]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched.c
[PATCH] sched: prettify prio_to_wmult[]
[mirror_ubuntu-kernels.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/syscalls.h>
57 #include <linux/times.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/kprobes.h>
60 #include <linux/delayacct.h>
61 #include <linux/reciprocal_div.h>
62 #include <linux/unistd.h>
63
64 #include <asm/tlb.h>
65
66 /*
67 * Scheduler clock - returns current time in nanosec units.
68 * This is default implementation.
69 * Architectures and sub-architectures can override this.
70 */
71 unsigned long long __attribute__((weak)) sched_clock(void)
72 {
73 return (unsigned long long)jiffies * (1000000000 / HZ);
74 }
75
76 /*
77 * Convert user-nice values [ -20 ... 0 ... 19 ]
78 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
79 * and back.
80 */
81 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
82 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
83 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
84
85 /*
86 * 'User priority' is the nice value converted to something we
87 * can work with better when scaling various scheduler parameters,
88 * it's a [ 0 ... 39 ] range.
89 */
90 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
91 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
92 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
93
94 /*
95 * Some helpers for converting nanosecond timing to jiffy resolution
96 */
97 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
98 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
99
100 #define NICE_0_LOAD SCHED_LOAD_SCALE
101 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
102
103 /*
104 * These are the 'tuning knobs' of the scheduler:
105 *
106 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
107 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
108 * Timeslices get refilled after they expire.
109 */
110 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
111 #define DEF_TIMESLICE (100 * HZ / 1000)
112
113 #ifdef CONFIG_SMP
114 /*
115 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
116 * Since cpu_power is a 'constant', we can use a reciprocal divide.
117 */
118 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
119 {
120 return reciprocal_divide(load, sg->reciprocal_cpu_power);
121 }
122
123 /*
124 * Each time a sched group cpu_power is changed,
125 * we must compute its reciprocal value
126 */
127 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
128 {
129 sg->__cpu_power += val;
130 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
131 }
132 #endif
133
134 #define SCALE_PRIO(x, prio) \
135 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
136
137 /*
138 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
139 * to time slice values: [800ms ... 100ms ... 5ms]
140 */
141 static unsigned int static_prio_timeslice(int static_prio)
142 {
143 if (static_prio == NICE_TO_PRIO(19))
144 return 1;
145
146 if (static_prio < NICE_TO_PRIO(0))
147 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
148 else
149 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
150 }
151
152 static inline int rt_policy(int policy)
153 {
154 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
155 return 1;
156 return 0;
157 }
158
159 static inline int task_has_rt_policy(struct task_struct *p)
160 {
161 return rt_policy(p->policy);
162 }
163
164 /*
165 * This is the priority-queue data structure of the RT scheduling class:
166 */
167 struct rt_prio_array {
168 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
169 struct list_head queue[MAX_RT_PRIO];
170 };
171
172 struct load_stat {
173 struct load_weight load;
174 u64 load_update_start, load_update_last;
175 unsigned long delta_fair, delta_exec, delta_stat;
176 };
177
178 /* CFS-related fields in a runqueue */
179 struct cfs_rq {
180 struct load_weight load;
181 unsigned long nr_running;
182
183 s64 fair_clock;
184 u64 exec_clock;
185 s64 wait_runtime;
186 u64 sleeper_bonus;
187 unsigned long wait_runtime_overruns, wait_runtime_underruns;
188
189 struct rb_root tasks_timeline;
190 struct rb_node *rb_leftmost;
191 struct rb_node *rb_load_balance_curr;
192 #ifdef CONFIG_FAIR_GROUP_SCHED
193 /* 'curr' points to currently running entity on this cfs_rq.
194 * It is set to NULL otherwise (i.e when none are currently running).
195 */
196 struct sched_entity *curr;
197 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
198
199 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
200 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
201 * (like users, containers etc.)
202 *
203 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
204 * list is used during load balance.
205 */
206 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
207 #endif
208 };
209
210 /* Real-Time classes' related field in a runqueue: */
211 struct rt_rq {
212 struct rt_prio_array active;
213 int rt_load_balance_idx;
214 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
215 };
216
217 /*
218 * This is the main, per-CPU runqueue data structure.
219 *
220 * Locking rule: those places that want to lock multiple runqueues
221 * (such as the load balancing or the thread migration code), lock
222 * acquire operations must be ordered by ascending &runqueue.
223 */
224 struct rq {
225 spinlock_t lock; /* runqueue lock */
226
227 /*
228 * nr_running and cpu_load should be in the same cacheline because
229 * remote CPUs use both these fields when doing load calculation.
230 */
231 unsigned long nr_running;
232 #define CPU_LOAD_IDX_MAX 5
233 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
234 unsigned char idle_at_tick;
235 #ifdef CONFIG_NO_HZ
236 unsigned char in_nohz_recently;
237 #endif
238 struct load_stat ls; /* capture load from *all* tasks on this cpu */
239 unsigned long nr_load_updates;
240 u64 nr_switches;
241
242 struct cfs_rq cfs;
243 #ifdef CONFIG_FAIR_GROUP_SCHED
244 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
245 #endif
246 struct rt_rq rt;
247
248 /*
249 * This is part of a global counter where only the total sum
250 * over all CPUs matters. A task can increase this counter on
251 * one CPU and if it got migrated afterwards it may decrease
252 * it on another CPU. Always updated under the runqueue lock:
253 */
254 unsigned long nr_uninterruptible;
255
256 struct task_struct *curr, *idle;
257 unsigned long next_balance;
258 struct mm_struct *prev_mm;
259
260 u64 clock, prev_clock_raw;
261 s64 clock_max_delta;
262
263 unsigned int clock_warps, clock_overflows;
264 unsigned int clock_unstable_events;
265
266 struct sched_class *load_balance_class;
267
268 atomic_t nr_iowait;
269
270 #ifdef CONFIG_SMP
271 struct sched_domain *sd;
272
273 /* For active balancing */
274 int active_balance;
275 int push_cpu;
276 int cpu; /* cpu of this runqueue */
277
278 struct task_struct *migration_thread;
279 struct list_head migration_queue;
280 #endif
281
282 #ifdef CONFIG_SCHEDSTATS
283 /* latency stats */
284 struct sched_info rq_sched_info;
285
286 /* sys_sched_yield() stats */
287 unsigned long yld_exp_empty;
288 unsigned long yld_act_empty;
289 unsigned long yld_both_empty;
290 unsigned long yld_cnt;
291
292 /* schedule() stats */
293 unsigned long sched_switch;
294 unsigned long sched_cnt;
295 unsigned long sched_goidle;
296
297 /* try_to_wake_up() stats */
298 unsigned long ttwu_cnt;
299 unsigned long ttwu_local;
300 #endif
301 struct lock_class_key rq_lock_key;
302 };
303
304 static DEFINE_PER_CPU(struct rq, runqueues) ____cacheline_aligned_in_smp;
305 static DEFINE_MUTEX(sched_hotcpu_mutex);
306
307 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
308 {
309 rq->curr->sched_class->check_preempt_curr(rq, p);
310 }
311
312 static inline int cpu_of(struct rq *rq)
313 {
314 #ifdef CONFIG_SMP
315 return rq->cpu;
316 #else
317 return 0;
318 #endif
319 }
320
321 /*
322 * Per-runqueue clock, as finegrained as the platform can give us:
323 */
324 static unsigned long long __rq_clock(struct rq *rq)
325 {
326 u64 prev_raw = rq->prev_clock_raw;
327 u64 now = sched_clock();
328 s64 delta = now - prev_raw;
329 u64 clock = rq->clock;
330
331 /*
332 * Protect against sched_clock() occasionally going backwards:
333 */
334 if (unlikely(delta < 0)) {
335 clock++;
336 rq->clock_warps++;
337 } else {
338 /*
339 * Catch too large forward jumps too:
340 */
341 if (unlikely(delta > 2*TICK_NSEC)) {
342 clock++;
343 rq->clock_overflows++;
344 } else {
345 if (unlikely(delta > rq->clock_max_delta))
346 rq->clock_max_delta = delta;
347 clock += delta;
348 }
349 }
350
351 rq->prev_clock_raw = now;
352 rq->clock = clock;
353
354 return clock;
355 }
356
357 static inline unsigned long long rq_clock(struct rq *rq)
358 {
359 int this_cpu = smp_processor_id();
360
361 if (this_cpu == cpu_of(rq))
362 return __rq_clock(rq);
363
364 return rq->clock;
365 }
366
367 /*
368 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
369 * See detach_destroy_domains: synchronize_sched for details.
370 *
371 * The domain tree of any CPU may only be accessed from within
372 * preempt-disabled sections.
373 */
374 #define for_each_domain(cpu, __sd) \
375 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
376
377 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
378 #define this_rq() (&__get_cpu_var(runqueues))
379 #define task_rq(p) cpu_rq(task_cpu(p))
380 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
381
382 #ifdef CONFIG_FAIR_GROUP_SCHED
383 /* Change a task's ->cfs_rq if it moves across CPUs */
384 static inline void set_task_cfs_rq(struct task_struct *p)
385 {
386 p->se.cfs_rq = &task_rq(p)->cfs;
387 }
388 #else
389 static inline void set_task_cfs_rq(struct task_struct *p)
390 {
391 }
392 #endif
393
394 #ifndef prepare_arch_switch
395 # define prepare_arch_switch(next) do { } while (0)
396 #endif
397 #ifndef finish_arch_switch
398 # define finish_arch_switch(prev) do { } while (0)
399 #endif
400
401 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
402 static inline int task_running(struct rq *rq, struct task_struct *p)
403 {
404 return rq->curr == p;
405 }
406
407 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
408 {
409 }
410
411 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
412 {
413 #ifdef CONFIG_DEBUG_SPINLOCK
414 /* this is a valid case when another task releases the spinlock */
415 rq->lock.owner = current;
416 #endif
417 /*
418 * If we are tracking spinlock dependencies then we have to
419 * fix up the runqueue lock - which gets 'carried over' from
420 * prev into current:
421 */
422 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
423
424 spin_unlock_irq(&rq->lock);
425 }
426
427 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
428 static inline int task_running(struct rq *rq, struct task_struct *p)
429 {
430 #ifdef CONFIG_SMP
431 return p->oncpu;
432 #else
433 return rq->curr == p;
434 #endif
435 }
436
437 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
438 {
439 #ifdef CONFIG_SMP
440 /*
441 * We can optimise this out completely for !SMP, because the
442 * SMP rebalancing from interrupt is the only thing that cares
443 * here.
444 */
445 next->oncpu = 1;
446 #endif
447 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
448 spin_unlock_irq(&rq->lock);
449 #else
450 spin_unlock(&rq->lock);
451 #endif
452 }
453
454 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
455 {
456 #ifdef CONFIG_SMP
457 /*
458 * After ->oncpu is cleared, the task can be moved to a different CPU.
459 * We must ensure this doesn't happen until the switch is completely
460 * finished.
461 */
462 smp_wmb();
463 prev->oncpu = 0;
464 #endif
465 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
466 local_irq_enable();
467 #endif
468 }
469 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
470
471 /*
472 * __task_rq_lock - lock the runqueue a given task resides on.
473 * Must be called interrupts disabled.
474 */
475 static inline struct rq *__task_rq_lock(struct task_struct *p)
476 __acquires(rq->lock)
477 {
478 struct rq *rq;
479
480 repeat_lock_task:
481 rq = task_rq(p);
482 spin_lock(&rq->lock);
483 if (unlikely(rq != task_rq(p))) {
484 spin_unlock(&rq->lock);
485 goto repeat_lock_task;
486 }
487 return rq;
488 }
489
490 /*
491 * task_rq_lock - lock the runqueue a given task resides on and disable
492 * interrupts. Note the ordering: we can safely lookup the task_rq without
493 * explicitly disabling preemption.
494 */
495 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
496 __acquires(rq->lock)
497 {
498 struct rq *rq;
499
500 repeat_lock_task:
501 local_irq_save(*flags);
502 rq = task_rq(p);
503 spin_lock(&rq->lock);
504 if (unlikely(rq != task_rq(p))) {
505 spin_unlock_irqrestore(&rq->lock, *flags);
506 goto repeat_lock_task;
507 }
508 return rq;
509 }
510
511 static inline void __task_rq_unlock(struct rq *rq)
512 __releases(rq->lock)
513 {
514 spin_unlock(&rq->lock);
515 }
516
517 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
518 __releases(rq->lock)
519 {
520 spin_unlock_irqrestore(&rq->lock, *flags);
521 }
522
523 /*
524 * this_rq_lock - lock this runqueue and disable interrupts.
525 */
526 static inline struct rq *this_rq_lock(void)
527 __acquires(rq->lock)
528 {
529 struct rq *rq;
530
531 local_irq_disable();
532 rq = this_rq();
533 spin_lock(&rq->lock);
534
535 return rq;
536 }
537
538 /*
539 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
540 */
541 void sched_clock_unstable_event(void)
542 {
543 unsigned long flags;
544 struct rq *rq;
545
546 rq = task_rq_lock(current, &flags);
547 rq->prev_clock_raw = sched_clock();
548 rq->clock_unstable_events++;
549 task_rq_unlock(rq, &flags);
550 }
551
552 /*
553 * resched_task - mark a task 'to be rescheduled now'.
554 *
555 * On UP this means the setting of the need_resched flag, on SMP it
556 * might also involve a cross-CPU call to trigger the scheduler on
557 * the target CPU.
558 */
559 #ifdef CONFIG_SMP
560
561 #ifndef tsk_is_polling
562 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
563 #endif
564
565 static void resched_task(struct task_struct *p)
566 {
567 int cpu;
568
569 assert_spin_locked(&task_rq(p)->lock);
570
571 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
572 return;
573
574 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
575
576 cpu = task_cpu(p);
577 if (cpu == smp_processor_id())
578 return;
579
580 /* NEED_RESCHED must be visible before we test polling */
581 smp_mb();
582 if (!tsk_is_polling(p))
583 smp_send_reschedule(cpu);
584 }
585
586 static void resched_cpu(int cpu)
587 {
588 struct rq *rq = cpu_rq(cpu);
589 unsigned long flags;
590
591 if (!spin_trylock_irqsave(&rq->lock, flags))
592 return;
593 resched_task(cpu_curr(cpu));
594 spin_unlock_irqrestore(&rq->lock, flags);
595 }
596 #else
597 static inline void resched_task(struct task_struct *p)
598 {
599 assert_spin_locked(&task_rq(p)->lock);
600 set_tsk_need_resched(p);
601 }
602 #endif
603
604 static u64 div64_likely32(u64 divident, unsigned long divisor)
605 {
606 #if BITS_PER_LONG == 32
607 if (likely(divident <= 0xffffffffULL))
608 return (u32)divident / divisor;
609 do_div(divident, divisor);
610
611 return divident;
612 #else
613 return divident / divisor;
614 #endif
615 }
616
617 #if BITS_PER_LONG == 32
618 # define WMULT_CONST (~0UL)
619 #else
620 # define WMULT_CONST (1UL << 32)
621 #endif
622
623 #define WMULT_SHIFT 32
624
625 static inline unsigned long
626 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
627 struct load_weight *lw)
628 {
629 u64 tmp;
630
631 if (unlikely(!lw->inv_weight))
632 lw->inv_weight = WMULT_CONST / lw->weight;
633
634 tmp = (u64)delta_exec * weight;
635 /*
636 * Check whether we'd overflow the 64-bit multiplication:
637 */
638 if (unlikely(tmp > WMULT_CONST)) {
639 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
640 >> (WMULT_SHIFT/2);
641 } else {
642 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
643 }
644
645 return (unsigned long)min(tmp, (u64)sysctl_sched_runtime_limit);
646 }
647
648 static inline unsigned long
649 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
650 {
651 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
652 }
653
654 static void update_load_add(struct load_weight *lw, unsigned long inc)
655 {
656 lw->weight += inc;
657 lw->inv_weight = 0;
658 }
659
660 static void update_load_sub(struct load_weight *lw, unsigned long dec)
661 {
662 lw->weight -= dec;
663 lw->inv_weight = 0;
664 }
665
666 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
667 {
668 if (rq->curr != rq->idle && ls->load.weight) {
669 ls->delta_exec += ls->delta_stat;
670 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
671 ls->delta_stat = 0;
672 }
673 }
674
675 /*
676 * Update delta_exec, delta_fair fields for rq.
677 *
678 * delta_fair clock advances at a rate inversely proportional to
679 * total load (rq->ls.load.weight) on the runqueue, while
680 * delta_exec advances at the same rate as wall-clock (provided
681 * cpu is not idle).
682 *
683 * delta_exec / delta_fair is a measure of the (smoothened) load on this
684 * runqueue over any given interval. This (smoothened) load is used
685 * during load balance.
686 *
687 * This function is called /before/ updating rq->ls.load
688 * and when switching tasks.
689 */
690 static void update_curr_load(struct rq *rq, u64 now)
691 {
692 struct load_stat *ls = &rq->ls;
693 u64 start;
694
695 start = ls->load_update_start;
696 ls->load_update_start = now;
697 ls->delta_stat += now - start;
698 /*
699 * Stagger updates to ls->delta_fair. Very frequent updates
700 * can be expensive.
701 */
702 if (ls->delta_stat >= sysctl_sched_stat_granularity)
703 __update_curr_load(rq, ls);
704 }
705
706 /*
707 * To aid in avoiding the subversion of "niceness" due to uneven distribution
708 * of tasks with abnormal "nice" values across CPUs the contribution that
709 * each task makes to its run queue's load is weighted according to its
710 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
711 * scaled version of the new time slice allocation that they receive on time
712 * slice expiry etc.
713 */
714
715 /*
716 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
717 * If static_prio_timeslice() is ever changed to break this assumption then
718 * this code will need modification
719 */
720 #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
721 #define load_weight(lp) \
722 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
723 #define PRIO_TO_LOAD_WEIGHT(prio) \
724 load_weight(static_prio_timeslice(prio))
725 #define RTPRIO_TO_LOAD_WEIGHT(rp) \
726 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + load_weight(rp))
727
728 #define WEIGHT_IDLEPRIO 2
729 #define WMULT_IDLEPRIO (1 << 31)
730
731 /*
732 * Nice levels are multiplicative, with a gentle 10% change for every
733 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
734 * nice 1, it will get ~10% less CPU time than another CPU-bound task
735 * that remained on nice 0.
736 *
737 * The "10% effect" is relative and cumulative: from _any_ nice level,
738 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
739 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
740 * If a task goes up by ~10% and another task goes down by ~10% then
741 * the relative distance between them is ~25%.)
742 */
743 static const int prio_to_weight[40] = {
744 /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
745 /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
746 /* 0 */ NICE_0_LOAD /* 1024 */,
747 /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
748 /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
749 };
750
751 /*
752 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
753 *
754 * In cases where the weight does not change often, we can use the
755 * precalculated inverse to speed up arithmetics by turning divisions
756 * into multiplications:
757 */
758 static const u32 prio_to_wmult[40] = {
759 /* -20 */ 48356, 60446, 75558, 94446, 118058,
760 /* -15 */ 147573, 184467, 230589, 288233, 360285,
761 /* -10 */ 450347, 562979, 703746, 879575, 1099582,
762 /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
763 /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
764 /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
765 /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
766 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
767 };
768
769 static inline void
770 inc_load(struct rq *rq, const struct task_struct *p, u64 now)
771 {
772 update_curr_load(rq, now);
773 update_load_add(&rq->ls.load, p->se.load.weight);
774 }
775
776 static inline void
777 dec_load(struct rq *rq, const struct task_struct *p, u64 now)
778 {
779 update_curr_load(rq, now);
780 update_load_sub(&rq->ls.load, p->se.load.weight);
781 }
782
783 static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
784 {
785 rq->nr_running++;
786 inc_load(rq, p, now);
787 }
788
789 static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
790 {
791 rq->nr_running--;
792 dec_load(rq, p, now);
793 }
794
795 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
796
797 /*
798 * runqueue iterator, to support SMP load-balancing between different
799 * scheduling classes, without having to expose their internal data
800 * structures to the load-balancing proper:
801 */
802 struct rq_iterator {
803 void *arg;
804 struct task_struct *(*start)(void *);
805 struct task_struct *(*next)(void *);
806 };
807
808 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
809 unsigned long max_nr_move, unsigned long max_load_move,
810 struct sched_domain *sd, enum cpu_idle_type idle,
811 int *all_pinned, unsigned long *load_moved,
812 int this_best_prio, int best_prio, int best_prio_seen,
813 struct rq_iterator *iterator);
814
815 #include "sched_stats.h"
816 #include "sched_rt.c"
817 #include "sched_fair.c"
818 #include "sched_idletask.c"
819 #ifdef CONFIG_SCHED_DEBUG
820 # include "sched_debug.c"
821 #endif
822
823 #define sched_class_highest (&rt_sched_class)
824
825 static void set_load_weight(struct task_struct *p)
826 {
827 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
828 p->se.wait_runtime = 0;
829
830 if (task_has_rt_policy(p)) {
831 p->se.load.weight = prio_to_weight[0] * 2;
832 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
833 return;
834 }
835
836 /*
837 * SCHED_IDLE tasks get minimal weight:
838 */
839 if (p->policy == SCHED_IDLE) {
840 p->se.load.weight = WEIGHT_IDLEPRIO;
841 p->se.load.inv_weight = WMULT_IDLEPRIO;
842 return;
843 }
844
845 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
846 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
847 }
848
849 static void
850 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
851 {
852 sched_info_queued(p);
853 p->sched_class->enqueue_task(rq, p, wakeup, now);
854 p->se.on_rq = 1;
855 }
856
857 static void
858 dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
859 {
860 p->sched_class->dequeue_task(rq, p, sleep, now);
861 p->se.on_rq = 0;
862 }
863
864 /*
865 * __normal_prio - return the priority that is based on the static prio
866 */
867 static inline int __normal_prio(struct task_struct *p)
868 {
869 return p->static_prio;
870 }
871
872 /*
873 * Calculate the expected normal priority: i.e. priority
874 * without taking RT-inheritance into account. Might be
875 * boosted by interactivity modifiers. Changes upon fork,
876 * setprio syscalls, and whenever the interactivity
877 * estimator recalculates.
878 */
879 static inline int normal_prio(struct task_struct *p)
880 {
881 int prio;
882
883 if (task_has_rt_policy(p))
884 prio = MAX_RT_PRIO-1 - p->rt_priority;
885 else
886 prio = __normal_prio(p);
887 return prio;
888 }
889
890 /*
891 * Calculate the current priority, i.e. the priority
892 * taken into account by the scheduler. This value might
893 * be boosted by RT tasks, or might be boosted by
894 * interactivity modifiers. Will be RT if the task got
895 * RT-boosted. If not then it returns p->normal_prio.
896 */
897 static int effective_prio(struct task_struct *p)
898 {
899 p->normal_prio = normal_prio(p);
900 /*
901 * If we are RT tasks or we were boosted to RT priority,
902 * keep the priority unchanged. Otherwise, update priority
903 * to the normal priority:
904 */
905 if (!rt_prio(p->prio))
906 return p->normal_prio;
907 return p->prio;
908 }
909
910 /*
911 * activate_task - move a task to the runqueue.
912 */
913 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
914 {
915 u64 now = rq_clock(rq);
916
917 if (p->state == TASK_UNINTERRUPTIBLE)
918 rq->nr_uninterruptible--;
919
920 enqueue_task(rq, p, wakeup, now);
921 inc_nr_running(p, rq, now);
922 }
923
924 /*
925 * activate_idle_task - move idle task to the _front_ of runqueue.
926 */
927 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
928 {
929 u64 now = rq_clock(rq);
930
931 if (p->state == TASK_UNINTERRUPTIBLE)
932 rq->nr_uninterruptible--;
933
934 enqueue_task(rq, p, 0, now);
935 inc_nr_running(p, rq, now);
936 }
937
938 /*
939 * deactivate_task - remove a task from the runqueue.
940 */
941 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
942 {
943 u64 now = rq_clock(rq);
944
945 if (p->state == TASK_UNINTERRUPTIBLE)
946 rq->nr_uninterruptible++;
947
948 dequeue_task(rq, p, sleep, now);
949 dec_nr_running(p, rq, now);
950 }
951
952 /**
953 * task_curr - is this task currently executing on a CPU?
954 * @p: the task in question.
955 */
956 inline int task_curr(const struct task_struct *p)
957 {
958 return cpu_curr(task_cpu(p)) == p;
959 }
960
961 /* Used instead of source_load when we know the type == 0 */
962 unsigned long weighted_cpuload(const int cpu)
963 {
964 return cpu_rq(cpu)->ls.load.weight;
965 }
966
967 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
968 {
969 #ifdef CONFIG_SMP
970 task_thread_info(p)->cpu = cpu;
971 set_task_cfs_rq(p);
972 #endif
973 }
974
975 #ifdef CONFIG_SMP
976
977 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
978 {
979 int old_cpu = task_cpu(p);
980 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
981 u64 clock_offset, fair_clock_offset;
982
983 clock_offset = old_rq->clock - new_rq->clock;
984 fair_clock_offset = old_rq->cfs.fair_clock -
985 new_rq->cfs.fair_clock;
986 if (p->se.wait_start)
987 p->se.wait_start -= clock_offset;
988 if (p->se.wait_start_fair)
989 p->se.wait_start_fair -= fair_clock_offset;
990 if (p->se.sleep_start)
991 p->se.sleep_start -= clock_offset;
992 if (p->se.block_start)
993 p->se.block_start -= clock_offset;
994 if (p->se.sleep_start_fair)
995 p->se.sleep_start_fair -= fair_clock_offset;
996
997 __set_task_cpu(p, new_cpu);
998 }
999
1000 struct migration_req {
1001 struct list_head list;
1002
1003 struct task_struct *task;
1004 int dest_cpu;
1005
1006 struct completion done;
1007 };
1008
1009 /*
1010 * The task's runqueue lock must be held.
1011 * Returns true if you have to wait for migration thread.
1012 */
1013 static int
1014 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1015 {
1016 struct rq *rq = task_rq(p);
1017
1018 /*
1019 * If the task is not on a runqueue (and not running), then
1020 * it is sufficient to simply update the task's cpu field.
1021 */
1022 if (!p->se.on_rq && !task_running(rq, p)) {
1023 set_task_cpu(p, dest_cpu);
1024 return 0;
1025 }
1026
1027 init_completion(&req->done);
1028 req->task = p;
1029 req->dest_cpu = dest_cpu;
1030 list_add(&req->list, &rq->migration_queue);
1031
1032 return 1;
1033 }
1034
1035 /*
1036 * wait_task_inactive - wait for a thread to unschedule.
1037 *
1038 * The caller must ensure that the task *will* unschedule sometime soon,
1039 * else this function might spin for a *long* time. This function can't
1040 * be called with interrupts off, or it may introduce deadlock with
1041 * smp_call_function() if an IPI is sent by the same process we are
1042 * waiting to become inactive.
1043 */
1044 void wait_task_inactive(struct task_struct *p)
1045 {
1046 unsigned long flags;
1047 int running, on_rq;
1048 struct rq *rq;
1049
1050 repeat:
1051 /*
1052 * We do the initial early heuristics without holding
1053 * any task-queue locks at all. We'll only try to get
1054 * the runqueue lock when things look like they will
1055 * work out!
1056 */
1057 rq = task_rq(p);
1058
1059 /*
1060 * If the task is actively running on another CPU
1061 * still, just relax and busy-wait without holding
1062 * any locks.
1063 *
1064 * NOTE! Since we don't hold any locks, it's not
1065 * even sure that "rq" stays as the right runqueue!
1066 * But we don't care, since "task_running()" will
1067 * return false if the runqueue has changed and p
1068 * is actually now running somewhere else!
1069 */
1070 while (task_running(rq, p))
1071 cpu_relax();
1072
1073 /*
1074 * Ok, time to look more closely! We need the rq
1075 * lock now, to be *sure*. If we're wrong, we'll
1076 * just go back and repeat.
1077 */
1078 rq = task_rq_lock(p, &flags);
1079 running = task_running(rq, p);
1080 on_rq = p->se.on_rq;
1081 task_rq_unlock(rq, &flags);
1082
1083 /*
1084 * Was it really running after all now that we
1085 * checked with the proper locks actually held?
1086 *
1087 * Oops. Go back and try again..
1088 */
1089 if (unlikely(running)) {
1090 cpu_relax();
1091 goto repeat;
1092 }
1093
1094 /*
1095 * It's not enough that it's not actively running,
1096 * it must be off the runqueue _entirely_, and not
1097 * preempted!
1098 *
1099 * So if it wa still runnable (but just not actively
1100 * running right now), it's preempted, and we should
1101 * yield - it could be a while.
1102 */
1103 if (unlikely(on_rq)) {
1104 yield();
1105 goto repeat;
1106 }
1107
1108 /*
1109 * Ahh, all good. It wasn't running, and it wasn't
1110 * runnable, which means that it will never become
1111 * running in the future either. We're all done!
1112 */
1113 }
1114
1115 /***
1116 * kick_process - kick a running thread to enter/exit the kernel
1117 * @p: the to-be-kicked thread
1118 *
1119 * Cause a process which is running on another CPU to enter
1120 * kernel-mode, without any delay. (to get signals handled.)
1121 *
1122 * NOTE: this function doesnt have to take the runqueue lock,
1123 * because all it wants to ensure is that the remote task enters
1124 * the kernel. If the IPI races and the task has been migrated
1125 * to another CPU then no harm is done and the purpose has been
1126 * achieved as well.
1127 */
1128 void kick_process(struct task_struct *p)
1129 {
1130 int cpu;
1131
1132 preempt_disable();
1133 cpu = task_cpu(p);
1134 if ((cpu != smp_processor_id()) && task_curr(p))
1135 smp_send_reschedule(cpu);
1136 preempt_enable();
1137 }
1138
1139 /*
1140 * Return a low guess at the load of a migration-source cpu weighted
1141 * according to the scheduling class and "nice" value.
1142 *
1143 * We want to under-estimate the load of migration sources, to
1144 * balance conservatively.
1145 */
1146 static inline unsigned long source_load(int cpu, int type)
1147 {
1148 struct rq *rq = cpu_rq(cpu);
1149 unsigned long total = weighted_cpuload(cpu);
1150
1151 if (type == 0)
1152 return total;
1153
1154 return min(rq->cpu_load[type-1], total);
1155 }
1156
1157 /*
1158 * Return a high guess at the load of a migration-target cpu weighted
1159 * according to the scheduling class and "nice" value.
1160 */
1161 static inline unsigned long target_load(int cpu, int type)
1162 {
1163 struct rq *rq = cpu_rq(cpu);
1164 unsigned long total = weighted_cpuload(cpu);
1165
1166 if (type == 0)
1167 return total;
1168
1169 return max(rq->cpu_load[type-1], total);
1170 }
1171
1172 /*
1173 * Return the average load per task on the cpu's run queue
1174 */
1175 static inline unsigned long cpu_avg_load_per_task(int cpu)
1176 {
1177 struct rq *rq = cpu_rq(cpu);
1178 unsigned long total = weighted_cpuload(cpu);
1179 unsigned long n = rq->nr_running;
1180
1181 return n ? total / n : SCHED_LOAD_SCALE;
1182 }
1183
1184 /*
1185 * find_idlest_group finds and returns the least busy CPU group within the
1186 * domain.
1187 */
1188 static struct sched_group *
1189 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1190 {
1191 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1192 unsigned long min_load = ULONG_MAX, this_load = 0;
1193 int load_idx = sd->forkexec_idx;
1194 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1195
1196 do {
1197 unsigned long load, avg_load;
1198 int local_group;
1199 int i;
1200
1201 /* Skip over this group if it has no CPUs allowed */
1202 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1203 goto nextgroup;
1204
1205 local_group = cpu_isset(this_cpu, group->cpumask);
1206
1207 /* Tally up the load of all CPUs in the group */
1208 avg_load = 0;
1209
1210 for_each_cpu_mask(i, group->cpumask) {
1211 /* Bias balancing toward cpus of our domain */
1212 if (local_group)
1213 load = source_load(i, load_idx);
1214 else
1215 load = target_load(i, load_idx);
1216
1217 avg_load += load;
1218 }
1219
1220 /* Adjust by relative CPU power of the group */
1221 avg_load = sg_div_cpu_power(group,
1222 avg_load * SCHED_LOAD_SCALE);
1223
1224 if (local_group) {
1225 this_load = avg_load;
1226 this = group;
1227 } else if (avg_load < min_load) {
1228 min_load = avg_load;
1229 idlest = group;
1230 }
1231 nextgroup:
1232 group = group->next;
1233 } while (group != sd->groups);
1234
1235 if (!idlest || 100*this_load < imbalance*min_load)
1236 return NULL;
1237 return idlest;
1238 }
1239
1240 /*
1241 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1242 */
1243 static int
1244 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1245 {
1246 cpumask_t tmp;
1247 unsigned long load, min_load = ULONG_MAX;
1248 int idlest = -1;
1249 int i;
1250
1251 /* Traverse only the allowed CPUs */
1252 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1253
1254 for_each_cpu_mask(i, tmp) {
1255 load = weighted_cpuload(i);
1256
1257 if (load < min_load || (load == min_load && i == this_cpu)) {
1258 min_load = load;
1259 idlest = i;
1260 }
1261 }
1262
1263 return idlest;
1264 }
1265
1266 /*
1267 * sched_balance_self: balance the current task (running on cpu) in domains
1268 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1269 * SD_BALANCE_EXEC.
1270 *
1271 * Balance, ie. select the least loaded group.
1272 *
1273 * Returns the target CPU number, or the same CPU if no balancing is needed.
1274 *
1275 * preempt must be disabled.
1276 */
1277 static int sched_balance_self(int cpu, int flag)
1278 {
1279 struct task_struct *t = current;
1280 struct sched_domain *tmp, *sd = NULL;
1281
1282 for_each_domain(cpu, tmp) {
1283 /*
1284 * If power savings logic is enabled for a domain, stop there.
1285 */
1286 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1287 break;
1288 if (tmp->flags & flag)
1289 sd = tmp;
1290 }
1291
1292 while (sd) {
1293 cpumask_t span;
1294 struct sched_group *group;
1295 int new_cpu, weight;
1296
1297 if (!(sd->flags & flag)) {
1298 sd = sd->child;
1299 continue;
1300 }
1301
1302 span = sd->span;
1303 group = find_idlest_group(sd, t, cpu);
1304 if (!group) {
1305 sd = sd->child;
1306 continue;
1307 }
1308
1309 new_cpu = find_idlest_cpu(group, t, cpu);
1310 if (new_cpu == -1 || new_cpu == cpu) {
1311 /* Now try balancing at a lower domain level of cpu */
1312 sd = sd->child;
1313 continue;
1314 }
1315
1316 /* Now try balancing at a lower domain level of new_cpu */
1317 cpu = new_cpu;
1318 sd = NULL;
1319 weight = cpus_weight(span);
1320 for_each_domain(cpu, tmp) {
1321 if (weight <= cpus_weight(tmp->span))
1322 break;
1323 if (tmp->flags & flag)
1324 sd = tmp;
1325 }
1326 /* while loop will break here if sd == NULL */
1327 }
1328
1329 return cpu;
1330 }
1331
1332 #endif /* CONFIG_SMP */
1333
1334 /*
1335 * wake_idle() will wake a task on an idle cpu if task->cpu is
1336 * not idle and an idle cpu is available. The span of cpus to
1337 * search starts with cpus closest then further out as needed,
1338 * so we always favor a closer, idle cpu.
1339 *
1340 * Returns the CPU we should wake onto.
1341 */
1342 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1343 static int wake_idle(int cpu, struct task_struct *p)
1344 {
1345 cpumask_t tmp;
1346 struct sched_domain *sd;
1347 int i;
1348
1349 /*
1350 * If it is idle, then it is the best cpu to run this task.
1351 *
1352 * This cpu is also the best, if it has more than one task already.
1353 * Siblings must be also busy(in most cases) as they didn't already
1354 * pickup the extra load from this cpu and hence we need not check
1355 * sibling runqueue info. This will avoid the checks and cache miss
1356 * penalities associated with that.
1357 */
1358 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1359 return cpu;
1360
1361 for_each_domain(cpu, sd) {
1362 if (sd->flags & SD_WAKE_IDLE) {
1363 cpus_and(tmp, sd->span, p->cpus_allowed);
1364 for_each_cpu_mask(i, tmp) {
1365 if (idle_cpu(i))
1366 return i;
1367 }
1368 } else {
1369 break;
1370 }
1371 }
1372 return cpu;
1373 }
1374 #else
1375 static inline int wake_idle(int cpu, struct task_struct *p)
1376 {
1377 return cpu;
1378 }
1379 #endif
1380
1381 /***
1382 * try_to_wake_up - wake up a thread
1383 * @p: the to-be-woken-up thread
1384 * @state: the mask of task states that can be woken
1385 * @sync: do a synchronous wakeup?
1386 *
1387 * Put it on the run-queue if it's not already there. The "current"
1388 * thread is always on the run-queue (except when the actual
1389 * re-schedule is in progress), and as such you're allowed to do
1390 * the simpler "current->state = TASK_RUNNING" to mark yourself
1391 * runnable without the overhead of this.
1392 *
1393 * returns failure only if the task is already active.
1394 */
1395 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1396 {
1397 int cpu, this_cpu, success = 0;
1398 unsigned long flags;
1399 long old_state;
1400 struct rq *rq;
1401 #ifdef CONFIG_SMP
1402 struct sched_domain *sd, *this_sd = NULL;
1403 unsigned long load, this_load;
1404 int new_cpu;
1405 #endif
1406
1407 rq = task_rq_lock(p, &flags);
1408 old_state = p->state;
1409 if (!(old_state & state))
1410 goto out;
1411
1412 if (p->se.on_rq)
1413 goto out_running;
1414
1415 cpu = task_cpu(p);
1416 this_cpu = smp_processor_id();
1417
1418 #ifdef CONFIG_SMP
1419 if (unlikely(task_running(rq, p)))
1420 goto out_activate;
1421
1422 new_cpu = cpu;
1423
1424 schedstat_inc(rq, ttwu_cnt);
1425 if (cpu == this_cpu) {
1426 schedstat_inc(rq, ttwu_local);
1427 goto out_set_cpu;
1428 }
1429
1430 for_each_domain(this_cpu, sd) {
1431 if (cpu_isset(cpu, sd->span)) {
1432 schedstat_inc(sd, ttwu_wake_remote);
1433 this_sd = sd;
1434 break;
1435 }
1436 }
1437
1438 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1439 goto out_set_cpu;
1440
1441 /*
1442 * Check for affine wakeup and passive balancing possibilities.
1443 */
1444 if (this_sd) {
1445 int idx = this_sd->wake_idx;
1446 unsigned int imbalance;
1447
1448 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1449
1450 load = source_load(cpu, idx);
1451 this_load = target_load(this_cpu, idx);
1452
1453 new_cpu = this_cpu; /* Wake to this CPU if we can */
1454
1455 if (this_sd->flags & SD_WAKE_AFFINE) {
1456 unsigned long tl = this_load;
1457 unsigned long tl_per_task;
1458
1459 tl_per_task = cpu_avg_load_per_task(this_cpu);
1460
1461 /*
1462 * If sync wakeup then subtract the (maximum possible)
1463 * effect of the currently running task from the load
1464 * of the current CPU:
1465 */
1466 if (sync)
1467 tl -= current->se.load.weight;
1468
1469 if ((tl <= load &&
1470 tl + target_load(cpu, idx) <= tl_per_task) ||
1471 100*(tl + p->se.load.weight) <= imbalance*load) {
1472 /*
1473 * This domain has SD_WAKE_AFFINE and
1474 * p is cache cold in this domain, and
1475 * there is no bad imbalance.
1476 */
1477 schedstat_inc(this_sd, ttwu_move_affine);
1478 goto out_set_cpu;
1479 }
1480 }
1481
1482 /*
1483 * Start passive balancing when half the imbalance_pct
1484 * limit is reached.
1485 */
1486 if (this_sd->flags & SD_WAKE_BALANCE) {
1487 if (imbalance*this_load <= 100*load) {
1488 schedstat_inc(this_sd, ttwu_move_balance);
1489 goto out_set_cpu;
1490 }
1491 }
1492 }
1493
1494 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1495 out_set_cpu:
1496 new_cpu = wake_idle(new_cpu, p);
1497 if (new_cpu != cpu) {
1498 set_task_cpu(p, new_cpu);
1499 task_rq_unlock(rq, &flags);
1500 /* might preempt at this point */
1501 rq = task_rq_lock(p, &flags);
1502 old_state = p->state;
1503 if (!(old_state & state))
1504 goto out;
1505 if (p->se.on_rq)
1506 goto out_running;
1507
1508 this_cpu = smp_processor_id();
1509 cpu = task_cpu(p);
1510 }
1511
1512 out_activate:
1513 #endif /* CONFIG_SMP */
1514 activate_task(rq, p, 1);
1515 /*
1516 * Sync wakeups (i.e. those types of wakeups where the waker
1517 * has indicated that it will leave the CPU in short order)
1518 * don't trigger a preemption, if the woken up task will run on
1519 * this cpu. (in this case the 'I will reschedule' promise of
1520 * the waker guarantees that the freshly woken up task is going
1521 * to be considered on this CPU.)
1522 */
1523 if (!sync || cpu != this_cpu)
1524 check_preempt_curr(rq, p);
1525 success = 1;
1526
1527 out_running:
1528 p->state = TASK_RUNNING;
1529 out:
1530 task_rq_unlock(rq, &flags);
1531
1532 return success;
1533 }
1534
1535 int fastcall wake_up_process(struct task_struct *p)
1536 {
1537 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1538 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1539 }
1540 EXPORT_SYMBOL(wake_up_process);
1541
1542 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1543 {
1544 return try_to_wake_up(p, state, 0);
1545 }
1546
1547 /*
1548 * Perform scheduler related setup for a newly forked process p.
1549 * p is forked by current.
1550 *
1551 * __sched_fork() is basic setup used by init_idle() too:
1552 */
1553 static void __sched_fork(struct task_struct *p)
1554 {
1555 p->se.wait_start_fair = 0;
1556 p->se.wait_start = 0;
1557 p->se.exec_start = 0;
1558 p->se.sum_exec_runtime = 0;
1559 p->se.delta_exec = 0;
1560 p->se.delta_fair_run = 0;
1561 p->se.delta_fair_sleep = 0;
1562 p->se.wait_runtime = 0;
1563 p->se.sum_wait_runtime = 0;
1564 p->se.sum_sleep_runtime = 0;
1565 p->se.sleep_start = 0;
1566 p->se.sleep_start_fair = 0;
1567 p->se.block_start = 0;
1568 p->se.sleep_max = 0;
1569 p->se.block_max = 0;
1570 p->se.exec_max = 0;
1571 p->se.wait_max = 0;
1572 p->se.wait_runtime_overruns = 0;
1573 p->se.wait_runtime_underruns = 0;
1574
1575 INIT_LIST_HEAD(&p->run_list);
1576 p->se.on_rq = 0;
1577
1578 /*
1579 * We mark the process as running here, but have not actually
1580 * inserted it onto the runqueue yet. This guarantees that
1581 * nobody will actually run it, and a signal or other external
1582 * event cannot wake it up and insert it on the runqueue either.
1583 */
1584 p->state = TASK_RUNNING;
1585 }
1586
1587 /*
1588 * fork()/clone()-time setup:
1589 */
1590 void sched_fork(struct task_struct *p, int clone_flags)
1591 {
1592 int cpu = get_cpu();
1593
1594 __sched_fork(p);
1595
1596 #ifdef CONFIG_SMP
1597 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1598 #endif
1599 __set_task_cpu(p, cpu);
1600
1601 /*
1602 * Make sure we do not leak PI boosting priority to the child:
1603 */
1604 p->prio = current->normal_prio;
1605
1606 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1607 if (likely(sched_info_on()))
1608 memset(&p->sched_info, 0, sizeof(p->sched_info));
1609 #endif
1610 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1611 p->oncpu = 0;
1612 #endif
1613 #ifdef CONFIG_PREEMPT
1614 /* Want to start with kernel preemption disabled. */
1615 task_thread_info(p)->preempt_count = 1;
1616 #endif
1617 put_cpu();
1618 }
1619
1620 /*
1621 * After fork, child runs first. (default) If set to 0 then
1622 * parent will (try to) run first.
1623 */
1624 unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1625
1626 /*
1627 * wake_up_new_task - wake up a newly created task for the first time.
1628 *
1629 * This function will do some initial scheduler statistics housekeeping
1630 * that must be done for every newly created context, then puts the task
1631 * on the runqueue and wakes it.
1632 */
1633 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1634 {
1635 unsigned long flags;
1636 struct rq *rq;
1637 int this_cpu;
1638
1639 rq = task_rq_lock(p, &flags);
1640 BUG_ON(p->state != TASK_RUNNING);
1641 this_cpu = smp_processor_id(); /* parent's CPU */
1642
1643 p->prio = effective_prio(p);
1644
1645 if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
1646 task_cpu(p) != this_cpu || !current->se.on_rq) {
1647 activate_task(rq, p, 0);
1648 } else {
1649 /*
1650 * Let the scheduling class do new task startup
1651 * management (if any):
1652 */
1653 p->sched_class->task_new(rq, p);
1654 }
1655 check_preempt_curr(rq, p);
1656 task_rq_unlock(rq, &flags);
1657 }
1658
1659 /**
1660 * prepare_task_switch - prepare to switch tasks
1661 * @rq: the runqueue preparing to switch
1662 * @next: the task we are going to switch to.
1663 *
1664 * This is called with the rq lock held and interrupts off. It must
1665 * be paired with a subsequent finish_task_switch after the context
1666 * switch.
1667 *
1668 * prepare_task_switch sets up locking and calls architecture specific
1669 * hooks.
1670 */
1671 static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
1672 {
1673 prepare_lock_switch(rq, next);
1674 prepare_arch_switch(next);
1675 }
1676
1677 /**
1678 * finish_task_switch - clean up after a task-switch
1679 * @rq: runqueue associated with task-switch
1680 * @prev: the thread we just switched away from.
1681 *
1682 * finish_task_switch must be called after the context switch, paired
1683 * with a prepare_task_switch call before the context switch.
1684 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1685 * and do any other architecture-specific cleanup actions.
1686 *
1687 * Note that we may have delayed dropping an mm in context_switch(). If
1688 * so, we finish that here outside of the runqueue lock. (Doing it
1689 * with the lock held can cause deadlocks; see schedule() for
1690 * details.)
1691 */
1692 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1693 __releases(rq->lock)
1694 {
1695 struct mm_struct *mm = rq->prev_mm;
1696 long prev_state;
1697
1698 rq->prev_mm = NULL;
1699
1700 /*
1701 * A task struct has one reference for the use as "current".
1702 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1703 * schedule one last time. The schedule call will never return, and
1704 * the scheduled task must drop that reference.
1705 * The test for TASK_DEAD must occur while the runqueue locks are
1706 * still held, otherwise prev could be scheduled on another cpu, die
1707 * there before we look at prev->state, and then the reference would
1708 * be dropped twice.
1709 * Manfred Spraul <manfred@colorfullife.com>
1710 */
1711 prev_state = prev->state;
1712 finish_arch_switch(prev);
1713 finish_lock_switch(rq, prev);
1714 if (mm)
1715 mmdrop(mm);
1716 if (unlikely(prev_state == TASK_DEAD)) {
1717 /*
1718 * Remove function-return probe instances associated with this
1719 * task and put them back on the free list.
1720 */
1721 kprobe_flush_task(prev);
1722 put_task_struct(prev);
1723 }
1724 }
1725
1726 /**
1727 * schedule_tail - first thing a freshly forked thread must call.
1728 * @prev: the thread we just switched away from.
1729 */
1730 asmlinkage void schedule_tail(struct task_struct *prev)
1731 __releases(rq->lock)
1732 {
1733 struct rq *rq = this_rq();
1734
1735 finish_task_switch(rq, prev);
1736 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1737 /* In this case, finish_task_switch does not reenable preemption */
1738 preempt_enable();
1739 #endif
1740 if (current->set_child_tid)
1741 put_user(current->pid, current->set_child_tid);
1742 }
1743
1744 /*
1745 * context_switch - switch to the new MM and the new
1746 * thread's register state.
1747 */
1748 static inline void
1749 context_switch(struct rq *rq, struct task_struct *prev,
1750 struct task_struct *next)
1751 {
1752 struct mm_struct *mm, *oldmm;
1753
1754 prepare_task_switch(rq, next);
1755 mm = next->mm;
1756 oldmm = prev->active_mm;
1757 /*
1758 * For paravirt, this is coupled with an exit in switch_to to
1759 * combine the page table reload and the switch backend into
1760 * one hypercall.
1761 */
1762 arch_enter_lazy_cpu_mode();
1763
1764 if (unlikely(!mm)) {
1765 next->active_mm = oldmm;
1766 atomic_inc(&oldmm->mm_count);
1767 enter_lazy_tlb(oldmm, next);
1768 } else
1769 switch_mm(oldmm, mm, next);
1770
1771 if (unlikely(!prev->mm)) {
1772 prev->active_mm = NULL;
1773 rq->prev_mm = oldmm;
1774 }
1775 /*
1776 * Since the runqueue lock will be released by the next
1777 * task (which is an invalid locking op but in the case
1778 * of the scheduler it's an obvious special-case), so we
1779 * do an early lockdep release here:
1780 */
1781 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1782 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1783 #endif
1784
1785 /* Here we just switch the register state and the stack. */
1786 switch_to(prev, next, prev);
1787
1788 barrier();
1789 /*
1790 * this_rq must be evaluated again because prev may have moved
1791 * CPUs since it called schedule(), thus the 'rq' on its stack
1792 * frame will be invalid.
1793 */
1794 finish_task_switch(this_rq(), prev);
1795 }
1796
1797 /*
1798 * nr_running, nr_uninterruptible and nr_context_switches:
1799 *
1800 * externally visible scheduler statistics: current number of runnable
1801 * threads, current number of uninterruptible-sleeping threads, total
1802 * number of context switches performed since bootup.
1803 */
1804 unsigned long nr_running(void)
1805 {
1806 unsigned long i, sum = 0;
1807
1808 for_each_online_cpu(i)
1809 sum += cpu_rq(i)->nr_running;
1810
1811 return sum;
1812 }
1813
1814 unsigned long nr_uninterruptible(void)
1815 {
1816 unsigned long i, sum = 0;
1817
1818 for_each_possible_cpu(i)
1819 sum += cpu_rq(i)->nr_uninterruptible;
1820
1821 /*
1822 * Since we read the counters lockless, it might be slightly
1823 * inaccurate. Do not allow it to go below zero though:
1824 */
1825 if (unlikely((long)sum < 0))
1826 sum = 0;
1827
1828 return sum;
1829 }
1830
1831 unsigned long long nr_context_switches(void)
1832 {
1833 int i;
1834 unsigned long long sum = 0;
1835
1836 for_each_possible_cpu(i)
1837 sum += cpu_rq(i)->nr_switches;
1838
1839 return sum;
1840 }
1841
1842 unsigned long nr_iowait(void)
1843 {
1844 unsigned long i, sum = 0;
1845
1846 for_each_possible_cpu(i)
1847 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1848
1849 return sum;
1850 }
1851
1852 unsigned long nr_active(void)
1853 {
1854 unsigned long i, running = 0, uninterruptible = 0;
1855
1856 for_each_online_cpu(i) {
1857 running += cpu_rq(i)->nr_running;
1858 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1859 }
1860
1861 if (unlikely((long)uninterruptible < 0))
1862 uninterruptible = 0;
1863
1864 return running + uninterruptible;
1865 }
1866
1867 /*
1868 * Update rq->cpu_load[] statistics. This function is usually called every
1869 * scheduler tick (TICK_NSEC).
1870 */
1871 static void update_cpu_load(struct rq *this_rq)
1872 {
1873 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1874 unsigned long total_load = this_rq->ls.load.weight;
1875 unsigned long this_load = total_load;
1876 struct load_stat *ls = &this_rq->ls;
1877 u64 now = __rq_clock(this_rq);
1878 int i, scale;
1879
1880 this_rq->nr_load_updates++;
1881 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1882 goto do_avg;
1883
1884 /* Update delta_fair/delta_exec fields first */
1885 update_curr_load(this_rq, now);
1886
1887 fair_delta64 = ls->delta_fair + 1;
1888 ls->delta_fair = 0;
1889
1890 exec_delta64 = ls->delta_exec + 1;
1891 ls->delta_exec = 0;
1892
1893 sample_interval64 = now - ls->load_update_last;
1894 ls->load_update_last = now;
1895
1896 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1897 sample_interval64 = TICK_NSEC;
1898
1899 if (exec_delta64 > sample_interval64)
1900 exec_delta64 = sample_interval64;
1901
1902 idle_delta64 = sample_interval64 - exec_delta64;
1903
1904 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1905 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1906
1907 this_load = (unsigned long)tmp64;
1908
1909 do_avg:
1910
1911 /* Update our load: */
1912 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1913 unsigned long old_load, new_load;
1914
1915 /* scale is effectively 1 << i now, and >> i divides by scale */
1916
1917 old_load = this_rq->cpu_load[i];
1918 new_load = this_load;
1919
1920 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1921 }
1922 }
1923
1924 #ifdef CONFIG_SMP
1925
1926 /*
1927 * double_rq_lock - safely lock two runqueues
1928 *
1929 * Note this does not disable interrupts like task_rq_lock,
1930 * you need to do so manually before calling.
1931 */
1932 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1933 __acquires(rq1->lock)
1934 __acquires(rq2->lock)
1935 {
1936 BUG_ON(!irqs_disabled());
1937 if (rq1 == rq2) {
1938 spin_lock(&rq1->lock);
1939 __acquire(rq2->lock); /* Fake it out ;) */
1940 } else {
1941 if (rq1 < rq2) {
1942 spin_lock(&rq1->lock);
1943 spin_lock(&rq2->lock);
1944 } else {
1945 spin_lock(&rq2->lock);
1946 spin_lock(&rq1->lock);
1947 }
1948 }
1949 }
1950
1951 /*
1952 * double_rq_unlock - safely unlock two runqueues
1953 *
1954 * Note this does not restore interrupts like task_rq_unlock,
1955 * you need to do so manually after calling.
1956 */
1957 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1958 __releases(rq1->lock)
1959 __releases(rq2->lock)
1960 {
1961 spin_unlock(&rq1->lock);
1962 if (rq1 != rq2)
1963 spin_unlock(&rq2->lock);
1964 else
1965 __release(rq2->lock);
1966 }
1967
1968 /*
1969 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1970 */
1971 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1972 __releases(this_rq->lock)
1973 __acquires(busiest->lock)
1974 __acquires(this_rq->lock)
1975 {
1976 if (unlikely(!irqs_disabled())) {
1977 /* printk() doesn't work good under rq->lock */
1978 spin_unlock(&this_rq->lock);
1979 BUG_ON(1);
1980 }
1981 if (unlikely(!spin_trylock(&busiest->lock))) {
1982 if (busiest < this_rq) {
1983 spin_unlock(&this_rq->lock);
1984 spin_lock(&busiest->lock);
1985 spin_lock(&this_rq->lock);
1986 } else
1987 spin_lock(&busiest->lock);
1988 }
1989 }
1990
1991 /*
1992 * If dest_cpu is allowed for this process, migrate the task to it.
1993 * This is accomplished by forcing the cpu_allowed mask to only
1994 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1995 * the cpu_allowed mask is restored.
1996 */
1997 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1998 {
1999 struct migration_req req;
2000 unsigned long flags;
2001 struct rq *rq;
2002
2003 rq = task_rq_lock(p, &flags);
2004 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2005 || unlikely(cpu_is_offline(dest_cpu)))
2006 goto out;
2007
2008 /* force the process onto the specified CPU */
2009 if (migrate_task(p, dest_cpu, &req)) {
2010 /* Need to wait for migration thread (might exit: take ref). */
2011 struct task_struct *mt = rq->migration_thread;
2012
2013 get_task_struct(mt);
2014 task_rq_unlock(rq, &flags);
2015 wake_up_process(mt);
2016 put_task_struct(mt);
2017 wait_for_completion(&req.done);
2018
2019 return;
2020 }
2021 out:
2022 task_rq_unlock(rq, &flags);
2023 }
2024
2025 /*
2026 * sched_exec - execve() is a valuable balancing opportunity, because at
2027 * this point the task has the smallest effective memory and cache footprint.
2028 */
2029 void sched_exec(void)
2030 {
2031 int new_cpu, this_cpu = get_cpu();
2032 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2033 put_cpu();
2034 if (new_cpu != this_cpu)
2035 sched_migrate_task(current, new_cpu);
2036 }
2037
2038 /*
2039 * pull_task - move a task from a remote runqueue to the local runqueue.
2040 * Both runqueues must be locked.
2041 */
2042 static void pull_task(struct rq *src_rq, struct task_struct *p,
2043 struct rq *this_rq, int this_cpu)
2044 {
2045 deactivate_task(src_rq, p, 0);
2046 set_task_cpu(p, this_cpu);
2047 activate_task(this_rq, p, 0);
2048 /*
2049 * Note that idle threads have a prio of MAX_PRIO, for this test
2050 * to be always true for them.
2051 */
2052 check_preempt_curr(this_rq, p);
2053 }
2054
2055 /*
2056 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2057 */
2058 static
2059 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2060 struct sched_domain *sd, enum cpu_idle_type idle,
2061 int *all_pinned)
2062 {
2063 /*
2064 * We do not migrate tasks that are:
2065 * 1) running (obviously), or
2066 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2067 * 3) are cache-hot on their current CPU.
2068 */
2069 if (!cpu_isset(this_cpu, p->cpus_allowed))
2070 return 0;
2071 *all_pinned = 0;
2072
2073 if (task_running(rq, p))
2074 return 0;
2075
2076 /*
2077 * Aggressive migration if too many balance attempts have failed:
2078 */
2079 if (sd->nr_balance_failed > sd->cache_nice_tries)
2080 return 1;
2081
2082 return 1;
2083 }
2084
2085 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2086 unsigned long max_nr_move, unsigned long max_load_move,
2087 struct sched_domain *sd, enum cpu_idle_type idle,
2088 int *all_pinned, unsigned long *load_moved,
2089 int this_best_prio, int best_prio, int best_prio_seen,
2090 struct rq_iterator *iterator)
2091 {
2092 int pulled = 0, pinned = 0, skip_for_load;
2093 struct task_struct *p;
2094 long rem_load_move = max_load_move;
2095
2096 if (max_nr_move == 0 || max_load_move == 0)
2097 goto out;
2098
2099 pinned = 1;
2100
2101 /*
2102 * Start the load-balancing iterator:
2103 */
2104 p = iterator->start(iterator->arg);
2105 next:
2106 if (!p)
2107 goto out;
2108 /*
2109 * To help distribute high priority tasks accross CPUs we don't
2110 * skip a task if it will be the highest priority task (i.e. smallest
2111 * prio value) on its new queue regardless of its load weight
2112 */
2113 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2114 SCHED_LOAD_SCALE_FUZZ;
2115 if (skip_for_load && p->prio < this_best_prio)
2116 skip_for_load = !best_prio_seen && p->prio == best_prio;
2117 if (skip_for_load ||
2118 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2119
2120 best_prio_seen |= p->prio == best_prio;
2121 p = iterator->next(iterator->arg);
2122 goto next;
2123 }
2124
2125 pull_task(busiest, p, this_rq, this_cpu);
2126 pulled++;
2127 rem_load_move -= p->se.load.weight;
2128
2129 /*
2130 * We only want to steal up to the prescribed number of tasks
2131 * and the prescribed amount of weighted load.
2132 */
2133 if (pulled < max_nr_move && rem_load_move > 0) {
2134 if (p->prio < this_best_prio)
2135 this_best_prio = p->prio;
2136 p = iterator->next(iterator->arg);
2137 goto next;
2138 }
2139 out:
2140 /*
2141 * Right now, this is the only place pull_task() is called,
2142 * so we can safely collect pull_task() stats here rather than
2143 * inside pull_task().
2144 */
2145 schedstat_add(sd, lb_gained[idle], pulled);
2146
2147 if (all_pinned)
2148 *all_pinned = pinned;
2149 *load_moved = max_load_move - rem_load_move;
2150 return pulled;
2151 }
2152
2153 /*
2154 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2155 * load from busiest to this_rq, as part of a balancing operation within
2156 * "domain". Returns the number of tasks moved.
2157 *
2158 * Called with both runqueues locked.
2159 */
2160 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2161 unsigned long max_nr_move, unsigned long max_load_move,
2162 struct sched_domain *sd, enum cpu_idle_type idle,
2163 int *all_pinned)
2164 {
2165 struct sched_class *class = sched_class_highest;
2166 unsigned long load_moved, total_nr_moved = 0, nr_moved;
2167 long rem_load_move = max_load_move;
2168
2169 do {
2170 nr_moved = class->load_balance(this_rq, this_cpu, busiest,
2171 max_nr_move, (unsigned long)rem_load_move,
2172 sd, idle, all_pinned, &load_moved);
2173 total_nr_moved += nr_moved;
2174 max_nr_move -= nr_moved;
2175 rem_load_move -= load_moved;
2176 class = class->next;
2177 } while (class && max_nr_move && rem_load_move > 0);
2178
2179 return total_nr_moved;
2180 }
2181
2182 /*
2183 * find_busiest_group finds and returns the busiest CPU group within the
2184 * domain. It calculates and returns the amount of weighted load which
2185 * should be moved to restore balance via the imbalance parameter.
2186 */
2187 static struct sched_group *
2188 find_busiest_group(struct sched_domain *sd, int this_cpu,
2189 unsigned long *imbalance, enum cpu_idle_type idle,
2190 int *sd_idle, cpumask_t *cpus, int *balance)
2191 {
2192 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2193 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2194 unsigned long max_pull;
2195 unsigned long busiest_load_per_task, busiest_nr_running;
2196 unsigned long this_load_per_task, this_nr_running;
2197 int load_idx;
2198 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2199 int power_savings_balance = 1;
2200 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2201 unsigned long min_nr_running = ULONG_MAX;
2202 struct sched_group *group_min = NULL, *group_leader = NULL;
2203 #endif
2204
2205 max_load = this_load = total_load = total_pwr = 0;
2206 busiest_load_per_task = busiest_nr_running = 0;
2207 this_load_per_task = this_nr_running = 0;
2208 if (idle == CPU_NOT_IDLE)
2209 load_idx = sd->busy_idx;
2210 else if (idle == CPU_NEWLY_IDLE)
2211 load_idx = sd->newidle_idx;
2212 else
2213 load_idx = sd->idle_idx;
2214
2215 do {
2216 unsigned long load, group_capacity;
2217 int local_group;
2218 int i;
2219 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2220 unsigned long sum_nr_running, sum_weighted_load;
2221
2222 local_group = cpu_isset(this_cpu, group->cpumask);
2223
2224 if (local_group)
2225 balance_cpu = first_cpu(group->cpumask);
2226
2227 /* Tally up the load of all CPUs in the group */
2228 sum_weighted_load = sum_nr_running = avg_load = 0;
2229
2230 for_each_cpu_mask(i, group->cpumask) {
2231 struct rq *rq;
2232
2233 if (!cpu_isset(i, *cpus))
2234 continue;
2235
2236 rq = cpu_rq(i);
2237
2238 if (*sd_idle && !idle_cpu(i))
2239 *sd_idle = 0;
2240
2241 /* Bias balancing toward cpus of our domain */
2242 if (local_group) {
2243 if (idle_cpu(i) && !first_idle_cpu) {
2244 first_idle_cpu = 1;
2245 balance_cpu = i;
2246 }
2247
2248 load = target_load(i, load_idx);
2249 } else
2250 load = source_load(i, load_idx);
2251
2252 avg_load += load;
2253 sum_nr_running += rq->nr_running;
2254 sum_weighted_load += weighted_cpuload(i);
2255 }
2256
2257 /*
2258 * First idle cpu or the first cpu(busiest) in this sched group
2259 * is eligible for doing load balancing at this and above
2260 * domains.
2261 */
2262 if (local_group && balance_cpu != this_cpu && balance) {
2263 *balance = 0;
2264 goto ret;
2265 }
2266
2267 total_load += avg_load;
2268 total_pwr += group->__cpu_power;
2269
2270 /* Adjust by relative CPU power of the group */
2271 avg_load = sg_div_cpu_power(group,
2272 avg_load * SCHED_LOAD_SCALE);
2273
2274 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2275
2276 if (local_group) {
2277 this_load = avg_load;
2278 this = group;
2279 this_nr_running = sum_nr_running;
2280 this_load_per_task = sum_weighted_load;
2281 } else if (avg_load > max_load &&
2282 sum_nr_running > group_capacity) {
2283 max_load = avg_load;
2284 busiest = group;
2285 busiest_nr_running = sum_nr_running;
2286 busiest_load_per_task = sum_weighted_load;
2287 }
2288
2289 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2290 /*
2291 * Busy processors will not participate in power savings
2292 * balance.
2293 */
2294 if (idle == CPU_NOT_IDLE ||
2295 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2296 goto group_next;
2297
2298 /*
2299 * If the local group is idle or completely loaded
2300 * no need to do power savings balance at this domain
2301 */
2302 if (local_group && (this_nr_running >= group_capacity ||
2303 !this_nr_running))
2304 power_savings_balance = 0;
2305
2306 /*
2307 * If a group is already running at full capacity or idle,
2308 * don't include that group in power savings calculations
2309 */
2310 if (!power_savings_balance || sum_nr_running >= group_capacity
2311 || !sum_nr_running)
2312 goto group_next;
2313
2314 /*
2315 * Calculate the group which has the least non-idle load.
2316 * This is the group from where we need to pick up the load
2317 * for saving power
2318 */
2319 if ((sum_nr_running < min_nr_running) ||
2320 (sum_nr_running == min_nr_running &&
2321 first_cpu(group->cpumask) <
2322 first_cpu(group_min->cpumask))) {
2323 group_min = group;
2324 min_nr_running = sum_nr_running;
2325 min_load_per_task = sum_weighted_load /
2326 sum_nr_running;
2327 }
2328
2329 /*
2330 * Calculate the group which is almost near its
2331 * capacity but still has some space to pick up some load
2332 * from other group and save more power
2333 */
2334 if (sum_nr_running <= group_capacity - 1) {
2335 if (sum_nr_running > leader_nr_running ||
2336 (sum_nr_running == leader_nr_running &&
2337 first_cpu(group->cpumask) >
2338 first_cpu(group_leader->cpumask))) {
2339 group_leader = group;
2340 leader_nr_running = sum_nr_running;
2341 }
2342 }
2343 group_next:
2344 #endif
2345 group = group->next;
2346 } while (group != sd->groups);
2347
2348 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2349 goto out_balanced;
2350
2351 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2352
2353 if (this_load >= avg_load ||
2354 100*max_load <= sd->imbalance_pct*this_load)
2355 goto out_balanced;
2356
2357 busiest_load_per_task /= busiest_nr_running;
2358 /*
2359 * We're trying to get all the cpus to the average_load, so we don't
2360 * want to push ourselves above the average load, nor do we wish to
2361 * reduce the max loaded cpu below the average load, as either of these
2362 * actions would just result in more rebalancing later, and ping-pong
2363 * tasks around. Thus we look for the minimum possible imbalance.
2364 * Negative imbalances (*we* are more loaded than anyone else) will
2365 * be counted as no imbalance for these purposes -- we can't fix that
2366 * by pulling tasks to us. Be careful of negative numbers as they'll
2367 * appear as very large values with unsigned longs.
2368 */
2369 if (max_load <= busiest_load_per_task)
2370 goto out_balanced;
2371
2372 /*
2373 * In the presence of smp nice balancing, certain scenarios can have
2374 * max load less than avg load(as we skip the groups at or below
2375 * its cpu_power, while calculating max_load..)
2376 */
2377 if (max_load < avg_load) {
2378 *imbalance = 0;
2379 goto small_imbalance;
2380 }
2381
2382 /* Don't want to pull so many tasks that a group would go idle */
2383 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2384
2385 /* How much load to actually move to equalise the imbalance */
2386 *imbalance = min(max_pull * busiest->__cpu_power,
2387 (avg_load - this_load) * this->__cpu_power)
2388 / SCHED_LOAD_SCALE;
2389
2390 /*
2391 * if *imbalance is less than the average load per runnable task
2392 * there is no gaurantee that any tasks will be moved so we'll have
2393 * a think about bumping its value to force at least one task to be
2394 * moved
2395 */
2396 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2397 unsigned long tmp, pwr_now, pwr_move;
2398 unsigned int imbn;
2399
2400 small_imbalance:
2401 pwr_move = pwr_now = 0;
2402 imbn = 2;
2403 if (this_nr_running) {
2404 this_load_per_task /= this_nr_running;
2405 if (busiest_load_per_task > this_load_per_task)
2406 imbn = 1;
2407 } else
2408 this_load_per_task = SCHED_LOAD_SCALE;
2409
2410 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2411 busiest_load_per_task * imbn) {
2412 *imbalance = busiest_load_per_task;
2413 return busiest;
2414 }
2415
2416 /*
2417 * OK, we don't have enough imbalance to justify moving tasks,
2418 * however we may be able to increase total CPU power used by
2419 * moving them.
2420 */
2421
2422 pwr_now += busiest->__cpu_power *
2423 min(busiest_load_per_task, max_load);
2424 pwr_now += this->__cpu_power *
2425 min(this_load_per_task, this_load);
2426 pwr_now /= SCHED_LOAD_SCALE;
2427
2428 /* Amount of load we'd subtract */
2429 tmp = sg_div_cpu_power(busiest,
2430 busiest_load_per_task * SCHED_LOAD_SCALE);
2431 if (max_load > tmp)
2432 pwr_move += busiest->__cpu_power *
2433 min(busiest_load_per_task, max_load - tmp);
2434
2435 /* Amount of load we'd add */
2436 if (max_load * busiest->__cpu_power <
2437 busiest_load_per_task * SCHED_LOAD_SCALE)
2438 tmp = sg_div_cpu_power(this,
2439 max_load * busiest->__cpu_power);
2440 else
2441 tmp = sg_div_cpu_power(this,
2442 busiest_load_per_task * SCHED_LOAD_SCALE);
2443 pwr_move += this->__cpu_power *
2444 min(this_load_per_task, this_load + tmp);
2445 pwr_move /= SCHED_LOAD_SCALE;
2446
2447 /* Move if we gain throughput */
2448 if (pwr_move <= pwr_now)
2449 goto out_balanced;
2450
2451 *imbalance = busiest_load_per_task;
2452 }
2453
2454 return busiest;
2455
2456 out_balanced:
2457 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2458 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2459 goto ret;
2460
2461 if (this == group_leader && group_leader != group_min) {
2462 *imbalance = min_load_per_task;
2463 return group_min;
2464 }
2465 #endif
2466 ret:
2467 *imbalance = 0;
2468 return NULL;
2469 }
2470
2471 /*
2472 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2473 */
2474 static struct rq *
2475 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2476 unsigned long imbalance, cpumask_t *cpus)
2477 {
2478 struct rq *busiest = NULL, *rq;
2479 unsigned long max_load = 0;
2480 int i;
2481
2482 for_each_cpu_mask(i, group->cpumask) {
2483 unsigned long wl;
2484
2485 if (!cpu_isset(i, *cpus))
2486 continue;
2487
2488 rq = cpu_rq(i);
2489 wl = weighted_cpuload(i);
2490
2491 if (rq->nr_running == 1 && wl > imbalance)
2492 continue;
2493
2494 if (wl > max_load) {
2495 max_load = wl;
2496 busiest = rq;
2497 }
2498 }
2499
2500 return busiest;
2501 }
2502
2503 /*
2504 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2505 * so long as it is large enough.
2506 */
2507 #define MAX_PINNED_INTERVAL 512
2508
2509 static inline unsigned long minus_1_or_zero(unsigned long n)
2510 {
2511 return n > 0 ? n - 1 : 0;
2512 }
2513
2514 /*
2515 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2516 * tasks if there is an imbalance.
2517 */
2518 static int load_balance(int this_cpu, struct rq *this_rq,
2519 struct sched_domain *sd, enum cpu_idle_type idle,
2520 int *balance)
2521 {
2522 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2523 struct sched_group *group;
2524 unsigned long imbalance;
2525 struct rq *busiest;
2526 cpumask_t cpus = CPU_MASK_ALL;
2527 unsigned long flags;
2528
2529 /*
2530 * When power savings policy is enabled for the parent domain, idle
2531 * sibling can pick up load irrespective of busy siblings. In this case,
2532 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2533 * portraying it as CPU_NOT_IDLE.
2534 */
2535 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2536 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2537 sd_idle = 1;
2538
2539 schedstat_inc(sd, lb_cnt[idle]);
2540
2541 redo:
2542 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2543 &cpus, balance);
2544
2545 if (*balance == 0)
2546 goto out_balanced;
2547
2548 if (!group) {
2549 schedstat_inc(sd, lb_nobusyg[idle]);
2550 goto out_balanced;
2551 }
2552
2553 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2554 if (!busiest) {
2555 schedstat_inc(sd, lb_nobusyq[idle]);
2556 goto out_balanced;
2557 }
2558
2559 BUG_ON(busiest == this_rq);
2560
2561 schedstat_add(sd, lb_imbalance[idle], imbalance);
2562
2563 nr_moved = 0;
2564 if (busiest->nr_running > 1) {
2565 /*
2566 * Attempt to move tasks. If find_busiest_group has found
2567 * an imbalance but busiest->nr_running <= 1, the group is
2568 * still unbalanced. nr_moved simply stays zero, so it is
2569 * correctly treated as an imbalance.
2570 */
2571 local_irq_save(flags);
2572 double_rq_lock(this_rq, busiest);
2573 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2574 minus_1_or_zero(busiest->nr_running),
2575 imbalance, sd, idle, &all_pinned);
2576 double_rq_unlock(this_rq, busiest);
2577 local_irq_restore(flags);
2578
2579 /*
2580 * some other cpu did the load balance for us.
2581 */
2582 if (nr_moved && this_cpu != smp_processor_id())
2583 resched_cpu(this_cpu);
2584
2585 /* All tasks on this runqueue were pinned by CPU affinity */
2586 if (unlikely(all_pinned)) {
2587 cpu_clear(cpu_of(busiest), cpus);
2588 if (!cpus_empty(cpus))
2589 goto redo;
2590 goto out_balanced;
2591 }
2592 }
2593
2594 if (!nr_moved) {
2595 schedstat_inc(sd, lb_failed[idle]);
2596 sd->nr_balance_failed++;
2597
2598 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2599
2600 spin_lock_irqsave(&busiest->lock, flags);
2601
2602 /* don't kick the migration_thread, if the curr
2603 * task on busiest cpu can't be moved to this_cpu
2604 */
2605 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2606 spin_unlock_irqrestore(&busiest->lock, flags);
2607 all_pinned = 1;
2608 goto out_one_pinned;
2609 }
2610
2611 if (!busiest->active_balance) {
2612 busiest->active_balance = 1;
2613 busiest->push_cpu = this_cpu;
2614 active_balance = 1;
2615 }
2616 spin_unlock_irqrestore(&busiest->lock, flags);
2617 if (active_balance)
2618 wake_up_process(busiest->migration_thread);
2619
2620 /*
2621 * We've kicked active balancing, reset the failure
2622 * counter.
2623 */
2624 sd->nr_balance_failed = sd->cache_nice_tries+1;
2625 }
2626 } else
2627 sd->nr_balance_failed = 0;
2628
2629 if (likely(!active_balance)) {
2630 /* We were unbalanced, so reset the balancing interval */
2631 sd->balance_interval = sd->min_interval;
2632 } else {
2633 /*
2634 * If we've begun active balancing, start to back off. This
2635 * case may not be covered by the all_pinned logic if there
2636 * is only 1 task on the busy runqueue (because we don't call
2637 * move_tasks).
2638 */
2639 if (sd->balance_interval < sd->max_interval)
2640 sd->balance_interval *= 2;
2641 }
2642
2643 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2644 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2645 return -1;
2646 return nr_moved;
2647
2648 out_balanced:
2649 schedstat_inc(sd, lb_balanced[idle]);
2650
2651 sd->nr_balance_failed = 0;
2652
2653 out_one_pinned:
2654 /* tune up the balancing interval */
2655 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2656 (sd->balance_interval < sd->max_interval))
2657 sd->balance_interval *= 2;
2658
2659 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2660 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2661 return -1;
2662 return 0;
2663 }
2664
2665 /*
2666 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2667 * tasks if there is an imbalance.
2668 *
2669 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2670 * this_rq is locked.
2671 */
2672 static int
2673 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2674 {
2675 struct sched_group *group;
2676 struct rq *busiest = NULL;
2677 unsigned long imbalance;
2678 int nr_moved = 0;
2679 int sd_idle = 0;
2680 cpumask_t cpus = CPU_MASK_ALL;
2681
2682 /*
2683 * When power savings policy is enabled for the parent domain, idle
2684 * sibling can pick up load irrespective of busy siblings. In this case,
2685 * let the state of idle sibling percolate up as IDLE, instead of
2686 * portraying it as CPU_NOT_IDLE.
2687 */
2688 if (sd->flags & SD_SHARE_CPUPOWER &&
2689 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2690 sd_idle = 1;
2691
2692 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2693 redo:
2694 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2695 &sd_idle, &cpus, NULL);
2696 if (!group) {
2697 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2698 goto out_balanced;
2699 }
2700
2701 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2702 &cpus);
2703 if (!busiest) {
2704 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2705 goto out_balanced;
2706 }
2707
2708 BUG_ON(busiest == this_rq);
2709
2710 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2711
2712 nr_moved = 0;
2713 if (busiest->nr_running > 1) {
2714 /* Attempt to move tasks */
2715 double_lock_balance(this_rq, busiest);
2716 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2717 minus_1_or_zero(busiest->nr_running),
2718 imbalance, sd, CPU_NEWLY_IDLE, NULL);
2719 spin_unlock(&busiest->lock);
2720
2721 if (!nr_moved) {
2722 cpu_clear(cpu_of(busiest), cpus);
2723 if (!cpus_empty(cpus))
2724 goto redo;
2725 }
2726 }
2727
2728 if (!nr_moved) {
2729 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2730 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2731 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2732 return -1;
2733 } else
2734 sd->nr_balance_failed = 0;
2735
2736 return nr_moved;
2737
2738 out_balanced:
2739 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2740 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2741 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2742 return -1;
2743 sd->nr_balance_failed = 0;
2744
2745 return 0;
2746 }
2747
2748 /*
2749 * idle_balance is called by schedule() if this_cpu is about to become
2750 * idle. Attempts to pull tasks from other CPUs.
2751 */
2752 static void idle_balance(int this_cpu, struct rq *this_rq)
2753 {
2754 struct sched_domain *sd;
2755 int pulled_task = -1;
2756 unsigned long next_balance = jiffies + HZ;
2757
2758 for_each_domain(this_cpu, sd) {
2759 unsigned long interval;
2760
2761 if (!(sd->flags & SD_LOAD_BALANCE))
2762 continue;
2763
2764 if (sd->flags & SD_BALANCE_NEWIDLE)
2765 /* If we've pulled tasks over stop searching: */
2766 pulled_task = load_balance_newidle(this_cpu,
2767 this_rq, sd);
2768
2769 interval = msecs_to_jiffies(sd->balance_interval);
2770 if (time_after(next_balance, sd->last_balance + interval))
2771 next_balance = sd->last_balance + interval;
2772 if (pulled_task)
2773 break;
2774 }
2775 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2776 /*
2777 * We are going idle. next_balance may be set based on
2778 * a busy processor. So reset next_balance.
2779 */
2780 this_rq->next_balance = next_balance;
2781 }
2782 }
2783
2784 /*
2785 * active_load_balance is run by migration threads. It pushes running tasks
2786 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2787 * running on each physical CPU where possible, and avoids physical /
2788 * logical imbalances.
2789 *
2790 * Called with busiest_rq locked.
2791 */
2792 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2793 {
2794 int target_cpu = busiest_rq->push_cpu;
2795 struct sched_domain *sd;
2796 struct rq *target_rq;
2797
2798 /* Is there any task to move? */
2799 if (busiest_rq->nr_running <= 1)
2800 return;
2801
2802 target_rq = cpu_rq(target_cpu);
2803
2804 /*
2805 * This condition is "impossible", if it occurs
2806 * we need to fix it. Originally reported by
2807 * Bjorn Helgaas on a 128-cpu setup.
2808 */
2809 BUG_ON(busiest_rq == target_rq);
2810
2811 /* move a task from busiest_rq to target_rq */
2812 double_lock_balance(busiest_rq, target_rq);
2813
2814 /* Search for an sd spanning us and the target CPU. */
2815 for_each_domain(target_cpu, sd) {
2816 if ((sd->flags & SD_LOAD_BALANCE) &&
2817 cpu_isset(busiest_cpu, sd->span))
2818 break;
2819 }
2820
2821 if (likely(sd)) {
2822 schedstat_inc(sd, alb_cnt);
2823
2824 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2825 RTPRIO_TO_LOAD_WEIGHT(100), sd, CPU_IDLE,
2826 NULL))
2827 schedstat_inc(sd, alb_pushed);
2828 else
2829 schedstat_inc(sd, alb_failed);
2830 }
2831 spin_unlock(&target_rq->lock);
2832 }
2833
2834 #ifdef CONFIG_NO_HZ
2835 static struct {
2836 atomic_t load_balancer;
2837 cpumask_t cpu_mask;
2838 } nohz ____cacheline_aligned = {
2839 .load_balancer = ATOMIC_INIT(-1),
2840 .cpu_mask = CPU_MASK_NONE,
2841 };
2842
2843 /*
2844 * This routine will try to nominate the ilb (idle load balancing)
2845 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2846 * load balancing on behalf of all those cpus. If all the cpus in the system
2847 * go into this tickless mode, then there will be no ilb owner (as there is
2848 * no need for one) and all the cpus will sleep till the next wakeup event
2849 * arrives...
2850 *
2851 * For the ilb owner, tick is not stopped. And this tick will be used
2852 * for idle load balancing. ilb owner will still be part of
2853 * nohz.cpu_mask..
2854 *
2855 * While stopping the tick, this cpu will become the ilb owner if there
2856 * is no other owner. And will be the owner till that cpu becomes busy
2857 * or if all cpus in the system stop their ticks at which point
2858 * there is no need for ilb owner.
2859 *
2860 * When the ilb owner becomes busy, it nominates another owner, during the
2861 * next busy scheduler_tick()
2862 */
2863 int select_nohz_load_balancer(int stop_tick)
2864 {
2865 int cpu = smp_processor_id();
2866
2867 if (stop_tick) {
2868 cpu_set(cpu, nohz.cpu_mask);
2869 cpu_rq(cpu)->in_nohz_recently = 1;
2870
2871 /*
2872 * If we are going offline and still the leader, give up!
2873 */
2874 if (cpu_is_offline(cpu) &&
2875 atomic_read(&nohz.load_balancer) == cpu) {
2876 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2877 BUG();
2878 return 0;
2879 }
2880
2881 /* time for ilb owner also to sleep */
2882 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2883 if (atomic_read(&nohz.load_balancer) == cpu)
2884 atomic_set(&nohz.load_balancer, -1);
2885 return 0;
2886 }
2887
2888 if (atomic_read(&nohz.load_balancer) == -1) {
2889 /* make me the ilb owner */
2890 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2891 return 1;
2892 } else if (atomic_read(&nohz.load_balancer) == cpu)
2893 return 1;
2894 } else {
2895 if (!cpu_isset(cpu, nohz.cpu_mask))
2896 return 0;
2897
2898 cpu_clear(cpu, nohz.cpu_mask);
2899
2900 if (atomic_read(&nohz.load_balancer) == cpu)
2901 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2902 BUG();
2903 }
2904 return 0;
2905 }
2906 #endif
2907
2908 static DEFINE_SPINLOCK(balancing);
2909
2910 /*
2911 * It checks each scheduling domain to see if it is due to be balanced,
2912 * and initiates a balancing operation if so.
2913 *
2914 * Balancing parameters are set up in arch_init_sched_domains.
2915 */
2916 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
2917 {
2918 int balance = 1;
2919 struct rq *rq = cpu_rq(cpu);
2920 unsigned long interval;
2921 struct sched_domain *sd;
2922 /* Earliest time when we have to do rebalance again */
2923 unsigned long next_balance = jiffies + 60*HZ;
2924
2925 for_each_domain(cpu, sd) {
2926 if (!(sd->flags & SD_LOAD_BALANCE))
2927 continue;
2928
2929 interval = sd->balance_interval;
2930 if (idle != CPU_IDLE)
2931 interval *= sd->busy_factor;
2932
2933 /* scale ms to jiffies */
2934 interval = msecs_to_jiffies(interval);
2935 if (unlikely(!interval))
2936 interval = 1;
2937 if (interval > HZ*NR_CPUS/10)
2938 interval = HZ*NR_CPUS/10;
2939
2940
2941 if (sd->flags & SD_SERIALIZE) {
2942 if (!spin_trylock(&balancing))
2943 goto out;
2944 }
2945
2946 if (time_after_eq(jiffies, sd->last_balance + interval)) {
2947 if (load_balance(cpu, rq, sd, idle, &balance)) {
2948 /*
2949 * We've pulled tasks over so either we're no
2950 * longer idle, or one of our SMT siblings is
2951 * not idle.
2952 */
2953 idle = CPU_NOT_IDLE;
2954 }
2955 sd->last_balance = jiffies;
2956 }
2957 if (sd->flags & SD_SERIALIZE)
2958 spin_unlock(&balancing);
2959 out:
2960 if (time_after(next_balance, sd->last_balance + interval))
2961 next_balance = sd->last_balance + interval;
2962
2963 /*
2964 * Stop the load balance at this level. There is another
2965 * CPU in our sched group which is doing load balancing more
2966 * actively.
2967 */
2968 if (!balance)
2969 break;
2970 }
2971 rq->next_balance = next_balance;
2972 }
2973
2974 /*
2975 * run_rebalance_domains is triggered when needed from the scheduler tick.
2976 * In CONFIG_NO_HZ case, the idle load balance owner will do the
2977 * rebalancing for all the cpus for whom scheduler ticks are stopped.
2978 */
2979 static void run_rebalance_domains(struct softirq_action *h)
2980 {
2981 int this_cpu = smp_processor_id();
2982 struct rq *this_rq = cpu_rq(this_cpu);
2983 enum cpu_idle_type idle = this_rq->idle_at_tick ?
2984 CPU_IDLE : CPU_NOT_IDLE;
2985
2986 rebalance_domains(this_cpu, idle);
2987
2988 #ifdef CONFIG_NO_HZ
2989 /*
2990 * If this cpu is the owner for idle load balancing, then do the
2991 * balancing on behalf of the other idle cpus whose ticks are
2992 * stopped.
2993 */
2994 if (this_rq->idle_at_tick &&
2995 atomic_read(&nohz.load_balancer) == this_cpu) {
2996 cpumask_t cpus = nohz.cpu_mask;
2997 struct rq *rq;
2998 int balance_cpu;
2999
3000 cpu_clear(this_cpu, cpus);
3001 for_each_cpu_mask(balance_cpu, cpus) {
3002 /*
3003 * If this cpu gets work to do, stop the load balancing
3004 * work being done for other cpus. Next load
3005 * balancing owner will pick it up.
3006 */
3007 if (need_resched())
3008 break;
3009
3010 rebalance_domains(balance_cpu, SCHED_IDLE);
3011
3012 rq = cpu_rq(balance_cpu);
3013 if (time_after(this_rq->next_balance, rq->next_balance))
3014 this_rq->next_balance = rq->next_balance;
3015 }
3016 }
3017 #endif
3018 }
3019
3020 /*
3021 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3022 *
3023 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3024 * idle load balancing owner or decide to stop the periodic load balancing,
3025 * if the whole system is idle.
3026 */
3027 static inline void trigger_load_balance(struct rq *rq, int cpu)
3028 {
3029 #ifdef CONFIG_NO_HZ
3030 /*
3031 * If we were in the nohz mode recently and busy at the current
3032 * scheduler tick, then check if we need to nominate new idle
3033 * load balancer.
3034 */
3035 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3036 rq->in_nohz_recently = 0;
3037
3038 if (atomic_read(&nohz.load_balancer) == cpu) {
3039 cpu_clear(cpu, nohz.cpu_mask);
3040 atomic_set(&nohz.load_balancer, -1);
3041 }
3042
3043 if (atomic_read(&nohz.load_balancer) == -1) {
3044 /*
3045 * simple selection for now: Nominate the
3046 * first cpu in the nohz list to be the next
3047 * ilb owner.
3048 *
3049 * TBD: Traverse the sched domains and nominate
3050 * the nearest cpu in the nohz.cpu_mask.
3051 */
3052 int ilb = first_cpu(nohz.cpu_mask);
3053
3054 if (ilb != NR_CPUS)
3055 resched_cpu(ilb);
3056 }
3057 }
3058
3059 /*
3060 * If this cpu is idle and doing idle load balancing for all the
3061 * cpus with ticks stopped, is it time for that to stop?
3062 */
3063 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3064 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3065 resched_cpu(cpu);
3066 return;
3067 }
3068
3069 /*
3070 * If this cpu is idle and the idle load balancing is done by
3071 * someone else, then no need raise the SCHED_SOFTIRQ
3072 */
3073 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3074 cpu_isset(cpu, nohz.cpu_mask))
3075 return;
3076 #endif
3077 if (time_after_eq(jiffies, rq->next_balance))
3078 raise_softirq(SCHED_SOFTIRQ);
3079 }
3080
3081 #else /* CONFIG_SMP */
3082
3083 /*
3084 * on UP we do not need to balance between CPUs:
3085 */
3086 static inline void idle_balance(int cpu, struct rq *rq)
3087 {
3088 }
3089
3090 /* Avoid "used but not defined" warning on UP */
3091 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3092 unsigned long max_nr_move, unsigned long max_load_move,
3093 struct sched_domain *sd, enum cpu_idle_type idle,
3094 int *all_pinned, unsigned long *load_moved,
3095 int this_best_prio, int best_prio, int best_prio_seen,
3096 struct rq_iterator *iterator)
3097 {
3098 *load_moved = 0;
3099
3100 return 0;
3101 }
3102
3103 #endif
3104
3105 DEFINE_PER_CPU(struct kernel_stat, kstat);
3106
3107 EXPORT_PER_CPU_SYMBOL(kstat);
3108
3109 /*
3110 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3111 * that have not yet been banked in case the task is currently running.
3112 */
3113 unsigned long long task_sched_runtime(struct task_struct *p)
3114 {
3115 unsigned long flags;
3116 u64 ns, delta_exec;
3117 struct rq *rq;
3118
3119 rq = task_rq_lock(p, &flags);
3120 ns = p->se.sum_exec_runtime;
3121 if (rq->curr == p) {
3122 delta_exec = rq_clock(rq) - p->se.exec_start;
3123 if ((s64)delta_exec > 0)
3124 ns += delta_exec;
3125 }
3126 task_rq_unlock(rq, &flags);
3127
3128 return ns;
3129 }
3130
3131 /*
3132 * Account user cpu time to a process.
3133 * @p: the process that the cpu time gets accounted to
3134 * @hardirq_offset: the offset to subtract from hardirq_count()
3135 * @cputime: the cpu time spent in user space since the last update
3136 */
3137 void account_user_time(struct task_struct *p, cputime_t cputime)
3138 {
3139 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3140 cputime64_t tmp;
3141
3142 p->utime = cputime_add(p->utime, cputime);
3143
3144 /* Add user time to cpustat. */
3145 tmp = cputime_to_cputime64(cputime);
3146 if (TASK_NICE(p) > 0)
3147 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3148 else
3149 cpustat->user = cputime64_add(cpustat->user, tmp);
3150 }
3151
3152 /*
3153 * Account system cpu time to a process.
3154 * @p: the process that the cpu time gets accounted to
3155 * @hardirq_offset: the offset to subtract from hardirq_count()
3156 * @cputime: the cpu time spent in kernel space since the last update
3157 */
3158 void account_system_time(struct task_struct *p, int hardirq_offset,
3159 cputime_t cputime)
3160 {
3161 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3162 struct rq *rq = this_rq();
3163 cputime64_t tmp;
3164
3165 p->stime = cputime_add(p->stime, cputime);
3166
3167 /* Add system time to cpustat. */
3168 tmp = cputime_to_cputime64(cputime);
3169 if (hardirq_count() - hardirq_offset)
3170 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3171 else if (softirq_count())
3172 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3173 else if (p != rq->idle)
3174 cpustat->system = cputime64_add(cpustat->system, tmp);
3175 else if (atomic_read(&rq->nr_iowait) > 0)
3176 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3177 else
3178 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3179 /* Account for system time used */
3180 acct_update_integrals(p);
3181 }
3182
3183 /*
3184 * Account for involuntary wait time.
3185 * @p: the process from which the cpu time has been stolen
3186 * @steal: the cpu time spent in involuntary wait
3187 */
3188 void account_steal_time(struct task_struct *p, cputime_t steal)
3189 {
3190 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3191 cputime64_t tmp = cputime_to_cputime64(steal);
3192 struct rq *rq = this_rq();
3193
3194 if (p == rq->idle) {
3195 p->stime = cputime_add(p->stime, steal);
3196 if (atomic_read(&rq->nr_iowait) > 0)
3197 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3198 else
3199 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3200 } else
3201 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3202 }
3203
3204 /*
3205 * This function gets called by the timer code, with HZ frequency.
3206 * We call it with interrupts disabled.
3207 *
3208 * It also gets called by the fork code, when changing the parent's
3209 * timeslices.
3210 */
3211 void scheduler_tick(void)
3212 {
3213 int cpu = smp_processor_id();
3214 struct rq *rq = cpu_rq(cpu);
3215 struct task_struct *curr = rq->curr;
3216
3217 spin_lock(&rq->lock);
3218 if (curr != rq->idle) /* FIXME: needed? */
3219 curr->sched_class->task_tick(rq, curr);
3220 update_cpu_load(rq);
3221 spin_unlock(&rq->lock);
3222
3223 #ifdef CONFIG_SMP
3224 rq->idle_at_tick = idle_cpu(cpu);
3225 trigger_load_balance(rq, cpu);
3226 #endif
3227 }
3228
3229 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3230
3231 void fastcall add_preempt_count(int val)
3232 {
3233 /*
3234 * Underflow?
3235 */
3236 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3237 return;
3238 preempt_count() += val;
3239 /*
3240 * Spinlock count overflowing soon?
3241 */
3242 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3243 PREEMPT_MASK - 10);
3244 }
3245 EXPORT_SYMBOL(add_preempt_count);
3246
3247 void fastcall sub_preempt_count(int val)
3248 {
3249 /*
3250 * Underflow?
3251 */
3252 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3253 return;
3254 /*
3255 * Is the spinlock portion underflowing?
3256 */
3257 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3258 !(preempt_count() & PREEMPT_MASK)))
3259 return;
3260
3261 preempt_count() -= val;
3262 }
3263 EXPORT_SYMBOL(sub_preempt_count);
3264
3265 #endif
3266
3267 /*
3268 * Print scheduling while atomic bug:
3269 */
3270 static noinline void __schedule_bug(struct task_struct *prev)
3271 {
3272 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3273 prev->comm, preempt_count(), prev->pid);
3274 debug_show_held_locks(prev);
3275 if (irqs_disabled())
3276 print_irqtrace_events(prev);
3277 dump_stack();
3278 }
3279
3280 /*
3281 * Various schedule()-time debugging checks and statistics:
3282 */
3283 static inline void schedule_debug(struct task_struct *prev)
3284 {
3285 /*
3286 * Test if we are atomic. Since do_exit() needs to call into
3287 * schedule() atomically, we ignore that path for now.
3288 * Otherwise, whine if we are scheduling when we should not be.
3289 */
3290 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3291 __schedule_bug(prev);
3292
3293 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3294
3295 schedstat_inc(this_rq(), sched_cnt);
3296 }
3297
3298 /*
3299 * Pick up the highest-prio task:
3300 */
3301 static inline struct task_struct *
3302 pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3303 {
3304 struct sched_class *class;
3305 struct task_struct *p;
3306
3307 /*
3308 * Optimization: we know that if all tasks are in
3309 * the fair class we can call that function directly:
3310 */
3311 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3312 p = fair_sched_class.pick_next_task(rq, now);
3313 if (likely(p))
3314 return p;
3315 }
3316
3317 class = sched_class_highest;
3318 for ( ; ; ) {
3319 p = class->pick_next_task(rq, now);
3320 if (p)
3321 return p;
3322 /*
3323 * Will never be NULL as the idle class always
3324 * returns a non-NULL p:
3325 */
3326 class = class->next;
3327 }
3328 }
3329
3330 /*
3331 * schedule() is the main scheduler function.
3332 */
3333 asmlinkage void __sched schedule(void)
3334 {
3335 struct task_struct *prev, *next;
3336 long *switch_count;
3337 struct rq *rq;
3338 u64 now;
3339 int cpu;
3340
3341 need_resched:
3342 preempt_disable();
3343 cpu = smp_processor_id();
3344 rq = cpu_rq(cpu);
3345 rcu_qsctr_inc(cpu);
3346 prev = rq->curr;
3347 switch_count = &prev->nivcsw;
3348
3349 release_kernel_lock(prev);
3350 need_resched_nonpreemptible:
3351
3352 schedule_debug(prev);
3353
3354 spin_lock_irq(&rq->lock);
3355 clear_tsk_need_resched(prev);
3356
3357 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3358 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3359 unlikely(signal_pending(prev)))) {
3360 prev->state = TASK_RUNNING;
3361 } else {
3362 deactivate_task(rq, prev, 1);
3363 }
3364 switch_count = &prev->nvcsw;
3365 }
3366
3367 if (unlikely(!rq->nr_running))
3368 idle_balance(cpu, rq);
3369
3370 now = __rq_clock(rq);
3371 prev->sched_class->put_prev_task(rq, prev, now);
3372 next = pick_next_task(rq, prev, now);
3373
3374 sched_info_switch(prev, next);
3375
3376 if (likely(prev != next)) {
3377 rq->nr_switches++;
3378 rq->curr = next;
3379 ++*switch_count;
3380
3381 context_switch(rq, prev, next); /* unlocks the rq */
3382 } else
3383 spin_unlock_irq(&rq->lock);
3384
3385 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3386 cpu = smp_processor_id();
3387 rq = cpu_rq(cpu);
3388 goto need_resched_nonpreemptible;
3389 }
3390 preempt_enable_no_resched();
3391 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3392 goto need_resched;
3393 }
3394 EXPORT_SYMBOL(schedule);
3395
3396 #ifdef CONFIG_PREEMPT
3397 /*
3398 * this is the entry point to schedule() from in-kernel preemption
3399 * off of preempt_enable. Kernel preemptions off return from interrupt
3400 * occur there and call schedule directly.
3401 */
3402 asmlinkage void __sched preempt_schedule(void)
3403 {
3404 struct thread_info *ti = current_thread_info();
3405 #ifdef CONFIG_PREEMPT_BKL
3406 struct task_struct *task = current;
3407 int saved_lock_depth;
3408 #endif
3409 /*
3410 * If there is a non-zero preempt_count or interrupts are disabled,
3411 * we do not want to preempt the current task. Just return..
3412 */
3413 if (likely(ti->preempt_count || irqs_disabled()))
3414 return;
3415
3416 need_resched:
3417 add_preempt_count(PREEMPT_ACTIVE);
3418 /*
3419 * We keep the big kernel semaphore locked, but we
3420 * clear ->lock_depth so that schedule() doesnt
3421 * auto-release the semaphore:
3422 */
3423 #ifdef CONFIG_PREEMPT_BKL
3424 saved_lock_depth = task->lock_depth;
3425 task->lock_depth = -1;
3426 #endif
3427 schedule();
3428 #ifdef CONFIG_PREEMPT_BKL
3429 task->lock_depth = saved_lock_depth;
3430 #endif
3431 sub_preempt_count(PREEMPT_ACTIVE);
3432
3433 /* we could miss a preemption opportunity between schedule and now */
3434 barrier();
3435 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3436 goto need_resched;
3437 }
3438 EXPORT_SYMBOL(preempt_schedule);
3439
3440 /*
3441 * this is the entry point to schedule() from kernel preemption
3442 * off of irq context.
3443 * Note, that this is called and return with irqs disabled. This will
3444 * protect us against recursive calling from irq.
3445 */
3446 asmlinkage void __sched preempt_schedule_irq(void)
3447 {
3448 struct thread_info *ti = current_thread_info();
3449 #ifdef CONFIG_PREEMPT_BKL
3450 struct task_struct *task = current;
3451 int saved_lock_depth;
3452 #endif
3453 /* Catch callers which need to be fixed */
3454 BUG_ON(ti->preempt_count || !irqs_disabled());
3455
3456 need_resched:
3457 add_preempt_count(PREEMPT_ACTIVE);
3458 /*
3459 * We keep the big kernel semaphore locked, but we
3460 * clear ->lock_depth so that schedule() doesnt
3461 * auto-release the semaphore:
3462 */
3463 #ifdef CONFIG_PREEMPT_BKL
3464 saved_lock_depth = task->lock_depth;
3465 task->lock_depth = -1;
3466 #endif
3467 local_irq_enable();
3468 schedule();
3469 local_irq_disable();
3470 #ifdef CONFIG_PREEMPT_BKL
3471 task->lock_depth = saved_lock_depth;
3472 #endif
3473 sub_preempt_count(PREEMPT_ACTIVE);
3474
3475 /* we could miss a preemption opportunity between schedule and now */
3476 barrier();
3477 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3478 goto need_resched;
3479 }
3480
3481 #endif /* CONFIG_PREEMPT */
3482
3483 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3484 void *key)
3485 {
3486 return try_to_wake_up(curr->private, mode, sync);
3487 }
3488 EXPORT_SYMBOL(default_wake_function);
3489
3490 /*
3491 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3492 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3493 * number) then we wake all the non-exclusive tasks and one exclusive task.
3494 *
3495 * There are circumstances in which we can try to wake a task which has already
3496 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3497 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3498 */
3499 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3500 int nr_exclusive, int sync, void *key)
3501 {
3502 struct list_head *tmp, *next;
3503
3504 list_for_each_safe(tmp, next, &q->task_list) {
3505 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3506 unsigned flags = curr->flags;
3507
3508 if (curr->func(curr, mode, sync, key) &&
3509 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3510 break;
3511 }
3512 }
3513
3514 /**
3515 * __wake_up - wake up threads blocked on a waitqueue.
3516 * @q: the waitqueue
3517 * @mode: which threads
3518 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3519 * @key: is directly passed to the wakeup function
3520 */
3521 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3522 int nr_exclusive, void *key)
3523 {
3524 unsigned long flags;
3525
3526 spin_lock_irqsave(&q->lock, flags);
3527 __wake_up_common(q, mode, nr_exclusive, 0, key);
3528 spin_unlock_irqrestore(&q->lock, flags);
3529 }
3530 EXPORT_SYMBOL(__wake_up);
3531
3532 /*
3533 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3534 */
3535 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3536 {
3537 __wake_up_common(q, mode, 1, 0, NULL);
3538 }
3539
3540 /**
3541 * __wake_up_sync - wake up threads blocked on a waitqueue.
3542 * @q: the waitqueue
3543 * @mode: which threads
3544 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3545 *
3546 * The sync wakeup differs that the waker knows that it will schedule
3547 * away soon, so while the target thread will be woken up, it will not
3548 * be migrated to another CPU - ie. the two threads are 'synchronized'
3549 * with each other. This can prevent needless bouncing between CPUs.
3550 *
3551 * On UP it can prevent extra preemption.
3552 */
3553 void fastcall
3554 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3555 {
3556 unsigned long flags;
3557 int sync = 1;
3558
3559 if (unlikely(!q))
3560 return;
3561
3562 if (unlikely(!nr_exclusive))
3563 sync = 0;
3564
3565 spin_lock_irqsave(&q->lock, flags);
3566 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3567 spin_unlock_irqrestore(&q->lock, flags);
3568 }
3569 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3570
3571 void fastcall complete(struct completion *x)
3572 {
3573 unsigned long flags;
3574
3575 spin_lock_irqsave(&x->wait.lock, flags);
3576 x->done++;
3577 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3578 1, 0, NULL);
3579 spin_unlock_irqrestore(&x->wait.lock, flags);
3580 }
3581 EXPORT_SYMBOL(complete);
3582
3583 void fastcall complete_all(struct completion *x)
3584 {
3585 unsigned long flags;
3586
3587 spin_lock_irqsave(&x->wait.lock, flags);
3588 x->done += UINT_MAX/2;
3589 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3590 0, 0, NULL);
3591 spin_unlock_irqrestore(&x->wait.lock, flags);
3592 }
3593 EXPORT_SYMBOL(complete_all);
3594
3595 void fastcall __sched wait_for_completion(struct completion *x)
3596 {
3597 might_sleep();
3598
3599 spin_lock_irq(&x->wait.lock);
3600 if (!x->done) {
3601 DECLARE_WAITQUEUE(wait, current);
3602
3603 wait.flags |= WQ_FLAG_EXCLUSIVE;
3604 __add_wait_queue_tail(&x->wait, &wait);
3605 do {
3606 __set_current_state(TASK_UNINTERRUPTIBLE);
3607 spin_unlock_irq(&x->wait.lock);
3608 schedule();
3609 spin_lock_irq(&x->wait.lock);
3610 } while (!x->done);
3611 __remove_wait_queue(&x->wait, &wait);
3612 }
3613 x->done--;
3614 spin_unlock_irq(&x->wait.lock);
3615 }
3616 EXPORT_SYMBOL(wait_for_completion);
3617
3618 unsigned long fastcall __sched
3619 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3620 {
3621 might_sleep();
3622
3623 spin_lock_irq(&x->wait.lock);
3624 if (!x->done) {
3625 DECLARE_WAITQUEUE(wait, current);
3626
3627 wait.flags |= WQ_FLAG_EXCLUSIVE;
3628 __add_wait_queue_tail(&x->wait, &wait);
3629 do {
3630 __set_current_state(TASK_UNINTERRUPTIBLE);
3631 spin_unlock_irq(&x->wait.lock);
3632 timeout = schedule_timeout(timeout);
3633 spin_lock_irq(&x->wait.lock);
3634 if (!timeout) {
3635 __remove_wait_queue(&x->wait, &wait);
3636 goto out;
3637 }
3638 } while (!x->done);
3639 __remove_wait_queue(&x->wait, &wait);
3640 }
3641 x->done--;
3642 out:
3643 spin_unlock_irq(&x->wait.lock);
3644 return timeout;
3645 }
3646 EXPORT_SYMBOL(wait_for_completion_timeout);
3647
3648 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3649 {
3650 int ret = 0;
3651
3652 might_sleep();
3653
3654 spin_lock_irq(&x->wait.lock);
3655 if (!x->done) {
3656 DECLARE_WAITQUEUE(wait, current);
3657
3658 wait.flags |= WQ_FLAG_EXCLUSIVE;
3659 __add_wait_queue_tail(&x->wait, &wait);
3660 do {
3661 if (signal_pending(current)) {
3662 ret = -ERESTARTSYS;
3663 __remove_wait_queue(&x->wait, &wait);
3664 goto out;
3665 }
3666 __set_current_state(TASK_INTERRUPTIBLE);
3667 spin_unlock_irq(&x->wait.lock);
3668 schedule();
3669 spin_lock_irq(&x->wait.lock);
3670 } while (!x->done);
3671 __remove_wait_queue(&x->wait, &wait);
3672 }
3673 x->done--;
3674 out:
3675 spin_unlock_irq(&x->wait.lock);
3676
3677 return ret;
3678 }
3679 EXPORT_SYMBOL(wait_for_completion_interruptible);
3680
3681 unsigned long fastcall __sched
3682 wait_for_completion_interruptible_timeout(struct completion *x,
3683 unsigned long timeout)
3684 {
3685 might_sleep();
3686
3687 spin_lock_irq(&x->wait.lock);
3688 if (!x->done) {
3689 DECLARE_WAITQUEUE(wait, current);
3690
3691 wait.flags |= WQ_FLAG_EXCLUSIVE;
3692 __add_wait_queue_tail(&x->wait, &wait);
3693 do {
3694 if (signal_pending(current)) {
3695 timeout = -ERESTARTSYS;
3696 __remove_wait_queue(&x->wait, &wait);
3697 goto out;
3698 }
3699 __set_current_state(TASK_INTERRUPTIBLE);
3700 spin_unlock_irq(&x->wait.lock);
3701 timeout = schedule_timeout(timeout);
3702 spin_lock_irq(&x->wait.lock);
3703 if (!timeout) {
3704 __remove_wait_queue(&x->wait, &wait);
3705 goto out;
3706 }
3707 } while (!x->done);
3708 __remove_wait_queue(&x->wait, &wait);
3709 }
3710 x->done--;
3711 out:
3712 spin_unlock_irq(&x->wait.lock);
3713 return timeout;
3714 }
3715 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3716
3717 static inline void
3718 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3719 {
3720 spin_lock_irqsave(&q->lock, *flags);
3721 __add_wait_queue(q, wait);
3722 spin_unlock(&q->lock);
3723 }
3724
3725 static inline void
3726 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3727 {
3728 spin_lock_irq(&q->lock);
3729 __remove_wait_queue(q, wait);
3730 spin_unlock_irqrestore(&q->lock, *flags);
3731 }
3732
3733 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3734 {
3735 unsigned long flags;
3736 wait_queue_t wait;
3737
3738 init_waitqueue_entry(&wait, current);
3739
3740 current->state = TASK_INTERRUPTIBLE;
3741
3742 sleep_on_head(q, &wait, &flags);
3743 schedule();
3744 sleep_on_tail(q, &wait, &flags);
3745 }
3746 EXPORT_SYMBOL(interruptible_sleep_on);
3747
3748 long __sched
3749 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3750 {
3751 unsigned long flags;
3752 wait_queue_t wait;
3753
3754 init_waitqueue_entry(&wait, current);
3755
3756 current->state = TASK_INTERRUPTIBLE;
3757
3758 sleep_on_head(q, &wait, &flags);
3759 timeout = schedule_timeout(timeout);
3760 sleep_on_tail(q, &wait, &flags);
3761
3762 return timeout;
3763 }
3764 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3765
3766 void __sched sleep_on(wait_queue_head_t *q)
3767 {
3768 unsigned long flags;
3769 wait_queue_t wait;
3770
3771 init_waitqueue_entry(&wait, current);
3772
3773 current->state = TASK_UNINTERRUPTIBLE;
3774
3775 sleep_on_head(q, &wait, &flags);
3776 schedule();
3777 sleep_on_tail(q, &wait, &flags);
3778 }
3779 EXPORT_SYMBOL(sleep_on);
3780
3781 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3782 {
3783 unsigned long flags;
3784 wait_queue_t wait;
3785
3786 init_waitqueue_entry(&wait, current);
3787
3788 current->state = TASK_UNINTERRUPTIBLE;
3789
3790 sleep_on_head(q, &wait, &flags);
3791 timeout = schedule_timeout(timeout);
3792 sleep_on_tail(q, &wait, &flags);
3793
3794 return timeout;
3795 }
3796 EXPORT_SYMBOL(sleep_on_timeout);
3797
3798 #ifdef CONFIG_RT_MUTEXES
3799
3800 /*
3801 * rt_mutex_setprio - set the current priority of a task
3802 * @p: task
3803 * @prio: prio value (kernel-internal form)
3804 *
3805 * This function changes the 'effective' priority of a task. It does
3806 * not touch ->normal_prio like __setscheduler().
3807 *
3808 * Used by the rt_mutex code to implement priority inheritance logic.
3809 */
3810 void rt_mutex_setprio(struct task_struct *p, int prio)
3811 {
3812 unsigned long flags;
3813 int oldprio, on_rq;
3814 struct rq *rq;
3815 u64 now;
3816
3817 BUG_ON(prio < 0 || prio > MAX_PRIO);
3818
3819 rq = task_rq_lock(p, &flags);
3820 now = rq_clock(rq);
3821
3822 oldprio = p->prio;
3823 on_rq = p->se.on_rq;
3824 if (on_rq)
3825 dequeue_task(rq, p, 0, now);
3826
3827 if (rt_prio(prio))
3828 p->sched_class = &rt_sched_class;
3829 else
3830 p->sched_class = &fair_sched_class;
3831
3832 p->prio = prio;
3833
3834 if (on_rq) {
3835 enqueue_task(rq, p, 0, now);
3836 /*
3837 * Reschedule if we are currently running on this runqueue and
3838 * our priority decreased, or if we are not currently running on
3839 * this runqueue and our priority is higher than the current's
3840 */
3841 if (task_running(rq, p)) {
3842 if (p->prio > oldprio)
3843 resched_task(rq->curr);
3844 } else {
3845 check_preempt_curr(rq, p);
3846 }
3847 }
3848 task_rq_unlock(rq, &flags);
3849 }
3850
3851 #endif
3852
3853 void set_user_nice(struct task_struct *p, long nice)
3854 {
3855 int old_prio, delta, on_rq;
3856 unsigned long flags;
3857 struct rq *rq;
3858 u64 now;
3859
3860 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3861 return;
3862 /*
3863 * We have to be careful, if called from sys_setpriority(),
3864 * the task might be in the middle of scheduling on another CPU.
3865 */
3866 rq = task_rq_lock(p, &flags);
3867 now = rq_clock(rq);
3868 /*
3869 * The RT priorities are set via sched_setscheduler(), but we still
3870 * allow the 'normal' nice value to be set - but as expected
3871 * it wont have any effect on scheduling until the task is
3872 * SCHED_FIFO/SCHED_RR:
3873 */
3874 if (task_has_rt_policy(p)) {
3875 p->static_prio = NICE_TO_PRIO(nice);
3876 goto out_unlock;
3877 }
3878 on_rq = p->se.on_rq;
3879 if (on_rq) {
3880 dequeue_task(rq, p, 0, now);
3881 dec_load(rq, p, now);
3882 }
3883
3884 p->static_prio = NICE_TO_PRIO(nice);
3885 set_load_weight(p);
3886 old_prio = p->prio;
3887 p->prio = effective_prio(p);
3888 delta = p->prio - old_prio;
3889
3890 if (on_rq) {
3891 enqueue_task(rq, p, 0, now);
3892 inc_load(rq, p, now);
3893 /*
3894 * If the task increased its priority or is running and
3895 * lowered its priority, then reschedule its CPU:
3896 */
3897 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3898 resched_task(rq->curr);
3899 }
3900 out_unlock:
3901 task_rq_unlock(rq, &flags);
3902 }
3903 EXPORT_SYMBOL(set_user_nice);
3904
3905 /*
3906 * can_nice - check if a task can reduce its nice value
3907 * @p: task
3908 * @nice: nice value
3909 */
3910 int can_nice(const struct task_struct *p, const int nice)
3911 {
3912 /* convert nice value [19,-20] to rlimit style value [1,40] */
3913 int nice_rlim = 20 - nice;
3914
3915 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3916 capable(CAP_SYS_NICE));
3917 }
3918
3919 #ifdef __ARCH_WANT_SYS_NICE
3920
3921 /*
3922 * sys_nice - change the priority of the current process.
3923 * @increment: priority increment
3924 *
3925 * sys_setpriority is a more generic, but much slower function that
3926 * does similar things.
3927 */
3928 asmlinkage long sys_nice(int increment)
3929 {
3930 long nice, retval;
3931
3932 /*
3933 * Setpriority might change our priority at the same moment.
3934 * We don't have to worry. Conceptually one call occurs first
3935 * and we have a single winner.
3936 */
3937 if (increment < -40)
3938 increment = -40;
3939 if (increment > 40)
3940 increment = 40;
3941
3942 nice = PRIO_TO_NICE(current->static_prio) + increment;
3943 if (nice < -20)
3944 nice = -20;
3945 if (nice > 19)
3946 nice = 19;
3947
3948 if (increment < 0 && !can_nice(current, nice))
3949 return -EPERM;
3950
3951 retval = security_task_setnice(current, nice);
3952 if (retval)
3953 return retval;
3954
3955 set_user_nice(current, nice);
3956 return 0;
3957 }
3958
3959 #endif
3960
3961 /**
3962 * task_prio - return the priority value of a given task.
3963 * @p: the task in question.
3964 *
3965 * This is the priority value as seen by users in /proc.
3966 * RT tasks are offset by -200. Normal tasks are centered
3967 * around 0, value goes from -16 to +15.
3968 */
3969 int task_prio(const struct task_struct *p)
3970 {
3971 return p->prio - MAX_RT_PRIO;
3972 }
3973
3974 /**
3975 * task_nice - return the nice value of a given task.
3976 * @p: the task in question.
3977 */
3978 int task_nice(const struct task_struct *p)
3979 {
3980 return TASK_NICE(p);
3981 }
3982 EXPORT_SYMBOL_GPL(task_nice);
3983
3984 /**
3985 * idle_cpu - is a given cpu idle currently?
3986 * @cpu: the processor in question.
3987 */
3988 int idle_cpu(int cpu)
3989 {
3990 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3991 }
3992
3993 /**
3994 * idle_task - return the idle task for a given cpu.
3995 * @cpu: the processor in question.
3996 */
3997 struct task_struct *idle_task(int cpu)
3998 {
3999 return cpu_rq(cpu)->idle;
4000 }
4001
4002 /**
4003 * find_process_by_pid - find a process with a matching PID value.
4004 * @pid: the pid in question.
4005 */
4006 static inline struct task_struct *find_process_by_pid(pid_t pid)
4007 {
4008 return pid ? find_task_by_pid(pid) : current;
4009 }
4010
4011 /* Actually do priority change: must hold rq lock. */
4012 static void
4013 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4014 {
4015 BUG_ON(p->se.on_rq);
4016
4017 p->policy = policy;
4018 switch (p->policy) {
4019 case SCHED_NORMAL:
4020 case SCHED_BATCH:
4021 case SCHED_IDLE:
4022 p->sched_class = &fair_sched_class;
4023 break;
4024 case SCHED_FIFO:
4025 case SCHED_RR:
4026 p->sched_class = &rt_sched_class;
4027 break;
4028 }
4029
4030 p->rt_priority = prio;
4031 p->normal_prio = normal_prio(p);
4032 /* we are holding p->pi_lock already */
4033 p->prio = rt_mutex_getprio(p);
4034 set_load_weight(p);
4035 }
4036
4037 /**
4038 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4039 * @p: the task in question.
4040 * @policy: new policy.
4041 * @param: structure containing the new RT priority.
4042 *
4043 * NOTE that the task may be already dead.
4044 */
4045 int sched_setscheduler(struct task_struct *p, int policy,
4046 struct sched_param *param)
4047 {
4048 int retval, oldprio, oldpolicy = -1, on_rq;
4049 unsigned long flags;
4050 struct rq *rq;
4051
4052 /* may grab non-irq protected spin_locks */
4053 BUG_ON(in_interrupt());
4054 recheck:
4055 /* double check policy once rq lock held */
4056 if (policy < 0)
4057 policy = oldpolicy = p->policy;
4058 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4059 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4060 policy != SCHED_IDLE)
4061 return -EINVAL;
4062 /*
4063 * Valid priorities for SCHED_FIFO and SCHED_RR are
4064 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4065 * SCHED_BATCH and SCHED_IDLE is 0.
4066 */
4067 if (param->sched_priority < 0 ||
4068 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4069 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4070 return -EINVAL;
4071 if (rt_policy(policy) != (param->sched_priority != 0))
4072 return -EINVAL;
4073
4074 /*
4075 * Allow unprivileged RT tasks to decrease priority:
4076 */
4077 if (!capable(CAP_SYS_NICE)) {
4078 if (rt_policy(policy)) {
4079 unsigned long rlim_rtprio;
4080
4081 if (!lock_task_sighand(p, &flags))
4082 return -ESRCH;
4083 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4084 unlock_task_sighand(p, &flags);
4085
4086 /* can't set/change the rt policy */
4087 if (policy != p->policy && !rlim_rtprio)
4088 return -EPERM;
4089
4090 /* can't increase priority */
4091 if (param->sched_priority > p->rt_priority &&
4092 param->sched_priority > rlim_rtprio)
4093 return -EPERM;
4094 }
4095 /*
4096 * Like positive nice levels, dont allow tasks to
4097 * move out of SCHED_IDLE either:
4098 */
4099 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4100 return -EPERM;
4101
4102 /* can't change other user's priorities */
4103 if ((current->euid != p->euid) &&
4104 (current->euid != p->uid))
4105 return -EPERM;
4106 }
4107
4108 retval = security_task_setscheduler(p, policy, param);
4109 if (retval)
4110 return retval;
4111 /*
4112 * make sure no PI-waiters arrive (or leave) while we are
4113 * changing the priority of the task:
4114 */
4115 spin_lock_irqsave(&p->pi_lock, flags);
4116 /*
4117 * To be able to change p->policy safely, the apropriate
4118 * runqueue lock must be held.
4119 */
4120 rq = __task_rq_lock(p);
4121 /* recheck policy now with rq lock held */
4122 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4123 policy = oldpolicy = -1;
4124 __task_rq_unlock(rq);
4125 spin_unlock_irqrestore(&p->pi_lock, flags);
4126 goto recheck;
4127 }
4128 on_rq = p->se.on_rq;
4129 if (on_rq)
4130 deactivate_task(rq, p, 0);
4131 oldprio = p->prio;
4132 __setscheduler(rq, p, policy, param->sched_priority);
4133 if (on_rq) {
4134 activate_task(rq, p, 0);
4135 /*
4136 * Reschedule if we are currently running on this runqueue and
4137 * our priority decreased, or if we are not currently running on
4138 * this runqueue and our priority is higher than the current's
4139 */
4140 if (task_running(rq, p)) {
4141 if (p->prio > oldprio)
4142 resched_task(rq->curr);
4143 } else {
4144 check_preempt_curr(rq, p);
4145 }
4146 }
4147 __task_rq_unlock(rq);
4148 spin_unlock_irqrestore(&p->pi_lock, flags);
4149
4150 rt_mutex_adjust_pi(p);
4151
4152 return 0;
4153 }
4154 EXPORT_SYMBOL_GPL(sched_setscheduler);
4155
4156 static int
4157 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4158 {
4159 struct sched_param lparam;
4160 struct task_struct *p;
4161 int retval;
4162
4163 if (!param || pid < 0)
4164 return -EINVAL;
4165 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4166 return -EFAULT;
4167
4168 rcu_read_lock();
4169 retval = -ESRCH;
4170 p = find_process_by_pid(pid);
4171 if (p != NULL)
4172 retval = sched_setscheduler(p, policy, &lparam);
4173 rcu_read_unlock();
4174
4175 return retval;
4176 }
4177
4178 /**
4179 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4180 * @pid: the pid in question.
4181 * @policy: new policy.
4182 * @param: structure containing the new RT priority.
4183 */
4184 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4185 struct sched_param __user *param)
4186 {
4187 /* negative values for policy are not valid */
4188 if (policy < 0)
4189 return -EINVAL;
4190
4191 return do_sched_setscheduler(pid, policy, param);
4192 }
4193
4194 /**
4195 * sys_sched_setparam - set/change the RT priority of a thread
4196 * @pid: the pid in question.
4197 * @param: structure containing the new RT priority.
4198 */
4199 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4200 {
4201 return do_sched_setscheduler(pid, -1, param);
4202 }
4203
4204 /**
4205 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4206 * @pid: the pid in question.
4207 */
4208 asmlinkage long sys_sched_getscheduler(pid_t pid)
4209 {
4210 struct task_struct *p;
4211 int retval = -EINVAL;
4212
4213 if (pid < 0)
4214 goto out_nounlock;
4215
4216 retval = -ESRCH;
4217 read_lock(&tasklist_lock);
4218 p = find_process_by_pid(pid);
4219 if (p) {
4220 retval = security_task_getscheduler(p);
4221 if (!retval)
4222 retval = p->policy;
4223 }
4224 read_unlock(&tasklist_lock);
4225
4226 out_nounlock:
4227 return retval;
4228 }
4229
4230 /**
4231 * sys_sched_getscheduler - get the RT priority of a thread
4232 * @pid: the pid in question.
4233 * @param: structure containing the RT priority.
4234 */
4235 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4236 {
4237 struct sched_param lp;
4238 struct task_struct *p;
4239 int retval = -EINVAL;
4240
4241 if (!param || pid < 0)
4242 goto out_nounlock;
4243
4244 read_lock(&tasklist_lock);
4245 p = find_process_by_pid(pid);
4246 retval = -ESRCH;
4247 if (!p)
4248 goto out_unlock;
4249
4250 retval = security_task_getscheduler(p);
4251 if (retval)
4252 goto out_unlock;
4253
4254 lp.sched_priority = p->rt_priority;
4255 read_unlock(&tasklist_lock);
4256
4257 /*
4258 * This one might sleep, we cannot do it with a spinlock held ...
4259 */
4260 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4261
4262 out_nounlock:
4263 return retval;
4264
4265 out_unlock:
4266 read_unlock(&tasklist_lock);
4267 return retval;
4268 }
4269
4270 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4271 {
4272 cpumask_t cpus_allowed;
4273 struct task_struct *p;
4274 int retval;
4275
4276 mutex_lock(&sched_hotcpu_mutex);
4277 read_lock(&tasklist_lock);
4278
4279 p = find_process_by_pid(pid);
4280 if (!p) {
4281 read_unlock(&tasklist_lock);
4282 mutex_unlock(&sched_hotcpu_mutex);
4283 return -ESRCH;
4284 }
4285
4286 /*
4287 * It is not safe to call set_cpus_allowed with the
4288 * tasklist_lock held. We will bump the task_struct's
4289 * usage count and then drop tasklist_lock.
4290 */
4291 get_task_struct(p);
4292 read_unlock(&tasklist_lock);
4293
4294 retval = -EPERM;
4295 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4296 !capable(CAP_SYS_NICE))
4297 goto out_unlock;
4298
4299 retval = security_task_setscheduler(p, 0, NULL);
4300 if (retval)
4301 goto out_unlock;
4302
4303 cpus_allowed = cpuset_cpus_allowed(p);
4304 cpus_and(new_mask, new_mask, cpus_allowed);
4305 retval = set_cpus_allowed(p, new_mask);
4306
4307 out_unlock:
4308 put_task_struct(p);
4309 mutex_unlock(&sched_hotcpu_mutex);
4310 return retval;
4311 }
4312
4313 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4314 cpumask_t *new_mask)
4315 {
4316 if (len < sizeof(cpumask_t)) {
4317 memset(new_mask, 0, sizeof(cpumask_t));
4318 } else if (len > sizeof(cpumask_t)) {
4319 len = sizeof(cpumask_t);
4320 }
4321 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4322 }
4323
4324 /**
4325 * sys_sched_setaffinity - set the cpu affinity of a process
4326 * @pid: pid of the process
4327 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4328 * @user_mask_ptr: user-space pointer to the new cpu mask
4329 */
4330 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4331 unsigned long __user *user_mask_ptr)
4332 {
4333 cpumask_t new_mask;
4334 int retval;
4335
4336 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4337 if (retval)
4338 return retval;
4339
4340 return sched_setaffinity(pid, new_mask);
4341 }
4342
4343 /*
4344 * Represents all cpu's present in the system
4345 * In systems capable of hotplug, this map could dynamically grow
4346 * as new cpu's are detected in the system via any platform specific
4347 * method, such as ACPI for e.g.
4348 */
4349
4350 cpumask_t cpu_present_map __read_mostly;
4351 EXPORT_SYMBOL(cpu_present_map);
4352
4353 #ifndef CONFIG_SMP
4354 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4355 EXPORT_SYMBOL(cpu_online_map);
4356
4357 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4358 EXPORT_SYMBOL(cpu_possible_map);
4359 #endif
4360
4361 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4362 {
4363 struct task_struct *p;
4364 int retval;
4365
4366 mutex_lock(&sched_hotcpu_mutex);
4367 read_lock(&tasklist_lock);
4368
4369 retval = -ESRCH;
4370 p = find_process_by_pid(pid);
4371 if (!p)
4372 goto out_unlock;
4373
4374 retval = security_task_getscheduler(p);
4375 if (retval)
4376 goto out_unlock;
4377
4378 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4379
4380 out_unlock:
4381 read_unlock(&tasklist_lock);
4382 mutex_unlock(&sched_hotcpu_mutex);
4383 if (retval)
4384 return retval;
4385
4386 return 0;
4387 }
4388
4389 /**
4390 * sys_sched_getaffinity - get the cpu affinity of a process
4391 * @pid: pid of the process
4392 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4393 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4394 */
4395 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4396 unsigned long __user *user_mask_ptr)
4397 {
4398 int ret;
4399 cpumask_t mask;
4400
4401 if (len < sizeof(cpumask_t))
4402 return -EINVAL;
4403
4404 ret = sched_getaffinity(pid, &mask);
4405 if (ret < 0)
4406 return ret;
4407
4408 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4409 return -EFAULT;
4410
4411 return sizeof(cpumask_t);
4412 }
4413
4414 /**
4415 * sys_sched_yield - yield the current processor to other threads.
4416 *
4417 * This function yields the current CPU to other tasks. If there are no
4418 * other threads running on this CPU then this function will return.
4419 */
4420 asmlinkage long sys_sched_yield(void)
4421 {
4422 struct rq *rq = this_rq_lock();
4423
4424 schedstat_inc(rq, yld_cnt);
4425 if (unlikely(rq->nr_running == 1))
4426 schedstat_inc(rq, yld_act_empty);
4427 else
4428 current->sched_class->yield_task(rq, current);
4429
4430 /*
4431 * Since we are going to call schedule() anyway, there's
4432 * no need to preempt or enable interrupts:
4433 */
4434 __release(rq->lock);
4435 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4436 _raw_spin_unlock(&rq->lock);
4437 preempt_enable_no_resched();
4438
4439 schedule();
4440
4441 return 0;
4442 }
4443
4444 static void __cond_resched(void)
4445 {
4446 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4447 __might_sleep(__FILE__, __LINE__);
4448 #endif
4449 /*
4450 * The BKS might be reacquired before we have dropped
4451 * PREEMPT_ACTIVE, which could trigger a second
4452 * cond_resched() call.
4453 */
4454 do {
4455 add_preempt_count(PREEMPT_ACTIVE);
4456 schedule();
4457 sub_preempt_count(PREEMPT_ACTIVE);
4458 } while (need_resched());
4459 }
4460
4461 int __sched cond_resched(void)
4462 {
4463 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4464 system_state == SYSTEM_RUNNING) {
4465 __cond_resched();
4466 return 1;
4467 }
4468 return 0;
4469 }
4470 EXPORT_SYMBOL(cond_resched);
4471
4472 /*
4473 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4474 * call schedule, and on return reacquire the lock.
4475 *
4476 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4477 * operations here to prevent schedule() from being called twice (once via
4478 * spin_unlock(), once by hand).
4479 */
4480 int cond_resched_lock(spinlock_t *lock)
4481 {
4482 int ret = 0;
4483
4484 if (need_lockbreak(lock)) {
4485 spin_unlock(lock);
4486 cpu_relax();
4487 ret = 1;
4488 spin_lock(lock);
4489 }
4490 if (need_resched() && system_state == SYSTEM_RUNNING) {
4491 spin_release(&lock->dep_map, 1, _THIS_IP_);
4492 _raw_spin_unlock(lock);
4493 preempt_enable_no_resched();
4494 __cond_resched();
4495 ret = 1;
4496 spin_lock(lock);
4497 }
4498 return ret;
4499 }
4500 EXPORT_SYMBOL(cond_resched_lock);
4501
4502 int __sched cond_resched_softirq(void)
4503 {
4504 BUG_ON(!in_softirq());
4505
4506 if (need_resched() && system_state == SYSTEM_RUNNING) {
4507 local_bh_enable();
4508 __cond_resched();
4509 local_bh_disable();
4510 return 1;
4511 }
4512 return 0;
4513 }
4514 EXPORT_SYMBOL(cond_resched_softirq);
4515
4516 /**
4517 * yield - yield the current processor to other threads.
4518 *
4519 * This is a shortcut for kernel-space yielding - it marks the
4520 * thread runnable and calls sys_sched_yield().
4521 */
4522 void __sched yield(void)
4523 {
4524 set_current_state(TASK_RUNNING);
4525 sys_sched_yield();
4526 }
4527 EXPORT_SYMBOL(yield);
4528
4529 /*
4530 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4531 * that process accounting knows that this is a task in IO wait state.
4532 *
4533 * But don't do that if it is a deliberate, throttling IO wait (this task
4534 * has set its backing_dev_info: the queue against which it should throttle)
4535 */
4536 void __sched io_schedule(void)
4537 {
4538 struct rq *rq = &__raw_get_cpu_var(runqueues);
4539
4540 delayacct_blkio_start();
4541 atomic_inc(&rq->nr_iowait);
4542 schedule();
4543 atomic_dec(&rq->nr_iowait);
4544 delayacct_blkio_end();
4545 }
4546 EXPORT_SYMBOL(io_schedule);
4547
4548 long __sched io_schedule_timeout(long timeout)
4549 {
4550 struct rq *rq = &__raw_get_cpu_var(runqueues);
4551 long ret;
4552
4553 delayacct_blkio_start();
4554 atomic_inc(&rq->nr_iowait);
4555 ret = schedule_timeout(timeout);
4556 atomic_dec(&rq->nr_iowait);
4557 delayacct_blkio_end();
4558 return ret;
4559 }
4560
4561 /**
4562 * sys_sched_get_priority_max - return maximum RT priority.
4563 * @policy: scheduling class.
4564 *
4565 * this syscall returns the maximum rt_priority that can be used
4566 * by a given scheduling class.
4567 */
4568 asmlinkage long sys_sched_get_priority_max(int policy)
4569 {
4570 int ret = -EINVAL;
4571
4572 switch (policy) {
4573 case SCHED_FIFO:
4574 case SCHED_RR:
4575 ret = MAX_USER_RT_PRIO-1;
4576 break;
4577 case SCHED_NORMAL:
4578 case SCHED_BATCH:
4579 case SCHED_IDLE:
4580 ret = 0;
4581 break;
4582 }
4583 return ret;
4584 }
4585
4586 /**
4587 * sys_sched_get_priority_min - return minimum RT priority.
4588 * @policy: scheduling class.
4589 *
4590 * this syscall returns the minimum rt_priority that can be used
4591 * by a given scheduling class.
4592 */
4593 asmlinkage long sys_sched_get_priority_min(int policy)
4594 {
4595 int ret = -EINVAL;
4596
4597 switch (policy) {
4598 case SCHED_FIFO:
4599 case SCHED_RR:
4600 ret = 1;
4601 break;
4602 case SCHED_NORMAL:
4603 case SCHED_BATCH:
4604 case SCHED_IDLE:
4605 ret = 0;
4606 }
4607 return ret;
4608 }
4609
4610 /**
4611 * sys_sched_rr_get_interval - return the default timeslice of a process.
4612 * @pid: pid of the process.
4613 * @interval: userspace pointer to the timeslice value.
4614 *
4615 * this syscall writes the default timeslice value of a given process
4616 * into the user-space timespec buffer. A value of '0' means infinity.
4617 */
4618 asmlinkage
4619 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4620 {
4621 struct task_struct *p;
4622 int retval = -EINVAL;
4623 struct timespec t;
4624
4625 if (pid < 0)
4626 goto out_nounlock;
4627
4628 retval = -ESRCH;
4629 read_lock(&tasklist_lock);
4630 p = find_process_by_pid(pid);
4631 if (!p)
4632 goto out_unlock;
4633
4634 retval = security_task_getscheduler(p);
4635 if (retval)
4636 goto out_unlock;
4637
4638 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4639 0 : static_prio_timeslice(p->static_prio), &t);
4640 read_unlock(&tasklist_lock);
4641 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4642 out_nounlock:
4643 return retval;
4644 out_unlock:
4645 read_unlock(&tasklist_lock);
4646 return retval;
4647 }
4648
4649 static const char stat_nam[] = "RSDTtZX";
4650
4651 static void show_task(struct task_struct *p)
4652 {
4653 unsigned long free = 0;
4654 unsigned state;
4655
4656 state = p->state ? __ffs(p->state) + 1 : 0;
4657 printk("%-13.13s %c", p->comm,
4658 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4659 #if BITS_PER_LONG == 32
4660 if (state == TASK_RUNNING)
4661 printk(" running ");
4662 else
4663 printk(" %08lx ", thread_saved_pc(p));
4664 #else
4665 if (state == TASK_RUNNING)
4666 printk(" running task ");
4667 else
4668 printk(" %016lx ", thread_saved_pc(p));
4669 #endif
4670 #ifdef CONFIG_DEBUG_STACK_USAGE
4671 {
4672 unsigned long *n = end_of_stack(p);
4673 while (!*n)
4674 n++;
4675 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4676 }
4677 #endif
4678 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4679
4680 if (state != TASK_RUNNING)
4681 show_stack(p, NULL);
4682 }
4683
4684 void show_state_filter(unsigned long state_filter)
4685 {
4686 struct task_struct *g, *p;
4687
4688 #if BITS_PER_LONG == 32
4689 printk(KERN_INFO
4690 " task PC stack pid father\n");
4691 #else
4692 printk(KERN_INFO
4693 " task PC stack pid father\n");
4694 #endif
4695 read_lock(&tasklist_lock);
4696 do_each_thread(g, p) {
4697 /*
4698 * reset the NMI-timeout, listing all files on a slow
4699 * console might take alot of time:
4700 */
4701 touch_nmi_watchdog();
4702 if (!state_filter || (p->state & state_filter))
4703 show_task(p);
4704 } while_each_thread(g, p);
4705
4706 touch_all_softlockup_watchdogs();
4707
4708 #ifdef CONFIG_SCHED_DEBUG
4709 sysrq_sched_debug_show();
4710 #endif
4711 read_unlock(&tasklist_lock);
4712 /*
4713 * Only show locks if all tasks are dumped:
4714 */
4715 if (state_filter == -1)
4716 debug_show_all_locks();
4717 }
4718
4719 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4720 {
4721 idle->sched_class = &idle_sched_class;
4722 }
4723
4724 /**
4725 * init_idle - set up an idle thread for a given CPU
4726 * @idle: task in question
4727 * @cpu: cpu the idle task belongs to
4728 *
4729 * NOTE: this function does not set the idle thread's NEED_RESCHED
4730 * flag, to make booting more robust.
4731 */
4732 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4733 {
4734 struct rq *rq = cpu_rq(cpu);
4735 unsigned long flags;
4736
4737 __sched_fork(idle);
4738 idle->se.exec_start = sched_clock();
4739
4740 idle->prio = idle->normal_prio = MAX_PRIO;
4741 idle->cpus_allowed = cpumask_of_cpu(cpu);
4742 __set_task_cpu(idle, cpu);
4743
4744 spin_lock_irqsave(&rq->lock, flags);
4745 rq->curr = rq->idle = idle;
4746 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4747 idle->oncpu = 1;
4748 #endif
4749 spin_unlock_irqrestore(&rq->lock, flags);
4750
4751 /* Set the preempt count _outside_ the spinlocks! */
4752 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4753 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4754 #else
4755 task_thread_info(idle)->preempt_count = 0;
4756 #endif
4757 /*
4758 * The idle tasks have their own, simple scheduling class:
4759 */
4760 idle->sched_class = &idle_sched_class;
4761 }
4762
4763 /*
4764 * In a system that switches off the HZ timer nohz_cpu_mask
4765 * indicates which cpus entered this state. This is used
4766 * in the rcu update to wait only for active cpus. For system
4767 * which do not switch off the HZ timer nohz_cpu_mask should
4768 * always be CPU_MASK_NONE.
4769 */
4770 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4771
4772 /*
4773 * Increase the granularity value when there are more CPUs,
4774 * because with more CPUs the 'effective latency' as visible
4775 * to users decreases. But the relationship is not linear,
4776 * so pick a second-best guess by going with the log2 of the
4777 * number of CPUs.
4778 *
4779 * This idea comes from the SD scheduler of Con Kolivas:
4780 */
4781 static inline void sched_init_granularity(void)
4782 {
4783 unsigned int factor = 1 + ilog2(num_online_cpus());
4784 const unsigned long gran_limit = 100000000;
4785
4786 sysctl_sched_granularity *= factor;
4787 if (sysctl_sched_granularity > gran_limit)
4788 sysctl_sched_granularity = gran_limit;
4789
4790 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4791 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4792 }
4793
4794 #ifdef CONFIG_SMP
4795 /*
4796 * This is how migration works:
4797 *
4798 * 1) we queue a struct migration_req structure in the source CPU's
4799 * runqueue and wake up that CPU's migration thread.
4800 * 2) we down() the locked semaphore => thread blocks.
4801 * 3) migration thread wakes up (implicitly it forces the migrated
4802 * thread off the CPU)
4803 * 4) it gets the migration request and checks whether the migrated
4804 * task is still in the wrong runqueue.
4805 * 5) if it's in the wrong runqueue then the migration thread removes
4806 * it and puts it into the right queue.
4807 * 6) migration thread up()s the semaphore.
4808 * 7) we wake up and the migration is done.
4809 */
4810
4811 /*
4812 * Change a given task's CPU affinity. Migrate the thread to a
4813 * proper CPU and schedule it away if the CPU it's executing on
4814 * is removed from the allowed bitmask.
4815 *
4816 * NOTE: the caller must have a valid reference to the task, the
4817 * task must not exit() & deallocate itself prematurely. The
4818 * call is not atomic; no spinlocks may be held.
4819 */
4820 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4821 {
4822 struct migration_req req;
4823 unsigned long flags;
4824 struct rq *rq;
4825 int ret = 0;
4826
4827 rq = task_rq_lock(p, &flags);
4828 if (!cpus_intersects(new_mask, cpu_online_map)) {
4829 ret = -EINVAL;
4830 goto out;
4831 }
4832
4833 p->cpus_allowed = new_mask;
4834 /* Can the task run on the task's current CPU? If so, we're done */
4835 if (cpu_isset(task_cpu(p), new_mask))
4836 goto out;
4837
4838 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4839 /* Need help from migration thread: drop lock and wait. */
4840 task_rq_unlock(rq, &flags);
4841 wake_up_process(rq->migration_thread);
4842 wait_for_completion(&req.done);
4843 tlb_migrate_finish(p->mm);
4844 return 0;
4845 }
4846 out:
4847 task_rq_unlock(rq, &flags);
4848
4849 return ret;
4850 }
4851 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4852
4853 /*
4854 * Move (not current) task off this cpu, onto dest cpu. We're doing
4855 * this because either it can't run here any more (set_cpus_allowed()
4856 * away from this CPU, or CPU going down), or because we're
4857 * attempting to rebalance this task on exec (sched_exec).
4858 *
4859 * So we race with normal scheduler movements, but that's OK, as long
4860 * as the task is no longer on this CPU.
4861 *
4862 * Returns non-zero if task was successfully migrated.
4863 */
4864 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4865 {
4866 struct rq *rq_dest, *rq_src;
4867 int ret = 0, on_rq;
4868
4869 if (unlikely(cpu_is_offline(dest_cpu)))
4870 return ret;
4871
4872 rq_src = cpu_rq(src_cpu);
4873 rq_dest = cpu_rq(dest_cpu);
4874
4875 double_rq_lock(rq_src, rq_dest);
4876 /* Already moved. */
4877 if (task_cpu(p) != src_cpu)
4878 goto out;
4879 /* Affinity changed (again). */
4880 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4881 goto out;
4882
4883 on_rq = p->se.on_rq;
4884 if (on_rq)
4885 deactivate_task(rq_src, p, 0);
4886 set_task_cpu(p, dest_cpu);
4887 if (on_rq) {
4888 activate_task(rq_dest, p, 0);
4889 check_preempt_curr(rq_dest, p);
4890 }
4891 ret = 1;
4892 out:
4893 double_rq_unlock(rq_src, rq_dest);
4894 return ret;
4895 }
4896
4897 /*
4898 * migration_thread - this is a highprio system thread that performs
4899 * thread migration by bumping thread off CPU then 'pushing' onto
4900 * another runqueue.
4901 */
4902 static int migration_thread(void *data)
4903 {
4904 int cpu = (long)data;
4905 struct rq *rq;
4906
4907 rq = cpu_rq(cpu);
4908 BUG_ON(rq->migration_thread != current);
4909
4910 set_current_state(TASK_INTERRUPTIBLE);
4911 while (!kthread_should_stop()) {
4912 struct migration_req *req;
4913 struct list_head *head;
4914
4915 try_to_freeze();
4916
4917 spin_lock_irq(&rq->lock);
4918
4919 if (cpu_is_offline(cpu)) {
4920 spin_unlock_irq(&rq->lock);
4921 goto wait_to_die;
4922 }
4923
4924 if (rq->active_balance) {
4925 active_load_balance(rq, cpu);
4926 rq->active_balance = 0;
4927 }
4928
4929 head = &rq->migration_queue;
4930
4931 if (list_empty(head)) {
4932 spin_unlock_irq(&rq->lock);
4933 schedule();
4934 set_current_state(TASK_INTERRUPTIBLE);
4935 continue;
4936 }
4937 req = list_entry(head->next, struct migration_req, list);
4938 list_del_init(head->next);
4939
4940 spin_unlock(&rq->lock);
4941 __migrate_task(req->task, cpu, req->dest_cpu);
4942 local_irq_enable();
4943
4944 complete(&req->done);
4945 }
4946 __set_current_state(TASK_RUNNING);
4947 return 0;
4948
4949 wait_to_die:
4950 /* Wait for kthread_stop */
4951 set_current_state(TASK_INTERRUPTIBLE);
4952 while (!kthread_should_stop()) {
4953 schedule();
4954 set_current_state(TASK_INTERRUPTIBLE);
4955 }
4956 __set_current_state(TASK_RUNNING);
4957 return 0;
4958 }
4959
4960 #ifdef CONFIG_HOTPLUG_CPU
4961 /*
4962 * Figure out where task on dead CPU should go, use force if neccessary.
4963 * NOTE: interrupts should be disabled by the caller
4964 */
4965 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
4966 {
4967 unsigned long flags;
4968 cpumask_t mask;
4969 struct rq *rq;
4970 int dest_cpu;
4971
4972 restart:
4973 /* On same node? */
4974 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4975 cpus_and(mask, mask, p->cpus_allowed);
4976 dest_cpu = any_online_cpu(mask);
4977
4978 /* On any allowed CPU? */
4979 if (dest_cpu == NR_CPUS)
4980 dest_cpu = any_online_cpu(p->cpus_allowed);
4981
4982 /* No more Mr. Nice Guy. */
4983 if (dest_cpu == NR_CPUS) {
4984 rq = task_rq_lock(p, &flags);
4985 cpus_setall(p->cpus_allowed);
4986 dest_cpu = any_online_cpu(p->cpus_allowed);
4987 task_rq_unlock(rq, &flags);
4988
4989 /*
4990 * Don't tell them about moving exiting tasks or
4991 * kernel threads (both mm NULL), since they never
4992 * leave kernel.
4993 */
4994 if (p->mm && printk_ratelimit())
4995 printk(KERN_INFO "process %d (%s) no "
4996 "longer affine to cpu%d\n",
4997 p->pid, p->comm, dead_cpu);
4998 }
4999 if (!__migrate_task(p, dead_cpu, dest_cpu))
5000 goto restart;
5001 }
5002
5003 /*
5004 * While a dead CPU has no uninterruptible tasks queued at this point,
5005 * it might still have a nonzero ->nr_uninterruptible counter, because
5006 * for performance reasons the counter is not stricly tracking tasks to
5007 * their home CPUs. So we just add the counter to another CPU's counter,
5008 * to keep the global sum constant after CPU-down:
5009 */
5010 static void migrate_nr_uninterruptible(struct rq *rq_src)
5011 {
5012 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5013 unsigned long flags;
5014
5015 local_irq_save(flags);
5016 double_rq_lock(rq_src, rq_dest);
5017 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5018 rq_src->nr_uninterruptible = 0;
5019 double_rq_unlock(rq_src, rq_dest);
5020 local_irq_restore(flags);
5021 }
5022
5023 /* Run through task list and migrate tasks from the dead cpu. */
5024 static void migrate_live_tasks(int src_cpu)
5025 {
5026 struct task_struct *p, *t;
5027
5028 write_lock_irq(&tasklist_lock);
5029
5030 do_each_thread(t, p) {
5031 if (p == current)
5032 continue;
5033
5034 if (task_cpu(p) == src_cpu)
5035 move_task_off_dead_cpu(src_cpu, p);
5036 } while_each_thread(t, p);
5037
5038 write_unlock_irq(&tasklist_lock);
5039 }
5040
5041 /*
5042 * Schedules idle task to be the next runnable task on current CPU.
5043 * It does so by boosting its priority to highest possible and adding it to
5044 * the _front_ of the runqueue. Used by CPU offline code.
5045 */
5046 void sched_idle_next(void)
5047 {
5048 int this_cpu = smp_processor_id();
5049 struct rq *rq = cpu_rq(this_cpu);
5050 struct task_struct *p = rq->idle;
5051 unsigned long flags;
5052
5053 /* cpu has to be offline */
5054 BUG_ON(cpu_online(this_cpu));
5055
5056 /*
5057 * Strictly not necessary since rest of the CPUs are stopped by now
5058 * and interrupts disabled on the current cpu.
5059 */
5060 spin_lock_irqsave(&rq->lock, flags);
5061
5062 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5063
5064 /* Add idle task to the _front_ of its priority queue: */
5065 activate_idle_task(p, rq);
5066
5067 spin_unlock_irqrestore(&rq->lock, flags);
5068 }
5069
5070 /*
5071 * Ensures that the idle task is using init_mm right before its cpu goes
5072 * offline.
5073 */
5074 void idle_task_exit(void)
5075 {
5076 struct mm_struct *mm = current->active_mm;
5077
5078 BUG_ON(cpu_online(smp_processor_id()));
5079
5080 if (mm != &init_mm)
5081 switch_mm(mm, &init_mm, current);
5082 mmdrop(mm);
5083 }
5084
5085 /* called under rq->lock with disabled interrupts */
5086 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5087 {
5088 struct rq *rq = cpu_rq(dead_cpu);
5089
5090 /* Must be exiting, otherwise would be on tasklist. */
5091 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5092
5093 /* Cannot have done final schedule yet: would have vanished. */
5094 BUG_ON(p->state == TASK_DEAD);
5095
5096 get_task_struct(p);
5097
5098 /*
5099 * Drop lock around migration; if someone else moves it,
5100 * that's OK. No task can be added to this CPU, so iteration is
5101 * fine.
5102 * NOTE: interrupts should be left disabled --dev@
5103 */
5104 spin_unlock(&rq->lock);
5105 move_task_off_dead_cpu(dead_cpu, p);
5106 spin_lock(&rq->lock);
5107
5108 put_task_struct(p);
5109 }
5110
5111 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5112 static void migrate_dead_tasks(unsigned int dead_cpu)
5113 {
5114 struct rq *rq = cpu_rq(dead_cpu);
5115 struct task_struct *next;
5116
5117 for ( ; ; ) {
5118 if (!rq->nr_running)
5119 break;
5120 next = pick_next_task(rq, rq->curr, rq_clock(rq));
5121 if (!next)
5122 break;
5123 migrate_dead(dead_cpu, next);
5124 }
5125 }
5126 #endif /* CONFIG_HOTPLUG_CPU */
5127
5128 /*
5129 * migration_call - callback that gets triggered when a CPU is added.
5130 * Here we can start up the necessary migration thread for the new CPU.
5131 */
5132 static int __cpuinit
5133 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5134 {
5135 struct task_struct *p;
5136 int cpu = (long)hcpu;
5137 unsigned long flags;
5138 struct rq *rq;
5139
5140 switch (action) {
5141 case CPU_LOCK_ACQUIRE:
5142 mutex_lock(&sched_hotcpu_mutex);
5143 break;
5144
5145 case CPU_UP_PREPARE:
5146 case CPU_UP_PREPARE_FROZEN:
5147 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5148 if (IS_ERR(p))
5149 return NOTIFY_BAD;
5150 p->flags |= PF_NOFREEZE;
5151 kthread_bind(p, cpu);
5152 /* Must be high prio: stop_machine expects to yield to it. */
5153 rq = task_rq_lock(p, &flags);
5154 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5155 task_rq_unlock(rq, &flags);
5156 cpu_rq(cpu)->migration_thread = p;
5157 break;
5158
5159 case CPU_ONLINE:
5160 case CPU_ONLINE_FROZEN:
5161 /* Strictly unneccessary, as first user will wake it. */
5162 wake_up_process(cpu_rq(cpu)->migration_thread);
5163 break;
5164
5165 #ifdef CONFIG_HOTPLUG_CPU
5166 case CPU_UP_CANCELED:
5167 case CPU_UP_CANCELED_FROZEN:
5168 if (!cpu_rq(cpu)->migration_thread)
5169 break;
5170 /* Unbind it from offline cpu so it can run. Fall thru. */
5171 kthread_bind(cpu_rq(cpu)->migration_thread,
5172 any_online_cpu(cpu_online_map));
5173 kthread_stop(cpu_rq(cpu)->migration_thread);
5174 cpu_rq(cpu)->migration_thread = NULL;
5175 break;
5176
5177 case CPU_DEAD:
5178 case CPU_DEAD_FROZEN:
5179 migrate_live_tasks(cpu);
5180 rq = cpu_rq(cpu);
5181 kthread_stop(rq->migration_thread);
5182 rq->migration_thread = NULL;
5183 /* Idle task back to normal (off runqueue, low prio) */
5184 rq = task_rq_lock(rq->idle, &flags);
5185 deactivate_task(rq, rq->idle, 0);
5186 rq->idle->static_prio = MAX_PRIO;
5187 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5188 rq->idle->sched_class = &idle_sched_class;
5189 migrate_dead_tasks(cpu);
5190 task_rq_unlock(rq, &flags);
5191 migrate_nr_uninterruptible(rq);
5192 BUG_ON(rq->nr_running != 0);
5193
5194 /* No need to migrate the tasks: it was best-effort if
5195 * they didn't take sched_hotcpu_mutex. Just wake up
5196 * the requestors. */
5197 spin_lock_irq(&rq->lock);
5198 while (!list_empty(&rq->migration_queue)) {
5199 struct migration_req *req;
5200
5201 req = list_entry(rq->migration_queue.next,
5202 struct migration_req, list);
5203 list_del_init(&req->list);
5204 complete(&req->done);
5205 }
5206 spin_unlock_irq(&rq->lock);
5207 break;
5208 #endif
5209 case CPU_LOCK_RELEASE:
5210 mutex_unlock(&sched_hotcpu_mutex);
5211 break;
5212 }
5213 return NOTIFY_OK;
5214 }
5215
5216 /* Register at highest priority so that task migration (migrate_all_tasks)
5217 * happens before everything else.
5218 */
5219 static struct notifier_block __cpuinitdata migration_notifier = {
5220 .notifier_call = migration_call,
5221 .priority = 10
5222 };
5223
5224 int __init migration_init(void)
5225 {
5226 void *cpu = (void *)(long)smp_processor_id();
5227 int err;
5228
5229 /* Start one for the boot CPU: */
5230 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5231 BUG_ON(err == NOTIFY_BAD);
5232 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5233 register_cpu_notifier(&migration_notifier);
5234
5235 return 0;
5236 }
5237 #endif
5238
5239 #ifdef CONFIG_SMP
5240
5241 /* Number of possible processor ids */
5242 int nr_cpu_ids __read_mostly = NR_CPUS;
5243 EXPORT_SYMBOL(nr_cpu_ids);
5244
5245 #undef SCHED_DOMAIN_DEBUG
5246 #ifdef SCHED_DOMAIN_DEBUG
5247 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5248 {
5249 int level = 0;
5250
5251 if (!sd) {
5252 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5253 return;
5254 }
5255
5256 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5257
5258 do {
5259 int i;
5260 char str[NR_CPUS];
5261 struct sched_group *group = sd->groups;
5262 cpumask_t groupmask;
5263
5264 cpumask_scnprintf(str, NR_CPUS, sd->span);
5265 cpus_clear(groupmask);
5266
5267 printk(KERN_DEBUG);
5268 for (i = 0; i < level + 1; i++)
5269 printk(" ");
5270 printk("domain %d: ", level);
5271
5272 if (!(sd->flags & SD_LOAD_BALANCE)) {
5273 printk("does not load-balance\n");
5274 if (sd->parent)
5275 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5276 " has parent");
5277 break;
5278 }
5279
5280 printk("span %s\n", str);
5281
5282 if (!cpu_isset(cpu, sd->span))
5283 printk(KERN_ERR "ERROR: domain->span does not contain "
5284 "CPU%d\n", cpu);
5285 if (!cpu_isset(cpu, group->cpumask))
5286 printk(KERN_ERR "ERROR: domain->groups does not contain"
5287 " CPU%d\n", cpu);
5288
5289 printk(KERN_DEBUG);
5290 for (i = 0; i < level + 2; i++)
5291 printk(" ");
5292 printk("groups:");
5293 do {
5294 if (!group) {
5295 printk("\n");
5296 printk(KERN_ERR "ERROR: group is NULL\n");
5297 break;
5298 }
5299
5300 if (!group->__cpu_power) {
5301 printk("\n");
5302 printk(KERN_ERR "ERROR: domain->cpu_power not "
5303 "set\n");
5304 }
5305
5306 if (!cpus_weight(group->cpumask)) {
5307 printk("\n");
5308 printk(KERN_ERR "ERROR: empty group\n");
5309 }
5310
5311 if (cpus_intersects(groupmask, group->cpumask)) {
5312 printk("\n");
5313 printk(KERN_ERR "ERROR: repeated CPUs\n");
5314 }
5315
5316 cpus_or(groupmask, groupmask, group->cpumask);
5317
5318 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5319 printk(" %s", str);
5320
5321 group = group->next;
5322 } while (group != sd->groups);
5323 printk("\n");
5324
5325 if (!cpus_equal(sd->span, groupmask))
5326 printk(KERN_ERR "ERROR: groups don't span "
5327 "domain->span\n");
5328
5329 level++;
5330 sd = sd->parent;
5331 if (!sd)
5332 continue;
5333
5334 if (!cpus_subset(groupmask, sd->span))
5335 printk(KERN_ERR "ERROR: parent span is not a superset "
5336 "of domain->span\n");
5337
5338 } while (sd);
5339 }
5340 #else
5341 # define sched_domain_debug(sd, cpu) do { } while (0)
5342 #endif
5343
5344 static int sd_degenerate(struct sched_domain *sd)
5345 {
5346 if (cpus_weight(sd->span) == 1)
5347 return 1;
5348
5349 /* Following flags need at least 2 groups */
5350 if (sd->flags & (SD_LOAD_BALANCE |
5351 SD_BALANCE_NEWIDLE |
5352 SD_BALANCE_FORK |
5353 SD_BALANCE_EXEC |
5354 SD_SHARE_CPUPOWER |
5355 SD_SHARE_PKG_RESOURCES)) {
5356 if (sd->groups != sd->groups->next)
5357 return 0;
5358 }
5359
5360 /* Following flags don't use groups */
5361 if (sd->flags & (SD_WAKE_IDLE |
5362 SD_WAKE_AFFINE |
5363 SD_WAKE_BALANCE))
5364 return 0;
5365
5366 return 1;
5367 }
5368
5369 static int
5370 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5371 {
5372 unsigned long cflags = sd->flags, pflags = parent->flags;
5373
5374 if (sd_degenerate(parent))
5375 return 1;
5376
5377 if (!cpus_equal(sd->span, parent->span))
5378 return 0;
5379
5380 /* Does parent contain flags not in child? */
5381 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5382 if (cflags & SD_WAKE_AFFINE)
5383 pflags &= ~SD_WAKE_BALANCE;
5384 /* Flags needing groups don't count if only 1 group in parent */
5385 if (parent->groups == parent->groups->next) {
5386 pflags &= ~(SD_LOAD_BALANCE |
5387 SD_BALANCE_NEWIDLE |
5388 SD_BALANCE_FORK |
5389 SD_BALANCE_EXEC |
5390 SD_SHARE_CPUPOWER |
5391 SD_SHARE_PKG_RESOURCES);
5392 }
5393 if (~cflags & pflags)
5394 return 0;
5395
5396 return 1;
5397 }
5398
5399 /*
5400 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5401 * hold the hotplug lock.
5402 */
5403 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5404 {
5405 struct rq *rq = cpu_rq(cpu);
5406 struct sched_domain *tmp;
5407
5408 /* Remove the sched domains which do not contribute to scheduling. */
5409 for (tmp = sd; tmp; tmp = tmp->parent) {
5410 struct sched_domain *parent = tmp->parent;
5411 if (!parent)
5412 break;
5413 if (sd_parent_degenerate(tmp, parent)) {
5414 tmp->parent = parent->parent;
5415 if (parent->parent)
5416 parent->parent->child = tmp;
5417 }
5418 }
5419
5420 if (sd && sd_degenerate(sd)) {
5421 sd = sd->parent;
5422 if (sd)
5423 sd->child = NULL;
5424 }
5425
5426 sched_domain_debug(sd, cpu);
5427
5428 rcu_assign_pointer(rq->sd, sd);
5429 }
5430
5431 /* cpus with isolated domains */
5432 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5433
5434 /* Setup the mask of cpus configured for isolated domains */
5435 static int __init isolated_cpu_setup(char *str)
5436 {
5437 int ints[NR_CPUS], i;
5438
5439 str = get_options(str, ARRAY_SIZE(ints), ints);
5440 cpus_clear(cpu_isolated_map);
5441 for (i = 1; i <= ints[0]; i++)
5442 if (ints[i] < NR_CPUS)
5443 cpu_set(ints[i], cpu_isolated_map);
5444 return 1;
5445 }
5446
5447 __setup ("isolcpus=", isolated_cpu_setup);
5448
5449 /*
5450 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5451 * to a function which identifies what group(along with sched group) a CPU
5452 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5453 * (due to the fact that we keep track of groups covered with a cpumask_t).
5454 *
5455 * init_sched_build_groups will build a circular linked list of the groups
5456 * covered by the given span, and will set each group's ->cpumask correctly,
5457 * and ->cpu_power to 0.
5458 */
5459 static void
5460 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5461 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5462 struct sched_group **sg))
5463 {
5464 struct sched_group *first = NULL, *last = NULL;
5465 cpumask_t covered = CPU_MASK_NONE;
5466 int i;
5467
5468 for_each_cpu_mask(i, span) {
5469 struct sched_group *sg;
5470 int group = group_fn(i, cpu_map, &sg);
5471 int j;
5472
5473 if (cpu_isset(i, covered))
5474 continue;
5475
5476 sg->cpumask = CPU_MASK_NONE;
5477 sg->__cpu_power = 0;
5478
5479 for_each_cpu_mask(j, span) {
5480 if (group_fn(j, cpu_map, NULL) != group)
5481 continue;
5482
5483 cpu_set(j, covered);
5484 cpu_set(j, sg->cpumask);
5485 }
5486 if (!first)
5487 first = sg;
5488 if (last)
5489 last->next = sg;
5490 last = sg;
5491 }
5492 last->next = first;
5493 }
5494
5495 #define SD_NODES_PER_DOMAIN 16
5496
5497 #ifdef CONFIG_NUMA
5498
5499 /**
5500 * find_next_best_node - find the next node to include in a sched_domain
5501 * @node: node whose sched_domain we're building
5502 * @used_nodes: nodes already in the sched_domain
5503 *
5504 * Find the next node to include in a given scheduling domain. Simply
5505 * finds the closest node not already in the @used_nodes map.
5506 *
5507 * Should use nodemask_t.
5508 */
5509 static int find_next_best_node(int node, unsigned long *used_nodes)
5510 {
5511 int i, n, val, min_val, best_node = 0;
5512
5513 min_val = INT_MAX;
5514
5515 for (i = 0; i < MAX_NUMNODES; i++) {
5516 /* Start at @node */
5517 n = (node + i) % MAX_NUMNODES;
5518
5519 if (!nr_cpus_node(n))
5520 continue;
5521
5522 /* Skip already used nodes */
5523 if (test_bit(n, used_nodes))
5524 continue;
5525
5526 /* Simple min distance search */
5527 val = node_distance(node, n);
5528
5529 if (val < min_val) {
5530 min_val = val;
5531 best_node = n;
5532 }
5533 }
5534
5535 set_bit(best_node, used_nodes);
5536 return best_node;
5537 }
5538
5539 /**
5540 * sched_domain_node_span - get a cpumask for a node's sched_domain
5541 * @node: node whose cpumask we're constructing
5542 * @size: number of nodes to include in this span
5543 *
5544 * Given a node, construct a good cpumask for its sched_domain to span. It
5545 * should be one that prevents unnecessary balancing, but also spreads tasks
5546 * out optimally.
5547 */
5548 static cpumask_t sched_domain_node_span(int node)
5549 {
5550 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5551 cpumask_t span, nodemask;
5552 int i;
5553
5554 cpus_clear(span);
5555 bitmap_zero(used_nodes, MAX_NUMNODES);
5556
5557 nodemask = node_to_cpumask(node);
5558 cpus_or(span, span, nodemask);
5559 set_bit(node, used_nodes);
5560
5561 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5562 int next_node = find_next_best_node(node, used_nodes);
5563
5564 nodemask = node_to_cpumask(next_node);
5565 cpus_or(span, span, nodemask);
5566 }
5567
5568 return span;
5569 }
5570 #endif
5571
5572 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5573
5574 /*
5575 * SMT sched-domains:
5576 */
5577 #ifdef CONFIG_SCHED_SMT
5578 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5579 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5580
5581 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5582 struct sched_group **sg)
5583 {
5584 if (sg)
5585 *sg = &per_cpu(sched_group_cpus, cpu);
5586 return cpu;
5587 }
5588 #endif
5589
5590 /*
5591 * multi-core sched-domains:
5592 */
5593 #ifdef CONFIG_SCHED_MC
5594 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5595 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5596 #endif
5597
5598 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5599 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5600 struct sched_group **sg)
5601 {
5602 int group;
5603 cpumask_t mask = cpu_sibling_map[cpu];
5604 cpus_and(mask, mask, *cpu_map);
5605 group = first_cpu(mask);
5606 if (sg)
5607 *sg = &per_cpu(sched_group_core, group);
5608 return group;
5609 }
5610 #elif defined(CONFIG_SCHED_MC)
5611 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5612 struct sched_group **sg)
5613 {
5614 if (sg)
5615 *sg = &per_cpu(sched_group_core, cpu);
5616 return cpu;
5617 }
5618 #endif
5619
5620 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5621 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5622
5623 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5624 struct sched_group **sg)
5625 {
5626 int group;
5627 #ifdef CONFIG_SCHED_MC
5628 cpumask_t mask = cpu_coregroup_map(cpu);
5629 cpus_and(mask, mask, *cpu_map);
5630 group = first_cpu(mask);
5631 #elif defined(CONFIG_SCHED_SMT)
5632 cpumask_t mask = cpu_sibling_map[cpu];
5633 cpus_and(mask, mask, *cpu_map);
5634 group = first_cpu(mask);
5635 #else
5636 group = cpu;
5637 #endif
5638 if (sg)
5639 *sg = &per_cpu(sched_group_phys, group);
5640 return group;
5641 }
5642
5643 #ifdef CONFIG_NUMA
5644 /*
5645 * The init_sched_build_groups can't handle what we want to do with node
5646 * groups, so roll our own. Now each node has its own list of groups which
5647 * gets dynamically allocated.
5648 */
5649 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5650 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5651
5652 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5653 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5654
5655 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5656 struct sched_group **sg)
5657 {
5658 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5659 int group;
5660
5661 cpus_and(nodemask, nodemask, *cpu_map);
5662 group = first_cpu(nodemask);
5663
5664 if (sg)
5665 *sg = &per_cpu(sched_group_allnodes, group);
5666 return group;
5667 }
5668
5669 static void init_numa_sched_groups_power(struct sched_group *group_head)
5670 {
5671 struct sched_group *sg = group_head;
5672 int j;
5673
5674 if (!sg)
5675 return;
5676 next_sg:
5677 for_each_cpu_mask(j, sg->cpumask) {
5678 struct sched_domain *sd;
5679
5680 sd = &per_cpu(phys_domains, j);
5681 if (j != first_cpu(sd->groups->cpumask)) {
5682 /*
5683 * Only add "power" once for each
5684 * physical package.
5685 */
5686 continue;
5687 }
5688
5689 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5690 }
5691 sg = sg->next;
5692 if (sg != group_head)
5693 goto next_sg;
5694 }
5695 #endif
5696
5697 #ifdef CONFIG_NUMA
5698 /* Free memory allocated for various sched_group structures */
5699 static void free_sched_groups(const cpumask_t *cpu_map)
5700 {
5701 int cpu, i;
5702
5703 for_each_cpu_mask(cpu, *cpu_map) {
5704 struct sched_group **sched_group_nodes
5705 = sched_group_nodes_bycpu[cpu];
5706
5707 if (!sched_group_nodes)
5708 continue;
5709
5710 for (i = 0; i < MAX_NUMNODES; i++) {
5711 cpumask_t nodemask = node_to_cpumask(i);
5712 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5713
5714 cpus_and(nodemask, nodemask, *cpu_map);
5715 if (cpus_empty(nodemask))
5716 continue;
5717
5718 if (sg == NULL)
5719 continue;
5720 sg = sg->next;
5721 next_sg:
5722 oldsg = sg;
5723 sg = sg->next;
5724 kfree(oldsg);
5725 if (oldsg != sched_group_nodes[i])
5726 goto next_sg;
5727 }
5728 kfree(sched_group_nodes);
5729 sched_group_nodes_bycpu[cpu] = NULL;
5730 }
5731 }
5732 #else
5733 static void free_sched_groups(const cpumask_t *cpu_map)
5734 {
5735 }
5736 #endif
5737
5738 /*
5739 * Initialize sched groups cpu_power.
5740 *
5741 * cpu_power indicates the capacity of sched group, which is used while
5742 * distributing the load between different sched groups in a sched domain.
5743 * Typically cpu_power for all the groups in a sched domain will be same unless
5744 * there are asymmetries in the topology. If there are asymmetries, group
5745 * having more cpu_power will pickup more load compared to the group having
5746 * less cpu_power.
5747 *
5748 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5749 * the maximum number of tasks a group can handle in the presence of other idle
5750 * or lightly loaded groups in the same sched domain.
5751 */
5752 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5753 {
5754 struct sched_domain *child;
5755 struct sched_group *group;
5756
5757 WARN_ON(!sd || !sd->groups);
5758
5759 if (cpu != first_cpu(sd->groups->cpumask))
5760 return;
5761
5762 child = sd->child;
5763
5764 sd->groups->__cpu_power = 0;
5765
5766 /*
5767 * For perf policy, if the groups in child domain share resources
5768 * (for example cores sharing some portions of the cache hierarchy
5769 * or SMT), then set this domain groups cpu_power such that each group
5770 * can handle only one task, when there are other idle groups in the
5771 * same sched domain.
5772 */
5773 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5774 (child->flags &
5775 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5776 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5777 return;
5778 }
5779
5780 /*
5781 * add cpu_power of each child group to this groups cpu_power
5782 */
5783 group = child->groups;
5784 do {
5785 sg_inc_cpu_power(sd->groups, group->__cpu_power);
5786 group = group->next;
5787 } while (group != child->groups);
5788 }
5789
5790 /*
5791 * Build sched domains for a given set of cpus and attach the sched domains
5792 * to the individual cpus
5793 */
5794 static int build_sched_domains(const cpumask_t *cpu_map)
5795 {
5796 int i;
5797 #ifdef CONFIG_NUMA
5798 struct sched_group **sched_group_nodes = NULL;
5799 int sd_allnodes = 0;
5800
5801 /*
5802 * Allocate the per-node list of sched groups
5803 */
5804 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5805 GFP_KERNEL);
5806 if (!sched_group_nodes) {
5807 printk(KERN_WARNING "Can not alloc sched group node list\n");
5808 return -ENOMEM;
5809 }
5810 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5811 #endif
5812
5813 /*
5814 * Set up domains for cpus specified by the cpu_map.
5815 */
5816 for_each_cpu_mask(i, *cpu_map) {
5817 struct sched_domain *sd = NULL, *p;
5818 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5819
5820 cpus_and(nodemask, nodemask, *cpu_map);
5821
5822 #ifdef CONFIG_NUMA
5823 if (cpus_weight(*cpu_map) >
5824 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5825 sd = &per_cpu(allnodes_domains, i);
5826 *sd = SD_ALLNODES_INIT;
5827 sd->span = *cpu_map;
5828 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
5829 p = sd;
5830 sd_allnodes = 1;
5831 } else
5832 p = NULL;
5833
5834 sd = &per_cpu(node_domains, i);
5835 *sd = SD_NODE_INIT;
5836 sd->span = sched_domain_node_span(cpu_to_node(i));
5837 sd->parent = p;
5838 if (p)
5839 p->child = sd;
5840 cpus_and(sd->span, sd->span, *cpu_map);
5841 #endif
5842
5843 p = sd;
5844 sd = &per_cpu(phys_domains, i);
5845 *sd = SD_CPU_INIT;
5846 sd->span = nodemask;
5847 sd->parent = p;
5848 if (p)
5849 p->child = sd;
5850 cpu_to_phys_group(i, cpu_map, &sd->groups);
5851
5852 #ifdef CONFIG_SCHED_MC
5853 p = sd;
5854 sd = &per_cpu(core_domains, i);
5855 *sd = SD_MC_INIT;
5856 sd->span = cpu_coregroup_map(i);
5857 cpus_and(sd->span, sd->span, *cpu_map);
5858 sd->parent = p;
5859 p->child = sd;
5860 cpu_to_core_group(i, cpu_map, &sd->groups);
5861 #endif
5862
5863 #ifdef CONFIG_SCHED_SMT
5864 p = sd;
5865 sd = &per_cpu(cpu_domains, i);
5866 *sd = SD_SIBLING_INIT;
5867 sd->span = cpu_sibling_map[i];
5868 cpus_and(sd->span, sd->span, *cpu_map);
5869 sd->parent = p;
5870 p->child = sd;
5871 cpu_to_cpu_group(i, cpu_map, &sd->groups);
5872 #endif
5873 }
5874
5875 #ifdef CONFIG_SCHED_SMT
5876 /* Set up CPU (sibling) groups */
5877 for_each_cpu_mask(i, *cpu_map) {
5878 cpumask_t this_sibling_map = cpu_sibling_map[i];
5879 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5880 if (i != first_cpu(this_sibling_map))
5881 continue;
5882
5883 init_sched_build_groups(this_sibling_map, cpu_map,
5884 &cpu_to_cpu_group);
5885 }
5886 #endif
5887
5888 #ifdef CONFIG_SCHED_MC
5889 /* Set up multi-core groups */
5890 for_each_cpu_mask(i, *cpu_map) {
5891 cpumask_t this_core_map = cpu_coregroup_map(i);
5892 cpus_and(this_core_map, this_core_map, *cpu_map);
5893 if (i != first_cpu(this_core_map))
5894 continue;
5895 init_sched_build_groups(this_core_map, cpu_map,
5896 &cpu_to_core_group);
5897 }
5898 #endif
5899
5900 /* Set up physical groups */
5901 for (i = 0; i < MAX_NUMNODES; i++) {
5902 cpumask_t nodemask = node_to_cpumask(i);
5903
5904 cpus_and(nodemask, nodemask, *cpu_map);
5905 if (cpus_empty(nodemask))
5906 continue;
5907
5908 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
5909 }
5910
5911 #ifdef CONFIG_NUMA
5912 /* Set up node groups */
5913 if (sd_allnodes)
5914 init_sched_build_groups(*cpu_map, cpu_map,
5915 &cpu_to_allnodes_group);
5916
5917 for (i = 0; i < MAX_NUMNODES; i++) {
5918 /* Set up node groups */
5919 struct sched_group *sg, *prev;
5920 cpumask_t nodemask = node_to_cpumask(i);
5921 cpumask_t domainspan;
5922 cpumask_t covered = CPU_MASK_NONE;
5923 int j;
5924
5925 cpus_and(nodemask, nodemask, *cpu_map);
5926 if (cpus_empty(nodemask)) {
5927 sched_group_nodes[i] = NULL;
5928 continue;
5929 }
5930
5931 domainspan = sched_domain_node_span(i);
5932 cpus_and(domainspan, domainspan, *cpu_map);
5933
5934 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
5935 if (!sg) {
5936 printk(KERN_WARNING "Can not alloc domain group for "
5937 "node %d\n", i);
5938 goto error;
5939 }
5940 sched_group_nodes[i] = sg;
5941 for_each_cpu_mask(j, nodemask) {
5942 struct sched_domain *sd;
5943
5944 sd = &per_cpu(node_domains, j);
5945 sd->groups = sg;
5946 }
5947 sg->__cpu_power = 0;
5948 sg->cpumask = nodemask;
5949 sg->next = sg;
5950 cpus_or(covered, covered, nodemask);
5951 prev = sg;
5952
5953 for (j = 0; j < MAX_NUMNODES; j++) {
5954 cpumask_t tmp, notcovered;
5955 int n = (i + j) % MAX_NUMNODES;
5956
5957 cpus_complement(notcovered, covered);
5958 cpus_and(tmp, notcovered, *cpu_map);
5959 cpus_and(tmp, tmp, domainspan);
5960 if (cpus_empty(tmp))
5961 break;
5962
5963 nodemask = node_to_cpumask(n);
5964 cpus_and(tmp, tmp, nodemask);
5965 if (cpus_empty(tmp))
5966 continue;
5967
5968 sg = kmalloc_node(sizeof(struct sched_group),
5969 GFP_KERNEL, i);
5970 if (!sg) {
5971 printk(KERN_WARNING
5972 "Can not alloc domain group for node %d\n", j);
5973 goto error;
5974 }
5975 sg->__cpu_power = 0;
5976 sg->cpumask = tmp;
5977 sg->next = prev->next;
5978 cpus_or(covered, covered, tmp);
5979 prev->next = sg;
5980 prev = sg;
5981 }
5982 }
5983 #endif
5984
5985 /* Calculate CPU power for physical packages and nodes */
5986 #ifdef CONFIG_SCHED_SMT
5987 for_each_cpu_mask(i, *cpu_map) {
5988 struct sched_domain *sd = &per_cpu(cpu_domains, i);
5989
5990 init_sched_groups_power(i, sd);
5991 }
5992 #endif
5993 #ifdef CONFIG_SCHED_MC
5994 for_each_cpu_mask(i, *cpu_map) {
5995 struct sched_domain *sd = &per_cpu(core_domains, i);
5996
5997 init_sched_groups_power(i, sd);
5998 }
5999 #endif
6000
6001 for_each_cpu_mask(i, *cpu_map) {
6002 struct sched_domain *sd = &per_cpu(phys_domains, i);
6003
6004 init_sched_groups_power(i, sd);
6005 }
6006
6007 #ifdef CONFIG_NUMA
6008 for (i = 0; i < MAX_NUMNODES; i++)
6009 init_numa_sched_groups_power(sched_group_nodes[i]);
6010
6011 if (sd_allnodes) {
6012 struct sched_group *sg;
6013
6014 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6015 init_numa_sched_groups_power(sg);
6016 }
6017 #endif
6018
6019 /* Attach the domains */
6020 for_each_cpu_mask(i, *cpu_map) {
6021 struct sched_domain *sd;
6022 #ifdef CONFIG_SCHED_SMT
6023 sd = &per_cpu(cpu_domains, i);
6024 #elif defined(CONFIG_SCHED_MC)
6025 sd = &per_cpu(core_domains, i);
6026 #else
6027 sd = &per_cpu(phys_domains, i);
6028 #endif
6029 cpu_attach_domain(sd, i);
6030 }
6031
6032 return 0;
6033
6034 #ifdef CONFIG_NUMA
6035 error:
6036 free_sched_groups(cpu_map);
6037 return -ENOMEM;
6038 #endif
6039 }
6040 /*
6041 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6042 */
6043 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6044 {
6045 cpumask_t cpu_default_map;
6046 int err;
6047
6048 /*
6049 * Setup mask for cpus without special case scheduling requirements.
6050 * For now this just excludes isolated cpus, but could be used to
6051 * exclude other special cases in the future.
6052 */
6053 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6054
6055 err = build_sched_domains(&cpu_default_map);
6056
6057 return err;
6058 }
6059
6060 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6061 {
6062 free_sched_groups(cpu_map);
6063 }
6064
6065 /*
6066 * Detach sched domains from a group of cpus specified in cpu_map
6067 * These cpus will now be attached to the NULL domain
6068 */
6069 static void detach_destroy_domains(const cpumask_t *cpu_map)
6070 {
6071 int i;
6072
6073 for_each_cpu_mask(i, *cpu_map)
6074 cpu_attach_domain(NULL, i);
6075 synchronize_sched();
6076 arch_destroy_sched_domains(cpu_map);
6077 }
6078
6079 /*
6080 * Partition sched domains as specified by the cpumasks below.
6081 * This attaches all cpus from the cpumasks to the NULL domain,
6082 * waits for a RCU quiescent period, recalculates sched
6083 * domain information and then attaches them back to the
6084 * correct sched domains
6085 * Call with hotplug lock held
6086 */
6087 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6088 {
6089 cpumask_t change_map;
6090 int err = 0;
6091
6092 cpus_and(*partition1, *partition1, cpu_online_map);
6093 cpus_and(*partition2, *partition2, cpu_online_map);
6094 cpus_or(change_map, *partition1, *partition2);
6095
6096 /* Detach sched domains from all of the affected cpus */
6097 detach_destroy_domains(&change_map);
6098 if (!cpus_empty(*partition1))
6099 err = build_sched_domains(partition1);
6100 if (!err && !cpus_empty(*partition2))
6101 err = build_sched_domains(partition2);
6102
6103 return err;
6104 }
6105
6106 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6107 int arch_reinit_sched_domains(void)
6108 {
6109 int err;
6110
6111 mutex_lock(&sched_hotcpu_mutex);
6112 detach_destroy_domains(&cpu_online_map);
6113 err = arch_init_sched_domains(&cpu_online_map);
6114 mutex_unlock(&sched_hotcpu_mutex);
6115
6116 return err;
6117 }
6118
6119 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6120 {
6121 int ret;
6122
6123 if (buf[0] != '0' && buf[0] != '1')
6124 return -EINVAL;
6125
6126 if (smt)
6127 sched_smt_power_savings = (buf[0] == '1');
6128 else
6129 sched_mc_power_savings = (buf[0] == '1');
6130
6131 ret = arch_reinit_sched_domains();
6132
6133 return ret ? ret : count;
6134 }
6135
6136 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6137 {
6138 int err = 0;
6139
6140 #ifdef CONFIG_SCHED_SMT
6141 if (smt_capable())
6142 err = sysfs_create_file(&cls->kset.kobj,
6143 &attr_sched_smt_power_savings.attr);
6144 #endif
6145 #ifdef CONFIG_SCHED_MC
6146 if (!err && mc_capable())
6147 err = sysfs_create_file(&cls->kset.kobj,
6148 &attr_sched_mc_power_savings.attr);
6149 #endif
6150 return err;
6151 }
6152 #endif
6153
6154 #ifdef CONFIG_SCHED_MC
6155 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6156 {
6157 return sprintf(page, "%u\n", sched_mc_power_savings);
6158 }
6159 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6160 const char *buf, size_t count)
6161 {
6162 return sched_power_savings_store(buf, count, 0);
6163 }
6164 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6165 sched_mc_power_savings_store);
6166 #endif
6167
6168 #ifdef CONFIG_SCHED_SMT
6169 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6170 {
6171 return sprintf(page, "%u\n", sched_smt_power_savings);
6172 }
6173 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6174 const char *buf, size_t count)
6175 {
6176 return sched_power_savings_store(buf, count, 1);
6177 }
6178 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6179 sched_smt_power_savings_store);
6180 #endif
6181
6182 /*
6183 * Force a reinitialization of the sched domains hierarchy. The domains
6184 * and groups cannot be updated in place without racing with the balancing
6185 * code, so we temporarily attach all running cpus to the NULL domain
6186 * which will prevent rebalancing while the sched domains are recalculated.
6187 */
6188 static int update_sched_domains(struct notifier_block *nfb,
6189 unsigned long action, void *hcpu)
6190 {
6191 switch (action) {
6192 case CPU_UP_PREPARE:
6193 case CPU_UP_PREPARE_FROZEN:
6194 case CPU_DOWN_PREPARE:
6195 case CPU_DOWN_PREPARE_FROZEN:
6196 detach_destroy_domains(&cpu_online_map);
6197 return NOTIFY_OK;
6198
6199 case CPU_UP_CANCELED:
6200 case CPU_UP_CANCELED_FROZEN:
6201 case CPU_DOWN_FAILED:
6202 case CPU_DOWN_FAILED_FROZEN:
6203 case CPU_ONLINE:
6204 case CPU_ONLINE_FROZEN:
6205 case CPU_DEAD:
6206 case CPU_DEAD_FROZEN:
6207 /*
6208 * Fall through and re-initialise the domains.
6209 */
6210 break;
6211 default:
6212 return NOTIFY_DONE;
6213 }
6214
6215 /* The hotplug lock is already held by cpu_up/cpu_down */
6216 arch_init_sched_domains(&cpu_online_map);
6217
6218 return NOTIFY_OK;
6219 }
6220
6221 void __init sched_init_smp(void)
6222 {
6223 cpumask_t non_isolated_cpus;
6224
6225 mutex_lock(&sched_hotcpu_mutex);
6226 arch_init_sched_domains(&cpu_online_map);
6227 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6228 if (cpus_empty(non_isolated_cpus))
6229 cpu_set(smp_processor_id(), non_isolated_cpus);
6230 mutex_unlock(&sched_hotcpu_mutex);
6231 /* XXX: Theoretical race here - CPU may be hotplugged now */
6232 hotcpu_notifier(update_sched_domains, 0);
6233
6234 /* Move init over to a non-isolated CPU */
6235 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6236 BUG();
6237 sched_init_granularity();
6238 }
6239 #else
6240 void __init sched_init_smp(void)
6241 {
6242 sched_init_granularity();
6243 }
6244 #endif /* CONFIG_SMP */
6245
6246 int in_sched_functions(unsigned long addr)
6247 {
6248 /* Linker adds these: start and end of __sched functions */
6249 extern char __sched_text_start[], __sched_text_end[];
6250
6251 return in_lock_functions(addr) ||
6252 (addr >= (unsigned long)__sched_text_start
6253 && addr < (unsigned long)__sched_text_end);
6254 }
6255
6256 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6257 {
6258 cfs_rq->tasks_timeline = RB_ROOT;
6259 cfs_rq->fair_clock = 1;
6260 #ifdef CONFIG_FAIR_GROUP_SCHED
6261 cfs_rq->rq = rq;
6262 #endif
6263 }
6264
6265 void __init sched_init(void)
6266 {
6267 u64 now = sched_clock();
6268 int highest_cpu = 0;
6269 int i, j;
6270
6271 /*
6272 * Link up the scheduling class hierarchy:
6273 */
6274 rt_sched_class.next = &fair_sched_class;
6275 fair_sched_class.next = &idle_sched_class;
6276 idle_sched_class.next = NULL;
6277
6278 for_each_possible_cpu(i) {
6279 struct rt_prio_array *array;
6280 struct rq *rq;
6281
6282 rq = cpu_rq(i);
6283 spin_lock_init(&rq->lock);
6284 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6285 rq->nr_running = 0;
6286 rq->clock = 1;
6287 init_cfs_rq(&rq->cfs, rq);
6288 #ifdef CONFIG_FAIR_GROUP_SCHED
6289 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6290 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6291 #endif
6292 rq->ls.load_update_last = now;
6293 rq->ls.load_update_start = now;
6294
6295 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6296 rq->cpu_load[j] = 0;
6297 #ifdef CONFIG_SMP
6298 rq->sd = NULL;
6299 rq->active_balance = 0;
6300 rq->next_balance = jiffies;
6301 rq->push_cpu = 0;
6302 rq->cpu = i;
6303 rq->migration_thread = NULL;
6304 INIT_LIST_HEAD(&rq->migration_queue);
6305 #endif
6306 atomic_set(&rq->nr_iowait, 0);
6307
6308 array = &rq->rt.active;
6309 for (j = 0; j < MAX_RT_PRIO; j++) {
6310 INIT_LIST_HEAD(array->queue + j);
6311 __clear_bit(j, array->bitmap);
6312 }
6313 highest_cpu = i;
6314 /* delimiter for bitsearch: */
6315 __set_bit(MAX_RT_PRIO, array->bitmap);
6316 }
6317
6318 set_load_weight(&init_task);
6319
6320 #ifdef CONFIG_SMP
6321 nr_cpu_ids = highest_cpu + 1;
6322 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6323 #endif
6324
6325 #ifdef CONFIG_RT_MUTEXES
6326 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6327 #endif
6328
6329 /*
6330 * The boot idle thread does lazy MMU switching as well:
6331 */
6332 atomic_inc(&init_mm.mm_count);
6333 enter_lazy_tlb(&init_mm, current);
6334
6335 /*
6336 * Make us the idle thread. Technically, schedule() should not be
6337 * called from this thread, however somewhere below it might be,
6338 * but because we are the idle thread, we just pick up running again
6339 * when this runqueue becomes "idle".
6340 */
6341 init_idle(current, smp_processor_id());
6342 /*
6343 * During early bootup we pretend to be a normal task:
6344 */
6345 current->sched_class = &fair_sched_class;
6346 }
6347
6348 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6349 void __might_sleep(char *file, int line)
6350 {
6351 #ifdef in_atomic
6352 static unsigned long prev_jiffy; /* ratelimiting */
6353
6354 if ((in_atomic() || irqs_disabled()) &&
6355 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6356 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6357 return;
6358 prev_jiffy = jiffies;
6359 printk(KERN_ERR "BUG: sleeping function called from invalid"
6360 " context at %s:%d\n", file, line);
6361 printk("in_atomic():%d, irqs_disabled():%d\n",
6362 in_atomic(), irqs_disabled());
6363 debug_show_held_locks(current);
6364 if (irqs_disabled())
6365 print_irqtrace_events(current);
6366 dump_stack();
6367 }
6368 #endif
6369 }
6370 EXPORT_SYMBOL(__might_sleep);
6371 #endif
6372
6373 #ifdef CONFIG_MAGIC_SYSRQ
6374 void normalize_rt_tasks(void)
6375 {
6376 struct task_struct *g, *p;
6377 unsigned long flags;
6378 struct rq *rq;
6379 int on_rq;
6380
6381 read_lock_irq(&tasklist_lock);
6382 do_each_thread(g, p) {
6383 p->se.fair_key = 0;
6384 p->se.wait_runtime = 0;
6385 p->se.wait_start_fair = 0;
6386 p->se.wait_start = 0;
6387 p->se.exec_start = 0;
6388 p->se.sleep_start = 0;
6389 p->se.sleep_start_fair = 0;
6390 p->se.block_start = 0;
6391 task_rq(p)->cfs.fair_clock = 0;
6392 task_rq(p)->clock = 0;
6393
6394 if (!rt_task(p)) {
6395 /*
6396 * Renice negative nice level userspace
6397 * tasks back to 0:
6398 */
6399 if (TASK_NICE(p) < 0 && p->mm)
6400 set_user_nice(p, 0);
6401 continue;
6402 }
6403
6404 spin_lock_irqsave(&p->pi_lock, flags);
6405 rq = __task_rq_lock(p);
6406 #ifdef CONFIG_SMP
6407 /*
6408 * Do not touch the migration thread:
6409 */
6410 if (p == rq->migration_thread)
6411 goto out_unlock;
6412 #endif
6413
6414 on_rq = p->se.on_rq;
6415 if (on_rq)
6416 deactivate_task(task_rq(p), p, 0);
6417 __setscheduler(rq, p, SCHED_NORMAL, 0);
6418 if (on_rq) {
6419 activate_task(task_rq(p), p, 0);
6420 resched_task(rq->curr);
6421 }
6422 #ifdef CONFIG_SMP
6423 out_unlock:
6424 #endif
6425 __task_rq_unlock(rq);
6426 spin_unlock_irqrestore(&p->pi_lock, flags);
6427 } while_each_thread(g, p);
6428
6429 read_unlock_irq(&tasklist_lock);
6430 }
6431
6432 #endif /* CONFIG_MAGIC_SYSRQ */
6433
6434 #ifdef CONFIG_IA64
6435 /*
6436 * These functions are only useful for the IA64 MCA handling.
6437 *
6438 * They can only be called when the whole system has been
6439 * stopped - every CPU needs to be quiescent, and no scheduling
6440 * activity can take place. Using them for anything else would
6441 * be a serious bug, and as a result, they aren't even visible
6442 * under any other configuration.
6443 */
6444
6445 /**
6446 * curr_task - return the current task for a given cpu.
6447 * @cpu: the processor in question.
6448 *
6449 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6450 */
6451 struct task_struct *curr_task(int cpu)
6452 {
6453 return cpu_curr(cpu);
6454 }
6455
6456 /**
6457 * set_curr_task - set the current task for a given cpu.
6458 * @cpu: the processor in question.
6459 * @p: the task pointer to set.
6460 *
6461 * Description: This function must only be used when non-maskable interrupts
6462 * are serviced on a separate stack. It allows the architecture to switch the
6463 * notion of the current task on a cpu in a non-blocking manner. This function
6464 * must be called with all CPU's synchronized, and interrupts disabled, the
6465 * and caller must save the original value of the current task (see
6466 * curr_task() above) and restore that value before reenabling interrupts and
6467 * re-starting the system.
6468 *
6469 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6470 */
6471 void set_curr_task(int cpu, struct task_struct *p)
6472 {
6473 cpu_curr(cpu) = p;
6474 }
6475
6476 #endif