]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched.c
sched: Remove SYNC_WAKEUPS feature
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 raw_spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 raw_spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_CGROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 struct cgroup_subsys_state css;
247
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
254 #endif
255
256 #ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
259
260 struct rt_bandwidth rt_bandwidth;
261 #endif
262
263 struct rcu_head rcu;
264 struct list_head list;
265
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
269 };
270
271 #define root_task_group init_task_group
272
273 /* task_group_lock serializes add/remove of task groups and also changes to
274 * a task group's cpu shares.
275 */
276 static DEFINE_SPINLOCK(task_group_lock);
277
278 #ifdef CONFIG_FAIR_GROUP_SCHED
279
280 #ifdef CONFIG_SMP
281 static int root_task_group_empty(void)
282 {
283 return list_empty(&root_task_group.children);
284 }
285 #endif
286
287 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
288
289 /*
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
296 */
297 #define MIN_SHARES 2
298 #define MAX_SHARES (1UL << 18)
299
300 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301 #endif
302
303 /* Default task group.
304 * Every task in system belong to this group at bootup.
305 */
306 struct task_group init_task_group;
307
308 /* return group to which a task belongs */
309 static inline struct task_group *task_group(struct task_struct *p)
310 {
311 struct task_group *tg;
312
313 #ifdef CONFIG_CGROUP_SCHED
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
316 #else
317 tg = &init_task_group;
318 #endif
319 return tg;
320 }
321
322 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
323 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
324 {
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
328 #endif
329
330 #ifdef CONFIG_RT_GROUP_SCHED
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
333 #endif
334 }
335
336 #else
337
338 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 static inline struct task_group *task_group(struct task_struct *p)
340 {
341 return NULL;
342 }
343
344 #endif /* CONFIG_CGROUP_SCHED */
345
346 /* CFS-related fields in a runqueue */
347 struct cfs_rq {
348 struct load_weight load;
349 unsigned long nr_running;
350
351 u64 exec_clock;
352 u64 min_vruntime;
353
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
356
357 struct list_head tasks;
358 struct list_head *balance_iterator;
359
360 /*
361 * 'curr' points to currently running entity on this cfs_rq.
362 * It is set to NULL otherwise (i.e when none are currently running).
363 */
364 struct sched_entity *curr, *next, *last;
365
366 unsigned int nr_spread_over;
367
368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
370
371 /*
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
375 *
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
378 */
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
381
382 #ifdef CONFIG_SMP
383 /*
384 * the part of load.weight contributed by tasks
385 */
386 unsigned long task_weight;
387
388 /*
389 * h_load = weight * f(tg)
390 *
391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group.
393 */
394 unsigned long h_load;
395
396 /*
397 * this cpu's part of tg->shares
398 */
399 unsigned long shares;
400
401 /*
402 * load.weight at the time we set shares
403 */
404 unsigned long rq_weight;
405 #endif
406 #endif
407 };
408
409 /* Real-Time classes' related field in a runqueue: */
410 struct rt_rq {
411 struct rt_prio_array active;
412 unsigned long rt_nr_running;
413 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 struct {
415 int curr; /* highest queued rt task prio */
416 #ifdef CONFIG_SMP
417 int next; /* next highest */
418 #endif
419 } highest_prio;
420 #endif
421 #ifdef CONFIG_SMP
422 unsigned long rt_nr_migratory;
423 unsigned long rt_nr_total;
424 int overloaded;
425 struct plist_head pushable_tasks;
426 #endif
427 int rt_throttled;
428 u64 rt_time;
429 u64 rt_runtime;
430 /* Nests inside the rq lock: */
431 raw_spinlock_t rt_runtime_lock;
432
433 #ifdef CONFIG_RT_GROUP_SCHED
434 unsigned long rt_nr_boosted;
435
436 struct rq *rq;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
439 #endif
440 };
441
442 #ifdef CONFIG_SMP
443
444 /*
445 * We add the notion of a root-domain which will be used to define per-domain
446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new
448 * exclusive cpuset is created, we also create and attach a new root-domain
449 * object.
450 *
451 */
452 struct root_domain {
453 atomic_t refcount;
454 cpumask_var_t span;
455 cpumask_var_t online;
456
457 /*
458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task.
460 */
461 cpumask_var_t rto_mask;
462 atomic_t rto_count;
463 #ifdef CONFIG_SMP
464 struct cpupri cpupri;
465 #endif
466 };
467
468 /*
469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today).
471 */
472 static struct root_domain def_root_domain;
473
474 #endif
475
476 /*
477 * This is the main, per-CPU runqueue data structure.
478 *
479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue.
482 */
483 struct rq {
484 /* runqueue lock: */
485 raw_spinlock_t lock;
486
487 /*
488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation.
490 */
491 unsigned long nr_running;
492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494 #ifdef CONFIG_NO_HZ
495 u64 nohz_stamp;
496 unsigned char in_nohz_recently;
497 #endif
498 unsigned int skip_clock_update;
499
500 /* capture load from *all* tasks on this cpu: */
501 struct load_weight load;
502 unsigned long nr_load_updates;
503 u64 nr_switches;
504
505 struct cfs_rq cfs;
506 struct rt_rq rt;
507
508 #ifdef CONFIG_FAIR_GROUP_SCHED
509 /* list of leaf cfs_rq on this cpu: */
510 struct list_head leaf_cfs_rq_list;
511 #endif
512 #ifdef CONFIG_RT_GROUP_SCHED
513 struct list_head leaf_rt_rq_list;
514 #endif
515
516 /*
517 * This is part of a global counter where only the total sum
518 * over all CPUs matters. A task can increase this counter on
519 * one CPU and if it got migrated afterwards it may decrease
520 * it on another CPU. Always updated under the runqueue lock:
521 */
522 unsigned long nr_uninterruptible;
523
524 struct task_struct *curr, *idle;
525 unsigned long next_balance;
526 struct mm_struct *prev_mm;
527
528 u64 clock;
529
530 atomic_t nr_iowait;
531
532 #ifdef CONFIG_SMP
533 struct root_domain *rd;
534 struct sched_domain *sd;
535
536 unsigned char idle_at_tick;
537 /* For active balancing */
538 int post_schedule;
539 int active_balance;
540 int push_cpu;
541 /* cpu of this runqueue: */
542 int cpu;
543 int online;
544
545 unsigned long avg_load_per_task;
546
547 struct task_struct *migration_thread;
548 struct list_head migration_queue;
549
550 u64 rt_avg;
551 u64 age_stamp;
552 u64 idle_stamp;
553 u64 avg_idle;
554 #endif
555
556 /* calc_load related fields */
557 unsigned long calc_load_update;
558 long calc_load_active;
559
560 #ifdef CONFIG_SCHED_HRTICK
561 #ifdef CONFIG_SMP
562 int hrtick_csd_pending;
563 struct call_single_data hrtick_csd;
564 #endif
565 struct hrtimer hrtick_timer;
566 #endif
567
568 #ifdef CONFIG_SCHEDSTATS
569 /* latency stats */
570 struct sched_info rq_sched_info;
571 unsigned long long rq_cpu_time;
572 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
573
574 /* sys_sched_yield() stats */
575 unsigned int yld_count;
576
577 /* schedule() stats */
578 unsigned int sched_switch;
579 unsigned int sched_count;
580 unsigned int sched_goidle;
581
582 /* try_to_wake_up() stats */
583 unsigned int ttwu_count;
584 unsigned int ttwu_local;
585
586 /* BKL stats */
587 unsigned int bkl_count;
588 #endif
589 };
590
591 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
592
593 static inline
594 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
595 {
596 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
597
598 /*
599 * A queue event has occurred, and we're going to schedule. In
600 * this case, we can save a useless back to back clock update.
601 */
602 if (test_tsk_need_resched(p))
603 rq->skip_clock_update = 1;
604 }
605
606 static inline int cpu_of(struct rq *rq)
607 {
608 #ifdef CONFIG_SMP
609 return rq->cpu;
610 #else
611 return 0;
612 #endif
613 }
614
615 #define rcu_dereference_check_sched_domain(p) \
616 rcu_dereference_check((p), \
617 rcu_read_lock_sched_held() || \
618 lockdep_is_held(&sched_domains_mutex))
619
620 /*
621 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
622 * See detach_destroy_domains: synchronize_sched for details.
623 *
624 * The domain tree of any CPU may only be accessed from within
625 * preempt-disabled sections.
626 */
627 #define for_each_domain(cpu, __sd) \
628 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
629
630 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
631 #define this_rq() (&__get_cpu_var(runqueues))
632 #define task_rq(p) cpu_rq(task_cpu(p))
633 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
634 #define raw_rq() (&__raw_get_cpu_var(runqueues))
635
636 inline void update_rq_clock(struct rq *rq)
637 {
638 if (!rq->skip_clock_update)
639 rq->clock = sched_clock_cpu(cpu_of(rq));
640 }
641
642 /*
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
644 */
645 #ifdef CONFIG_SCHED_DEBUG
646 # define const_debug __read_mostly
647 #else
648 # define const_debug static const
649 #endif
650
651 /**
652 * runqueue_is_locked
653 * @cpu: the processor in question.
654 *
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
658 */
659 int runqueue_is_locked(int cpu)
660 {
661 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
662 }
663
664 /*
665 * Debugging: various feature bits
666 */
667
668 #define SCHED_FEAT(name, enabled) \
669 __SCHED_FEAT_##name ,
670
671 enum {
672 #include "sched_features.h"
673 };
674
675 #undef SCHED_FEAT
676
677 #define SCHED_FEAT(name, enabled) \
678 (1UL << __SCHED_FEAT_##name) * enabled |
679
680 const_debug unsigned int sysctl_sched_features =
681 #include "sched_features.h"
682 0;
683
684 #undef SCHED_FEAT
685
686 #ifdef CONFIG_SCHED_DEBUG
687 #define SCHED_FEAT(name, enabled) \
688 #name ,
689
690 static __read_mostly char *sched_feat_names[] = {
691 #include "sched_features.h"
692 NULL
693 };
694
695 #undef SCHED_FEAT
696
697 static int sched_feat_show(struct seq_file *m, void *v)
698 {
699 int i;
700
701 for (i = 0; sched_feat_names[i]; i++) {
702 if (!(sysctl_sched_features & (1UL << i)))
703 seq_puts(m, "NO_");
704 seq_printf(m, "%s ", sched_feat_names[i]);
705 }
706 seq_puts(m, "\n");
707
708 return 0;
709 }
710
711 static ssize_t
712 sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
714 {
715 char buf[64];
716 char *cmp = buf;
717 int neg = 0;
718 int i;
719
720 if (cnt > 63)
721 cnt = 63;
722
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
725
726 buf[cnt] = 0;
727
728 if (strncmp(buf, "NO_", 3) == 0) {
729 neg = 1;
730 cmp += 3;
731 }
732
733 for (i = 0; sched_feat_names[i]; i++) {
734 int len = strlen(sched_feat_names[i]);
735
736 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
737 if (neg)
738 sysctl_sched_features &= ~(1UL << i);
739 else
740 sysctl_sched_features |= (1UL << i);
741 break;
742 }
743 }
744
745 if (!sched_feat_names[i])
746 return -EINVAL;
747
748 *ppos += cnt;
749
750 return cnt;
751 }
752
753 static int sched_feat_open(struct inode *inode, struct file *filp)
754 {
755 return single_open(filp, sched_feat_show, NULL);
756 }
757
758 static const struct file_operations sched_feat_fops = {
759 .open = sched_feat_open,
760 .write = sched_feat_write,
761 .read = seq_read,
762 .llseek = seq_lseek,
763 .release = single_release,
764 };
765
766 static __init int sched_init_debug(void)
767 {
768 debugfs_create_file("sched_features", 0644, NULL, NULL,
769 &sched_feat_fops);
770
771 return 0;
772 }
773 late_initcall(sched_init_debug);
774
775 #endif
776
777 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
778
779 /*
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
782 */
783 const_debug unsigned int sysctl_sched_nr_migrate = 32;
784
785 /*
786 * ratelimit for updating the group shares.
787 * default: 0.25ms
788 */
789 unsigned int sysctl_sched_shares_ratelimit = 250000;
790 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
791
792 /*
793 * Inject some fuzzyness into changing the per-cpu group shares
794 * this avoids remote rq-locks at the expense of fairness.
795 * default: 4
796 */
797 unsigned int sysctl_sched_shares_thresh = 4;
798
799 /*
800 * period over which we average the RT time consumption, measured
801 * in ms.
802 *
803 * default: 1s
804 */
805 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
806
807 /*
808 * period over which we measure -rt task cpu usage in us.
809 * default: 1s
810 */
811 unsigned int sysctl_sched_rt_period = 1000000;
812
813 static __read_mostly int scheduler_running;
814
815 /*
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
818 */
819 int sysctl_sched_rt_runtime = 950000;
820
821 static inline u64 global_rt_period(void)
822 {
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
824 }
825
826 static inline u64 global_rt_runtime(void)
827 {
828 if (sysctl_sched_rt_runtime < 0)
829 return RUNTIME_INF;
830
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
832 }
833
834 #ifndef prepare_arch_switch
835 # define prepare_arch_switch(next) do { } while (0)
836 #endif
837 #ifndef finish_arch_switch
838 # define finish_arch_switch(prev) do { } while (0)
839 #endif
840
841 static inline int task_current(struct rq *rq, struct task_struct *p)
842 {
843 return rq->curr == p;
844 }
845
846 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
847 static inline int task_running(struct rq *rq, struct task_struct *p)
848 {
849 return task_current(rq, p);
850 }
851
852 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
853 {
854 }
855
856 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
857 {
858 #ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861 #endif
862 /*
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
866 */
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
868
869 raw_spin_unlock_irq(&rq->lock);
870 }
871
872 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
873 static inline int task_running(struct rq *rq, struct task_struct *p)
874 {
875 #ifdef CONFIG_SMP
876 return p->oncpu;
877 #else
878 return task_current(rq, p);
879 #endif
880 }
881
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
883 {
884 #ifdef CONFIG_SMP
885 /*
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
889 */
890 next->oncpu = 1;
891 #endif
892 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893 raw_spin_unlock_irq(&rq->lock);
894 #else
895 raw_spin_unlock(&rq->lock);
896 #endif
897 }
898
899 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
900 {
901 #ifdef CONFIG_SMP
902 /*
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
906 */
907 smp_wmb();
908 prev->oncpu = 0;
909 #endif
910 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
912 #endif
913 }
914 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
915
916 /*
917 * Check whether the task is waking, we use this to synchronize against
918 * ttwu() so that task_cpu() reports a stable number.
919 *
920 * We need to make an exception for PF_STARTING tasks because the fork
921 * path might require task_rq_lock() to work, eg. it can call
922 * set_cpus_allowed_ptr() from the cpuset clone_ns code.
923 */
924 static inline int task_is_waking(struct task_struct *p)
925 {
926 return unlikely((p->state == TASK_WAKING) && !(p->flags & PF_STARTING));
927 }
928
929 /*
930 * __task_rq_lock - lock the runqueue a given task resides on.
931 * Must be called interrupts disabled.
932 */
933 static inline struct rq *__task_rq_lock(struct task_struct *p)
934 __acquires(rq->lock)
935 {
936 struct rq *rq;
937
938 for (;;) {
939 while (task_is_waking(p))
940 cpu_relax();
941 rq = task_rq(p);
942 raw_spin_lock(&rq->lock);
943 if (likely(rq == task_rq(p) && !task_is_waking(p)))
944 return rq;
945 raw_spin_unlock(&rq->lock);
946 }
947 }
948
949 /*
950 * task_rq_lock - lock the runqueue a given task resides on and disable
951 * interrupts. Note the ordering: we can safely lookup the task_rq without
952 * explicitly disabling preemption.
953 */
954 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
955 __acquires(rq->lock)
956 {
957 struct rq *rq;
958
959 for (;;) {
960 while (task_is_waking(p))
961 cpu_relax();
962 local_irq_save(*flags);
963 rq = task_rq(p);
964 raw_spin_lock(&rq->lock);
965 if (likely(rq == task_rq(p) && !task_is_waking(p)))
966 return rq;
967 raw_spin_unlock_irqrestore(&rq->lock, *flags);
968 }
969 }
970
971 void task_rq_unlock_wait(struct task_struct *p)
972 {
973 struct rq *rq = task_rq(p);
974
975 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
976 raw_spin_unlock_wait(&rq->lock);
977 }
978
979 static void __task_rq_unlock(struct rq *rq)
980 __releases(rq->lock)
981 {
982 raw_spin_unlock(&rq->lock);
983 }
984
985 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
986 __releases(rq->lock)
987 {
988 raw_spin_unlock_irqrestore(&rq->lock, *flags);
989 }
990
991 /*
992 * this_rq_lock - lock this runqueue and disable interrupts.
993 */
994 static struct rq *this_rq_lock(void)
995 __acquires(rq->lock)
996 {
997 struct rq *rq;
998
999 local_irq_disable();
1000 rq = this_rq();
1001 raw_spin_lock(&rq->lock);
1002
1003 return rq;
1004 }
1005
1006 #ifdef CONFIG_SCHED_HRTICK
1007 /*
1008 * Use HR-timers to deliver accurate preemption points.
1009 *
1010 * Its all a bit involved since we cannot program an hrt while holding the
1011 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1012 * reschedule event.
1013 *
1014 * When we get rescheduled we reprogram the hrtick_timer outside of the
1015 * rq->lock.
1016 */
1017
1018 /*
1019 * Use hrtick when:
1020 * - enabled by features
1021 * - hrtimer is actually high res
1022 */
1023 static inline int hrtick_enabled(struct rq *rq)
1024 {
1025 if (!sched_feat(HRTICK))
1026 return 0;
1027 if (!cpu_active(cpu_of(rq)))
1028 return 0;
1029 return hrtimer_is_hres_active(&rq->hrtick_timer);
1030 }
1031
1032 static void hrtick_clear(struct rq *rq)
1033 {
1034 if (hrtimer_active(&rq->hrtick_timer))
1035 hrtimer_cancel(&rq->hrtick_timer);
1036 }
1037
1038 /*
1039 * High-resolution timer tick.
1040 * Runs from hardirq context with interrupts disabled.
1041 */
1042 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1043 {
1044 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1045
1046 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1047
1048 raw_spin_lock(&rq->lock);
1049 update_rq_clock(rq);
1050 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1051 raw_spin_unlock(&rq->lock);
1052
1053 return HRTIMER_NORESTART;
1054 }
1055
1056 #ifdef CONFIG_SMP
1057 /*
1058 * called from hardirq (IPI) context
1059 */
1060 static void __hrtick_start(void *arg)
1061 {
1062 struct rq *rq = arg;
1063
1064 raw_spin_lock(&rq->lock);
1065 hrtimer_restart(&rq->hrtick_timer);
1066 rq->hrtick_csd_pending = 0;
1067 raw_spin_unlock(&rq->lock);
1068 }
1069
1070 /*
1071 * Called to set the hrtick timer state.
1072 *
1073 * called with rq->lock held and irqs disabled
1074 */
1075 static void hrtick_start(struct rq *rq, u64 delay)
1076 {
1077 struct hrtimer *timer = &rq->hrtick_timer;
1078 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1079
1080 hrtimer_set_expires(timer, time);
1081
1082 if (rq == this_rq()) {
1083 hrtimer_restart(timer);
1084 } else if (!rq->hrtick_csd_pending) {
1085 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1086 rq->hrtick_csd_pending = 1;
1087 }
1088 }
1089
1090 static int
1091 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1092 {
1093 int cpu = (int)(long)hcpu;
1094
1095 switch (action) {
1096 case CPU_UP_CANCELED:
1097 case CPU_UP_CANCELED_FROZEN:
1098 case CPU_DOWN_PREPARE:
1099 case CPU_DOWN_PREPARE_FROZEN:
1100 case CPU_DEAD:
1101 case CPU_DEAD_FROZEN:
1102 hrtick_clear(cpu_rq(cpu));
1103 return NOTIFY_OK;
1104 }
1105
1106 return NOTIFY_DONE;
1107 }
1108
1109 static __init void init_hrtick(void)
1110 {
1111 hotcpu_notifier(hotplug_hrtick, 0);
1112 }
1113 #else
1114 /*
1115 * Called to set the hrtick timer state.
1116 *
1117 * called with rq->lock held and irqs disabled
1118 */
1119 static void hrtick_start(struct rq *rq, u64 delay)
1120 {
1121 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1122 HRTIMER_MODE_REL_PINNED, 0);
1123 }
1124
1125 static inline void init_hrtick(void)
1126 {
1127 }
1128 #endif /* CONFIG_SMP */
1129
1130 static void init_rq_hrtick(struct rq *rq)
1131 {
1132 #ifdef CONFIG_SMP
1133 rq->hrtick_csd_pending = 0;
1134
1135 rq->hrtick_csd.flags = 0;
1136 rq->hrtick_csd.func = __hrtick_start;
1137 rq->hrtick_csd.info = rq;
1138 #endif
1139
1140 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1141 rq->hrtick_timer.function = hrtick;
1142 }
1143 #else /* CONFIG_SCHED_HRTICK */
1144 static inline void hrtick_clear(struct rq *rq)
1145 {
1146 }
1147
1148 static inline void init_rq_hrtick(struct rq *rq)
1149 {
1150 }
1151
1152 static inline void init_hrtick(void)
1153 {
1154 }
1155 #endif /* CONFIG_SCHED_HRTICK */
1156
1157 /*
1158 * resched_task - mark a task 'to be rescheduled now'.
1159 *
1160 * On UP this means the setting of the need_resched flag, on SMP it
1161 * might also involve a cross-CPU call to trigger the scheduler on
1162 * the target CPU.
1163 */
1164 #ifdef CONFIG_SMP
1165
1166 #ifndef tsk_is_polling
1167 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1168 #endif
1169
1170 static void resched_task(struct task_struct *p)
1171 {
1172 int cpu;
1173
1174 assert_raw_spin_locked(&task_rq(p)->lock);
1175
1176 if (test_tsk_need_resched(p))
1177 return;
1178
1179 set_tsk_need_resched(p);
1180
1181 cpu = task_cpu(p);
1182 if (cpu == smp_processor_id())
1183 return;
1184
1185 /* NEED_RESCHED must be visible before we test polling */
1186 smp_mb();
1187 if (!tsk_is_polling(p))
1188 smp_send_reschedule(cpu);
1189 }
1190
1191 static void resched_cpu(int cpu)
1192 {
1193 struct rq *rq = cpu_rq(cpu);
1194 unsigned long flags;
1195
1196 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1197 return;
1198 resched_task(cpu_curr(cpu));
1199 raw_spin_unlock_irqrestore(&rq->lock, flags);
1200 }
1201
1202 #ifdef CONFIG_NO_HZ
1203 /*
1204 * When add_timer_on() enqueues a timer into the timer wheel of an
1205 * idle CPU then this timer might expire before the next timer event
1206 * which is scheduled to wake up that CPU. In case of a completely
1207 * idle system the next event might even be infinite time into the
1208 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1209 * leaves the inner idle loop so the newly added timer is taken into
1210 * account when the CPU goes back to idle and evaluates the timer
1211 * wheel for the next timer event.
1212 */
1213 void wake_up_idle_cpu(int cpu)
1214 {
1215 struct rq *rq = cpu_rq(cpu);
1216
1217 if (cpu == smp_processor_id())
1218 return;
1219
1220 /*
1221 * This is safe, as this function is called with the timer
1222 * wheel base lock of (cpu) held. When the CPU is on the way
1223 * to idle and has not yet set rq->curr to idle then it will
1224 * be serialized on the timer wheel base lock and take the new
1225 * timer into account automatically.
1226 */
1227 if (rq->curr != rq->idle)
1228 return;
1229
1230 /*
1231 * We can set TIF_RESCHED on the idle task of the other CPU
1232 * lockless. The worst case is that the other CPU runs the
1233 * idle task through an additional NOOP schedule()
1234 */
1235 set_tsk_need_resched(rq->idle);
1236
1237 /* NEED_RESCHED must be visible before we test polling */
1238 smp_mb();
1239 if (!tsk_is_polling(rq->idle))
1240 smp_send_reschedule(cpu);
1241 }
1242
1243 int nohz_ratelimit(int cpu)
1244 {
1245 struct rq *rq = cpu_rq(cpu);
1246 u64 diff = rq->clock - rq->nohz_stamp;
1247
1248 rq->nohz_stamp = rq->clock;
1249
1250 return diff < (NSEC_PER_SEC / HZ) >> 1;
1251 }
1252
1253 #endif /* CONFIG_NO_HZ */
1254
1255 static u64 sched_avg_period(void)
1256 {
1257 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1258 }
1259
1260 static void sched_avg_update(struct rq *rq)
1261 {
1262 s64 period = sched_avg_period();
1263
1264 while ((s64)(rq->clock - rq->age_stamp) > period) {
1265 rq->age_stamp += period;
1266 rq->rt_avg /= 2;
1267 }
1268 }
1269
1270 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1271 {
1272 rq->rt_avg += rt_delta;
1273 sched_avg_update(rq);
1274 }
1275
1276 #else /* !CONFIG_SMP */
1277 static void resched_task(struct task_struct *p)
1278 {
1279 assert_raw_spin_locked(&task_rq(p)->lock);
1280 set_tsk_need_resched(p);
1281 }
1282
1283 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1284 {
1285 }
1286 #endif /* CONFIG_SMP */
1287
1288 #if BITS_PER_LONG == 32
1289 # define WMULT_CONST (~0UL)
1290 #else
1291 # define WMULT_CONST (1UL << 32)
1292 #endif
1293
1294 #define WMULT_SHIFT 32
1295
1296 /*
1297 * Shift right and round:
1298 */
1299 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1300
1301 /*
1302 * delta *= weight / lw
1303 */
1304 static unsigned long
1305 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1306 struct load_weight *lw)
1307 {
1308 u64 tmp;
1309
1310 if (!lw->inv_weight) {
1311 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1312 lw->inv_weight = 1;
1313 else
1314 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1315 / (lw->weight+1);
1316 }
1317
1318 tmp = (u64)delta_exec * weight;
1319 /*
1320 * Check whether we'd overflow the 64-bit multiplication:
1321 */
1322 if (unlikely(tmp > WMULT_CONST))
1323 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1324 WMULT_SHIFT/2);
1325 else
1326 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1327
1328 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1329 }
1330
1331 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1332 {
1333 lw->weight += inc;
1334 lw->inv_weight = 0;
1335 }
1336
1337 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1338 {
1339 lw->weight -= dec;
1340 lw->inv_weight = 0;
1341 }
1342
1343 /*
1344 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1345 * of tasks with abnormal "nice" values across CPUs the contribution that
1346 * each task makes to its run queue's load is weighted according to its
1347 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1348 * scaled version of the new time slice allocation that they receive on time
1349 * slice expiry etc.
1350 */
1351
1352 #define WEIGHT_IDLEPRIO 3
1353 #define WMULT_IDLEPRIO 1431655765
1354
1355 /*
1356 * Nice levels are multiplicative, with a gentle 10% change for every
1357 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1358 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1359 * that remained on nice 0.
1360 *
1361 * The "10% effect" is relative and cumulative: from _any_ nice level,
1362 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1363 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1364 * If a task goes up by ~10% and another task goes down by ~10% then
1365 * the relative distance between them is ~25%.)
1366 */
1367 static const int prio_to_weight[40] = {
1368 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1369 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1370 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1371 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1372 /* 0 */ 1024, 820, 655, 526, 423,
1373 /* 5 */ 335, 272, 215, 172, 137,
1374 /* 10 */ 110, 87, 70, 56, 45,
1375 /* 15 */ 36, 29, 23, 18, 15,
1376 };
1377
1378 /*
1379 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1380 *
1381 * In cases where the weight does not change often, we can use the
1382 * precalculated inverse to speed up arithmetics by turning divisions
1383 * into multiplications:
1384 */
1385 static const u32 prio_to_wmult[40] = {
1386 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1387 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1388 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1389 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1390 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1391 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1392 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1393 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1394 };
1395
1396 /* Time spent by the tasks of the cpu accounting group executing in ... */
1397 enum cpuacct_stat_index {
1398 CPUACCT_STAT_USER, /* ... user mode */
1399 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1400
1401 CPUACCT_STAT_NSTATS,
1402 };
1403
1404 #ifdef CONFIG_CGROUP_CPUACCT
1405 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1406 static void cpuacct_update_stats(struct task_struct *tsk,
1407 enum cpuacct_stat_index idx, cputime_t val);
1408 #else
1409 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1410 static inline void cpuacct_update_stats(struct task_struct *tsk,
1411 enum cpuacct_stat_index idx, cputime_t val) {}
1412 #endif
1413
1414 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1415 {
1416 update_load_add(&rq->load, load);
1417 }
1418
1419 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1420 {
1421 update_load_sub(&rq->load, load);
1422 }
1423
1424 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1425 typedef int (*tg_visitor)(struct task_group *, void *);
1426
1427 /*
1428 * Iterate the full tree, calling @down when first entering a node and @up when
1429 * leaving it for the final time.
1430 */
1431 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1432 {
1433 struct task_group *parent, *child;
1434 int ret;
1435
1436 rcu_read_lock();
1437 parent = &root_task_group;
1438 down:
1439 ret = (*down)(parent, data);
1440 if (ret)
1441 goto out_unlock;
1442 list_for_each_entry_rcu(child, &parent->children, siblings) {
1443 parent = child;
1444 goto down;
1445
1446 up:
1447 continue;
1448 }
1449 ret = (*up)(parent, data);
1450 if (ret)
1451 goto out_unlock;
1452
1453 child = parent;
1454 parent = parent->parent;
1455 if (parent)
1456 goto up;
1457 out_unlock:
1458 rcu_read_unlock();
1459
1460 return ret;
1461 }
1462
1463 static int tg_nop(struct task_group *tg, void *data)
1464 {
1465 return 0;
1466 }
1467 #endif
1468
1469 #ifdef CONFIG_SMP
1470 /* Used instead of source_load when we know the type == 0 */
1471 static unsigned long weighted_cpuload(const int cpu)
1472 {
1473 return cpu_rq(cpu)->load.weight;
1474 }
1475
1476 /*
1477 * Return a low guess at the load of a migration-source cpu weighted
1478 * according to the scheduling class and "nice" value.
1479 *
1480 * We want to under-estimate the load of migration sources, to
1481 * balance conservatively.
1482 */
1483 static unsigned long source_load(int cpu, int type)
1484 {
1485 struct rq *rq = cpu_rq(cpu);
1486 unsigned long total = weighted_cpuload(cpu);
1487
1488 if (type == 0 || !sched_feat(LB_BIAS))
1489 return total;
1490
1491 return min(rq->cpu_load[type-1], total);
1492 }
1493
1494 /*
1495 * Return a high guess at the load of a migration-target cpu weighted
1496 * according to the scheduling class and "nice" value.
1497 */
1498 static unsigned long target_load(int cpu, int type)
1499 {
1500 struct rq *rq = cpu_rq(cpu);
1501 unsigned long total = weighted_cpuload(cpu);
1502
1503 if (type == 0 || !sched_feat(LB_BIAS))
1504 return total;
1505
1506 return max(rq->cpu_load[type-1], total);
1507 }
1508
1509 static struct sched_group *group_of(int cpu)
1510 {
1511 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1512
1513 if (!sd)
1514 return NULL;
1515
1516 return sd->groups;
1517 }
1518
1519 static unsigned long power_of(int cpu)
1520 {
1521 struct sched_group *group = group_of(cpu);
1522
1523 if (!group)
1524 return SCHED_LOAD_SCALE;
1525
1526 return group->cpu_power;
1527 }
1528
1529 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1530
1531 static unsigned long cpu_avg_load_per_task(int cpu)
1532 {
1533 struct rq *rq = cpu_rq(cpu);
1534 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1535
1536 if (nr_running)
1537 rq->avg_load_per_task = rq->load.weight / nr_running;
1538 else
1539 rq->avg_load_per_task = 0;
1540
1541 return rq->avg_load_per_task;
1542 }
1543
1544 #ifdef CONFIG_FAIR_GROUP_SCHED
1545
1546 static __read_mostly unsigned long *update_shares_data;
1547
1548 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1549
1550 /*
1551 * Calculate and set the cpu's group shares.
1552 */
1553 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1554 unsigned long sd_shares,
1555 unsigned long sd_rq_weight,
1556 unsigned long *usd_rq_weight)
1557 {
1558 unsigned long shares, rq_weight;
1559 int boost = 0;
1560
1561 rq_weight = usd_rq_weight[cpu];
1562 if (!rq_weight) {
1563 boost = 1;
1564 rq_weight = NICE_0_LOAD;
1565 }
1566
1567 /*
1568 * \Sum_j shares_j * rq_weight_i
1569 * shares_i = -----------------------------
1570 * \Sum_j rq_weight_j
1571 */
1572 shares = (sd_shares * rq_weight) / sd_rq_weight;
1573 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1574
1575 if (abs(shares - tg->se[cpu]->load.weight) >
1576 sysctl_sched_shares_thresh) {
1577 struct rq *rq = cpu_rq(cpu);
1578 unsigned long flags;
1579
1580 raw_spin_lock_irqsave(&rq->lock, flags);
1581 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1582 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1583 __set_se_shares(tg->se[cpu], shares);
1584 raw_spin_unlock_irqrestore(&rq->lock, flags);
1585 }
1586 }
1587
1588 /*
1589 * Re-compute the task group their per cpu shares over the given domain.
1590 * This needs to be done in a bottom-up fashion because the rq weight of a
1591 * parent group depends on the shares of its child groups.
1592 */
1593 static int tg_shares_up(struct task_group *tg, void *data)
1594 {
1595 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1596 unsigned long *usd_rq_weight;
1597 struct sched_domain *sd = data;
1598 unsigned long flags;
1599 int i;
1600
1601 if (!tg->se[0])
1602 return 0;
1603
1604 local_irq_save(flags);
1605 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1606
1607 for_each_cpu(i, sched_domain_span(sd)) {
1608 weight = tg->cfs_rq[i]->load.weight;
1609 usd_rq_weight[i] = weight;
1610
1611 rq_weight += weight;
1612 /*
1613 * If there are currently no tasks on the cpu pretend there
1614 * is one of average load so that when a new task gets to
1615 * run here it will not get delayed by group starvation.
1616 */
1617 if (!weight)
1618 weight = NICE_0_LOAD;
1619
1620 sum_weight += weight;
1621 shares += tg->cfs_rq[i]->shares;
1622 }
1623
1624 if (!rq_weight)
1625 rq_weight = sum_weight;
1626
1627 if ((!shares && rq_weight) || shares > tg->shares)
1628 shares = tg->shares;
1629
1630 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1631 shares = tg->shares;
1632
1633 for_each_cpu(i, sched_domain_span(sd))
1634 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1635
1636 local_irq_restore(flags);
1637
1638 return 0;
1639 }
1640
1641 /*
1642 * Compute the cpu's hierarchical load factor for each task group.
1643 * This needs to be done in a top-down fashion because the load of a child
1644 * group is a fraction of its parents load.
1645 */
1646 static int tg_load_down(struct task_group *tg, void *data)
1647 {
1648 unsigned long load;
1649 long cpu = (long)data;
1650
1651 if (!tg->parent) {
1652 load = cpu_rq(cpu)->load.weight;
1653 } else {
1654 load = tg->parent->cfs_rq[cpu]->h_load;
1655 load *= tg->cfs_rq[cpu]->shares;
1656 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1657 }
1658
1659 tg->cfs_rq[cpu]->h_load = load;
1660
1661 return 0;
1662 }
1663
1664 static void update_shares(struct sched_domain *sd)
1665 {
1666 s64 elapsed;
1667 u64 now;
1668
1669 if (root_task_group_empty())
1670 return;
1671
1672 now = cpu_clock(raw_smp_processor_id());
1673 elapsed = now - sd->last_update;
1674
1675 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1676 sd->last_update = now;
1677 walk_tg_tree(tg_nop, tg_shares_up, sd);
1678 }
1679 }
1680
1681 static void update_h_load(long cpu)
1682 {
1683 if (root_task_group_empty())
1684 return;
1685
1686 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1687 }
1688
1689 #else
1690
1691 static inline void update_shares(struct sched_domain *sd)
1692 {
1693 }
1694
1695 #endif
1696
1697 #ifdef CONFIG_PREEMPT
1698
1699 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1700
1701 /*
1702 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1703 * way at the expense of forcing extra atomic operations in all
1704 * invocations. This assures that the double_lock is acquired using the
1705 * same underlying policy as the spinlock_t on this architecture, which
1706 * reduces latency compared to the unfair variant below. However, it
1707 * also adds more overhead and therefore may reduce throughput.
1708 */
1709 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1710 __releases(this_rq->lock)
1711 __acquires(busiest->lock)
1712 __acquires(this_rq->lock)
1713 {
1714 raw_spin_unlock(&this_rq->lock);
1715 double_rq_lock(this_rq, busiest);
1716
1717 return 1;
1718 }
1719
1720 #else
1721 /*
1722 * Unfair double_lock_balance: Optimizes throughput at the expense of
1723 * latency by eliminating extra atomic operations when the locks are
1724 * already in proper order on entry. This favors lower cpu-ids and will
1725 * grant the double lock to lower cpus over higher ids under contention,
1726 * regardless of entry order into the function.
1727 */
1728 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1729 __releases(this_rq->lock)
1730 __acquires(busiest->lock)
1731 __acquires(this_rq->lock)
1732 {
1733 int ret = 0;
1734
1735 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1736 if (busiest < this_rq) {
1737 raw_spin_unlock(&this_rq->lock);
1738 raw_spin_lock(&busiest->lock);
1739 raw_spin_lock_nested(&this_rq->lock,
1740 SINGLE_DEPTH_NESTING);
1741 ret = 1;
1742 } else
1743 raw_spin_lock_nested(&busiest->lock,
1744 SINGLE_DEPTH_NESTING);
1745 }
1746 return ret;
1747 }
1748
1749 #endif /* CONFIG_PREEMPT */
1750
1751 /*
1752 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1753 */
1754 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1755 {
1756 if (unlikely(!irqs_disabled())) {
1757 /* printk() doesn't work good under rq->lock */
1758 raw_spin_unlock(&this_rq->lock);
1759 BUG_ON(1);
1760 }
1761
1762 return _double_lock_balance(this_rq, busiest);
1763 }
1764
1765 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1766 __releases(busiest->lock)
1767 {
1768 raw_spin_unlock(&busiest->lock);
1769 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1770 }
1771
1772 /*
1773 * double_rq_lock - safely lock two runqueues
1774 *
1775 * Note this does not disable interrupts like task_rq_lock,
1776 * you need to do so manually before calling.
1777 */
1778 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1779 __acquires(rq1->lock)
1780 __acquires(rq2->lock)
1781 {
1782 BUG_ON(!irqs_disabled());
1783 if (rq1 == rq2) {
1784 raw_spin_lock(&rq1->lock);
1785 __acquire(rq2->lock); /* Fake it out ;) */
1786 } else {
1787 if (rq1 < rq2) {
1788 raw_spin_lock(&rq1->lock);
1789 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1790 } else {
1791 raw_spin_lock(&rq2->lock);
1792 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1793 }
1794 }
1795 }
1796
1797 /*
1798 * double_rq_unlock - safely unlock two runqueues
1799 *
1800 * Note this does not restore interrupts like task_rq_unlock,
1801 * you need to do so manually after calling.
1802 */
1803 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1804 __releases(rq1->lock)
1805 __releases(rq2->lock)
1806 {
1807 raw_spin_unlock(&rq1->lock);
1808 if (rq1 != rq2)
1809 raw_spin_unlock(&rq2->lock);
1810 else
1811 __release(rq2->lock);
1812 }
1813
1814 #endif
1815
1816 #ifdef CONFIG_FAIR_GROUP_SCHED
1817 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1818 {
1819 #ifdef CONFIG_SMP
1820 cfs_rq->shares = shares;
1821 #endif
1822 }
1823 #endif
1824
1825 static void calc_load_account_active(struct rq *this_rq);
1826 static void update_sysctl(void);
1827 static int get_update_sysctl_factor(void);
1828
1829 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1830 {
1831 set_task_rq(p, cpu);
1832 #ifdef CONFIG_SMP
1833 /*
1834 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1835 * successfuly executed on another CPU. We must ensure that updates of
1836 * per-task data have been completed by this moment.
1837 */
1838 smp_wmb();
1839 task_thread_info(p)->cpu = cpu;
1840 #endif
1841 }
1842
1843 static const struct sched_class rt_sched_class;
1844
1845 #define sched_class_highest (&rt_sched_class)
1846 #define for_each_class(class) \
1847 for (class = sched_class_highest; class; class = class->next)
1848
1849 #include "sched_stats.h"
1850
1851 static void inc_nr_running(struct rq *rq)
1852 {
1853 rq->nr_running++;
1854 }
1855
1856 static void dec_nr_running(struct rq *rq)
1857 {
1858 rq->nr_running--;
1859 }
1860
1861 static void set_load_weight(struct task_struct *p)
1862 {
1863 if (task_has_rt_policy(p)) {
1864 p->se.load.weight = prio_to_weight[0] * 2;
1865 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1866 return;
1867 }
1868
1869 /*
1870 * SCHED_IDLE tasks get minimal weight:
1871 */
1872 if (p->policy == SCHED_IDLE) {
1873 p->se.load.weight = WEIGHT_IDLEPRIO;
1874 p->se.load.inv_weight = WMULT_IDLEPRIO;
1875 return;
1876 }
1877
1878 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1879 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1880 }
1881
1882 static void update_avg(u64 *avg, u64 sample)
1883 {
1884 s64 diff = sample - *avg;
1885 *avg += diff >> 3;
1886 }
1887
1888 static void
1889 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1890 {
1891 update_rq_clock(rq);
1892 sched_info_queued(p);
1893 p->sched_class->enqueue_task(rq, p, wakeup, head);
1894 p->se.on_rq = 1;
1895 }
1896
1897 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1898 {
1899 update_rq_clock(rq);
1900 sched_info_dequeued(p);
1901 p->sched_class->dequeue_task(rq, p, sleep);
1902 p->se.on_rq = 0;
1903 }
1904
1905 /*
1906 * activate_task - move a task to the runqueue.
1907 */
1908 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1909 {
1910 if (task_contributes_to_load(p))
1911 rq->nr_uninterruptible--;
1912
1913 enqueue_task(rq, p, wakeup, false);
1914 inc_nr_running(rq);
1915 }
1916
1917 /*
1918 * deactivate_task - remove a task from the runqueue.
1919 */
1920 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1921 {
1922 if (task_contributes_to_load(p))
1923 rq->nr_uninterruptible++;
1924
1925 dequeue_task(rq, p, sleep);
1926 dec_nr_running(rq);
1927 }
1928
1929 #include "sched_idletask.c"
1930 #include "sched_fair.c"
1931 #include "sched_rt.c"
1932 #ifdef CONFIG_SCHED_DEBUG
1933 # include "sched_debug.c"
1934 #endif
1935
1936 /*
1937 * __normal_prio - return the priority that is based on the static prio
1938 */
1939 static inline int __normal_prio(struct task_struct *p)
1940 {
1941 return p->static_prio;
1942 }
1943
1944 /*
1945 * Calculate the expected normal priority: i.e. priority
1946 * without taking RT-inheritance into account. Might be
1947 * boosted by interactivity modifiers. Changes upon fork,
1948 * setprio syscalls, and whenever the interactivity
1949 * estimator recalculates.
1950 */
1951 static inline int normal_prio(struct task_struct *p)
1952 {
1953 int prio;
1954
1955 if (task_has_rt_policy(p))
1956 prio = MAX_RT_PRIO-1 - p->rt_priority;
1957 else
1958 prio = __normal_prio(p);
1959 return prio;
1960 }
1961
1962 /*
1963 * Calculate the current priority, i.e. the priority
1964 * taken into account by the scheduler. This value might
1965 * be boosted by RT tasks, or might be boosted by
1966 * interactivity modifiers. Will be RT if the task got
1967 * RT-boosted. If not then it returns p->normal_prio.
1968 */
1969 static int effective_prio(struct task_struct *p)
1970 {
1971 p->normal_prio = normal_prio(p);
1972 /*
1973 * If we are RT tasks or we were boosted to RT priority,
1974 * keep the priority unchanged. Otherwise, update priority
1975 * to the normal priority:
1976 */
1977 if (!rt_prio(p->prio))
1978 return p->normal_prio;
1979 return p->prio;
1980 }
1981
1982 /**
1983 * task_curr - is this task currently executing on a CPU?
1984 * @p: the task in question.
1985 */
1986 inline int task_curr(const struct task_struct *p)
1987 {
1988 return cpu_curr(task_cpu(p)) == p;
1989 }
1990
1991 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1992 const struct sched_class *prev_class,
1993 int oldprio, int running)
1994 {
1995 if (prev_class != p->sched_class) {
1996 if (prev_class->switched_from)
1997 prev_class->switched_from(rq, p, running);
1998 p->sched_class->switched_to(rq, p, running);
1999 } else
2000 p->sched_class->prio_changed(rq, p, oldprio, running);
2001 }
2002
2003 #ifdef CONFIG_SMP
2004 /*
2005 * Is this task likely cache-hot:
2006 */
2007 static int
2008 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2009 {
2010 s64 delta;
2011
2012 if (p->sched_class != &fair_sched_class)
2013 return 0;
2014
2015 /*
2016 * Buddy candidates are cache hot:
2017 */
2018 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2019 (&p->se == cfs_rq_of(&p->se)->next ||
2020 &p->se == cfs_rq_of(&p->se)->last))
2021 return 1;
2022
2023 if (sysctl_sched_migration_cost == -1)
2024 return 1;
2025 if (sysctl_sched_migration_cost == 0)
2026 return 0;
2027
2028 delta = now - p->se.exec_start;
2029
2030 return delta < (s64)sysctl_sched_migration_cost;
2031 }
2032
2033 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2034 {
2035 #ifdef CONFIG_SCHED_DEBUG
2036 /*
2037 * We should never call set_task_cpu() on a blocked task,
2038 * ttwu() will sort out the placement.
2039 */
2040 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2041 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2042 #endif
2043
2044 trace_sched_migrate_task(p, new_cpu);
2045
2046 if (task_cpu(p) != new_cpu) {
2047 p->se.nr_migrations++;
2048 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2049 }
2050
2051 __set_task_cpu(p, new_cpu);
2052 }
2053
2054 struct migration_req {
2055 struct list_head list;
2056
2057 struct task_struct *task;
2058 int dest_cpu;
2059
2060 struct completion done;
2061 };
2062
2063 /*
2064 * The task's runqueue lock must be held.
2065 * Returns true if you have to wait for migration thread.
2066 */
2067 static int
2068 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2069 {
2070 struct rq *rq = task_rq(p);
2071
2072 /*
2073 * If the task is not on a runqueue (and not running), then
2074 * the next wake-up will properly place the task.
2075 */
2076 if (!p->se.on_rq && !task_running(rq, p))
2077 return 0;
2078
2079 init_completion(&req->done);
2080 req->task = p;
2081 req->dest_cpu = dest_cpu;
2082 list_add(&req->list, &rq->migration_queue);
2083
2084 return 1;
2085 }
2086
2087 /*
2088 * wait_task_context_switch - wait for a thread to complete at least one
2089 * context switch.
2090 *
2091 * @p must not be current.
2092 */
2093 void wait_task_context_switch(struct task_struct *p)
2094 {
2095 unsigned long nvcsw, nivcsw, flags;
2096 int running;
2097 struct rq *rq;
2098
2099 nvcsw = p->nvcsw;
2100 nivcsw = p->nivcsw;
2101 for (;;) {
2102 /*
2103 * The runqueue is assigned before the actual context
2104 * switch. We need to take the runqueue lock.
2105 *
2106 * We could check initially without the lock but it is
2107 * very likely that we need to take the lock in every
2108 * iteration.
2109 */
2110 rq = task_rq_lock(p, &flags);
2111 running = task_running(rq, p);
2112 task_rq_unlock(rq, &flags);
2113
2114 if (likely(!running))
2115 break;
2116 /*
2117 * The switch count is incremented before the actual
2118 * context switch. We thus wait for two switches to be
2119 * sure at least one completed.
2120 */
2121 if ((p->nvcsw - nvcsw) > 1)
2122 break;
2123 if ((p->nivcsw - nivcsw) > 1)
2124 break;
2125
2126 cpu_relax();
2127 }
2128 }
2129
2130 /*
2131 * wait_task_inactive - wait for a thread to unschedule.
2132 *
2133 * If @match_state is nonzero, it's the @p->state value just checked and
2134 * not expected to change. If it changes, i.e. @p might have woken up,
2135 * then return zero. When we succeed in waiting for @p to be off its CPU,
2136 * we return a positive number (its total switch count). If a second call
2137 * a short while later returns the same number, the caller can be sure that
2138 * @p has remained unscheduled the whole time.
2139 *
2140 * The caller must ensure that the task *will* unschedule sometime soon,
2141 * else this function might spin for a *long* time. This function can't
2142 * be called with interrupts off, or it may introduce deadlock with
2143 * smp_call_function() if an IPI is sent by the same process we are
2144 * waiting to become inactive.
2145 */
2146 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2147 {
2148 unsigned long flags;
2149 int running, on_rq;
2150 unsigned long ncsw;
2151 struct rq *rq;
2152
2153 for (;;) {
2154 /*
2155 * We do the initial early heuristics without holding
2156 * any task-queue locks at all. We'll only try to get
2157 * the runqueue lock when things look like they will
2158 * work out!
2159 */
2160 rq = task_rq(p);
2161
2162 /*
2163 * If the task is actively running on another CPU
2164 * still, just relax and busy-wait without holding
2165 * any locks.
2166 *
2167 * NOTE! Since we don't hold any locks, it's not
2168 * even sure that "rq" stays as the right runqueue!
2169 * But we don't care, since "task_running()" will
2170 * return false if the runqueue has changed and p
2171 * is actually now running somewhere else!
2172 */
2173 while (task_running(rq, p)) {
2174 if (match_state && unlikely(p->state != match_state))
2175 return 0;
2176 cpu_relax();
2177 }
2178
2179 /*
2180 * Ok, time to look more closely! We need the rq
2181 * lock now, to be *sure*. If we're wrong, we'll
2182 * just go back and repeat.
2183 */
2184 rq = task_rq_lock(p, &flags);
2185 trace_sched_wait_task(rq, p);
2186 running = task_running(rq, p);
2187 on_rq = p->se.on_rq;
2188 ncsw = 0;
2189 if (!match_state || p->state == match_state)
2190 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2191 task_rq_unlock(rq, &flags);
2192
2193 /*
2194 * If it changed from the expected state, bail out now.
2195 */
2196 if (unlikely(!ncsw))
2197 break;
2198
2199 /*
2200 * Was it really running after all now that we
2201 * checked with the proper locks actually held?
2202 *
2203 * Oops. Go back and try again..
2204 */
2205 if (unlikely(running)) {
2206 cpu_relax();
2207 continue;
2208 }
2209
2210 /*
2211 * It's not enough that it's not actively running,
2212 * it must be off the runqueue _entirely_, and not
2213 * preempted!
2214 *
2215 * So if it was still runnable (but just not actively
2216 * running right now), it's preempted, and we should
2217 * yield - it could be a while.
2218 */
2219 if (unlikely(on_rq)) {
2220 schedule_timeout_uninterruptible(1);
2221 continue;
2222 }
2223
2224 /*
2225 * Ahh, all good. It wasn't running, and it wasn't
2226 * runnable, which means that it will never become
2227 * running in the future either. We're all done!
2228 */
2229 break;
2230 }
2231
2232 return ncsw;
2233 }
2234
2235 /***
2236 * kick_process - kick a running thread to enter/exit the kernel
2237 * @p: the to-be-kicked thread
2238 *
2239 * Cause a process which is running on another CPU to enter
2240 * kernel-mode, without any delay. (to get signals handled.)
2241 *
2242 * NOTE: this function doesnt have to take the runqueue lock,
2243 * because all it wants to ensure is that the remote task enters
2244 * the kernel. If the IPI races and the task has been migrated
2245 * to another CPU then no harm is done and the purpose has been
2246 * achieved as well.
2247 */
2248 void kick_process(struct task_struct *p)
2249 {
2250 int cpu;
2251
2252 preempt_disable();
2253 cpu = task_cpu(p);
2254 if ((cpu != smp_processor_id()) && task_curr(p))
2255 smp_send_reschedule(cpu);
2256 preempt_enable();
2257 }
2258 EXPORT_SYMBOL_GPL(kick_process);
2259 #endif /* CONFIG_SMP */
2260
2261 /**
2262 * task_oncpu_function_call - call a function on the cpu on which a task runs
2263 * @p: the task to evaluate
2264 * @func: the function to be called
2265 * @info: the function call argument
2266 *
2267 * Calls the function @func when the task is currently running. This might
2268 * be on the current CPU, which just calls the function directly
2269 */
2270 void task_oncpu_function_call(struct task_struct *p,
2271 void (*func) (void *info), void *info)
2272 {
2273 int cpu;
2274
2275 preempt_disable();
2276 cpu = task_cpu(p);
2277 if (task_curr(p))
2278 smp_call_function_single(cpu, func, info, 1);
2279 preempt_enable();
2280 }
2281
2282 #ifdef CONFIG_SMP
2283 static int select_fallback_rq(int cpu, struct task_struct *p)
2284 {
2285 int dest_cpu;
2286 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2287
2288 /* Look for allowed, online CPU in same node. */
2289 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2290 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2291 return dest_cpu;
2292
2293 /* Any allowed, online CPU? */
2294 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2295 if (dest_cpu < nr_cpu_ids)
2296 return dest_cpu;
2297
2298 /* No more Mr. Nice Guy. */
2299 if (dest_cpu >= nr_cpu_ids) {
2300 rcu_read_lock();
2301 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
2302 rcu_read_unlock();
2303 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
2304
2305 /*
2306 * Don't tell them about moving exiting tasks or
2307 * kernel threads (both mm NULL), since they never
2308 * leave kernel.
2309 */
2310 if (p->mm && printk_ratelimit()) {
2311 printk(KERN_INFO "process %d (%s) no "
2312 "longer affine to cpu%d\n",
2313 task_pid_nr(p), p->comm, cpu);
2314 }
2315 }
2316
2317 return dest_cpu;
2318 }
2319
2320 /*
2321 * Gets called from 3 sites (exec, fork, wakeup), since it is called without
2322 * holding rq->lock we need to ensure ->cpus_allowed is stable, this is done
2323 * by:
2324 *
2325 * exec: is unstable, retry loop
2326 * fork & wake-up: serialize ->cpus_allowed against TASK_WAKING
2327 */
2328 static inline
2329 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2330 {
2331 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2332
2333 /*
2334 * In order not to call set_task_cpu() on a blocking task we need
2335 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2336 * cpu.
2337 *
2338 * Since this is common to all placement strategies, this lives here.
2339 *
2340 * [ this allows ->select_task() to simply return task_cpu(p) and
2341 * not worry about this generic constraint ]
2342 */
2343 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2344 !cpu_online(cpu)))
2345 cpu = select_fallback_rq(task_cpu(p), p);
2346
2347 return cpu;
2348 }
2349 #endif
2350
2351 /***
2352 * try_to_wake_up - wake up a thread
2353 * @p: the to-be-woken-up thread
2354 * @state: the mask of task states that can be woken
2355 * @sync: do a synchronous wakeup?
2356 *
2357 * Put it on the run-queue if it's not already there. The "current"
2358 * thread is always on the run-queue (except when the actual
2359 * re-schedule is in progress), and as such you're allowed to do
2360 * the simpler "current->state = TASK_RUNNING" to mark yourself
2361 * runnable without the overhead of this.
2362 *
2363 * returns failure only if the task is already active.
2364 */
2365 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2366 int wake_flags)
2367 {
2368 int cpu, orig_cpu, this_cpu, success = 0;
2369 unsigned long flags;
2370 struct rq *rq;
2371
2372 this_cpu = get_cpu();
2373
2374 smp_wmb();
2375 rq = task_rq_lock(p, &flags);
2376 if (!(p->state & state))
2377 goto out;
2378
2379 if (p->se.on_rq)
2380 goto out_running;
2381
2382 cpu = task_cpu(p);
2383 orig_cpu = cpu;
2384
2385 #ifdef CONFIG_SMP
2386 if (unlikely(task_running(rq, p)))
2387 goto out_activate;
2388
2389 /*
2390 * In order to handle concurrent wakeups and release the rq->lock
2391 * we put the task in TASK_WAKING state.
2392 *
2393 * First fix up the nr_uninterruptible count:
2394 */
2395 if (task_contributes_to_load(p))
2396 rq->nr_uninterruptible--;
2397 p->state = TASK_WAKING;
2398
2399 if (p->sched_class->task_waking)
2400 p->sched_class->task_waking(rq, p);
2401
2402 __task_rq_unlock(rq);
2403
2404 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2405 if (cpu != orig_cpu) {
2406 /*
2407 * Since we migrate the task without holding any rq->lock,
2408 * we need to be careful with task_rq_lock(), since that
2409 * might end up locking an invalid rq.
2410 */
2411 set_task_cpu(p, cpu);
2412 }
2413
2414 rq = cpu_rq(cpu);
2415 raw_spin_lock(&rq->lock);
2416
2417 /*
2418 * We migrated the task without holding either rq->lock, however
2419 * since the task is not on the task list itself, nobody else
2420 * will try and migrate the task, hence the rq should match the
2421 * cpu we just moved it to.
2422 */
2423 WARN_ON(task_cpu(p) != cpu);
2424 WARN_ON(p->state != TASK_WAKING);
2425
2426 #ifdef CONFIG_SCHEDSTATS
2427 schedstat_inc(rq, ttwu_count);
2428 if (cpu == this_cpu)
2429 schedstat_inc(rq, ttwu_local);
2430 else {
2431 struct sched_domain *sd;
2432 for_each_domain(this_cpu, sd) {
2433 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2434 schedstat_inc(sd, ttwu_wake_remote);
2435 break;
2436 }
2437 }
2438 }
2439 #endif /* CONFIG_SCHEDSTATS */
2440
2441 out_activate:
2442 #endif /* CONFIG_SMP */
2443 schedstat_inc(p, se.statistics.nr_wakeups);
2444 if (wake_flags & WF_SYNC)
2445 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2446 if (orig_cpu != cpu)
2447 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2448 if (cpu == this_cpu)
2449 schedstat_inc(p, se.statistics.nr_wakeups_local);
2450 else
2451 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2452 activate_task(rq, p, 1);
2453 success = 1;
2454
2455 out_running:
2456 trace_sched_wakeup(rq, p, success);
2457 check_preempt_curr(rq, p, wake_flags);
2458
2459 p->state = TASK_RUNNING;
2460 #ifdef CONFIG_SMP
2461 if (p->sched_class->task_woken)
2462 p->sched_class->task_woken(rq, p);
2463
2464 if (unlikely(rq->idle_stamp)) {
2465 u64 delta = rq->clock - rq->idle_stamp;
2466 u64 max = 2*sysctl_sched_migration_cost;
2467
2468 if (delta > max)
2469 rq->avg_idle = max;
2470 else
2471 update_avg(&rq->avg_idle, delta);
2472 rq->idle_stamp = 0;
2473 }
2474 #endif
2475 out:
2476 task_rq_unlock(rq, &flags);
2477 put_cpu();
2478
2479 return success;
2480 }
2481
2482 /**
2483 * wake_up_process - Wake up a specific process
2484 * @p: The process to be woken up.
2485 *
2486 * Attempt to wake up the nominated process and move it to the set of runnable
2487 * processes. Returns 1 if the process was woken up, 0 if it was already
2488 * running.
2489 *
2490 * It may be assumed that this function implies a write memory barrier before
2491 * changing the task state if and only if any tasks are woken up.
2492 */
2493 int wake_up_process(struct task_struct *p)
2494 {
2495 return try_to_wake_up(p, TASK_ALL, 0);
2496 }
2497 EXPORT_SYMBOL(wake_up_process);
2498
2499 int wake_up_state(struct task_struct *p, unsigned int state)
2500 {
2501 return try_to_wake_up(p, state, 0);
2502 }
2503
2504 /*
2505 * Perform scheduler related setup for a newly forked process p.
2506 * p is forked by current.
2507 *
2508 * __sched_fork() is basic setup used by init_idle() too:
2509 */
2510 static void __sched_fork(struct task_struct *p)
2511 {
2512 p->se.exec_start = 0;
2513 p->se.sum_exec_runtime = 0;
2514 p->se.prev_sum_exec_runtime = 0;
2515 p->se.nr_migrations = 0;
2516
2517 #ifdef CONFIG_SCHEDSTATS
2518 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2519 #endif
2520
2521 INIT_LIST_HEAD(&p->rt.run_list);
2522 p->se.on_rq = 0;
2523 INIT_LIST_HEAD(&p->se.group_node);
2524
2525 #ifdef CONFIG_PREEMPT_NOTIFIERS
2526 INIT_HLIST_HEAD(&p->preempt_notifiers);
2527 #endif
2528 }
2529
2530 /*
2531 * fork()/clone()-time setup:
2532 */
2533 void sched_fork(struct task_struct *p, int clone_flags)
2534 {
2535 int cpu = get_cpu();
2536
2537 __sched_fork(p);
2538 /*
2539 * We mark the process as waking here. This guarantees that
2540 * nobody will actually run it, and a signal or other external
2541 * event cannot wake it up and insert it on the runqueue either.
2542 */
2543 p->state = TASK_WAKING;
2544
2545 /*
2546 * Revert to default priority/policy on fork if requested.
2547 */
2548 if (unlikely(p->sched_reset_on_fork)) {
2549 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2550 p->policy = SCHED_NORMAL;
2551 p->normal_prio = p->static_prio;
2552 }
2553
2554 if (PRIO_TO_NICE(p->static_prio) < 0) {
2555 p->static_prio = NICE_TO_PRIO(0);
2556 p->normal_prio = p->static_prio;
2557 set_load_weight(p);
2558 }
2559
2560 /*
2561 * We don't need the reset flag anymore after the fork. It has
2562 * fulfilled its duty:
2563 */
2564 p->sched_reset_on_fork = 0;
2565 }
2566
2567 /*
2568 * Make sure we do not leak PI boosting priority to the child.
2569 */
2570 p->prio = current->normal_prio;
2571
2572 if (!rt_prio(p->prio))
2573 p->sched_class = &fair_sched_class;
2574
2575 if (p->sched_class->task_fork)
2576 p->sched_class->task_fork(p);
2577
2578 set_task_cpu(p, cpu);
2579
2580 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2581 if (likely(sched_info_on()))
2582 memset(&p->sched_info, 0, sizeof(p->sched_info));
2583 #endif
2584 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2585 p->oncpu = 0;
2586 #endif
2587 #ifdef CONFIG_PREEMPT
2588 /* Want to start with kernel preemption disabled. */
2589 task_thread_info(p)->preempt_count = 1;
2590 #endif
2591 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2592
2593 put_cpu();
2594 }
2595
2596 /*
2597 * wake_up_new_task - wake up a newly created task for the first time.
2598 *
2599 * This function will do some initial scheduler statistics housekeeping
2600 * that must be done for every newly created context, then puts the task
2601 * on the runqueue and wakes it.
2602 */
2603 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2604 {
2605 unsigned long flags;
2606 struct rq *rq;
2607 int cpu = get_cpu();
2608
2609 #ifdef CONFIG_SMP
2610 /*
2611 * Fork balancing, do it here and not earlier because:
2612 * - cpus_allowed can change in the fork path
2613 * - any previously selected cpu might disappear through hotplug
2614 *
2615 * We still have TASK_WAKING but PF_STARTING is gone now, meaning
2616 * ->cpus_allowed is stable, we have preemption disabled, meaning
2617 * cpu_online_mask is stable.
2618 */
2619 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2620 set_task_cpu(p, cpu);
2621 #endif
2622
2623 /*
2624 * Since the task is not on the rq and we still have TASK_WAKING set
2625 * nobody else will migrate this task.
2626 */
2627 rq = cpu_rq(cpu);
2628 raw_spin_lock_irqsave(&rq->lock, flags);
2629
2630 BUG_ON(p->state != TASK_WAKING);
2631 p->state = TASK_RUNNING;
2632 activate_task(rq, p, 0);
2633 trace_sched_wakeup_new(rq, p, 1);
2634 check_preempt_curr(rq, p, WF_FORK);
2635 #ifdef CONFIG_SMP
2636 if (p->sched_class->task_woken)
2637 p->sched_class->task_woken(rq, p);
2638 #endif
2639 task_rq_unlock(rq, &flags);
2640 put_cpu();
2641 }
2642
2643 #ifdef CONFIG_PREEMPT_NOTIFIERS
2644
2645 /**
2646 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2647 * @notifier: notifier struct to register
2648 */
2649 void preempt_notifier_register(struct preempt_notifier *notifier)
2650 {
2651 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2652 }
2653 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2654
2655 /**
2656 * preempt_notifier_unregister - no longer interested in preemption notifications
2657 * @notifier: notifier struct to unregister
2658 *
2659 * This is safe to call from within a preemption notifier.
2660 */
2661 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2662 {
2663 hlist_del(&notifier->link);
2664 }
2665 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2666
2667 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2668 {
2669 struct preempt_notifier *notifier;
2670 struct hlist_node *node;
2671
2672 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2673 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2674 }
2675
2676 static void
2677 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2678 struct task_struct *next)
2679 {
2680 struct preempt_notifier *notifier;
2681 struct hlist_node *node;
2682
2683 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2684 notifier->ops->sched_out(notifier, next);
2685 }
2686
2687 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2688
2689 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2690 {
2691 }
2692
2693 static void
2694 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2695 struct task_struct *next)
2696 {
2697 }
2698
2699 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2700
2701 /**
2702 * prepare_task_switch - prepare to switch tasks
2703 * @rq: the runqueue preparing to switch
2704 * @prev: the current task that is being switched out
2705 * @next: the task we are going to switch to.
2706 *
2707 * This is called with the rq lock held and interrupts off. It must
2708 * be paired with a subsequent finish_task_switch after the context
2709 * switch.
2710 *
2711 * prepare_task_switch sets up locking and calls architecture specific
2712 * hooks.
2713 */
2714 static inline void
2715 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2716 struct task_struct *next)
2717 {
2718 fire_sched_out_preempt_notifiers(prev, next);
2719 prepare_lock_switch(rq, next);
2720 prepare_arch_switch(next);
2721 }
2722
2723 /**
2724 * finish_task_switch - clean up after a task-switch
2725 * @rq: runqueue associated with task-switch
2726 * @prev: the thread we just switched away from.
2727 *
2728 * finish_task_switch must be called after the context switch, paired
2729 * with a prepare_task_switch call before the context switch.
2730 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2731 * and do any other architecture-specific cleanup actions.
2732 *
2733 * Note that we may have delayed dropping an mm in context_switch(). If
2734 * so, we finish that here outside of the runqueue lock. (Doing it
2735 * with the lock held can cause deadlocks; see schedule() for
2736 * details.)
2737 */
2738 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2739 __releases(rq->lock)
2740 {
2741 struct mm_struct *mm = rq->prev_mm;
2742 long prev_state;
2743
2744 rq->prev_mm = NULL;
2745
2746 /*
2747 * A task struct has one reference for the use as "current".
2748 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2749 * schedule one last time. The schedule call will never return, and
2750 * the scheduled task must drop that reference.
2751 * The test for TASK_DEAD must occur while the runqueue locks are
2752 * still held, otherwise prev could be scheduled on another cpu, die
2753 * there before we look at prev->state, and then the reference would
2754 * be dropped twice.
2755 * Manfred Spraul <manfred@colorfullife.com>
2756 */
2757 prev_state = prev->state;
2758 finish_arch_switch(prev);
2759 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2760 local_irq_disable();
2761 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2762 perf_event_task_sched_in(current);
2763 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2764 local_irq_enable();
2765 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2766 finish_lock_switch(rq, prev);
2767
2768 fire_sched_in_preempt_notifiers(current);
2769 if (mm)
2770 mmdrop(mm);
2771 if (unlikely(prev_state == TASK_DEAD)) {
2772 /*
2773 * Remove function-return probe instances associated with this
2774 * task and put them back on the free list.
2775 */
2776 kprobe_flush_task(prev);
2777 put_task_struct(prev);
2778 }
2779 }
2780
2781 #ifdef CONFIG_SMP
2782
2783 /* assumes rq->lock is held */
2784 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2785 {
2786 if (prev->sched_class->pre_schedule)
2787 prev->sched_class->pre_schedule(rq, prev);
2788 }
2789
2790 /* rq->lock is NOT held, but preemption is disabled */
2791 static inline void post_schedule(struct rq *rq)
2792 {
2793 if (rq->post_schedule) {
2794 unsigned long flags;
2795
2796 raw_spin_lock_irqsave(&rq->lock, flags);
2797 if (rq->curr->sched_class->post_schedule)
2798 rq->curr->sched_class->post_schedule(rq);
2799 raw_spin_unlock_irqrestore(&rq->lock, flags);
2800
2801 rq->post_schedule = 0;
2802 }
2803 }
2804
2805 #else
2806
2807 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2808 {
2809 }
2810
2811 static inline void post_schedule(struct rq *rq)
2812 {
2813 }
2814
2815 #endif
2816
2817 /**
2818 * schedule_tail - first thing a freshly forked thread must call.
2819 * @prev: the thread we just switched away from.
2820 */
2821 asmlinkage void schedule_tail(struct task_struct *prev)
2822 __releases(rq->lock)
2823 {
2824 struct rq *rq = this_rq();
2825
2826 finish_task_switch(rq, prev);
2827
2828 /*
2829 * FIXME: do we need to worry about rq being invalidated by the
2830 * task_switch?
2831 */
2832 post_schedule(rq);
2833
2834 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2835 /* In this case, finish_task_switch does not reenable preemption */
2836 preempt_enable();
2837 #endif
2838 if (current->set_child_tid)
2839 put_user(task_pid_vnr(current), current->set_child_tid);
2840 }
2841
2842 /*
2843 * context_switch - switch to the new MM and the new
2844 * thread's register state.
2845 */
2846 static inline void
2847 context_switch(struct rq *rq, struct task_struct *prev,
2848 struct task_struct *next)
2849 {
2850 struct mm_struct *mm, *oldmm;
2851
2852 prepare_task_switch(rq, prev, next);
2853 trace_sched_switch(rq, prev, next);
2854 mm = next->mm;
2855 oldmm = prev->active_mm;
2856 /*
2857 * For paravirt, this is coupled with an exit in switch_to to
2858 * combine the page table reload and the switch backend into
2859 * one hypercall.
2860 */
2861 arch_start_context_switch(prev);
2862
2863 if (likely(!mm)) {
2864 next->active_mm = oldmm;
2865 atomic_inc(&oldmm->mm_count);
2866 enter_lazy_tlb(oldmm, next);
2867 } else
2868 switch_mm(oldmm, mm, next);
2869
2870 if (likely(!prev->mm)) {
2871 prev->active_mm = NULL;
2872 rq->prev_mm = oldmm;
2873 }
2874 /*
2875 * Since the runqueue lock will be released by the next
2876 * task (which is an invalid locking op but in the case
2877 * of the scheduler it's an obvious special-case), so we
2878 * do an early lockdep release here:
2879 */
2880 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2881 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2882 #endif
2883
2884 /* Here we just switch the register state and the stack. */
2885 switch_to(prev, next, prev);
2886
2887 barrier();
2888 /*
2889 * this_rq must be evaluated again because prev may have moved
2890 * CPUs since it called schedule(), thus the 'rq' on its stack
2891 * frame will be invalid.
2892 */
2893 finish_task_switch(this_rq(), prev);
2894 }
2895
2896 /*
2897 * nr_running, nr_uninterruptible and nr_context_switches:
2898 *
2899 * externally visible scheduler statistics: current number of runnable
2900 * threads, current number of uninterruptible-sleeping threads, total
2901 * number of context switches performed since bootup.
2902 */
2903 unsigned long nr_running(void)
2904 {
2905 unsigned long i, sum = 0;
2906
2907 for_each_online_cpu(i)
2908 sum += cpu_rq(i)->nr_running;
2909
2910 return sum;
2911 }
2912
2913 unsigned long nr_uninterruptible(void)
2914 {
2915 unsigned long i, sum = 0;
2916
2917 for_each_possible_cpu(i)
2918 sum += cpu_rq(i)->nr_uninterruptible;
2919
2920 /*
2921 * Since we read the counters lockless, it might be slightly
2922 * inaccurate. Do not allow it to go below zero though:
2923 */
2924 if (unlikely((long)sum < 0))
2925 sum = 0;
2926
2927 return sum;
2928 }
2929
2930 unsigned long long nr_context_switches(void)
2931 {
2932 int i;
2933 unsigned long long sum = 0;
2934
2935 for_each_possible_cpu(i)
2936 sum += cpu_rq(i)->nr_switches;
2937
2938 return sum;
2939 }
2940
2941 unsigned long nr_iowait(void)
2942 {
2943 unsigned long i, sum = 0;
2944
2945 for_each_possible_cpu(i)
2946 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2947
2948 return sum;
2949 }
2950
2951 unsigned long nr_iowait_cpu(void)
2952 {
2953 struct rq *this = this_rq();
2954 return atomic_read(&this->nr_iowait);
2955 }
2956
2957 unsigned long this_cpu_load(void)
2958 {
2959 struct rq *this = this_rq();
2960 return this->cpu_load[0];
2961 }
2962
2963
2964 /* Variables and functions for calc_load */
2965 static atomic_long_t calc_load_tasks;
2966 static unsigned long calc_load_update;
2967 unsigned long avenrun[3];
2968 EXPORT_SYMBOL(avenrun);
2969
2970 /**
2971 * get_avenrun - get the load average array
2972 * @loads: pointer to dest load array
2973 * @offset: offset to add
2974 * @shift: shift count to shift the result left
2975 *
2976 * These values are estimates at best, so no need for locking.
2977 */
2978 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2979 {
2980 loads[0] = (avenrun[0] + offset) << shift;
2981 loads[1] = (avenrun[1] + offset) << shift;
2982 loads[2] = (avenrun[2] + offset) << shift;
2983 }
2984
2985 static unsigned long
2986 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2987 {
2988 load *= exp;
2989 load += active * (FIXED_1 - exp);
2990 return load >> FSHIFT;
2991 }
2992
2993 /*
2994 * calc_load - update the avenrun load estimates 10 ticks after the
2995 * CPUs have updated calc_load_tasks.
2996 */
2997 void calc_global_load(void)
2998 {
2999 unsigned long upd = calc_load_update + 10;
3000 long active;
3001
3002 if (time_before(jiffies, upd))
3003 return;
3004
3005 active = atomic_long_read(&calc_load_tasks);
3006 active = active > 0 ? active * FIXED_1 : 0;
3007
3008 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3009 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3010 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3011
3012 calc_load_update += LOAD_FREQ;
3013 }
3014
3015 /*
3016 * Either called from update_cpu_load() or from a cpu going idle
3017 */
3018 static void calc_load_account_active(struct rq *this_rq)
3019 {
3020 long nr_active, delta;
3021
3022 nr_active = this_rq->nr_running;
3023 nr_active += (long) this_rq->nr_uninterruptible;
3024
3025 if (nr_active != this_rq->calc_load_active) {
3026 delta = nr_active - this_rq->calc_load_active;
3027 this_rq->calc_load_active = nr_active;
3028 atomic_long_add(delta, &calc_load_tasks);
3029 }
3030 }
3031
3032 /*
3033 * Update rq->cpu_load[] statistics. This function is usually called every
3034 * scheduler tick (TICK_NSEC).
3035 */
3036 static void update_cpu_load(struct rq *this_rq)
3037 {
3038 unsigned long this_load = this_rq->load.weight;
3039 int i, scale;
3040
3041 this_rq->nr_load_updates++;
3042
3043 /* Update our load: */
3044 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3045 unsigned long old_load, new_load;
3046
3047 /* scale is effectively 1 << i now, and >> i divides by scale */
3048
3049 old_load = this_rq->cpu_load[i];
3050 new_load = this_load;
3051 /*
3052 * Round up the averaging division if load is increasing. This
3053 * prevents us from getting stuck on 9 if the load is 10, for
3054 * example.
3055 */
3056 if (new_load > old_load)
3057 new_load += scale-1;
3058 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3059 }
3060
3061 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3062 this_rq->calc_load_update += LOAD_FREQ;
3063 calc_load_account_active(this_rq);
3064 }
3065 }
3066
3067 #ifdef CONFIG_SMP
3068
3069 /*
3070 * sched_exec - execve() is a valuable balancing opportunity, because at
3071 * this point the task has the smallest effective memory and cache footprint.
3072 */
3073 void sched_exec(void)
3074 {
3075 struct task_struct *p = current;
3076 struct migration_req req;
3077 int dest_cpu, this_cpu;
3078 unsigned long flags;
3079 struct rq *rq;
3080
3081 again:
3082 this_cpu = get_cpu();
3083 dest_cpu = select_task_rq(p, SD_BALANCE_EXEC, 0);
3084 if (dest_cpu == this_cpu) {
3085 put_cpu();
3086 return;
3087 }
3088
3089 rq = task_rq_lock(p, &flags);
3090 put_cpu();
3091
3092 /*
3093 * select_task_rq() can race against ->cpus_allowed
3094 */
3095 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3096 || unlikely(!cpu_active(dest_cpu))) {
3097 task_rq_unlock(rq, &flags);
3098 goto again;
3099 }
3100
3101 /* force the process onto the specified CPU */
3102 if (migrate_task(p, dest_cpu, &req)) {
3103 /* Need to wait for migration thread (might exit: take ref). */
3104 struct task_struct *mt = rq->migration_thread;
3105
3106 get_task_struct(mt);
3107 task_rq_unlock(rq, &flags);
3108 wake_up_process(mt);
3109 put_task_struct(mt);
3110 wait_for_completion(&req.done);
3111
3112 return;
3113 }
3114 task_rq_unlock(rq, &flags);
3115 }
3116
3117 #endif
3118
3119 DEFINE_PER_CPU(struct kernel_stat, kstat);
3120
3121 EXPORT_PER_CPU_SYMBOL(kstat);
3122
3123 /*
3124 * Return any ns on the sched_clock that have not yet been accounted in
3125 * @p in case that task is currently running.
3126 *
3127 * Called with task_rq_lock() held on @rq.
3128 */
3129 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3130 {
3131 u64 ns = 0;
3132
3133 if (task_current(rq, p)) {
3134 update_rq_clock(rq);
3135 ns = rq->clock - p->se.exec_start;
3136 if ((s64)ns < 0)
3137 ns = 0;
3138 }
3139
3140 return ns;
3141 }
3142
3143 unsigned long long task_delta_exec(struct task_struct *p)
3144 {
3145 unsigned long flags;
3146 struct rq *rq;
3147 u64 ns = 0;
3148
3149 rq = task_rq_lock(p, &flags);
3150 ns = do_task_delta_exec(p, rq);
3151 task_rq_unlock(rq, &flags);
3152
3153 return ns;
3154 }
3155
3156 /*
3157 * Return accounted runtime for the task.
3158 * In case the task is currently running, return the runtime plus current's
3159 * pending runtime that have not been accounted yet.
3160 */
3161 unsigned long long task_sched_runtime(struct task_struct *p)
3162 {
3163 unsigned long flags;
3164 struct rq *rq;
3165 u64 ns = 0;
3166
3167 rq = task_rq_lock(p, &flags);
3168 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3169 task_rq_unlock(rq, &flags);
3170
3171 return ns;
3172 }
3173
3174 /*
3175 * Return sum_exec_runtime for the thread group.
3176 * In case the task is currently running, return the sum plus current's
3177 * pending runtime that have not been accounted yet.
3178 *
3179 * Note that the thread group might have other running tasks as well,
3180 * so the return value not includes other pending runtime that other
3181 * running tasks might have.
3182 */
3183 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3184 {
3185 struct task_cputime totals;
3186 unsigned long flags;
3187 struct rq *rq;
3188 u64 ns;
3189
3190 rq = task_rq_lock(p, &flags);
3191 thread_group_cputime(p, &totals);
3192 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3193 task_rq_unlock(rq, &flags);
3194
3195 return ns;
3196 }
3197
3198 /*
3199 * Account user cpu time to a process.
3200 * @p: the process that the cpu time gets accounted to
3201 * @cputime: the cpu time spent in user space since the last update
3202 * @cputime_scaled: cputime scaled by cpu frequency
3203 */
3204 void account_user_time(struct task_struct *p, cputime_t cputime,
3205 cputime_t cputime_scaled)
3206 {
3207 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3208 cputime64_t tmp;
3209
3210 /* Add user time to process. */
3211 p->utime = cputime_add(p->utime, cputime);
3212 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3213 account_group_user_time(p, cputime);
3214
3215 /* Add user time to cpustat. */
3216 tmp = cputime_to_cputime64(cputime);
3217 if (TASK_NICE(p) > 0)
3218 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3219 else
3220 cpustat->user = cputime64_add(cpustat->user, tmp);
3221
3222 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3223 /* Account for user time used */
3224 acct_update_integrals(p);
3225 }
3226
3227 /*
3228 * Account guest cpu time to a process.
3229 * @p: the process that the cpu time gets accounted to
3230 * @cputime: the cpu time spent in virtual machine since the last update
3231 * @cputime_scaled: cputime scaled by cpu frequency
3232 */
3233 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3234 cputime_t cputime_scaled)
3235 {
3236 cputime64_t tmp;
3237 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3238
3239 tmp = cputime_to_cputime64(cputime);
3240
3241 /* Add guest time to process. */
3242 p->utime = cputime_add(p->utime, cputime);
3243 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3244 account_group_user_time(p, cputime);
3245 p->gtime = cputime_add(p->gtime, cputime);
3246
3247 /* Add guest time to cpustat. */
3248 if (TASK_NICE(p) > 0) {
3249 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3250 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3251 } else {
3252 cpustat->user = cputime64_add(cpustat->user, tmp);
3253 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3254 }
3255 }
3256
3257 /*
3258 * Account system cpu time to a process.
3259 * @p: the process that the cpu time gets accounted to
3260 * @hardirq_offset: the offset to subtract from hardirq_count()
3261 * @cputime: the cpu time spent in kernel space since the last update
3262 * @cputime_scaled: cputime scaled by cpu frequency
3263 */
3264 void account_system_time(struct task_struct *p, int hardirq_offset,
3265 cputime_t cputime, cputime_t cputime_scaled)
3266 {
3267 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3268 cputime64_t tmp;
3269
3270 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3271 account_guest_time(p, cputime, cputime_scaled);
3272 return;
3273 }
3274
3275 /* Add system time to process. */
3276 p->stime = cputime_add(p->stime, cputime);
3277 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3278 account_group_system_time(p, cputime);
3279
3280 /* Add system time to cpustat. */
3281 tmp = cputime_to_cputime64(cputime);
3282 if (hardirq_count() - hardirq_offset)
3283 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3284 else if (softirq_count())
3285 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3286 else
3287 cpustat->system = cputime64_add(cpustat->system, tmp);
3288
3289 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3290
3291 /* Account for system time used */
3292 acct_update_integrals(p);
3293 }
3294
3295 /*
3296 * Account for involuntary wait time.
3297 * @steal: the cpu time spent in involuntary wait
3298 */
3299 void account_steal_time(cputime_t cputime)
3300 {
3301 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3302 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3303
3304 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3305 }
3306
3307 /*
3308 * Account for idle time.
3309 * @cputime: the cpu time spent in idle wait
3310 */
3311 void account_idle_time(cputime_t cputime)
3312 {
3313 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3314 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3315 struct rq *rq = this_rq();
3316
3317 if (atomic_read(&rq->nr_iowait) > 0)
3318 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3319 else
3320 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3321 }
3322
3323 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3324
3325 /*
3326 * Account a single tick of cpu time.
3327 * @p: the process that the cpu time gets accounted to
3328 * @user_tick: indicates if the tick is a user or a system tick
3329 */
3330 void account_process_tick(struct task_struct *p, int user_tick)
3331 {
3332 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3333 struct rq *rq = this_rq();
3334
3335 if (user_tick)
3336 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3337 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3338 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3339 one_jiffy_scaled);
3340 else
3341 account_idle_time(cputime_one_jiffy);
3342 }
3343
3344 /*
3345 * Account multiple ticks of steal time.
3346 * @p: the process from which the cpu time has been stolen
3347 * @ticks: number of stolen ticks
3348 */
3349 void account_steal_ticks(unsigned long ticks)
3350 {
3351 account_steal_time(jiffies_to_cputime(ticks));
3352 }
3353
3354 /*
3355 * Account multiple ticks of idle time.
3356 * @ticks: number of stolen ticks
3357 */
3358 void account_idle_ticks(unsigned long ticks)
3359 {
3360 account_idle_time(jiffies_to_cputime(ticks));
3361 }
3362
3363 #endif
3364
3365 /*
3366 * Use precise platform statistics if available:
3367 */
3368 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3369 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3370 {
3371 *ut = p->utime;
3372 *st = p->stime;
3373 }
3374
3375 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3376 {
3377 struct task_cputime cputime;
3378
3379 thread_group_cputime(p, &cputime);
3380
3381 *ut = cputime.utime;
3382 *st = cputime.stime;
3383 }
3384 #else
3385
3386 #ifndef nsecs_to_cputime
3387 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3388 #endif
3389
3390 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3391 {
3392 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3393
3394 /*
3395 * Use CFS's precise accounting:
3396 */
3397 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3398
3399 if (total) {
3400 u64 temp;
3401
3402 temp = (u64)(rtime * utime);
3403 do_div(temp, total);
3404 utime = (cputime_t)temp;
3405 } else
3406 utime = rtime;
3407
3408 /*
3409 * Compare with previous values, to keep monotonicity:
3410 */
3411 p->prev_utime = max(p->prev_utime, utime);
3412 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3413
3414 *ut = p->prev_utime;
3415 *st = p->prev_stime;
3416 }
3417
3418 /*
3419 * Must be called with siglock held.
3420 */
3421 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3422 {
3423 struct signal_struct *sig = p->signal;
3424 struct task_cputime cputime;
3425 cputime_t rtime, utime, total;
3426
3427 thread_group_cputime(p, &cputime);
3428
3429 total = cputime_add(cputime.utime, cputime.stime);
3430 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3431
3432 if (total) {
3433 u64 temp;
3434
3435 temp = (u64)(rtime * cputime.utime);
3436 do_div(temp, total);
3437 utime = (cputime_t)temp;
3438 } else
3439 utime = rtime;
3440
3441 sig->prev_utime = max(sig->prev_utime, utime);
3442 sig->prev_stime = max(sig->prev_stime,
3443 cputime_sub(rtime, sig->prev_utime));
3444
3445 *ut = sig->prev_utime;
3446 *st = sig->prev_stime;
3447 }
3448 #endif
3449
3450 /*
3451 * This function gets called by the timer code, with HZ frequency.
3452 * We call it with interrupts disabled.
3453 *
3454 * It also gets called by the fork code, when changing the parent's
3455 * timeslices.
3456 */
3457 void scheduler_tick(void)
3458 {
3459 int cpu = smp_processor_id();
3460 struct rq *rq = cpu_rq(cpu);
3461 struct task_struct *curr = rq->curr;
3462
3463 sched_clock_tick();
3464
3465 raw_spin_lock(&rq->lock);
3466 update_rq_clock(rq);
3467 update_cpu_load(rq);
3468 curr->sched_class->task_tick(rq, curr, 0);
3469 raw_spin_unlock(&rq->lock);
3470
3471 perf_event_task_tick(curr);
3472
3473 #ifdef CONFIG_SMP
3474 rq->idle_at_tick = idle_cpu(cpu);
3475 trigger_load_balance(rq, cpu);
3476 #endif
3477 }
3478
3479 notrace unsigned long get_parent_ip(unsigned long addr)
3480 {
3481 if (in_lock_functions(addr)) {
3482 addr = CALLER_ADDR2;
3483 if (in_lock_functions(addr))
3484 addr = CALLER_ADDR3;
3485 }
3486 return addr;
3487 }
3488
3489 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3490 defined(CONFIG_PREEMPT_TRACER))
3491
3492 void __kprobes add_preempt_count(int val)
3493 {
3494 #ifdef CONFIG_DEBUG_PREEMPT
3495 /*
3496 * Underflow?
3497 */
3498 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3499 return;
3500 #endif
3501 preempt_count() += val;
3502 #ifdef CONFIG_DEBUG_PREEMPT
3503 /*
3504 * Spinlock count overflowing soon?
3505 */
3506 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3507 PREEMPT_MASK - 10);
3508 #endif
3509 if (preempt_count() == val)
3510 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3511 }
3512 EXPORT_SYMBOL(add_preempt_count);
3513
3514 void __kprobes sub_preempt_count(int val)
3515 {
3516 #ifdef CONFIG_DEBUG_PREEMPT
3517 /*
3518 * Underflow?
3519 */
3520 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3521 return;
3522 /*
3523 * Is the spinlock portion underflowing?
3524 */
3525 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3526 !(preempt_count() & PREEMPT_MASK)))
3527 return;
3528 #endif
3529
3530 if (preempt_count() == val)
3531 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3532 preempt_count() -= val;
3533 }
3534 EXPORT_SYMBOL(sub_preempt_count);
3535
3536 #endif
3537
3538 /*
3539 * Print scheduling while atomic bug:
3540 */
3541 static noinline void __schedule_bug(struct task_struct *prev)
3542 {
3543 struct pt_regs *regs = get_irq_regs();
3544
3545 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3546 prev->comm, prev->pid, preempt_count());
3547
3548 debug_show_held_locks(prev);
3549 print_modules();
3550 if (irqs_disabled())
3551 print_irqtrace_events(prev);
3552
3553 if (regs)
3554 show_regs(regs);
3555 else
3556 dump_stack();
3557 }
3558
3559 /*
3560 * Various schedule()-time debugging checks and statistics:
3561 */
3562 static inline void schedule_debug(struct task_struct *prev)
3563 {
3564 /*
3565 * Test if we are atomic. Since do_exit() needs to call into
3566 * schedule() atomically, we ignore that path for now.
3567 * Otherwise, whine if we are scheduling when we should not be.
3568 */
3569 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3570 __schedule_bug(prev);
3571
3572 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3573
3574 schedstat_inc(this_rq(), sched_count);
3575 #ifdef CONFIG_SCHEDSTATS
3576 if (unlikely(prev->lock_depth >= 0)) {
3577 schedstat_inc(this_rq(), bkl_count);
3578 schedstat_inc(prev, sched_info.bkl_count);
3579 }
3580 #endif
3581 }
3582
3583 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3584 {
3585 if (prev->se.on_rq)
3586 update_rq_clock(rq);
3587 rq->skip_clock_update = 0;
3588 prev->sched_class->put_prev_task(rq, prev);
3589 }
3590
3591 /*
3592 * Pick up the highest-prio task:
3593 */
3594 static inline struct task_struct *
3595 pick_next_task(struct rq *rq)
3596 {
3597 const struct sched_class *class;
3598 struct task_struct *p;
3599
3600 /*
3601 * Optimization: we know that if all tasks are in
3602 * the fair class we can call that function directly:
3603 */
3604 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3605 p = fair_sched_class.pick_next_task(rq);
3606 if (likely(p))
3607 return p;
3608 }
3609
3610 class = sched_class_highest;
3611 for ( ; ; ) {
3612 p = class->pick_next_task(rq);
3613 if (p)
3614 return p;
3615 /*
3616 * Will never be NULL as the idle class always
3617 * returns a non-NULL p:
3618 */
3619 class = class->next;
3620 }
3621 }
3622
3623 /*
3624 * schedule() is the main scheduler function.
3625 */
3626 asmlinkage void __sched schedule(void)
3627 {
3628 struct task_struct *prev, *next;
3629 unsigned long *switch_count;
3630 struct rq *rq;
3631 int cpu;
3632
3633 need_resched:
3634 preempt_disable();
3635 cpu = smp_processor_id();
3636 rq = cpu_rq(cpu);
3637 rcu_sched_qs(cpu);
3638 prev = rq->curr;
3639 switch_count = &prev->nivcsw;
3640
3641 release_kernel_lock(prev);
3642 need_resched_nonpreemptible:
3643
3644 schedule_debug(prev);
3645
3646 if (sched_feat(HRTICK))
3647 hrtick_clear(rq);
3648
3649 raw_spin_lock_irq(&rq->lock);
3650 clear_tsk_need_resched(prev);
3651
3652 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3653 if (unlikely(signal_pending_state(prev->state, prev)))
3654 prev->state = TASK_RUNNING;
3655 else
3656 deactivate_task(rq, prev, 1);
3657 switch_count = &prev->nvcsw;
3658 }
3659
3660 pre_schedule(rq, prev);
3661
3662 if (unlikely(!rq->nr_running))
3663 idle_balance(cpu, rq);
3664
3665 put_prev_task(rq, prev);
3666 next = pick_next_task(rq);
3667
3668 if (likely(prev != next)) {
3669 sched_info_switch(prev, next);
3670 perf_event_task_sched_out(prev, next);
3671
3672 rq->nr_switches++;
3673 rq->curr = next;
3674 ++*switch_count;
3675
3676 context_switch(rq, prev, next); /* unlocks the rq */
3677 /*
3678 * the context switch might have flipped the stack from under
3679 * us, hence refresh the local variables.
3680 */
3681 cpu = smp_processor_id();
3682 rq = cpu_rq(cpu);
3683 } else
3684 raw_spin_unlock_irq(&rq->lock);
3685
3686 post_schedule(rq);
3687
3688 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3689 prev = rq->curr;
3690 switch_count = &prev->nivcsw;
3691 goto need_resched_nonpreemptible;
3692 }
3693
3694 preempt_enable_no_resched();
3695 if (need_resched())
3696 goto need_resched;
3697 }
3698 EXPORT_SYMBOL(schedule);
3699
3700 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3701 /*
3702 * Look out! "owner" is an entirely speculative pointer
3703 * access and not reliable.
3704 */
3705 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3706 {
3707 unsigned int cpu;
3708 struct rq *rq;
3709
3710 if (!sched_feat(OWNER_SPIN))
3711 return 0;
3712
3713 #ifdef CONFIG_DEBUG_PAGEALLOC
3714 /*
3715 * Need to access the cpu field knowing that
3716 * DEBUG_PAGEALLOC could have unmapped it if
3717 * the mutex owner just released it and exited.
3718 */
3719 if (probe_kernel_address(&owner->cpu, cpu))
3720 goto out;
3721 #else
3722 cpu = owner->cpu;
3723 #endif
3724
3725 /*
3726 * Even if the access succeeded (likely case),
3727 * the cpu field may no longer be valid.
3728 */
3729 if (cpu >= nr_cpumask_bits)
3730 goto out;
3731
3732 /*
3733 * We need to validate that we can do a
3734 * get_cpu() and that we have the percpu area.
3735 */
3736 if (!cpu_online(cpu))
3737 goto out;
3738
3739 rq = cpu_rq(cpu);
3740
3741 for (;;) {
3742 /*
3743 * Owner changed, break to re-assess state.
3744 */
3745 if (lock->owner != owner)
3746 break;
3747
3748 /*
3749 * Is that owner really running on that cpu?
3750 */
3751 if (task_thread_info(rq->curr) != owner || need_resched())
3752 return 0;
3753
3754 cpu_relax();
3755 }
3756 out:
3757 return 1;
3758 }
3759 #endif
3760
3761 #ifdef CONFIG_PREEMPT
3762 /*
3763 * this is the entry point to schedule() from in-kernel preemption
3764 * off of preempt_enable. Kernel preemptions off return from interrupt
3765 * occur there and call schedule directly.
3766 */
3767 asmlinkage void __sched preempt_schedule(void)
3768 {
3769 struct thread_info *ti = current_thread_info();
3770
3771 /*
3772 * If there is a non-zero preempt_count or interrupts are disabled,
3773 * we do not want to preempt the current task. Just return..
3774 */
3775 if (likely(ti->preempt_count || irqs_disabled()))
3776 return;
3777
3778 do {
3779 add_preempt_count(PREEMPT_ACTIVE);
3780 schedule();
3781 sub_preempt_count(PREEMPT_ACTIVE);
3782
3783 /*
3784 * Check again in case we missed a preemption opportunity
3785 * between schedule and now.
3786 */
3787 barrier();
3788 } while (need_resched());
3789 }
3790 EXPORT_SYMBOL(preempt_schedule);
3791
3792 /*
3793 * this is the entry point to schedule() from kernel preemption
3794 * off of irq context.
3795 * Note, that this is called and return with irqs disabled. This will
3796 * protect us against recursive calling from irq.
3797 */
3798 asmlinkage void __sched preempt_schedule_irq(void)
3799 {
3800 struct thread_info *ti = current_thread_info();
3801
3802 /* Catch callers which need to be fixed */
3803 BUG_ON(ti->preempt_count || !irqs_disabled());
3804
3805 do {
3806 add_preempt_count(PREEMPT_ACTIVE);
3807 local_irq_enable();
3808 schedule();
3809 local_irq_disable();
3810 sub_preempt_count(PREEMPT_ACTIVE);
3811
3812 /*
3813 * Check again in case we missed a preemption opportunity
3814 * between schedule and now.
3815 */
3816 barrier();
3817 } while (need_resched());
3818 }
3819
3820 #endif /* CONFIG_PREEMPT */
3821
3822 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3823 void *key)
3824 {
3825 return try_to_wake_up(curr->private, mode, wake_flags);
3826 }
3827 EXPORT_SYMBOL(default_wake_function);
3828
3829 /*
3830 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3831 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3832 * number) then we wake all the non-exclusive tasks and one exclusive task.
3833 *
3834 * There are circumstances in which we can try to wake a task which has already
3835 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3836 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3837 */
3838 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3839 int nr_exclusive, int wake_flags, void *key)
3840 {
3841 wait_queue_t *curr, *next;
3842
3843 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3844 unsigned flags = curr->flags;
3845
3846 if (curr->func(curr, mode, wake_flags, key) &&
3847 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3848 break;
3849 }
3850 }
3851
3852 /**
3853 * __wake_up - wake up threads blocked on a waitqueue.
3854 * @q: the waitqueue
3855 * @mode: which threads
3856 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3857 * @key: is directly passed to the wakeup function
3858 *
3859 * It may be assumed that this function implies a write memory barrier before
3860 * changing the task state if and only if any tasks are woken up.
3861 */
3862 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3863 int nr_exclusive, void *key)
3864 {
3865 unsigned long flags;
3866
3867 spin_lock_irqsave(&q->lock, flags);
3868 __wake_up_common(q, mode, nr_exclusive, 0, key);
3869 spin_unlock_irqrestore(&q->lock, flags);
3870 }
3871 EXPORT_SYMBOL(__wake_up);
3872
3873 /*
3874 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3875 */
3876 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3877 {
3878 __wake_up_common(q, mode, 1, 0, NULL);
3879 }
3880
3881 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3882 {
3883 __wake_up_common(q, mode, 1, 0, key);
3884 }
3885
3886 /**
3887 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3888 * @q: the waitqueue
3889 * @mode: which threads
3890 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3891 * @key: opaque value to be passed to wakeup targets
3892 *
3893 * The sync wakeup differs that the waker knows that it will schedule
3894 * away soon, so while the target thread will be woken up, it will not
3895 * be migrated to another CPU - ie. the two threads are 'synchronized'
3896 * with each other. This can prevent needless bouncing between CPUs.
3897 *
3898 * On UP it can prevent extra preemption.
3899 *
3900 * It may be assumed that this function implies a write memory barrier before
3901 * changing the task state if and only if any tasks are woken up.
3902 */
3903 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3904 int nr_exclusive, void *key)
3905 {
3906 unsigned long flags;
3907 int wake_flags = WF_SYNC;
3908
3909 if (unlikely(!q))
3910 return;
3911
3912 if (unlikely(!nr_exclusive))
3913 wake_flags = 0;
3914
3915 spin_lock_irqsave(&q->lock, flags);
3916 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3917 spin_unlock_irqrestore(&q->lock, flags);
3918 }
3919 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3920
3921 /*
3922 * __wake_up_sync - see __wake_up_sync_key()
3923 */
3924 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3925 {
3926 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3927 }
3928 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3929
3930 /**
3931 * complete: - signals a single thread waiting on this completion
3932 * @x: holds the state of this particular completion
3933 *
3934 * This will wake up a single thread waiting on this completion. Threads will be
3935 * awakened in the same order in which they were queued.
3936 *
3937 * See also complete_all(), wait_for_completion() and related routines.
3938 *
3939 * It may be assumed that this function implies a write memory barrier before
3940 * changing the task state if and only if any tasks are woken up.
3941 */
3942 void complete(struct completion *x)
3943 {
3944 unsigned long flags;
3945
3946 spin_lock_irqsave(&x->wait.lock, flags);
3947 x->done++;
3948 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3949 spin_unlock_irqrestore(&x->wait.lock, flags);
3950 }
3951 EXPORT_SYMBOL(complete);
3952
3953 /**
3954 * complete_all: - signals all threads waiting on this completion
3955 * @x: holds the state of this particular completion
3956 *
3957 * This will wake up all threads waiting on this particular completion event.
3958 *
3959 * It may be assumed that this function implies a write memory barrier before
3960 * changing the task state if and only if any tasks are woken up.
3961 */
3962 void complete_all(struct completion *x)
3963 {
3964 unsigned long flags;
3965
3966 spin_lock_irqsave(&x->wait.lock, flags);
3967 x->done += UINT_MAX/2;
3968 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3969 spin_unlock_irqrestore(&x->wait.lock, flags);
3970 }
3971 EXPORT_SYMBOL(complete_all);
3972
3973 static inline long __sched
3974 do_wait_for_common(struct completion *x, long timeout, int state)
3975 {
3976 if (!x->done) {
3977 DECLARE_WAITQUEUE(wait, current);
3978
3979 wait.flags |= WQ_FLAG_EXCLUSIVE;
3980 __add_wait_queue_tail(&x->wait, &wait);
3981 do {
3982 if (signal_pending_state(state, current)) {
3983 timeout = -ERESTARTSYS;
3984 break;
3985 }
3986 __set_current_state(state);
3987 spin_unlock_irq(&x->wait.lock);
3988 timeout = schedule_timeout(timeout);
3989 spin_lock_irq(&x->wait.lock);
3990 } while (!x->done && timeout);
3991 __remove_wait_queue(&x->wait, &wait);
3992 if (!x->done)
3993 return timeout;
3994 }
3995 x->done--;
3996 return timeout ?: 1;
3997 }
3998
3999 static long __sched
4000 wait_for_common(struct completion *x, long timeout, int state)
4001 {
4002 might_sleep();
4003
4004 spin_lock_irq(&x->wait.lock);
4005 timeout = do_wait_for_common(x, timeout, state);
4006 spin_unlock_irq(&x->wait.lock);
4007 return timeout;
4008 }
4009
4010 /**
4011 * wait_for_completion: - waits for completion of a task
4012 * @x: holds the state of this particular completion
4013 *
4014 * This waits to be signaled for completion of a specific task. It is NOT
4015 * interruptible and there is no timeout.
4016 *
4017 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4018 * and interrupt capability. Also see complete().
4019 */
4020 void __sched wait_for_completion(struct completion *x)
4021 {
4022 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4023 }
4024 EXPORT_SYMBOL(wait_for_completion);
4025
4026 /**
4027 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4028 * @x: holds the state of this particular completion
4029 * @timeout: timeout value in jiffies
4030 *
4031 * This waits for either a completion of a specific task to be signaled or for a
4032 * specified timeout to expire. The timeout is in jiffies. It is not
4033 * interruptible.
4034 */
4035 unsigned long __sched
4036 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4037 {
4038 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4039 }
4040 EXPORT_SYMBOL(wait_for_completion_timeout);
4041
4042 /**
4043 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4044 * @x: holds the state of this particular completion
4045 *
4046 * This waits for completion of a specific task to be signaled. It is
4047 * interruptible.
4048 */
4049 int __sched wait_for_completion_interruptible(struct completion *x)
4050 {
4051 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4052 if (t == -ERESTARTSYS)
4053 return t;
4054 return 0;
4055 }
4056 EXPORT_SYMBOL(wait_for_completion_interruptible);
4057
4058 /**
4059 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4060 * @x: holds the state of this particular completion
4061 * @timeout: timeout value in jiffies
4062 *
4063 * This waits for either a completion of a specific task to be signaled or for a
4064 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4065 */
4066 unsigned long __sched
4067 wait_for_completion_interruptible_timeout(struct completion *x,
4068 unsigned long timeout)
4069 {
4070 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4071 }
4072 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4073
4074 /**
4075 * wait_for_completion_killable: - waits for completion of a task (killable)
4076 * @x: holds the state of this particular completion
4077 *
4078 * This waits to be signaled for completion of a specific task. It can be
4079 * interrupted by a kill signal.
4080 */
4081 int __sched wait_for_completion_killable(struct completion *x)
4082 {
4083 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4084 if (t == -ERESTARTSYS)
4085 return t;
4086 return 0;
4087 }
4088 EXPORT_SYMBOL(wait_for_completion_killable);
4089
4090 /**
4091 * try_wait_for_completion - try to decrement a completion without blocking
4092 * @x: completion structure
4093 *
4094 * Returns: 0 if a decrement cannot be done without blocking
4095 * 1 if a decrement succeeded.
4096 *
4097 * If a completion is being used as a counting completion,
4098 * attempt to decrement the counter without blocking. This
4099 * enables us to avoid waiting if the resource the completion
4100 * is protecting is not available.
4101 */
4102 bool try_wait_for_completion(struct completion *x)
4103 {
4104 unsigned long flags;
4105 int ret = 1;
4106
4107 spin_lock_irqsave(&x->wait.lock, flags);
4108 if (!x->done)
4109 ret = 0;
4110 else
4111 x->done--;
4112 spin_unlock_irqrestore(&x->wait.lock, flags);
4113 return ret;
4114 }
4115 EXPORT_SYMBOL(try_wait_for_completion);
4116
4117 /**
4118 * completion_done - Test to see if a completion has any waiters
4119 * @x: completion structure
4120 *
4121 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4122 * 1 if there are no waiters.
4123 *
4124 */
4125 bool completion_done(struct completion *x)
4126 {
4127 unsigned long flags;
4128 int ret = 1;
4129
4130 spin_lock_irqsave(&x->wait.lock, flags);
4131 if (!x->done)
4132 ret = 0;
4133 spin_unlock_irqrestore(&x->wait.lock, flags);
4134 return ret;
4135 }
4136 EXPORT_SYMBOL(completion_done);
4137
4138 static long __sched
4139 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4140 {
4141 unsigned long flags;
4142 wait_queue_t wait;
4143
4144 init_waitqueue_entry(&wait, current);
4145
4146 __set_current_state(state);
4147
4148 spin_lock_irqsave(&q->lock, flags);
4149 __add_wait_queue(q, &wait);
4150 spin_unlock(&q->lock);
4151 timeout = schedule_timeout(timeout);
4152 spin_lock_irq(&q->lock);
4153 __remove_wait_queue(q, &wait);
4154 spin_unlock_irqrestore(&q->lock, flags);
4155
4156 return timeout;
4157 }
4158
4159 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4160 {
4161 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4162 }
4163 EXPORT_SYMBOL(interruptible_sleep_on);
4164
4165 long __sched
4166 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4167 {
4168 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4169 }
4170 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4171
4172 void __sched sleep_on(wait_queue_head_t *q)
4173 {
4174 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4175 }
4176 EXPORT_SYMBOL(sleep_on);
4177
4178 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4179 {
4180 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4181 }
4182 EXPORT_SYMBOL(sleep_on_timeout);
4183
4184 #ifdef CONFIG_RT_MUTEXES
4185
4186 /*
4187 * rt_mutex_setprio - set the current priority of a task
4188 * @p: task
4189 * @prio: prio value (kernel-internal form)
4190 *
4191 * This function changes the 'effective' priority of a task. It does
4192 * not touch ->normal_prio like __setscheduler().
4193 *
4194 * Used by the rt_mutex code to implement priority inheritance logic.
4195 */
4196 void rt_mutex_setprio(struct task_struct *p, int prio)
4197 {
4198 unsigned long flags;
4199 int oldprio, on_rq, running;
4200 struct rq *rq;
4201 const struct sched_class *prev_class;
4202
4203 BUG_ON(prio < 0 || prio > MAX_PRIO);
4204
4205 rq = task_rq_lock(p, &flags);
4206
4207 oldprio = p->prio;
4208 prev_class = p->sched_class;
4209 on_rq = p->se.on_rq;
4210 running = task_current(rq, p);
4211 if (on_rq)
4212 dequeue_task(rq, p, 0);
4213 if (running)
4214 p->sched_class->put_prev_task(rq, p);
4215
4216 if (rt_prio(prio))
4217 p->sched_class = &rt_sched_class;
4218 else
4219 p->sched_class = &fair_sched_class;
4220
4221 p->prio = prio;
4222
4223 if (running)
4224 p->sched_class->set_curr_task(rq);
4225 if (on_rq) {
4226 enqueue_task(rq, p, 0, oldprio < prio);
4227
4228 check_class_changed(rq, p, prev_class, oldprio, running);
4229 }
4230 task_rq_unlock(rq, &flags);
4231 }
4232
4233 #endif
4234
4235 void set_user_nice(struct task_struct *p, long nice)
4236 {
4237 int old_prio, delta, on_rq;
4238 unsigned long flags;
4239 struct rq *rq;
4240
4241 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4242 return;
4243 /*
4244 * We have to be careful, if called from sys_setpriority(),
4245 * the task might be in the middle of scheduling on another CPU.
4246 */
4247 rq = task_rq_lock(p, &flags);
4248 /*
4249 * The RT priorities are set via sched_setscheduler(), but we still
4250 * allow the 'normal' nice value to be set - but as expected
4251 * it wont have any effect on scheduling until the task is
4252 * SCHED_FIFO/SCHED_RR:
4253 */
4254 if (task_has_rt_policy(p)) {
4255 p->static_prio = NICE_TO_PRIO(nice);
4256 goto out_unlock;
4257 }
4258 on_rq = p->se.on_rq;
4259 if (on_rq)
4260 dequeue_task(rq, p, 0);
4261
4262 p->static_prio = NICE_TO_PRIO(nice);
4263 set_load_weight(p);
4264 old_prio = p->prio;
4265 p->prio = effective_prio(p);
4266 delta = p->prio - old_prio;
4267
4268 if (on_rq) {
4269 enqueue_task(rq, p, 0, false);
4270 /*
4271 * If the task increased its priority or is running and
4272 * lowered its priority, then reschedule its CPU:
4273 */
4274 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4275 resched_task(rq->curr);
4276 }
4277 out_unlock:
4278 task_rq_unlock(rq, &flags);
4279 }
4280 EXPORT_SYMBOL(set_user_nice);
4281
4282 /*
4283 * can_nice - check if a task can reduce its nice value
4284 * @p: task
4285 * @nice: nice value
4286 */
4287 int can_nice(const struct task_struct *p, const int nice)
4288 {
4289 /* convert nice value [19,-20] to rlimit style value [1,40] */
4290 int nice_rlim = 20 - nice;
4291
4292 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4293 capable(CAP_SYS_NICE));
4294 }
4295
4296 #ifdef __ARCH_WANT_SYS_NICE
4297
4298 /*
4299 * sys_nice - change the priority of the current process.
4300 * @increment: priority increment
4301 *
4302 * sys_setpriority is a more generic, but much slower function that
4303 * does similar things.
4304 */
4305 SYSCALL_DEFINE1(nice, int, increment)
4306 {
4307 long nice, retval;
4308
4309 /*
4310 * Setpriority might change our priority at the same moment.
4311 * We don't have to worry. Conceptually one call occurs first
4312 * and we have a single winner.
4313 */
4314 if (increment < -40)
4315 increment = -40;
4316 if (increment > 40)
4317 increment = 40;
4318
4319 nice = TASK_NICE(current) + increment;
4320 if (nice < -20)
4321 nice = -20;
4322 if (nice > 19)
4323 nice = 19;
4324
4325 if (increment < 0 && !can_nice(current, nice))
4326 return -EPERM;
4327
4328 retval = security_task_setnice(current, nice);
4329 if (retval)
4330 return retval;
4331
4332 set_user_nice(current, nice);
4333 return 0;
4334 }
4335
4336 #endif
4337
4338 /**
4339 * task_prio - return the priority value of a given task.
4340 * @p: the task in question.
4341 *
4342 * This is the priority value as seen by users in /proc.
4343 * RT tasks are offset by -200. Normal tasks are centered
4344 * around 0, value goes from -16 to +15.
4345 */
4346 int task_prio(const struct task_struct *p)
4347 {
4348 return p->prio - MAX_RT_PRIO;
4349 }
4350
4351 /**
4352 * task_nice - return the nice value of a given task.
4353 * @p: the task in question.
4354 */
4355 int task_nice(const struct task_struct *p)
4356 {
4357 return TASK_NICE(p);
4358 }
4359 EXPORT_SYMBOL(task_nice);
4360
4361 /**
4362 * idle_cpu - is a given cpu idle currently?
4363 * @cpu: the processor in question.
4364 */
4365 int idle_cpu(int cpu)
4366 {
4367 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4368 }
4369
4370 /**
4371 * idle_task - return the idle task for a given cpu.
4372 * @cpu: the processor in question.
4373 */
4374 struct task_struct *idle_task(int cpu)
4375 {
4376 return cpu_rq(cpu)->idle;
4377 }
4378
4379 /**
4380 * find_process_by_pid - find a process with a matching PID value.
4381 * @pid: the pid in question.
4382 */
4383 static struct task_struct *find_process_by_pid(pid_t pid)
4384 {
4385 return pid ? find_task_by_vpid(pid) : current;
4386 }
4387
4388 /* Actually do priority change: must hold rq lock. */
4389 static void
4390 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4391 {
4392 BUG_ON(p->se.on_rq);
4393
4394 p->policy = policy;
4395 p->rt_priority = prio;
4396 p->normal_prio = normal_prio(p);
4397 /* we are holding p->pi_lock already */
4398 p->prio = rt_mutex_getprio(p);
4399 if (rt_prio(p->prio))
4400 p->sched_class = &rt_sched_class;
4401 else
4402 p->sched_class = &fair_sched_class;
4403 set_load_weight(p);
4404 }
4405
4406 /*
4407 * check the target process has a UID that matches the current process's
4408 */
4409 static bool check_same_owner(struct task_struct *p)
4410 {
4411 const struct cred *cred = current_cred(), *pcred;
4412 bool match;
4413
4414 rcu_read_lock();
4415 pcred = __task_cred(p);
4416 match = (cred->euid == pcred->euid ||
4417 cred->euid == pcred->uid);
4418 rcu_read_unlock();
4419 return match;
4420 }
4421
4422 static int __sched_setscheduler(struct task_struct *p, int policy,
4423 struct sched_param *param, bool user)
4424 {
4425 int retval, oldprio, oldpolicy = -1, on_rq, running;
4426 unsigned long flags;
4427 const struct sched_class *prev_class;
4428 struct rq *rq;
4429 int reset_on_fork;
4430
4431 /* may grab non-irq protected spin_locks */
4432 BUG_ON(in_interrupt());
4433 recheck:
4434 /* double check policy once rq lock held */
4435 if (policy < 0) {
4436 reset_on_fork = p->sched_reset_on_fork;
4437 policy = oldpolicy = p->policy;
4438 } else {
4439 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4440 policy &= ~SCHED_RESET_ON_FORK;
4441
4442 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4443 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4444 policy != SCHED_IDLE)
4445 return -EINVAL;
4446 }
4447
4448 /*
4449 * Valid priorities for SCHED_FIFO and SCHED_RR are
4450 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4451 * SCHED_BATCH and SCHED_IDLE is 0.
4452 */
4453 if (param->sched_priority < 0 ||
4454 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4455 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4456 return -EINVAL;
4457 if (rt_policy(policy) != (param->sched_priority != 0))
4458 return -EINVAL;
4459
4460 /*
4461 * Allow unprivileged RT tasks to decrease priority:
4462 */
4463 if (user && !capable(CAP_SYS_NICE)) {
4464 if (rt_policy(policy)) {
4465 unsigned long rlim_rtprio;
4466
4467 if (!lock_task_sighand(p, &flags))
4468 return -ESRCH;
4469 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4470 unlock_task_sighand(p, &flags);
4471
4472 /* can't set/change the rt policy */
4473 if (policy != p->policy && !rlim_rtprio)
4474 return -EPERM;
4475
4476 /* can't increase priority */
4477 if (param->sched_priority > p->rt_priority &&
4478 param->sched_priority > rlim_rtprio)
4479 return -EPERM;
4480 }
4481 /*
4482 * Like positive nice levels, dont allow tasks to
4483 * move out of SCHED_IDLE either:
4484 */
4485 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4486 return -EPERM;
4487
4488 /* can't change other user's priorities */
4489 if (!check_same_owner(p))
4490 return -EPERM;
4491
4492 /* Normal users shall not reset the sched_reset_on_fork flag */
4493 if (p->sched_reset_on_fork && !reset_on_fork)
4494 return -EPERM;
4495 }
4496
4497 if (user) {
4498 #ifdef CONFIG_RT_GROUP_SCHED
4499 /*
4500 * Do not allow realtime tasks into groups that have no runtime
4501 * assigned.
4502 */
4503 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4504 task_group(p)->rt_bandwidth.rt_runtime == 0)
4505 return -EPERM;
4506 #endif
4507
4508 retval = security_task_setscheduler(p, policy, param);
4509 if (retval)
4510 return retval;
4511 }
4512
4513 /*
4514 * make sure no PI-waiters arrive (or leave) while we are
4515 * changing the priority of the task:
4516 */
4517 raw_spin_lock_irqsave(&p->pi_lock, flags);
4518 /*
4519 * To be able to change p->policy safely, the apropriate
4520 * runqueue lock must be held.
4521 */
4522 rq = __task_rq_lock(p);
4523 /* recheck policy now with rq lock held */
4524 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4525 policy = oldpolicy = -1;
4526 __task_rq_unlock(rq);
4527 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4528 goto recheck;
4529 }
4530 on_rq = p->se.on_rq;
4531 running = task_current(rq, p);
4532 if (on_rq)
4533 deactivate_task(rq, p, 0);
4534 if (running)
4535 p->sched_class->put_prev_task(rq, p);
4536
4537 p->sched_reset_on_fork = reset_on_fork;
4538
4539 oldprio = p->prio;
4540 prev_class = p->sched_class;
4541 __setscheduler(rq, p, policy, param->sched_priority);
4542
4543 if (running)
4544 p->sched_class->set_curr_task(rq);
4545 if (on_rq) {
4546 activate_task(rq, p, 0);
4547
4548 check_class_changed(rq, p, prev_class, oldprio, running);
4549 }
4550 __task_rq_unlock(rq);
4551 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4552
4553 rt_mutex_adjust_pi(p);
4554
4555 return 0;
4556 }
4557
4558 /**
4559 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4560 * @p: the task in question.
4561 * @policy: new policy.
4562 * @param: structure containing the new RT priority.
4563 *
4564 * NOTE that the task may be already dead.
4565 */
4566 int sched_setscheduler(struct task_struct *p, int policy,
4567 struct sched_param *param)
4568 {
4569 return __sched_setscheduler(p, policy, param, true);
4570 }
4571 EXPORT_SYMBOL_GPL(sched_setscheduler);
4572
4573 /**
4574 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4575 * @p: the task in question.
4576 * @policy: new policy.
4577 * @param: structure containing the new RT priority.
4578 *
4579 * Just like sched_setscheduler, only don't bother checking if the
4580 * current context has permission. For example, this is needed in
4581 * stop_machine(): we create temporary high priority worker threads,
4582 * but our caller might not have that capability.
4583 */
4584 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4585 struct sched_param *param)
4586 {
4587 return __sched_setscheduler(p, policy, param, false);
4588 }
4589
4590 static int
4591 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4592 {
4593 struct sched_param lparam;
4594 struct task_struct *p;
4595 int retval;
4596
4597 if (!param || pid < 0)
4598 return -EINVAL;
4599 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4600 return -EFAULT;
4601
4602 rcu_read_lock();
4603 retval = -ESRCH;
4604 p = find_process_by_pid(pid);
4605 if (p != NULL)
4606 retval = sched_setscheduler(p, policy, &lparam);
4607 rcu_read_unlock();
4608
4609 return retval;
4610 }
4611
4612 /**
4613 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4614 * @pid: the pid in question.
4615 * @policy: new policy.
4616 * @param: structure containing the new RT priority.
4617 */
4618 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4619 struct sched_param __user *, param)
4620 {
4621 /* negative values for policy are not valid */
4622 if (policy < 0)
4623 return -EINVAL;
4624
4625 return do_sched_setscheduler(pid, policy, param);
4626 }
4627
4628 /**
4629 * sys_sched_setparam - set/change the RT priority of a thread
4630 * @pid: the pid in question.
4631 * @param: structure containing the new RT priority.
4632 */
4633 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4634 {
4635 return do_sched_setscheduler(pid, -1, param);
4636 }
4637
4638 /**
4639 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4640 * @pid: the pid in question.
4641 */
4642 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4643 {
4644 struct task_struct *p;
4645 int retval;
4646
4647 if (pid < 0)
4648 return -EINVAL;
4649
4650 retval = -ESRCH;
4651 rcu_read_lock();
4652 p = find_process_by_pid(pid);
4653 if (p) {
4654 retval = security_task_getscheduler(p);
4655 if (!retval)
4656 retval = p->policy
4657 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4658 }
4659 rcu_read_unlock();
4660 return retval;
4661 }
4662
4663 /**
4664 * sys_sched_getparam - get the RT priority of a thread
4665 * @pid: the pid in question.
4666 * @param: structure containing the RT priority.
4667 */
4668 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4669 {
4670 struct sched_param lp;
4671 struct task_struct *p;
4672 int retval;
4673
4674 if (!param || pid < 0)
4675 return -EINVAL;
4676
4677 rcu_read_lock();
4678 p = find_process_by_pid(pid);
4679 retval = -ESRCH;
4680 if (!p)
4681 goto out_unlock;
4682
4683 retval = security_task_getscheduler(p);
4684 if (retval)
4685 goto out_unlock;
4686
4687 lp.sched_priority = p->rt_priority;
4688 rcu_read_unlock();
4689
4690 /*
4691 * This one might sleep, we cannot do it with a spinlock held ...
4692 */
4693 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4694
4695 return retval;
4696
4697 out_unlock:
4698 rcu_read_unlock();
4699 return retval;
4700 }
4701
4702 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4703 {
4704 cpumask_var_t cpus_allowed, new_mask;
4705 struct task_struct *p;
4706 int retval;
4707
4708 get_online_cpus();
4709 rcu_read_lock();
4710
4711 p = find_process_by_pid(pid);
4712 if (!p) {
4713 rcu_read_unlock();
4714 put_online_cpus();
4715 return -ESRCH;
4716 }
4717
4718 /* Prevent p going away */
4719 get_task_struct(p);
4720 rcu_read_unlock();
4721
4722 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4723 retval = -ENOMEM;
4724 goto out_put_task;
4725 }
4726 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4727 retval = -ENOMEM;
4728 goto out_free_cpus_allowed;
4729 }
4730 retval = -EPERM;
4731 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4732 goto out_unlock;
4733
4734 retval = security_task_setscheduler(p, 0, NULL);
4735 if (retval)
4736 goto out_unlock;
4737
4738 cpuset_cpus_allowed(p, cpus_allowed);
4739 cpumask_and(new_mask, in_mask, cpus_allowed);
4740 again:
4741 retval = set_cpus_allowed_ptr(p, new_mask);
4742
4743 if (!retval) {
4744 cpuset_cpus_allowed(p, cpus_allowed);
4745 if (!cpumask_subset(new_mask, cpus_allowed)) {
4746 /*
4747 * We must have raced with a concurrent cpuset
4748 * update. Just reset the cpus_allowed to the
4749 * cpuset's cpus_allowed
4750 */
4751 cpumask_copy(new_mask, cpus_allowed);
4752 goto again;
4753 }
4754 }
4755 out_unlock:
4756 free_cpumask_var(new_mask);
4757 out_free_cpus_allowed:
4758 free_cpumask_var(cpus_allowed);
4759 out_put_task:
4760 put_task_struct(p);
4761 put_online_cpus();
4762 return retval;
4763 }
4764
4765 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4766 struct cpumask *new_mask)
4767 {
4768 if (len < cpumask_size())
4769 cpumask_clear(new_mask);
4770 else if (len > cpumask_size())
4771 len = cpumask_size();
4772
4773 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4774 }
4775
4776 /**
4777 * sys_sched_setaffinity - set the cpu affinity of a process
4778 * @pid: pid of the process
4779 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4780 * @user_mask_ptr: user-space pointer to the new cpu mask
4781 */
4782 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4783 unsigned long __user *, user_mask_ptr)
4784 {
4785 cpumask_var_t new_mask;
4786 int retval;
4787
4788 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4789 return -ENOMEM;
4790
4791 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4792 if (retval == 0)
4793 retval = sched_setaffinity(pid, new_mask);
4794 free_cpumask_var(new_mask);
4795 return retval;
4796 }
4797
4798 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4799 {
4800 struct task_struct *p;
4801 unsigned long flags;
4802 struct rq *rq;
4803 int retval;
4804
4805 get_online_cpus();
4806 rcu_read_lock();
4807
4808 retval = -ESRCH;
4809 p = find_process_by_pid(pid);
4810 if (!p)
4811 goto out_unlock;
4812
4813 retval = security_task_getscheduler(p);
4814 if (retval)
4815 goto out_unlock;
4816
4817 rq = task_rq_lock(p, &flags);
4818 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4819 task_rq_unlock(rq, &flags);
4820
4821 out_unlock:
4822 rcu_read_unlock();
4823 put_online_cpus();
4824
4825 return retval;
4826 }
4827
4828 /**
4829 * sys_sched_getaffinity - get the cpu affinity of a process
4830 * @pid: pid of the process
4831 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4832 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4833 */
4834 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4835 unsigned long __user *, user_mask_ptr)
4836 {
4837 int ret;
4838 cpumask_var_t mask;
4839
4840 if (len < cpumask_size())
4841 return -EINVAL;
4842
4843 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4844 return -ENOMEM;
4845
4846 ret = sched_getaffinity(pid, mask);
4847 if (ret == 0) {
4848 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
4849 ret = -EFAULT;
4850 else
4851 ret = cpumask_size();
4852 }
4853 free_cpumask_var(mask);
4854
4855 return ret;
4856 }
4857
4858 /**
4859 * sys_sched_yield - yield the current processor to other threads.
4860 *
4861 * This function yields the current CPU to other tasks. If there are no
4862 * other threads running on this CPU then this function will return.
4863 */
4864 SYSCALL_DEFINE0(sched_yield)
4865 {
4866 struct rq *rq = this_rq_lock();
4867
4868 schedstat_inc(rq, yld_count);
4869 current->sched_class->yield_task(rq);
4870
4871 /*
4872 * Since we are going to call schedule() anyway, there's
4873 * no need to preempt or enable interrupts:
4874 */
4875 __release(rq->lock);
4876 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4877 do_raw_spin_unlock(&rq->lock);
4878 preempt_enable_no_resched();
4879
4880 schedule();
4881
4882 return 0;
4883 }
4884
4885 static inline int should_resched(void)
4886 {
4887 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4888 }
4889
4890 static void __cond_resched(void)
4891 {
4892 add_preempt_count(PREEMPT_ACTIVE);
4893 schedule();
4894 sub_preempt_count(PREEMPT_ACTIVE);
4895 }
4896
4897 int __sched _cond_resched(void)
4898 {
4899 if (should_resched()) {
4900 __cond_resched();
4901 return 1;
4902 }
4903 return 0;
4904 }
4905 EXPORT_SYMBOL(_cond_resched);
4906
4907 /*
4908 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4909 * call schedule, and on return reacquire the lock.
4910 *
4911 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4912 * operations here to prevent schedule() from being called twice (once via
4913 * spin_unlock(), once by hand).
4914 */
4915 int __cond_resched_lock(spinlock_t *lock)
4916 {
4917 int resched = should_resched();
4918 int ret = 0;
4919
4920 lockdep_assert_held(lock);
4921
4922 if (spin_needbreak(lock) || resched) {
4923 spin_unlock(lock);
4924 if (resched)
4925 __cond_resched();
4926 else
4927 cpu_relax();
4928 ret = 1;
4929 spin_lock(lock);
4930 }
4931 return ret;
4932 }
4933 EXPORT_SYMBOL(__cond_resched_lock);
4934
4935 int __sched __cond_resched_softirq(void)
4936 {
4937 BUG_ON(!in_softirq());
4938
4939 if (should_resched()) {
4940 local_bh_enable();
4941 __cond_resched();
4942 local_bh_disable();
4943 return 1;
4944 }
4945 return 0;
4946 }
4947 EXPORT_SYMBOL(__cond_resched_softirq);
4948
4949 /**
4950 * yield - yield the current processor to other threads.
4951 *
4952 * This is a shortcut for kernel-space yielding - it marks the
4953 * thread runnable and calls sys_sched_yield().
4954 */
4955 void __sched yield(void)
4956 {
4957 set_current_state(TASK_RUNNING);
4958 sys_sched_yield();
4959 }
4960 EXPORT_SYMBOL(yield);
4961
4962 /*
4963 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4964 * that process accounting knows that this is a task in IO wait state.
4965 */
4966 void __sched io_schedule(void)
4967 {
4968 struct rq *rq = raw_rq();
4969
4970 delayacct_blkio_start();
4971 atomic_inc(&rq->nr_iowait);
4972 current->in_iowait = 1;
4973 schedule();
4974 current->in_iowait = 0;
4975 atomic_dec(&rq->nr_iowait);
4976 delayacct_blkio_end();
4977 }
4978 EXPORT_SYMBOL(io_schedule);
4979
4980 long __sched io_schedule_timeout(long timeout)
4981 {
4982 struct rq *rq = raw_rq();
4983 long ret;
4984
4985 delayacct_blkio_start();
4986 atomic_inc(&rq->nr_iowait);
4987 current->in_iowait = 1;
4988 ret = schedule_timeout(timeout);
4989 current->in_iowait = 0;
4990 atomic_dec(&rq->nr_iowait);
4991 delayacct_blkio_end();
4992 return ret;
4993 }
4994
4995 /**
4996 * sys_sched_get_priority_max - return maximum RT priority.
4997 * @policy: scheduling class.
4998 *
4999 * this syscall returns the maximum rt_priority that can be used
5000 * by a given scheduling class.
5001 */
5002 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5003 {
5004 int ret = -EINVAL;
5005
5006 switch (policy) {
5007 case SCHED_FIFO:
5008 case SCHED_RR:
5009 ret = MAX_USER_RT_PRIO-1;
5010 break;
5011 case SCHED_NORMAL:
5012 case SCHED_BATCH:
5013 case SCHED_IDLE:
5014 ret = 0;
5015 break;
5016 }
5017 return ret;
5018 }
5019
5020 /**
5021 * sys_sched_get_priority_min - return minimum RT priority.
5022 * @policy: scheduling class.
5023 *
5024 * this syscall returns the minimum rt_priority that can be used
5025 * by a given scheduling class.
5026 */
5027 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5028 {
5029 int ret = -EINVAL;
5030
5031 switch (policy) {
5032 case SCHED_FIFO:
5033 case SCHED_RR:
5034 ret = 1;
5035 break;
5036 case SCHED_NORMAL:
5037 case SCHED_BATCH:
5038 case SCHED_IDLE:
5039 ret = 0;
5040 }
5041 return ret;
5042 }
5043
5044 /**
5045 * sys_sched_rr_get_interval - return the default timeslice of a process.
5046 * @pid: pid of the process.
5047 * @interval: userspace pointer to the timeslice value.
5048 *
5049 * this syscall writes the default timeslice value of a given process
5050 * into the user-space timespec buffer. A value of '0' means infinity.
5051 */
5052 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5053 struct timespec __user *, interval)
5054 {
5055 struct task_struct *p;
5056 unsigned int time_slice;
5057 unsigned long flags;
5058 struct rq *rq;
5059 int retval;
5060 struct timespec t;
5061
5062 if (pid < 0)
5063 return -EINVAL;
5064
5065 retval = -ESRCH;
5066 rcu_read_lock();
5067 p = find_process_by_pid(pid);
5068 if (!p)
5069 goto out_unlock;
5070
5071 retval = security_task_getscheduler(p);
5072 if (retval)
5073 goto out_unlock;
5074
5075 rq = task_rq_lock(p, &flags);
5076 time_slice = p->sched_class->get_rr_interval(rq, p);
5077 task_rq_unlock(rq, &flags);
5078
5079 rcu_read_unlock();
5080 jiffies_to_timespec(time_slice, &t);
5081 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5082 return retval;
5083
5084 out_unlock:
5085 rcu_read_unlock();
5086 return retval;
5087 }
5088
5089 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5090
5091 void sched_show_task(struct task_struct *p)
5092 {
5093 unsigned long free = 0;
5094 unsigned state;
5095
5096 state = p->state ? __ffs(p->state) + 1 : 0;
5097 printk(KERN_INFO "%-13.13s %c", p->comm,
5098 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5099 #if BITS_PER_LONG == 32
5100 if (state == TASK_RUNNING)
5101 printk(KERN_CONT " running ");
5102 else
5103 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5104 #else
5105 if (state == TASK_RUNNING)
5106 printk(KERN_CONT " running task ");
5107 else
5108 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5109 #endif
5110 #ifdef CONFIG_DEBUG_STACK_USAGE
5111 free = stack_not_used(p);
5112 #endif
5113 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5114 task_pid_nr(p), task_pid_nr(p->real_parent),
5115 (unsigned long)task_thread_info(p)->flags);
5116
5117 show_stack(p, NULL);
5118 }
5119
5120 void show_state_filter(unsigned long state_filter)
5121 {
5122 struct task_struct *g, *p;
5123
5124 #if BITS_PER_LONG == 32
5125 printk(KERN_INFO
5126 " task PC stack pid father\n");
5127 #else
5128 printk(KERN_INFO
5129 " task PC stack pid father\n");
5130 #endif
5131 read_lock(&tasklist_lock);
5132 do_each_thread(g, p) {
5133 /*
5134 * reset the NMI-timeout, listing all files on a slow
5135 * console might take alot of time:
5136 */
5137 touch_nmi_watchdog();
5138 if (!state_filter || (p->state & state_filter))
5139 sched_show_task(p);
5140 } while_each_thread(g, p);
5141
5142 touch_all_softlockup_watchdogs();
5143
5144 #ifdef CONFIG_SCHED_DEBUG
5145 sysrq_sched_debug_show();
5146 #endif
5147 read_unlock(&tasklist_lock);
5148 /*
5149 * Only show locks if all tasks are dumped:
5150 */
5151 if (!state_filter)
5152 debug_show_all_locks();
5153 }
5154
5155 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5156 {
5157 idle->sched_class = &idle_sched_class;
5158 }
5159
5160 /**
5161 * init_idle - set up an idle thread for a given CPU
5162 * @idle: task in question
5163 * @cpu: cpu the idle task belongs to
5164 *
5165 * NOTE: this function does not set the idle thread's NEED_RESCHED
5166 * flag, to make booting more robust.
5167 */
5168 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5169 {
5170 struct rq *rq = cpu_rq(cpu);
5171 unsigned long flags;
5172
5173 raw_spin_lock_irqsave(&rq->lock, flags);
5174
5175 __sched_fork(idle);
5176 idle->state = TASK_RUNNING;
5177 idle->se.exec_start = sched_clock();
5178
5179 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5180 __set_task_cpu(idle, cpu);
5181
5182 rq->curr = rq->idle = idle;
5183 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5184 idle->oncpu = 1;
5185 #endif
5186 raw_spin_unlock_irqrestore(&rq->lock, flags);
5187
5188 /* Set the preempt count _outside_ the spinlocks! */
5189 #if defined(CONFIG_PREEMPT)
5190 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5191 #else
5192 task_thread_info(idle)->preempt_count = 0;
5193 #endif
5194 /*
5195 * The idle tasks have their own, simple scheduling class:
5196 */
5197 idle->sched_class = &idle_sched_class;
5198 ftrace_graph_init_task(idle);
5199 }
5200
5201 /*
5202 * In a system that switches off the HZ timer nohz_cpu_mask
5203 * indicates which cpus entered this state. This is used
5204 * in the rcu update to wait only for active cpus. For system
5205 * which do not switch off the HZ timer nohz_cpu_mask should
5206 * always be CPU_BITS_NONE.
5207 */
5208 cpumask_var_t nohz_cpu_mask;
5209
5210 /*
5211 * Increase the granularity value when there are more CPUs,
5212 * because with more CPUs the 'effective latency' as visible
5213 * to users decreases. But the relationship is not linear,
5214 * so pick a second-best guess by going with the log2 of the
5215 * number of CPUs.
5216 *
5217 * This idea comes from the SD scheduler of Con Kolivas:
5218 */
5219 static int get_update_sysctl_factor(void)
5220 {
5221 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5222 unsigned int factor;
5223
5224 switch (sysctl_sched_tunable_scaling) {
5225 case SCHED_TUNABLESCALING_NONE:
5226 factor = 1;
5227 break;
5228 case SCHED_TUNABLESCALING_LINEAR:
5229 factor = cpus;
5230 break;
5231 case SCHED_TUNABLESCALING_LOG:
5232 default:
5233 factor = 1 + ilog2(cpus);
5234 break;
5235 }
5236
5237 return factor;
5238 }
5239
5240 static void update_sysctl(void)
5241 {
5242 unsigned int factor = get_update_sysctl_factor();
5243
5244 #define SET_SYSCTL(name) \
5245 (sysctl_##name = (factor) * normalized_sysctl_##name)
5246 SET_SYSCTL(sched_min_granularity);
5247 SET_SYSCTL(sched_latency);
5248 SET_SYSCTL(sched_wakeup_granularity);
5249 SET_SYSCTL(sched_shares_ratelimit);
5250 #undef SET_SYSCTL
5251 }
5252
5253 static inline void sched_init_granularity(void)
5254 {
5255 update_sysctl();
5256 }
5257
5258 #ifdef CONFIG_SMP
5259 /*
5260 * This is how migration works:
5261 *
5262 * 1) we queue a struct migration_req structure in the source CPU's
5263 * runqueue and wake up that CPU's migration thread.
5264 * 2) we down() the locked semaphore => thread blocks.
5265 * 3) migration thread wakes up (implicitly it forces the migrated
5266 * thread off the CPU)
5267 * 4) it gets the migration request and checks whether the migrated
5268 * task is still in the wrong runqueue.
5269 * 5) if it's in the wrong runqueue then the migration thread removes
5270 * it and puts it into the right queue.
5271 * 6) migration thread up()s the semaphore.
5272 * 7) we wake up and the migration is done.
5273 */
5274
5275 /*
5276 * Change a given task's CPU affinity. Migrate the thread to a
5277 * proper CPU and schedule it away if the CPU it's executing on
5278 * is removed from the allowed bitmask.
5279 *
5280 * NOTE: the caller must have a valid reference to the task, the
5281 * task must not exit() & deallocate itself prematurely. The
5282 * call is not atomic; no spinlocks may be held.
5283 */
5284 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5285 {
5286 struct migration_req req;
5287 unsigned long flags;
5288 struct rq *rq;
5289 int ret = 0;
5290
5291 rq = task_rq_lock(p, &flags);
5292
5293 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5294 ret = -EINVAL;
5295 goto out;
5296 }
5297
5298 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5299 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5300 ret = -EINVAL;
5301 goto out;
5302 }
5303
5304 if (p->sched_class->set_cpus_allowed)
5305 p->sched_class->set_cpus_allowed(p, new_mask);
5306 else {
5307 cpumask_copy(&p->cpus_allowed, new_mask);
5308 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5309 }
5310
5311 /* Can the task run on the task's current CPU? If so, we're done */
5312 if (cpumask_test_cpu(task_cpu(p), new_mask))
5313 goto out;
5314
5315 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
5316 /* Need help from migration thread: drop lock and wait. */
5317 struct task_struct *mt = rq->migration_thread;
5318
5319 get_task_struct(mt);
5320 task_rq_unlock(rq, &flags);
5321 wake_up_process(rq->migration_thread);
5322 put_task_struct(mt);
5323 wait_for_completion(&req.done);
5324 tlb_migrate_finish(p->mm);
5325 return 0;
5326 }
5327 out:
5328 task_rq_unlock(rq, &flags);
5329
5330 return ret;
5331 }
5332 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5333
5334 /*
5335 * Move (not current) task off this cpu, onto dest cpu. We're doing
5336 * this because either it can't run here any more (set_cpus_allowed()
5337 * away from this CPU, or CPU going down), or because we're
5338 * attempting to rebalance this task on exec (sched_exec).
5339 *
5340 * So we race with normal scheduler movements, but that's OK, as long
5341 * as the task is no longer on this CPU.
5342 *
5343 * Returns non-zero if task was successfully migrated.
5344 */
5345 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5346 {
5347 struct rq *rq_dest, *rq_src;
5348 int ret = 0;
5349
5350 if (unlikely(!cpu_active(dest_cpu)))
5351 return ret;
5352
5353 rq_src = cpu_rq(src_cpu);
5354 rq_dest = cpu_rq(dest_cpu);
5355
5356 double_rq_lock(rq_src, rq_dest);
5357 /* Already moved. */
5358 if (task_cpu(p) != src_cpu)
5359 goto done;
5360 /* Affinity changed (again). */
5361 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5362 goto fail;
5363
5364 /*
5365 * If we're not on a rq, the next wake-up will ensure we're
5366 * placed properly.
5367 */
5368 if (p->se.on_rq) {
5369 deactivate_task(rq_src, p, 0);
5370 set_task_cpu(p, dest_cpu);
5371 activate_task(rq_dest, p, 0);
5372 check_preempt_curr(rq_dest, p, 0);
5373 }
5374 done:
5375 ret = 1;
5376 fail:
5377 double_rq_unlock(rq_src, rq_dest);
5378 return ret;
5379 }
5380
5381 #define RCU_MIGRATION_IDLE 0
5382 #define RCU_MIGRATION_NEED_QS 1
5383 #define RCU_MIGRATION_GOT_QS 2
5384 #define RCU_MIGRATION_MUST_SYNC 3
5385
5386 /*
5387 * migration_thread - this is a highprio system thread that performs
5388 * thread migration by bumping thread off CPU then 'pushing' onto
5389 * another runqueue.
5390 */
5391 static int migration_thread(void *data)
5392 {
5393 int badcpu;
5394 int cpu = (long)data;
5395 struct rq *rq;
5396
5397 rq = cpu_rq(cpu);
5398 BUG_ON(rq->migration_thread != current);
5399
5400 set_current_state(TASK_INTERRUPTIBLE);
5401 while (!kthread_should_stop()) {
5402 struct migration_req *req;
5403 struct list_head *head;
5404
5405 raw_spin_lock_irq(&rq->lock);
5406
5407 if (cpu_is_offline(cpu)) {
5408 raw_spin_unlock_irq(&rq->lock);
5409 break;
5410 }
5411
5412 if (rq->active_balance) {
5413 active_load_balance(rq, cpu);
5414 rq->active_balance = 0;
5415 }
5416
5417 head = &rq->migration_queue;
5418
5419 if (list_empty(head)) {
5420 raw_spin_unlock_irq(&rq->lock);
5421 schedule();
5422 set_current_state(TASK_INTERRUPTIBLE);
5423 continue;
5424 }
5425 req = list_entry(head->next, struct migration_req, list);
5426 list_del_init(head->next);
5427
5428 if (req->task != NULL) {
5429 raw_spin_unlock(&rq->lock);
5430 __migrate_task(req->task, cpu, req->dest_cpu);
5431 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5432 req->dest_cpu = RCU_MIGRATION_GOT_QS;
5433 raw_spin_unlock(&rq->lock);
5434 } else {
5435 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5436 raw_spin_unlock(&rq->lock);
5437 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5438 }
5439 local_irq_enable();
5440
5441 complete(&req->done);
5442 }
5443 __set_current_state(TASK_RUNNING);
5444
5445 return 0;
5446 }
5447
5448 #ifdef CONFIG_HOTPLUG_CPU
5449
5450 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5451 {
5452 int ret;
5453
5454 local_irq_disable();
5455 ret = __migrate_task(p, src_cpu, dest_cpu);
5456 local_irq_enable();
5457 return ret;
5458 }
5459
5460 /*
5461 * Figure out where task on dead CPU should go, use force if necessary.
5462 */
5463 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5464 {
5465 int dest_cpu;
5466
5467 again:
5468 dest_cpu = select_fallback_rq(dead_cpu, p);
5469
5470 /* It can have affinity changed while we were choosing. */
5471 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
5472 goto again;
5473 }
5474
5475 /*
5476 * While a dead CPU has no uninterruptible tasks queued at this point,
5477 * it might still have a nonzero ->nr_uninterruptible counter, because
5478 * for performance reasons the counter is not stricly tracking tasks to
5479 * their home CPUs. So we just add the counter to another CPU's counter,
5480 * to keep the global sum constant after CPU-down:
5481 */
5482 static void migrate_nr_uninterruptible(struct rq *rq_src)
5483 {
5484 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5485 unsigned long flags;
5486
5487 local_irq_save(flags);
5488 double_rq_lock(rq_src, rq_dest);
5489 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5490 rq_src->nr_uninterruptible = 0;
5491 double_rq_unlock(rq_src, rq_dest);
5492 local_irq_restore(flags);
5493 }
5494
5495 /* Run through task list and migrate tasks from the dead cpu. */
5496 static void migrate_live_tasks(int src_cpu)
5497 {
5498 struct task_struct *p, *t;
5499
5500 read_lock(&tasklist_lock);
5501
5502 do_each_thread(t, p) {
5503 if (p == current)
5504 continue;
5505
5506 if (task_cpu(p) == src_cpu)
5507 move_task_off_dead_cpu(src_cpu, p);
5508 } while_each_thread(t, p);
5509
5510 read_unlock(&tasklist_lock);
5511 }
5512
5513 /*
5514 * Schedules idle task to be the next runnable task on current CPU.
5515 * It does so by boosting its priority to highest possible.
5516 * Used by CPU offline code.
5517 */
5518 void sched_idle_next(void)
5519 {
5520 int this_cpu = smp_processor_id();
5521 struct rq *rq = cpu_rq(this_cpu);
5522 struct task_struct *p = rq->idle;
5523 unsigned long flags;
5524
5525 /* cpu has to be offline */
5526 BUG_ON(cpu_online(this_cpu));
5527
5528 /*
5529 * Strictly not necessary since rest of the CPUs are stopped by now
5530 * and interrupts disabled on the current cpu.
5531 */
5532 raw_spin_lock_irqsave(&rq->lock, flags);
5533
5534 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5535
5536 activate_task(rq, p, 0);
5537
5538 raw_spin_unlock_irqrestore(&rq->lock, flags);
5539 }
5540
5541 /*
5542 * Ensures that the idle task is using init_mm right before its cpu goes
5543 * offline.
5544 */
5545 void idle_task_exit(void)
5546 {
5547 struct mm_struct *mm = current->active_mm;
5548
5549 BUG_ON(cpu_online(smp_processor_id()));
5550
5551 if (mm != &init_mm)
5552 switch_mm(mm, &init_mm, current);
5553 mmdrop(mm);
5554 }
5555
5556 /* called under rq->lock with disabled interrupts */
5557 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5558 {
5559 struct rq *rq = cpu_rq(dead_cpu);
5560
5561 /* Must be exiting, otherwise would be on tasklist. */
5562 BUG_ON(!p->exit_state);
5563
5564 /* Cannot have done final schedule yet: would have vanished. */
5565 BUG_ON(p->state == TASK_DEAD);
5566
5567 get_task_struct(p);
5568
5569 /*
5570 * Drop lock around migration; if someone else moves it,
5571 * that's OK. No task can be added to this CPU, so iteration is
5572 * fine.
5573 */
5574 raw_spin_unlock_irq(&rq->lock);
5575 move_task_off_dead_cpu(dead_cpu, p);
5576 raw_spin_lock_irq(&rq->lock);
5577
5578 put_task_struct(p);
5579 }
5580
5581 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5582 static void migrate_dead_tasks(unsigned int dead_cpu)
5583 {
5584 struct rq *rq = cpu_rq(dead_cpu);
5585 struct task_struct *next;
5586
5587 for ( ; ; ) {
5588 if (!rq->nr_running)
5589 break;
5590 next = pick_next_task(rq);
5591 if (!next)
5592 break;
5593 next->sched_class->put_prev_task(rq, next);
5594 migrate_dead(dead_cpu, next);
5595
5596 }
5597 }
5598
5599 /*
5600 * remove the tasks which were accounted by rq from calc_load_tasks.
5601 */
5602 static void calc_global_load_remove(struct rq *rq)
5603 {
5604 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5605 rq->calc_load_active = 0;
5606 }
5607 #endif /* CONFIG_HOTPLUG_CPU */
5608
5609 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5610
5611 static struct ctl_table sd_ctl_dir[] = {
5612 {
5613 .procname = "sched_domain",
5614 .mode = 0555,
5615 },
5616 {}
5617 };
5618
5619 static struct ctl_table sd_ctl_root[] = {
5620 {
5621 .procname = "kernel",
5622 .mode = 0555,
5623 .child = sd_ctl_dir,
5624 },
5625 {}
5626 };
5627
5628 static struct ctl_table *sd_alloc_ctl_entry(int n)
5629 {
5630 struct ctl_table *entry =
5631 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5632
5633 return entry;
5634 }
5635
5636 static void sd_free_ctl_entry(struct ctl_table **tablep)
5637 {
5638 struct ctl_table *entry;
5639
5640 /*
5641 * In the intermediate directories, both the child directory and
5642 * procname are dynamically allocated and could fail but the mode
5643 * will always be set. In the lowest directory the names are
5644 * static strings and all have proc handlers.
5645 */
5646 for (entry = *tablep; entry->mode; entry++) {
5647 if (entry->child)
5648 sd_free_ctl_entry(&entry->child);
5649 if (entry->proc_handler == NULL)
5650 kfree(entry->procname);
5651 }
5652
5653 kfree(*tablep);
5654 *tablep = NULL;
5655 }
5656
5657 static void
5658 set_table_entry(struct ctl_table *entry,
5659 const char *procname, void *data, int maxlen,
5660 mode_t mode, proc_handler *proc_handler)
5661 {
5662 entry->procname = procname;
5663 entry->data = data;
5664 entry->maxlen = maxlen;
5665 entry->mode = mode;
5666 entry->proc_handler = proc_handler;
5667 }
5668
5669 static struct ctl_table *
5670 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5671 {
5672 struct ctl_table *table = sd_alloc_ctl_entry(13);
5673
5674 if (table == NULL)
5675 return NULL;
5676
5677 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5678 sizeof(long), 0644, proc_doulongvec_minmax);
5679 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5680 sizeof(long), 0644, proc_doulongvec_minmax);
5681 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5682 sizeof(int), 0644, proc_dointvec_minmax);
5683 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5684 sizeof(int), 0644, proc_dointvec_minmax);
5685 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5686 sizeof(int), 0644, proc_dointvec_minmax);
5687 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5688 sizeof(int), 0644, proc_dointvec_minmax);
5689 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5690 sizeof(int), 0644, proc_dointvec_minmax);
5691 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5692 sizeof(int), 0644, proc_dointvec_minmax);
5693 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5694 sizeof(int), 0644, proc_dointvec_minmax);
5695 set_table_entry(&table[9], "cache_nice_tries",
5696 &sd->cache_nice_tries,
5697 sizeof(int), 0644, proc_dointvec_minmax);
5698 set_table_entry(&table[10], "flags", &sd->flags,
5699 sizeof(int), 0644, proc_dointvec_minmax);
5700 set_table_entry(&table[11], "name", sd->name,
5701 CORENAME_MAX_SIZE, 0444, proc_dostring);
5702 /* &table[12] is terminator */
5703
5704 return table;
5705 }
5706
5707 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5708 {
5709 struct ctl_table *entry, *table;
5710 struct sched_domain *sd;
5711 int domain_num = 0, i;
5712 char buf[32];
5713
5714 for_each_domain(cpu, sd)
5715 domain_num++;
5716 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5717 if (table == NULL)
5718 return NULL;
5719
5720 i = 0;
5721 for_each_domain(cpu, sd) {
5722 snprintf(buf, 32, "domain%d", i);
5723 entry->procname = kstrdup(buf, GFP_KERNEL);
5724 entry->mode = 0555;
5725 entry->child = sd_alloc_ctl_domain_table(sd);
5726 entry++;
5727 i++;
5728 }
5729 return table;
5730 }
5731
5732 static struct ctl_table_header *sd_sysctl_header;
5733 static void register_sched_domain_sysctl(void)
5734 {
5735 int i, cpu_num = num_possible_cpus();
5736 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5737 char buf[32];
5738
5739 WARN_ON(sd_ctl_dir[0].child);
5740 sd_ctl_dir[0].child = entry;
5741
5742 if (entry == NULL)
5743 return;
5744
5745 for_each_possible_cpu(i) {
5746 snprintf(buf, 32, "cpu%d", i);
5747 entry->procname = kstrdup(buf, GFP_KERNEL);
5748 entry->mode = 0555;
5749 entry->child = sd_alloc_ctl_cpu_table(i);
5750 entry++;
5751 }
5752
5753 WARN_ON(sd_sysctl_header);
5754 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5755 }
5756
5757 /* may be called multiple times per register */
5758 static void unregister_sched_domain_sysctl(void)
5759 {
5760 if (sd_sysctl_header)
5761 unregister_sysctl_table(sd_sysctl_header);
5762 sd_sysctl_header = NULL;
5763 if (sd_ctl_dir[0].child)
5764 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5765 }
5766 #else
5767 static void register_sched_domain_sysctl(void)
5768 {
5769 }
5770 static void unregister_sched_domain_sysctl(void)
5771 {
5772 }
5773 #endif
5774
5775 static void set_rq_online(struct rq *rq)
5776 {
5777 if (!rq->online) {
5778 const struct sched_class *class;
5779
5780 cpumask_set_cpu(rq->cpu, rq->rd->online);
5781 rq->online = 1;
5782
5783 for_each_class(class) {
5784 if (class->rq_online)
5785 class->rq_online(rq);
5786 }
5787 }
5788 }
5789
5790 static void set_rq_offline(struct rq *rq)
5791 {
5792 if (rq->online) {
5793 const struct sched_class *class;
5794
5795 for_each_class(class) {
5796 if (class->rq_offline)
5797 class->rq_offline(rq);
5798 }
5799
5800 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5801 rq->online = 0;
5802 }
5803 }
5804
5805 /*
5806 * migration_call - callback that gets triggered when a CPU is added.
5807 * Here we can start up the necessary migration thread for the new CPU.
5808 */
5809 static int __cpuinit
5810 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5811 {
5812 struct task_struct *p;
5813 int cpu = (long)hcpu;
5814 unsigned long flags;
5815 struct rq *rq;
5816
5817 switch (action) {
5818
5819 case CPU_UP_PREPARE:
5820 case CPU_UP_PREPARE_FROZEN:
5821 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5822 if (IS_ERR(p))
5823 return NOTIFY_BAD;
5824 kthread_bind(p, cpu);
5825 /* Must be high prio: stop_machine expects to yield to it. */
5826 rq = task_rq_lock(p, &flags);
5827 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5828 task_rq_unlock(rq, &flags);
5829 get_task_struct(p);
5830 cpu_rq(cpu)->migration_thread = p;
5831 rq->calc_load_update = calc_load_update;
5832 break;
5833
5834 case CPU_ONLINE:
5835 case CPU_ONLINE_FROZEN:
5836 /* Strictly unnecessary, as first user will wake it. */
5837 wake_up_process(cpu_rq(cpu)->migration_thread);
5838
5839 /* Update our root-domain */
5840 rq = cpu_rq(cpu);
5841 raw_spin_lock_irqsave(&rq->lock, flags);
5842 if (rq->rd) {
5843 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5844
5845 set_rq_online(rq);
5846 }
5847 raw_spin_unlock_irqrestore(&rq->lock, flags);
5848 break;
5849
5850 #ifdef CONFIG_HOTPLUG_CPU
5851 case CPU_UP_CANCELED:
5852 case CPU_UP_CANCELED_FROZEN:
5853 if (!cpu_rq(cpu)->migration_thread)
5854 break;
5855 /* Unbind it from offline cpu so it can run. Fall thru. */
5856 kthread_bind(cpu_rq(cpu)->migration_thread,
5857 cpumask_any(cpu_online_mask));
5858 kthread_stop(cpu_rq(cpu)->migration_thread);
5859 put_task_struct(cpu_rq(cpu)->migration_thread);
5860 cpu_rq(cpu)->migration_thread = NULL;
5861 break;
5862
5863 case CPU_DEAD:
5864 case CPU_DEAD_FROZEN:
5865 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5866 migrate_live_tasks(cpu);
5867 rq = cpu_rq(cpu);
5868 kthread_stop(rq->migration_thread);
5869 put_task_struct(rq->migration_thread);
5870 rq->migration_thread = NULL;
5871 /* Idle task back to normal (off runqueue, low prio) */
5872 raw_spin_lock_irq(&rq->lock);
5873 deactivate_task(rq, rq->idle, 0);
5874 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5875 rq->idle->sched_class = &idle_sched_class;
5876 migrate_dead_tasks(cpu);
5877 raw_spin_unlock_irq(&rq->lock);
5878 cpuset_unlock();
5879 migrate_nr_uninterruptible(rq);
5880 BUG_ON(rq->nr_running != 0);
5881 calc_global_load_remove(rq);
5882 /*
5883 * No need to migrate the tasks: it was best-effort if
5884 * they didn't take sched_hotcpu_mutex. Just wake up
5885 * the requestors.
5886 */
5887 raw_spin_lock_irq(&rq->lock);
5888 while (!list_empty(&rq->migration_queue)) {
5889 struct migration_req *req;
5890
5891 req = list_entry(rq->migration_queue.next,
5892 struct migration_req, list);
5893 list_del_init(&req->list);
5894 raw_spin_unlock_irq(&rq->lock);
5895 complete(&req->done);
5896 raw_spin_lock_irq(&rq->lock);
5897 }
5898 raw_spin_unlock_irq(&rq->lock);
5899 break;
5900
5901 case CPU_DYING:
5902 case CPU_DYING_FROZEN:
5903 /* Update our root-domain */
5904 rq = cpu_rq(cpu);
5905 raw_spin_lock_irqsave(&rq->lock, flags);
5906 if (rq->rd) {
5907 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5908 set_rq_offline(rq);
5909 }
5910 raw_spin_unlock_irqrestore(&rq->lock, flags);
5911 break;
5912 #endif
5913 }
5914 return NOTIFY_OK;
5915 }
5916
5917 /*
5918 * Register at high priority so that task migration (migrate_all_tasks)
5919 * happens before everything else. This has to be lower priority than
5920 * the notifier in the perf_event subsystem, though.
5921 */
5922 static struct notifier_block __cpuinitdata migration_notifier = {
5923 .notifier_call = migration_call,
5924 .priority = 10
5925 };
5926
5927 static int __init migration_init(void)
5928 {
5929 void *cpu = (void *)(long)smp_processor_id();
5930 int err;
5931
5932 /* Start one for the boot CPU: */
5933 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5934 BUG_ON(err == NOTIFY_BAD);
5935 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5936 register_cpu_notifier(&migration_notifier);
5937
5938 return 0;
5939 }
5940 early_initcall(migration_init);
5941 #endif
5942
5943 #ifdef CONFIG_SMP
5944
5945 #ifdef CONFIG_SCHED_DEBUG
5946
5947 static __read_mostly int sched_domain_debug_enabled;
5948
5949 static int __init sched_domain_debug_setup(char *str)
5950 {
5951 sched_domain_debug_enabled = 1;
5952
5953 return 0;
5954 }
5955 early_param("sched_debug", sched_domain_debug_setup);
5956
5957 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5958 struct cpumask *groupmask)
5959 {
5960 struct sched_group *group = sd->groups;
5961 char str[256];
5962
5963 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5964 cpumask_clear(groupmask);
5965
5966 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5967
5968 if (!(sd->flags & SD_LOAD_BALANCE)) {
5969 printk("does not load-balance\n");
5970 if (sd->parent)
5971 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5972 " has parent");
5973 return -1;
5974 }
5975
5976 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5977
5978 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5979 printk(KERN_ERR "ERROR: domain->span does not contain "
5980 "CPU%d\n", cpu);
5981 }
5982 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5983 printk(KERN_ERR "ERROR: domain->groups does not contain"
5984 " CPU%d\n", cpu);
5985 }
5986
5987 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5988 do {
5989 if (!group) {
5990 printk("\n");
5991 printk(KERN_ERR "ERROR: group is NULL\n");
5992 break;
5993 }
5994
5995 if (!group->cpu_power) {
5996 printk(KERN_CONT "\n");
5997 printk(KERN_ERR "ERROR: domain->cpu_power not "
5998 "set\n");
5999 break;
6000 }
6001
6002 if (!cpumask_weight(sched_group_cpus(group))) {
6003 printk(KERN_CONT "\n");
6004 printk(KERN_ERR "ERROR: empty group\n");
6005 break;
6006 }
6007
6008 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6009 printk(KERN_CONT "\n");
6010 printk(KERN_ERR "ERROR: repeated CPUs\n");
6011 break;
6012 }
6013
6014 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6015
6016 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6017
6018 printk(KERN_CONT " %s", str);
6019 if (group->cpu_power != SCHED_LOAD_SCALE) {
6020 printk(KERN_CONT " (cpu_power = %d)",
6021 group->cpu_power);
6022 }
6023
6024 group = group->next;
6025 } while (group != sd->groups);
6026 printk(KERN_CONT "\n");
6027
6028 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6029 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6030
6031 if (sd->parent &&
6032 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6033 printk(KERN_ERR "ERROR: parent span is not a superset "
6034 "of domain->span\n");
6035 return 0;
6036 }
6037
6038 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6039 {
6040 cpumask_var_t groupmask;
6041 int level = 0;
6042
6043 if (!sched_domain_debug_enabled)
6044 return;
6045
6046 if (!sd) {
6047 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6048 return;
6049 }
6050
6051 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6052
6053 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6054 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6055 return;
6056 }
6057
6058 for (;;) {
6059 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6060 break;
6061 level++;
6062 sd = sd->parent;
6063 if (!sd)
6064 break;
6065 }
6066 free_cpumask_var(groupmask);
6067 }
6068 #else /* !CONFIG_SCHED_DEBUG */
6069 # define sched_domain_debug(sd, cpu) do { } while (0)
6070 #endif /* CONFIG_SCHED_DEBUG */
6071
6072 static int sd_degenerate(struct sched_domain *sd)
6073 {
6074 if (cpumask_weight(sched_domain_span(sd)) == 1)
6075 return 1;
6076
6077 /* Following flags need at least 2 groups */
6078 if (sd->flags & (SD_LOAD_BALANCE |
6079 SD_BALANCE_NEWIDLE |
6080 SD_BALANCE_FORK |
6081 SD_BALANCE_EXEC |
6082 SD_SHARE_CPUPOWER |
6083 SD_SHARE_PKG_RESOURCES)) {
6084 if (sd->groups != sd->groups->next)
6085 return 0;
6086 }
6087
6088 /* Following flags don't use groups */
6089 if (sd->flags & (SD_WAKE_AFFINE))
6090 return 0;
6091
6092 return 1;
6093 }
6094
6095 static int
6096 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6097 {
6098 unsigned long cflags = sd->flags, pflags = parent->flags;
6099
6100 if (sd_degenerate(parent))
6101 return 1;
6102
6103 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6104 return 0;
6105
6106 /* Flags needing groups don't count if only 1 group in parent */
6107 if (parent->groups == parent->groups->next) {
6108 pflags &= ~(SD_LOAD_BALANCE |
6109 SD_BALANCE_NEWIDLE |
6110 SD_BALANCE_FORK |
6111 SD_BALANCE_EXEC |
6112 SD_SHARE_CPUPOWER |
6113 SD_SHARE_PKG_RESOURCES);
6114 if (nr_node_ids == 1)
6115 pflags &= ~SD_SERIALIZE;
6116 }
6117 if (~cflags & pflags)
6118 return 0;
6119
6120 return 1;
6121 }
6122
6123 static void free_rootdomain(struct root_domain *rd)
6124 {
6125 synchronize_sched();
6126
6127 cpupri_cleanup(&rd->cpupri);
6128
6129 free_cpumask_var(rd->rto_mask);
6130 free_cpumask_var(rd->online);
6131 free_cpumask_var(rd->span);
6132 kfree(rd);
6133 }
6134
6135 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6136 {
6137 struct root_domain *old_rd = NULL;
6138 unsigned long flags;
6139
6140 raw_spin_lock_irqsave(&rq->lock, flags);
6141
6142 if (rq->rd) {
6143 old_rd = rq->rd;
6144
6145 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6146 set_rq_offline(rq);
6147
6148 cpumask_clear_cpu(rq->cpu, old_rd->span);
6149
6150 /*
6151 * If we dont want to free the old_rt yet then
6152 * set old_rd to NULL to skip the freeing later
6153 * in this function:
6154 */
6155 if (!atomic_dec_and_test(&old_rd->refcount))
6156 old_rd = NULL;
6157 }
6158
6159 atomic_inc(&rd->refcount);
6160 rq->rd = rd;
6161
6162 cpumask_set_cpu(rq->cpu, rd->span);
6163 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6164 set_rq_online(rq);
6165
6166 raw_spin_unlock_irqrestore(&rq->lock, flags);
6167
6168 if (old_rd)
6169 free_rootdomain(old_rd);
6170 }
6171
6172 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6173 {
6174 gfp_t gfp = GFP_KERNEL;
6175
6176 memset(rd, 0, sizeof(*rd));
6177
6178 if (bootmem)
6179 gfp = GFP_NOWAIT;
6180
6181 if (!alloc_cpumask_var(&rd->span, gfp))
6182 goto out;
6183 if (!alloc_cpumask_var(&rd->online, gfp))
6184 goto free_span;
6185 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6186 goto free_online;
6187
6188 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6189 goto free_rto_mask;
6190 return 0;
6191
6192 free_rto_mask:
6193 free_cpumask_var(rd->rto_mask);
6194 free_online:
6195 free_cpumask_var(rd->online);
6196 free_span:
6197 free_cpumask_var(rd->span);
6198 out:
6199 return -ENOMEM;
6200 }
6201
6202 static void init_defrootdomain(void)
6203 {
6204 init_rootdomain(&def_root_domain, true);
6205
6206 atomic_set(&def_root_domain.refcount, 1);
6207 }
6208
6209 static struct root_domain *alloc_rootdomain(void)
6210 {
6211 struct root_domain *rd;
6212
6213 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6214 if (!rd)
6215 return NULL;
6216
6217 if (init_rootdomain(rd, false) != 0) {
6218 kfree(rd);
6219 return NULL;
6220 }
6221
6222 return rd;
6223 }
6224
6225 /*
6226 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6227 * hold the hotplug lock.
6228 */
6229 static void
6230 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6231 {
6232 struct rq *rq = cpu_rq(cpu);
6233 struct sched_domain *tmp;
6234
6235 /* Remove the sched domains which do not contribute to scheduling. */
6236 for (tmp = sd; tmp; ) {
6237 struct sched_domain *parent = tmp->parent;
6238 if (!parent)
6239 break;
6240
6241 if (sd_parent_degenerate(tmp, parent)) {
6242 tmp->parent = parent->parent;
6243 if (parent->parent)
6244 parent->parent->child = tmp;
6245 } else
6246 tmp = tmp->parent;
6247 }
6248
6249 if (sd && sd_degenerate(sd)) {
6250 sd = sd->parent;
6251 if (sd)
6252 sd->child = NULL;
6253 }
6254
6255 sched_domain_debug(sd, cpu);
6256
6257 rq_attach_root(rq, rd);
6258 rcu_assign_pointer(rq->sd, sd);
6259 }
6260
6261 /* cpus with isolated domains */
6262 static cpumask_var_t cpu_isolated_map;
6263
6264 /* Setup the mask of cpus configured for isolated domains */
6265 static int __init isolated_cpu_setup(char *str)
6266 {
6267 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6268 cpulist_parse(str, cpu_isolated_map);
6269 return 1;
6270 }
6271
6272 __setup("isolcpus=", isolated_cpu_setup);
6273
6274 /*
6275 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6276 * to a function which identifies what group(along with sched group) a CPU
6277 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6278 * (due to the fact that we keep track of groups covered with a struct cpumask).
6279 *
6280 * init_sched_build_groups will build a circular linked list of the groups
6281 * covered by the given span, and will set each group's ->cpumask correctly,
6282 * and ->cpu_power to 0.
6283 */
6284 static void
6285 init_sched_build_groups(const struct cpumask *span,
6286 const struct cpumask *cpu_map,
6287 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6288 struct sched_group **sg,
6289 struct cpumask *tmpmask),
6290 struct cpumask *covered, struct cpumask *tmpmask)
6291 {
6292 struct sched_group *first = NULL, *last = NULL;
6293 int i;
6294
6295 cpumask_clear(covered);
6296
6297 for_each_cpu(i, span) {
6298 struct sched_group *sg;
6299 int group = group_fn(i, cpu_map, &sg, tmpmask);
6300 int j;
6301
6302 if (cpumask_test_cpu(i, covered))
6303 continue;
6304
6305 cpumask_clear(sched_group_cpus(sg));
6306 sg->cpu_power = 0;
6307
6308 for_each_cpu(j, span) {
6309 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6310 continue;
6311
6312 cpumask_set_cpu(j, covered);
6313 cpumask_set_cpu(j, sched_group_cpus(sg));
6314 }
6315 if (!first)
6316 first = sg;
6317 if (last)
6318 last->next = sg;
6319 last = sg;
6320 }
6321 last->next = first;
6322 }
6323
6324 #define SD_NODES_PER_DOMAIN 16
6325
6326 #ifdef CONFIG_NUMA
6327
6328 /**
6329 * find_next_best_node - find the next node to include in a sched_domain
6330 * @node: node whose sched_domain we're building
6331 * @used_nodes: nodes already in the sched_domain
6332 *
6333 * Find the next node to include in a given scheduling domain. Simply
6334 * finds the closest node not already in the @used_nodes map.
6335 *
6336 * Should use nodemask_t.
6337 */
6338 static int find_next_best_node(int node, nodemask_t *used_nodes)
6339 {
6340 int i, n, val, min_val, best_node = 0;
6341
6342 min_val = INT_MAX;
6343
6344 for (i = 0; i < nr_node_ids; i++) {
6345 /* Start at @node */
6346 n = (node + i) % nr_node_ids;
6347
6348 if (!nr_cpus_node(n))
6349 continue;
6350
6351 /* Skip already used nodes */
6352 if (node_isset(n, *used_nodes))
6353 continue;
6354
6355 /* Simple min distance search */
6356 val = node_distance(node, n);
6357
6358 if (val < min_val) {
6359 min_val = val;
6360 best_node = n;
6361 }
6362 }
6363
6364 node_set(best_node, *used_nodes);
6365 return best_node;
6366 }
6367
6368 /**
6369 * sched_domain_node_span - get a cpumask for a node's sched_domain
6370 * @node: node whose cpumask we're constructing
6371 * @span: resulting cpumask
6372 *
6373 * Given a node, construct a good cpumask for its sched_domain to span. It
6374 * should be one that prevents unnecessary balancing, but also spreads tasks
6375 * out optimally.
6376 */
6377 static void sched_domain_node_span(int node, struct cpumask *span)
6378 {
6379 nodemask_t used_nodes;
6380 int i;
6381
6382 cpumask_clear(span);
6383 nodes_clear(used_nodes);
6384
6385 cpumask_or(span, span, cpumask_of_node(node));
6386 node_set(node, used_nodes);
6387
6388 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6389 int next_node = find_next_best_node(node, &used_nodes);
6390
6391 cpumask_or(span, span, cpumask_of_node(next_node));
6392 }
6393 }
6394 #endif /* CONFIG_NUMA */
6395
6396 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6397
6398 /*
6399 * The cpus mask in sched_group and sched_domain hangs off the end.
6400 *
6401 * ( See the the comments in include/linux/sched.h:struct sched_group
6402 * and struct sched_domain. )
6403 */
6404 struct static_sched_group {
6405 struct sched_group sg;
6406 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6407 };
6408
6409 struct static_sched_domain {
6410 struct sched_domain sd;
6411 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6412 };
6413
6414 struct s_data {
6415 #ifdef CONFIG_NUMA
6416 int sd_allnodes;
6417 cpumask_var_t domainspan;
6418 cpumask_var_t covered;
6419 cpumask_var_t notcovered;
6420 #endif
6421 cpumask_var_t nodemask;
6422 cpumask_var_t this_sibling_map;
6423 cpumask_var_t this_core_map;
6424 cpumask_var_t send_covered;
6425 cpumask_var_t tmpmask;
6426 struct sched_group **sched_group_nodes;
6427 struct root_domain *rd;
6428 };
6429
6430 enum s_alloc {
6431 sa_sched_groups = 0,
6432 sa_rootdomain,
6433 sa_tmpmask,
6434 sa_send_covered,
6435 sa_this_core_map,
6436 sa_this_sibling_map,
6437 sa_nodemask,
6438 sa_sched_group_nodes,
6439 #ifdef CONFIG_NUMA
6440 sa_notcovered,
6441 sa_covered,
6442 sa_domainspan,
6443 #endif
6444 sa_none,
6445 };
6446
6447 /*
6448 * SMT sched-domains:
6449 */
6450 #ifdef CONFIG_SCHED_SMT
6451 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6452 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6453
6454 static int
6455 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6456 struct sched_group **sg, struct cpumask *unused)
6457 {
6458 if (sg)
6459 *sg = &per_cpu(sched_groups, cpu).sg;
6460 return cpu;
6461 }
6462 #endif /* CONFIG_SCHED_SMT */
6463
6464 /*
6465 * multi-core sched-domains:
6466 */
6467 #ifdef CONFIG_SCHED_MC
6468 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6469 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6470 #endif /* CONFIG_SCHED_MC */
6471
6472 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6473 static int
6474 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6475 struct sched_group **sg, struct cpumask *mask)
6476 {
6477 int group;
6478
6479 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6480 group = cpumask_first(mask);
6481 if (sg)
6482 *sg = &per_cpu(sched_group_core, group).sg;
6483 return group;
6484 }
6485 #elif defined(CONFIG_SCHED_MC)
6486 static int
6487 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6488 struct sched_group **sg, struct cpumask *unused)
6489 {
6490 if (sg)
6491 *sg = &per_cpu(sched_group_core, cpu).sg;
6492 return cpu;
6493 }
6494 #endif
6495
6496 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6497 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6498
6499 static int
6500 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6501 struct sched_group **sg, struct cpumask *mask)
6502 {
6503 int group;
6504 #ifdef CONFIG_SCHED_MC
6505 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6506 group = cpumask_first(mask);
6507 #elif defined(CONFIG_SCHED_SMT)
6508 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6509 group = cpumask_first(mask);
6510 #else
6511 group = cpu;
6512 #endif
6513 if (sg)
6514 *sg = &per_cpu(sched_group_phys, group).sg;
6515 return group;
6516 }
6517
6518 #ifdef CONFIG_NUMA
6519 /*
6520 * The init_sched_build_groups can't handle what we want to do with node
6521 * groups, so roll our own. Now each node has its own list of groups which
6522 * gets dynamically allocated.
6523 */
6524 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6525 static struct sched_group ***sched_group_nodes_bycpu;
6526
6527 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6528 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6529
6530 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6531 struct sched_group **sg,
6532 struct cpumask *nodemask)
6533 {
6534 int group;
6535
6536 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6537 group = cpumask_first(nodemask);
6538
6539 if (sg)
6540 *sg = &per_cpu(sched_group_allnodes, group).sg;
6541 return group;
6542 }
6543
6544 static void init_numa_sched_groups_power(struct sched_group *group_head)
6545 {
6546 struct sched_group *sg = group_head;
6547 int j;
6548
6549 if (!sg)
6550 return;
6551 do {
6552 for_each_cpu(j, sched_group_cpus(sg)) {
6553 struct sched_domain *sd;
6554
6555 sd = &per_cpu(phys_domains, j).sd;
6556 if (j != group_first_cpu(sd->groups)) {
6557 /*
6558 * Only add "power" once for each
6559 * physical package.
6560 */
6561 continue;
6562 }
6563
6564 sg->cpu_power += sd->groups->cpu_power;
6565 }
6566 sg = sg->next;
6567 } while (sg != group_head);
6568 }
6569
6570 static int build_numa_sched_groups(struct s_data *d,
6571 const struct cpumask *cpu_map, int num)
6572 {
6573 struct sched_domain *sd;
6574 struct sched_group *sg, *prev;
6575 int n, j;
6576
6577 cpumask_clear(d->covered);
6578 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6579 if (cpumask_empty(d->nodemask)) {
6580 d->sched_group_nodes[num] = NULL;
6581 goto out;
6582 }
6583
6584 sched_domain_node_span(num, d->domainspan);
6585 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6586
6587 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6588 GFP_KERNEL, num);
6589 if (!sg) {
6590 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6591 num);
6592 return -ENOMEM;
6593 }
6594 d->sched_group_nodes[num] = sg;
6595
6596 for_each_cpu(j, d->nodemask) {
6597 sd = &per_cpu(node_domains, j).sd;
6598 sd->groups = sg;
6599 }
6600
6601 sg->cpu_power = 0;
6602 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6603 sg->next = sg;
6604 cpumask_or(d->covered, d->covered, d->nodemask);
6605
6606 prev = sg;
6607 for (j = 0; j < nr_node_ids; j++) {
6608 n = (num + j) % nr_node_ids;
6609 cpumask_complement(d->notcovered, d->covered);
6610 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6611 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6612 if (cpumask_empty(d->tmpmask))
6613 break;
6614 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6615 if (cpumask_empty(d->tmpmask))
6616 continue;
6617 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6618 GFP_KERNEL, num);
6619 if (!sg) {
6620 printk(KERN_WARNING
6621 "Can not alloc domain group for node %d\n", j);
6622 return -ENOMEM;
6623 }
6624 sg->cpu_power = 0;
6625 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6626 sg->next = prev->next;
6627 cpumask_or(d->covered, d->covered, d->tmpmask);
6628 prev->next = sg;
6629 prev = sg;
6630 }
6631 out:
6632 return 0;
6633 }
6634 #endif /* CONFIG_NUMA */
6635
6636 #ifdef CONFIG_NUMA
6637 /* Free memory allocated for various sched_group structures */
6638 static void free_sched_groups(const struct cpumask *cpu_map,
6639 struct cpumask *nodemask)
6640 {
6641 int cpu, i;
6642
6643 for_each_cpu(cpu, cpu_map) {
6644 struct sched_group **sched_group_nodes
6645 = sched_group_nodes_bycpu[cpu];
6646
6647 if (!sched_group_nodes)
6648 continue;
6649
6650 for (i = 0; i < nr_node_ids; i++) {
6651 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6652
6653 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6654 if (cpumask_empty(nodemask))
6655 continue;
6656
6657 if (sg == NULL)
6658 continue;
6659 sg = sg->next;
6660 next_sg:
6661 oldsg = sg;
6662 sg = sg->next;
6663 kfree(oldsg);
6664 if (oldsg != sched_group_nodes[i])
6665 goto next_sg;
6666 }
6667 kfree(sched_group_nodes);
6668 sched_group_nodes_bycpu[cpu] = NULL;
6669 }
6670 }
6671 #else /* !CONFIG_NUMA */
6672 static void free_sched_groups(const struct cpumask *cpu_map,
6673 struct cpumask *nodemask)
6674 {
6675 }
6676 #endif /* CONFIG_NUMA */
6677
6678 /*
6679 * Initialize sched groups cpu_power.
6680 *
6681 * cpu_power indicates the capacity of sched group, which is used while
6682 * distributing the load between different sched groups in a sched domain.
6683 * Typically cpu_power for all the groups in a sched domain will be same unless
6684 * there are asymmetries in the topology. If there are asymmetries, group
6685 * having more cpu_power will pickup more load compared to the group having
6686 * less cpu_power.
6687 */
6688 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6689 {
6690 struct sched_domain *child;
6691 struct sched_group *group;
6692 long power;
6693 int weight;
6694
6695 WARN_ON(!sd || !sd->groups);
6696
6697 if (cpu != group_first_cpu(sd->groups))
6698 return;
6699
6700 child = sd->child;
6701
6702 sd->groups->cpu_power = 0;
6703
6704 if (!child) {
6705 power = SCHED_LOAD_SCALE;
6706 weight = cpumask_weight(sched_domain_span(sd));
6707 /*
6708 * SMT siblings share the power of a single core.
6709 * Usually multiple threads get a better yield out of
6710 * that one core than a single thread would have,
6711 * reflect that in sd->smt_gain.
6712 */
6713 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6714 power *= sd->smt_gain;
6715 power /= weight;
6716 power >>= SCHED_LOAD_SHIFT;
6717 }
6718 sd->groups->cpu_power += power;
6719 return;
6720 }
6721
6722 /*
6723 * Add cpu_power of each child group to this groups cpu_power.
6724 */
6725 group = child->groups;
6726 do {
6727 sd->groups->cpu_power += group->cpu_power;
6728 group = group->next;
6729 } while (group != child->groups);
6730 }
6731
6732 /*
6733 * Initializers for schedule domains
6734 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6735 */
6736
6737 #ifdef CONFIG_SCHED_DEBUG
6738 # define SD_INIT_NAME(sd, type) sd->name = #type
6739 #else
6740 # define SD_INIT_NAME(sd, type) do { } while (0)
6741 #endif
6742
6743 #define SD_INIT(sd, type) sd_init_##type(sd)
6744
6745 #define SD_INIT_FUNC(type) \
6746 static noinline void sd_init_##type(struct sched_domain *sd) \
6747 { \
6748 memset(sd, 0, sizeof(*sd)); \
6749 *sd = SD_##type##_INIT; \
6750 sd->level = SD_LV_##type; \
6751 SD_INIT_NAME(sd, type); \
6752 }
6753
6754 SD_INIT_FUNC(CPU)
6755 #ifdef CONFIG_NUMA
6756 SD_INIT_FUNC(ALLNODES)
6757 SD_INIT_FUNC(NODE)
6758 #endif
6759 #ifdef CONFIG_SCHED_SMT
6760 SD_INIT_FUNC(SIBLING)
6761 #endif
6762 #ifdef CONFIG_SCHED_MC
6763 SD_INIT_FUNC(MC)
6764 #endif
6765
6766 static int default_relax_domain_level = -1;
6767
6768 static int __init setup_relax_domain_level(char *str)
6769 {
6770 unsigned long val;
6771
6772 val = simple_strtoul(str, NULL, 0);
6773 if (val < SD_LV_MAX)
6774 default_relax_domain_level = val;
6775
6776 return 1;
6777 }
6778 __setup("relax_domain_level=", setup_relax_domain_level);
6779
6780 static void set_domain_attribute(struct sched_domain *sd,
6781 struct sched_domain_attr *attr)
6782 {
6783 int request;
6784
6785 if (!attr || attr->relax_domain_level < 0) {
6786 if (default_relax_domain_level < 0)
6787 return;
6788 else
6789 request = default_relax_domain_level;
6790 } else
6791 request = attr->relax_domain_level;
6792 if (request < sd->level) {
6793 /* turn off idle balance on this domain */
6794 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6795 } else {
6796 /* turn on idle balance on this domain */
6797 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6798 }
6799 }
6800
6801 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6802 const struct cpumask *cpu_map)
6803 {
6804 switch (what) {
6805 case sa_sched_groups:
6806 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6807 d->sched_group_nodes = NULL;
6808 case sa_rootdomain:
6809 free_rootdomain(d->rd); /* fall through */
6810 case sa_tmpmask:
6811 free_cpumask_var(d->tmpmask); /* fall through */
6812 case sa_send_covered:
6813 free_cpumask_var(d->send_covered); /* fall through */
6814 case sa_this_core_map:
6815 free_cpumask_var(d->this_core_map); /* fall through */
6816 case sa_this_sibling_map:
6817 free_cpumask_var(d->this_sibling_map); /* fall through */
6818 case sa_nodemask:
6819 free_cpumask_var(d->nodemask); /* fall through */
6820 case sa_sched_group_nodes:
6821 #ifdef CONFIG_NUMA
6822 kfree(d->sched_group_nodes); /* fall through */
6823 case sa_notcovered:
6824 free_cpumask_var(d->notcovered); /* fall through */
6825 case sa_covered:
6826 free_cpumask_var(d->covered); /* fall through */
6827 case sa_domainspan:
6828 free_cpumask_var(d->domainspan); /* fall through */
6829 #endif
6830 case sa_none:
6831 break;
6832 }
6833 }
6834
6835 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6836 const struct cpumask *cpu_map)
6837 {
6838 #ifdef CONFIG_NUMA
6839 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6840 return sa_none;
6841 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6842 return sa_domainspan;
6843 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6844 return sa_covered;
6845 /* Allocate the per-node list of sched groups */
6846 d->sched_group_nodes = kcalloc(nr_node_ids,
6847 sizeof(struct sched_group *), GFP_KERNEL);
6848 if (!d->sched_group_nodes) {
6849 printk(KERN_WARNING "Can not alloc sched group node list\n");
6850 return sa_notcovered;
6851 }
6852 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6853 #endif
6854 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6855 return sa_sched_group_nodes;
6856 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6857 return sa_nodemask;
6858 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6859 return sa_this_sibling_map;
6860 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6861 return sa_this_core_map;
6862 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6863 return sa_send_covered;
6864 d->rd = alloc_rootdomain();
6865 if (!d->rd) {
6866 printk(KERN_WARNING "Cannot alloc root domain\n");
6867 return sa_tmpmask;
6868 }
6869 return sa_rootdomain;
6870 }
6871
6872 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6873 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6874 {
6875 struct sched_domain *sd = NULL;
6876 #ifdef CONFIG_NUMA
6877 struct sched_domain *parent;
6878
6879 d->sd_allnodes = 0;
6880 if (cpumask_weight(cpu_map) >
6881 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6882 sd = &per_cpu(allnodes_domains, i).sd;
6883 SD_INIT(sd, ALLNODES);
6884 set_domain_attribute(sd, attr);
6885 cpumask_copy(sched_domain_span(sd), cpu_map);
6886 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6887 d->sd_allnodes = 1;
6888 }
6889 parent = sd;
6890
6891 sd = &per_cpu(node_domains, i).sd;
6892 SD_INIT(sd, NODE);
6893 set_domain_attribute(sd, attr);
6894 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6895 sd->parent = parent;
6896 if (parent)
6897 parent->child = sd;
6898 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6899 #endif
6900 return sd;
6901 }
6902
6903 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6904 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6905 struct sched_domain *parent, int i)
6906 {
6907 struct sched_domain *sd;
6908 sd = &per_cpu(phys_domains, i).sd;
6909 SD_INIT(sd, CPU);
6910 set_domain_attribute(sd, attr);
6911 cpumask_copy(sched_domain_span(sd), d->nodemask);
6912 sd->parent = parent;
6913 if (parent)
6914 parent->child = sd;
6915 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6916 return sd;
6917 }
6918
6919 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6920 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6921 struct sched_domain *parent, int i)
6922 {
6923 struct sched_domain *sd = parent;
6924 #ifdef CONFIG_SCHED_MC
6925 sd = &per_cpu(core_domains, i).sd;
6926 SD_INIT(sd, MC);
6927 set_domain_attribute(sd, attr);
6928 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6929 sd->parent = parent;
6930 parent->child = sd;
6931 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6932 #endif
6933 return sd;
6934 }
6935
6936 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6937 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6938 struct sched_domain *parent, int i)
6939 {
6940 struct sched_domain *sd = parent;
6941 #ifdef CONFIG_SCHED_SMT
6942 sd = &per_cpu(cpu_domains, i).sd;
6943 SD_INIT(sd, SIBLING);
6944 set_domain_attribute(sd, attr);
6945 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6946 sd->parent = parent;
6947 parent->child = sd;
6948 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6949 #endif
6950 return sd;
6951 }
6952
6953 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6954 const struct cpumask *cpu_map, int cpu)
6955 {
6956 switch (l) {
6957 #ifdef CONFIG_SCHED_SMT
6958 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6959 cpumask_and(d->this_sibling_map, cpu_map,
6960 topology_thread_cpumask(cpu));
6961 if (cpu == cpumask_first(d->this_sibling_map))
6962 init_sched_build_groups(d->this_sibling_map, cpu_map,
6963 &cpu_to_cpu_group,
6964 d->send_covered, d->tmpmask);
6965 break;
6966 #endif
6967 #ifdef CONFIG_SCHED_MC
6968 case SD_LV_MC: /* set up multi-core groups */
6969 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6970 if (cpu == cpumask_first(d->this_core_map))
6971 init_sched_build_groups(d->this_core_map, cpu_map,
6972 &cpu_to_core_group,
6973 d->send_covered, d->tmpmask);
6974 break;
6975 #endif
6976 case SD_LV_CPU: /* set up physical groups */
6977 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6978 if (!cpumask_empty(d->nodemask))
6979 init_sched_build_groups(d->nodemask, cpu_map,
6980 &cpu_to_phys_group,
6981 d->send_covered, d->tmpmask);
6982 break;
6983 #ifdef CONFIG_NUMA
6984 case SD_LV_ALLNODES:
6985 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6986 d->send_covered, d->tmpmask);
6987 break;
6988 #endif
6989 default:
6990 break;
6991 }
6992 }
6993
6994 /*
6995 * Build sched domains for a given set of cpus and attach the sched domains
6996 * to the individual cpus
6997 */
6998 static int __build_sched_domains(const struct cpumask *cpu_map,
6999 struct sched_domain_attr *attr)
7000 {
7001 enum s_alloc alloc_state = sa_none;
7002 struct s_data d;
7003 struct sched_domain *sd;
7004 int i;
7005 #ifdef CONFIG_NUMA
7006 d.sd_allnodes = 0;
7007 #endif
7008
7009 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7010 if (alloc_state != sa_rootdomain)
7011 goto error;
7012 alloc_state = sa_sched_groups;
7013
7014 /*
7015 * Set up domains for cpus specified by the cpu_map.
7016 */
7017 for_each_cpu(i, cpu_map) {
7018 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
7019 cpu_map);
7020
7021 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
7022 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
7023 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
7024 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
7025 }
7026
7027 for_each_cpu(i, cpu_map) {
7028 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7029 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7030 }
7031
7032 /* Set up physical groups */
7033 for (i = 0; i < nr_node_ids; i++)
7034 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7035
7036 #ifdef CONFIG_NUMA
7037 /* Set up node groups */
7038 if (d.sd_allnodes)
7039 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7040
7041 for (i = 0; i < nr_node_ids; i++)
7042 if (build_numa_sched_groups(&d, cpu_map, i))
7043 goto error;
7044 #endif
7045
7046 /* Calculate CPU power for physical packages and nodes */
7047 #ifdef CONFIG_SCHED_SMT
7048 for_each_cpu(i, cpu_map) {
7049 sd = &per_cpu(cpu_domains, i).sd;
7050 init_sched_groups_power(i, sd);
7051 }
7052 #endif
7053 #ifdef CONFIG_SCHED_MC
7054 for_each_cpu(i, cpu_map) {
7055 sd = &per_cpu(core_domains, i).sd;
7056 init_sched_groups_power(i, sd);
7057 }
7058 #endif
7059
7060 for_each_cpu(i, cpu_map) {
7061 sd = &per_cpu(phys_domains, i).sd;
7062 init_sched_groups_power(i, sd);
7063 }
7064
7065 #ifdef CONFIG_NUMA
7066 for (i = 0; i < nr_node_ids; i++)
7067 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7068
7069 if (d.sd_allnodes) {
7070 struct sched_group *sg;
7071
7072 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7073 d.tmpmask);
7074 init_numa_sched_groups_power(sg);
7075 }
7076 #endif
7077
7078 /* Attach the domains */
7079 for_each_cpu(i, cpu_map) {
7080 #ifdef CONFIG_SCHED_SMT
7081 sd = &per_cpu(cpu_domains, i).sd;
7082 #elif defined(CONFIG_SCHED_MC)
7083 sd = &per_cpu(core_domains, i).sd;
7084 #else
7085 sd = &per_cpu(phys_domains, i).sd;
7086 #endif
7087 cpu_attach_domain(sd, d.rd, i);
7088 }
7089
7090 d.sched_group_nodes = NULL; /* don't free this we still need it */
7091 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7092 return 0;
7093
7094 error:
7095 __free_domain_allocs(&d, alloc_state, cpu_map);
7096 return -ENOMEM;
7097 }
7098
7099 static int build_sched_domains(const struct cpumask *cpu_map)
7100 {
7101 return __build_sched_domains(cpu_map, NULL);
7102 }
7103
7104 static cpumask_var_t *doms_cur; /* current sched domains */
7105 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7106 static struct sched_domain_attr *dattr_cur;
7107 /* attribues of custom domains in 'doms_cur' */
7108
7109 /*
7110 * Special case: If a kmalloc of a doms_cur partition (array of
7111 * cpumask) fails, then fallback to a single sched domain,
7112 * as determined by the single cpumask fallback_doms.
7113 */
7114 static cpumask_var_t fallback_doms;
7115
7116 /*
7117 * arch_update_cpu_topology lets virtualized architectures update the
7118 * cpu core maps. It is supposed to return 1 if the topology changed
7119 * or 0 if it stayed the same.
7120 */
7121 int __attribute__((weak)) arch_update_cpu_topology(void)
7122 {
7123 return 0;
7124 }
7125
7126 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7127 {
7128 int i;
7129 cpumask_var_t *doms;
7130
7131 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7132 if (!doms)
7133 return NULL;
7134 for (i = 0; i < ndoms; i++) {
7135 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7136 free_sched_domains(doms, i);
7137 return NULL;
7138 }
7139 }
7140 return doms;
7141 }
7142
7143 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7144 {
7145 unsigned int i;
7146 for (i = 0; i < ndoms; i++)
7147 free_cpumask_var(doms[i]);
7148 kfree(doms);
7149 }
7150
7151 /*
7152 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7153 * For now this just excludes isolated cpus, but could be used to
7154 * exclude other special cases in the future.
7155 */
7156 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7157 {
7158 int err;
7159
7160 arch_update_cpu_topology();
7161 ndoms_cur = 1;
7162 doms_cur = alloc_sched_domains(ndoms_cur);
7163 if (!doms_cur)
7164 doms_cur = &fallback_doms;
7165 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7166 dattr_cur = NULL;
7167 err = build_sched_domains(doms_cur[0]);
7168 register_sched_domain_sysctl();
7169
7170 return err;
7171 }
7172
7173 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7174 struct cpumask *tmpmask)
7175 {
7176 free_sched_groups(cpu_map, tmpmask);
7177 }
7178
7179 /*
7180 * Detach sched domains from a group of cpus specified in cpu_map
7181 * These cpus will now be attached to the NULL domain
7182 */
7183 static void detach_destroy_domains(const struct cpumask *cpu_map)
7184 {
7185 /* Save because hotplug lock held. */
7186 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7187 int i;
7188
7189 for_each_cpu(i, cpu_map)
7190 cpu_attach_domain(NULL, &def_root_domain, i);
7191 synchronize_sched();
7192 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7193 }
7194
7195 /* handle null as "default" */
7196 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7197 struct sched_domain_attr *new, int idx_new)
7198 {
7199 struct sched_domain_attr tmp;
7200
7201 /* fast path */
7202 if (!new && !cur)
7203 return 1;
7204
7205 tmp = SD_ATTR_INIT;
7206 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7207 new ? (new + idx_new) : &tmp,
7208 sizeof(struct sched_domain_attr));
7209 }
7210
7211 /*
7212 * Partition sched domains as specified by the 'ndoms_new'
7213 * cpumasks in the array doms_new[] of cpumasks. This compares
7214 * doms_new[] to the current sched domain partitioning, doms_cur[].
7215 * It destroys each deleted domain and builds each new domain.
7216 *
7217 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7218 * The masks don't intersect (don't overlap.) We should setup one
7219 * sched domain for each mask. CPUs not in any of the cpumasks will
7220 * not be load balanced. If the same cpumask appears both in the
7221 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7222 * it as it is.
7223 *
7224 * The passed in 'doms_new' should be allocated using
7225 * alloc_sched_domains. This routine takes ownership of it and will
7226 * free_sched_domains it when done with it. If the caller failed the
7227 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7228 * and partition_sched_domains() will fallback to the single partition
7229 * 'fallback_doms', it also forces the domains to be rebuilt.
7230 *
7231 * If doms_new == NULL it will be replaced with cpu_online_mask.
7232 * ndoms_new == 0 is a special case for destroying existing domains,
7233 * and it will not create the default domain.
7234 *
7235 * Call with hotplug lock held
7236 */
7237 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7238 struct sched_domain_attr *dattr_new)
7239 {
7240 int i, j, n;
7241 int new_topology;
7242
7243 mutex_lock(&sched_domains_mutex);
7244
7245 /* always unregister in case we don't destroy any domains */
7246 unregister_sched_domain_sysctl();
7247
7248 /* Let architecture update cpu core mappings. */
7249 new_topology = arch_update_cpu_topology();
7250
7251 n = doms_new ? ndoms_new : 0;
7252
7253 /* Destroy deleted domains */
7254 for (i = 0; i < ndoms_cur; i++) {
7255 for (j = 0; j < n && !new_topology; j++) {
7256 if (cpumask_equal(doms_cur[i], doms_new[j])
7257 && dattrs_equal(dattr_cur, i, dattr_new, j))
7258 goto match1;
7259 }
7260 /* no match - a current sched domain not in new doms_new[] */
7261 detach_destroy_domains(doms_cur[i]);
7262 match1:
7263 ;
7264 }
7265
7266 if (doms_new == NULL) {
7267 ndoms_cur = 0;
7268 doms_new = &fallback_doms;
7269 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7270 WARN_ON_ONCE(dattr_new);
7271 }
7272
7273 /* Build new domains */
7274 for (i = 0; i < ndoms_new; i++) {
7275 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7276 if (cpumask_equal(doms_new[i], doms_cur[j])
7277 && dattrs_equal(dattr_new, i, dattr_cur, j))
7278 goto match2;
7279 }
7280 /* no match - add a new doms_new */
7281 __build_sched_domains(doms_new[i],
7282 dattr_new ? dattr_new + i : NULL);
7283 match2:
7284 ;
7285 }
7286
7287 /* Remember the new sched domains */
7288 if (doms_cur != &fallback_doms)
7289 free_sched_domains(doms_cur, ndoms_cur);
7290 kfree(dattr_cur); /* kfree(NULL) is safe */
7291 doms_cur = doms_new;
7292 dattr_cur = dattr_new;
7293 ndoms_cur = ndoms_new;
7294
7295 register_sched_domain_sysctl();
7296
7297 mutex_unlock(&sched_domains_mutex);
7298 }
7299
7300 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7301 static void arch_reinit_sched_domains(void)
7302 {
7303 get_online_cpus();
7304
7305 /* Destroy domains first to force the rebuild */
7306 partition_sched_domains(0, NULL, NULL);
7307
7308 rebuild_sched_domains();
7309 put_online_cpus();
7310 }
7311
7312 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7313 {
7314 unsigned int level = 0;
7315
7316 if (sscanf(buf, "%u", &level) != 1)
7317 return -EINVAL;
7318
7319 /*
7320 * level is always be positive so don't check for
7321 * level < POWERSAVINGS_BALANCE_NONE which is 0
7322 * What happens on 0 or 1 byte write,
7323 * need to check for count as well?
7324 */
7325
7326 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7327 return -EINVAL;
7328
7329 if (smt)
7330 sched_smt_power_savings = level;
7331 else
7332 sched_mc_power_savings = level;
7333
7334 arch_reinit_sched_domains();
7335
7336 return count;
7337 }
7338
7339 #ifdef CONFIG_SCHED_MC
7340 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7341 char *page)
7342 {
7343 return sprintf(page, "%u\n", sched_mc_power_savings);
7344 }
7345 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7346 const char *buf, size_t count)
7347 {
7348 return sched_power_savings_store(buf, count, 0);
7349 }
7350 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7351 sched_mc_power_savings_show,
7352 sched_mc_power_savings_store);
7353 #endif
7354
7355 #ifdef CONFIG_SCHED_SMT
7356 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7357 char *page)
7358 {
7359 return sprintf(page, "%u\n", sched_smt_power_savings);
7360 }
7361 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7362 const char *buf, size_t count)
7363 {
7364 return sched_power_savings_store(buf, count, 1);
7365 }
7366 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7367 sched_smt_power_savings_show,
7368 sched_smt_power_savings_store);
7369 #endif
7370
7371 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7372 {
7373 int err = 0;
7374
7375 #ifdef CONFIG_SCHED_SMT
7376 if (smt_capable())
7377 err = sysfs_create_file(&cls->kset.kobj,
7378 &attr_sched_smt_power_savings.attr);
7379 #endif
7380 #ifdef CONFIG_SCHED_MC
7381 if (!err && mc_capable())
7382 err = sysfs_create_file(&cls->kset.kobj,
7383 &attr_sched_mc_power_savings.attr);
7384 #endif
7385 return err;
7386 }
7387 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7388
7389 #ifndef CONFIG_CPUSETS
7390 /*
7391 * Add online and remove offline CPUs from the scheduler domains.
7392 * When cpusets are enabled they take over this function.
7393 */
7394 static int update_sched_domains(struct notifier_block *nfb,
7395 unsigned long action, void *hcpu)
7396 {
7397 switch (action) {
7398 case CPU_ONLINE:
7399 case CPU_ONLINE_FROZEN:
7400 case CPU_DOWN_PREPARE:
7401 case CPU_DOWN_PREPARE_FROZEN:
7402 case CPU_DOWN_FAILED:
7403 case CPU_DOWN_FAILED_FROZEN:
7404 partition_sched_domains(1, NULL, NULL);
7405 return NOTIFY_OK;
7406
7407 default:
7408 return NOTIFY_DONE;
7409 }
7410 }
7411 #endif
7412
7413 static int update_runtime(struct notifier_block *nfb,
7414 unsigned long action, void *hcpu)
7415 {
7416 int cpu = (int)(long)hcpu;
7417
7418 switch (action) {
7419 case CPU_DOWN_PREPARE:
7420 case CPU_DOWN_PREPARE_FROZEN:
7421 disable_runtime(cpu_rq(cpu));
7422 return NOTIFY_OK;
7423
7424 case CPU_DOWN_FAILED:
7425 case CPU_DOWN_FAILED_FROZEN:
7426 case CPU_ONLINE:
7427 case CPU_ONLINE_FROZEN:
7428 enable_runtime(cpu_rq(cpu));
7429 return NOTIFY_OK;
7430
7431 default:
7432 return NOTIFY_DONE;
7433 }
7434 }
7435
7436 void __init sched_init_smp(void)
7437 {
7438 cpumask_var_t non_isolated_cpus;
7439
7440 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7441 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7442
7443 #if defined(CONFIG_NUMA)
7444 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7445 GFP_KERNEL);
7446 BUG_ON(sched_group_nodes_bycpu == NULL);
7447 #endif
7448 get_online_cpus();
7449 mutex_lock(&sched_domains_mutex);
7450 arch_init_sched_domains(cpu_active_mask);
7451 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7452 if (cpumask_empty(non_isolated_cpus))
7453 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7454 mutex_unlock(&sched_domains_mutex);
7455 put_online_cpus();
7456
7457 #ifndef CONFIG_CPUSETS
7458 /* XXX: Theoretical race here - CPU may be hotplugged now */
7459 hotcpu_notifier(update_sched_domains, 0);
7460 #endif
7461
7462 /* RT runtime code needs to handle some hotplug events */
7463 hotcpu_notifier(update_runtime, 0);
7464
7465 init_hrtick();
7466
7467 /* Move init over to a non-isolated CPU */
7468 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7469 BUG();
7470 sched_init_granularity();
7471 free_cpumask_var(non_isolated_cpus);
7472
7473 init_sched_rt_class();
7474 }
7475 #else
7476 void __init sched_init_smp(void)
7477 {
7478 sched_init_granularity();
7479 }
7480 #endif /* CONFIG_SMP */
7481
7482 const_debug unsigned int sysctl_timer_migration = 1;
7483
7484 int in_sched_functions(unsigned long addr)
7485 {
7486 return in_lock_functions(addr) ||
7487 (addr >= (unsigned long)__sched_text_start
7488 && addr < (unsigned long)__sched_text_end);
7489 }
7490
7491 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7492 {
7493 cfs_rq->tasks_timeline = RB_ROOT;
7494 INIT_LIST_HEAD(&cfs_rq->tasks);
7495 #ifdef CONFIG_FAIR_GROUP_SCHED
7496 cfs_rq->rq = rq;
7497 #endif
7498 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7499 }
7500
7501 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7502 {
7503 struct rt_prio_array *array;
7504 int i;
7505
7506 array = &rt_rq->active;
7507 for (i = 0; i < MAX_RT_PRIO; i++) {
7508 INIT_LIST_HEAD(array->queue + i);
7509 __clear_bit(i, array->bitmap);
7510 }
7511 /* delimiter for bitsearch: */
7512 __set_bit(MAX_RT_PRIO, array->bitmap);
7513
7514 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7515 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7516 #ifdef CONFIG_SMP
7517 rt_rq->highest_prio.next = MAX_RT_PRIO;
7518 #endif
7519 #endif
7520 #ifdef CONFIG_SMP
7521 rt_rq->rt_nr_migratory = 0;
7522 rt_rq->overloaded = 0;
7523 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7524 #endif
7525
7526 rt_rq->rt_time = 0;
7527 rt_rq->rt_throttled = 0;
7528 rt_rq->rt_runtime = 0;
7529 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7530
7531 #ifdef CONFIG_RT_GROUP_SCHED
7532 rt_rq->rt_nr_boosted = 0;
7533 rt_rq->rq = rq;
7534 #endif
7535 }
7536
7537 #ifdef CONFIG_FAIR_GROUP_SCHED
7538 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7539 struct sched_entity *se, int cpu, int add,
7540 struct sched_entity *parent)
7541 {
7542 struct rq *rq = cpu_rq(cpu);
7543 tg->cfs_rq[cpu] = cfs_rq;
7544 init_cfs_rq(cfs_rq, rq);
7545 cfs_rq->tg = tg;
7546 if (add)
7547 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7548
7549 tg->se[cpu] = se;
7550 /* se could be NULL for init_task_group */
7551 if (!se)
7552 return;
7553
7554 if (!parent)
7555 se->cfs_rq = &rq->cfs;
7556 else
7557 se->cfs_rq = parent->my_q;
7558
7559 se->my_q = cfs_rq;
7560 se->load.weight = tg->shares;
7561 se->load.inv_weight = 0;
7562 se->parent = parent;
7563 }
7564 #endif
7565
7566 #ifdef CONFIG_RT_GROUP_SCHED
7567 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7568 struct sched_rt_entity *rt_se, int cpu, int add,
7569 struct sched_rt_entity *parent)
7570 {
7571 struct rq *rq = cpu_rq(cpu);
7572
7573 tg->rt_rq[cpu] = rt_rq;
7574 init_rt_rq(rt_rq, rq);
7575 rt_rq->tg = tg;
7576 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7577 if (add)
7578 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7579
7580 tg->rt_se[cpu] = rt_se;
7581 if (!rt_se)
7582 return;
7583
7584 if (!parent)
7585 rt_se->rt_rq = &rq->rt;
7586 else
7587 rt_se->rt_rq = parent->my_q;
7588
7589 rt_se->my_q = rt_rq;
7590 rt_se->parent = parent;
7591 INIT_LIST_HEAD(&rt_se->run_list);
7592 }
7593 #endif
7594
7595 void __init sched_init(void)
7596 {
7597 int i, j;
7598 unsigned long alloc_size = 0, ptr;
7599
7600 #ifdef CONFIG_FAIR_GROUP_SCHED
7601 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7602 #endif
7603 #ifdef CONFIG_RT_GROUP_SCHED
7604 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7605 #endif
7606 #ifdef CONFIG_CPUMASK_OFFSTACK
7607 alloc_size += num_possible_cpus() * cpumask_size();
7608 #endif
7609 if (alloc_size) {
7610 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7611
7612 #ifdef CONFIG_FAIR_GROUP_SCHED
7613 init_task_group.se = (struct sched_entity **)ptr;
7614 ptr += nr_cpu_ids * sizeof(void **);
7615
7616 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7617 ptr += nr_cpu_ids * sizeof(void **);
7618
7619 #endif /* CONFIG_FAIR_GROUP_SCHED */
7620 #ifdef CONFIG_RT_GROUP_SCHED
7621 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7622 ptr += nr_cpu_ids * sizeof(void **);
7623
7624 init_task_group.rt_rq = (struct rt_rq **)ptr;
7625 ptr += nr_cpu_ids * sizeof(void **);
7626
7627 #endif /* CONFIG_RT_GROUP_SCHED */
7628 #ifdef CONFIG_CPUMASK_OFFSTACK
7629 for_each_possible_cpu(i) {
7630 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7631 ptr += cpumask_size();
7632 }
7633 #endif /* CONFIG_CPUMASK_OFFSTACK */
7634 }
7635
7636 #ifdef CONFIG_SMP
7637 init_defrootdomain();
7638 #endif
7639
7640 init_rt_bandwidth(&def_rt_bandwidth,
7641 global_rt_period(), global_rt_runtime());
7642
7643 #ifdef CONFIG_RT_GROUP_SCHED
7644 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7645 global_rt_period(), global_rt_runtime());
7646 #endif /* CONFIG_RT_GROUP_SCHED */
7647
7648 #ifdef CONFIG_CGROUP_SCHED
7649 list_add(&init_task_group.list, &task_groups);
7650 INIT_LIST_HEAD(&init_task_group.children);
7651
7652 #endif /* CONFIG_CGROUP_SCHED */
7653
7654 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7655 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7656 __alignof__(unsigned long));
7657 #endif
7658 for_each_possible_cpu(i) {
7659 struct rq *rq;
7660
7661 rq = cpu_rq(i);
7662 raw_spin_lock_init(&rq->lock);
7663 rq->nr_running = 0;
7664 rq->calc_load_active = 0;
7665 rq->calc_load_update = jiffies + LOAD_FREQ;
7666 init_cfs_rq(&rq->cfs, rq);
7667 init_rt_rq(&rq->rt, rq);
7668 #ifdef CONFIG_FAIR_GROUP_SCHED
7669 init_task_group.shares = init_task_group_load;
7670 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7671 #ifdef CONFIG_CGROUP_SCHED
7672 /*
7673 * How much cpu bandwidth does init_task_group get?
7674 *
7675 * In case of task-groups formed thr' the cgroup filesystem, it
7676 * gets 100% of the cpu resources in the system. This overall
7677 * system cpu resource is divided among the tasks of
7678 * init_task_group and its child task-groups in a fair manner,
7679 * based on each entity's (task or task-group's) weight
7680 * (se->load.weight).
7681 *
7682 * In other words, if init_task_group has 10 tasks of weight
7683 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7684 * then A0's share of the cpu resource is:
7685 *
7686 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7687 *
7688 * We achieve this by letting init_task_group's tasks sit
7689 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7690 */
7691 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7692 #endif
7693 #endif /* CONFIG_FAIR_GROUP_SCHED */
7694
7695 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7696 #ifdef CONFIG_RT_GROUP_SCHED
7697 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7698 #ifdef CONFIG_CGROUP_SCHED
7699 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7700 #endif
7701 #endif
7702
7703 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7704 rq->cpu_load[j] = 0;
7705 #ifdef CONFIG_SMP
7706 rq->sd = NULL;
7707 rq->rd = NULL;
7708 rq->post_schedule = 0;
7709 rq->active_balance = 0;
7710 rq->next_balance = jiffies;
7711 rq->push_cpu = 0;
7712 rq->cpu = i;
7713 rq->online = 0;
7714 rq->migration_thread = NULL;
7715 rq->idle_stamp = 0;
7716 rq->avg_idle = 2*sysctl_sched_migration_cost;
7717 INIT_LIST_HEAD(&rq->migration_queue);
7718 rq_attach_root(rq, &def_root_domain);
7719 #endif
7720 init_rq_hrtick(rq);
7721 atomic_set(&rq->nr_iowait, 0);
7722 }
7723
7724 set_load_weight(&init_task);
7725
7726 #ifdef CONFIG_PREEMPT_NOTIFIERS
7727 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7728 #endif
7729
7730 #ifdef CONFIG_SMP
7731 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7732 #endif
7733
7734 #ifdef CONFIG_RT_MUTEXES
7735 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7736 #endif
7737
7738 /*
7739 * The boot idle thread does lazy MMU switching as well:
7740 */
7741 atomic_inc(&init_mm.mm_count);
7742 enter_lazy_tlb(&init_mm, current);
7743
7744 /*
7745 * Make us the idle thread. Technically, schedule() should not be
7746 * called from this thread, however somewhere below it might be,
7747 * but because we are the idle thread, we just pick up running again
7748 * when this runqueue becomes "idle".
7749 */
7750 init_idle(current, smp_processor_id());
7751
7752 calc_load_update = jiffies + LOAD_FREQ;
7753
7754 /*
7755 * During early bootup we pretend to be a normal task:
7756 */
7757 current->sched_class = &fair_sched_class;
7758
7759 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7760 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7761 #ifdef CONFIG_SMP
7762 #ifdef CONFIG_NO_HZ
7763 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7764 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7765 #endif
7766 /* May be allocated at isolcpus cmdline parse time */
7767 if (cpu_isolated_map == NULL)
7768 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7769 #endif /* SMP */
7770
7771 perf_event_init();
7772
7773 scheduler_running = 1;
7774 }
7775
7776 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7777 static inline int preempt_count_equals(int preempt_offset)
7778 {
7779 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7780
7781 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7782 }
7783
7784 void __might_sleep(const char *file, int line, int preempt_offset)
7785 {
7786 #ifdef in_atomic
7787 static unsigned long prev_jiffy; /* ratelimiting */
7788
7789 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7790 system_state != SYSTEM_RUNNING || oops_in_progress)
7791 return;
7792 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7793 return;
7794 prev_jiffy = jiffies;
7795
7796 printk(KERN_ERR
7797 "BUG: sleeping function called from invalid context at %s:%d\n",
7798 file, line);
7799 printk(KERN_ERR
7800 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7801 in_atomic(), irqs_disabled(),
7802 current->pid, current->comm);
7803
7804 debug_show_held_locks(current);
7805 if (irqs_disabled())
7806 print_irqtrace_events(current);
7807 dump_stack();
7808 #endif
7809 }
7810 EXPORT_SYMBOL(__might_sleep);
7811 #endif
7812
7813 #ifdef CONFIG_MAGIC_SYSRQ
7814 static void normalize_task(struct rq *rq, struct task_struct *p)
7815 {
7816 int on_rq;
7817
7818 on_rq = p->se.on_rq;
7819 if (on_rq)
7820 deactivate_task(rq, p, 0);
7821 __setscheduler(rq, p, SCHED_NORMAL, 0);
7822 if (on_rq) {
7823 activate_task(rq, p, 0);
7824 resched_task(rq->curr);
7825 }
7826 }
7827
7828 void normalize_rt_tasks(void)
7829 {
7830 struct task_struct *g, *p;
7831 unsigned long flags;
7832 struct rq *rq;
7833
7834 read_lock_irqsave(&tasklist_lock, flags);
7835 do_each_thread(g, p) {
7836 /*
7837 * Only normalize user tasks:
7838 */
7839 if (!p->mm)
7840 continue;
7841
7842 p->se.exec_start = 0;
7843 #ifdef CONFIG_SCHEDSTATS
7844 p->se.statistics.wait_start = 0;
7845 p->se.statistics.sleep_start = 0;
7846 p->se.statistics.block_start = 0;
7847 #endif
7848
7849 if (!rt_task(p)) {
7850 /*
7851 * Renice negative nice level userspace
7852 * tasks back to 0:
7853 */
7854 if (TASK_NICE(p) < 0 && p->mm)
7855 set_user_nice(p, 0);
7856 continue;
7857 }
7858
7859 raw_spin_lock(&p->pi_lock);
7860 rq = __task_rq_lock(p);
7861
7862 normalize_task(rq, p);
7863
7864 __task_rq_unlock(rq);
7865 raw_spin_unlock(&p->pi_lock);
7866 } while_each_thread(g, p);
7867
7868 read_unlock_irqrestore(&tasklist_lock, flags);
7869 }
7870
7871 #endif /* CONFIG_MAGIC_SYSRQ */
7872
7873 #ifdef CONFIG_IA64
7874 /*
7875 * These functions are only useful for the IA64 MCA handling.
7876 *
7877 * They can only be called when the whole system has been
7878 * stopped - every CPU needs to be quiescent, and no scheduling
7879 * activity can take place. Using them for anything else would
7880 * be a serious bug, and as a result, they aren't even visible
7881 * under any other configuration.
7882 */
7883
7884 /**
7885 * curr_task - return the current task for a given cpu.
7886 * @cpu: the processor in question.
7887 *
7888 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7889 */
7890 struct task_struct *curr_task(int cpu)
7891 {
7892 return cpu_curr(cpu);
7893 }
7894
7895 /**
7896 * set_curr_task - set the current task for a given cpu.
7897 * @cpu: the processor in question.
7898 * @p: the task pointer to set.
7899 *
7900 * Description: This function must only be used when non-maskable interrupts
7901 * are serviced on a separate stack. It allows the architecture to switch the
7902 * notion of the current task on a cpu in a non-blocking manner. This function
7903 * must be called with all CPU's synchronized, and interrupts disabled, the
7904 * and caller must save the original value of the current task (see
7905 * curr_task() above) and restore that value before reenabling interrupts and
7906 * re-starting the system.
7907 *
7908 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7909 */
7910 void set_curr_task(int cpu, struct task_struct *p)
7911 {
7912 cpu_curr(cpu) = p;
7913 }
7914
7915 #endif
7916
7917 #ifdef CONFIG_FAIR_GROUP_SCHED
7918 static void free_fair_sched_group(struct task_group *tg)
7919 {
7920 int i;
7921
7922 for_each_possible_cpu(i) {
7923 if (tg->cfs_rq)
7924 kfree(tg->cfs_rq[i]);
7925 if (tg->se)
7926 kfree(tg->se[i]);
7927 }
7928
7929 kfree(tg->cfs_rq);
7930 kfree(tg->se);
7931 }
7932
7933 static
7934 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7935 {
7936 struct cfs_rq *cfs_rq;
7937 struct sched_entity *se;
7938 struct rq *rq;
7939 int i;
7940
7941 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7942 if (!tg->cfs_rq)
7943 goto err;
7944 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7945 if (!tg->se)
7946 goto err;
7947
7948 tg->shares = NICE_0_LOAD;
7949
7950 for_each_possible_cpu(i) {
7951 rq = cpu_rq(i);
7952
7953 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7954 GFP_KERNEL, cpu_to_node(i));
7955 if (!cfs_rq)
7956 goto err;
7957
7958 se = kzalloc_node(sizeof(struct sched_entity),
7959 GFP_KERNEL, cpu_to_node(i));
7960 if (!se)
7961 goto err_free_rq;
7962
7963 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7964 }
7965
7966 return 1;
7967
7968 err_free_rq:
7969 kfree(cfs_rq);
7970 err:
7971 return 0;
7972 }
7973
7974 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7975 {
7976 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7977 &cpu_rq(cpu)->leaf_cfs_rq_list);
7978 }
7979
7980 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7981 {
7982 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7983 }
7984 #else /* !CONFG_FAIR_GROUP_SCHED */
7985 static inline void free_fair_sched_group(struct task_group *tg)
7986 {
7987 }
7988
7989 static inline
7990 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7991 {
7992 return 1;
7993 }
7994
7995 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7996 {
7997 }
7998
7999 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8000 {
8001 }
8002 #endif /* CONFIG_FAIR_GROUP_SCHED */
8003
8004 #ifdef CONFIG_RT_GROUP_SCHED
8005 static void free_rt_sched_group(struct task_group *tg)
8006 {
8007 int i;
8008
8009 destroy_rt_bandwidth(&tg->rt_bandwidth);
8010
8011 for_each_possible_cpu(i) {
8012 if (tg->rt_rq)
8013 kfree(tg->rt_rq[i]);
8014 if (tg->rt_se)
8015 kfree(tg->rt_se[i]);
8016 }
8017
8018 kfree(tg->rt_rq);
8019 kfree(tg->rt_se);
8020 }
8021
8022 static
8023 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8024 {
8025 struct rt_rq *rt_rq;
8026 struct sched_rt_entity *rt_se;
8027 struct rq *rq;
8028 int i;
8029
8030 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8031 if (!tg->rt_rq)
8032 goto err;
8033 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8034 if (!tg->rt_se)
8035 goto err;
8036
8037 init_rt_bandwidth(&tg->rt_bandwidth,
8038 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8039
8040 for_each_possible_cpu(i) {
8041 rq = cpu_rq(i);
8042
8043 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8044 GFP_KERNEL, cpu_to_node(i));
8045 if (!rt_rq)
8046 goto err;
8047
8048 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8049 GFP_KERNEL, cpu_to_node(i));
8050 if (!rt_se)
8051 goto err_free_rq;
8052
8053 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8054 }
8055
8056 return 1;
8057
8058 err_free_rq:
8059 kfree(rt_rq);
8060 err:
8061 return 0;
8062 }
8063
8064 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8065 {
8066 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8067 &cpu_rq(cpu)->leaf_rt_rq_list);
8068 }
8069
8070 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8071 {
8072 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8073 }
8074 #else /* !CONFIG_RT_GROUP_SCHED */
8075 static inline void free_rt_sched_group(struct task_group *tg)
8076 {
8077 }
8078
8079 static inline
8080 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8081 {
8082 return 1;
8083 }
8084
8085 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8086 {
8087 }
8088
8089 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8090 {
8091 }
8092 #endif /* CONFIG_RT_GROUP_SCHED */
8093
8094 #ifdef CONFIG_CGROUP_SCHED
8095 static void free_sched_group(struct task_group *tg)
8096 {
8097 free_fair_sched_group(tg);
8098 free_rt_sched_group(tg);
8099 kfree(tg);
8100 }
8101
8102 /* allocate runqueue etc for a new task group */
8103 struct task_group *sched_create_group(struct task_group *parent)
8104 {
8105 struct task_group *tg;
8106 unsigned long flags;
8107 int i;
8108
8109 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8110 if (!tg)
8111 return ERR_PTR(-ENOMEM);
8112
8113 if (!alloc_fair_sched_group(tg, parent))
8114 goto err;
8115
8116 if (!alloc_rt_sched_group(tg, parent))
8117 goto err;
8118
8119 spin_lock_irqsave(&task_group_lock, flags);
8120 for_each_possible_cpu(i) {
8121 register_fair_sched_group(tg, i);
8122 register_rt_sched_group(tg, i);
8123 }
8124 list_add_rcu(&tg->list, &task_groups);
8125
8126 WARN_ON(!parent); /* root should already exist */
8127
8128 tg->parent = parent;
8129 INIT_LIST_HEAD(&tg->children);
8130 list_add_rcu(&tg->siblings, &parent->children);
8131 spin_unlock_irqrestore(&task_group_lock, flags);
8132
8133 return tg;
8134
8135 err:
8136 free_sched_group(tg);
8137 return ERR_PTR(-ENOMEM);
8138 }
8139
8140 /* rcu callback to free various structures associated with a task group */
8141 static void free_sched_group_rcu(struct rcu_head *rhp)
8142 {
8143 /* now it should be safe to free those cfs_rqs */
8144 free_sched_group(container_of(rhp, struct task_group, rcu));
8145 }
8146
8147 /* Destroy runqueue etc associated with a task group */
8148 void sched_destroy_group(struct task_group *tg)
8149 {
8150 unsigned long flags;
8151 int i;
8152
8153 spin_lock_irqsave(&task_group_lock, flags);
8154 for_each_possible_cpu(i) {
8155 unregister_fair_sched_group(tg, i);
8156 unregister_rt_sched_group(tg, i);
8157 }
8158 list_del_rcu(&tg->list);
8159 list_del_rcu(&tg->siblings);
8160 spin_unlock_irqrestore(&task_group_lock, flags);
8161
8162 /* wait for possible concurrent references to cfs_rqs complete */
8163 call_rcu(&tg->rcu, free_sched_group_rcu);
8164 }
8165
8166 /* change task's runqueue when it moves between groups.
8167 * The caller of this function should have put the task in its new group
8168 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8169 * reflect its new group.
8170 */
8171 void sched_move_task(struct task_struct *tsk)
8172 {
8173 int on_rq, running;
8174 unsigned long flags;
8175 struct rq *rq;
8176
8177 rq = task_rq_lock(tsk, &flags);
8178
8179 running = task_current(rq, tsk);
8180 on_rq = tsk->se.on_rq;
8181
8182 if (on_rq)
8183 dequeue_task(rq, tsk, 0);
8184 if (unlikely(running))
8185 tsk->sched_class->put_prev_task(rq, tsk);
8186
8187 set_task_rq(tsk, task_cpu(tsk));
8188
8189 #ifdef CONFIG_FAIR_GROUP_SCHED
8190 if (tsk->sched_class->moved_group)
8191 tsk->sched_class->moved_group(tsk, on_rq);
8192 #endif
8193
8194 if (unlikely(running))
8195 tsk->sched_class->set_curr_task(rq);
8196 if (on_rq)
8197 enqueue_task(rq, tsk, 0, false);
8198
8199 task_rq_unlock(rq, &flags);
8200 }
8201 #endif /* CONFIG_CGROUP_SCHED */
8202
8203 #ifdef CONFIG_FAIR_GROUP_SCHED
8204 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8205 {
8206 struct cfs_rq *cfs_rq = se->cfs_rq;
8207 int on_rq;
8208
8209 on_rq = se->on_rq;
8210 if (on_rq)
8211 dequeue_entity(cfs_rq, se, 0);
8212
8213 se->load.weight = shares;
8214 se->load.inv_weight = 0;
8215
8216 if (on_rq)
8217 enqueue_entity(cfs_rq, se, 0);
8218 }
8219
8220 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8221 {
8222 struct cfs_rq *cfs_rq = se->cfs_rq;
8223 struct rq *rq = cfs_rq->rq;
8224 unsigned long flags;
8225
8226 raw_spin_lock_irqsave(&rq->lock, flags);
8227 __set_se_shares(se, shares);
8228 raw_spin_unlock_irqrestore(&rq->lock, flags);
8229 }
8230
8231 static DEFINE_MUTEX(shares_mutex);
8232
8233 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8234 {
8235 int i;
8236 unsigned long flags;
8237
8238 /*
8239 * We can't change the weight of the root cgroup.
8240 */
8241 if (!tg->se[0])
8242 return -EINVAL;
8243
8244 if (shares < MIN_SHARES)
8245 shares = MIN_SHARES;
8246 else if (shares > MAX_SHARES)
8247 shares = MAX_SHARES;
8248
8249 mutex_lock(&shares_mutex);
8250 if (tg->shares == shares)
8251 goto done;
8252
8253 spin_lock_irqsave(&task_group_lock, flags);
8254 for_each_possible_cpu(i)
8255 unregister_fair_sched_group(tg, i);
8256 list_del_rcu(&tg->siblings);
8257 spin_unlock_irqrestore(&task_group_lock, flags);
8258
8259 /* wait for any ongoing reference to this group to finish */
8260 synchronize_sched();
8261
8262 /*
8263 * Now we are free to modify the group's share on each cpu
8264 * w/o tripping rebalance_share or load_balance_fair.
8265 */
8266 tg->shares = shares;
8267 for_each_possible_cpu(i) {
8268 /*
8269 * force a rebalance
8270 */
8271 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8272 set_se_shares(tg->se[i], shares);
8273 }
8274
8275 /*
8276 * Enable load balance activity on this group, by inserting it back on
8277 * each cpu's rq->leaf_cfs_rq_list.
8278 */
8279 spin_lock_irqsave(&task_group_lock, flags);
8280 for_each_possible_cpu(i)
8281 register_fair_sched_group(tg, i);
8282 list_add_rcu(&tg->siblings, &tg->parent->children);
8283 spin_unlock_irqrestore(&task_group_lock, flags);
8284 done:
8285 mutex_unlock(&shares_mutex);
8286 return 0;
8287 }
8288
8289 unsigned long sched_group_shares(struct task_group *tg)
8290 {
8291 return tg->shares;
8292 }
8293 #endif
8294
8295 #ifdef CONFIG_RT_GROUP_SCHED
8296 /*
8297 * Ensure that the real time constraints are schedulable.
8298 */
8299 static DEFINE_MUTEX(rt_constraints_mutex);
8300
8301 static unsigned long to_ratio(u64 period, u64 runtime)
8302 {
8303 if (runtime == RUNTIME_INF)
8304 return 1ULL << 20;
8305
8306 return div64_u64(runtime << 20, period);
8307 }
8308
8309 /* Must be called with tasklist_lock held */
8310 static inline int tg_has_rt_tasks(struct task_group *tg)
8311 {
8312 struct task_struct *g, *p;
8313
8314 do_each_thread(g, p) {
8315 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8316 return 1;
8317 } while_each_thread(g, p);
8318
8319 return 0;
8320 }
8321
8322 struct rt_schedulable_data {
8323 struct task_group *tg;
8324 u64 rt_period;
8325 u64 rt_runtime;
8326 };
8327
8328 static int tg_schedulable(struct task_group *tg, void *data)
8329 {
8330 struct rt_schedulable_data *d = data;
8331 struct task_group *child;
8332 unsigned long total, sum = 0;
8333 u64 period, runtime;
8334
8335 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8336 runtime = tg->rt_bandwidth.rt_runtime;
8337
8338 if (tg == d->tg) {
8339 period = d->rt_period;
8340 runtime = d->rt_runtime;
8341 }
8342
8343 /*
8344 * Cannot have more runtime than the period.
8345 */
8346 if (runtime > period && runtime != RUNTIME_INF)
8347 return -EINVAL;
8348
8349 /*
8350 * Ensure we don't starve existing RT tasks.
8351 */
8352 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8353 return -EBUSY;
8354
8355 total = to_ratio(period, runtime);
8356
8357 /*
8358 * Nobody can have more than the global setting allows.
8359 */
8360 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8361 return -EINVAL;
8362
8363 /*
8364 * The sum of our children's runtime should not exceed our own.
8365 */
8366 list_for_each_entry_rcu(child, &tg->children, siblings) {
8367 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8368 runtime = child->rt_bandwidth.rt_runtime;
8369
8370 if (child == d->tg) {
8371 period = d->rt_period;
8372 runtime = d->rt_runtime;
8373 }
8374
8375 sum += to_ratio(period, runtime);
8376 }
8377
8378 if (sum > total)
8379 return -EINVAL;
8380
8381 return 0;
8382 }
8383
8384 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8385 {
8386 struct rt_schedulable_data data = {
8387 .tg = tg,
8388 .rt_period = period,
8389 .rt_runtime = runtime,
8390 };
8391
8392 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8393 }
8394
8395 static int tg_set_bandwidth(struct task_group *tg,
8396 u64 rt_period, u64 rt_runtime)
8397 {
8398 int i, err = 0;
8399
8400 mutex_lock(&rt_constraints_mutex);
8401 read_lock(&tasklist_lock);
8402 err = __rt_schedulable(tg, rt_period, rt_runtime);
8403 if (err)
8404 goto unlock;
8405
8406 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8407 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8408 tg->rt_bandwidth.rt_runtime = rt_runtime;
8409
8410 for_each_possible_cpu(i) {
8411 struct rt_rq *rt_rq = tg->rt_rq[i];
8412
8413 raw_spin_lock(&rt_rq->rt_runtime_lock);
8414 rt_rq->rt_runtime = rt_runtime;
8415 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8416 }
8417 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8418 unlock:
8419 read_unlock(&tasklist_lock);
8420 mutex_unlock(&rt_constraints_mutex);
8421
8422 return err;
8423 }
8424
8425 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8426 {
8427 u64 rt_runtime, rt_period;
8428
8429 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8430 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8431 if (rt_runtime_us < 0)
8432 rt_runtime = RUNTIME_INF;
8433
8434 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8435 }
8436
8437 long sched_group_rt_runtime(struct task_group *tg)
8438 {
8439 u64 rt_runtime_us;
8440
8441 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8442 return -1;
8443
8444 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8445 do_div(rt_runtime_us, NSEC_PER_USEC);
8446 return rt_runtime_us;
8447 }
8448
8449 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8450 {
8451 u64 rt_runtime, rt_period;
8452
8453 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8454 rt_runtime = tg->rt_bandwidth.rt_runtime;
8455
8456 if (rt_period == 0)
8457 return -EINVAL;
8458
8459 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8460 }
8461
8462 long sched_group_rt_period(struct task_group *tg)
8463 {
8464 u64 rt_period_us;
8465
8466 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8467 do_div(rt_period_us, NSEC_PER_USEC);
8468 return rt_period_us;
8469 }
8470
8471 static int sched_rt_global_constraints(void)
8472 {
8473 u64 runtime, period;
8474 int ret = 0;
8475
8476 if (sysctl_sched_rt_period <= 0)
8477 return -EINVAL;
8478
8479 runtime = global_rt_runtime();
8480 period = global_rt_period();
8481
8482 /*
8483 * Sanity check on the sysctl variables.
8484 */
8485 if (runtime > period && runtime != RUNTIME_INF)
8486 return -EINVAL;
8487
8488 mutex_lock(&rt_constraints_mutex);
8489 read_lock(&tasklist_lock);
8490 ret = __rt_schedulable(NULL, 0, 0);
8491 read_unlock(&tasklist_lock);
8492 mutex_unlock(&rt_constraints_mutex);
8493
8494 return ret;
8495 }
8496
8497 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8498 {
8499 /* Don't accept realtime tasks when there is no way for them to run */
8500 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8501 return 0;
8502
8503 return 1;
8504 }
8505
8506 #else /* !CONFIG_RT_GROUP_SCHED */
8507 static int sched_rt_global_constraints(void)
8508 {
8509 unsigned long flags;
8510 int i;
8511
8512 if (sysctl_sched_rt_period <= 0)
8513 return -EINVAL;
8514
8515 /*
8516 * There's always some RT tasks in the root group
8517 * -- migration, kstopmachine etc..
8518 */
8519 if (sysctl_sched_rt_runtime == 0)
8520 return -EBUSY;
8521
8522 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8523 for_each_possible_cpu(i) {
8524 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8525
8526 raw_spin_lock(&rt_rq->rt_runtime_lock);
8527 rt_rq->rt_runtime = global_rt_runtime();
8528 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8529 }
8530 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8531
8532 return 0;
8533 }
8534 #endif /* CONFIG_RT_GROUP_SCHED */
8535
8536 int sched_rt_handler(struct ctl_table *table, int write,
8537 void __user *buffer, size_t *lenp,
8538 loff_t *ppos)
8539 {
8540 int ret;
8541 int old_period, old_runtime;
8542 static DEFINE_MUTEX(mutex);
8543
8544 mutex_lock(&mutex);
8545 old_period = sysctl_sched_rt_period;
8546 old_runtime = sysctl_sched_rt_runtime;
8547
8548 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8549
8550 if (!ret && write) {
8551 ret = sched_rt_global_constraints();
8552 if (ret) {
8553 sysctl_sched_rt_period = old_period;
8554 sysctl_sched_rt_runtime = old_runtime;
8555 } else {
8556 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8557 def_rt_bandwidth.rt_period =
8558 ns_to_ktime(global_rt_period());
8559 }
8560 }
8561 mutex_unlock(&mutex);
8562
8563 return ret;
8564 }
8565
8566 #ifdef CONFIG_CGROUP_SCHED
8567
8568 /* return corresponding task_group object of a cgroup */
8569 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8570 {
8571 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8572 struct task_group, css);
8573 }
8574
8575 static struct cgroup_subsys_state *
8576 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8577 {
8578 struct task_group *tg, *parent;
8579
8580 if (!cgrp->parent) {
8581 /* This is early initialization for the top cgroup */
8582 return &init_task_group.css;
8583 }
8584
8585 parent = cgroup_tg(cgrp->parent);
8586 tg = sched_create_group(parent);
8587 if (IS_ERR(tg))
8588 return ERR_PTR(-ENOMEM);
8589
8590 return &tg->css;
8591 }
8592
8593 static void
8594 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8595 {
8596 struct task_group *tg = cgroup_tg(cgrp);
8597
8598 sched_destroy_group(tg);
8599 }
8600
8601 static int
8602 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8603 {
8604 #ifdef CONFIG_RT_GROUP_SCHED
8605 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8606 return -EINVAL;
8607 #else
8608 /* We don't support RT-tasks being in separate groups */
8609 if (tsk->sched_class != &fair_sched_class)
8610 return -EINVAL;
8611 #endif
8612 return 0;
8613 }
8614
8615 static int
8616 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8617 struct task_struct *tsk, bool threadgroup)
8618 {
8619 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8620 if (retval)
8621 return retval;
8622 if (threadgroup) {
8623 struct task_struct *c;
8624 rcu_read_lock();
8625 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8626 retval = cpu_cgroup_can_attach_task(cgrp, c);
8627 if (retval) {
8628 rcu_read_unlock();
8629 return retval;
8630 }
8631 }
8632 rcu_read_unlock();
8633 }
8634 return 0;
8635 }
8636
8637 static void
8638 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8639 struct cgroup *old_cont, struct task_struct *tsk,
8640 bool threadgroup)
8641 {
8642 sched_move_task(tsk);
8643 if (threadgroup) {
8644 struct task_struct *c;
8645 rcu_read_lock();
8646 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8647 sched_move_task(c);
8648 }
8649 rcu_read_unlock();
8650 }
8651 }
8652
8653 #ifdef CONFIG_FAIR_GROUP_SCHED
8654 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8655 u64 shareval)
8656 {
8657 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8658 }
8659
8660 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8661 {
8662 struct task_group *tg = cgroup_tg(cgrp);
8663
8664 return (u64) tg->shares;
8665 }
8666 #endif /* CONFIG_FAIR_GROUP_SCHED */
8667
8668 #ifdef CONFIG_RT_GROUP_SCHED
8669 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8670 s64 val)
8671 {
8672 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8673 }
8674
8675 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8676 {
8677 return sched_group_rt_runtime(cgroup_tg(cgrp));
8678 }
8679
8680 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8681 u64 rt_period_us)
8682 {
8683 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8684 }
8685
8686 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8687 {
8688 return sched_group_rt_period(cgroup_tg(cgrp));
8689 }
8690 #endif /* CONFIG_RT_GROUP_SCHED */
8691
8692 static struct cftype cpu_files[] = {
8693 #ifdef CONFIG_FAIR_GROUP_SCHED
8694 {
8695 .name = "shares",
8696 .read_u64 = cpu_shares_read_u64,
8697 .write_u64 = cpu_shares_write_u64,
8698 },
8699 #endif
8700 #ifdef CONFIG_RT_GROUP_SCHED
8701 {
8702 .name = "rt_runtime_us",
8703 .read_s64 = cpu_rt_runtime_read,
8704 .write_s64 = cpu_rt_runtime_write,
8705 },
8706 {
8707 .name = "rt_period_us",
8708 .read_u64 = cpu_rt_period_read_uint,
8709 .write_u64 = cpu_rt_period_write_uint,
8710 },
8711 #endif
8712 };
8713
8714 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8715 {
8716 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8717 }
8718
8719 struct cgroup_subsys cpu_cgroup_subsys = {
8720 .name = "cpu",
8721 .create = cpu_cgroup_create,
8722 .destroy = cpu_cgroup_destroy,
8723 .can_attach = cpu_cgroup_can_attach,
8724 .attach = cpu_cgroup_attach,
8725 .populate = cpu_cgroup_populate,
8726 .subsys_id = cpu_cgroup_subsys_id,
8727 .early_init = 1,
8728 };
8729
8730 #endif /* CONFIG_CGROUP_SCHED */
8731
8732 #ifdef CONFIG_CGROUP_CPUACCT
8733
8734 /*
8735 * CPU accounting code for task groups.
8736 *
8737 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8738 * (balbir@in.ibm.com).
8739 */
8740
8741 /* track cpu usage of a group of tasks and its child groups */
8742 struct cpuacct {
8743 struct cgroup_subsys_state css;
8744 /* cpuusage holds pointer to a u64-type object on every cpu */
8745 u64 *cpuusage;
8746 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8747 struct cpuacct *parent;
8748 };
8749
8750 struct cgroup_subsys cpuacct_subsys;
8751
8752 /* return cpu accounting group corresponding to this container */
8753 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8754 {
8755 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8756 struct cpuacct, css);
8757 }
8758
8759 /* return cpu accounting group to which this task belongs */
8760 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8761 {
8762 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8763 struct cpuacct, css);
8764 }
8765
8766 /* create a new cpu accounting group */
8767 static struct cgroup_subsys_state *cpuacct_create(
8768 struct cgroup_subsys *ss, struct cgroup *cgrp)
8769 {
8770 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8771 int i;
8772
8773 if (!ca)
8774 goto out;
8775
8776 ca->cpuusage = alloc_percpu(u64);
8777 if (!ca->cpuusage)
8778 goto out_free_ca;
8779
8780 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8781 if (percpu_counter_init(&ca->cpustat[i], 0))
8782 goto out_free_counters;
8783
8784 if (cgrp->parent)
8785 ca->parent = cgroup_ca(cgrp->parent);
8786
8787 return &ca->css;
8788
8789 out_free_counters:
8790 while (--i >= 0)
8791 percpu_counter_destroy(&ca->cpustat[i]);
8792 free_percpu(ca->cpuusage);
8793 out_free_ca:
8794 kfree(ca);
8795 out:
8796 return ERR_PTR(-ENOMEM);
8797 }
8798
8799 /* destroy an existing cpu accounting group */
8800 static void
8801 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8802 {
8803 struct cpuacct *ca = cgroup_ca(cgrp);
8804 int i;
8805
8806 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8807 percpu_counter_destroy(&ca->cpustat[i]);
8808 free_percpu(ca->cpuusage);
8809 kfree(ca);
8810 }
8811
8812 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8813 {
8814 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8815 u64 data;
8816
8817 #ifndef CONFIG_64BIT
8818 /*
8819 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8820 */
8821 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8822 data = *cpuusage;
8823 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8824 #else
8825 data = *cpuusage;
8826 #endif
8827
8828 return data;
8829 }
8830
8831 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8832 {
8833 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8834
8835 #ifndef CONFIG_64BIT
8836 /*
8837 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8838 */
8839 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8840 *cpuusage = val;
8841 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8842 #else
8843 *cpuusage = val;
8844 #endif
8845 }
8846
8847 /* return total cpu usage (in nanoseconds) of a group */
8848 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8849 {
8850 struct cpuacct *ca = cgroup_ca(cgrp);
8851 u64 totalcpuusage = 0;
8852 int i;
8853
8854 for_each_present_cpu(i)
8855 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8856
8857 return totalcpuusage;
8858 }
8859
8860 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8861 u64 reset)
8862 {
8863 struct cpuacct *ca = cgroup_ca(cgrp);
8864 int err = 0;
8865 int i;
8866
8867 if (reset) {
8868 err = -EINVAL;
8869 goto out;
8870 }
8871
8872 for_each_present_cpu(i)
8873 cpuacct_cpuusage_write(ca, i, 0);
8874
8875 out:
8876 return err;
8877 }
8878
8879 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8880 struct seq_file *m)
8881 {
8882 struct cpuacct *ca = cgroup_ca(cgroup);
8883 u64 percpu;
8884 int i;
8885
8886 for_each_present_cpu(i) {
8887 percpu = cpuacct_cpuusage_read(ca, i);
8888 seq_printf(m, "%llu ", (unsigned long long) percpu);
8889 }
8890 seq_printf(m, "\n");
8891 return 0;
8892 }
8893
8894 static const char *cpuacct_stat_desc[] = {
8895 [CPUACCT_STAT_USER] = "user",
8896 [CPUACCT_STAT_SYSTEM] = "system",
8897 };
8898
8899 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8900 struct cgroup_map_cb *cb)
8901 {
8902 struct cpuacct *ca = cgroup_ca(cgrp);
8903 int i;
8904
8905 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8906 s64 val = percpu_counter_read(&ca->cpustat[i]);
8907 val = cputime64_to_clock_t(val);
8908 cb->fill(cb, cpuacct_stat_desc[i], val);
8909 }
8910 return 0;
8911 }
8912
8913 static struct cftype files[] = {
8914 {
8915 .name = "usage",
8916 .read_u64 = cpuusage_read,
8917 .write_u64 = cpuusage_write,
8918 },
8919 {
8920 .name = "usage_percpu",
8921 .read_seq_string = cpuacct_percpu_seq_read,
8922 },
8923 {
8924 .name = "stat",
8925 .read_map = cpuacct_stats_show,
8926 },
8927 };
8928
8929 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8930 {
8931 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8932 }
8933
8934 /*
8935 * charge this task's execution time to its accounting group.
8936 *
8937 * called with rq->lock held.
8938 */
8939 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8940 {
8941 struct cpuacct *ca;
8942 int cpu;
8943
8944 if (unlikely(!cpuacct_subsys.active))
8945 return;
8946
8947 cpu = task_cpu(tsk);
8948
8949 rcu_read_lock();
8950
8951 ca = task_ca(tsk);
8952
8953 for (; ca; ca = ca->parent) {
8954 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8955 *cpuusage += cputime;
8956 }
8957
8958 rcu_read_unlock();
8959 }
8960
8961 /*
8962 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8963 * in cputime_t units. As a result, cpuacct_update_stats calls
8964 * percpu_counter_add with values large enough to always overflow the
8965 * per cpu batch limit causing bad SMP scalability.
8966 *
8967 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8968 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8969 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8970 */
8971 #ifdef CONFIG_SMP
8972 #define CPUACCT_BATCH \
8973 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8974 #else
8975 #define CPUACCT_BATCH 0
8976 #endif
8977
8978 /*
8979 * Charge the system/user time to the task's accounting group.
8980 */
8981 static void cpuacct_update_stats(struct task_struct *tsk,
8982 enum cpuacct_stat_index idx, cputime_t val)
8983 {
8984 struct cpuacct *ca;
8985 int batch = CPUACCT_BATCH;
8986
8987 if (unlikely(!cpuacct_subsys.active))
8988 return;
8989
8990 rcu_read_lock();
8991 ca = task_ca(tsk);
8992
8993 do {
8994 __percpu_counter_add(&ca->cpustat[idx], val, batch);
8995 ca = ca->parent;
8996 } while (ca);
8997 rcu_read_unlock();
8998 }
8999
9000 struct cgroup_subsys cpuacct_subsys = {
9001 .name = "cpuacct",
9002 .create = cpuacct_create,
9003 .destroy = cpuacct_destroy,
9004 .populate = cpuacct_populate,
9005 .subsys_id = cpuacct_subsys_id,
9006 };
9007 #endif /* CONFIG_CGROUP_CPUACCT */
9008
9009 #ifndef CONFIG_SMP
9010
9011 int rcu_expedited_torture_stats(char *page)
9012 {
9013 return 0;
9014 }
9015 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9016
9017 void synchronize_sched_expedited(void)
9018 {
9019 }
9020 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9021
9022 #else /* #ifndef CONFIG_SMP */
9023
9024 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9025 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9026
9027 #define RCU_EXPEDITED_STATE_POST -2
9028 #define RCU_EXPEDITED_STATE_IDLE -1
9029
9030 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9031
9032 int rcu_expedited_torture_stats(char *page)
9033 {
9034 int cnt = 0;
9035 int cpu;
9036
9037 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9038 for_each_online_cpu(cpu) {
9039 cnt += sprintf(&page[cnt], " %d:%d",
9040 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9041 }
9042 cnt += sprintf(&page[cnt], "\n");
9043 return cnt;
9044 }
9045 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9046
9047 static long synchronize_sched_expedited_count;
9048
9049 /*
9050 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9051 * approach to force grace period to end quickly. This consumes
9052 * significant time on all CPUs, and is thus not recommended for
9053 * any sort of common-case code.
9054 *
9055 * Note that it is illegal to call this function while holding any
9056 * lock that is acquired by a CPU-hotplug notifier. Failing to
9057 * observe this restriction will result in deadlock.
9058 */
9059 void synchronize_sched_expedited(void)
9060 {
9061 int cpu;
9062 unsigned long flags;
9063 bool need_full_sync = 0;
9064 struct rq *rq;
9065 struct migration_req *req;
9066 long snap;
9067 int trycount = 0;
9068
9069 smp_mb(); /* ensure prior mod happens before capturing snap. */
9070 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9071 get_online_cpus();
9072 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9073 put_online_cpus();
9074 if (trycount++ < 10)
9075 udelay(trycount * num_online_cpus());
9076 else {
9077 synchronize_sched();
9078 return;
9079 }
9080 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9081 smp_mb(); /* ensure test happens before caller kfree */
9082 return;
9083 }
9084 get_online_cpus();
9085 }
9086 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9087 for_each_online_cpu(cpu) {
9088 rq = cpu_rq(cpu);
9089 req = &per_cpu(rcu_migration_req, cpu);
9090 init_completion(&req->done);
9091 req->task = NULL;
9092 req->dest_cpu = RCU_MIGRATION_NEED_QS;
9093 raw_spin_lock_irqsave(&rq->lock, flags);
9094 list_add(&req->list, &rq->migration_queue);
9095 raw_spin_unlock_irqrestore(&rq->lock, flags);
9096 wake_up_process(rq->migration_thread);
9097 }
9098 for_each_online_cpu(cpu) {
9099 rcu_expedited_state = cpu;
9100 req = &per_cpu(rcu_migration_req, cpu);
9101 rq = cpu_rq(cpu);
9102 wait_for_completion(&req->done);
9103 raw_spin_lock_irqsave(&rq->lock, flags);
9104 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9105 need_full_sync = 1;
9106 req->dest_cpu = RCU_MIGRATION_IDLE;
9107 raw_spin_unlock_irqrestore(&rq->lock, flags);
9108 }
9109 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9110 synchronize_sched_expedited_count++;
9111 mutex_unlock(&rcu_sched_expedited_mutex);
9112 put_online_cpus();
9113 if (need_full_sync)
9114 synchronize_sched();
9115 }
9116 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9117
9118 #endif /* #else #ifndef CONFIG_SMP */