]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched.c
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/sparc-2.6
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64
65 #include <asm/tlb.h>
66
67 /*
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72 unsigned long long __attribute__((weak)) sched_clock(void)
73 {
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75 }
76
77 /*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86 /*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95 /*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
101 #define NICE_0_LOAD SCHED_LOAD_SCALE
102 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
104 /*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112 #define DEF_TIMESLICE (100 * HZ / 1000)
113
114 #ifdef CONFIG_SMP
115 /*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120 {
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122 }
123
124 /*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129 {
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132 }
133 #endif
134
135 #define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
137
138 /*
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
141 */
142 static unsigned int static_prio_timeslice(int static_prio)
143 {
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
151 }
152
153 static inline int rt_policy(int policy)
154 {
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158 }
159
160 static inline int task_has_rt_policy(struct task_struct *p)
161 {
162 return rt_policy(p->policy);
163 }
164
165 /*
166 * This is the priority-queue data structure of the RT scheduling class:
167 */
168 struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171 };
172
173 struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177 };
178
179 /* CFS-related fields in a runqueue */
180 struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193 #ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208 #endif
209 };
210
211 /* Real-Time classes' related field in a runqueue: */
212 struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216 };
217
218 /*
219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
225 struct rq {
226 spinlock_t lock; /* runqueue lock */
227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235 unsigned char idle_at_tick;
236 #ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238 #endif
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244 #ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
246 #endif
247 struct rt_rq rt;
248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
257 struct task_struct *curr, *idle;
258 unsigned long next_balance;
259 struct mm_struct *prev_mm;
260
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
266
267 atomic_t nr_iowait;
268
269 #ifdef CONFIG_SMP
270 struct sched_domain *sd;
271
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
275 int cpu; /* cpu of this runqueue */
276
277 struct task_struct *migration_thread;
278 struct list_head migration_queue;
279 #endif
280
281 #ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
284
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
290
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
295
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299 #endif
300 struct lock_class_key rq_lock_key;
301 };
302
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
304 static DEFINE_MUTEX(sched_hotcpu_mutex);
305
306 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
307 {
308 rq->curr->sched_class->check_preempt_curr(rq, p);
309 }
310
311 static inline int cpu_of(struct rq *rq)
312 {
313 #ifdef CONFIG_SMP
314 return rq->cpu;
315 #else
316 return 0;
317 #endif
318 }
319
320 /*
321 * Update the per-runqueue clock, as finegrained as the platform can give
322 * us, but without assuming monotonicity, etc.:
323 */
324 static void __update_rq_clock(struct rq *rq)
325 {
326 u64 prev_raw = rq->prev_clock_raw;
327 u64 now = sched_clock();
328 s64 delta = now - prev_raw;
329 u64 clock = rq->clock;
330
331 #ifdef CONFIG_SCHED_DEBUG
332 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
333 #endif
334 /*
335 * Protect against sched_clock() occasionally going backwards:
336 */
337 if (unlikely(delta < 0)) {
338 clock++;
339 rq->clock_warps++;
340 } else {
341 /*
342 * Catch too large forward jumps too:
343 */
344 if (unlikely(delta > 2*TICK_NSEC)) {
345 clock++;
346 rq->clock_overflows++;
347 } else {
348 if (unlikely(delta > rq->clock_max_delta))
349 rq->clock_max_delta = delta;
350 clock += delta;
351 }
352 }
353
354 rq->prev_clock_raw = now;
355 rq->clock = clock;
356 }
357
358 static void update_rq_clock(struct rq *rq)
359 {
360 if (likely(smp_processor_id() == cpu_of(rq)))
361 __update_rq_clock(rq);
362 }
363
364 /*
365 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
366 * See detach_destroy_domains: synchronize_sched for details.
367 *
368 * The domain tree of any CPU may only be accessed from within
369 * preempt-disabled sections.
370 */
371 #define for_each_domain(cpu, __sd) \
372 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
373
374 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
375 #define this_rq() (&__get_cpu_var(runqueues))
376 #define task_rq(p) cpu_rq(task_cpu(p))
377 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
378
379 /*
380 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
381 * clock constructed from sched_clock():
382 */
383 unsigned long long cpu_clock(int cpu)
384 {
385 unsigned long long now;
386 unsigned long flags;
387 struct rq *rq;
388
389 local_irq_save(flags);
390 rq = cpu_rq(cpu);
391 update_rq_clock(rq);
392 now = rq->clock;
393 local_irq_restore(flags);
394
395 return now;
396 }
397
398 #ifdef CONFIG_FAIR_GROUP_SCHED
399 /* Change a task's ->cfs_rq if it moves across CPUs */
400 static inline void set_task_cfs_rq(struct task_struct *p)
401 {
402 p->se.cfs_rq = &task_rq(p)->cfs;
403 }
404 #else
405 static inline void set_task_cfs_rq(struct task_struct *p)
406 {
407 }
408 #endif
409
410 #ifndef prepare_arch_switch
411 # define prepare_arch_switch(next) do { } while (0)
412 #endif
413 #ifndef finish_arch_switch
414 # define finish_arch_switch(prev) do { } while (0)
415 #endif
416
417 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
418 static inline int task_running(struct rq *rq, struct task_struct *p)
419 {
420 return rq->curr == p;
421 }
422
423 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
424 {
425 }
426
427 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
428 {
429 #ifdef CONFIG_DEBUG_SPINLOCK
430 /* this is a valid case when another task releases the spinlock */
431 rq->lock.owner = current;
432 #endif
433 /*
434 * If we are tracking spinlock dependencies then we have to
435 * fix up the runqueue lock - which gets 'carried over' from
436 * prev into current:
437 */
438 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
439
440 spin_unlock_irq(&rq->lock);
441 }
442
443 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
444 static inline int task_running(struct rq *rq, struct task_struct *p)
445 {
446 #ifdef CONFIG_SMP
447 return p->oncpu;
448 #else
449 return rq->curr == p;
450 #endif
451 }
452
453 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
454 {
455 #ifdef CONFIG_SMP
456 /*
457 * We can optimise this out completely for !SMP, because the
458 * SMP rebalancing from interrupt is the only thing that cares
459 * here.
460 */
461 next->oncpu = 1;
462 #endif
463 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
464 spin_unlock_irq(&rq->lock);
465 #else
466 spin_unlock(&rq->lock);
467 #endif
468 }
469
470 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
471 {
472 #ifdef CONFIG_SMP
473 /*
474 * After ->oncpu is cleared, the task can be moved to a different CPU.
475 * We must ensure this doesn't happen until the switch is completely
476 * finished.
477 */
478 smp_wmb();
479 prev->oncpu = 0;
480 #endif
481 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
482 local_irq_enable();
483 #endif
484 }
485 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
486
487 /*
488 * __task_rq_lock - lock the runqueue a given task resides on.
489 * Must be called interrupts disabled.
490 */
491 static inline struct rq *__task_rq_lock(struct task_struct *p)
492 __acquires(rq->lock)
493 {
494 struct rq *rq;
495
496 repeat_lock_task:
497 rq = task_rq(p);
498 spin_lock(&rq->lock);
499 if (unlikely(rq != task_rq(p))) {
500 spin_unlock(&rq->lock);
501 goto repeat_lock_task;
502 }
503 return rq;
504 }
505
506 /*
507 * task_rq_lock - lock the runqueue a given task resides on and disable
508 * interrupts. Note the ordering: we can safely lookup the task_rq without
509 * explicitly disabling preemption.
510 */
511 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
512 __acquires(rq->lock)
513 {
514 struct rq *rq;
515
516 repeat_lock_task:
517 local_irq_save(*flags);
518 rq = task_rq(p);
519 spin_lock(&rq->lock);
520 if (unlikely(rq != task_rq(p))) {
521 spin_unlock_irqrestore(&rq->lock, *flags);
522 goto repeat_lock_task;
523 }
524 return rq;
525 }
526
527 static inline void __task_rq_unlock(struct rq *rq)
528 __releases(rq->lock)
529 {
530 spin_unlock(&rq->lock);
531 }
532
533 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
534 __releases(rq->lock)
535 {
536 spin_unlock_irqrestore(&rq->lock, *flags);
537 }
538
539 /*
540 * this_rq_lock - lock this runqueue and disable interrupts.
541 */
542 static inline struct rq *this_rq_lock(void)
543 __acquires(rq->lock)
544 {
545 struct rq *rq;
546
547 local_irq_disable();
548 rq = this_rq();
549 spin_lock(&rq->lock);
550
551 return rq;
552 }
553
554 /*
555 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
556 */
557 void sched_clock_unstable_event(void)
558 {
559 unsigned long flags;
560 struct rq *rq;
561
562 rq = task_rq_lock(current, &flags);
563 rq->prev_clock_raw = sched_clock();
564 rq->clock_unstable_events++;
565 task_rq_unlock(rq, &flags);
566 }
567
568 /*
569 * resched_task - mark a task 'to be rescheduled now'.
570 *
571 * On UP this means the setting of the need_resched flag, on SMP it
572 * might also involve a cross-CPU call to trigger the scheduler on
573 * the target CPU.
574 */
575 #ifdef CONFIG_SMP
576
577 #ifndef tsk_is_polling
578 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
579 #endif
580
581 static void resched_task(struct task_struct *p)
582 {
583 int cpu;
584
585 assert_spin_locked(&task_rq(p)->lock);
586
587 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
588 return;
589
590 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
591
592 cpu = task_cpu(p);
593 if (cpu == smp_processor_id())
594 return;
595
596 /* NEED_RESCHED must be visible before we test polling */
597 smp_mb();
598 if (!tsk_is_polling(p))
599 smp_send_reschedule(cpu);
600 }
601
602 static void resched_cpu(int cpu)
603 {
604 struct rq *rq = cpu_rq(cpu);
605 unsigned long flags;
606
607 if (!spin_trylock_irqsave(&rq->lock, flags))
608 return;
609 resched_task(cpu_curr(cpu));
610 spin_unlock_irqrestore(&rq->lock, flags);
611 }
612 #else
613 static inline void resched_task(struct task_struct *p)
614 {
615 assert_spin_locked(&task_rq(p)->lock);
616 set_tsk_need_resched(p);
617 }
618 #endif
619
620 static u64 div64_likely32(u64 divident, unsigned long divisor)
621 {
622 #if BITS_PER_LONG == 32
623 if (likely(divident <= 0xffffffffULL))
624 return (u32)divident / divisor;
625 do_div(divident, divisor);
626
627 return divident;
628 #else
629 return divident / divisor;
630 #endif
631 }
632
633 #if BITS_PER_LONG == 32
634 # define WMULT_CONST (~0UL)
635 #else
636 # define WMULT_CONST (1UL << 32)
637 #endif
638
639 #define WMULT_SHIFT 32
640
641 /*
642 * Shift right and round:
643 */
644 #define RSR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
645
646 static unsigned long
647 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
648 struct load_weight *lw)
649 {
650 u64 tmp;
651
652 if (unlikely(!lw->inv_weight))
653 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
654
655 tmp = (u64)delta_exec * weight;
656 /*
657 * Check whether we'd overflow the 64-bit multiplication:
658 */
659 if (unlikely(tmp > WMULT_CONST))
660 tmp = RSR(RSR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
661 WMULT_SHIFT/2);
662 else
663 tmp = RSR(tmp * lw->inv_weight, WMULT_SHIFT);
664
665 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
666 }
667
668 static inline unsigned long
669 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
670 {
671 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
672 }
673
674 static void update_load_add(struct load_weight *lw, unsigned long inc)
675 {
676 lw->weight += inc;
677 lw->inv_weight = 0;
678 }
679
680 static void update_load_sub(struct load_weight *lw, unsigned long dec)
681 {
682 lw->weight -= dec;
683 lw->inv_weight = 0;
684 }
685
686 /*
687 * To aid in avoiding the subversion of "niceness" due to uneven distribution
688 * of tasks with abnormal "nice" values across CPUs the contribution that
689 * each task makes to its run queue's load is weighted according to its
690 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
691 * scaled version of the new time slice allocation that they receive on time
692 * slice expiry etc.
693 */
694
695 #define WEIGHT_IDLEPRIO 2
696 #define WMULT_IDLEPRIO (1 << 31)
697
698 /*
699 * Nice levels are multiplicative, with a gentle 10% change for every
700 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
701 * nice 1, it will get ~10% less CPU time than another CPU-bound task
702 * that remained on nice 0.
703 *
704 * The "10% effect" is relative and cumulative: from _any_ nice level,
705 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
706 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
707 * If a task goes up by ~10% and another task goes down by ~10% then
708 * the relative distance between them is ~25%.)
709 */
710 static const int prio_to_weight[40] = {
711 /* -20 */ 88761, 71755, 56483, 46273, 36291,
712 /* -15 */ 29154, 23254, 18705, 14949, 11916,
713 /* -10 */ 9548, 7620, 6100, 4904, 3906,
714 /* -5 */ 3121, 2501, 1991, 1586, 1277,
715 /* 0 */ 1024, 820, 655, 526, 423,
716 /* 5 */ 335, 272, 215, 172, 137,
717 /* 10 */ 110, 87, 70, 56, 45,
718 /* 15 */ 36, 29, 23, 18, 15,
719 };
720
721 /*
722 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
723 *
724 * In cases where the weight does not change often, we can use the
725 * precalculated inverse to speed up arithmetics by turning divisions
726 * into multiplications:
727 */
728 static const u32 prio_to_wmult[40] = {
729 /* -20 */ 48388, 59856, 76040, 92818, 118348,
730 /* -15 */ 147320, 184698, 229616, 287308, 360437,
731 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
732 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
733 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
734 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
735 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
736 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
737 };
738
739 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
740
741 /*
742 * runqueue iterator, to support SMP load-balancing between different
743 * scheduling classes, without having to expose their internal data
744 * structures to the load-balancing proper:
745 */
746 struct rq_iterator {
747 void *arg;
748 struct task_struct *(*start)(void *);
749 struct task_struct *(*next)(void *);
750 };
751
752 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
753 unsigned long max_nr_move, unsigned long max_load_move,
754 struct sched_domain *sd, enum cpu_idle_type idle,
755 int *all_pinned, unsigned long *load_moved,
756 int *this_best_prio, struct rq_iterator *iterator);
757
758 #include "sched_stats.h"
759 #include "sched_rt.c"
760 #include "sched_fair.c"
761 #include "sched_idletask.c"
762 #ifdef CONFIG_SCHED_DEBUG
763 # include "sched_debug.c"
764 #endif
765
766 #define sched_class_highest (&rt_sched_class)
767
768 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
769 {
770 if (rq->curr != rq->idle && ls->load.weight) {
771 ls->delta_exec += ls->delta_stat;
772 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
773 ls->delta_stat = 0;
774 }
775 }
776
777 /*
778 * Update delta_exec, delta_fair fields for rq.
779 *
780 * delta_fair clock advances at a rate inversely proportional to
781 * total load (rq->ls.load.weight) on the runqueue, while
782 * delta_exec advances at the same rate as wall-clock (provided
783 * cpu is not idle).
784 *
785 * delta_exec / delta_fair is a measure of the (smoothened) load on this
786 * runqueue over any given interval. This (smoothened) load is used
787 * during load balance.
788 *
789 * This function is called /before/ updating rq->ls.load
790 * and when switching tasks.
791 */
792 static void update_curr_load(struct rq *rq)
793 {
794 struct load_stat *ls = &rq->ls;
795 u64 start;
796
797 start = ls->load_update_start;
798 ls->load_update_start = rq->clock;
799 ls->delta_stat += rq->clock - start;
800 /*
801 * Stagger updates to ls->delta_fair. Very frequent updates
802 * can be expensive.
803 */
804 if (ls->delta_stat >= sysctl_sched_stat_granularity)
805 __update_curr_load(rq, ls);
806 }
807
808 static inline void inc_load(struct rq *rq, const struct task_struct *p)
809 {
810 update_curr_load(rq);
811 update_load_add(&rq->ls.load, p->se.load.weight);
812 }
813
814 static inline void dec_load(struct rq *rq, const struct task_struct *p)
815 {
816 update_curr_load(rq);
817 update_load_sub(&rq->ls.load, p->se.load.weight);
818 }
819
820 static void inc_nr_running(struct task_struct *p, struct rq *rq)
821 {
822 rq->nr_running++;
823 inc_load(rq, p);
824 }
825
826 static void dec_nr_running(struct task_struct *p, struct rq *rq)
827 {
828 rq->nr_running--;
829 dec_load(rq, p);
830 }
831
832 static void set_load_weight(struct task_struct *p)
833 {
834 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
835 p->se.wait_runtime = 0;
836
837 if (task_has_rt_policy(p)) {
838 p->se.load.weight = prio_to_weight[0] * 2;
839 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
840 return;
841 }
842
843 /*
844 * SCHED_IDLE tasks get minimal weight:
845 */
846 if (p->policy == SCHED_IDLE) {
847 p->se.load.weight = WEIGHT_IDLEPRIO;
848 p->se.load.inv_weight = WMULT_IDLEPRIO;
849 return;
850 }
851
852 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
853 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
854 }
855
856 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
857 {
858 sched_info_queued(p);
859 p->sched_class->enqueue_task(rq, p, wakeup);
860 p->se.on_rq = 1;
861 }
862
863 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
864 {
865 p->sched_class->dequeue_task(rq, p, sleep);
866 p->se.on_rq = 0;
867 }
868
869 /*
870 * __normal_prio - return the priority that is based on the static prio
871 */
872 static inline int __normal_prio(struct task_struct *p)
873 {
874 return p->static_prio;
875 }
876
877 /*
878 * Calculate the expected normal priority: i.e. priority
879 * without taking RT-inheritance into account. Might be
880 * boosted by interactivity modifiers. Changes upon fork,
881 * setprio syscalls, and whenever the interactivity
882 * estimator recalculates.
883 */
884 static inline int normal_prio(struct task_struct *p)
885 {
886 int prio;
887
888 if (task_has_rt_policy(p))
889 prio = MAX_RT_PRIO-1 - p->rt_priority;
890 else
891 prio = __normal_prio(p);
892 return prio;
893 }
894
895 /*
896 * Calculate the current priority, i.e. the priority
897 * taken into account by the scheduler. This value might
898 * be boosted by RT tasks, or might be boosted by
899 * interactivity modifiers. Will be RT if the task got
900 * RT-boosted. If not then it returns p->normal_prio.
901 */
902 static int effective_prio(struct task_struct *p)
903 {
904 p->normal_prio = normal_prio(p);
905 /*
906 * If we are RT tasks or we were boosted to RT priority,
907 * keep the priority unchanged. Otherwise, update priority
908 * to the normal priority:
909 */
910 if (!rt_prio(p->prio))
911 return p->normal_prio;
912 return p->prio;
913 }
914
915 /*
916 * activate_task - move a task to the runqueue.
917 */
918 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
919 {
920 if (p->state == TASK_UNINTERRUPTIBLE)
921 rq->nr_uninterruptible--;
922
923 enqueue_task(rq, p, wakeup);
924 inc_nr_running(p, rq);
925 }
926
927 /*
928 * activate_idle_task - move idle task to the _front_ of runqueue.
929 */
930 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
931 {
932 update_rq_clock(rq);
933
934 if (p->state == TASK_UNINTERRUPTIBLE)
935 rq->nr_uninterruptible--;
936
937 enqueue_task(rq, p, 0);
938 inc_nr_running(p, rq);
939 }
940
941 /*
942 * deactivate_task - remove a task from the runqueue.
943 */
944 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
945 {
946 if (p->state == TASK_UNINTERRUPTIBLE)
947 rq->nr_uninterruptible++;
948
949 dequeue_task(rq, p, sleep);
950 dec_nr_running(p, rq);
951 }
952
953 /**
954 * task_curr - is this task currently executing on a CPU?
955 * @p: the task in question.
956 */
957 inline int task_curr(const struct task_struct *p)
958 {
959 return cpu_curr(task_cpu(p)) == p;
960 }
961
962 /* Used instead of source_load when we know the type == 0 */
963 unsigned long weighted_cpuload(const int cpu)
964 {
965 return cpu_rq(cpu)->ls.load.weight;
966 }
967
968 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
969 {
970 #ifdef CONFIG_SMP
971 task_thread_info(p)->cpu = cpu;
972 set_task_cfs_rq(p);
973 #endif
974 }
975
976 #ifdef CONFIG_SMP
977
978 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
979 {
980 int old_cpu = task_cpu(p);
981 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
982 u64 clock_offset, fair_clock_offset;
983
984 clock_offset = old_rq->clock - new_rq->clock;
985 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
986
987 if (p->se.wait_start_fair)
988 p->se.wait_start_fair -= fair_clock_offset;
989 if (p->se.sleep_start_fair)
990 p->se.sleep_start_fair -= fair_clock_offset;
991
992 #ifdef CONFIG_SCHEDSTATS
993 if (p->se.wait_start)
994 p->se.wait_start -= clock_offset;
995 if (p->se.sleep_start)
996 p->se.sleep_start -= clock_offset;
997 if (p->se.block_start)
998 p->se.block_start -= clock_offset;
999 #endif
1000
1001 __set_task_cpu(p, new_cpu);
1002 }
1003
1004 struct migration_req {
1005 struct list_head list;
1006
1007 struct task_struct *task;
1008 int dest_cpu;
1009
1010 struct completion done;
1011 };
1012
1013 /*
1014 * The task's runqueue lock must be held.
1015 * Returns true if you have to wait for migration thread.
1016 */
1017 static int
1018 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1019 {
1020 struct rq *rq = task_rq(p);
1021
1022 /*
1023 * If the task is not on a runqueue (and not running), then
1024 * it is sufficient to simply update the task's cpu field.
1025 */
1026 if (!p->se.on_rq && !task_running(rq, p)) {
1027 set_task_cpu(p, dest_cpu);
1028 return 0;
1029 }
1030
1031 init_completion(&req->done);
1032 req->task = p;
1033 req->dest_cpu = dest_cpu;
1034 list_add(&req->list, &rq->migration_queue);
1035
1036 return 1;
1037 }
1038
1039 /*
1040 * wait_task_inactive - wait for a thread to unschedule.
1041 *
1042 * The caller must ensure that the task *will* unschedule sometime soon,
1043 * else this function might spin for a *long* time. This function can't
1044 * be called with interrupts off, or it may introduce deadlock with
1045 * smp_call_function() if an IPI is sent by the same process we are
1046 * waiting to become inactive.
1047 */
1048 void wait_task_inactive(struct task_struct *p)
1049 {
1050 unsigned long flags;
1051 int running, on_rq;
1052 struct rq *rq;
1053
1054 repeat:
1055 /*
1056 * We do the initial early heuristics without holding
1057 * any task-queue locks at all. We'll only try to get
1058 * the runqueue lock when things look like they will
1059 * work out!
1060 */
1061 rq = task_rq(p);
1062
1063 /*
1064 * If the task is actively running on another CPU
1065 * still, just relax and busy-wait without holding
1066 * any locks.
1067 *
1068 * NOTE! Since we don't hold any locks, it's not
1069 * even sure that "rq" stays as the right runqueue!
1070 * But we don't care, since "task_running()" will
1071 * return false if the runqueue has changed and p
1072 * is actually now running somewhere else!
1073 */
1074 while (task_running(rq, p))
1075 cpu_relax();
1076
1077 /*
1078 * Ok, time to look more closely! We need the rq
1079 * lock now, to be *sure*. If we're wrong, we'll
1080 * just go back and repeat.
1081 */
1082 rq = task_rq_lock(p, &flags);
1083 running = task_running(rq, p);
1084 on_rq = p->se.on_rq;
1085 task_rq_unlock(rq, &flags);
1086
1087 /*
1088 * Was it really running after all now that we
1089 * checked with the proper locks actually held?
1090 *
1091 * Oops. Go back and try again..
1092 */
1093 if (unlikely(running)) {
1094 cpu_relax();
1095 goto repeat;
1096 }
1097
1098 /*
1099 * It's not enough that it's not actively running,
1100 * it must be off the runqueue _entirely_, and not
1101 * preempted!
1102 *
1103 * So if it wa still runnable (but just not actively
1104 * running right now), it's preempted, and we should
1105 * yield - it could be a while.
1106 */
1107 if (unlikely(on_rq)) {
1108 yield();
1109 goto repeat;
1110 }
1111
1112 /*
1113 * Ahh, all good. It wasn't running, and it wasn't
1114 * runnable, which means that it will never become
1115 * running in the future either. We're all done!
1116 */
1117 }
1118
1119 /***
1120 * kick_process - kick a running thread to enter/exit the kernel
1121 * @p: the to-be-kicked thread
1122 *
1123 * Cause a process which is running on another CPU to enter
1124 * kernel-mode, without any delay. (to get signals handled.)
1125 *
1126 * NOTE: this function doesnt have to take the runqueue lock,
1127 * because all it wants to ensure is that the remote task enters
1128 * the kernel. If the IPI races and the task has been migrated
1129 * to another CPU then no harm is done and the purpose has been
1130 * achieved as well.
1131 */
1132 void kick_process(struct task_struct *p)
1133 {
1134 int cpu;
1135
1136 preempt_disable();
1137 cpu = task_cpu(p);
1138 if ((cpu != smp_processor_id()) && task_curr(p))
1139 smp_send_reschedule(cpu);
1140 preempt_enable();
1141 }
1142
1143 /*
1144 * Return a low guess at the load of a migration-source cpu weighted
1145 * according to the scheduling class and "nice" value.
1146 *
1147 * We want to under-estimate the load of migration sources, to
1148 * balance conservatively.
1149 */
1150 static inline unsigned long source_load(int cpu, int type)
1151 {
1152 struct rq *rq = cpu_rq(cpu);
1153 unsigned long total = weighted_cpuload(cpu);
1154
1155 if (type == 0)
1156 return total;
1157
1158 return min(rq->cpu_load[type-1], total);
1159 }
1160
1161 /*
1162 * Return a high guess at the load of a migration-target cpu weighted
1163 * according to the scheduling class and "nice" value.
1164 */
1165 static inline unsigned long target_load(int cpu, int type)
1166 {
1167 struct rq *rq = cpu_rq(cpu);
1168 unsigned long total = weighted_cpuload(cpu);
1169
1170 if (type == 0)
1171 return total;
1172
1173 return max(rq->cpu_load[type-1], total);
1174 }
1175
1176 /*
1177 * Return the average load per task on the cpu's run queue
1178 */
1179 static inline unsigned long cpu_avg_load_per_task(int cpu)
1180 {
1181 struct rq *rq = cpu_rq(cpu);
1182 unsigned long total = weighted_cpuload(cpu);
1183 unsigned long n = rq->nr_running;
1184
1185 return n ? total / n : SCHED_LOAD_SCALE;
1186 }
1187
1188 /*
1189 * find_idlest_group finds and returns the least busy CPU group within the
1190 * domain.
1191 */
1192 static struct sched_group *
1193 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1194 {
1195 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1196 unsigned long min_load = ULONG_MAX, this_load = 0;
1197 int load_idx = sd->forkexec_idx;
1198 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1199
1200 do {
1201 unsigned long load, avg_load;
1202 int local_group;
1203 int i;
1204
1205 /* Skip over this group if it has no CPUs allowed */
1206 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1207 goto nextgroup;
1208
1209 local_group = cpu_isset(this_cpu, group->cpumask);
1210
1211 /* Tally up the load of all CPUs in the group */
1212 avg_load = 0;
1213
1214 for_each_cpu_mask(i, group->cpumask) {
1215 /* Bias balancing toward cpus of our domain */
1216 if (local_group)
1217 load = source_load(i, load_idx);
1218 else
1219 load = target_load(i, load_idx);
1220
1221 avg_load += load;
1222 }
1223
1224 /* Adjust by relative CPU power of the group */
1225 avg_load = sg_div_cpu_power(group,
1226 avg_load * SCHED_LOAD_SCALE);
1227
1228 if (local_group) {
1229 this_load = avg_load;
1230 this = group;
1231 } else if (avg_load < min_load) {
1232 min_load = avg_load;
1233 idlest = group;
1234 }
1235 nextgroup:
1236 group = group->next;
1237 } while (group != sd->groups);
1238
1239 if (!idlest || 100*this_load < imbalance*min_load)
1240 return NULL;
1241 return idlest;
1242 }
1243
1244 /*
1245 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1246 */
1247 static int
1248 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1249 {
1250 cpumask_t tmp;
1251 unsigned long load, min_load = ULONG_MAX;
1252 int idlest = -1;
1253 int i;
1254
1255 /* Traverse only the allowed CPUs */
1256 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1257
1258 for_each_cpu_mask(i, tmp) {
1259 load = weighted_cpuload(i);
1260
1261 if (load < min_load || (load == min_load && i == this_cpu)) {
1262 min_load = load;
1263 idlest = i;
1264 }
1265 }
1266
1267 return idlest;
1268 }
1269
1270 /*
1271 * sched_balance_self: balance the current task (running on cpu) in domains
1272 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1273 * SD_BALANCE_EXEC.
1274 *
1275 * Balance, ie. select the least loaded group.
1276 *
1277 * Returns the target CPU number, or the same CPU if no balancing is needed.
1278 *
1279 * preempt must be disabled.
1280 */
1281 static int sched_balance_self(int cpu, int flag)
1282 {
1283 struct task_struct *t = current;
1284 struct sched_domain *tmp, *sd = NULL;
1285
1286 for_each_domain(cpu, tmp) {
1287 /*
1288 * If power savings logic is enabled for a domain, stop there.
1289 */
1290 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1291 break;
1292 if (tmp->flags & flag)
1293 sd = tmp;
1294 }
1295
1296 while (sd) {
1297 cpumask_t span;
1298 struct sched_group *group;
1299 int new_cpu, weight;
1300
1301 if (!(sd->flags & flag)) {
1302 sd = sd->child;
1303 continue;
1304 }
1305
1306 span = sd->span;
1307 group = find_idlest_group(sd, t, cpu);
1308 if (!group) {
1309 sd = sd->child;
1310 continue;
1311 }
1312
1313 new_cpu = find_idlest_cpu(group, t, cpu);
1314 if (new_cpu == -1 || new_cpu == cpu) {
1315 /* Now try balancing at a lower domain level of cpu */
1316 sd = sd->child;
1317 continue;
1318 }
1319
1320 /* Now try balancing at a lower domain level of new_cpu */
1321 cpu = new_cpu;
1322 sd = NULL;
1323 weight = cpus_weight(span);
1324 for_each_domain(cpu, tmp) {
1325 if (weight <= cpus_weight(tmp->span))
1326 break;
1327 if (tmp->flags & flag)
1328 sd = tmp;
1329 }
1330 /* while loop will break here if sd == NULL */
1331 }
1332
1333 return cpu;
1334 }
1335
1336 #endif /* CONFIG_SMP */
1337
1338 /*
1339 * wake_idle() will wake a task on an idle cpu if task->cpu is
1340 * not idle and an idle cpu is available. The span of cpus to
1341 * search starts with cpus closest then further out as needed,
1342 * so we always favor a closer, idle cpu.
1343 *
1344 * Returns the CPU we should wake onto.
1345 */
1346 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1347 static int wake_idle(int cpu, struct task_struct *p)
1348 {
1349 cpumask_t tmp;
1350 struct sched_domain *sd;
1351 int i;
1352
1353 /*
1354 * If it is idle, then it is the best cpu to run this task.
1355 *
1356 * This cpu is also the best, if it has more than one task already.
1357 * Siblings must be also busy(in most cases) as they didn't already
1358 * pickup the extra load from this cpu and hence we need not check
1359 * sibling runqueue info. This will avoid the checks and cache miss
1360 * penalities associated with that.
1361 */
1362 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1363 return cpu;
1364
1365 for_each_domain(cpu, sd) {
1366 if (sd->flags & SD_WAKE_IDLE) {
1367 cpus_and(tmp, sd->span, p->cpus_allowed);
1368 for_each_cpu_mask(i, tmp) {
1369 if (idle_cpu(i))
1370 return i;
1371 }
1372 } else {
1373 break;
1374 }
1375 }
1376 return cpu;
1377 }
1378 #else
1379 static inline int wake_idle(int cpu, struct task_struct *p)
1380 {
1381 return cpu;
1382 }
1383 #endif
1384
1385 /***
1386 * try_to_wake_up - wake up a thread
1387 * @p: the to-be-woken-up thread
1388 * @state: the mask of task states that can be woken
1389 * @sync: do a synchronous wakeup?
1390 *
1391 * Put it on the run-queue if it's not already there. The "current"
1392 * thread is always on the run-queue (except when the actual
1393 * re-schedule is in progress), and as such you're allowed to do
1394 * the simpler "current->state = TASK_RUNNING" to mark yourself
1395 * runnable without the overhead of this.
1396 *
1397 * returns failure only if the task is already active.
1398 */
1399 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1400 {
1401 int cpu, this_cpu, success = 0;
1402 unsigned long flags;
1403 long old_state;
1404 struct rq *rq;
1405 #ifdef CONFIG_SMP
1406 struct sched_domain *sd, *this_sd = NULL;
1407 unsigned long load, this_load;
1408 int new_cpu;
1409 #endif
1410
1411 rq = task_rq_lock(p, &flags);
1412 old_state = p->state;
1413 if (!(old_state & state))
1414 goto out;
1415
1416 if (p->se.on_rq)
1417 goto out_running;
1418
1419 cpu = task_cpu(p);
1420 this_cpu = smp_processor_id();
1421
1422 #ifdef CONFIG_SMP
1423 if (unlikely(task_running(rq, p)))
1424 goto out_activate;
1425
1426 new_cpu = cpu;
1427
1428 schedstat_inc(rq, ttwu_cnt);
1429 if (cpu == this_cpu) {
1430 schedstat_inc(rq, ttwu_local);
1431 goto out_set_cpu;
1432 }
1433
1434 for_each_domain(this_cpu, sd) {
1435 if (cpu_isset(cpu, sd->span)) {
1436 schedstat_inc(sd, ttwu_wake_remote);
1437 this_sd = sd;
1438 break;
1439 }
1440 }
1441
1442 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1443 goto out_set_cpu;
1444
1445 /*
1446 * Check for affine wakeup and passive balancing possibilities.
1447 */
1448 if (this_sd) {
1449 int idx = this_sd->wake_idx;
1450 unsigned int imbalance;
1451
1452 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1453
1454 load = source_load(cpu, idx);
1455 this_load = target_load(this_cpu, idx);
1456
1457 new_cpu = this_cpu; /* Wake to this CPU if we can */
1458
1459 if (this_sd->flags & SD_WAKE_AFFINE) {
1460 unsigned long tl = this_load;
1461 unsigned long tl_per_task;
1462
1463 tl_per_task = cpu_avg_load_per_task(this_cpu);
1464
1465 /*
1466 * If sync wakeup then subtract the (maximum possible)
1467 * effect of the currently running task from the load
1468 * of the current CPU:
1469 */
1470 if (sync)
1471 tl -= current->se.load.weight;
1472
1473 if ((tl <= load &&
1474 tl + target_load(cpu, idx) <= tl_per_task) ||
1475 100*(tl + p->se.load.weight) <= imbalance*load) {
1476 /*
1477 * This domain has SD_WAKE_AFFINE and
1478 * p is cache cold in this domain, and
1479 * there is no bad imbalance.
1480 */
1481 schedstat_inc(this_sd, ttwu_move_affine);
1482 goto out_set_cpu;
1483 }
1484 }
1485
1486 /*
1487 * Start passive balancing when half the imbalance_pct
1488 * limit is reached.
1489 */
1490 if (this_sd->flags & SD_WAKE_BALANCE) {
1491 if (imbalance*this_load <= 100*load) {
1492 schedstat_inc(this_sd, ttwu_move_balance);
1493 goto out_set_cpu;
1494 }
1495 }
1496 }
1497
1498 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1499 out_set_cpu:
1500 new_cpu = wake_idle(new_cpu, p);
1501 if (new_cpu != cpu) {
1502 set_task_cpu(p, new_cpu);
1503 task_rq_unlock(rq, &flags);
1504 /* might preempt at this point */
1505 rq = task_rq_lock(p, &flags);
1506 old_state = p->state;
1507 if (!(old_state & state))
1508 goto out;
1509 if (p->se.on_rq)
1510 goto out_running;
1511
1512 this_cpu = smp_processor_id();
1513 cpu = task_cpu(p);
1514 }
1515
1516 out_activate:
1517 #endif /* CONFIG_SMP */
1518 update_rq_clock(rq);
1519 activate_task(rq, p, 1);
1520 /*
1521 * Sync wakeups (i.e. those types of wakeups where the waker
1522 * has indicated that it will leave the CPU in short order)
1523 * don't trigger a preemption, if the woken up task will run on
1524 * this cpu. (in this case the 'I will reschedule' promise of
1525 * the waker guarantees that the freshly woken up task is going
1526 * to be considered on this CPU.)
1527 */
1528 if (!sync || cpu != this_cpu)
1529 check_preempt_curr(rq, p);
1530 success = 1;
1531
1532 out_running:
1533 p->state = TASK_RUNNING;
1534 out:
1535 task_rq_unlock(rq, &flags);
1536
1537 return success;
1538 }
1539
1540 int fastcall wake_up_process(struct task_struct *p)
1541 {
1542 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1543 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1544 }
1545 EXPORT_SYMBOL(wake_up_process);
1546
1547 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1548 {
1549 return try_to_wake_up(p, state, 0);
1550 }
1551
1552 /*
1553 * Perform scheduler related setup for a newly forked process p.
1554 * p is forked by current.
1555 *
1556 * __sched_fork() is basic setup used by init_idle() too:
1557 */
1558 static void __sched_fork(struct task_struct *p)
1559 {
1560 p->se.wait_start_fair = 0;
1561 p->se.exec_start = 0;
1562 p->se.sum_exec_runtime = 0;
1563 p->se.delta_exec = 0;
1564 p->se.delta_fair_run = 0;
1565 p->se.delta_fair_sleep = 0;
1566 p->se.wait_runtime = 0;
1567 p->se.sleep_start_fair = 0;
1568
1569 #ifdef CONFIG_SCHEDSTATS
1570 p->se.wait_start = 0;
1571 p->se.sum_wait_runtime = 0;
1572 p->se.sum_sleep_runtime = 0;
1573 p->se.sleep_start = 0;
1574 p->se.block_start = 0;
1575 p->se.sleep_max = 0;
1576 p->se.block_max = 0;
1577 p->se.exec_max = 0;
1578 p->se.wait_max = 0;
1579 p->se.wait_runtime_overruns = 0;
1580 p->se.wait_runtime_underruns = 0;
1581 #endif
1582
1583 INIT_LIST_HEAD(&p->run_list);
1584 p->se.on_rq = 0;
1585
1586 #ifdef CONFIG_PREEMPT_NOTIFIERS
1587 INIT_HLIST_HEAD(&p->preempt_notifiers);
1588 #endif
1589
1590 /*
1591 * We mark the process as running here, but have not actually
1592 * inserted it onto the runqueue yet. This guarantees that
1593 * nobody will actually run it, and a signal or other external
1594 * event cannot wake it up and insert it on the runqueue either.
1595 */
1596 p->state = TASK_RUNNING;
1597 }
1598
1599 /*
1600 * fork()/clone()-time setup:
1601 */
1602 void sched_fork(struct task_struct *p, int clone_flags)
1603 {
1604 int cpu = get_cpu();
1605
1606 __sched_fork(p);
1607
1608 #ifdef CONFIG_SMP
1609 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1610 #endif
1611 __set_task_cpu(p, cpu);
1612
1613 /*
1614 * Make sure we do not leak PI boosting priority to the child:
1615 */
1616 p->prio = current->normal_prio;
1617
1618 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1619 if (likely(sched_info_on()))
1620 memset(&p->sched_info, 0, sizeof(p->sched_info));
1621 #endif
1622 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1623 p->oncpu = 0;
1624 #endif
1625 #ifdef CONFIG_PREEMPT
1626 /* Want to start with kernel preemption disabled. */
1627 task_thread_info(p)->preempt_count = 1;
1628 #endif
1629 put_cpu();
1630 }
1631
1632 /*
1633 * After fork, child runs first. (default) If set to 0 then
1634 * parent will (try to) run first.
1635 */
1636 unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1637
1638 /*
1639 * wake_up_new_task - wake up a newly created task for the first time.
1640 *
1641 * This function will do some initial scheduler statistics housekeeping
1642 * that must be done for every newly created context, then puts the task
1643 * on the runqueue and wakes it.
1644 */
1645 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1646 {
1647 unsigned long flags;
1648 struct rq *rq;
1649 int this_cpu;
1650
1651 rq = task_rq_lock(p, &flags);
1652 BUG_ON(p->state != TASK_RUNNING);
1653 this_cpu = smp_processor_id(); /* parent's CPU */
1654 update_rq_clock(rq);
1655
1656 p->prio = effective_prio(p);
1657
1658 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1659 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1660 !current->se.on_rq) {
1661
1662 activate_task(rq, p, 0);
1663 } else {
1664 /*
1665 * Let the scheduling class do new task startup
1666 * management (if any):
1667 */
1668 p->sched_class->task_new(rq, p);
1669 inc_nr_running(p, rq);
1670 }
1671 check_preempt_curr(rq, p);
1672 task_rq_unlock(rq, &flags);
1673 }
1674
1675 #ifdef CONFIG_PREEMPT_NOTIFIERS
1676
1677 /**
1678 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1679 * @notifier: notifier struct to register
1680 */
1681 void preempt_notifier_register(struct preempt_notifier *notifier)
1682 {
1683 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1684 }
1685 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1686
1687 /**
1688 * preempt_notifier_unregister - no longer interested in preemption notifications
1689 * @notifier: notifier struct to unregister
1690 *
1691 * This is safe to call from within a preemption notifier.
1692 */
1693 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1694 {
1695 hlist_del(&notifier->link);
1696 }
1697 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1698
1699 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1700 {
1701 struct preempt_notifier *notifier;
1702 struct hlist_node *node;
1703
1704 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1705 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1706 }
1707
1708 static void
1709 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1710 struct task_struct *next)
1711 {
1712 struct preempt_notifier *notifier;
1713 struct hlist_node *node;
1714
1715 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1716 notifier->ops->sched_out(notifier, next);
1717 }
1718
1719 #else
1720
1721 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1722 {
1723 }
1724
1725 static void
1726 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1727 struct task_struct *next)
1728 {
1729 }
1730
1731 #endif
1732
1733 /**
1734 * prepare_task_switch - prepare to switch tasks
1735 * @rq: the runqueue preparing to switch
1736 * @prev: the current task that is being switched out
1737 * @next: the task we are going to switch to.
1738 *
1739 * This is called with the rq lock held and interrupts off. It must
1740 * be paired with a subsequent finish_task_switch after the context
1741 * switch.
1742 *
1743 * prepare_task_switch sets up locking and calls architecture specific
1744 * hooks.
1745 */
1746 static inline void
1747 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1748 struct task_struct *next)
1749 {
1750 fire_sched_out_preempt_notifiers(prev, next);
1751 prepare_lock_switch(rq, next);
1752 prepare_arch_switch(next);
1753 }
1754
1755 /**
1756 * finish_task_switch - clean up after a task-switch
1757 * @rq: runqueue associated with task-switch
1758 * @prev: the thread we just switched away from.
1759 *
1760 * finish_task_switch must be called after the context switch, paired
1761 * with a prepare_task_switch call before the context switch.
1762 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1763 * and do any other architecture-specific cleanup actions.
1764 *
1765 * Note that we may have delayed dropping an mm in context_switch(). If
1766 * so, we finish that here outside of the runqueue lock. (Doing it
1767 * with the lock held can cause deadlocks; see schedule() for
1768 * details.)
1769 */
1770 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1771 __releases(rq->lock)
1772 {
1773 struct mm_struct *mm = rq->prev_mm;
1774 long prev_state;
1775
1776 rq->prev_mm = NULL;
1777
1778 /*
1779 * A task struct has one reference for the use as "current".
1780 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1781 * schedule one last time. The schedule call will never return, and
1782 * the scheduled task must drop that reference.
1783 * The test for TASK_DEAD must occur while the runqueue locks are
1784 * still held, otherwise prev could be scheduled on another cpu, die
1785 * there before we look at prev->state, and then the reference would
1786 * be dropped twice.
1787 * Manfred Spraul <manfred@colorfullife.com>
1788 */
1789 prev_state = prev->state;
1790 finish_arch_switch(prev);
1791 finish_lock_switch(rq, prev);
1792 fire_sched_in_preempt_notifiers(current);
1793 if (mm)
1794 mmdrop(mm);
1795 if (unlikely(prev_state == TASK_DEAD)) {
1796 /*
1797 * Remove function-return probe instances associated with this
1798 * task and put them back on the free list.
1799 */
1800 kprobe_flush_task(prev);
1801 put_task_struct(prev);
1802 }
1803 }
1804
1805 /**
1806 * schedule_tail - first thing a freshly forked thread must call.
1807 * @prev: the thread we just switched away from.
1808 */
1809 asmlinkage void schedule_tail(struct task_struct *prev)
1810 __releases(rq->lock)
1811 {
1812 struct rq *rq = this_rq();
1813
1814 finish_task_switch(rq, prev);
1815 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1816 /* In this case, finish_task_switch does not reenable preemption */
1817 preempt_enable();
1818 #endif
1819 if (current->set_child_tid)
1820 put_user(current->pid, current->set_child_tid);
1821 }
1822
1823 /*
1824 * context_switch - switch to the new MM and the new
1825 * thread's register state.
1826 */
1827 static inline void
1828 context_switch(struct rq *rq, struct task_struct *prev,
1829 struct task_struct *next)
1830 {
1831 struct mm_struct *mm, *oldmm;
1832
1833 prepare_task_switch(rq, prev, next);
1834 mm = next->mm;
1835 oldmm = prev->active_mm;
1836 /*
1837 * For paravirt, this is coupled with an exit in switch_to to
1838 * combine the page table reload and the switch backend into
1839 * one hypercall.
1840 */
1841 arch_enter_lazy_cpu_mode();
1842
1843 if (unlikely(!mm)) {
1844 next->active_mm = oldmm;
1845 atomic_inc(&oldmm->mm_count);
1846 enter_lazy_tlb(oldmm, next);
1847 } else
1848 switch_mm(oldmm, mm, next);
1849
1850 if (unlikely(!prev->mm)) {
1851 prev->active_mm = NULL;
1852 rq->prev_mm = oldmm;
1853 }
1854 /*
1855 * Since the runqueue lock will be released by the next
1856 * task (which is an invalid locking op but in the case
1857 * of the scheduler it's an obvious special-case), so we
1858 * do an early lockdep release here:
1859 */
1860 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1861 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1862 #endif
1863
1864 /* Here we just switch the register state and the stack. */
1865 switch_to(prev, next, prev);
1866
1867 barrier();
1868 /*
1869 * this_rq must be evaluated again because prev may have moved
1870 * CPUs since it called schedule(), thus the 'rq' on its stack
1871 * frame will be invalid.
1872 */
1873 finish_task_switch(this_rq(), prev);
1874 }
1875
1876 /*
1877 * nr_running, nr_uninterruptible and nr_context_switches:
1878 *
1879 * externally visible scheduler statistics: current number of runnable
1880 * threads, current number of uninterruptible-sleeping threads, total
1881 * number of context switches performed since bootup.
1882 */
1883 unsigned long nr_running(void)
1884 {
1885 unsigned long i, sum = 0;
1886
1887 for_each_online_cpu(i)
1888 sum += cpu_rq(i)->nr_running;
1889
1890 return sum;
1891 }
1892
1893 unsigned long nr_uninterruptible(void)
1894 {
1895 unsigned long i, sum = 0;
1896
1897 for_each_possible_cpu(i)
1898 sum += cpu_rq(i)->nr_uninterruptible;
1899
1900 /*
1901 * Since we read the counters lockless, it might be slightly
1902 * inaccurate. Do not allow it to go below zero though:
1903 */
1904 if (unlikely((long)sum < 0))
1905 sum = 0;
1906
1907 return sum;
1908 }
1909
1910 unsigned long long nr_context_switches(void)
1911 {
1912 int i;
1913 unsigned long long sum = 0;
1914
1915 for_each_possible_cpu(i)
1916 sum += cpu_rq(i)->nr_switches;
1917
1918 return sum;
1919 }
1920
1921 unsigned long nr_iowait(void)
1922 {
1923 unsigned long i, sum = 0;
1924
1925 for_each_possible_cpu(i)
1926 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1927
1928 return sum;
1929 }
1930
1931 unsigned long nr_active(void)
1932 {
1933 unsigned long i, running = 0, uninterruptible = 0;
1934
1935 for_each_online_cpu(i) {
1936 running += cpu_rq(i)->nr_running;
1937 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1938 }
1939
1940 if (unlikely((long)uninterruptible < 0))
1941 uninterruptible = 0;
1942
1943 return running + uninterruptible;
1944 }
1945
1946 /*
1947 * Update rq->cpu_load[] statistics. This function is usually called every
1948 * scheduler tick (TICK_NSEC).
1949 */
1950 static void update_cpu_load(struct rq *this_rq)
1951 {
1952 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1953 unsigned long total_load = this_rq->ls.load.weight;
1954 unsigned long this_load = total_load;
1955 struct load_stat *ls = &this_rq->ls;
1956 int i, scale;
1957
1958 this_rq->nr_load_updates++;
1959 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1960 goto do_avg;
1961
1962 /* Update delta_fair/delta_exec fields first */
1963 update_curr_load(this_rq);
1964
1965 fair_delta64 = ls->delta_fair + 1;
1966 ls->delta_fair = 0;
1967
1968 exec_delta64 = ls->delta_exec + 1;
1969 ls->delta_exec = 0;
1970
1971 sample_interval64 = this_rq->clock - ls->load_update_last;
1972 ls->load_update_last = this_rq->clock;
1973
1974 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1975 sample_interval64 = TICK_NSEC;
1976
1977 if (exec_delta64 > sample_interval64)
1978 exec_delta64 = sample_interval64;
1979
1980 idle_delta64 = sample_interval64 - exec_delta64;
1981
1982 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1983 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1984
1985 this_load = (unsigned long)tmp64;
1986
1987 do_avg:
1988
1989 /* Update our load: */
1990 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1991 unsigned long old_load, new_load;
1992
1993 /* scale is effectively 1 << i now, and >> i divides by scale */
1994
1995 old_load = this_rq->cpu_load[i];
1996 new_load = this_load;
1997
1998 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1999 }
2000 }
2001
2002 #ifdef CONFIG_SMP
2003
2004 /*
2005 * double_rq_lock - safely lock two runqueues
2006 *
2007 * Note this does not disable interrupts like task_rq_lock,
2008 * you need to do so manually before calling.
2009 */
2010 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2011 __acquires(rq1->lock)
2012 __acquires(rq2->lock)
2013 {
2014 BUG_ON(!irqs_disabled());
2015 if (rq1 == rq2) {
2016 spin_lock(&rq1->lock);
2017 __acquire(rq2->lock); /* Fake it out ;) */
2018 } else {
2019 if (rq1 < rq2) {
2020 spin_lock(&rq1->lock);
2021 spin_lock(&rq2->lock);
2022 } else {
2023 spin_lock(&rq2->lock);
2024 spin_lock(&rq1->lock);
2025 }
2026 }
2027 update_rq_clock(rq1);
2028 update_rq_clock(rq2);
2029 }
2030
2031 /*
2032 * double_rq_unlock - safely unlock two runqueues
2033 *
2034 * Note this does not restore interrupts like task_rq_unlock,
2035 * you need to do so manually after calling.
2036 */
2037 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2038 __releases(rq1->lock)
2039 __releases(rq2->lock)
2040 {
2041 spin_unlock(&rq1->lock);
2042 if (rq1 != rq2)
2043 spin_unlock(&rq2->lock);
2044 else
2045 __release(rq2->lock);
2046 }
2047
2048 /*
2049 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2050 */
2051 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2052 __releases(this_rq->lock)
2053 __acquires(busiest->lock)
2054 __acquires(this_rq->lock)
2055 {
2056 if (unlikely(!irqs_disabled())) {
2057 /* printk() doesn't work good under rq->lock */
2058 spin_unlock(&this_rq->lock);
2059 BUG_ON(1);
2060 }
2061 if (unlikely(!spin_trylock(&busiest->lock))) {
2062 if (busiest < this_rq) {
2063 spin_unlock(&this_rq->lock);
2064 spin_lock(&busiest->lock);
2065 spin_lock(&this_rq->lock);
2066 } else
2067 spin_lock(&busiest->lock);
2068 }
2069 }
2070
2071 /*
2072 * If dest_cpu is allowed for this process, migrate the task to it.
2073 * This is accomplished by forcing the cpu_allowed mask to only
2074 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2075 * the cpu_allowed mask is restored.
2076 */
2077 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2078 {
2079 struct migration_req req;
2080 unsigned long flags;
2081 struct rq *rq;
2082
2083 rq = task_rq_lock(p, &flags);
2084 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2085 || unlikely(cpu_is_offline(dest_cpu)))
2086 goto out;
2087
2088 /* force the process onto the specified CPU */
2089 if (migrate_task(p, dest_cpu, &req)) {
2090 /* Need to wait for migration thread (might exit: take ref). */
2091 struct task_struct *mt = rq->migration_thread;
2092
2093 get_task_struct(mt);
2094 task_rq_unlock(rq, &flags);
2095 wake_up_process(mt);
2096 put_task_struct(mt);
2097 wait_for_completion(&req.done);
2098
2099 return;
2100 }
2101 out:
2102 task_rq_unlock(rq, &flags);
2103 }
2104
2105 /*
2106 * sched_exec - execve() is a valuable balancing opportunity, because at
2107 * this point the task has the smallest effective memory and cache footprint.
2108 */
2109 void sched_exec(void)
2110 {
2111 int new_cpu, this_cpu = get_cpu();
2112 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2113 put_cpu();
2114 if (new_cpu != this_cpu)
2115 sched_migrate_task(current, new_cpu);
2116 }
2117
2118 /*
2119 * pull_task - move a task from a remote runqueue to the local runqueue.
2120 * Both runqueues must be locked.
2121 */
2122 static void pull_task(struct rq *src_rq, struct task_struct *p,
2123 struct rq *this_rq, int this_cpu)
2124 {
2125 deactivate_task(src_rq, p, 0);
2126 set_task_cpu(p, this_cpu);
2127 activate_task(this_rq, p, 0);
2128 /*
2129 * Note that idle threads have a prio of MAX_PRIO, for this test
2130 * to be always true for them.
2131 */
2132 check_preempt_curr(this_rq, p);
2133 }
2134
2135 /*
2136 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2137 */
2138 static
2139 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2140 struct sched_domain *sd, enum cpu_idle_type idle,
2141 int *all_pinned)
2142 {
2143 /*
2144 * We do not migrate tasks that are:
2145 * 1) running (obviously), or
2146 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2147 * 3) are cache-hot on their current CPU.
2148 */
2149 if (!cpu_isset(this_cpu, p->cpus_allowed))
2150 return 0;
2151 *all_pinned = 0;
2152
2153 if (task_running(rq, p))
2154 return 0;
2155
2156 /*
2157 * Aggressive migration if too many balance attempts have failed:
2158 */
2159 if (sd->nr_balance_failed > sd->cache_nice_tries)
2160 return 1;
2161
2162 return 1;
2163 }
2164
2165 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2166 unsigned long max_nr_move, unsigned long max_load_move,
2167 struct sched_domain *sd, enum cpu_idle_type idle,
2168 int *all_pinned, unsigned long *load_moved,
2169 int *this_best_prio, struct rq_iterator *iterator)
2170 {
2171 int pulled = 0, pinned = 0, skip_for_load;
2172 struct task_struct *p;
2173 long rem_load_move = max_load_move;
2174
2175 if (max_nr_move == 0 || max_load_move == 0)
2176 goto out;
2177
2178 pinned = 1;
2179
2180 /*
2181 * Start the load-balancing iterator:
2182 */
2183 p = iterator->start(iterator->arg);
2184 next:
2185 if (!p)
2186 goto out;
2187 /*
2188 * To help distribute high priority tasks accross CPUs we don't
2189 * skip a task if it will be the highest priority task (i.e. smallest
2190 * prio value) on its new queue regardless of its load weight
2191 */
2192 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2193 SCHED_LOAD_SCALE_FUZZ;
2194 if ((skip_for_load && p->prio >= *this_best_prio) ||
2195 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2196 p = iterator->next(iterator->arg);
2197 goto next;
2198 }
2199
2200 pull_task(busiest, p, this_rq, this_cpu);
2201 pulled++;
2202 rem_load_move -= p->se.load.weight;
2203
2204 /*
2205 * We only want to steal up to the prescribed number of tasks
2206 * and the prescribed amount of weighted load.
2207 */
2208 if (pulled < max_nr_move && rem_load_move > 0) {
2209 if (p->prio < *this_best_prio)
2210 *this_best_prio = p->prio;
2211 p = iterator->next(iterator->arg);
2212 goto next;
2213 }
2214 out:
2215 /*
2216 * Right now, this is the only place pull_task() is called,
2217 * so we can safely collect pull_task() stats here rather than
2218 * inside pull_task().
2219 */
2220 schedstat_add(sd, lb_gained[idle], pulled);
2221
2222 if (all_pinned)
2223 *all_pinned = pinned;
2224 *load_moved = max_load_move - rem_load_move;
2225 return pulled;
2226 }
2227
2228 /*
2229 * move_tasks tries to move up to max_load_move weighted load from busiest to
2230 * this_rq, as part of a balancing operation within domain "sd".
2231 * Returns 1 if successful and 0 otherwise.
2232 *
2233 * Called with both runqueues locked.
2234 */
2235 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2236 unsigned long max_load_move,
2237 struct sched_domain *sd, enum cpu_idle_type idle,
2238 int *all_pinned)
2239 {
2240 struct sched_class *class = sched_class_highest;
2241 unsigned long total_load_moved = 0;
2242 int this_best_prio = this_rq->curr->prio;
2243
2244 do {
2245 total_load_moved +=
2246 class->load_balance(this_rq, this_cpu, busiest,
2247 ULONG_MAX, max_load_move - total_load_moved,
2248 sd, idle, all_pinned, &this_best_prio);
2249 class = class->next;
2250 } while (class && max_load_move > total_load_moved);
2251
2252 return total_load_moved > 0;
2253 }
2254
2255 /*
2256 * move_one_task tries to move exactly one task from busiest to this_rq, as
2257 * part of active balancing operations within "domain".
2258 * Returns 1 if successful and 0 otherwise.
2259 *
2260 * Called with both runqueues locked.
2261 */
2262 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2263 struct sched_domain *sd, enum cpu_idle_type idle)
2264 {
2265 struct sched_class *class;
2266 int this_best_prio = MAX_PRIO;
2267
2268 for (class = sched_class_highest; class; class = class->next)
2269 if (class->load_balance(this_rq, this_cpu, busiest,
2270 1, ULONG_MAX, sd, idle, NULL,
2271 &this_best_prio))
2272 return 1;
2273
2274 return 0;
2275 }
2276
2277 /*
2278 * find_busiest_group finds and returns the busiest CPU group within the
2279 * domain. It calculates and returns the amount of weighted load which
2280 * should be moved to restore balance via the imbalance parameter.
2281 */
2282 static struct sched_group *
2283 find_busiest_group(struct sched_domain *sd, int this_cpu,
2284 unsigned long *imbalance, enum cpu_idle_type idle,
2285 int *sd_idle, cpumask_t *cpus, int *balance)
2286 {
2287 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2288 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2289 unsigned long max_pull;
2290 unsigned long busiest_load_per_task, busiest_nr_running;
2291 unsigned long this_load_per_task, this_nr_running;
2292 int load_idx;
2293 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2294 int power_savings_balance = 1;
2295 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2296 unsigned long min_nr_running = ULONG_MAX;
2297 struct sched_group *group_min = NULL, *group_leader = NULL;
2298 #endif
2299
2300 max_load = this_load = total_load = total_pwr = 0;
2301 busiest_load_per_task = busiest_nr_running = 0;
2302 this_load_per_task = this_nr_running = 0;
2303 if (idle == CPU_NOT_IDLE)
2304 load_idx = sd->busy_idx;
2305 else if (idle == CPU_NEWLY_IDLE)
2306 load_idx = sd->newidle_idx;
2307 else
2308 load_idx = sd->idle_idx;
2309
2310 do {
2311 unsigned long load, group_capacity;
2312 int local_group;
2313 int i;
2314 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2315 unsigned long sum_nr_running, sum_weighted_load;
2316
2317 local_group = cpu_isset(this_cpu, group->cpumask);
2318
2319 if (local_group)
2320 balance_cpu = first_cpu(group->cpumask);
2321
2322 /* Tally up the load of all CPUs in the group */
2323 sum_weighted_load = sum_nr_running = avg_load = 0;
2324
2325 for_each_cpu_mask(i, group->cpumask) {
2326 struct rq *rq;
2327
2328 if (!cpu_isset(i, *cpus))
2329 continue;
2330
2331 rq = cpu_rq(i);
2332
2333 if (*sd_idle && rq->nr_running)
2334 *sd_idle = 0;
2335
2336 /* Bias balancing toward cpus of our domain */
2337 if (local_group) {
2338 if (idle_cpu(i) && !first_idle_cpu) {
2339 first_idle_cpu = 1;
2340 balance_cpu = i;
2341 }
2342
2343 load = target_load(i, load_idx);
2344 } else
2345 load = source_load(i, load_idx);
2346
2347 avg_load += load;
2348 sum_nr_running += rq->nr_running;
2349 sum_weighted_load += weighted_cpuload(i);
2350 }
2351
2352 /*
2353 * First idle cpu or the first cpu(busiest) in this sched group
2354 * is eligible for doing load balancing at this and above
2355 * domains. In the newly idle case, we will allow all the cpu's
2356 * to do the newly idle load balance.
2357 */
2358 if (idle != CPU_NEWLY_IDLE && local_group &&
2359 balance_cpu != this_cpu && balance) {
2360 *balance = 0;
2361 goto ret;
2362 }
2363
2364 total_load += avg_load;
2365 total_pwr += group->__cpu_power;
2366
2367 /* Adjust by relative CPU power of the group */
2368 avg_load = sg_div_cpu_power(group,
2369 avg_load * SCHED_LOAD_SCALE);
2370
2371 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2372
2373 if (local_group) {
2374 this_load = avg_load;
2375 this = group;
2376 this_nr_running = sum_nr_running;
2377 this_load_per_task = sum_weighted_load;
2378 } else if (avg_load > max_load &&
2379 sum_nr_running > group_capacity) {
2380 max_load = avg_load;
2381 busiest = group;
2382 busiest_nr_running = sum_nr_running;
2383 busiest_load_per_task = sum_weighted_load;
2384 }
2385
2386 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2387 /*
2388 * Busy processors will not participate in power savings
2389 * balance.
2390 */
2391 if (idle == CPU_NOT_IDLE ||
2392 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2393 goto group_next;
2394
2395 /*
2396 * If the local group is idle or completely loaded
2397 * no need to do power savings balance at this domain
2398 */
2399 if (local_group && (this_nr_running >= group_capacity ||
2400 !this_nr_running))
2401 power_savings_balance = 0;
2402
2403 /*
2404 * If a group is already running at full capacity or idle,
2405 * don't include that group in power savings calculations
2406 */
2407 if (!power_savings_balance || sum_nr_running >= group_capacity
2408 || !sum_nr_running)
2409 goto group_next;
2410
2411 /*
2412 * Calculate the group which has the least non-idle load.
2413 * This is the group from where we need to pick up the load
2414 * for saving power
2415 */
2416 if ((sum_nr_running < min_nr_running) ||
2417 (sum_nr_running == min_nr_running &&
2418 first_cpu(group->cpumask) <
2419 first_cpu(group_min->cpumask))) {
2420 group_min = group;
2421 min_nr_running = sum_nr_running;
2422 min_load_per_task = sum_weighted_load /
2423 sum_nr_running;
2424 }
2425
2426 /*
2427 * Calculate the group which is almost near its
2428 * capacity but still has some space to pick up some load
2429 * from other group and save more power
2430 */
2431 if (sum_nr_running <= group_capacity - 1) {
2432 if (sum_nr_running > leader_nr_running ||
2433 (sum_nr_running == leader_nr_running &&
2434 first_cpu(group->cpumask) >
2435 first_cpu(group_leader->cpumask))) {
2436 group_leader = group;
2437 leader_nr_running = sum_nr_running;
2438 }
2439 }
2440 group_next:
2441 #endif
2442 group = group->next;
2443 } while (group != sd->groups);
2444
2445 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2446 goto out_balanced;
2447
2448 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2449
2450 if (this_load >= avg_load ||
2451 100*max_load <= sd->imbalance_pct*this_load)
2452 goto out_balanced;
2453
2454 busiest_load_per_task /= busiest_nr_running;
2455 /*
2456 * We're trying to get all the cpus to the average_load, so we don't
2457 * want to push ourselves above the average load, nor do we wish to
2458 * reduce the max loaded cpu below the average load, as either of these
2459 * actions would just result in more rebalancing later, and ping-pong
2460 * tasks around. Thus we look for the minimum possible imbalance.
2461 * Negative imbalances (*we* are more loaded than anyone else) will
2462 * be counted as no imbalance for these purposes -- we can't fix that
2463 * by pulling tasks to us. Be careful of negative numbers as they'll
2464 * appear as very large values with unsigned longs.
2465 */
2466 if (max_load <= busiest_load_per_task)
2467 goto out_balanced;
2468
2469 /*
2470 * In the presence of smp nice balancing, certain scenarios can have
2471 * max load less than avg load(as we skip the groups at or below
2472 * its cpu_power, while calculating max_load..)
2473 */
2474 if (max_load < avg_load) {
2475 *imbalance = 0;
2476 goto small_imbalance;
2477 }
2478
2479 /* Don't want to pull so many tasks that a group would go idle */
2480 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2481
2482 /* How much load to actually move to equalise the imbalance */
2483 *imbalance = min(max_pull * busiest->__cpu_power,
2484 (avg_load - this_load) * this->__cpu_power)
2485 / SCHED_LOAD_SCALE;
2486
2487 /*
2488 * if *imbalance is less than the average load per runnable task
2489 * there is no gaurantee that any tasks will be moved so we'll have
2490 * a think about bumping its value to force at least one task to be
2491 * moved
2492 */
2493 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2494 unsigned long tmp, pwr_now, pwr_move;
2495 unsigned int imbn;
2496
2497 small_imbalance:
2498 pwr_move = pwr_now = 0;
2499 imbn = 2;
2500 if (this_nr_running) {
2501 this_load_per_task /= this_nr_running;
2502 if (busiest_load_per_task > this_load_per_task)
2503 imbn = 1;
2504 } else
2505 this_load_per_task = SCHED_LOAD_SCALE;
2506
2507 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2508 busiest_load_per_task * imbn) {
2509 *imbalance = busiest_load_per_task;
2510 return busiest;
2511 }
2512
2513 /*
2514 * OK, we don't have enough imbalance to justify moving tasks,
2515 * however we may be able to increase total CPU power used by
2516 * moving them.
2517 */
2518
2519 pwr_now += busiest->__cpu_power *
2520 min(busiest_load_per_task, max_load);
2521 pwr_now += this->__cpu_power *
2522 min(this_load_per_task, this_load);
2523 pwr_now /= SCHED_LOAD_SCALE;
2524
2525 /* Amount of load we'd subtract */
2526 tmp = sg_div_cpu_power(busiest,
2527 busiest_load_per_task * SCHED_LOAD_SCALE);
2528 if (max_load > tmp)
2529 pwr_move += busiest->__cpu_power *
2530 min(busiest_load_per_task, max_load - tmp);
2531
2532 /* Amount of load we'd add */
2533 if (max_load * busiest->__cpu_power <
2534 busiest_load_per_task * SCHED_LOAD_SCALE)
2535 tmp = sg_div_cpu_power(this,
2536 max_load * busiest->__cpu_power);
2537 else
2538 tmp = sg_div_cpu_power(this,
2539 busiest_load_per_task * SCHED_LOAD_SCALE);
2540 pwr_move += this->__cpu_power *
2541 min(this_load_per_task, this_load + tmp);
2542 pwr_move /= SCHED_LOAD_SCALE;
2543
2544 /* Move if we gain throughput */
2545 if (pwr_move <= pwr_now)
2546 goto out_balanced;
2547
2548 *imbalance = busiest_load_per_task;
2549 }
2550
2551 return busiest;
2552
2553 out_balanced:
2554 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2555 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2556 goto ret;
2557
2558 if (this == group_leader && group_leader != group_min) {
2559 *imbalance = min_load_per_task;
2560 return group_min;
2561 }
2562 #endif
2563 ret:
2564 *imbalance = 0;
2565 return NULL;
2566 }
2567
2568 /*
2569 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2570 */
2571 static struct rq *
2572 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2573 unsigned long imbalance, cpumask_t *cpus)
2574 {
2575 struct rq *busiest = NULL, *rq;
2576 unsigned long max_load = 0;
2577 int i;
2578
2579 for_each_cpu_mask(i, group->cpumask) {
2580 unsigned long wl;
2581
2582 if (!cpu_isset(i, *cpus))
2583 continue;
2584
2585 rq = cpu_rq(i);
2586 wl = weighted_cpuload(i);
2587
2588 if (rq->nr_running == 1 && wl > imbalance)
2589 continue;
2590
2591 if (wl > max_load) {
2592 max_load = wl;
2593 busiest = rq;
2594 }
2595 }
2596
2597 return busiest;
2598 }
2599
2600 /*
2601 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2602 * so long as it is large enough.
2603 */
2604 #define MAX_PINNED_INTERVAL 512
2605
2606 /*
2607 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2608 * tasks if there is an imbalance.
2609 */
2610 static int load_balance(int this_cpu, struct rq *this_rq,
2611 struct sched_domain *sd, enum cpu_idle_type idle,
2612 int *balance)
2613 {
2614 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2615 struct sched_group *group;
2616 unsigned long imbalance;
2617 struct rq *busiest;
2618 cpumask_t cpus = CPU_MASK_ALL;
2619 unsigned long flags;
2620
2621 /*
2622 * When power savings policy is enabled for the parent domain, idle
2623 * sibling can pick up load irrespective of busy siblings. In this case,
2624 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2625 * portraying it as CPU_NOT_IDLE.
2626 */
2627 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2628 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2629 sd_idle = 1;
2630
2631 schedstat_inc(sd, lb_cnt[idle]);
2632
2633 redo:
2634 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2635 &cpus, balance);
2636
2637 if (*balance == 0)
2638 goto out_balanced;
2639
2640 if (!group) {
2641 schedstat_inc(sd, lb_nobusyg[idle]);
2642 goto out_balanced;
2643 }
2644
2645 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2646 if (!busiest) {
2647 schedstat_inc(sd, lb_nobusyq[idle]);
2648 goto out_balanced;
2649 }
2650
2651 BUG_ON(busiest == this_rq);
2652
2653 schedstat_add(sd, lb_imbalance[idle], imbalance);
2654
2655 ld_moved = 0;
2656 if (busiest->nr_running > 1) {
2657 /*
2658 * Attempt to move tasks. If find_busiest_group has found
2659 * an imbalance but busiest->nr_running <= 1, the group is
2660 * still unbalanced. ld_moved simply stays zero, so it is
2661 * correctly treated as an imbalance.
2662 */
2663 local_irq_save(flags);
2664 double_rq_lock(this_rq, busiest);
2665 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2666 imbalance, sd, idle, &all_pinned);
2667 double_rq_unlock(this_rq, busiest);
2668 local_irq_restore(flags);
2669
2670 /*
2671 * some other cpu did the load balance for us.
2672 */
2673 if (ld_moved && this_cpu != smp_processor_id())
2674 resched_cpu(this_cpu);
2675
2676 /* All tasks on this runqueue were pinned by CPU affinity */
2677 if (unlikely(all_pinned)) {
2678 cpu_clear(cpu_of(busiest), cpus);
2679 if (!cpus_empty(cpus))
2680 goto redo;
2681 goto out_balanced;
2682 }
2683 }
2684
2685 if (!ld_moved) {
2686 schedstat_inc(sd, lb_failed[idle]);
2687 sd->nr_balance_failed++;
2688
2689 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2690
2691 spin_lock_irqsave(&busiest->lock, flags);
2692
2693 /* don't kick the migration_thread, if the curr
2694 * task on busiest cpu can't be moved to this_cpu
2695 */
2696 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2697 spin_unlock_irqrestore(&busiest->lock, flags);
2698 all_pinned = 1;
2699 goto out_one_pinned;
2700 }
2701
2702 if (!busiest->active_balance) {
2703 busiest->active_balance = 1;
2704 busiest->push_cpu = this_cpu;
2705 active_balance = 1;
2706 }
2707 spin_unlock_irqrestore(&busiest->lock, flags);
2708 if (active_balance)
2709 wake_up_process(busiest->migration_thread);
2710
2711 /*
2712 * We've kicked active balancing, reset the failure
2713 * counter.
2714 */
2715 sd->nr_balance_failed = sd->cache_nice_tries+1;
2716 }
2717 } else
2718 sd->nr_balance_failed = 0;
2719
2720 if (likely(!active_balance)) {
2721 /* We were unbalanced, so reset the balancing interval */
2722 sd->balance_interval = sd->min_interval;
2723 } else {
2724 /*
2725 * If we've begun active balancing, start to back off. This
2726 * case may not be covered by the all_pinned logic if there
2727 * is only 1 task on the busy runqueue (because we don't call
2728 * move_tasks).
2729 */
2730 if (sd->balance_interval < sd->max_interval)
2731 sd->balance_interval *= 2;
2732 }
2733
2734 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2735 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2736 return -1;
2737 return ld_moved;
2738
2739 out_balanced:
2740 schedstat_inc(sd, lb_balanced[idle]);
2741
2742 sd->nr_balance_failed = 0;
2743
2744 out_one_pinned:
2745 /* tune up the balancing interval */
2746 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2747 (sd->balance_interval < sd->max_interval))
2748 sd->balance_interval *= 2;
2749
2750 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2751 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2752 return -1;
2753 return 0;
2754 }
2755
2756 /*
2757 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2758 * tasks if there is an imbalance.
2759 *
2760 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2761 * this_rq is locked.
2762 */
2763 static int
2764 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2765 {
2766 struct sched_group *group;
2767 struct rq *busiest = NULL;
2768 unsigned long imbalance;
2769 int ld_moved = 0;
2770 int sd_idle = 0;
2771 int all_pinned = 0;
2772 cpumask_t cpus = CPU_MASK_ALL;
2773
2774 /*
2775 * When power savings policy is enabled for the parent domain, idle
2776 * sibling can pick up load irrespective of busy siblings. In this case,
2777 * let the state of idle sibling percolate up as IDLE, instead of
2778 * portraying it as CPU_NOT_IDLE.
2779 */
2780 if (sd->flags & SD_SHARE_CPUPOWER &&
2781 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2782 sd_idle = 1;
2783
2784 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2785 redo:
2786 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2787 &sd_idle, &cpus, NULL);
2788 if (!group) {
2789 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2790 goto out_balanced;
2791 }
2792
2793 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2794 &cpus);
2795 if (!busiest) {
2796 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2797 goto out_balanced;
2798 }
2799
2800 BUG_ON(busiest == this_rq);
2801
2802 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2803
2804 ld_moved = 0;
2805 if (busiest->nr_running > 1) {
2806 /* Attempt to move tasks */
2807 double_lock_balance(this_rq, busiest);
2808 /* this_rq->clock is already updated */
2809 update_rq_clock(busiest);
2810 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2811 imbalance, sd, CPU_NEWLY_IDLE,
2812 &all_pinned);
2813 spin_unlock(&busiest->lock);
2814
2815 if (unlikely(all_pinned)) {
2816 cpu_clear(cpu_of(busiest), cpus);
2817 if (!cpus_empty(cpus))
2818 goto redo;
2819 }
2820 }
2821
2822 if (!ld_moved) {
2823 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2824 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2825 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2826 return -1;
2827 } else
2828 sd->nr_balance_failed = 0;
2829
2830 return ld_moved;
2831
2832 out_balanced:
2833 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2834 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2835 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2836 return -1;
2837 sd->nr_balance_failed = 0;
2838
2839 return 0;
2840 }
2841
2842 /*
2843 * idle_balance is called by schedule() if this_cpu is about to become
2844 * idle. Attempts to pull tasks from other CPUs.
2845 */
2846 static void idle_balance(int this_cpu, struct rq *this_rq)
2847 {
2848 struct sched_domain *sd;
2849 int pulled_task = -1;
2850 unsigned long next_balance = jiffies + HZ;
2851
2852 for_each_domain(this_cpu, sd) {
2853 unsigned long interval;
2854
2855 if (!(sd->flags & SD_LOAD_BALANCE))
2856 continue;
2857
2858 if (sd->flags & SD_BALANCE_NEWIDLE)
2859 /* If we've pulled tasks over stop searching: */
2860 pulled_task = load_balance_newidle(this_cpu,
2861 this_rq, sd);
2862
2863 interval = msecs_to_jiffies(sd->balance_interval);
2864 if (time_after(next_balance, sd->last_balance + interval))
2865 next_balance = sd->last_balance + interval;
2866 if (pulled_task)
2867 break;
2868 }
2869 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2870 /*
2871 * We are going idle. next_balance may be set based on
2872 * a busy processor. So reset next_balance.
2873 */
2874 this_rq->next_balance = next_balance;
2875 }
2876 }
2877
2878 /*
2879 * active_load_balance is run by migration threads. It pushes running tasks
2880 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2881 * running on each physical CPU where possible, and avoids physical /
2882 * logical imbalances.
2883 *
2884 * Called with busiest_rq locked.
2885 */
2886 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2887 {
2888 int target_cpu = busiest_rq->push_cpu;
2889 struct sched_domain *sd;
2890 struct rq *target_rq;
2891
2892 /* Is there any task to move? */
2893 if (busiest_rq->nr_running <= 1)
2894 return;
2895
2896 target_rq = cpu_rq(target_cpu);
2897
2898 /*
2899 * This condition is "impossible", if it occurs
2900 * we need to fix it. Originally reported by
2901 * Bjorn Helgaas on a 128-cpu setup.
2902 */
2903 BUG_ON(busiest_rq == target_rq);
2904
2905 /* move a task from busiest_rq to target_rq */
2906 double_lock_balance(busiest_rq, target_rq);
2907 update_rq_clock(busiest_rq);
2908 update_rq_clock(target_rq);
2909
2910 /* Search for an sd spanning us and the target CPU. */
2911 for_each_domain(target_cpu, sd) {
2912 if ((sd->flags & SD_LOAD_BALANCE) &&
2913 cpu_isset(busiest_cpu, sd->span))
2914 break;
2915 }
2916
2917 if (likely(sd)) {
2918 schedstat_inc(sd, alb_cnt);
2919
2920 if (move_one_task(target_rq, target_cpu, busiest_rq,
2921 sd, CPU_IDLE))
2922 schedstat_inc(sd, alb_pushed);
2923 else
2924 schedstat_inc(sd, alb_failed);
2925 }
2926 spin_unlock(&target_rq->lock);
2927 }
2928
2929 #ifdef CONFIG_NO_HZ
2930 static struct {
2931 atomic_t load_balancer;
2932 cpumask_t cpu_mask;
2933 } nohz ____cacheline_aligned = {
2934 .load_balancer = ATOMIC_INIT(-1),
2935 .cpu_mask = CPU_MASK_NONE,
2936 };
2937
2938 /*
2939 * This routine will try to nominate the ilb (idle load balancing)
2940 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2941 * load balancing on behalf of all those cpus. If all the cpus in the system
2942 * go into this tickless mode, then there will be no ilb owner (as there is
2943 * no need for one) and all the cpus will sleep till the next wakeup event
2944 * arrives...
2945 *
2946 * For the ilb owner, tick is not stopped. And this tick will be used
2947 * for idle load balancing. ilb owner will still be part of
2948 * nohz.cpu_mask..
2949 *
2950 * While stopping the tick, this cpu will become the ilb owner if there
2951 * is no other owner. And will be the owner till that cpu becomes busy
2952 * or if all cpus in the system stop their ticks at which point
2953 * there is no need for ilb owner.
2954 *
2955 * When the ilb owner becomes busy, it nominates another owner, during the
2956 * next busy scheduler_tick()
2957 */
2958 int select_nohz_load_balancer(int stop_tick)
2959 {
2960 int cpu = smp_processor_id();
2961
2962 if (stop_tick) {
2963 cpu_set(cpu, nohz.cpu_mask);
2964 cpu_rq(cpu)->in_nohz_recently = 1;
2965
2966 /*
2967 * If we are going offline and still the leader, give up!
2968 */
2969 if (cpu_is_offline(cpu) &&
2970 atomic_read(&nohz.load_balancer) == cpu) {
2971 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2972 BUG();
2973 return 0;
2974 }
2975
2976 /* time for ilb owner also to sleep */
2977 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2978 if (atomic_read(&nohz.load_balancer) == cpu)
2979 atomic_set(&nohz.load_balancer, -1);
2980 return 0;
2981 }
2982
2983 if (atomic_read(&nohz.load_balancer) == -1) {
2984 /* make me the ilb owner */
2985 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2986 return 1;
2987 } else if (atomic_read(&nohz.load_balancer) == cpu)
2988 return 1;
2989 } else {
2990 if (!cpu_isset(cpu, nohz.cpu_mask))
2991 return 0;
2992
2993 cpu_clear(cpu, nohz.cpu_mask);
2994
2995 if (atomic_read(&nohz.load_balancer) == cpu)
2996 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2997 BUG();
2998 }
2999 return 0;
3000 }
3001 #endif
3002
3003 static DEFINE_SPINLOCK(balancing);
3004
3005 /*
3006 * It checks each scheduling domain to see if it is due to be balanced,
3007 * and initiates a balancing operation if so.
3008 *
3009 * Balancing parameters are set up in arch_init_sched_domains.
3010 */
3011 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3012 {
3013 int balance = 1;
3014 struct rq *rq = cpu_rq(cpu);
3015 unsigned long interval;
3016 struct sched_domain *sd;
3017 /* Earliest time when we have to do rebalance again */
3018 unsigned long next_balance = jiffies + 60*HZ;
3019
3020 for_each_domain(cpu, sd) {
3021 if (!(sd->flags & SD_LOAD_BALANCE))
3022 continue;
3023
3024 interval = sd->balance_interval;
3025 if (idle != CPU_IDLE)
3026 interval *= sd->busy_factor;
3027
3028 /* scale ms to jiffies */
3029 interval = msecs_to_jiffies(interval);
3030 if (unlikely(!interval))
3031 interval = 1;
3032 if (interval > HZ*NR_CPUS/10)
3033 interval = HZ*NR_CPUS/10;
3034
3035
3036 if (sd->flags & SD_SERIALIZE) {
3037 if (!spin_trylock(&balancing))
3038 goto out;
3039 }
3040
3041 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3042 if (load_balance(cpu, rq, sd, idle, &balance)) {
3043 /*
3044 * We've pulled tasks over so either we're no
3045 * longer idle, or one of our SMT siblings is
3046 * not idle.
3047 */
3048 idle = CPU_NOT_IDLE;
3049 }
3050 sd->last_balance = jiffies;
3051 }
3052 if (sd->flags & SD_SERIALIZE)
3053 spin_unlock(&balancing);
3054 out:
3055 if (time_after(next_balance, sd->last_balance + interval))
3056 next_balance = sd->last_balance + interval;
3057
3058 /*
3059 * Stop the load balance at this level. There is another
3060 * CPU in our sched group which is doing load balancing more
3061 * actively.
3062 */
3063 if (!balance)
3064 break;
3065 }
3066 rq->next_balance = next_balance;
3067 }
3068
3069 /*
3070 * run_rebalance_domains is triggered when needed from the scheduler tick.
3071 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3072 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3073 */
3074 static void run_rebalance_domains(struct softirq_action *h)
3075 {
3076 int this_cpu = smp_processor_id();
3077 struct rq *this_rq = cpu_rq(this_cpu);
3078 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3079 CPU_IDLE : CPU_NOT_IDLE;
3080
3081 rebalance_domains(this_cpu, idle);
3082
3083 #ifdef CONFIG_NO_HZ
3084 /*
3085 * If this cpu is the owner for idle load balancing, then do the
3086 * balancing on behalf of the other idle cpus whose ticks are
3087 * stopped.
3088 */
3089 if (this_rq->idle_at_tick &&
3090 atomic_read(&nohz.load_balancer) == this_cpu) {
3091 cpumask_t cpus = nohz.cpu_mask;
3092 struct rq *rq;
3093 int balance_cpu;
3094
3095 cpu_clear(this_cpu, cpus);
3096 for_each_cpu_mask(balance_cpu, cpus) {
3097 /*
3098 * If this cpu gets work to do, stop the load balancing
3099 * work being done for other cpus. Next load
3100 * balancing owner will pick it up.
3101 */
3102 if (need_resched())
3103 break;
3104
3105 rebalance_domains(balance_cpu, SCHED_IDLE);
3106
3107 rq = cpu_rq(balance_cpu);
3108 if (time_after(this_rq->next_balance, rq->next_balance))
3109 this_rq->next_balance = rq->next_balance;
3110 }
3111 }
3112 #endif
3113 }
3114
3115 /*
3116 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3117 *
3118 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3119 * idle load balancing owner or decide to stop the periodic load balancing,
3120 * if the whole system is idle.
3121 */
3122 static inline void trigger_load_balance(struct rq *rq, int cpu)
3123 {
3124 #ifdef CONFIG_NO_HZ
3125 /*
3126 * If we were in the nohz mode recently and busy at the current
3127 * scheduler tick, then check if we need to nominate new idle
3128 * load balancer.
3129 */
3130 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3131 rq->in_nohz_recently = 0;
3132
3133 if (atomic_read(&nohz.load_balancer) == cpu) {
3134 cpu_clear(cpu, nohz.cpu_mask);
3135 atomic_set(&nohz.load_balancer, -1);
3136 }
3137
3138 if (atomic_read(&nohz.load_balancer) == -1) {
3139 /*
3140 * simple selection for now: Nominate the
3141 * first cpu in the nohz list to be the next
3142 * ilb owner.
3143 *
3144 * TBD: Traverse the sched domains and nominate
3145 * the nearest cpu in the nohz.cpu_mask.
3146 */
3147 int ilb = first_cpu(nohz.cpu_mask);
3148
3149 if (ilb != NR_CPUS)
3150 resched_cpu(ilb);
3151 }
3152 }
3153
3154 /*
3155 * If this cpu is idle and doing idle load balancing for all the
3156 * cpus with ticks stopped, is it time for that to stop?
3157 */
3158 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3159 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3160 resched_cpu(cpu);
3161 return;
3162 }
3163
3164 /*
3165 * If this cpu is idle and the idle load balancing is done by
3166 * someone else, then no need raise the SCHED_SOFTIRQ
3167 */
3168 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3169 cpu_isset(cpu, nohz.cpu_mask))
3170 return;
3171 #endif
3172 if (time_after_eq(jiffies, rq->next_balance))
3173 raise_softirq(SCHED_SOFTIRQ);
3174 }
3175
3176 #else /* CONFIG_SMP */
3177
3178 /*
3179 * on UP we do not need to balance between CPUs:
3180 */
3181 static inline void idle_balance(int cpu, struct rq *rq)
3182 {
3183 }
3184
3185 /* Avoid "used but not defined" warning on UP */
3186 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3187 unsigned long max_nr_move, unsigned long max_load_move,
3188 struct sched_domain *sd, enum cpu_idle_type idle,
3189 int *all_pinned, unsigned long *load_moved,
3190 int *this_best_prio, struct rq_iterator *iterator)
3191 {
3192 *load_moved = 0;
3193
3194 return 0;
3195 }
3196
3197 #endif
3198
3199 DEFINE_PER_CPU(struct kernel_stat, kstat);
3200
3201 EXPORT_PER_CPU_SYMBOL(kstat);
3202
3203 /*
3204 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3205 * that have not yet been banked in case the task is currently running.
3206 */
3207 unsigned long long task_sched_runtime(struct task_struct *p)
3208 {
3209 unsigned long flags;
3210 u64 ns, delta_exec;
3211 struct rq *rq;
3212
3213 rq = task_rq_lock(p, &flags);
3214 ns = p->se.sum_exec_runtime;
3215 if (rq->curr == p) {
3216 update_rq_clock(rq);
3217 delta_exec = rq->clock - p->se.exec_start;
3218 if ((s64)delta_exec > 0)
3219 ns += delta_exec;
3220 }
3221 task_rq_unlock(rq, &flags);
3222
3223 return ns;
3224 }
3225
3226 /*
3227 * Account user cpu time to a process.
3228 * @p: the process that the cpu time gets accounted to
3229 * @hardirq_offset: the offset to subtract from hardirq_count()
3230 * @cputime: the cpu time spent in user space since the last update
3231 */
3232 void account_user_time(struct task_struct *p, cputime_t cputime)
3233 {
3234 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3235 cputime64_t tmp;
3236
3237 p->utime = cputime_add(p->utime, cputime);
3238
3239 /* Add user time to cpustat. */
3240 tmp = cputime_to_cputime64(cputime);
3241 if (TASK_NICE(p) > 0)
3242 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3243 else
3244 cpustat->user = cputime64_add(cpustat->user, tmp);
3245 }
3246
3247 /*
3248 * Account system cpu time to a process.
3249 * @p: the process that the cpu time gets accounted to
3250 * @hardirq_offset: the offset to subtract from hardirq_count()
3251 * @cputime: the cpu time spent in kernel space since the last update
3252 */
3253 void account_system_time(struct task_struct *p, int hardirq_offset,
3254 cputime_t cputime)
3255 {
3256 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3257 struct rq *rq = this_rq();
3258 cputime64_t tmp;
3259
3260 p->stime = cputime_add(p->stime, cputime);
3261
3262 /* Add system time to cpustat. */
3263 tmp = cputime_to_cputime64(cputime);
3264 if (hardirq_count() - hardirq_offset)
3265 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3266 else if (softirq_count())
3267 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3268 else if (p != rq->idle)
3269 cpustat->system = cputime64_add(cpustat->system, tmp);
3270 else if (atomic_read(&rq->nr_iowait) > 0)
3271 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3272 else
3273 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3274 /* Account for system time used */
3275 acct_update_integrals(p);
3276 }
3277
3278 /*
3279 * Account for involuntary wait time.
3280 * @p: the process from which the cpu time has been stolen
3281 * @steal: the cpu time spent in involuntary wait
3282 */
3283 void account_steal_time(struct task_struct *p, cputime_t steal)
3284 {
3285 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3286 cputime64_t tmp = cputime_to_cputime64(steal);
3287 struct rq *rq = this_rq();
3288
3289 if (p == rq->idle) {
3290 p->stime = cputime_add(p->stime, steal);
3291 if (atomic_read(&rq->nr_iowait) > 0)
3292 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3293 else
3294 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3295 } else
3296 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3297 }
3298
3299 /*
3300 * This function gets called by the timer code, with HZ frequency.
3301 * We call it with interrupts disabled.
3302 *
3303 * It also gets called by the fork code, when changing the parent's
3304 * timeslices.
3305 */
3306 void scheduler_tick(void)
3307 {
3308 int cpu = smp_processor_id();
3309 struct rq *rq = cpu_rq(cpu);
3310 struct task_struct *curr = rq->curr;
3311
3312 spin_lock(&rq->lock);
3313 __update_rq_clock(rq);
3314 update_cpu_load(rq);
3315 if (curr != rq->idle) /* FIXME: needed? */
3316 curr->sched_class->task_tick(rq, curr);
3317 spin_unlock(&rq->lock);
3318
3319 #ifdef CONFIG_SMP
3320 rq->idle_at_tick = idle_cpu(cpu);
3321 trigger_load_balance(rq, cpu);
3322 #endif
3323 }
3324
3325 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3326
3327 void fastcall add_preempt_count(int val)
3328 {
3329 /*
3330 * Underflow?
3331 */
3332 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3333 return;
3334 preempt_count() += val;
3335 /*
3336 * Spinlock count overflowing soon?
3337 */
3338 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3339 PREEMPT_MASK - 10);
3340 }
3341 EXPORT_SYMBOL(add_preempt_count);
3342
3343 void fastcall sub_preempt_count(int val)
3344 {
3345 /*
3346 * Underflow?
3347 */
3348 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3349 return;
3350 /*
3351 * Is the spinlock portion underflowing?
3352 */
3353 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3354 !(preempt_count() & PREEMPT_MASK)))
3355 return;
3356
3357 preempt_count() -= val;
3358 }
3359 EXPORT_SYMBOL(sub_preempt_count);
3360
3361 #endif
3362
3363 /*
3364 * Print scheduling while atomic bug:
3365 */
3366 static noinline void __schedule_bug(struct task_struct *prev)
3367 {
3368 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3369 prev->comm, preempt_count(), prev->pid);
3370 debug_show_held_locks(prev);
3371 if (irqs_disabled())
3372 print_irqtrace_events(prev);
3373 dump_stack();
3374 }
3375
3376 /*
3377 * Various schedule()-time debugging checks and statistics:
3378 */
3379 static inline void schedule_debug(struct task_struct *prev)
3380 {
3381 /*
3382 * Test if we are atomic. Since do_exit() needs to call into
3383 * schedule() atomically, we ignore that path for now.
3384 * Otherwise, whine if we are scheduling when we should not be.
3385 */
3386 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3387 __schedule_bug(prev);
3388
3389 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3390
3391 schedstat_inc(this_rq(), sched_cnt);
3392 }
3393
3394 /*
3395 * Pick up the highest-prio task:
3396 */
3397 static inline struct task_struct *
3398 pick_next_task(struct rq *rq, struct task_struct *prev)
3399 {
3400 struct sched_class *class;
3401 struct task_struct *p;
3402
3403 /*
3404 * Optimization: we know that if all tasks are in
3405 * the fair class we can call that function directly:
3406 */
3407 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3408 p = fair_sched_class.pick_next_task(rq);
3409 if (likely(p))
3410 return p;
3411 }
3412
3413 class = sched_class_highest;
3414 for ( ; ; ) {
3415 p = class->pick_next_task(rq);
3416 if (p)
3417 return p;
3418 /*
3419 * Will never be NULL as the idle class always
3420 * returns a non-NULL p:
3421 */
3422 class = class->next;
3423 }
3424 }
3425
3426 /*
3427 * schedule() is the main scheduler function.
3428 */
3429 asmlinkage void __sched schedule(void)
3430 {
3431 struct task_struct *prev, *next;
3432 long *switch_count;
3433 struct rq *rq;
3434 int cpu;
3435
3436 need_resched:
3437 preempt_disable();
3438 cpu = smp_processor_id();
3439 rq = cpu_rq(cpu);
3440 rcu_qsctr_inc(cpu);
3441 prev = rq->curr;
3442 switch_count = &prev->nivcsw;
3443
3444 release_kernel_lock(prev);
3445 need_resched_nonpreemptible:
3446
3447 schedule_debug(prev);
3448
3449 spin_lock_irq(&rq->lock);
3450 clear_tsk_need_resched(prev);
3451 __update_rq_clock(rq);
3452
3453 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3454 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3455 unlikely(signal_pending(prev)))) {
3456 prev->state = TASK_RUNNING;
3457 } else {
3458 deactivate_task(rq, prev, 1);
3459 }
3460 switch_count = &prev->nvcsw;
3461 }
3462
3463 if (unlikely(!rq->nr_running))
3464 idle_balance(cpu, rq);
3465
3466 prev->sched_class->put_prev_task(rq, prev);
3467 next = pick_next_task(rq, prev);
3468
3469 sched_info_switch(prev, next);
3470
3471 if (likely(prev != next)) {
3472 rq->nr_switches++;
3473 rq->curr = next;
3474 ++*switch_count;
3475
3476 context_switch(rq, prev, next); /* unlocks the rq */
3477 } else
3478 spin_unlock_irq(&rq->lock);
3479
3480 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3481 cpu = smp_processor_id();
3482 rq = cpu_rq(cpu);
3483 goto need_resched_nonpreemptible;
3484 }
3485 preempt_enable_no_resched();
3486 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3487 goto need_resched;
3488 }
3489 EXPORT_SYMBOL(schedule);
3490
3491 #ifdef CONFIG_PREEMPT
3492 /*
3493 * this is the entry point to schedule() from in-kernel preemption
3494 * off of preempt_enable. Kernel preemptions off return from interrupt
3495 * occur there and call schedule directly.
3496 */
3497 asmlinkage void __sched preempt_schedule(void)
3498 {
3499 struct thread_info *ti = current_thread_info();
3500 #ifdef CONFIG_PREEMPT_BKL
3501 struct task_struct *task = current;
3502 int saved_lock_depth;
3503 #endif
3504 /*
3505 * If there is a non-zero preempt_count or interrupts are disabled,
3506 * we do not want to preempt the current task. Just return..
3507 */
3508 if (likely(ti->preempt_count || irqs_disabled()))
3509 return;
3510
3511 need_resched:
3512 add_preempt_count(PREEMPT_ACTIVE);
3513 /*
3514 * We keep the big kernel semaphore locked, but we
3515 * clear ->lock_depth so that schedule() doesnt
3516 * auto-release the semaphore:
3517 */
3518 #ifdef CONFIG_PREEMPT_BKL
3519 saved_lock_depth = task->lock_depth;
3520 task->lock_depth = -1;
3521 #endif
3522 schedule();
3523 #ifdef CONFIG_PREEMPT_BKL
3524 task->lock_depth = saved_lock_depth;
3525 #endif
3526 sub_preempt_count(PREEMPT_ACTIVE);
3527
3528 /* we could miss a preemption opportunity between schedule and now */
3529 barrier();
3530 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3531 goto need_resched;
3532 }
3533 EXPORT_SYMBOL(preempt_schedule);
3534
3535 /*
3536 * this is the entry point to schedule() from kernel preemption
3537 * off of irq context.
3538 * Note, that this is called and return with irqs disabled. This will
3539 * protect us against recursive calling from irq.
3540 */
3541 asmlinkage void __sched preempt_schedule_irq(void)
3542 {
3543 struct thread_info *ti = current_thread_info();
3544 #ifdef CONFIG_PREEMPT_BKL
3545 struct task_struct *task = current;
3546 int saved_lock_depth;
3547 #endif
3548 /* Catch callers which need to be fixed */
3549 BUG_ON(ti->preempt_count || !irqs_disabled());
3550
3551 need_resched:
3552 add_preempt_count(PREEMPT_ACTIVE);
3553 /*
3554 * We keep the big kernel semaphore locked, but we
3555 * clear ->lock_depth so that schedule() doesnt
3556 * auto-release the semaphore:
3557 */
3558 #ifdef CONFIG_PREEMPT_BKL
3559 saved_lock_depth = task->lock_depth;
3560 task->lock_depth = -1;
3561 #endif
3562 local_irq_enable();
3563 schedule();
3564 local_irq_disable();
3565 #ifdef CONFIG_PREEMPT_BKL
3566 task->lock_depth = saved_lock_depth;
3567 #endif
3568 sub_preempt_count(PREEMPT_ACTIVE);
3569
3570 /* we could miss a preemption opportunity between schedule and now */
3571 barrier();
3572 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3573 goto need_resched;
3574 }
3575
3576 #endif /* CONFIG_PREEMPT */
3577
3578 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3579 void *key)
3580 {
3581 return try_to_wake_up(curr->private, mode, sync);
3582 }
3583 EXPORT_SYMBOL(default_wake_function);
3584
3585 /*
3586 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3587 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3588 * number) then we wake all the non-exclusive tasks and one exclusive task.
3589 *
3590 * There are circumstances in which we can try to wake a task which has already
3591 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3592 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3593 */
3594 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3595 int nr_exclusive, int sync, void *key)
3596 {
3597 struct list_head *tmp, *next;
3598
3599 list_for_each_safe(tmp, next, &q->task_list) {
3600 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3601 unsigned flags = curr->flags;
3602
3603 if (curr->func(curr, mode, sync, key) &&
3604 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3605 break;
3606 }
3607 }
3608
3609 /**
3610 * __wake_up - wake up threads blocked on a waitqueue.
3611 * @q: the waitqueue
3612 * @mode: which threads
3613 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3614 * @key: is directly passed to the wakeup function
3615 */
3616 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3617 int nr_exclusive, void *key)
3618 {
3619 unsigned long flags;
3620
3621 spin_lock_irqsave(&q->lock, flags);
3622 __wake_up_common(q, mode, nr_exclusive, 0, key);
3623 spin_unlock_irqrestore(&q->lock, flags);
3624 }
3625 EXPORT_SYMBOL(__wake_up);
3626
3627 /*
3628 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3629 */
3630 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3631 {
3632 __wake_up_common(q, mode, 1, 0, NULL);
3633 }
3634
3635 /**
3636 * __wake_up_sync - wake up threads blocked on a waitqueue.
3637 * @q: the waitqueue
3638 * @mode: which threads
3639 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3640 *
3641 * The sync wakeup differs that the waker knows that it will schedule
3642 * away soon, so while the target thread will be woken up, it will not
3643 * be migrated to another CPU - ie. the two threads are 'synchronized'
3644 * with each other. This can prevent needless bouncing between CPUs.
3645 *
3646 * On UP it can prevent extra preemption.
3647 */
3648 void fastcall
3649 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3650 {
3651 unsigned long flags;
3652 int sync = 1;
3653
3654 if (unlikely(!q))
3655 return;
3656
3657 if (unlikely(!nr_exclusive))
3658 sync = 0;
3659
3660 spin_lock_irqsave(&q->lock, flags);
3661 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3662 spin_unlock_irqrestore(&q->lock, flags);
3663 }
3664 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3665
3666 void fastcall complete(struct completion *x)
3667 {
3668 unsigned long flags;
3669
3670 spin_lock_irqsave(&x->wait.lock, flags);
3671 x->done++;
3672 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3673 1, 0, NULL);
3674 spin_unlock_irqrestore(&x->wait.lock, flags);
3675 }
3676 EXPORT_SYMBOL(complete);
3677
3678 void fastcall complete_all(struct completion *x)
3679 {
3680 unsigned long flags;
3681
3682 spin_lock_irqsave(&x->wait.lock, flags);
3683 x->done += UINT_MAX/2;
3684 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3685 0, 0, NULL);
3686 spin_unlock_irqrestore(&x->wait.lock, flags);
3687 }
3688 EXPORT_SYMBOL(complete_all);
3689
3690 void fastcall __sched wait_for_completion(struct completion *x)
3691 {
3692 might_sleep();
3693
3694 spin_lock_irq(&x->wait.lock);
3695 if (!x->done) {
3696 DECLARE_WAITQUEUE(wait, current);
3697
3698 wait.flags |= WQ_FLAG_EXCLUSIVE;
3699 __add_wait_queue_tail(&x->wait, &wait);
3700 do {
3701 __set_current_state(TASK_UNINTERRUPTIBLE);
3702 spin_unlock_irq(&x->wait.lock);
3703 schedule();
3704 spin_lock_irq(&x->wait.lock);
3705 } while (!x->done);
3706 __remove_wait_queue(&x->wait, &wait);
3707 }
3708 x->done--;
3709 spin_unlock_irq(&x->wait.lock);
3710 }
3711 EXPORT_SYMBOL(wait_for_completion);
3712
3713 unsigned long fastcall __sched
3714 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3715 {
3716 might_sleep();
3717
3718 spin_lock_irq(&x->wait.lock);
3719 if (!x->done) {
3720 DECLARE_WAITQUEUE(wait, current);
3721
3722 wait.flags |= WQ_FLAG_EXCLUSIVE;
3723 __add_wait_queue_tail(&x->wait, &wait);
3724 do {
3725 __set_current_state(TASK_UNINTERRUPTIBLE);
3726 spin_unlock_irq(&x->wait.lock);
3727 timeout = schedule_timeout(timeout);
3728 spin_lock_irq(&x->wait.lock);
3729 if (!timeout) {
3730 __remove_wait_queue(&x->wait, &wait);
3731 goto out;
3732 }
3733 } while (!x->done);
3734 __remove_wait_queue(&x->wait, &wait);
3735 }
3736 x->done--;
3737 out:
3738 spin_unlock_irq(&x->wait.lock);
3739 return timeout;
3740 }
3741 EXPORT_SYMBOL(wait_for_completion_timeout);
3742
3743 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3744 {
3745 int ret = 0;
3746
3747 might_sleep();
3748
3749 spin_lock_irq(&x->wait.lock);
3750 if (!x->done) {
3751 DECLARE_WAITQUEUE(wait, current);
3752
3753 wait.flags |= WQ_FLAG_EXCLUSIVE;
3754 __add_wait_queue_tail(&x->wait, &wait);
3755 do {
3756 if (signal_pending(current)) {
3757 ret = -ERESTARTSYS;
3758 __remove_wait_queue(&x->wait, &wait);
3759 goto out;
3760 }
3761 __set_current_state(TASK_INTERRUPTIBLE);
3762 spin_unlock_irq(&x->wait.lock);
3763 schedule();
3764 spin_lock_irq(&x->wait.lock);
3765 } while (!x->done);
3766 __remove_wait_queue(&x->wait, &wait);
3767 }
3768 x->done--;
3769 out:
3770 spin_unlock_irq(&x->wait.lock);
3771
3772 return ret;
3773 }
3774 EXPORT_SYMBOL(wait_for_completion_interruptible);
3775
3776 unsigned long fastcall __sched
3777 wait_for_completion_interruptible_timeout(struct completion *x,
3778 unsigned long timeout)
3779 {
3780 might_sleep();
3781
3782 spin_lock_irq(&x->wait.lock);
3783 if (!x->done) {
3784 DECLARE_WAITQUEUE(wait, current);
3785
3786 wait.flags |= WQ_FLAG_EXCLUSIVE;
3787 __add_wait_queue_tail(&x->wait, &wait);
3788 do {
3789 if (signal_pending(current)) {
3790 timeout = -ERESTARTSYS;
3791 __remove_wait_queue(&x->wait, &wait);
3792 goto out;
3793 }
3794 __set_current_state(TASK_INTERRUPTIBLE);
3795 spin_unlock_irq(&x->wait.lock);
3796 timeout = schedule_timeout(timeout);
3797 spin_lock_irq(&x->wait.lock);
3798 if (!timeout) {
3799 __remove_wait_queue(&x->wait, &wait);
3800 goto out;
3801 }
3802 } while (!x->done);
3803 __remove_wait_queue(&x->wait, &wait);
3804 }
3805 x->done--;
3806 out:
3807 spin_unlock_irq(&x->wait.lock);
3808 return timeout;
3809 }
3810 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3811
3812 static inline void
3813 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3814 {
3815 spin_lock_irqsave(&q->lock, *flags);
3816 __add_wait_queue(q, wait);
3817 spin_unlock(&q->lock);
3818 }
3819
3820 static inline void
3821 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3822 {
3823 spin_lock_irq(&q->lock);
3824 __remove_wait_queue(q, wait);
3825 spin_unlock_irqrestore(&q->lock, *flags);
3826 }
3827
3828 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3829 {
3830 unsigned long flags;
3831 wait_queue_t wait;
3832
3833 init_waitqueue_entry(&wait, current);
3834
3835 current->state = TASK_INTERRUPTIBLE;
3836
3837 sleep_on_head(q, &wait, &flags);
3838 schedule();
3839 sleep_on_tail(q, &wait, &flags);
3840 }
3841 EXPORT_SYMBOL(interruptible_sleep_on);
3842
3843 long __sched
3844 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3845 {
3846 unsigned long flags;
3847 wait_queue_t wait;
3848
3849 init_waitqueue_entry(&wait, current);
3850
3851 current->state = TASK_INTERRUPTIBLE;
3852
3853 sleep_on_head(q, &wait, &flags);
3854 timeout = schedule_timeout(timeout);
3855 sleep_on_tail(q, &wait, &flags);
3856
3857 return timeout;
3858 }
3859 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3860
3861 void __sched sleep_on(wait_queue_head_t *q)
3862 {
3863 unsigned long flags;
3864 wait_queue_t wait;
3865
3866 init_waitqueue_entry(&wait, current);
3867
3868 current->state = TASK_UNINTERRUPTIBLE;
3869
3870 sleep_on_head(q, &wait, &flags);
3871 schedule();
3872 sleep_on_tail(q, &wait, &flags);
3873 }
3874 EXPORT_SYMBOL(sleep_on);
3875
3876 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3877 {
3878 unsigned long flags;
3879 wait_queue_t wait;
3880
3881 init_waitqueue_entry(&wait, current);
3882
3883 current->state = TASK_UNINTERRUPTIBLE;
3884
3885 sleep_on_head(q, &wait, &flags);
3886 timeout = schedule_timeout(timeout);
3887 sleep_on_tail(q, &wait, &flags);
3888
3889 return timeout;
3890 }
3891 EXPORT_SYMBOL(sleep_on_timeout);
3892
3893 #ifdef CONFIG_RT_MUTEXES
3894
3895 /*
3896 * rt_mutex_setprio - set the current priority of a task
3897 * @p: task
3898 * @prio: prio value (kernel-internal form)
3899 *
3900 * This function changes the 'effective' priority of a task. It does
3901 * not touch ->normal_prio like __setscheduler().
3902 *
3903 * Used by the rt_mutex code to implement priority inheritance logic.
3904 */
3905 void rt_mutex_setprio(struct task_struct *p, int prio)
3906 {
3907 unsigned long flags;
3908 int oldprio, on_rq;
3909 struct rq *rq;
3910
3911 BUG_ON(prio < 0 || prio > MAX_PRIO);
3912
3913 rq = task_rq_lock(p, &flags);
3914 update_rq_clock(rq);
3915
3916 oldprio = p->prio;
3917 on_rq = p->se.on_rq;
3918 if (on_rq)
3919 dequeue_task(rq, p, 0);
3920
3921 if (rt_prio(prio))
3922 p->sched_class = &rt_sched_class;
3923 else
3924 p->sched_class = &fair_sched_class;
3925
3926 p->prio = prio;
3927
3928 if (on_rq) {
3929 enqueue_task(rq, p, 0);
3930 /*
3931 * Reschedule if we are currently running on this runqueue and
3932 * our priority decreased, or if we are not currently running on
3933 * this runqueue and our priority is higher than the current's
3934 */
3935 if (task_running(rq, p)) {
3936 if (p->prio > oldprio)
3937 resched_task(rq->curr);
3938 } else {
3939 check_preempt_curr(rq, p);
3940 }
3941 }
3942 task_rq_unlock(rq, &flags);
3943 }
3944
3945 #endif
3946
3947 void set_user_nice(struct task_struct *p, long nice)
3948 {
3949 int old_prio, delta, on_rq;
3950 unsigned long flags;
3951 struct rq *rq;
3952
3953 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3954 return;
3955 /*
3956 * We have to be careful, if called from sys_setpriority(),
3957 * the task might be in the middle of scheduling on another CPU.
3958 */
3959 rq = task_rq_lock(p, &flags);
3960 update_rq_clock(rq);
3961 /*
3962 * The RT priorities are set via sched_setscheduler(), but we still
3963 * allow the 'normal' nice value to be set - but as expected
3964 * it wont have any effect on scheduling until the task is
3965 * SCHED_FIFO/SCHED_RR:
3966 */
3967 if (task_has_rt_policy(p)) {
3968 p->static_prio = NICE_TO_PRIO(nice);
3969 goto out_unlock;
3970 }
3971 on_rq = p->se.on_rq;
3972 if (on_rq) {
3973 dequeue_task(rq, p, 0);
3974 dec_load(rq, p);
3975 }
3976
3977 p->static_prio = NICE_TO_PRIO(nice);
3978 set_load_weight(p);
3979 old_prio = p->prio;
3980 p->prio = effective_prio(p);
3981 delta = p->prio - old_prio;
3982
3983 if (on_rq) {
3984 enqueue_task(rq, p, 0);
3985 inc_load(rq, p);
3986 /*
3987 * If the task increased its priority or is running and
3988 * lowered its priority, then reschedule its CPU:
3989 */
3990 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3991 resched_task(rq->curr);
3992 }
3993 out_unlock:
3994 task_rq_unlock(rq, &flags);
3995 }
3996 EXPORT_SYMBOL(set_user_nice);
3997
3998 /*
3999 * can_nice - check if a task can reduce its nice value
4000 * @p: task
4001 * @nice: nice value
4002 */
4003 int can_nice(const struct task_struct *p, const int nice)
4004 {
4005 /* convert nice value [19,-20] to rlimit style value [1,40] */
4006 int nice_rlim = 20 - nice;
4007
4008 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4009 capable(CAP_SYS_NICE));
4010 }
4011
4012 #ifdef __ARCH_WANT_SYS_NICE
4013
4014 /*
4015 * sys_nice - change the priority of the current process.
4016 * @increment: priority increment
4017 *
4018 * sys_setpriority is a more generic, but much slower function that
4019 * does similar things.
4020 */
4021 asmlinkage long sys_nice(int increment)
4022 {
4023 long nice, retval;
4024
4025 /*
4026 * Setpriority might change our priority at the same moment.
4027 * We don't have to worry. Conceptually one call occurs first
4028 * and we have a single winner.
4029 */
4030 if (increment < -40)
4031 increment = -40;
4032 if (increment > 40)
4033 increment = 40;
4034
4035 nice = PRIO_TO_NICE(current->static_prio) + increment;
4036 if (nice < -20)
4037 nice = -20;
4038 if (nice > 19)
4039 nice = 19;
4040
4041 if (increment < 0 && !can_nice(current, nice))
4042 return -EPERM;
4043
4044 retval = security_task_setnice(current, nice);
4045 if (retval)
4046 return retval;
4047
4048 set_user_nice(current, nice);
4049 return 0;
4050 }
4051
4052 #endif
4053
4054 /**
4055 * task_prio - return the priority value of a given task.
4056 * @p: the task in question.
4057 *
4058 * This is the priority value as seen by users in /proc.
4059 * RT tasks are offset by -200. Normal tasks are centered
4060 * around 0, value goes from -16 to +15.
4061 */
4062 int task_prio(const struct task_struct *p)
4063 {
4064 return p->prio - MAX_RT_PRIO;
4065 }
4066
4067 /**
4068 * task_nice - return the nice value of a given task.
4069 * @p: the task in question.
4070 */
4071 int task_nice(const struct task_struct *p)
4072 {
4073 return TASK_NICE(p);
4074 }
4075 EXPORT_SYMBOL_GPL(task_nice);
4076
4077 /**
4078 * idle_cpu - is a given cpu idle currently?
4079 * @cpu: the processor in question.
4080 */
4081 int idle_cpu(int cpu)
4082 {
4083 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4084 }
4085
4086 /**
4087 * idle_task - return the idle task for a given cpu.
4088 * @cpu: the processor in question.
4089 */
4090 struct task_struct *idle_task(int cpu)
4091 {
4092 return cpu_rq(cpu)->idle;
4093 }
4094
4095 /**
4096 * find_process_by_pid - find a process with a matching PID value.
4097 * @pid: the pid in question.
4098 */
4099 static inline struct task_struct *find_process_by_pid(pid_t pid)
4100 {
4101 return pid ? find_task_by_pid(pid) : current;
4102 }
4103
4104 /* Actually do priority change: must hold rq lock. */
4105 static void
4106 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4107 {
4108 BUG_ON(p->se.on_rq);
4109
4110 p->policy = policy;
4111 switch (p->policy) {
4112 case SCHED_NORMAL:
4113 case SCHED_BATCH:
4114 case SCHED_IDLE:
4115 p->sched_class = &fair_sched_class;
4116 break;
4117 case SCHED_FIFO:
4118 case SCHED_RR:
4119 p->sched_class = &rt_sched_class;
4120 break;
4121 }
4122
4123 p->rt_priority = prio;
4124 p->normal_prio = normal_prio(p);
4125 /* we are holding p->pi_lock already */
4126 p->prio = rt_mutex_getprio(p);
4127 set_load_weight(p);
4128 }
4129
4130 /**
4131 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4132 * @p: the task in question.
4133 * @policy: new policy.
4134 * @param: structure containing the new RT priority.
4135 *
4136 * NOTE that the task may be already dead.
4137 */
4138 int sched_setscheduler(struct task_struct *p, int policy,
4139 struct sched_param *param)
4140 {
4141 int retval, oldprio, oldpolicy = -1, on_rq;
4142 unsigned long flags;
4143 struct rq *rq;
4144
4145 /* may grab non-irq protected spin_locks */
4146 BUG_ON(in_interrupt());
4147 recheck:
4148 /* double check policy once rq lock held */
4149 if (policy < 0)
4150 policy = oldpolicy = p->policy;
4151 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4152 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4153 policy != SCHED_IDLE)
4154 return -EINVAL;
4155 /*
4156 * Valid priorities for SCHED_FIFO and SCHED_RR are
4157 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4158 * SCHED_BATCH and SCHED_IDLE is 0.
4159 */
4160 if (param->sched_priority < 0 ||
4161 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4162 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4163 return -EINVAL;
4164 if (rt_policy(policy) != (param->sched_priority != 0))
4165 return -EINVAL;
4166
4167 /*
4168 * Allow unprivileged RT tasks to decrease priority:
4169 */
4170 if (!capable(CAP_SYS_NICE)) {
4171 if (rt_policy(policy)) {
4172 unsigned long rlim_rtprio;
4173
4174 if (!lock_task_sighand(p, &flags))
4175 return -ESRCH;
4176 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4177 unlock_task_sighand(p, &flags);
4178
4179 /* can't set/change the rt policy */
4180 if (policy != p->policy && !rlim_rtprio)
4181 return -EPERM;
4182
4183 /* can't increase priority */
4184 if (param->sched_priority > p->rt_priority &&
4185 param->sched_priority > rlim_rtprio)
4186 return -EPERM;
4187 }
4188 /*
4189 * Like positive nice levels, dont allow tasks to
4190 * move out of SCHED_IDLE either:
4191 */
4192 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4193 return -EPERM;
4194
4195 /* can't change other user's priorities */
4196 if ((current->euid != p->euid) &&
4197 (current->euid != p->uid))
4198 return -EPERM;
4199 }
4200
4201 retval = security_task_setscheduler(p, policy, param);
4202 if (retval)
4203 return retval;
4204 /*
4205 * make sure no PI-waiters arrive (or leave) while we are
4206 * changing the priority of the task:
4207 */
4208 spin_lock_irqsave(&p->pi_lock, flags);
4209 /*
4210 * To be able to change p->policy safely, the apropriate
4211 * runqueue lock must be held.
4212 */
4213 rq = __task_rq_lock(p);
4214 /* recheck policy now with rq lock held */
4215 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4216 policy = oldpolicy = -1;
4217 __task_rq_unlock(rq);
4218 spin_unlock_irqrestore(&p->pi_lock, flags);
4219 goto recheck;
4220 }
4221 update_rq_clock(rq);
4222 on_rq = p->se.on_rq;
4223 if (on_rq)
4224 deactivate_task(rq, p, 0);
4225 oldprio = p->prio;
4226 __setscheduler(rq, p, policy, param->sched_priority);
4227 if (on_rq) {
4228 activate_task(rq, p, 0);
4229 /*
4230 * Reschedule if we are currently running on this runqueue and
4231 * our priority decreased, or if we are not currently running on
4232 * this runqueue and our priority is higher than the current's
4233 */
4234 if (task_running(rq, p)) {
4235 if (p->prio > oldprio)
4236 resched_task(rq->curr);
4237 } else {
4238 check_preempt_curr(rq, p);
4239 }
4240 }
4241 __task_rq_unlock(rq);
4242 spin_unlock_irqrestore(&p->pi_lock, flags);
4243
4244 rt_mutex_adjust_pi(p);
4245
4246 return 0;
4247 }
4248 EXPORT_SYMBOL_GPL(sched_setscheduler);
4249
4250 static int
4251 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4252 {
4253 struct sched_param lparam;
4254 struct task_struct *p;
4255 int retval;
4256
4257 if (!param || pid < 0)
4258 return -EINVAL;
4259 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4260 return -EFAULT;
4261
4262 rcu_read_lock();
4263 retval = -ESRCH;
4264 p = find_process_by_pid(pid);
4265 if (p != NULL)
4266 retval = sched_setscheduler(p, policy, &lparam);
4267 rcu_read_unlock();
4268
4269 return retval;
4270 }
4271
4272 /**
4273 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4274 * @pid: the pid in question.
4275 * @policy: new policy.
4276 * @param: structure containing the new RT priority.
4277 */
4278 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4279 struct sched_param __user *param)
4280 {
4281 /* negative values for policy are not valid */
4282 if (policy < 0)
4283 return -EINVAL;
4284
4285 return do_sched_setscheduler(pid, policy, param);
4286 }
4287
4288 /**
4289 * sys_sched_setparam - set/change the RT priority of a thread
4290 * @pid: the pid in question.
4291 * @param: structure containing the new RT priority.
4292 */
4293 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4294 {
4295 return do_sched_setscheduler(pid, -1, param);
4296 }
4297
4298 /**
4299 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4300 * @pid: the pid in question.
4301 */
4302 asmlinkage long sys_sched_getscheduler(pid_t pid)
4303 {
4304 struct task_struct *p;
4305 int retval = -EINVAL;
4306
4307 if (pid < 0)
4308 goto out_nounlock;
4309
4310 retval = -ESRCH;
4311 read_lock(&tasklist_lock);
4312 p = find_process_by_pid(pid);
4313 if (p) {
4314 retval = security_task_getscheduler(p);
4315 if (!retval)
4316 retval = p->policy;
4317 }
4318 read_unlock(&tasklist_lock);
4319
4320 out_nounlock:
4321 return retval;
4322 }
4323
4324 /**
4325 * sys_sched_getscheduler - get the RT priority of a thread
4326 * @pid: the pid in question.
4327 * @param: structure containing the RT priority.
4328 */
4329 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4330 {
4331 struct sched_param lp;
4332 struct task_struct *p;
4333 int retval = -EINVAL;
4334
4335 if (!param || pid < 0)
4336 goto out_nounlock;
4337
4338 read_lock(&tasklist_lock);
4339 p = find_process_by_pid(pid);
4340 retval = -ESRCH;
4341 if (!p)
4342 goto out_unlock;
4343
4344 retval = security_task_getscheduler(p);
4345 if (retval)
4346 goto out_unlock;
4347
4348 lp.sched_priority = p->rt_priority;
4349 read_unlock(&tasklist_lock);
4350
4351 /*
4352 * This one might sleep, we cannot do it with a spinlock held ...
4353 */
4354 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4355
4356 out_nounlock:
4357 return retval;
4358
4359 out_unlock:
4360 read_unlock(&tasklist_lock);
4361 return retval;
4362 }
4363
4364 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4365 {
4366 cpumask_t cpus_allowed;
4367 struct task_struct *p;
4368 int retval;
4369
4370 mutex_lock(&sched_hotcpu_mutex);
4371 read_lock(&tasklist_lock);
4372
4373 p = find_process_by_pid(pid);
4374 if (!p) {
4375 read_unlock(&tasklist_lock);
4376 mutex_unlock(&sched_hotcpu_mutex);
4377 return -ESRCH;
4378 }
4379
4380 /*
4381 * It is not safe to call set_cpus_allowed with the
4382 * tasklist_lock held. We will bump the task_struct's
4383 * usage count and then drop tasklist_lock.
4384 */
4385 get_task_struct(p);
4386 read_unlock(&tasklist_lock);
4387
4388 retval = -EPERM;
4389 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4390 !capable(CAP_SYS_NICE))
4391 goto out_unlock;
4392
4393 retval = security_task_setscheduler(p, 0, NULL);
4394 if (retval)
4395 goto out_unlock;
4396
4397 cpus_allowed = cpuset_cpus_allowed(p);
4398 cpus_and(new_mask, new_mask, cpus_allowed);
4399 retval = set_cpus_allowed(p, new_mask);
4400
4401 out_unlock:
4402 put_task_struct(p);
4403 mutex_unlock(&sched_hotcpu_mutex);
4404 return retval;
4405 }
4406
4407 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4408 cpumask_t *new_mask)
4409 {
4410 if (len < sizeof(cpumask_t)) {
4411 memset(new_mask, 0, sizeof(cpumask_t));
4412 } else if (len > sizeof(cpumask_t)) {
4413 len = sizeof(cpumask_t);
4414 }
4415 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4416 }
4417
4418 /**
4419 * sys_sched_setaffinity - set the cpu affinity of a process
4420 * @pid: pid of the process
4421 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4422 * @user_mask_ptr: user-space pointer to the new cpu mask
4423 */
4424 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4425 unsigned long __user *user_mask_ptr)
4426 {
4427 cpumask_t new_mask;
4428 int retval;
4429
4430 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4431 if (retval)
4432 return retval;
4433
4434 return sched_setaffinity(pid, new_mask);
4435 }
4436
4437 /*
4438 * Represents all cpu's present in the system
4439 * In systems capable of hotplug, this map could dynamically grow
4440 * as new cpu's are detected in the system via any platform specific
4441 * method, such as ACPI for e.g.
4442 */
4443
4444 cpumask_t cpu_present_map __read_mostly;
4445 EXPORT_SYMBOL(cpu_present_map);
4446
4447 #ifndef CONFIG_SMP
4448 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4449 EXPORT_SYMBOL(cpu_online_map);
4450
4451 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4452 EXPORT_SYMBOL(cpu_possible_map);
4453 #endif
4454
4455 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4456 {
4457 struct task_struct *p;
4458 int retval;
4459
4460 mutex_lock(&sched_hotcpu_mutex);
4461 read_lock(&tasklist_lock);
4462
4463 retval = -ESRCH;
4464 p = find_process_by_pid(pid);
4465 if (!p)
4466 goto out_unlock;
4467
4468 retval = security_task_getscheduler(p);
4469 if (retval)
4470 goto out_unlock;
4471
4472 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4473
4474 out_unlock:
4475 read_unlock(&tasklist_lock);
4476 mutex_unlock(&sched_hotcpu_mutex);
4477
4478 return retval;
4479 }
4480
4481 /**
4482 * sys_sched_getaffinity - get the cpu affinity of a process
4483 * @pid: pid of the process
4484 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4485 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4486 */
4487 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4488 unsigned long __user *user_mask_ptr)
4489 {
4490 int ret;
4491 cpumask_t mask;
4492
4493 if (len < sizeof(cpumask_t))
4494 return -EINVAL;
4495
4496 ret = sched_getaffinity(pid, &mask);
4497 if (ret < 0)
4498 return ret;
4499
4500 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4501 return -EFAULT;
4502
4503 return sizeof(cpumask_t);
4504 }
4505
4506 /**
4507 * sys_sched_yield - yield the current processor to other threads.
4508 *
4509 * This function yields the current CPU to other tasks. If there are no
4510 * other threads running on this CPU then this function will return.
4511 */
4512 asmlinkage long sys_sched_yield(void)
4513 {
4514 struct rq *rq = this_rq_lock();
4515
4516 schedstat_inc(rq, yld_cnt);
4517 if (unlikely(rq->nr_running == 1))
4518 schedstat_inc(rq, yld_act_empty);
4519 else
4520 current->sched_class->yield_task(rq, current);
4521
4522 /*
4523 * Since we are going to call schedule() anyway, there's
4524 * no need to preempt or enable interrupts:
4525 */
4526 __release(rq->lock);
4527 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4528 _raw_spin_unlock(&rq->lock);
4529 preempt_enable_no_resched();
4530
4531 schedule();
4532
4533 return 0;
4534 }
4535
4536 static void __cond_resched(void)
4537 {
4538 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4539 __might_sleep(__FILE__, __LINE__);
4540 #endif
4541 /*
4542 * The BKS might be reacquired before we have dropped
4543 * PREEMPT_ACTIVE, which could trigger a second
4544 * cond_resched() call.
4545 */
4546 do {
4547 add_preempt_count(PREEMPT_ACTIVE);
4548 schedule();
4549 sub_preempt_count(PREEMPT_ACTIVE);
4550 } while (need_resched());
4551 }
4552
4553 int __sched cond_resched(void)
4554 {
4555 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4556 system_state == SYSTEM_RUNNING) {
4557 __cond_resched();
4558 return 1;
4559 }
4560 return 0;
4561 }
4562 EXPORT_SYMBOL(cond_resched);
4563
4564 /*
4565 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4566 * call schedule, and on return reacquire the lock.
4567 *
4568 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4569 * operations here to prevent schedule() from being called twice (once via
4570 * spin_unlock(), once by hand).
4571 */
4572 int cond_resched_lock(spinlock_t *lock)
4573 {
4574 int ret = 0;
4575
4576 if (need_lockbreak(lock)) {
4577 spin_unlock(lock);
4578 cpu_relax();
4579 ret = 1;
4580 spin_lock(lock);
4581 }
4582 if (need_resched() && system_state == SYSTEM_RUNNING) {
4583 spin_release(&lock->dep_map, 1, _THIS_IP_);
4584 _raw_spin_unlock(lock);
4585 preempt_enable_no_resched();
4586 __cond_resched();
4587 ret = 1;
4588 spin_lock(lock);
4589 }
4590 return ret;
4591 }
4592 EXPORT_SYMBOL(cond_resched_lock);
4593
4594 int __sched cond_resched_softirq(void)
4595 {
4596 BUG_ON(!in_softirq());
4597
4598 if (need_resched() && system_state == SYSTEM_RUNNING) {
4599 local_bh_enable();
4600 __cond_resched();
4601 local_bh_disable();
4602 return 1;
4603 }
4604 return 0;
4605 }
4606 EXPORT_SYMBOL(cond_resched_softirq);
4607
4608 /**
4609 * yield - yield the current processor to other threads.
4610 *
4611 * This is a shortcut for kernel-space yielding - it marks the
4612 * thread runnable and calls sys_sched_yield().
4613 */
4614 void __sched yield(void)
4615 {
4616 set_current_state(TASK_RUNNING);
4617 sys_sched_yield();
4618 }
4619 EXPORT_SYMBOL(yield);
4620
4621 /*
4622 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4623 * that process accounting knows that this is a task in IO wait state.
4624 *
4625 * But don't do that if it is a deliberate, throttling IO wait (this task
4626 * has set its backing_dev_info: the queue against which it should throttle)
4627 */
4628 void __sched io_schedule(void)
4629 {
4630 struct rq *rq = &__raw_get_cpu_var(runqueues);
4631
4632 delayacct_blkio_start();
4633 atomic_inc(&rq->nr_iowait);
4634 schedule();
4635 atomic_dec(&rq->nr_iowait);
4636 delayacct_blkio_end();
4637 }
4638 EXPORT_SYMBOL(io_schedule);
4639
4640 long __sched io_schedule_timeout(long timeout)
4641 {
4642 struct rq *rq = &__raw_get_cpu_var(runqueues);
4643 long ret;
4644
4645 delayacct_blkio_start();
4646 atomic_inc(&rq->nr_iowait);
4647 ret = schedule_timeout(timeout);
4648 atomic_dec(&rq->nr_iowait);
4649 delayacct_blkio_end();
4650 return ret;
4651 }
4652
4653 /**
4654 * sys_sched_get_priority_max - return maximum RT priority.
4655 * @policy: scheduling class.
4656 *
4657 * this syscall returns the maximum rt_priority that can be used
4658 * by a given scheduling class.
4659 */
4660 asmlinkage long sys_sched_get_priority_max(int policy)
4661 {
4662 int ret = -EINVAL;
4663
4664 switch (policy) {
4665 case SCHED_FIFO:
4666 case SCHED_RR:
4667 ret = MAX_USER_RT_PRIO-1;
4668 break;
4669 case SCHED_NORMAL:
4670 case SCHED_BATCH:
4671 case SCHED_IDLE:
4672 ret = 0;
4673 break;
4674 }
4675 return ret;
4676 }
4677
4678 /**
4679 * sys_sched_get_priority_min - return minimum RT priority.
4680 * @policy: scheduling class.
4681 *
4682 * this syscall returns the minimum rt_priority that can be used
4683 * by a given scheduling class.
4684 */
4685 asmlinkage long sys_sched_get_priority_min(int policy)
4686 {
4687 int ret = -EINVAL;
4688
4689 switch (policy) {
4690 case SCHED_FIFO:
4691 case SCHED_RR:
4692 ret = 1;
4693 break;
4694 case SCHED_NORMAL:
4695 case SCHED_BATCH:
4696 case SCHED_IDLE:
4697 ret = 0;
4698 }
4699 return ret;
4700 }
4701
4702 /**
4703 * sys_sched_rr_get_interval - return the default timeslice of a process.
4704 * @pid: pid of the process.
4705 * @interval: userspace pointer to the timeslice value.
4706 *
4707 * this syscall writes the default timeslice value of a given process
4708 * into the user-space timespec buffer. A value of '0' means infinity.
4709 */
4710 asmlinkage
4711 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4712 {
4713 struct task_struct *p;
4714 int retval = -EINVAL;
4715 struct timespec t;
4716
4717 if (pid < 0)
4718 goto out_nounlock;
4719
4720 retval = -ESRCH;
4721 read_lock(&tasklist_lock);
4722 p = find_process_by_pid(pid);
4723 if (!p)
4724 goto out_unlock;
4725
4726 retval = security_task_getscheduler(p);
4727 if (retval)
4728 goto out_unlock;
4729
4730 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4731 0 : static_prio_timeslice(p->static_prio), &t);
4732 read_unlock(&tasklist_lock);
4733 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4734 out_nounlock:
4735 return retval;
4736 out_unlock:
4737 read_unlock(&tasklist_lock);
4738 return retval;
4739 }
4740
4741 static const char stat_nam[] = "RSDTtZX";
4742
4743 static void show_task(struct task_struct *p)
4744 {
4745 unsigned long free = 0;
4746 unsigned state;
4747
4748 state = p->state ? __ffs(p->state) + 1 : 0;
4749 printk("%-13.13s %c", p->comm,
4750 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4751 #if BITS_PER_LONG == 32
4752 if (state == TASK_RUNNING)
4753 printk(" running ");
4754 else
4755 printk(" %08lx ", thread_saved_pc(p));
4756 #else
4757 if (state == TASK_RUNNING)
4758 printk(" running task ");
4759 else
4760 printk(" %016lx ", thread_saved_pc(p));
4761 #endif
4762 #ifdef CONFIG_DEBUG_STACK_USAGE
4763 {
4764 unsigned long *n = end_of_stack(p);
4765 while (!*n)
4766 n++;
4767 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4768 }
4769 #endif
4770 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4771
4772 if (state != TASK_RUNNING)
4773 show_stack(p, NULL);
4774 }
4775
4776 void show_state_filter(unsigned long state_filter)
4777 {
4778 struct task_struct *g, *p;
4779
4780 #if BITS_PER_LONG == 32
4781 printk(KERN_INFO
4782 " task PC stack pid father\n");
4783 #else
4784 printk(KERN_INFO
4785 " task PC stack pid father\n");
4786 #endif
4787 read_lock(&tasklist_lock);
4788 do_each_thread(g, p) {
4789 /*
4790 * reset the NMI-timeout, listing all files on a slow
4791 * console might take alot of time:
4792 */
4793 touch_nmi_watchdog();
4794 if (!state_filter || (p->state & state_filter))
4795 show_task(p);
4796 } while_each_thread(g, p);
4797
4798 touch_all_softlockup_watchdogs();
4799
4800 #ifdef CONFIG_SCHED_DEBUG
4801 sysrq_sched_debug_show();
4802 #endif
4803 read_unlock(&tasklist_lock);
4804 /*
4805 * Only show locks if all tasks are dumped:
4806 */
4807 if (state_filter == -1)
4808 debug_show_all_locks();
4809 }
4810
4811 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4812 {
4813 idle->sched_class = &idle_sched_class;
4814 }
4815
4816 /**
4817 * init_idle - set up an idle thread for a given CPU
4818 * @idle: task in question
4819 * @cpu: cpu the idle task belongs to
4820 *
4821 * NOTE: this function does not set the idle thread's NEED_RESCHED
4822 * flag, to make booting more robust.
4823 */
4824 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4825 {
4826 struct rq *rq = cpu_rq(cpu);
4827 unsigned long flags;
4828
4829 __sched_fork(idle);
4830 idle->se.exec_start = sched_clock();
4831
4832 idle->prio = idle->normal_prio = MAX_PRIO;
4833 idle->cpus_allowed = cpumask_of_cpu(cpu);
4834 __set_task_cpu(idle, cpu);
4835
4836 spin_lock_irqsave(&rq->lock, flags);
4837 rq->curr = rq->idle = idle;
4838 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4839 idle->oncpu = 1;
4840 #endif
4841 spin_unlock_irqrestore(&rq->lock, flags);
4842
4843 /* Set the preempt count _outside_ the spinlocks! */
4844 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4845 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4846 #else
4847 task_thread_info(idle)->preempt_count = 0;
4848 #endif
4849 /*
4850 * The idle tasks have their own, simple scheduling class:
4851 */
4852 idle->sched_class = &idle_sched_class;
4853 }
4854
4855 /*
4856 * In a system that switches off the HZ timer nohz_cpu_mask
4857 * indicates which cpus entered this state. This is used
4858 * in the rcu update to wait only for active cpus. For system
4859 * which do not switch off the HZ timer nohz_cpu_mask should
4860 * always be CPU_MASK_NONE.
4861 */
4862 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4863
4864 /*
4865 * Increase the granularity value when there are more CPUs,
4866 * because with more CPUs the 'effective latency' as visible
4867 * to users decreases. But the relationship is not linear,
4868 * so pick a second-best guess by going with the log2 of the
4869 * number of CPUs.
4870 *
4871 * This idea comes from the SD scheduler of Con Kolivas:
4872 */
4873 static inline void sched_init_granularity(void)
4874 {
4875 unsigned int factor = 1 + ilog2(num_online_cpus());
4876 const unsigned long gran_limit = 100000000;
4877
4878 sysctl_sched_granularity *= factor;
4879 if (sysctl_sched_granularity > gran_limit)
4880 sysctl_sched_granularity = gran_limit;
4881
4882 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4883 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4884 }
4885
4886 #ifdef CONFIG_SMP
4887 /*
4888 * This is how migration works:
4889 *
4890 * 1) we queue a struct migration_req structure in the source CPU's
4891 * runqueue and wake up that CPU's migration thread.
4892 * 2) we down() the locked semaphore => thread blocks.
4893 * 3) migration thread wakes up (implicitly it forces the migrated
4894 * thread off the CPU)
4895 * 4) it gets the migration request and checks whether the migrated
4896 * task is still in the wrong runqueue.
4897 * 5) if it's in the wrong runqueue then the migration thread removes
4898 * it and puts it into the right queue.
4899 * 6) migration thread up()s the semaphore.
4900 * 7) we wake up and the migration is done.
4901 */
4902
4903 /*
4904 * Change a given task's CPU affinity. Migrate the thread to a
4905 * proper CPU and schedule it away if the CPU it's executing on
4906 * is removed from the allowed bitmask.
4907 *
4908 * NOTE: the caller must have a valid reference to the task, the
4909 * task must not exit() & deallocate itself prematurely. The
4910 * call is not atomic; no spinlocks may be held.
4911 */
4912 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4913 {
4914 struct migration_req req;
4915 unsigned long flags;
4916 struct rq *rq;
4917 int ret = 0;
4918
4919 rq = task_rq_lock(p, &flags);
4920 if (!cpus_intersects(new_mask, cpu_online_map)) {
4921 ret = -EINVAL;
4922 goto out;
4923 }
4924
4925 p->cpus_allowed = new_mask;
4926 /* Can the task run on the task's current CPU? If so, we're done */
4927 if (cpu_isset(task_cpu(p), new_mask))
4928 goto out;
4929
4930 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4931 /* Need help from migration thread: drop lock and wait. */
4932 task_rq_unlock(rq, &flags);
4933 wake_up_process(rq->migration_thread);
4934 wait_for_completion(&req.done);
4935 tlb_migrate_finish(p->mm);
4936 return 0;
4937 }
4938 out:
4939 task_rq_unlock(rq, &flags);
4940
4941 return ret;
4942 }
4943 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4944
4945 /*
4946 * Move (not current) task off this cpu, onto dest cpu. We're doing
4947 * this because either it can't run here any more (set_cpus_allowed()
4948 * away from this CPU, or CPU going down), or because we're
4949 * attempting to rebalance this task on exec (sched_exec).
4950 *
4951 * So we race with normal scheduler movements, but that's OK, as long
4952 * as the task is no longer on this CPU.
4953 *
4954 * Returns non-zero if task was successfully migrated.
4955 */
4956 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4957 {
4958 struct rq *rq_dest, *rq_src;
4959 int ret = 0, on_rq;
4960
4961 if (unlikely(cpu_is_offline(dest_cpu)))
4962 return ret;
4963
4964 rq_src = cpu_rq(src_cpu);
4965 rq_dest = cpu_rq(dest_cpu);
4966
4967 double_rq_lock(rq_src, rq_dest);
4968 /* Already moved. */
4969 if (task_cpu(p) != src_cpu)
4970 goto out;
4971 /* Affinity changed (again). */
4972 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4973 goto out;
4974
4975 on_rq = p->se.on_rq;
4976 if (on_rq)
4977 deactivate_task(rq_src, p, 0);
4978
4979 set_task_cpu(p, dest_cpu);
4980 if (on_rq) {
4981 activate_task(rq_dest, p, 0);
4982 check_preempt_curr(rq_dest, p);
4983 }
4984 ret = 1;
4985 out:
4986 double_rq_unlock(rq_src, rq_dest);
4987 return ret;
4988 }
4989
4990 /*
4991 * migration_thread - this is a highprio system thread that performs
4992 * thread migration by bumping thread off CPU then 'pushing' onto
4993 * another runqueue.
4994 */
4995 static int migration_thread(void *data)
4996 {
4997 int cpu = (long)data;
4998 struct rq *rq;
4999
5000 rq = cpu_rq(cpu);
5001 BUG_ON(rq->migration_thread != current);
5002
5003 set_current_state(TASK_INTERRUPTIBLE);
5004 while (!kthread_should_stop()) {
5005 struct migration_req *req;
5006 struct list_head *head;
5007
5008 spin_lock_irq(&rq->lock);
5009
5010 if (cpu_is_offline(cpu)) {
5011 spin_unlock_irq(&rq->lock);
5012 goto wait_to_die;
5013 }
5014
5015 if (rq->active_balance) {
5016 active_load_balance(rq, cpu);
5017 rq->active_balance = 0;
5018 }
5019
5020 head = &rq->migration_queue;
5021
5022 if (list_empty(head)) {
5023 spin_unlock_irq(&rq->lock);
5024 schedule();
5025 set_current_state(TASK_INTERRUPTIBLE);
5026 continue;
5027 }
5028 req = list_entry(head->next, struct migration_req, list);
5029 list_del_init(head->next);
5030
5031 spin_unlock(&rq->lock);
5032 __migrate_task(req->task, cpu, req->dest_cpu);
5033 local_irq_enable();
5034
5035 complete(&req->done);
5036 }
5037 __set_current_state(TASK_RUNNING);
5038 return 0;
5039
5040 wait_to_die:
5041 /* Wait for kthread_stop */
5042 set_current_state(TASK_INTERRUPTIBLE);
5043 while (!kthread_should_stop()) {
5044 schedule();
5045 set_current_state(TASK_INTERRUPTIBLE);
5046 }
5047 __set_current_state(TASK_RUNNING);
5048 return 0;
5049 }
5050
5051 #ifdef CONFIG_HOTPLUG_CPU
5052 /*
5053 * Figure out where task on dead CPU should go, use force if neccessary.
5054 * NOTE: interrupts should be disabled by the caller
5055 */
5056 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5057 {
5058 unsigned long flags;
5059 cpumask_t mask;
5060 struct rq *rq;
5061 int dest_cpu;
5062
5063 restart:
5064 /* On same node? */
5065 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5066 cpus_and(mask, mask, p->cpus_allowed);
5067 dest_cpu = any_online_cpu(mask);
5068
5069 /* On any allowed CPU? */
5070 if (dest_cpu == NR_CPUS)
5071 dest_cpu = any_online_cpu(p->cpus_allowed);
5072
5073 /* No more Mr. Nice Guy. */
5074 if (dest_cpu == NR_CPUS) {
5075 rq = task_rq_lock(p, &flags);
5076 cpus_setall(p->cpus_allowed);
5077 dest_cpu = any_online_cpu(p->cpus_allowed);
5078 task_rq_unlock(rq, &flags);
5079
5080 /*
5081 * Don't tell them about moving exiting tasks or
5082 * kernel threads (both mm NULL), since they never
5083 * leave kernel.
5084 */
5085 if (p->mm && printk_ratelimit())
5086 printk(KERN_INFO "process %d (%s) no "
5087 "longer affine to cpu%d\n",
5088 p->pid, p->comm, dead_cpu);
5089 }
5090 if (!__migrate_task(p, dead_cpu, dest_cpu))
5091 goto restart;
5092 }
5093
5094 /*
5095 * While a dead CPU has no uninterruptible tasks queued at this point,
5096 * it might still have a nonzero ->nr_uninterruptible counter, because
5097 * for performance reasons the counter is not stricly tracking tasks to
5098 * their home CPUs. So we just add the counter to another CPU's counter,
5099 * to keep the global sum constant after CPU-down:
5100 */
5101 static void migrate_nr_uninterruptible(struct rq *rq_src)
5102 {
5103 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5104 unsigned long flags;
5105
5106 local_irq_save(flags);
5107 double_rq_lock(rq_src, rq_dest);
5108 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5109 rq_src->nr_uninterruptible = 0;
5110 double_rq_unlock(rq_src, rq_dest);
5111 local_irq_restore(flags);
5112 }
5113
5114 /* Run through task list and migrate tasks from the dead cpu. */
5115 static void migrate_live_tasks(int src_cpu)
5116 {
5117 struct task_struct *p, *t;
5118
5119 write_lock_irq(&tasklist_lock);
5120
5121 do_each_thread(t, p) {
5122 if (p == current)
5123 continue;
5124
5125 if (task_cpu(p) == src_cpu)
5126 move_task_off_dead_cpu(src_cpu, p);
5127 } while_each_thread(t, p);
5128
5129 write_unlock_irq(&tasklist_lock);
5130 }
5131
5132 /*
5133 * Schedules idle task to be the next runnable task on current CPU.
5134 * It does so by boosting its priority to highest possible and adding it to
5135 * the _front_ of the runqueue. Used by CPU offline code.
5136 */
5137 void sched_idle_next(void)
5138 {
5139 int this_cpu = smp_processor_id();
5140 struct rq *rq = cpu_rq(this_cpu);
5141 struct task_struct *p = rq->idle;
5142 unsigned long flags;
5143
5144 /* cpu has to be offline */
5145 BUG_ON(cpu_online(this_cpu));
5146
5147 /*
5148 * Strictly not necessary since rest of the CPUs are stopped by now
5149 * and interrupts disabled on the current cpu.
5150 */
5151 spin_lock_irqsave(&rq->lock, flags);
5152
5153 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5154
5155 /* Add idle task to the _front_ of its priority queue: */
5156 activate_idle_task(p, rq);
5157
5158 spin_unlock_irqrestore(&rq->lock, flags);
5159 }
5160
5161 /*
5162 * Ensures that the idle task is using init_mm right before its cpu goes
5163 * offline.
5164 */
5165 void idle_task_exit(void)
5166 {
5167 struct mm_struct *mm = current->active_mm;
5168
5169 BUG_ON(cpu_online(smp_processor_id()));
5170
5171 if (mm != &init_mm)
5172 switch_mm(mm, &init_mm, current);
5173 mmdrop(mm);
5174 }
5175
5176 /* called under rq->lock with disabled interrupts */
5177 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5178 {
5179 struct rq *rq = cpu_rq(dead_cpu);
5180
5181 /* Must be exiting, otherwise would be on tasklist. */
5182 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5183
5184 /* Cannot have done final schedule yet: would have vanished. */
5185 BUG_ON(p->state == TASK_DEAD);
5186
5187 get_task_struct(p);
5188
5189 /*
5190 * Drop lock around migration; if someone else moves it,
5191 * that's OK. No task can be added to this CPU, so iteration is
5192 * fine.
5193 * NOTE: interrupts should be left disabled --dev@
5194 */
5195 spin_unlock(&rq->lock);
5196 move_task_off_dead_cpu(dead_cpu, p);
5197 spin_lock(&rq->lock);
5198
5199 put_task_struct(p);
5200 }
5201
5202 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5203 static void migrate_dead_tasks(unsigned int dead_cpu)
5204 {
5205 struct rq *rq = cpu_rq(dead_cpu);
5206 struct task_struct *next;
5207
5208 for ( ; ; ) {
5209 if (!rq->nr_running)
5210 break;
5211 update_rq_clock(rq);
5212 next = pick_next_task(rq, rq->curr);
5213 if (!next)
5214 break;
5215 migrate_dead(dead_cpu, next);
5216
5217 }
5218 }
5219 #endif /* CONFIG_HOTPLUG_CPU */
5220
5221 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5222
5223 static struct ctl_table sd_ctl_dir[] = {
5224 {
5225 .procname = "sched_domain",
5226 .mode = 0755,
5227 },
5228 {0,},
5229 };
5230
5231 static struct ctl_table sd_ctl_root[] = {
5232 {
5233 .procname = "kernel",
5234 .mode = 0755,
5235 .child = sd_ctl_dir,
5236 },
5237 {0,},
5238 };
5239
5240 static struct ctl_table *sd_alloc_ctl_entry(int n)
5241 {
5242 struct ctl_table *entry =
5243 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5244
5245 BUG_ON(!entry);
5246 memset(entry, 0, n * sizeof(struct ctl_table));
5247
5248 return entry;
5249 }
5250
5251 static void
5252 set_table_entry(struct ctl_table *entry,
5253 const char *procname, void *data, int maxlen,
5254 mode_t mode, proc_handler *proc_handler)
5255 {
5256 entry->procname = procname;
5257 entry->data = data;
5258 entry->maxlen = maxlen;
5259 entry->mode = mode;
5260 entry->proc_handler = proc_handler;
5261 }
5262
5263 static struct ctl_table *
5264 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5265 {
5266 struct ctl_table *table = sd_alloc_ctl_entry(14);
5267
5268 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5269 sizeof(long), 0644, proc_doulongvec_minmax);
5270 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5271 sizeof(long), 0644, proc_doulongvec_minmax);
5272 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5273 sizeof(int), 0644, proc_dointvec_minmax);
5274 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5275 sizeof(int), 0644, proc_dointvec_minmax);
5276 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5277 sizeof(int), 0644, proc_dointvec_minmax);
5278 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5279 sizeof(int), 0644, proc_dointvec_minmax);
5280 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5281 sizeof(int), 0644, proc_dointvec_minmax);
5282 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5283 sizeof(int), 0644, proc_dointvec_minmax);
5284 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5285 sizeof(int), 0644, proc_dointvec_minmax);
5286 set_table_entry(&table[10], "cache_nice_tries",
5287 &sd->cache_nice_tries,
5288 sizeof(int), 0644, proc_dointvec_minmax);
5289 set_table_entry(&table[12], "flags", &sd->flags,
5290 sizeof(int), 0644, proc_dointvec_minmax);
5291
5292 return table;
5293 }
5294
5295 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5296 {
5297 struct ctl_table *entry, *table;
5298 struct sched_domain *sd;
5299 int domain_num = 0, i;
5300 char buf[32];
5301
5302 for_each_domain(cpu, sd)
5303 domain_num++;
5304 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5305
5306 i = 0;
5307 for_each_domain(cpu, sd) {
5308 snprintf(buf, 32, "domain%d", i);
5309 entry->procname = kstrdup(buf, GFP_KERNEL);
5310 entry->mode = 0755;
5311 entry->child = sd_alloc_ctl_domain_table(sd);
5312 entry++;
5313 i++;
5314 }
5315 return table;
5316 }
5317
5318 static struct ctl_table_header *sd_sysctl_header;
5319 static void init_sched_domain_sysctl(void)
5320 {
5321 int i, cpu_num = num_online_cpus();
5322 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5323 char buf[32];
5324
5325 sd_ctl_dir[0].child = entry;
5326
5327 for (i = 0; i < cpu_num; i++, entry++) {
5328 snprintf(buf, 32, "cpu%d", i);
5329 entry->procname = kstrdup(buf, GFP_KERNEL);
5330 entry->mode = 0755;
5331 entry->child = sd_alloc_ctl_cpu_table(i);
5332 }
5333 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5334 }
5335 #else
5336 static void init_sched_domain_sysctl(void)
5337 {
5338 }
5339 #endif
5340
5341 /*
5342 * migration_call - callback that gets triggered when a CPU is added.
5343 * Here we can start up the necessary migration thread for the new CPU.
5344 */
5345 static int __cpuinit
5346 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5347 {
5348 struct task_struct *p;
5349 int cpu = (long)hcpu;
5350 unsigned long flags;
5351 struct rq *rq;
5352
5353 switch (action) {
5354 case CPU_LOCK_ACQUIRE:
5355 mutex_lock(&sched_hotcpu_mutex);
5356 break;
5357
5358 case CPU_UP_PREPARE:
5359 case CPU_UP_PREPARE_FROZEN:
5360 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5361 if (IS_ERR(p))
5362 return NOTIFY_BAD;
5363 kthread_bind(p, cpu);
5364 /* Must be high prio: stop_machine expects to yield to it. */
5365 rq = task_rq_lock(p, &flags);
5366 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5367 task_rq_unlock(rq, &flags);
5368 cpu_rq(cpu)->migration_thread = p;
5369 break;
5370
5371 case CPU_ONLINE:
5372 case CPU_ONLINE_FROZEN:
5373 /* Strictly unneccessary, as first user will wake it. */
5374 wake_up_process(cpu_rq(cpu)->migration_thread);
5375 break;
5376
5377 #ifdef CONFIG_HOTPLUG_CPU
5378 case CPU_UP_CANCELED:
5379 case CPU_UP_CANCELED_FROZEN:
5380 if (!cpu_rq(cpu)->migration_thread)
5381 break;
5382 /* Unbind it from offline cpu so it can run. Fall thru. */
5383 kthread_bind(cpu_rq(cpu)->migration_thread,
5384 any_online_cpu(cpu_online_map));
5385 kthread_stop(cpu_rq(cpu)->migration_thread);
5386 cpu_rq(cpu)->migration_thread = NULL;
5387 break;
5388
5389 case CPU_DEAD:
5390 case CPU_DEAD_FROZEN:
5391 migrate_live_tasks(cpu);
5392 rq = cpu_rq(cpu);
5393 kthread_stop(rq->migration_thread);
5394 rq->migration_thread = NULL;
5395 /* Idle task back to normal (off runqueue, low prio) */
5396 rq = task_rq_lock(rq->idle, &flags);
5397 update_rq_clock(rq);
5398 deactivate_task(rq, rq->idle, 0);
5399 rq->idle->static_prio = MAX_PRIO;
5400 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5401 rq->idle->sched_class = &idle_sched_class;
5402 migrate_dead_tasks(cpu);
5403 task_rq_unlock(rq, &flags);
5404 migrate_nr_uninterruptible(rq);
5405 BUG_ON(rq->nr_running != 0);
5406
5407 /* No need to migrate the tasks: it was best-effort if
5408 * they didn't take sched_hotcpu_mutex. Just wake up
5409 * the requestors. */
5410 spin_lock_irq(&rq->lock);
5411 while (!list_empty(&rq->migration_queue)) {
5412 struct migration_req *req;
5413
5414 req = list_entry(rq->migration_queue.next,
5415 struct migration_req, list);
5416 list_del_init(&req->list);
5417 complete(&req->done);
5418 }
5419 spin_unlock_irq(&rq->lock);
5420 break;
5421 #endif
5422 case CPU_LOCK_RELEASE:
5423 mutex_unlock(&sched_hotcpu_mutex);
5424 break;
5425 }
5426 return NOTIFY_OK;
5427 }
5428
5429 /* Register at highest priority so that task migration (migrate_all_tasks)
5430 * happens before everything else.
5431 */
5432 static struct notifier_block __cpuinitdata migration_notifier = {
5433 .notifier_call = migration_call,
5434 .priority = 10
5435 };
5436
5437 int __init migration_init(void)
5438 {
5439 void *cpu = (void *)(long)smp_processor_id();
5440 int err;
5441
5442 /* Start one for the boot CPU: */
5443 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5444 BUG_ON(err == NOTIFY_BAD);
5445 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5446 register_cpu_notifier(&migration_notifier);
5447
5448 return 0;
5449 }
5450 #endif
5451
5452 #ifdef CONFIG_SMP
5453
5454 /* Number of possible processor ids */
5455 int nr_cpu_ids __read_mostly = NR_CPUS;
5456 EXPORT_SYMBOL(nr_cpu_ids);
5457
5458 #undef SCHED_DOMAIN_DEBUG
5459 #ifdef SCHED_DOMAIN_DEBUG
5460 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5461 {
5462 int level = 0;
5463
5464 if (!sd) {
5465 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5466 return;
5467 }
5468
5469 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5470
5471 do {
5472 int i;
5473 char str[NR_CPUS];
5474 struct sched_group *group = sd->groups;
5475 cpumask_t groupmask;
5476
5477 cpumask_scnprintf(str, NR_CPUS, sd->span);
5478 cpus_clear(groupmask);
5479
5480 printk(KERN_DEBUG);
5481 for (i = 0; i < level + 1; i++)
5482 printk(" ");
5483 printk("domain %d: ", level);
5484
5485 if (!(sd->flags & SD_LOAD_BALANCE)) {
5486 printk("does not load-balance\n");
5487 if (sd->parent)
5488 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5489 " has parent");
5490 break;
5491 }
5492
5493 printk("span %s\n", str);
5494
5495 if (!cpu_isset(cpu, sd->span))
5496 printk(KERN_ERR "ERROR: domain->span does not contain "
5497 "CPU%d\n", cpu);
5498 if (!cpu_isset(cpu, group->cpumask))
5499 printk(KERN_ERR "ERROR: domain->groups does not contain"
5500 " CPU%d\n", cpu);
5501
5502 printk(KERN_DEBUG);
5503 for (i = 0; i < level + 2; i++)
5504 printk(" ");
5505 printk("groups:");
5506 do {
5507 if (!group) {
5508 printk("\n");
5509 printk(KERN_ERR "ERROR: group is NULL\n");
5510 break;
5511 }
5512
5513 if (!group->__cpu_power) {
5514 printk("\n");
5515 printk(KERN_ERR "ERROR: domain->cpu_power not "
5516 "set\n");
5517 }
5518
5519 if (!cpus_weight(group->cpumask)) {
5520 printk("\n");
5521 printk(KERN_ERR "ERROR: empty group\n");
5522 }
5523
5524 if (cpus_intersects(groupmask, group->cpumask)) {
5525 printk("\n");
5526 printk(KERN_ERR "ERROR: repeated CPUs\n");
5527 }
5528
5529 cpus_or(groupmask, groupmask, group->cpumask);
5530
5531 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5532 printk(" %s", str);
5533
5534 group = group->next;
5535 } while (group != sd->groups);
5536 printk("\n");
5537
5538 if (!cpus_equal(sd->span, groupmask))
5539 printk(KERN_ERR "ERROR: groups don't span "
5540 "domain->span\n");
5541
5542 level++;
5543 sd = sd->parent;
5544 if (!sd)
5545 continue;
5546
5547 if (!cpus_subset(groupmask, sd->span))
5548 printk(KERN_ERR "ERROR: parent span is not a superset "
5549 "of domain->span\n");
5550
5551 } while (sd);
5552 }
5553 #else
5554 # define sched_domain_debug(sd, cpu) do { } while (0)
5555 #endif
5556
5557 static int sd_degenerate(struct sched_domain *sd)
5558 {
5559 if (cpus_weight(sd->span) == 1)
5560 return 1;
5561
5562 /* Following flags need at least 2 groups */
5563 if (sd->flags & (SD_LOAD_BALANCE |
5564 SD_BALANCE_NEWIDLE |
5565 SD_BALANCE_FORK |
5566 SD_BALANCE_EXEC |
5567 SD_SHARE_CPUPOWER |
5568 SD_SHARE_PKG_RESOURCES)) {
5569 if (sd->groups != sd->groups->next)
5570 return 0;
5571 }
5572
5573 /* Following flags don't use groups */
5574 if (sd->flags & (SD_WAKE_IDLE |
5575 SD_WAKE_AFFINE |
5576 SD_WAKE_BALANCE))
5577 return 0;
5578
5579 return 1;
5580 }
5581
5582 static int
5583 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5584 {
5585 unsigned long cflags = sd->flags, pflags = parent->flags;
5586
5587 if (sd_degenerate(parent))
5588 return 1;
5589
5590 if (!cpus_equal(sd->span, parent->span))
5591 return 0;
5592
5593 /* Does parent contain flags not in child? */
5594 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5595 if (cflags & SD_WAKE_AFFINE)
5596 pflags &= ~SD_WAKE_BALANCE;
5597 /* Flags needing groups don't count if only 1 group in parent */
5598 if (parent->groups == parent->groups->next) {
5599 pflags &= ~(SD_LOAD_BALANCE |
5600 SD_BALANCE_NEWIDLE |
5601 SD_BALANCE_FORK |
5602 SD_BALANCE_EXEC |
5603 SD_SHARE_CPUPOWER |
5604 SD_SHARE_PKG_RESOURCES);
5605 }
5606 if (~cflags & pflags)
5607 return 0;
5608
5609 return 1;
5610 }
5611
5612 /*
5613 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5614 * hold the hotplug lock.
5615 */
5616 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5617 {
5618 struct rq *rq = cpu_rq(cpu);
5619 struct sched_domain *tmp;
5620
5621 /* Remove the sched domains which do not contribute to scheduling. */
5622 for (tmp = sd; tmp; tmp = tmp->parent) {
5623 struct sched_domain *parent = tmp->parent;
5624 if (!parent)
5625 break;
5626 if (sd_parent_degenerate(tmp, parent)) {
5627 tmp->parent = parent->parent;
5628 if (parent->parent)
5629 parent->parent->child = tmp;
5630 }
5631 }
5632
5633 if (sd && sd_degenerate(sd)) {
5634 sd = sd->parent;
5635 if (sd)
5636 sd->child = NULL;
5637 }
5638
5639 sched_domain_debug(sd, cpu);
5640
5641 rcu_assign_pointer(rq->sd, sd);
5642 }
5643
5644 /* cpus with isolated domains */
5645 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5646
5647 /* Setup the mask of cpus configured for isolated domains */
5648 static int __init isolated_cpu_setup(char *str)
5649 {
5650 int ints[NR_CPUS], i;
5651
5652 str = get_options(str, ARRAY_SIZE(ints), ints);
5653 cpus_clear(cpu_isolated_map);
5654 for (i = 1; i <= ints[0]; i++)
5655 if (ints[i] < NR_CPUS)
5656 cpu_set(ints[i], cpu_isolated_map);
5657 return 1;
5658 }
5659
5660 __setup ("isolcpus=", isolated_cpu_setup);
5661
5662 /*
5663 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5664 * to a function which identifies what group(along with sched group) a CPU
5665 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5666 * (due to the fact that we keep track of groups covered with a cpumask_t).
5667 *
5668 * init_sched_build_groups will build a circular linked list of the groups
5669 * covered by the given span, and will set each group's ->cpumask correctly,
5670 * and ->cpu_power to 0.
5671 */
5672 static void
5673 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5674 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5675 struct sched_group **sg))
5676 {
5677 struct sched_group *first = NULL, *last = NULL;
5678 cpumask_t covered = CPU_MASK_NONE;
5679 int i;
5680
5681 for_each_cpu_mask(i, span) {
5682 struct sched_group *sg;
5683 int group = group_fn(i, cpu_map, &sg);
5684 int j;
5685
5686 if (cpu_isset(i, covered))
5687 continue;
5688
5689 sg->cpumask = CPU_MASK_NONE;
5690 sg->__cpu_power = 0;
5691
5692 for_each_cpu_mask(j, span) {
5693 if (group_fn(j, cpu_map, NULL) != group)
5694 continue;
5695
5696 cpu_set(j, covered);
5697 cpu_set(j, sg->cpumask);
5698 }
5699 if (!first)
5700 first = sg;
5701 if (last)
5702 last->next = sg;
5703 last = sg;
5704 }
5705 last->next = first;
5706 }
5707
5708 #define SD_NODES_PER_DOMAIN 16
5709
5710 #ifdef CONFIG_NUMA
5711
5712 /**
5713 * find_next_best_node - find the next node to include in a sched_domain
5714 * @node: node whose sched_domain we're building
5715 * @used_nodes: nodes already in the sched_domain
5716 *
5717 * Find the next node to include in a given scheduling domain. Simply
5718 * finds the closest node not already in the @used_nodes map.
5719 *
5720 * Should use nodemask_t.
5721 */
5722 static int find_next_best_node(int node, unsigned long *used_nodes)
5723 {
5724 int i, n, val, min_val, best_node = 0;
5725
5726 min_val = INT_MAX;
5727
5728 for (i = 0; i < MAX_NUMNODES; i++) {
5729 /* Start at @node */
5730 n = (node + i) % MAX_NUMNODES;
5731
5732 if (!nr_cpus_node(n))
5733 continue;
5734
5735 /* Skip already used nodes */
5736 if (test_bit(n, used_nodes))
5737 continue;
5738
5739 /* Simple min distance search */
5740 val = node_distance(node, n);
5741
5742 if (val < min_val) {
5743 min_val = val;
5744 best_node = n;
5745 }
5746 }
5747
5748 set_bit(best_node, used_nodes);
5749 return best_node;
5750 }
5751
5752 /**
5753 * sched_domain_node_span - get a cpumask for a node's sched_domain
5754 * @node: node whose cpumask we're constructing
5755 * @size: number of nodes to include in this span
5756 *
5757 * Given a node, construct a good cpumask for its sched_domain to span. It
5758 * should be one that prevents unnecessary balancing, but also spreads tasks
5759 * out optimally.
5760 */
5761 static cpumask_t sched_domain_node_span(int node)
5762 {
5763 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5764 cpumask_t span, nodemask;
5765 int i;
5766
5767 cpus_clear(span);
5768 bitmap_zero(used_nodes, MAX_NUMNODES);
5769
5770 nodemask = node_to_cpumask(node);
5771 cpus_or(span, span, nodemask);
5772 set_bit(node, used_nodes);
5773
5774 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5775 int next_node = find_next_best_node(node, used_nodes);
5776
5777 nodemask = node_to_cpumask(next_node);
5778 cpus_or(span, span, nodemask);
5779 }
5780
5781 return span;
5782 }
5783 #endif
5784
5785 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5786
5787 /*
5788 * SMT sched-domains:
5789 */
5790 #ifdef CONFIG_SCHED_SMT
5791 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5792 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5793
5794 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5795 struct sched_group **sg)
5796 {
5797 if (sg)
5798 *sg = &per_cpu(sched_group_cpus, cpu);
5799 return cpu;
5800 }
5801 #endif
5802
5803 /*
5804 * multi-core sched-domains:
5805 */
5806 #ifdef CONFIG_SCHED_MC
5807 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5808 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5809 #endif
5810
5811 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5812 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5813 struct sched_group **sg)
5814 {
5815 int group;
5816 cpumask_t mask = cpu_sibling_map[cpu];
5817 cpus_and(mask, mask, *cpu_map);
5818 group = first_cpu(mask);
5819 if (sg)
5820 *sg = &per_cpu(sched_group_core, group);
5821 return group;
5822 }
5823 #elif defined(CONFIG_SCHED_MC)
5824 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5825 struct sched_group **sg)
5826 {
5827 if (sg)
5828 *sg = &per_cpu(sched_group_core, cpu);
5829 return cpu;
5830 }
5831 #endif
5832
5833 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5834 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5835
5836 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5837 struct sched_group **sg)
5838 {
5839 int group;
5840 #ifdef CONFIG_SCHED_MC
5841 cpumask_t mask = cpu_coregroup_map(cpu);
5842 cpus_and(mask, mask, *cpu_map);
5843 group = first_cpu(mask);
5844 #elif defined(CONFIG_SCHED_SMT)
5845 cpumask_t mask = cpu_sibling_map[cpu];
5846 cpus_and(mask, mask, *cpu_map);
5847 group = first_cpu(mask);
5848 #else
5849 group = cpu;
5850 #endif
5851 if (sg)
5852 *sg = &per_cpu(sched_group_phys, group);
5853 return group;
5854 }
5855
5856 #ifdef CONFIG_NUMA
5857 /*
5858 * The init_sched_build_groups can't handle what we want to do with node
5859 * groups, so roll our own. Now each node has its own list of groups which
5860 * gets dynamically allocated.
5861 */
5862 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5863 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5864
5865 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5866 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5867
5868 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5869 struct sched_group **sg)
5870 {
5871 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5872 int group;
5873
5874 cpus_and(nodemask, nodemask, *cpu_map);
5875 group = first_cpu(nodemask);
5876
5877 if (sg)
5878 *sg = &per_cpu(sched_group_allnodes, group);
5879 return group;
5880 }
5881
5882 static void init_numa_sched_groups_power(struct sched_group *group_head)
5883 {
5884 struct sched_group *sg = group_head;
5885 int j;
5886
5887 if (!sg)
5888 return;
5889 next_sg:
5890 for_each_cpu_mask(j, sg->cpumask) {
5891 struct sched_domain *sd;
5892
5893 sd = &per_cpu(phys_domains, j);
5894 if (j != first_cpu(sd->groups->cpumask)) {
5895 /*
5896 * Only add "power" once for each
5897 * physical package.
5898 */
5899 continue;
5900 }
5901
5902 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5903 }
5904 sg = sg->next;
5905 if (sg != group_head)
5906 goto next_sg;
5907 }
5908 #endif
5909
5910 #ifdef CONFIG_NUMA
5911 /* Free memory allocated for various sched_group structures */
5912 static void free_sched_groups(const cpumask_t *cpu_map)
5913 {
5914 int cpu, i;
5915
5916 for_each_cpu_mask(cpu, *cpu_map) {
5917 struct sched_group **sched_group_nodes
5918 = sched_group_nodes_bycpu[cpu];
5919
5920 if (!sched_group_nodes)
5921 continue;
5922
5923 for (i = 0; i < MAX_NUMNODES; i++) {
5924 cpumask_t nodemask = node_to_cpumask(i);
5925 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5926
5927 cpus_and(nodemask, nodemask, *cpu_map);
5928 if (cpus_empty(nodemask))
5929 continue;
5930
5931 if (sg == NULL)
5932 continue;
5933 sg = sg->next;
5934 next_sg:
5935 oldsg = sg;
5936 sg = sg->next;
5937 kfree(oldsg);
5938 if (oldsg != sched_group_nodes[i])
5939 goto next_sg;
5940 }
5941 kfree(sched_group_nodes);
5942 sched_group_nodes_bycpu[cpu] = NULL;
5943 }
5944 }
5945 #else
5946 static void free_sched_groups(const cpumask_t *cpu_map)
5947 {
5948 }
5949 #endif
5950
5951 /*
5952 * Initialize sched groups cpu_power.
5953 *
5954 * cpu_power indicates the capacity of sched group, which is used while
5955 * distributing the load between different sched groups in a sched domain.
5956 * Typically cpu_power for all the groups in a sched domain will be same unless
5957 * there are asymmetries in the topology. If there are asymmetries, group
5958 * having more cpu_power will pickup more load compared to the group having
5959 * less cpu_power.
5960 *
5961 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5962 * the maximum number of tasks a group can handle in the presence of other idle
5963 * or lightly loaded groups in the same sched domain.
5964 */
5965 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5966 {
5967 struct sched_domain *child;
5968 struct sched_group *group;
5969
5970 WARN_ON(!sd || !sd->groups);
5971
5972 if (cpu != first_cpu(sd->groups->cpumask))
5973 return;
5974
5975 child = sd->child;
5976
5977 sd->groups->__cpu_power = 0;
5978
5979 /*
5980 * For perf policy, if the groups in child domain share resources
5981 * (for example cores sharing some portions of the cache hierarchy
5982 * or SMT), then set this domain groups cpu_power such that each group
5983 * can handle only one task, when there are other idle groups in the
5984 * same sched domain.
5985 */
5986 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5987 (child->flags &
5988 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5989 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5990 return;
5991 }
5992
5993 /*
5994 * add cpu_power of each child group to this groups cpu_power
5995 */
5996 group = child->groups;
5997 do {
5998 sg_inc_cpu_power(sd->groups, group->__cpu_power);
5999 group = group->next;
6000 } while (group != child->groups);
6001 }
6002
6003 /*
6004 * Build sched domains for a given set of cpus and attach the sched domains
6005 * to the individual cpus
6006 */
6007 static int build_sched_domains(const cpumask_t *cpu_map)
6008 {
6009 int i;
6010 #ifdef CONFIG_NUMA
6011 struct sched_group **sched_group_nodes = NULL;
6012 int sd_allnodes = 0;
6013
6014 /*
6015 * Allocate the per-node list of sched groups
6016 */
6017 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6018 GFP_KERNEL);
6019 if (!sched_group_nodes) {
6020 printk(KERN_WARNING "Can not alloc sched group node list\n");
6021 return -ENOMEM;
6022 }
6023 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6024 #endif
6025
6026 /*
6027 * Set up domains for cpus specified by the cpu_map.
6028 */
6029 for_each_cpu_mask(i, *cpu_map) {
6030 struct sched_domain *sd = NULL, *p;
6031 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6032
6033 cpus_and(nodemask, nodemask, *cpu_map);
6034
6035 #ifdef CONFIG_NUMA
6036 if (cpus_weight(*cpu_map) >
6037 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6038 sd = &per_cpu(allnodes_domains, i);
6039 *sd = SD_ALLNODES_INIT;
6040 sd->span = *cpu_map;
6041 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6042 p = sd;
6043 sd_allnodes = 1;
6044 } else
6045 p = NULL;
6046
6047 sd = &per_cpu(node_domains, i);
6048 *sd = SD_NODE_INIT;
6049 sd->span = sched_domain_node_span(cpu_to_node(i));
6050 sd->parent = p;
6051 if (p)
6052 p->child = sd;
6053 cpus_and(sd->span, sd->span, *cpu_map);
6054 #endif
6055
6056 p = sd;
6057 sd = &per_cpu(phys_domains, i);
6058 *sd = SD_CPU_INIT;
6059 sd->span = nodemask;
6060 sd->parent = p;
6061 if (p)
6062 p->child = sd;
6063 cpu_to_phys_group(i, cpu_map, &sd->groups);
6064
6065 #ifdef CONFIG_SCHED_MC
6066 p = sd;
6067 sd = &per_cpu(core_domains, i);
6068 *sd = SD_MC_INIT;
6069 sd->span = cpu_coregroup_map(i);
6070 cpus_and(sd->span, sd->span, *cpu_map);
6071 sd->parent = p;
6072 p->child = sd;
6073 cpu_to_core_group(i, cpu_map, &sd->groups);
6074 #endif
6075
6076 #ifdef CONFIG_SCHED_SMT
6077 p = sd;
6078 sd = &per_cpu(cpu_domains, i);
6079 *sd = SD_SIBLING_INIT;
6080 sd->span = cpu_sibling_map[i];
6081 cpus_and(sd->span, sd->span, *cpu_map);
6082 sd->parent = p;
6083 p->child = sd;
6084 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6085 #endif
6086 }
6087
6088 #ifdef CONFIG_SCHED_SMT
6089 /* Set up CPU (sibling) groups */
6090 for_each_cpu_mask(i, *cpu_map) {
6091 cpumask_t this_sibling_map = cpu_sibling_map[i];
6092 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6093 if (i != first_cpu(this_sibling_map))
6094 continue;
6095
6096 init_sched_build_groups(this_sibling_map, cpu_map,
6097 &cpu_to_cpu_group);
6098 }
6099 #endif
6100
6101 #ifdef CONFIG_SCHED_MC
6102 /* Set up multi-core groups */
6103 for_each_cpu_mask(i, *cpu_map) {
6104 cpumask_t this_core_map = cpu_coregroup_map(i);
6105 cpus_and(this_core_map, this_core_map, *cpu_map);
6106 if (i != first_cpu(this_core_map))
6107 continue;
6108 init_sched_build_groups(this_core_map, cpu_map,
6109 &cpu_to_core_group);
6110 }
6111 #endif
6112
6113 /* Set up physical groups */
6114 for (i = 0; i < MAX_NUMNODES; i++) {
6115 cpumask_t nodemask = node_to_cpumask(i);
6116
6117 cpus_and(nodemask, nodemask, *cpu_map);
6118 if (cpus_empty(nodemask))
6119 continue;
6120
6121 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6122 }
6123
6124 #ifdef CONFIG_NUMA
6125 /* Set up node groups */
6126 if (sd_allnodes)
6127 init_sched_build_groups(*cpu_map, cpu_map,
6128 &cpu_to_allnodes_group);
6129
6130 for (i = 0; i < MAX_NUMNODES; i++) {
6131 /* Set up node groups */
6132 struct sched_group *sg, *prev;
6133 cpumask_t nodemask = node_to_cpumask(i);
6134 cpumask_t domainspan;
6135 cpumask_t covered = CPU_MASK_NONE;
6136 int j;
6137
6138 cpus_and(nodemask, nodemask, *cpu_map);
6139 if (cpus_empty(nodemask)) {
6140 sched_group_nodes[i] = NULL;
6141 continue;
6142 }
6143
6144 domainspan = sched_domain_node_span(i);
6145 cpus_and(domainspan, domainspan, *cpu_map);
6146
6147 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6148 if (!sg) {
6149 printk(KERN_WARNING "Can not alloc domain group for "
6150 "node %d\n", i);
6151 goto error;
6152 }
6153 sched_group_nodes[i] = sg;
6154 for_each_cpu_mask(j, nodemask) {
6155 struct sched_domain *sd;
6156
6157 sd = &per_cpu(node_domains, j);
6158 sd->groups = sg;
6159 }
6160 sg->__cpu_power = 0;
6161 sg->cpumask = nodemask;
6162 sg->next = sg;
6163 cpus_or(covered, covered, nodemask);
6164 prev = sg;
6165
6166 for (j = 0; j < MAX_NUMNODES; j++) {
6167 cpumask_t tmp, notcovered;
6168 int n = (i + j) % MAX_NUMNODES;
6169
6170 cpus_complement(notcovered, covered);
6171 cpus_and(tmp, notcovered, *cpu_map);
6172 cpus_and(tmp, tmp, domainspan);
6173 if (cpus_empty(tmp))
6174 break;
6175
6176 nodemask = node_to_cpumask(n);
6177 cpus_and(tmp, tmp, nodemask);
6178 if (cpus_empty(tmp))
6179 continue;
6180
6181 sg = kmalloc_node(sizeof(struct sched_group),
6182 GFP_KERNEL, i);
6183 if (!sg) {
6184 printk(KERN_WARNING
6185 "Can not alloc domain group for node %d\n", j);
6186 goto error;
6187 }
6188 sg->__cpu_power = 0;
6189 sg->cpumask = tmp;
6190 sg->next = prev->next;
6191 cpus_or(covered, covered, tmp);
6192 prev->next = sg;
6193 prev = sg;
6194 }
6195 }
6196 #endif
6197
6198 /* Calculate CPU power for physical packages and nodes */
6199 #ifdef CONFIG_SCHED_SMT
6200 for_each_cpu_mask(i, *cpu_map) {
6201 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6202
6203 init_sched_groups_power(i, sd);
6204 }
6205 #endif
6206 #ifdef CONFIG_SCHED_MC
6207 for_each_cpu_mask(i, *cpu_map) {
6208 struct sched_domain *sd = &per_cpu(core_domains, i);
6209
6210 init_sched_groups_power(i, sd);
6211 }
6212 #endif
6213
6214 for_each_cpu_mask(i, *cpu_map) {
6215 struct sched_domain *sd = &per_cpu(phys_domains, i);
6216
6217 init_sched_groups_power(i, sd);
6218 }
6219
6220 #ifdef CONFIG_NUMA
6221 for (i = 0; i < MAX_NUMNODES; i++)
6222 init_numa_sched_groups_power(sched_group_nodes[i]);
6223
6224 if (sd_allnodes) {
6225 struct sched_group *sg;
6226
6227 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6228 init_numa_sched_groups_power(sg);
6229 }
6230 #endif
6231
6232 /* Attach the domains */
6233 for_each_cpu_mask(i, *cpu_map) {
6234 struct sched_domain *sd;
6235 #ifdef CONFIG_SCHED_SMT
6236 sd = &per_cpu(cpu_domains, i);
6237 #elif defined(CONFIG_SCHED_MC)
6238 sd = &per_cpu(core_domains, i);
6239 #else
6240 sd = &per_cpu(phys_domains, i);
6241 #endif
6242 cpu_attach_domain(sd, i);
6243 }
6244
6245 return 0;
6246
6247 #ifdef CONFIG_NUMA
6248 error:
6249 free_sched_groups(cpu_map);
6250 return -ENOMEM;
6251 #endif
6252 }
6253 /*
6254 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6255 */
6256 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6257 {
6258 cpumask_t cpu_default_map;
6259 int err;
6260
6261 /*
6262 * Setup mask for cpus without special case scheduling requirements.
6263 * For now this just excludes isolated cpus, but could be used to
6264 * exclude other special cases in the future.
6265 */
6266 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6267
6268 err = build_sched_domains(&cpu_default_map);
6269
6270 return err;
6271 }
6272
6273 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6274 {
6275 free_sched_groups(cpu_map);
6276 }
6277
6278 /*
6279 * Detach sched domains from a group of cpus specified in cpu_map
6280 * These cpus will now be attached to the NULL domain
6281 */
6282 static void detach_destroy_domains(const cpumask_t *cpu_map)
6283 {
6284 int i;
6285
6286 for_each_cpu_mask(i, *cpu_map)
6287 cpu_attach_domain(NULL, i);
6288 synchronize_sched();
6289 arch_destroy_sched_domains(cpu_map);
6290 }
6291
6292 /*
6293 * Partition sched domains as specified by the cpumasks below.
6294 * This attaches all cpus from the cpumasks to the NULL domain,
6295 * waits for a RCU quiescent period, recalculates sched
6296 * domain information and then attaches them back to the
6297 * correct sched domains
6298 * Call with hotplug lock held
6299 */
6300 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6301 {
6302 cpumask_t change_map;
6303 int err = 0;
6304
6305 cpus_and(*partition1, *partition1, cpu_online_map);
6306 cpus_and(*partition2, *partition2, cpu_online_map);
6307 cpus_or(change_map, *partition1, *partition2);
6308
6309 /* Detach sched domains from all of the affected cpus */
6310 detach_destroy_domains(&change_map);
6311 if (!cpus_empty(*partition1))
6312 err = build_sched_domains(partition1);
6313 if (!err && !cpus_empty(*partition2))
6314 err = build_sched_domains(partition2);
6315
6316 return err;
6317 }
6318
6319 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6320 int arch_reinit_sched_domains(void)
6321 {
6322 int err;
6323
6324 mutex_lock(&sched_hotcpu_mutex);
6325 detach_destroy_domains(&cpu_online_map);
6326 err = arch_init_sched_domains(&cpu_online_map);
6327 mutex_unlock(&sched_hotcpu_mutex);
6328
6329 return err;
6330 }
6331
6332 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6333 {
6334 int ret;
6335
6336 if (buf[0] != '0' && buf[0] != '1')
6337 return -EINVAL;
6338
6339 if (smt)
6340 sched_smt_power_savings = (buf[0] == '1');
6341 else
6342 sched_mc_power_savings = (buf[0] == '1');
6343
6344 ret = arch_reinit_sched_domains();
6345
6346 return ret ? ret : count;
6347 }
6348
6349 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6350 {
6351 int err = 0;
6352
6353 #ifdef CONFIG_SCHED_SMT
6354 if (smt_capable())
6355 err = sysfs_create_file(&cls->kset.kobj,
6356 &attr_sched_smt_power_savings.attr);
6357 #endif
6358 #ifdef CONFIG_SCHED_MC
6359 if (!err && mc_capable())
6360 err = sysfs_create_file(&cls->kset.kobj,
6361 &attr_sched_mc_power_savings.attr);
6362 #endif
6363 return err;
6364 }
6365 #endif
6366
6367 #ifdef CONFIG_SCHED_MC
6368 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6369 {
6370 return sprintf(page, "%u\n", sched_mc_power_savings);
6371 }
6372 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6373 const char *buf, size_t count)
6374 {
6375 return sched_power_savings_store(buf, count, 0);
6376 }
6377 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6378 sched_mc_power_savings_store);
6379 #endif
6380
6381 #ifdef CONFIG_SCHED_SMT
6382 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6383 {
6384 return sprintf(page, "%u\n", sched_smt_power_savings);
6385 }
6386 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6387 const char *buf, size_t count)
6388 {
6389 return sched_power_savings_store(buf, count, 1);
6390 }
6391 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6392 sched_smt_power_savings_store);
6393 #endif
6394
6395 /*
6396 * Force a reinitialization of the sched domains hierarchy. The domains
6397 * and groups cannot be updated in place without racing with the balancing
6398 * code, so we temporarily attach all running cpus to the NULL domain
6399 * which will prevent rebalancing while the sched domains are recalculated.
6400 */
6401 static int update_sched_domains(struct notifier_block *nfb,
6402 unsigned long action, void *hcpu)
6403 {
6404 switch (action) {
6405 case CPU_UP_PREPARE:
6406 case CPU_UP_PREPARE_FROZEN:
6407 case CPU_DOWN_PREPARE:
6408 case CPU_DOWN_PREPARE_FROZEN:
6409 detach_destroy_domains(&cpu_online_map);
6410 return NOTIFY_OK;
6411
6412 case CPU_UP_CANCELED:
6413 case CPU_UP_CANCELED_FROZEN:
6414 case CPU_DOWN_FAILED:
6415 case CPU_DOWN_FAILED_FROZEN:
6416 case CPU_ONLINE:
6417 case CPU_ONLINE_FROZEN:
6418 case CPU_DEAD:
6419 case CPU_DEAD_FROZEN:
6420 /*
6421 * Fall through and re-initialise the domains.
6422 */
6423 break;
6424 default:
6425 return NOTIFY_DONE;
6426 }
6427
6428 /* The hotplug lock is already held by cpu_up/cpu_down */
6429 arch_init_sched_domains(&cpu_online_map);
6430
6431 return NOTIFY_OK;
6432 }
6433
6434 void __init sched_init_smp(void)
6435 {
6436 cpumask_t non_isolated_cpus;
6437
6438 mutex_lock(&sched_hotcpu_mutex);
6439 arch_init_sched_domains(&cpu_online_map);
6440 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6441 if (cpus_empty(non_isolated_cpus))
6442 cpu_set(smp_processor_id(), non_isolated_cpus);
6443 mutex_unlock(&sched_hotcpu_mutex);
6444 /* XXX: Theoretical race here - CPU may be hotplugged now */
6445 hotcpu_notifier(update_sched_domains, 0);
6446
6447 init_sched_domain_sysctl();
6448
6449 /* Move init over to a non-isolated CPU */
6450 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6451 BUG();
6452 sched_init_granularity();
6453 }
6454 #else
6455 void __init sched_init_smp(void)
6456 {
6457 sched_init_granularity();
6458 }
6459 #endif /* CONFIG_SMP */
6460
6461 int in_sched_functions(unsigned long addr)
6462 {
6463 /* Linker adds these: start and end of __sched functions */
6464 extern char __sched_text_start[], __sched_text_end[];
6465
6466 return in_lock_functions(addr) ||
6467 (addr >= (unsigned long)__sched_text_start
6468 && addr < (unsigned long)__sched_text_end);
6469 }
6470
6471 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6472 {
6473 cfs_rq->tasks_timeline = RB_ROOT;
6474 cfs_rq->fair_clock = 1;
6475 #ifdef CONFIG_FAIR_GROUP_SCHED
6476 cfs_rq->rq = rq;
6477 #endif
6478 }
6479
6480 void __init sched_init(void)
6481 {
6482 u64 now = sched_clock();
6483 int highest_cpu = 0;
6484 int i, j;
6485
6486 /*
6487 * Link up the scheduling class hierarchy:
6488 */
6489 rt_sched_class.next = &fair_sched_class;
6490 fair_sched_class.next = &idle_sched_class;
6491 idle_sched_class.next = NULL;
6492
6493 for_each_possible_cpu(i) {
6494 struct rt_prio_array *array;
6495 struct rq *rq;
6496
6497 rq = cpu_rq(i);
6498 spin_lock_init(&rq->lock);
6499 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6500 rq->nr_running = 0;
6501 rq->clock = 1;
6502 init_cfs_rq(&rq->cfs, rq);
6503 #ifdef CONFIG_FAIR_GROUP_SCHED
6504 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6505 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6506 #endif
6507 rq->ls.load_update_last = now;
6508 rq->ls.load_update_start = now;
6509
6510 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6511 rq->cpu_load[j] = 0;
6512 #ifdef CONFIG_SMP
6513 rq->sd = NULL;
6514 rq->active_balance = 0;
6515 rq->next_balance = jiffies;
6516 rq->push_cpu = 0;
6517 rq->cpu = i;
6518 rq->migration_thread = NULL;
6519 INIT_LIST_HEAD(&rq->migration_queue);
6520 #endif
6521 atomic_set(&rq->nr_iowait, 0);
6522
6523 array = &rq->rt.active;
6524 for (j = 0; j < MAX_RT_PRIO; j++) {
6525 INIT_LIST_HEAD(array->queue + j);
6526 __clear_bit(j, array->bitmap);
6527 }
6528 highest_cpu = i;
6529 /* delimiter for bitsearch: */
6530 __set_bit(MAX_RT_PRIO, array->bitmap);
6531 }
6532
6533 set_load_weight(&init_task);
6534
6535 #ifdef CONFIG_PREEMPT_NOTIFIERS
6536 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6537 #endif
6538
6539 #ifdef CONFIG_SMP
6540 nr_cpu_ids = highest_cpu + 1;
6541 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6542 #endif
6543
6544 #ifdef CONFIG_RT_MUTEXES
6545 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6546 #endif
6547
6548 /*
6549 * The boot idle thread does lazy MMU switching as well:
6550 */
6551 atomic_inc(&init_mm.mm_count);
6552 enter_lazy_tlb(&init_mm, current);
6553
6554 /*
6555 * Make us the idle thread. Technically, schedule() should not be
6556 * called from this thread, however somewhere below it might be,
6557 * but because we are the idle thread, we just pick up running again
6558 * when this runqueue becomes "idle".
6559 */
6560 init_idle(current, smp_processor_id());
6561 /*
6562 * During early bootup we pretend to be a normal task:
6563 */
6564 current->sched_class = &fair_sched_class;
6565 }
6566
6567 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6568 void __might_sleep(char *file, int line)
6569 {
6570 #ifdef in_atomic
6571 static unsigned long prev_jiffy; /* ratelimiting */
6572
6573 if ((in_atomic() || irqs_disabled()) &&
6574 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6575 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6576 return;
6577 prev_jiffy = jiffies;
6578 printk(KERN_ERR "BUG: sleeping function called from invalid"
6579 " context at %s:%d\n", file, line);
6580 printk("in_atomic():%d, irqs_disabled():%d\n",
6581 in_atomic(), irqs_disabled());
6582 debug_show_held_locks(current);
6583 if (irqs_disabled())
6584 print_irqtrace_events(current);
6585 dump_stack();
6586 }
6587 #endif
6588 }
6589 EXPORT_SYMBOL(__might_sleep);
6590 #endif
6591
6592 #ifdef CONFIG_MAGIC_SYSRQ
6593 void normalize_rt_tasks(void)
6594 {
6595 struct task_struct *g, *p;
6596 unsigned long flags;
6597 struct rq *rq;
6598 int on_rq;
6599
6600 read_lock_irq(&tasklist_lock);
6601 do_each_thread(g, p) {
6602 p->se.fair_key = 0;
6603 p->se.wait_runtime = 0;
6604 p->se.exec_start = 0;
6605 p->se.wait_start_fair = 0;
6606 p->se.sleep_start_fair = 0;
6607 #ifdef CONFIG_SCHEDSTATS
6608 p->se.wait_start = 0;
6609 p->se.sleep_start = 0;
6610 p->se.block_start = 0;
6611 #endif
6612 task_rq(p)->cfs.fair_clock = 0;
6613 task_rq(p)->clock = 0;
6614
6615 if (!rt_task(p)) {
6616 /*
6617 * Renice negative nice level userspace
6618 * tasks back to 0:
6619 */
6620 if (TASK_NICE(p) < 0 && p->mm)
6621 set_user_nice(p, 0);
6622 continue;
6623 }
6624
6625 spin_lock_irqsave(&p->pi_lock, flags);
6626 rq = __task_rq_lock(p);
6627 #ifdef CONFIG_SMP
6628 /*
6629 * Do not touch the migration thread:
6630 */
6631 if (p == rq->migration_thread)
6632 goto out_unlock;
6633 #endif
6634
6635 update_rq_clock(rq);
6636 on_rq = p->se.on_rq;
6637 if (on_rq)
6638 deactivate_task(rq, p, 0);
6639 __setscheduler(rq, p, SCHED_NORMAL, 0);
6640 if (on_rq) {
6641 activate_task(rq, p, 0);
6642 resched_task(rq->curr);
6643 }
6644 #ifdef CONFIG_SMP
6645 out_unlock:
6646 #endif
6647 __task_rq_unlock(rq);
6648 spin_unlock_irqrestore(&p->pi_lock, flags);
6649 } while_each_thread(g, p);
6650
6651 read_unlock_irq(&tasklist_lock);
6652 }
6653
6654 #endif /* CONFIG_MAGIC_SYSRQ */
6655
6656 #ifdef CONFIG_IA64
6657 /*
6658 * These functions are only useful for the IA64 MCA handling.
6659 *
6660 * They can only be called when the whole system has been
6661 * stopped - every CPU needs to be quiescent, and no scheduling
6662 * activity can take place. Using them for anything else would
6663 * be a serious bug, and as a result, they aren't even visible
6664 * under any other configuration.
6665 */
6666
6667 /**
6668 * curr_task - return the current task for a given cpu.
6669 * @cpu: the processor in question.
6670 *
6671 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6672 */
6673 struct task_struct *curr_task(int cpu)
6674 {
6675 return cpu_curr(cpu);
6676 }
6677
6678 /**
6679 * set_curr_task - set the current task for a given cpu.
6680 * @cpu: the processor in question.
6681 * @p: the task pointer to set.
6682 *
6683 * Description: This function must only be used when non-maskable interrupts
6684 * are serviced on a separate stack. It allows the architecture to switch the
6685 * notion of the current task on a cpu in a non-blocking manner. This function
6686 * must be called with all CPU's synchronized, and interrupts disabled, the
6687 * and caller must save the original value of the current task (see
6688 * curr_task() above) and restore that value before reenabling interrupts and
6689 * re-starting the system.
6690 *
6691 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6692 */
6693 void set_curr_task(int cpu, struct task_struct *p)
6694 {
6695 cpu_curr(cpu) = p;
6696 }
6697
6698 #endif