCTL(sched_min_granularity);
6154 SET_SYSCTL(sched_latency);
6155 SET_SYSCTL(sched_wakeup_granularity);
6156 #undef SET_SYSCTL
6157 }
6158
6159 static inline void sched_init_granularity(void)
6160 {
6161 update_sysctl();
6162 }
6163
6164 #ifdef CONFIG_SMP
6165 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6166 {
6167 if (p->sched_class && p->sched_class->set_cpus_allowed)
6168 p->sched_class->set_cpus_allowed(p, new_mask);
6169
6170 cpumask_copy(&p->cpus_allowed, new_mask);
6171 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6172 }
6173
6174 /*
6175 * This is how migration works:
6176 *
6177 * 1) we invoke migration_cpu_stop() on the target CPU using
6178 * stop_one_cpu().
6179 * 2) stopper starts to run (implicitly forcing the migrated thread
6180 * off the CPU)
6181 * 3) it checks whether the migrated task is still in the wrong runqueue.
6182 * 4) if it's in the wrong runqueue then the migration thread removes
6183 * it and puts it into the right queue.
6184 * 5) stopper completes and stop_one_cpu() returns and the migration
6185 * is done.
6186 */
6187
6188 /*
6189 * Change a given task's CPU affinity. Migrate the thread to a
6190 * proper CPU and schedule it away if the CPU it's executing on
6191 * is removed from the allowed bitmask.
6192 *
6193 * NOTE: the caller must have a valid reference to the task, the
6194 * task must not exit() & deallocate itself prematurely. The
6195 * call is not atomic; no spinlocks may be held.
6196 */
6197 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6198 {
6199 unsigned long flags;
6200 struct rq *rq;
6201 unsigned int dest_cpu;
6202 int ret = 0;
6203
6204 rq = task_rq_lock(p, &flags);
6205
6206 if (cpumask_equal(&p->cpus_allowed, new_mask))
6207 goto out;
6208
6209 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
6210 ret = -EINVAL;
6211 goto out;
6212 }
6213
6214 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6215 ret = -EINVAL;
6216 goto out;
6217 }
6218
6219 do_set_cpus_allowed(p, new_mask);
6220
6221 /* Can the task run on the task's current CPU? If so, we're done */
6222 if (cpumask_test_cpu(task_cpu(p), new_mask))
6223 goto out;
6224
6225 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6226 if (p->on_rq) {
6227 struct migration_arg arg = { p, dest_cpu };
6228 /* Need help from migration thread: drop lock and wait. */
6229 task_rq_unlock(rq, p, &flags);
6230 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
6231 tlb_migrate_finish(p->mm);
6232 return 0;
6233 }
6234 out:
6235 task_rq_unlock(rq, p, &flags);
6236
6237 return ret;
6238 }
6239 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6240
6241 /*
6242 * Move (not current) task off this cpu, onto dest cpu. We're doing
6243 * this because either it can't run here any more (set_cpus_allowed()
6244 * away from this CPU, or CPU going down), or because we're
6245 * attempting to rebalance this task on exec (sched_exec).
6246 *
6247 * So we race with normal scheduler movements, but that's OK, as long
6248 * as the task is no longer on this CPU.
6249 *
6250 * Returns non-zero if task was successfully migrated.
6251 */
6252 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6253 {
6254 struct rq *rq_dest, *rq_src;
6255 int ret = 0;
6256
6257 if (unlikely(!cpu_active(dest_cpu)))
6258 return ret;
6259
6260 rq_src = cpu_rq(src_cpu);
6261 rq_dest = cpu_rq(dest_cpu);
6262
6263 raw_spin_lock(&p->pi_lock);
6264 double_rq_lock(rq_src, rq_dest);
6265 /* Already moved. */
6266 if (task_cpu(p) != src_cpu)
6267 goto done;
6268 /* Affinity changed (again). */
6269 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
6270 goto fail;
6271
6272 /*
6273 * If we're not on a rq, the next wake-up will ensure we're
6274 * placed properly.
6275 */
6276 if (p->on_rq) {
6277 deactivate_task(rq_src, p, 0);
6278 set_task_cpu(p, dest_cpu);
6279 activate_task(rq_dest, p, 0);
6280 check_preempt_curr(rq_dest, p, 0);
6281 }
6282 done:
6283 ret = 1;
6284 fail:
6285 double_rq_unlock(rq_src, rq_dest);
6286 raw_spin_unlock(&p->pi_lock);
6287 return ret;
6288 }
6289
6290 /*
6291 * migration_cpu_stop - this will be executed by a highprio stopper thread
6292 * and performs thread migration by bumping thread off CPU then
6293 * 'pushing' onto another runqueue.
6294 */
6295 static int migration_cpu_stop(void *data)
6296 {
6297 struct migration_arg *arg = data;
6298
6299 /*
6300 * The original target cpu might have gone down and we might
6301 * be on another cpu but it doesn't matter.
6302 */
6303 local_irq_disable();
6304 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6305 local_irq_enable();
6306 return 0;
6307 }
6308
6309 #ifdef CONFIG_HOTPLUG_CPU
6310
6311 /*
6312 * Ensures that the idle task is using init_mm right before its cpu goes
6313 * offline.
6314 */
6315 void idle_task_exit(void)
6316 {
6317 struct mm_struct *mm = current->active_mm;
6318
6319 BUG_ON(cpu_online(smp_processor_id()));
6320
6321 if (mm != &init_mm)
6322 switch_mm(mm, &init_mm, current);
6323 mmdrop(mm);
6324 }
6325
6326 /*
6327 * While a dead CPU has no uninterruptible tasks queued at this point,
6328 * it might still have a nonzero ->nr_uninterruptible counter, because
6329 * for performance reasons the counter is not stricly tracking tasks to
6330 * their home CPUs. So we just add the counter to another CPU's counter,
6331 * to keep the global sum constant after CPU-down:
6332 */
6333 static void migrate_nr_uninterruptible(struct rq *rq_src)
6334 {
6335 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6336
6337 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6338 rq_src->nr_uninterruptible = 0;
6339 }
6340
6341 /*
6342 * remove the tasks which were accounted by rq from calc_load_tasks.
6343 */
6344 static void calc_global_load_remove(struct rq *rq)
6345 {
6346 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6347 rq->calc_load_active = 0;
6348 }
6349
6350 #ifdef CONFIG_CFS_BANDWIDTH
6351 static void unthrottle_offline_cfs_rqs(struct rq *rq)
6352 {
6353 struct cfs_rq *cfs_rq;
6354
6355 for_each_leaf_cfs_rq(rq, cfs_rq) {
6356 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6357
6358 if (!cfs_rq->runtime_enabled)
6359 continue;
6360
6361 /*
6362 * clock_task is not advancing so we just need to make sure
6363 * there's some valid quota amount
6364 */
6365 cfs_rq->runtime_remaining = cfs_b->quota;
6366 if (cfs_rq_throttled(cfs_rq))
6367 unthrottle_cfs_rq(cfs_rq);
6368 }
6369 }
6370 #else
6371 static void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6372 #endif
6373
6374 /*
6375 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6376 * try_to_wake_up()->select_task_rq().
6377 *
6378 * Called with rq->lock held even though we'er in stop_machine() and
6379 * there's no concurrency possible, we hold the required locks anyway
6380 * because of lock validation efforts.
6381 */
6382 static void migrate_tasks(unsigned int dead_cpu)
6383 {
6384 struct rq *rq = cpu_rq(dead_cpu);
6385 struct task_struct *next, *stop = rq->stop;
6386 int dest_cpu;
6387
6388 /*
6389 * Fudge the rq selection such that the below task selection loop
6390 * doesn't get stuck on the currently eligible stop task.
6391 *
6392 * We're currently inside stop_machine() and the rq is either stuck
6393 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6394 * either way we should never end up calling schedule() until we're
6395 * done here.
6396 */
6397 rq->stop = NULL;
6398
6399 /* Ensure any throttled groups are reachable by pick_next_task */
6400 unthrottle_offline_cfs_rqs(rq);
6401
6402 for ( ; ; ) {
6403 /*
6404 * There's this thread running, bail when that's the only
6405 * remaining thread.
6406 */
6407 if (rq->nr_running == 1)
6408 break;
6409
6410 next = pick_next_task(rq);
6411 BUG_ON(!next);
6412 next->sched_class->put_prev_task(rq, next);
6413
6414 /* Find suitable destination for @next, with force if needed. */
6415 dest_cpu = select_fallback_rq(dead_cpu, next);
6416 raw_spin_unlock(&rq->lock);
6417
6418 __migrate_task(next, dead_cpu, dest_cpu);
6419
6420 raw_spin_lock(&rq->lock);
6421 }
6422
6423 rq->stop = stop;
6424 }
6425
6426 #endif /* CONFIG_HOTPLUG_CPU */
6427
6428 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6429
6430 static struct ctl_table sd_ctl_dir[] = {
6431 {
6432 .procname = "sched_domain",
6433 .mode = 0555,
6434 },
6435 {}
6436 };
6437
6438 static struct ctl_table sd_ctl_root[] = {
6439 {
6440 .procname = "kernel",
6441 .mode = 0555,
6442 .child = sd_ctl_dir,
6443 },
6444 {}
6445 };
6446
6447 static struct ctl_table *sd_alloc_ctl_entry(int n)
6448 {
6449 struct ctl_table *entry =
6450 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6451
6452 return entry;
6453 }
6454
6455 static void sd_free_ctl_entry(struct ctl_table **tablep)
6456 {
6457 struct ctl_table *entry;
6458
6459 /*
6460 * In the intermediate directories, both the child directory and
6461 * procname are dynamically allocated and could fail but the mode
6462 * will always be set. In the lowest directory the names are
6463 * static strings and all have proc handlers.
6464 */
6465 for (entry = *tablep; entry->mode; entry++) {
6466 if (entry->child)
6467 sd_free_ctl_entry(&entry->child);
6468 if (entry->proc_handler == NULL)
6469 kfree(entry->procname);
6470 }
6471
6472 kfree(*tablep);
6473 *tablep = NULL;
6474 }
6475
6476 static void
6477 set_table_entry(struct ctl_table *entry,
6478 const char *procname, void *data, int maxlen,
6479 mode_t mode, proc_handler *proc_handler)
6480 {
6481 entry->procname = procname;
6482 entry->data = data;
6483 entry->maxlen = maxlen;
6484 entry->mode = mode;
6485 entry->proc_handler = proc_handler;
6486 }
6487
6488 static struct ctl_table *
6489 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6490 {
6491 struct ctl_table *table = sd_alloc_ctl_entry(13);
6492
6493 if (table == NULL)
6494 return NULL;
6495
6496 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6497 sizeof(long), 0644, proc_doulongvec_minmax);
6498 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6499 sizeof(long), 0644, proc_doulongvec_minmax);
6500 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6501 sizeof(int), 0644, proc_dointvec_minmax);
6502 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6503 sizeof(int), 0644, proc_dointvec_minmax);
6504 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6505 sizeof(int), 0644, proc_dointvec_minmax);
6506 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6507 sizeof(int), 0644, proc_dointvec_minmax);
6508 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6509 sizeof(int), 0644, proc_dointvec_minmax);
6510 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6511 sizeof(int), 0644, proc_dointvec_minmax);
6512 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6513 sizeof(int), 0644, proc_dointvec_minmax);
6514 set_table_entry(&table[9], "cache_nice_tries",
6515 &sd->cache_nice_tries,
6516 sizeof(int), 0644, proc_dointvec_minmax);
6517 set_table_entry(&table[10], "flags", &sd->flags,
6518 sizeof(int), 0644, proc_dointvec_minmax);
6519 set_table_entry(&table[11], "name", sd->name,
6520 CORENAME_MAX_SIZE, 0444, proc_dostring);
6521 /* &table[12] is terminator */
6522
6523 return table;
6524 }
6525
6526 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6527 {
6528 struct ctl_table *entry, *table;
6529 struct sched_domain *sd;
6530 int domain_num = 0, i;
6531 char buf[32];
6532
6533 for_each_domain(cpu, sd)
6534 domain_num++;
6535 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6536 if (table == NULL)
6537 return NULL;
6538
6539 i = 0;
6540 for_each_domain(cpu, sd) {
6541 snprintf(buf, 32, "domain%d", i);
6542 entry->procname = kstrdup(buf, GFP_KERNEL);
6543 entry->mode = 0555;
6544 entry->child = sd_alloc_ctl_domain_table(sd);
6545 entry++;
6546 i++;
6547 }
6548 return table;
6549 }
6550
6551 static struct ctl_table_header *sd_sysctl_header;
6552 static void register_sched_domain_sysctl(void)
6553 {
6554 int i, cpu_num = num_possible_cpus();
6555 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6556 char buf[32];
6557
6558 WARN_ON(sd_ctl_dir[0].child);
6559 sd_ctl_dir[0].child = entry;
6560
6561 if (entry == NULL)
6562 return;
6563
6564 for_each_possible_cpu(i) {
6565 snprintf(buf, 32, "cpu%d", i);
6566 entry->procname = kstrdup(buf, GFP_KERNEL);
6567 entry->mode = 0555;
6568 entry->child = sd_alloc_ctl_cpu_table(i);
6569 entry++;
6570 }
6571
6572 WARN_ON(sd_sysctl_header);
6573 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6574 }
6575
6576 /* may be called multiple times per register */
6577 static void unregister_sched_domain_sysctl(void)
6578 {
6579 if (sd_sysctl_header)
6580 unregister_sysctl_table(sd_sysctl_header);
6581 sd_sysctl_header = NULL;
6582 if (sd_ctl_dir[0].child)
6583 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6584 }
6585 #else
6586 static void register_sched_domain_sysctl(void)
6587 {
6588 }
6589 static void unregister_sched_domain_sysctl(void)
6590 {
6591 }
6592 #endif
6593
6594 static void set_rq_online(struct rq *rq)
6595 {
6596 if (!rq->online) {
6597 const struct sched_class *class;
6598
6599 cpumask_set_cpu(rq->cpu, rq->rd->online);
6600 rq->online = 1;
6601
6602 for_each_class(class) {
6603 if (class->rq_online)
6604 class->rq_online(rq);
6605 }
6606 }
6607 }
6608
6609 static void set_rq_offline(struct rq *rq)
6610 {
6611 if (rq->online) {
6612 const struct sched_class *class;
6613
6614 for_each_class(class) {
6615 if (class->rq_offline)
6616 class->rq_offline(rq);
6617 }
6618
6619 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6620 rq->online = 0;
6621 }
6622 }
6623
6624 /*
6625 * migration_call - callback that gets triggered when a CPU is added.
6626 * Here we can start up the necessary migration thread for the new CPU.
6627 */
6628 static int __cpuinit
6629 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6630 {
6631 int cpu = (long)hcpu;
6632 unsigned long flags;
6633 struct rq *rq = cpu_rq(cpu);
6634
6635 switch (action & ~CPU_TASKS_FROZEN) {
6636
6637 case CPU_UP_PREPARE:
6638 rq->calc_load_update = calc_load_update;
6639 break;
6640
6641 case CPU_ONLINE:
6642 /* Update our root-domain */
6643 raw_spin_lock_irqsave(&rq->lock, flags);
6644 if (rq->rd) {
6645 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6646
6647 set_rq_online(rq);
6648 }
6649 raw_spin_unlock_irqrestore(&rq->lock, flags);
6650 break;
6651
6652 #ifdef CONFIG_HOTPLUG_CPU
6653 case CPU_DYING:
6654 sched_ttwu_pending();
6655 /* Update our root-domain */
6656 raw_spin_lock_irqsave(&rq->lock, flags);
6657 if (rq->rd) {
6658 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6659 set_rq_offline(rq);
6660 }
6661 migrate_tasks(cpu);
6662 BUG_ON(rq->nr_running != 1); /* the migration thread */
6663 raw_spin_unlock_irqrestore(&rq->lock, flags);
6664
6665 migrate_nr_uninterruptible(rq);
6666 calc_global_load_remove(rq);
6667 break;
6668 #endif
6669 }
6670
6671 update_max_interval();
6672
6673 return NOTIFY_OK;
6674 }
6675
6676 /*
6677 * Register at high priority so that task migration (migrate_all_tasks)
6678 * happens before everything else. This has to be lower priority than
6679 * the notifier in the perf_event subsystem, though.
6680 */
6681 static struct notifier_block __cpuinitdata migration_notifier = {
6682 .notifier_call = migration_call,
6683 .priority = CPU_PRI_MIGRATION,
6684 };
6685
6686 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6687 unsigned long action, void *hcpu)
6688 {
6689 switch (action & ~CPU_TASKS_FROZEN) {
6690 case CPU_ONLINE:
6691 case CPU_DOWN_FAILED:
6692 set_cpu_active((long)hcpu, true);
6693 return NOTIFY_OK;
6694 default:
6695 return NOTIFY_DONE;
6696 }
6697 }
6698
6699 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6700 unsigned long action, void *hcpu)
6701 {
6702 switch (action & ~CPU_TASKS_FROZEN) {
6703 case CPU_DOWN_PREPARE:
6704 set_cpu_active((long)hcpu, false);
6705 return NOTIFY_OK;
6706 default:
6707 return NOTIFY_DONE;
6708 }
6709 }
6710
6711 static int __init migration_init(void)
6712 {
6713 void *cpu = (void *)(long)smp_processor_id();
6714 int err;
6715
6716 /* Initialize migration for the boot CPU */
6717 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6718 BUG_ON(err == NOTIFY_BAD);
6719 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6720 register_cpu_notifier(&migration_notifier);
6721
6722 /* Register cpu active notifiers */
6723 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6724 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6725
6726 return 0;
6727 }
6728 early_initcall(migration_init);
6729 #endif
6730
6731 #ifdef CONFIG_SMP
6732
6733 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6734
6735 #ifdef CONFIG_SCHED_DEBUG
6736
6737 static __read_mostly int sched_domain_debug_enabled;
6738
6739 static int __init sched_domain_debug_setup(char *str)
6740 {
6741 sched_domain_debug_enabled = 1;
6742
6743 return 0;
6744 }
6745 early_param("sched_debug", sched_domain_debug_setup);
6746
6747 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6748 struct cpumask *groupmask)
6749 {
6750 struct sched_group *group = sd->groups;
6751 char str[256];
6752
6753 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6754 cpumask_clear(groupmask);
6755
6756 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6757
6758 if (!(sd->flags & SD_LOAD_BALANCE)) {
6759 printk("does not load-balance\n");
6760 if (sd->parent)
6761 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6762 " has parent");
6763 return -1;
6764 }
6765
6766 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6767
6768 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6769 printk(KERN_ERR "ERROR: domain->span does not contain "
6770 "CPU%d\n", cpu);
6771 }
6772 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6773 printk(KERN_ERR "ERROR: domain->groups does not contain"
6774 " CPU%d\n", cpu);
6775 }
6776
6777 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6778 do {
6779 if (!group) {
6780 printk("\n");
6781 printk(KERN_ERR "ERROR: group is NULL\n");
6782 break;
6783 }
6784
6785 if (!group->sgp->power) {
6786 printk(KERN_CONT "\n");
6787 printk(KERN_ERR "ERROR: domain->cpu_power not "
6788 "set\n");
6789 break;
6790 }
6791
6792 if (!cpumask_weight(sched_group_cpus(group))) {
6793 printk(KERN_CONT "\n");
6794 printk(KERN_ERR "ERROR: empty group\n");
6795 break;
6796 }
6797
6798 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6799 printk(KERN_CONT "\n");
6800 printk(KERN_ERR "ERROR: repeated CPUs\n");
6801 break;
6802 }
6803
6804 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6805
6806 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6807
6808 printk(KERN_CONT " %s", str);
6809 if (group->sgp->power != SCHED_POWER_SCALE) {
6810 printk(KERN_CONT " (cpu_power = %d)",
6811 group->sgp->power);
6812 }
6813
6814 group = group->next;
6815 } while (group != sd->groups);
6816 printk(KERN_CONT "\n");
6817
6818 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6819 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6820
6821 if (sd->parent &&
6822 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6823 printk(KERN_ERR "ERROR: parent span is not a superset "
6824 "of domain->span\n");
6825 return 0;
6826 }
6827
6828 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6829 {
6830 int level = 0;
6831
6832 if (!sched_domain_debug_enabled)
6833 return;
6834
6835 if (!sd) {
6836 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6837 return;
6838 }
6839
6840 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6841
6842 for (;;) {
6843 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
6844 break;
6845 level++;
6846 sd = sd->parent;
6847 if (!sd)
6848 break;
6849 }
6850 }
6851 #else /* !CONFIG_SCHED_DEBUG */
6852 # define sched_domain_debug(sd, cpu) do { } while (0)
6853 #endif /* CONFIG_SCHED_DEBUG */
6854
6855 static int sd_degenerate(struct sched_domain *sd)
6856 {
6857 if (cpumask_weight(sched_domain_span(sd)) == 1)
6858 return 1;
6859
6860 /* Following flags need at least 2 groups */
6861 if (sd->flags & (SD_LOAD_BALANCE |
6862 SD_BALANCE_NEWIDLE |
6863 SD_BALANCE_FORK |
6864 SD_BALANCE_EXEC |
6865 SD_SHARE_CPUPOWER |
6866 SD_SHARE_PKG_RESOURCES)) {
6867 if (sd->groups != sd->groups->next)
6868 return 0;
6869 }
6870
6871 /* Following flags don't use groups */
6872 if (sd->flags & (SD_WAKE_AFFINE))
6873 return 0;
6874
6875 return 1;
6876 }
6877
6878 static int
6879 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6880 {
6881 unsigned long cflags = sd->flags, pflags = parent->flags;
6882
6883 if (sd_degenerate(parent))
6884 return 1;
6885
6886 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6887 return 0;
6888
6889 /* Flags needing groups don't count if only 1 group in parent */
6890 if (parent->groups == parent->groups->next) {
6891 pflags &= ~(SD_LOAD_BALANCE |
6892 SD_BALANCE_NEWIDLE |
6893 SD_BALANCE_FORK |
6894 SD_BALANCE_EXEC |
6895 SD_SHARE_CPUPOWER |
6896 SD_SHARE_PKG_RESOURCES);
6897 if (nr_node_ids == 1)
6898 pflags &= ~SD_SERIALIZE;
6899 }
6900 if (~cflags & pflags)
6901 return 0;
6902
6903 return 1;
6904 }
6905
6906 static void free_rootdomain(struct rcu_head *rcu)
6907 {
6908 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6909
6910 cpupri_cleanup(&rd->cpupri);
6911 free_cpumask_var(rd->rto_mask);
6912 free_cpumask_var(rd->online);
6913 free_cpumask_var(rd->span);
6914 kfree(rd);
6915 }
6916
6917 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6918 {
6919 struct root_domain *old_rd = NULL;
6920 unsigned long flags;
6921
6922 raw_spin_lock_irqsave(&rq->lock, flags);
6923
6924 if (rq->rd) {
6925 old_rd = rq->rd;
6926
6927 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6928 set_rq_offline(rq);
6929
6930 cpumask_clear_cpu(rq->cpu, old_rd->span);
6931
6932 /*
6933 * If we dont want to free the old_rt yet then
6934 * set old_rd to NULL to skip the freeing later
6935 * in this function:
6936 */
6937 if (!atomic_dec_and_test(&old_rd->refcount))
6938 old_rd = NULL;
6939 }
6940
6941 atomic_inc(&rd->refcount);
6942 rq->rd = rd;
6943
6944 cpumask_set_cpu(rq->cpu, rd->span);
6945 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6946 set_rq_online(rq);
6947
6948 raw_spin_unlock_irqrestore(&rq->lock, flags);
6949
6950 if (old_rd)
6951 call_rcu_sched(&old_rd->rcu, free_rootdomain);
6952 }
6953
6954 static int init_rootdomain(struct root_domain *rd)
6955 {
6956 memset(rd, 0, sizeof(*rd));
6957
6958 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6959 goto out;
6960 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6961 goto free_span;
6962 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6963 goto free_online;
6964
6965 if (cpupri_init(&rd->cpupri) != 0)
6966 goto free_rto_mask;
6967 return 0;
6968
6969 free_rto_mask:
6970 free_cpumask_var(rd->rto_mask);
6971 free_online:
6972 free_cpumask_var(rd->online);
6973 free_span:
6974 free_cpumask_var(rd->span);
6975 out:
6976 return -ENOMEM;
6977 }
6978
6979 static void init_defrootdomain(void)
6980 {
6981 init_rootdomain(&def_root_domain);
6982
6983 atomic_set(&def_root_domain.refcount, 1);
6984 }
6985
6986 static struct root_domain *alloc_rootdomain(void)
6987 {
6988 struct root_domain *rd;
6989
6990 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6991 if (!rd)
6992 return NULL;
6993
6994 if (init_rootdomain(rd) != 0) {
6995 kfree(rd);
6996 return NULL;
6997 }
6998
6999 return rd;
7000 }
7001
7002 static void free_sched_groups(struct sched_group *sg, int free_sgp)
7003 {
7004 struct sched_group *tmp, *first;
7005
7006 if (!sg)
7007 return;
7008
7009 first = sg;
7010 do {
7011 tmp = sg->next;
7012
7013 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
7014 kfree(sg->sgp);
7015
7016 kfree(sg);
7017 sg = tmp;
7018 } while (sg != first);
7019 }
7020
7021 static void free_sched_domain(struct rcu_head *rcu)
7022 {
7023 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
7024
7025 /*
7026 * If its an overlapping domain it has private groups, iterate and
7027 * nuke them all.
7028 */
7029 if (sd->flags & SD_OVERLAP) {
7030 free_sched_groups(sd->groups, 1);
7031 } else if (atomic_dec_and_test(&sd->groups->ref)) {
7032 kfree(sd->groups->sgp);
7033 kfree(sd->groups);
7034 }
7035 kfree(sd);
7036 }
7037
7038 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
7039 {
7040 call_rcu(&sd->rcu, free_sched_domain);
7041 }
7042
7043 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
7044 {
7045 for (; sd; sd = sd->parent)
7046 destroy_sched_domain(sd, cpu);
7047 }
7048
7049 /*
7050 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7051 * hold the hotplug lock.
7052 */
7053 static void
7054 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7055 {
7056 struct rq *rq = cpu_rq(cpu);
7057 struct sched_domain *tmp;
7058
7059 /* Remove the sched domains which do not contribute to scheduling. */
7060 for (tmp = sd; tmp; ) {
7061 struct sched_domain *parent = tmp->parent;
7062 if (!parent)
7063 break;
7064
7065 if (sd_parent_degenerate(tmp, parent)) {
7066 tmp->parent = parent->parent;
7067 if (parent->parent)
7068 parent->parent->child = tmp;
7069 destroy_sched_domain(parent, cpu);
7070 } else
7071 tmp = tmp->parent;
7072 }
7073
7074 if (sd && sd_degenerate(sd)) {
7075 tmp = sd;
7076 sd = sd->parent;
7077 destroy_sched_domain(tmp, cpu);
7078 if (sd)
7079 sd->child = NULL;
7080 }
7081
7082 sched_domain_debug(sd, cpu);
7083
7084 rq_attach_root(rq, rd);
7085 tmp = rq->sd;
7086 rcu_assign_pointer(rq->sd, sd);
7087 destroy_sched_domains(tmp, cpu);
7088 }
7089
7090 /* cpus with isolated domains */
7091 static cpumask_var_t cpu_isolated_map;
7092
7093 /* Setup the mask of cpus configured for isolated domains */
7094 static int __init isolated_cpu_setup(char *str)
7095 {
7096 alloc_bootmem_cpumask_var(&cpu_isolated_map);
7097 cpulist_parse(str, cpu_isolated_map);
7098 return 1;
7099 }
7100
7101 __setup("isolcpus=", isolated_cpu_setup);
7102
7103 #ifdef CONFIG_NUMA
7104
7105 /**
7106 * find_next_best_node - find the next node to include in a sched_domain
7107 * @node: node whose sched_domain we're building
7108 * @used_nodes: nodes already in the sched_domain
7109 *
7110 * Find the next node to include in a given scheduling domain. Simply
7111 * finds the closest node not already in the @used_nodes map.
7112 *
7113 * Should use nodemask_t.
7114 */
7115 static int find_next_best_node(int node, nodemask_t *used_nodes)
7116 {
7117 int i, n, val, min_val, best_node = -1;
7118
7119 min_val = INT_MAX;
7120
7121 for (i = 0; i < nr_node_ids; i++) {
7122 /* Start at @node */
7123 n = (node + i) % nr_node_ids;
7124
7125 if (!nr_cpus_node(n))
7126 continue;
7127
7128 /* Skip already used nodes */
7129 if (node_isset(n, *used_nodes))
7130 continue;
7131
7132 /* Simple min distance search */
7133 val = node_distance(node, n);
7134
7135 if (val < min_val) {
7136 min_val = val;
7137 best_node = n;
7138 }
7139 }
7140
7141 if (best_node != -1)
7142 node_set(best_node, *used_nodes);
7143 return best_node;
7144 }
7145
7146 /**
7147 * sched_domain_node_span - get a cpumask for a node's sched_domain
7148 * @node: node whose cpumask we're constructing
7149 * @span: resulting cpumask
7150 *
7151 * Given a node, construct a good cpumask for its sched_domain to span. It
7152 * should be one that prevents unnecessary balancing, but also spreads tasks
7153 * out optimally.
7154 */
7155 static void sched_domain_node_span(int node, struct cpumask *span)
7156 {
7157 nodemask_t used_nodes;
7158 int i;
7159
7160 cpumask_clear(span);
7161 nodes_clear(used_nodes);
7162
7163 cpumask_or(span, span, cpumask_of_node(node));
7164 node_set(node, used_nodes);
7165
7166 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7167 int next_node = find_next_best_node(node, &used_nodes);
7168 if (next_node < 0)
7169 break;
7170 cpumask_or(span, span, cpumask_of_node(next_node));
7171 }
7172 }
7173
7174 static const struct cpumask *cpu_node_mask(int cpu)
7175 {
7176 lockdep_assert_held(&sched_domains_mutex);
7177
7178 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7179
7180 return sched_domains_tmpmask;
7181 }
7182
7183 static const struct cpumask *cpu_allnodes_mask(int cpu)
7184 {
7185 return cpu_possible_mask;
7186 }
7187 #endif /* CONFIG_NUMA */
7188
7189 static const struct cpumask *cpu_cpu_mask(int cpu)
7190 {
7191 return cpumask_of_node(cpu_to_node(cpu));
7192 }
7193
7194 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7195
7196 struct sd_data {
7197 struct sched_domain **__percpu sd;
7198 struct sched_group **__percpu sg;
7199 struct sched_group_power **__percpu sgp;
7200 };
7201
7202 struct s_data {
7203 struct sched_domain ** __percpu sd;
7204 struct root_domain *rd;
7205 };
7206
7207 enum s_alloc {
7208 sa_rootdomain,
7209 sa_sd,
7210 sa_sd_storage,
7211 sa_none,
7212 };
7213
7214 struct sched_domain_topology_level;
7215
7216 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
7217 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7218
7219 #define SDTL_OVERLAP 0x01
7220
7221 struct sched_domain_topology_level {
7222 sched_domain_init_f init;
7223 sched_domain_mask_f mask;
7224 int flags;
7225 struct sd_data data;
7226 };
7227
7228 static int
7229 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7230 {
7231 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7232 const struct cpumask *span = sched_domain_span(sd);
7233 struct cpumask *covered = sched_domains_tmpmask;
7234 struct sd_data *sdd = sd->private;
7235 struct sched_domain *child;
7236 int i;
7237
7238 cpumask_clear(covered);
7239
7240 for_each_cpu(i, span) {
7241 struct cpumask *sg_span;
7242
7243 if (cpumask_test_cpu(i, covered))
7244 continue;
7245
7246 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7247 GFP_KERNEL, cpu_to_node(i));
7248
7249 if (!sg)
7250 goto fail;
7251
7252 sg_span = sched_group_cpus(sg);
7253
7254 child = *per_cpu_ptr(sdd->sd, i);
7255 if (child->child) {
7256 child = child->child;
7257 cpumask_copy(sg_span, sched_domain_span(child));
7258 } else
7259 cpumask_set_cpu(i, sg_span);
7260
7261 cpumask_or(covered, covered, sg_span);
7262
7263 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7264 atomic_inc(&sg->sgp->ref);
7265
7266 if (cpumask_test_cpu(cpu, sg_span))
7267 groups = sg;
7268
7269 if (!first)
7270 first = sg;
7271 if (last)
7272 last->next = sg;
7273 last = sg;
7274 last->next = first;
7275 }
7276 sd->groups = groups;
7277
7278 return 0;
7279
7280 fail:
7281 free_sched_groups(first, 0);
7282
7283 return -ENOMEM;
7284 }
7285
7286 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
7287 {
7288 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7289 struct sched_domain *child = sd->child;
7290
7291 if (child)
7292 cpu = cpumask_first(sched_domain_span(child));
7293
7294 if (sg) {
7295 *sg = *per_cpu_ptr(sdd->sg, cpu);
7296 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7297 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
7298 }
7299
7300 return cpu;
7301 }
7302
7303 /*
7304 * build_sched_groups will build a circular linked list of the groups
7305 * covered by the given span, and will set each group's ->cpumask correctly,
7306 * and ->cpu_power to 0.
7307 *
7308 * Assumes the sched_domain tree is fully constructed
7309 */
7310 static int
7311 build_sched_groups(struct sched_domain *sd, int cpu)
7312 {
7313 struct sched_group *first = NULL, *last = NULL;
7314 struct sd_data *sdd = sd->private;
7315 const struct cpumask *span = sched_domain_span(sd);
7316 struct cpumask *covered;
7317 int i;
7318
7319 get_group(cpu, sdd, &sd->groups);
7320 atomic_inc(&sd->groups->ref);
7321
7322 if (cpu != cpumask_first(sched_domain_span(sd)))
7323 return 0;
7324
7325 lockdep_assert_held(&sched_domains_mutex);
7326 covered = sched_domains_tmpmask;
7327
7328 cpumask_clear(covered);
7329
7330 for_each_cpu(i, span) {
7331 struct sched_group *sg;
7332 int group = get_group(i, sdd, &sg);
7333 int j;
7334
7335 if (cpumask_test_cpu(i, covered))
7336 continue;
7337
7338 cpumask_clear(sched_group_cpus(sg));
7339 sg->sgp->power = 0;
7340
7341 for_each_cpu(j, span) {
7342 if (get_group(j, sdd, NULL) != group)
7343 continue;
7344
7345 cpumask_set_cpu(j, covered);
7346 cpumask_set_cpu(j, sched_group_cpus(sg));
7347 }
7348
7349 if (!first)
7350 first = sg;
7351 if (last)
7352 last->next = sg;
7353 last = sg;
7354 }
7355 last->next = first;
7356
7357 return 0;
7358 }
7359
7360 /*
7361 * Initialize sched groups cpu_power.
7362 *
7363 * cpu_power indicates the capacity of sched group, which is used while
7364 * distributing the load between different sched groups in a sched domain.
7365 * Typically cpu_power for all the groups in a sched domain will be same unless
7366 * there are asymmetries in the topology. If there are asymmetries, group
7367 * having more cpu_power will pickup more load compared to the group having
7368 * less cpu_power.
7369 */
7370 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7371 {
7372 struct sched_group *sg = sd->groups;
7373
7374 WARN_ON(!sd || !sg);
7375
7376 do {
7377 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7378 sg = sg->next;
7379 } while (sg != sd->groups);
7380
7381 if (cpu != group_first_cpu(sg))
7382 return;
7383
7384 update_group_power(sd, cpu);
7385 }
7386
7387 /*
7388 * Initializers for schedule domains
7389 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7390 */
7391
7392 #ifdef CONFIG_SCHED_DEBUG
7393 # define SD_INIT_NAME(sd, type) sd->name = #type
7394 #else
7395 # define SD_INIT_NAME(sd, type) do { } while (0)
7396 #endif
7397
7398 #define SD_INIT_FUNC(type) \
7399 static noinline struct sched_domain * \
7400 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7401 { \
7402 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7403 *sd = SD_##type##_INIT; \
7404 SD_INIT_NAME(sd, type); \
7405 sd->private = &tl->data; \
7406 return sd; \
7407 }
7408
7409 SD_INIT_FUNC(CPU)
7410 #ifdef CONFIG_NUMA
7411 SD_INIT_FUNC(ALLNODES)
7412 SD_INIT_FUNC(NODE)
7413 #endif
7414 #ifdef CONFIG_SCHED_SMT
7415 SD_INIT_FUNC(SIBLING)
7416 #endif
7417 #ifdef CONFIG_SCHED_MC
7418 SD_INIT_FUNC(MC)
7419 #endif
7420 #ifdef CONFIG_SCHED_BOOK
7421 SD_INIT_FUNC(BOOK)
7422 #endif
7423
7424 static int default_relax_domain_level = -1;
7425 int sched_domain_level_max;
7426
7427 static int __init setup_relax_domain_level(char *str)
7428 {
7429 unsigned long val;
7430
7431 val = simple_strtoul(str, NULL, 0);
7432 if (val < sched_domain_level_max)
7433 default_relax_domain_level = val;
7434
7435 return 1;
7436 }
7437 __setup("relax_domain_level=", setup_relax_domain_level);
7438
7439 static void set_domain_attribute(struct sched_domain *sd,
7440 struct sched_domain_attr *attr)
7441 {
7442 int request;
7443
7444 if (!attr || attr->relax_domain_level < 0) {
7445 if (default_relax_domain_level < 0)
7446 return;
7447 else
7448 request = default_relax_domain_level;
7449 } else
7450 request = attr->relax_domain_level;
7451 if (request < sd->level) {
7452 /* turn off idle balance on this domain */
7453 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7454 } else {
7455 /* turn on idle balance on this domain */
7456 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7457 }
7458 }
7459
7460 static void __sdt_free(const struct cpumask *cpu_map);
7461 static int __sdt_alloc(const struct cpumask *cpu_map);
7462
7463 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7464 const struct cpumask *cpu_map)
7465 {
7466 switch (what) {
7467 case sa_rootdomain:
7468 if (!atomic_read(&d->rd->refcount))
7469 free_rootdomain(&d->rd->rcu); /* fall through */
7470 case sa_sd:
7471 free_percpu(d->sd); /* fall through */
7472 case sa_sd_storage:
7473 __sdt_free(cpu_map); /* fall through */
7474 case sa_none:
7475 break;
7476 }
7477 }
7478
7479 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7480 const struct cpumask *cpu_map)
7481 {
7482 memset(d, 0, sizeof(*d));
7483
7484 if (__sdt_alloc(cpu_map))
7485 return sa_sd_storage;
7486 d->sd = alloc_percpu(struct sched_domain *);
7487 if (!d->sd)
7488 return sa_sd_storage;
7489 d->rd = alloc_rootdomain();
7490 if (!d->rd)
7491 return sa_sd;
7492 return sa_rootdomain;
7493 }
7494
7495 /*
7496 * NULL the sd_data elements we've used to build the sched_domain and
7497 * sched_group structure so that the subsequent __free_domain_allocs()
7498 * will not free the data we're using.
7499 */
7500 static void claim_allocations(int cpu, struct sched_domain *sd)
7501 {
7502 struct sd_data *sdd = sd->private;
7503
7504 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7505 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7506
7507 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7508 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7509
7510 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7511 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
7512 }
7513
7514 #ifdef CONFIG_SCHED_SMT
7515 static const struct cpumask *cpu_smt_mask(int cpu)
7516 {
7517 return topology_thread_cpumask(cpu);
7518 }
7519 #endif
7520
7521 /*
7522 * Topology list, bottom-up.
7523 */
7524 static struct sched_domain_topology_level default_topology[] = {
7525 #ifdef CONFIG_SCHED_SMT
7526 { sd_init_SIBLING, cpu_smt_mask, },
7527 #endif
7528 #ifdef CONFIG_SCHED_MC
7529 { sd_init_MC, cpu_coregroup_mask, },
7530 #endif
7531 #ifdef CONFIG_SCHED_BOOK
7532 { sd_init_BOOK, cpu_book_mask, },
7533 #endif
7534 { sd_init_CPU, cpu_cpu_mask, },
7535 #ifdef CONFIG_NUMA
7536 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7537 { sd_init_ALLNODES, cpu_allnodes_mask, },
7538 #endif
7539 { NULL, },
7540 };
7541
7542 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7543
7544 static int __sdt_alloc(const struct cpumask *cpu_map)
7545 {
7546 struct sched_domain_topology_level *tl;
7547 int j;
7548
7549 for (tl = sched_domain_topology; tl->init; tl++) {
7550 struct sd_data *sdd = &tl->data;
7551
7552 sdd->sd = alloc_percpu(struct sched_domain *);
7553 if (!sdd->sd)
7554 return -ENOMEM;
7555
7556 sdd->sg = alloc_percpu(struct sched_group *);
7557 if (!sdd->sg)
7558 return -ENOMEM;
7559
7560 sdd->sgp = alloc_percpu(struct sched_group_power *);
7561 if (!sdd->sgp)
7562 return -ENOMEM;
7563
7564 for_each_cpu(j, cpu_map) {
7565 struct sched_domain *sd;
7566 struct sched_group *sg;
7567 struct sched_group_power *sgp;
7568
7569 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7570 GFP_KERNEL, cpu_to_node(j));
7571 if (!sd)
7572 return -ENOMEM;
7573
7574 *per_cpu_ptr(sdd->sd, j) = sd;
7575
7576 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7577 GFP_KERNEL, cpu_to_node(j));
7578 if (!sg)
7579 return -ENOMEM;
7580
7581 *per_cpu_ptr(sdd->sg, j) = sg;
7582
7583 sgp = kzalloc_node(sizeof(struct sched_group_power),
7584 GFP_KERNEL, cpu_to_node(j));
7585 if (!sgp)
7586 return -ENOMEM;
7587
7588 *per_cpu_ptr(sdd->sgp, j) = sgp;
7589 }
7590 }
7591
7592 return 0;
7593 }
7594
7595 static void __sdt_free(const struct cpumask *cpu_map)
7596 {
7597 struct sched_domain_topology_level *tl;
7598 int j;
7599
7600 for (tl = sched_domain_topology; tl->init; tl++) {
7601 struct sd_data *sdd = &tl->data;
7602
7603 for_each_cpu(j, cpu_map) {
7604 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, j);
7605 if (sd && (sd->flags & SD_OVERLAP))
7606 free_sched_groups(sd->groups, 0);
7607 kfree(*per_cpu_ptr(sdd->sd, j));
7608 kfree(*per_cpu_ptr(sdd->sg, j));
7609 kfree(*per_cpu_ptr(sdd->sgp, j));
7610 }
7611 free_percpu(sdd->sd);
7612 free_percpu(sdd->sg);
7613 free_percpu(sdd->sgp);
7614 }
7615 }
7616
7617 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7618 struct s_data *d, const struct cpumask *cpu_map,
7619 struct sched_domain_attr *attr, struct sched_domain *child,
7620 int cpu)
7621 {
7622 struct sched_domain *sd = tl->init(tl, cpu);
7623 if (!sd)
7624 return child;
7625
7626 set_domain_attribute(sd, attr);
7627 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7628 if (child) {
7629 sd->level = child->level + 1;
7630 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7631 child->parent = sd;
7632 }
7633 sd->child = child;
7634
7635 return sd;
7636 }
7637
7638 /*
7639 * Build sched domains for a given set of cpus and attach the sched domains
7640 * to the individual cpus
7641 */
7642 static int build_sched_domains(const struct cpumask *cpu_map,
7643 struct sched_domain_attr *attr)
7644 {
7645 enum s_alloc alloc_state = sa_none;
7646 struct sched_domain *sd;
7647 struct s_data d;
7648 int i, ret = -ENOMEM;
7649
7650 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7651 if (alloc_state != sa_rootdomain)
7652 goto error;
7653
7654 /* Set up domains for cpus specified by the cpu_map. */
7655 for_each_cpu(i, cpu_map) {
7656 struct sched_domain_topology_level *tl;
7657
7658 sd = NULL;
7659 for (tl = sched_domain_topology; tl->init; tl++) {
7660 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7661 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7662 sd->flags |= SD_OVERLAP;
7663 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7664 break;
7665 }
7666
7667 while (sd->child)
7668 sd = sd->child;
7669
7670 *per_cpu_ptr(d.sd, i) = sd;
7671 }
7672
7673 /* Build the groups for the domains */
7674 for_each_cpu(i, cpu_map) {
7675 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7676 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7677 if (sd->flags & SD_OVERLAP) {
7678 if (build_overlap_sched_groups(sd, i))
7679 goto error;
7680 } else {
7681 if (build_sched_groups(sd, i))
7682 goto error;
7683 }
7684 }
7685 }
7686
7687 /* Calculate CPU power for physical packages and nodes */
7688 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7689 if (!cpumask_test_cpu(i, cpu_map))
7690 continue;
7691
7692 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7693 claim_allocations(i, sd);
7694 init_sched_groups_power(i, sd);
7695 }
7696 }
7697
7698 /* Attach the domains */
7699 rcu_read_lock();
7700 for_each_cpu(i, cpu_map) {
7701 sd = *per_cpu_ptr(d.sd, i);
7702 cpu_attach_domain(sd, d.rd, i);
7703 }
7704 rcu_read_unlock();
7705
7706 ret = 0;
7707 error:
7708 __free_domain_allocs(&d, alloc_state, cpu_map);
7709 return ret;
7710 }
7711
7712 static cpumask_var_t *doms_cur; /* current sched domains */
7713 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7714 static struct sched_domain_attr *dattr_cur;
7715 /* attribues of custom domains in 'doms_cur' */
7716
7717 /*
7718 * Special case: If a kmalloc of a doms_cur partition (array of
7719 * cpumask) fails, then fallback to a single sched domain,
7720 * as determined by the single cpumask fallback_doms.
7721 */
7722 static cpumask_var_t fallback_doms;
7723
7724 /*
7725 * arch_update_cpu_topology lets virtualized architectures update the
7726 * cpu core maps. It is supposed to return 1 if the topology changed
7727 * or 0 if it stayed the same.
7728 */
7729 int __attribute__((weak)) arch_update_cpu_topology(void)
7730 {
7731 return 0;
7732 }
7733
7734 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7735 {
7736 int i;
7737 cpumask_var_t *doms;
7738
7739 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7740 if (!doms)
7741 return NULL;
7742 for (i = 0; i < ndoms; i++) {
7743 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7744 free_sched_domains(doms, i);
7745 return NULL;
7746 }
7747 }
7748 return doms;
7749 }
7750
7751 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7752 {
7753 unsigned int i;
7754 for (i = 0; i < ndoms; i++)
7755 free_cpumask_var(doms[i]);
7756 kfree(doms);
7757 }
7758
7759 /*
7760 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7761 * For now this just excludes isolated cpus, but could be used to
7762 * exclude other special cases in the future.
7763 */
7764 static int init_sched_domains(const struct cpumask *cpu_map)
7765 {
7766 int err;
7767
7768 arch_update_cpu_topology();
7769 ndoms_cur = 1;
7770 doms_cur = alloc_sched_domains(ndoms_cur);
7771 if (!doms_cur)
7772 doms_cur = &fallback_doms;
7773 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7774 dattr_cur = NULL;
7775 err = build_sched_domains(doms_cur[0], NULL);
7776 register_sched_domain_sysctl();
7777
7778 return err;
7779 }
7780
7781 /*
7782 * Detach sched domains from a group of cpus specified in cpu_map
7783 * These cpus will now be attached to the NULL domain
7784 */
7785 static void detach_destroy_domains(const struct cpumask *cpu_map)
7786 {
7787 int i;
7788
7789 rcu_read_lock();
7790 for_each_cpu(i, cpu_map)
7791 cpu_attach_domain(NULL, &def_root_domain, i);
7792 rcu_read_unlock();
7793 }
7794
7795 /* handle null as "default" */
7796 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7797 struct sched_domain_attr *new, int idx_new)
7798 {
7799 struct sched_domain_attr tmp;
7800
7801 /* fast path */
7802 if (!new && !cur)
7803 return 1;
7804
7805 tmp = SD_ATTR_INIT;
7806 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7807 new ? (new + idx_new) : &tmp,
7808 sizeof(struct sched_domain_attr));
7809 }
7810
7811 /*
7812 * Partition sched domains as specified by the 'ndoms_new'
7813 * cpumasks in the array doms_new[] of cpumasks. This compares
7814 * doms_new[] to the current sched domain partitioning, doms_cur[].
7815 * It destroys each deleted domain and builds each new domain.
7816 *
7817 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7818 * The masks don't intersect (don't overlap.) We should setup one
7819 * sched domain for each mask. CPUs not in any of the cpumasks will
7820 * not be load balanced. If the same cpumask appears both in the
7821 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7822 * it as it is.
7823 *
7824 * The passed in 'doms_new' should be allocated using
7825 * alloc_sched_domains. This routine takes ownership of it and will
7826 * free_sched_domains it when done with it. If the caller failed the
7827 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7828 * and partition_sched_domains() will fallback to the single partition
7829 * 'fallback_doms', it also forces the domains to be rebuilt.
7830 *
7831 * If doms_new == NULL it will be replaced with cpu_online_mask.
7832 * ndoms_new == 0 is a special case for destroying existing domains,
7833 * and it will not create the default domain.
7834 *
7835 * Call with hotplug lock held
7836 */
7837 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7838 struct sched_domain_attr *dattr_new)
7839 {
7840 int i, j, n;
7841 int new_topology;
7842
7843 mutex_lock(&sched_domains_mutex);
7844
7845 /* always unregister in case we don't destroy any domains */
7846 unregister_sched_domain_sysctl();
7847
7848 /* Let architecture update cpu core mappings. */
7849 new_topology = arch_update_cpu_topology();
7850
7851 n = doms_new ? ndoms_new : 0;
7852
7853 /* Destroy deleted domains */
7854 for (i = 0; i < ndoms_cur; i++) {
7855 for (j = 0; j < n && !new_topology; j++) {
7856 if (cpumask_equal(doms_cur[i], doms_new[j])
7857 && dattrs_equal(dattr_cur, i, dattr_new, j))
7858 goto match1;
7859 }
7860 /* no match - a current sched domain not in new doms_new[] */
7861 detach_destroy_domains(doms_cur[i]);
7862 match1:
7863 ;
7864 }
7865
7866 if (doms_new == NULL) {
7867 ndoms_cur = 0;
7868 doms_new = &fallback_doms;
7869 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7870 WARN_ON_ONCE(dattr_new);
7871 }
7872
7873 /* Build new domains */
7874 for (i = 0; i < ndoms_new; i++) {
7875 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7876 if (cpumask_equal(doms_new[i], doms_cur[j])
7877 && dattrs_equal(dattr_new, i, dattr_cur, j))
7878 goto match2;
7879 }
7880 /* no match - add a new doms_new */
7881 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7882 match2:
7883 ;
7884 }
7885
7886 /* Remember the new sched domains */
7887 if (doms_cur != &fallback_doms)
7888 free_sched_domains(doms_cur, ndoms_cur);
7889 kfree(dattr_cur); /* kfree(NULL) is safe */
7890 doms_cur = doms_new;
7891 dattr_cur = dattr_new;
7892 ndoms_cur = ndoms_new;
7893
7894 register_sched_domain_sysctl();
7895
7896 mutex_unlock(&sched_domains_mutex);
7897 }
7898
7899 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7900 static void reinit_sched_domains(void)
7901 {
7902 get_online_cpus();
7903
7904 /* Destroy domains first to force the rebuild */
7905 partition_sched_domains(0, NULL, NULL);
7906
7907 rebuild_sched_domains();
7908 put_online_cpus();
7909 }
7910
7911 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7912 {
7913 unsigned int level = 0;
7914
7915 if (sscanf(buf, "%u", &level) != 1)
7916 return -EINVAL;
7917
7918 /*
7919 * level is always be positive so don't check for
7920 * level < POWERSAVINGS_BALANCE_NONE which is 0
7921 * What happens on 0 or 1 byte write,
7922 * need to check for count as well?
7923 */
7924
7925 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7926 return -EINVAL;
7927
7928 if (smt)
7929 sched_smt_power_savings = level;
7930 else
7931 sched_mc_power_savings = level;
7932
7933 reinit_sched_domains();
7934
7935 return count;
7936 }
7937
7938 #ifdef CONFIG_SCHED_MC
7939 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7940 struct sysdev_class_attribute *attr,
7941 char *page)
7942 {
7943 return sprintf(page, "%u\n", sched_mc_power_savings);
7944 }
7945 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7946 struct sysdev_class_attribute *attr,
7947 const char *buf, size_t count)
7948 {
7949 return sched_power_savings_store(buf, count, 0);
7950 }
7951 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7952 sched_mc_power_savings_show,
7953 sched_mc_power_savings_store);
7954 #endif
7955
7956 #ifdef CONFIG_SCHED_SMT
7957 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7958 struct sysdev_class_attribute *attr,
7959 char *page)
7960 {
7961 return sprintf(page, "%u\n", sched_smt_power_savings);
7962 }
7963 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7964 struct sysdev_class_attribute *attr,
7965 const char *buf, size_t count)
7966 {
7967 return sched_power_savings_store(buf, count, 1);
7968 }
7969 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7970 sched_smt_power_savings_show,
7971 sched_smt_power_savings_store);
7972 #endif
7973
7974 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7975 {
7976 int err = 0;
7977
7978 #ifdef CONFIG_SCHED_SMT
7979 if (smt_capable())
7980 err = sysfs_create_file(&cls->kset.kobj,
7981 &attr_sched_smt_power_savings.attr);
7982 #endif
7983 #ifdef CONFIG_SCHED_MC
7984 if (!err && mc_capable())
7985 err = sysfs_create_file(&cls->kset.kobj,
7986 &attr_sched_mc_power_savings.attr);
7987 #endif
7988 return err;
7989 }
7990 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7991
7992 /*
7993 * Update cpusets according to cpu_active mask. If cpusets are
7994 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7995 * around partition_sched_domains().
7996 */
7997 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7998 void *hcpu)
7999 {
8000 switch (action & ~CPU_TASKS_FROZEN) {
8001 case CPU_ONLINE:
8002 case CPU_DOWN_FAILED:
8003 cpuset_update_active_cpus();
8004 return NOTIFY_OK;
8005 default:
8006 return NOTIFY_DONE;
8007 }
8008 }
8009
8010 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
8011 void *hcpu)
8012 {
8013 switch (action & ~CPU_TASKS_FROZEN) {
8014 case CPU_DOWN_PREPARE:
8015 cpuset_update_active_cpus();
8016 return NOTIFY_OK;
8017 default:
8018 return NOTIFY_DONE;
8019 }
8020 }
8021
8022 static int update_runtime(struct notifier_block *nfb,
8023 unsigned long action, void *hcpu)
8024 {
8025 int cpu = (int)(long)hcpu;
8026
8027 switch (action) {
8028 case CPU_DOWN_PREPARE:
8029 case CPU_DOWN_PREPARE_FROZEN:
8030 disable_runtime(cpu_rq(cpu));
8031 return NOTIFY_OK;
8032
8033 case CPU_DOWN_FAILED:
8034 case CPU_DOWN_FAILED_FROZEN:
8035 case CPU_ONLINE:
8036 case CPU_ONLINE_FROZEN:
8037 enable_runtime(cpu_rq(cpu));
8038 return NOTIFY_OK;
8039
8040 default:
8041 return NOTIFY_DONE;
8042 }
8043 }
8044
8045 void __init sched_init_smp(void)
8046 {
8047 cpumask_var_t non_isolated_cpus;
8048
8049 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8050 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8051
8052 get_online_cpus();
8053 mutex_lock(&sched_domains_mutex);
8054 init_sched_domains(cpu_active_mask);
8055 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8056 if (cpumask_empty(non_isolated_cpus))
8057 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8058 mutex_unlock(&sched_domains_mutex);
8059 put_online_cpus();
8060
8061 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
8062 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
8063
8064 /* RT runtime code needs to handle some hotplug events */
8065 hotcpu_notifier(update_runtime, 0);
8066
8067 init_hrtick();
8068
8069 /* Move init over to a non-isolated CPU */
8070 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8071 BUG();
8072 sched_init_granularity();
8073 free_cpumask_var(non_isolated_cpus);
8074
8075 init_sched_rt_class();
8076 }
8077 #else
8078 void __init sched_init_smp(void)
8079 {
8080 sched_init_granularity();
8081 }
8082 #endif /* CONFIG_SMP */
8083
8084 const_debug unsigned int sysctl_timer_migration = 1;
8085
8086 int in_sched_functions(unsigned long addr)
8087 {
8088 return in_lock_functions(addr) ||
8089 (addr >= (unsigned long)__sched_text_start
8090 && addr < (unsigned long)__sched_text_end);
8091 }
8092
8093 static void init_cfs_rq(struct cfs_rq *cfs_rq)
8094 {
8095 cfs_rq->tasks_timeline = RB_ROOT;
8096 INIT_LIST_HEAD(&cfs_rq->tasks);
8097 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8098 #ifndef CONFIG_64BIT
8099 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8100 #endif
8101 }
8102
8103 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8104 {
8105 struct rt_prio_array *array;
8106 int i;
8107
8108 array = &rt_rq->active;
8109 for (i = 0; i < MAX_RT_PRIO; i++) {
8110 INIT_LIST_HEAD(array->queue + i);
8111 __clear_bit(i, array->bitmap);
8112 }
8113 /* delimiter for bitsearch: */
8114 __set_bit(MAX_RT_PRIO, array->bitmap);
8115
8116 #if defined CONFIG_SMP
8117 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8118 rt_rq->highest_prio.next = MAX_RT_PRIO;
8119 rt_rq->rt_nr_migratory = 0;
8120 rt_rq->overloaded = 0;
8121 plist_head_init(&rt_rq->pushable_tasks);
8122 #endif
8123
8124 rt_rq->rt_time = 0;
8125 rt_rq->rt_throttled = 0;
8126 rt_rq->rt_runtime = 0;
8127 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8128 }
8129
8130 #ifdef CONFIG_FAIR_GROUP_SCHED
8131 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8132 struct sched_entity *se, int cpu,
8133 struct sched_entity *parent)
8134 {
8135 struct rq *rq = cpu_rq(cpu);
8136
8137 cfs_rq->tg = tg;
8138 cfs_rq->rq = rq;
8139 #ifdef CONFIG_SMP
8140 /* allow initial update_cfs_load() to truncate */
8141 cfs_rq->load_stamp = 1;
8142 #endif
8143 init_cfs_rq_runtime(cfs_rq);
8144
8145 tg->cfs_rq[cpu] = cfs_rq;
8146 tg->se[cpu] = se;
8147
8148 /* se could be NULL for root_task_group */
8149 if (!se)
8150 return;
8151
8152 if (!parent)
8153 se->cfs_rq = &rq->cfs;
8154 else
8155 se->cfs_rq = parent->my_q;
8156
8157 se->my_q = cfs_rq;
8158 update_load_set(&se->load, 0);
8159 se->parent = parent;
8160 }
8161 #endif
8162
8163 #ifdef CONFIG_RT_GROUP_SCHED
8164 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8165 struct sched_rt_entity *rt_se, int cpu,
8166 struct sched_rt_entity *parent)
8167 {
8168 struct rq *rq = cpu_rq(cpu);
8169
8170 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8171 rt_rq->rt_nr_boosted = 0;
8172 rt_rq->rq = rq;
8173 rt_rq->tg = tg;
8174
8175 tg->rt_rq[cpu] = rt_rq;
8176 tg->rt_se[cpu] = rt_se;
8177
8178 if (!rt_se)
8179 return;
8180
8181 if (!parent)
8182 rt_se->rt_rq = &rq->rt;
8183 else
8184 rt_se->rt_rq = parent->my_q;
8185
8186 rt_se->my_q = rt_rq;
8187 rt_se->parent = parent;
8188 INIT_LIST_HEAD(&rt_se->run_list);
8189 }
8190 #endif
8191
8192 void __init sched_init(void)
8193 {
8194 int i, j;
8195 unsigned long alloc_size = 0, ptr;
8196
8197 #ifdef CONFIG_FAIR_GROUP_SCHED
8198 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8199 #endif
8200 #ifdef CONFIG_RT_GROUP_SCHED
8201 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8202 #endif
8203 #ifdef CONFIG_CPUMASK_OFFSTACK
8204 alloc_size += num_possible_cpus() * cpumask_size();
8205 #endif
8206 if (alloc_size) {
8207 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8208
8209 #ifdef CONFIG_FAIR_GROUP_SCHED
8210 root_task_group.se = (struct sched_entity **)ptr;
8211 ptr += nr_cpu_ids * sizeof(void **);
8212
8213 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8214 ptr += nr_cpu_ids * sizeof(void **);
8215
8216 #endif /* CONFIG_FAIR_GROUP_SCHED */
8217 #ifdef CONFIG_RT_GROUP_SCHED
8218 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8219 ptr += nr_cpu_ids * sizeof(void **);
8220
8221 root_task_group.rt_rq = (struct rt_rq **)ptr;
8222 ptr += nr_cpu_ids * sizeof(void **);
8223
8224 #endif /* CONFIG_RT_GROUP_SCHED */
8225 #ifdef CONFIG_CPUMASK_OFFSTACK
8226 for_each_possible_cpu(i) {
8227 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8228 ptr += cpumask_size();
8229 }
8230 #endif /* CONFIG_CPUMASK_OFFSTACK */
8231 }
8232
8233 #ifdef CONFIG_SMP
8234 init_defrootdomain();
8235 #endif
8236
8237 init_rt_bandwidth(&def_rt_bandwidth,
8238 global_rt_period(), global_rt_runtime());
8239
8240 #ifdef CONFIG_RT_GROUP_SCHED
8241 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8242 global_rt_period(), global_rt_runtime());
8243 #endif /* CONFIG_RT_GROUP_SCHED */
8244
8245 #ifdef CONFIG_CGROUP_SCHED
8246 list_add(&root_task_group.list, &task_groups);
8247 INIT_LIST_HEAD(&root_task_group.children);
8248 autogroup_init(&init_task);
8249 #endif /* CONFIG_CGROUP_SCHED */
8250
8251 for_each_possible_cpu(i) {
8252 struct rq *rq;
8253
8254 rq = cpu_rq(i);
8255 raw_spin_lock_init(&rq->lock);
8256 rq->nr_running = 0;
8257 rq->calc_load_active = 0;
8258 rq->calc_load_update = jiffies + LOAD_FREQ;
8259 init_cfs_rq(&rq->cfs);
8260 init_rt_rq(&rq->rt, rq);
8261 #ifdef CONFIG_FAIR_GROUP_SCHED
8262 root_task_group.shares = root_task_group_load;
8263 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8264 /*
8265 * How much cpu bandwidth does root_task_group get?
8266 *
8267 * In case of task-groups formed thr' the cgroup filesystem, it
8268 * gets 100% of the cpu resources in the system. This overall
8269 * system cpu resource is divided among the tasks of
8270 * root_task_group and its child task-groups in a fair manner,
8271 * based on each entity's (task or task-group's) weight
8272 * (se->load.weight).
8273 *
8274 * In other words, if root_task_group has 10 tasks of weight
8275 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8276 * then A0's share of the cpu resource is:
8277 *
8278 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8279 *
8280 * We achieve this by letting root_task_group's tasks sit
8281 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8282 */
8283 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8284 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8285 #endif /* CONFIG_FAIR_GROUP_SCHED */
8286
8287 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8288 #ifdef CONFIG_RT_GROUP_SCHED
8289 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8290 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8291 #endif
8292
8293 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8294 rq->cpu_load[j] = 0;
8295
8296 rq->last_load_update_tick = jiffies;
8297
8298 #ifdef CONFIG_SMP
8299 rq->sd = NULL;
8300 rq->rd = NULL;
8301 rq->cpu_power = SCHED_POWER_SCALE;
8302 rq->post_schedule = 0;
8303 rq->active_balance = 0;
8304 rq->next_balance = jiffies;
8305 rq->push_cpu = 0;
8306 rq->cpu = i;
8307 rq->online = 0;
8308 rq->idle_stamp = 0;
8309 rq->avg_idle = 2*sysctl_sched_migration_cost;
8310 rq_attach_root(rq, &def_root_domain);
8311 #ifdef CONFIG_NO_HZ
8312 rq->nohz_balance_kick = 0;
8313 #endif
8314 #endif
8315 init_rq_hrtick(rq);
8316 atomic_set(&rq->nr_iowait, 0);
8317 }
8318
8319 set_load_weight(&init_task);
8320
8321 #ifdef CONFIG_PREEMPT_NOTIFIERS
8322 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8323 #endif
8324
8325 #ifdef CONFIG_SMP
8326 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8327 #endif
8328
8329 #ifdef CONFIG_RT_MUTEXES
8330 plist_head_init(&init_task.pi_waiters);
8331 #endif
8332
8333 /*
8334 * The boot idle thread does lazy MMU switching as well:
8335 */
8336 atomic_inc(&init_mm.mm_count);
8337 enter_lazy_tlb(&init_mm, current);
8338
8339 /*
8340 * Make us the idle thread. Technically, schedule() should not be
8341 * called from this thread, however somewhere below it might be,
8342 * but because we are the idle thread, we just pick up running again
8343 * when this runqueue becomes "idle".
8344 */
8345 init_idle(current, smp_processor_id());
8346
8347 calc_load_update = jiffies + LOAD_FREQ;
8348
8349 /*
8350 * During early bootup we pretend to be a normal task:
8351 */
8352 current->sched_class = &fair_sched_class;
8353
8354 #ifdef CONFIG_SMP
8355 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8356 #ifdef CONFIG_NO_HZ
8357 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8358 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8359 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8360 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8361 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8362 #endif
8363 /* May be allocated at isolcpus cmdline parse time */
8364 if (cpu_isolated_map == NULL)
8365 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8366 #endif /* SMP */
8367
8368 scheduler_running = 1;
8369 }
8370
8371 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8372 static inline int preempt_count_equals(int preempt_offset)
8373 {
8374 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8375
8376 return (nested == preempt_offset);
8377 }
8378
8379 void __might_sleep(const char *file, int line, int preempt_offset)
8380 {
8381 static unsigned long prev_jiffy; /* ratelimiting */
8382
8383 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
8384 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8385 system_state != SYSTEM_RUNNING || oops_in_progress)
8386 return;
8387 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8388 return;
8389 prev_jiffy = jiffies;
8390
8391 printk(KERN_ERR
8392 "BUG: sleeping function called from invalid context at %s:%d\n",
8393 file, line);
8394 printk(KERN_ERR
8395 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8396 in_atomic(), irqs_disabled(),
8397 current->pid, current->comm);
8398
8399 debug_show_held_locks(current);
8400 if (irqs_disabled())
8401 print_irqtrace_events(current);
8402 dump_stack();
8403 }
8404 EXPORT_SYMBOL(__might_sleep);
8405 #endif
8406
8407 #ifdef CONFIG_MAGIC_SYSRQ
8408 static void normalize_task(struct rq *rq, struct task_struct *p)
8409 {
8410 const struct sched_class *prev_class = p->sched_class;
8411 int old_prio = p->prio;
8412 int on_rq;
8413
8414 on_rq = p->on_rq;
8415 if (on_rq)
8416 deactivate_task(rq, p, 0);
8417 __setscheduler(rq, p, SCHED_NORMAL, 0);
8418 if (on_rq) {
8419 activate_task(rq, p, 0);
8420 resched_task(rq->curr);
8421 }
8422
8423 check_class_changed(rq, p, prev_class, old_prio);
8424 }
8425
8426 void normalize_rt_tasks(void)
8427 {
8428 struct task_struct *g, *p;
8429 unsigned long flags;
8430 struct rq *rq;
8431
8432 read_lock_irqsave(&tasklist_lock, flags);
8433 do_each_thread(g, p) {
8434 /*
8435 * Only normalize user tasks:
8436 */
8437 if (!p->mm)
8438 continue;
8439
8440 p->se.exec_start = 0;
8441 #ifdef CONFIG_SCHEDSTATS
8442 p->se.statistics.wait_start = 0;
8443 p->se.statistics.sleep_start = 0;
8444 p->se.statistics.block_start = 0;
8445 #endif
8446
8447 if (!rt_task(p)) {
8448 /*
8449 * Renice negative nice level userspace
8450 * tasks back to 0:
8451 */
8452 if (TASK_NICE(p) < 0 && p->mm)
8453 set_user_nice(p, 0);
8454 continue;
8455 }
8456
8457 raw_spin_lock(&p->pi_lock);
8458 rq = __task_rq_lock(p);
8459
8460 normalize_task(rq, p);
8461
8462 __task_rq_unlock(rq);
8463 raw_spin_unlock(&p->pi_lock);
8464 } while_each_thread(g, p);
8465
8466 read_unlock_irqrestore(&tasklist_lock, flags);
8467 }
8468
8469 #endif /* CONFIG_MAGIC_SYSRQ */
8470
8471 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8472 /*
8473 * These functions are only useful for the IA64 MCA handling, or kdb.
8474 *
8475 * They can only be called when the whole system has been
8476 * stopped - every CPU needs to be quiescent, and no scheduling
8477 * activity can take place. Using them for anything else would
8478 * be a serious bug, and as a result, they aren't even visible
8479 * under any other configuration.
8480 */
8481
8482 /**
8483 * curr_task - return the current task for a given cpu.
8484 * @cpu: the processor in question.
8485 *
8486 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8487 */
8488 struct task_struct *curr_task(int cpu)
8489 {
8490 return cpu_curr(cpu);
8491 }
8492
8493 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8494
8495 #ifdef CONFIG_IA64
8496 /**
8497 * set_curr_task - set the current task for a given cpu.
8498 * @cpu: the processor in question.
8499 * @p: the task pointer to set.
8500 *
8501 * Description: This function must only be used when non-maskable interrupts
8502 * are serviced on a separate stack. It allows the architecture to switch the
8503 * notion of the current task on a cpu in a non-blocking manner. This function
8504 * must be called with all CPU's synchronized, and interrupts disabled, the
8505 * and caller must save the original value of the current task (see
8506 * curr_task() above) and restore that value before reenabling interrupts and
8507 * re-starting the system.
8508 *
8509 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8510 */
8511 void set_curr_task(int cpu, struct task_struct *p)
8512 {
8513 cpu_curr(cpu) = p;
8514 }
8515
8516 #endif
8517
8518 #ifdef CONFIG_FAIR_GROUP_SCHED
8519 static void free_fair_sched_group(struct task_group *tg)
8520 {
8521 int i;
8522
8523 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8524
8525 for_each_possible_cpu(i) {
8526 if (tg->cfs_rq)
8527 kfree(tg->cfs_rq[i]);
8528 if (tg->se)
8529 kfree(tg->se[i]);
8530 }
8531
8532 kfree(tg->cfs_rq);
8533 kfree(tg->se);
8534 }
8535
8536 static
8537 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8538 {
8539 struct cfs_rq *cfs_rq;
8540 struct sched_entity *se;
8541 int i;
8542
8543 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8544 if (!tg->cfs_rq)
8545 goto err;
8546 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8547 if (!tg->se)
8548 goto err;
8549
8550 tg->shares = NICE_0_LOAD;
8551
8552 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8553
8554 for_each_possible_cpu(i) {
8555 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8556 GFP_KERNEL, cpu_to_node(i));
8557 if (!cfs_rq)
8558 goto err;
8559
8560 se = kzalloc_node(sizeof(struct sched_entity),
8561 GFP_KERNEL, cpu_to_node(i));
8562 if (!se)
8563 goto err_free_rq;
8564
8565 init_cfs_rq(cfs_rq);
8566 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8567 }
8568
8569 return 1;
8570
8571 err_free_rq:
8572 kfree(cfs_rq);
8573 err:
8574 return 0;
8575 }
8576
8577 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8578 {
8579 struct rq *rq = cpu_rq(cpu);
8580 unsigned long flags;
8581
8582 /*
8583 * Only empty task groups can be destroyed; so we can speculatively
8584 * check on_list without danger of it being re-added.
8585 */
8586 if (!tg->cfs_rq[cpu]->on_list)
8587 return;
8588
8589 raw_spin_lock_irqsave(&rq->lock, flags);
8590 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8591 raw_spin_unlock_irqrestore(&rq->lock, flags);
8592 }
8593 #else /* !CONFIG_FAIR_GROUP_SCHED */
8594 static inline void free_fair_sched_group(struct task_group *tg)
8595 {
8596 }
8597
8598 static inline
8599 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8600 {
8601 return 1;
8602 }
8603
8604 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8605 {
8606 }
8607 #endif /* CONFIG_FAIR_GROUP_SCHED */
8608
8609 #ifdef CONFIG_RT_GROUP_SCHED
8610 static void free_rt_sched_group(struct task_group *tg)
8611 {
8612 int i;
8613
8614 if (tg->rt_se)
8615 destroy_rt_bandwidth(&tg->rt_bandwidth);
8616
8617 for_each_possible_cpu(i) {
8618 if (tg->rt_rq)
8619 kfree(tg->rt_rq[i]);
8620 if (tg->rt_se)
8621 kfree(tg->rt_se[i]);
8622 }
8623
8624 kfree(tg->rt_rq);
8625 kfree(tg->rt_se);
8626 }
8627
8628 static
8629 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8630 {
8631 struct rt_rq *rt_rq;
8632 struct sched_rt_entity *rt_se;
8633 int i;
8634
8635 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8636 if (!tg->rt_rq)
8637 goto err;
8638 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8639 if (!tg->rt_se)
8640 goto err;
8641
8642 init_rt_bandwidth(&tg->rt_bandwidth,
8643 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8644
8645 for_each_possible_cpu(i) {
8646 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8647 GFP_KERNEL, cpu_to_node(i));
8648 if (!rt_rq)
8649 goto err;
8650
8651 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8652 GFP_KERNEL, cpu_to_node(i));
8653 if (!rt_se)
8654 goto err_free_rq;
8655
8656 init_rt_rq(rt_rq, cpu_rq(i));
8657 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8658 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8659 }
8660
8661 return 1;
8662
8663 err_free_rq:
8664 kfree(rt_rq);
8665 err:
8666 return 0;
8667 }
8668 #else /* !CONFIG_RT_GROUP_SCHED */
8669 static inline void free_rt_sched_group(struct task_group *tg)
8670 {
8671 }
8672
8673 static inline
8674 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8675 {
8676 return 1;
8677 }
8678 #endif /* CONFIG_RT_GROUP_SCHED */
8679
8680 #ifdef CONFIG_CGROUP_SCHED
8681 static void free_sched_group(struct task_group *tg)
8682 {
8683 free_fair_sched_group(tg);
8684 free_rt_sched_group(tg);
8685 autogroup_free(tg);
8686 kfree(tg);
8687 }
8688
8689 /* allocate runqueue etc for a new task group */
8690 struct task_group *sched_create_group(struct task_group *parent)
8691 {
8692 struct task_group *tg;
8693 unsigned long flags;
8694
8695 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8696 if (!tg)
8697 return ERR_PTR(-ENOMEM);
8698
8699 if (!alloc_fair_sched_group(tg, parent))
8700 goto err;
8701
8702 if (!alloc_rt_sched_group(tg, parent))
8703 goto err;
8704
8705 spin_lock_irqsave(&task_group_lock, flags);
8706 list_add_rcu(&tg->list, &task_groups);
8707
8708 WARN_ON(!parent); /* root should already exist */
8709
8710 tg->parent = parent;
8711 INIT_LIST_HEAD(&tg->children);
8712 list_add_rcu(&tg->siblings, &parent->children);
8713 spin_unlock_irqrestore(&task_group_lock, flags);
8714
8715 return tg;
8716
8717 err:
8718 free_sched_group(tg);
8719 return ERR_PTR(-ENOMEM);
8720 }
8721
8722 /* rcu callback to free various structures associated with a task group */
8723 static void free_sched_group_rcu(struct rcu_head *rhp)
8724 {
8725 /* now it should be safe to free those cfs_rqs */
8726 free_sched_group(container_of(rhp, struct task_group, rcu));
8727 }
8728
8729 /* Destroy runqueue etc associated with a task group */
8730 void sched_destroy_group(struct task_group *tg)
8731 {
8732 unsigned long flags;
8733 int i;
8734
8735 /* end participation in shares distribution */
8736 for_each_possible_cpu(i)
8737 unregister_fair_sched_group(tg, i);
8738
8739 spin_lock_irqsave(&task_group_lock, flags);
8740 list_del_rcu(&tg->list);
8741 list_del_rcu(&tg->siblings);
8742 spin_unlock_irqrestore(&task_group_lock, flags);
8743
8744 /* wait for possible concurrent references to cfs_rqs complete */
8745 call_rcu(&tg->rcu, free_sched_group_rcu);
8746 }
8747
8748 /* change task's runqueue when it moves between groups.
8749 * The caller of this function should have put the task in its new group
8750 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8751 * reflect its new group.
8752 */
8753 void sched_move_task(struct task_struct *tsk)
8754 {
8755 int on_rq, running;
8756 unsigned long flags;
8757 struct rq *rq;
8758
8759 rq = task_rq_lock(tsk, &flags);
8760
8761 running = task_current(rq, tsk);
8762 on_rq = tsk->on_rq;
8763
8764 if (on_rq)
8765 dequeue_task(rq, tsk, 0);
8766 if (unlikely(running))
8767 tsk->sched_class->put_prev_task(rq, tsk);
8768
8769 #ifdef CONFIG_FAIR_GROUP_SCHED
8770 if (tsk->sched_class->task_move_group)
8771 tsk->sched_class->task_move_group(tsk, on_rq);
8772 else
8773 #endif
8774 set_task_rq(tsk, task_cpu(tsk));
8775
8776 if (unlikely(running))
8777 tsk->sched_class->set_curr_task(rq);
8778 if (on_rq)
8779 enqueue_task(rq, tsk, 0);
8780
8781 task_rq_unlock(rq, tsk, &flags);
8782 }
8783 #endif /* CONFIG_CGROUP_SCHED */
8784
8785 #ifdef CONFIG_FAIR_GROUP_SCHED
8786 static DEFINE_MUTEX(shares_mutex);
8787
8788 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8789 {
8790 int i;
8791 unsigned long flags;
8792
8793 /*
8794 * We can't change the weight of the root cgroup.
8795 */
8796 if (!tg->se[0])
8797 return -EINVAL;
8798
8799 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8800
8801 mutex_lock(&shares_mutex);
8802 if (tg->shares == shares)
8803 goto done;
8804
8805 tg->shares = shares;
8806 for_each_possible_cpu(i) {
8807 struct rq *rq = cpu_rq(i);
8808 struct sched_entity *se;
8809
8810 se = tg->se[i];
8811 /* Propagate contribution to hierarchy */
8812 raw_spin_lock_irqsave(&rq->lock, flags);
8813 for_each_sched_entity(se)
8814 update_cfs_shares(group_cfs_rq(se));
8815 raw_spin_unlock_irqrestore(&rq->lock, flags);
8816 }
8817
8818 done:
8819 mutex_unlock(&shares_mutex);
8820 return 0;
8821 }
8822
8823 unsigned long sched_group_shares(struct task_group *tg)
8824 {
8825 return tg->shares;
8826 }
8827 #endif
8828
8829 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
8830 static unsigned long to_ratio(u64 period, u64 runtime)
8831 {
8832 if (runtime == RUNTIME_INF)
8833 return 1ULL << 20;
8834
8835 return div64_u64(runtime << 20, period);
8836 }
8837 #endif
8838
8839 #ifdef CONFIG_RT_GROUP_SCHED
8840 /*
8841 * Ensure that the real time constraints are schedulable.
8842 */
8843 static DEFINE_MUTEX(rt_constraints_mutex);
8844
8845 /* Must be called with tasklist_lock held */
8846 static inline int tg_has_rt_tasks(struct task_group *tg)
8847 {
8848 struct task_struct *g, *p;
8849
8850 do_each_thread(g, p) {
8851 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8852 return 1;
8853 } while_each_thread(g, p);
8854
8855 return 0;
8856 }
8857
8858 struct rt_schedulable_data {
8859 struct task_group *tg;
8860 u64 rt_period;
8861 u64 rt_runtime;
8862 };
8863
8864 static int tg_rt_schedulable(struct task_group *tg, void *data)
8865 {
8866 struct rt_schedulable_data *d = data;
8867 struct task_group *child;
8868 unsigned long total, sum = 0;
8869 u64 period, runtime;
8870
8871 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8872 runtime = tg->rt_bandwidth.rt_runtime;
8873
8874 if (tg == d->tg) {
8875 period = d->rt_period;
8876 runtime = d->rt_runtime;
8877 }
8878
8879 /*
8880 * Cannot have more runtime than the period.
8881 */
8882 if (runtime > period && runtime != RUNTIME_INF)
8883 return -EINVAL;
8884
8885 /*
8886 * Ensure we don't starve existing RT tasks.
8887 */
8888 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8889 return -EBUSY;
8890
8891 total = to_ratio(period, runtime);
8892
8893 /*
8894 * Nobody can have more than the global setting allows.
8895 */
8896 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8897 return -EINVAL;
8898
8899 /*
8900 * The sum of our children's runtime should not exceed our own.
8901 */
8902 list_for_each_entry_rcu(child, &tg->children, siblings) {
8903 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8904 runtime = child->rt_bandwidth.rt_runtime;
8905
8906 if (child == d->tg) {
8907 period = d->rt_period;
8908 runtime = d->rt_runtime;
8909 }
8910
8911 sum += to_ratio(period, runtime);
8912 }
8913
8914 if (sum > total)
8915 return -EINVAL;
8916
8917 return 0;
8918 }
8919
8920 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8921 {
8922 int ret;
8923
8924 struct rt_schedulable_data data = {
8925 .tg = tg,
8926 .rt_period = period,
8927 .rt_runtime = runtime,
8928 };
8929
8930 rcu_read_lock();
8931 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8932 rcu_read_unlock();
8933
8934 return ret;
8935 }
8936
8937 static int tg_set_rt_bandwidth(struct task_group *tg,
8938 u64 rt_period, u64 rt_runtime)
8939 {
8940 int i, err = 0;
8941
8942 mutex_lock(&rt_constraints_mutex);
8943 read_lock(&tasklist_lock);
8944 err = __rt_schedulable(tg, rt_period, rt_runtime);
8945 if (err)
8946 goto unlock;
8947
8948 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8949 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8950 tg->rt_bandwidth.rt_runtime = rt_runtime;
8951
8952 for_each_possible_cpu(i) {
8953 struct rt_rq *rt_rq = tg->rt_rq[i];
8954
8955 raw_spin_lock(&rt_rq->rt_runtime_lock);
8956 rt_rq->rt_runtime = rt_runtime;
8957 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8958 }
8959 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8960 unlock:
8961 read_unlock(&tasklist_lock);
8962 mutex_unlock(&rt_constraints_mutex);
8963
8964 return err;
8965 }
8966
8967 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8968 {
8969 u64 rt_runtime, rt_period;
8970
8971 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8972 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8973 if (rt_runtime_us < 0)
8974 rt_runtime = RUNTIME_INF;
8975
8976 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8977 }
8978
8979 long sched_group_rt_runtime(struct task_group *tg)
8980 {
8981 u64 rt_runtime_us;
8982
8983 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8984 return -1;
8985
8986 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8987 do_div(rt_runtime_us, NSEC_PER_USEC);
8988 return rt_runtime_us;
8989 }
8990
8991 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8992 {
8993 u64 rt_runtime, rt_period;
8994
8995 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8996 rt_runtime = tg->rt_bandwidth.rt_runtime;
8997
8998 if (rt_period == 0)
8999 return -EINVAL;
9000
9001 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
9002 }
9003
9004 long sched_group_rt_period(struct task_group *tg)
9005 {
9006 u64 rt_period_us;
9007
9008 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9009 do_div(rt_period_us, NSEC_PER_USEC);
9010 return rt_period_us;
9011 }
9012
9013 static int sched_rt_global_constraints(void)
9014 {
9015 u64 runtime, period;
9016 int ret = 0;
9017
9018 if (sysctl_sched_rt_period <= 0)
9019 return -EINVAL;
9020
9021 runtime = global_rt_runtime();
9022 period = global_rt_period();
9023
9024 /*
9025 * Sanity check on the sysctl variables.
9026 */
9027 if (runtime > period && runtime != RUNTIME_INF)
9028 return -EINVAL;
9029
9030 mutex_lock(&rt_constraints_mutex);
9031 read_lock(&tasklist_lock);
9032 ret = __rt_schedulable(NULL, 0, 0);
9033 read_unlock(&tasklist_lock);
9034 mutex_unlock(&rt_constraints_mutex);
9035
9036 return ret;
9037 }
9038
9039 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9040 {
9041 /* Don't accept realtime tasks when there is no way for them to run */
9042 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9043 return 0;
9044
9045 return 1;
9046 }
9047
9048 #else /* !CONFIG_RT_GROUP_SCHED */
9049 static int sched_rt_global_constraints(void)
9050 {
9051 unsigned long flags;
9052 int i;
9053
9054 if (sysctl_sched_rt_period <= 0)
9055 return -EINVAL;
9056
9057 /*
9058 * There's always some RT tasks in the root group
9059 * -- migration, kstopmachine etc..
9060 */
9061 if (sysctl_sched_rt_runtime == 0)
9062 return -EBUSY;
9063
9064 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9065 for_each_possible_cpu(i) {
9066 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9067
9068 raw_spin_lock(&rt_rq->rt_runtime_lock);
9069 rt_rq->rt_runtime = global_rt_runtime();
9070 raw_spin_unlock(&rt_rq->rt_runtime_lock);
9071 }
9072 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9073
9074 return 0;
9075 }
9076 #endif /* CONFIG_RT_GROUP_SCHED */
9077
9078 int sched_rt_handler(struct ctl_table *table, int write,
9079 void __user *buffer, size_t *lenp,
9080 loff_t *ppos)
9081 {
9082 int ret;
9083 int old_period, old_runtime;
9084 static DEFINE_MUTEX(mutex);
9085
9086 mutex_lock(&mutex);
9087 old_period = sysctl_sched_rt_period;
9088 old_runtime = sysctl_sched_rt_runtime;
9089
9090 ret = proc_dointvec(table, write, buffer, lenp, ppos);
9091
9092 if (!ret && write) {
9093 ret = sched_rt_global_constraints();
9094 if (ret) {
9095 sysctl_sched_rt_period = old_period;
9096 sysctl_sched_rt_runtime = old_runtime;
9097 } else {
9098 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9099 def_rt_bandwidth.rt_period =
9100 ns_to_ktime(global_rt_period());
9101 }
9102 }
9103 mutex_unlock(&mutex);
9104
9105 return ret;
9106 }
9107
9108 #ifdef CONFIG_CGROUP_SCHED
9109
9110 /* return corresponding task_group object of a cgroup */
9111 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9112 {
9113 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9114 struct task_group, css);
9115 }
9116
9117 static struct cgroup_subsys_state *
9118 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9119 {
9120 struct task_group *tg, *parent;
9121
9122 if (!cgrp->parent) {
9123 /* This is early initialization for the top cgroup */
9124 return &root_task_group.css;
9125 }
9126
9127 parent = cgroup_tg(cgrp->parent);
9128 tg = sched_create_group(parent);
9129 if (IS_ERR(tg))
9130 return ERR_PTR(-ENOMEM);
9131
9132 return &tg->css;
9133 }
9134
9135 static void
9136 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9137 {
9138 struct task_group *tg = cgroup_tg(cgrp);
9139
9140 sched_destroy_group(tg);
9141 }
9142
9143 static int
9144 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9145 {
9146 #ifdef CONFIG_RT_GROUP_SCHED
9147 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9148 return -EINVAL;
9149 #else
9150 /* We don't support RT-tasks being in separate groups */
9151 if (tsk->sched_class != &fair_sched_class)
9152 return -EINVAL;
9153 #endif
9154 return 0;
9155 }
9156
9157 static void
9158 cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9159 {
9160 sched_move_task(tsk);
9161 }
9162
9163 static void
9164 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9165 struct cgroup *old_cgrp, struct task_struct *task)
9166 {
9167 /*
9168 * cgroup_exit() is called in the copy_process() failure path.
9169 * Ignore this case since the task hasn't ran yet, this avoids
9170 * trying to poke a half freed task state from generic code.
9171 */
9172 if (!(task->flags & PF_EXITING))
9173 return;
9174
9175 sched_move_task(task);
9176 }
9177
9178 #ifdef CONFIG_FAIR_GROUP_SCHED
9179 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9180 u64 shareval)
9181 {
9182 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
9183 }
9184
9185 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9186 {
9187 struct task_group *tg = cgroup_tg(cgrp);
9188
9189 return (u64) scale_load_down(tg->shares);
9190 }
9191
9192 #ifdef CONFIG_CFS_BANDWIDTH
9193 static DEFINE_MUTEX(cfs_constraints_mutex);
9194
9195 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9196 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9197
9198 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9199
9200 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
9201 {
9202 int i, ret = 0, runtime_enabled;
9203 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9204
9205 if (tg == &root_task_group)
9206 return -EINVAL;
9207
9208 /*
9209 * Ensure we have at some amount of bandwidth every period. This is
9210 * to prevent reaching a state of large arrears when throttled via
9211 * entity_tick() resulting in prolonged exit starvation.
9212 */
9213 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9214 return -EINVAL;
9215
9216 /*
9217 * Likewise, bound things on the otherside by preventing insane quota
9218 * periods. This also allows us to normalize in computing quota
9219 * feasibility.
9220 */
9221 if (period > max_cfs_quota_period)
9222 return -EINVAL;
9223
9224 mutex_lock(&cfs_constraints_mutex);
9225 ret = __cfs_schedulable(tg, period, quota);
9226 if (ret)
9227 goto out_unlock;
9228
9229 runtime_enabled = quota != RUNTIME_INF;
9230 raw_spin_lock_irq(&cfs_b->lock);
9231 cfs_b->period = ns_to_ktime(period);
9232 cfs_b->quota = quota;
9233
9234 __refill_cfs_bandwidth_runtime(cfs_b);
9235 /* restart the period timer (if active) to handle new period expiry */
9236 if (runtime_enabled && cfs_b->timer_active) {
9237 /* force a reprogram */
9238 cfs_b->timer_active = 0;
9239 __start_cfs_bandwidth(cfs_b);
9240 }
9241 raw_spin_unlock_irq(&cfs_b->lock);
9242
9243 for_each_possible_cpu(i) {
9244 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9245 struct rq *rq = rq_of(cfs_rq);
9246
9247 raw_spin_lock_irq(&rq->lock);
9248 cfs_rq->runtime_enabled = runtime_enabled;
9249 cfs_rq->runtime_remaining = 0;
9250
9251 if (cfs_rq_throttled(cfs_rq))
9252 unthrottle_cfs_rq(cfs_rq);
9253 raw_spin_unlock_irq(&rq->lock);
9254 }
9255 out_unlock:
9256 mutex_unlock(&cfs_constraints_mutex);
9257
9258 return ret;
9259 }
9260
9261 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9262 {
9263 u64 quota, period;
9264
9265 period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9266 if (cfs_quota_us < 0)
9267 quota = RUNTIME_INF;
9268 else
9269 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9270
9271 return tg_set_cfs_bandwidth(tg, period, quota);
9272 }
9273
9274 long tg_get_cfs_quota(struct task_group *tg)
9275 {
9276 u64 quota_us;
9277
9278 if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
9279 return -1;
9280
9281 quota_us = tg_cfs_bandwidth(tg)->quota;
9282 do_div(quota_us, NSEC_PER_USEC);
9283
9284 return quota_us;
9285 }
9286
9287 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9288 {
9289 u64 quota, period;
9290
9291 period = (u64)cfs_period_us * NSEC_PER_USEC;
9292 quota = tg_cfs_bandwidth(tg)->quota;
9293
9294 if (period <= 0)
9295 return -EINVAL;
9296
9297 return tg_set_cfs_bandwidth(tg, period, quota);
9298 }
9299
9300 long tg_get_cfs_period(struct task_group *tg)
9301 {
9302 u64 cfs_period_us;
9303
9304 cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9305 do_div(cfs_period_us, NSEC_PER_USEC);
9306
9307 return cfs_period_us;
9308 }
9309
9310 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
9311 {
9312 return tg_get_cfs_quota(cgroup_tg(cgrp));
9313 }
9314
9315 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
9316 s64 cfs_quota_us)
9317 {
9318 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
9319 }
9320
9321 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
9322 {
9323 return tg_get_cfs_period(cgroup_tg(cgrp));
9324 }
9325
9326 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9327 u64 cfs_period_us)
9328 {
9329 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
9330 }
9331
9332 struct cfs_schedulable_data {
9333 struct task_group *tg;
9334 u64 period, quota;
9335 };
9336
9337 /*
9338 * normalize group quota/period to be quota/max_period
9339 * note: units are usecs
9340 */
9341 static u64 normalize_cfs_quota(struct task_group *tg,
9342 struct cfs_schedulable_data *d)
9343 {
9344 u64 quota, period;
9345
9346 if (tg == d->tg) {
9347 period = d->period;
9348 quota = d->quota;
9349 } else {
9350 period = tg_get_cfs_period(tg);
9351 quota = tg_get_cfs_quota(tg);
9352 }
9353
9354 /* note: these should typically be equivalent */
9355 if (quota == RUNTIME_INF || quota == -1)
9356 return RUNTIME_INF;
9357
9358 return to_ratio(period, quota);
9359 }
9360
9361 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9362 {
9363 struct cfs_schedulable_data *d = data;
9364 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9365 s64 quota = 0, parent_quota = -1;
9366
9367 if (!tg->parent) {
9368 quota = RUNTIME_INF;
9369 } else {
9370 struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
9371
9372 quota = normalize_cfs_quota(tg, d);
9373 parent_quota = parent_b->hierarchal_quota;
9374
9375 /*
9376 * ensure max(child_quota) <= parent_quota, inherit when no
9377 * limit is set
9378 */
9379 if (quota == RUNTIME_INF)
9380 quota = parent_quota;
9381 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9382 return -EINVAL;
9383 }
9384 cfs_b->hierarchal_quota = quota;
9385
9386 return 0;
9387 }
9388
9389 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9390 {
9391 int ret;
9392 struct cfs_schedulable_data data = {
9393 .tg = tg,
9394 .period = period,
9395 .quota = quota,
9396 };
9397
9398 if (quota != RUNTIME_INF) {
9399 do_div(data.period, NSEC_PER_USEC);
9400 do_div(data.quota, NSEC_PER_USEC);
9401 }
9402
9403 rcu_read_lock();
9404 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9405 rcu_read_unlock();
9406
9407 return ret;
9408 }
9409
9410 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
9411 struct cgroup_map_cb *cb)
9412 {
9413 struct task_group *tg = cgroup_tg(cgrp);
9414 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9415
9416 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
9417 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
9418 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
9419
9420 return 0;
9421 }
9422 #endif /* CONFIG_CFS_BANDWIDTH */
9423 #endif /* CONFIG_FAIR_GROUP_SCHED */
9424
9425 #ifdef CONFIG_RT_GROUP_SCHED
9426 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9427 s64 val)
9428 {
9429 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9430 }
9431
9432 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9433 {
9434 return sched_group_rt_runtime(cgroup_tg(cgrp));
9435 }
9436
9437 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9438 u64 rt_period_us)
9439 {
9440 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9441 }
9442
9443 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9444 {
9445 return sched_group_rt_period(cgroup_tg(cgrp));
9446 }
9447 #endif /* CONFIG_RT_GROUP_SCHED */
9448
9449 static struct cftype cpu_files[] = {
9450 #ifdef CONFIG_FAIR_GROUP_SCHED
9451 {
9452 .name = "shares",
9453 .read_u64 = cpu_shares_read_u64,
9454 .write_u64 = cpu_shares_write_u64,
9455 },
9456 #endif
9457 #ifdef CONFIG_CFS_BANDWIDTH
9458 {
9459 .name = "cfs_quota_us",
9460 .read_s64 = cpu_cfs_quota_read_s64,
9461 .write_s64 = cpu_cfs_quota_write_s64,
9462 },
9463 {
9464 .name = "cfs_period_us",
9465 .read_u64 = cpu_cfs_period_read_u64,
9466 .write_u64 = cpu_cfs_period_write_u64,
9467 },
9468 {
9469 .name = "stat",
9470 .read_map = cpu_stats_show,
9471 },
9472 #endif
9473 #ifdef CONFIG_RT_GROUP_SCHED
9474 {
9475 .name = "rt_runtime_us",
9476 .read_s64 = cpu_rt_runtime_read,
9477 .write_s64 = cpu_rt_runtime_write,
9478 },
9479 {
9480 .name = "rt_period_us",
9481 .read_u64 = cpu_rt_period_read_uint,
9482 .write_u64 = cpu_rt_period_write_uint,
9483 },
9484 #endif
9485 };
9486
9487 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9488 {
9489 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9490 }
9491
9492 struct cgroup_subsys cpu_cgroup_subsys = {
9493 .name = "cpu",
9494 .create = cpu_cgroup_create,
9495 .destroy = cpu_cgroup_destroy,
9496 .can_attach_task = cpu_cgroup_can_attach_task,
9497 .attach_task = cpu_cgroup_attach_task,
9498 .exit = cpu_cgroup_exit,
9499 .populate = cpu_cgroup_populate,
9500 .subsys_id = cpu_cgroup_subsys_id,
9501 .early_init = 1,
9502 };
9503
9504 #endif /* CONFIG_CGROUP_SCHED */
9505
9506 #ifdef CONFIG_CGROUP_CPUACCT
9507
9508 /*
9509 * CPU accounting code for task groups.
9510 *
9511 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9512 * (balbir@in.ibm.com).
9513 */
9514
9515 /* track cpu usage of a group of tasks and its child groups */
9516 struct cpuacct {
9517 struct cgroup_subsys_state css;
9518 /* cpuusage holds pointer to a u64-type object on every cpu */
9519 u64 __percpu *cpuusage;
9520 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9521 struct cpuacct *parent;
9522 };
9523
9524 struct cgroup_subsys cpuacct_subsys;
9525
9526 /* return cpu accounting group corresponding to this container */
9527 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9528 {
9529 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9530 struct cpuacct, css);
9531 }
9532
9533 /* return cpu accounting group to which this task belongs */
9534 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9535 {
9536 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9537 struct cpuacct, css);
9538 }
9539
9540 /* create a new cpu accounting group */
9541 static struct cgroup_subsys_state *cpuacct_create(
9542 struct cgroup_subsys *ss, struct cgroup *cgrp)
9543 {
9544 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9545 int i;
9546
9547 if (!ca)
9548 goto out;
9549
9550 ca->cpuusage = alloc_percpu(u64);
9551 if (!ca->cpuusage)
9552 goto out_free_ca;
9553
9554 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9555 if (percpu_counter_init(&ca->cpustat[i], 0))
9556 goto out_free_counters;
9557
9558 if (cgrp->parent)
9559 ca->parent = cgroup_ca(cgrp->parent);
9560
9561 return &ca->css;
9562
9563 out_free_counters:
9564 while (--i >= 0)
9565 percpu_counter_destroy(&ca->cpustat[i]);
9566 free_percpu(ca->cpuusage);
9567 out_free_ca:
9568 kfree(ca);
9569 out:
9570 return ERR_PTR(-ENOMEM);
9571 }
9572
9573 /* destroy an existing cpu accounting group */
9574 static void
9575 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9576 {
9577 struct cpuacct *ca = cgroup_ca(cgrp);
9578 int i;
9579
9580 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9581 percpu_counter_destroy(&ca->cpustat[i]);
9582 free_percpu(ca->cpuusage);
9583 kfree(ca);
9584 }
9585
9586 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9587 {
9588 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9589 u64 data;
9590
9591 #ifndef CONFIG_64BIT
9592 /*
9593 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9594 */
9595 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9596 data = *cpuusage;
9597 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9598 #else
9599 data = *cpuusage;
9600 #endif
9601
9602 return data;
9603 }
9604
9605 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9606 {
9607 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9608
9609 #ifndef CONFIG_64BIT
9610 /*
9611 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9612 */
9613 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9614 *cpuusage = val;
9615 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9616 #else
9617 *cpuusage = val;
9618 #endif
9619 }
9620
9621 /* return total cpu usage (in nanoseconds) of a group */
9622 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9623 {
9624 struct cpuacct *ca = cgroup_ca(cgrp);
9625 u64 totalcpuusage = 0;
9626 int i;
9627
9628 for_each_present_cpu(i)
9629 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9630
9631 return totalcpuusage;
9632 }
9633
9634 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9635 u64 reset)
9636 {
9637 struct cpuacct *ca = cgroup_ca(cgrp);
9638 int err = 0;
9639 int i;
9640
9641 if (reset) {
9642 err = -EINVAL;
9643 goto out;
9644 }
9645
9646 for_each_present_cpu(i)
9647 cpuacct_cpuusage_write(ca, i, 0);
9648
9649 out:
9650 return err;
9651 }
9652
9653 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9654 struct seq_file *m)
9655 {
9656 struct cpuacct *ca = cgroup_ca(cgroup);
9657 u64 percpu;
9658 int i;
9659
9660 for_each_present_cpu(i) {
9661 percpu = cpuacct_cpuusage_read(ca, i);
9662 seq_printf(m, "%llu ", (unsigned long long) percpu);
9663 }
9664 seq_printf(m, "\n");
9665 return 0;
9666 }
9667
9668 static const char *cpuacct_stat_desc[] = {
9669 [CPUACCT_STAT_USER] = "user",
9670 [CPUACCT_STAT_SYSTEM] = "system",
9671 };
9672
9673 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9674 struct cgroup_map_cb *cb)
9675 {
9676 struct cpuacct *ca = cgroup_ca(cgrp);
9677 int i;
9678
9679 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9680 s64 val = percpu_counter_read(&ca->cpustat[i]);
9681 val = cputime64_to_clock_t(val);
9682 cb->fill(cb, cpuacct_stat_desc[i], val);
9683 }
9684 return 0;
9685 }
9686
9687 static struct cftype files[] = {
9688 {
9689 .name = "usage",
9690 .read_u64 = cpuusage_read,
9691 .write_u64 = cpuusage_write,
9692 },
9693 {
9694 .name = "usage_percpu",
9695 .read_seq_string = cpuacct_percpu_seq_read,
9696 },
9697 {
9698 .name = "stat",
9699 .read_map = cpuacct_stats_show,
9700 },
9701 };
9702
9703 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9704 {
9705 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9706 }
9707
9708 /*
9709 * charge this task's execution time to its accounting group.
9710 *
9711 * called with rq->lock held.
9712 */
9713 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9714 {
9715 struct cpuacct *ca;
9716 int cpu;
9717
9718 if (unlikely(!cpuacct_subsys.active))
9719 return;
9720
9721 cpu = task_cpu(tsk);
9722
9723 rcu_read_lock();
9724
9725 ca = task_ca(tsk);
9726
9727 for (; ca; ca = ca->parent) {
9728 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9729 *cpuusage += cputime;
9730 }
9731
9732 rcu_read_unlock();
9733 }
9734
9735 /*
9736 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9737 * in cputime_t units. As a result, cpuacct_update_stats calls
9738 * percpu_counter_add with values large enough to always overflow the
9739 * per cpu batch limit causing bad SMP scalability.
9740 *
9741 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9742 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9743 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9744 */
9745 #ifdef CONFIG_SMP
9746 #define CPUACCT_BATCH \
9747 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9748 #else
9749 #define CPUACCT_BATCH 0
9750 #endif
9751
9752 /*
9753 * Charge the system/user time to the task's accounting group.
9754 */
9755 static void cpuacct_update_stats(struct task_struct *tsk,
9756 enum cpuacct_stat_index idx, cputime_t val)
9757 {
9758 struct cpuacct *ca;
9759 int batch = CPUACCT_BATCH;
9760
9761 if (unlikely(!cpuacct_subsys.active))
9762 return;
9763
9764 rcu_read_lock();
9765 ca = task_ca(tsk);
9766
9767 do {
9768 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9769 ca = ca->parent;
9770 } while (ca);
9771 rcu_read_unlock();
9772 }
9773
9774 struct cgroup_subsys cpuacct_subsys = {
9775 .name = "cpuacct",
9776 .create = cpuacct_create,
9777 .destroy = cpuacct_destroy,
9778 .populate = cpuacct_populate,
9779 .subsys_id = cpuacct_subsys_id,
9780 };
9781 #endif /* CONFIG_CGROUP_CPUACCT */