]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched.c
[PATCH] sched: calc_delta_mine(): use fixed limit
[mirror_ubuntu-kernels.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64
65 #include <asm/tlb.h>
66
67 /*
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72 unsigned long long __attribute__((weak)) sched_clock(void)
73 {
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75 }
76
77 /*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86 /*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95 /*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
101 #define NICE_0_LOAD SCHED_LOAD_SCALE
102 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
104 /*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112 #define DEF_TIMESLICE (100 * HZ / 1000)
113
114 #ifdef CONFIG_SMP
115 /*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120 {
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122 }
123
124 /*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129 {
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132 }
133 #endif
134
135 #define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
137
138 /*
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
141 */
142 static unsigned int static_prio_timeslice(int static_prio)
143 {
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
151 }
152
153 static inline int rt_policy(int policy)
154 {
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158 }
159
160 static inline int task_has_rt_policy(struct task_struct *p)
161 {
162 return rt_policy(p->policy);
163 }
164
165 /*
166 * This is the priority-queue data structure of the RT scheduling class:
167 */
168 struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171 };
172
173 struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177 };
178
179 /* CFS-related fields in a runqueue */
180 struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193 #ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208 #endif
209 };
210
211 /* Real-Time classes' related field in a runqueue: */
212 struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216 };
217
218 /*
219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
225 struct rq {
226 spinlock_t lock; /* runqueue lock */
227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235 unsigned char idle_at_tick;
236 #ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238 #endif
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244 #ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
246 #endif
247 struct rt_rq rt;
248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
257 struct task_struct *curr, *idle;
258 unsigned long next_balance;
259 struct mm_struct *prev_mm;
260
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
266
267 atomic_t nr_iowait;
268
269 #ifdef CONFIG_SMP
270 struct sched_domain *sd;
271
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
275 int cpu; /* cpu of this runqueue */
276
277 struct task_struct *migration_thread;
278 struct list_head migration_queue;
279 #endif
280
281 #ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
284
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
290
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
295
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299 #endif
300 struct lock_class_key rq_lock_key;
301 };
302
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
304 static DEFINE_MUTEX(sched_hotcpu_mutex);
305
306 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
307 {
308 rq->curr->sched_class->check_preempt_curr(rq, p);
309 }
310
311 static inline int cpu_of(struct rq *rq)
312 {
313 #ifdef CONFIG_SMP
314 return rq->cpu;
315 #else
316 return 0;
317 #endif
318 }
319
320 /*
321 * Per-runqueue clock, as finegrained as the platform can give us:
322 */
323 static unsigned long long __rq_clock(struct rq *rq)
324 {
325 u64 prev_raw = rq->prev_clock_raw;
326 u64 now = sched_clock();
327 s64 delta = now - prev_raw;
328 u64 clock = rq->clock;
329
330 /*
331 * Protect against sched_clock() occasionally going backwards:
332 */
333 if (unlikely(delta < 0)) {
334 clock++;
335 rq->clock_warps++;
336 } else {
337 /*
338 * Catch too large forward jumps too:
339 */
340 if (unlikely(delta > 2*TICK_NSEC)) {
341 clock++;
342 rq->clock_overflows++;
343 } else {
344 if (unlikely(delta > rq->clock_max_delta))
345 rq->clock_max_delta = delta;
346 clock += delta;
347 }
348 }
349
350 rq->prev_clock_raw = now;
351 rq->clock = clock;
352
353 return clock;
354 }
355
356 static inline unsigned long long rq_clock(struct rq *rq)
357 {
358 int this_cpu = smp_processor_id();
359
360 if (this_cpu == cpu_of(rq))
361 return __rq_clock(rq);
362
363 return rq->clock;
364 }
365
366 /*
367 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
368 * See detach_destroy_domains: synchronize_sched for details.
369 *
370 * The domain tree of any CPU may only be accessed from within
371 * preempt-disabled sections.
372 */
373 #define for_each_domain(cpu, __sd) \
374 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
375
376 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
377 #define this_rq() (&__get_cpu_var(runqueues))
378 #define task_rq(p) cpu_rq(task_cpu(p))
379 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
380
381 /*
382 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
383 * clock constructed from sched_clock():
384 */
385 unsigned long long cpu_clock(int cpu)
386 {
387 unsigned long long now;
388 unsigned long flags;
389
390 local_irq_save(flags);
391 now = rq_clock(cpu_rq(cpu));
392 local_irq_restore(flags);
393
394 return now;
395 }
396
397 #ifdef CONFIG_FAIR_GROUP_SCHED
398 /* Change a task's ->cfs_rq if it moves across CPUs */
399 static inline void set_task_cfs_rq(struct task_struct *p)
400 {
401 p->se.cfs_rq = &task_rq(p)->cfs;
402 }
403 #else
404 static inline void set_task_cfs_rq(struct task_struct *p)
405 {
406 }
407 #endif
408
409 #ifndef prepare_arch_switch
410 # define prepare_arch_switch(next) do { } while (0)
411 #endif
412 #ifndef finish_arch_switch
413 # define finish_arch_switch(prev) do { } while (0)
414 #endif
415
416 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
417 static inline int task_running(struct rq *rq, struct task_struct *p)
418 {
419 return rq->curr == p;
420 }
421
422 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
423 {
424 }
425
426 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
427 {
428 #ifdef CONFIG_DEBUG_SPINLOCK
429 /* this is a valid case when another task releases the spinlock */
430 rq->lock.owner = current;
431 #endif
432 /*
433 * If we are tracking spinlock dependencies then we have to
434 * fix up the runqueue lock - which gets 'carried over' from
435 * prev into current:
436 */
437 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
438
439 spin_unlock_irq(&rq->lock);
440 }
441
442 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
443 static inline int task_running(struct rq *rq, struct task_struct *p)
444 {
445 #ifdef CONFIG_SMP
446 return p->oncpu;
447 #else
448 return rq->curr == p;
449 #endif
450 }
451
452 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
453 {
454 #ifdef CONFIG_SMP
455 /*
456 * We can optimise this out completely for !SMP, because the
457 * SMP rebalancing from interrupt is the only thing that cares
458 * here.
459 */
460 next->oncpu = 1;
461 #endif
462 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
463 spin_unlock_irq(&rq->lock);
464 #else
465 spin_unlock(&rq->lock);
466 #endif
467 }
468
469 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
470 {
471 #ifdef CONFIG_SMP
472 /*
473 * After ->oncpu is cleared, the task can be moved to a different CPU.
474 * We must ensure this doesn't happen until the switch is completely
475 * finished.
476 */
477 smp_wmb();
478 prev->oncpu = 0;
479 #endif
480 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
481 local_irq_enable();
482 #endif
483 }
484 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
485
486 /*
487 * __task_rq_lock - lock the runqueue a given task resides on.
488 * Must be called interrupts disabled.
489 */
490 static inline struct rq *__task_rq_lock(struct task_struct *p)
491 __acquires(rq->lock)
492 {
493 struct rq *rq;
494
495 repeat_lock_task:
496 rq = task_rq(p);
497 spin_lock(&rq->lock);
498 if (unlikely(rq != task_rq(p))) {
499 spin_unlock(&rq->lock);
500 goto repeat_lock_task;
501 }
502 return rq;
503 }
504
505 /*
506 * task_rq_lock - lock the runqueue a given task resides on and disable
507 * interrupts. Note the ordering: we can safely lookup the task_rq without
508 * explicitly disabling preemption.
509 */
510 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
511 __acquires(rq->lock)
512 {
513 struct rq *rq;
514
515 repeat_lock_task:
516 local_irq_save(*flags);
517 rq = task_rq(p);
518 spin_lock(&rq->lock);
519 if (unlikely(rq != task_rq(p))) {
520 spin_unlock_irqrestore(&rq->lock, *flags);
521 goto repeat_lock_task;
522 }
523 return rq;
524 }
525
526 static inline void __task_rq_unlock(struct rq *rq)
527 __releases(rq->lock)
528 {
529 spin_unlock(&rq->lock);
530 }
531
532 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
533 __releases(rq->lock)
534 {
535 spin_unlock_irqrestore(&rq->lock, *flags);
536 }
537
538 /*
539 * this_rq_lock - lock this runqueue and disable interrupts.
540 */
541 static inline struct rq *this_rq_lock(void)
542 __acquires(rq->lock)
543 {
544 struct rq *rq;
545
546 local_irq_disable();
547 rq = this_rq();
548 spin_lock(&rq->lock);
549
550 return rq;
551 }
552
553 /*
554 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
555 */
556 void sched_clock_unstable_event(void)
557 {
558 unsigned long flags;
559 struct rq *rq;
560
561 rq = task_rq_lock(current, &flags);
562 rq->prev_clock_raw = sched_clock();
563 rq->clock_unstable_events++;
564 task_rq_unlock(rq, &flags);
565 }
566
567 /*
568 * resched_task - mark a task 'to be rescheduled now'.
569 *
570 * On UP this means the setting of the need_resched flag, on SMP it
571 * might also involve a cross-CPU call to trigger the scheduler on
572 * the target CPU.
573 */
574 #ifdef CONFIG_SMP
575
576 #ifndef tsk_is_polling
577 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
578 #endif
579
580 static void resched_task(struct task_struct *p)
581 {
582 int cpu;
583
584 assert_spin_locked(&task_rq(p)->lock);
585
586 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
587 return;
588
589 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
590
591 cpu = task_cpu(p);
592 if (cpu == smp_processor_id())
593 return;
594
595 /* NEED_RESCHED must be visible before we test polling */
596 smp_mb();
597 if (!tsk_is_polling(p))
598 smp_send_reschedule(cpu);
599 }
600
601 static void resched_cpu(int cpu)
602 {
603 struct rq *rq = cpu_rq(cpu);
604 unsigned long flags;
605
606 if (!spin_trylock_irqsave(&rq->lock, flags))
607 return;
608 resched_task(cpu_curr(cpu));
609 spin_unlock_irqrestore(&rq->lock, flags);
610 }
611 #else
612 static inline void resched_task(struct task_struct *p)
613 {
614 assert_spin_locked(&task_rq(p)->lock);
615 set_tsk_need_resched(p);
616 }
617 #endif
618
619 static u64 div64_likely32(u64 divident, unsigned long divisor)
620 {
621 #if BITS_PER_LONG == 32
622 if (likely(divident <= 0xffffffffULL))
623 return (u32)divident / divisor;
624 do_div(divident, divisor);
625
626 return divident;
627 #else
628 return divident / divisor;
629 #endif
630 }
631
632 #if BITS_PER_LONG == 32
633 # define WMULT_CONST (~0UL)
634 #else
635 # define WMULT_CONST (1UL << 32)
636 #endif
637
638 #define WMULT_SHIFT 32
639
640 static inline unsigned long
641 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
642 struct load_weight *lw)
643 {
644 u64 tmp;
645
646 if (unlikely(!lw->inv_weight))
647 lw->inv_weight = WMULT_CONST / lw->weight;
648
649 tmp = (u64)delta_exec * weight;
650 /*
651 * Check whether we'd overflow the 64-bit multiplication:
652 */
653 if (unlikely(tmp > WMULT_CONST)) {
654 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
655 >> (WMULT_SHIFT/2);
656 } else {
657 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
658 }
659
660 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
661 }
662
663 static inline unsigned long
664 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
665 {
666 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
667 }
668
669 static void update_load_add(struct load_weight *lw, unsigned long inc)
670 {
671 lw->weight += inc;
672 lw->inv_weight = 0;
673 }
674
675 static void update_load_sub(struct load_weight *lw, unsigned long dec)
676 {
677 lw->weight -= dec;
678 lw->inv_weight = 0;
679 }
680
681 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
682 {
683 if (rq->curr != rq->idle && ls->load.weight) {
684 ls->delta_exec += ls->delta_stat;
685 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
686 ls->delta_stat = 0;
687 }
688 }
689
690 /*
691 * Update delta_exec, delta_fair fields for rq.
692 *
693 * delta_fair clock advances at a rate inversely proportional to
694 * total load (rq->ls.load.weight) on the runqueue, while
695 * delta_exec advances at the same rate as wall-clock (provided
696 * cpu is not idle).
697 *
698 * delta_exec / delta_fair is a measure of the (smoothened) load on this
699 * runqueue over any given interval. This (smoothened) load is used
700 * during load balance.
701 *
702 * This function is called /before/ updating rq->ls.load
703 * and when switching tasks.
704 */
705 static void update_curr_load(struct rq *rq, u64 now)
706 {
707 struct load_stat *ls = &rq->ls;
708 u64 start;
709
710 start = ls->load_update_start;
711 ls->load_update_start = now;
712 ls->delta_stat += now - start;
713 /*
714 * Stagger updates to ls->delta_fair. Very frequent updates
715 * can be expensive.
716 */
717 if (ls->delta_stat >= sysctl_sched_stat_granularity)
718 __update_curr_load(rq, ls);
719 }
720
721 /*
722 * To aid in avoiding the subversion of "niceness" due to uneven distribution
723 * of tasks with abnormal "nice" values across CPUs the contribution that
724 * each task makes to its run queue's load is weighted according to its
725 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
726 * scaled version of the new time slice allocation that they receive on time
727 * slice expiry etc.
728 */
729
730 #define WEIGHT_IDLEPRIO 2
731 #define WMULT_IDLEPRIO (1 << 31)
732
733 /*
734 * Nice levels are multiplicative, with a gentle 10% change for every
735 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
736 * nice 1, it will get ~10% less CPU time than another CPU-bound task
737 * that remained on nice 0.
738 *
739 * The "10% effect" is relative and cumulative: from _any_ nice level,
740 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
741 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
742 * If a task goes up by ~10% and another task goes down by ~10% then
743 * the relative distance between them is ~25%.)
744 */
745 static const int prio_to_weight[40] = {
746 /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
747 /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
748 /* 0 */ NICE_0_LOAD /* 1024 */,
749 /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
750 /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
751 };
752
753 /*
754 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
755 *
756 * In cases where the weight does not change often, we can use the
757 * precalculated inverse to speed up arithmetics by turning divisions
758 * into multiplications:
759 */
760 static const u32 prio_to_wmult[40] = {
761 /* -20 */ 48356, 60446, 75558, 94446, 118058,
762 /* -15 */ 147573, 184467, 230589, 288233, 360285,
763 /* -10 */ 450347, 562979, 703746, 879575, 1099582,
764 /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
765 /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
766 /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
767 /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
768 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
769 };
770
771 static inline void
772 inc_load(struct rq *rq, const struct task_struct *p, u64 now)
773 {
774 update_curr_load(rq, now);
775 update_load_add(&rq->ls.load, p->se.load.weight);
776 }
777
778 static inline void
779 dec_load(struct rq *rq, const struct task_struct *p, u64 now)
780 {
781 update_curr_load(rq, now);
782 update_load_sub(&rq->ls.load, p->se.load.weight);
783 }
784
785 static inline void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
786 {
787 rq->nr_running++;
788 inc_load(rq, p, now);
789 }
790
791 static inline void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
792 {
793 rq->nr_running--;
794 dec_load(rq, p, now);
795 }
796
797 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
798
799 /*
800 * runqueue iterator, to support SMP load-balancing between different
801 * scheduling classes, without having to expose their internal data
802 * structures to the load-balancing proper:
803 */
804 struct rq_iterator {
805 void *arg;
806 struct task_struct *(*start)(void *);
807 struct task_struct *(*next)(void *);
808 };
809
810 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
811 unsigned long max_nr_move, unsigned long max_load_move,
812 struct sched_domain *sd, enum cpu_idle_type idle,
813 int *all_pinned, unsigned long *load_moved,
814 int this_best_prio, int best_prio, int best_prio_seen,
815 struct rq_iterator *iterator);
816
817 #include "sched_stats.h"
818 #include "sched_rt.c"
819 #include "sched_fair.c"
820 #include "sched_idletask.c"
821 #ifdef CONFIG_SCHED_DEBUG
822 # include "sched_debug.c"
823 #endif
824
825 #define sched_class_highest (&rt_sched_class)
826
827 static void set_load_weight(struct task_struct *p)
828 {
829 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
830 p->se.wait_runtime = 0;
831
832 if (task_has_rt_policy(p)) {
833 p->se.load.weight = prio_to_weight[0] * 2;
834 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
835 return;
836 }
837
838 /*
839 * SCHED_IDLE tasks get minimal weight:
840 */
841 if (p->policy == SCHED_IDLE) {
842 p->se.load.weight = WEIGHT_IDLEPRIO;
843 p->se.load.inv_weight = WMULT_IDLEPRIO;
844 return;
845 }
846
847 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
848 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
849 }
850
851 static void
852 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
853 {
854 sched_info_queued(p);
855 p->sched_class->enqueue_task(rq, p, wakeup, now);
856 p->se.on_rq = 1;
857 }
858
859 static void
860 dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
861 {
862 p->sched_class->dequeue_task(rq, p, sleep, now);
863 p->se.on_rq = 0;
864 }
865
866 /*
867 * __normal_prio - return the priority that is based on the static prio
868 */
869 static inline int __normal_prio(struct task_struct *p)
870 {
871 return p->static_prio;
872 }
873
874 /*
875 * Calculate the expected normal priority: i.e. priority
876 * without taking RT-inheritance into account. Might be
877 * boosted by interactivity modifiers. Changes upon fork,
878 * setprio syscalls, and whenever the interactivity
879 * estimator recalculates.
880 */
881 static inline int normal_prio(struct task_struct *p)
882 {
883 int prio;
884
885 if (task_has_rt_policy(p))
886 prio = MAX_RT_PRIO-1 - p->rt_priority;
887 else
888 prio = __normal_prio(p);
889 return prio;
890 }
891
892 /*
893 * Calculate the current priority, i.e. the priority
894 * taken into account by the scheduler. This value might
895 * be boosted by RT tasks, or might be boosted by
896 * interactivity modifiers. Will be RT if the task got
897 * RT-boosted. If not then it returns p->normal_prio.
898 */
899 static int effective_prio(struct task_struct *p)
900 {
901 p->normal_prio = normal_prio(p);
902 /*
903 * If we are RT tasks or we were boosted to RT priority,
904 * keep the priority unchanged. Otherwise, update priority
905 * to the normal priority:
906 */
907 if (!rt_prio(p->prio))
908 return p->normal_prio;
909 return p->prio;
910 }
911
912 /*
913 * activate_task - move a task to the runqueue.
914 */
915 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
916 {
917 u64 now = rq_clock(rq);
918
919 if (p->state == TASK_UNINTERRUPTIBLE)
920 rq->nr_uninterruptible--;
921
922 enqueue_task(rq, p, wakeup, now);
923 inc_nr_running(p, rq, now);
924 }
925
926 /*
927 * activate_idle_task - move idle task to the _front_ of runqueue.
928 */
929 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
930 {
931 u64 now = rq_clock(rq);
932
933 if (p->state == TASK_UNINTERRUPTIBLE)
934 rq->nr_uninterruptible--;
935
936 enqueue_task(rq, p, 0, now);
937 inc_nr_running(p, rq, now);
938 }
939
940 /*
941 * deactivate_task - remove a task from the runqueue.
942 */
943 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
944 {
945 u64 now = rq_clock(rq);
946
947 if (p->state == TASK_UNINTERRUPTIBLE)
948 rq->nr_uninterruptible++;
949
950 dequeue_task(rq, p, sleep, now);
951 dec_nr_running(p, rq, now);
952 }
953
954 /**
955 * task_curr - is this task currently executing on a CPU?
956 * @p: the task in question.
957 */
958 inline int task_curr(const struct task_struct *p)
959 {
960 return cpu_curr(task_cpu(p)) == p;
961 }
962
963 /* Used instead of source_load when we know the type == 0 */
964 unsigned long weighted_cpuload(const int cpu)
965 {
966 return cpu_rq(cpu)->ls.load.weight;
967 }
968
969 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
970 {
971 #ifdef CONFIG_SMP
972 task_thread_info(p)->cpu = cpu;
973 set_task_cfs_rq(p);
974 #endif
975 }
976
977 #ifdef CONFIG_SMP
978
979 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
980 {
981 int old_cpu = task_cpu(p);
982 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
983 u64 clock_offset, fair_clock_offset;
984
985 clock_offset = old_rq->clock - new_rq->clock;
986 fair_clock_offset = old_rq->cfs.fair_clock -
987 new_rq->cfs.fair_clock;
988 if (p->se.wait_start)
989 p->se.wait_start -= clock_offset;
990 if (p->se.wait_start_fair)
991 p->se.wait_start_fair -= fair_clock_offset;
992 if (p->se.sleep_start)
993 p->se.sleep_start -= clock_offset;
994 if (p->se.block_start)
995 p->se.block_start -= clock_offset;
996 if (p->se.sleep_start_fair)
997 p->se.sleep_start_fair -= fair_clock_offset;
998
999 __set_task_cpu(p, new_cpu);
1000 }
1001
1002 struct migration_req {
1003 struct list_head list;
1004
1005 struct task_struct *task;
1006 int dest_cpu;
1007
1008 struct completion done;
1009 };
1010
1011 /*
1012 * The task's runqueue lock must be held.
1013 * Returns true if you have to wait for migration thread.
1014 */
1015 static int
1016 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1017 {
1018 struct rq *rq = task_rq(p);
1019
1020 /*
1021 * If the task is not on a runqueue (and not running), then
1022 * it is sufficient to simply update the task's cpu field.
1023 */
1024 if (!p->se.on_rq && !task_running(rq, p)) {
1025 set_task_cpu(p, dest_cpu);
1026 return 0;
1027 }
1028
1029 init_completion(&req->done);
1030 req->task = p;
1031 req->dest_cpu = dest_cpu;
1032 list_add(&req->list, &rq->migration_queue);
1033
1034 return 1;
1035 }
1036
1037 /*
1038 * wait_task_inactive - wait for a thread to unschedule.
1039 *
1040 * The caller must ensure that the task *will* unschedule sometime soon,
1041 * else this function might spin for a *long* time. This function can't
1042 * be called with interrupts off, or it may introduce deadlock with
1043 * smp_call_function() if an IPI is sent by the same process we are
1044 * waiting to become inactive.
1045 */
1046 void wait_task_inactive(struct task_struct *p)
1047 {
1048 unsigned long flags;
1049 int running, on_rq;
1050 struct rq *rq;
1051
1052 repeat:
1053 /*
1054 * We do the initial early heuristics without holding
1055 * any task-queue locks at all. We'll only try to get
1056 * the runqueue lock when things look like they will
1057 * work out!
1058 */
1059 rq = task_rq(p);
1060
1061 /*
1062 * If the task is actively running on another CPU
1063 * still, just relax and busy-wait without holding
1064 * any locks.
1065 *
1066 * NOTE! Since we don't hold any locks, it's not
1067 * even sure that "rq" stays as the right runqueue!
1068 * But we don't care, since "task_running()" will
1069 * return false if the runqueue has changed and p
1070 * is actually now running somewhere else!
1071 */
1072 while (task_running(rq, p))
1073 cpu_relax();
1074
1075 /*
1076 * Ok, time to look more closely! We need the rq
1077 * lock now, to be *sure*. If we're wrong, we'll
1078 * just go back and repeat.
1079 */
1080 rq = task_rq_lock(p, &flags);
1081 running = task_running(rq, p);
1082 on_rq = p->se.on_rq;
1083 task_rq_unlock(rq, &flags);
1084
1085 /*
1086 * Was it really running after all now that we
1087 * checked with the proper locks actually held?
1088 *
1089 * Oops. Go back and try again..
1090 */
1091 if (unlikely(running)) {
1092 cpu_relax();
1093 goto repeat;
1094 }
1095
1096 /*
1097 * It's not enough that it's not actively running,
1098 * it must be off the runqueue _entirely_, and not
1099 * preempted!
1100 *
1101 * So if it wa still runnable (but just not actively
1102 * running right now), it's preempted, and we should
1103 * yield - it could be a while.
1104 */
1105 if (unlikely(on_rq)) {
1106 yield();
1107 goto repeat;
1108 }
1109
1110 /*
1111 * Ahh, all good. It wasn't running, and it wasn't
1112 * runnable, which means that it will never become
1113 * running in the future either. We're all done!
1114 */
1115 }
1116
1117 /***
1118 * kick_process - kick a running thread to enter/exit the kernel
1119 * @p: the to-be-kicked thread
1120 *
1121 * Cause a process which is running on another CPU to enter
1122 * kernel-mode, without any delay. (to get signals handled.)
1123 *
1124 * NOTE: this function doesnt have to take the runqueue lock,
1125 * because all it wants to ensure is that the remote task enters
1126 * the kernel. If the IPI races and the task has been migrated
1127 * to another CPU then no harm is done and the purpose has been
1128 * achieved as well.
1129 */
1130 void kick_process(struct task_struct *p)
1131 {
1132 int cpu;
1133
1134 preempt_disable();
1135 cpu = task_cpu(p);
1136 if ((cpu != smp_processor_id()) && task_curr(p))
1137 smp_send_reschedule(cpu);
1138 preempt_enable();
1139 }
1140
1141 /*
1142 * Return a low guess at the load of a migration-source cpu weighted
1143 * according to the scheduling class and "nice" value.
1144 *
1145 * We want to under-estimate the load of migration sources, to
1146 * balance conservatively.
1147 */
1148 static inline unsigned long source_load(int cpu, int type)
1149 {
1150 struct rq *rq = cpu_rq(cpu);
1151 unsigned long total = weighted_cpuload(cpu);
1152
1153 if (type == 0)
1154 return total;
1155
1156 return min(rq->cpu_load[type-1], total);
1157 }
1158
1159 /*
1160 * Return a high guess at the load of a migration-target cpu weighted
1161 * according to the scheduling class and "nice" value.
1162 */
1163 static inline unsigned long target_load(int cpu, int type)
1164 {
1165 struct rq *rq = cpu_rq(cpu);
1166 unsigned long total = weighted_cpuload(cpu);
1167
1168 if (type == 0)
1169 return total;
1170
1171 return max(rq->cpu_load[type-1], total);
1172 }
1173
1174 /*
1175 * Return the average load per task on the cpu's run queue
1176 */
1177 static inline unsigned long cpu_avg_load_per_task(int cpu)
1178 {
1179 struct rq *rq = cpu_rq(cpu);
1180 unsigned long total = weighted_cpuload(cpu);
1181 unsigned long n = rq->nr_running;
1182
1183 return n ? total / n : SCHED_LOAD_SCALE;
1184 }
1185
1186 /*
1187 * find_idlest_group finds and returns the least busy CPU group within the
1188 * domain.
1189 */
1190 static struct sched_group *
1191 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1192 {
1193 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1194 unsigned long min_load = ULONG_MAX, this_load = 0;
1195 int load_idx = sd->forkexec_idx;
1196 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1197
1198 do {
1199 unsigned long load, avg_load;
1200 int local_group;
1201 int i;
1202
1203 /* Skip over this group if it has no CPUs allowed */
1204 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1205 goto nextgroup;
1206
1207 local_group = cpu_isset(this_cpu, group->cpumask);
1208
1209 /* Tally up the load of all CPUs in the group */
1210 avg_load = 0;
1211
1212 for_each_cpu_mask(i, group->cpumask) {
1213 /* Bias balancing toward cpus of our domain */
1214 if (local_group)
1215 load = source_load(i, load_idx);
1216 else
1217 load = target_load(i, load_idx);
1218
1219 avg_load += load;
1220 }
1221
1222 /* Adjust by relative CPU power of the group */
1223 avg_load = sg_div_cpu_power(group,
1224 avg_load * SCHED_LOAD_SCALE);
1225
1226 if (local_group) {
1227 this_load = avg_load;
1228 this = group;
1229 } else if (avg_load < min_load) {
1230 min_load = avg_load;
1231 idlest = group;
1232 }
1233 nextgroup:
1234 group = group->next;
1235 } while (group != sd->groups);
1236
1237 if (!idlest || 100*this_load < imbalance*min_load)
1238 return NULL;
1239 return idlest;
1240 }
1241
1242 /*
1243 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1244 */
1245 static int
1246 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1247 {
1248 cpumask_t tmp;
1249 unsigned long load, min_load = ULONG_MAX;
1250 int idlest = -1;
1251 int i;
1252
1253 /* Traverse only the allowed CPUs */
1254 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1255
1256 for_each_cpu_mask(i, tmp) {
1257 load = weighted_cpuload(i);
1258
1259 if (load < min_load || (load == min_load && i == this_cpu)) {
1260 min_load = load;
1261 idlest = i;
1262 }
1263 }
1264
1265 return idlest;
1266 }
1267
1268 /*
1269 * sched_balance_self: balance the current task (running on cpu) in domains
1270 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1271 * SD_BALANCE_EXEC.
1272 *
1273 * Balance, ie. select the least loaded group.
1274 *
1275 * Returns the target CPU number, or the same CPU if no balancing is needed.
1276 *
1277 * preempt must be disabled.
1278 */
1279 static int sched_balance_self(int cpu, int flag)
1280 {
1281 struct task_struct *t = current;
1282 struct sched_domain *tmp, *sd = NULL;
1283
1284 for_each_domain(cpu, tmp) {
1285 /*
1286 * If power savings logic is enabled for a domain, stop there.
1287 */
1288 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1289 break;
1290 if (tmp->flags & flag)
1291 sd = tmp;
1292 }
1293
1294 while (sd) {
1295 cpumask_t span;
1296 struct sched_group *group;
1297 int new_cpu, weight;
1298
1299 if (!(sd->flags & flag)) {
1300 sd = sd->child;
1301 continue;
1302 }
1303
1304 span = sd->span;
1305 group = find_idlest_group(sd, t, cpu);
1306 if (!group) {
1307 sd = sd->child;
1308 continue;
1309 }
1310
1311 new_cpu = find_idlest_cpu(group, t, cpu);
1312 if (new_cpu == -1 || new_cpu == cpu) {
1313 /* Now try balancing at a lower domain level of cpu */
1314 sd = sd->child;
1315 continue;
1316 }
1317
1318 /* Now try balancing at a lower domain level of new_cpu */
1319 cpu = new_cpu;
1320 sd = NULL;
1321 weight = cpus_weight(span);
1322 for_each_domain(cpu, tmp) {
1323 if (weight <= cpus_weight(tmp->span))
1324 break;
1325 if (tmp->flags & flag)
1326 sd = tmp;
1327 }
1328 /* while loop will break here if sd == NULL */
1329 }
1330
1331 return cpu;
1332 }
1333
1334 #endif /* CONFIG_SMP */
1335
1336 /*
1337 * wake_idle() will wake a task on an idle cpu if task->cpu is
1338 * not idle and an idle cpu is available. The span of cpus to
1339 * search starts with cpus closest then further out as needed,
1340 * so we always favor a closer, idle cpu.
1341 *
1342 * Returns the CPU we should wake onto.
1343 */
1344 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1345 static int wake_idle(int cpu, struct task_struct *p)
1346 {
1347 cpumask_t tmp;
1348 struct sched_domain *sd;
1349 int i;
1350
1351 /*
1352 * If it is idle, then it is the best cpu to run this task.
1353 *
1354 * This cpu is also the best, if it has more than one task already.
1355 * Siblings must be also busy(in most cases) as they didn't already
1356 * pickup the extra load from this cpu and hence we need not check
1357 * sibling runqueue info. This will avoid the checks and cache miss
1358 * penalities associated with that.
1359 */
1360 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1361 return cpu;
1362
1363 for_each_domain(cpu, sd) {
1364 if (sd->flags & SD_WAKE_IDLE) {
1365 cpus_and(tmp, sd->span, p->cpus_allowed);
1366 for_each_cpu_mask(i, tmp) {
1367 if (idle_cpu(i))
1368 return i;
1369 }
1370 } else {
1371 break;
1372 }
1373 }
1374 return cpu;
1375 }
1376 #else
1377 static inline int wake_idle(int cpu, struct task_struct *p)
1378 {
1379 return cpu;
1380 }
1381 #endif
1382
1383 /***
1384 * try_to_wake_up - wake up a thread
1385 * @p: the to-be-woken-up thread
1386 * @state: the mask of task states that can be woken
1387 * @sync: do a synchronous wakeup?
1388 *
1389 * Put it on the run-queue if it's not already there. The "current"
1390 * thread is always on the run-queue (except when the actual
1391 * re-schedule is in progress), and as such you're allowed to do
1392 * the simpler "current->state = TASK_RUNNING" to mark yourself
1393 * runnable without the overhead of this.
1394 *
1395 * returns failure only if the task is already active.
1396 */
1397 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1398 {
1399 int cpu, this_cpu, success = 0;
1400 unsigned long flags;
1401 long old_state;
1402 struct rq *rq;
1403 #ifdef CONFIG_SMP
1404 struct sched_domain *sd, *this_sd = NULL;
1405 unsigned long load, this_load;
1406 int new_cpu;
1407 #endif
1408
1409 rq = task_rq_lock(p, &flags);
1410 old_state = p->state;
1411 if (!(old_state & state))
1412 goto out;
1413
1414 if (p->se.on_rq)
1415 goto out_running;
1416
1417 cpu = task_cpu(p);
1418 this_cpu = smp_processor_id();
1419
1420 #ifdef CONFIG_SMP
1421 if (unlikely(task_running(rq, p)))
1422 goto out_activate;
1423
1424 new_cpu = cpu;
1425
1426 schedstat_inc(rq, ttwu_cnt);
1427 if (cpu == this_cpu) {
1428 schedstat_inc(rq, ttwu_local);
1429 goto out_set_cpu;
1430 }
1431
1432 for_each_domain(this_cpu, sd) {
1433 if (cpu_isset(cpu, sd->span)) {
1434 schedstat_inc(sd, ttwu_wake_remote);
1435 this_sd = sd;
1436 break;
1437 }
1438 }
1439
1440 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1441 goto out_set_cpu;
1442
1443 /*
1444 * Check for affine wakeup and passive balancing possibilities.
1445 */
1446 if (this_sd) {
1447 int idx = this_sd->wake_idx;
1448 unsigned int imbalance;
1449
1450 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1451
1452 load = source_load(cpu, idx);
1453 this_load = target_load(this_cpu, idx);
1454
1455 new_cpu = this_cpu; /* Wake to this CPU if we can */
1456
1457 if (this_sd->flags & SD_WAKE_AFFINE) {
1458 unsigned long tl = this_load;
1459 unsigned long tl_per_task;
1460
1461 tl_per_task = cpu_avg_load_per_task(this_cpu);
1462
1463 /*
1464 * If sync wakeup then subtract the (maximum possible)
1465 * effect of the currently running task from the load
1466 * of the current CPU:
1467 */
1468 if (sync)
1469 tl -= current->se.load.weight;
1470
1471 if ((tl <= load &&
1472 tl + target_load(cpu, idx) <= tl_per_task) ||
1473 100*(tl + p->se.load.weight) <= imbalance*load) {
1474 /*
1475 * This domain has SD_WAKE_AFFINE and
1476 * p is cache cold in this domain, and
1477 * there is no bad imbalance.
1478 */
1479 schedstat_inc(this_sd, ttwu_move_affine);
1480 goto out_set_cpu;
1481 }
1482 }
1483
1484 /*
1485 * Start passive balancing when half the imbalance_pct
1486 * limit is reached.
1487 */
1488 if (this_sd->flags & SD_WAKE_BALANCE) {
1489 if (imbalance*this_load <= 100*load) {
1490 schedstat_inc(this_sd, ttwu_move_balance);
1491 goto out_set_cpu;
1492 }
1493 }
1494 }
1495
1496 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1497 out_set_cpu:
1498 new_cpu = wake_idle(new_cpu, p);
1499 if (new_cpu != cpu) {
1500 set_task_cpu(p, new_cpu);
1501 task_rq_unlock(rq, &flags);
1502 /* might preempt at this point */
1503 rq = task_rq_lock(p, &flags);
1504 old_state = p->state;
1505 if (!(old_state & state))
1506 goto out;
1507 if (p->se.on_rq)
1508 goto out_running;
1509
1510 this_cpu = smp_processor_id();
1511 cpu = task_cpu(p);
1512 }
1513
1514 out_activate:
1515 #endif /* CONFIG_SMP */
1516 activate_task(rq, p, 1);
1517 /*
1518 * Sync wakeups (i.e. those types of wakeups where the waker
1519 * has indicated that it will leave the CPU in short order)
1520 * don't trigger a preemption, if the woken up task will run on
1521 * this cpu. (in this case the 'I will reschedule' promise of
1522 * the waker guarantees that the freshly woken up task is going
1523 * to be considered on this CPU.)
1524 */
1525 if (!sync || cpu != this_cpu)
1526 check_preempt_curr(rq, p);
1527 success = 1;
1528
1529 out_running:
1530 p->state = TASK_RUNNING;
1531 out:
1532 task_rq_unlock(rq, &flags);
1533
1534 return success;
1535 }
1536
1537 int fastcall wake_up_process(struct task_struct *p)
1538 {
1539 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1540 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1541 }
1542 EXPORT_SYMBOL(wake_up_process);
1543
1544 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1545 {
1546 return try_to_wake_up(p, state, 0);
1547 }
1548
1549 /*
1550 * Perform scheduler related setup for a newly forked process p.
1551 * p is forked by current.
1552 *
1553 * __sched_fork() is basic setup used by init_idle() too:
1554 */
1555 static void __sched_fork(struct task_struct *p)
1556 {
1557 p->se.wait_start_fair = 0;
1558 p->se.wait_start = 0;
1559 p->se.exec_start = 0;
1560 p->se.sum_exec_runtime = 0;
1561 p->se.delta_exec = 0;
1562 p->se.delta_fair_run = 0;
1563 p->se.delta_fair_sleep = 0;
1564 p->se.wait_runtime = 0;
1565 p->se.sum_wait_runtime = 0;
1566 p->se.sum_sleep_runtime = 0;
1567 p->se.sleep_start = 0;
1568 p->se.sleep_start_fair = 0;
1569 p->se.block_start = 0;
1570 p->se.sleep_max = 0;
1571 p->se.block_max = 0;
1572 p->se.exec_max = 0;
1573 p->se.wait_max = 0;
1574 p->se.wait_runtime_overruns = 0;
1575 p->se.wait_runtime_underruns = 0;
1576
1577 INIT_LIST_HEAD(&p->run_list);
1578 p->se.on_rq = 0;
1579
1580 #ifdef CONFIG_PREEMPT_NOTIFIERS
1581 INIT_HLIST_HEAD(&p->preempt_notifiers);
1582 #endif
1583
1584 /*
1585 * We mark the process as running here, but have not actually
1586 * inserted it onto the runqueue yet. This guarantees that
1587 * nobody will actually run it, and a signal or other external
1588 * event cannot wake it up and insert it on the runqueue either.
1589 */
1590 p->state = TASK_RUNNING;
1591 }
1592
1593 /*
1594 * fork()/clone()-time setup:
1595 */
1596 void sched_fork(struct task_struct *p, int clone_flags)
1597 {
1598 int cpu = get_cpu();
1599
1600 __sched_fork(p);
1601
1602 #ifdef CONFIG_SMP
1603 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1604 #endif
1605 __set_task_cpu(p, cpu);
1606
1607 /*
1608 * Make sure we do not leak PI boosting priority to the child:
1609 */
1610 p->prio = current->normal_prio;
1611
1612 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1613 if (likely(sched_info_on()))
1614 memset(&p->sched_info, 0, sizeof(p->sched_info));
1615 #endif
1616 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1617 p->oncpu = 0;
1618 #endif
1619 #ifdef CONFIG_PREEMPT
1620 /* Want to start with kernel preemption disabled. */
1621 task_thread_info(p)->preempt_count = 1;
1622 #endif
1623 put_cpu();
1624 }
1625
1626 /*
1627 * After fork, child runs first. (default) If set to 0 then
1628 * parent will (try to) run first.
1629 */
1630 unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1631
1632 /*
1633 * wake_up_new_task - wake up a newly created task for the first time.
1634 *
1635 * This function will do some initial scheduler statistics housekeeping
1636 * that must be done for every newly created context, then puts the task
1637 * on the runqueue and wakes it.
1638 */
1639 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1640 {
1641 unsigned long flags;
1642 struct rq *rq;
1643 int this_cpu;
1644
1645 rq = task_rq_lock(p, &flags);
1646 BUG_ON(p->state != TASK_RUNNING);
1647 this_cpu = smp_processor_id(); /* parent's CPU */
1648
1649 p->prio = effective_prio(p);
1650
1651 if (!sysctl_sched_child_runs_first || (clone_flags & CLONE_VM) ||
1652 task_cpu(p) != this_cpu || !current->se.on_rq) {
1653 activate_task(rq, p, 0);
1654 } else {
1655 /*
1656 * Let the scheduling class do new task startup
1657 * management (if any):
1658 */
1659 p->sched_class->task_new(rq, p);
1660 }
1661 check_preempt_curr(rq, p);
1662 task_rq_unlock(rq, &flags);
1663 }
1664
1665 #ifdef CONFIG_PREEMPT_NOTIFIERS
1666
1667 /**
1668 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1669 * @notifier: notifier struct to register
1670 */
1671 void preempt_notifier_register(struct preempt_notifier *notifier)
1672 {
1673 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1674 }
1675 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1676
1677 /**
1678 * preempt_notifier_unregister - no longer interested in preemption notifications
1679 * @notifier: notifier struct to unregister
1680 *
1681 * This is safe to call from within a preemption notifier.
1682 */
1683 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1684 {
1685 hlist_del(&notifier->link);
1686 }
1687 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1688
1689 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1690 {
1691 struct preempt_notifier *notifier;
1692 struct hlist_node *node;
1693
1694 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1695 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1696 }
1697
1698 static void
1699 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1700 struct task_struct *next)
1701 {
1702 struct preempt_notifier *notifier;
1703 struct hlist_node *node;
1704
1705 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1706 notifier->ops->sched_out(notifier, next);
1707 }
1708
1709 #else
1710
1711 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1712 {
1713 }
1714
1715 static void
1716 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1717 struct task_struct *next)
1718 {
1719 }
1720
1721 #endif
1722
1723 /**
1724 * prepare_task_switch - prepare to switch tasks
1725 * @rq: the runqueue preparing to switch
1726 * @prev: the current task that is being switched out
1727 * @next: the task we are going to switch to.
1728 *
1729 * This is called with the rq lock held and interrupts off. It must
1730 * be paired with a subsequent finish_task_switch after the context
1731 * switch.
1732 *
1733 * prepare_task_switch sets up locking and calls architecture specific
1734 * hooks.
1735 */
1736 static inline void
1737 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1738 struct task_struct *next)
1739 {
1740 fire_sched_out_preempt_notifiers(prev, next);
1741 prepare_lock_switch(rq, next);
1742 prepare_arch_switch(next);
1743 }
1744
1745 /**
1746 * finish_task_switch - clean up after a task-switch
1747 * @rq: runqueue associated with task-switch
1748 * @prev: the thread we just switched away from.
1749 *
1750 * finish_task_switch must be called after the context switch, paired
1751 * with a prepare_task_switch call before the context switch.
1752 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1753 * and do any other architecture-specific cleanup actions.
1754 *
1755 * Note that we may have delayed dropping an mm in context_switch(). If
1756 * so, we finish that here outside of the runqueue lock. (Doing it
1757 * with the lock held can cause deadlocks; see schedule() for
1758 * details.)
1759 */
1760 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1761 __releases(rq->lock)
1762 {
1763 struct mm_struct *mm = rq->prev_mm;
1764 long prev_state;
1765
1766 rq->prev_mm = NULL;
1767
1768 /*
1769 * A task struct has one reference for the use as "current".
1770 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1771 * schedule one last time. The schedule call will never return, and
1772 * the scheduled task must drop that reference.
1773 * The test for TASK_DEAD must occur while the runqueue locks are
1774 * still held, otherwise prev could be scheduled on another cpu, die
1775 * there before we look at prev->state, and then the reference would
1776 * be dropped twice.
1777 * Manfred Spraul <manfred@colorfullife.com>
1778 */
1779 prev_state = prev->state;
1780 finish_arch_switch(prev);
1781 finish_lock_switch(rq, prev);
1782 fire_sched_in_preempt_notifiers(current);
1783 if (mm)
1784 mmdrop(mm);
1785 if (unlikely(prev_state == TASK_DEAD)) {
1786 /*
1787 * Remove function-return probe instances associated with this
1788 * task and put them back on the free list.
1789 */
1790 kprobe_flush_task(prev);
1791 put_task_struct(prev);
1792 }
1793 }
1794
1795 /**
1796 * schedule_tail - first thing a freshly forked thread must call.
1797 * @prev: the thread we just switched away from.
1798 */
1799 asmlinkage void schedule_tail(struct task_struct *prev)
1800 __releases(rq->lock)
1801 {
1802 struct rq *rq = this_rq();
1803
1804 finish_task_switch(rq, prev);
1805 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1806 /* In this case, finish_task_switch does not reenable preemption */
1807 preempt_enable();
1808 #endif
1809 if (current->set_child_tid)
1810 put_user(current->pid, current->set_child_tid);
1811 }
1812
1813 /*
1814 * context_switch - switch to the new MM and the new
1815 * thread's register state.
1816 */
1817 static inline void
1818 context_switch(struct rq *rq, struct task_struct *prev,
1819 struct task_struct *next)
1820 {
1821 struct mm_struct *mm, *oldmm;
1822
1823 prepare_task_switch(rq, prev, next);
1824 mm = next->mm;
1825 oldmm = prev->active_mm;
1826 /*
1827 * For paravirt, this is coupled with an exit in switch_to to
1828 * combine the page table reload and the switch backend into
1829 * one hypercall.
1830 */
1831 arch_enter_lazy_cpu_mode();
1832
1833 if (unlikely(!mm)) {
1834 next->active_mm = oldmm;
1835 atomic_inc(&oldmm->mm_count);
1836 enter_lazy_tlb(oldmm, next);
1837 } else
1838 switch_mm(oldmm, mm, next);
1839
1840 if (unlikely(!prev->mm)) {
1841 prev->active_mm = NULL;
1842 rq->prev_mm = oldmm;
1843 }
1844 /*
1845 * Since the runqueue lock will be released by the next
1846 * task (which is an invalid locking op but in the case
1847 * of the scheduler it's an obvious special-case), so we
1848 * do an early lockdep release here:
1849 */
1850 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1851 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1852 #endif
1853
1854 /* Here we just switch the register state and the stack. */
1855 switch_to(prev, next, prev);
1856
1857 barrier();
1858 /*
1859 * this_rq must be evaluated again because prev may have moved
1860 * CPUs since it called schedule(), thus the 'rq' on its stack
1861 * frame will be invalid.
1862 */
1863 finish_task_switch(this_rq(), prev);
1864 }
1865
1866 /*
1867 * nr_running, nr_uninterruptible and nr_context_switches:
1868 *
1869 * externally visible scheduler statistics: current number of runnable
1870 * threads, current number of uninterruptible-sleeping threads, total
1871 * number of context switches performed since bootup.
1872 */
1873 unsigned long nr_running(void)
1874 {
1875 unsigned long i, sum = 0;
1876
1877 for_each_online_cpu(i)
1878 sum += cpu_rq(i)->nr_running;
1879
1880 return sum;
1881 }
1882
1883 unsigned long nr_uninterruptible(void)
1884 {
1885 unsigned long i, sum = 0;
1886
1887 for_each_possible_cpu(i)
1888 sum += cpu_rq(i)->nr_uninterruptible;
1889
1890 /*
1891 * Since we read the counters lockless, it might be slightly
1892 * inaccurate. Do not allow it to go below zero though:
1893 */
1894 if (unlikely((long)sum < 0))
1895 sum = 0;
1896
1897 return sum;
1898 }
1899
1900 unsigned long long nr_context_switches(void)
1901 {
1902 int i;
1903 unsigned long long sum = 0;
1904
1905 for_each_possible_cpu(i)
1906 sum += cpu_rq(i)->nr_switches;
1907
1908 return sum;
1909 }
1910
1911 unsigned long nr_iowait(void)
1912 {
1913 unsigned long i, sum = 0;
1914
1915 for_each_possible_cpu(i)
1916 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1917
1918 return sum;
1919 }
1920
1921 unsigned long nr_active(void)
1922 {
1923 unsigned long i, running = 0, uninterruptible = 0;
1924
1925 for_each_online_cpu(i) {
1926 running += cpu_rq(i)->nr_running;
1927 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1928 }
1929
1930 if (unlikely((long)uninterruptible < 0))
1931 uninterruptible = 0;
1932
1933 return running + uninterruptible;
1934 }
1935
1936 /*
1937 * Update rq->cpu_load[] statistics. This function is usually called every
1938 * scheduler tick (TICK_NSEC).
1939 */
1940 static void update_cpu_load(struct rq *this_rq)
1941 {
1942 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1943 unsigned long total_load = this_rq->ls.load.weight;
1944 unsigned long this_load = total_load;
1945 struct load_stat *ls = &this_rq->ls;
1946 u64 now = __rq_clock(this_rq);
1947 int i, scale;
1948
1949 this_rq->nr_load_updates++;
1950 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1951 goto do_avg;
1952
1953 /* Update delta_fair/delta_exec fields first */
1954 update_curr_load(this_rq, now);
1955
1956 fair_delta64 = ls->delta_fair + 1;
1957 ls->delta_fair = 0;
1958
1959 exec_delta64 = ls->delta_exec + 1;
1960 ls->delta_exec = 0;
1961
1962 sample_interval64 = now - ls->load_update_last;
1963 ls->load_update_last = now;
1964
1965 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1966 sample_interval64 = TICK_NSEC;
1967
1968 if (exec_delta64 > sample_interval64)
1969 exec_delta64 = sample_interval64;
1970
1971 idle_delta64 = sample_interval64 - exec_delta64;
1972
1973 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1974 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1975
1976 this_load = (unsigned long)tmp64;
1977
1978 do_avg:
1979
1980 /* Update our load: */
1981 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
1982 unsigned long old_load, new_load;
1983
1984 /* scale is effectively 1 << i now, and >> i divides by scale */
1985
1986 old_load = this_rq->cpu_load[i];
1987 new_load = this_load;
1988
1989 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
1990 }
1991 }
1992
1993 #ifdef CONFIG_SMP
1994
1995 /*
1996 * double_rq_lock - safely lock two runqueues
1997 *
1998 * Note this does not disable interrupts like task_rq_lock,
1999 * you need to do so manually before calling.
2000 */
2001 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2002 __acquires(rq1->lock)
2003 __acquires(rq2->lock)
2004 {
2005 BUG_ON(!irqs_disabled());
2006 if (rq1 == rq2) {
2007 spin_lock(&rq1->lock);
2008 __acquire(rq2->lock); /* Fake it out ;) */
2009 } else {
2010 if (rq1 < rq2) {
2011 spin_lock(&rq1->lock);
2012 spin_lock(&rq2->lock);
2013 } else {
2014 spin_lock(&rq2->lock);
2015 spin_lock(&rq1->lock);
2016 }
2017 }
2018 }
2019
2020 /*
2021 * double_rq_unlock - safely unlock two runqueues
2022 *
2023 * Note this does not restore interrupts like task_rq_unlock,
2024 * you need to do so manually after calling.
2025 */
2026 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2027 __releases(rq1->lock)
2028 __releases(rq2->lock)
2029 {
2030 spin_unlock(&rq1->lock);
2031 if (rq1 != rq2)
2032 spin_unlock(&rq2->lock);
2033 else
2034 __release(rq2->lock);
2035 }
2036
2037 /*
2038 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2039 */
2040 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2041 __releases(this_rq->lock)
2042 __acquires(busiest->lock)
2043 __acquires(this_rq->lock)
2044 {
2045 if (unlikely(!irqs_disabled())) {
2046 /* printk() doesn't work good under rq->lock */
2047 spin_unlock(&this_rq->lock);
2048 BUG_ON(1);
2049 }
2050 if (unlikely(!spin_trylock(&busiest->lock))) {
2051 if (busiest < this_rq) {
2052 spin_unlock(&this_rq->lock);
2053 spin_lock(&busiest->lock);
2054 spin_lock(&this_rq->lock);
2055 } else
2056 spin_lock(&busiest->lock);
2057 }
2058 }
2059
2060 /*
2061 * If dest_cpu is allowed for this process, migrate the task to it.
2062 * This is accomplished by forcing the cpu_allowed mask to only
2063 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2064 * the cpu_allowed mask is restored.
2065 */
2066 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2067 {
2068 struct migration_req req;
2069 unsigned long flags;
2070 struct rq *rq;
2071
2072 rq = task_rq_lock(p, &flags);
2073 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2074 || unlikely(cpu_is_offline(dest_cpu)))
2075 goto out;
2076
2077 /* force the process onto the specified CPU */
2078 if (migrate_task(p, dest_cpu, &req)) {
2079 /* Need to wait for migration thread (might exit: take ref). */
2080 struct task_struct *mt = rq->migration_thread;
2081
2082 get_task_struct(mt);
2083 task_rq_unlock(rq, &flags);
2084 wake_up_process(mt);
2085 put_task_struct(mt);
2086 wait_for_completion(&req.done);
2087
2088 return;
2089 }
2090 out:
2091 task_rq_unlock(rq, &flags);
2092 }
2093
2094 /*
2095 * sched_exec - execve() is a valuable balancing opportunity, because at
2096 * this point the task has the smallest effective memory and cache footprint.
2097 */
2098 void sched_exec(void)
2099 {
2100 int new_cpu, this_cpu = get_cpu();
2101 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2102 put_cpu();
2103 if (new_cpu != this_cpu)
2104 sched_migrate_task(current, new_cpu);
2105 }
2106
2107 /*
2108 * pull_task - move a task from a remote runqueue to the local runqueue.
2109 * Both runqueues must be locked.
2110 */
2111 static void pull_task(struct rq *src_rq, struct task_struct *p,
2112 struct rq *this_rq, int this_cpu)
2113 {
2114 deactivate_task(src_rq, p, 0);
2115 set_task_cpu(p, this_cpu);
2116 activate_task(this_rq, p, 0);
2117 /*
2118 * Note that idle threads have a prio of MAX_PRIO, for this test
2119 * to be always true for them.
2120 */
2121 check_preempt_curr(this_rq, p);
2122 }
2123
2124 /*
2125 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2126 */
2127 static
2128 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2129 struct sched_domain *sd, enum cpu_idle_type idle,
2130 int *all_pinned)
2131 {
2132 /*
2133 * We do not migrate tasks that are:
2134 * 1) running (obviously), or
2135 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2136 * 3) are cache-hot on their current CPU.
2137 */
2138 if (!cpu_isset(this_cpu, p->cpus_allowed))
2139 return 0;
2140 *all_pinned = 0;
2141
2142 if (task_running(rq, p))
2143 return 0;
2144
2145 /*
2146 * Aggressive migration if too many balance attempts have failed:
2147 */
2148 if (sd->nr_balance_failed > sd->cache_nice_tries)
2149 return 1;
2150
2151 return 1;
2152 }
2153
2154 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2155 unsigned long max_nr_move, unsigned long max_load_move,
2156 struct sched_domain *sd, enum cpu_idle_type idle,
2157 int *all_pinned, unsigned long *load_moved,
2158 int this_best_prio, int best_prio, int best_prio_seen,
2159 struct rq_iterator *iterator)
2160 {
2161 int pulled = 0, pinned = 0, skip_for_load;
2162 struct task_struct *p;
2163 long rem_load_move = max_load_move;
2164
2165 if (max_nr_move == 0 || max_load_move == 0)
2166 goto out;
2167
2168 pinned = 1;
2169
2170 /*
2171 * Start the load-balancing iterator:
2172 */
2173 p = iterator->start(iterator->arg);
2174 next:
2175 if (!p)
2176 goto out;
2177 /*
2178 * To help distribute high priority tasks accross CPUs we don't
2179 * skip a task if it will be the highest priority task (i.e. smallest
2180 * prio value) on its new queue regardless of its load weight
2181 */
2182 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2183 SCHED_LOAD_SCALE_FUZZ;
2184 if (skip_for_load && p->prio < this_best_prio)
2185 skip_for_load = !best_prio_seen && p->prio == best_prio;
2186 if (skip_for_load ||
2187 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2188
2189 best_prio_seen |= p->prio == best_prio;
2190 p = iterator->next(iterator->arg);
2191 goto next;
2192 }
2193
2194 pull_task(busiest, p, this_rq, this_cpu);
2195 pulled++;
2196 rem_load_move -= p->se.load.weight;
2197
2198 /*
2199 * We only want to steal up to the prescribed number of tasks
2200 * and the prescribed amount of weighted load.
2201 */
2202 if (pulled < max_nr_move && rem_load_move > 0) {
2203 if (p->prio < this_best_prio)
2204 this_best_prio = p->prio;
2205 p = iterator->next(iterator->arg);
2206 goto next;
2207 }
2208 out:
2209 /*
2210 * Right now, this is the only place pull_task() is called,
2211 * so we can safely collect pull_task() stats here rather than
2212 * inside pull_task().
2213 */
2214 schedstat_add(sd, lb_gained[idle], pulled);
2215
2216 if (all_pinned)
2217 *all_pinned = pinned;
2218 *load_moved = max_load_move - rem_load_move;
2219 return pulled;
2220 }
2221
2222 /*
2223 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2224 * load from busiest to this_rq, as part of a balancing operation within
2225 * "domain". Returns the number of tasks moved.
2226 *
2227 * Called with both runqueues locked.
2228 */
2229 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2230 unsigned long max_nr_move, unsigned long max_load_move,
2231 struct sched_domain *sd, enum cpu_idle_type idle,
2232 int *all_pinned)
2233 {
2234 struct sched_class *class = sched_class_highest;
2235 unsigned long load_moved, total_nr_moved = 0, nr_moved;
2236 long rem_load_move = max_load_move;
2237
2238 do {
2239 nr_moved = class->load_balance(this_rq, this_cpu, busiest,
2240 max_nr_move, (unsigned long)rem_load_move,
2241 sd, idle, all_pinned, &load_moved);
2242 total_nr_moved += nr_moved;
2243 max_nr_move -= nr_moved;
2244 rem_load_move -= load_moved;
2245 class = class->next;
2246 } while (class && max_nr_move && rem_load_move > 0);
2247
2248 return total_nr_moved;
2249 }
2250
2251 /*
2252 * find_busiest_group finds and returns the busiest CPU group within the
2253 * domain. It calculates and returns the amount of weighted load which
2254 * should be moved to restore balance via the imbalance parameter.
2255 */
2256 static struct sched_group *
2257 find_busiest_group(struct sched_domain *sd, int this_cpu,
2258 unsigned long *imbalance, enum cpu_idle_type idle,
2259 int *sd_idle, cpumask_t *cpus, int *balance)
2260 {
2261 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2262 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2263 unsigned long max_pull;
2264 unsigned long busiest_load_per_task, busiest_nr_running;
2265 unsigned long this_load_per_task, this_nr_running;
2266 int load_idx;
2267 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2268 int power_savings_balance = 1;
2269 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2270 unsigned long min_nr_running = ULONG_MAX;
2271 struct sched_group *group_min = NULL, *group_leader = NULL;
2272 #endif
2273
2274 max_load = this_load = total_load = total_pwr = 0;
2275 busiest_load_per_task = busiest_nr_running = 0;
2276 this_load_per_task = this_nr_running = 0;
2277 if (idle == CPU_NOT_IDLE)
2278 load_idx = sd->busy_idx;
2279 else if (idle == CPU_NEWLY_IDLE)
2280 load_idx = sd->newidle_idx;
2281 else
2282 load_idx = sd->idle_idx;
2283
2284 do {
2285 unsigned long load, group_capacity;
2286 int local_group;
2287 int i;
2288 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2289 unsigned long sum_nr_running, sum_weighted_load;
2290
2291 local_group = cpu_isset(this_cpu, group->cpumask);
2292
2293 if (local_group)
2294 balance_cpu = first_cpu(group->cpumask);
2295
2296 /* Tally up the load of all CPUs in the group */
2297 sum_weighted_load = sum_nr_running = avg_load = 0;
2298
2299 for_each_cpu_mask(i, group->cpumask) {
2300 struct rq *rq;
2301
2302 if (!cpu_isset(i, *cpus))
2303 continue;
2304
2305 rq = cpu_rq(i);
2306
2307 if (*sd_idle && rq->nr_running)
2308 *sd_idle = 0;
2309
2310 /* Bias balancing toward cpus of our domain */
2311 if (local_group) {
2312 if (idle_cpu(i) && !first_idle_cpu) {
2313 first_idle_cpu = 1;
2314 balance_cpu = i;
2315 }
2316
2317 load = target_load(i, load_idx);
2318 } else
2319 load = source_load(i, load_idx);
2320
2321 avg_load += load;
2322 sum_nr_running += rq->nr_running;
2323 sum_weighted_load += weighted_cpuload(i);
2324 }
2325
2326 /*
2327 * First idle cpu or the first cpu(busiest) in this sched group
2328 * is eligible for doing load balancing at this and above
2329 * domains. In the newly idle case, we will allow all the cpu's
2330 * to do the newly idle load balance.
2331 */
2332 if (idle != CPU_NEWLY_IDLE && local_group &&
2333 balance_cpu != this_cpu && balance) {
2334 *balance = 0;
2335 goto ret;
2336 }
2337
2338 total_load += avg_load;
2339 total_pwr += group->__cpu_power;
2340
2341 /* Adjust by relative CPU power of the group */
2342 avg_load = sg_div_cpu_power(group,
2343 avg_load * SCHED_LOAD_SCALE);
2344
2345 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2346
2347 if (local_group) {
2348 this_load = avg_load;
2349 this = group;
2350 this_nr_running = sum_nr_running;
2351 this_load_per_task = sum_weighted_load;
2352 } else if (avg_load > max_load &&
2353 sum_nr_running > group_capacity) {
2354 max_load = avg_load;
2355 busiest = group;
2356 busiest_nr_running = sum_nr_running;
2357 busiest_load_per_task = sum_weighted_load;
2358 }
2359
2360 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2361 /*
2362 * Busy processors will not participate in power savings
2363 * balance.
2364 */
2365 if (idle == CPU_NOT_IDLE ||
2366 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2367 goto group_next;
2368
2369 /*
2370 * If the local group is idle or completely loaded
2371 * no need to do power savings balance at this domain
2372 */
2373 if (local_group && (this_nr_running >= group_capacity ||
2374 !this_nr_running))
2375 power_savings_balance = 0;
2376
2377 /*
2378 * If a group is already running at full capacity or idle,
2379 * don't include that group in power savings calculations
2380 */
2381 if (!power_savings_balance || sum_nr_running >= group_capacity
2382 || !sum_nr_running)
2383 goto group_next;
2384
2385 /*
2386 * Calculate the group which has the least non-idle load.
2387 * This is the group from where we need to pick up the load
2388 * for saving power
2389 */
2390 if ((sum_nr_running < min_nr_running) ||
2391 (sum_nr_running == min_nr_running &&
2392 first_cpu(group->cpumask) <
2393 first_cpu(group_min->cpumask))) {
2394 group_min = group;
2395 min_nr_running = sum_nr_running;
2396 min_load_per_task = sum_weighted_load /
2397 sum_nr_running;
2398 }
2399
2400 /*
2401 * Calculate the group which is almost near its
2402 * capacity but still has some space to pick up some load
2403 * from other group and save more power
2404 */
2405 if (sum_nr_running <= group_capacity - 1) {
2406 if (sum_nr_running > leader_nr_running ||
2407 (sum_nr_running == leader_nr_running &&
2408 first_cpu(group->cpumask) >
2409 first_cpu(group_leader->cpumask))) {
2410 group_leader = group;
2411 leader_nr_running = sum_nr_running;
2412 }
2413 }
2414 group_next:
2415 #endif
2416 group = group->next;
2417 } while (group != sd->groups);
2418
2419 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2420 goto out_balanced;
2421
2422 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2423
2424 if (this_load >= avg_load ||
2425 100*max_load <= sd->imbalance_pct*this_load)
2426 goto out_balanced;
2427
2428 busiest_load_per_task /= busiest_nr_running;
2429 /*
2430 * We're trying to get all the cpus to the average_load, so we don't
2431 * want to push ourselves above the average load, nor do we wish to
2432 * reduce the max loaded cpu below the average load, as either of these
2433 * actions would just result in more rebalancing later, and ping-pong
2434 * tasks around. Thus we look for the minimum possible imbalance.
2435 * Negative imbalances (*we* are more loaded than anyone else) will
2436 * be counted as no imbalance for these purposes -- we can't fix that
2437 * by pulling tasks to us. Be careful of negative numbers as they'll
2438 * appear as very large values with unsigned longs.
2439 */
2440 if (max_load <= busiest_load_per_task)
2441 goto out_balanced;
2442
2443 /*
2444 * In the presence of smp nice balancing, certain scenarios can have
2445 * max load less than avg load(as we skip the groups at or below
2446 * its cpu_power, while calculating max_load..)
2447 */
2448 if (max_load < avg_load) {
2449 *imbalance = 0;
2450 goto small_imbalance;
2451 }
2452
2453 /* Don't want to pull so many tasks that a group would go idle */
2454 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2455
2456 /* How much load to actually move to equalise the imbalance */
2457 *imbalance = min(max_pull * busiest->__cpu_power,
2458 (avg_load - this_load) * this->__cpu_power)
2459 / SCHED_LOAD_SCALE;
2460
2461 /*
2462 * if *imbalance is less than the average load per runnable task
2463 * there is no gaurantee that any tasks will be moved so we'll have
2464 * a think about bumping its value to force at least one task to be
2465 * moved
2466 */
2467 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2468 unsigned long tmp, pwr_now, pwr_move;
2469 unsigned int imbn;
2470
2471 small_imbalance:
2472 pwr_move = pwr_now = 0;
2473 imbn = 2;
2474 if (this_nr_running) {
2475 this_load_per_task /= this_nr_running;
2476 if (busiest_load_per_task > this_load_per_task)
2477 imbn = 1;
2478 } else
2479 this_load_per_task = SCHED_LOAD_SCALE;
2480
2481 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2482 busiest_load_per_task * imbn) {
2483 *imbalance = busiest_load_per_task;
2484 return busiest;
2485 }
2486
2487 /*
2488 * OK, we don't have enough imbalance to justify moving tasks,
2489 * however we may be able to increase total CPU power used by
2490 * moving them.
2491 */
2492
2493 pwr_now += busiest->__cpu_power *
2494 min(busiest_load_per_task, max_load);
2495 pwr_now += this->__cpu_power *
2496 min(this_load_per_task, this_load);
2497 pwr_now /= SCHED_LOAD_SCALE;
2498
2499 /* Amount of load we'd subtract */
2500 tmp = sg_div_cpu_power(busiest,
2501 busiest_load_per_task * SCHED_LOAD_SCALE);
2502 if (max_load > tmp)
2503 pwr_move += busiest->__cpu_power *
2504 min(busiest_load_per_task, max_load - tmp);
2505
2506 /* Amount of load we'd add */
2507 if (max_load * busiest->__cpu_power <
2508 busiest_load_per_task * SCHED_LOAD_SCALE)
2509 tmp = sg_div_cpu_power(this,
2510 max_load * busiest->__cpu_power);
2511 else
2512 tmp = sg_div_cpu_power(this,
2513 busiest_load_per_task * SCHED_LOAD_SCALE);
2514 pwr_move += this->__cpu_power *
2515 min(this_load_per_task, this_load + tmp);
2516 pwr_move /= SCHED_LOAD_SCALE;
2517
2518 /* Move if we gain throughput */
2519 if (pwr_move <= pwr_now)
2520 goto out_balanced;
2521
2522 *imbalance = busiest_load_per_task;
2523 }
2524
2525 return busiest;
2526
2527 out_balanced:
2528 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2529 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2530 goto ret;
2531
2532 if (this == group_leader && group_leader != group_min) {
2533 *imbalance = min_load_per_task;
2534 return group_min;
2535 }
2536 #endif
2537 ret:
2538 *imbalance = 0;
2539 return NULL;
2540 }
2541
2542 /*
2543 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2544 */
2545 static struct rq *
2546 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2547 unsigned long imbalance, cpumask_t *cpus)
2548 {
2549 struct rq *busiest = NULL, *rq;
2550 unsigned long max_load = 0;
2551 int i;
2552
2553 for_each_cpu_mask(i, group->cpumask) {
2554 unsigned long wl;
2555
2556 if (!cpu_isset(i, *cpus))
2557 continue;
2558
2559 rq = cpu_rq(i);
2560 wl = weighted_cpuload(i);
2561
2562 if (rq->nr_running == 1 && wl > imbalance)
2563 continue;
2564
2565 if (wl > max_load) {
2566 max_load = wl;
2567 busiest = rq;
2568 }
2569 }
2570
2571 return busiest;
2572 }
2573
2574 /*
2575 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2576 * so long as it is large enough.
2577 */
2578 #define MAX_PINNED_INTERVAL 512
2579
2580 static inline unsigned long minus_1_or_zero(unsigned long n)
2581 {
2582 return n > 0 ? n - 1 : 0;
2583 }
2584
2585 /*
2586 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2587 * tasks if there is an imbalance.
2588 */
2589 static int load_balance(int this_cpu, struct rq *this_rq,
2590 struct sched_domain *sd, enum cpu_idle_type idle,
2591 int *balance)
2592 {
2593 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2594 struct sched_group *group;
2595 unsigned long imbalance;
2596 struct rq *busiest;
2597 cpumask_t cpus = CPU_MASK_ALL;
2598 unsigned long flags;
2599
2600 /*
2601 * When power savings policy is enabled for the parent domain, idle
2602 * sibling can pick up load irrespective of busy siblings. In this case,
2603 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2604 * portraying it as CPU_NOT_IDLE.
2605 */
2606 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2607 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2608 sd_idle = 1;
2609
2610 schedstat_inc(sd, lb_cnt[idle]);
2611
2612 redo:
2613 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2614 &cpus, balance);
2615
2616 if (*balance == 0)
2617 goto out_balanced;
2618
2619 if (!group) {
2620 schedstat_inc(sd, lb_nobusyg[idle]);
2621 goto out_balanced;
2622 }
2623
2624 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2625 if (!busiest) {
2626 schedstat_inc(sd, lb_nobusyq[idle]);
2627 goto out_balanced;
2628 }
2629
2630 BUG_ON(busiest == this_rq);
2631
2632 schedstat_add(sd, lb_imbalance[idle], imbalance);
2633
2634 nr_moved = 0;
2635 if (busiest->nr_running > 1) {
2636 /*
2637 * Attempt to move tasks. If find_busiest_group has found
2638 * an imbalance but busiest->nr_running <= 1, the group is
2639 * still unbalanced. nr_moved simply stays zero, so it is
2640 * correctly treated as an imbalance.
2641 */
2642 local_irq_save(flags);
2643 double_rq_lock(this_rq, busiest);
2644 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2645 minus_1_or_zero(busiest->nr_running),
2646 imbalance, sd, idle, &all_pinned);
2647 double_rq_unlock(this_rq, busiest);
2648 local_irq_restore(flags);
2649
2650 /*
2651 * some other cpu did the load balance for us.
2652 */
2653 if (nr_moved && this_cpu != smp_processor_id())
2654 resched_cpu(this_cpu);
2655
2656 /* All tasks on this runqueue were pinned by CPU affinity */
2657 if (unlikely(all_pinned)) {
2658 cpu_clear(cpu_of(busiest), cpus);
2659 if (!cpus_empty(cpus))
2660 goto redo;
2661 goto out_balanced;
2662 }
2663 }
2664
2665 if (!nr_moved) {
2666 schedstat_inc(sd, lb_failed[idle]);
2667 sd->nr_balance_failed++;
2668
2669 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2670
2671 spin_lock_irqsave(&busiest->lock, flags);
2672
2673 /* don't kick the migration_thread, if the curr
2674 * task on busiest cpu can't be moved to this_cpu
2675 */
2676 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2677 spin_unlock_irqrestore(&busiest->lock, flags);
2678 all_pinned = 1;
2679 goto out_one_pinned;
2680 }
2681
2682 if (!busiest->active_balance) {
2683 busiest->active_balance = 1;
2684 busiest->push_cpu = this_cpu;
2685 active_balance = 1;
2686 }
2687 spin_unlock_irqrestore(&busiest->lock, flags);
2688 if (active_balance)
2689 wake_up_process(busiest->migration_thread);
2690
2691 /*
2692 * We've kicked active balancing, reset the failure
2693 * counter.
2694 */
2695 sd->nr_balance_failed = sd->cache_nice_tries+1;
2696 }
2697 } else
2698 sd->nr_balance_failed = 0;
2699
2700 if (likely(!active_balance)) {
2701 /* We were unbalanced, so reset the balancing interval */
2702 sd->balance_interval = sd->min_interval;
2703 } else {
2704 /*
2705 * If we've begun active balancing, start to back off. This
2706 * case may not be covered by the all_pinned logic if there
2707 * is only 1 task on the busy runqueue (because we don't call
2708 * move_tasks).
2709 */
2710 if (sd->balance_interval < sd->max_interval)
2711 sd->balance_interval *= 2;
2712 }
2713
2714 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2715 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2716 return -1;
2717 return nr_moved;
2718
2719 out_balanced:
2720 schedstat_inc(sd, lb_balanced[idle]);
2721
2722 sd->nr_balance_failed = 0;
2723
2724 out_one_pinned:
2725 /* tune up the balancing interval */
2726 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2727 (sd->balance_interval < sd->max_interval))
2728 sd->balance_interval *= 2;
2729
2730 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2731 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2732 return -1;
2733 return 0;
2734 }
2735
2736 /*
2737 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2738 * tasks if there is an imbalance.
2739 *
2740 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2741 * this_rq is locked.
2742 */
2743 static int
2744 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2745 {
2746 struct sched_group *group;
2747 struct rq *busiest = NULL;
2748 unsigned long imbalance;
2749 int nr_moved = 0;
2750 int sd_idle = 0;
2751 int all_pinned = 0;
2752 cpumask_t cpus = CPU_MASK_ALL;
2753
2754 /*
2755 * When power savings policy is enabled for the parent domain, idle
2756 * sibling can pick up load irrespective of busy siblings. In this case,
2757 * let the state of idle sibling percolate up as IDLE, instead of
2758 * portraying it as CPU_NOT_IDLE.
2759 */
2760 if (sd->flags & SD_SHARE_CPUPOWER &&
2761 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2762 sd_idle = 1;
2763
2764 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2765 redo:
2766 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2767 &sd_idle, &cpus, NULL);
2768 if (!group) {
2769 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2770 goto out_balanced;
2771 }
2772
2773 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2774 &cpus);
2775 if (!busiest) {
2776 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2777 goto out_balanced;
2778 }
2779
2780 BUG_ON(busiest == this_rq);
2781
2782 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2783
2784 nr_moved = 0;
2785 if (busiest->nr_running > 1) {
2786 /* Attempt to move tasks */
2787 double_lock_balance(this_rq, busiest);
2788 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2789 minus_1_or_zero(busiest->nr_running),
2790 imbalance, sd, CPU_NEWLY_IDLE,
2791 &all_pinned);
2792 spin_unlock(&busiest->lock);
2793
2794 if (unlikely(all_pinned)) {
2795 cpu_clear(cpu_of(busiest), cpus);
2796 if (!cpus_empty(cpus))
2797 goto redo;
2798 }
2799 }
2800
2801 if (!nr_moved) {
2802 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2803 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2804 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2805 return -1;
2806 } else
2807 sd->nr_balance_failed = 0;
2808
2809 return nr_moved;
2810
2811 out_balanced:
2812 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2813 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2814 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2815 return -1;
2816 sd->nr_balance_failed = 0;
2817
2818 return 0;
2819 }
2820
2821 /*
2822 * idle_balance is called by schedule() if this_cpu is about to become
2823 * idle. Attempts to pull tasks from other CPUs.
2824 */
2825 static void idle_balance(int this_cpu, struct rq *this_rq)
2826 {
2827 struct sched_domain *sd;
2828 int pulled_task = -1;
2829 unsigned long next_balance = jiffies + HZ;
2830
2831 for_each_domain(this_cpu, sd) {
2832 unsigned long interval;
2833
2834 if (!(sd->flags & SD_LOAD_BALANCE))
2835 continue;
2836
2837 if (sd->flags & SD_BALANCE_NEWIDLE)
2838 /* If we've pulled tasks over stop searching: */
2839 pulled_task = load_balance_newidle(this_cpu,
2840 this_rq, sd);
2841
2842 interval = msecs_to_jiffies(sd->balance_interval);
2843 if (time_after(next_balance, sd->last_balance + interval))
2844 next_balance = sd->last_balance + interval;
2845 if (pulled_task)
2846 break;
2847 }
2848 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2849 /*
2850 * We are going idle. next_balance may be set based on
2851 * a busy processor. So reset next_balance.
2852 */
2853 this_rq->next_balance = next_balance;
2854 }
2855 }
2856
2857 /*
2858 * active_load_balance is run by migration threads. It pushes running tasks
2859 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2860 * running on each physical CPU where possible, and avoids physical /
2861 * logical imbalances.
2862 *
2863 * Called with busiest_rq locked.
2864 */
2865 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2866 {
2867 int target_cpu = busiest_rq->push_cpu;
2868 struct sched_domain *sd;
2869 struct rq *target_rq;
2870
2871 /* Is there any task to move? */
2872 if (busiest_rq->nr_running <= 1)
2873 return;
2874
2875 target_rq = cpu_rq(target_cpu);
2876
2877 /*
2878 * This condition is "impossible", if it occurs
2879 * we need to fix it. Originally reported by
2880 * Bjorn Helgaas on a 128-cpu setup.
2881 */
2882 BUG_ON(busiest_rq == target_rq);
2883
2884 /* move a task from busiest_rq to target_rq */
2885 double_lock_balance(busiest_rq, target_rq);
2886
2887 /* Search for an sd spanning us and the target CPU. */
2888 for_each_domain(target_cpu, sd) {
2889 if ((sd->flags & SD_LOAD_BALANCE) &&
2890 cpu_isset(busiest_cpu, sd->span))
2891 break;
2892 }
2893
2894 if (likely(sd)) {
2895 schedstat_inc(sd, alb_cnt);
2896
2897 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2898 ULONG_MAX, sd, CPU_IDLE, NULL))
2899 schedstat_inc(sd, alb_pushed);
2900 else
2901 schedstat_inc(sd, alb_failed);
2902 }
2903 spin_unlock(&target_rq->lock);
2904 }
2905
2906 #ifdef CONFIG_NO_HZ
2907 static struct {
2908 atomic_t load_balancer;
2909 cpumask_t cpu_mask;
2910 } nohz ____cacheline_aligned = {
2911 .load_balancer = ATOMIC_INIT(-1),
2912 .cpu_mask = CPU_MASK_NONE,
2913 };
2914
2915 /*
2916 * This routine will try to nominate the ilb (idle load balancing)
2917 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2918 * load balancing on behalf of all those cpus. If all the cpus in the system
2919 * go into this tickless mode, then there will be no ilb owner (as there is
2920 * no need for one) and all the cpus will sleep till the next wakeup event
2921 * arrives...
2922 *
2923 * For the ilb owner, tick is not stopped. And this tick will be used
2924 * for idle load balancing. ilb owner will still be part of
2925 * nohz.cpu_mask..
2926 *
2927 * While stopping the tick, this cpu will become the ilb owner if there
2928 * is no other owner. And will be the owner till that cpu becomes busy
2929 * or if all cpus in the system stop their ticks at which point
2930 * there is no need for ilb owner.
2931 *
2932 * When the ilb owner becomes busy, it nominates another owner, during the
2933 * next busy scheduler_tick()
2934 */
2935 int select_nohz_load_balancer(int stop_tick)
2936 {
2937 int cpu = smp_processor_id();
2938
2939 if (stop_tick) {
2940 cpu_set(cpu, nohz.cpu_mask);
2941 cpu_rq(cpu)->in_nohz_recently = 1;
2942
2943 /*
2944 * If we are going offline and still the leader, give up!
2945 */
2946 if (cpu_is_offline(cpu) &&
2947 atomic_read(&nohz.load_balancer) == cpu) {
2948 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2949 BUG();
2950 return 0;
2951 }
2952
2953 /* time for ilb owner also to sleep */
2954 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2955 if (atomic_read(&nohz.load_balancer) == cpu)
2956 atomic_set(&nohz.load_balancer, -1);
2957 return 0;
2958 }
2959
2960 if (atomic_read(&nohz.load_balancer) == -1) {
2961 /* make me the ilb owner */
2962 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2963 return 1;
2964 } else if (atomic_read(&nohz.load_balancer) == cpu)
2965 return 1;
2966 } else {
2967 if (!cpu_isset(cpu, nohz.cpu_mask))
2968 return 0;
2969
2970 cpu_clear(cpu, nohz.cpu_mask);
2971
2972 if (atomic_read(&nohz.load_balancer) == cpu)
2973 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2974 BUG();
2975 }
2976 return 0;
2977 }
2978 #endif
2979
2980 static DEFINE_SPINLOCK(balancing);
2981
2982 /*
2983 * It checks each scheduling domain to see if it is due to be balanced,
2984 * and initiates a balancing operation if so.
2985 *
2986 * Balancing parameters are set up in arch_init_sched_domains.
2987 */
2988 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
2989 {
2990 int balance = 1;
2991 struct rq *rq = cpu_rq(cpu);
2992 unsigned long interval;
2993 struct sched_domain *sd;
2994 /* Earliest time when we have to do rebalance again */
2995 unsigned long next_balance = jiffies + 60*HZ;
2996
2997 for_each_domain(cpu, sd) {
2998 if (!(sd->flags & SD_LOAD_BALANCE))
2999 continue;
3000
3001 interval = sd->balance_interval;
3002 if (idle != CPU_IDLE)
3003 interval *= sd->busy_factor;
3004
3005 /* scale ms to jiffies */
3006 interval = msecs_to_jiffies(interval);
3007 if (unlikely(!interval))
3008 interval = 1;
3009 if (interval > HZ*NR_CPUS/10)
3010 interval = HZ*NR_CPUS/10;
3011
3012
3013 if (sd->flags & SD_SERIALIZE) {
3014 if (!spin_trylock(&balancing))
3015 goto out;
3016 }
3017
3018 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3019 if (load_balance(cpu, rq, sd, idle, &balance)) {
3020 /*
3021 * We've pulled tasks over so either we're no
3022 * longer idle, or one of our SMT siblings is
3023 * not idle.
3024 */
3025 idle = CPU_NOT_IDLE;
3026 }
3027 sd->last_balance = jiffies;
3028 }
3029 if (sd->flags & SD_SERIALIZE)
3030 spin_unlock(&balancing);
3031 out:
3032 if (time_after(next_balance, sd->last_balance + interval))
3033 next_balance = sd->last_balance + interval;
3034
3035 /*
3036 * Stop the load balance at this level. There is another
3037 * CPU in our sched group which is doing load balancing more
3038 * actively.
3039 */
3040 if (!balance)
3041 break;
3042 }
3043 rq->next_balance = next_balance;
3044 }
3045
3046 /*
3047 * run_rebalance_domains is triggered when needed from the scheduler tick.
3048 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3049 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3050 */
3051 static void run_rebalance_domains(struct softirq_action *h)
3052 {
3053 int this_cpu = smp_processor_id();
3054 struct rq *this_rq = cpu_rq(this_cpu);
3055 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3056 CPU_IDLE : CPU_NOT_IDLE;
3057
3058 rebalance_domains(this_cpu, idle);
3059
3060 #ifdef CONFIG_NO_HZ
3061 /*
3062 * If this cpu is the owner for idle load balancing, then do the
3063 * balancing on behalf of the other idle cpus whose ticks are
3064 * stopped.
3065 */
3066 if (this_rq->idle_at_tick &&
3067 atomic_read(&nohz.load_balancer) == this_cpu) {
3068 cpumask_t cpus = nohz.cpu_mask;
3069 struct rq *rq;
3070 int balance_cpu;
3071
3072 cpu_clear(this_cpu, cpus);
3073 for_each_cpu_mask(balance_cpu, cpus) {
3074 /*
3075 * If this cpu gets work to do, stop the load balancing
3076 * work being done for other cpus. Next load
3077 * balancing owner will pick it up.
3078 */
3079 if (need_resched())
3080 break;
3081
3082 rebalance_domains(balance_cpu, SCHED_IDLE);
3083
3084 rq = cpu_rq(balance_cpu);
3085 if (time_after(this_rq->next_balance, rq->next_balance))
3086 this_rq->next_balance = rq->next_balance;
3087 }
3088 }
3089 #endif
3090 }
3091
3092 /*
3093 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3094 *
3095 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3096 * idle load balancing owner or decide to stop the periodic load balancing,
3097 * if the whole system is idle.
3098 */
3099 static inline void trigger_load_balance(struct rq *rq, int cpu)
3100 {
3101 #ifdef CONFIG_NO_HZ
3102 /*
3103 * If we were in the nohz mode recently and busy at the current
3104 * scheduler tick, then check if we need to nominate new idle
3105 * load balancer.
3106 */
3107 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3108 rq->in_nohz_recently = 0;
3109
3110 if (atomic_read(&nohz.load_balancer) == cpu) {
3111 cpu_clear(cpu, nohz.cpu_mask);
3112 atomic_set(&nohz.load_balancer, -1);
3113 }
3114
3115 if (atomic_read(&nohz.load_balancer) == -1) {
3116 /*
3117 * simple selection for now: Nominate the
3118 * first cpu in the nohz list to be the next
3119 * ilb owner.
3120 *
3121 * TBD: Traverse the sched domains and nominate
3122 * the nearest cpu in the nohz.cpu_mask.
3123 */
3124 int ilb = first_cpu(nohz.cpu_mask);
3125
3126 if (ilb != NR_CPUS)
3127 resched_cpu(ilb);
3128 }
3129 }
3130
3131 /*
3132 * If this cpu is idle and doing idle load balancing for all the
3133 * cpus with ticks stopped, is it time for that to stop?
3134 */
3135 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3136 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3137 resched_cpu(cpu);
3138 return;
3139 }
3140
3141 /*
3142 * If this cpu is idle and the idle load balancing is done by
3143 * someone else, then no need raise the SCHED_SOFTIRQ
3144 */
3145 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3146 cpu_isset(cpu, nohz.cpu_mask))
3147 return;
3148 #endif
3149 if (time_after_eq(jiffies, rq->next_balance))
3150 raise_softirq(SCHED_SOFTIRQ);
3151 }
3152
3153 #else /* CONFIG_SMP */
3154
3155 /*
3156 * on UP we do not need to balance between CPUs:
3157 */
3158 static inline void idle_balance(int cpu, struct rq *rq)
3159 {
3160 }
3161
3162 /* Avoid "used but not defined" warning on UP */
3163 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3164 unsigned long max_nr_move, unsigned long max_load_move,
3165 struct sched_domain *sd, enum cpu_idle_type idle,
3166 int *all_pinned, unsigned long *load_moved,
3167 int this_best_prio, int best_prio, int best_prio_seen,
3168 struct rq_iterator *iterator)
3169 {
3170 *load_moved = 0;
3171
3172 return 0;
3173 }
3174
3175 #endif
3176
3177 DEFINE_PER_CPU(struct kernel_stat, kstat);
3178
3179 EXPORT_PER_CPU_SYMBOL(kstat);
3180
3181 /*
3182 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3183 * that have not yet been banked in case the task is currently running.
3184 */
3185 unsigned long long task_sched_runtime(struct task_struct *p)
3186 {
3187 unsigned long flags;
3188 u64 ns, delta_exec;
3189 struct rq *rq;
3190
3191 rq = task_rq_lock(p, &flags);
3192 ns = p->se.sum_exec_runtime;
3193 if (rq->curr == p) {
3194 delta_exec = rq_clock(rq) - p->se.exec_start;
3195 if ((s64)delta_exec > 0)
3196 ns += delta_exec;
3197 }
3198 task_rq_unlock(rq, &flags);
3199
3200 return ns;
3201 }
3202
3203 /*
3204 * Account user cpu time to a process.
3205 * @p: the process that the cpu time gets accounted to
3206 * @hardirq_offset: the offset to subtract from hardirq_count()
3207 * @cputime: the cpu time spent in user space since the last update
3208 */
3209 void account_user_time(struct task_struct *p, cputime_t cputime)
3210 {
3211 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3212 cputime64_t tmp;
3213
3214 p->utime = cputime_add(p->utime, cputime);
3215
3216 /* Add user time to cpustat. */
3217 tmp = cputime_to_cputime64(cputime);
3218 if (TASK_NICE(p) > 0)
3219 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3220 else
3221 cpustat->user = cputime64_add(cpustat->user, tmp);
3222 }
3223
3224 /*
3225 * Account system cpu time to a process.
3226 * @p: the process that the cpu time gets accounted to
3227 * @hardirq_offset: the offset to subtract from hardirq_count()
3228 * @cputime: the cpu time spent in kernel space since the last update
3229 */
3230 void account_system_time(struct task_struct *p, int hardirq_offset,
3231 cputime_t cputime)
3232 {
3233 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3234 struct rq *rq = this_rq();
3235 cputime64_t tmp;
3236
3237 p->stime = cputime_add(p->stime, cputime);
3238
3239 /* Add system time to cpustat. */
3240 tmp = cputime_to_cputime64(cputime);
3241 if (hardirq_count() - hardirq_offset)
3242 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3243 else if (softirq_count())
3244 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3245 else if (p != rq->idle)
3246 cpustat->system = cputime64_add(cpustat->system, tmp);
3247 else if (atomic_read(&rq->nr_iowait) > 0)
3248 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3249 else
3250 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3251 /* Account for system time used */
3252 acct_update_integrals(p);
3253 }
3254
3255 /*
3256 * Account for involuntary wait time.
3257 * @p: the process from which the cpu time has been stolen
3258 * @steal: the cpu time spent in involuntary wait
3259 */
3260 void account_steal_time(struct task_struct *p, cputime_t steal)
3261 {
3262 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3263 cputime64_t tmp = cputime_to_cputime64(steal);
3264 struct rq *rq = this_rq();
3265
3266 if (p == rq->idle) {
3267 p->stime = cputime_add(p->stime, steal);
3268 if (atomic_read(&rq->nr_iowait) > 0)
3269 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3270 else
3271 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3272 } else
3273 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3274 }
3275
3276 /*
3277 * This function gets called by the timer code, with HZ frequency.
3278 * We call it with interrupts disabled.
3279 *
3280 * It also gets called by the fork code, when changing the parent's
3281 * timeslices.
3282 */
3283 void scheduler_tick(void)
3284 {
3285 int cpu = smp_processor_id();
3286 struct rq *rq = cpu_rq(cpu);
3287 struct task_struct *curr = rq->curr;
3288
3289 spin_lock(&rq->lock);
3290 if (curr != rq->idle) /* FIXME: needed? */
3291 curr->sched_class->task_tick(rq, curr);
3292 update_cpu_load(rq);
3293 spin_unlock(&rq->lock);
3294
3295 #ifdef CONFIG_SMP
3296 rq->idle_at_tick = idle_cpu(cpu);
3297 trigger_load_balance(rq, cpu);
3298 #endif
3299 }
3300
3301 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3302
3303 void fastcall add_preempt_count(int val)
3304 {
3305 /*
3306 * Underflow?
3307 */
3308 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3309 return;
3310 preempt_count() += val;
3311 /*
3312 * Spinlock count overflowing soon?
3313 */
3314 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3315 PREEMPT_MASK - 10);
3316 }
3317 EXPORT_SYMBOL(add_preempt_count);
3318
3319 void fastcall sub_preempt_count(int val)
3320 {
3321 /*
3322 * Underflow?
3323 */
3324 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3325 return;
3326 /*
3327 * Is the spinlock portion underflowing?
3328 */
3329 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3330 !(preempt_count() & PREEMPT_MASK)))
3331 return;
3332
3333 preempt_count() -= val;
3334 }
3335 EXPORT_SYMBOL(sub_preempt_count);
3336
3337 #endif
3338
3339 /*
3340 * Print scheduling while atomic bug:
3341 */
3342 static noinline void __schedule_bug(struct task_struct *prev)
3343 {
3344 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3345 prev->comm, preempt_count(), prev->pid);
3346 debug_show_held_locks(prev);
3347 if (irqs_disabled())
3348 print_irqtrace_events(prev);
3349 dump_stack();
3350 }
3351
3352 /*
3353 * Various schedule()-time debugging checks and statistics:
3354 */
3355 static inline void schedule_debug(struct task_struct *prev)
3356 {
3357 /*
3358 * Test if we are atomic. Since do_exit() needs to call into
3359 * schedule() atomically, we ignore that path for now.
3360 * Otherwise, whine if we are scheduling when we should not be.
3361 */
3362 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3363 __schedule_bug(prev);
3364
3365 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3366
3367 schedstat_inc(this_rq(), sched_cnt);
3368 }
3369
3370 /*
3371 * Pick up the highest-prio task:
3372 */
3373 static inline struct task_struct *
3374 pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3375 {
3376 struct sched_class *class;
3377 struct task_struct *p;
3378
3379 /*
3380 * Optimization: we know that if all tasks are in
3381 * the fair class we can call that function directly:
3382 */
3383 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3384 p = fair_sched_class.pick_next_task(rq, now);
3385 if (likely(p))
3386 return p;
3387 }
3388
3389 class = sched_class_highest;
3390 for ( ; ; ) {
3391 p = class->pick_next_task(rq, now);
3392 if (p)
3393 return p;
3394 /*
3395 * Will never be NULL as the idle class always
3396 * returns a non-NULL p:
3397 */
3398 class = class->next;
3399 }
3400 }
3401
3402 /*
3403 * schedule() is the main scheduler function.
3404 */
3405 asmlinkage void __sched schedule(void)
3406 {
3407 struct task_struct *prev, *next;
3408 long *switch_count;
3409 struct rq *rq;
3410 u64 now;
3411 int cpu;
3412
3413 need_resched:
3414 preempt_disable();
3415 cpu = smp_processor_id();
3416 rq = cpu_rq(cpu);
3417 rcu_qsctr_inc(cpu);
3418 prev = rq->curr;
3419 switch_count = &prev->nivcsw;
3420
3421 release_kernel_lock(prev);
3422 need_resched_nonpreemptible:
3423
3424 schedule_debug(prev);
3425
3426 spin_lock_irq(&rq->lock);
3427 clear_tsk_need_resched(prev);
3428
3429 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3430 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3431 unlikely(signal_pending(prev)))) {
3432 prev->state = TASK_RUNNING;
3433 } else {
3434 deactivate_task(rq, prev, 1);
3435 }
3436 switch_count = &prev->nvcsw;
3437 }
3438
3439 if (unlikely(!rq->nr_running))
3440 idle_balance(cpu, rq);
3441
3442 now = __rq_clock(rq);
3443 prev->sched_class->put_prev_task(rq, prev, now);
3444 next = pick_next_task(rq, prev, now);
3445
3446 sched_info_switch(prev, next);
3447
3448 if (likely(prev != next)) {
3449 rq->nr_switches++;
3450 rq->curr = next;
3451 ++*switch_count;
3452
3453 context_switch(rq, prev, next); /* unlocks the rq */
3454 } else
3455 spin_unlock_irq(&rq->lock);
3456
3457 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3458 cpu = smp_processor_id();
3459 rq = cpu_rq(cpu);
3460 goto need_resched_nonpreemptible;
3461 }
3462 preempt_enable_no_resched();
3463 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3464 goto need_resched;
3465 }
3466 EXPORT_SYMBOL(schedule);
3467
3468 #ifdef CONFIG_PREEMPT
3469 /*
3470 * this is the entry point to schedule() from in-kernel preemption
3471 * off of preempt_enable. Kernel preemptions off return from interrupt
3472 * occur there and call schedule directly.
3473 */
3474 asmlinkage void __sched preempt_schedule(void)
3475 {
3476 struct thread_info *ti = current_thread_info();
3477 #ifdef CONFIG_PREEMPT_BKL
3478 struct task_struct *task = current;
3479 int saved_lock_depth;
3480 #endif
3481 /*
3482 * If there is a non-zero preempt_count or interrupts are disabled,
3483 * we do not want to preempt the current task. Just return..
3484 */
3485 if (likely(ti->preempt_count || irqs_disabled()))
3486 return;
3487
3488 need_resched:
3489 add_preempt_count(PREEMPT_ACTIVE);
3490 /*
3491 * We keep the big kernel semaphore locked, but we
3492 * clear ->lock_depth so that schedule() doesnt
3493 * auto-release the semaphore:
3494 */
3495 #ifdef CONFIG_PREEMPT_BKL
3496 saved_lock_depth = task->lock_depth;
3497 task->lock_depth = -1;
3498 #endif
3499 schedule();
3500 #ifdef CONFIG_PREEMPT_BKL
3501 task->lock_depth = saved_lock_depth;
3502 #endif
3503 sub_preempt_count(PREEMPT_ACTIVE);
3504
3505 /* we could miss a preemption opportunity between schedule and now */
3506 barrier();
3507 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3508 goto need_resched;
3509 }
3510 EXPORT_SYMBOL(preempt_schedule);
3511
3512 /*
3513 * this is the entry point to schedule() from kernel preemption
3514 * off of irq context.
3515 * Note, that this is called and return with irqs disabled. This will
3516 * protect us against recursive calling from irq.
3517 */
3518 asmlinkage void __sched preempt_schedule_irq(void)
3519 {
3520 struct thread_info *ti = current_thread_info();
3521 #ifdef CONFIG_PREEMPT_BKL
3522 struct task_struct *task = current;
3523 int saved_lock_depth;
3524 #endif
3525 /* Catch callers which need to be fixed */
3526 BUG_ON(ti->preempt_count || !irqs_disabled());
3527
3528 need_resched:
3529 add_preempt_count(PREEMPT_ACTIVE);
3530 /*
3531 * We keep the big kernel semaphore locked, but we
3532 * clear ->lock_depth so that schedule() doesnt
3533 * auto-release the semaphore:
3534 */
3535 #ifdef CONFIG_PREEMPT_BKL
3536 saved_lock_depth = task->lock_depth;
3537 task->lock_depth = -1;
3538 #endif
3539 local_irq_enable();
3540 schedule();
3541 local_irq_disable();
3542 #ifdef CONFIG_PREEMPT_BKL
3543 task->lock_depth = saved_lock_depth;
3544 #endif
3545 sub_preempt_count(PREEMPT_ACTIVE);
3546
3547 /* we could miss a preemption opportunity between schedule and now */
3548 barrier();
3549 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3550 goto need_resched;
3551 }
3552
3553 #endif /* CONFIG_PREEMPT */
3554
3555 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3556 void *key)
3557 {
3558 return try_to_wake_up(curr->private, mode, sync);
3559 }
3560 EXPORT_SYMBOL(default_wake_function);
3561
3562 /*
3563 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3564 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3565 * number) then we wake all the non-exclusive tasks and one exclusive task.
3566 *
3567 * There are circumstances in which we can try to wake a task which has already
3568 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3569 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3570 */
3571 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3572 int nr_exclusive, int sync, void *key)
3573 {
3574 struct list_head *tmp, *next;
3575
3576 list_for_each_safe(tmp, next, &q->task_list) {
3577 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3578 unsigned flags = curr->flags;
3579
3580 if (curr->func(curr, mode, sync, key) &&
3581 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3582 break;
3583 }
3584 }
3585
3586 /**
3587 * __wake_up - wake up threads blocked on a waitqueue.
3588 * @q: the waitqueue
3589 * @mode: which threads
3590 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3591 * @key: is directly passed to the wakeup function
3592 */
3593 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3594 int nr_exclusive, void *key)
3595 {
3596 unsigned long flags;
3597
3598 spin_lock_irqsave(&q->lock, flags);
3599 __wake_up_common(q, mode, nr_exclusive, 0, key);
3600 spin_unlock_irqrestore(&q->lock, flags);
3601 }
3602 EXPORT_SYMBOL(__wake_up);
3603
3604 /*
3605 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3606 */
3607 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3608 {
3609 __wake_up_common(q, mode, 1, 0, NULL);
3610 }
3611
3612 /**
3613 * __wake_up_sync - wake up threads blocked on a waitqueue.
3614 * @q: the waitqueue
3615 * @mode: which threads
3616 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3617 *
3618 * The sync wakeup differs that the waker knows that it will schedule
3619 * away soon, so while the target thread will be woken up, it will not
3620 * be migrated to another CPU - ie. the two threads are 'synchronized'
3621 * with each other. This can prevent needless bouncing between CPUs.
3622 *
3623 * On UP it can prevent extra preemption.
3624 */
3625 void fastcall
3626 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3627 {
3628 unsigned long flags;
3629 int sync = 1;
3630
3631 if (unlikely(!q))
3632 return;
3633
3634 if (unlikely(!nr_exclusive))
3635 sync = 0;
3636
3637 spin_lock_irqsave(&q->lock, flags);
3638 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3639 spin_unlock_irqrestore(&q->lock, flags);
3640 }
3641 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3642
3643 void fastcall complete(struct completion *x)
3644 {
3645 unsigned long flags;
3646
3647 spin_lock_irqsave(&x->wait.lock, flags);
3648 x->done++;
3649 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3650 1, 0, NULL);
3651 spin_unlock_irqrestore(&x->wait.lock, flags);
3652 }
3653 EXPORT_SYMBOL(complete);
3654
3655 void fastcall complete_all(struct completion *x)
3656 {
3657 unsigned long flags;
3658
3659 spin_lock_irqsave(&x->wait.lock, flags);
3660 x->done += UINT_MAX/2;
3661 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3662 0, 0, NULL);
3663 spin_unlock_irqrestore(&x->wait.lock, flags);
3664 }
3665 EXPORT_SYMBOL(complete_all);
3666
3667 void fastcall __sched wait_for_completion(struct completion *x)
3668 {
3669 might_sleep();
3670
3671 spin_lock_irq(&x->wait.lock);
3672 if (!x->done) {
3673 DECLARE_WAITQUEUE(wait, current);
3674
3675 wait.flags |= WQ_FLAG_EXCLUSIVE;
3676 __add_wait_queue_tail(&x->wait, &wait);
3677 do {
3678 __set_current_state(TASK_UNINTERRUPTIBLE);
3679 spin_unlock_irq(&x->wait.lock);
3680 schedule();
3681 spin_lock_irq(&x->wait.lock);
3682 } while (!x->done);
3683 __remove_wait_queue(&x->wait, &wait);
3684 }
3685 x->done--;
3686 spin_unlock_irq(&x->wait.lock);
3687 }
3688 EXPORT_SYMBOL(wait_for_completion);
3689
3690 unsigned long fastcall __sched
3691 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3692 {
3693 might_sleep();
3694
3695 spin_lock_irq(&x->wait.lock);
3696 if (!x->done) {
3697 DECLARE_WAITQUEUE(wait, current);
3698
3699 wait.flags |= WQ_FLAG_EXCLUSIVE;
3700 __add_wait_queue_tail(&x->wait, &wait);
3701 do {
3702 __set_current_state(TASK_UNINTERRUPTIBLE);
3703 spin_unlock_irq(&x->wait.lock);
3704 timeout = schedule_timeout(timeout);
3705 spin_lock_irq(&x->wait.lock);
3706 if (!timeout) {
3707 __remove_wait_queue(&x->wait, &wait);
3708 goto out;
3709 }
3710 } while (!x->done);
3711 __remove_wait_queue(&x->wait, &wait);
3712 }
3713 x->done--;
3714 out:
3715 spin_unlock_irq(&x->wait.lock);
3716 return timeout;
3717 }
3718 EXPORT_SYMBOL(wait_for_completion_timeout);
3719
3720 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3721 {
3722 int ret = 0;
3723
3724 might_sleep();
3725
3726 spin_lock_irq(&x->wait.lock);
3727 if (!x->done) {
3728 DECLARE_WAITQUEUE(wait, current);
3729
3730 wait.flags |= WQ_FLAG_EXCLUSIVE;
3731 __add_wait_queue_tail(&x->wait, &wait);
3732 do {
3733 if (signal_pending(current)) {
3734 ret = -ERESTARTSYS;
3735 __remove_wait_queue(&x->wait, &wait);
3736 goto out;
3737 }
3738 __set_current_state(TASK_INTERRUPTIBLE);
3739 spin_unlock_irq(&x->wait.lock);
3740 schedule();
3741 spin_lock_irq(&x->wait.lock);
3742 } while (!x->done);
3743 __remove_wait_queue(&x->wait, &wait);
3744 }
3745 x->done--;
3746 out:
3747 spin_unlock_irq(&x->wait.lock);
3748
3749 return ret;
3750 }
3751 EXPORT_SYMBOL(wait_for_completion_interruptible);
3752
3753 unsigned long fastcall __sched
3754 wait_for_completion_interruptible_timeout(struct completion *x,
3755 unsigned long timeout)
3756 {
3757 might_sleep();
3758
3759 spin_lock_irq(&x->wait.lock);
3760 if (!x->done) {
3761 DECLARE_WAITQUEUE(wait, current);
3762
3763 wait.flags |= WQ_FLAG_EXCLUSIVE;
3764 __add_wait_queue_tail(&x->wait, &wait);
3765 do {
3766 if (signal_pending(current)) {
3767 timeout = -ERESTARTSYS;
3768 __remove_wait_queue(&x->wait, &wait);
3769 goto out;
3770 }
3771 __set_current_state(TASK_INTERRUPTIBLE);
3772 spin_unlock_irq(&x->wait.lock);
3773 timeout = schedule_timeout(timeout);
3774 spin_lock_irq(&x->wait.lock);
3775 if (!timeout) {
3776 __remove_wait_queue(&x->wait, &wait);
3777 goto out;
3778 }
3779 } while (!x->done);
3780 __remove_wait_queue(&x->wait, &wait);
3781 }
3782 x->done--;
3783 out:
3784 spin_unlock_irq(&x->wait.lock);
3785 return timeout;
3786 }
3787 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3788
3789 static inline void
3790 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3791 {
3792 spin_lock_irqsave(&q->lock, *flags);
3793 __add_wait_queue(q, wait);
3794 spin_unlock(&q->lock);
3795 }
3796
3797 static inline void
3798 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3799 {
3800 spin_lock_irq(&q->lock);
3801 __remove_wait_queue(q, wait);
3802 spin_unlock_irqrestore(&q->lock, *flags);
3803 }
3804
3805 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3806 {
3807 unsigned long flags;
3808 wait_queue_t wait;
3809
3810 init_waitqueue_entry(&wait, current);
3811
3812 current->state = TASK_INTERRUPTIBLE;
3813
3814 sleep_on_head(q, &wait, &flags);
3815 schedule();
3816 sleep_on_tail(q, &wait, &flags);
3817 }
3818 EXPORT_SYMBOL(interruptible_sleep_on);
3819
3820 long __sched
3821 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3822 {
3823 unsigned long flags;
3824 wait_queue_t wait;
3825
3826 init_waitqueue_entry(&wait, current);
3827
3828 current->state = TASK_INTERRUPTIBLE;
3829
3830 sleep_on_head(q, &wait, &flags);
3831 timeout = schedule_timeout(timeout);
3832 sleep_on_tail(q, &wait, &flags);
3833
3834 return timeout;
3835 }
3836 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3837
3838 void __sched sleep_on(wait_queue_head_t *q)
3839 {
3840 unsigned long flags;
3841 wait_queue_t wait;
3842
3843 init_waitqueue_entry(&wait, current);
3844
3845 current->state = TASK_UNINTERRUPTIBLE;
3846
3847 sleep_on_head(q, &wait, &flags);
3848 schedule();
3849 sleep_on_tail(q, &wait, &flags);
3850 }
3851 EXPORT_SYMBOL(sleep_on);
3852
3853 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3854 {
3855 unsigned long flags;
3856 wait_queue_t wait;
3857
3858 init_waitqueue_entry(&wait, current);
3859
3860 current->state = TASK_UNINTERRUPTIBLE;
3861
3862 sleep_on_head(q, &wait, &flags);
3863 timeout = schedule_timeout(timeout);
3864 sleep_on_tail(q, &wait, &flags);
3865
3866 return timeout;
3867 }
3868 EXPORT_SYMBOL(sleep_on_timeout);
3869
3870 #ifdef CONFIG_RT_MUTEXES
3871
3872 /*
3873 * rt_mutex_setprio - set the current priority of a task
3874 * @p: task
3875 * @prio: prio value (kernel-internal form)
3876 *
3877 * This function changes the 'effective' priority of a task. It does
3878 * not touch ->normal_prio like __setscheduler().
3879 *
3880 * Used by the rt_mutex code to implement priority inheritance logic.
3881 */
3882 void rt_mutex_setprio(struct task_struct *p, int prio)
3883 {
3884 unsigned long flags;
3885 int oldprio, on_rq;
3886 struct rq *rq;
3887 u64 now;
3888
3889 BUG_ON(prio < 0 || prio > MAX_PRIO);
3890
3891 rq = task_rq_lock(p, &flags);
3892 now = rq_clock(rq);
3893
3894 oldprio = p->prio;
3895 on_rq = p->se.on_rq;
3896 if (on_rq)
3897 dequeue_task(rq, p, 0, now);
3898
3899 if (rt_prio(prio))
3900 p->sched_class = &rt_sched_class;
3901 else
3902 p->sched_class = &fair_sched_class;
3903
3904 p->prio = prio;
3905
3906 if (on_rq) {
3907 enqueue_task(rq, p, 0, now);
3908 /*
3909 * Reschedule if we are currently running on this runqueue and
3910 * our priority decreased, or if we are not currently running on
3911 * this runqueue and our priority is higher than the current's
3912 */
3913 if (task_running(rq, p)) {
3914 if (p->prio > oldprio)
3915 resched_task(rq->curr);
3916 } else {
3917 check_preempt_curr(rq, p);
3918 }
3919 }
3920 task_rq_unlock(rq, &flags);
3921 }
3922
3923 #endif
3924
3925 void set_user_nice(struct task_struct *p, long nice)
3926 {
3927 int old_prio, delta, on_rq;
3928 unsigned long flags;
3929 struct rq *rq;
3930 u64 now;
3931
3932 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3933 return;
3934 /*
3935 * We have to be careful, if called from sys_setpriority(),
3936 * the task might be in the middle of scheduling on another CPU.
3937 */
3938 rq = task_rq_lock(p, &flags);
3939 now = rq_clock(rq);
3940 /*
3941 * The RT priorities are set via sched_setscheduler(), but we still
3942 * allow the 'normal' nice value to be set - but as expected
3943 * it wont have any effect on scheduling until the task is
3944 * SCHED_FIFO/SCHED_RR:
3945 */
3946 if (task_has_rt_policy(p)) {
3947 p->static_prio = NICE_TO_PRIO(nice);
3948 goto out_unlock;
3949 }
3950 on_rq = p->se.on_rq;
3951 if (on_rq) {
3952 dequeue_task(rq, p, 0, now);
3953 dec_load(rq, p, now);
3954 }
3955
3956 p->static_prio = NICE_TO_PRIO(nice);
3957 set_load_weight(p);
3958 old_prio = p->prio;
3959 p->prio = effective_prio(p);
3960 delta = p->prio - old_prio;
3961
3962 if (on_rq) {
3963 enqueue_task(rq, p, 0, now);
3964 inc_load(rq, p, now);
3965 /*
3966 * If the task increased its priority or is running and
3967 * lowered its priority, then reschedule its CPU:
3968 */
3969 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3970 resched_task(rq->curr);
3971 }
3972 out_unlock:
3973 task_rq_unlock(rq, &flags);
3974 }
3975 EXPORT_SYMBOL(set_user_nice);
3976
3977 /*
3978 * can_nice - check if a task can reduce its nice value
3979 * @p: task
3980 * @nice: nice value
3981 */
3982 int can_nice(const struct task_struct *p, const int nice)
3983 {
3984 /* convert nice value [19,-20] to rlimit style value [1,40] */
3985 int nice_rlim = 20 - nice;
3986
3987 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3988 capable(CAP_SYS_NICE));
3989 }
3990
3991 #ifdef __ARCH_WANT_SYS_NICE
3992
3993 /*
3994 * sys_nice - change the priority of the current process.
3995 * @increment: priority increment
3996 *
3997 * sys_setpriority is a more generic, but much slower function that
3998 * does similar things.
3999 */
4000 asmlinkage long sys_nice(int increment)
4001 {
4002 long nice, retval;
4003
4004 /*
4005 * Setpriority might change our priority at the same moment.
4006 * We don't have to worry. Conceptually one call occurs first
4007 * and we have a single winner.
4008 */
4009 if (increment < -40)
4010 increment = -40;
4011 if (increment > 40)
4012 increment = 40;
4013
4014 nice = PRIO_TO_NICE(current->static_prio) + increment;
4015 if (nice < -20)
4016 nice = -20;
4017 if (nice > 19)
4018 nice = 19;
4019
4020 if (increment < 0 && !can_nice(current, nice))
4021 return -EPERM;
4022
4023 retval = security_task_setnice(current, nice);
4024 if (retval)
4025 return retval;
4026
4027 set_user_nice(current, nice);
4028 return 0;
4029 }
4030
4031 #endif
4032
4033 /**
4034 * task_prio - return the priority value of a given task.
4035 * @p: the task in question.
4036 *
4037 * This is the priority value as seen by users in /proc.
4038 * RT tasks are offset by -200. Normal tasks are centered
4039 * around 0, value goes from -16 to +15.
4040 */
4041 int task_prio(const struct task_struct *p)
4042 {
4043 return p->prio - MAX_RT_PRIO;
4044 }
4045
4046 /**
4047 * task_nice - return the nice value of a given task.
4048 * @p: the task in question.
4049 */
4050 int task_nice(const struct task_struct *p)
4051 {
4052 return TASK_NICE(p);
4053 }
4054 EXPORT_SYMBOL_GPL(task_nice);
4055
4056 /**
4057 * idle_cpu - is a given cpu idle currently?
4058 * @cpu: the processor in question.
4059 */
4060 int idle_cpu(int cpu)
4061 {
4062 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4063 }
4064
4065 /**
4066 * idle_task - return the idle task for a given cpu.
4067 * @cpu: the processor in question.
4068 */
4069 struct task_struct *idle_task(int cpu)
4070 {
4071 return cpu_rq(cpu)->idle;
4072 }
4073
4074 /**
4075 * find_process_by_pid - find a process with a matching PID value.
4076 * @pid: the pid in question.
4077 */
4078 static inline struct task_struct *find_process_by_pid(pid_t pid)
4079 {
4080 return pid ? find_task_by_pid(pid) : current;
4081 }
4082
4083 /* Actually do priority change: must hold rq lock. */
4084 static void
4085 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4086 {
4087 BUG_ON(p->se.on_rq);
4088
4089 p->policy = policy;
4090 switch (p->policy) {
4091 case SCHED_NORMAL:
4092 case SCHED_BATCH:
4093 case SCHED_IDLE:
4094 p->sched_class = &fair_sched_class;
4095 break;
4096 case SCHED_FIFO:
4097 case SCHED_RR:
4098 p->sched_class = &rt_sched_class;
4099 break;
4100 }
4101
4102 p->rt_priority = prio;
4103 p->normal_prio = normal_prio(p);
4104 /* we are holding p->pi_lock already */
4105 p->prio = rt_mutex_getprio(p);
4106 set_load_weight(p);
4107 }
4108
4109 /**
4110 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4111 * @p: the task in question.
4112 * @policy: new policy.
4113 * @param: structure containing the new RT priority.
4114 *
4115 * NOTE that the task may be already dead.
4116 */
4117 int sched_setscheduler(struct task_struct *p, int policy,
4118 struct sched_param *param)
4119 {
4120 int retval, oldprio, oldpolicy = -1, on_rq;
4121 unsigned long flags;
4122 struct rq *rq;
4123
4124 /* may grab non-irq protected spin_locks */
4125 BUG_ON(in_interrupt());
4126 recheck:
4127 /* double check policy once rq lock held */
4128 if (policy < 0)
4129 policy = oldpolicy = p->policy;
4130 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4131 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4132 policy != SCHED_IDLE)
4133 return -EINVAL;
4134 /*
4135 * Valid priorities for SCHED_FIFO and SCHED_RR are
4136 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4137 * SCHED_BATCH and SCHED_IDLE is 0.
4138 */
4139 if (param->sched_priority < 0 ||
4140 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4141 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4142 return -EINVAL;
4143 if (rt_policy(policy) != (param->sched_priority != 0))
4144 return -EINVAL;
4145
4146 /*
4147 * Allow unprivileged RT tasks to decrease priority:
4148 */
4149 if (!capable(CAP_SYS_NICE)) {
4150 if (rt_policy(policy)) {
4151 unsigned long rlim_rtprio;
4152
4153 if (!lock_task_sighand(p, &flags))
4154 return -ESRCH;
4155 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4156 unlock_task_sighand(p, &flags);
4157
4158 /* can't set/change the rt policy */
4159 if (policy != p->policy && !rlim_rtprio)
4160 return -EPERM;
4161
4162 /* can't increase priority */
4163 if (param->sched_priority > p->rt_priority &&
4164 param->sched_priority > rlim_rtprio)
4165 return -EPERM;
4166 }
4167 /*
4168 * Like positive nice levels, dont allow tasks to
4169 * move out of SCHED_IDLE either:
4170 */
4171 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4172 return -EPERM;
4173
4174 /* can't change other user's priorities */
4175 if ((current->euid != p->euid) &&
4176 (current->euid != p->uid))
4177 return -EPERM;
4178 }
4179
4180 retval = security_task_setscheduler(p, policy, param);
4181 if (retval)
4182 return retval;
4183 /*
4184 * make sure no PI-waiters arrive (or leave) while we are
4185 * changing the priority of the task:
4186 */
4187 spin_lock_irqsave(&p->pi_lock, flags);
4188 /*
4189 * To be able to change p->policy safely, the apropriate
4190 * runqueue lock must be held.
4191 */
4192 rq = __task_rq_lock(p);
4193 /* recheck policy now with rq lock held */
4194 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4195 policy = oldpolicy = -1;
4196 __task_rq_unlock(rq);
4197 spin_unlock_irqrestore(&p->pi_lock, flags);
4198 goto recheck;
4199 }
4200 on_rq = p->se.on_rq;
4201 if (on_rq)
4202 deactivate_task(rq, p, 0);
4203 oldprio = p->prio;
4204 __setscheduler(rq, p, policy, param->sched_priority);
4205 if (on_rq) {
4206 activate_task(rq, p, 0);
4207 /*
4208 * Reschedule if we are currently running on this runqueue and
4209 * our priority decreased, or if we are not currently running on
4210 * this runqueue and our priority is higher than the current's
4211 */
4212 if (task_running(rq, p)) {
4213 if (p->prio > oldprio)
4214 resched_task(rq->curr);
4215 } else {
4216 check_preempt_curr(rq, p);
4217 }
4218 }
4219 __task_rq_unlock(rq);
4220 spin_unlock_irqrestore(&p->pi_lock, flags);
4221
4222 rt_mutex_adjust_pi(p);
4223
4224 return 0;
4225 }
4226 EXPORT_SYMBOL_GPL(sched_setscheduler);
4227
4228 static int
4229 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4230 {
4231 struct sched_param lparam;
4232 struct task_struct *p;
4233 int retval;
4234
4235 if (!param || pid < 0)
4236 return -EINVAL;
4237 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4238 return -EFAULT;
4239
4240 rcu_read_lock();
4241 retval = -ESRCH;
4242 p = find_process_by_pid(pid);
4243 if (p != NULL)
4244 retval = sched_setscheduler(p, policy, &lparam);
4245 rcu_read_unlock();
4246
4247 return retval;
4248 }
4249
4250 /**
4251 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4252 * @pid: the pid in question.
4253 * @policy: new policy.
4254 * @param: structure containing the new RT priority.
4255 */
4256 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4257 struct sched_param __user *param)
4258 {
4259 /* negative values for policy are not valid */
4260 if (policy < 0)
4261 return -EINVAL;
4262
4263 return do_sched_setscheduler(pid, policy, param);
4264 }
4265
4266 /**
4267 * sys_sched_setparam - set/change the RT priority of a thread
4268 * @pid: the pid in question.
4269 * @param: structure containing the new RT priority.
4270 */
4271 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4272 {
4273 return do_sched_setscheduler(pid, -1, param);
4274 }
4275
4276 /**
4277 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4278 * @pid: the pid in question.
4279 */
4280 asmlinkage long sys_sched_getscheduler(pid_t pid)
4281 {
4282 struct task_struct *p;
4283 int retval = -EINVAL;
4284
4285 if (pid < 0)
4286 goto out_nounlock;
4287
4288 retval = -ESRCH;
4289 read_lock(&tasklist_lock);
4290 p = find_process_by_pid(pid);
4291 if (p) {
4292 retval = security_task_getscheduler(p);
4293 if (!retval)
4294 retval = p->policy;
4295 }
4296 read_unlock(&tasklist_lock);
4297
4298 out_nounlock:
4299 return retval;
4300 }
4301
4302 /**
4303 * sys_sched_getscheduler - get the RT priority of a thread
4304 * @pid: the pid in question.
4305 * @param: structure containing the RT priority.
4306 */
4307 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4308 {
4309 struct sched_param lp;
4310 struct task_struct *p;
4311 int retval = -EINVAL;
4312
4313 if (!param || pid < 0)
4314 goto out_nounlock;
4315
4316 read_lock(&tasklist_lock);
4317 p = find_process_by_pid(pid);
4318 retval = -ESRCH;
4319 if (!p)
4320 goto out_unlock;
4321
4322 retval = security_task_getscheduler(p);
4323 if (retval)
4324 goto out_unlock;
4325
4326 lp.sched_priority = p->rt_priority;
4327 read_unlock(&tasklist_lock);
4328
4329 /*
4330 * This one might sleep, we cannot do it with a spinlock held ...
4331 */
4332 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4333
4334 out_nounlock:
4335 return retval;
4336
4337 out_unlock:
4338 read_unlock(&tasklist_lock);
4339 return retval;
4340 }
4341
4342 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4343 {
4344 cpumask_t cpus_allowed;
4345 struct task_struct *p;
4346 int retval;
4347
4348 mutex_lock(&sched_hotcpu_mutex);
4349 read_lock(&tasklist_lock);
4350
4351 p = find_process_by_pid(pid);
4352 if (!p) {
4353 read_unlock(&tasklist_lock);
4354 mutex_unlock(&sched_hotcpu_mutex);
4355 return -ESRCH;
4356 }
4357
4358 /*
4359 * It is not safe to call set_cpus_allowed with the
4360 * tasklist_lock held. We will bump the task_struct's
4361 * usage count and then drop tasklist_lock.
4362 */
4363 get_task_struct(p);
4364 read_unlock(&tasklist_lock);
4365
4366 retval = -EPERM;
4367 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4368 !capable(CAP_SYS_NICE))
4369 goto out_unlock;
4370
4371 retval = security_task_setscheduler(p, 0, NULL);
4372 if (retval)
4373 goto out_unlock;
4374
4375 cpus_allowed = cpuset_cpus_allowed(p);
4376 cpus_and(new_mask, new_mask, cpus_allowed);
4377 retval = set_cpus_allowed(p, new_mask);
4378
4379 out_unlock:
4380 put_task_struct(p);
4381 mutex_unlock(&sched_hotcpu_mutex);
4382 return retval;
4383 }
4384
4385 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4386 cpumask_t *new_mask)
4387 {
4388 if (len < sizeof(cpumask_t)) {
4389 memset(new_mask, 0, sizeof(cpumask_t));
4390 } else if (len > sizeof(cpumask_t)) {
4391 len = sizeof(cpumask_t);
4392 }
4393 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4394 }
4395
4396 /**
4397 * sys_sched_setaffinity - set the cpu affinity of a process
4398 * @pid: pid of the process
4399 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4400 * @user_mask_ptr: user-space pointer to the new cpu mask
4401 */
4402 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4403 unsigned long __user *user_mask_ptr)
4404 {
4405 cpumask_t new_mask;
4406 int retval;
4407
4408 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4409 if (retval)
4410 return retval;
4411
4412 return sched_setaffinity(pid, new_mask);
4413 }
4414
4415 /*
4416 * Represents all cpu's present in the system
4417 * In systems capable of hotplug, this map could dynamically grow
4418 * as new cpu's are detected in the system via any platform specific
4419 * method, such as ACPI for e.g.
4420 */
4421
4422 cpumask_t cpu_present_map __read_mostly;
4423 EXPORT_SYMBOL(cpu_present_map);
4424
4425 #ifndef CONFIG_SMP
4426 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4427 EXPORT_SYMBOL(cpu_online_map);
4428
4429 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4430 EXPORT_SYMBOL(cpu_possible_map);
4431 #endif
4432
4433 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4434 {
4435 struct task_struct *p;
4436 int retval;
4437
4438 mutex_lock(&sched_hotcpu_mutex);
4439 read_lock(&tasklist_lock);
4440
4441 retval = -ESRCH;
4442 p = find_process_by_pid(pid);
4443 if (!p)
4444 goto out_unlock;
4445
4446 retval = security_task_getscheduler(p);
4447 if (retval)
4448 goto out_unlock;
4449
4450 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4451
4452 out_unlock:
4453 read_unlock(&tasklist_lock);
4454 mutex_unlock(&sched_hotcpu_mutex);
4455 if (retval)
4456 return retval;
4457
4458 return 0;
4459 }
4460
4461 /**
4462 * sys_sched_getaffinity - get the cpu affinity of a process
4463 * @pid: pid of the process
4464 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4465 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4466 */
4467 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4468 unsigned long __user *user_mask_ptr)
4469 {
4470 int ret;
4471 cpumask_t mask;
4472
4473 if (len < sizeof(cpumask_t))
4474 return -EINVAL;
4475
4476 ret = sched_getaffinity(pid, &mask);
4477 if (ret < 0)
4478 return ret;
4479
4480 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4481 return -EFAULT;
4482
4483 return sizeof(cpumask_t);
4484 }
4485
4486 /**
4487 * sys_sched_yield - yield the current processor to other threads.
4488 *
4489 * This function yields the current CPU to other tasks. If there are no
4490 * other threads running on this CPU then this function will return.
4491 */
4492 asmlinkage long sys_sched_yield(void)
4493 {
4494 struct rq *rq = this_rq_lock();
4495
4496 schedstat_inc(rq, yld_cnt);
4497 if (unlikely(rq->nr_running == 1))
4498 schedstat_inc(rq, yld_act_empty);
4499 else
4500 current->sched_class->yield_task(rq, current);
4501
4502 /*
4503 * Since we are going to call schedule() anyway, there's
4504 * no need to preempt or enable interrupts:
4505 */
4506 __release(rq->lock);
4507 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4508 _raw_spin_unlock(&rq->lock);
4509 preempt_enable_no_resched();
4510
4511 schedule();
4512
4513 return 0;
4514 }
4515
4516 static void __cond_resched(void)
4517 {
4518 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4519 __might_sleep(__FILE__, __LINE__);
4520 #endif
4521 /*
4522 * The BKS might be reacquired before we have dropped
4523 * PREEMPT_ACTIVE, which could trigger a second
4524 * cond_resched() call.
4525 */
4526 do {
4527 add_preempt_count(PREEMPT_ACTIVE);
4528 schedule();
4529 sub_preempt_count(PREEMPT_ACTIVE);
4530 } while (need_resched());
4531 }
4532
4533 int __sched cond_resched(void)
4534 {
4535 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4536 system_state == SYSTEM_RUNNING) {
4537 __cond_resched();
4538 return 1;
4539 }
4540 return 0;
4541 }
4542 EXPORT_SYMBOL(cond_resched);
4543
4544 /*
4545 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4546 * call schedule, and on return reacquire the lock.
4547 *
4548 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4549 * operations here to prevent schedule() from being called twice (once via
4550 * spin_unlock(), once by hand).
4551 */
4552 int cond_resched_lock(spinlock_t *lock)
4553 {
4554 int ret = 0;
4555
4556 if (need_lockbreak(lock)) {
4557 spin_unlock(lock);
4558 cpu_relax();
4559 ret = 1;
4560 spin_lock(lock);
4561 }
4562 if (need_resched() && system_state == SYSTEM_RUNNING) {
4563 spin_release(&lock->dep_map, 1, _THIS_IP_);
4564 _raw_spin_unlock(lock);
4565 preempt_enable_no_resched();
4566 __cond_resched();
4567 ret = 1;
4568 spin_lock(lock);
4569 }
4570 return ret;
4571 }
4572 EXPORT_SYMBOL(cond_resched_lock);
4573
4574 int __sched cond_resched_softirq(void)
4575 {
4576 BUG_ON(!in_softirq());
4577
4578 if (need_resched() && system_state == SYSTEM_RUNNING) {
4579 local_bh_enable();
4580 __cond_resched();
4581 local_bh_disable();
4582 return 1;
4583 }
4584 return 0;
4585 }
4586 EXPORT_SYMBOL(cond_resched_softirq);
4587
4588 /**
4589 * yield - yield the current processor to other threads.
4590 *
4591 * This is a shortcut for kernel-space yielding - it marks the
4592 * thread runnable and calls sys_sched_yield().
4593 */
4594 void __sched yield(void)
4595 {
4596 set_current_state(TASK_RUNNING);
4597 sys_sched_yield();
4598 }
4599 EXPORT_SYMBOL(yield);
4600
4601 /*
4602 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4603 * that process accounting knows that this is a task in IO wait state.
4604 *
4605 * But don't do that if it is a deliberate, throttling IO wait (this task
4606 * has set its backing_dev_info: the queue against which it should throttle)
4607 */
4608 void __sched io_schedule(void)
4609 {
4610 struct rq *rq = &__raw_get_cpu_var(runqueues);
4611
4612 delayacct_blkio_start();
4613 atomic_inc(&rq->nr_iowait);
4614 schedule();
4615 atomic_dec(&rq->nr_iowait);
4616 delayacct_blkio_end();
4617 }
4618 EXPORT_SYMBOL(io_schedule);
4619
4620 long __sched io_schedule_timeout(long timeout)
4621 {
4622 struct rq *rq = &__raw_get_cpu_var(runqueues);
4623 long ret;
4624
4625 delayacct_blkio_start();
4626 atomic_inc(&rq->nr_iowait);
4627 ret = schedule_timeout(timeout);
4628 atomic_dec(&rq->nr_iowait);
4629 delayacct_blkio_end();
4630 return ret;
4631 }
4632
4633 /**
4634 * sys_sched_get_priority_max - return maximum RT priority.
4635 * @policy: scheduling class.
4636 *
4637 * this syscall returns the maximum rt_priority that can be used
4638 * by a given scheduling class.
4639 */
4640 asmlinkage long sys_sched_get_priority_max(int policy)
4641 {
4642 int ret = -EINVAL;
4643
4644 switch (policy) {
4645 case SCHED_FIFO:
4646 case SCHED_RR:
4647 ret = MAX_USER_RT_PRIO-1;
4648 break;
4649 case SCHED_NORMAL:
4650 case SCHED_BATCH:
4651 case SCHED_IDLE:
4652 ret = 0;
4653 break;
4654 }
4655 return ret;
4656 }
4657
4658 /**
4659 * sys_sched_get_priority_min - return minimum RT priority.
4660 * @policy: scheduling class.
4661 *
4662 * this syscall returns the minimum rt_priority that can be used
4663 * by a given scheduling class.
4664 */
4665 asmlinkage long sys_sched_get_priority_min(int policy)
4666 {
4667 int ret = -EINVAL;
4668
4669 switch (policy) {
4670 case SCHED_FIFO:
4671 case SCHED_RR:
4672 ret = 1;
4673 break;
4674 case SCHED_NORMAL:
4675 case SCHED_BATCH:
4676 case SCHED_IDLE:
4677 ret = 0;
4678 }
4679 return ret;
4680 }
4681
4682 /**
4683 * sys_sched_rr_get_interval - return the default timeslice of a process.
4684 * @pid: pid of the process.
4685 * @interval: userspace pointer to the timeslice value.
4686 *
4687 * this syscall writes the default timeslice value of a given process
4688 * into the user-space timespec buffer. A value of '0' means infinity.
4689 */
4690 asmlinkage
4691 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4692 {
4693 struct task_struct *p;
4694 int retval = -EINVAL;
4695 struct timespec t;
4696
4697 if (pid < 0)
4698 goto out_nounlock;
4699
4700 retval = -ESRCH;
4701 read_lock(&tasklist_lock);
4702 p = find_process_by_pid(pid);
4703 if (!p)
4704 goto out_unlock;
4705
4706 retval = security_task_getscheduler(p);
4707 if (retval)
4708 goto out_unlock;
4709
4710 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4711 0 : static_prio_timeslice(p->static_prio), &t);
4712 read_unlock(&tasklist_lock);
4713 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4714 out_nounlock:
4715 return retval;
4716 out_unlock:
4717 read_unlock(&tasklist_lock);
4718 return retval;
4719 }
4720
4721 static const char stat_nam[] = "RSDTtZX";
4722
4723 static void show_task(struct task_struct *p)
4724 {
4725 unsigned long free = 0;
4726 unsigned state;
4727
4728 state = p->state ? __ffs(p->state) + 1 : 0;
4729 printk("%-13.13s %c", p->comm,
4730 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4731 #if BITS_PER_LONG == 32
4732 if (state == TASK_RUNNING)
4733 printk(" running ");
4734 else
4735 printk(" %08lx ", thread_saved_pc(p));
4736 #else
4737 if (state == TASK_RUNNING)
4738 printk(" running task ");
4739 else
4740 printk(" %016lx ", thread_saved_pc(p));
4741 #endif
4742 #ifdef CONFIG_DEBUG_STACK_USAGE
4743 {
4744 unsigned long *n = end_of_stack(p);
4745 while (!*n)
4746 n++;
4747 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4748 }
4749 #endif
4750 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4751
4752 if (state != TASK_RUNNING)
4753 show_stack(p, NULL);
4754 }
4755
4756 void show_state_filter(unsigned long state_filter)
4757 {
4758 struct task_struct *g, *p;
4759
4760 #if BITS_PER_LONG == 32
4761 printk(KERN_INFO
4762 " task PC stack pid father\n");
4763 #else
4764 printk(KERN_INFO
4765 " task PC stack pid father\n");
4766 #endif
4767 read_lock(&tasklist_lock);
4768 do_each_thread(g, p) {
4769 /*
4770 * reset the NMI-timeout, listing all files on a slow
4771 * console might take alot of time:
4772 */
4773 touch_nmi_watchdog();
4774 if (!state_filter || (p->state & state_filter))
4775 show_task(p);
4776 } while_each_thread(g, p);
4777
4778 touch_all_softlockup_watchdogs();
4779
4780 #ifdef CONFIG_SCHED_DEBUG
4781 sysrq_sched_debug_show();
4782 #endif
4783 read_unlock(&tasklist_lock);
4784 /*
4785 * Only show locks if all tasks are dumped:
4786 */
4787 if (state_filter == -1)
4788 debug_show_all_locks();
4789 }
4790
4791 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4792 {
4793 idle->sched_class = &idle_sched_class;
4794 }
4795
4796 /**
4797 * init_idle - set up an idle thread for a given CPU
4798 * @idle: task in question
4799 * @cpu: cpu the idle task belongs to
4800 *
4801 * NOTE: this function does not set the idle thread's NEED_RESCHED
4802 * flag, to make booting more robust.
4803 */
4804 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4805 {
4806 struct rq *rq = cpu_rq(cpu);
4807 unsigned long flags;
4808
4809 __sched_fork(idle);
4810 idle->se.exec_start = sched_clock();
4811
4812 idle->prio = idle->normal_prio = MAX_PRIO;
4813 idle->cpus_allowed = cpumask_of_cpu(cpu);
4814 __set_task_cpu(idle, cpu);
4815
4816 spin_lock_irqsave(&rq->lock, flags);
4817 rq->curr = rq->idle = idle;
4818 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4819 idle->oncpu = 1;
4820 #endif
4821 spin_unlock_irqrestore(&rq->lock, flags);
4822
4823 /* Set the preempt count _outside_ the spinlocks! */
4824 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4825 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4826 #else
4827 task_thread_info(idle)->preempt_count = 0;
4828 #endif
4829 /*
4830 * The idle tasks have their own, simple scheduling class:
4831 */
4832 idle->sched_class = &idle_sched_class;
4833 }
4834
4835 /*
4836 * In a system that switches off the HZ timer nohz_cpu_mask
4837 * indicates which cpus entered this state. This is used
4838 * in the rcu update to wait only for active cpus. For system
4839 * which do not switch off the HZ timer nohz_cpu_mask should
4840 * always be CPU_MASK_NONE.
4841 */
4842 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4843
4844 /*
4845 * Increase the granularity value when there are more CPUs,
4846 * because with more CPUs the 'effective latency' as visible
4847 * to users decreases. But the relationship is not linear,
4848 * so pick a second-best guess by going with the log2 of the
4849 * number of CPUs.
4850 *
4851 * This idea comes from the SD scheduler of Con Kolivas:
4852 */
4853 static inline void sched_init_granularity(void)
4854 {
4855 unsigned int factor = 1 + ilog2(num_online_cpus());
4856 const unsigned long gran_limit = 100000000;
4857
4858 sysctl_sched_granularity *= factor;
4859 if (sysctl_sched_granularity > gran_limit)
4860 sysctl_sched_granularity = gran_limit;
4861
4862 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4863 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4864 }
4865
4866 #ifdef CONFIG_SMP
4867 /*
4868 * This is how migration works:
4869 *
4870 * 1) we queue a struct migration_req structure in the source CPU's
4871 * runqueue and wake up that CPU's migration thread.
4872 * 2) we down() the locked semaphore => thread blocks.
4873 * 3) migration thread wakes up (implicitly it forces the migrated
4874 * thread off the CPU)
4875 * 4) it gets the migration request and checks whether the migrated
4876 * task is still in the wrong runqueue.
4877 * 5) if it's in the wrong runqueue then the migration thread removes
4878 * it and puts it into the right queue.
4879 * 6) migration thread up()s the semaphore.
4880 * 7) we wake up and the migration is done.
4881 */
4882
4883 /*
4884 * Change a given task's CPU affinity. Migrate the thread to a
4885 * proper CPU and schedule it away if the CPU it's executing on
4886 * is removed from the allowed bitmask.
4887 *
4888 * NOTE: the caller must have a valid reference to the task, the
4889 * task must not exit() & deallocate itself prematurely. The
4890 * call is not atomic; no spinlocks may be held.
4891 */
4892 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4893 {
4894 struct migration_req req;
4895 unsigned long flags;
4896 struct rq *rq;
4897 int ret = 0;
4898
4899 rq = task_rq_lock(p, &flags);
4900 if (!cpus_intersects(new_mask, cpu_online_map)) {
4901 ret = -EINVAL;
4902 goto out;
4903 }
4904
4905 p->cpus_allowed = new_mask;
4906 /* Can the task run on the task's current CPU? If so, we're done */
4907 if (cpu_isset(task_cpu(p), new_mask))
4908 goto out;
4909
4910 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4911 /* Need help from migration thread: drop lock and wait. */
4912 task_rq_unlock(rq, &flags);
4913 wake_up_process(rq->migration_thread);
4914 wait_for_completion(&req.done);
4915 tlb_migrate_finish(p->mm);
4916 return 0;
4917 }
4918 out:
4919 task_rq_unlock(rq, &flags);
4920
4921 return ret;
4922 }
4923 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4924
4925 /*
4926 * Move (not current) task off this cpu, onto dest cpu. We're doing
4927 * this because either it can't run here any more (set_cpus_allowed()
4928 * away from this CPU, or CPU going down), or because we're
4929 * attempting to rebalance this task on exec (sched_exec).
4930 *
4931 * So we race with normal scheduler movements, but that's OK, as long
4932 * as the task is no longer on this CPU.
4933 *
4934 * Returns non-zero if task was successfully migrated.
4935 */
4936 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4937 {
4938 struct rq *rq_dest, *rq_src;
4939 int ret = 0, on_rq;
4940
4941 if (unlikely(cpu_is_offline(dest_cpu)))
4942 return ret;
4943
4944 rq_src = cpu_rq(src_cpu);
4945 rq_dest = cpu_rq(dest_cpu);
4946
4947 double_rq_lock(rq_src, rq_dest);
4948 /* Already moved. */
4949 if (task_cpu(p) != src_cpu)
4950 goto out;
4951 /* Affinity changed (again). */
4952 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4953 goto out;
4954
4955 on_rq = p->se.on_rq;
4956 if (on_rq)
4957 deactivate_task(rq_src, p, 0);
4958 set_task_cpu(p, dest_cpu);
4959 if (on_rq) {
4960 activate_task(rq_dest, p, 0);
4961 check_preempt_curr(rq_dest, p);
4962 }
4963 ret = 1;
4964 out:
4965 double_rq_unlock(rq_src, rq_dest);
4966 return ret;
4967 }
4968
4969 /*
4970 * migration_thread - this is a highprio system thread that performs
4971 * thread migration by bumping thread off CPU then 'pushing' onto
4972 * another runqueue.
4973 */
4974 static int migration_thread(void *data)
4975 {
4976 int cpu = (long)data;
4977 struct rq *rq;
4978
4979 rq = cpu_rq(cpu);
4980 BUG_ON(rq->migration_thread != current);
4981
4982 set_current_state(TASK_INTERRUPTIBLE);
4983 while (!kthread_should_stop()) {
4984 struct migration_req *req;
4985 struct list_head *head;
4986
4987 spin_lock_irq(&rq->lock);
4988
4989 if (cpu_is_offline(cpu)) {
4990 spin_unlock_irq(&rq->lock);
4991 goto wait_to_die;
4992 }
4993
4994 if (rq->active_balance) {
4995 active_load_balance(rq, cpu);
4996 rq->active_balance = 0;
4997 }
4998
4999 head = &rq->migration_queue;
5000
5001 if (list_empty(head)) {
5002 spin_unlock_irq(&rq->lock);
5003 schedule();
5004 set_current_state(TASK_INTERRUPTIBLE);
5005 continue;
5006 }
5007 req = list_entry(head->next, struct migration_req, list);
5008 list_del_init(head->next);
5009
5010 spin_unlock(&rq->lock);
5011 __migrate_task(req->task, cpu, req->dest_cpu);
5012 local_irq_enable();
5013
5014 complete(&req->done);
5015 }
5016 __set_current_state(TASK_RUNNING);
5017 return 0;
5018
5019 wait_to_die:
5020 /* Wait for kthread_stop */
5021 set_current_state(TASK_INTERRUPTIBLE);
5022 while (!kthread_should_stop()) {
5023 schedule();
5024 set_current_state(TASK_INTERRUPTIBLE);
5025 }
5026 __set_current_state(TASK_RUNNING);
5027 return 0;
5028 }
5029
5030 #ifdef CONFIG_HOTPLUG_CPU
5031 /*
5032 * Figure out where task on dead CPU should go, use force if neccessary.
5033 * NOTE: interrupts should be disabled by the caller
5034 */
5035 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5036 {
5037 unsigned long flags;
5038 cpumask_t mask;
5039 struct rq *rq;
5040 int dest_cpu;
5041
5042 restart:
5043 /* On same node? */
5044 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5045 cpus_and(mask, mask, p->cpus_allowed);
5046 dest_cpu = any_online_cpu(mask);
5047
5048 /* On any allowed CPU? */
5049 if (dest_cpu == NR_CPUS)
5050 dest_cpu = any_online_cpu(p->cpus_allowed);
5051
5052 /* No more Mr. Nice Guy. */
5053 if (dest_cpu == NR_CPUS) {
5054 rq = task_rq_lock(p, &flags);
5055 cpus_setall(p->cpus_allowed);
5056 dest_cpu = any_online_cpu(p->cpus_allowed);
5057 task_rq_unlock(rq, &flags);
5058
5059 /*
5060 * Don't tell them about moving exiting tasks or
5061 * kernel threads (both mm NULL), since they never
5062 * leave kernel.
5063 */
5064 if (p->mm && printk_ratelimit())
5065 printk(KERN_INFO "process %d (%s) no "
5066 "longer affine to cpu%d\n",
5067 p->pid, p->comm, dead_cpu);
5068 }
5069 if (!__migrate_task(p, dead_cpu, dest_cpu))
5070 goto restart;
5071 }
5072
5073 /*
5074 * While a dead CPU has no uninterruptible tasks queued at this point,
5075 * it might still have a nonzero ->nr_uninterruptible counter, because
5076 * for performance reasons the counter is not stricly tracking tasks to
5077 * their home CPUs. So we just add the counter to another CPU's counter,
5078 * to keep the global sum constant after CPU-down:
5079 */
5080 static void migrate_nr_uninterruptible(struct rq *rq_src)
5081 {
5082 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5083 unsigned long flags;
5084
5085 local_irq_save(flags);
5086 double_rq_lock(rq_src, rq_dest);
5087 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5088 rq_src->nr_uninterruptible = 0;
5089 double_rq_unlock(rq_src, rq_dest);
5090 local_irq_restore(flags);
5091 }
5092
5093 /* Run through task list and migrate tasks from the dead cpu. */
5094 static void migrate_live_tasks(int src_cpu)
5095 {
5096 struct task_struct *p, *t;
5097
5098 write_lock_irq(&tasklist_lock);
5099
5100 do_each_thread(t, p) {
5101 if (p == current)
5102 continue;
5103
5104 if (task_cpu(p) == src_cpu)
5105 move_task_off_dead_cpu(src_cpu, p);
5106 } while_each_thread(t, p);
5107
5108 write_unlock_irq(&tasklist_lock);
5109 }
5110
5111 /*
5112 * Schedules idle task to be the next runnable task on current CPU.
5113 * It does so by boosting its priority to highest possible and adding it to
5114 * the _front_ of the runqueue. Used by CPU offline code.
5115 */
5116 void sched_idle_next(void)
5117 {
5118 int this_cpu = smp_processor_id();
5119 struct rq *rq = cpu_rq(this_cpu);
5120 struct task_struct *p = rq->idle;
5121 unsigned long flags;
5122
5123 /* cpu has to be offline */
5124 BUG_ON(cpu_online(this_cpu));
5125
5126 /*
5127 * Strictly not necessary since rest of the CPUs are stopped by now
5128 * and interrupts disabled on the current cpu.
5129 */
5130 spin_lock_irqsave(&rq->lock, flags);
5131
5132 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5133
5134 /* Add idle task to the _front_ of its priority queue: */
5135 activate_idle_task(p, rq);
5136
5137 spin_unlock_irqrestore(&rq->lock, flags);
5138 }
5139
5140 /*
5141 * Ensures that the idle task is using init_mm right before its cpu goes
5142 * offline.
5143 */
5144 void idle_task_exit(void)
5145 {
5146 struct mm_struct *mm = current->active_mm;
5147
5148 BUG_ON(cpu_online(smp_processor_id()));
5149
5150 if (mm != &init_mm)
5151 switch_mm(mm, &init_mm, current);
5152 mmdrop(mm);
5153 }
5154
5155 /* called under rq->lock with disabled interrupts */
5156 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5157 {
5158 struct rq *rq = cpu_rq(dead_cpu);
5159
5160 /* Must be exiting, otherwise would be on tasklist. */
5161 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5162
5163 /* Cannot have done final schedule yet: would have vanished. */
5164 BUG_ON(p->state == TASK_DEAD);
5165
5166 get_task_struct(p);
5167
5168 /*
5169 * Drop lock around migration; if someone else moves it,
5170 * that's OK. No task can be added to this CPU, so iteration is
5171 * fine.
5172 * NOTE: interrupts should be left disabled --dev@
5173 */
5174 spin_unlock(&rq->lock);
5175 move_task_off_dead_cpu(dead_cpu, p);
5176 spin_lock(&rq->lock);
5177
5178 put_task_struct(p);
5179 }
5180
5181 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5182 static void migrate_dead_tasks(unsigned int dead_cpu)
5183 {
5184 struct rq *rq = cpu_rq(dead_cpu);
5185 struct task_struct *next;
5186
5187 for ( ; ; ) {
5188 if (!rq->nr_running)
5189 break;
5190 next = pick_next_task(rq, rq->curr, rq_clock(rq));
5191 if (!next)
5192 break;
5193 migrate_dead(dead_cpu, next);
5194
5195 }
5196 }
5197 #endif /* CONFIG_HOTPLUG_CPU */
5198
5199 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5200
5201 static struct ctl_table sd_ctl_dir[] = {
5202 {CTL_UNNUMBERED, "sched_domain", NULL, 0, 0755, NULL, },
5203 {0,},
5204 };
5205
5206 static struct ctl_table sd_ctl_root[] = {
5207 {CTL_UNNUMBERED, "kernel", NULL, 0, 0755, sd_ctl_dir, },
5208 {0,},
5209 };
5210
5211 static struct ctl_table *sd_alloc_ctl_entry(int n)
5212 {
5213 struct ctl_table *entry =
5214 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5215
5216 BUG_ON(!entry);
5217 memset(entry, 0, n * sizeof(struct ctl_table));
5218
5219 return entry;
5220 }
5221
5222 static void
5223 set_table_entry(struct ctl_table *entry, int ctl_name,
5224 const char *procname, void *data, int maxlen,
5225 mode_t mode, proc_handler *proc_handler)
5226 {
5227 entry->ctl_name = ctl_name;
5228 entry->procname = procname;
5229 entry->data = data;
5230 entry->maxlen = maxlen;
5231 entry->mode = mode;
5232 entry->proc_handler = proc_handler;
5233 }
5234
5235 static struct ctl_table *
5236 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5237 {
5238 struct ctl_table *table = sd_alloc_ctl_entry(14);
5239
5240 set_table_entry(&table[0], 1, "min_interval", &sd->min_interval,
5241 sizeof(long), 0644, proc_doulongvec_minmax);
5242 set_table_entry(&table[1], 2, "max_interval", &sd->max_interval,
5243 sizeof(long), 0644, proc_doulongvec_minmax);
5244 set_table_entry(&table[2], 3, "busy_idx", &sd->busy_idx,
5245 sizeof(int), 0644, proc_dointvec_minmax);
5246 set_table_entry(&table[3], 4, "idle_idx", &sd->idle_idx,
5247 sizeof(int), 0644, proc_dointvec_minmax);
5248 set_table_entry(&table[4], 5, "newidle_idx", &sd->newidle_idx,
5249 sizeof(int), 0644, proc_dointvec_minmax);
5250 set_table_entry(&table[5], 6, "wake_idx", &sd->wake_idx,
5251 sizeof(int), 0644, proc_dointvec_minmax);
5252 set_table_entry(&table[6], 7, "forkexec_idx", &sd->forkexec_idx,
5253 sizeof(int), 0644, proc_dointvec_minmax);
5254 set_table_entry(&table[7], 8, "busy_factor", &sd->busy_factor,
5255 sizeof(int), 0644, proc_dointvec_minmax);
5256 set_table_entry(&table[8], 9, "imbalance_pct", &sd->imbalance_pct,
5257 sizeof(int), 0644, proc_dointvec_minmax);
5258 set_table_entry(&table[10], 11, "cache_nice_tries",
5259 &sd->cache_nice_tries,
5260 sizeof(int), 0644, proc_dointvec_minmax);
5261 set_table_entry(&table[12], 13, "flags", &sd->flags,
5262 sizeof(int), 0644, proc_dointvec_minmax);
5263
5264 return table;
5265 }
5266
5267 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5268 {
5269 struct ctl_table *entry, *table;
5270 struct sched_domain *sd;
5271 int domain_num = 0, i;
5272 char buf[32];
5273
5274 for_each_domain(cpu, sd)
5275 domain_num++;
5276 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5277
5278 i = 0;
5279 for_each_domain(cpu, sd) {
5280 snprintf(buf, 32, "domain%d", i);
5281 entry->ctl_name = i + 1;
5282 entry->procname = kstrdup(buf, GFP_KERNEL);
5283 entry->mode = 0755;
5284 entry->child = sd_alloc_ctl_domain_table(sd);
5285 entry++;
5286 i++;
5287 }
5288 return table;
5289 }
5290
5291 static struct ctl_table_header *sd_sysctl_header;
5292 static void init_sched_domain_sysctl(void)
5293 {
5294 int i, cpu_num = num_online_cpus();
5295 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5296 char buf[32];
5297
5298 sd_ctl_dir[0].child = entry;
5299
5300 for (i = 0; i < cpu_num; i++, entry++) {
5301 snprintf(buf, 32, "cpu%d", i);
5302 entry->ctl_name = i + 1;
5303 entry->procname = kstrdup(buf, GFP_KERNEL);
5304 entry->mode = 0755;
5305 entry->child = sd_alloc_ctl_cpu_table(i);
5306 }
5307 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5308 }
5309 #else
5310 static void init_sched_domain_sysctl(void)
5311 {
5312 }
5313 #endif
5314
5315 /*
5316 * migration_call - callback that gets triggered when a CPU is added.
5317 * Here we can start up the necessary migration thread for the new CPU.
5318 */
5319 static int __cpuinit
5320 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5321 {
5322 struct task_struct *p;
5323 int cpu = (long)hcpu;
5324 unsigned long flags;
5325 struct rq *rq;
5326
5327 switch (action) {
5328 case CPU_LOCK_ACQUIRE:
5329 mutex_lock(&sched_hotcpu_mutex);
5330 break;
5331
5332 case CPU_UP_PREPARE:
5333 case CPU_UP_PREPARE_FROZEN:
5334 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5335 if (IS_ERR(p))
5336 return NOTIFY_BAD;
5337 kthread_bind(p, cpu);
5338 /* Must be high prio: stop_machine expects to yield to it. */
5339 rq = task_rq_lock(p, &flags);
5340 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5341 task_rq_unlock(rq, &flags);
5342 cpu_rq(cpu)->migration_thread = p;
5343 break;
5344
5345 case CPU_ONLINE:
5346 case CPU_ONLINE_FROZEN:
5347 /* Strictly unneccessary, as first user will wake it. */
5348 wake_up_process(cpu_rq(cpu)->migration_thread);
5349 break;
5350
5351 #ifdef CONFIG_HOTPLUG_CPU
5352 case CPU_UP_CANCELED:
5353 case CPU_UP_CANCELED_FROZEN:
5354 if (!cpu_rq(cpu)->migration_thread)
5355 break;
5356 /* Unbind it from offline cpu so it can run. Fall thru. */
5357 kthread_bind(cpu_rq(cpu)->migration_thread,
5358 any_online_cpu(cpu_online_map));
5359 kthread_stop(cpu_rq(cpu)->migration_thread);
5360 cpu_rq(cpu)->migration_thread = NULL;
5361 break;
5362
5363 case CPU_DEAD:
5364 case CPU_DEAD_FROZEN:
5365 migrate_live_tasks(cpu);
5366 rq = cpu_rq(cpu);
5367 kthread_stop(rq->migration_thread);
5368 rq->migration_thread = NULL;
5369 /* Idle task back to normal (off runqueue, low prio) */
5370 rq = task_rq_lock(rq->idle, &flags);
5371 deactivate_task(rq, rq->idle, 0);
5372 rq->idle->static_prio = MAX_PRIO;
5373 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5374 rq->idle->sched_class = &idle_sched_class;
5375 migrate_dead_tasks(cpu);
5376 task_rq_unlock(rq, &flags);
5377 migrate_nr_uninterruptible(rq);
5378 BUG_ON(rq->nr_running != 0);
5379
5380 /* No need to migrate the tasks: it was best-effort if
5381 * they didn't take sched_hotcpu_mutex. Just wake up
5382 * the requestors. */
5383 spin_lock_irq(&rq->lock);
5384 while (!list_empty(&rq->migration_queue)) {
5385 struct migration_req *req;
5386
5387 req = list_entry(rq->migration_queue.next,
5388 struct migration_req, list);
5389 list_del_init(&req->list);
5390 complete(&req->done);
5391 }
5392 spin_unlock_irq(&rq->lock);
5393 break;
5394 #endif
5395 case CPU_LOCK_RELEASE:
5396 mutex_unlock(&sched_hotcpu_mutex);
5397 break;
5398 }
5399 return NOTIFY_OK;
5400 }
5401
5402 /* Register at highest priority so that task migration (migrate_all_tasks)
5403 * happens before everything else.
5404 */
5405 static struct notifier_block __cpuinitdata migration_notifier = {
5406 .notifier_call = migration_call,
5407 .priority = 10
5408 };
5409
5410 int __init migration_init(void)
5411 {
5412 void *cpu = (void *)(long)smp_processor_id();
5413 int err;
5414
5415 /* Start one for the boot CPU: */
5416 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5417 BUG_ON(err == NOTIFY_BAD);
5418 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5419 register_cpu_notifier(&migration_notifier);
5420
5421 return 0;
5422 }
5423 #endif
5424
5425 #ifdef CONFIG_SMP
5426
5427 /* Number of possible processor ids */
5428 int nr_cpu_ids __read_mostly = NR_CPUS;
5429 EXPORT_SYMBOL(nr_cpu_ids);
5430
5431 #undef SCHED_DOMAIN_DEBUG
5432 #ifdef SCHED_DOMAIN_DEBUG
5433 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5434 {
5435 int level = 0;
5436
5437 if (!sd) {
5438 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5439 return;
5440 }
5441
5442 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5443
5444 do {
5445 int i;
5446 char str[NR_CPUS];
5447 struct sched_group *group = sd->groups;
5448 cpumask_t groupmask;
5449
5450 cpumask_scnprintf(str, NR_CPUS, sd->span);
5451 cpus_clear(groupmask);
5452
5453 printk(KERN_DEBUG);
5454 for (i = 0; i < level + 1; i++)
5455 printk(" ");
5456 printk("domain %d: ", level);
5457
5458 if (!(sd->flags & SD_LOAD_BALANCE)) {
5459 printk("does not load-balance\n");
5460 if (sd->parent)
5461 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5462 " has parent");
5463 break;
5464 }
5465
5466 printk("span %s\n", str);
5467
5468 if (!cpu_isset(cpu, sd->span))
5469 printk(KERN_ERR "ERROR: domain->span does not contain "
5470 "CPU%d\n", cpu);
5471 if (!cpu_isset(cpu, group->cpumask))
5472 printk(KERN_ERR "ERROR: domain->groups does not contain"
5473 " CPU%d\n", cpu);
5474
5475 printk(KERN_DEBUG);
5476 for (i = 0; i < level + 2; i++)
5477 printk(" ");
5478 printk("groups:");
5479 do {
5480 if (!group) {
5481 printk("\n");
5482 printk(KERN_ERR "ERROR: group is NULL\n");
5483 break;
5484 }
5485
5486 if (!group->__cpu_power) {
5487 printk("\n");
5488 printk(KERN_ERR "ERROR: domain->cpu_power not "
5489 "set\n");
5490 }
5491
5492 if (!cpus_weight(group->cpumask)) {
5493 printk("\n");
5494 printk(KERN_ERR "ERROR: empty group\n");
5495 }
5496
5497 if (cpus_intersects(groupmask, group->cpumask)) {
5498 printk("\n");
5499 printk(KERN_ERR "ERROR: repeated CPUs\n");
5500 }
5501
5502 cpus_or(groupmask, groupmask, group->cpumask);
5503
5504 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5505 printk(" %s", str);
5506
5507 group = group->next;
5508 } while (group != sd->groups);
5509 printk("\n");
5510
5511 if (!cpus_equal(sd->span, groupmask))
5512 printk(KERN_ERR "ERROR: groups don't span "
5513 "domain->span\n");
5514
5515 level++;
5516 sd = sd->parent;
5517 if (!sd)
5518 continue;
5519
5520 if (!cpus_subset(groupmask, sd->span))
5521 printk(KERN_ERR "ERROR: parent span is not a superset "
5522 "of domain->span\n");
5523
5524 } while (sd);
5525 }
5526 #else
5527 # define sched_domain_debug(sd, cpu) do { } while (0)
5528 #endif
5529
5530 static int sd_degenerate(struct sched_domain *sd)
5531 {
5532 if (cpus_weight(sd->span) == 1)
5533 return 1;
5534
5535 /* Following flags need at least 2 groups */
5536 if (sd->flags & (SD_LOAD_BALANCE |
5537 SD_BALANCE_NEWIDLE |
5538 SD_BALANCE_FORK |
5539 SD_BALANCE_EXEC |
5540 SD_SHARE_CPUPOWER |
5541 SD_SHARE_PKG_RESOURCES)) {
5542 if (sd->groups != sd->groups->next)
5543 return 0;
5544 }
5545
5546 /* Following flags don't use groups */
5547 if (sd->flags & (SD_WAKE_IDLE |
5548 SD_WAKE_AFFINE |
5549 SD_WAKE_BALANCE))
5550 return 0;
5551
5552 return 1;
5553 }
5554
5555 static int
5556 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5557 {
5558 unsigned long cflags = sd->flags, pflags = parent->flags;
5559
5560 if (sd_degenerate(parent))
5561 return 1;
5562
5563 if (!cpus_equal(sd->span, parent->span))
5564 return 0;
5565
5566 /* Does parent contain flags not in child? */
5567 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5568 if (cflags & SD_WAKE_AFFINE)
5569 pflags &= ~SD_WAKE_BALANCE;
5570 /* Flags needing groups don't count if only 1 group in parent */
5571 if (parent->groups == parent->groups->next) {
5572 pflags &= ~(SD_LOAD_BALANCE |
5573 SD_BALANCE_NEWIDLE |
5574 SD_BALANCE_FORK |
5575 SD_BALANCE_EXEC |
5576 SD_SHARE_CPUPOWER |
5577 SD_SHARE_PKG_RESOURCES);
5578 }
5579 if (~cflags & pflags)
5580 return 0;
5581
5582 return 1;
5583 }
5584
5585 /*
5586 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5587 * hold the hotplug lock.
5588 */
5589 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5590 {
5591 struct rq *rq = cpu_rq(cpu);
5592 struct sched_domain *tmp;
5593
5594 /* Remove the sched domains which do not contribute to scheduling. */
5595 for (tmp = sd; tmp; tmp = tmp->parent) {
5596 struct sched_domain *parent = tmp->parent;
5597 if (!parent)
5598 break;
5599 if (sd_parent_degenerate(tmp, parent)) {
5600 tmp->parent = parent->parent;
5601 if (parent->parent)
5602 parent->parent->child = tmp;
5603 }
5604 }
5605
5606 if (sd && sd_degenerate(sd)) {
5607 sd = sd->parent;
5608 if (sd)
5609 sd->child = NULL;
5610 }
5611
5612 sched_domain_debug(sd, cpu);
5613
5614 rcu_assign_pointer(rq->sd, sd);
5615 }
5616
5617 /* cpus with isolated domains */
5618 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5619
5620 /* Setup the mask of cpus configured for isolated domains */
5621 static int __init isolated_cpu_setup(char *str)
5622 {
5623 int ints[NR_CPUS], i;
5624
5625 str = get_options(str, ARRAY_SIZE(ints), ints);
5626 cpus_clear(cpu_isolated_map);
5627 for (i = 1; i <= ints[0]; i++)
5628 if (ints[i] < NR_CPUS)
5629 cpu_set(ints[i], cpu_isolated_map);
5630 return 1;
5631 }
5632
5633 __setup ("isolcpus=", isolated_cpu_setup);
5634
5635 /*
5636 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5637 * to a function which identifies what group(along with sched group) a CPU
5638 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5639 * (due to the fact that we keep track of groups covered with a cpumask_t).
5640 *
5641 * init_sched_build_groups will build a circular linked list of the groups
5642 * covered by the given span, and will set each group's ->cpumask correctly,
5643 * and ->cpu_power to 0.
5644 */
5645 static void
5646 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5647 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5648 struct sched_group **sg))
5649 {
5650 struct sched_group *first = NULL, *last = NULL;
5651 cpumask_t covered = CPU_MASK_NONE;
5652 int i;
5653
5654 for_each_cpu_mask(i, span) {
5655 struct sched_group *sg;
5656 int group = group_fn(i, cpu_map, &sg);
5657 int j;
5658
5659 if (cpu_isset(i, covered))
5660 continue;
5661
5662 sg->cpumask = CPU_MASK_NONE;
5663 sg->__cpu_power = 0;
5664
5665 for_each_cpu_mask(j, span) {
5666 if (group_fn(j, cpu_map, NULL) != group)
5667 continue;
5668
5669 cpu_set(j, covered);
5670 cpu_set(j, sg->cpumask);
5671 }
5672 if (!first)
5673 first = sg;
5674 if (last)
5675 last->next = sg;
5676 last = sg;
5677 }
5678 last->next = first;
5679 }
5680
5681 #define SD_NODES_PER_DOMAIN 16
5682
5683 #ifdef CONFIG_NUMA
5684
5685 /**
5686 * find_next_best_node - find the next node to include in a sched_domain
5687 * @node: node whose sched_domain we're building
5688 * @used_nodes: nodes already in the sched_domain
5689 *
5690 * Find the next node to include in a given scheduling domain. Simply
5691 * finds the closest node not already in the @used_nodes map.
5692 *
5693 * Should use nodemask_t.
5694 */
5695 static int find_next_best_node(int node, unsigned long *used_nodes)
5696 {
5697 int i, n, val, min_val, best_node = 0;
5698
5699 min_val = INT_MAX;
5700
5701 for (i = 0; i < MAX_NUMNODES; i++) {
5702 /* Start at @node */
5703 n = (node + i) % MAX_NUMNODES;
5704
5705 if (!nr_cpus_node(n))
5706 continue;
5707
5708 /* Skip already used nodes */
5709 if (test_bit(n, used_nodes))
5710 continue;
5711
5712 /* Simple min distance search */
5713 val = node_distance(node, n);
5714
5715 if (val < min_val) {
5716 min_val = val;
5717 best_node = n;
5718 }
5719 }
5720
5721 set_bit(best_node, used_nodes);
5722 return best_node;
5723 }
5724
5725 /**
5726 * sched_domain_node_span - get a cpumask for a node's sched_domain
5727 * @node: node whose cpumask we're constructing
5728 * @size: number of nodes to include in this span
5729 *
5730 * Given a node, construct a good cpumask for its sched_domain to span. It
5731 * should be one that prevents unnecessary balancing, but also spreads tasks
5732 * out optimally.
5733 */
5734 static cpumask_t sched_domain_node_span(int node)
5735 {
5736 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5737 cpumask_t span, nodemask;
5738 int i;
5739
5740 cpus_clear(span);
5741 bitmap_zero(used_nodes, MAX_NUMNODES);
5742
5743 nodemask = node_to_cpumask(node);
5744 cpus_or(span, span, nodemask);
5745 set_bit(node, used_nodes);
5746
5747 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5748 int next_node = find_next_best_node(node, used_nodes);
5749
5750 nodemask = node_to_cpumask(next_node);
5751 cpus_or(span, span, nodemask);
5752 }
5753
5754 return span;
5755 }
5756 #endif
5757
5758 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5759
5760 /*
5761 * SMT sched-domains:
5762 */
5763 #ifdef CONFIG_SCHED_SMT
5764 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5765 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5766
5767 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5768 struct sched_group **sg)
5769 {
5770 if (sg)
5771 *sg = &per_cpu(sched_group_cpus, cpu);
5772 return cpu;
5773 }
5774 #endif
5775
5776 /*
5777 * multi-core sched-domains:
5778 */
5779 #ifdef CONFIG_SCHED_MC
5780 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5781 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5782 #endif
5783
5784 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5785 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5786 struct sched_group **sg)
5787 {
5788 int group;
5789 cpumask_t mask = cpu_sibling_map[cpu];
5790 cpus_and(mask, mask, *cpu_map);
5791 group = first_cpu(mask);
5792 if (sg)
5793 *sg = &per_cpu(sched_group_core, group);
5794 return group;
5795 }
5796 #elif defined(CONFIG_SCHED_MC)
5797 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5798 struct sched_group **sg)
5799 {
5800 if (sg)
5801 *sg = &per_cpu(sched_group_core, cpu);
5802 return cpu;
5803 }
5804 #endif
5805
5806 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5807 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5808
5809 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5810 struct sched_group **sg)
5811 {
5812 int group;
5813 #ifdef CONFIG_SCHED_MC
5814 cpumask_t mask = cpu_coregroup_map(cpu);
5815 cpus_and(mask, mask, *cpu_map);
5816 group = first_cpu(mask);
5817 #elif defined(CONFIG_SCHED_SMT)
5818 cpumask_t mask = cpu_sibling_map[cpu];
5819 cpus_and(mask, mask, *cpu_map);
5820 group = first_cpu(mask);
5821 #else
5822 group = cpu;
5823 #endif
5824 if (sg)
5825 *sg = &per_cpu(sched_group_phys, group);
5826 return group;
5827 }
5828
5829 #ifdef CONFIG_NUMA
5830 /*
5831 * The init_sched_build_groups can't handle what we want to do with node
5832 * groups, so roll our own. Now each node has its own list of groups which
5833 * gets dynamically allocated.
5834 */
5835 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5836 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5837
5838 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5839 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5840
5841 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5842 struct sched_group **sg)
5843 {
5844 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5845 int group;
5846
5847 cpus_and(nodemask, nodemask, *cpu_map);
5848 group = first_cpu(nodemask);
5849
5850 if (sg)
5851 *sg = &per_cpu(sched_group_allnodes, group);
5852 return group;
5853 }
5854
5855 static void init_numa_sched_groups_power(struct sched_group *group_head)
5856 {
5857 struct sched_group *sg = group_head;
5858 int j;
5859
5860 if (!sg)
5861 return;
5862 next_sg:
5863 for_each_cpu_mask(j, sg->cpumask) {
5864 struct sched_domain *sd;
5865
5866 sd = &per_cpu(phys_domains, j);
5867 if (j != first_cpu(sd->groups->cpumask)) {
5868 /*
5869 * Only add "power" once for each
5870 * physical package.
5871 */
5872 continue;
5873 }
5874
5875 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5876 }
5877 sg = sg->next;
5878 if (sg != group_head)
5879 goto next_sg;
5880 }
5881 #endif
5882
5883 #ifdef CONFIG_NUMA
5884 /* Free memory allocated for various sched_group structures */
5885 static void free_sched_groups(const cpumask_t *cpu_map)
5886 {
5887 int cpu, i;
5888
5889 for_each_cpu_mask(cpu, *cpu_map) {
5890 struct sched_group **sched_group_nodes
5891 = sched_group_nodes_bycpu[cpu];
5892
5893 if (!sched_group_nodes)
5894 continue;
5895
5896 for (i = 0; i < MAX_NUMNODES; i++) {
5897 cpumask_t nodemask = node_to_cpumask(i);
5898 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5899
5900 cpus_and(nodemask, nodemask, *cpu_map);
5901 if (cpus_empty(nodemask))
5902 continue;
5903
5904 if (sg == NULL)
5905 continue;
5906 sg = sg->next;
5907 next_sg:
5908 oldsg = sg;
5909 sg = sg->next;
5910 kfree(oldsg);
5911 if (oldsg != sched_group_nodes[i])
5912 goto next_sg;
5913 }
5914 kfree(sched_group_nodes);
5915 sched_group_nodes_bycpu[cpu] = NULL;
5916 }
5917 }
5918 #else
5919 static void free_sched_groups(const cpumask_t *cpu_map)
5920 {
5921 }
5922 #endif
5923
5924 /*
5925 * Initialize sched groups cpu_power.
5926 *
5927 * cpu_power indicates the capacity of sched group, which is used while
5928 * distributing the load between different sched groups in a sched domain.
5929 * Typically cpu_power for all the groups in a sched domain will be same unless
5930 * there are asymmetries in the topology. If there are asymmetries, group
5931 * having more cpu_power will pickup more load compared to the group having
5932 * less cpu_power.
5933 *
5934 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5935 * the maximum number of tasks a group can handle in the presence of other idle
5936 * or lightly loaded groups in the same sched domain.
5937 */
5938 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5939 {
5940 struct sched_domain *child;
5941 struct sched_group *group;
5942
5943 WARN_ON(!sd || !sd->groups);
5944
5945 if (cpu != first_cpu(sd->groups->cpumask))
5946 return;
5947
5948 child = sd->child;
5949
5950 sd->groups->__cpu_power = 0;
5951
5952 /*
5953 * For perf policy, if the groups in child domain share resources
5954 * (for example cores sharing some portions of the cache hierarchy
5955 * or SMT), then set this domain groups cpu_power such that each group
5956 * can handle only one task, when there are other idle groups in the
5957 * same sched domain.
5958 */
5959 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
5960 (child->flags &
5961 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5962 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
5963 return;
5964 }
5965
5966 /*
5967 * add cpu_power of each child group to this groups cpu_power
5968 */
5969 group = child->groups;
5970 do {
5971 sg_inc_cpu_power(sd->groups, group->__cpu_power);
5972 group = group->next;
5973 } while (group != child->groups);
5974 }
5975
5976 /*
5977 * Build sched domains for a given set of cpus and attach the sched domains
5978 * to the individual cpus
5979 */
5980 static int build_sched_domains(const cpumask_t *cpu_map)
5981 {
5982 int i;
5983 #ifdef CONFIG_NUMA
5984 struct sched_group **sched_group_nodes = NULL;
5985 int sd_allnodes = 0;
5986
5987 /*
5988 * Allocate the per-node list of sched groups
5989 */
5990 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
5991 GFP_KERNEL);
5992 if (!sched_group_nodes) {
5993 printk(KERN_WARNING "Can not alloc sched group node list\n");
5994 return -ENOMEM;
5995 }
5996 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5997 #endif
5998
5999 /*
6000 * Set up domains for cpus specified by the cpu_map.
6001 */
6002 for_each_cpu_mask(i, *cpu_map) {
6003 struct sched_domain *sd = NULL, *p;
6004 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6005
6006 cpus_and(nodemask, nodemask, *cpu_map);
6007
6008 #ifdef CONFIG_NUMA
6009 if (cpus_weight(*cpu_map) >
6010 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6011 sd = &per_cpu(allnodes_domains, i);
6012 *sd = SD_ALLNODES_INIT;
6013 sd->span = *cpu_map;
6014 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6015 p = sd;
6016 sd_allnodes = 1;
6017 } else
6018 p = NULL;
6019
6020 sd = &per_cpu(node_domains, i);
6021 *sd = SD_NODE_INIT;
6022 sd->span = sched_domain_node_span(cpu_to_node(i));
6023 sd->parent = p;
6024 if (p)
6025 p->child = sd;
6026 cpus_and(sd->span, sd->span, *cpu_map);
6027 #endif
6028
6029 p = sd;
6030 sd = &per_cpu(phys_domains, i);
6031 *sd = SD_CPU_INIT;
6032 sd->span = nodemask;
6033 sd->parent = p;
6034 if (p)
6035 p->child = sd;
6036 cpu_to_phys_group(i, cpu_map, &sd->groups);
6037
6038 #ifdef CONFIG_SCHED_MC
6039 p = sd;
6040 sd = &per_cpu(core_domains, i);
6041 *sd = SD_MC_INIT;
6042 sd->span = cpu_coregroup_map(i);
6043 cpus_and(sd->span, sd->span, *cpu_map);
6044 sd->parent = p;
6045 p->child = sd;
6046 cpu_to_core_group(i, cpu_map, &sd->groups);
6047 #endif
6048
6049 #ifdef CONFIG_SCHED_SMT
6050 p = sd;
6051 sd = &per_cpu(cpu_domains, i);
6052 *sd = SD_SIBLING_INIT;
6053 sd->span = cpu_sibling_map[i];
6054 cpus_and(sd->span, sd->span, *cpu_map);
6055 sd->parent = p;
6056 p->child = sd;
6057 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6058 #endif
6059 }
6060
6061 #ifdef CONFIG_SCHED_SMT
6062 /* Set up CPU (sibling) groups */
6063 for_each_cpu_mask(i, *cpu_map) {
6064 cpumask_t this_sibling_map = cpu_sibling_map[i];
6065 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6066 if (i != first_cpu(this_sibling_map))
6067 continue;
6068
6069 init_sched_build_groups(this_sibling_map, cpu_map,
6070 &cpu_to_cpu_group);
6071 }
6072 #endif
6073
6074 #ifdef CONFIG_SCHED_MC
6075 /* Set up multi-core groups */
6076 for_each_cpu_mask(i, *cpu_map) {
6077 cpumask_t this_core_map = cpu_coregroup_map(i);
6078 cpus_and(this_core_map, this_core_map, *cpu_map);
6079 if (i != first_cpu(this_core_map))
6080 continue;
6081 init_sched_build_groups(this_core_map, cpu_map,
6082 &cpu_to_core_group);
6083 }
6084 #endif
6085
6086 /* Set up physical groups */
6087 for (i = 0; i < MAX_NUMNODES; i++) {
6088 cpumask_t nodemask = node_to_cpumask(i);
6089
6090 cpus_and(nodemask, nodemask, *cpu_map);
6091 if (cpus_empty(nodemask))
6092 continue;
6093
6094 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6095 }
6096
6097 #ifdef CONFIG_NUMA
6098 /* Set up node groups */
6099 if (sd_allnodes)
6100 init_sched_build_groups(*cpu_map, cpu_map,
6101 &cpu_to_allnodes_group);
6102
6103 for (i = 0; i < MAX_NUMNODES; i++) {
6104 /* Set up node groups */
6105 struct sched_group *sg, *prev;
6106 cpumask_t nodemask = node_to_cpumask(i);
6107 cpumask_t domainspan;
6108 cpumask_t covered = CPU_MASK_NONE;
6109 int j;
6110
6111 cpus_and(nodemask, nodemask, *cpu_map);
6112 if (cpus_empty(nodemask)) {
6113 sched_group_nodes[i] = NULL;
6114 continue;
6115 }
6116
6117 domainspan = sched_domain_node_span(i);
6118 cpus_and(domainspan, domainspan, *cpu_map);
6119
6120 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6121 if (!sg) {
6122 printk(KERN_WARNING "Can not alloc domain group for "
6123 "node %d\n", i);
6124 goto error;
6125 }
6126 sched_group_nodes[i] = sg;
6127 for_each_cpu_mask(j, nodemask) {
6128 struct sched_domain *sd;
6129
6130 sd = &per_cpu(node_domains, j);
6131 sd->groups = sg;
6132 }
6133 sg->__cpu_power = 0;
6134 sg->cpumask = nodemask;
6135 sg->next = sg;
6136 cpus_or(covered, covered, nodemask);
6137 prev = sg;
6138
6139 for (j = 0; j < MAX_NUMNODES; j++) {
6140 cpumask_t tmp, notcovered;
6141 int n = (i + j) % MAX_NUMNODES;
6142
6143 cpus_complement(notcovered, covered);
6144 cpus_and(tmp, notcovered, *cpu_map);
6145 cpus_and(tmp, tmp, domainspan);
6146 if (cpus_empty(tmp))
6147 break;
6148
6149 nodemask = node_to_cpumask(n);
6150 cpus_and(tmp, tmp, nodemask);
6151 if (cpus_empty(tmp))
6152 continue;
6153
6154 sg = kmalloc_node(sizeof(struct sched_group),
6155 GFP_KERNEL, i);
6156 if (!sg) {
6157 printk(KERN_WARNING
6158 "Can not alloc domain group for node %d\n", j);
6159 goto error;
6160 }
6161 sg->__cpu_power = 0;
6162 sg->cpumask = tmp;
6163 sg->next = prev->next;
6164 cpus_or(covered, covered, tmp);
6165 prev->next = sg;
6166 prev = sg;
6167 }
6168 }
6169 #endif
6170
6171 /* Calculate CPU power for physical packages and nodes */
6172 #ifdef CONFIG_SCHED_SMT
6173 for_each_cpu_mask(i, *cpu_map) {
6174 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6175
6176 init_sched_groups_power(i, sd);
6177 }
6178 #endif
6179 #ifdef CONFIG_SCHED_MC
6180 for_each_cpu_mask(i, *cpu_map) {
6181 struct sched_domain *sd = &per_cpu(core_domains, i);
6182
6183 init_sched_groups_power(i, sd);
6184 }
6185 #endif
6186
6187 for_each_cpu_mask(i, *cpu_map) {
6188 struct sched_domain *sd = &per_cpu(phys_domains, i);
6189
6190 init_sched_groups_power(i, sd);
6191 }
6192
6193 #ifdef CONFIG_NUMA
6194 for (i = 0; i < MAX_NUMNODES; i++)
6195 init_numa_sched_groups_power(sched_group_nodes[i]);
6196
6197 if (sd_allnodes) {
6198 struct sched_group *sg;
6199
6200 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6201 init_numa_sched_groups_power(sg);
6202 }
6203 #endif
6204
6205 /* Attach the domains */
6206 for_each_cpu_mask(i, *cpu_map) {
6207 struct sched_domain *sd;
6208 #ifdef CONFIG_SCHED_SMT
6209 sd = &per_cpu(cpu_domains, i);
6210 #elif defined(CONFIG_SCHED_MC)
6211 sd = &per_cpu(core_domains, i);
6212 #else
6213 sd = &per_cpu(phys_domains, i);
6214 #endif
6215 cpu_attach_domain(sd, i);
6216 }
6217
6218 return 0;
6219
6220 #ifdef CONFIG_NUMA
6221 error:
6222 free_sched_groups(cpu_map);
6223 return -ENOMEM;
6224 #endif
6225 }
6226 /*
6227 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6228 */
6229 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6230 {
6231 cpumask_t cpu_default_map;
6232 int err;
6233
6234 /*
6235 * Setup mask for cpus without special case scheduling requirements.
6236 * For now this just excludes isolated cpus, but could be used to
6237 * exclude other special cases in the future.
6238 */
6239 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6240
6241 err = build_sched_domains(&cpu_default_map);
6242
6243 return err;
6244 }
6245
6246 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6247 {
6248 free_sched_groups(cpu_map);
6249 }
6250
6251 /*
6252 * Detach sched domains from a group of cpus specified in cpu_map
6253 * These cpus will now be attached to the NULL domain
6254 */
6255 static void detach_destroy_domains(const cpumask_t *cpu_map)
6256 {
6257 int i;
6258
6259 for_each_cpu_mask(i, *cpu_map)
6260 cpu_attach_domain(NULL, i);
6261 synchronize_sched();
6262 arch_destroy_sched_domains(cpu_map);
6263 }
6264
6265 /*
6266 * Partition sched domains as specified by the cpumasks below.
6267 * This attaches all cpus from the cpumasks to the NULL domain,
6268 * waits for a RCU quiescent period, recalculates sched
6269 * domain information and then attaches them back to the
6270 * correct sched domains
6271 * Call with hotplug lock held
6272 */
6273 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6274 {
6275 cpumask_t change_map;
6276 int err = 0;
6277
6278 cpus_and(*partition1, *partition1, cpu_online_map);
6279 cpus_and(*partition2, *partition2, cpu_online_map);
6280 cpus_or(change_map, *partition1, *partition2);
6281
6282 /* Detach sched domains from all of the affected cpus */
6283 detach_destroy_domains(&change_map);
6284 if (!cpus_empty(*partition1))
6285 err = build_sched_domains(partition1);
6286 if (!err && !cpus_empty(*partition2))
6287 err = build_sched_domains(partition2);
6288
6289 return err;
6290 }
6291
6292 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6293 int arch_reinit_sched_domains(void)
6294 {
6295 int err;
6296
6297 mutex_lock(&sched_hotcpu_mutex);
6298 detach_destroy_domains(&cpu_online_map);
6299 err = arch_init_sched_domains(&cpu_online_map);
6300 mutex_unlock(&sched_hotcpu_mutex);
6301
6302 return err;
6303 }
6304
6305 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6306 {
6307 int ret;
6308
6309 if (buf[0] != '0' && buf[0] != '1')
6310 return -EINVAL;
6311
6312 if (smt)
6313 sched_smt_power_savings = (buf[0] == '1');
6314 else
6315 sched_mc_power_savings = (buf[0] == '1');
6316
6317 ret = arch_reinit_sched_domains();
6318
6319 return ret ? ret : count;
6320 }
6321
6322 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6323 {
6324 int err = 0;
6325
6326 #ifdef CONFIG_SCHED_SMT
6327 if (smt_capable())
6328 err = sysfs_create_file(&cls->kset.kobj,
6329 &attr_sched_smt_power_savings.attr);
6330 #endif
6331 #ifdef CONFIG_SCHED_MC
6332 if (!err && mc_capable())
6333 err = sysfs_create_file(&cls->kset.kobj,
6334 &attr_sched_mc_power_savings.attr);
6335 #endif
6336 return err;
6337 }
6338 #endif
6339
6340 #ifdef CONFIG_SCHED_MC
6341 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6342 {
6343 return sprintf(page, "%u\n", sched_mc_power_savings);
6344 }
6345 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6346 const char *buf, size_t count)
6347 {
6348 return sched_power_savings_store(buf, count, 0);
6349 }
6350 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6351 sched_mc_power_savings_store);
6352 #endif
6353
6354 #ifdef CONFIG_SCHED_SMT
6355 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6356 {
6357 return sprintf(page, "%u\n", sched_smt_power_savings);
6358 }
6359 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6360 const char *buf, size_t count)
6361 {
6362 return sched_power_savings_store(buf, count, 1);
6363 }
6364 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6365 sched_smt_power_savings_store);
6366 #endif
6367
6368 /*
6369 * Force a reinitialization of the sched domains hierarchy. The domains
6370 * and groups cannot be updated in place without racing with the balancing
6371 * code, so we temporarily attach all running cpus to the NULL domain
6372 * which will prevent rebalancing while the sched domains are recalculated.
6373 */
6374 static int update_sched_domains(struct notifier_block *nfb,
6375 unsigned long action, void *hcpu)
6376 {
6377 switch (action) {
6378 case CPU_UP_PREPARE:
6379 case CPU_UP_PREPARE_FROZEN:
6380 case CPU_DOWN_PREPARE:
6381 case CPU_DOWN_PREPARE_FROZEN:
6382 detach_destroy_domains(&cpu_online_map);
6383 return NOTIFY_OK;
6384
6385 case CPU_UP_CANCELED:
6386 case CPU_UP_CANCELED_FROZEN:
6387 case CPU_DOWN_FAILED:
6388 case CPU_DOWN_FAILED_FROZEN:
6389 case CPU_ONLINE:
6390 case CPU_ONLINE_FROZEN:
6391 case CPU_DEAD:
6392 case CPU_DEAD_FROZEN:
6393 /*
6394 * Fall through and re-initialise the domains.
6395 */
6396 break;
6397 default:
6398 return NOTIFY_DONE;
6399 }
6400
6401 /* The hotplug lock is already held by cpu_up/cpu_down */
6402 arch_init_sched_domains(&cpu_online_map);
6403
6404 return NOTIFY_OK;
6405 }
6406
6407 void __init sched_init_smp(void)
6408 {
6409 cpumask_t non_isolated_cpus;
6410
6411 mutex_lock(&sched_hotcpu_mutex);
6412 arch_init_sched_domains(&cpu_online_map);
6413 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6414 if (cpus_empty(non_isolated_cpus))
6415 cpu_set(smp_processor_id(), non_isolated_cpus);
6416 mutex_unlock(&sched_hotcpu_mutex);
6417 /* XXX: Theoretical race here - CPU may be hotplugged now */
6418 hotcpu_notifier(update_sched_domains, 0);
6419
6420 init_sched_domain_sysctl();
6421
6422 /* Move init over to a non-isolated CPU */
6423 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6424 BUG();
6425 sched_init_granularity();
6426 }
6427 #else
6428 void __init sched_init_smp(void)
6429 {
6430 sched_init_granularity();
6431 }
6432 #endif /* CONFIG_SMP */
6433
6434 int in_sched_functions(unsigned long addr)
6435 {
6436 /* Linker adds these: start and end of __sched functions */
6437 extern char __sched_text_start[], __sched_text_end[];
6438
6439 return in_lock_functions(addr) ||
6440 (addr >= (unsigned long)__sched_text_start
6441 && addr < (unsigned long)__sched_text_end);
6442 }
6443
6444 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6445 {
6446 cfs_rq->tasks_timeline = RB_ROOT;
6447 cfs_rq->fair_clock = 1;
6448 #ifdef CONFIG_FAIR_GROUP_SCHED
6449 cfs_rq->rq = rq;
6450 #endif
6451 }
6452
6453 void __init sched_init(void)
6454 {
6455 u64 now = sched_clock();
6456 int highest_cpu = 0;
6457 int i, j;
6458
6459 /*
6460 * Link up the scheduling class hierarchy:
6461 */
6462 rt_sched_class.next = &fair_sched_class;
6463 fair_sched_class.next = &idle_sched_class;
6464 idle_sched_class.next = NULL;
6465
6466 for_each_possible_cpu(i) {
6467 struct rt_prio_array *array;
6468 struct rq *rq;
6469
6470 rq = cpu_rq(i);
6471 spin_lock_init(&rq->lock);
6472 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6473 rq->nr_running = 0;
6474 rq->clock = 1;
6475 init_cfs_rq(&rq->cfs, rq);
6476 #ifdef CONFIG_FAIR_GROUP_SCHED
6477 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6478 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6479 #endif
6480 rq->ls.load_update_last = now;
6481 rq->ls.load_update_start = now;
6482
6483 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6484 rq->cpu_load[j] = 0;
6485 #ifdef CONFIG_SMP
6486 rq->sd = NULL;
6487 rq->active_balance = 0;
6488 rq->next_balance = jiffies;
6489 rq->push_cpu = 0;
6490 rq->cpu = i;
6491 rq->migration_thread = NULL;
6492 INIT_LIST_HEAD(&rq->migration_queue);
6493 #endif
6494 atomic_set(&rq->nr_iowait, 0);
6495
6496 array = &rq->rt.active;
6497 for (j = 0; j < MAX_RT_PRIO; j++) {
6498 INIT_LIST_HEAD(array->queue + j);
6499 __clear_bit(j, array->bitmap);
6500 }
6501 highest_cpu = i;
6502 /* delimiter for bitsearch: */
6503 __set_bit(MAX_RT_PRIO, array->bitmap);
6504 }
6505
6506 set_load_weight(&init_task);
6507
6508 #ifdef CONFIG_PREEMPT_NOTIFIERS
6509 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6510 #endif
6511
6512 #ifdef CONFIG_SMP
6513 nr_cpu_ids = highest_cpu + 1;
6514 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6515 #endif
6516
6517 #ifdef CONFIG_RT_MUTEXES
6518 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6519 #endif
6520
6521 /*
6522 * The boot idle thread does lazy MMU switching as well:
6523 */
6524 atomic_inc(&init_mm.mm_count);
6525 enter_lazy_tlb(&init_mm, current);
6526
6527 /*
6528 * Make us the idle thread. Technically, schedule() should not be
6529 * called from this thread, however somewhere below it might be,
6530 * but because we are the idle thread, we just pick up running again
6531 * when this runqueue becomes "idle".
6532 */
6533 init_idle(current, smp_processor_id());
6534 /*
6535 * During early bootup we pretend to be a normal task:
6536 */
6537 current->sched_class = &fair_sched_class;
6538 }
6539
6540 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6541 void __might_sleep(char *file, int line)
6542 {
6543 #ifdef in_atomic
6544 static unsigned long prev_jiffy; /* ratelimiting */
6545
6546 if ((in_atomic() || irqs_disabled()) &&
6547 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6548 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6549 return;
6550 prev_jiffy = jiffies;
6551 printk(KERN_ERR "BUG: sleeping function called from invalid"
6552 " context at %s:%d\n", file, line);
6553 printk("in_atomic():%d, irqs_disabled():%d\n",
6554 in_atomic(), irqs_disabled());
6555 debug_show_held_locks(current);
6556 if (irqs_disabled())
6557 print_irqtrace_events(current);
6558 dump_stack();
6559 }
6560 #endif
6561 }
6562 EXPORT_SYMBOL(__might_sleep);
6563 #endif
6564
6565 #ifdef CONFIG_MAGIC_SYSRQ
6566 void normalize_rt_tasks(void)
6567 {
6568 struct task_struct *g, *p;
6569 unsigned long flags;
6570 struct rq *rq;
6571 int on_rq;
6572
6573 read_lock_irq(&tasklist_lock);
6574 do_each_thread(g, p) {
6575 p->se.fair_key = 0;
6576 p->se.wait_runtime = 0;
6577 p->se.wait_start_fair = 0;
6578 p->se.wait_start = 0;
6579 p->se.exec_start = 0;
6580 p->se.sleep_start = 0;
6581 p->se.sleep_start_fair = 0;
6582 p->se.block_start = 0;
6583 task_rq(p)->cfs.fair_clock = 0;
6584 task_rq(p)->clock = 0;
6585
6586 if (!rt_task(p)) {
6587 /*
6588 * Renice negative nice level userspace
6589 * tasks back to 0:
6590 */
6591 if (TASK_NICE(p) < 0 && p->mm)
6592 set_user_nice(p, 0);
6593 continue;
6594 }
6595
6596 spin_lock_irqsave(&p->pi_lock, flags);
6597 rq = __task_rq_lock(p);
6598 #ifdef CONFIG_SMP
6599 /*
6600 * Do not touch the migration thread:
6601 */
6602 if (p == rq->migration_thread)
6603 goto out_unlock;
6604 #endif
6605
6606 on_rq = p->se.on_rq;
6607 if (on_rq)
6608 deactivate_task(task_rq(p), p, 0);
6609 __setscheduler(rq, p, SCHED_NORMAL, 0);
6610 if (on_rq) {
6611 activate_task(task_rq(p), p, 0);
6612 resched_task(rq->curr);
6613 }
6614 #ifdef CONFIG_SMP
6615 out_unlock:
6616 #endif
6617 __task_rq_unlock(rq);
6618 spin_unlock_irqrestore(&p->pi_lock, flags);
6619 } while_each_thread(g, p);
6620
6621 read_unlock_irq(&tasklist_lock);
6622 }
6623
6624 #endif /* CONFIG_MAGIC_SYSRQ */
6625
6626 #ifdef CONFIG_IA64
6627 /*
6628 * These functions are only useful for the IA64 MCA handling.
6629 *
6630 * They can only be called when the whole system has been
6631 * stopped - every CPU needs to be quiescent, and no scheduling
6632 * activity can take place. Using them for anything else would
6633 * be a serious bug, and as a result, they aren't even visible
6634 * under any other configuration.
6635 */
6636
6637 /**
6638 * curr_task - return the current task for a given cpu.
6639 * @cpu: the processor in question.
6640 *
6641 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6642 */
6643 struct task_struct *curr_task(int cpu)
6644 {
6645 return cpu_curr(cpu);
6646 }
6647
6648 /**
6649 * set_curr_task - set the current task for a given cpu.
6650 * @cpu: the processor in question.
6651 * @p: the task pointer to set.
6652 *
6653 * Description: This function must only be used when non-maskable interrupts
6654 * are serviced on a separate stack. It allows the architecture to switch the
6655 * notion of the current task on a cpu in a non-blocking manner. This function
6656 * must be called with all CPU's synchronized, and interrupts disabled, the
6657 * and caller must save the original value of the current task (see
6658 * curr_task() above) and restore that value before reenabling interrupts and
6659 * re-starting the system.
6660 *
6661 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6662 */
6663 void set_curr_task(int cpu, struct task_struct *p)
6664 {
6665 cpu_curr(cpu) = p;
6666 }
6667
6668 #endif