]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-2.6
[mirror_ubuntu-kernels.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69
70 #include <asm/tlb.h>
71 #include <asm/irq_regs.h>
72
73 /*
74 * Scheduler clock - returns current time in nanosec units.
75 * This is default implementation.
76 * Architectures and sub-architectures can override this.
77 */
78 unsigned long long __attribute__((weak)) sched_clock(void)
79 {
80 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
81 }
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 #ifdef CONFIG_SMP
118 /*
119 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
120 * Since cpu_power is a 'constant', we can use a reciprocal divide.
121 */
122 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
123 {
124 return reciprocal_divide(load, sg->reciprocal_cpu_power);
125 }
126
127 /*
128 * Each time a sched group cpu_power is changed,
129 * we must compute its reciprocal value
130 */
131 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
132 {
133 sg->__cpu_power += val;
134 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
135 }
136 #endif
137
138 static inline int rt_policy(int policy)
139 {
140 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
141 return 1;
142 return 0;
143 }
144
145 static inline int task_has_rt_policy(struct task_struct *p)
146 {
147 return rt_policy(p->policy);
148 }
149
150 /*
151 * This is the priority-queue data structure of the RT scheduling class:
152 */
153 struct rt_prio_array {
154 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
155 struct list_head queue[MAX_RT_PRIO];
156 };
157
158 #ifdef CONFIG_GROUP_SCHED
159
160 #include <linux/cgroup.h>
161
162 struct cfs_rq;
163
164 static LIST_HEAD(task_groups);
165
166 /* task group related information */
167 struct task_group {
168 #ifdef CONFIG_CGROUP_SCHED
169 struct cgroup_subsys_state css;
170 #endif
171
172 #ifdef CONFIG_FAIR_GROUP_SCHED
173 /* schedulable entities of this group on each cpu */
174 struct sched_entity **se;
175 /* runqueue "owned" by this group on each cpu */
176 struct cfs_rq **cfs_rq;
177 unsigned long shares;
178 #endif
179
180 #ifdef CONFIG_RT_GROUP_SCHED
181 struct sched_rt_entity **rt_se;
182 struct rt_rq **rt_rq;
183
184 u64 rt_runtime;
185 #endif
186
187 struct rcu_head rcu;
188 struct list_head list;
189 };
190
191 #ifdef CONFIG_FAIR_GROUP_SCHED
192 /* Default task group's sched entity on each cpu */
193 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
194 /* Default task group's cfs_rq on each cpu */
195 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
196
197 static struct sched_entity *init_sched_entity_p[NR_CPUS];
198 static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
199 #endif
200
201 #ifdef CONFIG_RT_GROUP_SCHED
202 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
203 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
204
205 static struct sched_rt_entity *init_sched_rt_entity_p[NR_CPUS];
206 static struct rt_rq *init_rt_rq_p[NR_CPUS];
207 #endif
208
209 /* task_group_lock serializes add/remove of task groups and also changes to
210 * a task group's cpu shares.
211 */
212 static DEFINE_SPINLOCK(task_group_lock);
213
214 /* doms_cur_mutex serializes access to doms_cur[] array */
215 static DEFINE_MUTEX(doms_cur_mutex);
216
217 #ifdef CONFIG_FAIR_GROUP_SCHED
218 #ifdef CONFIG_USER_SCHED
219 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
220 #else
221 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
222 #endif
223
224 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
225 #endif
226
227 /* Default task group.
228 * Every task in system belong to this group at bootup.
229 */
230 struct task_group init_task_group = {
231 #ifdef CONFIG_FAIR_GROUP_SCHED
232 .se = init_sched_entity_p,
233 .cfs_rq = init_cfs_rq_p,
234 #endif
235
236 #ifdef CONFIG_RT_GROUP_SCHED
237 .rt_se = init_sched_rt_entity_p,
238 .rt_rq = init_rt_rq_p,
239 #endif
240 };
241
242 /* return group to which a task belongs */
243 static inline struct task_group *task_group(struct task_struct *p)
244 {
245 struct task_group *tg;
246
247 #ifdef CONFIG_USER_SCHED
248 tg = p->user->tg;
249 #elif defined(CONFIG_CGROUP_SCHED)
250 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
251 struct task_group, css);
252 #else
253 tg = &init_task_group;
254 #endif
255 return tg;
256 }
257
258 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
259 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
260 {
261 #ifdef CONFIG_FAIR_GROUP_SCHED
262 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
263 p->se.parent = task_group(p)->se[cpu];
264 #endif
265
266 #ifdef CONFIG_RT_GROUP_SCHED
267 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
268 p->rt.parent = task_group(p)->rt_se[cpu];
269 #endif
270 }
271
272 static inline void lock_doms_cur(void)
273 {
274 mutex_lock(&doms_cur_mutex);
275 }
276
277 static inline void unlock_doms_cur(void)
278 {
279 mutex_unlock(&doms_cur_mutex);
280 }
281
282 #else
283
284 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
285 static inline void lock_doms_cur(void) { }
286 static inline void unlock_doms_cur(void) { }
287
288 #endif /* CONFIG_GROUP_SCHED */
289
290 /* CFS-related fields in a runqueue */
291 struct cfs_rq {
292 struct load_weight load;
293 unsigned long nr_running;
294
295 u64 exec_clock;
296 u64 min_vruntime;
297
298 struct rb_root tasks_timeline;
299 struct rb_node *rb_leftmost;
300 struct rb_node *rb_load_balance_curr;
301 /* 'curr' points to currently running entity on this cfs_rq.
302 * It is set to NULL otherwise (i.e when none are currently running).
303 */
304 struct sched_entity *curr, *next;
305
306 unsigned long nr_spread_over;
307
308 #ifdef CONFIG_FAIR_GROUP_SCHED
309 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
310
311 /*
312 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
313 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
314 * (like users, containers etc.)
315 *
316 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
317 * list is used during load balance.
318 */
319 struct list_head leaf_cfs_rq_list;
320 struct task_group *tg; /* group that "owns" this runqueue */
321 #endif
322 };
323
324 /* Real-Time classes' related field in a runqueue: */
325 struct rt_rq {
326 struct rt_prio_array active;
327 unsigned long rt_nr_running;
328 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
329 int highest_prio; /* highest queued rt task prio */
330 #endif
331 #ifdef CONFIG_SMP
332 unsigned long rt_nr_migratory;
333 int overloaded;
334 #endif
335 int rt_throttled;
336 u64 rt_time;
337
338 #ifdef CONFIG_RT_GROUP_SCHED
339 unsigned long rt_nr_boosted;
340
341 struct rq *rq;
342 struct list_head leaf_rt_rq_list;
343 struct task_group *tg;
344 struct sched_rt_entity *rt_se;
345 #endif
346 };
347
348 #ifdef CONFIG_SMP
349
350 /*
351 * We add the notion of a root-domain which will be used to define per-domain
352 * variables. Each exclusive cpuset essentially defines an island domain by
353 * fully partitioning the member cpus from any other cpuset. Whenever a new
354 * exclusive cpuset is created, we also create and attach a new root-domain
355 * object.
356 *
357 */
358 struct root_domain {
359 atomic_t refcount;
360 cpumask_t span;
361 cpumask_t online;
362
363 /*
364 * The "RT overload" flag: it gets set if a CPU has more than
365 * one runnable RT task.
366 */
367 cpumask_t rto_mask;
368 atomic_t rto_count;
369 };
370
371 /*
372 * By default the system creates a single root-domain with all cpus as
373 * members (mimicking the global state we have today).
374 */
375 static struct root_domain def_root_domain;
376
377 #endif
378
379 /*
380 * This is the main, per-CPU runqueue data structure.
381 *
382 * Locking rule: those places that want to lock multiple runqueues
383 * (such as the load balancing or the thread migration code), lock
384 * acquire operations must be ordered by ascending &runqueue.
385 */
386 struct rq {
387 /* runqueue lock: */
388 spinlock_t lock;
389
390 /*
391 * nr_running and cpu_load should be in the same cacheline because
392 * remote CPUs use both these fields when doing load calculation.
393 */
394 unsigned long nr_running;
395 #define CPU_LOAD_IDX_MAX 5
396 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
397 unsigned char idle_at_tick;
398 #ifdef CONFIG_NO_HZ
399 unsigned char in_nohz_recently;
400 #endif
401 /* capture load from *all* tasks on this cpu: */
402 struct load_weight load;
403 unsigned long nr_load_updates;
404 u64 nr_switches;
405
406 struct cfs_rq cfs;
407 struct rt_rq rt;
408 u64 rt_period_expire;
409 int rt_throttled;
410
411 #ifdef CONFIG_FAIR_GROUP_SCHED
412 /* list of leaf cfs_rq on this cpu: */
413 struct list_head leaf_cfs_rq_list;
414 #endif
415 #ifdef CONFIG_RT_GROUP_SCHED
416 struct list_head leaf_rt_rq_list;
417 #endif
418
419 /*
420 * This is part of a global counter where only the total sum
421 * over all CPUs matters. A task can increase this counter on
422 * one CPU and if it got migrated afterwards it may decrease
423 * it on another CPU. Always updated under the runqueue lock:
424 */
425 unsigned long nr_uninterruptible;
426
427 struct task_struct *curr, *idle;
428 unsigned long next_balance;
429 struct mm_struct *prev_mm;
430
431 u64 clock, prev_clock_raw;
432 s64 clock_max_delta;
433
434 unsigned int clock_warps, clock_overflows, clock_underflows;
435 u64 idle_clock;
436 unsigned int clock_deep_idle_events;
437 u64 tick_timestamp;
438
439 atomic_t nr_iowait;
440
441 #ifdef CONFIG_SMP
442 struct root_domain *rd;
443 struct sched_domain *sd;
444
445 /* For active balancing */
446 int active_balance;
447 int push_cpu;
448 /* cpu of this runqueue: */
449 int cpu;
450
451 struct task_struct *migration_thread;
452 struct list_head migration_queue;
453 #endif
454
455 #ifdef CONFIG_SCHED_HRTICK
456 unsigned long hrtick_flags;
457 ktime_t hrtick_expire;
458 struct hrtimer hrtick_timer;
459 #endif
460
461 #ifdef CONFIG_SCHEDSTATS
462 /* latency stats */
463 struct sched_info rq_sched_info;
464
465 /* sys_sched_yield() stats */
466 unsigned int yld_exp_empty;
467 unsigned int yld_act_empty;
468 unsigned int yld_both_empty;
469 unsigned int yld_count;
470
471 /* schedule() stats */
472 unsigned int sched_switch;
473 unsigned int sched_count;
474 unsigned int sched_goidle;
475
476 /* try_to_wake_up() stats */
477 unsigned int ttwu_count;
478 unsigned int ttwu_local;
479
480 /* BKL stats */
481 unsigned int bkl_count;
482 #endif
483 struct lock_class_key rq_lock_key;
484 };
485
486 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
487
488 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
489 {
490 rq->curr->sched_class->check_preempt_curr(rq, p);
491 }
492
493 static inline int cpu_of(struct rq *rq)
494 {
495 #ifdef CONFIG_SMP
496 return rq->cpu;
497 #else
498 return 0;
499 #endif
500 }
501
502 /*
503 * Update the per-runqueue clock, as finegrained as the platform can give
504 * us, but without assuming monotonicity, etc.:
505 */
506 static void __update_rq_clock(struct rq *rq)
507 {
508 u64 prev_raw = rq->prev_clock_raw;
509 u64 now = sched_clock();
510 s64 delta = now - prev_raw;
511 u64 clock = rq->clock;
512
513 #ifdef CONFIG_SCHED_DEBUG
514 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
515 #endif
516 /*
517 * Protect against sched_clock() occasionally going backwards:
518 */
519 if (unlikely(delta < 0)) {
520 clock++;
521 rq->clock_warps++;
522 } else {
523 /*
524 * Catch too large forward jumps too:
525 */
526 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
527 if (clock < rq->tick_timestamp + TICK_NSEC)
528 clock = rq->tick_timestamp + TICK_NSEC;
529 else
530 clock++;
531 rq->clock_overflows++;
532 } else {
533 if (unlikely(delta > rq->clock_max_delta))
534 rq->clock_max_delta = delta;
535 clock += delta;
536 }
537 }
538
539 rq->prev_clock_raw = now;
540 rq->clock = clock;
541 }
542
543 static void update_rq_clock(struct rq *rq)
544 {
545 if (likely(smp_processor_id() == cpu_of(rq)))
546 __update_rq_clock(rq);
547 }
548
549 /*
550 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
551 * See detach_destroy_domains: synchronize_sched for details.
552 *
553 * The domain tree of any CPU may only be accessed from within
554 * preempt-disabled sections.
555 */
556 #define for_each_domain(cpu, __sd) \
557 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
558
559 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
560 #define this_rq() (&__get_cpu_var(runqueues))
561 #define task_rq(p) cpu_rq(task_cpu(p))
562 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
563
564 unsigned long rt_needs_cpu(int cpu)
565 {
566 struct rq *rq = cpu_rq(cpu);
567 u64 delta;
568
569 if (!rq->rt_throttled)
570 return 0;
571
572 if (rq->clock > rq->rt_period_expire)
573 return 1;
574
575 delta = rq->rt_period_expire - rq->clock;
576 do_div(delta, NSEC_PER_SEC / HZ);
577
578 return (unsigned long)delta;
579 }
580
581 /*
582 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
583 */
584 #ifdef CONFIG_SCHED_DEBUG
585 # define const_debug __read_mostly
586 #else
587 # define const_debug static const
588 #endif
589
590 /*
591 * Debugging: various feature bits
592 */
593 enum {
594 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
595 SCHED_FEAT_WAKEUP_PREEMPT = 2,
596 SCHED_FEAT_START_DEBIT = 4,
597 SCHED_FEAT_HRTICK = 8,
598 SCHED_FEAT_DOUBLE_TICK = 16,
599 };
600
601 const_debug unsigned int sysctl_sched_features =
602 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
603 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
604 SCHED_FEAT_START_DEBIT * 1 |
605 SCHED_FEAT_HRTICK * 1 |
606 SCHED_FEAT_DOUBLE_TICK * 0;
607
608 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
609
610 /*
611 * Number of tasks to iterate in a single balance run.
612 * Limited because this is done with IRQs disabled.
613 */
614 const_debug unsigned int sysctl_sched_nr_migrate = 32;
615
616 /*
617 * period over which we measure -rt task cpu usage in us.
618 * default: 1s
619 */
620 unsigned int sysctl_sched_rt_period = 1000000;
621
622 static __read_mostly int scheduler_running;
623
624 /*
625 * part of the period that we allow rt tasks to run in us.
626 * default: 0.95s
627 */
628 int sysctl_sched_rt_runtime = 950000;
629
630 /*
631 * single value that denotes runtime == period, ie unlimited time.
632 */
633 #define RUNTIME_INF ((u64)~0ULL)
634
635 /*
636 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
637 * clock constructed from sched_clock():
638 */
639 unsigned long long cpu_clock(int cpu)
640 {
641 unsigned long long now;
642 unsigned long flags;
643 struct rq *rq;
644
645 /*
646 * Only call sched_clock() if the scheduler has already been
647 * initialized (some code might call cpu_clock() very early):
648 */
649 if (unlikely(!scheduler_running))
650 return 0;
651
652 local_irq_save(flags);
653 rq = cpu_rq(cpu);
654 update_rq_clock(rq);
655 now = rq->clock;
656 local_irq_restore(flags);
657
658 return now;
659 }
660 EXPORT_SYMBOL_GPL(cpu_clock);
661
662 #ifndef prepare_arch_switch
663 # define prepare_arch_switch(next) do { } while (0)
664 #endif
665 #ifndef finish_arch_switch
666 # define finish_arch_switch(prev) do { } while (0)
667 #endif
668
669 static inline int task_current(struct rq *rq, struct task_struct *p)
670 {
671 return rq->curr == p;
672 }
673
674 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
675 static inline int task_running(struct rq *rq, struct task_struct *p)
676 {
677 return task_current(rq, p);
678 }
679
680 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
681 {
682 }
683
684 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
685 {
686 #ifdef CONFIG_DEBUG_SPINLOCK
687 /* this is a valid case when another task releases the spinlock */
688 rq->lock.owner = current;
689 #endif
690 /*
691 * If we are tracking spinlock dependencies then we have to
692 * fix up the runqueue lock - which gets 'carried over' from
693 * prev into current:
694 */
695 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
696
697 spin_unlock_irq(&rq->lock);
698 }
699
700 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
701 static inline int task_running(struct rq *rq, struct task_struct *p)
702 {
703 #ifdef CONFIG_SMP
704 return p->oncpu;
705 #else
706 return task_current(rq, p);
707 #endif
708 }
709
710 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
711 {
712 #ifdef CONFIG_SMP
713 /*
714 * We can optimise this out completely for !SMP, because the
715 * SMP rebalancing from interrupt is the only thing that cares
716 * here.
717 */
718 next->oncpu = 1;
719 #endif
720 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
721 spin_unlock_irq(&rq->lock);
722 #else
723 spin_unlock(&rq->lock);
724 #endif
725 }
726
727 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
728 {
729 #ifdef CONFIG_SMP
730 /*
731 * After ->oncpu is cleared, the task can be moved to a different CPU.
732 * We must ensure this doesn't happen until the switch is completely
733 * finished.
734 */
735 smp_wmb();
736 prev->oncpu = 0;
737 #endif
738 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
739 local_irq_enable();
740 #endif
741 }
742 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
743
744 /*
745 * __task_rq_lock - lock the runqueue a given task resides on.
746 * Must be called interrupts disabled.
747 */
748 static inline struct rq *__task_rq_lock(struct task_struct *p)
749 __acquires(rq->lock)
750 {
751 for (;;) {
752 struct rq *rq = task_rq(p);
753 spin_lock(&rq->lock);
754 if (likely(rq == task_rq(p)))
755 return rq;
756 spin_unlock(&rq->lock);
757 }
758 }
759
760 /*
761 * task_rq_lock - lock the runqueue a given task resides on and disable
762 * interrupts. Note the ordering: we can safely lookup the task_rq without
763 * explicitly disabling preemption.
764 */
765 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
766 __acquires(rq->lock)
767 {
768 struct rq *rq;
769
770 for (;;) {
771 local_irq_save(*flags);
772 rq = task_rq(p);
773 spin_lock(&rq->lock);
774 if (likely(rq == task_rq(p)))
775 return rq;
776 spin_unlock_irqrestore(&rq->lock, *flags);
777 }
778 }
779
780 static void __task_rq_unlock(struct rq *rq)
781 __releases(rq->lock)
782 {
783 spin_unlock(&rq->lock);
784 }
785
786 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
787 __releases(rq->lock)
788 {
789 spin_unlock_irqrestore(&rq->lock, *flags);
790 }
791
792 /*
793 * this_rq_lock - lock this runqueue and disable interrupts.
794 */
795 static struct rq *this_rq_lock(void)
796 __acquires(rq->lock)
797 {
798 struct rq *rq;
799
800 local_irq_disable();
801 rq = this_rq();
802 spin_lock(&rq->lock);
803
804 return rq;
805 }
806
807 /*
808 * We are going deep-idle (irqs are disabled):
809 */
810 void sched_clock_idle_sleep_event(void)
811 {
812 struct rq *rq = cpu_rq(smp_processor_id());
813
814 spin_lock(&rq->lock);
815 __update_rq_clock(rq);
816 spin_unlock(&rq->lock);
817 rq->clock_deep_idle_events++;
818 }
819 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
820
821 /*
822 * We just idled delta nanoseconds (called with irqs disabled):
823 */
824 void sched_clock_idle_wakeup_event(u64 delta_ns)
825 {
826 struct rq *rq = cpu_rq(smp_processor_id());
827 u64 now = sched_clock();
828
829 rq->idle_clock += delta_ns;
830 /*
831 * Override the previous timestamp and ignore all
832 * sched_clock() deltas that occured while we idled,
833 * and use the PM-provided delta_ns to advance the
834 * rq clock:
835 */
836 spin_lock(&rq->lock);
837 rq->prev_clock_raw = now;
838 rq->clock += delta_ns;
839 spin_unlock(&rq->lock);
840 touch_softlockup_watchdog();
841 }
842 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
843
844 static void __resched_task(struct task_struct *p, int tif_bit);
845
846 static inline void resched_task(struct task_struct *p)
847 {
848 __resched_task(p, TIF_NEED_RESCHED);
849 }
850
851 #ifdef CONFIG_SCHED_HRTICK
852 /*
853 * Use HR-timers to deliver accurate preemption points.
854 *
855 * Its all a bit involved since we cannot program an hrt while holding the
856 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
857 * reschedule event.
858 *
859 * When we get rescheduled we reprogram the hrtick_timer outside of the
860 * rq->lock.
861 */
862 static inline void resched_hrt(struct task_struct *p)
863 {
864 __resched_task(p, TIF_HRTICK_RESCHED);
865 }
866
867 static inline void resched_rq(struct rq *rq)
868 {
869 unsigned long flags;
870
871 spin_lock_irqsave(&rq->lock, flags);
872 resched_task(rq->curr);
873 spin_unlock_irqrestore(&rq->lock, flags);
874 }
875
876 enum {
877 HRTICK_SET, /* re-programm hrtick_timer */
878 HRTICK_RESET, /* not a new slice */
879 };
880
881 /*
882 * Use hrtick when:
883 * - enabled by features
884 * - hrtimer is actually high res
885 */
886 static inline int hrtick_enabled(struct rq *rq)
887 {
888 if (!sched_feat(HRTICK))
889 return 0;
890 return hrtimer_is_hres_active(&rq->hrtick_timer);
891 }
892
893 /*
894 * Called to set the hrtick timer state.
895 *
896 * called with rq->lock held and irqs disabled
897 */
898 static void hrtick_start(struct rq *rq, u64 delay, int reset)
899 {
900 assert_spin_locked(&rq->lock);
901
902 /*
903 * preempt at: now + delay
904 */
905 rq->hrtick_expire =
906 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
907 /*
908 * indicate we need to program the timer
909 */
910 __set_bit(HRTICK_SET, &rq->hrtick_flags);
911 if (reset)
912 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
913
914 /*
915 * New slices are called from the schedule path and don't need a
916 * forced reschedule.
917 */
918 if (reset)
919 resched_hrt(rq->curr);
920 }
921
922 static void hrtick_clear(struct rq *rq)
923 {
924 if (hrtimer_active(&rq->hrtick_timer))
925 hrtimer_cancel(&rq->hrtick_timer);
926 }
927
928 /*
929 * Update the timer from the possible pending state.
930 */
931 static void hrtick_set(struct rq *rq)
932 {
933 ktime_t time;
934 int set, reset;
935 unsigned long flags;
936
937 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
938
939 spin_lock_irqsave(&rq->lock, flags);
940 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
941 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
942 time = rq->hrtick_expire;
943 clear_thread_flag(TIF_HRTICK_RESCHED);
944 spin_unlock_irqrestore(&rq->lock, flags);
945
946 if (set) {
947 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
948 if (reset && !hrtimer_active(&rq->hrtick_timer))
949 resched_rq(rq);
950 } else
951 hrtick_clear(rq);
952 }
953
954 /*
955 * High-resolution timer tick.
956 * Runs from hardirq context with interrupts disabled.
957 */
958 static enum hrtimer_restart hrtick(struct hrtimer *timer)
959 {
960 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
961
962 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
963
964 spin_lock(&rq->lock);
965 __update_rq_clock(rq);
966 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
967 spin_unlock(&rq->lock);
968
969 return HRTIMER_NORESTART;
970 }
971
972 static inline void init_rq_hrtick(struct rq *rq)
973 {
974 rq->hrtick_flags = 0;
975 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
976 rq->hrtick_timer.function = hrtick;
977 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
978 }
979
980 void hrtick_resched(void)
981 {
982 struct rq *rq;
983 unsigned long flags;
984
985 if (!test_thread_flag(TIF_HRTICK_RESCHED))
986 return;
987
988 local_irq_save(flags);
989 rq = cpu_rq(smp_processor_id());
990 hrtick_set(rq);
991 local_irq_restore(flags);
992 }
993 #else
994 static inline void hrtick_clear(struct rq *rq)
995 {
996 }
997
998 static inline void hrtick_set(struct rq *rq)
999 {
1000 }
1001
1002 static inline void init_rq_hrtick(struct rq *rq)
1003 {
1004 }
1005
1006 void hrtick_resched(void)
1007 {
1008 }
1009 #endif
1010
1011 /*
1012 * resched_task - mark a task 'to be rescheduled now'.
1013 *
1014 * On UP this means the setting of the need_resched flag, on SMP it
1015 * might also involve a cross-CPU call to trigger the scheduler on
1016 * the target CPU.
1017 */
1018 #ifdef CONFIG_SMP
1019
1020 #ifndef tsk_is_polling
1021 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1022 #endif
1023
1024 static void __resched_task(struct task_struct *p, int tif_bit)
1025 {
1026 int cpu;
1027
1028 assert_spin_locked(&task_rq(p)->lock);
1029
1030 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1031 return;
1032
1033 set_tsk_thread_flag(p, tif_bit);
1034
1035 cpu = task_cpu(p);
1036 if (cpu == smp_processor_id())
1037 return;
1038
1039 /* NEED_RESCHED must be visible before we test polling */
1040 smp_mb();
1041 if (!tsk_is_polling(p))
1042 smp_send_reschedule(cpu);
1043 }
1044
1045 static void resched_cpu(int cpu)
1046 {
1047 struct rq *rq = cpu_rq(cpu);
1048 unsigned long flags;
1049
1050 if (!spin_trylock_irqsave(&rq->lock, flags))
1051 return;
1052 resched_task(cpu_curr(cpu));
1053 spin_unlock_irqrestore(&rq->lock, flags);
1054 }
1055
1056 #ifdef CONFIG_NO_HZ
1057 /*
1058 * When add_timer_on() enqueues a timer into the timer wheel of an
1059 * idle CPU then this timer might expire before the next timer event
1060 * which is scheduled to wake up that CPU. In case of a completely
1061 * idle system the next event might even be infinite time into the
1062 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1063 * leaves the inner idle loop so the newly added timer is taken into
1064 * account when the CPU goes back to idle and evaluates the timer
1065 * wheel for the next timer event.
1066 */
1067 void wake_up_idle_cpu(int cpu)
1068 {
1069 struct rq *rq = cpu_rq(cpu);
1070
1071 if (cpu == smp_processor_id())
1072 return;
1073
1074 /*
1075 * This is safe, as this function is called with the timer
1076 * wheel base lock of (cpu) held. When the CPU is on the way
1077 * to idle and has not yet set rq->curr to idle then it will
1078 * be serialized on the timer wheel base lock and take the new
1079 * timer into account automatically.
1080 */
1081 if (rq->curr != rq->idle)
1082 return;
1083
1084 /*
1085 * We can set TIF_RESCHED on the idle task of the other CPU
1086 * lockless. The worst case is that the other CPU runs the
1087 * idle task through an additional NOOP schedule()
1088 */
1089 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1090
1091 /* NEED_RESCHED must be visible before we test polling */
1092 smp_mb();
1093 if (!tsk_is_polling(rq->idle))
1094 smp_send_reschedule(cpu);
1095 }
1096 #endif
1097
1098 #else
1099 static void __resched_task(struct task_struct *p, int tif_bit)
1100 {
1101 assert_spin_locked(&task_rq(p)->lock);
1102 set_tsk_thread_flag(p, tif_bit);
1103 }
1104 #endif
1105
1106 #if BITS_PER_LONG == 32
1107 # define WMULT_CONST (~0UL)
1108 #else
1109 # define WMULT_CONST (1UL << 32)
1110 #endif
1111
1112 #define WMULT_SHIFT 32
1113
1114 /*
1115 * Shift right and round:
1116 */
1117 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1118
1119 static unsigned long
1120 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1121 struct load_weight *lw)
1122 {
1123 u64 tmp;
1124
1125 if (unlikely(!lw->inv_weight))
1126 lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
1127
1128 tmp = (u64)delta_exec * weight;
1129 /*
1130 * Check whether we'd overflow the 64-bit multiplication:
1131 */
1132 if (unlikely(tmp > WMULT_CONST))
1133 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1134 WMULT_SHIFT/2);
1135 else
1136 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1137
1138 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1139 }
1140
1141 static inline unsigned long
1142 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1143 {
1144 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1145 }
1146
1147 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1148 {
1149 lw->weight += inc;
1150 lw->inv_weight = 0;
1151 }
1152
1153 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1154 {
1155 lw->weight -= dec;
1156 lw->inv_weight = 0;
1157 }
1158
1159 /*
1160 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1161 * of tasks with abnormal "nice" values across CPUs the contribution that
1162 * each task makes to its run queue's load is weighted according to its
1163 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1164 * scaled version of the new time slice allocation that they receive on time
1165 * slice expiry etc.
1166 */
1167
1168 #define WEIGHT_IDLEPRIO 2
1169 #define WMULT_IDLEPRIO (1 << 31)
1170
1171 /*
1172 * Nice levels are multiplicative, with a gentle 10% change for every
1173 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1174 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1175 * that remained on nice 0.
1176 *
1177 * The "10% effect" is relative and cumulative: from _any_ nice level,
1178 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1179 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1180 * If a task goes up by ~10% and another task goes down by ~10% then
1181 * the relative distance between them is ~25%.)
1182 */
1183 static const int prio_to_weight[40] = {
1184 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1185 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1186 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1187 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1188 /* 0 */ 1024, 820, 655, 526, 423,
1189 /* 5 */ 335, 272, 215, 172, 137,
1190 /* 10 */ 110, 87, 70, 56, 45,
1191 /* 15 */ 36, 29, 23, 18, 15,
1192 };
1193
1194 /*
1195 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1196 *
1197 * In cases where the weight does not change often, we can use the
1198 * precalculated inverse to speed up arithmetics by turning divisions
1199 * into multiplications:
1200 */
1201 static const u32 prio_to_wmult[40] = {
1202 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1203 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1204 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1205 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1206 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1207 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1208 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1209 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1210 };
1211
1212 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1213
1214 /*
1215 * runqueue iterator, to support SMP load-balancing between different
1216 * scheduling classes, without having to expose their internal data
1217 * structures to the load-balancing proper:
1218 */
1219 struct rq_iterator {
1220 void *arg;
1221 struct task_struct *(*start)(void *);
1222 struct task_struct *(*next)(void *);
1223 };
1224
1225 #ifdef CONFIG_SMP
1226 static unsigned long
1227 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1228 unsigned long max_load_move, struct sched_domain *sd,
1229 enum cpu_idle_type idle, int *all_pinned,
1230 int *this_best_prio, struct rq_iterator *iterator);
1231
1232 static int
1233 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1234 struct sched_domain *sd, enum cpu_idle_type idle,
1235 struct rq_iterator *iterator);
1236 #endif
1237
1238 #ifdef CONFIG_CGROUP_CPUACCT
1239 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1240 #else
1241 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1242 #endif
1243
1244 #ifdef CONFIG_SMP
1245 static unsigned long source_load(int cpu, int type);
1246 static unsigned long target_load(int cpu, int type);
1247 static unsigned long cpu_avg_load_per_task(int cpu);
1248 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1249 #endif /* CONFIG_SMP */
1250
1251 #include "sched_stats.h"
1252 #include "sched_idletask.c"
1253 #include "sched_fair.c"
1254 #include "sched_rt.c"
1255 #ifdef CONFIG_SCHED_DEBUG
1256 # include "sched_debug.c"
1257 #endif
1258
1259 #define sched_class_highest (&rt_sched_class)
1260
1261 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1262 {
1263 update_load_add(&rq->load, p->se.load.weight);
1264 }
1265
1266 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1267 {
1268 update_load_sub(&rq->load, p->se.load.weight);
1269 }
1270
1271 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1272 {
1273 rq->nr_running++;
1274 inc_load(rq, p);
1275 }
1276
1277 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1278 {
1279 rq->nr_running--;
1280 dec_load(rq, p);
1281 }
1282
1283 static void set_load_weight(struct task_struct *p)
1284 {
1285 if (task_has_rt_policy(p)) {
1286 p->se.load.weight = prio_to_weight[0] * 2;
1287 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1288 return;
1289 }
1290
1291 /*
1292 * SCHED_IDLE tasks get minimal weight:
1293 */
1294 if (p->policy == SCHED_IDLE) {
1295 p->se.load.weight = WEIGHT_IDLEPRIO;
1296 p->se.load.inv_weight = WMULT_IDLEPRIO;
1297 return;
1298 }
1299
1300 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1301 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1302 }
1303
1304 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1305 {
1306 sched_info_queued(p);
1307 p->sched_class->enqueue_task(rq, p, wakeup);
1308 p->se.on_rq = 1;
1309 }
1310
1311 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1312 {
1313 p->sched_class->dequeue_task(rq, p, sleep);
1314 p->se.on_rq = 0;
1315 }
1316
1317 /*
1318 * __normal_prio - return the priority that is based on the static prio
1319 */
1320 static inline int __normal_prio(struct task_struct *p)
1321 {
1322 return p->static_prio;
1323 }
1324
1325 /*
1326 * Calculate the expected normal priority: i.e. priority
1327 * without taking RT-inheritance into account. Might be
1328 * boosted by interactivity modifiers. Changes upon fork,
1329 * setprio syscalls, and whenever the interactivity
1330 * estimator recalculates.
1331 */
1332 static inline int normal_prio(struct task_struct *p)
1333 {
1334 int prio;
1335
1336 if (task_has_rt_policy(p))
1337 prio = MAX_RT_PRIO-1 - p->rt_priority;
1338 else
1339 prio = __normal_prio(p);
1340 return prio;
1341 }
1342
1343 /*
1344 * Calculate the current priority, i.e. the priority
1345 * taken into account by the scheduler. This value might
1346 * be boosted by RT tasks, or might be boosted by
1347 * interactivity modifiers. Will be RT if the task got
1348 * RT-boosted. If not then it returns p->normal_prio.
1349 */
1350 static int effective_prio(struct task_struct *p)
1351 {
1352 p->normal_prio = normal_prio(p);
1353 /*
1354 * If we are RT tasks or we were boosted to RT priority,
1355 * keep the priority unchanged. Otherwise, update priority
1356 * to the normal priority:
1357 */
1358 if (!rt_prio(p->prio))
1359 return p->normal_prio;
1360 return p->prio;
1361 }
1362
1363 /*
1364 * activate_task - move a task to the runqueue.
1365 */
1366 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1367 {
1368 if (task_contributes_to_load(p))
1369 rq->nr_uninterruptible--;
1370
1371 enqueue_task(rq, p, wakeup);
1372 inc_nr_running(p, rq);
1373 }
1374
1375 /*
1376 * deactivate_task - remove a task from the runqueue.
1377 */
1378 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1379 {
1380 if (task_contributes_to_load(p))
1381 rq->nr_uninterruptible++;
1382
1383 dequeue_task(rq, p, sleep);
1384 dec_nr_running(p, rq);
1385 }
1386
1387 /**
1388 * task_curr - is this task currently executing on a CPU?
1389 * @p: the task in question.
1390 */
1391 inline int task_curr(const struct task_struct *p)
1392 {
1393 return cpu_curr(task_cpu(p)) == p;
1394 }
1395
1396 /* Used instead of source_load when we know the type == 0 */
1397 unsigned long weighted_cpuload(const int cpu)
1398 {
1399 return cpu_rq(cpu)->load.weight;
1400 }
1401
1402 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1403 {
1404 set_task_rq(p, cpu);
1405 #ifdef CONFIG_SMP
1406 /*
1407 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1408 * successfuly executed on another CPU. We must ensure that updates of
1409 * per-task data have been completed by this moment.
1410 */
1411 smp_wmb();
1412 task_thread_info(p)->cpu = cpu;
1413 #endif
1414 }
1415
1416 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1417 const struct sched_class *prev_class,
1418 int oldprio, int running)
1419 {
1420 if (prev_class != p->sched_class) {
1421 if (prev_class->switched_from)
1422 prev_class->switched_from(rq, p, running);
1423 p->sched_class->switched_to(rq, p, running);
1424 } else
1425 p->sched_class->prio_changed(rq, p, oldprio, running);
1426 }
1427
1428 #ifdef CONFIG_SMP
1429
1430 /*
1431 * Is this task likely cache-hot:
1432 */
1433 static int
1434 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1435 {
1436 s64 delta;
1437
1438 /*
1439 * Buddy candidates are cache hot:
1440 */
1441 if (&p->se == cfs_rq_of(&p->se)->next)
1442 return 1;
1443
1444 if (p->sched_class != &fair_sched_class)
1445 return 0;
1446
1447 if (sysctl_sched_migration_cost == -1)
1448 return 1;
1449 if (sysctl_sched_migration_cost == 0)
1450 return 0;
1451
1452 delta = now - p->se.exec_start;
1453
1454 return delta < (s64)sysctl_sched_migration_cost;
1455 }
1456
1457
1458 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1459 {
1460 int old_cpu = task_cpu(p);
1461 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1462 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1463 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1464 u64 clock_offset;
1465
1466 clock_offset = old_rq->clock - new_rq->clock;
1467
1468 #ifdef CONFIG_SCHEDSTATS
1469 if (p->se.wait_start)
1470 p->se.wait_start -= clock_offset;
1471 if (p->se.sleep_start)
1472 p->se.sleep_start -= clock_offset;
1473 if (p->se.block_start)
1474 p->se.block_start -= clock_offset;
1475 if (old_cpu != new_cpu) {
1476 schedstat_inc(p, se.nr_migrations);
1477 if (task_hot(p, old_rq->clock, NULL))
1478 schedstat_inc(p, se.nr_forced2_migrations);
1479 }
1480 #endif
1481 p->se.vruntime -= old_cfsrq->min_vruntime -
1482 new_cfsrq->min_vruntime;
1483
1484 __set_task_cpu(p, new_cpu);
1485 }
1486
1487 struct migration_req {
1488 struct list_head list;
1489
1490 struct task_struct *task;
1491 int dest_cpu;
1492
1493 struct completion done;
1494 };
1495
1496 /*
1497 * The task's runqueue lock must be held.
1498 * Returns true if you have to wait for migration thread.
1499 */
1500 static int
1501 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1502 {
1503 struct rq *rq = task_rq(p);
1504
1505 /*
1506 * If the task is not on a runqueue (and not running), then
1507 * it is sufficient to simply update the task's cpu field.
1508 */
1509 if (!p->se.on_rq && !task_running(rq, p)) {
1510 set_task_cpu(p, dest_cpu);
1511 return 0;
1512 }
1513
1514 init_completion(&req->done);
1515 req->task = p;
1516 req->dest_cpu = dest_cpu;
1517 list_add(&req->list, &rq->migration_queue);
1518
1519 return 1;
1520 }
1521
1522 /*
1523 * wait_task_inactive - wait for a thread to unschedule.
1524 *
1525 * The caller must ensure that the task *will* unschedule sometime soon,
1526 * else this function might spin for a *long* time. This function can't
1527 * be called with interrupts off, or it may introduce deadlock with
1528 * smp_call_function() if an IPI is sent by the same process we are
1529 * waiting to become inactive.
1530 */
1531 void wait_task_inactive(struct task_struct *p)
1532 {
1533 unsigned long flags;
1534 int running, on_rq;
1535 struct rq *rq;
1536
1537 for (;;) {
1538 /*
1539 * We do the initial early heuristics without holding
1540 * any task-queue locks at all. We'll only try to get
1541 * the runqueue lock when things look like they will
1542 * work out!
1543 */
1544 rq = task_rq(p);
1545
1546 /*
1547 * If the task is actively running on another CPU
1548 * still, just relax and busy-wait without holding
1549 * any locks.
1550 *
1551 * NOTE! Since we don't hold any locks, it's not
1552 * even sure that "rq" stays as the right runqueue!
1553 * But we don't care, since "task_running()" will
1554 * return false if the runqueue has changed and p
1555 * is actually now running somewhere else!
1556 */
1557 while (task_running(rq, p))
1558 cpu_relax();
1559
1560 /*
1561 * Ok, time to look more closely! We need the rq
1562 * lock now, to be *sure*. If we're wrong, we'll
1563 * just go back and repeat.
1564 */
1565 rq = task_rq_lock(p, &flags);
1566 running = task_running(rq, p);
1567 on_rq = p->se.on_rq;
1568 task_rq_unlock(rq, &flags);
1569
1570 /*
1571 * Was it really running after all now that we
1572 * checked with the proper locks actually held?
1573 *
1574 * Oops. Go back and try again..
1575 */
1576 if (unlikely(running)) {
1577 cpu_relax();
1578 continue;
1579 }
1580
1581 /*
1582 * It's not enough that it's not actively running,
1583 * it must be off the runqueue _entirely_, and not
1584 * preempted!
1585 *
1586 * So if it wa still runnable (but just not actively
1587 * running right now), it's preempted, and we should
1588 * yield - it could be a while.
1589 */
1590 if (unlikely(on_rq)) {
1591 schedule_timeout_uninterruptible(1);
1592 continue;
1593 }
1594
1595 /*
1596 * Ahh, all good. It wasn't running, and it wasn't
1597 * runnable, which means that it will never become
1598 * running in the future either. We're all done!
1599 */
1600 break;
1601 }
1602 }
1603
1604 /***
1605 * kick_process - kick a running thread to enter/exit the kernel
1606 * @p: the to-be-kicked thread
1607 *
1608 * Cause a process which is running on another CPU to enter
1609 * kernel-mode, without any delay. (to get signals handled.)
1610 *
1611 * NOTE: this function doesnt have to take the runqueue lock,
1612 * because all it wants to ensure is that the remote task enters
1613 * the kernel. If the IPI races and the task has been migrated
1614 * to another CPU then no harm is done and the purpose has been
1615 * achieved as well.
1616 */
1617 void kick_process(struct task_struct *p)
1618 {
1619 int cpu;
1620
1621 preempt_disable();
1622 cpu = task_cpu(p);
1623 if ((cpu != smp_processor_id()) && task_curr(p))
1624 smp_send_reschedule(cpu);
1625 preempt_enable();
1626 }
1627
1628 /*
1629 * Return a low guess at the load of a migration-source cpu weighted
1630 * according to the scheduling class and "nice" value.
1631 *
1632 * We want to under-estimate the load of migration sources, to
1633 * balance conservatively.
1634 */
1635 static unsigned long source_load(int cpu, int type)
1636 {
1637 struct rq *rq = cpu_rq(cpu);
1638 unsigned long total = weighted_cpuload(cpu);
1639
1640 if (type == 0)
1641 return total;
1642
1643 return min(rq->cpu_load[type-1], total);
1644 }
1645
1646 /*
1647 * Return a high guess at the load of a migration-target cpu weighted
1648 * according to the scheduling class and "nice" value.
1649 */
1650 static unsigned long target_load(int cpu, int type)
1651 {
1652 struct rq *rq = cpu_rq(cpu);
1653 unsigned long total = weighted_cpuload(cpu);
1654
1655 if (type == 0)
1656 return total;
1657
1658 return max(rq->cpu_load[type-1], total);
1659 }
1660
1661 /*
1662 * Return the average load per task on the cpu's run queue
1663 */
1664 static unsigned long cpu_avg_load_per_task(int cpu)
1665 {
1666 struct rq *rq = cpu_rq(cpu);
1667 unsigned long total = weighted_cpuload(cpu);
1668 unsigned long n = rq->nr_running;
1669
1670 return n ? total / n : SCHED_LOAD_SCALE;
1671 }
1672
1673 /*
1674 * find_idlest_group finds and returns the least busy CPU group within the
1675 * domain.
1676 */
1677 static struct sched_group *
1678 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1679 {
1680 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1681 unsigned long min_load = ULONG_MAX, this_load = 0;
1682 int load_idx = sd->forkexec_idx;
1683 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1684
1685 do {
1686 unsigned long load, avg_load;
1687 int local_group;
1688 int i;
1689
1690 /* Skip over this group if it has no CPUs allowed */
1691 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1692 continue;
1693
1694 local_group = cpu_isset(this_cpu, group->cpumask);
1695
1696 /* Tally up the load of all CPUs in the group */
1697 avg_load = 0;
1698
1699 for_each_cpu_mask(i, group->cpumask) {
1700 /* Bias balancing toward cpus of our domain */
1701 if (local_group)
1702 load = source_load(i, load_idx);
1703 else
1704 load = target_load(i, load_idx);
1705
1706 avg_load += load;
1707 }
1708
1709 /* Adjust by relative CPU power of the group */
1710 avg_load = sg_div_cpu_power(group,
1711 avg_load * SCHED_LOAD_SCALE);
1712
1713 if (local_group) {
1714 this_load = avg_load;
1715 this = group;
1716 } else if (avg_load < min_load) {
1717 min_load = avg_load;
1718 idlest = group;
1719 }
1720 } while (group = group->next, group != sd->groups);
1721
1722 if (!idlest || 100*this_load < imbalance*min_load)
1723 return NULL;
1724 return idlest;
1725 }
1726
1727 /*
1728 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1729 */
1730 static int
1731 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1732 {
1733 cpumask_t tmp;
1734 unsigned long load, min_load = ULONG_MAX;
1735 int idlest = -1;
1736 int i;
1737
1738 /* Traverse only the allowed CPUs */
1739 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1740
1741 for_each_cpu_mask(i, tmp) {
1742 load = weighted_cpuload(i);
1743
1744 if (load < min_load || (load == min_load && i == this_cpu)) {
1745 min_load = load;
1746 idlest = i;
1747 }
1748 }
1749
1750 return idlest;
1751 }
1752
1753 /*
1754 * sched_balance_self: balance the current task (running on cpu) in domains
1755 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1756 * SD_BALANCE_EXEC.
1757 *
1758 * Balance, ie. select the least loaded group.
1759 *
1760 * Returns the target CPU number, or the same CPU if no balancing is needed.
1761 *
1762 * preempt must be disabled.
1763 */
1764 static int sched_balance_self(int cpu, int flag)
1765 {
1766 struct task_struct *t = current;
1767 struct sched_domain *tmp, *sd = NULL;
1768
1769 for_each_domain(cpu, tmp) {
1770 /*
1771 * If power savings logic is enabled for a domain, stop there.
1772 */
1773 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1774 break;
1775 if (tmp->flags & flag)
1776 sd = tmp;
1777 }
1778
1779 while (sd) {
1780 cpumask_t span;
1781 struct sched_group *group;
1782 int new_cpu, weight;
1783
1784 if (!(sd->flags & flag)) {
1785 sd = sd->child;
1786 continue;
1787 }
1788
1789 span = sd->span;
1790 group = find_idlest_group(sd, t, cpu);
1791 if (!group) {
1792 sd = sd->child;
1793 continue;
1794 }
1795
1796 new_cpu = find_idlest_cpu(group, t, cpu);
1797 if (new_cpu == -1 || new_cpu == cpu) {
1798 /* Now try balancing at a lower domain level of cpu */
1799 sd = sd->child;
1800 continue;
1801 }
1802
1803 /* Now try balancing at a lower domain level of new_cpu */
1804 cpu = new_cpu;
1805 sd = NULL;
1806 weight = cpus_weight(span);
1807 for_each_domain(cpu, tmp) {
1808 if (weight <= cpus_weight(tmp->span))
1809 break;
1810 if (tmp->flags & flag)
1811 sd = tmp;
1812 }
1813 /* while loop will break here if sd == NULL */
1814 }
1815
1816 return cpu;
1817 }
1818
1819 #endif /* CONFIG_SMP */
1820
1821 /***
1822 * try_to_wake_up - wake up a thread
1823 * @p: the to-be-woken-up thread
1824 * @state: the mask of task states that can be woken
1825 * @sync: do a synchronous wakeup?
1826 *
1827 * Put it on the run-queue if it's not already there. The "current"
1828 * thread is always on the run-queue (except when the actual
1829 * re-schedule is in progress), and as such you're allowed to do
1830 * the simpler "current->state = TASK_RUNNING" to mark yourself
1831 * runnable without the overhead of this.
1832 *
1833 * returns failure only if the task is already active.
1834 */
1835 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1836 {
1837 int cpu, orig_cpu, this_cpu, success = 0;
1838 unsigned long flags;
1839 long old_state;
1840 struct rq *rq;
1841
1842 smp_wmb();
1843 rq = task_rq_lock(p, &flags);
1844 old_state = p->state;
1845 if (!(old_state & state))
1846 goto out;
1847
1848 if (p->se.on_rq)
1849 goto out_running;
1850
1851 cpu = task_cpu(p);
1852 orig_cpu = cpu;
1853 this_cpu = smp_processor_id();
1854
1855 #ifdef CONFIG_SMP
1856 if (unlikely(task_running(rq, p)))
1857 goto out_activate;
1858
1859 cpu = p->sched_class->select_task_rq(p, sync);
1860 if (cpu != orig_cpu) {
1861 set_task_cpu(p, cpu);
1862 task_rq_unlock(rq, &flags);
1863 /* might preempt at this point */
1864 rq = task_rq_lock(p, &flags);
1865 old_state = p->state;
1866 if (!(old_state & state))
1867 goto out;
1868 if (p->se.on_rq)
1869 goto out_running;
1870
1871 this_cpu = smp_processor_id();
1872 cpu = task_cpu(p);
1873 }
1874
1875 #ifdef CONFIG_SCHEDSTATS
1876 schedstat_inc(rq, ttwu_count);
1877 if (cpu == this_cpu)
1878 schedstat_inc(rq, ttwu_local);
1879 else {
1880 struct sched_domain *sd;
1881 for_each_domain(this_cpu, sd) {
1882 if (cpu_isset(cpu, sd->span)) {
1883 schedstat_inc(sd, ttwu_wake_remote);
1884 break;
1885 }
1886 }
1887 }
1888 #endif
1889
1890 out_activate:
1891 #endif /* CONFIG_SMP */
1892 schedstat_inc(p, se.nr_wakeups);
1893 if (sync)
1894 schedstat_inc(p, se.nr_wakeups_sync);
1895 if (orig_cpu != cpu)
1896 schedstat_inc(p, se.nr_wakeups_migrate);
1897 if (cpu == this_cpu)
1898 schedstat_inc(p, se.nr_wakeups_local);
1899 else
1900 schedstat_inc(p, se.nr_wakeups_remote);
1901 update_rq_clock(rq);
1902 activate_task(rq, p, 1);
1903 success = 1;
1904
1905 out_running:
1906 check_preempt_curr(rq, p);
1907
1908 p->state = TASK_RUNNING;
1909 #ifdef CONFIG_SMP
1910 if (p->sched_class->task_wake_up)
1911 p->sched_class->task_wake_up(rq, p);
1912 #endif
1913 out:
1914 task_rq_unlock(rq, &flags);
1915
1916 return success;
1917 }
1918
1919 int wake_up_process(struct task_struct *p)
1920 {
1921 return try_to_wake_up(p, TASK_ALL, 0);
1922 }
1923 EXPORT_SYMBOL(wake_up_process);
1924
1925 int wake_up_state(struct task_struct *p, unsigned int state)
1926 {
1927 return try_to_wake_up(p, state, 0);
1928 }
1929
1930 /*
1931 * Perform scheduler related setup for a newly forked process p.
1932 * p is forked by current.
1933 *
1934 * __sched_fork() is basic setup used by init_idle() too:
1935 */
1936 static void __sched_fork(struct task_struct *p)
1937 {
1938 p->se.exec_start = 0;
1939 p->se.sum_exec_runtime = 0;
1940 p->se.prev_sum_exec_runtime = 0;
1941 p->se.last_wakeup = 0;
1942 p->se.avg_overlap = 0;
1943
1944 #ifdef CONFIG_SCHEDSTATS
1945 p->se.wait_start = 0;
1946 p->se.sum_sleep_runtime = 0;
1947 p->se.sleep_start = 0;
1948 p->se.block_start = 0;
1949 p->se.sleep_max = 0;
1950 p->se.block_max = 0;
1951 p->se.exec_max = 0;
1952 p->se.slice_max = 0;
1953 p->se.wait_max = 0;
1954 #endif
1955
1956 INIT_LIST_HEAD(&p->rt.run_list);
1957 p->se.on_rq = 0;
1958
1959 #ifdef CONFIG_PREEMPT_NOTIFIERS
1960 INIT_HLIST_HEAD(&p->preempt_notifiers);
1961 #endif
1962
1963 /*
1964 * We mark the process as running here, but have not actually
1965 * inserted it onto the runqueue yet. This guarantees that
1966 * nobody will actually run it, and a signal or other external
1967 * event cannot wake it up and insert it on the runqueue either.
1968 */
1969 p->state = TASK_RUNNING;
1970 }
1971
1972 /*
1973 * fork()/clone()-time setup:
1974 */
1975 void sched_fork(struct task_struct *p, int clone_flags)
1976 {
1977 int cpu = get_cpu();
1978
1979 __sched_fork(p);
1980
1981 #ifdef CONFIG_SMP
1982 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1983 #endif
1984 set_task_cpu(p, cpu);
1985
1986 /*
1987 * Make sure we do not leak PI boosting priority to the child:
1988 */
1989 p->prio = current->normal_prio;
1990 if (!rt_prio(p->prio))
1991 p->sched_class = &fair_sched_class;
1992
1993 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1994 if (likely(sched_info_on()))
1995 memset(&p->sched_info, 0, sizeof(p->sched_info));
1996 #endif
1997 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1998 p->oncpu = 0;
1999 #endif
2000 #ifdef CONFIG_PREEMPT
2001 /* Want to start with kernel preemption disabled. */
2002 task_thread_info(p)->preempt_count = 1;
2003 #endif
2004 put_cpu();
2005 }
2006
2007 /*
2008 * wake_up_new_task - wake up a newly created task for the first time.
2009 *
2010 * This function will do some initial scheduler statistics housekeeping
2011 * that must be done for every newly created context, then puts the task
2012 * on the runqueue and wakes it.
2013 */
2014 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2015 {
2016 unsigned long flags;
2017 struct rq *rq;
2018
2019 rq = task_rq_lock(p, &flags);
2020 BUG_ON(p->state != TASK_RUNNING);
2021 update_rq_clock(rq);
2022
2023 p->prio = effective_prio(p);
2024
2025 if (!p->sched_class->task_new || !current->se.on_rq) {
2026 activate_task(rq, p, 0);
2027 } else {
2028 /*
2029 * Let the scheduling class do new task startup
2030 * management (if any):
2031 */
2032 p->sched_class->task_new(rq, p);
2033 inc_nr_running(p, rq);
2034 }
2035 check_preempt_curr(rq, p);
2036 #ifdef CONFIG_SMP
2037 if (p->sched_class->task_wake_up)
2038 p->sched_class->task_wake_up(rq, p);
2039 #endif
2040 task_rq_unlock(rq, &flags);
2041 }
2042
2043 #ifdef CONFIG_PREEMPT_NOTIFIERS
2044
2045 /**
2046 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2047 * @notifier: notifier struct to register
2048 */
2049 void preempt_notifier_register(struct preempt_notifier *notifier)
2050 {
2051 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2052 }
2053 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2054
2055 /**
2056 * preempt_notifier_unregister - no longer interested in preemption notifications
2057 * @notifier: notifier struct to unregister
2058 *
2059 * This is safe to call from within a preemption notifier.
2060 */
2061 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2062 {
2063 hlist_del(&notifier->link);
2064 }
2065 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2066
2067 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2068 {
2069 struct preempt_notifier *notifier;
2070 struct hlist_node *node;
2071
2072 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2073 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2074 }
2075
2076 static void
2077 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2078 struct task_struct *next)
2079 {
2080 struct preempt_notifier *notifier;
2081 struct hlist_node *node;
2082
2083 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2084 notifier->ops->sched_out(notifier, next);
2085 }
2086
2087 #else
2088
2089 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2090 {
2091 }
2092
2093 static void
2094 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2095 struct task_struct *next)
2096 {
2097 }
2098
2099 #endif
2100
2101 /**
2102 * prepare_task_switch - prepare to switch tasks
2103 * @rq: the runqueue preparing to switch
2104 * @prev: the current task that is being switched out
2105 * @next: the task we are going to switch to.
2106 *
2107 * This is called with the rq lock held and interrupts off. It must
2108 * be paired with a subsequent finish_task_switch after the context
2109 * switch.
2110 *
2111 * prepare_task_switch sets up locking and calls architecture specific
2112 * hooks.
2113 */
2114 static inline void
2115 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2116 struct task_struct *next)
2117 {
2118 fire_sched_out_preempt_notifiers(prev, next);
2119 prepare_lock_switch(rq, next);
2120 prepare_arch_switch(next);
2121 }
2122
2123 /**
2124 * finish_task_switch - clean up after a task-switch
2125 * @rq: runqueue associated with task-switch
2126 * @prev: the thread we just switched away from.
2127 *
2128 * finish_task_switch must be called after the context switch, paired
2129 * with a prepare_task_switch call before the context switch.
2130 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2131 * and do any other architecture-specific cleanup actions.
2132 *
2133 * Note that we may have delayed dropping an mm in context_switch(). If
2134 * so, we finish that here outside of the runqueue lock. (Doing it
2135 * with the lock held can cause deadlocks; see schedule() for
2136 * details.)
2137 */
2138 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2139 __releases(rq->lock)
2140 {
2141 struct mm_struct *mm = rq->prev_mm;
2142 long prev_state;
2143
2144 rq->prev_mm = NULL;
2145
2146 /*
2147 * A task struct has one reference for the use as "current".
2148 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2149 * schedule one last time. The schedule call will never return, and
2150 * the scheduled task must drop that reference.
2151 * The test for TASK_DEAD must occur while the runqueue locks are
2152 * still held, otherwise prev could be scheduled on another cpu, die
2153 * there before we look at prev->state, and then the reference would
2154 * be dropped twice.
2155 * Manfred Spraul <manfred@colorfullife.com>
2156 */
2157 prev_state = prev->state;
2158 finish_arch_switch(prev);
2159 finish_lock_switch(rq, prev);
2160 #ifdef CONFIG_SMP
2161 if (current->sched_class->post_schedule)
2162 current->sched_class->post_schedule(rq);
2163 #endif
2164
2165 fire_sched_in_preempt_notifiers(current);
2166 if (mm)
2167 mmdrop(mm);
2168 if (unlikely(prev_state == TASK_DEAD)) {
2169 /*
2170 * Remove function-return probe instances associated with this
2171 * task and put them back on the free list.
2172 */
2173 kprobe_flush_task(prev);
2174 put_task_struct(prev);
2175 }
2176 }
2177
2178 /**
2179 * schedule_tail - first thing a freshly forked thread must call.
2180 * @prev: the thread we just switched away from.
2181 */
2182 asmlinkage void schedule_tail(struct task_struct *prev)
2183 __releases(rq->lock)
2184 {
2185 struct rq *rq = this_rq();
2186
2187 finish_task_switch(rq, prev);
2188 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2189 /* In this case, finish_task_switch does not reenable preemption */
2190 preempt_enable();
2191 #endif
2192 if (current->set_child_tid)
2193 put_user(task_pid_vnr(current), current->set_child_tid);
2194 }
2195
2196 /*
2197 * context_switch - switch to the new MM and the new
2198 * thread's register state.
2199 */
2200 static inline void
2201 context_switch(struct rq *rq, struct task_struct *prev,
2202 struct task_struct *next)
2203 {
2204 struct mm_struct *mm, *oldmm;
2205
2206 prepare_task_switch(rq, prev, next);
2207 mm = next->mm;
2208 oldmm = prev->active_mm;
2209 /*
2210 * For paravirt, this is coupled with an exit in switch_to to
2211 * combine the page table reload and the switch backend into
2212 * one hypercall.
2213 */
2214 arch_enter_lazy_cpu_mode();
2215
2216 if (unlikely(!mm)) {
2217 next->active_mm = oldmm;
2218 atomic_inc(&oldmm->mm_count);
2219 enter_lazy_tlb(oldmm, next);
2220 } else
2221 switch_mm(oldmm, mm, next);
2222
2223 if (unlikely(!prev->mm)) {
2224 prev->active_mm = NULL;
2225 rq->prev_mm = oldmm;
2226 }
2227 /*
2228 * Since the runqueue lock will be released by the next
2229 * task (which is an invalid locking op but in the case
2230 * of the scheduler it's an obvious special-case), so we
2231 * do an early lockdep release here:
2232 */
2233 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2234 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2235 #endif
2236
2237 /* Here we just switch the register state and the stack. */
2238 switch_to(prev, next, prev);
2239
2240 barrier();
2241 /*
2242 * this_rq must be evaluated again because prev may have moved
2243 * CPUs since it called schedule(), thus the 'rq' on its stack
2244 * frame will be invalid.
2245 */
2246 finish_task_switch(this_rq(), prev);
2247 }
2248
2249 /*
2250 * nr_running, nr_uninterruptible and nr_context_switches:
2251 *
2252 * externally visible scheduler statistics: current number of runnable
2253 * threads, current number of uninterruptible-sleeping threads, total
2254 * number of context switches performed since bootup.
2255 */
2256 unsigned long nr_running(void)
2257 {
2258 unsigned long i, sum = 0;
2259
2260 for_each_online_cpu(i)
2261 sum += cpu_rq(i)->nr_running;
2262
2263 return sum;
2264 }
2265
2266 unsigned long nr_uninterruptible(void)
2267 {
2268 unsigned long i, sum = 0;
2269
2270 for_each_possible_cpu(i)
2271 sum += cpu_rq(i)->nr_uninterruptible;
2272
2273 /*
2274 * Since we read the counters lockless, it might be slightly
2275 * inaccurate. Do not allow it to go below zero though:
2276 */
2277 if (unlikely((long)sum < 0))
2278 sum = 0;
2279
2280 return sum;
2281 }
2282
2283 unsigned long long nr_context_switches(void)
2284 {
2285 int i;
2286 unsigned long long sum = 0;
2287
2288 for_each_possible_cpu(i)
2289 sum += cpu_rq(i)->nr_switches;
2290
2291 return sum;
2292 }
2293
2294 unsigned long nr_iowait(void)
2295 {
2296 unsigned long i, sum = 0;
2297
2298 for_each_possible_cpu(i)
2299 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2300
2301 return sum;
2302 }
2303
2304 unsigned long nr_active(void)
2305 {
2306 unsigned long i, running = 0, uninterruptible = 0;
2307
2308 for_each_online_cpu(i) {
2309 running += cpu_rq(i)->nr_running;
2310 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2311 }
2312
2313 if (unlikely((long)uninterruptible < 0))
2314 uninterruptible = 0;
2315
2316 return running + uninterruptible;
2317 }
2318
2319 /*
2320 * Update rq->cpu_load[] statistics. This function is usually called every
2321 * scheduler tick (TICK_NSEC).
2322 */
2323 static void update_cpu_load(struct rq *this_rq)
2324 {
2325 unsigned long this_load = this_rq->load.weight;
2326 int i, scale;
2327
2328 this_rq->nr_load_updates++;
2329
2330 /* Update our load: */
2331 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2332 unsigned long old_load, new_load;
2333
2334 /* scale is effectively 1 << i now, and >> i divides by scale */
2335
2336 old_load = this_rq->cpu_load[i];
2337 new_load = this_load;
2338 /*
2339 * Round up the averaging division if load is increasing. This
2340 * prevents us from getting stuck on 9 if the load is 10, for
2341 * example.
2342 */
2343 if (new_load > old_load)
2344 new_load += scale-1;
2345 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2346 }
2347 }
2348
2349 #ifdef CONFIG_SMP
2350
2351 /*
2352 * double_rq_lock - safely lock two runqueues
2353 *
2354 * Note this does not disable interrupts like task_rq_lock,
2355 * you need to do so manually before calling.
2356 */
2357 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2358 __acquires(rq1->lock)
2359 __acquires(rq2->lock)
2360 {
2361 BUG_ON(!irqs_disabled());
2362 if (rq1 == rq2) {
2363 spin_lock(&rq1->lock);
2364 __acquire(rq2->lock); /* Fake it out ;) */
2365 } else {
2366 if (rq1 < rq2) {
2367 spin_lock(&rq1->lock);
2368 spin_lock(&rq2->lock);
2369 } else {
2370 spin_lock(&rq2->lock);
2371 spin_lock(&rq1->lock);
2372 }
2373 }
2374 update_rq_clock(rq1);
2375 update_rq_clock(rq2);
2376 }
2377
2378 /*
2379 * double_rq_unlock - safely unlock two runqueues
2380 *
2381 * Note this does not restore interrupts like task_rq_unlock,
2382 * you need to do so manually after calling.
2383 */
2384 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2385 __releases(rq1->lock)
2386 __releases(rq2->lock)
2387 {
2388 spin_unlock(&rq1->lock);
2389 if (rq1 != rq2)
2390 spin_unlock(&rq2->lock);
2391 else
2392 __release(rq2->lock);
2393 }
2394
2395 /*
2396 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2397 */
2398 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2399 __releases(this_rq->lock)
2400 __acquires(busiest->lock)
2401 __acquires(this_rq->lock)
2402 {
2403 int ret = 0;
2404
2405 if (unlikely(!irqs_disabled())) {
2406 /* printk() doesn't work good under rq->lock */
2407 spin_unlock(&this_rq->lock);
2408 BUG_ON(1);
2409 }
2410 if (unlikely(!spin_trylock(&busiest->lock))) {
2411 if (busiest < this_rq) {
2412 spin_unlock(&this_rq->lock);
2413 spin_lock(&busiest->lock);
2414 spin_lock(&this_rq->lock);
2415 ret = 1;
2416 } else
2417 spin_lock(&busiest->lock);
2418 }
2419 return ret;
2420 }
2421
2422 /*
2423 * If dest_cpu is allowed for this process, migrate the task to it.
2424 * This is accomplished by forcing the cpu_allowed mask to only
2425 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2426 * the cpu_allowed mask is restored.
2427 */
2428 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2429 {
2430 struct migration_req req;
2431 unsigned long flags;
2432 struct rq *rq;
2433
2434 rq = task_rq_lock(p, &flags);
2435 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2436 || unlikely(cpu_is_offline(dest_cpu)))
2437 goto out;
2438
2439 /* force the process onto the specified CPU */
2440 if (migrate_task(p, dest_cpu, &req)) {
2441 /* Need to wait for migration thread (might exit: take ref). */
2442 struct task_struct *mt = rq->migration_thread;
2443
2444 get_task_struct(mt);
2445 task_rq_unlock(rq, &flags);
2446 wake_up_process(mt);
2447 put_task_struct(mt);
2448 wait_for_completion(&req.done);
2449
2450 return;
2451 }
2452 out:
2453 task_rq_unlock(rq, &flags);
2454 }
2455
2456 /*
2457 * sched_exec - execve() is a valuable balancing opportunity, because at
2458 * this point the task has the smallest effective memory and cache footprint.
2459 */
2460 void sched_exec(void)
2461 {
2462 int new_cpu, this_cpu = get_cpu();
2463 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2464 put_cpu();
2465 if (new_cpu != this_cpu)
2466 sched_migrate_task(current, new_cpu);
2467 }
2468
2469 /*
2470 * pull_task - move a task from a remote runqueue to the local runqueue.
2471 * Both runqueues must be locked.
2472 */
2473 static void pull_task(struct rq *src_rq, struct task_struct *p,
2474 struct rq *this_rq, int this_cpu)
2475 {
2476 deactivate_task(src_rq, p, 0);
2477 set_task_cpu(p, this_cpu);
2478 activate_task(this_rq, p, 0);
2479 /*
2480 * Note that idle threads have a prio of MAX_PRIO, for this test
2481 * to be always true for them.
2482 */
2483 check_preempt_curr(this_rq, p);
2484 }
2485
2486 /*
2487 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2488 */
2489 static
2490 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2491 struct sched_domain *sd, enum cpu_idle_type idle,
2492 int *all_pinned)
2493 {
2494 /*
2495 * We do not migrate tasks that are:
2496 * 1) running (obviously), or
2497 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2498 * 3) are cache-hot on their current CPU.
2499 */
2500 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2501 schedstat_inc(p, se.nr_failed_migrations_affine);
2502 return 0;
2503 }
2504 *all_pinned = 0;
2505
2506 if (task_running(rq, p)) {
2507 schedstat_inc(p, se.nr_failed_migrations_running);
2508 return 0;
2509 }
2510
2511 /*
2512 * Aggressive migration if:
2513 * 1) task is cache cold, or
2514 * 2) too many balance attempts have failed.
2515 */
2516
2517 if (!task_hot(p, rq->clock, sd) ||
2518 sd->nr_balance_failed > sd->cache_nice_tries) {
2519 #ifdef CONFIG_SCHEDSTATS
2520 if (task_hot(p, rq->clock, sd)) {
2521 schedstat_inc(sd, lb_hot_gained[idle]);
2522 schedstat_inc(p, se.nr_forced_migrations);
2523 }
2524 #endif
2525 return 1;
2526 }
2527
2528 if (task_hot(p, rq->clock, sd)) {
2529 schedstat_inc(p, se.nr_failed_migrations_hot);
2530 return 0;
2531 }
2532 return 1;
2533 }
2534
2535 static unsigned long
2536 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2537 unsigned long max_load_move, struct sched_domain *sd,
2538 enum cpu_idle_type idle, int *all_pinned,
2539 int *this_best_prio, struct rq_iterator *iterator)
2540 {
2541 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2542 struct task_struct *p;
2543 long rem_load_move = max_load_move;
2544
2545 if (max_load_move == 0)
2546 goto out;
2547
2548 pinned = 1;
2549
2550 /*
2551 * Start the load-balancing iterator:
2552 */
2553 p = iterator->start(iterator->arg);
2554 next:
2555 if (!p || loops++ > sysctl_sched_nr_migrate)
2556 goto out;
2557 /*
2558 * To help distribute high priority tasks across CPUs we don't
2559 * skip a task if it will be the highest priority task (i.e. smallest
2560 * prio value) on its new queue regardless of its load weight
2561 */
2562 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2563 SCHED_LOAD_SCALE_FUZZ;
2564 if ((skip_for_load && p->prio >= *this_best_prio) ||
2565 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2566 p = iterator->next(iterator->arg);
2567 goto next;
2568 }
2569
2570 pull_task(busiest, p, this_rq, this_cpu);
2571 pulled++;
2572 rem_load_move -= p->se.load.weight;
2573
2574 /*
2575 * We only want to steal up to the prescribed amount of weighted load.
2576 */
2577 if (rem_load_move > 0) {
2578 if (p->prio < *this_best_prio)
2579 *this_best_prio = p->prio;
2580 p = iterator->next(iterator->arg);
2581 goto next;
2582 }
2583 out:
2584 /*
2585 * Right now, this is one of only two places pull_task() is called,
2586 * so we can safely collect pull_task() stats here rather than
2587 * inside pull_task().
2588 */
2589 schedstat_add(sd, lb_gained[idle], pulled);
2590
2591 if (all_pinned)
2592 *all_pinned = pinned;
2593
2594 return max_load_move - rem_load_move;
2595 }
2596
2597 /*
2598 * move_tasks tries to move up to max_load_move weighted load from busiest to
2599 * this_rq, as part of a balancing operation within domain "sd".
2600 * Returns 1 if successful and 0 otherwise.
2601 *
2602 * Called with both runqueues locked.
2603 */
2604 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2605 unsigned long max_load_move,
2606 struct sched_domain *sd, enum cpu_idle_type idle,
2607 int *all_pinned)
2608 {
2609 const struct sched_class *class = sched_class_highest;
2610 unsigned long total_load_moved = 0;
2611 int this_best_prio = this_rq->curr->prio;
2612
2613 do {
2614 total_load_moved +=
2615 class->load_balance(this_rq, this_cpu, busiest,
2616 max_load_move - total_load_moved,
2617 sd, idle, all_pinned, &this_best_prio);
2618 class = class->next;
2619 } while (class && max_load_move > total_load_moved);
2620
2621 return total_load_moved > 0;
2622 }
2623
2624 static int
2625 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2626 struct sched_domain *sd, enum cpu_idle_type idle,
2627 struct rq_iterator *iterator)
2628 {
2629 struct task_struct *p = iterator->start(iterator->arg);
2630 int pinned = 0;
2631
2632 while (p) {
2633 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2634 pull_task(busiest, p, this_rq, this_cpu);
2635 /*
2636 * Right now, this is only the second place pull_task()
2637 * is called, so we can safely collect pull_task()
2638 * stats here rather than inside pull_task().
2639 */
2640 schedstat_inc(sd, lb_gained[idle]);
2641
2642 return 1;
2643 }
2644 p = iterator->next(iterator->arg);
2645 }
2646
2647 return 0;
2648 }
2649
2650 /*
2651 * move_one_task tries to move exactly one task from busiest to this_rq, as
2652 * part of active balancing operations within "domain".
2653 * Returns 1 if successful and 0 otherwise.
2654 *
2655 * Called with both runqueues locked.
2656 */
2657 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2658 struct sched_domain *sd, enum cpu_idle_type idle)
2659 {
2660 const struct sched_class *class;
2661
2662 for (class = sched_class_highest; class; class = class->next)
2663 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2664 return 1;
2665
2666 return 0;
2667 }
2668
2669 /*
2670 * find_busiest_group finds and returns the busiest CPU group within the
2671 * domain. It calculates and returns the amount of weighted load which
2672 * should be moved to restore balance via the imbalance parameter.
2673 */
2674 static struct sched_group *
2675 find_busiest_group(struct sched_domain *sd, int this_cpu,
2676 unsigned long *imbalance, enum cpu_idle_type idle,
2677 int *sd_idle, cpumask_t *cpus, int *balance)
2678 {
2679 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2680 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2681 unsigned long max_pull;
2682 unsigned long busiest_load_per_task, busiest_nr_running;
2683 unsigned long this_load_per_task, this_nr_running;
2684 int load_idx, group_imb = 0;
2685 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2686 int power_savings_balance = 1;
2687 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2688 unsigned long min_nr_running = ULONG_MAX;
2689 struct sched_group *group_min = NULL, *group_leader = NULL;
2690 #endif
2691
2692 max_load = this_load = total_load = total_pwr = 0;
2693 busiest_load_per_task = busiest_nr_running = 0;
2694 this_load_per_task = this_nr_running = 0;
2695 if (idle == CPU_NOT_IDLE)
2696 load_idx = sd->busy_idx;
2697 else if (idle == CPU_NEWLY_IDLE)
2698 load_idx = sd->newidle_idx;
2699 else
2700 load_idx = sd->idle_idx;
2701
2702 do {
2703 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2704 int local_group;
2705 int i;
2706 int __group_imb = 0;
2707 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2708 unsigned long sum_nr_running, sum_weighted_load;
2709
2710 local_group = cpu_isset(this_cpu, group->cpumask);
2711
2712 if (local_group)
2713 balance_cpu = first_cpu(group->cpumask);
2714
2715 /* Tally up the load of all CPUs in the group */
2716 sum_weighted_load = sum_nr_running = avg_load = 0;
2717 max_cpu_load = 0;
2718 min_cpu_load = ~0UL;
2719
2720 for_each_cpu_mask(i, group->cpumask) {
2721 struct rq *rq;
2722
2723 if (!cpu_isset(i, *cpus))
2724 continue;
2725
2726 rq = cpu_rq(i);
2727
2728 if (*sd_idle && rq->nr_running)
2729 *sd_idle = 0;
2730
2731 /* Bias balancing toward cpus of our domain */
2732 if (local_group) {
2733 if (idle_cpu(i) && !first_idle_cpu) {
2734 first_idle_cpu = 1;
2735 balance_cpu = i;
2736 }
2737
2738 load = target_load(i, load_idx);
2739 } else {
2740 load = source_load(i, load_idx);
2741 if (load > max_cpu_load)
2742 max_cpu_load = load;
2743 if (min_cpu_load > load)
2744 min_cpu_load = load;
2745 }
2746
2747 avg_load += load;
2748 sum_nr_running += rq->nr_running;
2749 sum_weighted_load += weighted_cpuload(i);
2750 }
2751
2752 /*
2753 * First idle cpu or the first cpu(busiest) in this sched group
2754 * is eligible for doing load balancing at this and above
2755 * domains. In the newly idle case, we will allow all the cpu's
2756 * to do the newly idle load balance.
2757 */
2758 if (idle != CPU_NEWLY_IDLE && local_group &&
2759 balance_cpu != this_cpu && balance) {
2760 *balance = 0;
2761 goto ret;
2762 }
2763
2764 total_load += avg_load;
2765 total_pwr += group->__cpu_power;
2766
2767 /* Adjust by relative CPU power of the group */
2768 avg_load = sg_div_cpu_power(group,
2769 avg_load * SCHED_LOAD_SCALE);
2770
2771 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2772 __group_imb = 1;
2773
2774 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2775
2776 if (local_group) {
2777 this_load = avg_load;
2778 this = group;
2779 this_nr_running = sum_nr_running;
2780 this_load_per_task = sum_weighted_load;
2781 } else if (avg_load > max_load &&
2782 (sum_nr_running > group_capacity || __group_imb)) {
2783 max_load = avg_load;
2784 busiest = group;
2785 busiest_nr_running = sum_nr_running;
2786 busiest_load_per_task = sum_weighted_load;
2787 group_imb = __group_imb;
2788 }
2789
2790 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2791 /*
2792 * Busy processors will not participate in power savings
2793 * balance.
2794 */
2795 if (idle == CPU_NOT_IDLE ||
2796 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2797 goto group_next;
2798
2799 /*
2800 * If the local group is idle or completely loaded
2801 * no need to do power savings balance at this domain
2802 */
2803 if (local_group && (this_nr_running >= group_capacity ||
2804 !this_nr_running))
2805 power_savings_balance = 0;
2806
2807 /*
2808 * If a group is already running at full capacity or idle,
2809 * don't include that group in power savings calculations
2810 */
2811 if (!power_savings_balance || sum_nr_running >= group_capacity
2812 || !sum_nr_running)
2813 goto group_next;
2814
2815 /*
2816 * Calculate the group which has the least non-idle load.
2817 * This is the group from where we need to pick up the load
2818 * for saving power
2819 */
2820 if ((sum_nr_running < min_nr_running) ||
2821 (sum_nr_running == min_nr_running &&
2822 first_cpu(group->cpumask) <
2823 first_cpu(group_min->cpumask))) {
2824 group_min = group;
2825 min_nr_running = sum_nr_running;
2826 min_load_per_task = sum_weighted_load /
2827 sum_nr_running;
2828 }
2829
2830 /*
2831 * Calculate the group which is almost near its
2832 * capacity but still has some space to pick up some load
2833 * from other group and save more power
2834 */
2835 if (sum_nr_running <= group_capacity - 1) {
2836 if (sum_nr_running > leader_nr_running ||
2837 (sum_nr_running == leader_nr_running &&
2838 first_cpu(group->cpumask) >
2839 first_cpu(group_leader->cpumask))) {
2840 group_leader = group;
2841 leader_nr_running = sum_nr_running;
2842 }
2843 }
2844 group_next:
2845 #endif
2846 group = group->next;
2847 } while (group != sd->groups);
2848
2849 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2850 goto out_balanced;
2851
2852 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2853
2854 if (this_load >= avg_load ||
2855 100*max_load <= sd->imbalance_pct*this_load)
2856 goto out_balanced;
2857
2858 busiest_load_per_task /= busiest_nr_running;
2859 if (group_imb)
2860 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2861
2862 /*
2863 * We're trying to get all the cpus to the average_load, so we don't
2864 * want to push ourselves above the average load, nor do we wish to
2865 * reduce the max loaded cpu below the average load, as either of these
2866 * actions would just result in more rebalancing later, and ping-pong
2867 * tasks around. Thus we look for the minimum possible imbalance.
2868 * Negative imbalances (*we* are more loaded than anyone else) will
2869 * be counted as no imbalance for these purposes -- we can't fix that
2870 * by pulling tasks to us. Be careful of negative numbers as they'll
2871 * appear as very large values with unsigned longs.
2872 */
2873 if (max_load <= busiest_load_per_task)
2874 goto out_balanced;
2875
2876 /*
2877 * In the presence of smp nice balancing, certain scenarios can have
2878 * max load less than avg load(as we skip the groups at or below
2879 * its cpu_power, while calculating max_load..)
2880 */
2881 if (max_load < avg_load) {
2882 *imbalance = 0;
2883 goto small_imbalance;
2884 }
2885
2886 /* Don't want to pull so many tasks that a group would go idle */
2887 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2888
2889 /* How much load to actually move to equalise the imbalance */
2890 *imbalance = min(max_pull * busiest->__cpu_power,
2891 (avg_load - this_load) * this->__cpu_power)
2892 / SCHED_LOAD_SCALE;
2893
2894 /*
2895 * if *imbalance is less than the average load per runnable task
2896 * there is no gaurantee that any tasks will be moved so we'll have
2897 * a think about bumping its value to force at least one task to be
2898 * moved
2899 */
2900 if (*imbalance < busiest_load_per_task) {
2901 unsigned long tmp, pwr_now, pwr_move;
2902 unsigned int imbn;
2903
2904 small_imbalance:
2905 pwr_move = pwr_now = 0;
2906 imbn = 2;
2907 if (this_nr_running) {
2908 this_load_per_task /= this_nr_running;
2909 if (busiest_load_per_task > this_load_per_task)
2910 imbn = 1;
2911 } else
2912 this_load_per_task = SCHED_LOAD_SCALE;
2913
2914 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2915 busiest_load_per_task * imbn) {
2916 *imbalance = busiest_load_per_task;
2917 return busiest;
2918 }
2919
2920 /*
2921 * OK, we don't have enough imbalance to justify moving tasks,
2922 * however we may be able to increase total CPU power used by
2923 * moving them.
2924 */
2925
2926 pwr_now += busiest->__cpu_power *
2927 min(busiest_load_per_task, max_load);
2928 pwr_now += this->__cpu_power *
2929 min(this_load_per_task, this_load);
2930 pwr_now /= SCHED_LOAD_SCALE;
2931
2932 /* Amount of load we'd subtract */
2933 tmp = sg_div_cpu_power(busiest,
2934 busiest_load_per_task * SCHED_LOAD_SCALE);
2935 if (max_load > tmp)
2936 pwr_move += busiest->__cpu_power *
2937 min(busiest_load_per_task, max_load - tmp);
2938
2939 /* Amount of load we'd add */
2940 if (max_load * busiest->__cpu_power <
2941 busiest_load_per_task * SCHED_LOAD_SCALE)
2942 tmp = sg_div_cpu_power(this,
2943 max_load * busiest->__cpu_power);
2944 else
2945 tmp = sg_div_cpu_power(this,
2946 busiest_load_per_task * SCHED_LOAD_SCALE);
2947 pwr_move += this->__cpu_power *
2948 min(this_load_per_task, this_load + tmp);
2949 pwr_move /= SCHED_LOAD_SCALE;
2950
2951 /* Move if we gain throughput */
2952 if (pwr_move > pwr_now)
2953 *imbalance = busiest_load_per_task;
2954 }
2955
2956 return busiest;
2957
2958 out_balanced:
2959 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2960 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2961 goto ret;
2962
2963 if (this == group_leader && group_leader != group_min) {
2964 *imbalance = min_load_per_task;
2965 return group_min;
2966 }
2967 #endif
2968 ret:
2969 *imbalance = 0;
2970 return NULL;
2971 }
2972
2973 /*
2974 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2975 */
2976 static struct rq *
2977 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2978 unsigned long imbalance, cpumask_t *cpus)
2979 {
2980 struct rq *busiest = NULL, *rq;
2981 unsigned long max_load = 0;
2982 int i;
2983
2984 for_each_cpu_mask(i, group->cpumask) {
2985 unsigned long wl;
2986
2987 if (!cpu_isset(i, *cpus))
2988 continue;
2989
2990 rq = cpu_rq(i);
2991 wl = weighted_cpuload(i);
2992
2993 if (rq->nr_running == 1 && wl > imbalance)
2994 continue;
2995
2996 if (wl > max_load) {
2997 max_load = wl;
2998 busiest = rq;
2999 }
3000 }
3001
3002 return busiest;
3003 }
3004
3005 /*
3006 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3007 * so long as it is large enough.
3008 */
3009 #define MAX_PINNED_INTERVAL 512
3010
3011 /*
3012 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3013 * tasks if there is an imbalance.
3014 */
3015 static int load_balance(int this_cpu, struct rq *this_rq,
3016 struct sched_domain *sd, enum cpu_idle_type idle,
3017 int *balance)
3018 {
3019 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3020 struct sched_group *group;
3021 unsigned long imbalance;
3022 struct rq *busiest;
3023 cpumask_t cpus = CPU_MASK_ALL;
3024 unsigned long flags;
3025
3026 /*
3027 * When power savings policy is enabled for the parent domain, idle
3028 * sibling can pick up load irrespective of busy siblings. In this case,
3029 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3030 * portraying it as CPU_NOT_IDLE.
3031 */
3032 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3033 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3034 sd_idle = 1;
3035
3036 schedstat_inc(sd, lb_count[idle]);
3037
3038 redo:
3039 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3040 &cpus, balance);
3041
3042 if (*balance == 0)
3043 goto out_balanced;
3044
3045 if (!group) {
3046 schedstat_inc(sd, lb_nobusyg[idle]);
3047 goto out_balanced;
3048 }
3049
3050 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
3051 if (!busiest) {
3052 schedstat_inc(sd, lb_nobusyq[idle]);
3053 goto out_balanced;
3054 }
3055
3056 BUG_ON(busiest == this_rq);
3057
3058 schedstat_add(sd, lb_imbalance[idle], imbalance);
3059
3060 ld_moved = 0;
3061 if (busiest->nr_running > 1) {
3062 /*
3063 * Attempt to move tasks. If find_busiest_group has found
3064 * an imbalance but busiest->nr_running <= 1, the group is
3065 * still unbalanced. ld_moved simply stays zero, so it is
3066 * correctly treated as an imbalance.
3067 */
3068 local_irq_save(flags);
3069 double_rq_lock(this_rq, busiest);
3070 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3071 imbalance, sd, idle, &all_pinned);
3072 double_rq_unlock(this_rq, busiest);
3073 local_irq_restore(flags);
3074
3075 /*
3076 * some other cpu did the load balance for us.
3077 */
3078 if (ld_moved && this_cpu != smp_processor_id())
3079 resched_cpu(this_cpu);
3080
3081 /* All tasks on this runqueue were pinned by CPU affinity */
3082 if (unlikely(all_pinned)) {
3083 cpu_clear(cpu_of(busiest), cpus);
3084 if (!cpus_empty(cpus))
3085 goto redo;
3086 goto out_balanced;
3087 }
3088 }
3089
3090 if (!ld_moved) {
3091 schedstat_inc(sd, lb_failed[idle]);
3092 sd->nr_balance_failed++;
3093
3094 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3095
3096 spin_lock_irqsave(&busiest->lock, flags);
3097
3098 /* don't kick the migration_thread, if the curr
3099 * task on busiest cpu can't be moved to this_cpu
3100 */
3101 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3102 spin_unlock_irqrestore(&busiest->lock, flags);
3103 all_pinned = 1;
3104 goto out_one_pinned;
3105 }
3106
3107 if (!busiest->active_balance) {
3108 busiest->active_balance = 1;
3109 busiest->push_cpu = this_cpu;
3110 active_balance = 1;
3111 }
3112 spin_unlock_irqrestore(&busiest->lock, flags);
3113 if (active_balance)
3114 wake_up_process(busiest->migration_thread);
3115
3116 /*
3117 * We've kicked active balancing, reset the failure
3118 * counter.
3119 */
3120 sd->nr_balance_failed = sd->cache_nice_tries+1;
3121 }
3122 } else
3123 sd->nr_balance_failed = 0;
3124
3125 if (likely(!active_balance)) {
3126 /* We were unbalanced, so reset the balancing interval */
3127 sd->balance_interval = sd->min_interval;
3128 } else {
3129 /*
3130 * If we've begun active balancing, start to back off. This
3131 * case may not be covered by the all_pinned logic if there
3132 * is only 1 task on the busy runqueue (because we don't call
3133 * move_tasks).
3134 */
3135 if (sd->balance_interval < sd->max_interval)
3136 sd->balance_interval *= 2;
3137 }
3138
3139 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3140 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3141 return -1;
3142 return ld_moved;
3143
3144 out_balanced:
3145 schedstat_inc(sd, lb_balanced[idle]);
3146
3147 sd->nr_balance_failed = 0;
3148
3149 out_one_pinned:
3150 /* tune up the balancing interval */
3151 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3152 (sd->balance_interval < sd->max_interval))
3153 sd->balance_interval *= 2;
3154
3155 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3156 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3157 return -1;
3158 return 0;
3159 }
3160
3161 /*
3162 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3163 * tasks if there is an imbalance.
3164 *
3165 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3166 * this_rq is locked.
3167 */
3168 static int
3169 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
3170 {
3171 struct sched_group *group;
3172 struct rq *busiest = NULL;
3173 unsigned long imbalance;
3174 int ld_moved = 0;
3175 int sd_idle = 0;
3176 int all_pinned = 0;
3177 cpumask_t cpus = CPU_MASK_ALL;
3178
3179 /*
3180 * When power savings policy is enabled for the parent domain, idle
3181 * sibling can pick up load irrespective of busy siblings. In this case,
3182 * let the state of idle sibling percolate up as IDLE, instead of
3183 * portraying it as CPU_NOT_IDLE.
3184 */
3185 if (sd->flags & SD_SHARE_CPUPOWER &&
3186 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3187 sd_idle = 1;
3188
3189 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3190 redo:
3191 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3192 &sd_idle, &cpus, NULL);
3193 if (!group) {
3194 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3195 goto out_balanced;
3196 }
3197
3198 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
3199 &cpus);
3200 if (!busiest) {
3201 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3202 goto out_balanced;
3203 }
3204
3205 BUG_ON(busiest == this_rq);
3206
3207 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3208
3209 ld_moved = 0;
3210 if (busiest->nr_running > 1) {
3211 /* Attempt to move tasks */
3212 double_lock_balance(this_rq, busiest);
3213 /* this_rq->clock is already updated */
3214 update_rq_clock(busiest);
3215 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3216 imbalance, sd, CPU_NEWLY_IDLE,
3217 &all_pinned);
3218 spin_unlock(&busiest->lock);
3219
3220 if (unlikely(all_pinned)) {
3221 cpu_clear(cpu_of(busiest), cpus);
3222 if (!cpus_empty(cpus))
3223 goto redo;
3224 }
3225 }
3226
3227 if (!ld_moved) {
3228 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3229 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3230 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3231 return -1;
3232 } else
3233 sd->nr_balance_failed = 0;
3234
3235 return ld_moved;
3236
3237 out_balanced:
3238 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3239 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3240 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3241 return -1;
3242 sd->nr_balance_failed = 0;
3243
3244 return 0;
3245 }
3246
3247 /*
3248 * idle_balance is called by schedule() if this_cpu is about to become
3249 * idle. Attempts to pull tasks from other CPUs.
3250 */
3251 static void idle_balance(int this_cpu, struct rq *this_rq)
3252 {
3253 struct sched_domain *sd;
3254 int pulled_task = -1;
3255 unsigned long next_balance = jiffies + HZ;
3256
3257 for_each_domain(this_cpu, sd) {
3258 unsigned long interval;
3259
3260 if (!(sd->flags & SD_LOAD_BALANCE))
3261 continue;
3262
3263 if (sd->flags & SD_BALANCE_NEWIDLE)
3264 /* If we've pulled tasks over stop searching: */
3265 pulled_task = load_balance_newidle(this_cpu,
3266 this_rq, sd);
3267
3268 interval = msecs_to_jiffies(sd->balance_interval);
3269 if (time_after(next_balance, sd->last_balance + interval))
3270 next_balance = sd->last_balance + interval;
3271 if (pulled_task)
3272 break;
3273 }
3274 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3275 /*
3276 * We are going idle. next_balance may be set based on
3277 * a busy processor. So reset next_balance.
3278 */
3279 this_rq->next_balance = next_balance;
3280 }
3281 }
3282
3283 /*
3284 * active_load_balance is run by migration threads. It pushes running tasks
3285 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3286 * running on each physical CPU where possible, and avoids physical /
3287 * logical imbalances.
3288 *
3289 * Called with busiest_rq locked.
3290 */
3291 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3292 {
3293 int target_cpu = busiest_rq->push_cpu;
3294 struct sched_domain *sd;
3295 struct rq *target_rq;
3296
3297 /* Is there any task to move? */
3298 if (busiest_rq->nr_running <= 1)
3299 return;
3300
3301 target_rq = cpu_rq(target_cpu);
3302
3303 /*
3304 * This condition is "impossible", if it occurs
3305 * we need to fix it. Originally reported by
3306 * Bjorn Helgaas on a 128-cpu setup.
3307 */
3308 BUG_ON(busiest_rq == target_rq);
3309
3310 /* move a task from busiest_rq to target_rq */
3311 double_lock_balance(busiest_rq, target_rq);
3312 update_rq_clock(busiest_rq);
3313 update_rq_clock(target_rq);
3314
3315 /* Search for an sd spanning us and the target CPU. */
3316 for_each_domain(target_cpu, sd) {
3317 if ((sd->flags & SD_LOAD_BALANCE) &&
3318 cpu_isset(busiest_cpu, sd->span))
3319 break;
3320 }
3321
3322 if (likely(sd)) {
3323 schedstat_inc(sd, alb_count);
3324
3325 if (move_one_task(target_rq, target_cpu, busiest_rq,
3326 sd, CPU_IDLE))
3327 schedstat_inc(sd, alb_pushed);
3328 else
3329 schedstat_inc(sd, alb_failed);
3330 }
3331 spin_unlock(&target_rq->lock);
3332 }
3333
3334 #ifdef CONFIG_NO_HZ
3335 static struct {
3336 atomic_t load_balancer;
3337 cpumask_t cpu_mask;
3338 } nohz ____cacheline_aligned = {
3339 .load_balancer = ATOMIC_INIT(-1),
3340 .cpu_mask = CPU_MASK_NONE,
3341 };
3342
3343 /*
3344 * This routine will try to nominate the ilb (idle load balancing)
3345 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3346 * load balancing on behalf of all those cpus. If all the cpus in the system
3347 * go into this tickless mode, then there will be no ilb owner (as there is
3348 * no need for one) and all the cpus will sleep till the next wakeup event
3349 * arrives...
3350 *
3351 * For the ilb owner, tick is not stopped. And this tick will be used
3352 * for idle load balancing. ilb owner will still be part of
3353 * nohz.cpu_mask..
3354 *
3355 * While stopping the tick, this cpu will become the ilb owner if there
3356 * is no other owner. And will be the owner till that cpu becomes busy
3357 * or if all cpus in the system stop their ticks at which point
3358 * there is no need for ilb owner.
3359 *
3360 * When the ilb owner becomes busy, it nominates another owner, during the
3361 * next busy scheduler_tick()
3362 */
3363 int select_nohz_load_balancer(int stop_tick)
3364 {
3365 int cpu = smp_processor_id();
3366
3367 if (stop_tick) {
3368 cpu_set(cpu, nohz.cpu_mask);
3369 cpu_rq(cpu)->in_nohz_recently = 1;
3370
3371 /*
3372 * If we are going offline and still the leader, give up!
3373 */
3374 if (cpu_is_offline(cpu) &&
3375 atomic_read(&nohz.load_balancer) == cpu) {
3376 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3377 BUG();
3378 return 0;
3379 }
3380
3381 /* time for ilb owner also to sleep */
3382 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3383 if (atomic_read(&nohz.load_balancer) == cpu)
3384 atomic_set(&nohz.load_balancer, -1);
3385 return 0;
3386 }
3387
3388 if (atomic_read(&nohz.load_balancer) == -1) {
3389 /* make me the ilb owner */
3390 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3391 return 1;
3392 } else if (atomic_read(&nohz.load_balancer) == cpu)
3393 return 1;
3394 } else {
3395 if (!cpu_isset(cpu, nohz.cpu_mask))
3396 return 0;
3397
3398 cpu_clear(cpu, nohz.cpu_mask);
3399
3400 if (atomic_read(&nohz.load_balancer) == cpu)
3401 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3402 BUG();
3403 }
3404 return 0;
3405 }
3406 #endif
3407
3408 static DEFINE_SPINLOCK(balancing);
3409
3410 /*
3411 * It checks each scheduling domain to see if it is due to be balanced,
3412 * and initiates a balancing operation if so.
3413 *
3414 * Balancing parameters are set up in arch_init_sched_domains.
3415 */
3416 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3417 {
3418 int balance = 1;
3419 struct rq *rq = cpu_rq(cpu);
3420 unsigned long interval;
3421 struct sched_domain *sd;
3422 /* Earliest time when we have to do rebalance again */
3423 unsigned long next_balance = jiffies + 60*HZ;
3424 int update_next_balance = 0;
3425
3426 for_each_domain(cpu, sd) {
3427 if (!(sd->flags & SD_LOAD_BALANCE))
3428 continue;
3429
3430 interval = sd->balance_interval;
3431 if (idle != CPU_IDLE)
3432 interval *= sd->busy_factor;
3433
3434 /* scale ms to jiffies */
3435 interval = msecs_to_jiffies(interval);
3436 if (unlikely(!interval))
3437 interval = 1;
3438 if (interval > HZ*NR_CPUS/10)
3439 interval = HZ*NR_CPUS/10;
3440
3441
3442 if (sd->flags & SD_SERIALIZE) {
3443 if (!spin_trylock(&balancing))
3444 goto out;
3445 }
3446
3447 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3448 if (load_balance(cpu, rq, sd, idle, &balance)) {
3449 /*
3450 * We've pulled tasks over so either we're no
3451 * longer idle, or one of our SMT siblings is
3452 * not idle.
3453 */
3454 idle = CPU_NOT_IDLE;
3455 }
3456 sd->last_balance = jiffies;
3457 }
3458 if (sd->flags & SD_SERIALIZE)
3459 spin_unlock(&balancing);
3460 out:
3461 if (time_after(next_balance, sd->last_balance + interval)) {
3462 next_balance = sd->last_balance + interval;
3463 update_next_balance = 1;
3464 }
3465
3466 /*
3467 * Stop the load balance at this level. There is another
3468 * CPU in our sched group which is doing load balancing more
3469 * actively.
3470 */
3471 if (!balance)
3472 break;
3473 }
3474
3475 /*
3476 * next_balance will be updated only when there is a need.
3477 * When the cpu is attached to null domain for ex, it will not be
3478 * updated.
3479 */
3480 if (likely(update_next_balance))
3481 rq->next_balance = next_balance;
3482 }
3483
3484 /*
3485 * run_rebalance_domains is triggered when needed from the scheduler tick.
3486 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3487 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3488 */
3489 static void run_rebalance_domains(struct softirq_action *h)
3490 {
3491 int this_cpu = smp_processor_id();
3492 struct rq *this_rq = cpu_rq(this_cpu);
3493 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3494 CPU_IDLE : CPU_NOT_IDLE;
3495
3496 rebalance_domains(this_cpu, idle);
3497
3498 #ifdef CONFIG_NO_HZ
3499 /*
3500 * If this cpu is the owner for idle load balancing, then do the
3501 * balancing on behalf of the other idle cpus whose ticks are
3502 * stopped.
3503 */
3504 if (this_rq->idle_at_tick &&
3505 atomic_read(&nohz.load_balancer) == this_cpu) {
3506 cpumask_t cpus = nohz.cpu_mask;
3507 struct rq *rq;
3508 int balance_cpu;
3509
3510 cpu_clear(this_cpu, cpus);
3511 for_each_cpu_mask(balance_cpu, cpus) {
3512 /*
3513 * If this cpu gets work to do, stop the load balancing
3514 * work being done for other cpus. Next load
3515 * balancing owner will pick it up.
3516 */
3517 if (need_resched())
3518 break;
3519
3520 rebalance_domains(balance_cpu, CPU_IDLE);
3521
3522 rq = cpu_rq(balance_cpu);
3523 if (time_after(this_rq->next_balance, rq->next_balance))
3524 this_rq->next_balance = rq->next_balance;
3525 }
3526 }
3527 #endif
3528 }
3529
3530 /*
3531 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3532 *
3533 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3534 * idle load balancing owner or decide to stop the periodic load balancing,
3535 * if the whole system is idle.
3536 */
3537 static inline void trigger_load_balance(struct rq *rq, int cpu)
3538 {
3539 #ifdef CONFIG_NO_HZ
3540 /*
3541 * If we were in the nohz mode recently and busy at the current
3542 * scheduler tick, then check if we need to nominate new idle
3543 * load balancer.
3544 */
3545 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3546 rq->in_nohz_recently = 0;
3547
3548 if (atomic_read(&nohz.load_balancer) == cpu) {
3549 cpu_clear(cpu, nohz.cpu_mask);
3550 atomic_set(&nohz.load_balancer, -1);
3551 }
3552
3553 if (atomic_read(&nohz.load_balancer) == -1) {
3554 /*
3555 * simple selection for now: Nominate the
3556 * first cpu in the nohz list to be the next
3557 * ilb owner.
3558 *
3559 * TBD: Traverse the sched domains and nominate
3560 * the nearest cpu in the nohz.cpu_mask.
3561 */
3562 int ilb = first_cpu(nohz.cpu_mask);
3563
3564 if (ilb != NR_CPUS)
3565 resched_cpu(ilb);
3566 }
3567 }
3568
3569 /*
3570 * If this cpu is idle and doing idle load balancing for all the
3571 * cpus with ticks stopped, is it time for that to stop?
3572 */
3573 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3574 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3575 resched_cpu(cpu);
3576 return;
3577 }
3578
3579 /*
3580 * If this cpu is idle and the idle load balancing is done by
3581 * someone else, then no need raise the SCHED_SOFTIRQ
3582 */
3583 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3584 cpu_isset(cpu, nohz.cpu_mask))
3585 return;
3586 #endif
3587 if (time_after_eq(jiffies, rq->next_balance))
3588 raise_softirq(SCHED_SOFTIRQ);
3589 }
3590
3591 #else /* CONFIG_SMP */
3592
3593 /*
3594 * on UP we do not need to balance between CPUs:
3595 */
3596 static inline void idle_balance(int cpu, struct rq *rq)
3597 {
3598 }
3599
3600 #endif
3601
3602 DEFINE_PER_CPU(struct kernel_stat, kstat);
3603
3604 EXPORT_PER_CPU_SYMBOL(kstat);
3605
3606 /*
3607 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3608 * that have not yet been banked in case the task is currently running.
3609 */
3610 unsigned long long task_sched_runtime(struct task_struct *p)
3611 {
3612 unsigned long flags;
3613 u64 ns, delta_exec;
3614 struct rq *rq;
3615
3616 rq = task_rq_lock(p, &flags);
3617 ns = p->se.sum_exec_runtime;
3618 if (task_current(rq, p)) {
3619 update_rq_clock(rq);
3620 delta_exec = rq->clock - p->se.exec_start;
3621 if ((s64)delta_exec > 0)
3622 ns += delta_exec;
3623 }
3624 task_rq_unlock(rq, &flags);
3625
3626 return ns;
3627 }
3628
3629 /*
3630 * Account user cpu time to a process.
3631 * @p: the process that the cpu time gets accounted to
3632 * @cputime: the cpu time spent in user space since the last update
3633 */
3634 void account_user_time(struct task_struct *p, cputime_t cputime)
3635 {
3636 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3637 cputime64_t tmp;
3638
3639 p->utime = cputime_add(p->utime, cputime);
3640
3641 /* Add user time to cpustat. */
3642 tmp = cputime_to_cputime64(cputime);
3643 if (TASK_NICE(p) > 0)
3644 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3645 else
3646 cpustat->user = cputime64_add(cpustat->user, tmp);
3647 }
3648
3649 /*
3650 * Account guest cpu time to a process.
3651 * @p: the process that the cpu time gets accounted to
3652 * @cputime: the cpu time spent in virtual machine since the last update
3653 */
3654 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3655 {
3656 cputime64_t tmp;
3657 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3658
3659 tmp = cputime_to_cputime64(cputime);
3660
3661 p->utime = cputime_add(p->utime, cputime);
3662 p->gtime = cputime_add(p->gtime, cputime);
3663
3664 cpustat->user = cputime64_add(cpustat->user, tmp);
3665 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3666 }
3667
3668 /*
3669 * Account scaled user cpu time to a process.
3670 * @p: the process that the cpu time gets accounted to
3671 * @cputime: the cpu time spent in user space since the last update
3672 */
3673 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3674 {
3675 p->utimescaled = cputime_add(p->utimescaled, cputime);
3676 }
3677
3678 /*
3679 * Account system cpu time to a process.
3680 * @p: the process that the cpu time gets accounted to
3681 * @hardirq_offset: the offset to subtract from hardirq_count()
3682 * @cputime: the cpu time spent in kernel space since the last update
3683 */
3684 void account_system_time(struct task_struct *p, int hardirq_offset,
3685 cputime_t cputime)
3686 {
3687 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3688 struct rq *rq = this_rq();
3689 cputime64_t tmp;
3690
3691 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3692 return account_guest_time(p, cputime);
3693
3694 p->stime = cputime_add(p->stime, cputime);
3695
3696 /* Add system time to cpustat. */
3697 tmp = cputime_to_cputime64(cputime);
3698 if (hardirq_count() - hardirq_offset)
3699 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3700 else if (softirq_count())
3701 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3702 else if (p != rq->idle)
3703 cpustat->system = cputime64_add(cpustat->system, tmp);
3704 else if (atomic_read(&rq->nr_iowait) > 0)
3705 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3706 else
3707 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3708 /* Account for system time used */
3709 acct_update_integrals(p);
3710 }
3711
3712 /*
3713 * Account scaled system cpu time to a process.
3714 * @p: the process that the cpu time gets accounted to
3715 * @hardirq_offset: the offset to subtract from hardirq_count()
3716 * @cputime: the cpu time spent in kernel space since the last update
3717 */
3718 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3719 {
3720 p->stimescaled = cputime_add(p->stimescaled, cputime);
3721 }
3722
3723 /*
3724 * Account for involuntary wait time.
3725 * @p: the process from which the cpu time has been stolen
3726 * @steal: the cpu time spent in involuntary wait
3727 */
3728 void account_steal_time(struct task_struct *p, cputime_t steal)
3729 {
3730 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3731 cputime64_t tmp = cputime_to_cputime64(steal);
3732 struct rq *rq = this_rq();
3733
3734 if (p == rq->idle) {
3735 p->stime = cputime_add(p->stime, steal);
3736 if (atomic_read(&rq->nr_iowait) > 0)
3737 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3738 else
3739 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3740 } else
3741 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3742 }
3743
3744 /*
3745 * This function gets called by the timer code, with HZ frequency.
3746 * We call it with interrupts disabled.
3747 *
3748 * It also gets called by the fork code, when changing the parent's
3749 * timeslices.
3750 */
3751 void scheduler_tick(void)
3752 {
3753 int cpu = smp_processor_id();
3754 struct rq *rq = cpu_rq(cpu);
3755 struct task_struct *curr = rq->curr;
3756 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3757
3758 spin_lock(&rq->lock);
3759 __update_rq_clock(rq);
3760 /*
3761 * Let rq->clock advance by at least TICK_NSEC:
3762 */
3763 if (unlikely(rq->clock < next_tick)) {
3764 rq->clock = next_tick;
3765 rq->clock_underflows++;
3766 }
3767 rq->tick_timestamp = rq->clock;
3768 update_cpu_load(rq);
3769 curr->sched_class->task_tick(rq, curr, 0);
3770 update_sched_rt_period(rq);
3771 spin_unlock(&rq->lock);
3772
3773 #ifdef CONFIG_SMP
3774 rq->idle_at_tick = idle_cpu(cpu);
3775 trigger_load_balance(rq, cpu);
3776 #endif
3777 }
3778
3779 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3780
3781 void __kprobes add_preempt_count(int val)
3782 {
3783 /*
3784 * Underflow?
3785 */
3786 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3787 return;
3788 preempt_count() += val;
3789 /*
3790 * Spinlock count overflowing soon?
3791 */
3792 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3793 PREEMPT_MASK - 10);
3794 }
3795 EXPORT_SYMBOL(add_preempt_count);
3796
3797 void __kprobes sub_preempt_count(int val)
3798 {
3799 /*
3800 * Underflow?
3801 */
3802 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3803 return;
3804 /*
3805 * Is the spinlock portion underflowing?
3806 */
3807 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3808 !(preempt_count() & PREEMPT_MASK)))
3809 return;
3810
3811 preempt_count() -= val;
3812 }
3813 EXPORT_SYMBOL(sub_preempt_count);
3814
3815 #endif
3816
3817 /*
3818 * Print scheduling while atomic bug:
3819 */
3820 static noinline void __schedule_bug(struct task_struct *prev)
3821 {
3822 struct pt_regs *regs = get_irq_regs();
3823
3824 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3825 prev->comm, prev->pid, preempt_count());
3826
3827 debug_show_held_locks(prev);
3828 if (irqs_disabled())
3829 print_irqtrace_events(prev);
3830
3831 if (regs)
3832 show_regs(regs);
3833 else
3834 dump_stack();
3835 }
3836
3837 /*
3838 * Various schedule()-time debugging checks and statistics:
3839 */
3840 static inline void schedule_debug(struct task_struct *prev)
3841 {
3842 /*
3843 * Test if we are atomic. Since do_exit() needs to call into
3844 * schedule() atomically, we ignore that path for now.
3845 * Otherwise, whine if we are scheduling when we should not be.
3846 */
3847 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3848 __schedule_bug(prev);
3849
3850 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3851
3852 schedstat_inc(this_rq(), sched_count);
3853 #ifdef CONFIG_SCHEDSTATS
3854 if (unlikely(prev->lock_depth >= 0)) {
3855 schedstat_inc(this_rq(), bkl_count);
3856 schedstat_inc(prev, sched_info.bkl_count);
3857 }
3858 #endif
3859 }
3860
3861 /*
3862 * Pick up the highest-prio task:
3863 */
3864 static inline struct task_struct *
3865 pick_next_task(struct rq *rq, struct task_struct *prev)
3866 {
3867 const struct sched_class *class;
3868 struct task_struct *p;
3869
3870 /*
3871 * Optimization: we know that if all tasks are in
3872 * the fair class we can call that function directly:
3873 */
3874 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3875 p = fair_sched_class.pick_next_task(rq);
3876 if (likely(p))
3877 return p;
3878 }
3879
3880 class = sched_class_highest;
3881 for ( ; ; ) {
3882 p = class->pick_next_task(rq);
3883 if (p)
3884 return p;
3885 /*
3886 * Will never be NULL as the idle class always
3887 * returns a non-NULL p:
3888 */
3889 class = class->next;
3890 }
3891 }
3892
3893 /*
3894 * schedule() is the main scheduler function.
3895 */
3896 asmlinkage void __sched schedule(void)
3897 {
3898 struct task_struct *prev, *next;
3899 unsigned long *switch_count;
3900 struct rq *rq;
3901 int cpu;
3902
3903 need_resched:
3904 preempt_disable();
3905 cpu = smp_processor_id();
3906 rq = cpu_rq(cpu);
3907 rcu_qsctr_inc(cpu);
3908 prev = rq->curr;
3909 switch_count = &prev->nivcsw;
3910
3911 release_kernel_lock(prev);
3912 need_resched_nonpreemptible:
3913
3914 schedule_debug(prev);
3915
3916 hrtick_clear(rq);
3917
3918 /*
3919 * Do the rq-clock update outside the rq lock:
3920 */
3921 local_irq_disable();
3922 __update_rq_clock(rq);
3923 spin_lock(&rq->lock);
3924 clear_tsk_need_resched(prev);
3925
3926 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3927 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3928 signal_pending(prev))) {
3929 prev->state = TASK_RUNNING;
3930 } else {
3931 deactivate_task(rq, prev, 1);
3932 }
3933 switch_count = &prev->nvcsw;
3934 }
3935
3936 #ifdef CONFIG_SMP
3937 if (prev->sched_class->pre_schedule)
3938 prev->sched_class->pre_schedule(rq, prev);
3939 #endif
3940
3941 if (unlikely(!rq->nr_running))
3942 idle_balance(cpu, rq);
3943
3944 prev->sched_class->put_prev_task(rq, prev);
3945 next = pick_next_task(rq, prev);
3946
3947 sched_info_switch(prev, next);
3948
3949 if (likely(prev != next)) {
3950 rq->nr_switches++;
3951 rq->curr = next;
3952 ++*switch_count;
3953
3954 context_switch(rq, prev, next); /* unlocks the rq */
3955 /*
3956 * the context switch might have flipped the stack from under
3957 * us, hence refresh the local variables.
3958 */
3959 cpu = smp_processor_id();
3960 rq = cpu_rq(cpu);
3961 } else
3962 spin_unlock_irq(&rq->lock);
3963
3964 hrtick_set(rq);
3965
3966 if (unlikely(reacquire_kernel_lock(current) < 0))
3967 goto need_resched_nonpreemptible;
3968
3969 preempt_enable_no_resched();
3970 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3971 goto need_resched;
3972 }
3973 EXPORT_SYMBOL(schedule);
3974
3975 #ifdef CONFIG_PREEMPT
3976 /*
3977 * this is the entry point to schedule() from in-kernel preemption
3978 * off of preempt_enable. Kernel preemptions off return from interrupt
3979 * occur there and call schedule directly.
3980 */
3981 asmlinkage void __sched preempt_schedule(void)
3982 {
3983 struct thread_info *ti = current_thread_info();
3984 struct task_struct *task = current;
3985 int saved_lock_depth;
3986
3987 /*
3988 * If there is a non-zero preempt_count or interrupts are disabled,
3989 * we do not want to preempt the current task. Just return..
3990 */
3991 if (likely(ti->preempt_count || irqs_disabled()))
3992 return;
3993
3994 do {
3995 add_preempt_count(PREEMPT_ACTIVE);
3996
3997 /*
3998 * We keep the big kernel semaphore locked, but we
3999 * clear ->lock_depth so that schedule() doesnt
4000 * auto-release the semaphore:
4001 */
4002 saved_lock_depth = task->lock_depth;
4003 task->lock_depth = -1;
4004 schedule();
4005 task->lock_depth = saved_lock_depth;
4006 sub_preempt_count(PREEMPT_ACTIVE);
4007
4008 /*
4009 * Check again in case we missed a preemption opportunity
4010 * between schedule and now.
4011 */
4012 barrier();
4013 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4014 }
4015 EXPORT_SYMBOL(preempt_schedule);
4016
4017 /*
4018 * this is the entry point to schedule() from kernel preemption
4019 * off of irq context.
4020 * Note, that this is called and return with irqs disabled. This will
4021 * protect us against recursive calling from irq.
4022 */
4023 asmlinkage void __sched preempt_schedule_irq(void)
4024 {
4025 struct thread_info *ti = current_thread_info();
4026 struct task_struct *task = current;
4027 int saved_lock_depth;
4028
4029 /* Catch callers which need to be fixed */
4030 BUG_ON(ti->preempt_count || !irqs_disabled());
4031
4032 do {
4033 add_preempt_count(PREEMPT_ACTIVE);
4034
4035 /*
4036 * We keep the big kernel semaphore locked, but we
4037 * clear ->lock_depth so that schedule() doesnt
4038 * auto-release the semaphore:
4039 */
4040 saved_lock_depth = task->lock_depth;
4041 task->lock_depth = -1;
4042 local_irq_enable();
4043 schedule();
4044 local_irq_disable();
4045 task->lock_depth = saved_lock_depth;
4046 sub_preempt_count(PREEMPT_ACTIVE);
4047
4048 /*
4049 * Check again in case we missed a preemption opportunity
4050 * between schedule and now.
4051 */
4052 barrier();
4053 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4054 }
4055
4056 #endif /* CONFIG_PREEMPT */
4057
4058 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4059 void *key)
4060 {
4061 return try_to_wake_up(curr->private, mode, sync);
4062 }
4063 EXPORT_SYMBOL(default_wake_function);
4064
4065 /*
4066 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4067 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4068 * number) then we wake all the non-exclusive tasks and one exclusive task.
4069 *
4070 * There are circumstances in which we can try to wake a task which has already
4071 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4072 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4073 */
4074 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4075 int nr_exclusive, int sync, void *key)
4076 {
4077 wait_queue_t *curr, *next;
4078
4079 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4080 unsigned flags = curr->flags;
4081
4082 if (curr->func(curr, mode, sync, key) &&
4083 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4084 break;
4085 }
4086 }
4087
4088 /**
4089 * __wake_up - wake up threads blocked on a waitqueue.
4090 * @q: the waitqueue
4091 * @mode: which threads
4092 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4093 * @key: is directly passed to the wakeup function
4094 */
4095 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4096 int nr_exclusive, void *key)
4097 {
4098 unsigned long flags;
4099
4100 spin_lock_irqsave(&q->lock, flags);
4101 __wake_up_common(q, mode, nr_exclusive, 0, key);
4102 spin_unlock_irqrestore(&q->lock, flags);
4103 }
4104 EXPORT_SYMBOL(__wake_up);
4105
4106 /*
4107 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4108 */
4109 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4110 {
4111 __wake_up_common(q, mode, 1, 0, NULL);
4112 }
4113
4114 /**
4115 * __wake_up_sync - wake up threads blocked on a waitqueue.
4116 * @q: the waitqueue
4117 * @mode: which threads
4118 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4119 *
4120 * The sync wakeup differs that the waker knows that it will schedule
4121 * away soon, so while the target thread will be woken up, it will not
4122 * be migrated to another CPU - ie. the two threads are 'synchronized'
4123 * with each other. This can prevent needless bouncing between CPUs.
4124 *
4125 * On UP it can prevent extra preemption.
4126 */
4127 void
4128 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4129 {
4130 unsigned long flags;
4131 int sync = 1;
4132
4133 if (unlikely(!q))
4134 return;
4135
4136 if (unlikely(!nr_exclusive))
4137 sync = 0;
4138
4139 spin_lock_irqsave(&q->lock, flags);
4140 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4141 spin_unlock_irqrestore(&q->lock, flags);
4142 }
4143 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4144
4145 void complete(struct completion *x)
4146 {
4147 unsigned long flags;
4148
4149 spin_lock_irqsave(&x->wait.lock, flags);
4150 x->done++;
4151 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4152 spin_unlock_irqrestore(&x->wait.lock, flags);
4153 }
4154 EXPORT_SYMBOL(complete);
4155
4156 void complete_all(struct completion *x)
4157 {
4158 unsigned long flags;
4159
4160 spin_lock_irqsave(&x->wait.lock, flags);
4161 x->done += UINT_MAX/2;
4162 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4163 spin_unlock_irqrestore(&x->wait.lock, flags);
4164 }
4165 EXPORT_SYMBOL(complete_all);
4166
4167 static inline long __sched
4168 do_wait_for_common(struct completion *x, long timeout, int state)
4169 {
4170 if (!x->done) {
4171 DECLARE_WAITQUEUE(wait, current);
4172
4173 wait.flags |= WQ_FLAG_EXCLUSIVE;
4174 __add_wait_queue_tail(&x->wait, &wait);
4175 do {
4176 if ((state == TASK_INTERRUPTIBLE &&
4177 signal_pending(current)) ||
4178 (state == TASK_KILLABLE &&
4179 fatal_signal_pending(current))) {
4180 __remove_wait_queue(&x->wait, &wait);
4181 return -ERESTARTSYS;
4182 }
4183 __set_current_state(state);
4184 spin_unlock_irq(&x->wait.lock);
4185 timeout = schedule_timeout(timeout);
4186 spin_lock_irq(&x->wait.lock);
4187 if (!timeout) {
4188 __remove_wait_queue(&x->wait, &wait);
4189 return timeout;
4190 }
4191 } while (!x->done);
4192 __remove_wait_queue(&x->wait, &wait);
4193 }
4194 x->done--;
4195 return timeout;
4196 }
4197
4198 static long __sched
4199 wait_for_common(struct completion *x, long timeout, int state)
4200 {
4201 might_sleep();
4202
4203 spin_lock_irq(&x->wait.lock);
4204 timeout = do_wait_for_common(x, timeout, state);
4205 spin_unlock_irq(&x->wait.lock);
4206 return timeout;
4207 }
4208
4209 void __sched wait_for_completion(struct completion *x)
4210 {
4211 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4212 }
4213 EXPORT_SYMBOL(wait_for_completion);
4214
4215 unsigned long __sched
4216 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4217 {
4218 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4219 }
4220 EXPORT_SYMBOL(wait_for_completion_timeout);
4221
4222 int __sched wait_for_completion_interruptible(struct completion *x)
4223 {
4224 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4225 if (t == -ERESTARTSYS)
4226 return t;
4227 return 0;
4228 }
4229 EXPORT_SYMBOL(wait_for_completion_interruptible);
4230
4231 unsigned long __sched
4232 wait_for_completion_interruptible_timeout(struct completion *x,
4233 unsigned long timeout)
4234 {
4235 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4236 }
4237 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4238
4239 int __sched wait_for_completion_killable(struct completion *x)
4240 {
4241 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4242 if (t == -ERESTARTSYS)
4243 return t;
4244 return 0;
4245 }
4246 EXPORT_SYMBOL(wait_for_completion_killable);
4247
4248 static long __sched
4249 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4250 {
4251 unsigned long flags;
4252 wait_queue_t wait;
4253
4254 init_waitqueue_entry(&wait, current);
4255
4256 __set_current_state(state);
4257
4258 spin_lock_irqsave(&q->lock, flags);
4259 __add_wait_queue(q, &wait);
4260 spin_unlock(&q->lock);
4261 timeout = schedule_timeout(timeout);
4262 spin_lock_irq(&q->lock);
4263 __remove_wait_queue(q, &wait);
4264 spin_unlock_irqrestore(&q->lock, flags);
4265
4266 return timeout;
4267 }
4268
4269 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4270 {
4271 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4272 }
4273 EXPORT_SYMBOL(interruptible_sleep_on);
4274
4275 long __sched
4276 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4277 {
4278 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4279 }
4280 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4281
4282 void __sched sleep_on(wait_queue_head_t *q)
4283 {
4284 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4285 }
4286 EXPORT_SYMBOL(sleep_on);
4287
4288 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4289 {
4290 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4291 }
4292 EXPORT_SYMBOL(sleep_on_timeout);
4293
4294 #ifdef CONFIG_RT_MUTEXES
4295
4296 /*
4297 * rt_mutex_setprio - set the current priority of a task
4298 * @p: task
4299 * @prio: prio value (kernel-internal form)
4300 *
4301 * This function changes the 'effective' priority of a task. It does
4302 * not touch ->normal_prio like __setscheduler().
4303 *
4304 * Used by the rt_mutex code to implement priority inheritance logic.
4305 */
4306 void rt_mutex_setprio(struct task_struct *p, int prio)
4307 {
4308 unsigned long flags;
4309 int oldprio, on_rq, running;
4310 struct rq *rq;
4311 const struct sched_class *prev_class = p->sched_class;
4312
4313 BUG_ON(prio < 0 || prio > MAX_PRIO);
4314
4315 rq = task_rq_lock(p, &flags);
4316 update_rq_clock(rq);
4317
4318 oldprio = p->prio;
4319 on_rq = p->se.on_rq;
4320 running = task_current(rq, p);
4321 if (on_rq)
4322 dequeue_task(rq, p, 0);
4323 if (running)
4324 p->sched_class->put_prev_task(rq, p);
4325
4326 if (rt_prio(prio))
4327 p->sched_class = &rt_sched_class;
4328 else
4329 p->sched_class = &fair_sched_class;
4330
4331 p->prio = prio;
4332
4333 if (running)
4334 p->sched_class->set_curr_task(rq);
4335 if (on_rq) {
4336 enqueue_task(rq, p, 0);
4337
4338 check_class_changed(rq, p, prev_class, oldprio, running);
4339 }
4340 task_rq_unlock(rq, &flags);
4341 }
4342
4343 #endif
4344
4345 void set_user_nice(struct task_struct *p, long nice)
4346 {
4347 int old_prio, delta, on_rq;
4348 unsigned long flags;
4349 struct rq *rq;
4350
4351 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4352 return;
4353 /*
4354 * We have to be careful, if called from sys_setpriority(),
4355 * the task might be in the middle of scheduling on another CPU.
4356 */
4357 rq = task_rq_lock(p, &flags);
4358 update_rq_clock(rq);
4359 /*
4360 * The RT priorities are set via sched_setscheduler(), but we still
4361 * allow the 'normal' nice value to be set - but as expected
4362 * it wont have any effect on scheduling until the task is
4363 * SCHED_FIFO/SCHED_RR:
4364 */
4365 if (task_has_rt_policy(p)) {
4366 p->static_prio = NICE_TO_PRIO(nice);
4367 goto out_unlock;
4368 }
4369 on_rq = p->se.on_rq;
4370 if (on_rq) {
4371 dequeue_task(rq, p, 0);
4372 dec_load(rq, p);
4373 }
4374
4375 p->static_prio = NICE_TO_PRIO(nice);
4376 set_load_weight(p);
4377 old_prio = p->prio;
4378 p->prio = effective_prio(p);
4379 delta = p->prio - old_prio;
4380
4381 if (on_rq) {
4382 enqueue_task(rq, p, 0);
4383 inc_load(rq, p);
4384 /*
4385 * If the task increased its priority or is running and
4386 * lowered its priority, then reschedule its CPU:
4387 */
4388 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4389 resched_task(rq->curr);
4390 }
4391 out_unlock:
4392 task_rq_unlock(rq, &flags);
4393 }
4394 EXPORT_SYMBOL(set_user_nice);
4395
4396 /*
4397 * can_nice - check if a task can reduce its nice value
4398 * @p: task
4399 * @nice: nice value
4400 */
4401 int can_nice(const struct task_struct *p, const int nice)
4402 {
4403 /* convert nice value [19,-20] to rlimit style value [1,40] */
4404 int nice_rlim = 20 - nice;
4405
4406 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4407 capable(CAP_SYS_NICE));
4408 }
4409
4410 #ifdef __ARCH_WANT_SYS_NICE
4411
4412 /*
4413 * sys_nice - change the priority of the current process.
4414 * @increment: priority increment
4415 *
4416 * sys_setpriority is a more generic, but much slower function that
4417 * does similar things.
4418 */
4419 asmlinkage long sys_nice(int increment)
4420 {
4421 long nice, retval;
4422
4423 /*
4424 * Setpriority might change our priority at the same moment.
4425 * We don't have to worry. Conceptually one call occurs first
4426 * and we have a single winner.
4427 */
4428 if (increment < -40)
4429 increment = -40;
4430 if (increment > 40)
4431 increment = 40;
4432
4433 nice = PRIO_TO_NICE(current->static_prio) + increment;
4434 if (nice < -20)
4435 nice = -20;
4436 if (nice > 19)
4437 nice = 19;
4438
4439 if (increment < 0 && !can_nice(current, nice))
4440 return -EPERM;
4441
4442 retval = security_task_setnice(current, nice);
4443 if (retval)
4444 return retval;
4445
4446 set_user_nice(current, nice);
4447 return 0;
4448 }
4449
4450 #endif
4451
4452 /**
4453 * task_prio - return the priority value of a given task.
4454 * @p: the task in question.
4455 *
4456 * This is the priority value as seen by users in /proc.
4457 * RT tasks are offset by -200. Normal tasks are centered
4458 * around 0, value goes from -16 to +15.
4459 */
4460 int task_prio(const struct task_struct *p)
4461 {
4462 return p->prio - MAX_RT_PRIO;
4463 }
4464
4465 /**
4466 * task_nice - return the nice value of a given task.
4467 * @p: the task in question.
4468 */
4469 int task_nice(const struct task_struct *p)
4470 {
4471 return TASK_NICE(p);
4472 }
4473 EXPORT_SYMBOL(task_nice);
4474
4475 /**
4476 * idle_cpu - is a given cpu idle currently?
4477 * @cpu: the processor in question.
4478 */
4479 int idle_cpu(int cpu)
4480 {
4481 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4482 }
4483
4484 /**
4485 * idle_task - return the idle task for a given cpu.
4486 * @cpu: the processor in question.
4487 */
4488 struct task_struct *idle_task(int cpu)
4489 {
4490 return cpu_rq(cpu)->idle;
4491 }
4492
4493 /**
4494 * find_process_by_pid - find a process with a matching PID value.
4495 * @pid: the pid in question.
4496 */
4497 static struct task_struct *find_process_by_pid(pid_t pid)
4498 {
4499 return pid ? find_task_by_vpid(pid) : current;
4500 }
4501
4502 /* Actually do priority change: must hold rq lock. */
4503 static void
4504 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4505 {
4506 BUG_ON(p->se.on_rq);
4507
4508 p->policy = policy;
4509 switch (p->policy) {
4510 case SCHED_NORMAL:
4511 case SCHED_BATCH:
4512 case SCHED_IDLE:
4513 p->sched_class = &fair_sched_class;
4514 break;
4515 case SCHED_FIFO:
4516 case SCHED_RR:
4517 p->sched_class = &rt_sched_class;
4518 break;
4519 }
4520
4521 p->rt_priority = prio;
4522 p->normal_prio = normal_prio(p);
4523 /* we are holding p->pi_lock already */
4524 p->prio = rt_mutex_getprio(p);
4525 set_load_weight(p);
4526 }
4527
4528 /**
4529 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4530 * @p: the task in question.
4531 * @policy: new policy.
4532 * @param: structure containing the new RT priority.
4533 *
4534 * NOTE that the task may be already dead.
4535 */
4536 int sched_setscheduler(struct task_struct *p, int policy,
4537 struct sched_param *param)
4538 {
4539 int retval, oldprio, oldpolicy = -1, on_rq, running;
4540 unsigned long flags;
4541 const struct sched_class *prev_class = p->sched_class;
4542 struct rq *rq;
4543
4544 /* may grab non-irq protected spin_locks */
4545 BUG_ON(in_interrupt());
4546 recheck:
4547 /* double check policy once rq lock held */
4548 if (policy < 0)
4549 policy = oldpolicy = p->policy;
4550 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4551 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4552 policy != SCHED_IDLE)
4553 return -EINVAL;
4554 /*
4555 * Valid priorities for SCHED_FIFO and SCHED_RR are
4556 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4557 * SCHED_BATCH and SCHED_IDLE is 0.
4558 */
4559 if (param->sched_priority < 0 ||
4560 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4561 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4562 return -EINVAL;
4563 if (rt_policy(policy) != (param->sched_priority != 0))
4564 return -EINVAL;
4565
4566 /*
4567 * Allow unprivileged RT tasks to decrease priority:
4568 */
4569 if (!capable(CAP_SYS_NICE)) {
4570 if (rt_policy(policy)) {
4571 unsigned long rlim_rtprio;
4572
4573 if (!lock_task_sighand(p, &flags))
4574 return -ESRCH;
4575 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4576 unlock_task_sighand(p, &flags);
4577
4578 /* can't set/change the rt policy */
4579 if (policy != p->policy && !rlim_rtprio)
4580 return -EPERM;
4581
4582 /* can't increase priority */
4583 if (param->sched_priority > p->rt_priority &&
4584 param->sched_priority > rlim_rtprio)
4585 return -EPERM;
4586 }
4587 /*
4588 * Like positive nice levels, dont allow tasks to
4589 * move out of SCHED_IDLE either:
4590 */
4591 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4592 return -EPERM;
4593
4594 /* can't change other user's priorities */
4595 if ((current->euid != p->euid) &&
4596 (current->euid != p->uid))
4597 return -EPERM;
4598 }
4599
4600 #ifdef CONFIG_RT_GROUP_SCHED
4601 /*
4602 * Do not allow realtime tasks into groups that have no runtime
4603 * assigned.
4604 */
4605 if (rt_policy(policy) && task_group(p)->rt_runtime == 0)
4606 return -EPERM;
4607 #endif
4608
4609 retval = security_task_setscheduler(p, policy, param);
4610 if (retval)
4611 return retval;
4612 /*
4613 * make sure no PI-waiters arrive (or leave) while we are
4614 * changing the priority of the task:
4615 */
4616 spin_lock_irqsave(&p->pi_lock, flags);
4617 /*
4618 * To be able to change p->policy safely, the apropriate
4619 * runqueue lock must be held.
4620 */
4621 rq = __task_rq_lock(p);
4622 /* recheck policy now with rq lock held */
4623 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4624 policy = oldpolicy = -1;
4625 __task_rq_unlock(rq);
4626 spin_unlock_irqrestore(&p->pi_lock, flags);
4627 goto recheck;
4628 }
4629 update_rq_clock(rq);
4630 on_rq = p->se.on_rq;
4631 running = task_current(rq, p);
4632 if (on_rq)
4633 deactivate_task(rq, p, 0);
4634 if (running)
4635 p->sched_class->put_prev_task(rq, p);
4636
4637 oldprio = p->prio;
4638 __setscheduler(rq, p, policy, param->sched_priority);
4639
4640 if (running)
4641 p->sched_class->set_curr_task(rq);
4642 if (on_rq) {
4643 activate_task(rq, p, 0);
4644
4645 check_class_changed(rq, p, prev_class, oldprio, running);
4646 }
4647 __task_rq_unlock(rq);
4648 spin_unlock_irqrestore(&p->pi_lock, flags);
4649
4650 rt_mutex_adjust_pi(p);
4651
4652 return 0;
4653 }
4654 EXPORT_SYMBOL_GPL(sched_setscheduler);
4655
4656 static int
4657 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4658 {
4659 struct sched_param lparam;
4660 struct task_struct *p;
4661 int retval;
4662
4663 if (!param || pid < 0)
4664 return -EINVAL;
4665 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4666 return -EFAULT;
4667
4668 rcu_read_lock();
4669 retval = -ESRCH;
4670 p = find_process_by_pid(pid);
4671 if (p != NULL)
4672 retval = sched_setscheduler(p, policy, &lparam);
4673 rcu_read_unlock();
4674
4675 return retval;
4676 }
4677
4678 /**
4679 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4680 * @pid: the pid in question.
4681 * @policy: new policy.
4682 * @param: structure containing the new RT priority.
4683 */
4684 asmlinkage long
4685 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4686 {
4687 /* negative values for policy are not valid */
4688 if (policy < 0)
4689 return -EINVAL;
4690
4691 return do_sched_setscheduler(pid, policy, param);
4692 }
4693
4694 /**
4695 * sys_sched_setparam - set/change the RT priority of a thread
4696 * @pid: the pid in question.
4697 * @param: structure containing the new RT priority.
4698 */
4699 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4700 {
4701 return do_sched_setscheduler(pid, -1, param);
4702 }
4703
4704 /**
4705 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4706 * @pid: the pid in question.
4707 */
4708 asmlinkage long sys_sched_getscheduler(pid_t pid)
4709 {
4710 struct task_struct *p;
4711 int retval;
4712
4713 if (pid < 0)
4714 return -EINVAL;
4715
4716 retval = -ESRCH;
4717 read_lock(&tasklist_lock);
4718 p = find_process_by_pid(pid);
4719 if (p) {
4720 retval = security_task_getscheduler(p);
4721 if (!retval)
4722 retval = p->policy;
4723 }
4724 read_unlock(&tasklist_lock);
4725 return retval;
4726 }
4727
4728 /**
4729 * sys_sched_getscheduler - get the RT priority of a thread
4730 * @pid: the pid in question.
4731 * @param: structure containing the RT priority.
4732 */
4733 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4734 {
4735 struct sched_param lp;
4736 struct task_struct *p;
4737 int retval;
4738
4739 if (!param || pid < 0)
4740 return -EINVAL;
4741
4742 read_lock(&tasklist_lock);
4743 p = find_process_by_pid(pid);
4744 retval = -ESRCH;
4745 if (!p)
4746 goto out_unlock;
4747
4748 retval = security_task_getscheduler(p);
4749 if (retval)
4750 goto out_unlock;
4751
4752 lp.sched_priority = p->rt_priority;
4753 read_unlock(&tasklist_lock);
4754
4755 /*
4756 * This one might sleep, we cannot do it with a spinlock held ...
4757 */
4758 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4759
4760 return retval;
4761
4762 out_unlock:
4763 read_unlock(&tasklist_lock);
4764 return retval;
4765 }
4766
4767 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4768 {
4769 cpumask_t cpus_allowed;
4770 struct task_struct *p;
4771 int retval;
4772
4773 get_online_cpus();
4774 read_lock(&tasklist_lock);
4775
4776 p = find_process_by_pid(pid);
4777 if (!p) {
4778 read_unlock(&tasklist_lock);
4779 put_online_cpus();
4780 return -ESRCH;
4781 }
4782
4783 /*
4784 * It is not safe to call set_cpus_allowed with the
4785 * tasklist_lock held. We will bump the task_struct's
4786 * usage count and then drop tasklist_lock.
4787 */
4788 get_task_struct(p);
4789 read_unlock(&tasklist_lock);
4790
4791 retval = -EPERM;
4792 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4793 !capable(CAP_SYS_NICE))
4794 goto out_unlock;
4795
4796 retval = security_task_setscheduler(p, 0, NULL);
4797 if (retval)
4798 goto out_unlock;
4799
4800 cpus_allowed = cpuset_cpus_allowed(p);
4801 cpus_and(new_mask, new_mask, cpus_allowed);
4802 again:
4803 retval = set_cpus_allowed(p, new_mask);
4804
4805 if (!retval) {
4806 cpus_allowed = cpuset_cpus_allowed(p);
4807 if (!cpus_subset(new_mask, cpus_allowed)) {
4808 /*
4809 * We must have raced with a concurrent cpuset
4810 * update. Just reset the cpus_allowed to the
4811 * cpuset's cpus_allowed
4812 */
4813 new_mask = cpus_allowed;
4814 goto again;
4815 }
4816 }
4817 out_unlock:
4818 put_task_struct(p);
4819 put_online_cpus();
4820 return retval;
4821 }
4822
4823 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4824 cpumask_t *new_mask)
4825 {
4826 if (len < sizeof(cpumask_t)) {
4827 memset(new_mask, 0, sizeof(cpumask_t));
4828 } else if (len > sizeof(cpumask_t)) {
4829 len = sizeof(cpumask_t);
4830 }
4831 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4832 }
4833
4834 /**
4835 * sys_sched_setaffinity - set the cpu affinity of a process
4836 * @pid: pid of the process
4837 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4838 * @user_mask_ptr: user-space pointer to the new cpu mask
4839 */
4840 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4841 unsigned long __user *user_mask_ptr)
4842 {
4843 cpumask_t new_mask;
4844 int retval;
4845
4846 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4847 if (retval)
4848 return retval;
4849
4850 return sched_setaffinity(pid, new_mask);
4851 }
4852
4853 /*
4854 * Represents all cpu's present in the system
4855 * In systems capable of hotplug, this map could dynamically grow
4856 * as new cpu's are detected in the system via any platform specific
4857 * method, such as ACPI for e.g.
4858 */
4859
4860 cpumask_t cpu_present_map __read_mostly;
4861 EXPORT_SYMBOL(cpu_present_map);
4862
4863 #ifndef CONFIG_SMP
4864 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4865 EXPORT_SYMBOL(cpu_online_map);
4866
4867 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4868 EXPORT_SYMBOL(cpu_possible_map);
4869 #endif
4870
4871 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4872 {
4873 struct task_struct *p;
4874 int retval;
4875
4876 get_online_cpus();
4877 read_lock(&tasklist_lock);
4878
4879 retval = -ESRCH;
4880 p = find_process_by_pid(pid);
4881 if (!p)
4882 goto out_unlock;
4883
4884 retval = security_task_getscheduler(p);
4885 if (retval)
4886 goto out_unlock;
4887
4888 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4889
4890 out_unlock:
4891 read_unlock(&tasklist_lock);
4892 put_online_cpus();
4893
4894 return retval;
4895 }
4896
4897 /**
4898 * sys_sched_getaffinity - get the cpu affinity of a process
4899 * @pid: pid of the process
4900 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4901 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4902 */
4903 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4904 unsigned long __user *user_mask_ptr)
4905 {
4906 int ret;
4907 cpumask_t mask;
4908
4909 if (len < sizeof(cpumask_t))
4910 return -EINVAL;
4911
4912 ret = sched_getaffinity(pid, &mask);
4913 if (ret < 0)
4914 return ret;
4915
4916 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4917 return -EFAULT;
4918
4919 return sizeof(cpumask_t);
4920 }
4921
4922 /**
4923 * sys_sched_yield - yield the current processor to other threads.
4924 *
4925 * This function yields the current CPU to other tasks. If there are no
4926 * other threads running on this CPU then this function will return.
4927 */
4928 asmlinkage long sys_sched_yield(void)
4929 {
4930 struct rq *rq = this_rq_lock();
4931
4932 schedstat_inc(rq, yld_count);
4933 current->sched_class->yield_task(rq);
4934
4935 /*
4936 * Since we are going to call schedule() anyway, there's
4937 * no need to preempt or enable interrupts:
4938 */
4939 __release(rq->lock);
4940 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4941 _raw_spin_unlock(&rq->lock);
4942 preempt_enable_no_resched();
4943
4944 schedule();
4945
4946 return 0;
4947 }
4948
4949 static void __cond_resched(void)
4950 {
4951 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4952 __might_sleep(__FILE__, __LINE__);
4953 #endif
4954 /*
4955 * The BKS might be reacquired before we have dropped
4956 * PREEMPT_ACTIVE, which could trigger a second
4957 * cond_resched() call.
4958 */
4959 do {
4960 add_preempt_count(PREEMPT_ACTIVE);
4961 schedule();
4962 sub_preempt_count(PREEMPT_ACTIVE);
4963 } while (need_resched());
4964 }
4965
4966 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
4967 int __sched _cond_resched(void)
4968 {
4969 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4970 system_state == SYSTEM_RUNNING) {
4971 __cond_resched();
4972 return 1;
4973 }
4974 return 0;
4975 }
4976 EXPORT_SYMBOL(_cond_resched);
4977 #endif
4978
4979 /*
4980 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4981 * call schedule, and on return reacquire the lock.
4982 *
4983 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4984 * operations here to prevent schedule() from being called twice (once via
4985 * spin_unlock(), once by hand).
4986 */
4987 int cond_resched_lock(spinlock_t *lock)
4988 {
4989 int resched = need_resched() && system_state == SYSTEM_RUNNING;
4990 int ret = 0;
4991
4992 if (spin_needbreak(lock) || resched) {
4993 spin_unlock(lock);
4994 if (resched && need_resched())
4995 __cond_resched();
4996 else
4997 cpu_relax();
4998 ret = 1;
4999 spin_lock(lock);
5000 }
5001 return ret;
5002 }
5003 EXPORT_SYMBOL(cond_resched_lock);
5004
5005 int __sched cond_resched_softirq(void)
5006 {
5007 BUG_ON(!in_softirq());
5008
5009 if (need_resched() && system_state == SYSTEM_RUNNING) {
5010 local_bh_enable();
5011 __cond_resched();
5012 local_bh_disable();
5013 return 1;
5014 }
5015 return 0;
5016 }
5017 EXPORT_SYMBOL(cond_resched_softirq);
5018
5019 /**
5020 * yield - yield the current processor to other threads.
5021 *
5022 * This is a shortcut for kernel-space yielding - it marks the
5023 * thread runnable and calls sys_sched_yield().
5024 */
5025 void __sched yield(void)
5026 {
5027 set_current_state(TASK_RUNNING);
5028 sys_sched_yield();
5029 }
5030 EXPORT_SYMBOL(yield);
5031
5032 /*
5033 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5034 * that process accounting knows that this is a task in IO wait state.
5035 *
5036 * But don't do that if it is a deliberate, throttling IO wait (this task
5037 * has set its backing_dev_info: the queue against which it should throttle)
5038 */
5039 void __sched io_schedule(void)
5040 {
5041 struct rq *rq = &__raw_get_cpu_var(runqueues);
5042
5043 delayacct_blkio_start();
5044 atomic_inc(&rq->nr_iowait);
5045 schedule();
5046 atomic_dec(&rq->nr_iowait);
5047 delayacct_blkio_end();
5048 }
5049 EXPORT_SYMBOL(io_schedule);
5050
5051 long __sched io_schedule_timeout(long timeout)
5052 {
5053 struct rq *rq = &__raw_get_cpu_var(runqueues);
5054 long ret;
5055
5056 delayacct_blkio_start();
5057 atomic_inc(&rq->nr_iowait);
5058 ret = schedule_timeout(timeout);
5059 atomic_dec(&rq->nr_iowait);
5060 delayacct_blkio_end();
5061 return ret;
5062 }
5063
5064 /**
5065 * sys_sched_get_priority_max - return maximum RT priority.
5066 * @policy: scheduling class.
5067 *
5068 * this syscall returns the maximum rt_priority that can be used
5069 * by a given scheduling class.
5070 */
5071 asmlinkage long sys_sched_get_priority_max(int policy)
5072 {
5073 int ret = -EINVAL;
5074
5075 switch (policy) {
5076 case SCHED_FIFO:
5077 case SCHED_RR:
5078 ret = MAX_USER_RT_PRIO-1;
5079 break;
5080 case SCHED_NORMAL:
5081 case SCHED_BATCH:
5082 case SCHED_IDLE:
5083 ret = 0;
5084 break;
5085 }
5086 return ret;
5087 }
5088
5089 /**
5090 * sys_sched_get_priority_min - return minimum RT priority.
5091 * @policy: scheduling class.
5092 *
5093 * this syscall returns the minimum rt_priority that can be used
5094 * by a given scheduling class.
5095 */
5096 asmlinkage long sys_sched_get_priority_min(int policy)
5097 {
5098 int ret = -EINVAL;
5099
5100 switch (policy) {
5101 case SCHED_FIFO:
5102 case SCHED_RR:
5103 ret = 1;
5104 break;
5105 case SCHED_NORMAL:
5106 case SCHED_BATCH:
5107 case SCHED_IDLE:
5108 ret = 0;
5109 }
5110 return ret;
5111 }
5112
5113 /**
5114 * sys_sched_rr_get_interval - return the default timeslice of a process.
5115 * @pid: pid of the process.
5116 * @interval: userspace pointer to the timeslice value.
5117 *
5118 * this syscall writes the default timeslice value of a given process
5119 * into the user-space timespec buffer. A value of '0' means infinity.
5120 */
5121 asmlinkage
5122 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5123 {
5124 struct task_struct *p;
5125 unsigned int time_slice;
5126 int retval;
5127 struct timespec t;
5128
5129 if (pid < 0)
5130 return -EINVAL;
5131
5132 retval = -ESRCH;
5133 read_lock(&tasklist_lock);
5134 p = find_process_by_pid(pid);
5135 if (!p)
5136 goto out_unlock;
5137
5138 retval = security_task_getscheduler(p);
5139 if (retval)
5140 goto out_unlock;
5141
5142 /*
5143 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5144 * tasks that are on an otherwise idle runqueue:
5145 */
5146 time_slice = 0;
5147 if (p->policy == SCHED_RR) {
5148 time_slice = DEF_TIMESLICE;
5149 } else if (p->policy != SCHED_FIFO) {
5150 struct sched_entity *se = &p->se;
5151 unsigned long flags;
5152 struct rq *rq;
5153
5154 rq = task_rq_lock(p, &flags);
5155 if (rq->cfs.load.weight)
5156 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5157 task_rq_unlock(rq, &flags);
5158 }
5159 read_unlock(&tasklist_lock);
5160 jiffies_to_timespec(time_slice, &t);
5161 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5162 return retval;
5163
5164 out_unlock:
5165 read_unlock(&tasklist_lock);
5166 return retval;
5167 }
5168
5169 static const char stat_nam[] = "RSDTtZX";
5170
5171 void sched_show_task(struct task_struct *p)
5172 {
5173 unsigned long free = 0;
5174 unsigned state;
5175
5176 state = p->state ? __ffs(p->state) + 1 : 0;
5177 printk(KERN_INFO "%-13.13s %c", p->comm,
5178 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5179 #if BITS_PER_LONG == 32
5180 if (state == TASK_RUNNING)
5181 printk(KERN_CONT " running ");
5182 else
5183 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5184 #else
5185 if (state == TASK_RUNNING)
5186 printk(KERN_CONT " running task ");
5187 else
5188 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5189 #endif
5190 #ifdef CONFIG_DEBUG_STACK_USAGE
5191 {
5192 unsigned long *n = end_of_stack(p);
5193 while (!*n)
5194 n++;
5195 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5196 }
5197 #endif
5198 printk(KERN_CONT "%5lu %5d %6d\n", free,
5199 task_pid_nr(p), task_pid_nr(p->real_parent));
5200
5201 show_stack(p, NULL);
5202 }
5203
5204 void show_state_filter(unsigned long state_filter)
5205 {
5206 struct task_struct *g, *p;
5207
5208 #if BITS_PER_LONG == 32
5209 printk(KERN_INFO
5210 " task PC stack pid father\n");
5211 #else
5212 printk(KERN_INFO
5213 " task PC stack pid father\n");
5214 #endif
5215 read_lock(&tasklist_lock);
5216 do_each_thread(g, p) {
5217 /*
5218 * reset the NMI-timeout, listing all files on a slow
5219 * console might take alot of time:
5220 */
5221 touch_nmi_watchdog();
5222 if (!state_filter || (p->state & state_filter))
5223 sched_show_task(p);
5224 } while_each_thread(g, p);
5225
5226 touch_all_softlockup_watchdogs();
5227
5228 #ifdef CONFIG_SCHED_DEBUG
5229 sysrq_sched_debug_show();
5230 #endif
5231 read_unlock(&tasklist_lock);
5232 /*
5233 * Only show locks if all tasks are dumped:
5234 */
5235 if (state_filter == -1)
5236 debug_show_all_locks();
5237 }
5238
5239 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5240 {
5241 idle->sched_class = &idle_sched_class;
5242 }
5243
5244 /**
5245 * init_idle - set up an idle thread for a given CPU
5246 * @idle: task in question
5247 * @cpu: cpu the idle task belongs to
5248 *
5249 * NOTE: this function does not set the idle thread's NEED_RESCHED
5250 * flag, to make booting more robust.
5251 */
5252 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5253 {
5254 struct rq *rq = cpu_rq(cpu);
5255 unsigned long flags;
5256
5257 __sched_fork(idle);
5258 idle->se.exec_start = sched_clock();
5259
5260 idle->prio = idle->normal_prio = MAX_PRIO;
5261 idle->cpus_allowed = cpumask_of_cpu(cpu);
5262 __set_task_cpu(idle, cpu);
5263
5264 spin_lock_irqsave(&rq->lock, flags);
5265 rq->curr = rq->idle = idle;
5266 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5267 idle->oncpu = 1;
5268 #endif
5269 spin_unlock_irqrestore(&rq->lock, flags);
5270
5271 /* Set the preempt count _outside_ the spinlocks! */
5272 task_thread_info(idle)->preempt_count = 0;
5273
5274 /*
5275 * The idle tasks have their own, simple scheduling class:
5276 */
5277 idle->sched_class = &idle_sched_class;
5278 }
5279
5280 /*
5281 * In a system that switches off the HZ timer nohz_cpu_mask
5282 * indicates which cpus entered this state. This is used
5283 * in the rcu update to wait only for active cpus. For system
5284 * which do not switch off the HZ timer nohz_cpu_mask should
5285 * always be CPU_MASK_NONE.
5286 */
5287 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5288
5289 /*
5290 * Increase the granularity value when there are more CPUs,
5291 * because with more CPUs the 'effective latency' as visible
5292 * to users decreases. But the relationship is not linear,
5293 * so pick a second-best guess by going with the log2 of the
5294 * number of CPUs.
5295 *
5296 * This idea comes from the SD scheduler of Con Kolivas:
5297 */
5298 static inline void sched_init_granularity(void)
5299 {
5300 unsigned int factor = 1 + ilog2(num_online_cpus());
5301 const unsigned long limit = 200000000;
5302
5303 sysctl_sched_min_granularity *= factor;
5304 if (sysctl_sched_min_granularity > limit)
5305 sysctl_sched_min_granularity = limit;
5306
5307 sysctl_sched_latency *= factor;
5308 if (sysctl_sched_latency > limit)
5309 sysctl_sched_latency = limit;
5310
5311 sysctl_sched_wakeup_granularity *= factor;
5312 sysctl_sched_batch_wakeup_granularity *= factor;
5313 }
5314
5315 #ifdef CONFIG_SMP
5316 /*
5317 * This is how migration works:
5318 *
5319 * 1) we queue a struct migration_req structure in the source CPU's
5320 * runqueue and wake up that CPU's migration thread.
5321 * 2) we down() the locked semaphore => thread blocks.
5322 * 3) migration thread wakes up (implicitly it forces the migrated
5323 * thread off the CPU)
5324 * 4) it gets the migration request and checks whether the migrated
5325 * task is still in the wrong runqueue.
5326 * 5) if it's in the wrong runqueue then the migration thread removes
5327 * it and puts it into the right queue.
5328 * 6) migration thread up()s the semaphore.
5329 * 7) we wake up and the migration is done.
5330 */
5331
5332 /*
5333 * Change a given task's CPU affinity. Migrate the thread to a
5334 * proper CPU and schedule it away if the CPU it's executing on
5335 * is removed from the allowed bitmask.
5336 *
5337 * NOTE: the caller must have a valid reference to the task, the
5338 * task must not exit() & deallocate itself prematurely. The
5339 * call is not atomic; no spinlocks may be held.
5340 */
5341 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
5342 {
5343 struct migration_req req;
5344 unsigned long flags;
5345 struct rq *rq;
5346 int ret = 0;
5347
5348 rq = task_rq_lock(p, &flags);
5349 if (!cpus_intersects(new_mask, cpu_online_map)) {
5350 ret = -EINVAL;
5351 goto out;
5352 }
5353
5354 if (p->sched_class->set_cpus_allowed)
5355 p->sched_class->set_cpus_allowed(p, &new_mask);
5356 else {
5357 p->cpus_allowed = new_mask;
5358 p->rt.nr_cpus_allowed = cpus_weight(new_mask);
5359 }
5360
5361 /* Can the task run on the task's current CPU? If so, we're done */
5362 if (cpu_isset(task_cpu(p), new_mask))
5363 goto out;
5364
5365 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5366 /* Need help from migration thread: drop lock and wait. */
5367 task_rq_unlock(rq, &flags);
5368 wake_up_process(rq->migration_thread);
5369 wait_for_completion(&req.done);
5370 tlb_migrate_finish(p->mm);
5371 return 0;
5372 }
5373 out:
5374 task_rq_unlock(rq, &flags);
5375
5376 return ret;
5377 }
5378 EXPORT_SYMBOL_GPL(set_cpus_allowed);
5379
5380 /*
5381 * Move (not current) task off this cpu, onto dest cpu. We're doing
5382 * this because either it can't run here any more (set_cpus_allowed()
5383 * away from this CPU, or CPU going down), or because we're
5384 * attempting to rebalance this task on exec (sched_exec).
5385 *
5386 * So we race with normal scheduler movements, but that's OK, as long
5387 * as the task is no longer on this CPU.
5388 *
5389 * Returns non-zero if task was successfully migrated.
5390 */
5391 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5392 {
5393 struct rq *rq_dest, *rq_src;
5394 int ret = 0, on_rq;
5395
5396 if (unlikely(cpu_is_offline(dest_cpu)))
5397 return ret;
5398
5399 rq_src = cpu_rq(src_cpu);
5400 rq_dest = cpu_rq(dest_cpu);
5401
5402 double_rq_lock(rq_src, rq_dest);
5403 /* Already moved. */
5404 if (task_cpu(p) != src_cpu)
5405 goto out;
5406 /* Affinity changed (again). */
5407 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5408 goto out;
5409
5410 on_rq = p->se.on_rq;
5411 if (on_rq)
5412 deactivate_task(rq_src, p, 0);
5413
5414 set_task_cpu(p, dest_cpu);
5415 if (on_rq) {
5416 activate_task(rq_dest, p, 0);
5417 check_preempt_curr(rq_dest, p);
5418 }
5419 ret = 1;
5420 out:
5421 double_rq_unlock(rq_src, rq_dest);
5422 return ret;
5423 }
5424
5425 /*
5426 * migration_thread - this is a highprio system thread that performs
5427 * thread migration by bumping thread off CPU then 'pushing' onto
5428 * another runqueue.
5429 */
5430 static int migration_thread(void *data)
5431 {
5432 int cpu = (long)data;
5433 struct rq *rq;
5434
5435 rq = cpu_rq(cpu);
5436 BUG_ON(rq->migration_thread != current);
5437
5438 set_current_state(TASK_INTERRUPTIBLE);
5439 while (!kthread_should_stop()) {
5440 struct migration_req *req;
5441 struct list_head *head;
5442
5443 spin_lock_irq(&rq->lock);
5444
5445 if (cpu_is_offline(cpu)) {
5446 spin_unlock_irq(&rq->lock);
5447 goto wait_to_die;
5448 }
5449
5450 if (rq->active_balance) {
5451 active_load_balance(rq, cpu);
5452 rq->active_balance = 0;
5453 }
5454
5455 head = &rq->migration_queue;
5456
5457 if (list_empty(head)) {
5458 spin_unlock_irq(&rq->lock);
5459 schedule();
5460 set_current_state(TASK_INTERRUPTIBLE);
5461 continue;
5462 }
5463 req = list_entry(head->next, struct migration_req, list);
5464 list_del_init(head->next);
5465
5466 spin_unlock(&rq->lock);
5467 __migrate_task(req->task, cpu, req->dest_cpu);
5468 local_irq_enable();
5469
5470 complete(&req->done);
5471 }
5472 __set_current_state(TASK_RUNNING);
5473 return 0;
5474
5475 wait_to_die:
5476 /* Wait for kthread_stop */
5477 set_current_state(TASK_INTERRUPTIBLE);
5478 while (!kthread_should_stop()) {
5479 schedule();
5480 set_current_state(TASK_INTERRUPTIBLE);
5481 }
5482 __set_current_state(TASK_RUNNING);
5483 return 0;
5484 }
5485
5486 #ifdef CONFIG_HOTPLUG_CPU
5487
5488 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5489 {
5490 int ret;
5491
5492 local_irq_disable();
5493 ret = __migrate_task(p, src_cpu, dest_cpu);
5494 local_irq_enable();
5495 return ret;
5496 }
5497
5498 /*
5499 * Figure out where task on dead CPU should go, use force if necessary.
5500 * NOTE: interrupts should be disabled by the caller
5501 */
5502 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5503 {
5504 unsigned long flags;
5505 cpumask_t mask;
5506 struct rq *rq;
5507 int dest_cpu;
5508
5509 do {
5510 /* On same node? */
5511 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5512 cpus_and(mask, mask, p->cpus_allowed);
5513 dest_cpu = any_online_cpu(mask);
5514
5515 /* On any allowed CPU? */
5516 if (dest_cpu == NR_CPUS)
5517 dest_cpu = any_online_cpu(p->cpus_allowed);
5518
5519 /* No more Mr. Nice Guy. */
5520 if (dest_cpu == NR_CPUS) {
5521 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5522 /*
5523 * Try to stay on the same cpuset, where the
5524 * current cpuset may be a subset of all cpus.
5525 * The cpuset_cpus_allowed_locked() variant of
5526 * cpuset_cpus_allowed() will not block. It must be
5527 * called within calls to cpuset_lock/cpuset_unlock.
5528 */
5529 rq = task_rq_lock(p, &flags);
5530 p->cpus_allowed = cpus_allowed;
5531 dest_cpu = any_online_cpu(p->cpus_allowed);
5532 task_rq_unlock(rq, &flags);
5533
5534 /*
5535 * Don't tell them about moving exiting tasks or
5536 * kernel threads (both mm NULL), since they never
5537 * leave kernel.
5538 */
5539 if (p->mm && printk_ratelimit()) {
5540 printk(KERN_INFO "process %d (%s) no "
5541 "longer affine to cpu%d\n",
5542 task_pid_nr(p), p->comm, dead_cpu);
5543 }
5544 }
5545 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5546 }
5547
5548 /*
5549 * While a dead CPU has no uninterruptible tasks queued at this point,
5550 * it might still have a nonzero ->nr_uninterruptible counter, because
5551 * for performance reasons the counter is not stricly tracking tasks to
5552 * their home CPUs. So we just add the counter to another CPU's counter,
5553 * to keep the global sum constant after CPU-down:
5554 */
5555 static void migrate_nr_uninterruptible(struct rq *rq_src)
5556 {
5557 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5558 unsigned long flags;
5559
5560 local_irq_save(flags);
5561 double_rq_lock(rq_src, rq_dest);
5562 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5563 rq_src->nr_uninterruptible = 0;
5564 double_rq_unlock(rq_src, rq_dest);
5565 local_irq_restore(flags);
5566 }
5567
5568 /* Run through task list and migrate tasks from the dead cpu. */
5569 static void migrate_live_tasks(int src_cpu)
5570 {
5571 struct task_struct *p, *t;
5572
5573 read_lock(&tasklist_lock);
5574
5575 do_each_thread(t, p) {
5576 if (p == current)
5577 continue;
5578
5579 if (task_cpu(p) == src_cpu)
5580 move_task_off_dead_cpu(src_cpu, p);
5581 } while_each_thread(t, p);
5582
5583 read_unlock(&tasklist_lock);
5584 }
5585
5586 /*
5587 * Schedules idle task to be the next runnable task on current CPU.
5588 * It does so by boosting its priority to highest possible.
5589 * Used by CPU offline code.
5590 */
5591 void sched_idle_next(void)
5592 {
5593 int this_cpu = smp_processor_id();
5594 struct rq *rq = cpu_rq(this_cpu);
5595 struct task_struct *p = rq->idle;
5596 unsigned long flags;
5597
5598 /* cpu has to be offline */
5599 BUG_ON(cpu_online(this_cpu));
5600
5601 /*
5602 * Strictly not necessary since rest of the CPUs are stopped by now
5603 * and interrupts disabled on the current cpu.
5604 */
5605 spin_lock_irqsave(&rq->lock, flags);
5606
5607 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5608
5609 update_rq_clock(rq);
5610 activate_task(rq, p, 0);
5611
5612 spin_unlock_irqrestore(&rq->lock, flags);
5613 }
5614
5615 /*
5616 * Ensures that the idle task is using init_mm right before its cpu goes
5617 * offline.
5618 */
5619 void idle_task_exit(void)
5620 {
5621 struct mm_struct *mm = current->active_mm;
5622
5623 BUG_ON(cpu_online(smp_processor_id()));
5624
5625 if (mm != &init_mm)
5626 switch_mm(mm, &init_mm, current);
5627 mmdrop(mm);
5628 }
5629
5630 /* called under rq->lock with disabled interrupts */
5631 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5632 {
5633 struct rq *rq = cpu_rq(dead_cpu);
5634
5635 /* Must be exiting, otherwise would be on tasklist. */
5636 BUG_ON(!p->exit_state);
5637
5638 /* Cannot have done final schedule yet: would have vanished. */
5639 BUG_ON(p->state == TASK_DEAD);
5640
5641 get_task_struct(p);
5642
5643 /*
5644 * Drop lock around migration; if someone else moves it,
5645 * that's OK. No task can be added to this CPU, so iteration is
5646 * fine.
5647 */
5648 spin_unlock_irq(&rq->lock);
5649 move_task_off_dead_cpu(dead_cpu, p);
5650 spin_lock_irq(&rq->lock);
5651
5652 put_task_struct(p);
5653 }
5654
5655 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5656 static void migrate_dead_tasks(unsigned int dead_cpu)
5657 {
5658 struct rq *rq = cpu_rq(dead_cpu);
5659 struct task_struct *next;
5660
5661 for ( ; ; ) {
5662 if (!rq->nr_running)
5663 break;
5664 update_rq_clock(rq);
5665 next = pick_next_task(rq, rq->curr);
5666 if (!next)
5667 break;
5668 migrate_dead(dead_cpu, next);
5669
5670 }
5671 }
5672 #endif /* CONFIG_HOTPLUG_CPU */
5673
5674 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5675
5676 static struct ctl_table sd_ctl_dir[] = {
5677 {
5678 .procname = "sched_domain",
5679 .mode = 0555,
5680 },
5681 {0, },
5682 };
5683
5684 static struct ctl_table sd_ctl_root[] = {
5685 {
5686 .ctl_name = CTL_KERN,
5687 .procname = "kernel",
5688 .mode = 0555,
5689 .child = sd_ctl_dir,
5690 },
5691 {0, },
5692 };
5693
5694 static struct ctl_table *sd_alloc_ctl_entry(int n)
5695 {
5696 struct ctl_table *entry =
5697 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5698
5699 return entry;
5700 }
5701
5702 static void sd_free_ctl_entry(struct ctl_table **tablep)
5703 {
5704 struct ctl_table *entry;
5705
5706 /*
5707 * In the intermediate directories, both the child directory and
5708 * procname are dynamically allocated and could fail but the mode
5709 * will always be set. In the lowest directory the names are
5710 * static strings and all have proc handlers.
5711 */
5712 for (entry = *tablep; entry->mode; entry++) {
5713 if (entry->child)
5714 sd_free_ctl_entry(&entry->child);
5715 if (entry->proc_handler == NULL)
5716 kfree(entry->procname);
5717 }
5718
5719 kfree(*tablep);
5720 *tablep = NULL;
5721 }
5722
5723 static void
5724 set_table_entry(struct ctl_table *entry,
5725 const char *procname, void *data, int maxlen,
5726 mode_t mode, proc_handler *proc_handler)
5727 {
5728 entry->procname = procname;
5729 entry->data = data;
5730 entry->maxlen = maxlen;
5731 entry->mode = mode;
5732 entry->proc_handler = proc_handler;
5733 }
5734
5735 static struct ctl_table *
5736 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5737 {
5738 struct ctl_table *table = sd_alloc_ctl_entry(12);
5739
5740 if (table == NULL)
5741 return NULL;
5742
5743 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5744 sizeof(long), 0644, proc_doulongvec_minmax);
5745 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5746 sizeof(long), 0644, proc_doulongvec_minmax);
5747 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5748 sizeof(int), 0644, proc_dointvec_minmax);
5749 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5750 sizeof(int), 0644, proc_dointvec_minmax);
5751 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5752 sizeof(int), 0644, proc_dointvec_minmax);
5753 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5754 sizeof(int), 0644, proc_dointvec_minmax);
5755 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5756 sizeof(int), 0644, proc_dointvec_minmax);
5757 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5758 sizeof(int), 0644, proc_dointvec_minmax);
5759 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5760 sizeof(int), 0644, proc_dointvec_minmax);
5761 set_table_entry(&table[9], "cache_nice_tries",
5762 &sd->cache_nice_tries,
5763 sizeof(int), 0644, proc_dointvec_minmax);
5764 set_table_entry(&table[10], "flags", &sd->flags,
5765 sizeof(int), 0644, proc_dointvec_minmax);
5766 /* &table[11] is terminator */
5767
5768 return table;
5769 }
5770
5771 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5772 {
5773 struct ctl_table *entry, *table;
5774 struct sched_domain *sd;
5775 int domain_num = 0, i;
5776 char buf[32];
5777
5778 for_each_domain(cpu, sd)
5779 domain_num++;
5780 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5781 if (table == NULL)
5782 return NULL;
5783
5784 i = 0;
5785 for_each_domain(cpu, sd) {
5786 snprintf(buf, 32, "domain%d", i);
5787 entry->procname = kstrdup(buf, GFP_KERNEL);
5788 entry->mode = 0555;
5789 entry->child = sd_alloc_ctl_domain_table(sd);
5790 entry++;
5791 i++;
5792 }
5793 return table;
5794 }
5795
5796 static struct ctl_table_header *sd_sysctl_header;
5797 static void register_sched_domain_sysctl(void)
5798 {
5799 int i, cpu_num = num_online_cpus();
5800 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5801 char buf[32];
5802
5803 WARN_ON(sd_ctl_dir[0].child);
5804 sd_ctl_dir[0].child = entry;
5805
5806 if (entry == NULL)
5807 return;
5808
5809 for_each_online_cpu(i) {
5810 snprintf(buf, 32, "cpu%d", i);
5811 entry->procname = kstrdup(buf, GFP_KERNEL);
5812 entry->mode = 0555;
5813 entry->child = sd_alloc_ctl_cpu_table(i);
5814 entry++;
5815 }
5816
5817 WARN_ON(sd_sysctl_header);
5818 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5819 }
5820
5821 /* may be called multiple times per register */
5822 static void unregister_sched_domain_sysctl(void)
5823 {
5824 if (sd_sysctl_header)
5825 unregister_sysctl_table(sd_sysctl_header);
5826 sd_sysctl_header = NULL;
5827 if (sd_ctl_dir[0].child)
5828 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5829 }
5830 #else
5831 static void register_sched_domain_sysctl(void)
5832 {
5833 }
5834 static void unregister_sched_domain_sysctl(void)
5835 {
5836 }
5837 #endif
5838
5839 /*
5840 * migration_call - callback that gets triggered when a CPU is added.
5841 * Here we can start up the necessary migration thread for the new CPU.
5842 */
5843 static int __cpuinit
5844 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5845 {
5846 struct task_struct *p;
5847 int cpu = (long)hcpu;
5848 unsigned long flags;
5849 struct rq *rq;
5850
5851 switch (action) {
5852
5853 case CPU_UP_PREPARE:
5854 case CPU_UP_PREPARE_FROZEN:
5855 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5856 if (IS_ERR(p))
5857 return NOTIFY_BAD;
5858 kthread_bind(p, cpu);
5859 /* Must be high prio: stop_machine expects to yield to it. */
5860 rq = task_rq_lock(p, &flags);
5861 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5862 task_rq_unlock(rq, &flags);
5863 cpu_rq(cpu)->migration_thread = p;
5864 break;
5865
5866 case CPU_ONLINE:
5867 case CPU_ONLINE_FROZEN:
5868 /* Strictly unnecessary, as first user will wake it. */
5869 wake_up_process(cpu_rq(cpu)->migration_thread);
5870
5871 /* Update our root-domain */
5872 rq = cpu_rq(cpu);
5873 spin_lock_irqsave(&rq->lock, flags);
5874 if (rq->rd) {
5875 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5876 cpu_set(cpu, rq->rd->online);
5877 }
5878 spin_unlock_irqrestore(&rq->lock, flags);
5879 break;
5880
5881 #ifdef CONFIG_HOTPLUG_CPU
5882 case CPU_UP_CANCELED:
5883 case CPU_UP_CANCELED_FROZEN:
5884 if (!cpu_rq(cpu)->migration_thread)
5885 break;
5886 /* Unbind it from offline cpu so it can run. Fall thru. */
5887 kthread_bind(cpu_rq(cpu)->migration_thread,
5888 any_online_cpu(cpu_online_map));
5889 kthread_stop(cpu_rq(cpu)->migration_thread);
5890 cpu_rq(cpu)->migration_thread = NULL;
5891 break;
5892
5893 case CPU_DEAD:
5894 case CPU_DEAD_FROZEN:
5895 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
5896 migrate_live_tasks(cpu);
5897 rq = cpu_rq(cpu);
5898 kthread_stop(rq->migration_thread);
5899 rq->migration_thread = NULL;
5900 /* Idle task back to normal (off runqueue, low prio) */
5901 spin_lock_irq(&rq->lock);
5902 update_rq_clock(rq);
5903 deactivate_task(rq, rq->idle, 0);
5904 rq->idle->static_prio = MAX_PRIO;
5905 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5906 rq->idle->sched_class = &idle_sched_class;
5907 migrate_dead_tasks(cpu);
5908 spin_unlock_irq(&rq->lock);
5909 cpuset_unlock();
5910 migrate_nr_uninterruptible(rq);
5911 BUG_ON(rq->nr_running != 0);
5912
5913 /*
5914 * No need to migrate the tasks: it was best-effort if
5915 * they didn't take sched_hotcpu_mutex. Just wake up
5916 * the requestors.
5917 */
5918 spin_lock_irq(&rq->lock);
5919 while (!list_empty(&rq->migration_queue)) {
5920 struct migration_req *req;
5921
5922 req = list_entry(rq->migration_queue.next,
5923 struct migration_req, list);
5924 list_del_init(&req->list);
5925 complete(&req->done);
5926 }
5927 spin_unlock_irq(&rq->lock);
5928 break;
5929
5930 case CPU_DYING:
5931 case CPU_DYING_FROZEN:
5932 /* Update our root-domain */
5933 rq = cpu_rq(cpu);
5934 spin_lock_irqsave(&rq->lock, flags);
5935 if (rq->rd) {
5936 BUG_ON(!cpu_isset(cpu, rq->rd->span));
5937 cpu_clear(cpu, rq->rd->online);
5938 }
5939 spin_unlock_irqrestore(&rq->lock, flags);
5940 break;
5941 #endif
5942 }
5943 return NOTIFY_OK;
5944 }
5945
5946 /* Register at highest priority so that task migration (migrate_all_tasks)
5947 * happens before everything else.
5948 */
5949 static struct notifier_block __cpuinitdata migration_notifier = {
5950 .notifier_call = migration_call,
5951 .priority = 10
5952 };
5953
5954 void __init migration_init(void)
5955 {
5956 void *cpu = (void *)(long)smp_processor_id();
5957 int err;
5958
5959 /* Start one for the boot CPU: */
5960 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5961 BUG_ON(err == NOTIFY_BAD);
5962 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5963 register_cpu_notifier(&migration_notifier);
5964 }
5965 #endif
5966
5967 #ifdef CONFIG_SMP
5968
5969 /* Number of possible processor ids */
5970 int nr_cpu_ids __read_mostly = NR_CPUS;
5971 EXPORT_SYMBOL(nr_cpu_ids);
5972
5973 #ifdef CONFIG_SCHED_DEBUG
5974
5975 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level)
5976 {
5977 struct sched_group *group = sd->groups;
5978 cpumask_t groupmask;
5979 char str[NR_CPUS];
5980
5981 cpumask_scnprintf(str, NR_CPUS, sd->span);
5982 cpus_clear(groupmask);
5983
5984 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5985
5986 if (!(sd->flags & SD_LOAD_BALANCE)) {
5987 printk("does not load-balance\n");
5988 if (sd->parent)
5989 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5990 " has parent");
5991 return -1;
5992 }
5993
5994 printk(KERN_CONT "span %s\n", str);
5995
5996 if (!cpu_isset(cpu, sd->span)) {
5997 printk(KERN_ERR "ERROR: domain->span does not contain "
5998 "CPU%d\n", cpu);
5999 }
6000 if (!cpu_isset(cpu, group->cpumask)) {
6001 printk(KERN_ERR "ERROR: domain->groups does not contain"
6002 " CPU%d\n", cpu);
6003 }
6004
6005 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6006 do {
6007 if (!group) {
6008 printk("\n");
6009 printk(KERN_ERR "ERROR: group is NULL\n");
6010 break;
6011 }
6012
6013 if (!group->__cpu_power) {
6014 printk(KERN_CONT "\n");
6015 printk(KERN_ERR "ERROR: domain->cpu_power not "
6016 "set\n");
6017 break;
6018 }
6019
6020 if (!cpus_weight(group->cpumask)) {
6021 printk(KERN_CONT "\n");
6022 printk(KERN_ERR "ERROR: empty group\n");
6023 break;
6024 }
6025
6026 if (cpus_intersects(groupmask, group->cpumask)) {
6027 printk(KERN_CONT "\n");
6028 printk(KERN_ERR "ERROR: repeated CPUs\n");
6029 break;
6030 }
6031
6032 cpus_or(groupmask, groupmask, group->cpumask);
6033
6034 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
6035 printk(KERN_CONT " %s", str);
6036
6037 group = group->next;
6038 } while (group != sd->groups);
6039 printk(KERN_CONT "\n");
6040
6041 if (!cpus_equal(sd->span, groupmask))
6042 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6043
6044 if (sd->parent && !cpus_subset(groupmask, sd->parent->span))
6045 printk(KERN_ERR "ERROR: parent span is not a superset "
6046 "of domain->span\n");
6047 return 0;
6048 }
6049
6050 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6051 {
6052 int level = 0;
6053
6054 if (!sd) {
6055 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6056 return;
6057 }
6058
6059 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6060
6061 for (;;) {
6062 if (sched_domain_debug_one(sd, cpu, level))
6063 break;
6064 level++;
6065 sd = sd->parent;
6066 if (!sd)
6067 break;
6068 }
6069 }
6070 #else
6071 # define sched_domain_debug(sd, cpu) do { } while (0)
6072 #endif
6073
6074 static int sd_degenerate(struct sched_domain *sd)
6075 {
6076 if (cpus_weight(sd->span) == 1)
6077 return 1;
6078
6079 /* Following flags need at least 2 groups */
6080 if (sd->flags & (SD_LOAD_BALANCE |
6081 SD_BALANCE_NEWIDLE |
6082 SD_BALANCE_FORK |
6083 SD_BALANCE_EXEC |
6084 SD_SHARE_CPUPOWER |
6085 SD_SHARE_PKG_RESOURCES)) {
6086 if (sd->groups != sd->groups->next)
6087 return 0;
6088 }
6089
6090 /* Following flags don't use groups */
6091 if (sd->flags & (SD_WAKE_IDLE |
6092 SD_WAKE_AFFINE |
6093 SD_WAKE_BALANCE))
6094 return 0;
6095
6096 return 1;
6097 }
6098
6099 static int
6100 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6101 {
6102 unsigned long cflags = sd->flags, pflags = parent->flags;
6103
6104 if (sd_degenerate(parent))
6105 return 1;
6106
6107 if (!cpus_equal(sd->span, parent->span))
6108 return 0;
6109
6110 /* Does parent contain flags not in child? */
6111 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6112 if (cflags & SD_WAKE_AFFINE)
6113 pflags &= ~SD_WAKE_BALANCE;
6114 /* Flags needing groups don't count if only 1 group in parent */
6115 if (parent->groups == parent->groups->next) {
6116 pflags &= ~(SD_LOAD_BALANCE |
6117 SD_BALANCE_NEWIDLE |
6118 SD_BALANCE_FORK |
6119 SD_BALANCE_EXEC |
6120 SD_SHARE_CPUPOWER |
6121 SD_SHARE_PKG_RESOURCES);
6122 }
6123 if (~cflags & pflags)
6124 return 0;
6125
6126 return 1;
6127 }
6128
6129 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6130 {
6131 unsigned long flags;
6132 const struct sched_class *class;
6133
6134 spin_lock_irqsave(&rq->lock, flags);
6135
6136 if (rq->rd) {
6137 struct root_domain *old_rd = rq->rd;
6138
6139 for (class = sched_class_highest; class; class = class->next) {
6140 if (class->leave_domain)
6141 class->leave_domain(rq);
6142 }
6143
6144 cpu_clear(rq->cpu, old_rd->span);
6145 cpu_clear(rq->cpu, old_rd->online);
6146
6147 if (atomic_dec_and_test(&old_rd->refcount))
6148 kfree(old_rd);
6149 }
6150
6151 atomic_inc(&rd->refcount);
6152 rq->rd = rd;
6153
6154 cpu_set(rq->cpu, rd->span);
6155 if (cpu_isset(rq->cpu, cpu_online_map))
6156 cpu_set(rq->cpu, rd->online);
6157
6158 for (class = sched_class_highest; class; class = class->next) {
6159 if (class->join_domain)
6160 class->join_domain(rq);
6161 }
6162
6163 spin_unlock_irqrestore(&rq->lock, flags);
6164 }
6165
6166 static void init_rootdomain(struct root_domain *rd)
6167 {
6168 memset(rd, 0, sizeof(*rd));
6169
6170 cpus_clear(rd->span);
6171 cpus_clear(rd->online);
6172 }
6173
6174 static void init_defrootdomain(void)
6175 {
6176 init_rootdomain(&def_root_domain);
6177 atomic_set(&def_root_domain.refcount, 1);
6178 }
6179
6180 static struct root_domain *alloc_rootdomain(void)
6181 {
6182 struct root_domain *rd;
6183
6184 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6185 if (!rd)
6186 return NULL;
6187
6188 init_rootdomain(rd);
6189
6190 return rd;
6191 }
6192
6193 /*
6194 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6195 * hold the hotplug lock.
6196 */
6197 static void
6198 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6199 {
6200 struct rq *rq = cpu_rq(cpu);
6201 struct sched_domain *tmp;
6202
6203 /* Remove the sched domains which do not contribute to scheduling. */
6204 for (tmp = sd; tmp; tmp = tmp->parent) {
6205 struct sched_domain *parent = tmp->parent;
6206 if (!parent)
6207 break;
6208 if (sd_parent_degenerate(tmp, parent)) {
6209 tmp->parent = parent->parent;
6210 if (parent->parent)
6211 parent->parent->child = tmp;
6212 }
6213 }
6214
6215 if (sd && sd_degenerate(sd)) {
6216 sd = sd->parent;
6217 if (sd)
6218 sd->child = NULL;
6219 }
6220
6221 sched_domain_debug(sd, cpu);
6222
6223 rq_attach_root(rq, rd);
6224 rcu_assign_pointer(rq->sd, sd);
6225 }
6226
6227 /* cpus with isolated domains */
6228 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6229
6230 /* Setup the mask of cpus configured for isolated domains */
6231 static int __init isolated_cpu_setup(char *str)
6232 {
6233 int ints[NR_CPUS], i;
6234
6235 str = get_options(str, ARRAY_SIZE(ints), ints);
6236 cpus_clear(cpu_isolated_map);
6237 for (i = 1; i <= ints[0]; i++)
6238 if (ints[i] < NR_CPUS)
6239 cpu_set(ints[i], cpu_isolated_map);
6240 return 1;
6241 }
6242
6243 __setup("isolcpus=", isolated_cpu_setup);
6244
6245 /*
6246 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6247 * to a function which identifies what group(along with sched group) a CPU
6248 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6249 * (due to the fact that we keep track of groups covered with a cpumask_t).
6250 *
6251 * init_sched_build_groups will build a circular linked list of the groups
6252 * covered by the given span, and will set each group's ->cpumask correctly,
6253 * and ->cpu_power to 0.
6254 */
6255 static void
6256 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
6257 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6258 struct sched_group **sg))
6259 {
6260 struct sched_group *first = NULL, *last = NULL;
6261 cpumask_t covered = CPU_MASK_NONE;
6262 int i;
6263
6264 for_each_cpu_mask(i, span) {
6265 struct sched_group *sg;
6266 int group = group_fn(i, cpu_map, &sg);
6267 int j;
6268
6269 if (cpu_isset(i, covered))
6270 continue;
6271
6272 sg->cpumask = CPU_MASK_NONE;
6273 sg->__cpu_power = 0;
6274
6275 for_each_cpu_mask(j, span) {
6276 if (group_fn(j, cpu_map, NULL) != group)
6277 continue;
6278
6279 cpu_set(j, covered);
6280 cpu_set(j, sg->cpumask);
6281 }
6282 if (!first)
6283 first = sg;
6284 if (last)
6285 last->next = sg;
6286 last = sg;
6287 }
6288 last->next = first;
6289 }
6290
6291 #define SD_NODES_PER_DOMAIN 16
6292
6293 #ifdef CONFIG_NUMA
6294
6295 /**
6296 * find_next_best_node - find the next node to include in a sched_domain
6297 * @node: node whose sched_domain we're building
6298 * @used_nodes: nodes already in the sched_domain
6299 *
6300 * Find the next node to include in a given scheduling domain. Simply
6301 * finds the closest node not already in the @used_nodes map.
6302 *
6303 * Should use nodemask_t.
6304 */
6305 static int find_next_best_node(int node, unsigned long *used_nodes)
6306 {
6307 int i, n, val, min_val, best_node = 0;
6308
6309 min_val = INT_MAX;
6310
6311 for (i = 0; i < MAX_NUMNODES; i++) {
6312 /* Start at @node */
6313 n = (node + i) % MAX_NUMNODES;
6314
6315 if (!nr_cpus_node(n))
6316 continue;
6317
6318 /* Skip already used nodes */
6319 if (test_bit(n, used_nodes))
6320 continue;
6321
6322 /* Simple min distance search */
6323 val = node_distance(node, n);
6324
6325 if (val < min_val) {
6326 min_val = val;
6327 best_node = n;
6328 }
6329 }
6330
6331 set_bit(best_node, used_nodes);
6332 return best_node;
6333 }
6334
6335 /**
6336 * sched_domain_node_span - get a cpumask for a node's sched_domain
6337 * @node: node whose cpumask we're constructing
6338 * @size: number of nodes to include in this span
6339 *
6340 * Given a node, construct a good cpumask for its sched_domain to span. It
6341 * should be one that prevents unnecessary balancing, but also spreads tasks
6342 * out optimally.
6343 */
6344 static cpumask_t sched_domain_node_span(int node)
6345 {
6346 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
6347 cpumask_t span, nodemask;
6348 int i;
6349
6350 cpus_clear(span);
6351 bitmap_zero(used_nodes, MAX_NUMNODES);
6352
6353 nodemask = node_to_cpumask(node);
6354 cpus_or(span, span, nodemask);
6355 set_bit(node, used_nodes);
6356
6357 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6358 int next_node = find_next_best_node(node, used_nodes);
6359
6360 nodemask = node_to_cpumask(next_node);
6361 cpus_or(span, span, nodemask);
6362 }
6363
6364 return span;
6365 }
6366 #endif
6367
6368 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6369
6370 /*
6371 * SMT sched-domains:
6372 */
6373 #ifdef CONFIG_SCHED_SMT
6374 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6375 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6376
6377 static int
6378 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6379 {
6380 if (sg)
6381 *sg = &per_cpu(sched_group_cpus, cpu);
6382 return cpu;
6383 }
6384 #endif
6385
6386 /*
6387 * multi-core sched-domains:
6388 */
6389 #ifdef CONFIG_SCHED_MC
6390 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6391 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6392 #endif
6393
6394 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6395 static int
6396 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6397 {
6398 int group;
6399 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6400 cpus_and(mask, mask, *cpu_map);
6401 group = first_cpu(mask);
6402 if (sg)
6403 *sg = &per_cpu(sched_group_core, group);
6404 return group;
6405 }
6406 #elif defined(CONFIG_SCHED_MC)
6407 static int
6408 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6409 {
6410 if (sg)
6411 *sg = &per_cpu(sched_group_core, cpu);
6412 return cpu;
6413 }
6414 #endif
6415
6416 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6417 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6418
6419 static int
6420 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg)
6421 {
6422 int group;
6423 #ifdef CONFIG_SCHED_MC
6424 cpumask_t mask = cpu_coregroup_map(cpu);
6425 cpus_and(mask, mask, *cpu_map);
6426 group = first_cpu(mask);
6427 #elif defined(CONFIG_SCHED_SMT)
6428 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
6429 cpus_and(mask, mask, *cpu_map);
6430 group = first_cpu(mask);
6431 #else
6432 group = cpu;
6433 #endif
6434 if (sg)
6435 *sg = &per_cpu(sched_group_phys, group);
6436 return group;
6437 }
6438
6439 #ifdef CONFIG_NUMA
6440 /*
6441 * The init_sched_build_groups can't handle what we want to do with node
6442 * groups, so roll our own. Now each node has its own list of groups which
6443 * gets dynamically allocated.
6444 */
6445 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6446 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
6447
6448 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6449 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6450
6451 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6452 struct sched_group **sg)
6453 {
6454 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6455 int group;
6456
6457 cpus_and(nodemask, nodemask, *cpu_map);
6458 group = first_cpu(nodemask);
6459
6460 if (sg)
6461 *sg = &per_cpu(sched_group_allnodes, group);
6462 return group;
6463 }
6464
6465 static void init_numa_sched_groups_power(struct sched_group *group_head)
6466 {
6467 struct sched_group *sg = group_head;
6468 int j;
6469
6470 if (!sg)
6471 return;
6472 do {
6473 for_each_cpu_mask(j, sg->cpumask) {
6474 struct sched_domain *sd;
6475
6476 sd = &per_cpu(phys_domains, j);
6477 if (j != first_cpu(sd->groups->cpumask)) {
6478 /*
6479 * Only add "power" once for each
6480 * physical package.
6481 */
6482 continue;
6483 }
6484
6485 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6486 }
6487 sg = sg->next;
6488 } while (sg != group_head);
6489 }
6490 #endif
6491
6492 #ifdef CONFIG_NUMA
6493 /* Free memory allocated for various sched_group structures */
6494 static void free_sched_groups(const cpumask_t *cpu_map)
6495 {
6496 int cpu, i;
6497
6498 for_each_cpu_mask(cpu, *cpu_map) {
6499 struct sched_group **sched_group_nodes
6500 = sched_group_nodes_bycpu[cpu];
6501
6502 if (!sched_group_nodes)
6503 continue;
6504
6505 for (i = 0; i < MAX_NUMNODES; i++) {
6506 cpumask_t nodemask = node_to_cpumask(i);
6507 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6508
6509 cpus_and(nodemask, nodemask, *cpu_map);
6510 if (cpus_empty(nodemask))
6511 continue;
6512
6513 if (sg == NULL)
6514 continue;
6515 sg = sg->next;
6516 next_sg:
6517 oldsg = sg;
6518 sg = sg->next;
6519 kfree(oldsg);
6520 if (oldsg != sched_group_nodes[i])
6521 goto next_sg;
6522 }
6523 kfree(sched_group_nodes);
6524 sched_group_nodes_bycpu[cpu] = NULL;
6525 }
6526 }
6527 #else
6528 static void free_sched_groups(const cpumask_t *cpu_map)
6529 {
6530 }
6531 #endif
6532
6533 /*
6534 * Initialize sched groups cpu_power.
6535 *
6536 * cpu_power indicates the capacity of sched group, which is used while
6537 * distributing the load between different sched groups in a sched domain.
6538 * Typically cpu_power for all the groups in a sched domain will be same unless
6539 * there are asymmetries in the topology. If there are asymmetries, group
6540 * having more cpu_power will pickup more load compared to the group having
6541 * less cpu_power.
6542 *
6543 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6544 * the maximum number of tasks a group can handle in the presence of other idle
6545 * or lightly loaded groups in the same sched domain.
6546 */
6547 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6548 {
6549 struct sched_domain *child;
6550 struct sched_group *group;
6551
6552 WARN_ON(!sd || !sd->groups);
6553
6554 if (cpu != first_cpu(sd->groups->cpumask))
6555 return;
6556
6557 child = sd->child;
6558
6559 sd->groups->__cpu_power = 0;
6560
6561 /*
6562 * For perf policy, if the groups in child domain share resources
6563 * (for example cores sharing some portions of the cache hierarchy
6564 * or SMT), then set this domain groups cpu_power such that each group
6565 * can handle only one task, when there are other idle groups in the
6566 * same sched domain.
6567 */
6568 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6569 (child->flags &
6570 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6571 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6572 return;
6573 }
6574
6575 /*
6576 * add cpu_power of each child group to this groups cpu_power
6577 */
6578 group = child->groups;
6579 do {
6580 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6581 group = group->next;
6582 } while (group != child->groups);
6583 }
6584
6585 /*
6586 * Build sched domains for a given set of cpus and attach the sched domains
6587 * to the individual cpus
6588 */
6589 static int build_sched_domains(const cpumask_t *cpu_map)
6590 {
6591 int i;
6592 struct root_domain *rd;
6593 #ifdef CONFIG_NUMA
6594 struct sched_group **sched_group_nodes = NULL;
6595 int sd_allnodes = 0;
6596
6597 /*
6598 * Allocate the per-node list of sched groups
6599 */
6600 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6601 GFP_KERNEL);
6602 if (!sched_group_nodes) {
6603 printk(KERN_WARNING "Can not alloc sched group node list\n");
6604 return -ENOMEM;
6605 }
6606 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6607 #endif
6608
6609 rd = alloc_rootdomain();
6610 if (!rd) {
6611 printk(KERN_WARNING "Cannot alloc root domain\n");
6612 return -ENOMEM;
6613 }
6614
6615 /*
6616 * Set up domains for cpus specified by the cpu_map.
6617 */
6618 for_each_cpu_mask(i, *cpu_map) {
6619 struct sched_domain *sd = NULL, *p;
6620 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6621
6622 cpus_and(nodemask, nodemask, *cpu_map);
6623
6624 #ifdef CONFIG_NUMA
6625 if (cpus_weight(*cpu_map) >
6626 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6627 sd = &per_cpu(allnodes_domains, i);
6628 *sd = SD_ALLNODES_INIT;
6629 sd->span = *cpu_map;
6630 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6631 p = sd;
6632 sd_allnodes = 1;
6633 } else
6634 p = NULL;
6635
6636 sd = &per_cpu(node_domains, i);
6637 *sd = SD_NODE_INIT;
6638 sd->span = sched_domain_node_span(cpu_to_node(i));
6639 sd->parent = p;
6640 if (p)
6641 p->child = sd;
6642 cpus_and(sd->span, sd->span, *cpu_map);
6643 #endif
6644
6645 p = sd;
6646 sd = &per_cpu(phys_domains, i);
6647 *sd = SD_CPU_INIT;
6648 sd->span = nodemask;
6649 sd->parent = p;
6650 if (p)
6651 p->child = sd;
6652 cpu_to_phys_group(i, cpu_map, &sd->groups);
6653
6654 #ifdef CONFIG_SCHED_MC
6655 p = sd;
6656 sd = &per_cpu(core_domains, i);
6657 *sd = SD_MC_INIT;
6658 sd->span = cpu_coregroup_map(i);
6659 cpus_and(sd->span, sd->span, *cpu_map);
6660 sd->parent = p;
6661 p->child = sd;
6662 cpu_to_core_group(i, cpu_map, &sd->groups);
6663 #endif
6664
6665 #ifdef CONFIG_SCHED_SMT
6666 p = sd;
6667 sd = &per_cpu(cpu_domains, i);
6668 *sd = SD_SIBLING_INIT;
6669 sd->span = per_cpu(cpu_sibling_map, i);
6670 cpus_and(sd->span, sd->span, *cpu_map);
6671 sd->parent = p;
6672 p->child = sd;
6673 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6674 #endif
6675 }
6676
6677 #ifdef CONFIG_SCHED_SMT
6678 /* Set up CPU (sibling) groups */
6679 for_each_cpu_mask(i, *cpu_map) {
6680 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
6681 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6682 if (i != first_cpu(this_sibling_map))
6683 continue;
6684
6685 init_sched_build_groups(this_sibling_map, cpu_map,
6686 &cpu_to_cpu_group);
6687 }
6688 #endif
6689
6690 #ifdef CONFIG_SCHED_MC
6691 /* Set up multi-core groups */
6692 for_each_cpu_mask(i, *cpu_map) {
6693 cpumask_t this_core_map = cpu_coregroup_map(i);
6694 cpus_and(this_core_map, this_core_map, *cpu_map);
6695 if (i != first_cpu(this_core_map))
6696 continue;
6697 init_sched_build_groups(this_core_map, cpu_map,
6698 &cpu_to_core_group);
6699 }
6700 #endif
6701
6702 /* Set up physical groups */
6703 for (i = 0; i < MAX_NUMNODES; i++) {
6704 cpumask_t nodemask = node_to_cpumask(i);
6705
6706 cpus_and(nodemask, nodemask, *cpu_map);
6707 if (cpus_empty(nodemask))
6708 continue;
6709
6710 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6711 }
6712
6713 #ifdef CONFIG_NUMA
6714 /* Set up node groups */
6715 if (sd_allnodes)
6716 init_sched_build_groups(*cpu_map, cpu_map,
6717 &cpu_to_allnodes_group);
6718
6719 for (i = 0; i < MAX_NUMNODES; i++) {
6720 /* Set up node groups */
6721 struct sched_group *sg, *prev;
6722 cpumask_t nodemask = node_to_cpumask(i);
6723 cpumask_t domainspan;
6724 cpumask_t covered = CPU_MASK_NONE;
6725 int j;
6726
6727 cpus_and(nodemask, nodemask, *cpu_map);
6728 if (cpus_empty(nodemask)) {
6729 sched_group_nodes[i] = NULL;
6730 continue;
6731 }
6732
6733 domainspan = sched_domain_node_span(i);
6734 cpus_and(domainspan, domainspan, *cpu_map);
6735
6736 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6737 if (!sg) {
6738 printk(KERN_WARNING "Can not alloc domain group for "
6739 "node %d\n", i);
6740 goto error;
6741 }
6742 sched_group_nodes[i] = sg;
6743 for_each_cpu_mask(j, nodemask) {
6744 struct sched_domain *sd;
6745
6746 sd = &per_cpu(node_domains, j);
6747 sd->groups = sg;
6748 }
6749 sg->__cpu_power = 0;
6750 sg->cpumask = nodemask;
6751 sg->next = sg;
6752 cpus_or(covered, covered, nodemask);
6753 prev = sg;
6754
6755 for (j = 0; j < MAX_NUMNODES; j++) {
6756 cpumask_t tmp, notcovered;
6757 int n = (i + j) % MAX_NUMNODES;
6758
6759 cpus_complement(notcovered, covered);
6760 cpus_and(tmp, notcovered, *cpu_map);
6761 cpus_and(tmp, tmp, domainspan);
6762 if (cpus_empty(tmp))
6763 break;
6764
6765 nodemask = node_to_cpumask(n);
6766 cpus_and(tmp, tmp, nodemask);
6767 if (cpus_empty(tmp))
6768 continue;
6769
6770 sg = kmalloc_node(sizeof(struct sched_group),
6771 GFP_KERNEL, i);
6772 if (!sg) {
6773 printk(KERN_WARNING
6774 "Can not alloc domain group for node %d\n", j);
6775 goto error;
6776 }
6777 sg->__cpu_power = 0;
6778 sg->cpumask = tmp;
6779 sg->next = prev->next;
6780 cpus_or(covered, covered, tmp);
6781 prev->next = sg;
6782 prev = sg;
6783 }
6784 }
6785 #endif
6786
6787 /* Calculate CPU power for physical packages and nodes */
6788 #ifdef CONFIG_SCHED_SMT
6789 for_each_cpu_mask(i, *cpu_map) {
6790 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6791
6792 init_sched_groups_power(i, sd);
6793 }
6794 #endif
6795 #ifdef CONFIG_SCHED_MC
6796 for_each_cpu_mask(i, *cpu_map) {
6797 struct sched_domain *sd = &per_cpu(core_domains, i);
6798
6799 init_sched_groups_power(i, sd);
6800 }
6801 #endif
6802
6803 for_each_cpu_mask(i, *cpu_map) {
6804 struct sched_domain *sd = &per_cpu(phys_domains, i);
6805
6806 init_sched_groups_power(i, sd);
6807 }
6808
6809 #ifdef CONFIG_NUMA
6810 for (i = 0; i < MAX_NUMNODES; i++)
6811 init_numa_sched_groups_power(sched_group_nodes[i]);
6812
6813 if (sd_allnodes) {
6814 struct sched_group *sg;
6815
6816 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6817 init_numa_sched_groups_power(sg);
6818 }
6819 #endif
6820
6821 /* Attach the domains */
6822 for_each_cpu_mask(i, *cpu_map) {
6823 struct sched_domain *sd;
6824 #ifdef CONFIG_SCHED_SMT
6825 sd = &per_cpu(cpu_domains, i);
6826 #elif defined(CONFIG_SCHED_MC)
6827 sd = &per_cpu(core_domains, i);
6828 #else
6829 sd = &per_cpu(phys_domains, i);
6830 #endif
6831 cpu_attach_domain(sd, rd, i);
6832 }
6833
6834 return 0;
6835
6836 #ifdef CONFIG_NUMA
6837 error:
6838 free_sched_groups(cpu_map);
6839 return -ENOMEM;
6840 #endif
6841 }
6842
6843 static cpumask_t *doms_cur; /* current sched domains */
6844 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6845
6846 /*
6847 * Special case: If a kmalloc of a doms_cur partition (array of
6848 * cpumask_t) fails, then fallback to a single sched domain,
6849 * as determined by the single cpumask_t fallback_doms.
6850 */
6851 static cpumask_t fallback_doms;
6852
6853 void __attribute__((weak)) arch_update_cpu_topology(void)
6854 {
6855 }
6856
6857 /*
6858 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6859 * For now this just excludes isolated cpus, but could be used to
6860 * exclude other special cases in the future.
6861 */
6862 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6863 {
6864 int err;
6865
6866 arch_update_cpu_topology();
6867 ndoms_cur = 1;
6868 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6869 if (!doms_cur)
6870 doms_cur = &fallback_doms;
6871 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
6872 err = build_sched_domains(doms_cur);
6873 register_sched_domain_sysctl();
6874
6875 return err;
6876 }
6877
6878 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6879 {
6880 free_sched_groups(cpu_map);
6881 }
6882
6883 /*
6884 * Detach sched domains from a group of cpus specified in cpu_map
6885 * These cpus will now be attached to the NULL domain
6886 */
6887 static void detach_destroy_domains(const cpumask_t *cpu_map)
6888 {
6889 int i;
6890
6891 unregister_sched_domain_sysctl();
6892
6893 for_each_cpu_mask(i, *cpu_map)
6894 cpu_attach_domain(NULL, &def_root_domain, i);
6895 synchronize_sched();
6896 arch_destroy_sched_domains(cpu_map);
6897 }
6898
6899 /*
6900 * Partition sched domains as specified by the 'ndoms_new'
6901 * cpumasks in the array doms_new[] of cpumasks. This compares
6902 * doms_new[] to the current sched domain partitioning, doms_cur[].
6903 * It destroys each deleted domain and builds each new domain.
6904 *
6905 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6906 * The masks don't intersect (don't overlap.) We should setup one
6907 * sched domain for each mask. CPUs not in any of the cpumasks will
6908 * not be load balanced. If the same cpumask appears both in the
6909 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6910 * it as it is.
6911 *
6912 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6913 * ownership of it and will kfree it when done with it. If the caller
6914 * failed the kmalloc call, then it can pass in doms_new == NULL,
6915 * and partition_sched_domains() will fallback to the single partition
6916 * 'fallback_doms'.
6917 *
6918 * Call with hotplug lock held
6919 */
6920 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6921 {
6922 int i, j;
6923
6924 lock_doms_cur();
6925
6926 /* always unregister in case we don't destroy any domains */
6927 unregister_sched_domain_sysctl();
6928
6929 if (doms_new == NULL) {
6930 ndoms_new = 1;
6931 doms_new = &fallback_doms;
6932 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6933 }
6934
6935 /* Destroy deleted domains */
6936 for (i = 0; i < ndoms_cur; i++) {
6937 for (j = 0; j < ndoms_new; j++) {
6938 if (cpus_equal(doms_cur[i], doms_new[j]))
6939 goto match1;
6940 }
6941 /* no match - a current sched domain not in new doms_new[] */
6942 detach_destroy_domains(doms_cur + i);
6943 match1:
6944 ;
6945 }
6946
6947 /* Build new domains */
6948 for (i = 0; i < ndoms_new; i++) {
6949 for (j = 0; j < ndoms_cur; j++) {
6950 if (cpus_equal(doms_new[i], doms_cur[j]))
6951 goto match2;
6952 }
6953 /* no match - add a new doms_new */
6954 build_sched_domains(doms_new + i);
6955 match2:
6956 ;
6957 }
6958
6959 /* Remember the new sched domains */
6960 if (doms_cur != &fallback_doms)
6961 kfree(doms_cur);
6962 doms_cur = doms_new;
6963 ndoms_cur = ndoms_new;
6964
6965 register_sched_domain_sysctl();
6966
6967 unlock_doms_cur();
6968 }
6969
6970 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6971 int arch_reinit_sched_domains(void)
6972 {
6973 int err;
6974
6975 get_online_cpus();
6976 detach_destroy_domains(&cpu_online_map);
6977 err = arch_init_sched_domains(&cpu_online_map);
6978 put_online_cpus();
6979
6980 return err;
6981 }
6982
6983 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6984 {
6985 int ret;
6986
6987 if (buf[0] != '0' && buf[0] != '1')
6988 return -EINVAL;
6989
6990 if (smt)
6991 sched_smt_power_savings = (buf[0] == '1');
6992 else
6993 sched_mc_power_savings = (buf[0] == '1');
6994
6995 ret = arch_reinit_sched_domains();
6996
6997 return ret ? ret : count;
6998 }
6999
7000 #ifdef CONFIG_SCHED_MC
7001 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7002 {
7003 return sprintf(page, "%u\n", sched_mc_power_savings);
7004 }
7005 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7006 const char *buf, size_t count)
7007 {
7008 return sched_power_savings_store(buf, count, 0);
7009 }
7010 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7011 sched_mc_power_savings_store);
7012 #endif
7013
7014 #ifdef CONFIG_SCHED_SMT
7015 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7016 {
7017 return sprintf(page, "%u\n", sched_smt_power_savings);
7018 }
7019 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7020 const char *buf, size_t count)
7021 {
7022 return sched_power_savings_store(buf, count, 1);
7023 }
7024 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7025 sched_smt_power_savings_store);
7026 #endif
7027
7028 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7029 {
7030 int err = 0;
7031
7032 #ifdef CONFIG_SCHED_SMT
7033 if (smt_capable())
7034 err = sysfs_create_file(&cls->kset.kobj,
7035 &attr_sched_smt_power_savings.attr);
7036 #endif
7037 #ifdef CONFIG_SCHED_MC
7038 if (!err && mc_capable())
7039 err = sysfs_create_file(&cls->kset.kobj,
7040 &attr_sched_mc_power_savings.attr);
7041 #endif
7042 return err;
7043 }
7044 #endif
7045
7046 /*
7047 * Force a reinitialization of the sched domains hierarchy. The domains
7048 * and groups cannot be updated in place without racing with the balancing
7049 * code, so we temporarily attach all running cpus to the NULL domain
7050 * which will prevent rebalancing while the sched domains are recalculated.
7051 */
7052 static int update_sched_domains(struct notifier_block *nfb,
7053 unsigned long action, void *hcpu)
7054 {
7055 switch (action) {
7056 case CPU_UP_PREPARE:
7057 case CPU_UP_PREPARE_FROZEN:
7058 case CPU_DOWN_PREPARE:
7059 case CPU_DOWN_PREPARE_FROZEN:
7060 detach_destroy_domains(&cpu_online_map);
7061 return NOTIFY_OK;
7062
7063 case CPU_UP_CANCELED:
7064 case CPU_UP_CANCELED_FROZEN:
7065 case CPU_DOWN_FAILED:
7066 case CPU_DOWN_FAILED_FROZEN:
7067 case CPU_ONLINE:
7068 case CPU_ONLINE_FROZEN:
7069 case CPU_DEAD:
7070 case CPU_DEAD_FROZEN:
7071 /*
7072 * Fall through and re-initialise the domains.
7073 */
7074 break;
7075 default:
7076 return NOTIFY_DONE;
7077 }
7078
7079 /* The hotplug lock is already held by cpu_up/cpu_down */
7080 arch_init_sched_domains(&cpu_online_map);
7081
7082 return NOTIFY_OK;
7083 }
7084
7085 void __init sched_init_smp(void)
7086 {
7087 cpumask_t non_isolated_cpus;
7088
7089 get_online_cpus();
7090 arch_init_sched_domains(&cpu_online_map);
7091 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7092 if (cpus_empty(non_isolated_cpus))
7093 cpu_set(smp_processor_id(), non_isolated_cpus);
7094 put_online_cpus();
7095 /* XXX: Theoretical race here - CPU may be hotplugged now */
7096 hotcpu_notifier(update_sched_domains, 0);
7097
7098 /* Move init over to a non-isolated CPU */
7099 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
7100 BUG();
7101 sched_init_granularity();
7102 }
7103 #else
7104 void __init sched_init_smp(void)
7105 {
7106 sched_init_granularity();
7107 }
7108 #endif /* CONFIG_SMP */
7109
7110 int in_sched_functions(unsigned long addr)
7111 {
7112 return in_lock_functions(addr) ||
7113 (addr >= (unsigned long)__sched_text_start
7114 && addr < (unsigned long)__sched_text_end);
7115 }
7116
7117 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7118 {
7119 cfs_rq->tasks_timeline = RB_ROOT;
7120 #ifdef CONFIG_FAIR_GROUP_SCHED
7121 cfs_rq->rq = rq;
7122 #endif
7123 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7124 }
7125
7126 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7127 {
7128 struct rt_prio_array *array;
7129 int i;
7130
7131 array = &rt_rq->active;
7132 for (i = 0; i < MAX_RT_PRIO; i++) {
7133 INIT_LIST_HEAD(array->queue + i);
7134 __clear_bit(i, array->bitmap);
7135 }
7136 /* delimiter for bitsearch: */
7137 __set_bit(MAX_RT_PRIO, array->bitmap);
7138
7139 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7140 rt_rq->highest_prio = MAX_RT_PRIO;
7141 #endif
7142 #ifdef CONFIG_SMP
7143 rt_rq->rt_nr_migratory = 0;
7144 rt_rq->overloaded = 0;
7145 #endif
7146
7147 rt_rq->rt_time = 0;
7148 rt_rq->rt_throttled = 0;
7149
7150 #ifdef CONFIG_RT_GROUP_SCHED
7151 rt_rq->rt_nr_boosted = 0;
7152 rt_rq->rq = rq;
7153 #endif
7154 }
7155
7156 #ifdef CONFIG_FAIR_GROUP_SCHED
7157 static void init_tg_cfs_entry(struct rq *rq, struct task_group *tg,
7158 struct cfs_rq *cfs_rq, struct sched_entity *se,
7159 int cpu, int add)
7160 {
7161 tg->cfs_rq[cpu] = cfs_rq;
7162 init_cfs_rq(cfs_rq, rq);
7163 cfs_rq->tg = tg;
7164 if (add)
7165 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7166
7167 tg->se[cpu] = se;
7168 se->cfs_rq = &rq->cfs;
7169 se->my_q = cfs_rq;
7170 se->load.weight = tg->shares;
7171 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7172 se->parent = NULL;
7173 }
7174 #endif
7175
7176 #ifdef CONFIG_RT_GROUP_SCHED
7177 static void init_tg_rt_entry(struct rq *rq, struct task_group *tg,
7178 struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
7179 int cpu, int add)
7180 {
7181 tg->rt_rq[cpu] = rt_rq;
7182 init_rt_rq(rt_rq, rq);
7183 rt_rq->tg = tg;
7184 rt_rq->rt_se = rt_se;
7185 if (add)
7186 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7187
7188 tg->rt_se[cpu] = rt_se;
7189 rt_se->rt_rq = &rq->rt;
7190 rt_se->my_q = rt_rq;
7191 rt_se->parent = NULL;
7192 INIT_LIST_HEAD(&rt_se->run_list);
7193 }
7194 #endif
7195
7196 void __init sched_init(void)
7197 {
7198 int highest_cpu = 0;
7199 int i, j;
7200
7201 #ifdef CONFIG_SMP
7202 init_defrootdomain();
7203 #endif
7204
7205 #ifdef CONFIG_GROUP_SCHED
7206 list_add(&init_task_group.list, &task_groups);
7207 #endif
7208
7209 for_each_possible_cpu(i) {
7210 struct rq *rq;
7211
7212 rq = cpu_rq(i);
7213 spin_lock_init(&rq->lock);
7214 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7215 rq->nr_running = 0;
7216 rq->clock = 1;
7217 init_cfs_rq(&rq->cfs, rq);
7218 init_rt_rq(&rq->rt, rq);
7219 #ifdef CONFIG_FAIR_GROUP_SCHED
7220 init_task_group.shares = init_task_group_load;
7221 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7222 init_tg_cfs_entry(rq, &init_task_group,
7223 &per_cpu(init_cfs_rq, i),
7224 &per_cpu(init_sched_entity, i), i, 1);
7225
7226 #endif
7227 #ifdef CONFIG_RT_GROUP_SCHED
7228 init_task_group.rt_runtime =
7229 sysctl_sched_rt_runtime * NSEC_PER_USEC;
7230 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7231 init_tg_rt_entry(rq, &init_task_group,
7232 &per_cpu(init_rt_rq, i),
7233 &per_cpu(init_sched_rt_entity, i), i, 1);
7234 #endif
7235 rq->rt_period_expire = 0;
7236 rq->rt_throttled = 0;
7237
7238 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7239 rq->cpu_load[j] = 0;
7240 #ifdef CONFIG_SMP
7241 rq->sd = NULL;
7242 rq->rd = NULL;
7243 rq->active_balance = 0;
7244 rq->next_balance = jiffies;
7245 rq->push_cpu = 0;
7246 rq->cpu = i;
7247 rq->migration_thread = NULL;
7248 INIT_LIST_HEAD(&rq->migration_queue);
7249 rq_attach_root(rq, &def_root_domain);
7250 #endif
7251 init_rq_hrtick(rq);
7252 atomic_set(&rq->nr_iowait, 0);
7253 highest_cpu = i;
7254 }
7255
7256 set_load_weight(&init_task);
7257
7258 #ifdef CONFIG_PREEMPT_NOTIFIERS
7259 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7260 #endif
7261
7262 #ifdef CONFIG_SMP
7263 nr_cpu_ids = highest_cpu + 1;
7264 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7265 #endif
7266
7267 #ifdef CONFIG_RT_MUTEXES
7268 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7269 #endif
7270
7271 /*
7272 * The boot idle thread does lazy MMU switching as well:
7273 */
7274 atomic_inc(&init_mm.mm_count);
7275 enter_lazy_tlb(&init_mm, current);
7276
7277 /*
7278 * Make us the idle thread. Technically, schedule() should not be
7279 * called from this thread, however somewhere below it might be,
7280 * but because we are the idle thread, we just pick up running again
7281 * when this runqueue becomes "idle".
7282 */
7283 init_idle(current, smp_processor_id());
7284 /*
7285 * During early bootup we pretend to be a normal task:
7286 */
7287 current->sched_class = &fair_sched_class;
7288
7289 scheduler_running = 1;
7290 }
7291
7292 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7293 void __might_sleep(char *file, int line)
7294 {
7295 #ifdef in_atomic
7296 static unsigned long prev_jiffy; /* ratelimiting */
7297
7298 if ((in_atomic() || irqs_disabled()) &&
7299 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7300 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7301 return;
7302 prev_jiffy = jiffies;
7303 printk(KERN_ERR "BUG: sleeping function called from invalid"
7304 " context at %s:%d\n", file, line);
7305 printk("in_atomic():%d, irqs_disabled():%d\n",
7306 in_atomic(), irqs_disabled());
7307 debug_show_held_locks(current);
7308 if (irqs_disabled())
7309 print_irqtrace_events(current);
7310 dump_stack();
7311 }
7312 #endif
7313 }
7314 EXPORT_SYMBOL(__might_sleep);
7315 #endif
7316
7317 #ifdef CONFIG_MAGIC_SYSRQ
7318 static void normalize_task(struct rq *rq, struct task_struct *p)
7319 {
7320 int on_rq;
7321 update_rq_clock(rq);
7322 on_rq = p->se.on_rq;
7323 if (on_rq)
7324 deactivate_task(rq, p, 0);
7325 __setscheduler(rq, p, SCHED_NORMAL, 0);
7326 if (on_rq) {
7327 activate_task(rq, p, 0);
7328 resched_task(rq->curr);
7329 }
7330 }
7331
7332 void normalize_rt_tasks(void)
7333 {
7334 struct task_struct *g, *p;
7335 unsigned long flags;
7336 struct rq *rq;
7337
7338 read_lock_irqsave(&tasklist_lock, flags);
7339 do_each_thread(g, p) {
7340 /*
7341 * Only normalize user tasks:
7342 */
7343 if (!p->mm)
7344 continue;
7345
7346 p->se.exec_start = 0;
7347 #ifdef CONFIG_SCHEDSTATS
7348 p->se.wait_start = 0;
7349 p->se.sleep_start = 0;
7350 p->se.block_start = 0;
7351 #endif
7352 task_rq(p)->clock = 0;
7353
7354 if (!rt_task(p)) {
7355 /*
7356 * Renice negative nice level userspace
7357 * tasks back to 0:
7358 */
7359 if (TASK_NICE(p) < 0 && p->mm)
7360 set_user_nice(p, 0);
7361 continue;
7362 }
7363
7364 spin_lock(&p->pi_lock);
7365 rq = __task_rq_lock(p);
7366
7367 normalize_task(rq, p);
7368
7369 __task_rq_unlock(rq);
7370 spin_unlock(&p->pi_lock);
7371 } while_each_thread(g, p);
7372
7373 read_unlock_irqrestore(&tasklist_lock, flags);
7374 }
7375
7376 #endif /* CONFIG_MAGIC_SYSRQ */
7377
7378 #ifdef CONFIG_IA64
7379 /*
7380 * These functions are only useful for the IA64 MCA handling.
7381 *
7382 * They can only be called when the whole system has been
7383 * stopped - every CPU needs to be quiescent, and no scheduling
7384 * activity can take place. Using them for anything else would
7385 * be a serious bug, and as a result, they aren't even visible
7386 * under any other configuration.
7387 */
7388
7389 /**
7390 * curr_task - return the current task for a given cpu.
7391 * @cpu: the processor in question.
7392 *
7393 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7394 */
7395 struct task_struct *curr_task(int cpu)
7396 {
7397 return cpu_curr(cpu);
7398 }
7399
7400 /**
7401 * set_curr_task - set the current task for a given cpu.
7402 * @cpu: the processor in question.
7403 * @p: the task pointer to set.
7404 *
7405 * Description: This function must only be used when non-maskable interrupts
7406 * are serviced on a separate stack. It allows the architecture to switch the
7407 * notion of the current task on a cpu in a non-blocking manner. This function
7408 * must be called with all CPU's synchronized, and interrupts disabled, the
7409 * and caller must save the original value of the current task (see
7410 * curr_task() above) and restore that value before reenabling interrupts and
7411 * re-starting the system.
7412 *
7413 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7414 */
7415 void set_curr_task(int cpu, struct task_struct *p)
7416 {
7417 cpu_curr(cpu) = p;
7418 }
7419
7420 #endif
7421
7422 #ifdef CONFIG_GROUP_SCHED
7423
7424 #ifdef CONFIG_FAIR_GROUP_SCHED
7425 static void free_fair_sched_group(struct task_group *tg)
7426 {
7427 int i;
7428
7429 for_each_possible_cpu(i) {
7430 if (tg->cfs_rq)
7431 kfree(tg->cfs_rq[i]);
7432 if (tg->se)
7433 kfree(tg->se[i]);
7434 }
7435
7436 kfree(tg->cfs_rq);
7437 kfree(tg->se);
7438 }
7439
7440 static int alloc_fair_sched_group(struct task_group *tg)
7441 {
7442 struct cfs_rq *cfs_rq;
7443 struct sched_entity *se;
7444 struct rq *rq;
7445 int i;
7446
7447 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
7448 if (!tg->cfs_rq)
7449 goto err;
7450 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
7451 if (!tg->se)
7452 goto err;
7453
7454 tg->shares = NICE_0_LOAD;
7455
7456 for_each_possible_cpu(i) {
7457 rq = cpu_rq(i);
7458
7459 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7460 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7461 if (!cfs_rq)
7462 goto err;
7463
7464 se = kmalloc_node(sizeof(struct sched_entity),
7465 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7466 if (!se)
7467 goto err;
7468
7469 init_tg_cfs_entry(rq, tg, cfs_rq, se, i, 0);
7470 }
7471
7472 return 1;
7473
7474 err:
7475 return 0;
7476 }
7477
7478 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7479 {
7480 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7481 &cpu_rq(cpu)->leaf_cfs_rq_list);
7482 }
7483
7484 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7485 {
7486 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7487 }
7488 #else
7489 static inline void free_fair_sched_group(struct task_group *tg)
7490 {
7491 }
7492
7493 static inline int alloc_fair_sched_group(struct task_group *tg)
7494 {
7495 return 1;
7496 }
7497
7498 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7499 {
7500 }
7501
7502 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7503 {
7504 }
7505 #endif
7506
7507 #ifdef CONFIG_RT_GROUP_SCHED
7508 static void free_rt_sched_group(struct task_group *tg)
7509 {
7510 int i;
7511
7512 for_each_possible_cpu(i) {
7513 if (tg->rt_rq)
7514 kfree(tg->rt_rq[i]);
7515 if (tg->rt_se)
7516 kfree(tg->rt_se[i]);
7517 }
7518
7519 kfree(tg->rt_rq);
7520 kfree(tg->rt_se);
7521 }
7522
7523 static int alloc_rt_sched_group(struct task_group *tg)
7524 {
7525 struct rt_rq *rt_rq;
7526 struct sched_rt_entity *rt_se;
7527 struct rq *rq;
7528 int i;
7529
7530 tg->rt_rq = kzalloc(sizeof(rt_rq) * NR_CPUS, GFP_KERNEL);
7531 if (!tg->rt_rq)
7532 goto err;
7533 tg->rt_se = kzalloc(sizeof(rt_se) * NR_CPUS, GFP_KERNEL);
7534 if (!tg->rt_se)
7535 goto err;
7536
7537 tg->rt_runtime = 0;
7538
7539 for_each_possible_cpu(i) {
7540 rq = cpu_rq(i);
7541
7542 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7543 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7544 if (!rt_rq)
7545 goto err;
7546
7547 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7548 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7549 if (!rt_se)
7550 goto err;
7551
7552 init_tg_rt_entry(rq, tg, rt_rq, rt_se, i, 0);
7553 }
7554
7555 return 1;
7556
7557 err:
7558 return 0;
7559 }
7560
7561 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7562 {
7563 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7564 &cpu_rq(cpu)->leaf_rt_rq_list);
7565 }
7566
7567 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7568 {
7569 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7570 }
7571 #else
7572 static inline void free_rt_sched_group(struct task_group *tg)
7573 {
7574 }
7575
7576 static inline int alloc_rt_sched_group(struct task_group *tg)
7577 {
7578 return 1;
7579 }
7580
7581 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7582 {
7583 }
7584
7585 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7586 {
7587 }
7588 #endif
7589
7590 static void free_sched_group(struct task_group *tg)
7591 {
7592 free_fair_sched_group(tg);
7593 free_rt_sched_group(tg);
7594 kfree(tg);
7595 }
7596
7597 /* allocate runqueue etc for a new task group */
7598 struct task_group *sched_create_group(void)
7599 {
7600 struct task_group *tg;
7601 unsigned long flags;
7602 int i;
7603
7604 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7605 if (!tg)
7606 return ERR_PTR(-ENOMEM);
7607
7608 if (!alloc_fair_sched_group(tg))
7609 goto err;
7610
7611 if (!alloc_rt_sched_group(tg))
7612 goto err;
7613
7614 spin_lock_irqsave(&task_group_lock, flags);
7615 for_each_possible_cpu(i) {
7616 register_fair_sched_group(tg, i);
7617 register_rt_sched_group(tg, i);
7618 }
7619 list_add_rcu(&tg->list, &task_groups);
7620 spin_unlock_irqrestore(&task_group_lock, flags);
7621
7622 return tg;
7623
7624 err:
7625 free_sched_group(tg);
7626 return ERR_PTR(-ENOMEM);
7627 }
7628
7629 /* rcu callback to free various structures associated with a task group */
7630 static void free_sched_group_rcu(struct rcu_head *rhp)
7631 {
7632 /* now it should be safe to free those cfs_rqs */
7633 free_sched_group(container_of(rhp, struct task_group, rcu));
7634 }
7635
7636 /* Destroy runqueue etc associated with a task group */
7637 void sched_destroy_group(struct task_group *tg)
7638 {
7639 unsigned long flags;
7640 int i;
7641
7642 spin_lock_irqsave(&task_group_lock, flags);
7643 for_each_possible_cpu(i) {
7644 unregister_fair_sched_group(tg, i);
7645 unregister_rt_sched_group(tg, i);
7646 }
7647 list_del_rcu(&tg->list);
7648 spin_unlock_irqrestore(&task_group_lock, flags);
7649
7650 /* wait for possible concurrent references to cfs_rqs complete */
7651 call_rcu(&tg->rcu, free_sched_group_rcu);
7652 }
7653
7654 /* change task's runqueue when it moves between groups.
7655 * The caller of this function should have put the task in its new group
7656 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7657 * reflect its new group.
7658 */
7659 void sched_move_task(struct task_struct *tsk)
7660 {
7661 int on_rq, running;
7662 unsigned long flags;
7663 struct rq *rq;
7664
7665 rq = task_rq_lock(tsk, &flags);
7666
7667 update_rq_clock(rq);
7668
7669 running = task_current(rq, tsk);
7670 on_rq = tsk->se.on_rq;
7671
7672 if (on_rq)
7673 dequeue_task(rq, tsk, 0);
7674 if (unlikely(running))
7675 tsk->sched_class->put_prev_task(rq, tsk);
7676
7677 set_task_rq(tsk, task_cpu(tsk));
7678
7679 #ifdef CONFIG_FAIR_GROUP_SCHED
7680 if (tsk->sched_class->moved_group)
7681 tsk->sched_class->moved_group(tsk);
7682 #endif
7683
7684 if (unlikely(running))
7685 tsk->sched_class->set_curr_task(rq);
7686 if (on_rq)
7687 enqueue_task(rq, tsk, 0);
7688
7689 task_rq_unlock(rq, &flags);
7690 }
7691
7692 #ifdef CONFIG_FAIR_GROUP_SCHED
7693 static void set_se_shares(struct sched_entity *se, unsigned long shares)
7694 {
7695 struct cfs_rq *cfs_rq = se->cfs_rq;
7696 struct rq *rq = cfs_rq->rq;
7697 int on_rq;
7698
7699 spin_lock_irq(&rq->lock);
7700
7701 on_rq = se->on_rq;
7702 if (on_rq)
7703 dequeue_entity(cfs_rq, se, 0);
7704
7705 se->load.weight = shares;
7706 se->load.inv_weight = div64_64((1ULL<<32), shares);
7707
7708 if (on_rq)
7709 enqueue_entity(cfs_rq, se, 0);
7710
7711 spin_unlock_irq(&rq->lock);
7712 }
7713
7714 static DEFINE_MUTEX(shares_mutex);
7715
7716 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7717 {
7718 int i;
7719 unsigned long flags;
7720
7721 /*
7722 * A weight of 0 or 1 can cause arithmetics problems.
7723 * (The default weight is 1024 - so there's no practical
7724 * limitation from this.)
7725 */
7726 if (shares < 2)
7727 shares = 2;
7728
7729 mutex_lock(&shares_mutex);
7730 if (tg->shares == shares)
7731 goto done;
7732
7733 spin_lock_irqsave(&task_group_lock, flags);
7734 for_each_possible_cpu(i)
7735 unregister_fair_sched_group(tg, i);
7736 spin_unlock_irqrestore(&task_group_lock, flags);
7737
7738 /* wait for any ongoing reference to this group to finish */
7739 synchronize_sched();
7740
7741 /*
7742 * Now we are free to modify the group's share on each cpu
7743 * w/o tripping rebalance_share or load_balance_fair.
7744 */
7745 tg->shares = shares;
7746 for_each_possible_cpu(i)
7747 set_se_shares(tg->se[i], shares);
7748
7749 /*
7750 * Enable load balance activity on this group, by inserting it back on
7751 * each cpu's rq->leaf_cfs_rq_list.
7752 */
7753 spin_lock_irqsave(&task_group_lock, flags);
7754 for_each_possible_cpu(i)
7755 register_fair_sched_group(tg, i);
7756 spin_unlock_irqrestore(&task_group_lock, flags);
7757 done:
7758 mutex_unlock(&shares_mutex);
7759 return 0;
7760 }
7761
7762 unsigned long sched_group_shares(struct task_group *tg)
7763 {
7764 return tg->shares;
7765 }
7766 #endif
7767
7768 #ifdef CONFIG_RT_GROUP_SCHED
7769 /*
7770 * Ensure that the real time constraints are schedulable.
7771 */
7772 static DEFINE_MUTEX(rt_constraints_mutex);
7773
7774 static unsigned long to_ratio(u64 period, u64 runtime)
7775 {
7776 if (runtime == RUNTIME_INF)
7777 return 1ULL << 16;
7778
7779 return div64_64(runtime << 16, period);
7780 }
7781
7782 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
7783 {
7784 struct task_group *tgi;
7785 unsigned long total = 0;
7786 unsigned long global_ratio =
7787 to_ratio(sysctl_sched_rt_period,
7788 sysctl_sched_rt_runtime < 0 ?
7789 RUNTIME_INF : sysctl_sched_rt_runtime);
7790
7791 rcu_read_lock();
7792 list_for_each_entry_rcu(tgi, &task_groups, list) {
7793 if (tgi == tg)
7794 continue;
7795
7796 total += to_ratio(period, tgi->rt_runtime);
7797 }
7798 rcu_read_unlock();
7799
7800 return total + to_ratio(period, runtime) < global_ratio;
7801 }
7802
7803 /* Must be called with tasklist_lock held */
7804 static inline int tg_has_rt_tasks(struct task_group *tg)
7805 {
7806 struct task_struct *g, *p;
7807 do_each_thread(g, p) {
7808 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
7809 return 1;
7810 } while_each_thread(g, p);
7811 return 0;
7812 }
7813
7814 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7815 {
7816 u64 rt_runtime, rt_period;
7817 int err = 0;
7818
7819 rt_period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
7820 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7821 if (rt_runtime_us == -1)
7822 rt_runtime = RUNTIME_INF;
7823
7824 mutex_lock(&rt_constraints_mutex);
7825 read_lock(&tasklist_lock);
7826 if (rt_runtime_us == 0 && tg_has_rt_tasks(tg)) {
7827 err = -EBUSY;
7828 goto unlock;
7829 }
7830 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
7831 err = -EINVAL;
7832 goto unlock;
7833 }
7834 tg->rt_runtime = rt_runtime;
7835 unlock:
7836 read_unlock(&tasklist_lock);
7837 mutex_unlock(&rt_constraints_mutex);
7838
7839 return err;
7840 }
7841
7842 long sched_group_rt_runtime(struct task_group *tg)
7843 {
7844 u64 rt_runtime_us;
7845
7846 if (tg->rt_runtime == RUNTIME_INF)
7847 return -1;
7848
7849 rt_runtime_us = tg->rt_runtime;
7850 do_div(rt_runtime_us, NSEC_PER_USEC);
7851 return rt_runtime_us;
7852 }
7853 #endif
7854 #endif /* CONFIG_GROUP_SCHED */
7855
7856 #ifdef CONFIG_CGROUP_SCHED
7857
7858 /* return corresponding task_group object of a cgroup */
7859 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
7860 {
7861 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7862 struct task_group, css);
7863 }
7864
7865 static struct cgroup_subsys_state *
7866 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
7867 {
7868 struct task_group *tg;
7869
7870 if (!cgrp->parent) {
7871 /* This is early initialization for the top cgroup */
7872 init_task_group.css.cgroup = cgrp;
7873 return &init_task_group.css;
7874 }
7875
7876 /* we support only 1-level deep hierarchical scheduler atm */
7877 if (cgrp->parent->parent)
7878 return ERR_PTR(-EINVAL);
7879
7880 tg = sched_create_group();
7881 if (IS_ERR(tg))
7882 return ERR_PTR(-ENOMEM);
7883
7884 /* Bind the cgroup to task_group object we just created */
7885 tg->css.cgroup = cgrp;
7886
7887 return &tg->css;
7888 }
7889
7890 static void
7891 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
7892 {
7893 struct task_group *tg = cgroup_tg(cgrp);
7894
7895 sched_destroy_group(tg);
7896 }
7897
7898 static int
7899 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7900 struct task_struct *tsk)
7901 {
7902 #ifdef CONFIG_RT_GROUP_SCHED
7903 /* Don't accept realtime tasks when there is no way for them to run */
7904 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_runtime == 0)
7905 return -EINVAL;
7906 #else
7907 /* We don't support RT-tasks being in separate groups */
7908 if (tsk->sched_class != &fair_sched_class)
7909 return -EINVAL;
7910 #endif
7911
7912 return 0;
7913 }
7914
7915 static void
7916 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7917 struct cgroup *old_cont, struct task_struct *tsk)
7918 {
7919 sched_move_task(tsk);
7920 }
7921
7922 #ifdef CONFIG_FAIR_GROUP_SCHED
7923 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
7924 u64 shareval)
7925 {
7926 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
7927 }
7928
7929 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
7930 {
7931 struct task_group *tg = cgroup_tg(cgrp);
7932
7933 return (u64) tg->shares;
7934 }
7935 #endif
7936
7937 #ifdef CONFIG_RT_GROUP_SCHED
7938 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
7939 struct file *file,
7940 const char __user *userbuf,
7941 size_t nbytes, loff_t *unused_ppos)
7942 {
7943 char buffer[64];
7944 int retval = 0;
7945 s64 val;
7946 char *end;
7947
7948 if (!nbytes)
7949 return -EINVAL;
7950 if (nbytes >= sizeof(buffer))
7951 return -E2BIG;
7952 if (copy_from_user(buffer, userbuf, nbytes))
7953 return -EFAULT;
7954
7955 buffer[nbytes] = 0; /* nul-terminate */
7956
7957 /* strip newline if necessary */
7958 if (nbytes && (buffer[nbytes-1] == '\n'))
7959 buffer[nbytes-1] = 0;
7960 val = simple_strtoll(buffer, &end, 0);
7961 if (*end)
7962 return -EINVAL;
7963
7964 /* Pass to subsystem */
7965 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
7966 if (!retval)
7967 retval = nbytes;
7968 return retval;
7969 }
7970
7971 static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
7972 struct file *file,
7973 char __user *buf, size_t nbytes,
7974 loff_t *ppos)
7975 {
7976 char tmp[64];
7977 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
7978 int len = sprintf(tmp, "%ld\n", val);
7979
7980 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
7981 }
7982 #endif
7983
7984 static struct cftype cpu_files[] = {
7985 #ifdef CONFIG_FAIR_GROUP_SCHED
7986 {
7987 .name = "shares",
7988 .read_uint = cpu_shares_read_uint,
7989 .write_uint = cpu_shares_write_uint,
7990 },
7991 #endif
7992 #ifdef CONFIG_RT_GROUP_SCHED
7993 {
7994 .name = "rt_runtime_us",
7995 .read = cpu_rt_runtime_read,
7996 .write = cpu_rt_runtime_write,
7997 },
7998 #endif
7999 };
8000
8001 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8002 {
8003 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8004 }
8005
8006 struct cgroup_subsys cpu_cgroup_subsys = {
8007 .name = "cpu",
8008 .create = cpu_cgroup_create,
8009 .destroy = cpu_cgroup_destroy,
8010 .can_attach = cpu_cgroup_can_attach,
8011 .attach = cpu_cgroup_attach,
8012 .populate = cpu_cgroup_populate,
8013 .subsys_id = cpu_cgroup_subsys_id,
8014 .early_init = 1,
8015 };
8016
8017 #endif /* CONFIG_CGROUP_SCHED */
8018
8019 #ifdef CONFIG_CGROUP_CPUACCT
8020
8021 /*
8022 * CPU accounting code for task groups.
8023 *
8024 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8025 * (balbir@in.ibm.com).
8026 */
8027
8028 /* track cpu usage of a group of tasks */
8029 struct cpuacct {
8030 struct cgroup_subsys_state css;
8031 /* cpuusage holds pointer to a u64-type object on every cpu */
8032 u64 *cpuusage;
8033 };
8034
8035 struct cgroup_subsys cpuacct_subsys;
8036
8037 /* return cpu accounting group corresponding to this container */
8038 static inline struct cpuacct *cgroup_ca(struct cgroup *cont)
8039 {
8040 return container_of(cgroup_subsys_state(cont, cpuacct_subsys_id),
8041 struct cpuacct, css);
8042 }
8043
8044 /* return cpu accounting group to which this task belongs */
8045 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8046 {
8047 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8048 struct cpuacct, css);
8049 }
8050
8051 /* create a new cpu accounting group */
8052 static struct cgroup_subsys_state *cpuacct_create(
8053 struct cgroup_subsys *ss, struct cgroup *cont)
8054 {
8055 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8056
8057 if (!ca)
8058 return ERR_PTR(-ENOMEM);
8059
8060 ca->cpuusage = alloc_percpu(u64);
8061 if (!ca->cpuusage) {
8062 kfree(ca);
8063 return ERR_PTR(-ENOMEM);
8064 }
8065
8066 return &ca->css;
8067 }
8068
8069 /* destroy an existing cpu accounting group */
8070 static void
8071 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
8072 {
8073 struct cpuacct *ca = cgroup_ca(cont);
8074
8075 free_percpu(ca->cpuusage);
8076 kfree(ca);
8077 }
8078
8079 /* return total cpu usage (in nanoseconds) of a group */
8080 static u64 cpuusage_read(struct cgroup *cont, struct cftype *cft)
8081 {
8082 struct cpuacct *ca = cgroup_ca(cont);
8083 u64 totalcpuusage = 0;
8084 int i;
8085
8086 for_each_possible_cpu(i) {
8087 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8088
8089 /*
8090 * Take rq->lock to make 64-bit addition safe on 32-bit
8091 * platforms.
8092 */
8093 spin_lock_irq(&cpu_rq(i)->lock);
8094 totalcpuusage += *cpuusage;
8095 spin_unlock_irq(&cpu_rq(i)->lock);
8096 }
8097
8098 return totalcpuusage;
8099 }
8100
8101 static struct cftype files[] = {
8102 {
8103 .name = "usage",
8104 .read_uint = cpuusage_read,
8105 },
8106 };
8107
8108 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8109 {
8110 return cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
8111 }
8112
8113 /*
8114 * charge this task's execution time to its accounting group.
8115 *
8116 * called with rq->lock held.
8117 */
8118 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8119 {
8120 struct cpuacct *ca;
8121
8122 if (!cpuacct_subsys.active)
8123 return;
8124
8125 ca = task_ca(tsk);
8126 if (ca) {
8127 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8128
8129 *cpuusage += cputime;
8130 }
8131 }
8132
8133 struct cgroup_subsys cpuacct_subsys = {
8134 .name = "cpuacct",
8135 .create = cpuacct_create,
8136 .destroy = cpuacct_destroy,
8137 .populate = cpuacct_populate,
8138 .subsys_id = cpuacct_subsys_id,
8139 };
8140 #endif /* CONFIG_CGROUP_CPUACCT */