]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched.c
sched: Sanitize fork() handling
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_GROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
249
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
253
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275 };
276
277 #ifdef CONFIG_USER_SCHED
278
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
281 {
282 user->tg->uid = user->uid;
283 }
284
285 /*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290 struct task_group root_task_group;
291
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
298
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
306
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310 static DEFINE_SPINLOCK(task_group_lock);
311
312 #ifdef CONFIG_FAIR_GROUP_SCHED
313
314 #ifdef CONFIG_SMP
315 static int root_task_group_empty(void)
316 {
317 return list_empty(&root_task_group.children);
318 }
319 #endif
320
321 #ifdef CONFIG_USER_SCHED
322 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
323 #else /* !CONFIG_USER_SCHED */
324 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
325 #endif /* CONFIG_USER_SCHED */
326
327 /*
328 * A weight of 0 or 1 can cause arithmetics problems.
329 * A weight of a cfs_rq is the sum of weights of which entities
330 * are queued on this cfs_rq, so a weight of a entity should not be
331 * too large, so as the shares value of a task group.
332 * (The default weight is 1024 - so there's no practical
333 * limitation from this.)
334 */
335 #define MIN_SHARES 2
336 #define MAX_SHARES (1UL << 18)
337
338 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
339 #endif
340
341 /* Default task group.
342 * Every task in system belong to this group at bootup.
343 */
344 struct task_group init_task_group;
345
346 /* return group to which a task belongs */
347 static inline struct task_group *task_group(struct task_struct *p)
348 {
349 struct task_group *tg;
350
351 #ifdef CONFIG_USER_SCHED
352 rcu_read_lock();
353 tg = __task_cred(p)->user->tg;
354 rcu_read_unlock();
355 #elif defined(CONFIG_CGROUP_SCHED)
356 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
357 struct task_group, css);
358 #else
359 tg = &init_task_group;
360 #endif
361 return tg;
362 }
363
364 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
366 {
367 #ifdef CONFIG_FAIR_GROUP_SCHED
368 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
369 p->se.parent = task_group(p)->se[cpu];
370 #endif
371
372 #ifdef CONFIG_RT_GROUP_SCHED
373 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
374 p->rt.parent = task_group(p)->rt_se[cpu];
375 #endif
376 }
377
378 #else
379
380 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
381 static inline struct task_group *task_group(struct task_struct *p)
382 {
383 return NULL;
384 }
385
386 #endif /* CONFIG_GROUP_SCHED */
387
388 /* CFS-related fields in a runqueue */
389 struct cfs_rq {
390 struct load_weight load;
391 unsigned long nr_running;
392
393 u64 exec_clock;
394 u64 min_vruntime;
395
396 struct rb_root tasks_timeline;
397 struct rb_node *rb_leftmost;
398
399 struct list_head tasks;
400 struct list_head *balance_iterator;
401
402 /*
403 * 'curr' points to currently running entity on this cfs_rq.
404 * It is set to NULL otherwise (i.e when none are currently running).
405 */
406 struct sched_entity *curr, *next, *last;
407
408 unsigned int nr_spread_over;
409
410 #ifdef CONFIG_FAIR_GROUP_SCHED
411 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
412
413 /*
414 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
415 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
416 * (like users, containers etc.)
417 *
418 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
419 * list is used during load balance.
420 */
421 struct list_head leaf_cfs_rq_list;
422 struct task_group *tg; /* group that "owns" this runqueue */
423
424 #ifdef CONFIG_SMP
425 /*
426 * the part of load.weight contributed by tasks
427 */
428 unsigned long task_weight;
429
430 /*
431 * h_load = weight * f(tg)
432 *
433 * Where f(tg) is the recursive weight fraction assigned to
434 * this group.
435 */
436 unsigned long h_load;
437
438 /*
439 * this cpu's part of tg->shares
440 */
441 unsigned long shares;
442
443 /*
444 * load.weight at the time we set shares
445 */
446 unsigned long rq_weight;
447 #endif
448 #endif
449 };
450
451 /* Real-Time classes' related field in a runqueue: */
452 struct rt_rq {
453 struct rt_prio_array active;
454 unsigned long rt_nr_running;
455 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
456 struct {
457 int curr; /* highest queued rt task prio */
458 #ifdef CONFIG_SMP
459 int next; /* next highest */
460 #endif
461 } highest_prio;
462 #endif
463 #ifdef CONFIG_SMP
464 unsigned long rt_nr_migratory;
465 unsigned long rt_nr_total;
466 int overloaded;
467 struct plist_head pushable_tasks;
468 #endif
469 int rt_throttled;
470 u64 rt_time;
471 u64 rt_runtime;
472 /* Nests inside the rq lock: */
473 spinlock_t rt_runtime_lock;
474
475 #ifdef CONFIG_RT_GROUP_SCHED
476 unsigned long rt_nr_boosted;
477
478 struct rq *rq;
479 struct list_head leaf_rt_rq_list;
480 struct task_group *tg;
481 struct sched_rt_entity *rt_se;
482 #endif
483 };
484
485 #ifdef CONFIG_SMP
486
487 /*
488 * We add the notion of a root-domain which will be used to define per-domain
489 * variables. Each exclusive cpuset essentially defines an island domain by
490 * fully partitioning the member cpus from any other cpuset. Whenever a new
491 * exclusive cpuset is created, we also create and attach a new root-domain
492 * object.
493 *
494 */
495 struct root_domain {
496 atomic_t refcount;
497 cpumask_var_t span;
498 cpumask_var_t online;
499
500 /*
501 * The "RT overload" flag: it gets set if a CPU has more than
502 * one runnable RT task.
503 */
504 cpumask_var_t rto_mask;
505 atomic_t rto_count;
506 #ifdef CONFIG_SMP
507 struct cpupri cpupri;
508 #endif
509 };
510
511 /*
512 * By default the system creates a single root-domain with all cpus as
513 * members (mimicking the global state we have today).
514 */
515 static struct root_domain def_root_domain;
516
517 #endif
518
519 /*
520 * This is the main, per-CPU runqueue data structure.
521 *
522 * Locking rule: those places that want to lock multiple runqueues
523 * (such as the load balancing or the thread migration code), lock
524 * acquire operations must be ordered by ascending &runqueue.
525 */
526 struct rq {
527 /* runqueue lock: */
528 spinlock_t lock;
529
530 /*
531 * nr_running and cpu_load should be in the same cacheline because
532 * remote CPUs use both these fields when doing load calculation.
533 */
534 unsigned long nr_running;
535 #define CPU_LOAD_IDX_MAX 5
536 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
537 #ifdef CONFIG_NO_HZ
538 unsigned char in_nohz_recently;
539 #endif
540 /* capture load from *all* tasks on this cpu: */
541 struct load_weight load;
542 unsigned long nr_load_updates;
543 u64 nr_switches;
544
545 struct cfs_rq cfs;
546 struct rt_rq rt;
547
548 #ifdef CONFIG_FAIR_GROUP_SCHED
549 /* list of leaf cfs_rq on this cpu: */
550 struct list_head leaf_cfs_rq_list;
551 #endif
552 #ifdef CONFIG_RT_GROUP_SCHED
553 struct list_head leaf_rt_rq_list;
554 #endif
555
556 /*
557 * This is part of a global counter where only the total sum
558 * over all CPUs matters. A task can increase this counter on
559 * one CPU and if it got migrated afterwards it may decrease
560 * it on another CPU. Always updated under the runqueue lock:
561 */
562 unsigned long nr_uninterruptible;
563
564 struct task_struct *curr, *idle;
565 unsigned long next_balance;
566 struct mm_struct *prev_mm;
567
568 u64 clock;
569
570 atomic_t nr_iowait;
571
572 #ifdef CONFIG_SMP
573 struct root_domain *rd;
574 struct sched_domain *sd;
575
576 unsigned char idle_at_tick;
577 /* For active balancing */
578 int post_schedule;
579 int active_balance;
580 int push_cpu;
581 /* cpu of this runqueue: */
582 int cpu;
583 int online;
584
585 unsigned long avg_load_per_task;
586
587 struct task_struct *migration_thread;
588 struct list_head migration_queue;
589
590 u64 rt_avg;
591 u64 age_stamp;
592 u64 idle_stamp;
593 u64 avg_idle;
594 #endif
595
596 /* calc_load related fields */
597 unsigned long calc_load_update;
598 long calc_load_active;
599
600 #ifdef CONFIG_SCHED_HRTICK
601 #ifdef CONFIG_SMP
602 int hrtick_csd_pending;
603 struct call_single_data hrtick_csd;
604 #endif
605 struct hrtimer hrtick_timer;
606 #endif
607
608 #ifdef CONFIG_SCHEDSTATS
609 /* latency stats */
610 struct sched_info rq_sched_info;
611 unsigned long long rq_cpu_time;
612 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
613
614 /* sys_sched_yield() stats */
615 unsigned int yld_count;
616
617 /* schedule() stats */
618 unsigned int sched_switch;
619 unsigned int sched_count;
620 unsigned int sched_goidle;
621
622 /* try_to_wake_up() stats */
623 unsigned int ttwu_count;
624 unsigned int ttwu_local;
625
626 /* BKL stats */
627 unsigned int bkl_count;
628 #endif
629 };
630
631 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
632
633 static inline
634 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
635 {
636 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
637 }
638
639 static inline int cpu_of(struct rq *rq)
640 {
641 #ifdef CONFIG_SMP
642 return rq->cpu;
643 #else
644 return 0;
645 #endif
646 }
647
648 /*
649 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
650 * See detach_destroy_domains: synchronize_sched for details.
651 *
652 * The domain tree of any CPU may only be accessed from within
653 * preempt-disabled sections.
654 */
655 #define for_each_domain(cpu, __sd) \
656 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
657
658 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
659 #define this_rq() (&__get_cpu_var(runqueues))
660 #define task_rq(p) cpu_rq(task_cpu(p))
661 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
662 #define raw_rq() (&__raw_get_cpu_var(runqueues))
663
664 inline void update_rq_clock(struct rq *rq)
665 {
666 rq->clock = sched_clock_cpu(cpu_of(rq));
667 }
668
669 /*
670 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
671 */
672 #ifdef CONFIG_SCHED_DEBUG
673 # define const_debug __read_mostly
674 #else
675 # define const_debug static const
676 #endif
677
678 /**
679 * runqueue_is_locked
680 * @cpu: the processor in question.
681 *
682 * Returns true if the current cpu runqueue is locked.
683 * This interface allows printk to be called with the runqueue lock
684 * held and know whether or not it is OK to wake up the klogd.
685 */
686 int runqueue_is_locked(int cpu)
687 {
688 return spin_is_locked(&cpu_rq(cpu)->lock);
689 }
690
691 /*
692 * Debugging: various feature bits
693 */
694
695 #define SCHED_FEAT(name, enabled) \
696 __SCHED_FEAT_##name ,
697
698 enum {
699 #include "sched_features.h"
700 };
701
702 #undef SCHED_FEAT
703
704 #define SCHED_FEAT(name, enabled) \
705 (1UL << __SCHED_FEAT_##name) * enabled |
706
707 const_debug unsigned int sysctl_sched_features =
708 #include "sched_features.h"
709 0;
710
711 #undef SCHED_FEAT
712
713 #ifdef CONFIG_SCHED_DEBUG
714 #define SCHED_FEAT(name, enabled) \
715 #name ,
716
717 static __read_mostly char *sched_feat_names[] = {
718 #include "sched_features.h"
719 NULL
720 };
721
722 #undef SCHED_FEAT
723
724 static int sched_feat_show(struct seq_file *m, void *v)
725 {
726 int i;
727
728 for (i = 0; sched_feat_names[i]; i++) {
729 if (!(sysctl_sched_features & (1UL << i)))
730 seq_puts(m, "NO_");
731 seq_printf(m, "%s ", sched_feat_names[i]);
732 }
733 seq_puts(m, "\n");
734
735 return 0;
736 }
737
738 static ssize_t
739 sched_feat_write(struct file *filp, const char __user *ubuf,
740 size_t cnt, loff_t *ppos)
741 {
742 char buf[64];
743 char *cmp = buf;
744 int neg = 0;
745 int i;
746
747 if (cnt > 63)
748 cnt = 63;
749
750 if (copy_from_user(&buf, ubuf, cnt))
751 return -EFAULT;
752
753 buf[cnt] = 0;
754
755 if (strncmp(buf, "NO_", 3) == 0) {
756 neg = 1;
757 cmp += 3;
758 }
759
760 for (i = 0; sched_feat_names[i]; i++) {
761 int len = strlen(sched_feat_names[i]);
762
763 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
764 if (neg)
765 sysctl_sched_features &= ~(1UL << i);
766 else
767 sysctl_sched_features |= (1UL << i);
768 break;
769 }
770 }
771
772 if (!sched_feat_names[i])
773 return -EINVAL;
774
775 *ppos += cnt;
776
777 return cnt;
778 }
779
780 static int sched_feat_open(struct inode *inode, struct file *filp)
781 {
782 return single_open(filp, sched_feat_show, NULL);
783 }
784
785 static const struct file_operations sched_feat_fops = {
786 .open = sched_feat_open,
787 .write = sched_feat_write,
788 .read = seq_read,
789 .llseek = seq_lseek,
790 .release = single_release,
791 };
792
793 static __init int sched_init_debug(void)
794 {
795 debugfs_create_file("sched_features", 0644, NULL, NULL,
796 &sched_feat_fops);
797
798 return 0;
799 }
800 late_initcall(sched_init_debug);
801
802 #endif
803
804 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
805
806 /*
807 * Number of tasks to iterate in a single balance run.
808 * Limited because this is done with IRQs disabled.
809 */
810 const_debug unsigned int sysctl_sched_nr_migrate = 32;
811
812 /*
813 * ratelimit for updating the group shares.
814 * default: 0.25ms
815 */
816 unsigned int sysctl_sched_shares_ratelimit = 250000;
817
818 /*
819 * Inject some fuzzyness into changing the per-cpu group shares
820 * this avoids remote rq-locks at the expense of fairness.
821 * default: 4
822 */
823 unsigned int sysctl_sched_shares_thresh = 4;
824
825 /*
826 * period over which we average the RT time consumption, measured
827 * in ms.
828 *
829 * default: 1s
830 */
831 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
832
833 /*
834 * period over which we measure -rt task cpu usage in us.
835 * default: 1s
836 */
837 unsigned int sysctl_sched_rt_period = 1000000;
838
839 static __read_mostly int scheduler_running;
840
841 /*
842 * part of the period that we allow rt tasks to run in us.
843 * default: 0.95s
844 */
845 int sysctl_sched_rt_runtime = 950000;
846
847 static inline u64 global_rt_period(void)
848 {
849 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
850 }
851
852 static inline u64 global_rt_runtime(void)
853 {
854 if (sysctl_sched_rt_runtime < 0)
855 return RUNTIME_INF;
856
857 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
858 }
859
860 #ifndef prepare_arch_switch
861 # define prepare_arch_switch(next) do { } while (0)
862 #endif
863 #ifndef finish_arch_switch
864 # define finish_arch_switch(prev) do { } while (0)
865 #endif
866
867 static inline int task_current(struct rq *rq, struct task_struct *p)
868 {
869 return rq->curr == p;
870 }
871
872 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
873 static inline int task_running(struct rq *rq, struct task_struct *p)
874 {
875 return task_current(rq, p);
876 }
877
878 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
879 {
880 }
881
882 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
883 {
884 #ifdef CONFIG_DEBUG_SPINLOCK
885 /* this is a valid case when another task releases the spinlock */
886 rq->lock.owner = current;
887 #endif
888 /*
889 * If we are tracking spinlock dependencies then we have to
890 * fix up the runqueue lock - which gets 'carried over' from
891 * prev into current:
892 */
893 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
894
895 spin_unlock_irq(&rq->lock);
896 }
897
898 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
899 static inline int task_running(struct rq *rq, struct task_struct *p)
900 {
901 #ifdef CONFIG_SMP
902 return p->oncpu;
903 #else
904 return task_current(rq, p);
905 #endif
906 }
907
908 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
909 {
910 #ifdef CONFIG_SMP
911 /*
912 * We can optimise this out completely for !SMP, because the
913 * SMP rebalancing from interrupt is the only thing that cares
914 * here.
915 */
916 next->oncpu = 1;
917 #endif
918 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
919 spin_unlock_irq(&rq->lock);
920 #else
921 spin_unlock(&rq->lock);
922 #endif
923 }
924
925 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
926 {
927 #ifdef CONFIG_SMP
928 /*
929 * After ->oncpu is cleared, the task can be moved to a different CPU.
930 * We must ensure this doesn't happen until the switch is completely
931 * finished.
932 */
933 smp_wmb();
934 prev->oncpu = 0;
935 #endif
936 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
937 local_irq_enable();
938 #endif
939 }
940 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
941
942 /*
943 * __task_rq_lock - lock the runqueue a given task resides on.
944 * Must be called interrupts disabled.
945 */
946 static inline struct rq *__task_rq_lock(struct task_struct *p)
947 __acquires(rq->lock)
948 {
949 for (;;) {
950 struct rq *rq = task_rq(p);
951 spin_lock(&rq->lock);
952 if (likely(rq == task_rq(p)))
953 return rq;
954 spin_unlock(&rq->lock);
955 }
956 }
957
958 /*
959 * task_rq_lock - lock the runqueue a given task resides on and disable
960 * interrupts. Note the ordering: we can safely lookup the task_rq without
961 * explicitly disabling preemption.
962 */
963 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
964 __acquires(rq->lock)
965 {
966 struct rq *rq;
967
968 for (;;) {
969 local_irq_save(*flags);
970 rq = task_rq(p);
971 spin_lock(&rq->lock);
972 if (likely(rq == task_rq(p)))
973 return rq;
974 spin_unlock_irqrestore(&rq->lock, *flags);
975 }
976 }
977
978 void task_rq_unlock_wait(struct task_struct *p)
979 {
980 struct rq *rq = task_rq(p);
981
982 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
983 spin_unlock_wait(&rq->lock);
984 }
985
986 static void __task_rq_unlock(struct rq *rq)
987 __releases(rq->lock)
988 {
989 spin_unlock(&rq->lock);
990 }
991
992 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
993 __releases(rq->lock)
994 {
995 spin_unlock_irqrestore(&rq->lock, *flags);
996 }
997
998 /*
999 * this_rq_lock - lock this runqueue and disable interrupts.
1000 */
1001 static struct rq *this_rq_lock(void)
1002 __acquires(rq->lock)
1003 {
1004 struct rq *rq;
1005
1006 local_irq_disable();
1007 rq = this_rq();
1008 spin_lock(&rq->lock);
1009
1010 return rq;
1011 }
1012
1013 #ifdef CONFIG_SCHED_HRTICK
1014 /*
1015 * Use HR-timers to deliver accurate preemption points.
1016 *
1017 * Its all a bit involved since we cannot program an hrt while holding the
1018 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1019 * reschedule event.
1020 *
1021 * When we get rescheduled we reprogram the hrtick_timer outside of the
1022 * rq->lock.
1023 */
1024
1025 /*
1026 * Use hrtick when:
1027 * - enabled by features
1028 * - hrtimer is actually high res
1029 */
1030 static inline int hrtick_enabled(struct rq *rq)
1031 {
1032 if (!sched_feat(HRTICK))
1033 return 0;
1034 if (!cpu_active(cpu_of(rq)))
1035 return 0;
1036 return hrtimer_is_hres_active(&rq->hrtick_timer);
1037 }
1038
1039 static void hrtick_clear(struct rq *rq)
1040 {
1041 if (hrtimer_active(&rq->hrtick_timer))
1042 hrtimer_cancel(&rq->hrtick_timer);
1043 }
1044
1045 /*
1046 * High-resolution timer tick.
1047 * Runs from hardirq context with interrupts disabled.
1048 */
1049 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1050 {
1051 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1052
1053 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1054
1055 spin_lock(&rq->lock);
1056 update_rq_clock(rq);
1057 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1058 spin_unlock(&rq->lock);
1059
1060 return HRTIMER_NORESTART;
1061 }
1062
1063 #ifdef CONFIG_SMP
1064 /*
1065 * called from hardirq (IPI) context
1066 */
1067 static void __hrtick_start(void *arg)
1068 {
1069 struct rq *rq = arg;
1070
1071 spin_lock(&rq->lock);
1072 hrtimer_restart(&rq->hrtick_timer);
1073 rq->hrtick_csd_pending = 0;
1074 spin_unlock(&rq->lock);
1075 }
1076
1077 /*
1078 * Called to set the hrtick timer state.
1079 *
1080 * called with rq->lock held and irqs disabled
1081 */
1082 static void hrtick_start(struct rq *rq, u64 delay)
1083 {
1084 struct hrtimer *timer = &rq->hrtick_timer;
1085 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1086
1087 hrtimer_set_expires(timer, time);
1088
1089 if (rq == this_rq()) {
1090 hrtimer_restart(timer);
1091 } else if (!rq->hrtick_csd_pending) {
1092 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1093 rq->hrtick_csd_pending = 1;
1094 }
1095 }
1096
1097 static int
1098 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1099 {
1100 int cpu = (int)(long)hcpu;
1101
1102 switch (action) {
1103 case CPU_UP_CANCELED:
1104 case CPU_UP_CANCELED_FROZEN:
1105 case CPU_DOWN_PREPARE:
1106 case CPU_DOWN_PREPARE_FROZEN:
1107 case CPU_DEAD:
1108 case CPU_DEAD_FROZEN:
1109 hrtick_clear(cpu_rq(cpu));
1110 return NOTIFY_OK;
1111 }
1112
1113 return NOTIFY_DONE;
1114 }
1115
1116 static __init void init_hrtick(void)
1117 {
1118 hotcpu_notifier(hotplug_hrtick, 0);
1119 }
1120 #else
1121 /*
1122 * Called to set the hrtick timer state.
1123 *
1124 * called with rq->lock held and irqs disabled
1125 */
1126 static void hrtick_start(struct rq *rq, u64 delay)
1127 {
1128 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1129 HRTIMER_MODE_REL_PINNED, 0);
1130 }
1131
1132 static inline void init_hrtick(void)
1133 {
1134 }
1135 #endif /* CONFIG_SMP */
1136
1137 static void init_rq_hrtick(struct rq *rq)
1138 {
1139 #ifdef CONFIG_SMP
1140 rq->hrtick_csd_pending = 0;
1141
1142 rq->hrtick_csd.flags = 0;
1143 rq->hrtick_csd.func = __hrtick_start;
1144 rq->hrtick_csd.info = rq;
1145 #endif
1146
1147 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1148 rq->hrtick_timer.function = hrtick;
1149 }
1150 #else /* CONFIG_SCHED_HRTICK */
1151 static inline void hrtick_clear(struct rq *rq)
1152 {
1153 }
1154
1155 static inline void init_rq_hrtick(struct rq *rq)
1156 {
1157 }
1158
1159 static inline void init_hrtick(void)
1160 {
1161 }
1162 #endif /* CONFIG_SCHED_HRTICK */
1163
1164 /*
1165 * resched_task - mark a task 'to be rescheduled now'.
1166 *
1167 * On UP this means the setting of the need_resched flag, on SMP it
1168 * might also involve a cross-CPU call to trigger the scheduler on
1169 * the target CPU.
1170 */
1171 #ifdef CONFIG_SMP
1172
1173 #ifndef tsk_is_polling
1174 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1175 #endif
1176
1177 static void resched_task(struct task_struct *p)
1178 {
1179 int cpu;
1180
1181 assert_spin_locked(&task_rq(p)->lock);
1182
1183 if (test_tsk_need_resched(p))
1184 return;
1185
1186 set_tsk_need_resched(p);
1187
1188 cpu = task_cpu(p);
1189 if (cpu == smp_processor_id())
1190 return;
1191
1192 /* NEED_RESCHED must be visible before we test polling */
1193 smp_mb();
1194 if (!tsk_is_polling(p))
1195 smp_send_reschedule(cpu);
1196 }
1197
1198 static void resched_cpu(int cpu)
1199 {
1200 struct rq *rq = cpu_rq(cpu);
1201 unsigned long flags;
1202
1203 if (!spin_trylock_irqsave(&rq->lock, flags))
1204 return;
1205 resched_task(cpu_curr(cpu));
1206 spin_unlock_irqrestore(&rq->lock, flags);
1207 }
1208
1209 #ifdef CONFIG_NO_HZ
1210 /*
1211 * When add_timer_on() enqueues a timer into the timer wheel of an
1212 * idle CPU then this timer might expire before the next timer event
1213 * which is scheduled to wake up that CPU. In case of a completely
1214 * idle system the next event might even be infinite time into the
1215 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1216 * leaves the inner idle loop so the newly added timer is taken into
1217 * account when the CPU goes back to idle and evaluates the timer
1218 * wheel for the next timer event.
1219 */
1220 void wake_up_idle_cpu(int cpu)
1221 {
1222 struct rq *rq = cpu_rq(cpu);
1223
1224 if (cpu == smp_processor_id())
1225 return;
1226
1227 /*
1228 * This is safe, as this function is called with the timer
1229 * wheel base lock of (cpu) held. When the CPU is on the way
1230 * to idle and has not yet set rq->curr to idle then it will
1231 * be serialized on the timer wheel base lock and take the new
1232 * timer into account automatically.
1233 */
1234 if (rq->curr != rq->idle)
1235 return;
1236
1237 /*
1238 * We can set TIF_RESCHED on the idle task of the other CPU
1239 * lockless. The worst case is that the other CPU runs the
1240 * idle task through an additional NOOP schedule()
1241 */
1242 set_tsk_need_resched(rq->idle);
1243
1244 /* NEED_RESCHED must be visible before we test polling */
1245 smp_mb();
1246 if (!tsk_is_polling(rq->idle))
1247 smp_send_reschedule(cpu);
1248 }
1249 #endif /* CONFIG_NO_HZ */
1250
1251 static u64 sched_avg_period(void)
1252 {
1253 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1254 }
1255
1256 static void sched_avg_update(struct rq *rq)
1257 {
1258 s64 period = sched_avg_period();
1259
1260 while ((s64)(rq->clock - rq->age_stamp) > period) {
1261 rq->age_stamp += period;
1262 rq->rt_avg /= 2;
1263 }
1264 }
1265
1266 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1267 {
1268 rq->rt_avg += rt_delta;
1269 sched_avg_update(rq);
1270 }
1271
1272 #else /* !CONFIG_SMP */
1273 static void resched_task(struct task_struct *p)
1274 {
1275 assert_spin_locked(&task_rq(p)->lock);
1276 set_tsk_need_resched(p);
1277 }
1278
1279 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1280 {
1281 }
1282 #endif /* CONFIG_SMP */
1283
1284 #if BITS_PER_LONG == 32
1285 # define WMULT_CONST (~0UL)
1286 #else
1287 # define WMULT_CONST (1UL << 32)
1288 #endif
1289
1290 #define WMULT_SHIFT 32
1291
1292 /*
1293 * Shift right and round:
1294 */
1295 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1296
1297 /*
1298 * delta *= weight / lw
1299 */
1300 static unsigned long
1301 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1302 struct load_weight *lw)
1303 {
1304 u64 tmp;
1305
1306 if (!lw->inv_weight) {
1307 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1308 lw->inv_weight = 1;
1309 else
1310 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1311 / (lw->weight+1);
1312 }
1313
1314 tmp = (u64)delta_exec * weight;
1315 /*
1316 * Check whether we'd overflow the 64-bit multiplication:
1317 */
1318 if (unlikely(tmp > WMULT_CONST))
1319 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1320 WMULT_SHIFT/2);
1321 else
1322 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1323
1324 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1325 }
1326
1327 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1328 {
1329 lw->weight += inc;
1330 lw->inv_weight = 0;
1331 }
1332
1333 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1334 {
1335 lw->weight -= dec;
1336 lw->inv_weight = 0;
1337 }
1338
1339 /*
1340 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1341 * of tasks with abnormal "nice" values across CPUs the contribution that
1342 * each task makes to its run queue's load is weighted according to its
1343 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1344 * scaled version of the new time slice allocation that they receive on time
1345 * slice expiry etc.
1346 */
1347
1348 #define WEIGHT_IDLEPRIO 3
1349 #define WMULT_IDLEPRIO 1431655765
1350
1351 /*
1352 * Nice levels are multiplicative, with a gentle 10% change for every
1353 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1354 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1355 * that remained on nice 0.
1356 *
1357 * The "10% effect" is relative and cumulative: from _any_ nice level,
1358 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1359 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1360 * If a task goes up by ~10% and another task goes down by ~10% then
1361 * the relative distance between them is ~25%.)
1362 */
1363 static const int prio_to_weight[40] = {
1364 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1365 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1366 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1367 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1368 /* 0 */ 1024, 820, 655, 526, 423,
1369 /* 5 */ 335, 272, 215, 172, 137,
1370 /* 10 */ 110, 87, 70, 56, 45,
1371 /* 15 */ 36, 29, 23, 18, 15,
1372 };
1373
1374 /*
1375 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1376 *
1377 * In cases where the weight does not change often, we can use the
1378 * precalculated inverse to speed up arithmetics by turning divisions
1379 * into multiplications:
1380 */
1381 static const u32 prio_to_wmult[40] = {
1382 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1383 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1384 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1385 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1386 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1387 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1388 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1389 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1390 };
1391
1392 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1393
1394 /*
1395 * runqueue iterator, to support SMP load-balancing between different
1396 * scheduling classes, without having to expose their internal data
1397 * structures to the load-balancing proper:
1398 */
1399 struct rq_iterator {
1400 void *arg;
1401 struct task_struct *(*start)(void *);
1402 struct task_struct *(*next)(void *);
1403 };
1404
1405 #ifdef CONFIG_SMP
1406 static unsigned long
1407 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1408 unsigned long max_load_move, struct sched_domain *sd,
1409 enum cpu_idle_type idle, int *all_pinned,
1410 int *this_best_prio, struct rq_iterator *iterator);
1411
1412 static int
1413 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1414 struct sched_domain *sd, enum cpu_idle_type idle,
1415 struct rq_iterator *iterator);
1416 #endif
1417
1418 /* Time spent by the tasks of the cpu accounting group executing in ... */
1419 enum cpuacct_stat_index {
1420 CPUACCT_STAT_USER, /* ... user mode */
1421 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1422
1423 CPUACCT_STAT_NSTATS,
1424 };
1425
1426 #ifdef CONFIG_CGROUP_CPUACCT
1427 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1428 static void cpuacct_update_stats(struct task_struct *tsk,
1429 enum cpuacct_stat_index idx, cputime_t val);
1430 #else
1431 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1432 static inline void cpuacct_update_stats(struct task_struct *tsk,
1433 enum cpuacct_stat_index idx, cputime_t val) {}
1434 #endif
1435
1436 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1437 {
1438 update_load_add(&rq->load, load);
1439 }
1440
1441 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1442 {
1443 update_load_sub(&rq->load, load);
1444 }
1445
1446 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1447 typedef int (*tg_visitor)(struct task_group *, void *);
1448
1449 /*
1450 * Iterate the full tree, calling @down when first entering a node and @up when
1451 * leaving it for the final time.
1452 */
1453 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1454 {
1455 struct task_group *parent, *child;
1456 int ret;
1457
1458 rcu_read_lock();
1459 parent = &root_task_group;
1460 down:
1461 ret = (*down)(parent, data);
1462 if (ret)
1463 goto out_unlock;
1464 list_for_each_entry_rcu(child, &parent->children, siblings) {
1465 parent = child;
1466 goto down;
1467
1468 up:
1469 continue;
1470 }
1471 ret = (*up)(parent, data);
1472 if (ret)
1473 goto out_unlock;
1474
1475 child = parent;
1476 parent = parent->parent;
1477 if (parent)
1478 goto up;
1479 out_unlock:
1480 rcu_read_unlock();
1481
1482 return ret;
1483 }
1484
1485 static int tg_nop(struct task_group *tg, void *data)
1486 {
1487 return 0;
1488 }
1489 #endif
1490
1491 #ifdef CONFIG_SMP
1492 /* Used instead of source_load when we know the type == 0 */
1493 static unsigned long weighted_cpuload(const int cpu)
1494 {
1495 return cpu_rq(cpu)->load.weight;
1496 }
1497
1498 /*
1499 * Return a low guess at the load of a migration-source cpu weighted
1500 * according to the scheduling class and "nice" value.
1501 *
1502 * We want to under-estimate the load of migration sources, to
1503 * balance conservatively.
1504 */
1505 static unsigned long source_load(int cpu, int type)
1506 {
1507 struct rq *rq = cpu_rq(cpu);
1508 unsigned long total = weighted_cpuload(cpu);
1509
1510 if (type == 0 || !sched_feat(LB_BIAS))
1511 return total;
1512
1513 return min(rq->cpu_load[type-1], total);
1514 }
1515
1516 /*
1517 * Return a high guess at the load of a migration-target cpu weighted
1518 * according to the scheduling class and "nice" value.
1519 */
1520 static unsigned long target_load(int cpu, int type)
1521 {
1522 struct rq *rq = cpu_rq(cpu);
1523 unsigned long total = weighted_cpuload(cpu);
1524
1525 if (type == 0 || !sched_feat(LB_BIAS))
1526 return total;
1527
1528 return max(rq->cpu_load[type-1], total);
1529 }
1530
1531 static struct sched_group *group_of(int cpu)
1532 {
1533 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1534
1535 if (!sd)
1536 return NULL;
1537
1538 return sd->groups;
1539 }
1540
1541 static unsigned long power_of(int cpu)
1542 {
1543 struct sched_group *group = group_of(cpu);
1544
1545 if (!group)
1546 return SCHED_LOAD_SCALE;
1547
1548 return group->cpu_power;
1549 }
1550
1551 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1552
1553 static unsigned long cpu_avg_load_per_task(int cpu)
1554 {
1555 struct rq *rq = cpu_rq(cpu);
1556 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1557
1558 if (nr_running)
1559 rq->avg_load_per_task = rq->load.weight / nr_running;
1560 else
1561 rq->avg_load_per_task = 0;
1562
1563 return rq->avg_load_per_task;
1564 }
1565
1566 #ifdef CONFIG_FAIR_GROUP_SCHED
1567
1568 static __read_mostly unsigned long *update_shares_data;
1569
1570 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1571
1572 /*
1573 * Calculate and set the cpu's group shares.
1574 */
1575 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1576 unsigned long sd_shares,
1577 unsigned long sd_rq_weight,
1578 unsigned long *usd_rq_weight)
1579 {
1580 unsigned long shares, rq_weight;
1581 int boost = 0;
1582
1583 rq_weight = usd_rq_weight[cpu];
1584 if (!rq_weight) {
1585 boost = 1;
1586 rq_weight = NICE_0_LOAD;
1587 }
1588
1589 /*
1590 * \Sum_j shares_j * rq_weight_i
1591 * shares_i = -----------------------------
1592 * \Sum_j rq_weight_j
1593 */
1594 shares = (sd_shares * rq_weight) / sd_rq_weight;
1595 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1596
1597 if (abs(shares - tg->se[cpu]->load.weight) >
1598 sysctl_sched_shares_thresh) {
1599 struct rq *rq = cpu_rq(cpu);
1600 unsigned long flags;
1601
1602 spin_lock_irqsave(&rq->lock, flags);
1603 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1604 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1605 __set_se_shares(tg->se[cpu], shares);
1606 spin_unlock_irqrestore(&rq->lock, flags);
1607 }
1608 }
1609
1610 /*
1611 * Re-compute the task group their per cpu shares over the given domain.
1612 * This needs to be done in a bottom-up fashion because the rq weight of a
1613 * parent group depends on the shares of its child groups.
1614 */
1615 static int tg_shares_up(struct task_group *tg, void *data)
1616 {
1617 unsigned long weight, rq_weight = 0, shares = 0;
1618 unsigned long *usd_rq_weight;
1619 struct sched_domain *sd = data;
1620 unsigned long flags;
1621 int i;
1622
1623 if (!tg->se[0])
1624 return 0;
1625
1626 local_irq_save(flags);
1627 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1628
1629 for_each_cpu(i, sched_domain_span(sd)) {
1630 weight = tg->cfs_rq[i]->load.weight;
1631 usd_rq_weight[i] = weight;
1632
1633 /*
1634 * If there are currently no tasks on the cpu pretend there
1635 * is one of average load so that when a new task gets to
1636 * run here it will not get delayed by group starvation.
1637 */
1638 if (!weight)
1639 weight = NICE_0_LOAD;
1640
1641 rq_weight += weight;
1642 shares += tg->cfs_rq[i]->shares;
1643 }
1644
1645 if ((!shares && rq_weight) || shares > tg->shares)
1646 shares = tg->shares;
1647
1648 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1649 shares = tg->shares;
1650
1651 for_each_cpu(i, sched_domain_span(sd))
1652 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1653
1654 local_irq_restore(flags);
1655
1656 return 0;
1657 }
1658
1659 /*
1660 * Compute the cpu's hierarchical load factor for each task group.
1661 * This needs to be done in a top-down fashion because the load of a child
1662 * group is a fraction of its parents load.
1663 */
1664 static int tg_load_down(struct task_group *tg, void *data)
1665 {
1666 unsigned long load;
1667 long cpu = (long)data;
1668
1669 if (!tg->parent) {
1670 load = cpu_rq(cpu)->load.weight;
1671 } else {
1672 load = tg->parent->cfs_rq[cpu]->h_load;
1673 load *= tg->cfs_rq[cpu]->shares;
1674 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1675 }
1676
1677 tg->cfs_rq[cpu]->h_load = load;
1678
1679 return 0;
1680 }
1681
1682 static void update_shares(struct sched_domain *sd)
1683 {
1684 s64 elapsed;
1685 u64 now;
1686
1687 if (root_task_group_empty())
1688 return;
1689
1690 now = cpu_clock(raw_smp_processor_id());
1691 elapsed = now - sd->last_update;
1692
1693 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1694 sd->last_update = now;
1695 walk_tg_tree(tg_nop, tg_shares_up, sd);
1696 }
1697 }
1698
1699 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1700 {
1701 if (root_task_group_empty())
1702 return;
1703
1704 spin_unlock(&rq->lock);
1705 update_shares(sd);
1706 spin_lock(&rq->lock);
1707 }
1708
1709 static void update_h_load(long cpu)
1710 {
1711 if (root_task_group_empty())
1712 return;
1713
1714 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1715 }
1716
1717 #else
1718
1719 static inline void update_shares(struct sched_domain *sd)
1720 {
1721 }
1722
1723 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1724 {
1725 }
1726
1727 #endif
1728
1729 #ifdef CONFIG_PREEMPT
1730
1731 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1732
1733 /*
1734 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1735 * way at the expense of forcing extra atomic operations in all
1736 * invocations. This assures that the double_lock is acquired using the
1737 * same underlying policy as the spinlock_t on this architecture, which
1738 * reduces latency compared to the unfair variant below. However, it
1739 * also adds more overhead and therefore may reduce throughput.
1740 */
1741 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1742 __releases(this_rq->lock)
1743 __acquires(busiest->lock)
1744 __acquires(this_rq->lock)
1745 {
1746 spin_unlock(&this_rq->lock);
1747 double_rq_lock(this_rq, busiest);
1748
1749 return 1;
1750 }
1751
1752 #else
1753 /*
1754 * Unfair double_lock_balance: Optimizes throughput at the expense of
1755 * latency by eliminating extra atomic operations when the locks are
1756 * already in proper order on entry. This favors lower cpu-ids and will
1757 * grant the double lock to lower cpus over higher ids under contention,
1758 * regardless of entry order into the function.
1759 */
1760 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1761 __releases(this_rq->lock)
1762 __acquires(busiest->lock)
1763 __acquires(this_rq->lock)
1764 {
1765 int ret = 0;
1766
1767 if (unlikely(!spin_trylock(&busiest->lock))) {
1768 if (busiest < this_rq) {
1769 spin_unlock(&this_rq->lock);
1770 spin_lock(&busiest->lock);
1771 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1772 ret = 1;
1773 } else
1774 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1775 }
1776 return ret;
1777 }
1778
1779 #endif /* CONFIG_PREEMPT */
1780
1781 /*
1782 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1783 */
1784 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1785 {
1786 if (unlikely(!irqs_disabled())) {
1787 /* printk() doesn't work good under rq->lock */
1788 spin_unlock(&this_rq->lock);
1789 BUG_ON(1);
1790 }
1791
1792 return _double_lock_balance(this_rq, busiest);
1793 }
1794
1795 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1796 __releases(busiest->lock)
1797 {
1798 spin_unlock(&busiest->lock);
1799 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1800 }
1801 #endif
1802
1803 #ifdef CONFIG_FAIR_GROUP_SCHED
1804 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1805 {
1806 #ifdef CONFIG_SMP
1807 cfs_rq->shares = shares;
1808 #endif
1809 }
1810 #endif
1811
1812 static void calc_load_account_active(struct rq *this_rq);
1813
1814 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1815 {
1816 set_task_rq(p, cpu);
1817 #ifdef CONFIG_SMP
1818 /*
1819 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1820 * successfuly executed on another CPU. We must ensure that updates of
1821 * per-task data have been completed by this moment.
1822 */
1823 smp_wmb();
1824 task_thread_info(p)->cpu = cpu;
1825 #endif
1826 }
1827
1828 #include "sched_stats.h"
1829 #include "sched_idletask.c"
1830 #include "sched_fair.c"
1831 #include "sched_rt.c"
1832 #ifdef CONFIG_SCHED_DEBUG
1833 # include "sched_debug.c"
1834 #endif
1835
1836 #define sched_class_highest (&rt_sched_class)
1837 #define for_each_class(class) \
1838 for (class = sched_class_highest; class; class = class->next)
1839
1840 static void inc_nr_running(struct rq *rq)
1841 {
1842 rq->nr_running++;
1843 }
1844
1845 static void dec_nr_running(struct rq *rq)
1846 {
1847 rq->nr_running--;
1848 }
1849
1850 static void set_load_weight(struct task_struct *p)
1851 {
1852 if (task_has_rt_policy(p)) {
1853 p->se.load.weight = prio_to_weight[0] * 2;
1854 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1855 return;
1856 }
1857
1858 /*
1859 * SCHED_IDLE tasks get minimal weight:
1860 */
1861 if (p->policy == SCHED_IDLE) {
1862 p->se.load.weight = WEIGHT_IDLEPRIO;
1863 p->se.load.inv_weight = WMULT_IDLEPRIO;
1864 return;
1865 }
1866
1867 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1868 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1869 }
1870
1871 static void update_avg(u64 *avg, u64 sample)
1872 {
1873 s64 diff = sample - *avg;
1874 *avg += diff >> 3;
1875 }
1876
1877 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1878 {
1879 if (wakeup)
1880 p->se.start_runtime = p->se.sum_exec_runtime;
1881
1882 sched_info_queued(p);
1883 p->sched_class->enqueue_task(rq, p, wakeup);
1884 p->se.on_rq = 1;
1885 }
1886
1887 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1888 {
1889 if (sleep) {
1890 if (p->se.last_wakeup) {
1891 update_avg(&p->se.avg_overlap,
1892 p->se.sum_exec_runtime - p->se.last_wakeup);
1893 p->se.last_wakeup = 0;
1894 } else {
1895 update_avg(&p->se.avg_wakeup,
1896 sysctl_sched_wakeup_granularity);
1897 }
1898 }
1899
1900 sched_info_dequeued(p);
1901 p->sched_class->dequeue_task(rq, p, sleep);
1902 p->se.on_rq = 0;
1903 }
1904
1905 /*
1906 * __normal_prio - return the priority that is based on the static prio
1907 */
1908 static inline int __normal_prio(struct task_struct *p)
1909 {
1910 return p->static_prio;
1911 }
1912
1913 /*
1914 * Calculate the expected normal priority: i.e. priority
1915 * without taking RT-inheritance into account. Might be
1916 * boosted by interactivity modifiers. Changes upon fork,
1917 * setprio syscalls, and whenever the interactivity
1918 * estimator recalculates.
1919 */
1920 static inline int normal_prio(struct task_struct *p)
1921 {
1922 int prio;
1923
1924 if (task_has_rt_policy(p))
1925 prio = MAX_RT_PRIO-1 - p->rt_priority;
1926 else
1927 prio = __normal_prio(p);
1928 return prio;
1929 }
1930
1931 /*
1932 * Calculate the current priority, i.e. the priority
1933 * taken into account by the scheduler. This value might
1934 * be boosted by RT tasks, or might be boosted by
1935 * interactivity modifiers. Will be RT if the task got
1936 * RT-boosted. If not then it returns p->normal_prio.
1937 */
1938 static int effective_prio(struct task_struct *p)
1939 {
1940 p->normal_prio = normal_prio(p);
1941 /*
1942 * If we are RT tasks or we were boosted to RT priority,
1943 * keep the priority unchanged. Otherwise, update priority
1944 * to the normal priority:
1945 */
1946 if (!rt_prio(p->prio))
1947 return p->normal_prio;
1948 return p->prio;
1949 }
1950
1951 /*
1952 * activate_task - move a task to the runqueue.
1953 */
1954 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1955 {
1956 if (task_contributes_to_load(p))
1957 rq->nr_uninterruptible--;
1958
1959 enqueue_task(rq, p, wakeup);
1960 inc_nr_running(rq);
1961 }
1962
1963 /*
1964 * deactivate_task - remove a task from the runqueue.
1965 */
1966 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1967 {
1968 if (task_contributes_to_load(p))
1969 rq->nr_uninterruptible++;
1970
1971 dequeue_task(rq, p, sleep);
1972 dec_nr_running(rq);
1973 }
1974
1975 /**
1976 * task_curr - is this task currently executing on a CPU?
1977 * @p: the task in question.
1978 */
1979 inline int task_curr(const struct task_struct *p)
1980 {
1981 return cpu_curr(task_cpu(p)) == p;
1982 }
1983
1984 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1985 const struct sched_class *prev_class,
1986 int oldprio, int running)
1987 {
1988 if (prev_class != p->sched_class) {
1989 if (prev_class->switched_from)
1990 prev_class->switched_from(rq, p, running);
1991 p->sched_class->switched_to(rq, p, running);
1992 } else
1993 p->sched_class->prio_changed(rq, p, oldprio, running);
1994 }
1995
1996 /**
1997 * kthread_bind - bind a just-created kthread to a cpu.
1998 * @p: thread created by kthread_create().
1999 * @cpu: cpu (might not be online, must be possible) for @k to run on.
2000 *
2001 * Description: This function is equivalent to set_cpus_allowed(),
2002 * except that @cpu doesn't need to be online, and the thread must be
2003 * stopped (i.e., just returned from kthread_create()).
2004 *
2005 * Function lives here instead of kthread.c because it messes with
2006 * scheduler internals which require locking.
2007 */
2008 void kthread_bind(struct task_struct *p, unsigned int cpu)
2009 {
2010 struct rq *rq = cpu_rq(cpu);
2011 unsigned long flags;
2012
2013 /* Must have done schedule() in kthread() before we set_task_cpu */
2014 if (!wait_task_inactive(p, TASK_UNINTERRUPTIBLE)) {
2015 WARN_ON(1);
2016 return;
2017 }
2018
2019 spin_lock_irqsave(&rq->lock, flags);
2020 update_rq_clock(rq);
2021 set_task_cpu(p, cpu);
2022 p->cpus_allowed = cpumask_of_cpu(cpu);
2023 p->rt.nr_cpus_allowed = 1;
2024 p->flags |= PF_THREAD_BOUND;
2025 spin_unlock_irqrestore(&rq->lock, flags);
2026 }
2027 EXPORT_SYMBOL(kthread_bind);
2028
2029 #ifdef CONFIG_SMP
2030 /*
2031 * Is this task likely cache-hot:
2032 */
2033 static int
2034 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2035 {
2036 s64 delta;
2037
2038 /*
2039 * Buddy candidates are cache hot:
2040 */
2041 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2042 (&p->se == cfs_rq_of(&p->se)->next ||
2043 &p->se == cfs_rq_of(&p->se)->last))
2044 return 1;
2045
2046 if (p->sched_class != &fair_sched_class)
2047 return 0;
2048
2049 if (sysctl_sched_migration_cost == -1)
2050 return 1;
2051 if (sysctl_sched_migration_cost == 0)
2052 return 0;
2053
2054 delta = now - p->se.exec_start;
2055
2056 return delta < (s64)sysctl_sched_migration_cost;
2057 }
2058
2059
2060 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2061 {
2062 int old_cpu = task_cpu(p);
2063 struct rq *old_rq = cpu_rq(old_cpu);
2064 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2065 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2066
2067 trace_sched_migrate_task(p, new_cpu);
2068
2069 if (old_cpu != new_cpu) {
2070 p->se.nr_migrations++;
2071 #ifdef CONFIG_SCHEDSTATS
2072 if (task_hot(p, old_rq->clock, NULL))
2073 schedstat_inc(p, se.nr_forced2_migrations);
2074 #endif
2075 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2076 1, 1, NULL, 0);
2077 }
2078 p->se.vruntime -= old_cfsrq->min_vruntime -
2079 new_cfsrq->min_vruntime;
2080
2081 __set_task_cpu(p, new_cpu);
2082 }
2083
2084 struct migration_req {
2085 struct list_head list;
2086
2087 struct task_struct *task;
2088 int dest_cpu;
2089
2090 struct completion done;
2091 };
2092
2093 /*
2094 * The task's runqueue lock must be held.
2095 * Returns true if you have to wait for migration thread.
2096 */
2097 static int
2098 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2099 {
2100 struct rq *rq = task_rq(p);
2101
2102 /*
2103 * If the task is not on a runqueue (and not running), then
2104 * it is sufficient to simply update the task's cpu field.
2105 */
2106 if (!p->se.on_rq && !task_running(rq, p)) {
2107 update_rq_clock(rq);
2108 set_task_cpu(p, dest_cpu);
2109 return 0;
2110 }
2111
2112 init_completion(&req->done);
2113 req->task = p;
2114 req->dest_cpu = dest_cpu;
2115 list_add(&req->list, &rq->migration_queue);
2116
2117 return 1;
2118 }
2119
2120 /*
2121 * wait_task_context_switch - wait for a thread to complete at least one
2122 * context switch.
2123 *
2124 * @p must not be current.
2125 */
2126 void wait_task_context_switch(struct task_struct *p)
2127 {
2128 unsigned long nvcsw, nivcsw, flags;
2129 int running;
2130 struct rq *rq;
2131
2132 nvcsw = p->nvcsw;
2133 nivcsw = p->nivcsw;
2134 for (;;) {
2135 /*
2136 * The runqueue is assigned before the actual context
2137 * switch. We need to take the runqueue lock.
2138 *
2139 * We could check initially without the lock but it is
2140 * very likely that we need to take the lock in every
2141 * iteration.
2142 */
2143 rq = task_rq_lock(p, &flags);
2144 running = task_running(rq, p);
2145 task_rq_unlock(rq, &flags);
2146
2147 if (likely(!running))
2148 break;
2149 /*
2150 * The switch count is incremented before the actual
2151 * context switch. We thus wait for two switches to be
2152 * sure at least one completed.
2153 */
2154 if ((p->nvcsw - nvcsw) > 1)
2155 break;
2156 if ((p->nivcsw - nivcsw) > 1)
2157 break;
2158
2159 cpu_relax();
2160 }
2161 }
2162
2163 /*
2164 * wait_task_inactive - wait for a thread to unschedule.
2165 *
2166 * If @match_state is nonzero, it's the @p->state value just checked and
2167 * not expected to change. If it changes, i.e. @p might have woken up,
2168 * then return zero. When we succeed in waiting for @p to be off its CPU,
2169 * we return a positive number (its total switch count). If a second call
2170 * a short while later returns the same number, the caller can be sure that
2171 * @p has remained unscheduled the whole time.
2172 *
2173 * The caller must ensure that the task *will* unschedule sometime soon,
2174 * else this function might spin for a *long* time. This function can't
2175 * be called with interrupts off, or it may introduce deadlock with
2176 * smp_call_function() if an IPI is sent by the same process we are
2177 * waiting to become inactive.
2178 */
2179 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2180 {
2181 unsigned long flags;
2182 int running, on_rq;
2183 unsigned long ncsw;
2184 struct rq *rq;
2185
2186 for (;;) {
2187 /*
2188 * We do the initial early heuristics without holding
2189 * any task-queue locks at all. We'll only try to get
2190 * the runqueue lock when things look like they will
2191 * work out!
2192 */
2193 rq = task_rq(p);
2194
2195 /*
2196 * If the task is actively running on another CPU
2197 * still, just relax and busy-wait without holding
2198 * any locks.
2199 *
2200 * NOTE! Since we don't hold any locks, it's not
2201 * even sure that "rq" stays as the right runqueue!
2202 * But we don't care, since "task_running()" will
2203 * return false if the runqueue has changed and p
2204 * is actually now running somewhere else!
2205 */
2206 while (task_running(rq, p)) {
2207 if (match_state && unlikely(p->state != match_state))
2208 return 0;
2209 cpu_relax();
2210 }
2211
2212 /*
2213 * Ok, time to look more closely! We need the rq
2214 * lock now, to be *sure*. If we're wrong, we'll
2215 * just go back and repeat.
2216 */
2217 rq = task_rq_lock(p, &flags);
2218 trace_sched_wait_task(rq, p);
2219 running = task_running(rq, p);
2220 on_rq = p->se.on_rq;
2221 ncsw = 0;
2222 if (!match_state || p->state == match_state)
2223 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2224 task_rq_unlock(rq, &flags);
2225
2226 /*
2227 * If it changed from the expected state, bail out now.
2228 */
2229 if (unlikely(!ncsw))
2230 break;
2231
2232 /*
2233 * Was it really running after all now that we
2234 * checked with the proper locks actually held?
2235 *
2236 * Oops. Go back and try again..
2237 */
2238 if (unlikely(running)) {
2239 cpu_relax();
2240 continue;
2241 }
2242
2243 /*
2244 * It's not enough that it's not actively running,
2245 * it must be off the runqueue _entirely_, and not
2246 * preempted!
2247 *
2248 * So if it was still runnable (but just not actively
2249 * running right now), it's preempted, and we should
2250 * yield - it could be a while.
2251 */
2252 if (unlikely(on_rq)) {
2253 schedule_timeout_uninterruptible(1);
2254 continue;
2255 }
2256
2257 /*
2258 * Ahh, all good. It wasn't running, and it wasn't
2259 * runnable, which means that it will never become
2260 * running in the future either. We're all done!
2261 */
2262 break;
2263 }
2264
2265 return ncsw;
2266 }
2267
2268 /***
2269 * kick_process - kick a running thread to enter/exit the kernel
2270 * @p: the to-be-kicked thread
2271 *
2272 * Cause a process which is running on another CPU to enter
2273 * kernel-mode, without any delay. (to get signals handled.)
2274 *
2275 * NOTE: this function doesnt have to take the runqueue lock,
2276 * because all it wants to ensure is that the remote task enters
2277 * the kernel. If the IPI races and the task has been migrated
2278 * to another CPU then no harm is done and the purpose has been
2279 * achieved as well.
2280 */
2281 void kick_process(struct task_struct *p)
2282 {
2283 int cpu;
2284
2285 preempt_disable();
2286 cpu = task_cpu(p);
2287 if ((cpu != smp_processor_id()) && task_curr(p))
2288 smp_send_reschedule(cpu);
2289 preempt_enable();
2290 }
2291 EXPORT_SYMBOL_GPL(kick_process);
2292 #endif /* CONFIG_SMP */
2293
2294 /**
2295 * task_oncpu_function_call - call a function on the cpu on which a task runs
2296 * @p: the task to evaluate
2297 * @func: the function to be called
2298 * @info: the function call argument
2299 *
2300 * Calls the function @func when the task is currently running. This might
2301 * be on the current CPU, which just calls the function directly
2302 */
2303 void task_oncpu_function_call(struct task_struct *p,
2304 void (*func) (void *info), void *info)
2305 {
2306 int cpu;
2307
2308 preempt_disable();
2309 cpu = task_cpu(p);
2310 if (task_curr(p))
2311 smp_call_function_single(cpu, func, info, 1);
2312 preempt_enable();
2313 }
2314
2315 #ifdef CONFIG_SMP
2316 static inline
2317 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2318 {
2319 return p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2320 }
2321 #endif
2322
2323 /***
2324 * try_to_wake_up - wake up a thread
2325 * @p: the to-be-woken-up thread
2326 * @state: the mask of task states that can be woken
2327 * @sync: do a synchronous wakeup?
2328 *
2329 * Put it on the run-queue if it's not already there. The "current"
2330 * thread is always on the run-queue (except when the actual
2331 * re-schedule is in progress), and as such you're allowed to do
2332 * the simpler "current->state = TASK_RUNNING" to mark yourself
2333 * runnable without the overhead of this.
2334 *
2335 * returns failure only if the task is already active.
2336 */
2337 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2338 int wake_flags)
2339 {
2340 int cpu, orig_cpu, this_cpu, success = 0;
2341 unsigned long flags;
2342 struct rq *rq, *orig_rq;
2343
2344 if (!sched_feat(SYNC_WAKEUPS))
2345 wake_flags &= ~WF_SYNC;
2346
2347 this_cpu = get_cpu();
2348
2349 smp_wmb();
2350 rq = orig_rq = task_rq_lock(p, &flags);
2351 update_rq_clock(rq);
2352 if (!(p->state & state))
2353 goto out;
2354
2355 if (p->se.on_rq)
2356 goto out_running;
2357
2358 cpu = task_cpu(p);
2359 orig_cpu = cpu;
2360
2361 #ifdef CONFIG_SMP
2362 if (unlikely(task_running(rq, p)))
2363 goto out_activate;
2364
2365 /*
2366 * In order to handle concurrent wakeups and release the rq->lock
2367 * we put the task in TASK_WAKING state.
2368 *
2369 * First fix up the nr_uninterruptible count:
2370 */
2371 if (task_contributes_to_load(p))
2372 rq->nr_uninterruptible--;
2373 p->state = TASK_WAKING;
2374 __task_rq_unlock(rq);
2375
2376 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2377 if (cpu != orig_cpu)
2378 set_task_cpu(p, cpu);
2379
2380 rq = __task_rq_lock(p);
2381 update_rq_clock(rq);
2382
2383 WARN_ON(p->state != TASK_WAKING);
2384 cpu = task_cpu(p);
2385
2386 #ifdef CONFIG_SCHEDSTATS
2387 schedstat_inc(rq, ttwu_count);
2388 if (cpu == this_cpu)
2389 schedstat_inc(rq, ttwu_local);
2390 else {
2391 struct sched_domain *sd;
2392 for_each_domain(this_cpu, sd) {
2393 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2394 schedstat_inc(sd, ttwu_wake_remote);
2395 break;
2396 }
2397 }
2398 }
2399 #endif /* CONFIG_SCHEDSTATS */
2400
2401 out_activate:
2402 #endif /* CONFIG_SMP */
2403 schedstat_inc(p, se.nr_wakeups);
2404 if (wake_flags & WF_SYNC)
2405 schedstat_inc(p, se.nr_wakeups_sync);
2406 if (orig_cpu != cpu)
2407 schedstat_inc(p, se.nr_wakeups_migrate);
2408 if (cpu == this_cpu)
2409 schedstat_inc(p, se.nr_wakeups_local);
2410 else
2411 schedstat_inc(p, se.nr_wakeups_remote);
2412 activate_task(rq, p, 1);
2413 success = 1;
2414
2415 /*
2416 * Only attribute actual wakeups done by this task.
2417 */
2418 if (!in_interrupt()) {
2419 struct sched_entity *se = &current->se;
2420 u64 sample = se->sum_exec_runtime;
2421
2422 if (se->last_wakeup)
2423 sample -= se->last_wakeup;
2424 else
2425 sample -= se->start_runtime;
2426 update_avg(&se->avg_wakeup, sample);
2427
2428 se->last_wakeup = se->sum_exec_runtime;
2429 }
2430
2431 out_running:
2432 trace_sched_wakeup(rq, p, success);
2433 check_preempt_curr(rq, p, wake_flags);
2434
2435 p->state = TASK_RUNNING;
2436 #ifdef CONFIG_SMP
2437 if (p->sched_class->task_wake_up)
2438 p->sched_class->task_wake_up(rq, p);
2439
2440 if (unlikely(rq->idle_stamp)) {
2441 u64 delta = rq->clock - rq->idle_stamp;
2442 u64 max = 2*sysctl_sched_migration_cost;
2443
2444 if (delta > max)
2445 rq->avg_idle = max;
2446 else
2447 update_avg(&rq->avg_idle, delta);
2448 rq->idle_stamp = 0;
2449 }
2450 #endif
2451 out:
2452 task_rq_unlock(rq, &flags);
2453 put_cpu();
2454
2455 return success;
2456 }
2457
2458 /**
2459 * wake_up_process - Wake up a specific process
2460 * @p: The process to be woken up.
2461 *
2462 * Attempt to wake up the nominated process and move it to the set of runnable
2463 * processes. Returns 1 if the process was woken up, 0 if it was already
2464 * running.
2465 *
2466 * It may be assumed that this function implies a write memory barrier before
2467 * changing the task state if and only if any tasks are woken up.
2468 */
2469 int wake_up_process(struct task_struct *p)
2470 {
2471 return try_to_wake_up(p, TASK_ALL, 0);
2472 }
2473 EXPORT_SYMBOL(wake_up_process);
2474
2475 int wake_up_state(struct task_struct *p, unsigned int state)
2476 {
2477 return try_to_wake_up(p, state, 0);
2478 }
2479
2480 /*
2481 * Perform scheduler related setup for a newly forked process p.
2482 * p is forked by current.
2483 *
2484 * __sched_fork() is basic setup used by init_idle() too:
2485 */
2486 static void __sched_fork(struct task_struct *p)
2487 {
2488 p->se.exec_start = 0;
2489 p->se.sum_exec_runtime = 0;
2490 p->se.prev_sum_exec_runtime = 0;
2491 p->se.nr_migrations = 0;
2492 p->se.last_wakeup = 0;
2493 p->se.avg_overlap = 0;
2494 p->se.start_runtime = 0;
2495 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2496 p->se.avg_running = 0;
2497
2498 #ifdef CONFIG_SCHEDSTATS
2499 p->se.wait_start = 0;
2500 p->se.wait_max = 0;
2501 p->se.wait_count = 0;
2502 p->se.wait_sum = 0;
2503
2504 p->se.sleep_start = 0;
2505 p->se.sleep_max = 0;
2506 p->se.sum_sleep_runtime = 0;
2507
2508 p->se.block_start = 0;
2509 p->se.block_max = 0;
2510 p->se.exec_max = 0;
2511 p->se.slice_max = 0;
2512
2513 p->se.nr_migrations_cold = 0;
2514 p->se.nr_failed_migrations_affine = 0;
2515 p->se.nr_failed_migrations_running = 0;
2516 p->se.nr_failed_migrations_hot = 0;
2517 p->se.nr_forced_migrations = 0;
2518 p->se.nr_forced2_migrations = 0;
2519
2520 p->se.nr_wakeups = 0;
2521 p->se.nr_wakeups_sync = 0;
2522 p->se.nr_wakeups_migrate = 0;
2523 p->se.nr_wakeups_local = 0;
2524 p->se.nr_wakeups_remote = 0;
2525 p->se.nr_wakeups_affine = 0;
2526 p->se.nr_wakeups_affine_attempts = 0;
2527 p->se.nr_wakeups_passive = 0;
2528 p->se.nr_wakeups_idle = 0;
2529
2530 #endif
2531
2532 INIT_LIST_HEAD(&p->rt.run_list);
2533 p->se.on_rq = 0;
2534 INIT_LIST_HEAD(&p->se.group_node);
2535
2536 #ifdef CONFIG_PREEMPT_NOTIFIERS
2537 INIT_HLIST_HEAD(&p->preempt_notifiers);
2538 #endif
2539
2540 /*
2541 * We mark the process as running here, but have not actually
2542 * inserted it onto the runqueue yet. This guarantees that
2543 * nobody will actually run it, and a signal or other external
2544 * event cannot wake it up and insert it on the runqueue either.
2545 */
2546 p->state = TASK_RUNNING;
2547 }
2548
2549 /*
2550 * fork()/clone()-time setup:
2551 */
2552 void sched_fork(struct task_struct *p, int clone_flags)
2553 {
2554 int cpu = get_cpu();
2555
2556 __sched_fork(p);
2557
2558 /*
2559 * Revert to default priority/policy on fork if requested.
2560 */
2561 if (unlikely(p->sched_reset_on_fork)) {
2562 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2563 p->policy = SCHED_NORMAL;
2564 p->normal_prio = p->static_prio;
2565 }
2566
2567 if (PRIO_TO_NICE(p->static_prio) < 0) {
2568 p->static_prio = NICE_TO_PRIO(0);
2569 p->normal_prio = p->static_prio;
2570 set_load_weight(p);
2571 }
2572
2573 /*
2574 * We don't need the reset flag anymore after the fork. It has
2575 * fulfilled its duty:
2576 */
2577 p->sched_reset_on_fork = 0;
2578 }
2579
2580 /*
2581 * Make sure we do not leak PI boosting priority to the child.
2582 */
2583 p->prio = current->normal_prio;
2584
2585 if (!rt_prio(p->prio))
2586 p->sched_class = &fair_sched_class;
2587
2588 if (p->sched_class->task_fork)
2589 p->sched_class->task_fork(p);
2590
2591 #ifdef CONFIG_SMP
2592 cpu = select_task_rq(p, SD_BALANCE_FORK, 0);
2593 #endif
2594 set_task_cpu(p, cpu);
2595
2596 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2597 if (likely(sched_info_on()))
2598 memset(&p->sched_info, 0, sizeof(p->sched_info));
2599 #endif
2600 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2601 p->oncpu = 0;
2602 #endif
2603 #ifdef CONFIG_PREEMPT
2604 /* Want to start with kernel preemption disabled. */
2605 task_thread_info(p)->preempt_count = 1;
2606 #endif
2607 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2608
2609 put_cpu();
2610 }
2611
2612 /*
2613 * wake_up_new_task - wake up a newly created task for the first time.
2614 *
2615 * This function will do some initial scheduler statistics housekeeping
2616 * that must be done for every newly created context, then puts the task
2617 * on the runqueue and wakes it.
2618 */
2619 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2620 {
2621 unsigned long flags;
2622 struct rq *rq;
2623
2624 rq = task_rq_lock(p, &flags);
2625 BUG_ON(p->state != TASK_RUNNING);
2626 update_rq_clock(rq);
2627 activate_task(rq, p, 0);
2628 trace_sched_wakeup_new(rq, p, 1);
2629 check_preempt_curr(rq, p, WF_FORK);
2630 #ifdef CONFIG_SMP
2631 if (p->sched_class->task_wake_up)
2632 p->sched_class->task_wake_up(rq, p);
2633 #endif
2634 task_rq_unlock(rq, &flags);
2635 }
2636
2637 #ifdef CONFIG_PREEMPT_NOTIFIERS
2638
2639 /**
2640 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2641 * @notifier: notifier struct to register
2642 */
2643 void preempt_notifier_register(struct preempt_notifier *notifier)
2644 {
2645 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2646 }
2647 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2648
2649 /**
2650 * preempt_notifier_unregister - no longer interested in preemption notifications
2651 * @notifier: notifier struct to unregister
2652 *
2653 * This is safe to call from within a preemption notifier.
2654 */
2655 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2656 {
2657 hlist_del(&notifier->link);
2658 }
2659 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2660
2661 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2662 {
2663 struct preempt_notifier *notifier;
2664 struct hlist_node *node;
2665
2666 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2667 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2668 }
2669
2670 static void
2671 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2672 struct task_struct *next)
2673 {
2674 struct preempt_notifier *notifier;
2675 struct hlist_node *node;
2676
2677 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2678 notifier->ops->sched_out(notifier, next);
2679 }
2680
2681 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2682
2683 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2684 {
2685 }
2686
2687 static void
2688 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2689 struct task_struct *next)
2690 {
2691 }
2692
2693 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2694
2695 /**
2696 * prepare_task_switch - prepare to switch tasks
2697 * @rq: the runqueue preparing to switch
2698 * @prev: the current task that is being switched out
2699 * @next: the task we are going to switch to.
2700 *
2701 * This is called with the rq lock held and interrupts off. It must
2702 * be paired with a subsequent finish_task_switch after the context
2703 * switch.
2704 *
2705 * prepare_task_switch sets up locking and calls architecture specific
2706 * hooks.
2707 */
2708 static inline void
2709 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2710 struct task_struct *next)
2711 {
2712 fire_sched_out_preempt_notifiers(prev, next);
2713 prepare_lock_switch(rq, next);
2714 prepare_arch_switch(next);
2715 }
2716
2717 /**
2718 * finish_task_switch - clean up after a task-switch
2719 * @rq: runqueue associated with task-switch
2720 * @prev: the thread we just switched away from.
2721 *
2722 * finish_task_switch must be called after the context switch, paired
2723 * with a prepare_task_switch call before the context switch.
2724 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2725 * and do any other architecture-specific cleanup actions.
2726 *
2727 * Note that we may have delayed dropping an mm in context_switch(). If
2728 * so, we finish that here outside of the runqueue lock. (Doing it
2729 * with the lock held can cause deadlocks; see schedule() for
2730 * details.)
2731 */
2732 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2733 __releases(rq->lock)
2734 {
2735 struct mm_struct *mm = rq->prev_mm;
2736 long prev_state;
2737
2738 rq->prev_mm = NULL;
2739
2740 /*
2741 * A task struct has one reference for the use as "current".
2742 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2743 * schedule one last time. The schedule call will never return, and
2744 * the scheduled task must drop that reference.
2745 * The test for TASK_DEAD must occur while the runqueue locks are
2746 * still held, otherwise prev could be scheduled on another cpu, die
2747 * there before we look at prev->state, and then the reference would
2748 * be dropped twice.
2749 * Manfred Spraul <manfred@colorfullife.com>
2750 */
2751 prev_state = prev->state;
2752 finish_arch_switch(prev);
2753 perf_event_task_sched_in(current, cpu_of(rq));
2754 finish_lock_switch(rq, prev);
2755
2756 fire_sched_in_preempt_notifiers(current);
2757 if (mm)
2758 mmdrop(mm);
2759 if (unlikely(prev_state == TASK_DEAD)) {
2760 /*
2761 * Remove function-return probe instances associated with this
2762 * task and put them back on the free list.
2763 */
2764 kprobe_flush_task(prev);
2765 put_task_struct(prev);
2766 }
2767 }
2768
2769 #ifdef CONFIG_SMP
2770
2771 /* assumes rq->lock is held */
2772 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2773 {
2774 if (prev->sched_class->pre_schedule)
2775 prev->sched_class->pre_schedule(rq, prev);
2776 }
2777
2778 /* rq->lock is NOT held, but preemption is disabled */
2779 static inline void post_schedule(struct rq *rq)
2780 {
2781 if (rq->post_schedule) {
2782 unsigned long flags;
2783
2784 spin_lock_irqsave(&rq->lock, flags);
2785 if (rq->curr->sched_class->post_schedule)
2786 rq->curr->sched_class->post_schedule(rq);
2787 spin_unlock_irqrestore(&rq->lock, flags);
2788
2789 rq->post_schedule = 0;
2790 }
2791 }
2792
2793 #else
2794
2795 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2796 {
2797 }
2798
2799 static inline void post_schedule(struct rq *rq)
2800 {
2801 }
2802
2803 #endif
2804
2805 /**
2806 * schedule_tail - first thing a freshly forked thread must call.
2807 * @prev: the thread we just switched away from.
2808 */
2809 asmlinkage void schedule_tail(struct task_struct *prev)
2810 __releases(rq->lock)
2811 {
2812 struct rq *rq = this_rq();
2813
2814 finish_task_switch(rq, prev);
2815
2816 /*
2817 * FIXME: do we need to worry about rq being invalidated by the
2818 * task_switch?
2819 */
2820 post_schedule(rq);
2821
2822 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2823 /* In this case, finish_task_switch does not reenable preemption */
2824 preempt_enable();
2825 #endif
2826 if (current->set_child_tid)
2827 put_user(task_pid_vnr(current), current->set_child_tid);
2828 }
2829
2830 /*
2831 * context_switch - switch to the new MM and the new
2832 * thread's register state.
2833 */
2834 static inline void
2835 context_switch(struct rq *rq, struct task_struct *prev,
2836 struct task_struct *next)
2837 {
2838 struct mm_struct *mm, *oldmm;
2839
2840 prepare_task_switch(rq, prev, next);
2841 trace_sched_switch(rq, prev, next);
2842 mm = next->mm;
2843 oldmm = prev->active_mm;
2844 /*
2845 * For paravirt, this is coupled with an exit in switch_to to
2846 * combine the page table reload and the switch backend into
2847 * one hypercall.
2848 */
2849 arch_start_context_switch(prev);
2850
2851 if (likely(!mm)) {
2852 next->active_mm = oldmm;
2853 atomic_inc(&oldmm->mm_count);
2854 enter_lazy_tlb(oldmm, next);
2855 } else
2856 switch_mm(oldmm, mm, next);
2857
2858 if (likely(!prev->mm)) {
2859 prev->active_mm = NULL;
2860 rq->prev_mm = oldmm;
2861 }
2862 /*
2863 * Since the runqueue lock will be released by the next
2864 * task (which is an invalid locking op but in the case
2865 * of the scheduler it's an obvious special-case), so we
2866 * do an early lockdep release here:
2867 */
2868 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2869 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2870 #endif
2871
2872 /* Here we just switch the register state and the stack. */
2873 switch_to(prev, next, prev);
2874
2875 barrier();
2876 /*
2877 * this_rq must be evaluated again because prev may have moved
2878 * CPUs since it called schedule(), thus the 'rq' on its stack
2879 * frame will be invalid.
2880 */
2881 finish_task_switch(this_rq(), prev);
2882 }
2883
2884 /*
2885 * nr_running, nr_uninterruptible and nr_context_switches:
2886 *
2887 * externally visible scheduler statistics: current number of runnable
2888 * threads, current number of uninterruptible-sleeping threads, total
2889 * number of context switches performed since bootup.
2890 */
2891 unsigned long nr_running(void)
2892 {
2893 unsigned long i, sum = 0;
2894
2895 for_each_online_cpu(i)
2896 sum += cpu_rq(i)->nr_running;
2897
2898 return sum;
2899 }
2900
2901 unsigned long nr_uninterruptible(void)
2902 {
2903 unsigned long i, sum = 0;
2904
2905 for_each_possible_cpu(i)
2906 sum += cpu_rq(i)->nr_uninterruptible;
2907
2908 /*
2909 * Since we read the counters lockless, it might be slightly
2910 * inaccurate. Do not allow it to go below zero though:
2911 */
2912 if (unlikely((long)sum < 0))
2913 sum = 0;
2914
2915 return sum;
2916 }
2917
2918 unsigned long long nr_context_switches(void)
2919 {
2920 int i;
2921 unsigned long long sum = 0;
2922
2923 for_each_possible_cpu(i)
2924 sum += cpu_rq(i)->nr_switches;
2925
2926 return sum;
2927 }
2928
2929 unsigned long nr_iowait(void)
2930 {
2931 unsigned long i, sum = 0;
2932
2933 for_each_possible_cpu(i)
2934 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2935
2936 return sum;
2937 }
2938
2939 unsigned long nr_iowait_cpu(void)
2940 {
2941 struct rq *this = this_rq();
2942 return atomic_read(&this->nr_iowait);
2943 }
2944
2945 unsigned long this_cpu_load(void)
2946 {
2947 struct rq *this = this_rq();
2948 return this->cpu_load[0];
2949 }
2950
2951
2952 /* Variables and functions for calc_load */
2953 static atomic_long_t calc_load_tasks;
2954 static unsigned long calc_load_update;
2955 unsigned long avenrun[3];
2956 EXPORT_SYMBOL(avenrun);
2957
2958 /**
2959 * get_avenrun - get the load average array
2960 * @loads: pointer to dest load array
2961 * @offset: offset to add
2962 * @shift: shift count to shift the result left
2963 *
2964 * These values are estimates at best, so no need for locking.
2965 */
2966 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2967 {
2968 loads[0] = (avenrun[0] + offset) << shift;
2969 loads[1] = (avenrun[1] + offset) << shift;
2970 loads[2] = (avenrun[2] + offset) << shift;
2971 }
2972
2973 static unsigned long
2974 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2975 {
2976 load *= exp;
2977 load += active * (FIXED_1 - exp);
2978 return load >> FSHIFT;
2979 }
2980
2981 /*
2982 * calc_load - update the avenrun load estimates 10 ticks after the
2983 * CPUs have updated calc_load_tasks.
2984 */
2985 void calc_global_load(void)
2986 {
2987 unsigned long upd = calc_load_update + 10;
2988 long active;
2989
2990 if (time_before(jiffies, upd))
2991 return;
2992
2993 active = atomic_long_read(&calc_load_tasks);
2994 active = active > 0 ? active * FIXED_1 : 0;
2995
2996 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2997 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2998 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2999
3000 calc_load_update += LOAD_FREQ;
3001 }
3002
3003 /*
3004 * Either called from update_cpu_load() or from a cpu going idle
3005 */
3006 static void calc_load_account_active(struct rq *this_rq)
3007 {
3008 long nr_active, delta;
3009
3010 nr_active = this_rq->nr_running;
3011 nr_active += (long) this_rq->nr_uninterruptible;
3012
3013 if (nr_active != this_rq->calc_load_active) {
3014 delta = nr_active - this_rq->calc_load_active;
3015 this_rq->calc_load_active = nr_active;
3016 atomic_long_add(delta, &calc_load_tasks);
3017 }
3018 }
3019
3020 /*
3021 * Update rq->cpu_load[] statistics. This function is usually called every
3022 * scheduler tick (TICK_NSEC).
3023 */
3024 static void update_cpu_load(struct rq *this_rq)
3025 {
3026 unsigned long this_load = this_rq->load.weight;
3027 int i, scale;
3028
3029 this_rq->nr_load_updates++;
3030
3031 /* Update our load: */
3032 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3033 unsigned long old_load, new_load;
3034
3035 /* scale is effectively 1 << i now, and >> i divides by scale */
3036
3037 old_load = this_rq->cpu_load[i];
3038 new_load = this_load;
3039 /*
3040 * Round up the averaging division if load is increasing. This
3041 * prevents us from getting stuck on 9 if the load is 10, for
3042 * example.
3043 */
3044 if (new_load > old_load)
3045 new_load += scale-1;
3046 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3047 }
3048
3049 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3050 this_rq->calc_load_update += LOAD_FREQ;
3051 calc_load_account_active(this_rq);
3052 }
3053 }
3054
3055 #ifdef CONFIG_SMP
3056
3057 /*
3058 * double_rq_lock - safely lock two runqueues
3059 *
3060 * Note this does not disable interrupts like task_rq_lock,
3061 * you need to do so manually before calling.
3062 */
3063 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3064 __acquires(rq1->lock)
3065 __acquires(rq2->lock)
3066 {
3067 BUG_ON(!irqs_disabled());
3068 if (rq1 == rq2) {
3069 spin_lock(&rq1->lock);
3070 __acquire(rq2->lock); /* Fake it out ;) */
3071 } else {
3072 if (rq1 < rq2) {
3073 spin_lock(&rq1->lock);
3074 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3075 } else {
3076 spin_lock(&rq2->lock);
3077 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3078 }
3079 }
3080 update_rq_clock(rq1);
3081 update_rq_clock(rq2);
3082 }
3083
3084 /*
3085 * double_rq_unlock - safely unlock two runqueues
3086 *
3087 * Note this does not restore interrupts like task_rq_unlock,
3088 * you need to do so manually after calling.
3089 */
3090 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3091 __releases(rq1->lock)
3092 __releases(rq2->lock)
3093 {
3094 spin_unlock(&rq1->lock);
3095 if (rq1 != rq2)
3096 spin_unlock(&rq2->lock);
3097 else
3098 __release(rq2->lock);
3099 }
3100
3101 /*
3102 * If dest_cpu is allowed for this process, migrate the task to it.
3103 * This is accomplished by forcing the cpu_allowed mask to only
3104 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3105 * the cpu_allowed mask is restored.
3106 */
3107 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3108 {
3109 struct migration_req req;
3110 unsigned long flags;
3111 struct rq *rq;
3112
3113 rq = task_rq_lock(p, &flags);
3114 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3115 || unlikely(!cpu_active(dest_cpu)))
3116 goto out;
3117
3118 /* force the process onto the specified CPU */
3119 if (migrate_task(p, dest_cpu, &req)) {
3120 /* Need to wait for migration thread (might exit: take ref). */
3121 struct task_struct *mt = rq->migration_thread;
3122
3123 get_task_struct(mt);
3124 task_rq_unlock(rq, &flags);
3125 wake_up_process(mt);
3126 put_task_struct(mt);
3127 wait_for_completion(&req.done);
3128
3129 return;
3130 }
3131 out:
3132 task_rq_unlock(rq, &flags);
3133 }
3134
3135 /*
3136 * sched_exec - execve() is a valuable balancing opportunity, because at
3137 * this point the task has the smallest effective memory and cache footprint.
3138 */
3139 void sched_exec(void)
3140 {
3141 int new_cpu, this_cpu = get_cpu();
3142 new_cpu = select_task_rq(current, SD_BALANCE_EXEC, 0);
3143 put_cpu();
3144 if (new_cpu != this_cpu)
3145 sched_migrate_task(current, new_cpu);
3146 }
3147
3148 /*
3149 * pull_task - move a task from a remote runqueue to the local runqueue.
3150 * Both runqueues must be locked.
3151 */
3152 static void pull_task(struct rq *src_rq, struct task_struct *p,
3153 struct rq *this_rq, int this_cpu)
3154 {
3155 deactivate_task(src_rq, p, 0);
3156 set_task_cpu(p, this_cpu);
3157 activate_task(this_rq, p, 0);
3158 /*
3159 * Note that idle threads have a prio of MAX_PRIO, for this test
3160 * to be always true for them.
3161 */
3162 check_preempt_curr(this_rq, p, 0);
3163 }
3164
3165 /*
3166 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3167 */
3168 static
3169 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3170 struct sched_domain *sd, enum cpu_idle_type idle,
3171 int *all_pinned)
3172 {
3173 int tsk_cache_hot = 0;
3174 /*
3175 * We do not migrate tasks that are:
3176 * 1) running (obviously), or
3177 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3178 * 3) are cache-hot on their current CPU.
3179 */
3180 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3181 schedstat_inc(p, se.nr_failed_migrations_affine);
3182 return 0;
3183 }
3184 *all_pinned = 0;
3185
3186 if (task_running(rq, p)) {
3187 schedstat_inc(p, se.nr_failed_migrations_running);
3188 return 0;
3189 }
3190
3191 /*
3192 * Aggressive migration if:
3193 * 1) task is cache cold, or
3194 * 2) too many balance attempts have failed.
3195 */
3196
3197 tsk_cache_hot = task_hot(p, rq->clock, sd);
3198 if (!tsk_cache_hot ||
3199 sd->nr_balance_failed > sd->cache_nice_tries) {
3200 #ifdef CONFIG_SCHEDSTATS
3201 if (tsk_cache_hot) {
3202 schedstat_inc(sd, lb_hot_gained[idle]);
3203 schedstat_inc(p, se.nr_forced_migrations);
3204 }
3205 #endif
3206 return 1;
3207 }
3208
3209 if (tsk_cache_hot) {
3210 schedstat_inc(p, se.nr_failed_migrations_hot);
3211 return 0;
3212 }
3213 return 1;
3214 }
3215
3216 static unsigned long
3217 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3218 unsigned long max_load_move, struct sched_domain *sd,
3219 enum cpu_idle_type idle, int *all_pinned,
3220 int *this_best_prio, struct rq_iterator *iterator)
3221 {
3222 int loops = 0, pulled = 0, pinned = 0;
3223 struct task_struct *p;
3224 long rem_load_move = max_load_move;
3225
3226 if (max_load_move == 0)
3227 goto out;
3228
3229 pinned = 1;
3230
3231 /*
3232 * Start the load-balancing iterator:
3233 */
3234 p = iterator->start(iterator->arg);
3235 next:
3236 if (!p || loops++ > sysctl_sched_nr_migrate)
3237 goto out;
3238
3239 if ((p->se.load.weight >> 1) > rem_load_move ||
3240 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3241 p = iterator->next(iterator->arg);
3242 goto next;
3243 }
3244
3245 pull_task(busiest, p, this_rq, this_cpu);
3246 pulled++;
3247 rem_load_move -= p->se.load.weight;
3248
3249 #ifdef CONFIG_PREEMPT
3250 /*
3251 * NEWIDLE balancing is a source of latency, so preemptible kernels
3252 * will stop after the first task is pulled to minimize the critical
3253 * section.
3254 */
3255 if (idle == CPU_NEWLY_IDLE)
3256 goto out;
3257 #endif
3258
3259 /*
3260 * We only want to steal up to the prescribed amount of weighted load.
3261 */
3262 if (rem_load_move > 0) {
3263 if (p->prio < *this_best_prio)
3264 *this_best_prio = p->prio;
3265 p = iterator->next(iterator->arg);
3266 goto next;
3267 }
3268 out:
3269 /*
3270 * Right now, this is one of only two places pull_task() is called,
3271 * so we can safely collect pull_task() stats here rather than
3272 * inside pull_task().
3273 */
3274 schedstat_add(sd, lb_gained[idle], pulled);
3275
3276 if (all_pinned)
3277 *all_pinned = pinned;
3278
3279 return max_load_move - rem_load_move;
3280 }
3281
3282 /*
3283 * move_tasks tries to move up to max_load_move weighted load from busiest to
3284 * this_rq, as part of a balancing operation within domain "sd".
3285 * Returns 1 if successful and 0 otherwise.
3286 *
3287 * Called with both runqueues locked.
3288 */
3289 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3290 unsigned long max_load_move,
3291 struct sched_domain *sd, enum cpu_idle_type idle,
3292 int *all_pinned)
3293 {
3294 const struct sched_class *class = sched_class_highest;
3295 unsigned long total_load_moved = 0;
3296 int this_best_prio = this_rq->curr->prio;
3297
3298 do {
3299 total_load_moved +=
3300 class->load_balance(this_rq, this_cpu, busiest,
3301 max_load_move - total_load_moved,
3302 sd, idle, all_pinned, &this_best_prio);
3303 class = class->next;
3304
3305 #ifdef CONFIG_PREEMPT
3306 /*
3307 * NEWIDLE balancing is a source of latency, so preemptible
3308 * kernels will stop after the first task is pulled to minimize
3309 * the critical section.
3310 */
3311 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3312 break;
3313 #endif
3314 } while (class && max_load_move > total_load_moved);
3315
3316 return total_load_moved > 0;
3317 }
3318
3319 static int
3320 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3321 struct sched_domain *sd, enum cpu_idle_type idle,
3322 struct rq_iterator *iterator)
3323 {
3324 struct task_struct *p = iterator->start(iterator->arg);
3325 int pinned = 0;
3326
3327 while (p) {
3328 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3329 pull_task(busiest, p, this_rq, this_cpu);
3330 /*
3331 * Right now, this is only the second place pull_task()
3332 * is called, so we can safely collect pull_task()
3333 * stats here rather than inside pull_task().
3334 */
3335 schedstat_inc(sd, lb_gained[idle]);
3336
3337 return 1;
3338 }
3339 p = iterator->next(iterator->arg);
3340 }
3341
3342 return 0;
3343 }
3344
3345 /*
3346 * move_one_task tries to move exactly one task from busiest to this_rq, as
3347 * part of active balancing operations within "domain".
3348 * Returns 1 if successful and 0 otherwise.
3349 *
3350 * Called with both runqueues locked.
3351 */
3352 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3353 struct sched_domain *sd, enum cpu_idle_type idle)
3354 {
3355 const struct sched_class *class;
3356
3357 for_each_class(class) {
3358 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3359 return 1;
3360 }
3361
3362 return 0;
3363 }
3364 /********** Helpers for find_busiest_group ************************/
3365 /*
3366 * sd_lb_stats - Structure to store the statistics of a sched_domain
3367 * during load balancing.
3368 */
3369 struct sd_lb_stats {
3370 struct sched_group *busiest; /* Busiest group in this sd */
3371 struct sched_group *this; /* Local group in this sd */
3372 unsigned long total_load; /* Total load of all groups in sd */
3373 unsigned long total_pwr; /* Total power of all groups in sd */
3374 unsigned long avg_load; /* Average load across all groups in sd */
3375
3376 /** Statistics of this group */
3377 unsigned long this_load;
3378 unsigned long this_load_per_task;
3379 unsigned long this_nr_running;
3380
3381 /* Statistics of the busiest group */
3382 unsigned long max_load;
3383 unsigned long busiest_load_per_task;
3384 unsigned long busiest_nr_running;
3385
3386 int group_imb; /* Is there imbalance in this sd */
3387 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3388 int power_savings_balance; /* Is powersave balance needed for this sd */
3389 struct sched_group *group_min; /* Least loaded group in sd */
3390 struct sched_group *group_leader; /* Group which relieves group_min */
3391 unsigned long min_load_per_task; /* load_per_task in group_min */
3392 unsigned long leader_nr_running; /* Nr running of group_leader */
3393 unsigned long min_nr_running; /* Nr running of group_min */
3394 #endif
3395 };
3396
3397 /*
3398 * sg_lb_stats - stats of a sched_group required for load_balancing
3399 */
3400 struct sg_lb_stats {
3401 unsigned long avg_load; /*Avg load across the CPUs of the group */
3402 unsigned long group_load; /* Total load over the CPUs of the group */
3403 unsigned long sum_nr_running; /* Nr tasks running in the group */
3404 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3405 unsigned long group_capacity;
3406 int group_imb; /* Is there an imbalance in the group ? */
3407 };
3408
3409 /**
3410 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3411 * @group: The group whose first cpu is to be returned.
3412 */
3413 static inline unsigned int group_first_cpu(struct sched_group *group)
3414 {
3415 return cpumask_first(sched_group_cpus(group));
3416 }
3417
3418 /**
3419 * get_sd_load_idx - Obtain the load index for a given sched domain.
3420 * @sd: The sched_domain whose load_idx is to be obtained.
3421 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3422 */
3423 static inline int get_sd_load_idx(struct sched_domain *sd,
3424 enum cpu_idle_type idle)
3425 {
3426 int load_idx;
3427
3428 switch (idle) {
3429 case CPU_NOT_IDLE:
3430 load_idx = sd->busy_idx;
3431 break;
3432
3433 case CPU_NEWLY_IDLE:
3434 load_idx = sd->newidle_idx;
3435 break;
3436 default:
3437 load_idx = sd->idle_idx;
3438 break;
3439 }
3440
3441 return load_idx;
3442 }
3443
3444
3445 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3446 /**
3447 * init_sd_power_savings_stats - Initialize power savings statistics for
3448 * the given sched_domain, during load balancing.
3449 *
3450 * @sd: Sched domain whose power-savings statistics are to be initialized.
3451 * @sds: Variable containing the statistics for sd.
3452 * @idle: Idle status of the CPU at which we're performing load-balancing.
3453 */
3454 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3455 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3456 {
3457 /*
3458 * Busy processors will not participate in power savings
3459 * balance.
3460 */
3461 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3462 sds->power_savings_balance = 0;
3463 else {
3464 sds->power_savings_balance = 1;
3465 sds->min_nr_running = ULONG_MAX;
3466 sds->leader_nr_running = 0;
3467 }
3468 }
3469
3470 /**
3471 * update_sd_power_savings_stats - Update the power saving stats for a
3472 * sched_domain while performing load balancing.
3473 *
3474 * @group: sched_group belonging to the sched_domain under consideration.
3475 * @sds: Variable containing the statistics of the sched_domain
3476 * @local_group: Does group contain the CPU for which we're performing
3477 * load balancing ?
3478 * @sgs: Variable containing the statistics of the group.
3479 */
3480 static inline void update_sd_power_savings_stats(struct sched_group *group,
3481 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3482 {
3483
3484 if (!sds->power_savings_balance)
3485 return;
3486
3487 /*
3488 * If the local group is idle or completely loaded
3489 * no need to do power savings balance at this domain
3490 */
3491 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3492 !sds->this_nr_running))
3493 sds->power_savings_balance = 0;
3494
3495 /*
3496 * If a group is already running at full capacity or idle,
3497 * don't include that group in power savings calculations
3498 */
3499 if (!sds->power_savings_balance ||
3500 sgs->sum_nr_running >= sgs->group_capacity ||
3501 !sgs->sum_nr_running)
3502 return;
3503
3504 /*
3505 * Calculate the group which has the least non-idle load.
3506 * This is the group from where we need to pick up the load
3507 * for saving power
3508 */
3509 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3510 (sgs->sum_nr_running == sds->min_nr_running &&
3511 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3512 sds->group_min = group;
3513 sds->min_nr_running = sgs->sum_nr_running;
3514 sds->min_load_per_task = sgs->sum_weighted_load /
3515 sgs->sum_nr_running;
3516 }
3517
3518 /*
3519 * Calculate the group which is almost near its
3520 * capacity but still has some space to pick up some load
3521 * from other group and save more power
3522 */
3523 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3524 return;
3525
3526 if (sgs->sum_nr_running > sds->leader_nr_running ||
3527 (sgs->sum_nr_running == sds->leader_nr_running &&
3528 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3529 sds->group_leader = group;
3530 sds->leader_nr_running = sgs->sum_nr_running;
3531 }
3532 }
3533
3534 /**
3535 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3536 * @sds: Variable containing the statistics of the sched_domain
3537 * under consideration.
3538 * @this_cpu: Cpu at which we're currently performing load-balancing.
3539 * @imbalance: Variable to store the imbalance.
3540 *
3541 * Description:
3542 * Check if we have potential to perform some power-savings balance.
3543 * If yes, set the busiest group to be the least loaded group in the
3544 * sched_domain, so that it's CPUs can be put to idle.
3545 *
3546 * Returns 1 if there is potential to perform power-savings balance.
3547 * Else returns 0.
3548 */
3549 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3550 int this_cpu, unsigned long *imbalance)
3551 {
3552 if (!sds->power_savings_balance)
3553 return 0;
3554
3555 if (sds->this != sds->group_leader ||
3556 sds->group_leader == sds->group_min)
3557 return 0;
3558
3559 *imbalance = sds->min_load_per_task;
3560 sds->busiest = sds->group_min;
3561
3562 return 1;
3563
3564 }
3565 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3566 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3567 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3568 {
3569 return;
3570 }
3571
3572 static inline void update_sd_power_savings_stats(struct sched_group *group,
3573 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3574 {
3575 return;
3576 }
3577
3578 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3579 int this_cpu, unsigned long *imbalance)
3580 {
3581 return 0;
3582 }
3583 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3584
3585
3586 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3587 {
3588 return SCHED_LOAD_SCALE;
3589 }
3590
3591 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3592 {
3593 return default_scale_freq_power(sd, cpu);
3594 }
3595
3596 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3597 {
3598 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3599 unsigned long smt_gain = sd->smt_gain;
3600
3601 smt_gain /= weight;
3602
3603 return smt_gain;
3604 }
3605
3606 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3607 {
3608 return default_scale_smt_power(sd, cpu);
3609 }
3610
3611 unsigned long scale_rt_power(int cpu)
3612 {
3613 struct rq *rq = cpu_rq(cpu);
3614 u64 total, available;
3615
3616 sched_avg_update(rq);
3617
3618 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3619 available = total - rq->rt_avg;
3620
3621 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3622 total = SCHED_LOAD_SCALE;
3623
3624 total >>= SCHED_LOAD_SHIFT;
3625
3626 return div_u64(available, total);
3627 }
3628
3629 static void update_cpu_power(struct sched_domain *sd, int cpu)
3630 {
3631 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3632 unsigned long power = SCHED_LOAD_SCALE;
3633 struct sched_group *sdg = sd->groups;
3634
3635 if (sched_feat(ARCH_POWER))
3636 power *= arch_scale_freq_power(sd, cpu);
3637 else
3638 power *= default_scale_freq_power(sd, cpu);
3639
3640 power >>= SCHED_LOAD_SHIFT;
3641
3642 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3643 if (sched_feat(ARCH_POWER))
3644 power *= arch_scale_smt_power(sd, cpu);
3645 else
3646 power *= default_scale_smt_power(sd, cpu);
3647
3648 power >>= SCHED_LOAD_SHIFT;
3649 }
3650
3651 power *= scale_rt_power(cpu);
3652 power >>= SCHED_LOAD_SHIFT;
3653
3654 if (!power)
3655 power = 1;
3656
3657 sdg->cpu_power = power;
3658 }
3659
3660 static void update_group_power(struct sched_domain *sd, int cpu)
3661 {
3662 struct sched_domain *child = sd->child;
3663 struct sched_group *group, *sdg = sd->groups;
3664 unsigned long power;
3665
3666 if (!child) {
3667 update_cpu_power(sd, cpu);
3668 return;
3669 }
3670
3671 power = 0;
3672
3673 group = child->groups;
3674 do {
3675 power += group->cpu_power;
3676 group = group->next;
3677 } while (group != child->groups);
3678
3679 sdg->cpu_power = power;
3680 }
3681
3682 /**
3683 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3684 * @sd: The sched_domain whose statistics are to be updated.
3685 * @group: sched_group whose statistics are to be updated.
3686 * @this_cpu: Cpu for which load balance is currently performed.
3687 * @idle: Idle status of this_cpu
3688 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3689 * @sd_idle: Idle status of the sched_domain containing group.
3690 * @local_group: Does group contain this_cpu.
3691 * @cpus: Set of cpus considered for load balancing.
3692 * @balance: Should we balance.
3693 * @sgs: variable to hold the statistics for this group.
3694 */
3695 static inline void update_sg_lb_stats(struct sched_domain *sd,
3696 struct sched_group *group, int this_cpu,
3697 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3698 int local_group, const struct cpumask *cpus,
3699 int *balance, struct sg_lb_stats *sgs)
3700 {
3701 unsigned long load, max_cpu_load, min_cpu_load;
3702 int i;
3703 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3704 unsigned long sum_avg_load_per_task;
3705 unsigned long avg_load_per_task;
3706
3707 if (local_group) {
3708 balance_cpu = group_first_cpu(group);
3709 if (balance_cpu == this_cpu)
3710 update_group_power(sd, this_cpu);
3711 }
3712
3713 /* Tally up the load of all CPUs in the group */
3714 sum_avg_load_per_task = avg_load_per_task = 0;
3715 max_cpu_load = 0;
3716 min_cpu_load = ~0UL;
3717
3718 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3719 struct rq *rq = cpu_rq(i);
3720
3721 if (*sd_idle && rq->nr_running)
3722 *sd_idle = 0;
3723
3724 /* Bias balancing toward cpus of our domain */
3725 if (local_group) {
3726 if (idle_cpu(i) && !first_idle_cpu) {
3727 first_idle_cpu = 1;
3728 balance_cpu = i;
3729 }
3730
3731 load = target_load(i, load_idx);
3732 } else {
3733 load = source_load(i, load_idx);
3734 if (load > max_cpu_load)
3735 max_cpu_load = load;
3736 if (min_cpu_load > load)
3737 min_cpu_load = load;
3738 }
3739
3740 sgs->group_load += load;
3741 sgs->sum_nr_running += rq->nr_running;
3742 sgs->sum_weighted_load += weighted_cpuload(i);
3743
3744 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3745 }
3746
3747 /*
3748 * First idle cpu or the first cpu(busiest) in this sched group
3749 * is eligible for doing load balancing at this and above
3750 * domains. In the newly idle case, we will allow all the cpu's
3751 * to do the newly idle load balance.
3752 */
3753 if (idle != CPU_NEWLY_IDLE && local_group &&
3754 balance_cpu != this_cpu && balance) {
3755 *balance = 0;
3756 return;
3757 }
3758
3759 /* Adjust by relative CPU power of the group */
3760 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3761
3762
3763 /*
3764 * Consider the group unbalanced when the imbalance is larger
3765 * than the average weight of two tasks.
3766 *
3767 * APZ: with cgroup the avg task weight can vary wildly and
3768 * might not be a suitable number - should we keep a
3769 * normalized nr_running number somewhere that negates
3770 * the hierarchy?
3771 */
3772 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3773 group->cpu_power;
3774
3775 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3776 sgs->group_imb = 1;
3777
3778 sgs->group_capacity =
3779 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3780 }
3781
3782 /**
3783 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3784 * @sd: sched_domain whose statistics are to be updated.
3785 * @this_cpu: Cpu for which load balance is currently performed.
3786 * @idle: Idle status of this_cpu
3787 * @sd_idle: Idle status of the sched_domain containing group.
3788 * @cpus: Set of cpus considered for load balancing.
3789 * @balance: Should we balance.
3790 * @sds: variable to hold the statistics for this sched_domain.
3791 */
3792 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3793 enum cpu_idle_type idle, int *sd_idle,
3794 const struct cpumask *cpus, int *balance,
3795 struct sd_lb_stats *sds)
3796 {
3797 struct sched_domain *child = sd->child;
3798 struct sched_group *group = sd->groups;
3799 struct sg_lb_stats sgs;
3800 int load_idx, prefer_sibling = 0;
3801
3802 if (child && child->flags & SD_PREFER_SIBLING)
3803 prefer_sibling = 1;
3804
3805 init_sd_power_savings_stats(sd, sds, idle);
3806 load_idx = get_sd_load_idx(sd, idle);
3807
3808 do {
3809 int local_group;
3810
3811 local_group = cpumask_test_cpu(this_cpu,
3812 sched_group_cpus(group));
3813 memset(&sgs, 0, sizeof(sgs));
3814 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3815 local_group, cpus, balance, &sgs);
3816
3817 if (local_group && balance && !(*balance))
3818 return;
3819
3820 sds->total_load += sgs.group_load;
3821 sds->total_pwr += group->cpu_power;
3822
3823 /*
3824 * In case the child domain prefers tasks go to siblings
3825 * first, lower the group capacity to one so that we'll try
3826 * and move all the excess tasks away.
3827 */
3828 if (prefer_sibling)
3829 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3830
3831 if (local_group) {
3832 sds->this_load = sgs.avg_load;
3833 sds->this = group;
3834 sds->this_nr_running = sgs.sum_nr_running;
3835 sds->this_load_per_task = sgs.sum_weighted_load;
3836 } else if (sgs.avg_load > sds->max_load &&
3837 (sgs.sum_nr_running > sgs.group_capacity ||
3838 sgs.group_imb)) {
3839 sds->max_load = sgs.avg_load;
3840 sds->busiest = group;
3841 sds->busiest_nr_running = sgs.sum_nr_running;
3842 sds->busiest_load_per_task = sgs.sum_weighted_load;
3843 sds->group_imb = sgs.group_imb;
3844 }
3845
3846 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3847 group = group->next;
3848 } while (group != sd->groups);
3849 }
3850
3851 /**
3852 * fix_small_imbalance - Calculate the minor imbalance that exists
3853 * amongst the groups of a sched_domain, during
3854 * load balancing.
3855 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3856 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3857 * @imbalance: Variable to store the imbalance.
3858 */
3859 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3860 int this_cpu, unsigned long *imbalance)
3861 {
3862 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3863 unsigned int imbn = 2;
3864
3865 if (sds->this_nr_running) {
3866 sds->this_load_per_task /= sds->this_nr_running;
3867 if (sds->busiest_load_per_task >
3868 sds->this_load_per_task)
3869 imbn = 1;
3870 } else
3871 sds->this_load_per_task =
3872 cpu_avg_load_per_task(this_cpu);
3873
3874 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3875 sds->busiest_load_per_task * imbn) {
3876 *imbalance = sds->busiest_load_per_task;
3877 return;
3878 }
3879
3880 /*
3881 * OK, we don't have enough imbalance to justify moving tasks,
3882 * however we may be able to increase total CPU power used by
3883 * moving them.
3884 */
3885
3886 pwr_now += sds->busiest->cpu_power *
3887 min(sds->busiest_load_per_task, sds->max_load);
3888 pwr_now += sds->this->cpu_power *
3889 min(sds->this_load_per_task, sds->this_load);
3890 pwr_now /= SCHED_LOAD_SCALE;
3891
3892 /* Amount of load we'd subtract */
3893 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3894 sds->busiest->cpu_power;
3895 if (sds->max_load > tmp)
3896 pwr_move += sds->busiest->cpu_power *
3897 min(sds->busiest_load_per_task, sds->max_load - tmp);
3898
3899 /* Amount of load we'd add */
3900 if (sds->max_load * sds->busiest->cpu_power <
3901 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3902 tmp = (sds->max_load * sds->busiest->cpu_power) /
3903 sds->this->cpu_power;
3904 else
3905 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3906 sds->this->cpu_power;
3907 pwr_move += sds->this->cpu_power *
3908 min(sds->this_load_per_task, sds->this_load + tmp);
3909 pwr_move /= SCHED_LOAD_SCALE;
3910
3911 /* Move if we gain throughput */
3912 if (pwr_move > pwr_now)
3913 *imbalance = sds->busiest_load_per_task;
3914 }
3915
3916 /**
3917 * calculate_imbalance - Calculate the amount of imbalance present within the
3918 * groups of a given sched_domain during load balance.
3919 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3920 * @this_cpu: Cpu for which currently load balance is being performed.
3921 * @imbalance: The variable to store the imbalance.
3922 */
3923 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3924 unsigned long *imbalance)
3925 {
3926 unsigned long max_pull;
3927 /*
3928 * In the presence of smp nice balancing, certain scenarios can have
3929 * max load less than avg load(as we skip the groups at or below
3930 * its cpu_power, while calculating max_load..)
3931 */
3932 if (sds->max_load < sds->avg_load) {
3933 *imbalance = 0;
3934 return fix_small_imbalance(sds, this_cpu, imbalance);
3935 }
3936
3937 /* Don't want to pull so many tasks that a group would go idle */
3938 max_pull = min(sds->max_load - sds->avg_load,
3939 sds->max_load - sds->busiest_load_per_task);
3940
3941 /* How much load to actually move to equalise the imbalance */
3942 *imbalance = min(max_pull * sds->busiest->cpu_power,
3943 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3944 / SCHED_LOAD_SCALE;
3945
3946 /*
3947 * if *imbalance is less than the average load per runnable task
3948 * there is no gaurantee that any tasks will be moved so we'll have
3949 * a think about bumping its value to force at least one task to be
3950 * moved
3951 */
3952 if (*imbalance < sds->busiest_load_per_task)
3953 return fix_small_imbalance(sds, this_cpu, imbalance);
3954
3955 }
3956 /******* find_busiest_group() helpers end here *********************/
3957
3958 /**
3959 * find_busiest_group - Returns the busiest group within the sched_domain
3960 * if there is an imbalance. If there isn't an imbalance, and
3961 * the user has opted for power-savings, it returns a group whose
3962 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3963 * such a group exists.
3964 *
3965 * Also calculates the amount of weighted load which should be moved
3966 * to restore balance.
3967 *
3968 * @sd: The sched_domain whose busiest group is to be returned.
3969 * @this_cpu: The cpu for which load balancing is currently being performed.
3970 * @imbalance: Variable which stores amount of weighted load which should
3971 * be moved to restore balance/put a group to idle.
3972 * @idle: The idle status of this_cpu.
3973 * @sd_idle: The idleness of sd
3974 * @cpus: The set of CPUs under consideration for load-balancing.
3975 * @balance: Pointer to a variable indicating if this_cpu
3976 * is the appropriate cpu to perform load balancing at this_level.
3977 *
3978 * Returns: - the busiest group if imbalance exists.
3979 * - If no imbalance and user has opted for power-savings balance,
3980 * return the least loaded group whose CPUs can be
3981 * put to idle by rebalancing its tasks onto our group.
3982 */
3983 static struct sched_group *
3984 find_busiest_group(struct sched_domain *sd, int this_cpu,
3985 unsigned long *imbalance, enum cpu_idle_type idle,
3986 int *sd_idle, const struct cpumask *cpus, int *balance)
3987 {
3988 struct sd_lb_stats sds;
3989
3990 memset(&sds, 0, sizeof(sds));
3991
3992 /*
3993 * Compute the various statistics relavent for load balancing at
3994 * this level.
3995 */
3996 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3997 balance, &sds);
3998
3999 /* Cases where imbalance does not exist from POV of this_cpu */
4000 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4001 * at this level.
4002 * 2) There is no busy sibling group to pull from.
4003 * 3) This group is the busiest group.
4004 * 4) This group is more busy than the avg busieness at this
4005 * sched_domain.
4006 * 5) The imbalance is within the specified limit.
4007 * 6) Any rebalance would lead to ping-pong
4008 */
4009 if (balance && !(*balance))
4010 goto ret;
4011
4012 if (!sds.busiest || sds.busiest_nr_running == 0)
4013 goto out_balanced;
4014
4015 if (sds.this_load >= sds.max_load)
4016 goto out_balanced;
4017
4018 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4019
4020 if (sds.this_load >= sds.avg_load)
4021 goto out_balanced;
4022
4023 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4024 goto out_balanced;
4025
4026 sds.busiest_load_per_task /= sds.busiest_nr_running;
4027 if (sds.group_imb)
4028 sds.busiest_load_per_task =
4029 min(sds.busiest_load_per_task, sds.avg_load);
4030
4031 /*
4032 * We're trying to get all the cpus to the average_load, so we don't
4033 * want to push ourselves above the average load, nor do we wish to
4034 * reduce the max loaded cpu below the average load, as either of these
4035 * actions would just result in more rebalancing later, and ping-pong
4036 * tasks around. Thus we look for the minimum possible imbalance.
4037 * Negative imbalances (*we* are more loaded than anyone else) will
4038 * be counted as no imbalance for these purposes -- we can't fix that
4039 * by pulling tasks to us. Be careful of negative numbers as they'll
4040 * appear as very large values with unsigned longs.
4041 */
4042 if (sds.max_load <= sds.busiest_load_per_task)
4043 goto out_balanced;
4044
4045 /* Looks like there is an imbalance. Compute it */
4046 calculate_imbalance(&sds, this_cpu, imbalance);
4047 return sds.busiest;
4048
4049 out_balanced:
4050 /*
4051 * There is no obvious imbalance. But check if we can do some balancing
4052 * to save power.
4053 */
4054 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4055 return sds.busiest;
4056 ret:
4057 *imbalance = 0;
4058 return NULL;
4059 }
4060
4061 /*
4062 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4063 */
4064 static struct rq *
4065 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4066 unsigned long imbalance, const struct cpumask *cpus)
4067 {
4068 struct rq *busiest = NULL, *rq;
4069 unsigned long max_load = 0;
4070 int i;
4071
4072 for_each_cpu(i, sched_group_cpus(group)) {
4073 unsigned long power = power_of(i);
4074 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4075 unsigned long wl;
4076
4077 if (!cpumask_test_cpu(i, cpus))
4078 continue;
4079
4080 rq = cpu_rq(i);
4081 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4082 wl /= power;
4083
4084 if (capacity && rq->nr_running == 1 && wl > imbalance)
4085 continue;
4086
4087 if (wl > max_load) {
4088 max_load = wl;
4089 busiest = rq;
4090 }
4091 }
4092
4093 return busiest;
4094 }
4095
4096 /*
4097 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4098 * so long as it is large enough.
4099 */
4100 #define MAX_PINNED_INTERVAL 512
4101
4102 /* Working cpumask for load_balance and load_balance_newidle. */
4103 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4104
4105 /*
4106 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4107 * tasks if there is an imbalance.
4108 */
4109 static int load_balance(int this_cpu, struct rq *this_rq,
4110 struct sched_domain *sd, enum cpu_idle_type idle,
4111 int *balance)
4112 {
4113 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4114 struct sched_group *group;
4115 unsigned long imbalance;
4116 struct rq *busiest;
4117 unsigned long flags;
4118 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4119
4120 cpumask_copy(cpus, cpu_active_mask);
4121
4122 /*
4123 * When power savings policy is enabled for the parent domain, idle
4124 * sibling can pick up load irrespective of busy siblings. In this case,
4125 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4126 * portraying it as CPU_NOT_IDLE.
4127 */
4128 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4129 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4130 sd_idle = 1;
4131
4132 schedstat_inc(sd, lb_count[idle]);
4133
4134 redo:
4135 update_shares(sd);
4136 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4137 cpus, balance);
4138
4139 if (*balance == 0)
4140 goto out_balanced;
4141
4142 if (!group) {
4143 schedstat_inc(sd, lb_nobusyg[idle]);
4144 goto out_balanced;
4145 }
4146
4147 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4148 if (!busiest) {
4149 schedstat_inc(sd, lb_nobusyq[idle]);
4150 goto out_balanced;
4151 }
4152
4153 BUG_ON(busiest == this_rq);
4154
4155 schedstat_add(sd, lb_imbalance[idle], imbalance);
4156
4157 ld_moved = 0;
4158 if (busiest->nr_running > 1) {
4159 /*
4160 * Attempt to move tasks. If find_busiest_group has found
4161 * an imbalance but busiest->nr_running <= 1, the group is
4162 * still unbalanced. ld_moved simply stays zero, so it is
4163 * correctly treated as an imbalance.
4164 */
4165 local_irq_save(flags);
4166 double_rq_lock(this_rq, busiest);
4167 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4168 imbalance, sd, idle, &all_pinned);
4169 double_rq_unlock(this_rq, busiest);
4170 local_irq_restore(flags);
4171
4172 /*
4173 * some other cpu did the load balance for us.
4174 */
4175 if (ld_moved && this_cpu != smp_processor_id())
4176 resched_cpu(this_cpu);
4177
4178 /* All tasks on this runqueue were pinned by CPU affinity */
4179 if (unlikely(all_pinned)) {
4180 cpumask_clear_cpu(cpu_of(busiest), cpus);
4181 if (!cpumask_empty(cpus))
4182 goto redo;
4183 goto out_balanced;
4184 }
4185 }
4186
4187 if (!ld_moved) {
4188 schedstat_inc(sd, lb_failed[idle]);
4189 sd->nr_balance_failed++;
4190
4191 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4192
4193 spin_lock_irqsave(&busiest->lock, flags);
4194
4195 /* don't kick the migration_thread, if the curr
4196 * task on busiest cpu can't be moved to this_cpu
4197 */
4198 if (!cpumask_test_cpu(this_cpu,
4199 &busiest->curr->cpus_allowed)) {
4200 spin_unlock_irqrestore(&busiest->lock, flags);
4201 all_pinned = 1;
4202 goto out_one_pinned;
4203 }
4204
4205 if (!busiest->active_balance) {
4206 busiest->active_balance = 1;
4207 busiest->push_cpu = this_cpu;
4208 active_balance = 1;
4209 }
4210 spin_unlock_irqrestore(&busiest->lock, flags);
4211 if (active_balance)
4212 wake_up_process(busiest->migration_thread);
4213
4214 /*
4215 * We've kicked active balancing, reset the failure
4216 * counter.
4217 */
4218 sd->nr_balance_failed = sd->cache_nice_tries+1;
4219 }
4220 } else
4221 sd->nr_balance_failed = 0;
4222
4223 if (likely(!active_balance)) {
4224 /* We were unbalanced, so reset the balancing interval */
4225 sd->balance_interval = sd->min_interval;
4226 } else {
4227 /*
4228 * If we've begun active balancing, start to back off. This
4229 * case may not be covered by the all_pinned logic if there
4230 * is only 1 task on the busy runqueue (because we don't call
4231 * move_tasks).
4232 */
4233 if (sd->balance_interval < sd->max_interval)
4234 sd->balance_interval *= 2;
4235 }
4236
4237 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4238 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4239 ld_moved = -1;
4240
4241 goto out;
4242
4243 out_balanced:
4244 schedstat_inc(sd, lb_balanced[idle]);
4245
4246 sd->nr_balance_failed = 0;
4247
4248 out_one_pinned:
4249 /* tune up the balancing interval */
4250 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4251 (sd->balance_interval < sd->max_interval))
4252 sd->balance_interval *= 2;
4253
4254 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4255 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4256 ld_moved = -1;
4257 else
4258 ld_moved = 0;
4259 out:
4260 if (ld_moved)
4261 update_shares(sd);
4262 return ld_moved;
4263 }
4264
4265 /*
4266 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4267 * tasks if there is an imbalance.
4268 *
4269 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4270 * this_rq is locked.
4271 */
4272 static int
4273 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4274 {
4275 struct sched_group *group;
4276 struct rq *busiest = NULL;
4277 unsigned long imbalance;
4278 int ld_moved = 0;
4279 int sd_idle = 0;
4280 int all_pinned = 0;
4281 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4282
4283 cpumask_copy(cpus, cpu_active_mask);
4284
4285 /*
4286 * When power savings policy is enabled for the parent domain, idle
4287 * sibling can pick up load irrespective of busy siblings. In this case,
4288 * let the state of idle sibling percolate up as IDLE, instead of
4289 * portraying it as CPU_NOT_IDLE.
4290 */
4291 if (sd->flags & SD_SHARE_CPUPOWER &&
4292 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4293 sd_idle = 1;
4294
4295 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4296 redo:
4297 update_shares_locked(this_rq, sd);
4298 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4299 &sd_idle, cpus, NULL);
4300 if (!group) {
4301 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4302 goto out_balanced;
4303 }
4304
4305 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4306 if (!busiest) {
4307 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4308 goto out_balanced;
4309 }
4310
4311 BUG_ON(busiest == this_rq);
4312
4313 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4314
4315 ld_moved = 0;
4316 if (busiest->nr_running > 1) {
4317 /* Attempt to move tasks */
4318 double_lock_balance(this_rq, busiest);
4319 /* this_rq->clock is already updated */
4320 update_rq_clock(busiest);
4321 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4322 imbalance, sd, CPU_NEWLY_IDLE,
4323 &all_pinned);
4324 double_unlock_balance(this_rq, busiest);
4325
4326 if (unlikely(all_pinned)) {
4327 cpumask_clear_cpu(cpu_of(busiest), cpus);
4328 if (!cpumask_empty(cpus))
4329 goto redo;
4330 }
4331 }
4332
4333 if (!ld_moved) {
4334 int active_balance = 0;
4335
4336 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4337 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4338 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4339 return -1;
4340
4341 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4342 return -1;
4343
4344 if (sd->nr_balance_failed++ < 2)
4345 return -1;
4346
4347 /*
4348 * The only task running in a non-idle cpu can be moved to this
4349 * cpu in an attempt to completely freeup the other CPU
4350 * package. The same method used to move task in load_balance()
4351 * have been extended for load_balance_newidle() to speedup
4352 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4353 *
4354 * The package power saving logic comes from
4355 * find_busiest_group(). If there are no imbalance, then
4356 * f_b_g() will return NULL. However when sched_mc={1,2} then
4357 * f_b_g() will select a group from which a running task may be
4358 * pulled to this cpu in order to make the other package idle.
4359 * If there is no opportunity to make a package idle and if
4360 * there are no imbalance, then f_b_g() will return NULL and no
4361 * action will be taken in load_balance_newidle().
4362 *
4363 * Under normal task pull operation due to imbalance, there
4364 * will be more than one task in the source run queue and
4365 * move_tasks() will succeed. ld_moved will be true and this
4366 * active balance code will not be triggered.
4367 */
4368
4369 /* Lock busiest in correct order while this_rq is held */
4370 double_lock_balance(this_rq, busiest);
4371
4372 /*
4373 * don't kick the migration_thread, if the curr
4374 * task on busiest cpu can't be moved to this_cpu
4375 */
4376 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4377 double_unlock_balance(this_rq, busiest);
4378 all_pinned = 1;
4379 return ld_moved;
4380 }
4381
4382 if (!busiest->active_balance) {
4383 busiest->active_balance = 1;
4384 busiest->push_cpu = this_cpu;
4385 active_balance = 1;
4386 }
4387
4388 double_unlock_balance(this_rq, busiest);
4389 /*
4390 * Should not call ttwu while holding a rq->lock
4391 */
4392 spin_unlock(&this_rq->lock);
4393 if (active_balance)
4394 wake_up_process(busiest->migration_thread);
4395 spin_lock(&this_rq->lock);
4396
4397 } else
4398 sd->nr_balance_failed = 0;
4399
4400 update_shares_locked(this_rq, sd);
4401 return ld_moved;
4402
4403 out_balanced:
4404 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4405 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4406 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4407 return -1;
4408 sd->nr_balance_failed = 0;
4409
4410 return 0;
4411 }
4412
4413 /*
4414 * idle_balance is called by schedule() if this_cpu is about to become
4415 * idle. Attempts to pull tasks from other CPUs.
4416 */
4417 static void idle_balance(int this_cpu, struct rq *this_rq)
4418 {
4419 struct sched_domain *sd;
4420 int pulled_task = 0;
4421 unsigned long next_balance = jiffies + HZ;
4422
4423 this_rq->idle_stamp = this_rq->clock;
4424
4425 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4426 return;
4427
4428 for_each_domain(this_cpu, sd) {
4429 unsigned long interval;
4430
4431 if (!(sd->flags & SD_LOAD_BALANCE))
4432 continue;
4433
4434 if (sd->flags & SD_BALANCE_NEWIDLE)
4435 /* If we've pulled tasks over stop searching: */
4436 pulled_task = load_balance_newidle(this_cpu, this_rq,
4437 sd);
4438
4439 interval = msecs_to_jiffies(sd->balance_interval);
4440 if (time_after(next_balance, sd->last_balance + interval))
4441 next_balance = sd->last_balance + interval;
4442 if (pulled_task) {
4443 this_rq->idle_stamp = 0;
4444 break;
4445 }
4446 }
4447 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4448 /*
4449 * We are going idle. next_balance may be set based on
4450 * a busy processor. So reset next_balance.
4451 */
4452 this_rq->next_balance = next_balance;
4453 }
4454 }
4455
4456 /*
4457 * active_load_balance is run by migration threads. It pushes running tasks
4458 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4459 * running on each physical CPU where possible, and avoids physical /
4460 * logical imbalances.
4461 *
4462 * Called with busiest_rq locked.
4463 */
4464 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4465 {
4466 int target_cpu = busiest_rq->push_cpu;
4467 struct sched_domain *sd;
4468 struct rq *target_rq;
4469
4470 /* Is there any task to move? */
4471 if (busiest_rq->nr_running <= 1)
4472 return;
4473
4474 target_rq = cpu_rq(target_cpu);
4475
4476 /*
4477 * This condition is "impossible", if it occurs
4478 * we need to fix it. Originally reported by
4479 * Bjorn Helgaas on a 128-cpu setup.
4480 */
4481 BUG_ON(busiest_rq == target_rq);
4482
4483 /* move a task from busiest_rq to target_rq */
4484 double_lock_balance(busiest_rq, target_rq);
4485 update_rq_clock(busiest_rq);
4486 update_rq_clock(target_rq);
4487
4488 /* Search for an sd spanning us and the target CPU. */
4489 for_each_domain(target_cpu, sd) {
4490 if ((sd->flags & SD_LOAD_BALANCE) &&
4491 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4492 break;
4493 }
4494
4495 if (likely(sd)) {
4496 schedstat_inc(sd, alb_count);
4497
4498 if (move_one_task(target_rq, target_cpu, busiest_rq,
4499 sd, CPU_IDLE))
4500 schedstat_inc(sd, alb_pushed);
4501 else
4502 schedstat_inc(sd, alb_failed);
4503 }
4504 double_unlock_balance(busiest_rq, target_rq);
4505 }
4506
4507 #ifdef CONFIG_NO_HZ
4508 static struct {
4509 atomic_t load_balancer;
4510 cpumask_var_t cpu_mask;
4511 cpumask_var_t ilb_grp_nohz_mask;
4512 } nohz ____cacheline_aligned = {
4513 .load_balancer = ATOMIC_INIT(-1),
4514 };
4515
4516 int get_nohz_load_balancer(void)
4517 {
4518 return atomic_read(&nohz.load_balancer);
4519 }
4520
4521 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4522 /**
4523 * lowest_flag_domain - Return lowest sched_domain containing flag.
4524 * @cpu: The cpu whose lowest level of sched domain is to
4525 * be returned.
4526 * @flag: The flag to check for the lowest sched_domain
4527 * for the given cpu.
4528 *
4529 * Returns the lowest sched_domain of a cpu which contains the given flag.
4530 */
4531 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4532 {
4533 struct sched_domain *sd;
4534
4535 for_each_domain(cpu, sd)
4536 if (sd && (sd->flags & flag))
4537 break;
4538
4539 return sd;
4540 }
4541
4542 /**
4543 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4544 * @cpu: The cpu whose domains we're iterating over.
4545 * @sd: variable holding the value of the power_savings_sd
4546 * for cpu.
4547 * @flag: The flag to filter the sched_domains to be iterated.
4548 *
4549 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4550 * set, starting from the lowest sched_domain to the highest.
4551 */
4552 #define for_each_flag_domain(cpu, sd, flag) \
4553 for (sd = lowest_flag_domain(cpu, flag); \
4554 (sd && (sd->flags & flag)); sd = sd->parent)
4555
4556 /**
4557 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4558 * @ilb_group: group to be checked for semi-idleness
4559 *
4560 * Returns: 1 if the group is semi-idle. 0 otherwise.
4561 *
4562 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4563 * and atleast one non-idle CPU. This helper function checks if the given
4564 * sched_group is semi-idle or not.
4565 */
4566 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4567 {
4568 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4569 sched_group_cpus(ilb_group));
4570
4571 /*
4572 * A sched_group is semi-idle when it has atleast one busy cpu
4573 * and atleast one idle cpu.
4574 */
4575 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4576 return 0;
4577
4578 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4579 return 0;
4580
4581 return 1;
4582 }
4583 /**
4584 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4585 * @cpu: The cpu which is nominating a new idle_load_balancer.
4586 *
4587 * Returns: Returns the id of the idle load balancer if it exists,
4588 * Else, returns >= nr_cpu_ids.
4589 *
4590 * This algorithm picks the idle load balancer such that it belongs to a
4591 * semi-idle powersavings sched_domain. The idea is to try and avoid
4592 * completely idle packages/cores just for the purpose of idle load balancing
4593 * when there are other idle cpu's which are better suited for that job.
4594 */
4595 static int find_new_ilb(int cpu)
4596 {
4597 struct sched_domain *sd;
4598 struct sched_group *ilb_group;
4599
4600 /*
4601 * Have idle load balancer selection from semi-idle packages only
4602 * when power-aware load balancing is enabled
4603 */
4604 if (!(sched_smt_power_savings || sched_mc_power_savings))
4605 goto out_done;
4606
4607 /*
4608 * Optimize for the case when we have no idle CPUs or only one
4609 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4610 */
4611 if (cpumask_weight(nohz.cpu_mask) < 2)
4612 goto out_done;
4613
4614 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4615 ilb_group = sd->groups;
4616
4617 do {
4618 if (is_semi_idle_group(ilb_group))
4619 return cpumask_first(nohz.ilb_grp_nohz_mask);
4620
4621 ilb_group = ilb_group->next;
4622
4623 } while (ilb_group != sd->groups);
4624 }
4625
4626 out_done:
4627 return cpumask_first(nohz.cpu_mask);
4628 }
4629 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4630 static inline int find_new_ilb(int call_cpu)
4631 {
4632 return cpumask_first(nohz.cpu_mask);
4633 }
4634 #endif
4635
4636 /*
4637 * This routine will try to nominate the ilb (idle load balancing)
4638 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4639 * load balancing on behalf of all those cpus. If all the cpus in the system
4640 * go into this tickless mode, then there will be no ilb owner (as there is
4641 * no need for one) and all the cpus will sleep till the next wakeup event
4642 * arrives...
4643 *
4644 * For the ilb owner, tick is not stopped. And this tick will be used
4645 * for idle load balancing. ilb owner will still be part of
4646 * nohz.cpu_mask..
4647 *
4648 * While stopping the tick, this cpu will become the ilb owner if there
4649 * is no other owner. And will be the owner till that cpu becomes busy
4650 * or if all cpus in the system stop their ticks at which point
4651 * there is no need for ilb owner.
4652 *
4653 * When the ilb owner becomes busy, it nominates another owner, during the
4654 * next busy scheduler_tick()
4655 */
4656 int select_nohz_load_balancer(int stop_tick)
4657 {
4658 int cpu = smp_processor_id();
4659
4660 if (stop_tick) {
4661 cpu_rq(cpu)->in_nohz_recently = 1;
4662
4663 if (!cpu_active(cpu)) {
4664 if (atomic_read(&nohz.load_balancer) != cpu)
4665 return 0;
4666
4667 /*
4668 * If we are going offline and still the leader,
4669 * give up!
4670 */
4671 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4672 BUG();
4673
4674 return 0;
4675 }
4676
4677 cpumask_set_cpu(cpu, nohz.cpu_mask);
4678
4679 /* time for ilb owner also to sleep */
4680 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
4681 if (atomic_read(&nohz.load_balancer) == cpu)
4682 atomic_set(&nohz.load_balancer, -1);
4683 return 0;
4684 }
4685
4686 if (atomic_read(&nohz.load_balancer) == -1) {
4687 /* make me the ilb owner */
4688 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4689 return 1;
4690 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4691 int new_ilb;
4692
4693 if (!(sched_smt_power_savings ||
4694 sched_mc_power_savings))
4695 return 1;
4696 /*
4697 * Check to see if there is a more power-efficient
4698 * ilb.
4699 */
4700 new_ilb = find_new_ilb(cpu);
4701 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4702 atomic_set(&nohz.load_balancer, -1);
4703 resched_cpu(new_ilb);
4704 return 0;
4705 }
4706 return 1;
4707 }
4708 } else {
4709 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4710 return 0;
4711
4712 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4713
4714 if (atomic_read(&nohz.load_balancer) == cpu)
4715 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4716 BUG();
4717 }
4718 return 0;
4719 }
4720 #endif
4721
4722 static DEFINE_SPINLOCK(balancing);
4723
4724 /*
4725 * It checks each scheduling domain to see if it is due to be balanced,
4726 * and initiates a balancing operation if so.
4727 *
4728 * Balancing parameters are set up in arch_init_sched_domains.
4729 */
4730 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4731 {
4732 int balance = 1;
4733 struct rq *rq = cpu_rq(cpu);
4734 unsigned long interval;
4735 struct sched_domain *sd;
4736 /* Earliest time when we have to do rebalance again */
4737 unsigned long next_balance = jiffies + 60*HZ;
4738 int update_next_balance = 0;
4739 int need_serialize;
4740
4741 for_each_domain(cpu, sd) {
4742 if (!(sd->flags & SD_LOAD_BALANCE))
4743 continue;
4744
4745 interval = sd->balance_interval;
4746 if (idle != CPU_IDLE)
4747 interval *= sd->busy_factor;
4748
4749 /* scale ms to jiffies */
4750 interval = msecs_to_jiffies(interval);
4751 if (unlikely(!interval))
4752 interval = 1;
4753 if (interval > HZ*NR_CPUS/10)
4754 interval = HZ*NR_CPUS/10;
4755
4756 need_serialize = sd->flags & SD_SERIALIZE;
4757
4758 if (need_serialize) {
4759 if (!spin_trylock(&balancing))
4760 goto out;
4761 }
4762
4763 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4764 if (load_balance(cpu, rq, sd, idle, &balance)) {
4765 /*
4766 * We've pulled tasks over so either we're no
4767 * longer idle, or one of our SMT siblings is
4768 * not idle.
4769 */
4770 idle = CPU_NOT_IDLE;
4771 }
4772 sd->last_balance = jiffies;
4773 }
4774 if (need_serialize)
4775 spin_unlock(&balancing);
4776 out:
4777 if (time_after(next_balance, sd->last_balance + interval)) {
4778 next_balance = sd->last_balance + interval;
4779 update_next_balance = 1;
4780 }
4781
4782 /*
4783 * Stop the load balance at this level. There is another
4784 * CPU in our sched group which is doing load balancing more
4785 * actively.
4786 */
4787 if (!balance)
4788 break;
4789 }
4790
4791 /*
4792 * next_balance will be updated only when there is a need.
4793 * When the cpu is attached to null domain for ex, it will not be
4794 * updated.
4795 */
4796 if (likely(update_next_balance))
4797 rq->next_balance = next_balance;
4798 }
4799
4800 /*
4801 * run_rebalance_domains is triggered when needed from the scheduler tick.
4802 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4803 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4804 */
4805 static void run_rebalance_domains(struct softirq_action *h)
4806 {
4807 int this_cpu = smp_processor_id();
4808 struct rq *this_rq = cpu_rq(this_cpu);
4809 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4810 CPU_IDLE : CPU_NOT_IDLE;
4811
4812 rebalance_domains(this_cpu, idle);
4813
4814 #ifdef CONFIG_NO_HZ
4815 /*
4816 * If this cpu is the owner for idle load balancing, then do the
4817 * balancing on behalf of the other idle cpus whose ticks are
4818 * stopped.
4819 */
4820 if (this_rq->idle_at_tick &&
4821 atomic_read(&nohz.load_balancer) == this_cpu) {
4822 struct rq *rq;
4823 int balance_cpu;
4824
4825 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4826 if (balance_cpu == this_cpu)
4827 continue;
4828
4829 /*
4830 * If this cpu gets work to do, stop the load balancing
4831 * work being done for other cpus. Next load
4832 * balancing owner will pick it up.
4833 */
4834 if (need_resched())
4835 break;
4836
4837 rebalance_domains(balance_cpu, CPU_IDLE);
4838
4839 rq = cpu_rq(balance_cpu);
4840 if (time_after(this_rq->next_balance, rq->next_balance))
4841 this_rq->next_balance = rq->next_balance;
4842 }
4843 }
4844 #endif
4845 }
4846
4847 static inline int on_null_domain(int cpu)
4848 {
4849 return !rcu_dereference(cpu_rq(cpu)->sd);
4850 }
4851
4852 /*
4853 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4854 *
4855 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4856 * idle load balancing owner or decide to stop the periodic load balancing,
4857 * if the whole system is idle.
4858 */
4859 static inline void trigger_load_balance(struct rq *rq, int cpu)
4860 {
4861 #ifdef CONFIG_NO_HZ
4862 /*
4863 * If we were in the nohz mode recently and busy at the current
4864 * scheduler tick, then check if we need to nominate new idle
4865 * load balancer.
4866 */
4867 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4868 rq->in_nohz_recently = 0;
4869
4870 if (atomic_read(&nohz.load_balancer) == cpu) {
4871 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4872 atomic_set(&nohz.load_balancer, -1);
4873 }
4874
4875 if (atomic_read(&nohz.load_balancer) == -1) {
4876 int ilb = find_new_ilb(cpu);
4877
4878 if (ilb < nr_cpu_ids)
4879 resched_cpu(ilb);
4880 }
4881 }
4882
4883 /*
4884 * If this cpu is idle and doing idle load balancing for all the
4885 * cpus with ticks stopped, is it time for that to stop?
4886 */
4887 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4888 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4889 resched_cpu(cpu);
4890 return;
4891 }
4892
4893 /*
4894 * If this cpu is idle and the idle load balancing is done by
4895 * someone else, then no need raise the SCHED_SOFTIRQ
4896 */
4897 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4898 cpumask_test_cpu(cpu, nohz.cpu_mask))
4899 return;
4900 #endif
4901 /* Don't need to rebalance while attached to NULL domain */
4902 if (time_after_eq(jiffies, rq->next_balance) &&
4903 likely(!on_null_domain(cpu)))
4904 raise_softirq(SCHED_SOFTIRQ);
4905 }
4906
4907 #else /* CONFIG_SMP */
4908
4909 /*
4910 * on UP we do not need to balance between CPUs:
4911 */
4912 static inline void idle_balance(int cpu, struct rq *rq)
4913 {
4914 }
4915
4916 #endif
4917
4918 DEFINE_PER_CPU(struct kernel_stat, kstat);
4919
4920 EXPORT_PER_CPU_SYMBOL(kstat);
4921
4922 /*
4923 * Return any ns on the sched_clock that have not yet been accounted in
4924 * @p in case that task is currently running.
4925 *
4926 * Called with task_rq_lock() held on @rq.
4927 */
4928 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4929 {
4930 u64 ns = 0;
4931
4932 if (task_current(rq, p)) {
4933 update_rq_clock(rq);
4934 ns = rq->clock - p->se.exec_start;
4935 if ((s64)ns < 0)
4936 ns = 0;
4937 }
4938
4939 return ns;
4940 }
4941
4942 unsigned long long task_delta_exec(struct task_struct *p)
4943 {
4944 unsigned long flags;
4945 struct rq *rq;
4946 u64 ns = 0;
4947
4948 rq = task_rq_lock(p, &flags);
4949 ns = do_task_delta_exec(p, rq);
4950 task_rq_unlock(rq, &flags);
4951
4952 return ns;
4953 }
4954
4955 /*
4956 * Return accounted runtime for the task.
4957 * In case the task is currently running, return the runtime plus current's
4958 * pending runtime that have not been accounted yet.
4959 */
4960 unsigned long long task_sched_runtime(struct task_struct *p)
4961 {
4962 unsigned long flags;
4963 struct rq *rq;
4964 u64 ns = 0;
4965
4966 rq = task_rq_lock(p, &flags);
4967 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4968 task_rq_unlock(rq, &flags);
4969
4970 return ns;
4971 }
4972
4973 /*
4974 * Return sum_exec_runtime for the thread group.
4975 * In case the task is currently running, return the sum plus current's
4976 * pending runtime that have not been accounted yet.
4977 *
4978 * Note that the thread group might have other running tasks as well,
4979 * so the return value not includes other pending runtime that other
4980 * running tasks might have.
4981 */
4982 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4983 {
4984 struct task_cputime totals;
4985 unsigned long flags;
4986 struct rq *rq;
4987 u64 ns;
4988
4989 rq = task_rq_lock(p, &flags);
4990 thread_group_cputime(p, &totals);
4991 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4992 task_rq_unlock(rq, &flags);
4993
4994 return ns;
4995 }
4996
4997 /*
4998 * Account user cpu time to a process.
4999 * @p: the process that the cpu time gets accounted to
5000 * @cputime: the cpu time spent in user space since the last update
5001 * @cputime_scaled: cputime scaled by cpu frequency
5002 */
5003 void account_user_time(struct task_struct *p, cputime_t cputime,
5004 cputime_t cputime_scaled)
5005 {
5006 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5007 cputime64_t tmp;
5008
5009 /* Add user time to process. */
5010 p->utime = cputime_add(p->utime, cputime);
5011 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5012 account_group_user_time(p, cputime);
5013
5014 /* Add user time to cpustat. */
5015 tmp = cputime_to_cputime64(cputime);
5016 if (TASK_NICE(p) > 0)
5017 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5018 else
5019 cpustat->user = cputime64_add(cpustat->user, tmp);
5020
5021 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5022 /* Account for user time used */
5023 acct_update_integrals(p);
5024 }
5025
5026 /*
5027 * Account guest cpu time to a process.
5028 * @p: the process that the cpu time gets accounted to
5029 * @cputime: the cpu time spent in virtual machine since the last update
5030 * @cputime_scaled: cputime scaled by cpu frequency
5031 */
5032 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5033 cputime_t cputime_scaled)
5034 {
5035 cputime64_t tmp;
5036 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5037
5038 tmp = cputime_to_cputime64(cputime);
5039
5040 /* Add guest time to process. */
5041 p->utime = cputime_add(p->utime, cputime);
5042 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5043 account_group_user_time(p, cputime);
5044 p->gtime = cputime_add(p->gtime, cputime);
5045
5046 /* Add guest time to cpustat. */
5047 if (TASK_NICE(p) > 0) {
5048 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5049 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5050 } else {
5051 cpustat->user = cputime64_add(cpustat->user, tmp);
5052 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5053 }
5054 }
5055
5056 /*
5057 * Account system cpu time to a process.
5058 * @p: the process that the cpu time gets accounted to
5059 * @hardirq_offset: the offset to subtract from hardirq_count()
5060 * @cputime: the cpu time spent in kernel space since the last update
5061 * @cputime_scaled: cputime scaled by cpu frequency
5062 */
5063 void account_system_time(struct task_struct *p, int hardirq_offset,
5064 cputime_t cputime, cputime_t cputime_scaled)
5065 {
5066 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5067 cputime64_t tmp;
5068
5069 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5070 account_guest_time(p, cputime, cputime_scaled);
5071 return;
5072 }
5073
5074 /* Add system time to process. */
5075 p->stime = cputime_add(p->stime, cputime);
5076 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5077 account_group_system_time(p, cputime);
5078
5079 /* Add system time to cpustat. */
5080 tmp = cputime_to_cputime64(cputime);
5081 if (hardirq_count() - hardirq_offset)
5082 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5083 else if (softirq_count())
5084 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5085 else
5086 cpustat->system = cputime64_add(cpustat->system, tmp);
5087
5088 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5089
5090 /* Account for system time used */
5091 acct_update_integrals(p);
5092 }
5093
5094 /*
5095 * Account for involuntary wait time.
5096 * @steal: the cpu time spent in involuntary wait
5097 */
5098 void account_steal_time(cputime_t cputime)
5099 {
5100 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5101 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5102
5103 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5104 }
5105
5106 /*
5107 * Account for idle time.
5108 * @cputime: the cpu time spent in idle wait
5109 */
5110 void account_idle_time(cputime_t cputime)
5111 {
5112 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5113 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5114 struct rq *rq = this_rq();
5115
5116 if (atomic_read(&rq->nr_iowait) > 0)
5117 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5118 else
5119 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5120 }
5121
5122 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5123
5124 /*
5125 * Account a single tick of cpu time.
5126 * @p: the process that the cpu time gets accounted to
5127 * @user_tick: indicates if the tick is a user or a system tick
5128 */
5129 void account_process_tick(struct task_struct *p, int user_tick)
5130 {
5131 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5132 struct rq *rq = this_rq();
5133
5134 if (user_tick)
5135 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5136 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5137 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5138 one_jiffy_scaled);
5139 else
5140 account_idle_time(cputime_one_jiffy);
5141 }
5142
5143 /*
5144 * Account multiple ticks of steal time.
5145 * @p: the process from which the cpu time has been stolen
5146 * @ticks: number of stolen ticks
5147 */
5148 void account_steal_ticks(unsigned long ticks)
5149 {
5150 account_steal_time(jiffies_to_cputime(ticks));
5151 }
5152
5153 /*
5154 * Account multiple ticks of idle time.
5155 * @ticks: number of stolen ticks
5156 */
5157 void account_idle_ticks(unsigned long ticks)
5158 {
5159 account_idle_time(jiffies_to_cputime(ticks));
5160 }
5161
5162 #endif
5163
5164 /*
5165 * Use precise platform statistics if available:
5166 */
5167 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5168 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5169 {
5170 *ut = p->utime;
5171 *st = p->stime;
5172 }
5173
5174 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5175 {
5176 struct task_cputime cputime;
5177
5178 thread_group_cputime(p, &cputime);
5179
5180 *ut = cputime.utime;
5181 *st = cputime.stime;
5182 }
5183 #else
5184
5185 #ifndef nsecs_to_cputime
5186 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
5187 #endif
5188
5189 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5190 {
5191 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
5192
5193 /*
5194 * Use CFS's precise accounting:
5195 */
5196 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
5197
5198 if (total) {
5199 u64 temp;
5200
5201 temp = (u64)(rtime * utime);
5202 do_div(temp, total);
5203 utime = (cputime_t)temp;
5204 } else
5205 utime = rtime;
5206
5207 /*
5208 * Compare with previous values, to keep monotonicity:
5209 */
5210 p->prev_utime = max(p->prev_utime, utime);
5211 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
5212
5213 *ut = p->prev_utime;
5214 *st = p->prev_stime;
5215 }
5216
5217 /*
5218 * Must be called with siglock held.
5219 */
5220 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
5221 {
5222 struct signal_struct *sig = p->signal;
5223 struct task_cputime cputime;
5224 cputime_t rtime, utime, total;
5225
5226 thread_group_cputime(p, &cputime);
5227
5228 total = cputime_add(cputime.utime, cputime.stime);
5229 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
5230
5231 if (total) {
5232 u64 temp;
5233
5234 temp = (u64)(rtime * cputime.utime);
5235 do_div(temp, total);
5236 utime = (cputime_t)temp;
5237 } else
5238 utime = rtime;
5239
5240 sig->prev_utime = max(sig->prev_utime, utime);
5241 sig->prev_stime = max(sig->prev_stime,
5242 cputime_sub(rtime, sig->prev_utime));
5243
5244 *ut = sig->prev_utime;
5245 *st = sig->prev_stime;
5246 }
5247 #endif
5248
5249 /*
5250 * This function gets called by the timer code, with HZ frequency.
5251 * We call it with interrupts disabled.
5252 *
5253 * It also gets called by the fork code, when changing the parent's
5254 * timeslices.
5255 */
5256 void scheduler_tick(void)
5257 {
5258 int cpu = smp_processor_id();
5259 struct rq *rq = cpu_rq(cpu);
5260 struct task_struct *curr = rq->curr;
5261
5262 sched_clock_tick();
5263
5264 spin_lock(&rq->lock);
5265 update_rq_clock(rq);
5266 update_cpu_load(rq);
5267 curr->sched_class->task_tick(rq, curr, 0);
5268 spin_unlock(&rq->lock);
5269
5270 perf_event_task_tick(curr, cpu);
5271
5272 #ifdef CONFIG_SMP
5273 rq->idle_at_tick = idle_cpu(cpu);
5274 trigger_load_balance(rq, cpu);
5275 #endif
5276 }
5277
5278 notrace unsigned long get_parent_ip(unsigned long addr)
5279 {
5280 if (in_lock_functions(addr)) {
5281 addr = CALLER_ADDR2;
5282 if (in_lock_functions(addr))
5283 addr = CALLER_ADDR3;
5284 }
5285 return addr;
5286 }
5287
5288 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5289 defined(CONFIG_PREEMPT_TRACER))
5290
5291 void __kprobes add_preempt_count(int val)
5292 {
5293 #ifdef CONFIG_DEBUG_PREEMPT
5294 /*
5295 * Underflow?
5296 */
5297 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5298 return;
5299 #endif
5300 preempt_count() += val;
5301 #ifdef CONFIG_DEBUG_PREEMPT
5302 /*
5303 * Spinlock count overflowing soon?
5304 */
5305 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5306 PREEMPT_MASK - 10);
5307 #endif
5308 if (preempt_count() == val)
5309 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5310 }
5311 EXPORT_SYMBOL(add_preempt_count);
5312
5313 void __kprobes sub_preempt_count(int val)
5314 {
5315 #ifdef CONFIG_DEBUG_PREEMPT
5316 /*
5317 * Underflow?
5318 */
5319 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5320 return;
5321 /*
5322 * Is the spinlock portion underflowing?
5323 */
5324 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5325 !(preempt_count() & PREEMPT_MASK)))
5326 return;
5327 #endif
5328
5329 if (preempt_count() == val)
5330 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5331 preempt_count() -= val;
5332 }
5333 EXPORT_SYMBOL(sub_preempt_count);
5334
5335 #endif
5336
5337 /*
5338 * Print scheduling while atomic bug:
5339 */
5340 static noinline void __schedule_bug(struct task_struct *prev)
5341 {
5342 struct pt_regs *regs = get_irq_regs();
5343
5344 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5345 prev->comm, prev->pid, preempt_count());
5346
5347 debug_show_held_locks(prev);
5348 print_modules();
5349 if (irqs_disabled())
5350 print_irqtrace_events(prev);
5351
5352 if (regs)
5353 show_regs(regs);
5354 else
5355 dump_stack();
5356 }
5357
5358 /*
5359 * Various schedule()-time debugging checks and statistics:
5360 */
5361 static inline void schedule_debug(struct task_struct *prev)
5362 {
5363 /*
5364 * Test if we are atomic. Since do_exit() needs to call into
5365 * schedule() atomically, we ignore that path for now.
5366 * Otherwise, whine if we are scheduling when we should not be.
5367 */
5368 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5369 __schedule_bug(prev);
5370
5371 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5372
5373 schedstat_inc(this_rq(), sched_count);
5374 #ifdef CONFIG_SCHEDSTATS
5375 if (unlikely(prev->lock_depth >= 0)) {
5376 schedstat_inc(this_rq(), bkl_count);
5377 schedstat_inc(prev, sched_info.bkl_count);
5378 }
5379 #endif
5380 }
5381
5382 static void put_prev_task(struct rq *rq, struct task_struct *p)
5383 {
5384 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5385
5386 update_avg(&p->se.avg_running, runtime);
5387
5388 if (p->state == TASK_RUNNING) {
5389 /*
5390 * In order to avoid avg_overlap growing stale when we are
5391 * indeed overlapping and hence not getting put to sleep, grow
5392 * the avg_overlap on preemption.
5393 *
5394 * We use the average preemption runtime because that
5395 * correlates to the amount of cache footprint a task can
5396 * build up.
5397 */
5398 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5399 update_avg(&p->se.avg_overlap, runtime);
5400 } else {
5401 update_avg(&p->se.avg_running, 0);
5402 }
5403 p->sched_class->put_prev_task(rq, p);
5404 }
5405
5406 /*
5407 * Pick up the highest-prio task:
5408 */
5409 static inline struct task_struct *
5410 pick_next_task(struct rq *rq)
5411 {
5412 const struct sched_class *class;
5413 struct task_struct *p;
5414
5415 /*
5416 * Optimization: we know that if all tasks are in
5417 * the fair class we can call that function directly:
5418 */
5419 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5420 p = fair_sched_class.pick_next_task(rq);
5421 if (likely(p))
5422 return p;
5423 }
5424
5425 class = sched_class_highest;
5426 for ( ; ; ) {
5427 p = class->pick_next_task(rq);
5428 if (p)
5429 return p;
5430 /*
5431 * Will never be NULL as the idle class always
5432 * returns a non-NULL p:
5433 */
5434 class = class->next;
5435 }
5436 }
5437
5438 /*
5439 * schedule() is the main scheduler function.
5440 */
5441 asmlinkage void __sched schedule(void)
5442 {
5443 struct task_struct *prev, *next;
5444 unsigned long *switch_count;
5445 struct rq *rq;
5446 int cpu;
5447
5448 need_resched:
5449 preempt_disable();
5450 cpu = smp_processor_id();
5451 rq = cpu_rq(cpu);
5452 rcu_sched_qs(cpu);
5453 prev = rq->curr;
5454 switch_count = &prev->nivcsw;
5455
5456 release_kernel_lock(prev);
5457 need_resched_nonpreemptible:
5458
5459 schedule_debug(prev);
5460
5461 if (sched_feat(HRTICK))
5462 hrtick_clear(rq);
5463
5464 spin_lock_irq(&rq->lock);
5465 update_rq_clock(rq);
5466 clear_tsk_need_resched(prev);
5467
5468 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5469 if (unlikely(signal_pending_state(prev->state, prev)))
5470 prev->state = TASK_RUNNING;
5471 else
5472 deactivate_task(rq, prev, 1);
5473 switch_count = &prev->nvcsw;
5474 }
5475
5476 pre_schedule(rq, prev);
5477
5478 if (unlikely(!rq->nr_running))
5479 idle_balance(cpu, rq);
5480
5481 put_prev_task(rq, prev);
5482 next = pick_next_task(rq);
5483
5484 if (likely(prev != next)) {
5485 sched_info_switch(prev, next);
5486 perf_event_task_sched_out(prev, next, cpu);
5487
5488 rq->nr_switches++;
5489 rq->curr = next;
5490 ++*switch_count;
5491
5492 context_switch(rq, prev, next); /* unlocks the rq */
5493 /*
5494 * the context switch might have flipped the stack from under
5495 * us, hence refresh the local variables.
5496 */
5497 cpu = smp_processor_id();
5498 rq = cpu_rq(cpu);
5499 } else
5500 spin_unlock_irq(&rq->lock);
5501
5502 post_schedule(rq);
5503
5504 if (unlikely(reacquire_kernel_lock(current) < 0))
5505 goto need_resched_nonpreemptible;
5506
5507 preempt_enable_no_resched();
5508 if (need_resched())
5509 goto need_resched;
5510 }
5511 EXPORT_SYMBOL(schedule);
5512
5513 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
5514 /*
5515 * Look out! "owner" is an entirely speculative pointer
5516 * access and not reliable.
5517 */
5518 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5519 {
5520 unsigned int cpu;
5521 struct rq *rq;
5522
5523 if (!sched_feat(OWNER_SPIN))
5524 return 0;
5525
5526 #ifdef CONFIG_DEBUG_PAGEALLOC
5527 /*
5528 * Need to access the cpu field knowing that
5529 * DEBUG_PAGEALLOC could have unmapped it if
5530 * the mutex owner just released it and exited.
5531 */
5532 if (probe_kernel_address(&owner->cpu, cpu))
5533 goto out;
5534 #else
5535 cpu = owner->cpu;
5536 #endif
5537
5538 /*
5539 * Even if the access succeeded (likely case),
5540 * the cpu field may no longer be valid.
5541 */
5542 if (cpu >= nr_cpumask_bits)
5543 goto out;
5544
5545 /*
5546 * We need to validate that we can do a
5547 * get_cpu() and that we have the percpu area.
5548 */
5549 if (!cpu_online(cpu))
5550 goto out;
5551
5552 rq = cpu_rq(cpu);
5553
5554 for (;;) {
5555 /*
5556 * Owner changed, break to re-assess state.
5557 */
5558 if (lock->owner != owner)
5559 break;
5560
5561 /*
5562 * Is that owner really running on that cpu?
5563 */
5564 if (task_thread_info(rq->curr) != owner || need_resched())
5565 return 0;
5566
5567 cpu_relax();
5568 }
5569 out:
5570 return 1;
5571 }
5572 #endif
5573
5574 #ifdef CONFIG_PREEMPT
5575 /*
5576 * this is the entry point to schedule() from in-kernel preemption
5577 * off of preempt_enable. Kernel preemptions off return from interrupt
5578 * occur there and call schedule directly.
5579 */
5580 asmlinkage void __sched preempt_schedule(void)
5581 {
5582 struct thread_info *ti = current_thread_info();
5583
5584 /*
5585 * If there is a non-zero preempt_count or interrupts are disabled,
5586 * we do not want to preempt the current task. Just return..
5587 */
5588 if (likely(ti->preempt_count || irqs_disabled()))
5589 return;
5590
5591 do {
5592 add_preempt_count(PREEMPT_ACTIVE);
5593 schedule();
5594 sub_preempt_count(PREEMPT_ACTIVE);
5595
5596 /*
5597 * Check again in case we missed a preemption opportunity
5598 * between schedule and now.
5599 */
5600 barrier();
5601 } while (need_resched());
5602 }
5603 EXPORT_SYMBOL(preempt_schedule);
5604
5605 /*
5606 * this is the entry point to schedule() from kernel preemption
5607 * off of irq context.
5608 * Note, that this is called and return with irqs disabled. This will
5609 * protect us against recursive calling from irq.
5610 */
5611 asmlinkage void __sched preempt_schedule_irq(void)
5612 {
5613 struct thread_info *ti = current_thread_info();
5614
5615 /* Catch callers which need to be fixed */
5616 BUG_ON(ti->preempt_count || !irqs_disabled());
5617
5618 do {
5619 add_preempt_count(PREEMPT_ACTIVE);
5620 local_irq_enable();
5621 schedule();
5622 local_irq_disable();
5623 sub_preempt_count(PREEMPT_ACTIVE);
5624
5625 /*
5626 * Check again in case we missed a preemption opportunity
5627 * between schedule and now.
5628 */
5629 barrier();
5630 } while (need_resched());
5631 }
5632
5633 #endif /* CONFIG_PREEMPT */
5634
5635 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5636 void *key)
5637 {
5638 return try_to_wake_up(curr->private, mode, wake_flags);
5639 }
5640 EXPORT_SYMBOL(default_wake_function);
5641
5642 /*
5643 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5644 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5645 * number) then we wake all the non-exclusive tasks and one exclusive task.
5646 *
5647 * There are circumstances in which we can try to wake a task which has already
5648 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5649 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5650 */
5651 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5652 int nr_exclusive, int wake_flags, void *key)
5653 {
5654 wait_queue_t *curr, *next;
5655
5656 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5657 unsigned flags = curr->flags;
5658
5659 if (curr->func(curr, mode, wake_flags, key) &&
5660 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5661 break;
5662 }
5663 }
5664
5665 /**
5666 * __wake_up - wake up threads blocked on a waitqueue.
5667 * @q: the waitqueue
5668 * @mode: which threads
5669 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5670 * @key: is directly passed to the wakeup function
5671 *
5672 * It may be assumed that this function implies a write memory barrier before
5673 * changing the task state if and only if any tasks are woken up.
5674 */
5675 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5676 int nr_exclusive, void *key)
5677 {
5678 unsigned long flags;
5679
5680 spin_lock_irqsave(&q->lock, flags);
5681 __wake_up_common(q, mode, nr_exclusive, 0, key);
5682 spin_unlock_irqrestore(&q->lock, flags);
5683 }
5684 EXPORT_SYMBOL(__wake_up);
5685
5686 /*
5687 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5688 */
5689 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5690 {
5691 __wake_up_common(q, mode, 1, 0, NULL);
5692 }
5693
5694 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5695 {
5696 __wake_up_common(q, mode, 1, 0, key);
5697 }
5698
5699 /**
5700 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5701 * @q: the waitqueue
5702 * @mode: which threads
5703 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5704 * @key: opaque value to be passed to wakeup targets
5705 *
5706 * The sync wakeup differs that the waker knows that it will schedule
5707 * away soon, so while the target thread will be woken up, it will not
5708 * be migrated to another CPU - ie. the two threads are 'synchronized'
5709 * with each other. This can prevent needless bouncing between CPUs.
5710 *
5711 * On UP it can prevent extra preemption.
5712 *
5713 * It may be assumed that this function implies a write memory barrier before
5714 * changing the task state if and only if any tasks are woken up.
5715 */
5716 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5717 int nr_exclusive, void *key)
5718 {
5719 unsigned long flags;
5720 int wake_flags = WF_SYNC;
5721
5722 if (unlikely(!q))
5723 return;
5724
5725 if (unlikely(!nr_exclusive))
5726 wake_flags = 0;
5727
5728 spin_lock_irqsave(&q->lock, flags);
5729 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5730 spin_unlock_irqrestore(&q->lock, flags);
5731 }
5732 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5733
5734 /*
5735 * __wake_up_sync - see __wake_up_sync_key()
5736 */
5737 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5738 {
5739 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5740 }
5741 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5742
5743 /**
5744 * complete: - signals a single thread waiting on this completion
5745 * @x: holds the state of this particular completion
5746 *
5747 * This will wake up a single thread waiting on this completion. Threads will be
5748 * awakened in the same order in which they were queued.
5749 *
5750 * See also complete_all(), wait_for_completion() and related routines.
5751 *
5752 * It may be assumed that this function implies a write memory barrier before
5753 * changing the task state if and only if any tasks are woken up.
5754 */
5755 void complete(struct completion *x)
5756 {
5757 unsigned long flags;
5758
5759 spin_lock_irqsave(&x->wait.lock, flags);
5760 x->done++;
5761 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5762 spin_unlock_irqrestore(&x->wait.lock, flags);
5763 }
5764 EXPORT_SYMBOL(complete);
5765
5766 /**
5767 * complete_all: - signals all threads waiting on this completion
5768 * @x: holds the state of this particular completion
5769 *
5770 * This will wake up all threads waiting on this particular completion event.
5771 *
5772 * It may be assumed that this function implies a write memory barrier before
5773 * changing the task state if and only if any tasks are woken up.
5774 */
5775 void complete_all(struct completion *x)
5776 {
5777 unsigned long flags;
5778
5779 spin_lock_irqsave(&x->wait.lock, flags);
5780 x->done += UINT_MAX/2;
5781 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5782 spin_unlock_irqrestore(&x->wait.lock, flags);
5783 }
5784 EXPORT_SYMBOL(complete_all);
5785
5786 static inline long __sched
5787 do_wait_for_common(struct completion *x, long timeout, int state)
5788 {
5789 if (!x->done) {
5790 DECLARE_WAITQUEUE(wait, current);
5791
5792 wait.flags |= WQ_FLAG_EXCLUSIVE;
5793 __add_wait_queue_tail(&x->wait, &wait);
5794 do {
5795 if (signal_pending_state(state, current)) {
5796 timeout = -ERESTARTSYS;
5797 break;
5798 }
5799 __set_current_state(state);
5800 spin_unlock_irq(&x->wait.lock);
5801 timeout = schedule_timeout(timeout);
5802 spin_lock_irq(&x->wait.lock);
5803 } while (!x->done && timeout);
5804 __remove_wait_queue(&x->wait, &wait);
5805 if (!x->done)
5806 return timeout;
5807 }
5808 x->done--;
5809 return timeout ?: 1;
5810 }
5811
5812 static long __sched
5813 wait_for_common(struct completion *x, long timeout, int state)
5814 {
5815 might_sleep();
5816
5817 spin_lock_irq(&x->wait.lock);
5818 timeout = do_wait_for_common(x, timeout, state);
5819 spin_unlock_irq(&x->wait.lock);
5820 return timeout;
5821 }
5822
5823 /**
5824 * wait_for_completion: - waits for completion of a task
5825 * @x: holds the state of this particular completion
5826 *
5827 * This waits to be signaled for completion of a specific task. It is NOT
5828 * interruptible and there is no timeout.
5829 *
5830 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5831 * and interrupt capability. Also see complete().
5832 */
5833 void __sched wait_for_completion(struct completion *x)
5834 {
5835 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5836 }
5837 EXPORT_SYMBOL(wait_for_completion);
5838
5839 /**
5840 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5841 * @x: holds the state of this particular completion
5842 * @timeout: timeout value in jiffies
5843 *
5844 * This waits for either a completion of a specific task to be signaled or for a
5845 * specified timeout to expire. The timeout is in jiffies. It is not
5846 * interruptible.
5847 */
5848 unsigned long __sched
5849 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5850 {
5851 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5852 }
5853 EXPORT_SYMBOL(wait_for_completion_timeout);
5854
5855 /**
5856 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5857 * @x: holds the state of this particular completion
5858 *
5859 * This waits for completion of a specific task to be signaled. It is
5860 * interruptible.
5861 */
5862 int __sched wait_for_completion_interruptible(struct completion *x)
5863 {
5864 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5865 if (t == -ERESTARTSYS)
5866 return t;
5867 return 0;
5868 }
5869 EXPORT_SYMBOL(wait_for_completion_interruptible);
5870
5871 /**
5872 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5873 * @x: holds the state of this particular completion
5874 * @timeout: timeout value in jiffies
5875 *
5876 * This waits for either a completion of a specific task to be signaled or for a
5877 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5878 */
5879 unsigned long __sched
5880 wait_for_completion_interruptible_timeout(struct completion *x,
5881 unsigned long timeout)
5882 {
5883 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5884 }
5885 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5886
5887 /**
5888 * wait_for_completion_killable: - waits for completion of a task (killable)
5889 * @x: holds the state of this particular completion
5890 *
5891 * This waits to be signaled for completion of a specific task. It can be
5892 * interrupted by a kill signal.
5893 */
5894 int __sched wait_for_completion_killable(struct completion *x)
5895 {
5896 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5897 if (t == -ERESTARTSYS)
5898 return t;
5899 return 0;
5900 }
5901 EXPORT_SYMBOL(wait_for_completion_killable);
5902
5903 /**
5904 * try_wait_for_completion - try to decrement a completion without blocking
5905 * @x: completion structure
5906 *
5907 * Returns: 0 if a decrement cannot be done without blocking
5908 * 1 if a decrement succeeded.
5909 *
5910 * If a completion is being used as a counting completion,
5911 * attempt to decrement the counter without blocking. This
5912 * enables us to avoid waiting if the resource the completion
5913 * is protecting is not available.
5914 */
5915 bool try_wait_for_completion(struct completion *x)
5916 {
5917 int ret = 1;
5918
5919 spin_lock_irq(&x->wait.lock);
5920 if (!x->done)
5921 ret = 0;
5922 else
5923 x->done--;
5924 spin_unlock_irq(&x->wait.lock);
5925 return ret;
5926 }
5927 EXPORT_SYMBOL(try_wait_for_completion);
5928
5929 /**
5930 * completion_done - Test to see if a completion has any waiters
5931 * @x: completion structure
5932 *
5933 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5934 * 1 if there are no waiters.
5935 *
5936 */
5937 bool completion_done(struct completion *x)
5938 {
5939 int ret = 1;
5940
5941 spin_lock_irq(&x->wait.lock);
5942 if (!x->done)
5943 ret = 0;
5944 spin_unlock_irq(&x->wait.lock);
5945 return ret;
5946 }
5947 EXPORT_SYMBOL(completion_done);
5948
5949 static long __sched
5950 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5951 {
5952 unsigned long flags;
5953 wait_queue_t wait;
5954
5955 init_waitqueue_entry(&wait, current);
5956
5957 __set_current_state(state);
5958
5959 spin_lock_irqsave(&q->lock, flags);
5960 __add_wait_queue(q, &wait);
5961 spin_unlock(&q->lock);
5962 timeout = schedule_timeout(timeout);
5963 spin_lock_irq(&q->lock);
5964 __remove_wait_queue(q, &wait);
5965 spin_unlock_irqrestore(&q->lock, flags);
5966
5967 return timeout;
5968 }
5969
5970 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5971 {
5972 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5973 }
5974 EXPORT_SYMBOL(interruptible_sleep_on);
5975
5976 long __sched
5977 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5978 {
5979 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5980 }
5981 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5982
5983 void __sched sleep_on(wait_queue_head_t *q)
5984 {
5985 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5986 }
5987 EXPORT_SYMBOL(sleep_on);
5988
5989 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5990 {
5991 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5992 }
5993 EXPORT_SYMBOL(sleep_on_timeout);
5994
5995 #ifdef CONFIG_RT_MUTEXES
5996
5997 /*
5998 * rt_mutex_setprio - set the current priority of a task
5999 * @p: task
6000 * @prio: prio value (kernel-internal form)
6001 *
6002 * This function changes the 'effective' priority of a task. It does
6003 * not touch ->normal_prio like __setscheduler().
6004 *
6005 * Used by the rt_mutex code to implement priority inheritance logic.
6006 */
6007 void rt_mutex_setprio(struct task_struct *p, int prio)
6008 {
6009 unsigned long flags;
6010 int oldprio, on_rq, running;
6011 struct rq *rq;
6012 const struct sched_class *prev_class = p->sched_class;
6013
6014 BUG_ON(prio < 0 || prio > MAX_PRIO);
6015
6016 rq = task_rq_lock(p, &flags);
6017 update_rq_clock(rq);
6018
6019 oldprio = p->prio;
6020 on_rq = p->se.on_rq;
6021 running = task_current(rq, p);
6022 if (on_rq)
6023 dequeue_task(rq, p, 0);
6024 if (running)
6025 p->sched_class->put_prev_task(rq, p);
6026
6027 if (rt_prio(prio))
6028 p->sched_class = &rt_sched_class;
6029 else
6030 p->sched_class = &fair_sched_class;
6031
6032 p->prio = prio;
6033
6034 if (running)
6035 p->sched_class->set_curr_task(rq);
6036 if (on_rq) {
6037 enqueue_task(rq, p, 0);
6038
6039 check_class_changed(rq, p, prev_class, oldprio, running);
6040 }
6041 task_rq_unlock(rq, &flags);
6042 }
6043
6044 #endif
6045
6046 void set_user_nice(struct task_struct *p, long nice)
6047 {
6048 int old_prio, delta, on_rq;
6049 unsigned long flags;
6050 struct rq *rq;
6051
6052 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6053 return;
6054 /*
6055 * We have to be careful, if called from sys_setpriority(),
6056 * the task might be in the middle of scheduling on another CPU.
6057 */
6058 rq = task_rq_lock(p, &flags);
6059 update_rq_clock(rq);
6060 /*
6061 * The RT priorities are set via sched_setscheduler(), but we still
6062 * allow the 'normal' nice value to be set - but as expected
6063 * it wont have any effect on scheduling until the task is
6064 * SCHED_FIFO/SCHED_RR:
6065 */
6066 if (task_has_rt_policy(p)) {
6067 p->static_prio = NICE_TO_PRIO(nice);
6068 goto out_unlock;
6069 }
6070 on_rq = p->se.on_rq;
6071 if (on_rq)
6072 dequeue_task(rq, p, 0);
6073
6074 p->static_prio = NICE_TO_PRIO(nice);
6075 set_load_weight(p);
6076 old_prio = p->prio;
6077 p->prio = effective_prio(p);
6078 delta = p->prio - old_prio;
6079
6080 if (on_rq) {
6081 enqueue_task(rq, p, 0);
6082 /*
6083 * If the task increased its priority or is running and
6084 * lowered its priority, then reschedule its CPU:
6085 */
6086 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6087 resched_task(rq->curr);
6088 }
6089 out_unlock:
6090 task_rq_unlock(rq, &flags);
6091 }
6092 EXPORT_SYMBOL(set_user_nice);
6093
6094 /*
6095 * can_nice - check if a task can reduce its nice value
6096 * @p: task
6097 * @nice: nice value
6098 */
6099 int can_nice(const struct task_struct *p, const int nice)
6100 {
6101 /* convert nice value [19,-20] to rlimit style value [1,40] */
6102 int nice_rlim = 20 - nice;
6103
6104 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6105 capable(CAP_SYS_NICE));
6106 }
6107
6108 #ifdef __ARCH_WANT_SYS_NICE
6109
6110 /*
6111 * sys_nice - change the priority of the current process.
6112 * @increment: priority increment
6113 *
6114 * sys_setpriority is a more generic, but much slower function that
6115 * does similar things.
6116 */
6117 SYSCALL_DEFINE1(nice, int, increment)
6118 {
6119 long nice, retval;
6120
6121 /*
6122 * Setpriority might change our priority at the same moment.
6123 * We don't have to worry. Conceptually one call occurs first
6124 * and we have a single winner.
6125 */
6126 if (increment < -40)
6127 increment = -40;
6128 if (increment > 40)
6129 increment = 40;
6130
6131 nice = TASK_NICE(current) + increment;
6132 if (nice < -20)
6133 nice = -20;
6134 if (nice > 19)
6135 nice = 19;
6136
6137 if (increment < 0 && !can_nice(current, nice))
6138 return -EPERM;
6139
6140 retval = security_task_setnice(current, nice);
6141 if (retval)
6142 return retval;
6143
6144 set_user_nice(current, nice);
6145 return 0;
6146 }
6147
6148 #endif
6149
6150 /**
6151 * task_prio - return the priority value of a given task.
6152 * @p: the task in question.
6153 *
6154 * This is the priority value as seen by users in /proc.
6155 * RT tasks are offset by -200. Normal tasks are centered
6156 * around 0, value goes from -16 to +15.
6157 */
6158 int task_prio(const struct task_struct *p)
6159 {
6160 return p->prio - MAX_RT_PRIO;
6161 }
6162
6163 /**
6164 * task_nice - return the nice value of a given task.
6165 * @p: the task in question.
6166 */
6167 int task_nice(const struct task_struct *p)
6168 {
6169 return TASK_NICE(p);
6170 }
6171 EXPORT_SYMBOL(task_nice);
6172
6173 /**
6174 * idle_cpu - is a given cpu idle currently?
6175 * @cpu: the processor in question.
6176 */
6177 int idle_cpu(int cpu)
6178 {
6179 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6180 }
6181
6182 /**
6183 * idle_task - return the idle task for a given cpu.
6184 * @cpu: the processor in question.
6185 */
6186 struct task_struct *idle_task(int cpu)
6187 {
6188 return cpu_rq(cpu)->idle;
6189 }
6190
6191 /**
6192 * find_process_by_pid - find a process with a matching PID value.
6193 * @pid: the pid in question.
6194 */
6195 static struct task_struct *find_process_by_pid(pid_t pid)
6196 {
6197 return pid ? find_task_by_vpid(pid) : current;
6198 }
6199
6200 /* Actually do priority change: must hold rq lock. */
6201 static void
6202 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6203 {
6204 BUG_ON(p->se.on_rq);
6205
6206 p->policy = policy;
6207 p->rt_priority = prio;
6208 p->normal_prio = normal_prio(p);
6209 /* we are holding p->pi_lock already */
6210 p->prio = rt_mutex_getprio(p);
6211 if (rt_prio(p->prio))
6212 p->sched_class = &rt_sched_class;
6213 else
6214 p->sched_class = &fair_sched_class;
6215 set_load_weight(p);
6216 }
6217
6218 /*
6219 * check the target process has a UID that matches the current process's
6220 */
6221 static bool check_same_owner(struct task_struct *p)
6222 {
6223 const struct cred *cred = current_cred(), *pcred;
6224 bool match;
6225
6226 rcu_read_lock();
6227 pcred = __task_cred(p);
6228 match = (cred->euid == pcred->euid ||
6229 cred->euid == pcred->uid);
6230 rcu_read_unlock();
6231 return match;
6232 }
6233
6234 static int __sched_setscheduler(struct task_struct *p, int policy,
6235 struct sched_param *param, bool user)
6236 {
6237 int retval, oldprio, oldpolicy = -1, on_rq, running;
6238 unsigned long flags;
6239 const struct sched_class *prev_class = p->sched_class;
6240 struct rq *rq;
6241 int reset_on_fork;
6242
6243 /* may grab non-irq protected spin_locks */
6244 BUG_ON(in_interrupt());
6245 recheck:
6246 /* double check policy once rq lock held */
6247 if (policy < 0) {
6248 reset_on_fork = p->sched_reset_on_fork;
6249 policy = oldpolicy = p->policy;
6250 } else {
6251 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6252 policy &= ~SCHED_RESET_ON_FORK;
6253
6254 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6255 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6256 policy != SCHED_IDLE)
6257 return -EINVAL;
6258 }
6259
6260 /*
6261 * Valid priorities for SCHED_FIFO and SCHED_RR are
6262 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6263 * SCHED_BATCH and SCHED_IDLE is 0.
6264 */
6265 if (param->sched_priority < 0 ||
6266 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6267 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6268 return -EINVAL;
6269 if (rt_policy(policy) != (param->sched_priority != 0))
6270 return -EINVAL;
6271
6272 /*
6273 * Allow unprivileged RT tasks to decrease priority:
6274 */
6275 if (user && !capable(CAP_SYS_NICE)) {
6276 if (rt_policy(policy)) {
6277 unsigned long rlim_rtprio;
6278
6279 if (!lock_task_sighand(p, &flags))
6280 return -ESRCH;
6281 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6282 unlock_task_sighand(p, &flags);
6283
6284 /* can't set/change the rt policy */
6285 if (policy != p->policy && !rlim_rtprio)
6286 return -EPERM;
6287
6288 /* can't increase priority */
6289 if (param->sched_priority > p->rt_priority &&
6290 param->sched_priority > rlim_rtprio)
6291 return -EPERM;
6292 }
6293 /*
6294 * Like positive nice levels, dont allow tasks to
6295 * move out of SCHED_IDLE either:
6296 */
6297 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6298 return -EPERM;
6299
6300 /* can't change other user's priorities */
6301 if (!check_same_owner(p))
6302 return -EPERM;
6303
6304 /* Normal users shall not reset the sched_reset_on_fork flag */
6305 if (p->sched_reset_on_fork && !reset_on_fork)
6306 return -EPERM;
6307 }
6308
6309 if (user) {
6310 #ifdef CONFIG_RT_GROUP_SCHED
6311 /*
6312 * Do not allow realtime tasks into groups that have no runtime
6313 * assigned.
6314 */
6315 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6316 task_group(p)->rt_bandwidth.rt_runtime == 0)
6317 return -EPERM;
6318 #endif
6319
6320 retval = security_task_setscheduler(p, policy, param);
6321 if (retval)
6322 return retval;
6323 }
6324
6325 /*
6326 * make sure no PI-waiters arrive (or leave) while we are
6327 * changing the priority of the task:
6328 */
6329 spin_lock_irqsave(&p->pi_lock, flags);
6330 /*
6331 * To be able to change p->policy safely, the apropriate
6332 * runqueue lock must be held.
6333 */
6334 rq = __task_rq_lock(p);
6335 /* recheck policy now with rq lock held */
6336 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6337 policy = oldpolicy = -1;
6338 __task_rq_unlock(rq);
6339 spin_unlock_irqrestore(&p->pi_lock, flags);
6340 goto recheck;
6341 }
6342 update_rq_clock(rq);
6343 on_rq = p->se.on_rq;
6344 running = task_current(rq, p);
6345 if (on_rq)
6346 deactivate_task(rq, p, 0);
6347 if (running)
6348 p->sched_class->put_prev_task(rq, p);
6349
6350 p->sched_reset_on_fork = reset_on_fork;
6351
6352 oldprio = p->prio;
6353 __setscheduler(rq, p, policy, param->sched_priority);
6354
6355 if (running)
6356 p->sched_class->set_curr_task(rq);
6357 if (on_rq) {
6358 activate_task(rq, p, 0);
6359
6360 check_class_changed(rq, p, prev_class, oldprio, running);
6361 }
6362 __task_rq_unlock(rq);
6363 spin_unlock_irqrestore(&p->pi_lock, flags);
6364
6365 rt_mutex_adjust_pi(p);
6366
6367 return 0;
6368 }
6369
6370 /**
6371 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6372 * @p: the task in question.
6373 * @policy: new policy.
6374 * @param: structure containing the new RT priority.
6375 *
6376 * NOTE that the task may be already dead.
6377 */
6378 int sched_setscheduler(struct task_struct *p, int policy,
6379 struct sched_param *param)
6380 {
6381 return __sched_setscheduler(p, policy, param, true);
6382 }
6383 EXPORT_SYMBOL_GPL(sched_setscheduler);
6384
6385 /**
6386 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6387 * @p: the task in question.
6388 * @policy: new policy.
6389 * @param: structure containing the new RT priority.
6390 *
6391 * Just like sched_setscheduler, only don't bother checking if the
6392 * current context has permission. For example, this is needed in
6393 * stop_machine(): we create temporary high priority worker threads,
6394 * but our caller might not have that capability.
6395 */
6396 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6397 struct sched_param *param)
6398 {
6399 return __sched_setscheduler(p, policy, param, false);
6400 }
6401
6402 static int
6403 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6404 {
6405 struct sched_param lparam;
6406 struct task_struct *p;
6407 int retval;
6408
6409 if (!param || pid < 0)
6410 return -EINVAL;
6411 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6412 return -EFAULT;
6413
6414 rcu_read_lock();
6415 retval = -ESRCH;
6416 p = find_process_by_pid(pid);
6417 if (p != NULL)
6418 retval = sched_setscheduler(p, policy, &lparam);
6419 rcu_read_unlock();
6420
6421 return retval;
6422 }
6423
6424 /**
6425 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6426 * @pid: the pid in question.
6427 * @policy: new policy.
6428 * @param: structure containing the new RT priority.
6429 */
6430 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6431 struct sched_param __user *, param)
6432 {
6433 /* negative values for policy are not valid */
6434 if (policy < 0)
6435 return -EINVAL;
6436
6437 return do_sched_setscheduler(pid, policy, param);
6438 }
6439
6440 /**
6441 * sys_sched_setparam - set/change the RT priority of a thread
6442 * @pid: the pid in question.
6443 * @param: structure containing the new RT priority.
6444 */
6445 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6446 {
6447 return do_sched_setscheduler(pid, -1, param);
6448 }
6449
6450 /**
6451 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6452 * @pid: the pid in question.
6453 */
6454 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6455 {
6456 struct task_struct *p;
6457 int retval;
6458
6459 if (pid < 0)
6460 return -EINVAL;
6461
6462 retval = -ESRCH;
6463 read_lock(&tasklist_lock);
6464 p = find_process_by_pid(pid);
6465 if (p) {
6466 retval = security_task_getscheduler(p);
6467 if (!retval)
6468 retval = p->policy
6469 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6470 }
6471 read_unlock(&tasklist_lock);
6472 return retval;
6473 }
6474
6475 /**
6476 * sys_sched_getparam - get the RT priority of a thread
6477 * @pid: the pid in question.
6478 * @param: structure containing the RT priority.
6479 */
6480 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6481 {
6482 struct sched_param lp;
6483 struct task_struct *p;
6484 int retval;
6485
6486 if (!param || pid < 0)
6487 return -EINVAL;
6488
6489 read_lock(&tasklist_lock);
6490 p = find_process_by_pid(pid);
6491 retval = -ESRCH;
6492 if (!p)
6493 goto out_unlock;
6494
6495 retval = security_task_getscheduler(p);
6496 if (retval)
6497 goto out_unlock;
6498
6499 lp.sched_priority = p->rt_priority;
6500 read_unlock(&tasklist_lock);
6501
6502 /*
6503 * This one might sleep, we cannot do it with a spinlock held ...
6504 */
6505 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6506
6507 return retval;
6508
6509 out_unlock:
6510 read_unlock(&tasklist_lock);
6511 return retval;
6512 }
6513
6514 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6515 {
6516 cpumask_var_t cpus_allowed, new_mask;
6517 struct task_struct *p;
6518 int retval;
6519
6520 get_online_cpus();
6521 read_lock(&tasklist_lock);
6522
6523 p = find_process_by_pid(pid);
6524 if (!p) {
6525 read_unlock(&tasklist_lock);
6526 put_online_cpus();
6527 return -ESRCH;
6528 }
6529
6530 /*
6531 * It is not safe to call set_cpus_allowed with the
6532 * tasklist_lock held. We will bump the task_struct's
6533 * usage count and then drop tasklist_lock.
6534 */
6535 get_task_struct(p);
6536 read_unlock(&tasklist_lock);
6537
6538 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6539 retval = -ENOMEM;
6540 goto out_put_task;
6541 }
6542 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6543 retval = -ENOMEM;
6544 goto out_free_cpus_allowed;
6545 }
6546 retval = -EPERM;
6547 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6548 goto out_unlock;
6549
6550 retval = security_task_setscheduler(p, 0, NULL);
6551 if (retval)
6552 goto out_unlock;
6553
6554 cpuset_cpus_allowed(p, cpus_allowed);
6555 cpumask_and(new_mask, in_mask, cpus_allowed);
6556 again:
6557 retval = set_cpus_allowed_ptr(p, new_mask);
6558
6559 if (!retval) {
6560 cpuset_cpus_allowed(p, cpus_allowed);
6561 if (!cpumask_subset(new_mask, cpus_allowed)) {
6562 /*
6563 * We must have raced with a concurrent cpuset
6564 * update. Just reset the cpus_allowed to the
6565 * cpuset's cpus_allowed
6566 */
6567 cpumask_copy(new_mask, cpus_allowed);
6568 goto again;
6569 }
6570 }
6571 out_unlock:
6572 free_cpumask_var(new_mask);
6573 out_free_cpus_allowed:
6574 free_cpumask_var(cpus_allowed);
6575 out_put_task:
6576 put_task_struct(p);
6577 put_online_cpus();
6578 return retval;
6579 }
6580
6581 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6582 struct cpumask *new_mask)
6583 {
6584 if (len < cpumask_size())
6585 cpumask_clear(new_mask);
6586 else if (len > cpumask_size())
6587 len = cpumask_size();
6588
6589 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6590 }
6591
6592 /**
6593 * sys_sched_setaffinity - set the cpu affinity of a process
6594 * @pid: pid of the process
6595 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6596 * @user_mask_ptr: user-space pointer to the new cpu mask
6597 */
6598 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6599 unsigned long __user *, user_mask_ptr)
6600 {
6601 cpumask_var_t new_mask;
6602 int retval;
6603
6604 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6605 return -ENOMEM;
6606
6607 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6608 if (retval == 0)
6609 retval = sched_setaffinity(pid, new_mask);
6610 free_cpumask_var(new_mask);
6611 return retval;
6612 }
6613
6614 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6615 {
6616 struct task_struct *p;
6617 unsigned long flags;
6618 struct rq *rq;
6619 int retval;
6620
6621 get_online_cpus();
6622 read_lock(&tasklist_lock);
6623
6624 retval = -ESRCH;
6625 p = find_process_by_pid(pid);
6626 if (!p)
6627 goto out_unlock;
6628
6629 retval = security_task_getscheduler(p);
6630 if (retval)
6631 goto out_unlock;
6632
6633 rq = task_rq_lock(p, &flags);
6634 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6635 task_rq_unlock(rq, &flags);
6636
6637 out_unlock:
6638 read_unlock(&tasklist_lock);
6639 put_online_cpus();
6640
6641 return retval;
6642 }
6643
6644 /**
6645 * sys_sched_getaffinity - get the cpu affinity of a process
6646 * @pid: pid of the process
6647 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6648 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6649 */
6650 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6651 unsigned long __user *, user_mask_ptr)
6652 {
6653 int ret;
6654 cpumask_var_t mask;
6655
6656 if (len < cpumask_size())
6657 return -EINVAL;
6658
6659 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6660 return -ENOMEM;
6661
6662 ret = sched_getaffinity(pid, mask);
6663 if (ret == 0) {
6664 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6665 ret = -EFAULT;
6666 else
6667 ret = cpumask_size();
6668 }
6669 free_cpumask_var(mask);
6670
6671 return ret;
6672 }
6673
6674 /**
6675 * sys_sched_yield - yield the current processor to other threads.
6676 *
6677 * This function yields the current CPU to other tasks. If there are no
6678 * other threads running on this CPU then this function will return.
6679 */
6680 SYSCALL_DEFINE0(sched_yield)
6681 {
6682 struct rq *rq = this_rq_lock();
6683
6684 schedstat_inc(rq, yld_count);
6685 current->sched_class->yield_task(rq);
6686
6687 /*
6688 * Since we are going to call schedule() anyway, there's
6689 * no need to preempt or enable interrupts:
6690 */
6691 __release(rq->lock);
6692 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6693 _raw_spin_unlock(&rq->lock);
6694 preempt_enable_no_resched();
6695
6696 schedule();
6697
6698 return 0;
6699 }
6700
6701 static inline int should_resched(void)
6702 {
6703 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6704 }
6705
6706 static void __cond_resched(void)
6707 {
6708 add_preempt_count(PREEMPT_ACTIVE);
6709 schedule();
6710 sub_preempt_count(PREEMPT_ACTIVE);
6711 }
6712
6713 int __sched _cond_resched(void)
6714 {
6715 if (should_resched()) {
6716 __cond_resched();
6717 return 1;
6718 }
6719 return 0;
6720 }
6721 EXPORT_SYMBOL(_cond_resched);
6722
6723 /*
6724 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6725 * call schedule, and on return reacquire the lock.
6726 *
6727 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6728 * operations here to prevent schedule() from being called twice (once via
6729 * spin_unlock(), once by hand).
6730 */
6731 int __cond_resched_lock(spinlock_t *lock)
6732 {
6733 int resched = should_resched();
6734 int ret = 0;
6735
6736 lockdep_assert_held(lock);
6737
6738 if (spin_needbreak(lock) || resched) {
6739 spin_unlock(lock);
6740 if (resched)
6741 __cond_resched();
6742 else
6743 cpu_relax();
6744 ret = 1;
6745 spin_lock(lock);
6746 }
6747 return ret;
6748 }
6749 EXPORT_SYMBOL(__cond_resched_lock);
6750
6751 int __sched __cond_resched_softirq(void)
6752 {
6753 BUG_ON(!in_softirq());
6754
6755 if (should_resched()) {
6756 local_bh_enable();
6757 __cond_resched();
6758 local_bh_disable();
6759 return 1;
6760 }
6761 return 0;
6762 }
6763 EXPORT_SYMBOL(__cond_resched_softirq);
6764
6765 /**
6766 * yield - yield the current processor to other threads.
6767 *
6768 * This is a shortcut for kernel-space yielding - it marks the
6769 * thread runnable and calls sys_sched_yield().
6770 */
6771 void __sched yield(void)
6772 {
6773 set_current_state(TASK_RUNNING);
6774 sys_sched_yield();
6775 }
6776 EXPORT_SYMBOL(yield);
6777
6778 /*
6779 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6780 * that process accounting knows that this is a task in IO wait state.
6781 */
6782 void __sched io_schedule(void)
6783 {
6784 struct rq *rq = raw_rq();
6785
6786 delayacct_blkio_start();
6787 atomic_inc(&rq->nr_iowait);
6788 current->in_iowait = 1;
6789 schedule();
6790 current->in_iowait = 0;
6791 atomic_dec(&rq->nr_iowait);
6792 delayacct_blkio_end();
6793 }
6794 EXPORT_SYMBOL(io_schedule);
6795
6796 long __sched io_schedule_timeout(long timeout)
6797 {
6798 struct rq *rq = raw_rq();
6799 long ret;
6800
6801 delayacct_blkio_start();
6802 atomic_inc(&rq->nr_iowait);
6803 current->in_iowait = 1;
6804 ret = schedule_timeout(timeout);
6805 current->in_iowait = 0;
6806 atomic_dec(&rq->nr_iowait);
6807 delayacct_blkio_end();
6808 return ret;
6809 }
6810
6811 /**
6812 * sys_sched_get_priority_max - return maximum RT priority.
6813 * @policy: scheduling class.
6814 *
6815 * this syscall returns the maximum rt_priority that can be used
6816 * by a given scheduling class.
6817 */
6818 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6819 {
6820 int ret = -EINVAL;
6821
6822 switch (policy) {
6823 case SCHED_FIFO:
6824 case SCHED_RR:
6825 ret = MAX_USER_RT_PRIO-1;
6826 break;
6827 case SCHED_NORMAL:
6828 case SCHED_BATCH:
6829 case SCHED_IDLE:
6830 ret = 0;
6831 break;
6832 }
6833 return ret;
6834 }
6835
6836 /**
6837 * sys_sched_get_priority_min - return minimum RT priority.
6838 * @policy: scheduling class.
6839 *
6840 * this syscall returns the minimum rt_priority that can be used
6841 * by a given scheduling class.
6842 */
6843 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6844 {
6845 int ret = -EINVAL;
6846
6847 switch (policy) {
6848 case SCHED_FIFO:
6849 case SCHED_RR:
6850 ret = 1;
6851 break;
6852 case SCHED_NORMAL:
6853 case SCHED_BATCH:
6854 case SCHED_IDLE:
6855 ret = 0;
6856 }
6857 return ret;
6858 }
6859
6860 /**
6861 * sys_sched_rr_get_interval - return the default timeslice of a process.
6862 * @pid: pid of the process.
6863 * @interval: userspace pointer to the timeslice value.
6864 *
6865 * this syscall writes the default timeslice value of a given process
6866 * into the user-space timespec buffer. A value of '0' means infinity.
6867 */
6868 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6869 struct timespec __user *, interval)
6870 {
6871 struct task_struct *p;
6872 unsigned int time_slice;
6873 unsigned long flags;
6874 struct rq *rq;
6875 int retval;
6876 struct timespec t;
6877
6878 if (pid < 0)
6879 return -EINVAL;
6880
6881 retval = -ESRCH;
6882 read_lock(&tasklist_lock);
6883 p = find_process_by_pid(pid);
6884 if (!p)
6885 goto out_unlock;
6886
6887 retval = security_task_getscheduler(p);
6888 if (retval)
6889 goto out_unlock;
6890
6891 rq = task_rq_lock(p, &flags);
6892 time_slice = p->sched_class->get_rr_interval(rq, p);
6893 task_rq_unlock(rq, &flags);
6894
6895 read_unlock(&tasklist_lock);
6896 jiffies_to_timespec(time_slice, &t);
6897 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6898 return retval;
6899
6900 out_unlock:
6901 read_unlock(&tasklist_lock);
6902 return retval;
6903 }
6904
6905 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6906
6907 void sched_show_task(struct task_struct *p)
6908 {
6909 unsigned long free = 0;
6910 unsigned state;
6911
6912 state = p->state ? __ffs(p->state) + 1 : 0;
6913 printk(KERN_INFO "%-13.13s %c", p->comm,
6914 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6915 #if BITS_PER_LONG == 32
6916 if (state == TASK_RUNNING)
6917 printk(KERN_CONT " running ");
6918 else
6919 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6920 #else
6921 if (state == TASK_RUNNING)
6922 printk(KERN_CONT " running task ");
6923 else
6924 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6925 #endif
6926 #ifdef CONFIG_DEBUG_STACK_USAGE
6927 free = stack_not_used(p);
6928 #endif
6929 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6930 task_pid_nr(p), task_pid_nr(p->real_parent),
6931 (unsigned long)task_thread_info(p)->flags);
6932
6933 show_stack(p, NULL);
6934 }
6935
6936 void show_state_filter(unsigned long state_filter)
6937 {
6938 struct task_struct *g, *p;
6939
6940 #if BITS_PER_LONG == 32
6941 printk(KERN_INFO
6942 " task PC stack pid father\n");
6943 #else
6944 printk(KERN_INFO
6945 " task PC stack pid father\n");
6946 #endif
6947 read_lock(&tasklist_lock);
6948 do_each_thread(g, p) {
6949 /*
6950 * reset the NMI-timeout, listing all files on a slow
6951 * console might take alot of time:
6952 */
6953 touch_nmi_watchdog();
6954 if (!state_filter || (p->state & state_filter))
6955 sched_show_task(p);
6956 } while_each_thread(g, p);
6957
6958 touch_all_softlockup_watchdogs();
6959
6960 #ifdef CONFIG_SCHED_DEBUG
6961 sysrq_sched_debug_show();
6962 #endif
6963 read_unlock(&tasklist_lock);
6964 /*
6965 * Only show locks if all tasks are dumped:
6966 */
6967 if (!state_filter)
6968 debug_show_all_locks();
6969 }
6970
6971 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6972 {
6973 idle->sched_class = &idle_sched_class;
6974 }
6975
6976 /**
6977 * init_idle - set up an idle thread for a given CPU
6978 * @idle: task in question
6979 * @cpu: cpu the idle task belongs to
6980 *
6981 * NOTE: this function does not set the idle thread's NEED_RESCHED
6982 * flag, to make booting more robust.
6983 */
6984 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6985 {
6986 struct rq *rq = cpu_rq(cpu);
6987 unsigned long flags;
6988
6989 spin_lock_irqsave(&rq->lock, flags);
6990
6991 __sched_fork(idle);
6992 idle->se.exec_start = sched_clock();
6993
6994 idle->prio = idle->normal_prio = MAX_PRIO;
6995 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6996 __set_task_cpu(idle, cpu);
6997
6998 rq->curr = rq->idle = idle;
6999 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7000 idle->oncpu = 1;
7001 #endif
7002 spin_unlock_irqrestore(&rq->lock, flags);
7003
7004 /* Set the preempt count _outside_ the spinlocks! */
7005 #if defined(CONFIG_PREEMPT)
7006 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7007 #else
7008 task_thread_info(idle)->preempt_count = 0;
7009 #endif
7010 /*
7011 * The idle tasks have their own, simple scheduling class:
7012 */
7013 idle->sched_class = &idle_sched_class;
7014 ftrace_graph_init_task(idle);
7015 }
7016
7017 /*
7018 * In a system that switches off the HZ timer nohz_cpu_mask
7019 * indicates which cpus entered this state. This is used
7020 * in the rcu update to wait only for active cpus. For system
7021 * which do not switch off the HZ timer nohz_cpu_mask should
7022 * always be CPU_BITS_NONE.
7023 */
7024 cpumask_var_t nohz_cpu_mask;
7025
7026 /*
7027 * Increase the granularity value when there are more CPUs,
7028 * because with more CPUs the 'effective latency' as visible
7029 * to users decreases. But the relationship is not linear,
7030 * so pick a second-best guess by going with the log2 of the
7031 * number of CPUs.
7032 *
7033 * This idea comes from the SD scheduler of Con Kolivas:
7034 */
7035 static inline void sched_init_granularity(void)
7036 {
7037 unsigned int factor = 1 + ilog2(num_online_cpus());
7038 const unsigned long limit = 200000000;
7039
7040 sysctl_sched_min_granularity *= factor;
7041 if (sysctl_sched_min_granularity > limit)
7042 sysctl_sched_min_granularity = limit;
7043
7044 sysctl_sched_latency *= factor;
7045 if (sysctl_sched_latency > limit)
7046 sysctl_sched_latency = limit;
7047
7048 sysctl_sched_wakeup_granularity *= factor;
7049
7050 sysctl_sched_shares_ratelimit *= factor;
7051 }
7052
7053 #ifdef CONFIG_SMP
7054 /*
7055 * This is how migration works:
7056 *
7057 * 1) we queue a struct migration_req structure in the source CPU's
7058 * runqueue and wake up that CPU's migration thread.
7059 * 2) we down() the locked semaphore => thread blocks.
7060 * 3) migration thread wakes up (implicitly it forces the migrated
7061 * thread off the CPU)
7062 * 4) it gets the migration request and checks whether the migrated
7063 * task is still in the wrong runqueue.
7064 * 5) if it's in the wrong runqueue then the migration thread removes
7065 * it and puts it into the right queue.
7066 * 6) migration thread up()s the semaphore.
7067 * 7) we wake up and the migration is done.
7068 */
7069
7070 /*
7071 * Change a given task's CPU affinity. Migrate the thread to a
7072 * proper CPU and schedule it away if the CPU it's executing on
7073 * is removed from the allowed bitmask.
7074 *
7075 * NOTE: the caller must have a valid reference to the task, the
7076 * task must not exit() & deallocate itself prematurely. The
7077 * call is not atomic; no spinlocks may be held.
7078 */
7079 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7080 {
7081 struct migration_req req;
7082 unsigned long flags;
7083 struct rq *rq;
7084 int ret = 0;
7085
7086 rq = task_rq_lock(p, &flags);
7087 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
7088 ret = -EINVAL;
7089 goto out;
7090 }
7091
7092 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7093 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7094 ret = -EINVAL;
7095 goto out;
7096 }
7097
7098 if (p->sched_class->set_cpus_allowed)
7099 p->sched_class->set_cpus_allowed(p, new_mask);
7100 else {
7101 cpumask_copy(&p->cpus_allowed, new_mask);
7102 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7103 }
7104
7105 /* Can the task run on the task's current CPU? If so, we're done */
7106 if (cpumask_test_cpu(task_cpu(p), new_mask))
7107 goto out;
7108
7109 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
7110 /* Need help from migration thread: drop lock and wait. */
7111 struct task_struct *mt = rq->migration_thread;
7112
7113 get_task_struct(mt);
7114 task_rq_unlock(rq, &flags);
7115 wake_up_process(rq->migration_thread);
7116 put_task_struct(mt);
7117 wait_for_completion(&req.done);
7118 tlb_migrate_finish(p->mm);
7119 return 0;
7120 }
7121 out:
7122 task_rq_unlock(rq, &flags);
7123
7124 return ret;
7125 }
7126 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7127
7128 /*
7129 * Move (not current) task off this cpu, onto dest cpu. We're doing
7130 * this because either it can't run here any more (set_cpus_allowed()
7131 * away from this CPU, or CPU going down), or because we're
7132 * attempting to rebalance this task on exec (sched_exec).
7133 *
7134 * So we race with normal scheduler movements, but that's OK, as long
7135 * as the task is no longer on this CPU.
7136 *
7137 * Returns non-zero if task was successfully migrated.
7138 */
7139 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7140 {
7141 struct rq *rq_dest, *rq_src;
7142 int ret = 0, on_rq;
7143
7144 if (unlikely(!cpu_active(dest_cpu)))
7145 return ret;
7146
7147 rq_src = cpu_rq(src_cpu);
7148 rq_dest = cpu_rq(dest_cpu);
7149
7150 double_rq_lock(rq_src, rq_dest);
7151 /* Already moved. */
7152 if (task_cpu(p) != src_cpu)
7153 goto done;
7154 /* Affinity changed (again). */
7155 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7156 goto fail;
7157
7158 on_rq = p->se.on_rq;
7159 if (on_rq)
7160 deactivate_task(rq_src, p, 0);
7161
7162 set_task_cpu(p, dest_cpu);
7163 if (on_rq) {
7164 activate_task(rq_dest, p, 0);
7165 check_preempt_curr(rq_dest, p, 0);
7166 }
7167 done:
7168 ret = 1;
7169 fail:
7170 double_rq_unlock(rq_src, rq_dest);
7171 return ret;
7172 }
7173
7174 #define RCU_MIGRATION_IDLE 0
7175 #define RCU_MIGRATION_NEED_QS 1
7176 #define RCU_MIGRATION_GOT_QS 2
7177 #define RCU_MIGRATION_MUST_SYNC 3
7178
7179 /*
7180 * migration_thread - this is a highprio system thread that performs
7181 * thread migration by bumping thread off CPU then 'pushing' onto
7182 * another runqueue.
7183 */
7184 static int migration_thread(void *data)
7185 {
7186 int badcpu;
7187 int cpu = (long)data;
7188 struct rq *rq;
7189
7190 rq = cpu_rq(cpu);
7191 BUG_ON(rq->migration_thread != current);
7192
7193 set_current_state(TASK_INTERRUPTIBLE);
7194 while (!kthread_should_stop()) {
7195 struct migration_req *req;
7196 struct list_head *head;
7197
7198 spin_lock_irq(&rq->lock);
7199
7200 if (cpu_is_offline(cpu)) {
7201 spin_unlock_irq(&rq->lock);
7202 break;
7203 }
7204
7205 if (rq->active_balance) {
7206 active_load_balance(rq, cpu);
7207 rq->active_balance = 0;
7208 }
7209
7210 head = &rq->migration_queue;
7211
7212 if (list_empty(head)) {
7213 spin_unlock_irq(&rq->lock);
7214 schedule();
7215 set_current_state(TASK_INTERRUPTIBLE);
7216 continue;
7217 }
7218 req = list_entry(head->next, struct migration_req, list);
7219 list_del_init(head->next);
7220
7221 if (req->task != NULL) {
7222 spin_unlock(&rq->lock);
7223 __migrate_task(req->task, cpu, req->dest_cpu);
7224 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7225 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7226 spin_unlock(&rq->lock);
7227 } else {
7228 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7229 spin_unlock(&rq->lock);
7230 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7231 }
7232 local_irq_enable();
7233
7234 complete(&req->done);
7235 }
7236 __set_current_state(TASK_RUNNING);
7237
7238 return 0;
7239 }
7240
7241 #ifdef CONFIG_HOTPLUG_CPU
7242
7243 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7244 {
7245 int ret;
7246
7247 local_irq_disable();
7248 ret = __migrate_task(p, src_cpu, dest_cpu);
7249 local_irq_enable();
7250 return ret;
7251 }
7252
7253 /*
7254 * Figure out where task on dead CPU should go, use force if necessary.
7255 */
7256 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7257 {
7258 int dest_cpu;
7259 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7260
7261 again:
7262 /* Look for allowed, online CPU in same node. */
7263 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
7264 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7265 goto move;
7266
7267 /* Any allowed, online CPU? */
7268 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
7269 if (dest_cpu < nr_cpu_ids)
7270 goto move;
7271
7272 /* No more Mr. Nice Guy. */
7273 if (dest_cpu >= nr_cpu_ids) {
7274 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7275 dest_cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
7276
7277 /*
7278 * Don't tell them about moving exiting tasks or
7279 * kernel threads (both mm NULL), since they never
7280 * leave kernel.
7281 */
7282 if (p->mm && printk_ratelimit()) {
7283 printk(KERN_INFO "process %d (%s) no "
7284 "longer affine to cpu%d\n",
7285 task_pid_nr(p), p->comm, dead_cpu);
7286 }
7287 }
7288
7289 move:
7290 /* It can have affinity changed while we were choosing. */
7291 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7292 goto again;
7293 }
7294
7295 /*
7296 * While a dead CPU has no uninterruptible tasks queued at this point,
7297 * it might still have a nonzero ->nr_uninterruptible counter, because
7298 * for performance reasons the counter is not stricly tracking tasks to
7299 * their home CPUs. So we just add the counter to another CPU's counter,
7300 * to keep the global sum constant after CPU-down:
7301 */
7302 static void migrate_nr_uninterruptible(struct rq *rq_src)
7303 {
7304 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
7305 unsigned long flags;
7306
7307 local_irq_save(flags);
7308 double_rq_lock(rq_src, rq_dest);
7309 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7310 rq_src->nr_uninterruptible = 0;
7311 double_rq_unlock(rq_src, rq_dest);
7312 local_irq_restore(flags);
7313 }
7314
7315 /* Run through task list and migrate tasks from the dead cpu. */
7316 static void migrate_live_tasks(int src_cpu)
7317 {
7318 struct task_struct *p, *t;
7319
7320 read_lock(&tasklist_lock);
7321
7322 do_each_thread(t, p) {
7323 if (p == current)
7324 continue;
7325
7326 if (task_cpu(p) == src_cpu)
7327 move_task_off_dead_cpu(src_cpu, p);
7328 } while_each_thread(t, p);
7329
7330 read_unlock(&tasklist_lock);
7331 }
7332
7333 /*
7334 * Schedules idle task to be the next runnable task on current CPU.
7335 * It does so by boosting its priority to highest possible.
7336 * Used by CPU offline code.
7337 */
7338 void sched_idle_next(void)
7339 {
7340 int this_cpu = smp_processor_id();
7341 struct rq *rq = cpu_rq(this_cpu);
7342 struct task_struct *p = rq->idle;
7343 unsigned long flags;
7344
7345 /* cpu has to be offline */
7346 BUG_ON(cpu_online(this_cpu));
7347
7348 /*
7349 * Strictly not necessary since rest of the CPUs are stopped by now
7350 * and interrupts disabled on the current cpu.
7351 */
7352 spin_lock_irqsave(&rq->lock, flags);
7353
7354 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7355
7356 update_rq_clock(rq);
7357 activate_task(rq, p, 0);
7358
7359 spin_unlock_irqrestore(&rq->lock, flags);
7360 }
7361
7362 /*
7363 * Ensures that the idle task is using init_mm right before its cpu goes
7364 * offline.
7365 */
7366 void idle_task_exit(void)
7367 {
7368 struct mm_struct *mm = current->active_mm;
7369
7370 BUG_ON(cpu_online(smp_processor_id()));
7371
7372 if (mm != &init_mm)
7373 switch_mm(mm, &init_mm, current);
7374 mmdrop(mm);
7375 }
7376
7377 /* called under rq->lock with disabled interrupts */
7378 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7379 {
7380 struct rq *rq = cpu_rq(dead_cpu);
7381
7382 /* Must be exiting, otherwise would be on tasklist. */
7383 BUG_ON(!p->exit_state);
7384
7385 /* Cannot have done final schedule yet: would have vanished. */
7386 BUG_ON(p->state == TASK_DEAD);
7387
7388 get_task_struct(p);
7389
7390 /*
7391 * Drop lock around migration; if someone else moves it,
7392 * that's OK. No task can be added to this CPU, so iteration is
7393 * fine.
7394 */
7395 spin_unlock_irq(&rq->lock);
7396 move_task_off_dead_cpu(dead_cpu, p);
7397 spin_lock_irq(&rq->lock);
7398
7399 put_task_struct(p);
7400 }
7401
7402 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7403 static void migrate_dead_tasks(unsigned int dead_cpu)
7404 {
7405 struct rq *rq = cpu_rq(dead_cpu);
7406 struct task_struct *next;
7407
7408 for ( ; ; ) {
7409 if (!rq->nr_running)
7410 break;
7411 update_rq_clock(rq);
7412 next = pick_next_task(rq);
7413 if (!next)
7414 break;
7415 next->sched_class->put_prev_task(rq, next);
7416 migrate_dead(dead_cpu, next);
7417
7418 }
7419 }
7420
7421 /*
7422 * remove the tasks which were accounted by rq from calc_load_tasks.
7423 */
7424 static void calc_global_load_remove(struct rq *rq)
7425 {
7426 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7427 rq->calc_load_active = 0;
7428 }
7429 #endif /* CONFIG_HOTPLUG_CPU */
7430
7431 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7432
7433 static struct ctl_table sd_ctl_dir[] = {
7434 {
7435 .procname = "sched_domain",
7436 .mode = 0555,
7437 },
7438 {0, },
7439 };
7440
7441 static struct ctl_table sd_ctl_root[] = {
7442 {
7443 .ctl_name = CTL_KERN,
7444 .procname = "kernel",
7445 .mode = 0555,
7446 .child = sd_ctl_dir,
7447 },
7448 {0, },
7449 };
7450
7451 static struct ctl_table *sd_alloc_ctl_entry(int n)
7452 {
7453 struct ctl_table *entry =
7454 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7455
7456 return entry;
7457 }
7458
7459 static void sd_free_ctl_entry(struct ctl_table **tablep)
7460 {
7461 struct ctl_table *entry;
7462
7463 /*
7464 * In the intermediate directories, both the child directory and
7465 * procname are dynamically allocated and could fail but the mode
7466 * will always be set. In the lowest directory the names are
7467 * static strings and all have proc handlers.
7468 */
7469 for (entry = *tablep; entry->mode; entry++) {
7470 if (entry->child)
7471 sd_free_ctl_entry(&entry->child);
7472 if (entry->proc_handler == NULL)
7473 kfree(entry->procname);
7474 }
7475
7476 kfree(*tablep);
7477 *tablep = NULL;
7478 }
7479
7480 static void
7481 set_table_entry(struct ctl_table *entry,
7482 const char *procname, void *data, int maxlen,
7483 mode_t mode, proc_handler *proc_handler)
7484 {
7485 entry->procname = procname;
7486 entry->data = data;
7487 entry->maxlen = maxlen;
7488 entry->mode = mode;
7489 entry->proc_handler = proc_handler;
7490 }
7491
7492 static struct ctl_table *
7493 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7494 {
7495 struct ctl_table *table = sd_alloc_ctl_entry(13);
7496
7497 if (table == NULL)
7498 return NULL;
7499
7500 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7501 sizeof(long), 0644, proc_doulongvec_minmax);
7502 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7503 sizeof(long), 0644, proc_doulongvec_minmax);
7504 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7505 sizeof(int), 0644, proc_dointvec_minmax);
7506 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7507 sizeof(int), 0644, proc_dointvec_minmax);
7508 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7509 sizeof(int), 0644, proc_dointvec_minmax);
7510 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7511 sizeof(int), 0644, proc_dointvec_minmax);
7512 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7513 sizeof(int), 0644, proc_dointvec_minmax);
7514 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7515 sizeof(int), 0644, proc_dointvec_minmax);
7516 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7517 sizeof(int), 0644, proc_dointvec_minmax);
7518 set_table_entry(&table[9], "cache_nice_tries",
7519 &sd->cache_nice_tries,
7520 sizeof(int), 0644, proc_dointvec_minmax);
7521 set_table_entry(&table[10], "flags", &sd->flags,
7522 sizeof(int), 0644, proc_dointvec_minmax);
7523 set_table_entry(&table[11], "name", sd->name,
7524 CORENAME_MAX_SIZE, 0444, proc_dostring);
7525 /* &table[12] is terminator */
7526
7527 return table;
7528 }
7529
7530 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7531 {
7532 struct ctl_table *entry, *table;
7533 struct sched_domain *sd;
7534 int domain_num = 0, i;
7535 char buf[32];
7536
7537 for_each_domain(cpu, sd)
7538 domain_num++;
7539 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7540 if (table == NULL)
7541 return NULL;
7542
7543 i = 0;
7544 for_each_domain(cpu, sd) {
7545 snprintf(buf, 32, "domain%d", i);
7546 entry->procname = kstrdup(buf, GFP_KERNEL);
7547 entry->mode = 0555;
7548 entry->child = sd_alloc_ctl_domain_table(sd);
7549 entry++;
7550 i++;
7551 }
7552 return table;
7553 }
7554
7555 static struct ctl_table_header *sd_sysctl_header;
7556 static void register_sched_domain_sysctl(void)
7557 {
7558 int i, cpu_num = num_possible_cpus();
7559 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7560 char buf[32];
7561
7562 WARN_ON(sd_ctl_dir[0].child);
7563 sd_ctl_dir[0].child = entry;
7564
7565 if (entry == NULL)
7566 return;
7567
7568 for_each_possible_cpu(i) {
7569 snprintf(buf, 32, "cpu%d", i);
7570 entry->procname = kstrdup(buf, GFP_KERNEL);
7571 entry->mode = 0555;
7572 entry->child = sd_alloc_ctl_cpu_table(i);
7573 entry++;
7574 }
7575
7576 WARN_ON(sd_sysctl_header);
7577 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7578 }
7579
7580 /* may be called multiple times per register */
7581 static void unregister_sched_domain_sysctl(void)
7582 {
7583 if (sd_sysctl_header)
7584 unregister_sysctl_table(sd_sysctl_header);
7585 sd_sysctl_header = NULL;
7586 if (sd_ctl_dir[0].child)
7587 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7588 }
7589 #else
7590 static void register_sched_domain_sysctl(void)
7591 {
7592 }
7593 static void unregister_sched_domain_sysctl(void)
7594 {
7595 }
7596 #endif
7597
7598 static void set_rq_online(struct rq *rq)
7599 {
7600 if (!rq->online) {
7601 const struct sched_class *class;
7602
7603 cpumask_set_cpu(rq->cpu, rq->rd->online);
7604 rq->online = 1;
7605
7606 for_each_class(class) {
7607 if (class->rq_online)
7608 class->rq_online(rq);
7609 }
7610 }
7611 }
7612
7613 static void set_rq_offline(struct rq *rq)
7614 {
7615 if (rq->online) {
7616 const struct sched_class *class;
7617
7618 for_each_class(class) {
7619 if (class->rq_offline)
7620 class->rq_offline(rq);
7621 }
7622
7623 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7624 rq->online = 0;
7625 }
7626 }
7627
7628 /*
7629 * migration_call - callback that gets triggered when a CPU is added.
7630 * Here we can start up the necessary migration thread for the new CPU.
7631 */
7632 static int __cpuinit
7633 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7634 {
7635 struct task_struct *p;
7636 int cpu = (long)hcpu;
7637 unsigned long flags;
7638 struct rq *rq;
7639
7640 switch (action) {
7641
7642 case CPU_UP_PREPARE:
7643 case CPU_UP_PREPARE_FROZEN:
7644 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7645 if (IS_ERR(p))
7646 return NOTIFY_BAD;
7647 kthread_bind(p, cpu);
7648 /* Must be high prio: stop_machine expects to yield to it. */
7649 rq = task_rq_lock(p, &flags);
7650 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7651 task_rq_unlock(rq, &flags);
7652 get_task_struct(p);
7653 cpu_rq(cpu)->migration_thread = p;
7654 rq->calc_load_update = calc_load_update;
7655 break;
7656
7657 case CPU_ONLINE:
7658 case CPU_ONLINE_FROZEN:
7659 /* Strictly unnecessary, as first user will wake it. */
7660 wake_up_process(cpu_rq(cpu)->migration_thread);
7661
7662 /* Update our root-domain */
7663 rq = cpu_rq(cpu);
7664 spin_lock_irqsave(&rq->lock, flags);
7665 if (rq->rd) {
7666 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7667
7668 set_rq_online(rq);
7669 }
7670 spin_unlock_irqrestore(&rq->lock, flags);
7671 break;
7672
7673 #ifdef CONFIG_HOTPLUG_CPU
7674 case CPU_UP_CANCELED:
7675 case CPU_UP_CANCELED_FROZEN:
7676 if (!cpu_rq(cpu)->migration_thread)
7677 break;
7678 /* Unbind it from offline cpu so it can run. Fall thru. */
7679 kthread_bind(cpu_rq(cpu)->migration_thread,
7680 cpumask_any(cpu_online_mask));
7681 kthread_stop(cpu_rq(cpu)->migration_thread);
7682 put_task_struct(cpu_rq(cpu)->migration_thread);
7683 cpu_rq(cpu)->migration_thread = NULL;
7684 break;
7685
7686 case CPU_DEAD:
7687 case CPU_DEAD_FROZEN:
7688 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7689 migrate_live_tasks(cpu);
7690 rq = cpu_rq(cpu);
7691 kthread_stop(rq->migration_thread);
7692 put_task_struct(rq->migration_thread);
7693 rq->migration_thread = NULL;
7694 /* Idle task back to normal (off runqueue, low prio) */
7695 spin_lock_irq(&rq->lock);
7696 update_rq_clock(rq);
7697 deactivate_task(rq, rq->idle, 0);
7698 rq->idle->static_prio = MAX_PRIO;
7699 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7700 rq->idle->sched_class = &idle_sched_class;
7701 migrate_dead_tasks(cpu);
7702 spin_unlock_irq(&rq->lock);
7703 cpuset_unlock();
7704 migrate_nr_uninterruptible(rq);
7705 BUG_ON(rq->nr_running != 0);
7706 calc_global_load_remove(rq);
7707 /*
7708 * No need to migrate the tasks: it was best-effort if
7709 * they didn't take sched_hotcpu_mutex. Just wake up
7710 * the requestors.
7711 */
7712 spin_lock_irq(&rq->lock);
7713 while (!list_empty(&rq->migration_queue)) {
7714 struct migration_req *req;
7715
7716 req = list_entry(rq->migration_queue.next,
7717 struct migration_req, list);
7718 list_del_init(&req->list);
7719 spin_unlock_irq(&rq->lock);
7720 complete(&req->done);
7721 spin_lock_irq(&rq->lock);
7722 }
7723 spin_unlock_irq(&rq->lock);
7724 break;
7725
7726 case CPU_DYING:
7727 case CPU_DYING_FROZEN:
7728 /* Update our root-domain */
7729 rq = cpu_rq(cpu);
7730 spin_lock_irqsave(&rq->lock, flags);
7731 if (rq->rd) {
7732 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7733 set_rq_offline(rq);
7734 }
7735 spin_unlock_irqrestore(&rq->lock, flags);
7736 break;
7737 #endif
7738 }
7739 return NOTIFY_OK;
7740 }
7741
7742 /*
7743 * Register at high priority so that task migration (migrate_all_tasks)
7744 * happens before everything else. This has to be lower priority than
7745 * the notifier in the perf_event subsystem, though.
7746 */
7747 static struct notifier_block __cpuinitdata migration_notifier = {
7748 .notifier_call = migration_call,
7749 .priority = 10
7750 };
7751
7752 static int __init migration_init(void)
7753 {
7754 void *cpu = (void *)(long)smp_processor_id();
7755 int err;
7756
7757 /* Start one for the boot CPU: */
7758 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7759 BUG_ON(err == NOTIFY_BAD);
7760 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7761 register_cpu_notifier(&migration_notifier);
7762
7763 return 0;
7764 }
7765 early_initcall(migration_init);
7766 #endif
7767
7768 #ifdef CONFIG_SMP
7769
7770 #ifdef CONFIG_SCHED_DEBUG
7771
7772 static __read_mostly int sched_domain_debug_enabled;
7773
7774 static int __init sched_domain_debug_setup(char *str)
7775 {
7776 sched_domain_debug_enabled = 1;
7777
7778 return 0;
7779 }
7780 early_param("sched_debug", sched_domain_debug_setup);
7781
7782 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7783 struct cpumask *groupmask)
7784 {
7785 struct sched_group *group = sd->groups;
7786 char str[256];
7787
7788 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7789 cpumask_clear(groupmask);
7790
7791 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7792
7793 if (!(sd->flags & SD_LOAD_BALANCE)) {
7794 printk("does not load-balance\n");
7795 if (sd->parent)
7796 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7797 " has parent");
7798 return -1;
7799 }
7800
7801 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7802
7803 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7804 printk(KERN_ERR "ERROR: domain->span does not contain "
7805 "CPU%d\n", cpu);
7806 }
7807 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7808 printk(KERN_ERR "ERROR: domain->groups does not contain"
7809 " CPU%d\n", cpu);
7810 }
7811
7812 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7813 do {
7814 if (!group) {
7815 printk("\n");
7816 printk(KERN_ERR "ERROR: group is NULL\n");
7817 break;
7818 }
7819
7820 if (!group->cpu_power) {
7821 printk(KERN_CONT "\n");
7822 printk(KERN_ERR "ERROR: domain->cpu_power not "
7823 "set\n");
7824 break;
7825 }
7826
7827 if (!cpumask_weight(sched_group_cpus(group))) {
7828 printk(KERN_CONT "\n");
7829 printk(KERN_ERR "ERROR: empty group\n");
7830 break;
7831 }
7832
7833 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7834 printk(KERN_CONT "\n");
7835 printk(KERN_ERR "ERROR: repeated CPUs\n");
7836 break;
7837 }
7838
7839 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7840
7841 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7842
7843 printk(KERN_CONT " %s", str);
7844 if (group->cpu_power != SCHED_LOAD_SCALE) {
7845 printk(KERN_CONT " (cpu_power = %d)",
7846 group->cpu_power);
7847 }
7848
7849 group = group->next;
7850 } while (group != sd->groups);
7851 printk(KERN_CONT "\n");
7852
7853 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7854 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7855
7856 if (sd->parent &&
7857 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7858 printk(KERN_ERR "ERROR: parent span is not a superset "
7859 "of domain->span\n");
7860 return 0;
7861 }
7862
7863 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7864 {
7865 cpumask_var_t groupmask;
7866 int level = 0;
7867
7868 if (!sched_domain_debug_enabled)
7869 return;
7870
7871 if (!sd) {
7872 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7873 return;
7874 }
7875
7876 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7877
7878 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7879 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7880 return;
7881 }
7882
7883 for (;;) {
7884 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7885 break;
7886 level++;
7887 sd = sd->parent;
7888 if (!sd)
7889 break;
7890 }
7891 free_cpumask_var(groupmask);
7892 }
7893 #else /* !CONFIG_SCHED_DEBUG */
7894 # define sched_domain_debug(sd, cpu) do { } while (0)
7895 #endif /* CONFIG_SCHED_DEBUG */
7896
7897 static int sd_degenerate(struct sched_domain *sd)
7898 {
7899 if (cpumask_weight(sched_domain_span(sd)) == 1)
7900 return 1;
7901
7902 /* Following flags need at least 2 groups */
7903 if (sd->flags & (SD_LOAD_BALANCE |
7904 SD_BALANCE_NEWIDLE |
7905 SD_BALANCE_FORK |
7906 SD_BALANCE_EXEC |
7907 SD_SHARE_CPUPOWER |
7908 SD_SHARE_PKG_RESOURCES)) {
7909 if (sd->groups != sd->groups->next)
7910 return 0;
7911 }
7912
7913 /* Following flags don't use groups */
7914 if (sd->flags & (SD_WAKE_AFFINE))
7915 return 0;
7916
7917 return 1;
7918 }
7919
7920 static int
7921 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7922 {
7923 unsigned long cflags = sd->flags, pflags = parent->flags;
7924
7925 if (sd_degenerate(parent))
7926 return 1;
7927
7928 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7929 return 0;
7930
7931 /* Flags needing groups don't count if only 1 group in parent */
7932 if (parent->groups == parent->groups->next) {
7933 pflags &= ~(SD_LOAD_BALANCE |
7934 SD_BALANCE_NEWIDLE |
7935 SD_BALANCE_FORK |
7936 SD_BALANCE_EXEC |
7937 SD_SHARE_CPUPOWER |
7938 SD_SHARE_PKG_RESOURCES);
7939 if (nr_node_ids == 1)
7940 pflags &= ~SD_SERIALIZE;
7941 }
7942 if (~cflags & pflags)
7943 return 0;
7944
7945 return 1;
7946 }
7947
7948 static void free_rootdomain(struct root_domain *rd)
7949 {
7950 synchronize_sched();
7951
7952 cpupri_cleanup(&rd->cpupri);
7953
7954 free_cpumask_var(rd->rto_mask);
7955 free_cpumask_var(rd->online);
7956 free_cpumask_var(rd->span);
7957 kfree(rd);
7958 }
7959
7960 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7961 {
7962 struct root_domain *old_rd = NULL;
7963 unsigned long flags;
7964
7965 spin_lock_irqsave(&rq->lock, flags);
7966
7967 if (rq->rd) {
7968 old_rd = rq->rd;
7969
7970 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7971 set_rq_offline(rq);
7972
7973 cpumask_clear_cpu(rq->cpu, old_rd->span);
7974
7975 /*
7976 * If we dont want to free the old_rt yet then
7977 * set old_rd to NULL to skip the freeing later
7978 * in this function:
7979 */
7980 if (!atomic_dec_and_test(&old_rd->refcount))
7981 old_rd = NULL;
7982 }
7983
7984 atomic_inc(&rd->refcount);
7985 rq->rd = rd;
7986
7987 cpumask_set_cpu(rq->cpu, rd->span);
7988 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7989 set_rq_online(rq);
7990
7991 spin_unlock_irqrestore(&rq->lock, flags);
7992
7993 if (old_rd)
7994 free_rootdomain(old_rd);
7995 }
7996
7997 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7998 {
7999 gfp_t gfp = GFP_KERNEL;
8000
8001 memset(rd, 0, sizeof(*rd));
8002
8003 if (bootmem)
8004 gfp = GFP_NOWAIT;
8005
8006 if (!alloc_cpumask_var(&rd->span, gfp))
8007 goto out;
8008 if (!alloc_cpumask_var(&rd->online, gfp))
8009 goto free_span;
8010 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8011 goto free_online;
8012
8013 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8014 goto free_rto_mask;
8015 return 0;
8016
8017 free_rto_mask:
8018 free_cpumask_var(rd->rto_mask);
8019 free_online:
8020 free_cpumask_var(rd->online);
8021 free_span:
8022 free_cpumask_var(rd->span);
8023 out:
8024 return -ENOMEM;
8025 }
8026
8027 static void init_defrootdomain(void)
8028 {
8029 init_rootdomain(&def_root_domain, true);
8030
8031 atomic_set(&def_root_domain.refcount, 1);
8032 }
8033
8034 static struct root_domain *alloc_rootdomain(void)
8035 {
8036 struct root_domain *rd;
8037
8038 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8039 if (!rd)
8040 return NULL;
8041
8042 if (init_rootdomain(rd, false) != 0) {
8043 kfree(rd);
8044 return NULL;
8045 }
8046
8047 return rd;
8048 }
8049
8050 /*
8051 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8052 * hold the hotplug lock.
8053 */
8054 static void
8055 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8056 {
8057 struct rq *rq = cpu_rq(cpu);
8058 struct sched_domain *tmp;
8059
8060 /* Remove the sched domains which do not contribute to scheduling. */
8061 for (tmp = sd; tmp; ) {
8062 struct sched_domain *parent = tmp->parent;
8063 if (!parent)
8064 break;
8065
8066 if (sd_parent_degenerate(tmp, parent)) {
8067 tmp->parent = parent->parent;
8068 if (parent->parent)
8069 parent->parent->child = tmp;
8070 } else
8071 tmp = tmp->parent;
8072 }
8073
8074 if (sd && sd_degenerate(sd)) {
8075 sd = sd->parent;
8076 if (sd)
8077 sd->child = NULL;
8078 }
8079
8080 sched_domain_debug(sd, cpu);
8081
8082 rq_attach_root(rq, rd);
8083 rcu_assign_pointer(rq->sd, sd);
8084 }
8085
8086 /* cpus with isolated domains */
8087 static cpumask_var_t cpu_isolated_map;
8088
8089 /* Setup the mask of cpus configured for isolated domains */
8090 static int __init isolated_cpu_setup(char *str)
8091 {
8092 alloc_bootmem_cpumask_var(&cpu_isolated_map);
8093 cpulist_parse(str, cpu_isolated_map);
8094 return 1;
8095 }
8096
8097 __setup("isolcpus=", isolated_cpu_setup);
8098
8099 /*
8100 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8101 * to a function which identifies what group(along with sched group) a CPU
8102 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8103 * (due to the fact that we keep track of groups covered with a struct cpumask).
8104 *
8105 * init_sched_build_groups will build a circular linked list of the groups
8106 * covered by the given span, and will set each group's ->cpumask correctly,
8107 * and ->cpu_power to 0.
8108 */
8109 static void
8110 init_sched_build_groups(const struct cpumask *span,
8111 const struct cpumask *cpu_map,
8112 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8113 struct sched_group **sg,
8114 struct cpumask *tmpmask),
8115 struct cpumask *covered, struct cpumask *tmpmask)
8116 {
8117 struct sched_group *first = NULL, *last = NULL;
8118 int i;
8119
8120 cpumask_clear(covered);
8121
8122 for_each_cpu(i, span) {
8123 struct sched_group *sg;
8124 int group = group_fn(i, cpu_map, &sg, tmpmask);
8125 int j;
8126
8127 if (cpumask_test_cpu(i, covered))
8128 continue;
8129
8130 cpumask_clear(sched_group_cpus(sg));
8131 sg->cpu_power = 0;
8132
8133 for_each_cpu(j, span) {
8134 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8135 continue;
8136
8137 cpumask_set_cpu(j, covered);
8138 cpumask_set_cpu(j, sched_group_cpus(sg));
8139 }
8140 if (!first)
8141 first = sg;
8142 if (last)
8143 last->next = sg;
8144 last = sg;
8145 }
8146 last->next = first;
8147 }
8148
8149 #define SD_NODES_PER_DOMAIN 16
8150
8151 #ifdef CONFIG_NUMA
8152
8153 /**
8154 * find_next_best_node - find the next node to include in a sched_domain
8155 * @node: node whose sched_domain we're building
8156 * @used_nodes: nodes already in the sched_domain
8157 *
8158 * Find the next node to include in a given scheduling domain. Simply
8159 * finds the closest node not already in the @used_nodes map.
8160 *
8161 * Should use nodemask_t.
8162 */
8163 static int find_next_best_node(int node, nodemask_t *used_nodes)
8164 {
8165 int i, n, val, min_val, best_node = 0;
8166
8167 min_val = INT_MAX;
8168
8169 for (i = 0; i < nr_node_ids; i++) {
8170 /* Start at @node */
8171 n = (node + i) % nr_node_ids;
8172
8173 if (!nr_cpus_node(n))
8174 continue;
8175
8176 /* Skip already used nodes */
8177 if (node_isset(n, *used_nodes))
8178 continue;
8179
8180 /* Simple min distance search */
8181 val = node_distance(node, n);
8182
8183 if (val < min_val) {
8184 min_val = val;
8185 best_node = n;
8186 }
8187 }
8188
8189 node_set(best_node, *used_nodes);
8190 return best_node;
8191 }
8192
8193 /**
8194 * sched_domain_node_span - get a cpumask for a node's sched_domain
8195 * @node: node whose cpumask we're constructing
8196 * @span: resulting cpumask
8197 *
8198 * Given a node, construct a good cpumask for its sched_domain to span. It
8199 * should be one that prevents unnecessary balancing, but also spreads tasks
8200 * out optimally.
8201 */
8202 static void sched_domain_node_span(int node, struct cpumask *span)
8203 {
8204 nodemask_t used_nodes;
8205 int i;
8206
8207 cpumask_clear(span);
8208 nodes_clear(used_nodes);
8209
8210 cpumask_or(span, span, cpumask_of_node(node));
8211 node_set(node, used_nodes);
8212
8213 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8214 int next_node = find_next_best_node(node, &used_nodes);
8215
8216 cpumask_or(span, span, cpumask_of_node(next_node));
8217 }
8218 }
8219 #endif /* CONFIG_NUMA */
8220
8221 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8222
8223 /*
8224 * The cpus mask in sched_group and sched_domain hangs off the end.
8225 *
8226 * ( See the the comments in include/linux/sched.h:struct sched_group
8227 * and struct sched_domain. )
8228 */
8229 struct static_sched_group {
8230 struct sched_group sg;
8231 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8232 };
8233
8234 struct static_sched_domain {
8235 struct sched_domain sd;
8236 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8237 };
8238
8239 struct s_data {
8240 #ifdef CONFIG_NUMA
8241 int sd_allnodes;
8242 cpumask_var_t domainspan;
8243 cpumask_var_t covered;
8244 cpumask_var_t notcovered;
8245 #endif
8246 cpumask_var_t nodemask;
8247 cpumask_var_t this_sibling_map;
8248 cpumask_var_t this_core_map;
8249 cpumask_var_t send_covered;
8250 cpumask_var_t tmpmask;
8251 struct sched_group **sched_group_nodes;
8252 struct root_domain *rd;
8253 };
8254
8255 enum s_alloc {
8256 sa_sched_groups = 0,
8257 sa_rootdomain,
8258 sa_tmpmask,
8259 sa_send_covered,
8260 sa_this_core_map,
8261 sa_this_sibling_map,
8262 sa_nodemask,
8263 sa_sched_group_nodes,
8264 #ifdef CONFIG_NUMA
8265 sa_notcovered,
8266 sa_covered,
8267 sa_domainspan,
8268 #endif
8269 sa_none,
8270 };
8271
8272 /*
8273 * SMT sched-domains:
8274 */
8275 #ifdef CONFIG_SCHED_SMT
8276 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8277 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8278
8279 static int
8280 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8281 struct sched_group **sg, struct cpumask *unused)
8282 {
8283 if (sg)
8284 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8285 return cpu;
8286 }
8287 #endif /* CONFIG_SCHED_SMT */
8288
8289 /*
8290 * multi-core sched-domains:
8291 */
8292 #ifdef CONFIG_SCHED_MC
8293 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8294 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8295 #endif /* CONFIG_SCHED_MC */
8296
8297 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8298 static int
8299 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8300 struct sched_group **sg, struct cpumask *mask)
8301 {
8302 int group;
8303
8304 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8305 group = cpumask_first(mask);
8306 if (sg)
8307 *sg = &per_cpu(sched_group_core, group).sg;
8308 return group;
8309 }
8310 #elif defined(CONFIG_SCHED_MC)
8311 static int
8312 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8313 struct sched_group **sg, struct cpumask *unused)
8314 {
8315 if (sg)
8316 *sg = &per_cpu(sched_group_core, cpu).sg;
8317 return cpu;
8318 }
8319 #endif
8320
8321 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8322 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8323
8324 static int
8325 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8326 struct sched_group **sg, struct cpumask *mask)
8327 {
8328 int group;
8329 #ifdef CONFIG_SCHED_MC
8330 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8331 group = cpumask_first(mask);
8332 #elif defined(CONFIG_SCHED_SMT)
8333 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8334 group = cpumask_first(mask);
8335 #else
8336 group = cpu;
8337 #endif
8338 if (sg)
8339 *sg = &per_cpu(sched_group_phys, group).sg;
8340 return group;
8341 }
8342
8343 #ifdef CONFIG_NUMA
8344 /*
8345 * The init_sched_build_groups can't handle what we want to do with node
8346 * groups, so roll our own. Now each node has its own list of groups which
8347 * gets dynamically allocated.
8348 */
8349 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8350 static struct sched_group ***sched_group_nodes_bycpu;
8351
8352 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8353 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8354
8355 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8356 struct sched_group **sg,
8357 struct cpumask *nodemask)
8358 {
8359 int group;
8360
8361 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8362 group = cpumask_first(nodemask);
8363
8364 if (sg)
8365 *sg = &per_cpu(sched_group_allnodes, group).sg;
8366 return group;
8367 }
8368
8369 static void init_numa_sched_groups_power(struct sched_group *group_head)
8370 {
8371 struct sched_group *sg = group_head;
8372 int j;
8373
8374 if (!sg)
8375 return;
8376 do {
8377 for_each_cpu(j, sched_group_cpus(sg)) {
8378 struct sched_domain *sd;
8379
8380 sd = &per_cpu(phys_domains, j).sd;
8381 if (j != group_first_cpu(sd->groups)) {
8382 /*
8383 * Only add "power" once for each
8384 * physical package.
8385 */
8386 continue;
8387 }
8388
8389 sg->cpu_power += sd->groups->cpu_power;
8390 }
8391 sg = sg->next;
8392 } while (sg != group_head);
8393 }
8394
8395 static int build_numa_sched_groups(struct s_data *d,
8396 const struct cpumask *cpu_map, int num)
8397 {
8398 struct sched_domain *sd;
8399 struct sched_group *sg, *prev;
8400 int n, j;
8401
8402 cpumask_clear(d->covered);
8403 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8404 if (cpumask_empty(d->nodemask)) {
8405 d->sched_group_nodes[num] = NULL;
8406 goto out;
8407 }
8408
8409 sched_domain_node_span(num, d->domainspan);
8410 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8411
8412 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8413 GFP_KERNEL, num);
8414 if (!sg) {
8415 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8416 num);
8417 return -ENOMEM;
8418 }
8419 d->sched_group_nodes[num] = sg;
8420
8421 for_each_cpu(j, d->nodemask) {
8422 sd = &per_cpu(node_domains, j).sd;
8423 sd->groups = sg;
8424 }
8425
8426 sg->cpu_power = 0;
8427 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8428 sg->next = sg;
8429 cpumask_or(d->covered, d->covered, d->nodemask);
8430
8431 prev = sg;
8432 for (j = 0; j < nr_node_ids; j++) {
8433 n = (num + j) % nr_node_ids;
8434 cpumask_complement(d->notcovered, d->covered);
8435 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8436 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8437 if (cpumask_empty(d->tmpmask))
8438 break;
8439 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8440 if (cpumask_empty(d->tmpmask))
8441 continue;
8442 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8443 GFP_KERNEL, num);
8444 if (!sg) {
8445 printk(KERN_WARNING
8446 "Can not alloc domain group for node %d\n", j);
8447 return -ENOMEM;
8448 }
8449 sg->cpu_power = 0;
8450 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8451 sg->next = prev->next;
8452 cpumask_or(d->covered, d->covered, d->tmpmask);
8453 prev->next = sg;
8454 prev = sg;
8455 }
8456 out:
8457 return 0;
8458 }
8459 #endif /* CONFIG_NUMA */
8460
8461 #ifdef CONFIG_NUMA
8462 /* Free memory allocated for various sched_group structures */
8463 static void free_sched_groups(const struct cpumask *cpu_map,
8464 struct cpumask *nodemask)
8465 {
8466 int cpu, i;
8467
8468 for_each_cpu(cpu, cpu_map) {
8469 struct sched_group **sched_group_nodes
8470 = sched_group_nodes_bycpu[cpu];
8471
8472 if (!sched_group_nodes)
8473 continue;
8474
8475 for (i = 0; i < nr_node_ids; i++) {
8476 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8477
8478 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8479 if (cpumask_empty(nodemask))
8480 continue;
8481
8482 if (sg == NULL)
8483 continue;
8484 sg = sg->next;
8485 next_sg:
8486 oldsg = sg;
8487 sg = sg->next;
8488 kfree(oldsg);
8489 if (oldsg != sched_group_nodes[i])
8490 goto next_sg;
8491 }
8492 kfree(sched_group_nodes);
8493 sched_group_nodes_bycpu[cpu] = NULL;
8494 }
8495 }
8496 #else /* !CONFIG_NUMA */
8497 static void free_sched_groups(const struct cpumask *cpu_map,
8498 struct cpumask *nodemask)
8499 {
8500 }
8501 #endif /* CONFIG_NUMA */
8502
8503 /*
8504 * Initialize sched groups cpu_power.
8505 *
8506 * cpu_power indicates the capacity of sched group, which is used while
8507 * distributing the load between different sched groups in a sched domain.
8508 * Typically cpu_power for all the groups in a sched domain will be same unless
8509 * there are asymmetries in the topology. If there are asymmetries, group
8510 * having more cpu_power will pickup more load compared to the group having
8511 * less cpu_power.
8512 */
8513 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8514 {
8515 struct sched_domain *child;
8516 struct sched_group *group;
8517 long power;
8518 int weight;
8519
8520 WARN_ON(!sd || !sd->groups);
8521
8522 if (cpu != group_first_cpu(sd->groups))
8523 return;
8524
8525 child = sd->child;
8526
8527 sd->groups->cpu_power = 0;
8528
8529 if (!child) {
8530 power = SCHED_LOAD_SCALE;
8531 weight = cpumask_weight(sched_domain_span(sd));
8532 /*
8533 * SMT siblings share the power of a single core.
8534 * Usually multiple threads get a better yield out of
8535 * that one core than a single thread would have,
8536 * reflect that in sd->smt_gain.
8537 */
8538 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8539 power *= sd->smt_gain;
8540 power /= weight;
8541 power >>= SCHED_LOAD_SHIFT;
8542 }
8543 sd->groups->cpu_power += power;
8544 return;
8545 }
8546
8547 /*
8548 * Add cpu_power of each child group to this groups cpu_power.
8549 */
8550 group = child->groups;
8551 do {
8552 sd->groups->cpu_power += group->cpu_power;
8553 group = group->next;
8554 } while (group != child->groups);
8555 }
8556
8557 /*
8558 * Initializers for schedule domains
8559 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8560 */
8561
8562 #ifdef CONFIG_SCHED_DEBUG
8563 # define SD_INIT_NAME(sd, type) sd->name = #type
8564 #else
8565 # define SD_INIT_NAME(sd, type) do { } while (0)
8566 #endif
8567
8568 #define SD_INIT(sd, type) sd_init_##type(sd)
8569
8570 #define SD_INIT_FUNC(type) \
8571 static noinline void sd_init_##type(struct sched_domain *sd) \
8572 { \
8573 memset(sd, 0, sizeof(*sd)); \
8574 *sd = SD_##type##_INIT; \
8575 sd->level = SD_LV_##type; \
8576 SD_INIT_NAME(sd, type); \
8577 }
8578
8579 SD_INIT_FUNC(CPU)
8580 #ifdef CONFIG_NUMA
8581 SD_INIT_FUNC(ALLNODES)
8582 SD_INIT_FUNC(NODE)
8583 #endif
8584 #ifdef CONFIG_SCHED_SMT
8585 SD_INIT_FUNC(SIBLING)
8586 #endif
8587 #ifdef CONFIG_SCHED_MC
8588 SD_INIT_FUNC(MC)
8589 #endif
8590
8591 static int default_relax_domain_level = -1;
8592
8593 static int __init setup_relax_domain_level(char *str)
8594 {
8595 unsigned long val;
8596
8597 val = simple_strtoul(str, NULL, 0);
8598 if (val < SD_LV_MAX)
8599 default_relax_domain_level = val;
8600
8601 return 1;
8602 }
8603 __setup("relax_domain_level=", setup_relax_domain_level);
8604
8605 static void set_domain_attribute(struct sched_domain *sd,
8606 struct sched_domain_attr *attr)
8607 {
8608 int request;
8609
8610 if (!attr || attr->relax_domain_level < 0) {
8611 if (default_relax_domain_level < 0)
8612 return;
8613 else
8614 request = default_relax_domain_level;
8615 } else
8616 request = attr->relax_domain_level;
8617 if (request < sd->level) {
8618 /* turn off idle balance on this domain */
8619 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8620 } else {
8621 /* turn on idle balance on this domain */
8622 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8623 }
8624 }
8625
8626 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8627 const struct cpumask *cpu_map)
8628 {
8629 switch (what) {
8630 case sa_sched_groups:
8631 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8632 d->sched_group_nodes = NULL;
8633 case sa_rootdomain:
8634 free_rootdomain(d->rd); /* fall through */
8635 case sa_tmpmask:
8636 free_cpumask_var(d->tmpmask); /* fall through */
8637 case sa_send_covered:
8638 free_cpumask_var(d->send_covered); /* fall through */
8639 case sa_this_core_map:
8640 free_cpumask_var(d->this_core_map); /* fall through */
8641 case sa_this_sibling_map:
8642 free_cpumask_var(d->this_sibling_map); /* fall through */
8643 case sa_nodemask:
8644 free_cpumask_var(d->nodemask); /* fall through */
8645 case sa_sched_group_nodes:
8646 #ifdef CONFIG_NUMA
8647 kfree(d->sched_group_nodes); /* fall through */
8648 case sa_notcovered:
8649 free_cpumask_var(d->notcovered); /* fall through */
8650 case sa_covered:
8651 free_cpumask_var(d->covered); /* fall through */
8652 case sa_domainspan:
8653 free_cpumask_var(d->domainspan); /* fall through */
8654 #endif
8655 case sa_none:
8656 break;
8657 }
8658 }
8659
8660 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8661 const struct cpumask *cpu_map)
8662 {
8663 #ifdef CONFIG_NUMA
8664 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8665 return sa_none;
8666 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8667 return sa_domainspan;
8668 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8669 return sa_covered;
8670 /* Allocate the per-node list of sched groups */
8671 d->sched_group_nodes = kcalloc(nr_node_ids,
8672 sizeof(struct sched_group *), GFP_KERNEL);
8673 if (!d->sched_group_nodes) {
8674 printk(KERN_WARNING "Can not alloc sched group node list\n");
8675 return sa_notcovered;
8676 }
8677 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8678 #endif
8679 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8680 return sa_sched_group_nodes;
8681 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8682 return sa_nodemask;
8683 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8684 return sa_this_sibling_map;
8685 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8686 return sa_this_core_map;
8687 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8688 return sa_send_covered;
8689 d->rd = alloc_rootdomain();
8690 if (!d->rd) {
8691 printk(KERN_WARNING "Cannot alloc root domain\n");
8692 return sa_tmpmask;
8693 }
8694 return sa_rootdomain;
8695 }
8696
8697 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8698 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8699 {
8700 struct sched_domain *sd = NULL;
8701 #ifdef CONFIG_NUMA
8702 struct sched_domain *parent;
8703
8704 d->sd_allnodes = 0;
8705 if (cpumask_weight(cpu_map) >
8706 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8707 sd = &per_cpu(allnodes_domains, i).sd;
8708 SD_INIT(sd, ALLNODES);
8709 set_domain_attribute(sd, attr);
8710 cpumask_copy(sched_domain_span(sd), cpu_map);
8711 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8712 d->sd_allnodes = 1;
8713 }
8714 parent = sd;
8715
8716 sd = &per_cpu(node_domains, i).sd;
8717 SD_INIT(sd, NODE);
8718 set_domain_attribute(sd, attr);
8719 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8720 sd->parent = parent;
8721 if (parent)
8722 parent->child = sd;
8723 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8724 #endif
8725 return sd;
8726 }
8727
8728 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8729 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8730 struct sched_domain *parent, int i)
8731 {
8732 struct sched_domain *sd;
8733 sd = &per_cpu(phys_domains, i).sd;
8734 SD_INIT(sd, CPU);
8735 set_domain_attribute(sd, attr);
8736 cpumask_copy(sched_domain_span(sd), d->nodemask);
8737 sd->parent = parent;
8738 if (parent)
8739 parent->child = sd;
8740 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8741 return sd;
8742 }
8743
8744 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8745 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8746 struct sched_domain *parent, int i)
8747 {
8748 struct sched_domain *sd = parent;
8749 #ifdef CONFIG_SCHED_MC
8750 sd = &per_cpu(core_domains, i).sd;
8751 SD_INIT(sd, MC);
8752 set_domain_attribute(sd, attr);
8753 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8754 sd->parent = parent;
8755 parent->child = sd;
8756 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8757 #endif
8758 return sd;
8759 }
8760
8761 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8762 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8763 struct sched_domain *parent, int i)
8764 {
8765 struct sched_domain *sd = parent;
8766 #ifdef CONFIG_SCHED_SMT
8767 sd = &per_cpu(cpu_domains, i).sd;
8768 SD_INIT(sd, SIBLING);
8769 set_domain_attribute(sd, attr);
8770 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8771 sd->parent = parent;
8772 parent->child = sd;
8773 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8774 #endif
8775 return sd;
8776 }
8777
8778 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8779 const struct cpumask *cpu_map, int cpu)
8780 {
8781 switch (l) {
8782 #ifdef CONFIG_SCHED_SMT
8783 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8784 cpumask_and(d->this_sibling_map, cpu_map,
8785 topology_thread_cpumask(cpu));
8786 if (cpu == cpumask_first(d->this_sibling_map))
8787 init_sched_build_groups(d->this_sibling_map, cpu_map,
8788 &cpu_to_cpu_group,
8789 d->send_covered, d->tmpmask);
8790 break;
8791 #endif
8792 #ifdef CONFIG_SCHED_MC
8793 case SD_LV_MC: /* set up multi-core groups */
8794 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8795 if (cpu == cpumask_first(d->this_core_map))
8796 init_sched_build_groups(d->this_core_map, cpu_map,
8797 &cpu_to_core_group,
8798 d->send_covered, d->tmpmask);
8799 break;
8800 #endif
8801 case SD_LV_CPU: /* set up physical groups */
8802 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8803 if (!cpumask_empty(d->nodemask))
8804 init_sched_build_groups(d->nodemask, cpu_map,
8805 &cpu_to_phys_group,
8806 d->send_covered, d->tmpmask);
8807 break;
8808 #ifdef CONFIG_NUMA
8809 case SD_LV_ALLNODES:
8810 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8811 d->send_covered, d->tmpmask);
8812 break;
8813 #endif
8814 default:
8815 break;
8816 }
8817 }
8818
8819 /*
8820 * Build sched domains for a given set of cpus and attach the sched domains
8821 * to the individual cpus
8822 */
8823 static int __build_sched_domains(const struct cpumask *cpu_map,
8824 struct sched_domain_attr *attr)
8825 {
8826 enum s_alloc alloc_state = sa_none;
8827 struct s_data d;
8828 struct sched_domain *sd;
8829 int i;
8830 #ifdef CONFIG_NUMA
8831 d.sd_allnodes = 0;
8832 #endif
8833
8834 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8835 if (alloc_state != sa_rootdomain)
8836 goto error;
8837 alloc_state = sa_sched_groups;
8838
8839 /*
8840 * Set up domains for cpus specified by the cpu_map.
8841 */
8842 for_each_cpu(i, cpu_map) {
8843 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8844 cpu_map);
8845
8846 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8847 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8848 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8849 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8850 }
8851
8852 for_each_cpu(i, cpu_map) {
8853 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8854 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8855 }
8856
8857 /* Set up physical groups */
8858 for (i = 0; i < nr_node_ids; i++)
8859 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8860
8861 #ifdef CONFIG_NUMA
8862 /* Set up node groups */
8863 if (d.sd_allnodes)
8864 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8865
8866 for (i = 0; i < nr_node_ids; i++)
8867 if (build_numa_sched_groups(&d, cpu_map, i))
8868 goto error;
8869 #endif
8870
8871 /* Calculate CPU power for physical packages and nodes */
8872 #ifdef CONFIG_SCHED_SMT
8873 for_each_cpu(i, cpu_map) {
8874 sd = &per_cpu(cpu_domains, i).sd;
8875 init_sched_groups_power(i, sd);
8876 }
8877 #endif
8878 #ifdef CONFIG_SCHED_MC
8879 for_each_cpu(i, cpu_map) {
8880 sd = &per_cpu(core_domains, i).sd;
8881 init_sched_groups_power(i, sd);
8882 }
8883 #endif
8884
8885 for_each_cpu(i, cpu_map) {
8886 sd = &per_cpu(phys_domains, i).sd;
8887 init_sched_groups_power(i, sd);
8888 }
8889
8890 #ifdef CONFIG_NUMA
8891 for (i = 0; i < nr_node_ids; i++)
8892 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8893
8894 if (d.sd_allnodes) {
8895 struct sched_group *sg;
8896
8897 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8898 d.tmpmask);
8899 init_numa_sched_groups_power(sg);
8900 }
8901 #endif
8902
8903 /* Attach the domains */
8904 for_each_cpu(i, cpu_map) {
8905 #ifdef CONFIG_SCHED_SMT
8906 sd = &per_cpu(cpu_domains, i).sd;
8907 #elif defined(CONFIG_SCHED_MC)
8908 sd = &per_cpu(core_domains, i).sd;
8909 #else
8910 sd = &per_cpu(phys_domains, i).sd;
8911 #endif
8912 cpu_attach_domain(sd, d.rd, i);
8913 }
8914
8915 d.sched_group_nodes = NULL; /* don't free this we still need it */
8916 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8917 return 0;
8918
8919 error:
8920 __free_domain_allocs(&d, alloc_state, cpu_map);
8921 return -ENOMEM;
8922 }
8923
8924 static int build_sched_domains(const struct cpumask *cpu_map)
8925 {
8926 return __build_sched_domains(cpu_map, NULL);
8927 }
8928
8929 static cpumask_var_t *doms_cur; /* current sched domains */
8930 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8931 static struct sched_domain_attr *dattr_cur;
8932 /* attribues of custom domains in 'doms_cur' */
8933
8934 /*
8935 * Special case: If a kmalloc of a doms_cur partition (array of
8936 * cpumask) fails, then fallback to a single sched domain,
8937 * as determined by the single cpumask fallback_doms.
8938 */
8939 static cpumask_var_t fallback_doms;
8940
8941 /*
8942 * arch_update_cpu_topology lets virtualized architectures update the
8943 * cpu core maps. It is supposed to return 1 if the topology changed
8944 * or 0 if it stayed the same.
8945 */
8946 int __attribute__((weak)) arch_update_cpu_topology(void)
8947 {
8948 return 0;
8949 }
8950
8951 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8952 {
8953 int i;
8954 cpumask_var_t *doms;
8955
8956 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8957 if (!doms)
8958 return NULL;
8959 for (i = 0; i < ndoms; i++) {
8960 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8961 free_sched_domains(doms, i);
8962 return NULL;
8963 }
8964 }
8965 return doms;
8966 }
8967
8968 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8969 {
8970 unsigned int i;
8971 for (i = 0; i < ndoms; i++)
8972 free_cpumask_var(doms[i]);
8973 kfree(doms);
8974 }
8975
8976 /*
8977 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8978 * For now this just excludes isolated cpus, but could be used to
8979 * exclude other special cases in the future.
8980 */
8981 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8982 {
8983 int err;
8984
8985 arch_update_cpu_topology();
8986 ndoms_cur = 1;
8987 doms_cur = alloc_sched_domains(ndoms_cur);
8988 if (!doms_cur)
8989 doms_cur = &fallback_doms;
8990 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
8991 dattr_cur = NULL;
8992 err = build_sched_domains(doms_cur[0]);
8993 register_sched_domain_sysctl();
8994
8995 return err;
8996 }
8997
8998 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8999 struct cpumask *tmpmask)
9000 {
9001 free_sched_groups(cpu_map, tmpmask);
9002 }
9003
9004 /*
9005 * Detach sched domains from a group of cpus specified in cpu_map
9006 * These cpus will now be attached to the NULL domain
9007 */
9008 static void detach_destroy_domains(const struct cpumask *cpu_map)
9009 {
9010 /* Save because hotplug lock held. */
9011 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9012 int i;
9013
9014 for_each_cpu(i, cpu_map)
9015 cpu_attach_domain(NULL, &def_root_domain, i);
9016 synchronize_sched();
9017 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9018 }
9019
9020 /* handle null as "default" */
9021 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9022 struct sched_domain_attr *new, int idx_new)
9023 {
9024 struct sched_domain_attr tmp;
9025
9026 /* fast path */
9027 if (!new && !cur)
9028 return 1;
9029
9030 tmp = SD_ATTR_INIT;
9031 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9032 new ? (new + idx_new) : &tmp,
9033 sizeof(struct sched_domain_attr));
9034 }
9035
9036 /*
9037 * Partition sched domains as specified by the 'ndoms_new'
9038 * cpumasks in the array doms_new[] of cpumasks. This compares
9039 * doms_new[] to the current sched domain partitioning, doms_cur[].
9040 * It destroys each deleted domain and builds each new domain.
9041 *
9042 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
9043 * The masks don't intersect (don't overlap.) We should setup one
9044 * sched domain for each mask. CPUs not in any of the cpumasks will
9045 * not be load balanced. If the same cpumask appears both in the
9046 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9047 * it as it is.
9048 *
9049 * The passed in 'doms_new' should be allocated using
9050 * alloc_sched_domains. This routine takes ownership of it and will
9051 * free_sched_domains it when done with it. If the caller failed the
9052 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9053 * and partition_sched_domains() will fallback to the single partition
9054 * 'fallback_doms', it also forces the domains to be rebuilt.
9055 *
9056 * If doms_new == NULL it will be replaced with cpu_online_mask.
9057 * ndoms_new == 0 is a special case for destroying existing domains,
9058 * and it will not create the default domain.
9059 *
9060 * Call with hotplug lock held
9061 */
9062 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9063 struct sched_domain_attr *dattr_new)
9064 {
9065 int i, j, n;
9066 int new_topology;
9067
9068 mutex_lock(&sched_domains_mutex);
9069
9070 /* always unregister in case we don't destroy any domains */
9071 unregister_sched_domain_sysctl();
9072
9073 /* Let architecture update cpu core mappings. */
9074 new_topology = arch_update_cpu_topology();
9075
9076 n = doms_new ? ndoms_new : 0;
9077
9078 /* Destroy deleted domains */
9079 for (i = 0; i < ndoms_cur; i++) {
9080 for (j = 0; j < n && !new_topology; j++) {
9081 if (cpumask_equal(doms_cur[i], doms_new[j])
9082 && dattrs_equal(dattr_cur, i, dattr_new, j))
9083 goto match1;
9084 }
9085 /* no match - a current sched domain not in new doms_new[] */
9086 detach_destroy_domains(doms_cur[i]);
9087 match1:
9088 ;
9089 }
9090
9091 if (doms_new == NULL) {
9092 ndoms_cur = 0;
9093 doms_new = &fallback_doms;
9094 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
9095 WARN_ON_ONCE(dattr_new);
9096 }
9097
9098 /* Build new domains */
9099 for (i = 0; i < ndoms_new; i++) {
9100 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9101 if (cpumask_equal(doms_new[i], doms_cur[j])
9102 && dattrs_equal(dattr_new, i, dattr_cur, j))
9103 goto match2;
9104 }
9105 /* no match - add a new doms_new */
9106 __build_sched_domains(doms_new[i],
9107 dattr_new ? dattr_new + i : NULL);
9108 match2:
9109 ;
9110 }
9111
9112 /* Remember the new sched domains */
9113 if (doms_cur != &fallback_doms)
9114 free_sched_domains(doms_cur, ndoms_cur);
9115 kfree(dattr_cur); /* kfree(NULL) is safe */
9116 doms_cur = doms_new;
9117 dattr_cur = dattr_new;
9118 ndoms_cur = ndoms_new;
9119
9120 register_sched_domain_sysctl();
9121
9122 mutex_unlock(&sched_domains_mutex);
9123 }
9124
9125 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9126 static void arch_reinit_sched_domains(void)
9127 {
9128 get_online_cpus();
9129
9130 /* Destroy domains first to force the rebuild */
9131 partition_sched_domains(0, NULL, NULL);
9132
9133 rebuild_sched_domains();
9134 put_online_cpus();
9135 }
9136
9137 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9138 {
9139 unsigned int level = 0;
9140
9141 if (sscanf(buf, "%u", &level) != 1)
9142 return -EINVAL;
9143
9144 /*
9145 * level is always be positive so don't check for
9146 * level < POWERSAVINGS_BALANCE_NONE which is 0
9147 * What happens on 0 or 1 byte write,
9148 * need to check for count as well?
9149 */
9150
9151 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9152 return -EINVAL;
9153
9154 if (smt)
9155 sched_smt_power_savings = level;
9156 else
9157 sched_mc_power_savings = level;
9158
9159 arch_reinit_sched_domains();
9160
9161 return count;
9162 }
9163
9164 #ifdef CONFIG_SCHED_MC
9165 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9166 char *page)
9167 {
9168 return sprintf(page, "%u\n", sched_mc_power_savings);
9169 }
9170 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9171 const char *buf, size_t count)
9172 {
9173 return sched_power_savings_store(buf, count, 0);
9174 }
9175 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9176 sched_mc_power_savings_show,
9177 sched_mc_power_savings_store);
9178 #endif
9179
9180 #ifdef CONFIG_SCHED_SMT
9181 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9182 char *page)
9183 {
9184 return sprintf(page, "%u\n", sched_smt_power_savings);
9185 }
9186 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9187 const char *buf, size_t count)
9188 {
9189 return sched_power_savings_store(buf, count, 1);
9190 }
9191 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9192 sched_smt_power_savings_show,
9193 sched_smt_power_savings_store);
9194 #endif
9195
9196 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9197 {
9198 int err = 0;
9199
9200 #ifdef CONFIG_SCHED_SMT
9201 if (smt_capable())
9202 err = sysfs_create_file(&cls->kset.kobj,
9203 &attr_sched_smt_power_savings.attr);
9204 #endif
9205 #ifdef CONFIG_SCHED_MC
9206 if (!err && mc_capable())
9207 err = sysfs_create_file(&cls->kset.kobj,
9208 &attr_sched_mc_power_savings.attr);
9209 #endif
9210 return err;
9211 }
9212 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9213
9214 #ifndef CONFIG_CPUSETS
9215 /*
9216 * Add online and remove offline CPUs from the scheduler domains.
9217 * When cpusets are enabled they take over this function.
9218 */
9219 static int update_sched_domains(struct notifier_block *nfb,
9220 unsigned long action, void *hcpu)
9221 {
9222 switch (action) {
9223 case CPU_ONLINE:
9224 case CPU_ONLINE_FROZEN:
9225 case CPU_DOWN_PREPARE:
9226 case CPU_DOWN_PREPARE_FROZEN:
9227 case CPU_DOWN_FAILED:
9228 case CPU_DOWN_FAILED_FROZEN:
9229 partition_sched_domains(1, NULL, NULL);
9230 return NOTIFY_OK;
9231
9232 default:
9233 return NOTIFY_DONE;
9234 }
9235 }
9236 #endif
9237
9238 static int update_runtime(struct notifier_block *nfb,
9239 unsigned long action, void *hcpu)
9240 {
9241 int cpu = (int)(long)hcpu;
9242
9243 switch (action) {
9244 case CPU_DOWN_PREPARE:
9245 case CPU_DOWN_PREPARE_FROZEN:
9246 disable_runtime(cpu_rq(cpu));
9247 return NOTIFY_OK;
9248
9249 case CPU_DOWN_FAILED:
9250 case CPU_DOWN_FAILED_FROZEN:
9251 case CPU_ONLINE:
9252 case CPU_ONLINE_FROZEN:
9253 enable_runtime(cpu_rq(cpu));
9254 return NOTIFY_OK;
9255
9256 default:
9257 return NOTIFY_DONE;
9258 }
9259 }
9260
9261 void __init sched_init_smp(void)
9262 {
9263 cpumask_var_t non_isolated_cpus;
9264
9265 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9266 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9267
9268 #if defined(CONFIG_NUMA)
9269 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9270 GFP_KERNEL);
9271 BUG_ON(sched_group_nodes_bycpu == NULL);
9272 #endif
9273 get_online_cpus();
9274 mutex_lock(&sched_domains_mutex);
9275 arch_init_sched_domains(cpu_active_mask);
9276 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9277 if (cpumask_empty(non_isolated_cpus))
9278 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9279 mutex_unlock(&sched_domains_mutex);
9280 put_online_cpus();
9281
9282 #ifndef CONFIG_CPUSETS
9283 /* XXX: Theoretical race here - CPU may be hotplugged now */
9284 hotcpu_notifier(update_sched_domains, 0);
9285 #endif
9286
9287 /* RT runtime code needs to handle some hotplug events */
9288 hotcpu_notifier(update_runtime, 0);
9289
9290 init_hrtick();
9291
9292 /* Move init over to a non-isolated CPU */
9293 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9294 BUG();
9295 sched_init_granularity();
9296 free_cpumask_var(non_isolated_cpus);
9297
9298 init_sched_rt_class();
9299 }
9300 #else
9301 void __init sched_init_smp(void)
9302 {
9303 sched_init_granularity();
9304 }
9305 #endif /* CONFIG_SMP */
9306
9307 const_debug unsigned int sysctl_timer_migration = 1;
9308
9309 int in_sched_functions(unsigned long addr)
9310 {
9311 return in_lock_functions(addr) ||
9312 (addr >= (unsigned long)__sched_text_start
9313 && addr < (unsigned long)__sched_text_end);
9314 }
9315
9316 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9317 {
9318 cfs_rq->tasks_timeline = RB_ROOT;
9319 INIT_LIST_HEAD(&cfs_rq->tasks);
9320 #ifdef CONFIG_FAIR_GROUP_SCHED
9321 cfs_rq->rq = rq;
9322 #endif
9323 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9324 }
9325
9326 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9327 {
9328 struct rt_prio_array *array;
9329 int i;
9330
9331 array = &rt_rq->active;
9332 for (i = 0; i < MAX_RT_PRIO; i++) {
9333 INIT_LIST_HEAD(array->queue + i);
9334 __clear_bit(i, array->bitmap);
9335 }
9336 /* delimiter for bitsearch: */
9337 __set_bit(MAX_RT_PRIO, array->bitmap);
9338
9339 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9340 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9341 #ifdef CONFIG_SMP
9342 rt_rq->highest_prio.next = MAX_RT_PRIO;
9343 #endif
9344 #endif
9345 #ifdef CONFIG_SMP
9346 rt_rq->rt_nr_migratory = 0;
9347 rt_rq->overloaded = 0;
9348 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9349 #endif
9350
9351 rt_rq->rt_time = 0;
9352 rt_rq->rt_throttled = 0;
9353 rt_rq->rt_runtime = 0;
9354 spin_lock_init(&rt_rq->rt_runtime_lock);
9355
9356 #ifdef CONFIG_RT_GROUP_SCHED
9357 rt_rq->rt_nr_boosted = 0;
9358 rt_rq->rq = rq;
9359 #endif
9360 }
9361
9362 #ifdef CONFIG_FAIR_GROUP_SCHED
9363 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9364 struct sched_entity *se, int cpu, int add,
9365 struct sched_entity *parent)
9366 {
9367 struct rq *rq = cpu_rq(cpu);
9368 tg->cfs_rq[cpu] = cfs_rq;
9369 init_cfs_rq(cfs_rq, rq);
9370 cfs_rq->tg = tg;
9371 if (add)
9372 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9373
9374 tg->se[cpu] = se;
9375 /* se could be NULL for init_task_group */
9376 if (!se)
9377 return;
9378
9379 if (!parent)
9380 se->cfs_rq = &rq->cfs;
9381 else
9382 se->cfs_rq = parent->my_q;
9383
9384 se->my_q = cfs_rq;
9385 se->load.weight = tg->shares;
9386 se->load.inv_weight = 0;
9387 se->parent = parent;
9388 }
9389 #endif
9390
9391 #ifdef CONFIG_RT_GROUP_SCHED
9392 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9393 struct sched_rt_entity *rt_se, int cpu, int add,
9394 struct sched_rt_entity *parent)
9395 {
9396 struct rq *rq = cpu_rq(cpu);
9397
9398 tg->rt_rq[cpu] = rt_rq;
9399 init_rt_rq(rt_rq, rq);
9400 rt_rq->tg = tg;
9401 rt_rq->rt_se = rt_se;
9402 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9403 if (add)
9404 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9405
9406 tg->rt_se[cpu] = rt_se;
9407 if (!rt_se)
9408 return;
9409
9410 if (!parent)
9411 rt_se->rt_rq = &rq->rt;
9412 else
9413 rt_se->rt_rq = parent->my_q;
9414
9415 rt_se->my_q = rt_rq;
9416 rt_se->parent = parent;
9417 INIT_LIST_HEAD(&rt_se->run_list);
9418 }
9419 #endif
9420
9421 void __init sched_init(void)
9422 {
9423 int i, j;
9424 unsigned long alloc_size = 0, ptr;
9425
9426 #ifdef CONFIG_FAIR_GROUP_SCHED
9427 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9428 #endif
9429 #ifdef CONFIG_RT_GROUP_SCHED
9430 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9431 #endif
9432 #ifdef CONFIG_USER_SCHED
9433 alloc_size *= 2;
9434 #endif
9435 #ifdef CONFIG_CPUMASK_OFFSTACK
9436 alloc_size += num_possible_cpus() * cpumask_size();
9437 #endif
9438 if (alloc_size) {
9439 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9440
9441 #ifdef CONFIG_FAIR_GROUP_SCHED
9442 init_task_group.se = (struct sched_entity **)ptr;
9443 ptr += nr_cpu_ids * sizeof(void **);
9444
9445 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9446 ptr += nr_cpu_ids * sizeof(void **);
9447
9448 #ifdef CONFIG_USER_SCHED
9449 root_task_group.se = (struct sched_entity **)ptr;
9450 ptr += nr_cpu_ids * sizeof(void **);
9451
9452 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9453 ptr += nr_cpu_ids * sizeof(void **);
9454 #endif /* CONFIG_USER_SCHED */
9455 #endif /* CONFIG_FAIR_GROUP_SCHED */
9456 #ifdef CONFIG_RT_GROUP_SCHED
9457 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9458 ptr += nr_cpu_ids * sizeof(void **);
9459
9460 init_task_group.rt_rq = (struct rt_rq **)ptr;
9461 ptr += nr_cpu_ids * sizeof(void **);
9462
9463 #ifdef CONFIG_USER_SCHED
9464 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9465 ptr += nr_cpu_ids * sizeof(void **);
9466
9467 root_task_group.rt_rq = (struct rt_rq **)ptr;
9468 ptr += nr_cpu_ids * sizeof(void **);
9469 #endif /* CONFIG_USER_SCHED */
9470 #endif /* CONFIG_RT_GROUP_SCHED */
9471 #ifdef CONFIG_CPUMASK_OFFSTACK
9472 for_each_possible_cpu(i) {
9473 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9474 ptr += cpumask_size();
9475 }
9476 #endif /* CONFIG_CPUMASK_OFFSTACK */
9477 }
9478
9479 #ifdef CONFIG_SMP
9480 init_defrootdomain();
9481 #endif
9482
9483 init_rt_bandwidth(&def_rt_bandwidth,
9484 global_rt_period(), global_rt_runtime());
9485
9486 #ifdef CONFIG_RT_GROUP_SCHED
9487 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9488 global_rt_period(), global_rt_runtime());
9489 #ifdef CONFIG_USER_SCHED
9490 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9491 global_rt_period(), RUNTIME_INF);
9492 #endif /* CONFIG_USER_SCHED */
9493 #endif /* CONFIG_RT_GROUP_SCHED */
9494
9495 #ifdef CONFIG_GROUP_SCHED
9496 list_add(&init_task_group.list, &task_groups);
9497 INIT_LIST_HEAD(&init_task_group.children);
9498
9499 #ifdef CONFIG_USER_SCHED
9500 INIT_LIST_HEAD(&root_task_group.children);
9501 init_task_group.parent = &root_task_group;
9502 list_add(&init_task_group.siblings, &root_task_group.children);
9503 #endif /* CONFIG_USER_SCHED */
9504 #endif /* CONFIG_GROUP_SCHED */
9505
9506 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
9507 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
9508 __alignof__(unsigned long));
9509 #endif
9510 for_each_possible_cpu(i) {
9511 struct rq *rq;
9512
9513 rq = cpu_rq(i);
9514 spin_lock_init(&rq->lock);
9515 rq->nr_running = 0;
9516 rq->calc_load_active = 0;
9517 rq->calc_load_update = jiffies + LOAD_FREQ;
9518 init_cfs_rq(&rq->cfs, rq);
9519 init_rt_rq(&rq->rt, rq);
9520 #ifdef CONFIG_FAIR_GROUP_SCHED
9521 init_task_group.shares = init_task_group_load;
9522 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9523 #ifdef CONFIG_CGROUP_SCHED
9524 /*
9525 * How much cpu bandwidth does init_task_group get?
9526 *
9527 * In case of task-groups formed thr' the cgroup filesystem, it
9528 * gets 100% of the cpu resources in the system. This overall
9529 * system cpu resource is divided among the tasks of
9530 * init_task_group and its child task-groups in a fair manner,
9531 * based on each entity's (task or task-group's) weight
9532 * (se->load.weight).
9533 *
9534 * In other words, if init_task_group has 10 tasks of weight
9535 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9536 * then A0's share of the cpu resource is:
9537 *
9538 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9539 *
9540 * We achieve this by letting init_task_group's tasks sit
9541 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9542 */
9543 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9544 #elif defined CONFIG_USER_SCHED
9545 root_task_group.shares = NICE_0_LOAD;
9546 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9547 /*
9548 * In case of task-groups formed thr' the user id of tasks,
9549 * init_task_group represents tasks belonging to root user.
9550 * Hence it forms a sibling of all subsequent groups formed.
9551 * In this case, init_task_group gets only a fraction of overall
9552 * system cpu resource, based on the weight assigned to root
9553 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9554 * by letting tasks of init_task_group sit in a separate cfs_rq
9555 * (init_tg_cfs_rq) and having one entity represent this group of
9556 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9557 */
9558 init_tg_cfs_entry(&init_task_group,
9559 &per_cpu(init_tg_cfs_rq, i),
9560 &per_cpu(init_sched_entity, i), i, 1,
9561 root_task_group.se[i]);
9562
9563 #endif
9564 #endif /* CONFIG_FAIR_GROUP_SCHED */
9565
9566 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9567 #ifdef CONFIG_RT_GROUP_SCHED
9568 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9569 #ifdef CONFIG_CGROUP_SCHED
9570 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9571 #elif defined CONFIG_USER_SCHED
9572 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9573 init_tg_rt_entry(&init_task_group,
9574 &per_cpu(init_rt_rq, i),
9575 &per_cpu(init_sched_rt_entity, i), i, 1,
9576 root_task_group.rt_se[i]);
9577 #endif
9578 #endif
9579
9580 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9581 rq->cpu_load[j] = 0;
9582 #ifdef CONFIG_SMP
9583 rq->sd = NULL;
9584 rq->rd = NULL;
9585 rq->post_schedule = 0;
9586 rq->active_balance = 0;
9587 rq->next_balance = jiffies;
9588 rq->push_cpu = 0;
9589 rq->cpu = i;
9590 rq->online = 0;
9591 rq->migration_thread = NULL;
9592 rq->idle_stamp = 0;
9593 rq->avg_idle = 2*sysctl_sched_migration_cost;
9594 INIT_LIST_HEAD(&rq->migration_queue);
9595 rq_attach_root(rq, &def_root_domain);
9596 #endif
9597 init_rq_hrtick(rq);
9598 atomic_set(&rq->nr_iowait, 0);
9599 }
9600
9601 set_load_weight(&init_task);
9602
9603 #ifdef CONFIG_PREEMPT_NOTIFIERS
9604 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9605 #endif
9606
9607 #ifdef CONFIG_SMP
9608 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9609 #endif
9610
9611 #ifdef CONFIG_RT_MUTEXES
9612 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9613 #endif
9614
9615 /*
9616 * The boot idle thread does lazy MMU switching as well:
9617 */
9618 atomic_inc(&init_mm.mm_count);
9619 enter_lazy_tlb(&init_mm, current);
9620
9621 /*
9622 * Make us the idle thread. Technically, schedule() should not be
9623 * called from this thread, however somewhere below it might be,
9624 * but because we are the idle thread, we just pick up running again
9625 * when this runqueue becomes "idle".
9626 */
9627 init_idle(current, smp_processor_id());
9628
9629 calc_load_update = jiffies + LOAD_FREQ;
9630
9631 /*
9632 * During early bootup we pretend to be a normal task:
9633 */
9634 current->sched_class = &fair_sched_class;
9635
9636 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9637 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9638 #ifdef CONFIG_SMP
9639 #ifdef CONFIG_NO_HZ
9640 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9641 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9642 #endif
9643 /* May be allocated at isolcpus cmdline parse time */
9644 if (cpu_isolated_map == NULL)
9645 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9646 #endif /* SMP */
9647
9648 perf_event_init();
9649
9650 scheduler_running = 1;
9651 }
9652
9653 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9654 static inline int preempt_count_equals(int preempt_offset)
9655 {
9656 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9657
9658 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9659 }
9660
9661 void __might_sleep(char *file, int line, int preempt_offset)
9662 {
9663 #ifdef in_atomic
9664 static unsigned long prev_jiffy; /* ratelimiting */
9665
9666 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9667 system_state != SYSTEM_RUNNING || oops_in_progress)
9668 return;
9669 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9670 return;
9671 prev_jiffy = jiffies;
9672
9673 printk(KERN_ERR
9674 "BUG: sleeping function called from invalid context at %s:%d\n",
9675 file, line);
9676 printk(KERN_ERR
9677 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9678 in_atomic(), irqs_disabled(),
9679 current->pid, current->comm);
9680
9681 debug_show_held_locks(current);
9682 if (irqs_disabled())
9683 print_irqtrace_events(current);
9684 dump_stack();
9685 #endif
9686 }
9687 EXPORT_SYMBOL(__might_sleep);
9688 #endif
9689
9690 #ifdef CONFIG_MAGIC_SYSRQ
9691 static void normalize_task(struct rq *rq, struct task_struct *p)
9692 {
9693 int on_rq;
9694
9695 update_rq_clock(rq);
9696 on_rq = p->se.on_rq;
9697 if (on_rq)
9698 deactivate_task(rq, p, 0);
9699 __setscheduler(rq, p, SCHED_NORMAL, 0);
9700 if (on_rq) {
9701 activate_task(rq, p, 0);
9702 resched_task(rq->curr);
9703 }
9704 }
9705
9706 void normalize_rt_tasks(void)
9707 {
9708 struct task_struct *g, *p;
9709 unsigned long flags;
9710 struct rq *rq;
9711
9712 read_lock_irqsave(&tasklist_lock, flags);
9713 do_each_thread(g, p) {
9714 /*
9715 * Only normalize user tasks:
9716 */
9717 if (!p->mm)
9718 continue;
9719
9720 p->se.exec_start = 0;
9721 #ifdef CONFIG_SCHEDSTATS
9722 p->se.wait_start = 0;
9723 p->se.sleep_start = 0;
9724 p->se.block_start = 0;
9725 #endif
9726
9727 if (!rt_task(p)) {
9728 /*
9729 * Renice negative nice level userspace
9730 * tasks back to 0:
9731 */
9732 if (TASK_NICE(p) < 0 && p->mm)
9733 set_user_nice(p, 0);
9734 continue;
9735 }
9736
9737 spin_lock(&p->pi_lock);
9738 rq = __task_rq_lock(p);
9739
9740 normalize_task(rq, p);
9741
9742 __task_rq_unlock(rq);
9743 spin_unlock(&p->pi_lock);
9744 } while_each_thread(g, p);
9745
9746 read_unlock_irqrestore(&tasklist_lock, flags);
9747 }
9748
9749 #endif /* CONFIG_MAGIC_SYSRQ */
9750
9751 #ifdef CONFIG_IA64
9752 /*
9753 * These functions are only useful for the IA64 MCA handling.
9754 *
9755 * They can only be called when the whole system has been
9756 * stopped - every CPU needs to be quiescent, and no scheduling
9757 * activity can take place. Using them for anything else would
9758 * be a serious bug, and as a result, they aren't even visible
9759 * under any other configuration.
9760 */
9761
9762 /**
9763 * curr_task - return the current task for a given cpu.
9764 * @cpu: the processor in question.
9765 *
9766 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9767 */
9768 struct task_struct *curr_task(int cpu)
9769 {
9770 return cpu_curr(cpu);
9771 }
9772
9773 /**
9774 * set_curr_task - set the current task for a given cpu.
9775 * @cpu: the processor in question.
9776 * @p: the task pointer to set.
9777 *
9778 * Description: This function must only be used when non-maskable interrupts
9779 * are serviced on a separate stack. It allows the architecture to switch the
9780 * notion of the current task on a cpu in a non-blocking manner. This function
9781 * must be called with all CPU's synchronized, and interrupts disabled, the
9782 * and caller must save the original value of the current task (see
9783 * curr_task() above) and restore that value before reenabling interrupts and
9784 * re-starting the system.
9785 *
9786 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9787 */
9788 void set_curr_task(int cpu, struct task_struct *p)
9789 {
9790 cpu_curr(cpu) = p;
9791 }
9792
9793 #endif
9794
9795 #ifdef CONFIG_FAIR_GROUP_SCHED
9796 static void free_fair_sched_group(struct task_group *tg)
9797 {
9798 int i;
9799
9800 for_each_possible_cpu(i) {
9801 if (tg->cfs_rq)
9802 kfree(tg->cfs_rq[i]);
9803 if (tg->se)
9804 kfree(tg->se[i]);
9805 }
9806
9807 kfree(tg->cfs_rq);
9808 kfree(tg->se);
9809 }
9810
9811 static
9812 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9813 {
9814 struct cfs_rq *cfs_rq;
9815 struct sched_entity *se;
9816 struct rq *rq;
9817 int i;
9818
9819 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9820 if (!tg->cfs_rq)
9821 goto err;
9822 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9823 if (!tg->se)
9824 goto err;
9825
9826 tg->shares = NICE_0_LOAD;
9827
9828 for_each_possible_cpu(i) {
9829 rq = cpu_rq(i);
9830
9831 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9832 GFP_KERNEL, cpu_to_node(i));
9833 if (!cfs_rq)
9834 goto err;
9835
9836 se = kzalloc_node(sizeof(struct sched_entity),
9837 GFP_KERNEL, cpu_to_node(i));
9838 if (!se)
9839 goto err;
9840
9841 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9842 }
9843
9844 return 1;
9845
9846 err:
9847 return 0;
9848 }
9849
9850 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9851 {
9852 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9853 &cpu_rq(cpu)->leaf_cfs_rq_list);
9854 }
9855
9856 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9857 {
9858 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9859 }
9860 #else /* !CONFG_FAIR_GROUP_SCHED */
9861 static inline void free_fair_sched_group(struct task_group *tg)
9862 {
9863 }
9864
9865 static inline
9866 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9867 {
9868 return 1;
9869 }
9870
9871 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9872 {
9873 }
9874
9875 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9876 {
9877 }
9878 #endif /* CONFIG_FAIR_GROUP_SCHED */
9879
9880 #ifdef CONFIG_RT_GROUP_SCHED
9881 static void free_rt_sched_group(struct task_group *tg)
9882 {
9883 int i;
9884
9885 destroy_rt_bandwidth(&tg->rt_bandwidth);
9886
9887 for_each_possible_cpu(i) {
9888 if (tg->rt_rq)
9889 kfree(tg->rt_rq[i]);
9890 if (tg->rt_se)
9891 kfree(tg->rt_se[i]);
9892 }
9893
9894 kfree(tg->rt_rq);
9895 kfree(tg->rt_se);
9896 }
9897
9898 static
9899 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9900 {
9901 struct rt_rq *rt_rq;
9902 struct sched_rt_entity *rt_se;
9903 struct rq *rq;
9904 int i;
9905
9906 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9907 if (!tg->rt_rq)
9908 goto err;
9909 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9910 if (!tg->rt_se)
9911 goto err;
9912
9913 init_rt_bandwidth(&tg->rt_bandwidth,
9914 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9915
9916 for_each_possible_cpu(i) {
9917 rq = cpu_rq(i);
9918
9919 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9920 GFP_KERNEL, cpu_to_node(i));
9921 if (!rt_rq)
9922 goto err;
9923
9924 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9925 GFP_KERNEL, cpu_to_node(i));
9926 if (!rt_se)
9927 goto err;
9928
9929 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9930 }
9931
9932 return 1;
9933
9934 err:
9935 return 0;
9936 }
9937
9938 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9939 {
9940 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9941 &cpu_rq(cpu)->leaf_rt_rq_list);
9942 }
9943
9944 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9945 {
9946 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9947 }
9948 #else /* !CONFIG_RT_GROUP_SCHED */
9949 static inline void free_rt_sched_group(struct task_group *tg)
9950 {
9951 }
9952
9953 static inline
9954 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9955 {
9956 return 1;
9957 }
9958
9959 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9960 {
9961 }
9962
9963 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9964 {
9965 }
9966 #endif /* CONFIG_RT_GROUP_SCHED */
9967
9968 #ifdef CONFIG_GROUP_SCHED
9969 static void free_sched_group(struct task_group *tg)
9970 {
9971 free_fair_sched_group(tg);
9972 free_rt_sched_group(tg);
9973 kfree(tg);
9974 }
9975
9976 /* allocate runqueue etc for a new task group */
9977 struct task_group *sched_create_group(struct task_group *parent)
9978 {
9979 struct task_group *tg;
9980 unsigned long flags;
9981 int i;
9982
9983 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9984 if (!tg)
9985 return ERR_PTR(-ENOMEM);
9986
9987 if (!alloc_fair_sched_group(tg, parent))
9988 goto err;
9989
9990 if (!alloc_rt_sched_group(tg, parent))
9991 goto err;
9992
9993 spin_lock_irqsave(&task_group_lock, flags);
9994 for_each_possible_cpu(i) {
9995 register_fair_sched_group(tg, i);
9996 register_rt_sched_group(tg, i);
9997 }
9998 list_add_rcu(&tg->list, &task_groups);
9999
10000 WARN_ON(!parent); /* root should already exist */
10001
10002 tg->parent = parent;
10003 INIT_LIST_HEAD(&tg->children);
10004 list_add_rcu(&tg->siblings, &parent->children);
10005 spin_unlock_irqrestore(&task_group_lock, flags);
10006
10007 return tg;
10008
10009 err:
10010 free_sched_group(tg);
10011 return ERR_PTR(-ENOMEM);
10012 }
10013
10014 /* rcu callback to free various structures associated with a task group */
10015 static void free_sched_group_rcu(struct rcu_head *rhp)
10016 {
10017 /* now it should be safe to free those cfs_rqs */
10018 free_sched_group(container_of(rhp, struct task_group, rcu));
10019 }
10020
10021 /* Destroy runqueue etc associated with a task group */
10022 void sched_destroy_group(struct task_group *tg)
10023 {
10024 unsigned long flags;
10025 int i;
10026
10027 spin_lock_irqsave(&task_group_lock, flags);
10028 for_each_possible_cpu(i) {
10029 unregister_fair_sched_group(tg, i);
10030 unregister_rt_sched_group(tg, i);
10031 }
10032 list_del_rcu(&tg->list);
10033 list_del_rcu(&tg->siblings);
10034 spin_unlock_irqrestore(&task_group_lock, flags);
10035
10036 /* wait for possible concurrent references to cfs_rqs complete */
10037 call_rcu(&tg->rcu, free_sched_group_rcu);
10038 }
10039
10040 /* change task's runqueue when it moves between groups.
10041 * The caller of this function should have put the task in its new group
10042 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10043 * reflect its new group.
10044 */
10045 void sched_move_task(struct task_struct *tsk)
10046 {
10047 int on_rq, running;
10048 unsigned long flags;
10049 struct rq *rq;
10050
10051 rq = task_rq_lock(tsk, &flags);
10052
10053 update_rq_clock(rq);
10054
10055 running = task_current(rq, tsk);
10056 on_rq = tsk->se.on_rq;
10057
10058 if (on_rq)
10059 dequeue_task(rq, tsk, 0);
10060 if (unlikely(running))
10061 tsk->sched_class->put_prev_task(rq, tsk);
10062
10063 set_task_rq(tsk, task_cpu(tsk));
10064
10065 #ifdef CONFIG_FAIR_GROUP_SCHED
10066 if (tsk->sched_class->moved_group)
10067 tsk->sched_class->moved_group(tsk);
10068 #endif
10069
10070 if (unlikely(running))
10071 tsk->sched_class->set_curr_task(rq);
10072 if (on_rq)
10073 enqueue_task(rq, tsk, 0);
10074
10075 task_rq_unlock(rq, &flags);
10076 }
10077 #endif /* CONFIG_GROUP_SCHED */
10078
10079 #ifdef CONFIG_FAIR_GROUP_SCHED
10080 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10081 {
10082 struct cfs_rq *cfs_rq = se->cfs_rq;
10083 int on_rq;
10084
10085 on_rq = se->on_rq;
10086 if (on_rq)
10087 dequeue_entity(cfs_rq, se, 0);
10088
10089 se->load.weight = shares;
10090 se->load.inv_weight = 0;
10091
10092 if (on_rq)
10093 enqueue_entity(cfs_rq, se, 0);
10094 }
10095
10096 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10097 {
10098 struct cfs_rq *cfs_rq = se->cfs_rq;
10099 struct rq *rq = cfs_rq->rq;
10100 unsigned long flags;
10101
10102 spin_lock_irqsave(&rq->lock, flags);
10103 __set_se_shares(se, shares);
10104 spin_unlock_irqrestore(&rq->lock, flags);
10105 }
10106
10107 static DEFINE_MUTEX(shares_mutex);
10108
10109 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10110 {
10111 int i;
10112 unsigned long flags;
10113
10114 /*
10115 * We can't change the weight of the root cgroup.
10116 */
10117 if (!tg->se[0])
10118 return -EINVAL;
10119
10120 if (shares < MIN_SHARES)
10121 shares = MIN_SHARES;
10122 else if (shares > MAX_SHARES)
10123 shares = MAX_SHARES;
10124
10125 mutex_lock(&shares_mutex);
10126 if (tg->shares == shares)
10127 goto done;
10128
10129 spin_lock_irqsave(&task_group_lock, flags);
10130 for_each_possible_cpu(i)
10131 unregister_fair_sched_group(tg, i);
10132 list_del_rcu(&tg->siblings);
10133 spin_unlock_irqrestore(&task_group_lock, flags);
10134
10135 /* wait for any ongoing reference to this group to finish */
10136 synchronize_sched();
10137
10138 /*
10139 * Now we are free to modify the group's share on each cpu
10140 * w/o tripping rebalance_share or load_balance_fair.
10141 */
10142 tg->shares = shares;
10143 for_each_possible_cpu(i) {
10144 /*
10145 * force a rebalance
10146 */
10147 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10148 set_se_shares(tg->se[i], shares);
10149 }
10150
10151 /*
10152 * Enable load balance activity on this group, by inserting it back on
10153 * each cpu's rq->leaf_cfs_rq_list.
10154 */
10155 spin_lock_irqsave(&task_group_lock, flags);
10156 for_each_possible_cpu(i)
10157 register_fair_sched_group(tg, i);
10158 list_add_rcu(&tg->siblings, &tg->parent->children);
10159 spin_unlock_irqrestore(&task_group_lock, flags);
10160 done:
10161 mutex_unlock(&shares_mutex);
10162 return 0;
10163 }
10164
10165 unsigned long sched_group_shares(struct task_group *tg)
10166 {
10167 return tg->shares;
10168 }
10169 #endif
10170
10171 #ifdef CONFIG_RT_GROUP_SCHED
10172 /*
10173 * Ensure that the real time constraints are schedulable.
10174 */
10175 static DEFINE_MUTEX(rt_constraints_mutex);
10176
10177 static unsigned long to_ratio(u64 period, u64 runtime)
10178 {
10179 if (runtime == RUNTIME_INF)
10180 return 1ULL << 20;
10181
10182 return div64_u64(runtime << 20, period);
10183 }
10184
10185 /* Must be called with tasklist_lock held */
10186 static inline int tg_has_rt_tasks(struct task_group *tg)
10187 {
10188 struct task_struct *g, *p;
10189
10190 do_each_thread(g, p) {
10191 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10192 return 1;
10193 } while_each_thread(g, p);
10194
10195 return 0;
10196 }
10197
10198 struct rt_schedulable_data {
10199 struct task_group *tg;
10200 u64 rt_period;
10201 u64 rt_runtime;
10202 };
10203
10204 static int tg_schedulable(struct task_group *tg, void *data)
10205 {
10206 struct rt_schedulable_data *d = data;
10207 struct task_group *child;
10208 unsigned long total, sum = 0;
10209 u64 period, runtime;
10210
10211 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10212 runtime = tg->rt_bandwidth.rt_runtime;
10213
10214 if (tg == d->tg) {
10215 period = d->rt_period;
10216 runtime = d->rt_runtime;
10217 }
10218
10219 #ifdef CONFIG_USER_SCHED
10220 if (tg == &root_task_group) {
10221 period = global_rt_period();
10222 runtime = global_rt_runtime();
10223 }
10224 #endif
10225
10226 /*
10227 * Cannot have more runtime than the period.
10228 */
10229 if (runtime > period && runtime != RUNTIME_INF)
10230 return -EINVAL;
10231
10232 /*
10233 * Ensure we don't starve existing RT tasks.
10234 */
10235 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10236 return -EBUSY;
10237
10238 total = to_ratio(period, runtime);
10239
10240 /*
10241 * Nobody can have more than the global setting allows.
10242 */
10243 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10244 return -EINVAL;
10245
10246 /*
10247 * The sum of our children's runtime should not exceed our own.
10248 */
10249 list_for_each_entry_rcu(child, &tg->children, siblings) {
10250 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10251 runtime = child->rt_bandwidth.rt_runtime;
10252
10253 if (child == d->tg) {
10254 period = d->rt_period;
10255 runtime = d->rt_runtime;
10256 }
10257
10258 sum += to_ratio(period, runtime);
10259 }
10260
10261 if (sum > total)
10262 return -EINVAL;
10263
10264 return 0;
10265 }
10266
10267 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10268 {
10269 struct rt_schedulable_data data = {
10270 .tg = tg,
10271 .rt_period = period,
10272 .rt_runtime = runtime,
10273 };
10274
10275 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10276 }
10277
10278 static int tg_set_bandwidth(struct task_group *tg,
10279 u64 rt_period, u64 rt_runtime)
10280 {
10281 int i, err = 0;
10282
10283 mutex_lock(&rt_constraints_mutex);
10284 read_lock(&tasklist_lock);
10285 err = __rt_schedulable(tg, rt_period, rt_runtime);
10286 if (err)
10287 goto unlock;
10288
10289 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10290 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10291 tg->rt_bandwidth.rt_runtime = rt_runtime;
10292
10293 for_each_possible_cpu(i) {
10294 struct rt_rq *rt_rq = tg->rt_rq[i];
10295
10296 spin_lock(&rt_rq->rt_runtime_lock);
10297 rt_rq->rt_runtime = rt_runtime;
10298 spin_unlock(&rt_rq->rt_runtime_lock);
10299 }
10300 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10301 unlock:
10302 read_unlock(&tasklist_lock);
10303 mutex_unlock(&rt_constraints_mutex);
10304
10305 return err;
10306 }
10307
10308 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10309 {
10310 u64 rt_runtime, rt_period;
10311
10312 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10313 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10314 if (rt_runtime_us < 0)
10315 rt_runtime = RUNTIME_INF;
10316
10317 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10318 }
10319
10320 long sched_group_rt_runtime(struct task_group *tg)
10321 {
10322 u64 rt_runtime_us;
10323
10324 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10325 return -1;
10326
10327 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10328 do_div(rt_runtime_us, NSEC_PER_USEC);
10329 return rt_runtime_us;
10330 }
10331
10332 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10333 {
10334 u64 rt_runtime, rt_period;
10335
10336 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10337 rt_runtime = tg->rt_bandwidth.rt_runtime;
10338
10339 if (rt_period == 0)
10340 return -EINVAL;
10341
10342 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10343 }
10344
10345 long sched_group_rt_period(struct task_group *tg)
10346 {
10347 u64 rt_period_us;
10348
10349 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10350 do_div(rt_period_us, NSEC_PER_USEC);
10351 return rt_period_us;
10352 }
10353
10354 static int sched_rt_global_constraints(void)
10355 {
10356 u64 runtime, period;
10357 int ret = 0;
10358
10359 if (sysctl_sched_rt_period <= 0)
10360 return -EINVAL;
10361
10362 runtime = global_rt_runtime();
10363 period = global_rt_period();
10364
10365 /*
10366 * Sanity check on the sysctl variables.
10367 */
10368 if (runtime > period && runtime != RUNTIME_INF)
10369 return -EINVAL;
10370
10371 mutex_lock(&rt_constraints_mutex);
10372 read_lock(&tasklist_lock);
10373 ret = __rt_schedulable(NULL, 0, 0);
10374 read_unlock(&tasklist_lock);
10375 mutex_unlock(&rt_constraints_mutex);
10376
10377 return ret;
10378 }
10379
10380 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10381 {
10382 /* Don't accept realtime tasks when there is no way for them to run */
10383 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10384 return 0;
10385
10386 return 1;
10387 }
10388
10389 #else /* !CONFIG_RT_GROUP_SCHED */
10390 static int sched_rt_global_constraints(void)
10391 {
10392 unsigned long flags;
10393 int i;
10394
10395 if (sysctl_sched_rt_period <= 0)
10396 return -EINVAL;
10397
10398 /*
10399 * There's always some RT tasks in the root group
10400 * -- migration, kstopmachine etc..
10401 */
10402 if (sysctl_sched_rt_runtime == 0)
10403 return -EBUSY;
10404
10405 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10406 for_each_possible_cpu(i) {
10407 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10408
10409 spin_lock(&rt_rq->rt_runtime_lock);
10410 rt_rq->rt_runtime = global_rt_runtime();
10411 spin_unlock(&rt_rq->rt_runtime_lock);
10412 }
10413 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10414
10415 return 0;
10416 }
10417 #endif /* CONFIG_RT_GROUP_SCHED */
10418
10419 int sched_rt_handler(struct ctl_table *table, int write,
10420 void __user *buffer, size_t *lenp,
10421 loff_t *ppos)
10422 {
10423 int ret;
10424 int old_period, old_runtime;
10425 static DEFINE_MUTEX(mutex);
10426
10427 mutex_lock(&mutex);
10428 old_period = sysctl_sched_rt_period;
10429 old_runtime = sysctl_sched_rt_runtime;
10430
10431 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10432
10433 if (!ret && write) {
10434 ret = sched_rt_global_constraints();
10435 if (ret) {
10436 sysctl_sched_rt_period = old_period;
10437 sysctl_sched_rt_runtime = old_runtime;
10438 } else {
10439 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10440 def_rt_bandwidth.rt_period =
10441 ns_to_ktime(global_rt_period());
10442 }
10443 }
10444 mutex_unlock(&mutex);
10445
10446 return ret;
10447 }
10448
10449 #ifdef CONFIG_CGROUP_SCHED
10450
10451 /* return corresponding task_group object of a cgroup */
10452 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10453 {
10454 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10455 struct task_group, css);
10456 }
10457
10458 static struct cgroup_subsys_state *
10459 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10460 {
10461 struct task_group *tg, *parent;
10462
10463 if (!cgrp->parent) {
10464 /* This is early initialization for the top cgroup */
10465 return &init_task_group.css;
10466 }
10467
10468 parent = cgroup_tg(cgrp->parent);
10469 tg = sched_create_group(parent);
10470 if (IS_ERR(tg))
10471 return ERR_PTR(-ENOMEM);
10472
10473 return &tg->css;
10474 }
10475
10476 static void
10477 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10478 {
10479 struct task_group *tg = cgroup_tg(cgrp);
10480
10481 sched_destroy_group(tg);
10482 }
10483
10484 static int
10485 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10486 {
10487 #ifdef CONFIG_RT_GROUP_SCHED
10488 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10489 return -EINVAL;
10490 #else
10491 /* We don't support RT-tasks being in separate groups */
10492 if (tsk->sched_class != &fair_sched_class)
10493 return -EINVAL;
10494 #endif
10495 return 0;
10496 }
10497
10498 static int
10499 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10500 struct task_struct *tsk, bool threadgroup)
10501 {
10502 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10503 if (retval)
10504 return retval;
10505 if (threadgroup) {
10506 struct task_struct *c;
10507 rcu_read_lock();
10508 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10509 retval = cpu_cgroup_can_attach_task(cgrp, c);
10510 if (retval) {
10511 rcu_read_unlock();
10512 return retval;
10513 }
10514 }
10515 rcu_read_unlock();
10516 }
10517 return 0;
10518 }
10519
10520 static void
10521 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10522 struct cgroup *old_cont, struct task_struct *tsk,
10523 bool threadgroup)
10524 {
10525 sched_move_task(tsk);
10526 if (threadgroup) {
10527 struct task_struct *c;
10528 rcu_read_lock();
10529 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10530 sched_move_task(c);
10531 }
10532 rcu_read_unlock();
10533 }
10534 }
10535
10536 #ifdef CONFIG_FAIR_GROUP_SCHED
10537 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10538 u64 shareval)
10539 {
10540 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10541 }
10542
10543 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10544 {
10545 struct task_group *tg = cgroup_tg(cgrp);
10546
10547 return (u64) tg->shares;
10548 }
10549 #endif /* CONFIG_FAIR_GROUP_SCHED */
10550
10551 #ifdef CONFIG_RT_GROUP_SCHED
10552 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10553 s64 val)
10554 {
10555 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10556 }
10557
10558 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10559 {
10560 return sched_group_rt_runtime(cgroup_tg(cgrp));
10561 }
10562
10563 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10564 u64 rt_period_us)
10565 {
10566 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10567 }
10568
10569 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10570 {
10571 return sched_group_rt_period(cgroup_tg(cgrp));
10572 }
10573 #endif /* CONFIG_RT_GROUP_SCHED */
10574
10575 static struct cftype cpu_files[] = {
10576 #ifdef CONFIG_FAIR_GROUP_SCHED
10577 {
10578 .name = "shares",
10579 .read_u64 = cpu_shares_read_u64,
10580 .write_u64 = cpu_shares_write_u64,
10581 },
10582 #endif
10583 #ifdef CONFIG_RT_GROUP_SCHED
10584 {
10585 .name = "rt_runtime_us",
10586 .read_s64 = cpu_rt_runtime_read,
10587 .write_s64 = cpu_rt_runtime_write,
10588 },
10589 {
10590 .name = "rt_period_us",
10591 .read_u64 = cpu_rt_period_read_uint,
10592 .write_u64 = cpu_rt_period_write_uint,
10593 },
10594 #endif
10595 };
10596
10597 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10598 {
10599 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10600 }
10601
10602 struct cgroup_subsys cpu_cgroup_subsys = {
10603 .name = "cpu",
10604 .create = cpu_cgroup_create,
10605 .destroy = cpu_cgroup_destroy,
10606 .can_attach = cpu_cgroup_can_attach,
10607 .attach = cpu_cgroup_attach,
10608 .populate = cpu_cgroup_populate,
10609 .subsys_id = cpu_cgroup_subsys_id,
10610 .early_init = 1,
10611 };
10612
10613 #endif /* CONFIG_CGROUP_SCHED */
10614
10615 #ifdef CONFIG_CGROUP_CPUACCT
10616
10617 /*
10618 * CPU accounting code for task groups.
10619 *
10620 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10621 * (balbir@in.ibm.com).
10622 */
10623
10624 /* track cpu usage of a group of tasks and its child groups */
10625 struct cpuacct {
10626 struct cgroup_subsys_state css;
10627 /* cpuusage holds pointer to a u64-type object on every cpu */
10628 u64 *cpuusage;
10629 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10630 struct cpuacct *parent;
10631 };
10632
10633 struct cgroup_subsys cpuacct_subsys;
10634
10635 /* return cpu accounting group corresponding to this container */
10636 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10637 {
10638 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10639 struct cpuacct, css);
10640 }
10641
10642 /* return cpu accounting group to which this task belongs */
10643 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10644 {
10645 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10646 struct cpuacct, css);
10647 }
10648
10649 /* create a new cpu accounting group */
10650 static struct cgroup_subsys_state *cpuacct_create(
10651 struct cgroup_subsys *ss, struct cgroup *cgrp)
10652 {
10653 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10654 int i;
10655
10656 if (!ca)
10657 goto out;
10658
10659 ca->cpuusage = alloc_percpu(u64);
10660 if (!ca->cpuusage)
10661 goto out_free_ca;
10662
10663 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10664 if (percpu_counter_init(&ca->cpustat[i], 0))
10665 goto out_free_counters;
10666
10667 if (cgrp->parent)
10668 ca->parent = cgroup_ca(cgrp->parent);
10669
10670 return &ca->css;
10671
10672 out_free_counters:
10673 while (--i >= 0)
10674 percpu_counter_destroy(&ca->cpustat[i]);
10675 free_percpu(ca->cpuusage);
10676 out_free_ca:
10677 kfree(ca);
10678 out:
10679 return ERR_PTR(-ENOMEM);
10680 }
10681
10682 /* destroy an existing cpu accounting group */
10683 static void
10684 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10685 {
10686 struct cpuacct *ca = cgroup_ca(cgrp);
10687 int i;
10688
10689 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10690 percpu_counter_destroy(&ca->cpustat[i]);
10691 free_percpu(ca->cpuusage);
10692 kfree(ca);
10693 }
10694
10695 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10696 {
10697 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10698 u64 data;
10699
10700 #ifndef CONFIG_64BIT
10701 /*
10702 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10703 */
10704 spin_lock_irq(&cpu_rq(cpu)->lock);
10705 data = *cpuusage;
10706 spin_unlock_irq(&cpu_rq(cpu)->lock);
10707 #else
10708 data = *cpuusage;
10709 #endif
10710
10711 return data;
10712 }
10713
10714 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10715 {
10716 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10717
10718 #ifndef CONFIG_64BIT
10719 /*
10720 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10721 */
10722 spin_lock_irq(&cpu_rq(cpu)->lock);
10723 *cpuusage = val;
10724 spin_unlock_irq(&cpu_rq(cpu)->lock);
10725 #else
10726 *cpuusage = val;
10727 #endif
10728 }
10729
10730 /* return total cpu usage (in nanoseconds) of a group */
10731 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10732 {
10733 struct cpuacct *ca = cgroup_ca(cgrp);
10734 u64 totalcpuusage = 0;
10735 int i;
10736
10737 for_each_present_cpu(i)
10738 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10739
10740 return totalcpuusage;
10741 }
10742
10743 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10744 u64 reset)
10745 {
10746 struct cpuacct *ca = cgroup_ca(cgrp);
10747 int err = 0;
10748 int i;
10749
10750 if (reset) {
10751 err = -EINVAL;
10752 goto out;
10753 }
10754
10755 for_each_present_cpu(i)
10756 cpuacct_cpuusage_write(ca, i, 0);
10757
10758 out:
10759 return err;
10760 }
10761
10762 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10763 struct seq_file *m)
10764 {
10765 struct cpuacct *ca = cgroup_ca(cgroup);
10766 u64 percpu;
10767 int i;
10768
10769 for_each_present_cpu(i) {
10770 percpu = cpuacct_cpuusage_read(ca, i);
10771 seq_printf(m, "%llu ", (unsigned long long) percpu);
10772 }
10773 seq_printf(m, "\n");
10774 return 0;
10775 }
10776
10777 static const char *cpuacct_stat_desc[] = {
10778 [CPUACCT_STAT_USER] = "user",
10779 [CPUACCT_STAT_SYSTEM] = "system",
10780 };
10781
10782 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10783 struct cgroup_map_cb *cb)
10784 {
10785 struct cpuacct *ca = cgroup_ca(cgrp);
10786 int i;
10787
10788 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10789 s64 val = percpu_counter_read(&ca->cpustat[i]);
10790 val = cputime64_to_clock_t(val);
10791 cb->fill(cb, cpuacct_stat_desc[i], val);
10792 }
10793 return 0;
10794 }
10795
10796 static struct cftype files[] = {
10797 {
10798 .name = "usage",
10799 .read_u64 = cpuusage_read,
10800 .write_u64 = cpuusage_write,
10801 },
10802 {
10803 .name = "usage_percpu",
10804 .read_seq_string = cpuacct_percpu_seq_read,
10805 },
10806 {
10807 .name = "stat",
10808 .read_map = cpuacct_stats_show,
10809 },
10810 };
10811
10812 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10813 {
10814 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10815 }
10816
10817 /*
10818 * charge this task's execution time to its accounting group.
10819 *
10820 * called with rq->lock held.
10821 */
10822 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10823 {
10824 struct cpuacct *ca;
10825 int cpu;
10826
10827 if (unlikely(!cpuacct_subsys.active))
10828 return;
10829
10830 cpu = task_cpu(tsk);
10831
10832 rcu_read_lock();
10833
10834 ca = task_ca(tsk);
10835
10836 for (; ca; ca = ca->parent) {
10837 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10838 *cpuusage += cputime;
10839 }
10840
10841 rcu_read_unlock();
10842 }
10843
10844 /*
10845 * Charge the system/user time to the task's accounting group.
10846 */
10847 static void cpuacct_update_stats(struct task_struct *tsk,
10848 enum cpuacct_stat_index idx, cputime_t val)
10849 {
10850 struct cpuacct *ca;
10851
10852 if (unlikely(!cpuacct_subsys.active))
10853 return;
10854
10855 rcu_read_lock();
10856 ca = task_ca(tsk);
10857
10858 do {
10859 percpu_counter_add(&ca->cpustat[idx], val);
10860 ca = ca->parent;
10861 } while (ca);
10862 rcu_read_unlock();
10863 }
10864
10865 struct cgroup_subsys cpuacct_subsys = {
10866 .name = "cpuacct",
10867 .create = cpuacct_create,
10868 .destroy = cpuacct_destroy,
10869 .populate = cpuacct_populate,
10870 .subsys_id = cpuacct_subsys_id,
10871 };
10872 #endif /* CONFIG_CGROUP_CPUACCT */
10873
10874 #ifndef CONFIG_SMP
10875
10876 int rcu_expedited_torture_stats(char *page)
10877 {
10878 return 0;
10879 }
10880 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10881
10882 void synchronize_sched_expedited(void)
10883 {
10884 }
10885 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10886
10887 #else /* #ifndef CONFIG_SMP */
10888
10889 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10890 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10891
10892 #define RCU_EXPEDITED_STATE_POST -2
10893 #define RCU_EXPEDITED_STATE_IDLE -1
10894
10895 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10896
10897 int rcu_expedited_torture_stats(char *page)
10898 {
10899 int cnt = 0;
10900 int cpu;
10901
10902 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10903 for_each_online_cpu(cpu) {
10904 cnt += sprintf(&page[cnt], " %d:%d",
10905 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10906 }
10907 cnt += sprintf(&page[cnt], "\n");
10908 return cnt;
10909 }
10910 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10911
10912 static long synchronize_sched_expedited_count;
10913
10914 /*
10915 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10916 * approach to force grace period to end quickly. This consumes
10917 * significant time on all CPUs, and is thus not recommended for
10918 * any sort of common-case code.
10919 *
10920 * Note that it is illegal to call this function while holding any
10921 * lock that is acquired by a CPU-hotplug notifier. Failing to
10922 * observe this restriction will result in deadlock.
10923 */
10924 void synchronize_sched_expedited(void)
10925 {
10926 int cpu;
10927 unsigned long flags;
10928 bool need_full_sync = 0;
10929 struct rq *rq;
10930 struct migration_req *req;
10931 long snap;
10932 int trycount = 0;
10933
10934 smp_mb(); /* ensure prior mod happens before capturing snap. */
10935 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10936 get_online_cpus();
10937 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10938 put_online_cpus();
10939 if (trycount++ < 10)
10940 udelay(trycount * num_online_cpus());
10941 else {
10942 synchronize_sched();
10943 return;
10944 }
10945 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10946 smp_mb(); /* ensure test happens before caller kfree */
10947 return;
10948 }
10949 get_online_cpus();
10950 }
10951 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10952 for_each_online_cpu(cpu) {
10953 rq = cpu_rq(cpu);
10954 req = &per_cpu(rcu_migration_req, cpu);
10955 init_completion(&req->done);
10956 req->task = NULL;
10957 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10958 spin_lock_irqsave(&rq->lock, flags);
10959 list_add(&req->list, &rq->migration_queue);
10960 spin_unlock_irqrestore(&rq->lock, flags);
10961 wake_up_process(rq->migration_thread);
10962 }
10963 for_each_online_cpu(cpu) {
10964 rcu_expedited_state = cpu;
10965 req = &per_cpu(rcu_migration_req, cpu);
10966 rq = cpu_rq(cpu);
10967 wait_for_completion(&req->done);
10968 spin_lock_irqsave(&rq->lock, flags);
10969 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10970 need_full_sync = 1;
10971 req->dest_cpu = RCU_MIGRATION_IDLE;
10972 spin_unlock_irqrestore(&rq->lock, flags);
10973 }
10974 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10975 synchronize_sched_expedited_count++;
10976 mutex_unlock(&rcu_sched_expedited_mutex);
10977 put_online_cpus();
10978 if (need_full_sync)
10979 synchronize_sched();
10980 }
10981 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10982
10983 #endif /* #else #ifndef CONFIG_SMP */