]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched.c
sched: fix the task_group hierarchy for UID grouping
[mirror_ubuntu-zesty-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/kthread.h>
58 #include <linux/seq_file.h>
59 #include <linux/sysctl.h>
60 #include <linux/syscalls.h>
61 #include <linux/times.h>
62 #include <linux/tsacct_kern.h>
63 #include <linux/kprobes.h>
64 #include <linux/delayacct.h>
65 #include <linux/reciprocal_div.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/bootmem.h>
71
72 #include <asm/tlb.h>
73 #include <asm/irq_regs.h>
74
75 /*
76 * Scheduler clock - returns current time in nanosec units.
77 * This is default implementation.
78 * Architectures and sub-architectures can override this.
79 */
80 unsigned long long __attribute__((weak)) sched_clock(void)
81 {
82 return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
83 }
84
85 /*
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 * and back.
89 */
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93
94 /*
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
98 */
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102
103 /*
104 * Helpers for converting nanosecond timing to jiffy resolution
105 */
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
107
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110
111 /*
112 * These are the 'tuning knobs' of the scheduler:
113 *
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
116 */
117 #define DEF_TIMESLICE (100 * HZ / 1000)
118
119 /*
120 * single value that denotes runtime == period, ie unlimited time.
121 */
122 #define RUNTIME_INF ((u64)~0ULL)
123
124 #ifdef CONFIG_SMP
125 /*
126 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
127 * Since cpu_power is a 'constant', we can use a reciprocal divide.
128 */
129 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
130 {
131 return reciprocal_divide(load, sg->reciprocal_cpu_power);
132 }
133
134 /*
135 * Each time a sched group cpu_power is changed,
136 * we must compute its reciprocal value
137 */
138 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
139 {
140 sg->__cpu_power += val;
141 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
142 }
143 #endif
144
145 static inline int rt_policy(int policy)
146 {
147 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
148 return 1;
149 return 0;
150 }
151
152 static inline int task_has_rt_policy(struct task_struct *p)
153 {
154 return rt_policy(p->policy);
155 }
156
157 /*
158 * This is the priority-queue data structure of the RT scheduling class:
159 */
160 struct rt_prio_array {
161 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
162 struct list_head queue[MAX_RT_PRIO];
163 };
164
165 struct rt_bandwidth {
166 /* nests inside the rq lock: */
167 spinlock_t rt_runtime_lock;
168 ktime_t rt_period;
169 u64 rt_runtime;
170 struct hrtimer rt_period_timer;
171 };
172
173 static struct rt_bandwidth def_rt_bandwidth;
174
175 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
176
177 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
178 {
179 struct rt_bandwidth *rt_b =
180 container_of(timer, struct rt_bandwidth, rt_period_timer);
181 ktime_t now;
182 int overrun;
183 int idle = 0;
184
185 for (;;) {
186 now = hrtimer_cb_get_time(timer);
187 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
188
189 if (!overrun)
190 break;
191
192 idle = do_sched_rt_period_timer(rt_b, overrun);
193 }
194
195 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
196 }
197
198 static
199 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
200 {
201 rt_b->rt_period = ns_to_ktime(period);
202 rt_b->rt_runtime = runtime;
203
204 spin_lock_init(&rt_b->rt_runtime_lock);
205
206 hrtimer_init(&rt_b->rt_period_timer,
207 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
208 rt_b->rt_period_timer.function = sched_rt_period_timer;
209 rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
210 }
211
212 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
213 {
214 ktime_t now;
215
216 if (rt_b->rt_runtime == RUNTIME_INF)
217 return;
218
219 if (hrtimer_active(&rt_b->rt_period_timer))
220 return;
221
222 spin_lock(&rt_b->rt_runtime_lock);
223 for (;;) {
224 if (hrtimer_active(&rt_b->rt_period_timer))
225 break;
226
227 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
228 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
229 hrtimer_start(&rt_b->rt_period_timer,
230 rt_b->rt_period_timer.expires,
231 HRTIMER_MODE_ABS);
232 }
233 spin_unlock(&rt_b->rt_runtime_lock);
234 }
235
236 #ifdef CONFIG_RT_GROUP_SCHED
237 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
238 {
239 hrtimer_cancel(&rt_b->rt_period_timer);
240 }
241 #endif
242
243 #ifdef CONFIG_GROUP_SCHED
244
245 #include <linux/cgroup.h>
246
247 struct cfs_rq;
248
249 static LIST_HEAD(task_groups);
250
251 /* task group related information */
252 struct task_group {
253 #ifdef CONFIG_CGROUP_SCHED
254 struct cgroup_subsys_state css;
255 #endif
256
257 #ifdef CONFIG_FAIR_GROUP_SCHED
258 /* schedulable entities of this group on each cpu */
259 struct sched_entity **se;
260 /* runqueue "owned" by this group on each cpu */
261 struct cfs_rq **cfs_rq;
262 unsigned long shares;
263 #endif
264
265 #ifdef CONFIG_RT_GROUP_SCHED
266 struct sched_rt_entity **rt_se;
267 struct rt_rq **rt_rq;
268
269 struct rt_bandwidth rt_bandwidth;
270 #endif
271
272 struct rcu_head rcu;
273 struct list_head list;
274 };
275
276 #ifdef CONFIG_USER_SCHED
277
278 /*
279 * Root task group.
280 * Every UID task group (including init_task_group aka UID-0) will
281 * be a child to this group.
282 */
283 struct task_group root_task_group;
284
285 #ifdef CONFIG_FAIR_GROUP_SCHED
286 /* Default task group's sched entity on each cpu */
287 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
288 /* Default task group's cfs_rq on each cpu */
289 static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
290 #endif
291
292 #ifdef CONFIG_RT_GROUP_SCHED
293 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
294 static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
295 #endif
296 #else
297 #define root_task_group init_task_group
298 #endif
299
300 /* task_group_lock serializes add/remove of task groups and also changes to
301 * a task group's cpu shares.
302 */
303 static DEFINE_SPINLOCK(task_group_lock);
304
305 /* doms_cur_mutex serializes access to doms_cur[] array */
306 static DEFINE_MUTEX(doms_cur_mutex);
307
308 #ifdef CONFIG_FAIR_GROUP_SCHED
309 #ifdef CONFIG_USER_SCHED
310 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
311 #else
312 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
313 #endif
314
315 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
316 #endif
317
318 /* Default task group.
319 * Every task in system belong to this group at bootup.
320 */
321 struct task_group init_task_group;
322
323 /* return group to which a task belongs */
324 static inline struct task_group *task_group(struct task_struct *p)
325 {
326 struct task_group *tg;
327
328 #ifdef CONFIG_USER_SCHED
329 tg = p->user->tg;
330 #elif defined(CONFIG_CGROUP_SCHED)
331 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
332 struct task_group, css);
333 #else
334 tg = &init_task_group;
335 #endif
336 return tg;
337 }
338
339 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
340 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
341 {
342 #ifdef CONFIG_FAIR_GROUP_SCHED
343 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
344 p->se.parent = task_group(p)->se[cpu];
345 #endif
346
347 #ifdef CONFIG_RT_GROUP_SCHED
348 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
349 p->rt.parent = task_group(p)->rt_se[cpu];
350 #endif
351 }
352
353 static inline void lock_doms_cur(void)
354 {
355 mutex_lock(&doms_cur_mutex);
356 }
357
358 static inline void unlock_doms_cur(void)
359 {
360 mutex_unlock(&doms_cur_mutex);
361 }
362
363 #else
364
365 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
366 static inline void lock_doms_cur(void) { }
367 static inline void unlock_doms_cur(void) { }
368
369 #endif /* CONFIG_GROUP_SCHED */
370
371 /* CFS-related fields in a runqueue */
372 struct cfs_rq {
373 struct load_weight load;
374 unsigned long nr_running;
375
376 u64 exec_clock;
377 u64 min_vruntime;
378
379 struct rb_root tasks_timeline;
380 struct rb_node *rb_leftmost;
381 struct rb_node *rb_load_balance_curr;
382 /* 'curr' points to currently running entity on this cfs_rq.
383 * It is set to NULL otherwise (i.e when none are currently running).
384 */
385 struct sched_entity *curr, *next;
386
387 unsigned long nr_spread_over;
388
389 #ifdef CONFIG_FAIR_GROUP_SCHED
390 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
391
392 /*
393 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
394 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
395 * (like users, containers etc.)
396 *
397 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
398 * list is used during load balance.
399 */
400 struct list_head leaf_cfs_rq_list;
401 struct task_group *tg; /* group that "owns" this runqueue */
402 #endif
403 };
404
405 /* Real-Time classes' related field in a runqueue: */
406 struct rt_rq {
407 struct rt_prio_array active;
408 unsigned long rt_nr_running;
409 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
410 int highest_prio; /* highest queued rt task prio */
411 #endif
412 #ifdef CONFIG_SMP
413 unsigned long rt_nr_migratory;
414 int overloaded;
415 #endif
416 int rt_throttled;
417 u64 rt_time;
418 u64 rt_runtime;
419 /* Nests inside the rq lock: */
420 spinlock_t rt_runtime_lock;
421
422 #ifdef CONFIG_RT_GROUP_SCHED
423 unsigned long rt_nr_boosted;
424
425 struct rq *rq;
426 struct list_head leaf_rt_rq_list;
427 struct task_group *tg;
428 struct sched_rt_entity *rt_se;
429 #endif
430 };
431
432 #ifdef CONFIG_SMP
433
434 /*
435 * We add the notion of a root-domain which will be used to define per-domain
436 * variables. Each exclusive cpuset essentially defines an island domain by
437 * fully partitioning the member cpus from any other cpuset. Whenever a new
438 * exclusive cpuset is created, we also create and attach a new root-domain
439 * object.
440 *
441 */
442 struct root_domain {
443 atomic_t refcount;
444 cpumask_t span;
445 cpumask_t online;
446
447 /*
448 * The "RT overload" flag: it gets set if a CPU has more than
449 * one runnable RT task.
450 */
451 cpumask_t rto_mask;
452 atomic_t rto_count;
453 };
454
455 /*
456 * By default the system creates a single root-domain with all cpus as
457 * members (mimicking the global state we have today).
458 */
459 static struct root_domain def_root_domain;
460
461 #endif
462
463 /*
464 * This is the main, per-CPU runqueue data structure.
465 *
466 * Locking rule: those places that want to lock multiple runqueues
467 * (such as the load balancing or the thread migration code), lock
468 * acquire operations must be ordered by ascending &runqueue.
469 */
470 struct rq {
471 /* runqueue lock: */
472 spinlock_t lock;
473
474 /*
475 * nr_running and cpu_load should be in the same cacheline because
476 * remote CPUs use both these fields when doing load calculation.
477 */
478 unsigned long nr_running;
479 #define CPU_LOAD_IDX_MAX 5
480 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
481 unsigned char idle_at_tick;
482 #ifdef CONFIG_NO_HZ
483 unsigned long last_tick_seen;
484 unsigned char in_nohz_recently;
485 #endif
486 /* capture load from *all* tasks on this cpu: */
487 struct load_weight load;
488 unsigned long nr_load_updates;
489 u64 nr_switches;
490
491 struct cfs_rq cfs;
492 struct rt_rq rt;
493
494 #ifdef CONFIG_FAIR_GROUP_SCHED
495 /* list of leaf cfs_rq on this cpu: */
496 struct list_head leaf_cfs_rq_list;
497 #endif
498 #ifdef CONFIG_RT_GROUP_SCHED
499 struct list_head leaf_rt_rq_list;
500 #endif
501
502 /*
503 * This is part of a global counter where only the total sum
504 * over all CPUs matters. A task can increase this counter on
505 * one CPU and if it got migrated afterwards it may decrease
506 * it on another CPU. Always updated under the runqueue lock:
507 */
508 unsigned long nr_uninterruptible;
509
510 struct task_struct *curr, *idle;
511 unsigned long next_balance;
512 struct mm_struct *prev_mm;
513
514 u64 clock, prev_clock_raw;
515 s64 clock_max_delta;
516
517 unsigned int clock_warps, clock_overflows, clock_underflows;
518 u64 idle_clock;
519 unsigned int clock_deep_idle_events;
520 u64 tick_timestamp;
521
522 atomic_t nr_iowait;
523
524 #ifdef CONFIG_SMP
525 struct root_domain *rd;
526 struct sched_domain *sd;
527
528 /* For active balancing */
529 int active_balance;
530 int push_cpu;
531 /* cpu of this runqueue: */
532 int cpu;
533
534 struct task_struct *migration_thread;
535 struct list_head migration_queue;
536 #endif
537
538 #ifdef CONFIG_SCHED_HRTICK
539 unsigned long hrtick_flags;
540 ktime_t hrtick_expire;
541 struct hrtimer hrtick_timer;
542 #endif
543
544 #ifdef CONFIG_SCHEDSTATS
545 /* latency stats */
546 struct sched_info rq_sched_info;
547
548 /* sys_sched_yield() stats */
549 unsigned int yld_exp_empty;
550 unsigned int yld_act_empty;
551 unsigned int yld_both_empty;
552 unsigned int yld_count;
553
554 /* schedule() stats */
555 unsigned int sched_switch;
556 unsigned int sched_count;
557 unsigned int sched_goidle;
558
559 /* try_to_wake_up() stats */
560 unsigned int ttwu_count;
561 unsigned int ttwu_local;
562
563 /* BKL stats */
564 unsigned int bkl_count;
565 #endif
566 struct lock_class_key rq_lock_key;
567 };
568
569 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
570
571 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
572 {
573 rq->curr->sched_class->check_preempt_curr(rq, p);
574 }
575
576 static inline int cpu_of(struct rq *rq)
577 {
578 #ifdef CONFIG_SMP
579 return rq->cpu;
580 #else
581 return 0;
582 #endif
583 }
584
585 #ifdef CONFIG_NO_HZ
586 static inline bool nohz_on(int cpu)
587 {
588 return tick_get_tick_sched(cpu)->nohz_mode != NOHZ_MODE_INACTIVE;
589 }
590
591 static inline u64 max_skipped_ticks(struct rq *rq)
592 {
593 return nohz_on(cpu_of(rq)) ? jiffies - rq->last_tick_seen + 2 : 1;
594 }
595
596 static inline void update_last_tick_seen(struct rq *rq)
597 {
598 rq->last_tick_seen = jiffies;
599 }
600 #else
601 static inline u64 max_skipped_ticks(struct rq *rq)
602 {
603 return 1;
604 }
605
606 static inline void update_last_tick_seen(struct rq *rq)
607 {
608 }
609 #endif
610
611 /*
612 * Update the per-runqueue clock, as finegrained as the platform can give
613 * us, but without assuming monotonicity, etc.:
614 */
615 static void __update_rq_clock(struct rq *rq)
616 {
617 u64 prev_raw = rq->prev_clock_raw;
618 u64 now = sched_clock();
619 s64 delta = now - prev_raw;
620 u64 clock = rq->clock;
621
622 #ifdef CONFIG_SCHED_DEBUG
623 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
624 #endif
625 /*
626 * Protect against sched_clock() occasionally going backwards:
627 */
628 if (unlikely(delta < 0)) {
629 clock++;
630 rq->clock_warps++;
631 } else {
632 /*
633 * Catch too large forward jumps too:
634 */
635 u64 max_jump = max_skipped_ticks(rq) * TICK_NSEC;
636 u64 max_time = rq->tick_timestamp + max_jump;
637
638 if (unlikely(clock + delta > max_time)) {
639 if (clock < max_time)
640 clock = max_time;
641 else
642 clock++;
643 rq->clock_overflows++;
644 } else {
645 if (unlikely(delta > rq->clock_max_delta))
646 rq->clock_max_delta = delta;
647 clock += delta;
648 }
649 }
650
651 rq->prev_clock_raw = now;
652 rq->clock = clock;
653 }
654
655 static void update_rq_clock(struct rq *rq)
656 {
657 if (likely(smp_processor_id() == cpu_of(rq)))
658 __update_rq_clock(rq);
659 }
660
661 /*
662 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
663 * See detach_destroy_domains: synchronize_sched for details.
664 *
665 * The domain tree of any CPU may only be accessed from within
666 * preempt-disabled sections.
667 */
668 #define for_each_domain(cpu, __sd) \
669 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
670
671 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
672 #define this_rq() (&__get_cpu_var(runqueues))
673 #define task_rq(p) cpu_rq(task_cpu(p))
674 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
675
676 /*
677 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
678 */
679 #ifdef CONFIG_SCHED_DEBUG
680 # define const_debug __read_mostly
681 #else
682 # define const_debug static const
683 #endif
684
685 /*
686 * Debugging: various feature bits
687 */
688 enum {
689 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
690 SCHED_FEAT_WAKEUP_PREEMPT = 2,
691 SCHED_FEAT_START_DEBIT = 4,
692 SCHED_FEAT_AFFINE_WAKEUPS = 8,
693 SCHED_FEAT_CACHE_HOT_BUDDY = 16,
694 SCHED_FEAT_SYNC_WAKEUPS = 32,
695 SCHED_FEAT_HRTICK = 64,
696 SCHED_FEAT_DOUBLE_TICK = 128,
697 SCHED_FEAT_NORMALIZED_SLEEPER = 256,
698 };
699
700 const_debug unsigned int sysctl_sched_features =
701 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
702 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
703 SCHED_FEAT_START_DEBIT * 1 |
704 SCHED_FEAT_AFFINE_WAKEUPS * 1 |
705 SCHED_FEAT_CACHE_HOT_BUDDY * 1 |
706 SCHED_FEAT_SYNC_WAKEUPS * 1 |
707 SCHED_FEAT_HRTICK * 1 |
708 SCHED_FEAT_DOUBLE_TICK * 0 |
709 SCHED_FEAT_NORMALIZED_SLEEPER * 1;
710
711 #define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
712
713 /*
714 * Number of tasks to iterate in a single balance run.
715 * Limited because this is done with IRQs disabled.
716 */
717 const_debug unsigned int sysctl_sched_nr_migrate = 32;
718
719 /*
720 * period over which we measure -rt task cpu usage in us.
721 * default: 1s
722 */
723 unsigned int sysctl_sched_rt_period = 1000000;
724
725 static __read_mostly int scheduler_running;
726
727 /*
728 * part of the period that we allow rt tasks to run in us.
729 * default: 0.95s
730 */
731 int sysctl_sched_rt_runtime = 950000;
732
733 static inline u64 global_rt_period(void)
734 {
735 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
736 }
737
738 static inline u64 global_rt_runtime(void)
739 {
740 if (sysctl_sched_rt_period < 0)
741 return RUNTIME_INF;
742
743 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
744 }
745
746 static const unsigned long long time_sync_thresh = 100000;
747
748 static DEFINE_PER_CPU(unsigned long long, time_offset);
749 static DEFINE_PER_CPU(unsigned long long, prev_cpu_time);
750
751 /*
752 * Global lock which we take every now and then to synchronize
753 * the CPUs time. This method is not warp-safe, but it's good
754 * enough to synchronize slowly diverging time sources and thus
755 * it's good enough for tracing:
756 */
757 static DEFINE_SPINLOCK(time_sync_lock);
758 static unsigned long long prev_global_time;
759
760 static unsigned long long __sync_cpu_clock(cycles_t time, int cpu)
761 {
762 unsigned long flags;
763
764 spin_lock_irqsave(&time_sync_lock, flags);
765
766 if (time < prev_global_time) {
767 per_cpu(time_offset, cpu) += prev_global_time - time;
768 time = prev_global_time;
769 } else {
770 prev_global_time = time;
771 }
772
773 spin_unlock_irqrestore(&time_sync_lock, flags);
774
775 return time;
776 }
777
778 static unsigned long long __cpu_clock(int cpu)
779 {
780 unsigned long long now;
781 unsigned long flags;
782 struct rq *rq;
783
784 /*
785 * Only call sched_clock() if the scheduler has already been
786 * initialized (some code might call cpu_clock() very early):
787 */
788 if (unlikely(!scheduler_running))
789 return 0;
790
791 local_irq_save(flags);
792 rq = cpu_rq(cpu);
793 update_rq_clock(rq);
794 now = rq->clock;
795 local_irq_restore(flags);
796
797 return now;
798 }
799
800 /*
801 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
802 * clock constructed from sched_clock():
803 */
804 unsigned long long cpu_clock(int cpu)
805 {
806 unsigned long long prev_cpu_time, time, delta_time;
807
808 prev_cpu_time = per_cpu(prev_cpu_time, cpu);
809 time = __cpu_clock(cpu) + per_cpu(time_offset, cpu);
810 delta_time = time-prev_cpu_time;
811
812 if (unlikely(delta_time > time_sync_thresh))
813 time = __sync_cpu_clock(time, cpu);
814
815 return time;
816 }
817 EXPORT_SYMBOL_GPL(cpu_clock);
818
819 #ifndef prepare_arch_switch
820 # define prepare_arch_switch(next) do { } while (0)
821 #endif
822 #ifndef finish_arch_switch
823 # define finish_arch_switch(prev) do { } while (0)
824 #endif
825
826 static inline int task_current(struct rq *rq, struct task_struct *p)
827 {
828 return rq->curr == p;
829 }
830
831 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
832 static inline int task_running(struct rq *rq, struct task_struct *p)
833 {
834 return task_current(rq, p);
835 }
836
837 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
838 {
839 }
840
841 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
842 {
843 #ifdef CONFIG_DEBUG_SPINLOCK
844 /* this is a valid case when another task releases the spinlock */
845 rq->lock.owner = current;
846 #endif
847 /*
848 * If we are tracking spinlock dependencies then we have to
849 * fix up the runqueue lock - which gets 'carried over' from
850 * prev into current:
851 */
852 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
853
854 spin_unlock_irq(&rq->lock);
855 }
856
857 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
858 static inline int task_running(struct rq *rq, struct task_struct *p)
859 {
860 #ifdef CONFIG_SMP
861 return p->oncpu;
862 #else
863 return task_current(rq, p);
864 #endif
865 }
866
867 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
868 {
869 #ifdef CONFIG_SMP
870 /*
871 * We can optimise this out completely for !SMP, because the
872 * SMP rebalancing from interrupt is the only thing that cares
873 * here.
874 */
875 next->oncpu = 1;
876 #endif
877 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
878 spin_unlock_irq(&rq->lock);
879 #else
880 spin_unlock(&rq->lock);
881 #endif
882 }
883
884 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
885 {
886 #ifdef CONFIG_SMP
887 /*
888 * After ->oncpu is cleared, the task can be moved to a different CPU.
889 * We must ensure this doesn't happen until the switch is completely
890 * finished.
891 */
892 smp_wmb();
893 prev->oncpu = 0;
894 #endif
895 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
896 local_irq_enable();
897 #endif
898 }
899 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
900
901 /*
902 * __task_rq_lock - lock the runqueue a given task resides on.
903 * Must be called interrupts disabled.
904 */
905 static inline struct rq *__task_rq_lock(struct task_struct *p)
906 __acquires(rq->lock)
907 {
908 for (;;) {
909 struct rq *rq = task_rq(p);
910 spin_lock(&rq->lock);
911 if (likely(rq == task_rq(p)))
912 return rq;
913 spin_unlock(&rq->lock);
914 }
915 }
916
917 /*
918 * task_rq_lock - lock the runqueue a given task resides on and disable
919 * interrupts. Note the ordering: we can safely lookup the task_rq without
920 * explicitly disabling preemption.
921 */
922 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
923 __acquires(rq->lock)
924 {
925 struct rq *rq;
926
927 for (;;) {
928 local_irq_save(*flags);
929 rq = task_rq(p);
930 spin_lock(&rq->lock);
931 if (likely(rq == task_rq(p)))
932 return rq;
933 spin_unlock_irqrestore(&rq->lock, *flags);
934 }
935 }
936
937 static void __task_rq_unlock(struct rq *rq)
938 __releases(rq->lock)
939 {
940 spin_unlock(&rq->lock);
941 }
942
943 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
944 __releases(rq->lock)
945 {
946 spin_unlock_irqrestore(&rq->lock, *flags);
947 }
948
949 /*
950 * this_rq_lock - lock this runqueue and disable interrupts.
951 */
952 static struct rq *this_rq_lock(void)
953 __acquires(rq->lock)
954 {
955 struct rq *rq;
956
957 local_irq_disable();
958 rq = this_rq();
959 spin_lock(&rq->lock);
960
961 return rq;
962 }
963
964 /*
965 * We are going deep-idle (irqs are disabled):
966 */
967 void sched_clock_idle_sleep_event(void)
968 {
969 struct rq *rq = cpu_rq(smp_processor_id());
970
971 spin_lock(&rq->lock);
972 __update_rq_clock(rq);
973 spin_unlock(&rq->lock);
974 rq->clock_deep_idle_events++;
975 }
976 EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
977
978 /*
979 * We just idled delta nanoseconds (called with irqs disabled):
980 */
981 void sched_clock_idle_wakeup_event(u64 delta_ns)
982 {
983 struct rq *rq = cpu_rq(smp_processor_id());
984 u64 now = sched_clock();
985
986 rq->idle_clock += delta_ns;
987 /*
988 * Override the previous timestamp and ignore all
989 * sched_clock() deltas that occured while we idled,
990 * and use the PM-provided delta_ns to advance the
991 * rq clock:
992 */
993 spin_lock(&rq->lock);
994 rq->prev_clock_raw = now;
995 rq->clock += delta_ns;
996 spin_unlock(&rq->lock);
997 touch_softlockup_watchdog();
998 }
999 EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1000
1001 static void __resched_task(struct task_struct *p, int tif_bit);
1002
1003 static inline void resched_task(struct task_struct *p)
1004 {
1005 __resched_task(p, TIF_NEED_RESCHED);
1006 }
1007
1008 #ifdef CONFIG_SCHED_HRTICK
1009 /*
1010 * Use HR-timers to deliver accurate preemption points.
1011 *
1012 * Its all a bit involved since we cannot program an hrt while holding the
1013 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1014 * reschedule event.
1015 *
1016 * When we get rescheduled we reprogram the hrtick_timer outside of the
1017 * rq->lock.
1018 */
1019 static inline void resched_hrt(struct task_struct *p)
1020 {
1021 __resched_task(p, TIF_HRTICK_RESCHED);
1022 }
1023
1024 static inline void resched_rq(struct rq *rq)
1025 {
1026 unsigned long flags;
1027
1028 spin_lock_irqsave(&rq->lock, flags);
1029 resched_task(rq->curr);
1030 spin_unlock_irqrestore(&rq->lock, flags);
1031 }
1032
1033 enum {
1034 HRTICK_SET, /* re-programm hrtick_timer */
1035 HRTICK_RESET, /* not a new slice */
1036 };
1037
1038 /*
1039 * Use hrtick when:
1040 * - enabled by features
1041 * - hrtimer is actually high res
1042 */
1043 static inline int hrtick_enabled(struct rq *rq)
1044 {
1045 if (!sched_feat(HRTICK))
1046 return 0;
1047 return hrtimer_is_hres_active(&rq->hrtick_timer);
1048 }
1049
1050 /*
1051 * Called to set the hrtick timer state.
1052 *
1053 * called with rq->lock held and irqs disabled
1054 */
1055 static void hrtick_start(struct rq *rq, u64 delay, int reset)
1056 {
1057 assert_spin_locked(&rq->lock);
1058
1059 /*
1060 * preempt at: now + delay
1061 */
1062 rq->hrtick_expire =
1063 ktime_add_ns(rq->hrtick_timer.base->get_time(), delay);
1064 /*
1065 * indicate we need to program the timer
1066 */
1067 __set_bit(HRTICK_SET, &rq->hrtick_flags);
1068 if (reset)
1069 __set_bit(HRTICK_RESET, &rq->hrtick_flags);
1070
1071 /*
1072 * New slices are called from the schedule path and don't need a
1073 * forced reschedule.
1074 */
1075 if (reset)
1076 resched_hrt(rq->curr);
1077 }
1078
1079 static void hrtick_clear(struct rq *rq)
1080 {
1081 if (hrtimer_active(&rq->hrtick_timer))
1082 hrtimer_cancel(&rq->hrtick_timer);
1083 }
1084
1085 /*
1086 * Update the timer from the possible pending state.
1087 */
1088 static void hrtick_set(struct rq *rq)
1089 {
1090 ktime_t time;
1091 int set, reset;
1092 unsigned long flags;
1093
1094 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1095
1096 spin_lock_irqsave(&rq->lock, flags);
1097 set = __test_and_clear_bit(HRTICK_SET, &rq->hrtick_flags);
1098 reset = __test_and_clear_bit(HRTICK_RESET, &rq->hrtick_flags);
1099 time = rq->hrtick_expire;
1100 clear_thread_flag(TIF_HRTICK_RESCHED);
1101 spin_unlock_irqrestore(&rq->lock, flags);
1102
1103 if (set) {
1104 hrtimer_start(&rq->hrtick_timer, time, HRTIMER_MODE_ABS);
1105 if (reset && !hrtimer_active(&rq->hrtick_timer))
1106 resched_rq(rq);
1107 } else
1108 hrtick_clear(rq);
1109 }
1110
1111 /*
1112 * High-resolution timer tick.
1113 * Runs from hardirq context with interrupts disabled.
1114 */
1115 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1116 {
1117 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1118
1119 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1120
1121 spin_lock(&rq->lock);
1122 __update_rq_clock(rq);
1123 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1124 spin_unlock(&rq->lock);
1125
1126 return HRTIMER_NORESTART;
1127 }
1128
1129 static inline void init_rq_hrtick(struct rq *rq)
1130 {
1131 rq->hrtick_flags = 0;
1132 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1133 rq->hrtick_timer.function = hrtick;
1134 rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ;
1135 }
1136
1137 void hrtick_resched(void)
1138 {
1139 struct rq *rq;
1140 unsigned long flags;
1141
1142 if (!test_thread_flag(TIF_HRTICK_RESCHED))
1143 return;
1144
1145 local_irq_save(flags);
1146 rq = cpu_rq(smp_processor_id());
1147 hrtick_set(rq);
1148 local_irq_restore(flags);
1149 }
1150 #else
1151 static inline void hrtick_clear(struct rq *rq)
1152 {
1153 }
1154
1155 static inline void hrtick_set(struct rq *rq)
1156 {
1157 }
1158
1159 static inline void init_rq_hrtick(struct rq *rq)
1160 {
1161 }
1162
1163 void hrtick_resched(void)
1164 {
1165 }
1166 #endif
1167
1168 /*
1169 * resched_task - mark a task 'to be rescheduled now'.
1170 *
1171 * On UP this means the setting of the need_resched flag, on SMP it
1172 * might also involve a cross-CPU call to trigger the scheduler on
1173 * the target CPU.
1174 */
1175 #ifdef CONFIG_SMP
1176
1177 #ifndef tsk_is_polling
1178 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1179 #endif
1180
1181 static void __resched_task(struct task_struct *p, int tif_bit)
1182 {
1183 int cpu;
1184
1185 assert_spin_locked(&task_rq(p)->lock);
1186
1187 if (unlikely(test_tsk_thread_flag(p, tif_bit)))
1188 return;
1189
1190 set_tsk_thread_flag(p, tif_bit);
1191
1192 cpu = task_cpu(p);
1193 if (cpu == smp_processor_id())
1194 return;
1195
1196 /* NEED_RESCHED must be visible before we test polling */
1197 smp_mb();
1198 if (!tsk_is_polling(p))
1199 smp_send_reschedule(cpu);
1200 }
1201
1202 static void resched_cpu(int cpu)
1203 {
1204 struct rq *rq = cpu_rq(cpu);
1205 unsigned long flags;
1206
1207 if (!spin_trylock_irqsave(&rq->lock, flags))
1208 return;
1209 resched_task(cpu_curr(cpu));
1210 spin_unlock_irqrestore(&rq->lock, flags);
1211 }
1212
1213 #ifdef CONFIG_NO_HZ
1214 /*
1215 * When add_timer_on() enqueues a timer into the timer wheel of an
1216 * idle CPU then this timer might expire before the next timer event
1217 * which is scheduled to wake up that CPU. In case of a completely
1218 * idle system the next event might even be infinite time into the
1219 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1220 * leaves the inner idle loop so the newly added timer is taken into
1221 * account when the CPU goes back to idle and evaluates the timer
1222 * wheel for the next timer event.
1223 */
1224 void wake_up_idle_cpu(int cpu)
1225 {
1226 struct rq *rq = cpu_rq(cpu);
1227
1228 if (cpu == smp_processor_id())
1229 return;
1230
1231 /*
1232 * This is safe, as this function is called with the timer
1233 * wheel base lock of (cpu) held. When the CPU is on the way
1234 * to idle and has not yet set rq->curr to idle then it will
1235 * be serialized on the timer wheel base lock and take the new
1236 * timer into account automatically.
1237 */
1238 if (rq->curr != rq->idle)
1239 return;
1240
1241 /*
1242 * We can set TIF_RESCHED on the idle task of the other CPU
1243 * lockless. The worst case is that the other CPU runs the
1244 * idle task through an additional NOOP schedule()
1245 */
1246 set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED);
1247
1248 /* NEED_RESCHED must be visible before we test polling */
1249 smp_mb();
1250 if (!tsk_is_polling(rq->idle))
1251 smp_send_reschedule(cpu);
1252 }
1253 #endif
1254
1255 #else
1256 static void __resched_task(struct task_struct *p, int tif_bit)
1257 {
1258 assert_spin_locked(&task_rq(p)->lock);
1259 set_tsk_thread_flag(p, tif_bit);
1260 }
1261 #endif
1262
1263 #if BITS_PER_LONG == 32
1264 # define WMULT_CONST (~0UL)
1265 #else
1266 # define WMULT_CONST (1UL << 32)
1267 #endif
1268
1269 #define WMULT_SHIFT 32
1270
1271 /*
1272 * Shift right and round:
1273 */
1274 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1275
1276 static unsigned long
1277 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1278 struct load_weight *lw)
1279 {
1280 u64 tmp;
1281
1282 if (unlikely(!lw->inv_weight))
1283 lw->inv_weight = (WMULT_CONST-lw->weight/2) / (lw->weight+1);
1284
1285 tmp = (u64)delta_exec * weight;
1286 /*
1287 * Check whether we'd overflow the 64-bit multiplication:
1288 */
1289 if (unlikely(tmp > WMULT_CONST))
1290 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1291 WMULT_SHIFT/2);
1292 else
1293 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1294
1295 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1296 }
1297
1298 static inline unsigned long
1299 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
1300 {
1301 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
1302 }
1303
1304 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1305 {
1306 lw->weight += inc;
1307 lw->inv_weight = 0;
1308 }
1309
1310 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1311 {
1312 lw->weight -= dec;
1313 lw->inv_weight = 0;
1314 }
1315
1316 /*
1317 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1318 * of tasks with abnormal "nice" values across CPUs the contribution that
1319 * each task makes to its run queue's load is weighted according to its
1320 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1321 * scaled version of the new time slice allocation that they receive on time
1322 * slice expiry etc.
1323 */
1324
1325 #define WEIGHT_IDLEPRIO 2
1326 #define WMULT_IDLEPRIO (1 << 31)
1327
1328 /*
1329 * Nice levels are multiplicative, with a gentle 10% change for every
1330 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1331 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1332 * that remained on nice 0.
1333 *
1334 * The "10% effect" is relative and cumulative: from _any_ nice level,
1335 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1336 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1337 * If a task goes up by ~10% and another task goes down by ~10% then
1338 * the relative distance between them is ~25%.)
1339 */
1340 static const int prio_to_weight[40] = {
1341 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1342 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1343 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1344 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1345 /* 0 */ 1024, 820, 655, 526, 423,
1346 /* 5 */ 335, 272, 215, 172, 137,
1347 /* 10 */ 110, 87, 70, 56, 45,
1348 /* 15 */ 36, 29, 23, 18, 15,
1349 };
1350
1351 /*
1352 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1353 *
1354 * In cases where the weight does not change often, we can use the
1355 * precalculated inverse to speed up arithmetics by turning divisions
1356 * into multiplications:
1357 */
1358 static const u32 prio_to_wmult[40] = {
1359 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1360 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1361 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1362 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1363 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1364 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1365 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1366 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1367 };
1368
1369 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1370
1371 /*
1372 * runqueue iterator, to support SMP load-balancing between different
1373 * scheduling classes, without having to expose their internal data
1374 * structures to the load-balancing proper:
1375 */
1376 struct rq_iterator {
1377 void *arg;
1378 struct task_struct *(*start)(void *);
1379 struct task_struct *(*next)(void *);
1380 };
1381
1382 #ifdef CONFIG_SMP
1383 static unsigned long
1384 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1385 unsigned long max_load_move, struct sched_domain *sd,
1386 enum cpu_idle_type idle, int *all_pinned,
1387 int *this_best_prio, struct rq_iterator *iterator);
1388
1389 static int
1390 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1391 struct sched_domain *sd, enum cpu_idle_type idle,
1392 struct rq_iterator *iterator);
1393 #endif
1394
1395 #ifdef CONFIG_CGROUP_CPUACCT
1396 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1397 #else
1398 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1399 #endif
1400
1401 #ifdef CONFIG_SMP
1402 static unsigned long source_load(int cpu, int type);
1403 static unsigned long target_load(int cpu, int type);
1404 static unsigned long cpu_avg_load_per_task(int cpu);
1405 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1406 #endif /* CONFIG_SMP */
1407
1408 #include "sched_stats.h"
1409 #include "sched_idletask.c"
1410 #include "sched_fair.c"
1411 #include "sched_rt.c"
1412 #ifdef CONFIG_SCHED_DEBUG
1413 # include "sched_debug.c"
1414 #endif
1415
1416 #define sched_class_highest (&rt_sched_class)
1417
1418 static inline void inc_load(struct rq *rq, const struct task_struct *p)
1419 {
1420 update_load_add(&rq->load, p->se.load.weight);
1421 }
1422
1423 static inline void dec_load(struct rq *rq, const struct task_struct *p)
1424 {
1425 update_load_sub(&rq->load, p->se.load.weight);
1426 }
1427
1428 static void inc_nr_running(struct task_struct *p, struct rq *rq)
1429 {
1430 rq->nr_running++;
1431 inc_load(rq, p);
1432 }
1433
1434 static void dec_nr_running(struct task_struct *p, struct rq *rq)
1435 {
1436 rq->nr_running--;
1437 dec_load(rq, p);
1438 }
1439
1440 static void set_load_weight(struct task_struct *p)
1441 {
1442 if (task_has_rt_policy(p)) {
1443 p->se.load.weight = prio_to_weight[0] * 2;
1444 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1445 return;
1446 }
1447
1448 /*
1449 * SCHED_IDLE tasks get minimal weight:
1450 */
1451 if (p->policy == SCHED_IDLE) {
1452 p->se.load.weight = WEIGHT_IDLEPRIO;
1453 p->se.load.inv_weight = WMULT_IDLEPRIO;
1454 return;
1455 }
1456
1457 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1458 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1459 }
1460
1461 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1462 {
1463 sched_info_queued(p);
1464 p->sched_class->enqueue_task(rq, p, wakeup);
1465 p->se.on_rq = 1;
1466 }
1467
1468 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1469 {
1470 p->sched_class->dequeue_task(rq, p, sleep);
1471 p->se.on_rq = 0;
1472 }
1473
1474 /*
1475 * __normal_prio - return the priority that is based on the static prio
1476 */
1477 static inline int __normal_prio(struct task_struct *p)
1478 {
1479 return p->static_prio;
1480 }
1481
1482 /*
1483 * Calculate the expected normal priority: i.e. priority
1484 * without taking RT-inheritance into account. Might be
1485 * boosted by interactivity modifiers. Changes upon fork,
1486 * setprio syscalls, and whenever the interactivity
1487 * estimator recalculates.
1488 */
1489 static inline int normal_prio(struct task_struct *p)
1490 {
1491 int prio;
1492
1493 if (task_has_rt_policy(p))
1494 prio = MAX_RT_PRIO-1 - p->rt_priority;
1495 else
1496 prio = __normal_prio(p);
1497 return prio;
1498 }
1499
1500 /*
1501 * Calculate the current priority, i.e. the priority
1502 * taken into account by the scheduler. This value might
1503 * be boosted by RT tasks, or might be boosted by
1504 * interactivity modifiers. Will be RT if the task got
1505 * RT-boosted. If not then it returns p->normal_prio.
1506 */
1507 static int effective_prio(struct task_struct *p)
1508 {
1509 p->normal_prio = normal_prio(p);
1510 /*
1511 * If we are RT tasks or we were boosted to RT priority,
1512 * keep the priority unchanged. Otherwise, update priority
1513 * to the normal priority:
1514 */
1515 if (!rt_prio(p->prio))
1516 return p->normal_prio;
1517 return p->prio;
1518 }
1519
1520 /*
1521 * activate_task - move a task to the runqueue.
1522 */
1523 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1524 {
1525 if (task_contributes_to_load(p))
1526 rq->nr_uninterruptible--;
1527
1528 enqueue_task(rq, p, wakeup);
1529 inc_nr_running(p, rq);
1530 }
1531
1532 /*
1533 * deactivate_task - remove a task from the runqueue.
1534 */
1535 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1536 {
1537 if (task_contributes_to_load(p))
1538 rq->nr_uninterruptible++;
1539
1540 dequeue_task(rq, p, sleep);
1541 dec_nr_running(p, rq);
1542 }
1543
1544 /**
1545 * task_curr - is this task currently executing on a CPU?
1546 * @p: the task in question.
1547 */
1548 inline int task_curr(const struct task_struct *p)
1549 {
1550 return cpu_curr(task_cpu(p)) == p;
1551 }
1552
1553 /* Used instead of source_load when we know the type == 0 */
1554 unsigned long weighted_cpuload(const int cpu)
1555 {
1556 return cpu_rq(cpu)->load.weight;
1557 }
1558
1559 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1560 {
1561 set_task_rq(p, cpu);
1562 #ifdef CONFIG_SMP
1563 /*
1564 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1565 * successfuly executed on another CPU. We must ensure that updates of
1566 * per-task data have been completed by this moment.
1567 */
1568 smp_wmb();
1569 task_thread_info(p)->cpu = cpu;
1570 #endif
1571 }
1572
1573 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1574 const struct sched_class *prev_class,
1575 int oldprio, int running)
1576 {
1577 if (prev_class != p->sched_class) {
1578 if (prev_class->switched_from)
1579 prev_class->switched_from(rq, p, running);
1580 p->sched_class->switched_to(rq, p, running);
1581 } else
1582 p->sched_class->prio_changed(rq, p, oldprio, running);
1583 }
1584
1585 #ifdef CONFIG_SMP
1586
1587 /*
1588 * Is this task likely cache-hot:
1589 */
1590 static int
1591 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1592 {
1593 s64 delta;
1594
1595 /*
1596 * Buddy candidates are cache hot:
1597 */
1598 if (sched_feat(CACHE_HOT_BUDDY) && (&p->se == cfs_rq_of(&p->se)->next))
1599 return 1;
1600
1601 if (p->sched_class != &fair_sched_class)
1602 return 0;
1603
1604 if (sysctl_sched_migration_cost == -1)
1605 return 1;
1606 if (sysctl_sched_migration_cost == 0)
1607 return 0;
1608
1609 delta = now - p->se.exec_start;
1610
1611 return delta < (s64)sysctl_sched_migration_cost;
1612 }
1613
1614
1615 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
1616 {
1617 int old_cpu = task_cpu(p);
1618 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
1619 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1620 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
1621 u64 clock_offset;
1622
1623 clock_offset = old_rq->clock - new_rq->clock;
1624
1625 #ifdef CONFIG_SCHEDSTATS
1626 if (p->se.wait_start)
1627 p->se.wait_start -= clock_offset;
1628 if (p->se.sleep_start)
1629 p->se.sleep_start -= clock_offset;
1630 if (p->se.block_start)
1631 p->se.block_start -= clock_offset;
1632 if (old_cpu != new_cpu) {
1633 schedstat_inc(p, se.nr_migrations);
1634 if (task_hot(p, old_rq->clock, NULL))
1635 schedstat_inc(p, se.nr_forced2_migrations);
1636 }
1637 #endif
1638 p->se.vruntime -= old_cfsrq->min_vruntime -
1639 new_cfsrq->min_vruntime;
1640
1641 __set_task_cpu(p, new_cpu);
1642 }
1643
1644 struct migration_req {
1645 struct list_head list;
1646
1647 struct task_struct *task;
1648 int dest_cpu;
1649
1650 struct completion done;
1651 };
1652
1653 /*
1654 * The task's runqueue lock must be held.
1655 * Returns true if you have to wait for migration thread.
1656 */
1657 static int
1658 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1659 {
1660 struct rq *rq = task_rq(p);
1661
1662 /*
1663 * If the task is not on a runqueue (and not running), then
1664 * it is sufficient to simply update the task's cpu field.
1665 */
1666 if (!p->se.on_rq && !task_running(rq, p)) {
1667 set_task_cpu(p, dest_cpu);
1668 return 0;
1669 }
1670
1671 init_completion(&req->done);
1672 req->task = p;
1673 req->dest_cpu = dest_cpu;
1674 list_add(&req->list, &rq->migration_queue);
1675
1676 return 1;
1677 }
1678
1679 /*
1680 * wait_task_inactive - wait for a thread to unschedule.
1681 *
1682 * The caller must ensure that the task *will* unschedule sometime soon,
1683 * else this function might spin for a *long* time. This function can't
1684 * be called with interrupts off, or it may introduce deadlock with
1685 * smp_call_function() if an IPI is sent by the same process we are
1686 * waiting to become inactive.
1687 */
1688 void wait_task_inactive(struct task_struct *p)
1689 {
1690 unsigned long flags;
1691 int running, on_rq;
1692 struct rq *rq;
1693
1694 for (;;) {
1695 /*
1696 * We do the initial early heuristics without holding
1697 * any task-queue locks at all. We'll only try to get
1698 * the runqueue lock when things look like they will
1699 * work out!
1700 */
1701 rq = task_rq(p);
1702
1703 /*
1704 * If the task is actively running on another CPU
1705 * still, just relax and busy-wait without holding
1706 * any locks.
1707 *
1708 * NOTE! Since we don't hold any locks, it's not
1709 * even sure that "rq" stays as the right runqueue!
1710 * But we don't care, since "task_running()" will
1711 * return false if the runqueue has changed and p
1712 * is actually now running somewhere else!
1713 */
1714 while (task_running(rq, p))
1715 cpu_relax();
1716
1717 /*
1718 * Ok, time to look more closely! We need the rq
1719 * lock now, to be *sure*. If we're wrong, we'll
1720 * just go back and repeat.
1721 */
1722 rq = task_rq_lock(p, &flags);
1723 running = task_running(rq, p);
1724 on_rq = p->se.on_rq;
1725 task_rq_unlock(rq, &flags);
1726
1727 /*
1728 * Was it really running after all now that we
1729 * checked with the proper locks actually held?
1730 *
1731 * Oops. Go back and try again..
1732 */
1733 if (unlikely(running)) {
1734 cpu_relax();
1735 continue;
1736 }
1737
1738 /*
1739 * It's not enough that it's not actively running,
1740 * it must be off the runqueue _entirely_, and not
1741 * preempted!
1742 *
1743 * So if it wa still runnable (but just not actively
1744 * running right now), it's preempted, and we should
1745 * yield - it could be a while.
1746 */
1747 if (unlikely(on_rq)) {
1748 schedule_timeout_uninterruptible(1);
1749 continue;
1750 }
1751
1752 /*
1753 * Ahh, all good. It wasn't running, and it wasn't
1754 * runnable, which means that it will never become
1755 * running in the future either. We're all done!
1756 */
1757 break;
1758 }
1759 }
1760
1761 /***
1762 * kick_process - kick a running thread to enter/exit the kernel
1763 * @p: the to-be-kicked thread
1764 *
1765 * Cause a process which is running on another CPU to enter
1766 * kernel-mode, without any delay. (to get signals handled.)
1767 *
1768 * NOTE: this function doesnt have to take the runqueue lock,
1769 * because all it wants to ensure is that the remote task enters
1770 * the kernel. If the IPI races and the task has been migrated
1771 * to another CPU then no harm is done and the purpose has been
1772 * achieved as well.
1773 */
1774 void kick_process(struct task_struct *p)
1775 {
1776 int cpu;
1777
1778 preempt_disable();
1779 cpu = task_cpu(p);
1780 if ((cpu != smp_processor_id()) && task_curr(p))
1781 smp_send_reschedule(cpu);
1782 preempt_enable();
1783 }
1784
1785 /*
1786 * Return a low guess at the load of a migration-source cpu weighted
1787 * according to the scheduling class and "nice" value.
1788 *
1789 * We want to under-estimate the load of migration sources, to
1790 * balance conservatively.
1791 */
1792 static unsigned long source_load(int cpu, int type)
1793 {
1794 struct rq *rq = cpu_rq(cpu);
1795 unsigned long total = weighted_cpuload(cpu);
1796
1797 if (type == 0)
1798 return total;
1799
1800 return min(rq->cpu_load[type-1], total);
1801 }
1802
1803 /*
1804 * Return a high guess at the load of a migration-target cpu weighted
1805 * according to the scheduling class and "nice" value.
1806 */
1807 static unsigned long target_load(int cpu, int type)
1808 {
1809 struct rq *rq = cpu_rq(cpu);
1810 unsigned long total = weighted_cpuload(cpu);
1811
1812 if (type == 0)
1813 return total;
1814
1815 return max(rq->cpu_load[type-1], total);
1816 }
1817
1818 /*
1819 * Return the average load per task on the cpu's run queue
1820 */
1821 static unsigned long cpu_avg_load_per_task(int cpu)
1822 {
1823 struct rq *rq = cpu_rq(cpu);
1824 unsigned long total = weighted_cpuload(cpu);
1825 unsigned long n = rq->nr_running;
1826
1827 return n ? total / n : SCHED_LOAD_SCALE;
1828 }
1829
1830 /*
1831 * find_idlest_group finds and returns the least busy CPU group within the
1832 * domain.
1833 */
1834 static struct sched_group *
1835 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1836 {
1837 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1838 unsigned long min_load = ULONG_MAX, this_load = 0;
1839 int load_idx = sd->forkexec_idx;
1840 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1841
1842 do {
1843 unsigned long load, avg_load;
1844 int local_group;
1845 int i;
1846
1847 /* Skip over this group if it has no CPUs allowed */
1848 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1849 continue;
1850
1851 local_group = cpu_isset(this_cpu, group->cpumask);
1852
1853 /* Tally up the load of all CPUs in the group */
1854 avg_load = 0;
1855
1856 for_each_cpu_mask(i, group->cpumask) {
1857 /* Bias balancing toward cpus of our domain */
1858 if (local_group)
1859 load = source_load(i, load_idx);
1860 else
1861 load = target_load(i, load_idx);
1862
1863 avg_load += load;
1864 }
1865
1866 /* Adjust by relative CPU power of the group */
1867 avg_load = sg_div_cpu_power(group,
1868 avg_load * SCHED_LOAD_SCALE);
1869
1870 if (local_group) {
1871 this_load = avg_load;
1872 this = group;
1873 } else if (avg_load < min_load) {
1874 min_load = avg_load;
1875 idlest = group;
1876 }
1877 } while (group = group->next, group != sd->groups);
1878
1879 if (!idlest || 100*this_load < imbalance*min_load)
1880 return NULL;
1881 return idlest;
1882 }
1883
1884 /*
1885 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1886 */
1887 static int
1888 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu,
1889 cpumask_t *tmp)
1890 {
1891 unsigned long load, min_load = ULONG_MAX;
1892 int idlest = -1;
1893 int i;
1894
1895 /* Traverse only the allowed CPUs */
1896 cpus_and(*tmp, group->cpumask, p->cpus_allowed);
1897
1898 for_each_cpu_mask(i, *tmp) {
1899 load = weighted_cpuload(i);
1900
1901 if (load < min_load || (load == min_load && i == this_cpu)) {
1902 min_load = load;
1903 idlest = i;
1904 }
1905 }
1906
1907 return idlest;
1908 }
1909
1910 /*
1911 * sched_balance_self: balance the current task (running on cpu) in domains
1912 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1913 * SD_BALANCE_EXEC.
1914 *
1915 * Balance, ie. select the least loaded group.
1916 *
1917 * Returns the target CPU number, or the same CPU if no balancing is needed.
1918 *
1919 * preempt must be disabled.
1920 */
1921 static int sched_balance_self(int cpu, int flag)
1922 {
1923 struct task_struct *t = current;
1924 struct sched_domain *tmp, *sd = NULL;
1925
1926 for_each_domain(cpu, tmp) {
1927 /*
1928 * If power savings logic is enabled for a domain, stop there.
1929 */
1930 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1931 break;
1932 if (tmp->flags & flag)
1933 sd = tmp;
1934 }
1935
1936 while (sd) {
1937 cpumask_t span, tmpmask;
1938 struct sched_group *group;
1939 int new_cpu, weight;
1940
1941 if (!(sd->flags & flag)) {
1942 sd = sd->child;
1943 continue;
1944 }
1945
1946 span = sd->span;
1947 group = find_idlest_group(sd, t, cpu);
1948 if (!group) {
1949 sd = sd->child;
1950 continue;
1951 }
1952
1953 new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask);
1954 if (new_cpu == -1 || new_cpu == cpu) {
1955 /* Now try balancing at a lower domain level of cpu */
1956 sd = sd->child;
1957 continue;
1958 }
1959
1960 /* Now try balancing at a lower domain level of new_cpu */
1961 cpu = new_cpu;
1962 sd = NULL;
1963 weight = cpus_weight(span);
1964 for_each_domain(cpu, tmp) {
1965 if (weight <= cpus_weight(tmp->span))
1966 break;
1967 if (tmp->flags & flag)
1968 sd = tmp;
1969 }
1970 /* while loop will break here if sd == NULL */
1971 }
1972
1973 return cpu;
1974 }
1975
1976 #endif /* CONFIG_SMP */
1977
1978 /***
1979 * try_to_wake_up - wake up a thread
1980 * @p: the to-be-woken-up thread
1981 * @state: the mask of task states that can be woken
1982 * @sync: do a synchronous wakeup?
1983 *
1984 * Put it on the run-queue if it's not already there. The "current"
1985 * thread is always on the run-queue (except when the actual
1986 * re-schedule is in progress), and as such you're allowed to do
1987 * the simpler "current->state = TASK_RUNNING" to mark yourself
1988 * runnable without the overhead of this.
1989 *
1990 * returns failure only if the task is already active.
1991 */
1992 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1993 {
1994 int cpu, orig_cpu, this_cpu, success = 0;
1995 unsigned long flags;
1996 long old_state;
1997 struct rq *rq;
1998
1999 if (!sched_feat(SYNC_WAKEUPS))
2000 sync = 0;
2001
2002 smp_wmb();
2003 rq = task_rq_lock(p, &flags);
2004 old_state = p->state;
2005 if (!(old_state & state))
2006 goto out;
2007
2008 if (p->se.on_rq)
2009 goto out_running;
2010
2011 cpu = task_cpu(p);
2012 orig_cpu = cpu;
2013 this_cpu = smp_processor_id();
2014
2015 #ifdef CONFIG_SMP
2016 if (unlikely(task_running(rq, p)))
2017 goto out_activate;
2018
2019 cpu = p->sched_class->select_task_rq(p, sync);
2020 if (cpu != orig_cpu) {
2021 set_task_cpu(p, cpu);
2022 task_rq_unlock(rq, &flags);
2023 /* might preempt at this point */
2024 rq = task_rq_lock(p, &flags);
2025 old_state = p->state;
2026 if (!(old_state & state))
2027 goto out;
2028 if (p->se.on_rq)
2029 goto out_running;
2030
2031 this_cpu = smp_processor_id();
2032 cpu = task_cpu(p);
2033 }
2034
2035 #ifdef CONFIG_SCHEDSTATS
2036 schedstat_inc(rq, ttwu_count);
2037 if (cpu == this_cpu)
2038 schedstat_inc(rq, ttwu_local);
2039 else {
2040 struct sched_domain *sd;
2041 for_each_domain(this_cpu, sd) {
2042 if (cpu_isset(cpu, sd->span)) {
2043 schedstat_inc(sd, ttwu_wake_remote);
2044 break;
2045 }
2046 }
2047 }
2048 #endif
2049
2050 out_activate:
2051 #endif /* CONFIG_SMP */
2052 schedstat_inc(p, se.nr_wakeups);
2053 if (sync)
2054 schedstat_inc(p, se.nr_wakeups_sync);
2055 if (orig_cpu != cpu)
2056 schedstat_inc(p, se.nr_wakeups_migrate);
2057 if (cpu == this_cpu)
2058 schedstat_inc(p, se.nr_wakeups_local);
2059 else
2060 schedstat_inc(p, se.nr_wakeups_remote);
2061 update_rq_clock(rq);
2062 activate_task(rq, p, 1);
2063 success = 1;
2064
2065 out_running:
2066 check_preempt_curr(rq, p);
2067
2068 p->state = TASK_RUNNING;
2069 #ifdef CONFIG_SMP
2070 if (p->sched_class->task_wake_up)
2071 p->sched_class->task_wake_up(rq, p);
2072 #endif
2073 out:
2074 task_rq_unlock(rq, &flags);
2075
2076 return success;
2077 }
2078
2079 int wake_up_process(struct task_struct *p)
2080 {
2081 return try_to_wake_up(p, TASK_ALL, 0);
2082 }
2083 EXPORT_SYMBOL(wake_up_process);
2084
2085 int wake_up_state(struct task_struct *p, unsigned int state)
2086 {
2087 return try_to_wake_up(p, state, 0);
2088 }
2089
2090 /*
2091 * Perform scheduler related setup for a newly forked process p.
2092 * p is forked by current.
2093 *
2094 * __sched_fork() is basic setup used by init_idle() too:
2095 */
2096 static void __sched_fork(struct task_struct *p)
2097 {
2098 p->se.exec_start = 0;
2099 p->se.sum_exec_runtime = 0;
2100 p->se.prev_sum_exec_runtime = 0;
2101 p->se.last_wakeup = 0;
2102 p->se.avg_overlap = 0;
2103
2104 #ifdef CONFIG_SCHEDSTATS
2105 p->se.wait_start = 0;
2106 p->se.sum_sleep_runtime = 0;
2107 p->se.sleep_start = 0;
2108 p->se.block_start = 0;
2109 p->se.sleep_max = 0;
2110 p->se.block_max = 0;
2111 p->se.exec_max = 0;
2112 p->se.slice_max = 0;
2113 p->se.wait_max = 0;
2114 #endif
2115
2116 INIT_LIST_HEAD(&p->rt.run_list);
2117 p->se.on_rq = 0;
2118
2119 #ifdef CONFIG_PREEMPT_NOTIFIERS
2120 INIT_HLIST_HEAD(&p->preempt_notifiers);
2121 #endif
2122
2123 /*
2124 * We mark the process as running here, but have not actually
2125 * inserted it onto the runqueue yet. This guarantees that
2126 * nobody will actually run it, and a signal or other external
2127 * event cannot wake it up and insert it on the runqueue either.
2128 */
2129 p->state = TASK_RUNNING;
2130 }
2131
2132 /*
2133 * fork()/clone()-time setup:
2134 */
2135 void sched_fork(struct task_struct *p, int clone_flags)
2136 {
2137 int cpu = get_cpu();
2138
2139 __sched_fork(p);
2140
2141 #ifdef CONFIG_SMP
2142 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2143 #endif
2144 set_task_cpu(p, cpu);
2145
2146 /*
2147 * Make sure we do not leak PI boosting priority to the child:
2148 */
2149 p->prio = current->normal_prio;
2150 if (!rt_prio(p->prio))
2151 p->sched_class = &fair_sched_class;
2152
2153 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2154 if (likely(sched_info_on()))
2155 memset(&p->sched_info, 0, sizeof(p->sched_info));
2156 #endif
2157 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2158 p->oncpu = 0;
2159 #endif
2160 #ifdef CONFIG_PREEMPT
2161 /* Want to start with kernel preemption disabled. */
2162 task_thread_info(p)->preempt_count = 1;
2163 #endif
2164 put_cpu();
2165 }
2166
2167 /*
2168 * wake_up_new_task - wake up a newly created task for the first time.
2169 *
2170 * This function will do some initial scheduler statistics housekeeping
2171 * that must be done for every newly created context, then puts the task
2172 * on the runqueue and wakes it.
2173 */
2174 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2175 {
2176 unsigned long flags;
2177 struct rq *rq;
2178
2179 rq = task_rq_lock(p, &flags);
2180 BUG_ON(p->state != TASK_RUNNING);
2181 update_rq_clock(rq);
2182
2183 p->prio = effective_prio(p);
2184
2185 if (!p->sched_class->task_new || !current->se.on_rq) {
2186 activate_task(rq, p, 0);
2187 } else {
2188 /*
2189 * Let the scheduling class do new task startup
2190 * management (if any):
2191 */
2192 p->sched_class->task_new(rq, p);
2193 inc_nr_running(p, rq);
2194 }
2195 check_preempt_curr(rq, p);
2196 #ifdef CONFIG_SMP
2197 if (p->sched_class->task_wake_up)
2198 p->sched_class->task_wake_up(rq, p);
2199 #endif
2200 task_rq_unlock(rq, &flags);
2201 }
2202
2203 #ifdef CONFIG_PREEMPT_NOTIFIERS
2204
2205 /**
2206 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
2207 * @notifier: notifier struct to register
2208 */
2209 void preempt_notifier_register(struct preempt_notifier *notifier)
2210 {
2211 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2212 }
2213 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2214
2215 /**
2216 * preempt_notifier_unregister - no longer interested in preemption notifications
2217 * @notifier: notifier struct to unregister
2218 *
2219 * This is safe to call from within a preemption notifier.
2220 */
2221 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2222 {
2223 hlist_del(&notifier->link);
2224 }
2225 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2226
2227 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2228 {
2229 struct preempt_notifier *notifier;
2230 struct hlist_node *node;
2231
2232 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2233 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2234 }
2235
2236 static void
2237 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2238 struct task_struct *next)
2239 {
2240 struct preempt_notifier *notifier;
2241 struct hlist_node *node;
2242
2243 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2244 notifier->ops->sched_out(notifier, next);
2245 }
2246
2247 #else
2248
2249 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2250 {
2251 }
2252
2253 static void
2254 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2255 struct task_struct *next)
2256 {
2257 }
2258
2259 #endif
2260
2261 /**
2262 * prepare_task_switch - prepare to switch tasks
2263 * @rq: the runqueue preparing to switch
2264 * @prev: the current task that is being switched out
2265 * @next: the task we are going to switch to.
2266 *
2267 * This is called with the rq lock held and interrupts off. It must
2268 * be paired with a subsequent finish_task_switch after the context
2269 * switch.
2270 *
2271 * prepare_task_switch sets up locking and calls architecture specific
2272 * hooks.
2273 */
2274 static inline void
2275 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2276 struct task_struct *next)
2277 {
2278 fire_sched_out_preempt_notifiers(prev, next);
2279 prepare_lock_switch(rq, next);
2280 prepare_arch_switch(next);
2281 }
2282
2283 /**
2284 * finish_task_switch - clean up after a task-switch
2285 * @rq: runqueue associated with task-switch
2286 * @prev: the thread we just switched away from.
2287 *
2288 * finish_task_switch must be called after the context switch, paired
2289 * with a prepare_task_switch call before the context switch.
2290 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2291 * and do any other architecture-specific cleanup actions.
2292 *
2293 * Note that we may have delayed dropping an mm in context_switch(). If
2294 * so, we finish that here outside of the runqueue lock. (Doing it
2295 * with the lock held can cause deadlocks; see schedule() for
2296 * details.)
2297 */
2298 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2299 __releases(rq->lock)
2300 {
2301 struct mm_struct *mm = rq->prev_mm;
2302 long prev_state;
2303
2304 rq->prev_mm = NULL;
2305
2306 /*
2307 * A task struct has one reference for the use as "current".
2308 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2309 * schedule one last time. The schedule call will never return, and
2310 * the scheduled task must drop that reference.
2311 * The test for TASK_DEAD must occur while the runqueue locks are
2312 * still held, otherwise prev could be scheduled on another cpu, die
2313 * there before we look at prev->state, and then the reference would
2314 * be dropped twice.
2315 * Manfred Spraul <manfred@colorfullife.com>
2316 */
2317 prev_state = prev->state;
2318 finish_arch_switch(prev);
2319 finish_lock_switch(rq, prev);
2320 #ifdef CONFIG_SMP
2321 if (current->sched_class->post_schedule)
2322 current->sched_class->post_schedule(rq);
2323 #endif
2324
2325 fire_sched_in_preempt_notifiers(current);
2326 if (mm)
2327 mmdrop(mm);
2328 if (unlikely(prev_state == TASK_DEAD)) {
2329 /*
2330 * Remove function-return probe instances associated with this
2331 * task and put them back on the free list.
2332 */
2333 kprobe_flush_task(prev);
2334 put_task_struct(prev);
2335 }
2336 }
2337
2338 /**
2339 * schedule_tail - first thing a freshly forked thread must call.
2340 * @prev: the thread we just switched away from.
2341 */
2342 asmlinkage void schedule_tail(struct task_struct *prev)
2343 __releases(rq->lock)
2344 {
2345 struct rq *rq = this_rq();
2346
2347 finish_task_switch(rq, prev);
2348 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2349 /* In this case, finish_task_switch does not reenable preemption */
2350 preempt_enable();
2351 #endif
2352 if (current->set_child_tid)
2353 put_user(task_pid_vnr(current), current->set_child_tid);
2354 }
2355
2356 /*
2357 * context_switch - switch to the new MM and the new
2358 * thread's register state.
2359 */
2360 static inline void
2361 context_switch(struct rq *rq, struct task_struct *prev,
2362 struct task_struct *next)
2363 {
2364 struct mm_struct *mm, *oldmm;
2365
2366 prepare_task_switch(rq, prev, next);
2367 mm = next->mm;
2368 oldmm = prev->active_mm;
2369 /*
2370 * For paravirt, this is coupled with an exit in switch_to to
2371 * combine the page table reload and the switch backend into
2372 * one hypercall.
2373 */
2374 arch_enter_lazy_cpu_mode();
2375
2376 if (unlikely(!mm)) {
2377 next->active_mm = oldmm;
2378 atomic_inc(&oldmm->mm_count);
2379 enter_lazy_tlb(oldmm, next);
2380 } else
2381 switch_mm(oldmm, mm, next);
2382
2383 if (unlikely(!prev->mm)) {
2384 prev->active_mm = NULL;
2385 rq->prev_mm = oldmm;
2386 }
2387 /*
2388 * Since the runqueue lock will be released by the next
2389 * task (which is an invalid locking op but in the case
2390 * of the scheduler it's an obvious special-case), so we
2391 * do an early lockdep release here:
2392 */
2393 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2394 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2395 #endif
2396
2397 /* Here we just switch the register state and the stack. */
2398 switch_to(prev, next, prev);
2399
2400 barrier();
2401 /*
2402 * this_rq must be evaluated again because prev may have moved
2403 * CPUs since it called schedule(), thus the 'rq' on its stack
2404 * frame will be invalid.
2405 */
2406 finish_task_switch(this_rq(), prev);
2407 }
2408
2409 /*
2410 * nr_running, nr_uninterruptible and nr_context_switches:
2411 *
2412 * externally visible scheduler statistics: current number of runnable
2413 * threads, current number of uninterruptible-sleeping threads, total
2414 * number of context switches performed since bootup.
2415 */
2416 unsigned long nr_running(void)
2417 {
2418 unsigned long i, sum = 0;
2419
2420 for_each_online_cpu(i)
2421 sum += cpu_rq(i)->nr_running;
2422
2423 return sum;
2424 }
2425
2426 unsigned long nr_uninterruptible(void)
2427 {
2428 unsigned long i, sum = 0;
2429
2430 for_each_possible_cpu(i)
2431 sum += cpu_rq(i)->nr_uninterruptible;
2432
2433 /*
2434 * Since we read the counters lockless, it might be slightly
2435 * inaccurate. Do not allow it to go below zero though:
2436 */
2437 if (unlikely((long)sum < 0))
2438 sum = 0;
2439
2440 return sum;
2441 }
2442
2443 unsigned long long nr_context_switches(void)
2444 {
2445 int i;
2446 unsigned long long sum = 0;
2447
2448 for_each_possible_cpu(i)
2449 sum += cpu_rq(i)->nr_switches;
2450
2451 return sum;
2452 }
2453
2454 unsigned long nr_iowait(void)
2455 {
2456 unsigned long i, sum = 0;
2457
2458 for_each_possible_cpu(i)
2459 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2460
2461 return sum;
2462 }
2463
2464 unsigned long nr_active(void)
2465 {
2466 unsigned long i, running = 0, uninterruptible = 0;
2467
2468 for_each_online_cpu(i) {
2469 running += cpu_rq(i)->nr_running;
2470 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2471 }
2472
2473 if (unlikely((long)uninterruptible < 0))
2474 uninterruptible = 0;
2475
2476 return running + uninterruptible;
2477 }
2478
2479 /*
2480 * Update rq->cpu_load[] statistics. This function is usually called every
2481 * scheduler tick (TICK_NSEC).
2482 */
2483 static void update_cpu_load(struct rq *this_rq)
2484 {
2485 unsigned long this_load = this_rq->load.weight;
2486 int i, scale;
2487
2488 this_rq->nr_load_updates++;
2489
2490 /* Update our load: */
2491 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2492 unsigned long old_load, new_load;
2493
2494 /* scale is effectively 1 << i now, and >> i divides by scale */
2495
2496 old_load = this_rq->cpu_load[i];
2497 new_load = this_load;
2498 /*
2499 * Round up the averaging division if load is increasing. This
2500 * prevents us from getting stuck on 9 if the load is 10, for
2501 * example.
2502 */
2503 if (new_load > old_load)
2504 new_load += scale-1;
2505 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2506 }
2507 }
2508
2509 #ifdef CONFIG_SMP
2510
2511 /*
2512 * double_rq_lock - safely lock two runqueues
2513 *
2514 * Note this does not disable interrupts like task_rq_lock,
2515 * you need to do so manually before calling.
2516 */
2517 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2518 __acquires(rq1->lock)
2519 __acquires(rq2->lock)
2520 {
2521 BUG_ON(!irqs_disabled());
2522 if (rq1 == rq2) {
2523 spin_lock(&rq1->lock);
2524 __acquire(rq2->lock); /* Fake it out ;) */
2525 } else {
2526 if (rq1 < rq2) {
2527 spin_lock(&rq1->lock);
2528 spin_lock(&rq2->lock);
2529 } else {
2530 spin_lock(&rq2->lock);
2531 spin_lock(&rq1->lock);
2532 }
2533 }
2534 update_rq_clock(rq1);
2535 update_rq_clock(rq2);
2536 }
2537
2538 /*
2539 * double_rq_unlock - safely unlock two runqueues
2540 *
2541 * Note this does not restore interrupts like task_rq_unlock,
2542 * you need to do so manually after calling.
2543 */
2544 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2545 __releases(rq1->lock)
2546 __releases(rq2->lock)
2547 {
2548 spin_unlock(&rq1->lock);
2549 if (rq1 != rq2)
2550 spin_unlock(&rq2->lock);
2551 else
2552 __release(rq2->lock);
2553 }
2554
2555 /*
2556 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2557 */
2558 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2559 __releases(this_rq->lock)
2560 __acquires(busiest->lock)
2561 __acquires(this_rq->lock)
2562 {
2563 int ret = 0;
2564
2565 if (unlikely(!irqs_disabled())) {
2566 /* printk() doesn't work good under rq->lock */
2567 spin_unlock(&this_rq->lock);
2568 BUG_ON(1);
2569 }
2570 if (unlikely(!spin_trylock(&busiest->lock))) {
2571 if (busiest < this_rq) {
2572 spin_unlock(&this_rq->lock);
2573 spin_lock(&busiest->lock);
2574 spin_lock(&this_rq->lock);
2575 ret = 1;
2576 } else
2577 spin_lock(&busiest->lock);
2578 }
2579 return ret;
2580 }
2581
2582 /*
2583 * If dest_cpu is allowed for this process, migrate the task to it.
2584 * This is accomplished by forcing the cpu_allowed mask to only
2585 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2586 * the cpu_allowed mask is restored.
2587 */
2588 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2589 {
2590 struct migration_req req;
2591 unsigned long flags;
2592 struct rq *rq;
2593
2594 rq = task_rq_lock(p, &flags);
2595 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2596 || unlikely(cpu_is_offline(dest_cpu)))
2597 goto out;
2598
2599 /* force the process onto the specified CPU */
2600 if (migrate_task(p, dest_cpu, &req)) {
2601 /* Need to wait for migration thread (might exit: take ref). */
2602 struct task_struct *mt = rq->migration_thread;
2603
2604 get_task_struct(mt);
2605 task_rq_unlock(rq, &flags);
2606 wake_up_process(mt);
2607 put_task_struct(mt);
2608 wait_for_completion(&req.done);
2609
2610 return;
2611 }
2612 out:
2613 task_rq_unlock(rq, &flags);
2614 }
2615
2616 /*
2617 * sched_exec - execve() is a valuable balancing opportunity, because at
2618 * this point the task has the smallest effective memory and cache footprint.
2619 */
2620 void sched_exec(void)
2621 {
2622 int new_cpu, this_cpu = get_cpu();
2623 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2624 put_cpu();
2625 if (new_cpu != this_cpu)
2626 sched_migrate_task(current, new_cpu);
2627 }
2628
2629 /*
2630 * pull_task - move a task from a remote runqueue to the local runqueue.
2631 * Both runqueues must be locked.
2632 */
2633 static void pull_task(struct rq *src_rq, struct task_struct *p,
2634 struct rq *this_rq, int this_cpu)
2635 {
2636 deactivate_task(src_rq, p, 0);
2637 set_task_cpu(p, this_cpu);
2638 activate_task(this_rq, p, 0);
2639 /*
2640 * Note that idle threads have a prio of MAX_PRIO, for this test
2641 * to be always true for them.
2642 */
2643 check_preempt_curr(this_rq, p);
2644 }
2645
2646 /*
2647 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2648 */
2649 static
2650 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2651 struct sched_domain *sd, enum cpu_idle_type idle,
2652 int *all_pinned)
2653 {
2654 /*
2655 * We do not migrate tasks that are:
2656 * 1) running (obviously), or
2657 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2658 * 3) are cache-hot on their current CPU.
2659 */
2660 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2661 schedstat_inc(p, se.nr_failed_migrations_affine);
2662 return 0;
2663 }
2664 *all_pinned = 0;
2665
2666 if (task_running(rq, p)) {
2667 schedstat_inc(p, se.nr_failed_migrations_running);
2668 return 0;
2669 }
2670
2671 /*
2672 * Aggressive migration if:
2673 * 1) task is cache cold, or
2674 * 2) too many balance attempts have failed.
2675 */
2676
2677 if (!task_hot(p, rq->clock, sd) ||
2678 sd->nr_balance_failed > sd->cache_nice_tries) {
2679 #ifdef CONFIG_SCHEDSTATS
2680 if (task_hot(p, rq->clock, sd)) {
2681 schedstat_inc(sd, lb_hot_gained[idle]);
2682 schedstat_inc(p, se.nr_forced_migrations);
2683 }
2684 #endif
2685 return 1;
2686 }
2687
2688 if (task_hot(p, rq->clock, sd)) {
2689 schedstat_inc(p, se.nr_failed_migrations_hot);
2690 return 0;
2691 }
2692 return 1;
2693 }
2694
2695 static unsigned long
2696 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2697 unsigned long max_load_move, struct sched_domain *sd,
2698 enum cpu_idle_type idle, int *all_pinned,
2699 int *this_best_prio, struct rq_iterator *iterator)
2700 {
2701 int loops = 0, pulled = 0, pinned = 0, skip_for_load;
2702 struct task_struct *p;
2703 long rem_load_move = max_load_move;
2704
2705 if (max_load_move == 0)
2706 goto out;
2707
2708 pinned = 1;
2709
2710 /*
2711 * Start the load-balancing iterator:
2712 */
2713 p = iterator->start(iterator->arg);
2714 next:
2715 if (!p || loops++ > sysctl_sched_nr_migrate)
2716 goto out;
2717 /*
2718 * To help distribute high priority tasks across CPUs we don't
2719 * skip a task if it will be the highest priority task (i.e. smallest
2720 * prio value) on its new queue regardless of its load weight
2721 */
2722 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2723 SCHED_LOAD_SCALE_FUZZ;
2724 if ((skip_for_load && p->prio >= *this_best_prio) ||
2725 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2726 p = iterator->next(iterator->arg);
2727 goto next;
2728 }
2729
2730 pull_task(busiest, p, this_rq, this_cpu);
2731 pulled++;
2732 rem_load_move -= p->se.load.weight;
2733
2734 /*
2735 * We only want to steal up to the prescribed amount of weighted load.
2736 */
2737 if (rem_load_move > 0) {
2738 if (p->prio < *this_best_prio)
2739 *this_best_prio = p->prio;
2740 p = iterator->next(iterator->arg);
2741 goto next;
2742 }
2743 out:
2744 /*
2745 * Right now, this is one of only two places pull_task() is called,
2746 * so we can safely collect pull_task() stats here rather than
2747 * inside pull_task().
2748 */
2749 schedstat_add(sd, lb_gained[idle], pulled);
2750
2751 if (all_pinned)
2752 *all_pinned = pinned;
2753
2754 return max_load_move - rem_load_move;
2755 }
2756
2757 /*
2758 * move_tasks tries to move up to max_load_move weighted load from busiest to
2759 * this_rq, as part of a balancing operation within domain "sd".
2760 * Returns 1 if successful and 0 otherwise.
2761 *
2762 * Called with both runqueues locked.
2763 */
2764 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2765 unsigned long max_load_move,
2766 struct sched_domain *sd, enum cpu_idle_type idle,
2767 int *all_pinned)
2768 {
2769 const struct sched_class *class = sched_class_highest;
2770 unsigned long total_load_moved = 0;
2771 int this_best_prio = this_rq->curr->prio;
2772
2773 do {
2774 total_load_moved +=
2775 class->load_balance(this_rq, this_cpu, busiest,
2776 max_load_move - total_load_moved,
2777 sd, idle, all_pinned, &this_best_prio);
2778 class = class->next;
2779 } while (class && max_load_move > total_load_moved);
2780
2781 return total_load_moved > 0;
2782 }
2783
2784 static int
2785 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2786 struct sched_domain *sd, enum cpu_idle_type idle,
2787 struct rq_iterator *iterator)
2788 {
2789 struct task_struct *p = iterator->start(iterator->arg);
2790 int pinned = 0;
2791
2792 while (p) {
2793 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2794 pull_task(busiest, p, this_rq, this_cpu);
2795 /*
2796 * Right now, this is only the second place pull_task()
2797 * is called, so we can safely collect pull_task()
2798 * stats here rather than inside pull_task().
2799 */
2800 schedstat_inc(sd, lb_gained[idle]);
2801
2802 return 1;
2803 }
2804 p = iterator->next(iterator->arg);
2805 }
2806
2807 return 0;
2808 }
2809
2810 /*
2811 * move_one_task tries to move exactly one task from busiest to this_rq, as
2812 * part of active balancing operations within "domain".
2813 * Returns 1 if successful and 0 otherwise.
2814 *
2815 * Called with both runqueues locked.
2816 */
2817 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2818 struct sched_domain *sd, enum cpu_idle_type idle)
2819 {
2820 const struct sched_class *class;
2821
2822 for (class = sched_class_highest; class; class = class->next)
2823 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
2824 return 1;
2825
2826 return 0;
2827 }
2828
2829 /*
2830 * find_busiest_group finds and returns the busiest CPU group within the
2831 * domain. It calculates and returns the amount of weighted load which
2832 * should be moved to restore balance via the imbalance parameter.
2833 */
2834 static struct sched_group *
2835 find_busiest_group(struct sched_domain *sd, int this_cpu,
2836 unsigned long *imbalance, enum cpu_idle_type idle,
2837 int *sd_idle, const cpumask_t *cpus, int *balance)
2838 {
2839 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2840 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2841 unsigned long max_pull;
2842 unsigned long busiest_load_per_task, busiest_nr_running;
2843 unsigned long this_load_per_task, this_nr_running;
2844 int load_idx, group_imb = 0;
2845 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2846 int power_savings_balance = 1;
2847 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2848 unsigned long min_nr_running = ULONG_MAX;
2849 struct sched_group *group_min = NULL, *group_leader = NULL;
2850 #endif
2851
2852 max_load = this_load = total_load = total_pwr = 0;
2853 busiest_load_per_task = busiest_nr_running = 0;
2854 this_load_per_task = this_nr_running = 0;
2855 if (idle == CPU_NOT_IDLE)
2856 load_idx = sd->busy_idx;
2857 else if (idle == CPU_NEWLY_IDLE)
2858 load_idx = sd->newidle_idx;
2859 else
2860 load_idx = sd->idle_idx;
2861
2862 do {
2863 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
2864 int local_group;
2865 int i;
2866 int __group_imb = 0;
2867 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2868 unsigned long sum_nr_running, sum_weighted_load;
2869
2870 local_group = cpu_isset(this_cpu, group->cpumask);
2871
2872 if (local_group)
2873 balance_cpu = first_cpu(group->cpumask);
2874
2875 /* Tally up the load of all CPUs in the group */
2876 sum_weighted_load = sum_nr_running = avg_load = 0;
2877 max_cpu_load = 0;
2878 min_cpu_load = ~0UL;
2879
2880 for_each_cpu_mask(i, group->cpumask) {
2881 struct rq *rq;
2882
2883 if (!cpu_isset(i, *cpus))
2884 continue;
2885
2886 rq = cpu_rq(i);
2887
2888 if (*sd_idle && rq->nr_running)
2889 *sd_idle = 0;
2890
2891 /* Bias balancing toward cpus of our domain */
2892 if (local_group) {
2893 if (idle_cpu(i) && !first_idle_cpu) {
2894 first_idle_cpu = 1;
2895 balance_cpu = i;
2896 }
2897
2898 load = target_load(i, load_idx);
2899 } else {
2900 load = source_load(i, load_idx);
2901 if (load > max_cpu_load)
2902 max_cpu_load = load;
2903 if (min_cpu_load > load)
2904 min_cpu_load = load;
2905 }
2906
2907 avg_load += load;
2908 sum_nr_running += rq->nr_running;
2909 sum_weighted_load += weighted_cpuload(i);
2910 }
2911
2912 /*
2913 * First idle cpu or the first cpu(busiest) in this sched group
2914 * is eligible for doing load balancing at this and above
2915 * domains. In the newly idle case, we will allow all the cpu's
2916 * to do the newly idle load balance.
2917 */
2918 if (idle != CPU_NEWLY_IDLE && local_group &&
2919 balance_cpu != this_cpu && balance) {
2920 *balance = 0;
2921 goto ret;
2922 }
2923
2924 total_load += avg_load;
2925 total_pwr += group->__cpu_power;
2926
2927 /* Adjust by relative CPU power of the group */
2928 avg_load = sg_div_cpu_power(group,
2929 avg_load * SCHED_LOAD_SCALE);
2930
2931 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2932 __group_imb = 1;
2933
2934 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2935
2936 if (local_group) {
2937 this_load = avg_load;
2938 this = group;
2939 this_nr_running = sum_nr_running;
2940 this_load_per_task = sum_weighted_load;
2941 } else if (avg_load > max_load &&
2942 (sum_nr_running > group_capacity || __group_imb)) {
2943 max_load = avg_load;
2944 busiest = group;
2945 busiest_nr_running = sum_nr_running;
2946 busiest_load_per_task = sum_weighted_load;
2947 group_imb = __group_imb;
2948 }
2949
2950 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2951 /*
2952 * Busy processors will not participate in power savings
2953 * balance.
2954 */
2955 if (idle == CPU_NOT_IDLE ||
2956 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2957 goto group_next;
2958
2959 /*
2960 * If the local group is idle or completely loaded
2961 * no need to do power savings balance at this domain
2962 */
2963 if (local_group && (this_nr_running >= group_capacity ||
2964 !this_nr_running))
2965 power_savings_balance = 0;
2966
2967 /*
2968 * If a group is already running at full capacity or idle,
2969 * don't include that group in power savings calculations
2970 */
2971 if (!power_savings_balance || sum_nr_running >= group_capacity
2972 || !sum_nr_running)
2973 goto group_next;
2974
2975 /*
2976 * Calculate the group which has the least non-idle load.
2977 * This is the group from where we need to pick up the load
2978 * for saving power
2979 */
2980 if ((sum_nr_running < min_nr_running) ||
2981 (sum_nr_running == min_nr_running &&
2982 first_cpu(group->cpumask) <
2983 first_cpu(group_min->cpumask))) {
2984 group_min = group;
2985 min_nr_running = sum_nr_running;
2986 min_load_per_task = sum_weighted_load /
2987 sum_nr_running;
2988 }
2989
2990 /*
2991 * Calculate the group which is almost near its
2992 * capacity but still has some space to pick up some load
2993 * from other group and save more power
2994 */
2995 if (sum_nr_running <= group_capacity - 1) {
2996 if (sum_nr_running > leader_nr_running ||
2997 (sum_nr_running == leader_nr_running &&
2998 first_cpu(group->cpumask) >
2999 first_cpu(group_leader->cpumask))) {
3000 group_leader = group;
3001 leader_nr_running = sum_nr_running;
3002 }
3003 }
3004 group_next:
3005 #endif
3006 group = group->next;
3007 } while (group != sd->groups);
3008
3009 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
3010 goto out_balanced;
3011
3012 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3013
3014 if (this_load >= avg_load ||
3015 100*max_load <= sd->imbalance_pct*this_load)
3016 goto out_balanced;
3017
3018 busiest_load_per_task /= busiest_nr_running;
3019 if (group_imb)
3020 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3021
3022 /*
3023 * We're trying to get all the cpus to the average_load, so we don't
3024 * want to push ourselves above the average load, nor do we wish to
3025 * reduce the max loaded cpu below the average load, as either of these
3026 * actions would just result in more rebalancing later, and ping-pong
3027 * tasks around. Thus we look for the minimum possible imbalance.
3028 * Negative imbalances (*we* are more loaded than anyone else) will
3029 * be counted as no imbalance for these purposes -- we can't fix that
3030 * by pulling tasks to us. Be careful of negative numbers as they'll
3031 * appear as very large values with unsigned longs.
3032 */
3033 if (max_load <= busiest_load_per_task)
3034 goto out_balanced;
3035
3036 /*
3037 * In the presence of smp nice balancing, certain scenarios can have
3038 * max load less than avg load(as we skip the groups at or below
3039 * its cpu_power, while calculating max_load..)
3040 */
3041 if (max_load < avg_load) {
3042 *imbalance = 0;
3043 goto small_imbalance;
3044 }
3045
3046 /* Don't want to pull so many tasks that a group would go idle */
3047 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
3048
3049 /* How much load to actually move to equalise the imbalance */
3050 *imbalance = min(max_pull * busiest->__cpu_power,
3051 (avg_load - this_load) * this->__cpu_power)
3052 / SCHED_LOAD_SCALE;
3053
3054 /*
3055 * if *imbalance is less than the average load per runnable task
3056 * there is no gaurantee that any tasks will be moved so we'll have
3057 * a think about bumping its value to force at least one task to be
3058 * moved
3059 */
3060 if (*imbalance < busiest_load_per_task) {
3061 unsigned long tmp, pwr_now, pwr_move;
3062 unsigned int imbn;
3063
3064 small_imbalance:
3065 pwr_move = pwr_now = 0;
3066 imbn = 2;
3067 if (this_nr_running) {
3068 this_load_per_task /= this_nr_running;
3069 if (busiest_load_per_task > this_load_per_task)
3070 imbn = 1;
3071 } else
3072 this_load_per_task = SCHED_LOAD_SCALE;
3073
3074 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
3075 busiest_load_per_task * imbn) {
3076 *imbalance = busiest_load_per_task;
3077 return busiest;
3078 }
3079
3080 /*
3081 * OK, we don't have enough imbalance to justify moving tasks,
3082 * however we may be able to increase total CPU power used by
3083 * moving them.
3084 */
3085
3086 pwr_now += busiest->__cpu_power *
3087 min(busiest_load_per_task, max_load);
3088 pwr_now += this->__cpu_power *
3089 min(this_load_per_task, this_load);
3090 pwr_now /= SCHED_LOAD_SCALE;
3091
3092 /* Amount of load we'd subtract */
3093 tmp = sg_div_cpu_power(busiest,
3094 busiest_load_per_task * SCHED_LOAD_SCALE);
3095 if (max_load > tmp)
3096 pwr_move += busiest->__cpu_power *
3097 min(busiest_load_per_task, max_load - tmp);
3098
3099 /* Amount of load we'd add */
3100 if (max_load * busiest->__cpu_power <
3101 busiest_load_per_task * SCHED_LOAD_SCALE)
3102 tmp = sg_div_cpu_power(this,
3103 max_load * busiest->__cpu_power);
3104 else
3105 tmp = sg_div_cpu_power(this,
3106 busiest_load_per_task * SCHED_LOAD_SCALE);
3107 pwr_move += this->__cpu_power *
3108 min(this_load_per_task, this_load + tmp);
3109 pwr_move /= SCHED_LOAD_SCALE;
3110
3111 /* Move if we gain throughput */
3112 if (pwr_move > pwr_now)
3113 *imbalance = busiest_load_per_task;
3114 }
3115
3116 return busiest;
3117
3118 out_balanced:
3119 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3120 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3121 goto ret;
3122
3123 if (this == group_leader && group_leader != group_min) {
3124 *imbalance = min_load_per_task;
3125 return group_min;
3126 }
3127 #endif
3128 ret:
3129 *imbalance = 0;
3130 return NULL;
3131 }
3132
3133 /*
3134 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3135 */
3136 static struct rq *
3137 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
3138 unsigned long imbalance, const cpumask_t *cpus)
3139 {
3140 struct rq *busiest = NULL, *rq;
3141 unsigned long max_load = 0;
3142 int i;
3143
3144 for_each_cpu_mask(i, group->cpumask) {
3145 unsigned long wl;
3146
3147 if (!cpu_isset(i, *cpus))
3148 continue;
3149
3150 rq = cpu_rq(i);
3151 wl = weighted_cpuload(i);
3152
3153 if (rq->nr_running == 1 && wl > imbalance)
3154 continue;
3155
3156 if (wl > max_load) {
3157 max_load = wl;
3158 busiest = rq;
3159 }
3160 }
3161
3162 return busiest;
3163 }
3164
3165 /*
3166 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3167 * so long as it is large enough.
3168 */
3169 #define MAX_PINNED_INTERVAL 512
3170
3171 /*
3172 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3173 * tasks if there is an imbalance.
3174 */
3175 static int load_balance(int this_cpu, struct rq *this_rq,
3176 struct sched_domain *sd, enum cpu_idle_type idle,
3177 int *balance, cpumask_t *cpus)
3178 {
3179 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
3180 struct sched_group *group;
3181 unsigned long imbalance;
3182 struct rq *busiest;
3183 unsigned long flags;
3184
3185 cpus_setall(*cpus);
3186
3187 /*
3188 * When power savings policy is enabled for the parent domain, idle
3189 * sibling can pick up load irrespective of busy siblings. In this case,
3190 * let the state of idle sibling percolate up as CPU_IDLE, instead of
3191 * portraying it as CPU_NOT_IDLE.
3192 */
3193 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
3194 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3195 sd_idle = 1;
3196
3197 schedstat_inc(sd, lb_count[idle]);
3198
3199 redo:
3200 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
3201 cpus, balance);
3202
3203 if (*balance == 0)
3204 goto out_balanced;
3205
3206 if (!group) {
3207 schedstat_inc(sd, lb_nobusyg[idle]);
3208 goto out_balanced;
3209 }
3210
3211 busiest = find_busiest_queue(group, idle, imbalance, cpus);
3212 if (!busiest) {
3213 schedstat_inc(sd, lb_nobusyq[idle]);
3214 goto out_balanced;
3215 }
3216
3217 BUG_ON(busiest == this_rq);
3218
3219 schedstat_add(sd, lb_imbalance[idle], imbalance);
3220
3221 ld_moved = 0;
3222 if (busiest->nr_running > 1) {
3223 /*
3224 * Attempt to move tasks. If find_busiest_group has found
3225 * an imbalance but busiest->nr_running <= 1, the group is
3226 * still unbalanced. ld_moved simply stays zero, so it is
3227 * correctly treated as an imbalance.
3228 */
3229 local_irq_save(flags);
3230 double_rq_lock(this_rq, busiest);
3231 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3232 imbalance, sd, idle, &all_pinned);
3233 double_rq_unlock(this_rq, busiest);
3234 local_irq_restore(flags);
3235
3236 /*
3237 * some other cpu did the load balance for us.
3238 */
3239 if (ld_moved && this_cpu != smp_processor_id())
3240 resched_cpu(this_cpu);
3241
3242 /* All tasks on this runqueue were pinned by CPU affinity */
3243 if (unlikely(all_pinned)) {
3244 cpu_clear(cpu_of(busiest), *cpus);
3245 if (!cpus_empty(*cpus))
3246 goto redo;
3247 goto out_balanced;
3248 }
3249 }
3250
3251 if (!ld_moved) {
3252 schedstat_inc(sd, lb_failed[idle]);
3253 sd->nr_balance_failed++;
3254
3255 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
3256
3257 spin_lock_irqsave(&busiest->lock, flags);
3258
3259 /* don't kick the migration_thread, if the curr
3260 * task on busiest cpu can't be moved to this_cpu
3261 */
3262 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
3263 spin_unlock_irqrestore(&busiest->lock, flags);
3264 all_pinned = 1;
3265 goto out_one_pinned;
3266 }
3267
3268 if (!busiest->active_balance) {
3269 busiest->active_balance = 1;
3270 busiest->push_cpu = this_cpu;
3271 active_balance = 1;
3272 }
3273 spin_unlock_irqrestore(&busiest->lock, flags);
3274 if (active_balance)
3275 wake_up_process(busiest->migration_thread);
3276
3277 /*
3278 * We've kicked active balancing, reset the failure
3279 * counter.
3280 */
3281 sd->nr_balance_failed = sd->cache_nice_tries+1;
3282 }
3283 } else
3284 sd->nr_balance_failed = 0;
3285
3286 if (likely(!active_balance)) {
3287 /* We were unbalanced, so reset the balancing interval */
3288 sd->balance_interval = sd->min_interval;
3289 } else {
3290 /*
3291 * If we've begun active balancing, start to back off. This
3292 * case may not be covered by the all_pinned logic if there
3293 * is only 1 task on the busy runqueue (because we don't call
3294 * move_tasks).
3295 */
3296 if (sd->balance_interval < sd->max_interval)
3297 sd->balance_interval *= 2;
3298 }
3299
3300 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3301 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3302 return -1;
3303 return ld_moved;
3304
3305 out_balanced:
3306 schedstat_inc(sd, lb_balanced[idle]);
3307
3308 sd->nr_balance_failed = 0;
3309
3310 out_one_pinned:
3311 /* tune up the balancing interval */
3312 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3313 (sd->balance_interval < sd->max_interval))
3314 sd->balance_interval *= 2;
3315
3316 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3317 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3318 return -1;
3319 return 0;
3320 }
3321
3322 /*
3323 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3324 * tasks if there is an imbalance.
3325 *
3326 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
3327 * this_rq is locked.
3328 */
3329 static int
3330 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
3331 cpumask_t *cpus)
3332 {
3333 struct sched_group *group;
3334 struct rq *busiest = NULL;
3335 unsigned long imbalance;
3336 int ld_moved = 0;
3337 int sd_idle = 0;
3338 int all_pinned = 0;
3339
3340 cpus_setall(*cpus);
3341
3342 /*
3343 * When power savings policy is enabled for the parent domain, idle
3344 * sibling can pick up load irrespective of busy siblings. In this case,
3345 * let the state of idle sibling percolate up as IDLE, instead of
3346 * portraying it as CPU_NOT_IDLE.
3347 */
3348 if (sd->flags & SD_SHARE_CPUPOWER &&
3349 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3350 sd_idle = 1;
3351
3352 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
3353 redo:
3354 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
3355 &sd_idle, cpus, NULL);
3356 if (!group) {
3357 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
3358 goto out_balanced;
3359 }
3360
3361 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
3362 if (!busiest) {
3363 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
3364 goto out_balanced;
3365 }
3366
3367 BUG_ON(busiest == this_rq);
3368
3369 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
3370
3371 ld_moved = 0;
3372 if (busiest->nr_running > 1) {
3373 /* Attempt to move tasks */
3374 double_lock_balance(this_rq, busiest);
3375 /* this_rq->clock is already updated */
3376 update_rq_clock(busiest);
3377 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3378 imbalance, sd, CPU_NEWLY_IDLE,
3379 &all_pinned);
3380 spin_unlock(&busiest->lock);
3381
3382 if (unlikely(all_pinned)) {
3383 cpu_clear(cpu_of(busiest), *cpus);
3384 if (!cpus_empty(*cpus))
3385 goto redo;
3386 }
3387 }
3388
3389 if (!ld_moved) {
3390 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
3391 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3392 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3393 return -1;
3394 } else
3395 sd->nr_balance_failed = 0;
3396
3397 return ld_moved;
3398
3399 out_balanced:
3400 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
3401 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3402 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3403 return -1;
3404 sd->nr_balance_failed = 0;
3405
3406 return 0;
3407 }
3408
3409 /*
3410 * idle_balance is called by schedule() if this_cpu is about to become
3411 * idle. Attempts to pull tasks from other CPUs.
3412 */
3413 static void idle_balance(int this_cpu, struct rq *this_rq)
3414 {
3415 struct sched_domain *sd;
3416 int pulled_task = -1;
3417 unsigned long next_balance = jiffies + HZ;
3418 cpumask_t tmpmask;
3419
3420 for_each_domain(this_cpu, sd) {
3421 unsigned long interval;
3422
3423 if (!(sd->flags & SD_LOAD_BALANCE))
3424 continue;
3425
3426 if (sd->flags & SD_BALANCE_NEWIDLE)
3427 /* If we've pulled tasks over stop searching: */
3428 pulled_task = load_balance_newidle(this_cpu, this_rq,
3429 sd, &tmpmask);
3430
3431 interval = msecs_to_jiffies(sd->balance_interval);
3432 if (time_after(next_balance, sd->last_balance + interval))
3433 next_balance = sd->last_balance + interval;
3434 if (pulled_task)
3435 break;
3436 }
3437 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3438 /*
3439 * We are going idle. next_balance may be set based on
3440 * a busy processor. So reset next_balance.
3441 */
3442 this_rq->next_balance = next_balance;
3443 }
3444 }
3445
3446 /*
3447 * active_load_balance is run by migration threads. It pushes running tasks
3448 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3449 * running on each physical CPU where possible, and avoids physical /
3450 * logical imbalances.
3451 *
3452 * Called with busiest_rq locked.
3453 */
3454 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3455 {
3456 int target_cpu = busiest_rq->push_cpu;
3457 struct sched_domain *sd;
3458 struct rq *target_rq;
3459
3460 /* Is there any task to move? */
3461 if (busiest_rq->nr_running <= 1)
3462 return;
3463
3464 target_rq = cpu_rq(target_cpu);
3465
3466 /*
3467 * This condition is "impossible", if it occurs
3468 * we need to fix it. Originally reported by
3469 * Bjorn Helgaas on a 128-cpu setup.
3470 */
3471 BUG_ON(busiest_rq == target_rq);
3472
3473 /* move a task from busiest_rq to target_rq */
3474 double_lock_balance(busiest_rq, target_rq);
3475 update_rq_clock(busiest_rq);
3476 update_rq_clock(target_rq);
3477
3478 /* Search for an sd spanning us and the target CPU. */
3479 for_each_domain(target_cpu, sd) {
3480 if ((sd->flags & SD_LOAD_BALANCE) &&
3481 cpu_isset(busiest_cpu, sd->span))
3482 break;
3483 }
3484
3485 if (likely(sd)) {
3486 schedstat_inc(sd, alb_count);
3487
3488 if (move_one_task(target_rq, target_cpu, busiest_rq,
3489 sd, CPU_IDLE))
3490 schedstat_inc(sd, alb_pushed);
3491 else
3492 schedstat_inc(sd, alb_failed);
3493 }
3494 spin_unlock(&target_rq->lock);
3495 }
3496
3497 #ifdef CONFIG_NO_HZ
3498 static struct {
3499 atomic_t load_balancer;
3500 cpumask_t cpu_mask;
3501 } nohz ____cacheline_aligned = {
3502 .load_balancer = ATOMIC_INIT(-1),
3503 .cpu_mask = CPU_MASK_NONE,
3504 };
3505
3506 /*
3507 * This routine will try to nominate the ilb (idle load balancing)
3508 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3509 * load balancing on behalf of all those cpus. If all the cpus in the system
3510 * go into this tickless mode, then there will be no ilb owner (as there is
3511 * no need for one) and all the cpus will sleep till the next wakeup event
3512 * arrives...
3513 *
3514 * For the ilb owner, tick is not stopped. And this tick will be used
3515 * for idle load balancing. ilb owner will still be part of
3516 * nohz.cpu_mask..
3517 *
3518 * While stopping the tick, this cpu will become the ilb owner if there
3519 * is no other owner. And will be the owner till that cpu becomes busy
3520 * or if all cpus in the system stop their ticks at which point
3521 * there is no need for ilb owner.
3522 *
3523 * When the ilb owner becomes busy, it nominates another owner, during the
3524 * next busy scheduler_tick()
3525 */
3526 int select_nohz_load_balancer(int stop_tick)
3527 {
3528 int cpu = smp_processor_id();
3529
3530 if (stop_tick) {
3531 cpu_set(cpu, nohz.cpu_mask);
3532 cpu_rq(cpu)->in_nohz_recently = 1;
3533
3534 /*
3535 * If we are going offline and still the leader, give up!
3536 */
3537 if (cpu_is_offline(cpu) &&
3538 atomic_read(&nohz.load_balancer) == cpu) {
3539 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3540 BUG();
3541 return 0;
3542 }
3543
3544 /* time for ilb owner also to sleep */
3545 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3546 if (atomic_read(&nohz.load_balancer) == cpu)
3547 atomic_set(&nohz.load_balancer, -1);
3548 return 0;
3549 }
3550
3551 if (atomic_read(&nohz.load_balancer) == -1) {
3552 /* make me the ilb owner */
3553 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3554 return 1;
3555 } else if (atomic_read(&nohz.load_balancer) == cpu)
3556 return 1;
3557 } else {
3558 if (!cpu_isset(cpu, nohz.cpu_mask))
3559 return 0;
3560
3561 cpu_clear(cpu, nohz.cpu_mask);
3562
3563 if (atomic_read(&nohz.load_balancer) == cpu)
3564 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3565 BUG();
3566 }
3567 return 0;
3568 }
3569 #endif
3570
3571 static DEFINE_SPINLOCK(balancing);
3572
3573 /*
3574 * It checks each scheduling domain to see if it is due to be balanced,
3575 * and initiates a balancing operation if so.
3576 *
3577 * Balancing parameters are set up in arch_init_sched_domains.
3578 */
3579 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3580 {
3581 int balance = 1;
3582 struct rq *rq = cpu_rq(cpu);
3583 unsigned long interval;
3584 struct sched_domain *sd;
3585 /* Earliest time when we have to do rebalance again */
3586 unsigned long next_balance = jiffies + 60*HZ;
3587 int update_next_balance = 0;
3588 cpumask_t tmp;
3589
3590 for_each_domain(cpu, sd) {
3591 if (!(sd->flags & SD_LOAD_BALANCE))
3592 continue;
3593
3594 interval = sd->balance_interval;
3595 if (idle != CPU_IDLE)
3596 interval *= sd->busy_factor;
3597
3598 /* scale ms to jiffies */
3599 interval = msecs_to_jiffies(interval);
3600 if (unlikely(!interval))
3601 interval = 1;
3602 if (interval > HZ*NR_CPUS/10)
3603 interval = HZ*NR_CPUS/10;
3604
3605
3606 if (sd->flags & SD_SERIALIZE) {
3607 if (!spin_trylock(&balancing))
3608 goto out;
3609 }
3610
3611 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3612 if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) {
3613 /*
3614 * We've pulled tasks over so either we're no
3615 * longer idle, or one of our SMT siblings is
3616 * not idle.
3617 */
3618 idle = CPU_NOT_IDLE;
3619 }
3620 sd->last_balance = jiffies;
3621 }
3622 if (sd->flags & SD_SERIALIZE)
3623 spin_unlock(&balancing);
3624 out:
3625 if (time_after(next_balance, sd->last_balance + interval)) {
3626 next_balance = sd->last_balance + interval;
3627 update_next_balance = 1;
3628 }
3629
3630 /*
3631 * Stop the load balance at this level. There is another
3632 * CPU in our sched group which is doing load balancing more
3633 * actively.
3634 */
3635 if (!balance)
3636 break;
3637 }
3638
3639 /*
3640 * next_balance will be updated only when there is a need.
3641 * When the cpu is attached to null domain for ex, it will not be
3642 * updated.
3643 */
3644 if (likely(update_next_balance))
3645 rq->next_balance = next_balance;
3646 }
3647
3648 /*
3649 * run_rebalance_domains is triggered when needed from the scheduler tick.
3650 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3651 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3652 */
3653 static void run_rebalance_domains(struct softirq_action *h)
3654 {
3655 int this_cpu = smp_processor_id();
3656 struct rq *this_rq = cpu_rq(this_cpu);
3657 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3658 CPU_IDLE : CPU_NOT_IDLE;
3659
3660 rebalance_domains(this_cpu, idle);
3661
3662 #ifdef CONFIG_NO_HZ
3663 /*
3664 * If this cpu is the owner for idle load balancing, then do the
3665 * balancing on behalf of the other idle cpus whose ticks are
3666 * stopped.
3667 */
3668 if (this_rq->idle_at_tick &&
3669 atomic_read(&nohz.load_balancer) == this_cpu) {
3670 cpumask_t cpus = nohz.cpu_mask;
3671 struct rq *rq;
3672 int balance_cpu;
3673
3674 cpu_clear(this_cpu, cpus);
3675 for_each_cpu_mask(balance_cpu, cpus) {
3676 /*
3677 * If this cpu gets work to do, stop the load balancing
3678 * work being done for other cpus. Next load
3679 * balancing owner will pick it up.
3680 */
3681 if (need_resched())
3682 break;
3683
3684 rebalance_domains(balance_cpu, CPU_IDLE);
3685
3686 rq = cpu_rq(balance_cpu);
3687 if (time_after(this_rq->next_balance, rq->next_balance))
3688 this_rq->next_balance = rq->next_balance;
3689 }
3690 }
3691 #endif
3692 }
3693
3694 /*
3695 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3696 *
3697 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3698 * idle load balancing owner or decide to stop the periodic load balancing,
3699 * if the whole system is idle.
3700 */
3701 static inline void trigger_load_balance(struct rq *rq, int cpu)
3702 {
3703 #ifdef CONFIG_NO_HZ
3704 /*
3705 * If we were in the nohz mode recently and busy at the current
3706 * scheduler tick, then check if we need to nominate new idle
3707 * load balancer.
3708 */
3709 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3710 rq->in_nohz_recently = 0;
3711
3712 if (atomic_read(&nohz.load_balancer) == cpu) {
3713 cpu_clear(cpu, nohz.cpu_mask);
3714 atomic_set(&nohz.load_balancer, -1);
3715 }
3716
3717 if (atomic_read(&nohz.load_balancer) == -1) {
3718 /*
3719 * simple selection for now: Nominate the
3720 * first cpu in the nohz list to be the next
3721 * ilb owner.
3722 *
3723 * TBD: Traverse the sched domains and nominate
3724 * the nearest cpu in the nohz.cpu_mask.
3725 */
3726 int ilb = first_cpu(nohz.cpu_mask);
3727
3728 if (ilb < nr_cpu_ids)
3729 resched_cpu(ilb);
3730 }
3731 }
3732
3733 /*
3734 * If this cpu is idle and doing idle load balancing for all the
3735 * cpus with ticks stopped, is it time for that to stop?
3736 */
3737 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3738 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3739 resched_cpu(cpu);
3740 return;
3741 }
3742
3743 /*
3744 * If this cpu is idle and the idle load balancing is done by
3745 * someone else, then no need raise the SCHED_SOFTIRQ
3746 */
3747 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3748 cpu_isset(cpu, nohz.cpu_mask))
3749 return;
3750 #endif
3751 if (time_after_eq(jiffies, rq->next_balance))
3752 raise_softirq(SCHED_SOFTIRQ);
3753 }
3754
3755 #else /* CONFIG_SMP */
3756
3757 /*
3758 * on UP we do not need to balance between CPUs:
3759 */
3760 static inline void idle_balance(int cpu, struct rq *rq)
3761 {
3762 }
3763
3764 #endif
3765
3766 DEFINE_PER_CPU(struct kernel_stat, kstat);
3767
3768 EXPORT_PER_CPU_SYMBOL(kstat);
3769
3770 /*
3771 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3772 * that have not yet been banked in case the task is currently running.
3773 */
3774 unsigned long long task_sched_runtime(struct task_struct *p)
3775 {
3776 unsigned long flags;
3777 u64 ns, delta_exec;
3778 struct rq *rq;
3779
3780 rq = task_rq_lock(p, &flags);
3781 ns = p->se.sum_exec_runtime;
3782 if (task_current(rq, p)) {
3783 update_rq_clock(rq);
3784 delta_exec = rq->clock - p->se.exec_start;
3785 if ((s64)delta_exec > 0)
3786 ns += delta_exec;
3787 }
3788 task_rq_unlock(rq, &flags);
3789
3790 return ns;
3791 }
3792
3793 /*
3794 * Account user cpu time to a process.
3795 * @p: the process that the cpu time gets accounted to
3796 * @cputime: the cpu time spent in user space since the last update
3797 */
3798 void account_user_time(struct task_struct *p, cputime_t cputime)
3799 {
3800 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3801 cputime64_t tmp;
3802
3803 p->utime = cputime_add(p->utime, cputime);
3804
3805 /* Add user time to cpustat. */
3806 tmp = cputime_to_cputime64(cputime);
3807 if (TASK_NICE(p) > 0)
3808 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3809 else
3810 cpustat->user = cputime64_add(cpustat->user, tmp);
3811 }
3812
3813 /*
3814 * Account guest cpu time to a process.
3815 * @p: the process that the cpu time gets accounted to
3816 * @cputime: the cpu time spent in virtual machine since the last update
3817 */
3818 static void account_guest_time(struct task_struct *p, cputime_t cputime)
3819 {
3820 cputime64_t tmp;
3821 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3822
3823 tmp = cputime_to_cputime64(cputime);
3824
3825 p->utime = cputime_add(p->utime, cputime);
3826 p->gtime = cputime_add(p->gtime, cputime);
3827
3828 cpustat->user = cputime64_add(cpustat->user, tmp);
3829 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3830 }
3831
3832 /*
3833 * Account scaled user cpu time to a process.
3834 * @p: the process that the cpu time gets accounted to
3835 * @cputime: the cpu time spent in user space since the last update
3836 */
3837 void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3838 {
3839 p->utimescaled = cputime_add(p->utimescaled, cputime);
3840 }
3841
3842 /*
3843 * Account system cpu time to a process.
3844 * @p: the process that the cpu time gets accounted to
3845 * @hardirq_offset: the offset to subtract from hardirq_count()
3846 * @cputime: the cpu time spent in kernel space since the last update
3847 */
3848 void account_system_time(struct task_struct *p, int hardirq_offset,
3849 cputime_t cputime)
3850 {
3851 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3852 struct rq *rq = this_rq();
3853 cputime64_t tmp;
3854
3855 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0))
3856 return account_guest_time(p, cputime);
3857
3858 p->stime = cputime_add(p->stime, cputime);
3859
3860 /* Add system time to cpustat. */
3861 tmp = cputime_to_cputime64(cputime);
3862 if (hardirq_count() - hardirq_offset)
3863 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3864 else if (softirq_count())
3865 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3866 else if (p != rq->idle)
3867 cpustat->system = cputime64_add(cpustat->system, tmp);
3868 else if (atomic_read(&rq->nr_iowait) > 0)
3869 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3870 else
3871 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3872 /* Account for system time used */
3873 acct_update_integrals(p);
3874 }
3875
3876 /*
3877 * Account scaled system cpu time to a process.
3878 * @p: the process that the cpu time gets accounted to
3879 * @hardirq_offset: the offset to subtract from hardirq_count()
3880 * @cputime: the cpu time spent in kernel space since the last update
3881 */
3882 void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3883 {
3884 p->stimescaled = cputime_add(p->stimescaled, cputime);
3885 }
3886
3887 /*
3888 * Account for involuntary wait time.
3889 * @p: the process from which the cpu time has been stolen
3890 * @steal: the cpu time spent in involuntary wait
3891 */
3892 void account_steal_time(struct task_struct *p, cputime_t steal)
3893 {
3894 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3895 cputime64_t tmp = cputime_to_cputime64(steal);
3896 struct rq *rq = this_rq();
3897
3898 if (p == rq->idle) {
3899 p->stime = cputime_add(p->stime, steal);
3900 if (atomic_read(&rq->nr_iowait) > 0)
3901 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3902 else
3903 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3904 } else
3905 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3906 }
3907
3908 /*
3909 * This function gets called by the timer code, with HZ frequency.
3910 * We call it with interrupts disabled.
3911 *
3912 * It also gets called by the fork code, when changing the parent's
3913 * timeslices.
3914 */
3915 void scheduler_tick(void)
3916 {
3917 int cpu = smp_processor_id();
3918 struct rq *rq = cpu_rq(cpu);
3919 struct task_struct *curr = rq->curr;
3920 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
3921
3922 spin_lock(&rq->lock);
3923 __update_rq_clock(rq);
3924 /*
3925 * Let rq->clock advance by at least TICK_NSEC:
3926 */
3927 if (unlikely(rq->clock < next_tick)) {
3928 rq->clock = next_tick;
3929 rq->clock_underflows++;
3930 }
3931 rq->tick_timestamp = rq->clock;
3932 update_last_tick_seen(rq);
3933 update_cpu_load(rq);
3934 curr->sched_class->task_tick(rq, curr, 0);
3935 spin_unlock(&rq->lock);
3936
3937 #ifdef CONFIG_SMP
3938 rq->idle_at_tick = idle_cpu(cpu);
3939 trigger_load_balance(rq, cpu);
3940 #endif
3941 }
3942
3943 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3944
3945 void __kprobes add_preempt_count(int val)
3946 {
3947 /*
3948 * Underflow?
3949 */
3950 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3951 return;
3952 preempt_count() += val;
3953 /*
3954 * Spinlock count overflowing soon?
3955 */
3956 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3957 PREEMPT_MASK - 10);
3958 }
3959 EXPORT_SYMBOL(add_preempt_count);
3960
3961 void __kprobes sub_preempt_count(int val)
3962 {
3963 /*
3964 * Underflow?
3965 */
3966 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3967 return;
3968 /*
3969 * Is the spinlock portion underflowing?
3970 */
3971 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3972 !(preempt_count() & PREEMPT_MASK)))
3973 return;
3974
3975 preempt_count() -= val;
3976 }
3977 EXPORT_SYMBOL(sub_preempt_count);
3978
3979 #endif
3980
3981 /*
3982 * Print scheduling while atomic bug:
3983 */
3984 static noinline void __schedule_bug(struct task_struct *prev)
3985 {
3986 struct pt_regs *regs = get_irq_regs();
3987
3988 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3989 prev->comm, prev->pid, preempt_count());
3990
3991 debug_show_held_locks(prev);
3992 if (irqs_disabled())
3993 print_irqtrace_events(prev);
3994
3995 if (regs)
3996 show_regs(regs);
3997 else
3998 dump_stack();
3999 }
4000
4001 /*
4002 * Various schedule()-time debugging checks and statistics:
4003 */
4004 static inline void schedule_debug(struct task_struct *prev)
4005 {
4006 /*
4007 * Test if we are atomic. Since do_exit() needs to call into
4008 * schedule() atomically, we ignore that path for now.
4009 * Otherwise, whine if we are scheduling when we should not be.
4010 */
4011 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
4012 __schedule_bug(prev);
4013
4014 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4015
4016 schedstat_inc(this_rq(), sched_count);
4017 #ifdef CONFIG_SCHEDSTATS
4018 if (unlikely(prev->lock_depth >= 0)) {
4019 schedstat_inc(this_rq(), bkl_count);
4020 schedstat_inc(prev, sched_info.bkl_count);
4021 }
4022 #endif
4023 }
4024
4025 /*
4026 * Pick up the highest-prio task:
4027 */
4028 static inline struct task_struct *
4029 pick_next_task(struct rq *rq, struct task_struct *prev)
4030 {
4031 const struct sched_class *class;
4032 struct task_struct *p;
4033
4034 /*
4035 * Optimization: we know that if all tasks are in
4036 * the fair class we can call that function directly:
4037 */
4038 if (likely(rq->nr_running == rq->cfs.nr_running)) {
4039 p = fair_sched_class.pick_next_task(rq);
4040 if (likely(p))
4041 return p;
4042 }
4043
4044 class = sched_class_highest;
4045 for ( ; ; ) {
4046 p = class->pick_next_task(rq);
4047 if (p)
4048 return p;
4049 /*
4050 * Will never be NULL as the idle class always
4051 * returns a non-NULL p:
4052 */
4053 class = class->next;
4054 }
4055 }
4056
4057 /*
4058 * schedule() is the main scheduler function.
4059 */
4060 asmlinkage void __sched schedule(void)
4061 {
4062 struct task_struct *prev, *next;
4063 unsigned long *switch_count;
4064 struct rq *rq;
4065 int cpu;
4066
4067 need_resched:
4068 preempt_disable();
4069 cpu = smp_processor_id();
4070 rq = cpu_rq(cpu);
4071 rcu_qsctr_inc(cpu);
4072 prev = rq->curr;
4073 switch_count = &prev->nivcsw;
4074
4075 release_kernel_lock(prev);
4076 need_resched_nonpreemptible:
4077
4078 schedule_debug(prev);
4079
4080 hrtick_clear(rq);
4081
4082 /*
4083 * Do the rq-clock update outside the rq lock:
4084 */
4085 local_irq_disable();
4086 __update_rq_clock(rq);
4087 spin_lock(&rq->lock);
4088 clear_tsk_need_resched(prev);
4089
4090 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4091 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
4092 signal_pending(prev))) {
4093 prev->state = TASK_RUNNING;
4094 } else {
4095 deactivate_task(rq, prev, 1);
4096 }
4097 switch_count = &prev->nvcsw;
4098 }
4099
4100 #ifdef CONFIG_SMP
4101 if (prev->sched_class->pre_schedule)
4102 prev->sched_class->pre_schedule(rq, prev);
4103 #endif
4104
4105 if (unlikely(!rq->nr_running))
4106 idle_balance(cpu, rq);
4107
4108 prev->sched_class->put_prev_task(rq, prev);
4109 next = pick_next_task(rq, prev);
4110
4111 sched_info_switch(prev, next);
4112
4113 if (likely(prev != next)) {
4114 rq->nr_switches++;
4115 rq->curr = next;
4116 ++*switch_count;
4117
4118 context_switch(rq, prev, next); /* unlocks the rq */
4119 /*
4120 * the context switch might have flipped the stack from under
4121 * us, hence refresh the local variables.
4122 */
4123 cpu = smp_processor_id();
4124 rq = cpu_rq(cpu);
4125 } else
4126 spin_unlock_irq(&rq->lock);
4127
4128 hrtick_set(rq);
4129
4130 if (unlikely(reacquire_kernel_lock(current) < 0))
4131 goto need_resched_nonpreemptible;
4132
4133 preempt_enable_no_resched();
4134 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4135 goto need_resched;
4136 }
4137 EXPORT_SYMBOL(schedule);
4138
4139 #ifdef CONFIG_PREEMPT
4140 /*
4141 * this is the entry point to schedule() from in-kernel preemption
4142 * off of preempt_enable. Kernel preemptions off return from interrupt
4143 * occur there and call schedule directly.
4144 */
4145 asmlinkage void __sched preempt_schedule(void)
4146 {
4147 struct thread_info *ti = current_thread_info();
4148 struct task_struct *task = current;
4149 int saved_lock_depth;
4150
4151 /*
4152 * If there is a non-zero preempt_count or interrupts are disabled,
4153 * we do not want to preempt the current task. Just return..
4154 */
4155 if (likely(ti->preempt_count || irqs_disabled()))
4156 return;
4157
4158 do {
4159 add_preempt_count(PREEMPT_ACTIVE);
4160
4161 /*
4162 * We keep the big kernel semaphore locked, but we
4163 * clear ->lock_depth so that schedule() doesnt
4164 * auto-release the semaphore:
4165 */
4166 saved_lock_depth = task->lock_depth;
4167 task->lock_depth = -1;
4168 schedule();
4169 task->lock_depth = saved_lock_depth;
4170 sub_preempt_count(PREEMPT_ACTIVE);
4171
4172 /*
4173 * Check again in case we missed a preemption opportunity
4174 * between schedule and now.
4175 */
4176 barrier();
4177 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4178 }
4179 EXPORT_SYMBOL(preempt_schedule);
4180
4181 /*
4182 * this is the entry point to schedule() from kernel preemption
4183 * off of irq context.
4184 * Note, that this is called and return with irqs disabled. This will
4185 * protect us against recursive calling from irq.
4186 */
4187 asmlinkage void __sched preempt_schedule_irq(void)
4188 {
4189 struct thread_info *ti = current_thread_info();
4190 struct task_struct *task = current;
4191 int saved_lock_depth;
4192
4193 /* Catch callers which need to be fixed */
4194 BUG_ON(ti->preempt_count || !irqs_disabled());
4195
4196 do {
4197 add_preempt_count(PREEMPT_ACTIVE);
4198
4199 /*
4200 * We keep the big kernel semaphore locked, but we
4201 * clear ->lock_depth so that schedule() doesnt
4202 * auto-release the semaphore:
4203 */
4204 saved_lock_depth = task->lock_depth;
4205 task->lock_depth = -1;
4206 local_irq_enable();
4207 schedule();
4208 local_irq_disable();
4209 task->lock_depth = saved_lock_depth;
4210 sub_preempt_count(PREEMPT_ACTIVE);
4211
4212 /*
4213 * Check again in case we missed a preemption opportunity
4214 * between schedule and now.
4215 */
4216 barrier();
4217 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
4218 }
4219
4220 #endif /* CONFIG_PREEMPT */
4221
4222 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4223 void *key)
4224 {
4225 return try_to_wake_up(curr->private, mode, sync);
4226 }
4227 EXPORT_SYMBOL(default_wake_function);
4228
4229 /*
4230 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4231 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4232 * number) then we wake all the non-exclusive tasks and one exclusive task.
4233 *
4234 * There are circumstances in which we can try to wake a task which has already
4235 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4236 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4237 */
4238 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4239 int nr_exclusive, int sync, void *key)
4240 {
4241 wait_queue_t *curr, *next;
4242
4243 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4244 unsigned flags = curr->flags;
4245
4246 if (curr->func(curr, mode, sync, key) &&
4247 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4248 break;
4249 }
4250 }
4251
4252 /**
4253 * __wake_up - wake up threads blocked on a waitqueue.
4254 * @q: the waitqueue
4255 * @mode: which threads
4256 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4257 * @key: is directly passed to the wakeup function
4258 */
4259 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4260 int nr_exclusive, void *key)
4261 {
4262 unsigned long flags;
4263
4264 spin_lock_irqsave(&q->lock, flags);
4265 __wake_up_common(q, mode, nr_exclusive, 0, key);
4266 spin_unlock_irqrestore(&q->lock, flags);
4267 }
4268 EXPORT_SYMBOL(__wake_up);
4269
4270 /*
4271 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4272 */
4273 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4274 {
4275 __wake_up_common(q, mode, 1, 0, NULL);
4276 }
4277
4278 /**
4279 * __wake_up_sync - wake up threads blocked on a waitqueue.
4280 * @q: the waitqueue
4281 * @mode: which threads
4282 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4283 *
4284 * The sync wakeup differs that the waker knows that it will schedule
4285 * away soon, so while the target thread will be woken up, it will not
4286 * be migrated to another CPU - ie. the two threads are 'synchronized'
4287 * with each other. This can prevent needless bouncing between CPUs.
4288 *
4289 * On UP it can prevent extra preemption.
4290 */
4291 void
4292 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4293 {
4294 unsigned long flags;
4295 int sync = 1;
4296
4297 if (unlikely(!q))
4298 return;
4299
4300 if (unlikely(!nr_exclusive))
4301 sync = 0;
4302
4303 spin_lock_irqsave(&q->lock, flags);
4304 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4305 spin_unlock_irqrestore(&q->lock, flags);
4306 }
4307 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4308
4309 void complete(struct completion *x)
4310 {
4311 unsigned long flags;
4312
4313 spin_lock_irqsave(&x->wait.lock, flags);
4314 x->done++;
4315 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4316 spin_unlock_irqrestore(&x->wait.lock, flags);
4317 }
4318 EXPORT_SYMBOL(complete);
4319
4320 void complete_all(struct completion *x)
4321 {
4322 unsigned long flags;
4323
4324 spin_lock_irqsave(&x->wait.lock, flags);
4325 x->done += UINT_MAX/2;
4326 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4327 spin_unlock_irqrestore(&x->wait.lock, flags);
4328 }
4329 EXPORT_SYMBOL(complete_all);
4330
4331 static inline long __sched
4332 do_wait_for_common(struct completion *x, long timeout, int state)
4333 {
4334 if (!x->done) {
4335 DECLARE_WAITQUEUE(wait, current);
4336
4337 wait.flags |= WQ_FLAG_EXCLUSIVE;
4338 __add_wait_queue_tail(&x->wait, &wait);
4339 do {
4340 if ((state == TASK_INTERRUPTIBLE &&
4341 signal_pending(current)) ||
4342 (state == TASK_KILLABLE &&
4343 fatal_signal_pending(current))) {
4344 __remove_wait_queue(&x->wait, &wait);
4345 return -ERESTARTSYS;
4346 }
4347 __set_current_state(state);
4348 spin_unlock_irq(&x->wait.lock);
4349 timeout = schedule_timeout(timeout);
4350 spin_lock_irq(&x->wait.lock);
4351 if (!timeout) {
4352 __remove_wait_queue(&x->wait, &wait);
4353 return timeout;
4354 }
4355 } while (!x->done);
4356 __remove_wait_queue(&x->wait, &wait);
4357 }
4358 x->done--;
4359 return timeout;
4360 }
4361
4362 static long __sched
4363 wait_for_common(struct completion *x, long timeout, int state)
4364 {
4365 might_sleep();
4366
4367 spin_lock_irq(&x->wait.lock);
4368 timeout = do_wait_for_common(x, timeout, state);
4369 spin_unlock_irq(&x->wait.lock);
4370 return timeout;
4371 }
4372
4373 void __sched wait_for_completion(struct completion *x)
4374 {
4375 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4376 }
4377 EXPORT_SYMBOL(wait_for_completion);
4378
4379 unsigned long __sched
4380 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4381 {
4382 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4383 }
4384 EXPORT_SYMBOL(wait_for_completion_timeout);
4385
4386 int __sched wait_for_completion_interruptible(struct completion *x)
4387 {
4388 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4389 if (t == -ERESTARTSYS)
4390 return t;
4391 return 0;
4392 }
4393 EXPORT_SYMBOL(wait_for_completion_interruptible);
4394
4395 unsigned long __sched
4396 wait_for_completion_interruptible_timeout(struct completion *x,
4397 unsigned long timeout)
4398 {
4399 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4400 }
4401 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4402
4403 int __sched wait_for_completion_killable(struct completion *x)
4404 {
4405 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4406 if (t == -ERESTARTSYS)
4407 return t;
4408 return 0;
4409 }
4410 EXPORT_SYMBOL(wait_for_completion_killable);
4411
4412 static long __sched
4413 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4414 {
4415 unsigned long flags;
4416 wait_queue_t wait;
4417
4418 init_waitqueue_entry(&wait, current);
4419
4420 __set_current_state(state);
4421
4422 spin_lock_irqsave(&q->lock, flags);
4423 __add_wait_queue(q, &wait);
4424 spin_unlock(&q->lock);
4425 timeout = schedule_timeout(timeout);
4426 spin_lock_irq(&q->lock);
4427 __remove_wait_queue(q, &wait);
4428 spin_unlock_irqrestore(&q->lock, flags);
4429
4430 return timeout;
4431 }
4432
4433 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4434 {
4435 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4436 }
4437 EXPORT_SYMBOL(interruptible_sleep_on);
4438
4439 long __sched
4440 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4441 {
4442 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4443 }
4444 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4445
4446 void __sched sleep_on(wait_queue_head_t *q)
4447 {
4448 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4449 }
4450 EXPORT_SYMBOL(sleep_on);
4451
4452 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4453 {
4454 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4455 }
4456 EXPORT_SYMBOL(sleep_on_timeout);
4457
4458 #ifdef CONFIG_RT_MUTEXES
4459
4460 /*
4461 * rt_mutex_setprio - set the current priority of a task
4462 * @p: task
4463 * @prio: prio value (kernel-internal form)
4464 *
4465 * This function changes the 'effective' priority of a task. It does
4466 * not touch ->normal_prio like __setscheduler().
4467 *
4468 * Used by the rt_mutex code to implement priority inheritance logic.
4469 */
4470 void rt_mutex_setprio(struct task_struct *p, int prio)
4471 {
4472 unsigned long flags;
4473 int oldprio, on_rq, running;
4474 struct rq *rq;
4475 const struct sched_class *prev_class = p->sched_class;
4476
4477 BUG_ON(prio < 0 || prio > MAX_PRIO);
4478
4479 rq = task_rq_lock(p, &flags);
4480 update_rq_clock(rq);
4481
4482 oldprio = p->prio;
4483 on_rq = p->se.on_rq;
4484 running = task_current(rq, p);
4485 if (on_rq)
4486 dequeue_task(rq, p, 0);
4487 if (running)
4488 p->sched_class->put_prev_task(rq, p);
4489
4490 if (rt_prio(prio))
4491 p->sched_class = &rt_sched_class;
4492 else
4493 p->sched_class = &fair_sched_class;
4494
4495 p->prio = prio;
4496
4497 if (running)
4498 p->sched_class->set_curr_task(rq);
4499 if (on_rq) {
4500 enqueue_task(rq, p, 0);
4501
4502 check_class_changed(rq, p, prev_class, oldprio, running);
4503 }
4504 task_rq_unlock(rq, &flags);
4505 }
4506
4507 #endif
4508
4509 void set_user_nice(struct task_struct *p, long nice)
4510 {
4511 int old_prio, delta, on_rq;
4512 unsigned long flags;
4513 struct rq *rq;
4514
4515 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4516 return;
4517 /*
4518 * We have to be careful, if called from sys_setpriority(),
4519 * the task might be in the middle of scheduling on another CPU.
4520 */
4521 rq = task_rq_lock(p, &flags);
4522 update_rq_clock(rq);
4523 /*
4524 * The RT priorities are set via sched_setscheduler(), but we still
4525 * allow the 'normal' nice value to be set - but as expected
4526 * it wont have any effect on scheduling until the task is
4527 * SCHED_FIFO/SCHED_RR:
4528 */
4529 if (task_has_rt_policy(p)) {
4530 p->static_prio = NICE_TO_PRIO(nice);
4531 goto out_unlock;
4532 }
4533 on_rq = p->se.on_rq;
4534 if (on_rq) {
4535 dequeue_task(rq, p, 0);
4536 dec_load(rq, p);
4537 }
4538
4539 p->static_prio = NICE_TO_PRIO(nice);
4540 set_load_weight(p);
4541 old_prio = p->prio;
4542 p->prio = effective_prio(p);
4543 delta = p->prio - old_prio;
4544
4545 if (on_rq) {
4546 enqueue_task(rq, p, 0);
4547 inc_load(rq, p);
4548 /*
4549 * If the task increased its priority or is running and
4550 * lowered its priority, then reschedule its CPU:
4551 */
4552 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4553 resched_task(rq->curr);
4554 }
4555 out_unlock:
4556 task_rq_unlock(rq, &flags);
4557 }
4558 EXPORT_SYMBOL(set_user_nice);
4559
4560 /*
4561 * can_nice - check if a task can reduce its nice value
4562 * @p: task
4563 * @nice: nice value
4564 */
4565 int can_nice(const struct task_struct *p, const int nice)
4566 {
4567 /* convert nice value [19,-20] to rlimit style value [1,40] */
4568 int nice_rlim = 20 - nice;
4569
4570 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4571 capable(CAP_SYS_NICE));
4572 }
4573
4574 #ifdef __ARCH_WANT_SYS_NICE
4575
4576 /*
4577 * sys_nice - change the priority of the current process.
4578 * @increment: priority increment
4579 *
4580 * sys_setpriority is a more generic, but much slower function that
4581 * does similar things.
4582 */
4583 asmlinkage long sys_nice(int increment)
4584 {
4585 long nice, retval;
4586
4587 /*
4588 * Setpriority might change our priority at the same moment.
4589 * We don't have to worry. Conceptually one call occurs first
4590 * and we have a single winner.
4591 */
4592 if (increment < -40)
4593 increment = -40;
4594 if (increment > 40)
4595 increment = 40;
4596
4597 nice = PRIO_TO_NICE(current->static_prio) + increment;
4598 if (nice < -20)
4599 nice = -20;
4600 if (nice > 19)
4601 nice = 19;
4602
4603 if (increment < 0 && !can_nice(current, nice))
4604 return -EPERM;
4605
4606 retval = security_task_setnice(current, nice);
4607 if (retval)
4608 return retval;
4609
4610 set_user_nice(current, nice);
4611 return 0;
4612 }
4613
4614 #endif
4615
4616 /**
4617 * task_prio - return the priority value of a given task.
4618 * @p: the task in question.
4619 *
4620 * This is the priority value as seen by users in /proc.
4621 * RT tasks are offset by -200. Normal tasks are centered
4622 * around 0, value goes from -16 to +15.
4623 */
4624 int task_prio(const struct task_struct *p)
4625 {
4626 return p->prio - MAX_RT_PRIO;
4627 }
4628
4629 /**
4630 * task_nice - return the nice value of a given task.
4631 * @p: the task in question.
4632 */
4633 int task_nice(const struct task_struct *p)
4634 {
4635 return TASK_NICE(p);
4636 }
4637 EXPORT_SYMBOL(task_nice);
4638
4639 /**
4640 * idle_cpu - is a given cpu idle currently?
4641 * @cpu: the processor in question.
4642 */
4643 int idle_cpu(int cpu)
4644 {
4645 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4646 }
4647
4648 /**
4649 * idle_task - return the idle task for a given cpu.
4650 * @cpu: the processor in question.
4651 */
4652 struct task_struct *idle_task(int cpu)
4653 {
4654 return cpu_rq(cpu)->idle;
4655 }
4656
4657 /**
4658 * find_process_by_pid - find a process with a matching PID value.
4659 * @pid: the pid in question.
4660 */
4661 static struct task_struct *find_process_by_pid(pid_t pid)
4662 {
4663 return pid ? find_task_by_vpid(pid) : current;
4664 }
4665
4666 /* Actually do priority change: must hold rq lock. */
4667 static void
4668 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4669 {
4670 BUG_ON(p->se.on_rq);
4671
4672 p->policy = policy;
4673 switch (p->policy) {
4674 case SCHED_NORMAL:
4675 case SCHED_BATCH:
4676 case SCHED_IDLE:
4677 p->sched_class = &fair_sched_class;
4678 break;
4679 case SCHED_FIFO:
4680 case SCHED_RR:
4681 p->sched_class = &rt_sched_class;
4682 break;
4683 }
4684
4685 p->rt_priority = prio;
4686 p->normal_prio = normal_prio(p);
4687 /* we are holding p->pi_lock already */
4688 p->prio = rt_mutex_getprio(p);
4689 set_load_weight(p);
4690 }
4691
4692 /**
4693 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4694 * @p: the task in question.
4695 * @policy: new policy.
4696 * @param: structure containing the new RT priority.
4697 *
4698 * NOTE that the task may be already dead.
4699 */
4700 int sched_setscheduler(struct task_struct *p, int policy,
4701 struct sched_param *param)
4702 {
4703 int retval, oldprio, oldpolicy = -1, on_rq, running;
4704 unsigned long flags;
4705 const struct sched_class *prev_class = p->sched_class;
4706 struct rq *rq;
4707
4708 /* may grab non-irq protected spin_locks */
4709 BUG_ON(in_interrupt());
4710 recheck:
4711 /* double check policy once rq lock held */
4712 if (policy < 0)
4713 policy = oldpolicy = p->policy;
4714 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4715 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4716 policy != SCHED_IDLE)
4717 return -EINVAL;
4718 /*
4719 * Valid priorities for SCHED_FIFO and SCHED_RR are
4720 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4721 * SCHED_BATCH and SCHED_IDLE is 0.
4722 */
4723 if (param->sched_priority < 0 ||
4724 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4725 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4726 return -EINVAL;
4727 if (rt_policy(policy) != (param->sched_priority != 0))
4728 return -EINVAL;
4729
4730 /*
4731 * Allow unprivileged RT tasks to decrease priority:
4732 */
4733 if (!capable(CAP_SYS_NICE)) {
4734 if (rt_policy(policy)) {
4735 unsigned long rlim_rtprio;
4736
4737 if (!lock_task_sighand(p, &flags))
4738 return -ESRCH;
4739 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4740 unlock_task_sighand(p, &flags);
4741
4742 /* can't set/change the rt policy */
4743 if (policy != p->policy && !rlim_rtprio)
4744 return -EPERM;
4745
4746 /* can't increase priority */
4747 if (param->sched_priority > p->rt_priority &&
4748 param->sched_priority > rlim_rtprio)
4749 return -EPERM;
4750 }
4751 /*
4752 * Like positive nice levels, dont allow tasks to
4753 * move out of SCHED_IDLE either:
4754 */
4755 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4756 return -EPERM;
4757
4758 /* can't change other user's priorities */
4759 if ((current->euid != p->euid) &&
4760 (current->euid != p->uid))
4761 return -EPERM;
4762 }
4763
4764 #ifdef CONFIG_RT_GROUP_SCHED
4765 /*
4766 * Do not allow realtime tasks into groups that have no runtime
4767 * assigned.
4768 */
4769 if (rt_policy(policy) && task_group(p)->rt_bandwidth.rt_runtime == 0)
4770 return -EPERM;
4771 #endif
4772
4773 retval = security_task_setscheduler(p, policy, param);
4774 if (retval)
4775 return retval;
4776 /*
4777 * make sure no PI-waiters arrive (or leave) while we are
4778 * changing the priority of the task:
4779 */
4780 spin_lock_irqsave(&p->pi_lock, flags);
4781 /*
4782 * To be able to change p->policy safely, the apropriate
4783 * runqueue lock must be held.
4784 */
4785 rq = __task_rq_lock(p);
4786 /* recheck policy now with rq lock held */
4787 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4788 policy = oldpolicy = -1;
4789 __task_rq_unlock(rq);
4790 spin_unlock_irqrestore(&p->pi_lock, flags);
4791 goto recheck;
4792 }
4793 update_rq_clock(rq);
4794 on_rq = p->se.on_rq;
4795 running = task_current(rq, p);
4796 if (on_rq)
4797 deactivate_task(rq, p, 0);
4798 if (running)
4799 p->sched_class->put_prev_task(rq, p);
4800
4801 oldprio = p->prio;
4802 __setscheduler(rq, p, policy, param->sched_priority);
4803
4804 if (running)
4805 p->sched_class->set_curr_task(rq);
4806 if (on_rq) {
4807 activate_task(rq, p, 0);
4808
4809 check_class_changed(rq, p, prev_class, oldprio, running);
4810 }
4811 __task_rq_unlock(rq);
4812 spin_unlock_irqrestore(&p->pi_lock, flags);
4813
4814 rt_mutex_adjust_pi(p);
4815
4816 return 0;
4817 }
4818 EXPORT_SYMBOL_GPL(sched_setscheduler);
4819
4820 static int
4821 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4822 {
4823 struct sched_param lparam;
4824 struct task_struct *p;
4825 int retval;
4826
4827 if (!param || pid < 0)
4828 return -EINVAL;
4829 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4830 return -EFAULT;
4831
4832 rcu_read_lock();
4833 retval = -ESRCH;
4834 p = find_process_by_pid(pid);
4835 if (p != NULL)
4836 retval = sched_setscheduler(p, policy, &lparam);
4837 rcu_read_unlock();
4838
4839 return retval;
4840 }
4841
4842 /**
4843 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4844 * @pid: the pid in question.
4845 * @policy: new policy.
4846 * @param: structure containing the new RT priority.
4847 */
4848 asmlinkage long
4849 sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4850 {
4851 /* negative values for policy are not valid */
4852 if (policy < 0)
4853 return -EINVAL;
4854
4855 return do_sched_setscheduler(pid, policy, param);
4856 }
4857
4858 /**
4859 * sys_sched_setparam - set/change the RT priority of a thread
4860 * @pid: the pid in question.
4861 * @param: structure containing the new RT priority.
4862 */
4863 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4864 {
4865 return do_sched_setscheduler(pid, -1, param);
4866 }
4867
4868 /**
4869 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4870 * @pid: the pid in question.
4871 */
4872 asmlinkage long sys_sched_getscheduler(pid_t pid)
4873 {
4874 struct task_struct *p;
4875 int retval;
4876
4877 if (pid < 0)
4878 return -EINVAL;
4879
4880 retval = -ESRCH;
4881 read_lock(&tasklist_lock);
4882 p = find_process_by_pid(pid);
4883 if (p) {
4884 retval = security_task_getscheduler(p);
4885 if (!retval)
4886 retval = p->policy;
4887 }
4888 read_unlock(&tasklist_lock);
4889 return retval;
4890 }
4891
4892 /**
4893 * sys_sched_getscheduler - get the RT priority of a thread
4894 * @pid: the pid in question.
4895 * @param: structure containing the RT priority.
4896 */
4897 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4898 {
4899 struct sched_param lp;
4900 struct task_struct *p;
4901 int retval;
4902
4903 if (!param || pid < 0)
4904 return -EINVAL;
4905
4906 read_lock(&tasklist_lock);
4907 p = find_process_by_pid(pid);
4908 retval = -ESRCH;
4909 if (!p)
4910 goto out_unlock;
4911
4912 retval = security_task_getscheduler(p);
4913 if (retval)
4914 goto out_unlock;
4915
4916 lp.sched_priority = p->rt_priority;
4917 read_unlock(&tasklist_lock);
4918
4919 /*
4920 * This one might sleep, we cannot do it with a spinlock held ...
4921 */
4922 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4923
4924 return retval;
4925
4926 out_unlock:
4927 read_unlock(&tasklist_lock);
4928 return retval;
4929 }
4930
4931 long sched_setaffinity(pid_t pid, const cpumask_t *in_mask)
4932 {
4933 cpumask_t cpus_allowed;
4934 cpumask_t new_mask = *in_mask;
4935 struct task_struct *p;
4936 int retval;
4937
4938 get_online_cpus();
4939 read_lock(&tasklist_lock);
4940
4941 p = find_process_by_pid(pid);
4942 if (!p) {
4943 read_unlock(&tasklist_lock);
4944 put_online_cpus();
4945 return -ESRCH;
4946 }
4947
4948 /*
4949 * It is not safe to call set_cpus_allowed with the
4950 * tasklist_lock held. We will bump the task_struct's
4951 * usage count and then drop tasklist_lock.
4952 */
4953 get_task_struct(p);
4954 read_unlock(&tasklist_lock);
4955
4956 retval = -EPERM;
4957 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4958 !capable(CAP_SYS_NICE))
4959 goto out_unlock;
4960
4961 retval = security_task_setscheduler(p, 0, NULL);
4962 if (retval)
4963 goto out_unlock;
4964
4965 cpuset_cpus_allowed(p, &cpus_allowed);
4966 cpus_and(new_mask, new_mask, cpus_allowed);
4967 again:
4968 retval = set_cpus_allowed_ptr(p, &new_mask);
4969
4970 if (!retval) {
4971 cpuset_cpus_allowed(p, &cpus_allowed);
4972 if (!cpus_subset(new_mask, cpus_allowed)) {
4973 /*
4974 * We must have raced with a concurrent cpuset
4975 * update. Just reset the cpus_allowed to the
4976 * cpuset's cpus_allowed
4977 */
4978 new_mask = cpus_allowed;
4979 goto again;
4980 }
4981 }
4982 out_unlock:
4983 put_task_struct(p);
4984 put_online_cpus();
4985 return retval;
4986 }
4987
4988 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4989 cpumask_t *new_mask)
4990 {
4991 if (len < sizeof(cpumask_t)) {
4992 memset(new_mask, 0, sizeof(cpumask_t));
4993 } else if (len > sizeof(cpumask_t)) {
4994 len = sizeof(cpumask_t);
4995 }
4996 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4997 }
4998
4999 /**
5000 * sys_sched_setaffinity - set the cpu affinity of a process
5001 * @pid: pid of the process
5002 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5003 * @user_mask_ptr: user-space pointer to the new cpu mask
5004 */
5005 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
5006 unsigned long __user *user_mask_ptr)
5007 {
5008 cpumask_t new_mask;
5009 int retval;
5010
5011 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
5012 if (retval)
5013 return retval;
5014
5015 return sched_setaffinity(pid, &new_mask);
5016 }
5017
5018 /*
5019 * Represents all cpu's present in the system
5020 * In systems capable of hotplug, this map could dynamically grow
5021 * as new cpu's are detected in the system via any platform specific
5022 * method, such as ACPI for e.g.
5023 */
5024
5025 cpumask_t cpu_present_map __read_mostly;
5026 EXPORT_SYMBOL(cpu_present_map);
5027
5028 #ifndef CONFIG_SMP
5029 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
5030 EXPORT_SYMBOL(cpu_online_map);
5031
5032 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
5033 EXPORT_SYMBOL(cpu_possible_map);
5034 #endif
5035
5036 long sched_getaffinity(pid_t pid, cpumask_t *mask)
5037 {
5038 struct task_struct *p;
5039 int retval;
5040
5041 get_online_cpus();
5042 read_lock(&tasklist_lock);
5043
5044 retval = -ESRCH;
5045 p = find_process_by_pid(pid);
5046 if (!p)
5047 goto out_unlock;
5048
5049 retval = security_task_getscheduler(p);
5050 if (retval)
5051 goto out_unlock;
5052
5053 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
5054
5055 out_unlock:
5056 read_unlock(&tasklist_lock);
5057 put_online_cpus();
5058
5059 return retval;
5060 }
5061
5062 /**
5063 * sys_sched_getaffinity - get the cpu affinity of a process
5064 * @pid: pid of the process
5065 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5066 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5067 */
5068 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
5069 unsigned long __user *user_mask_ptr)
5070 {
5071 int ret;
5072 cpumask_t mask;
5073
5074 if (len < sizeof(cpumask_t))
5075 return -EINVAL;
5076
5077 ret = sched_getaffinity(pid, &mask);
5078 if (ret < 0)
5079 return ret;
5080
5081 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
5082 return -EFAULT;
5083
5084 return sizeof(cpumask_t);
5085 }
5086
5087 /**
5088 * sys_sched_yield - yield the current processor to other threads.
5089 *
5090 * This function yields the current CPU to other tasks. If there are no
5091 * other threads running on this CPU then this function will return.
5092 */
5093 asmlinkage long sys_sched_yield(void)
5094 {
5095 struct rq *rq = this_rq_lock();
5096
5097 schedstat_inc(rq, yld_count);
5098 current->sched_class->yield_task(rq);
5099
5100 /*
5101 * Since we are going to call schedule() anyway, there's
5102 * no need to preempt or enable interrupts:
5103 */
5104 __release(rq->lock);
5105 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5106 _raw_spin_unlock(&rq->lock);
5107 preempt_enable_no_resched();
5108
5109 schedule();
5110
5111 return 0;
5112 }
5113
5114 static void __cond_resched(void)
5115 {
5116 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5117 __might_sleep(__FILE__, __LINE__);
5118 #endif
5119 /*
5120 * The BKS might be reacquired before we have dropped
5121 * PREEMPT_ACTIVE, which could trigger a second
5122 * cond_resched() call.
5123 */
5124 do {
5125 add_preempt_count(PREEMPT_ACTIVE);
5126 schedule();
5127 sub_preempt_count(PREEMPT_ACTIVE);
5128 } while (need_resched());
5129 }
5130
5131 #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PREEMPT_VOLUNTARY)
5132 int __sched _cond_resched(void)
5133 {
5134 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5135 system_state == SYSTEM_RUNNING) {
5136 __cond_resched();
5137 return 1;
5138 }
5139 return 0;
5140 }
5141 EXPORT_SYMBOL(_cond_resched);
5142 #endif
5143
5144 /*
5145 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5146 * call schedule, and on return reacquire the lock.
5147 *
5148 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5149 * operations here to prevent schedule() from being called twice (once via
5150 * spin_unlock(), once by hand).
5151 */
5152 int cond_resched_lock(spinlock_t *lock)
5153 {
5154 int resched = need_resched() && system_state == SYSTEM_RUNNING;
5155 int ret = 0;
5156
5157 if (spin_needbreak(lock) || resched) {
5158 spin_unlock(lock);
5159 if (resched && need_resched())
5160 __cond_resched();
5161 else
5162 cpu_relax();
5163 ret = 1;
5164 spin_lock(lock);
5165 }
5166 return ret;
5167 }
5168 EXPORT_SYMBOL(cond_resched_lock);
5169
5170 int __sched cond_resched_softirq(void)
5171 {
5172 BUG_ON(!in_softirq());
5173
5174 if (need_resched() && system_state == SYSTEM_RUNNING) {
5175 local_bh_enable();
5176 __cond_resched();
5177 local_bh_disable();
5178 return 1;
5179 }
5180 return 0;
5181 }
5182 EXPORT_SYMBOL(cond_resched_softirq);
5183
5184 /**
5185 * yield - yield the current processor to other threads.
5186 *
5187 * This is a shortcut for kernel-space yielding - it marks the
5188 * thread runnable and calls sys_sched_yield().
5189 */
5190 void __sched yield(void)
5191 {
5192 set_current_state(TASK_RUNNING);
5193 sys_sched_yield();
5194 }
5195 EXPORT_SYMBOL(yield);
5196
5197 /*
5198 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5199 * that process accounting knows that this is a task in IO wait state.
5200 *
5201 * But don't do that if it is a deliberate, throttling IO wait (this task
5202 * has set its backing_dev_info: the queue against which it should throttle)
5203 */
5204 void __sched io_schedule(void)
5205 {
5206 struct rq *rq = &__raw_get_cpu_var(runqueues);
5207
5208 delayacct_blkio_start();
5209 atomic_inc(&rq->nr_iowait);
5210 schedule();
5211 atomic_dec(&rq->nr_iowait);
5212 delayacct_blkio_end();
5213 }
5214 EXPORT_SYMBOL(io_schedule);
5215
5216 long __sched io_schedule_timeout(long timeout)
5217 {
5218 struct rq *rq = &__raw_get_cpu_var(runqueues);
5219 long ret;
5220
5221 delayacct_blkio_start();
5222 atomic_inc(&rq->nr_iowait);
5223 ret = schedule_timeout(timeout);
5224 atomic_dec(&rq->nr_iowait);
5225 delayacct_blkio_end();
5226 return ret;
5227 }
5228
5229 /**
5230 * sys_sched_get_priority_max - return maximum RT priority.
5231 * @policy: scheduling class.
5232 *
5233 * this syscall returns the maximum rt_priority that can be used
5234 * by a given scheduling class.
5235 */
5236 asmlinkage long sys_sched_get_priority_max(int policy)
5237 {
5238 int ret = -EINVAL;
5239
5240 switch (policy) {
5241 case SCHED_FIFO:
5242 case SCHED_RR:
5243 ret = MAX_USER_RT_PRIO-1;
5244 break;
5245 case SCHED_NORMAL:
5246 case SCHED_BATCH:
5247 case SCHED_IDLE:
5248 ret = 0;
5249 break;
5250 }
5251 return ret;
5252 }
5253
5254 /**
5255 * sys_sched_get_priority_min - return minimum RT priority.
5256 * @policy: scheduling class.
5257 *
5258 * this syscall returns the minimum rt_priority that can be used
5259 * by a given scheduling class.
5260 */
5261 asmlinkage long sys_sched_get_priority_min(int policy)
5262 {
5263 int ret = -EINVAL;
5264
5265 switch (policy) {
5266 case SCHED_FIFO:
5267 case SCHED_RR:
5268 ret = 1;
5269 break;
5270 case SCHED_NORMAL:
5271 case SCHED_BATCH:
5272 case SCHED_IDLE:
5273 ret = 0;
5274 }
5275 return ret;
5276 }
5277
5278 /**
5279 * sys_sched_rr_get_interval - return the default timeslice of a process.
5280 * @pid: pid of the process.
5281 * @interval: userspace pointer to the timeslice value.
5282 *
5283 * this syscall writes the default timeslice value of a given process
5284 * into the user-space timespec buffer. A value of '0' means infinity.
5285 */
5286 asmlinkage
5287 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
5288 {
5289 struct task_struct *p;
5290 unsigned int time_slice;
5291 int retval;
5292 struct timespec t;
5293
5294 if (pid < 0)
5295 return -EINVAL;
5296
5297 retval = -ESRCH;
5298 read_lock(&tasklist_lock);
5299 p = find_process_by_pid(pid);
5300 if (!p)
5301 goto out_unlock;
5302
5303 retval = security_task_getscheduler(p);
5304 if (retval)
5305 goto out_unlock;
5306
5307 /*
5308 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
5309 * tasks that are on an otherwise idle runqueue:
5310 */
5311 time_slice = 0;
5312 if (p->policy == SCHED_RR) {
5313 time_slice = DEF_TIMESLICE;
5314 } else if (p->policy != SCHED_FIFO) {
5315 struct sched_entity *se = &p->se;
5316 unsigned long flags;
5317 struct rq *rq;
5318
5319 rq = task_rq_lock(p, &flags);
5320 if (rq->cfs.load.weight)
5321 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
5322 task_rq_unlock(rq, &flags);
5323 }
5324 read_unlock(&tasklist_lock);
5325 jiffies_to_timespec(time_slice, &t);
5326 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5327 return retval;
5328
5329 out_unlock:
5330 read_unlock(&tasklist_lock);
5331 return retval;
5332 }
5333
5334 static const char stat_nam[] = "RSDTtZX";
5335
5336 void sched_show_task(struct task_struct *p)
5337 {
5338 unsigned long free = 0;
5339 unsigned state;
5340
5341 state = p->state ? __ffs(p->state) + 1 : 0;
5342 printk(KERN_INFO "%-13.13s %c", p->comm,
5343 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5344 #if BITS_PER_LONG == 32
5345 if (state == TASK_RUNNING)
5346 printk(KERN_CONT " running ");
5347 else
5348 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5349 #else
5350 if (state == TASK_RUNNING)
5351 printk(KERN_CONT " running task ");
5352 else
5353 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5354 #endif
5355 #ifdef CONFIG_DEBUG_STACK_USAGE
5356 {
5357 unsigned long *n = end_of_stack(p);
5358 while (!*n)
5359 n++;
5360 free = (unsigned long)n - (unsigned long)end_of_stack(p);
5361 }
5362 #endif
5363 printk(KERN_CONT "%5lu %5d %6d\n", free,
5364 task_pid_nr(p), task_pid_nr(p->real_parent));
5365
5366 show_stack(p, NULL);
5367 }
5368
5369 void show_state_filter(unsigned long state_filter)
5370 {
5371 struct task_struct *g, *p;
5372
5373 #if BITS_PER_LONG == 32
5374 printk(KERN_INFO
5375 " task PC stack pid father\n");
5376 #else
5377 printk(KERN_INFO
5378 " task PC stack pid father\n");
5379 #endif
5380 read_lock(&tasklist_lock);
5381 do_each_thread(g, p) {
5382 /*
5383 * reset the NMI-timeout, listing all files on a slow
5384 * console might take alot of time:
5385 */
5386 touch_nmi_watchdog();
5387 if (!state_filter || (p->state & state_filter))
5388 sched_show_task(p);
5389 } while_each_thread(g, p);
5390
5391 touch_all_softlockup_watchdogs();
5392
5393 #ifdef CONFIG_SCHED_DEBUG
5394 sysrq_sched_debug_show();
5395 #endif
5396 read_unlock(&tasklist_lock);
5397 /*
5398 * Only show locks if all tasks are dumped:
5399 */
5400 if (state_filter == -1)
5401 debug_show_all_locks();
5402 }
5403
5404 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5405 {
5406 idle->sched_class = &idle_sched_class;
5407 }
5408
5409 /**
5410 * init_idle - set up an idle thread for a given CPU
5411 * @idle: task in question
5412 * @cpu: cpu the idle task belongs to
5413 *
5414 * NOTE: this function does not set the idle thread's NEED_RESCHED
5415 * flag, to make booting more robust.
5416 */
5417 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5418 {
5419 struct rq *rq = cpu_rq(cpu);
5420 unsigned long flags;
5421
5422 __sched_fork(idle);
5423 idle->se.exec_start = sched_clock();
5424
5425 idle->prio = idle->normal_prio = MAX_PRIO;
5426 idle->cpus_allowed = cpumask_of_cpu(cpu);
5427 __set_task_cpu(idle, cpu);
5428
5429 spin_lock_irqsave(&rq->lock, flags);
5430 rq->curr = rq->idle = idle;
5431 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5432 idle->oncpu = 1;
5433 #endif
5434 spin_unlock_irqrestore(&rq->lock, flags);
5435
5436 /* Set the preempt count _outside_ the spinlocks! */
5437 task_thread_info(idle)->preempt_count = 0;
5438
5439 /*
5440 * The idle tasks have their own, simple scheduling class:
5441 */
5442 idle->sched_class = &idle_sched_class;
5443 }
5444
5445 /*
5446 * In a system that switches off the HZ timer nohz_cpu_mask
5447 * indicates which cpus entered this state. This is used
5448 * in the rcu update to wait only for active cpus. For system
5449 * which do not switch off the HZ timer nohz_cpu_mask should
5450 * always be CPU_MASK_NONE.
5451 */
5452 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
5453
5454 /*
5455 * Increase the granularity value when there are more CPUs,
5456 * because with more CPUs the 'effective latency' as visible
5457 * to users decreases. But the relationship is not linear,
5458 * so pick a second-best guess by going with the log2 of the
5459 * number of CPUs.
5460 *
5461 * This idea comes from the SD scheduler of Con Kolivas:
5462 */
5463 static inline void sched_init_granularity(void)
5464 {
5465 unsigned int factor = 1 + ilog2(num_online_cpus());
5466 const unsigned long limit = 200000000;
5467
5468 sysctl_sched_min_granularity *= factor;
5469 if (sysctl_sched_min_granularity > limit)
5470 sysctl_sched_min_granularity = limit;
5471
5472 sysctl_sched_latency *= factor;
5473 if (sysctl_sched_latency > limit)
5474 sysctl_sched_latency = limit;
5475
5476 sysctl_sched_wakeup_granularity *= factor;
5477 }
5478
5479 #ifdef CONFIG_SMP
5480 /*
5481 * This is how migration works:
5482 *
5483 * 1) we queue a struct migration_req structure in the source CPU's
5484 * runqueue and wake up that CPU's migration thread.
5485 * 2) we down() the locked semaphore => thread blocks.
5486 * 3) migration thread wakes up (implicitly it forces the migrated
5487 * thread off the CPU)
5488 * 4) it gets the migration request and checks whether the migrated
5489 * task is still in the wrong runqueue.
5490 * 5) if it's in the wrong runqueue then the migration thread removes
5491 * it and puts it into the right queue.
5492 * 6) migration thread up()s the semaphore.
5493 * 7) we wake up and the migration is done.
5494 */
5495
5496 /*
5497 * Change a given task's CPU affinity. Migrate the thread to a
5498 * proper CPU and schedule it away if the CPU it's executing on
5499 * is removed from the allowed bitmask.
5500 *
5501 * NOTE: the caller must have a valid reference to the task, the
5502 * task must not exit() & deallocate itself prematurely. The
5503 * call is not atomic; no spinlocks may be held.
5504 */
5505 int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask)
5506 {
5507 struct migration_req req;
5508 unsigned long flags;
5509 struct rq *rq;
5510 int ret = 0;
5511
5512 rq = task_rq_lock(p, &flags);
5513 if (!cpus_intersects(*new_mask, cpu_online_map)) {
5514 ret = -EINVAL;
5515 goto out;
5516 }
5517
5518 if (p->sched_class->set_cpus_allowed)
5519 p->sched_class->set_cpus_allowed(p, new_mask);
5520 else {
5521 p->cpus_allowed = *new_mask;
5522 p->rt.nr_cpus_allowed = cpus_weight(*new_mask);
5523 }
5524
5525 /* Can the task run on the task's current CPU? If so, we're done */
5526 if (cpu_isset(task_cpu(p), *new_mask))
5527 goto out;
5528
5529 if (migrate_task(p, any_online_cpu(*new_mask), &req)) {
5530 /* Need help from migration thread: drop lock and wait. */
5531 task_rq_unlock(rq, &flags);
5532 wake_up_process(rq->migration_thread);
5533 wait_for_completion(&req.done);
5534 tlb_migrate_finish(p->mm);
5535 return 0;
5536 }
5537 out:
5538 task_rq_unlock(rq, &flags);
5539
5540 return ret;
5541 }
5542 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5543
5544 /*
5545 * Move (not current) task off this cpu, onto dest cpu. We're doing
5546 * this because either it can't run here any more (set_cpus_allowed()
5547 * away from this CPU, or CPU going down), or because we're
5548 * attempting to rebalance this task on exec (sched_exec).
5549 *
5550 * So we race with normal scheduler movements, but that's OK, as long
5551 * as the task is no longer on this CPU.
5552 *
5553 * Returns non-zero if task was successfully migrated.
5554 */
5555 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5556 {
5557 struct rq *rq_dest, *rq_src;
5558 int ret = 0, on_rq;
5559
5560 if (unlikely(cpu_is_offline(dest_cpu)))
5561 return ret;
5562
5563 rq_src = cpu_rq(src_cpu);
5564 rq_dest = cpu_rq(dest_cpu);
5565
5566 double_rq_lock(rq_src, rq_dest);
5567 /* Already moved. */
5568 if (task_cpu(p) != src_cpu)
5569 goto out;
5570 /* Affinity changed (again). */
5571 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5572 goto out;
5573
5574 on_rq = p->se.on_rq;
5575 if (on_rq)
5576 deactivate_task(rq_src, p, 0);
5577
5578 set_task_cpu(p, dest_cpu);
5579 if (on_rq) {
5580 activate_task(rq_dest, p, 0);
5581 check_preempt_curr(rq_dest, p);
5582 }
5583 ret = 1;
5584 out:
5585 double_rq_unlock(rq_src, rq_dest);
5586 return ret;
5587 }
5588
5589 /*
5590 * migration_thread - this is a highprio system thread that performs
5591 * thread migration by bumping thread off CPU then 'pushing' onto
5592 * another runqueue.
5593 */
5594 static int migration_thread(void *data)
5595 {
5596 int cpu = (long)data;
5597 struct rq *rq;
5598
5599 rq = cpu_rq(cpu);
5600 BUG_ON(rq->migration_thread != current);
5601
5602 set_current_state(TASK_INTERRUPTIBLE);
5603 while (!kthread_should_stop()) {
5604 struct migration_req *req;
5605 struct list_head *head;
5606
5607 spin_lock_irq(&rq->lock);
5608
5609 if (cpu_is_offline(cpu)) {
5610 spin_unlock_irq(&rq->lock);
5611 goto wait_to_die;
5612 }
5613
5614 if (rq->active_balance) {
5615 active_load_balance(rq, cpu);
5616 rq->active_balance = 0;
5617 }
5618
5619 head = &rq->migration_queue;
5620
5621 if (list_empty(head)) {
5622 spin_unlock_irq(&rq->lock);
5623 schedule();
5624 set_current_state(TASK_INTERRUPTIBLE);
5625 continue;
5626 }
5627 req = list_entry(head->next, struct migration_req, list);
5628 list_del_init(head->next);
5629
5630 spin_unlock(&rq->lock);
5631 __migrate_task(req->task, cpu, req->dest_cpu);
5632 local_irq_enable();
5633
5634 complete(&req->done);
5635 }
5636 __set_current_state(TASK_RUNNING);
5637 return 0;
5638
5639 wait_to_die:
5640 /* Wait for kthread_stop */
5641 set_current_state(TASK_INTERRUPTIBLE);
5642 while (!kthread_should_stop()) {
5643 schedule();
5644 set_current_state(TASK_INTERRUPTIBLE);
5645 }
5646 __set_current_state(TASK_RUNNING);
5647 return 0;
5648 }
5649
5650 #ifdef CONFIG_HOTPLUG_CPU
5651
5652 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5653 {
5654 int ret;
5655
5656 local_irq_disable();
5657 ret = __migrate_task(p, src_cpu, dest_cpu);
5658 local_irq_enable();
5659 return ret;
5660 }
5661
5662 /*
5663 * Figure out where task on dead CPU should go, use force if necessary.
5664 * NOTE: interrupts should be disabled by the caller
5665 */
5666 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5667 {
5668 unsigned long flags;
5669 cpumask_t mask;
5670 struct rq *rq;
5671 int dest_cpu;
5672
5673 do {
5674 /* On same node? */
5675 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5676 cpus_and(mask, mask, p->cpus_allowed);
5677 dest_cpu = any_online_cpu(mask);
5678
5679 /* On any allowed CPU? */
5680 if (dest_cpu >= nr_cpu_ids)
5681 dest_cpu = any_online_cpu(p->cpus_allowed);
5682
5683 /* No more Mr. Nice Guy. */
5684 if (dest_cpu >= nr_cpu_ids) {
5685 cpumask_t cpus_allowed;
5686
5687 cpuset_cpus_allowed_locked(p, &cpus_allowed);
5688 /*
5689 * Try to stay on the same cpuset, where the
5690 * current cpuset may be a subset of all cpus.
5691 * The cpuset_cpus_allowed_locked() variant of
5692 * cpuset_cpus_allowed() will not block. It must be
5693 * called within calls to cpuset_lock/cpuset_unlock.
5694 */
5695 rq = task_rq_lock(p, &flags);
5696 p->cpus_allowed = cpus_allowed;
5697 dest_cpu = any_online_cpu(p->cpus_allowed);
5698 task_rq_unlock(rq, &flags);
5699
5700 /*
5701 * Don't tell them about moving exiting tasks or
5702 * kernel threads (both mm NULL), since they never
5703 * leave kernel.
5704 */
5705 if (p->mm && printk_ratelimit()) {
5706 printk(KERN_INFO "process %d (%s) no "
5707 "longer affine to cpu%d\n",
5708 task_pid_nr(p), p->comm, dead_cpu);
5709 }
5710 }
5711 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
5712 }
5713
5714 /*
5715 * While a dead CPU has no uninterruptible tasks queued at this point,
5716 * it might still have a nonzero ->nr_uninterruptible counter, because
5717 * for performance reasons the counter is not stricly tracking tasks to
5718 * their home CPUs. So we just add the counter to another CPU's counter,
5719 * to keep the global sum constant after CPU-down:
5720 */
5721 static void migrate_nr_uninterruptible(struct rq *rq_src)
5722 {
5723 struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR));
5724 unsigned long flags;
5725
5726 local_irq_save(flags);
5727 double_rq_lock(rq_src, rq_dest);
5728 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5729 rq_src->nr_uninterruptible = 0;
5730 double_rq_unlock(rq_src, rq_dest);
5731 local_irq_restore(flags);
5732 }
5733
5734 /* Run through task list and migrate tasks from the dead cpu. */
5735 static void migrate_live_tasks(int src_cpu)
5736 {
5737 struct task_struct *p, *t;
5738
5739 read_lock(&tasklist_lock);
5740
5741 do_each_thread(t, p) {
5742 if (p == current)
5743 continue;
5744
5745 if (task_cpu(p) == src_cpu)
5746 move_task_off_dead_cpu(src_cpu, p);
5747 } while_each_thread(t, p);
5748
5749 read_unlock(&tasklist_lock);
5750 }
5751
5752 /*
5753 * Schedules idle task to be the next runnable task on current CPU.
5754 * It does so by boosting its priority to highest possible.
5755 * Used by CPU offline code.
5756 */
5757 void sched_idle_next(void)
5758 {
5759 int this_cpu = smp_processor_id();
5760 struct rq *rq = cpu_rq(this_cpu);
5761 struct task_struct *p = rq->idle;
5762 unsigned long flags;
5763
5764 /* cpu has to be offline */
5765 BUG_ON(cpu_online(this_cpu));
5766
5767 /*
5768 * Strictly not necessary since rest of the CPUs are stopped by now
5769 * and interrupts disabled on the current cpu.
5770 */
5771 spin_lock_irqsave(&rq->lock, flags);
5772
5773 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5774
5775 update_rq_clock(rq);
5776 activate_task(rq, p, 0);
5777
5778 spin_unlock_irqrestore(&rq->lock, flags);
5779 }
5780
5781 /*
5782 * Ensures that the idle task is using init_mm right before its cpu goes
5783 * offline.
5784 */
5785 void idle_task_exit(void)
5786 {
5787 struct mm_struct *mm = current->active_mm;
5788
5789 BUG_ON(cpu_online(smp_processor_id()));
5790
5791 if (mm != &init_mm)
5792 switch_mm(mm, &init_mm, current);
5793 mmdrop(mm);
5794 }
5795
5796 /* called under rq->lock with disabled interrupts */
5797 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5798 {
5799 struct rq *rq = cpu_rq(dead_cpu);
5800
5801 /* Must be exiting, otherwise would be on tasklist. */
5802 BUG_ON(!p->exit_state);
5803
5804 /* Cannot have done final schedule yet: would have vanished. */
5805 BUG_ON(p->state == TASK_DEAD);
5806
5807 get_task_struct(p);
5808
5809 /*
5810 * Drop lock around migration; if someone else moves it,
5811 * that's OK. No task can be added to this CPU, so iteration is
5812 * fine.
5813 */
5814 spin_unlock_irq(&rq->lock);
5815 move_task_off_dead_cpu(dead_cpu, p);
5816 spin_lock_irq(&rq->lock);
5817
5818 put_task_struct(p);
5819 }
5820
5821 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5822 static void migrate_dead_tasks(unsigned int dead_cpu)
5823 {
5824 struct rq *rq = cpu_rq(dead_cpu);
5825 struct task_struct *next;
5826
5827 for ( ; ; ) {
5828 if (!rq->nr_running)
5829 break;
5830 update_rq_clock(rq);
5831 next = pick_next_task(rq, rq->curr);
5832 if (!next)
5833 break;
5834 migrate_dead(dead_cpu, next);
5835
5836 }
5837 }
5838 #endif /* CONFIG_HOTPLUG_CPU */
5839
5840 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5841
5842 static struct ctl_table sd_ctl_dir[] = {
5843 {
5844 .procname = "sched_domain",
5845 .mode = 0555,
5846 },
5847 {0, },
5848 };
5849
5850 static struct ctl_table sd_ctl_root[] = {
5851 {
5852 .ctl_name = CTL_KERN,
5853 .procname = "kernel",
5854 .mode = 0555,
5855 .child = sd_ctl_dir,
5856 },
5857 {0, },
5858 };
5859
5860 static struct ctl_table *sd_alloc_ctl_entry(int n)
5861 {
5862 struct ctl_table *entry =
5863 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5864
5865 return entry;
5866 }
5867
5868 static void sd_free_ctl_entry(struct ctl_table **tablep)
5869 {
5870 struct ctl_table *entry;
5871
5872 /*
5873 * In the intermediate directories, both the child directory and
5874 * procname are dynamically allocated and could fail but the mode
5875 * will always be set. In the lowest directory the names are
5876 * static strings and all have proc handlers.
5877 */
5878 for (entry = *tablep; entry->mode; entry++) {
5879 if (entry->child)
5880 sd_free_ctl_entry(&entry->child);
5881 if (entry->proc_handler == NULL)
5882 kfree(entry->procname);
5883 }
5884
5885 kfree(*tablep);
5886 *tablep = NULL;
5887 }
5888
5889 static void
5890 set_table_entry(struct ctl_table *entry,
5891 const char *procname, void *data, int maxlen,
5892 mode_t mode, proc_handler *proc_handler)
5893 {
5894 entry->procname = procname;
5895 entry->data = data;
5896 entry->maxlen = maxlen;
5897 entry->mode = mode;
5898 entry->proc_handler = proc_handler;
5899 }
5900
5901 static struct ctl_table *
5902 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5903 {
5904 struct ctl_table *table = sd_alloc_ctl_entry(12);
5905
5906 if (table == NULL)
5907 return NULL;
5908
5909 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5910 sizeof(long), 0644, proc_doulongvec_minmax);
5911 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5912 sizeof(long), 0644, proc_doulongvec_minmax);
5913 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5914 sizeof(int), 0644, proc_dointvec_minmax);
5915 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5916 sizeof(int), 0644, proc_dointvec_minmax);
5917 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5918 sizeof(int), 0644, proc_dointvec_minmax);
5919 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5920 sizeof(int), 0644, proc_dointvec_minmax);
5921 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5922 sizeof(int), 0644, proc_dointvec_minmax);
5923 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5924 sizeof(int), 0644, proc_dointvec_minmax);
5925 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5926 sizeof(int), 0644, proc_dointvec_minmax);
5927 set_table_entry(&table[9], "cache_nice_tries",
5928 &sd->cache_nice_tries,
5929 sizeof(int), 0644, proc_dointvec_minmax);
5930 set_table_entry(&table[10], "flags", &sd->flags,
5931 sizeof(int), 0644, proc_dointvec_minmax);
5932 /* &table[11] is terminator */
5933
5934 return table;
5935 }
5936
5937 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5938 {
5939 struct ctl_table *entry, *table;
5940 struct sched_domain *sd;
5941 int domain_num = 0, i;
5942 char buf[32];
5943
5944 for_each_domain(cpu, sd)
5945 domain_num++;
5946 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5947 if (table == NULL)
5948 return NULL;
5949
5950 i = 0;
5951 for_each_domain(cpu, sd) {
5952 snprintf(buf, 32, "domain%d", i);
5953 entry->procname = kstrdup(buf, GFP_KERNEL);
5954 entry->mode = 0555;
5955 entry->child = sd_alloc_ctl_domain_table(sd);
5956 entry++;
5957 i++;
5958 }
5959 return table;
5960 }
5961
5962 static struct ctl_table_header *sd_sysctl_header;
5963 static void register_sched_domain_sysctl(void)
5964 {
5965 int i, cpu_num = num_online_cpus();
5966 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5967 char buf[32];
5968
5969 WARN_ON(sd_ctl_dir[0].child);
5970 sd_ctl_dir[0].child = entry;
5971
5972 if (entry == NULL)
5973 return;
5974
5975 for_each_online_cpu(i) {
5976 snprintf(buf, 32, "cpu%d", i);
5977 entry->procname = kstrdup(buf, GFP_KERNEL);
5978 entry->mode = 0555;
5979 entry->child = sd_alloc_ctl_cpu_table(i);
5980 entry++;
5981 }
5982
5983 WARN_ON(sd_sysctl_header);
5984 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5985 }
5986
5987 /* may be called multiple times per register */
5988 static void unregister_sched_domain_sysctl(void)
5989 {
5990 if (sd_sysctl_header)
5991 unregister_sysctl_table(sd_sysctl_header);
5992 sd_sysctl_header = NULL;
5993 if (sd_ctl_dir[0].child)
5994 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5995 }
5996 #else
5997 static void register_sched_domain_sysctl(void)
5998 {
5999 }
6000 static void unregister_sched_domain_sysctl(void)
6001 {
6002 }
6003 #endif
6004
6005 /*
6006 * migration_call - callback that gets triggered when a CPU is added.
6007 * Here we can start up the necessary migration thread for the new CPU.
6008 */
6009 static int __cpuinit
6010 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6011 {
6012 struct task_struct *p;
6013 int cpu = (long)hcpu;
6014 unsigned long flags;
6015 struct rq *rq;
6016
6017 switch (action) {
6018
6019 case CPU_UP_PREPARE:
6020 case CPU_UP_PREPARE_FROZEN:
6021 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
6022 if (IS_ERR(p))
6023 return NOTIFY_BAD;
6024 kthread_bind(p, cpu);
6025 /* Must be high prio: stop_machine expects to yield to it. */
6026 rq = task_rq_lock(p, &flags);
6027 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
6028 task_rq_unlock(rq, &flags);
6029 cpu_rq(cpu)->migration_thread = p;
6030 break;
6031
6032 case CPU_ONLINE:
6033 case CPU_ONLINE_FROZEN:
6034 /* Strictly unnecessary, as first user will wake it. */
6035 wake_up_process(cpu_rq(cpu)->migration_thread);
6036
6037 /* Update our root-domain */
6038 rq = cpu_rq(cpu);
6039 spin_lock_irqsave(&rq->lock, flags);
6040 if (rq->rd) {
6041 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6042 cpu_set(cpu, rq->rd->online);
6043 }
6044 spin_unlock_irqrestore(&rq->lock, flags);
6045 break;
6046
6047 #ifdef CONFIG_HOTPLUG_CPU
6048 case CPU_UP_CANCELED:
6049 case CPU_UP_CANCELED_FROZEN:
6050 if (!cpu_rq(cpu)->migration_thread)
6051 break;
6052 /* Unbind it from offline cpu so it can run. Fall thru. */
6053 kthread_bind(cpu_rq(cpu)->migration_thread,
6054 any_online_cpu(cpu_online_map));
6055 kthread_stop(cpu_rq(cpu)->migration_thread);
6056 cpu_rq(cpu)->migration_thread = NULL;
6057 break;
6058
6059 case CPU_DEAD:
6060 case CPU_DEAD_FROZEN:
6061 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
6062 migrate_live_tasks(cpu);
6063 rq = cpu_rq(cpu);
6064 kthread_stop(rq->migration_thread);
6065 rq->migration_thread = NULL;
6066 /* Idle task back to normal (off runqueue, low prio) */
6067 spin_lock_irq(&rq->lock);
6068 update_rq_clock(rq);
6069 deactivate_task(rq, rq->idle, 0);
6070 rq->idle->static_prio = MAX_PRIO;
6071 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6072 rq->idle->sched_class = &idle_sched_class;
6073 migrate_dead_tasks(cpu);
6074 spin_unlock_irq(&rq->lock);
6075 cpuset_unlock();
6076 migrate_nr_uninterruptible(rq);
6077 BUG_ON(rq->nr_running != 0);
6078
6079 /*
6080 * No need to migrate the tasks: it was best-effort if
6081 * they didn't take sched_hotcpu_mutex. Just wake up
6082 * the requestors.
6083 */
6084 spin_lock_irq(&rq->lock);
6085 while (!list_empty(&rq->migration_queue)) {
6086 struct migration_req *req;
6087
6088 req = list_entry(rq->migration_queue.next,
6089 struct migration_req, list);
6090 list_del_init(&req->list);
6091 complete(&req->done);
6092 }
6093 spin_unlock_irq(&rq->lock);
6094 break;
6095
6096 case CPU_DYING:
6097 case CPU_DYING_FROZEN:
6098 /* Update our root-domain */
6099 rq = cpu_rq(cpu);
6100 spin_lock_irqsave(&rq->lock, flags);
6101 if (rq->rd) {
6102 BUG_ON(!cpu_isset(cpu, rq->rd->span));
6103 cpu_clear(cpu, rq->rd->online);
6104 }
6105 spin_unlock_irqrestore(&rq->lock, flags);
6106 break;
6107 #endif
6108 }
6109 return NOTIFY_OK;
6110 }
6111
6112 /* Register at highest priority so that task migration (migrate_all_tasks)
6113 * happens before everything else.
6114 */
6115 static struct notifier_block __cpuinitdata migration_notifier = {
6116 .notifier_call = migration_call,
6117 .priority = 10
6118 };
6119
6120 void __init migration_init(void)
6121 {
6122 void *cpu = (void *)(long)smp_processor_id();
6123 int err;
6124
6125 /* Start one for the boot CPU: */
6126 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6127 BUG_ON(err == NOTIFY_BAD);
6128 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6129 register_cpu_notifier(&migration_notifier);
6130 }
6131 #endif
6132
6133 #ifdef CONFIG_SMP
6134
6135 #ifdef CONFIG_SCHED_DEBUG
6136
6137 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6138 cpumask_t *groupmask)
6139 {
6140 struct sched_group *group = sd->groups;
6141 char str[256];
6142
6143 cpulist_scnprintf(str, sizeof(str), sd->span);
6144 cpus_clear(*groupmask);
6145
6146 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6147
6148 if (!(sd->flags & SD_LOAD_BALANCE)) {
6149 printk("does not load-balance\n");
6150 if (sd->parent)
6151 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6152 " has parent");
6153 return -1;
6154 }
6155
6156 printk(KERN_CONT "span %s\n", str);
6157
6158 if (!cpu_isset(cpu, sd->span)) {
6159 printk(KERN_ERR "ERROR: domain->span does not contain "
6160 "CPU%d\n", cpu);
6161 }
6162 if (!cpu_isset(cpu, group->cpumask)) {
6163 printk(KERN_ERR "ERROR: domain->groups does not contain"
6164 " CPU%d\n", cpu);
6165 }
6166
6167 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6168 do {
6169 if (!group) {
6170 printk("\n");
6171 printk(KERN_ERR "ERROR: group is NULL\n");
6172 break;
6173 }
6174
6175 if (!group->__cpu_power) {
6176 printk(KERN_CONT "\n");
6177 printk(KERN_ERR "ERROR: domain->cpu_power not "
6178 "set\n");
6179 break;
6180 }
6181
6182 if (!cpus_weight(group->cpumask)) {
6183 printk(KERN_CONT "\n");
6184 printk(KERN_ERR "ERROR: empty group\n");
6185 break;
6186 }
6187
6188 if (cpus_intersects(*groupmask, group->cpumask)) {
6189 printk(KERN_CONT "\n");
6190 printk(KERN_ERR "ERROR: repeated CPUs\n");
6191 break;
6192 }
6193
6194 cpus_or(*groupmask, *groupmask, group->cpumask);
6195
6196 cpulist_scnprintf(str, sizeof(str), group->cpumask);
6197 printk(KERN_CONT " %s", str);
6198
6199 group = group->next;
6200 } while (group != sd->groups);
6201 printk(KERN_CONT "\n");
6202
6203 if (!cpus_equal(sd->span, *groupmask))
6204 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6205
6206 if (sd->parent && !cpus_subset(*groupmask, sd->parent->span))
6207 printk(KERN_ERR "ERROR: parent span is not a superset "
6208 "of domain->span\n");
6209 return 0;
6210 }
6211
6212 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6213 {
6214 cpumask_t *groupmask;
6215 int level = 0;
6216
6217 if (!sd) {
6218 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6219 return;
6220 }
6221
6222 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6223
6224 groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6225 if (!groupmask) {
6226 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6227 return;
6228 }
6229
6230 for (;;) {
6231 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6232 break;
6233 level++;
6234 sd = sd->parent;
6235 if (!sd)
6236 break;
6237 }
6238 kfree(groupmask);
6239 }
6240 #else
6241 # define sched_domain_debug(sd, cpu) do { } while (0)
6242 #endif
6243
6244 static int sd_degenerate(struct sched_domain *sd)
6245 {
6246 if (cpus_weight(sd->span) == 1)
6247 return 1;
6248
6249 /* Following flags need at least 2 groups */
6250 if (sd->flags & (SD_LOAD_BALANCE |
6251 SD_BALANCE_NEWIDLE |
6252 SD_BALANCE_FORK |
6253 SD_BALANCE_EXEC |
6254 SD_SHARE_CPUPOWER |
6255 SD_SHARE_PKG_RESOURCES)) {
6256 if (sd->groups != sd->groups->next)
6257 return 0;
6258 }
6259
6260 /* Following flags don't use groups */
6261 if (sd->flags & (SD_WAKE_IDLE |
6262 SD_WAKE_AFFINE |
6263 SD_WAKE_BALANCE))
6264 return 0;
6265
6266 return 1;
6267 }
6268
6269 static int
6270 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6271 {
6272 unsigned long cflags = sd->flags, pflags = parent->flags;
6273
6274 if (sd_degenerate(parent))
6275 return 1;
6276
6277 if (!cpus_equal(sd->span, parent->span))
6278 return 0;
6279
6280 /* Does parent contain flags not in child? */
6281 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
6282 if (cflags & SD_WAKE_AFFINE)
6283 pflags &= ~SD_WAKE_BALANCE;
6284 /* Flags needing groups don't count if only 1 group in parent */
6285 if (parent->groups == parent->groups->next) {
6286 pflags &= ~(SD_LOAD_BALANCE |
6287 SD_BALANCE_NEWIDLE |
6288 SD_BALANCE_FORK |
6289 SD_BALANCE_EXEC |
6290 SD_SHARE_CPUPOWER |
6291 SD_SHARE_PKG_RESOURCES);
6292 }
6293 if (~cflags & pflags)
6294 return 0;
6295
6296 return 1;
6297 }
6298
6299 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6300 {
6301 unsigned long flags;
6302 const struct sched_class *class;
6303
6304 spin_lock_irqsave(&rq->lock, flags);
6305
6306 if (rq->rd) {
6307 struct root_domain *old_rd = rq->rd;
6308
6309 for (class = sched_class_highest; class; class = class->next) {
6310 if (class->leave_domain)
6311 class->leave_domain(rq);
6312 }
6313
6314 cpu_clear(rq->cpu, old_rd->span);
6315 cpu_clear(rq->cpu, old_rd->online);
6316
6317 if (atomic_dec_and_test(&old_rd->refcount))
6318 kfree(old_rd);
6319 }
6320
6321 atomic_inc(&rd->refcount);
6322 rq->rd = rd;
6323
6324 cpu_set(rq->cpu, rd->span);
6325 if (cpu_isset(rq->cpu, cpu_online_map))
6326 cpu_set(rq->cpu, rd->online);
6327
6328 for (class = sched_class_highest; class; class = class->next) {
6329 if (class->join_domain)
6330 class->join_domain(rq);
6331 }
6332
6333 spin_unlock_irqrestore(&rq->lock, flags);
6334 }
6335
6336 static void init_rootdomain(struct root_domain *rd)
6337 {
6338 memset(rd, 0, sizeof(*rd));
6339
6340 cpus_clear(rd->span);
6341 cpus_clear(rd->online);
6342 }
6343
6344 static void init_defrootdomain(void)
6345 {
6346 init_rootdomain(&def_root_domain);
6347 atomic_set(&def_root_domain.refcount, 1);
6348 }
6349
6350 static struct root_domain *alloc_rootdomain(void)
6351 {
6352 struct root_domain *rd;
6353
6354 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6355 if (!rd)
6356 return NULL;
6357
6358 init_rootdomain(rd);
6359
6360 return rd;
6361 }
6362
6363 /*
6364 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6365 * hold the hotplug lock.
6366 */
6367 static void
6368 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6369 {
6370 struct rq *rq = cpu_rq(cpu);
6371 struct sched_domain *tmp;
6372
6373 /* Remove the sched domains which do not contribute to scheduling. */
6374 for (tmp = sd; tmp; tmp = tmp->parent) {
6375 struct sched_domain *parent = tmp->parent;
6376 if (!parent)
6377 break;
6378 if (sd_parent_degenerate(tmp, parent)) {
6379 tmp->parent = parent->parent;
6380 if (parent->parent)
6381 parent->parent->child = tmp;
6382 }
6383 }
6384
6385 if (sd && sd_degenerate(sd)) {
6386 sd = sd->parent;
6387 if (sd)
6388 sd->child = NULL;
6389 }
6390
6391 sched_domain_debug(sd, cpu);
6392
6393 rq_attach_root(rq, rd);
6394 rcu_assign_pointer(rq->sd, sd);
6395 }
6396
6397 /* cpus with isolated domains */
6398 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
6399
6400 /* Setup the mask of cpus configured for isolated domains */
6401 static int __init isolated_cpu_setup(char *str)
6402 {
6403 int ints[NR_CPUS], i;
6404
6405 str = get_options(str, ARRAY_SIZE(ints), ints);
6406 cpus_clear(cpu_isolated_map);
6407 for (i = 1; i <= ints[0]; i++)
6408 if (ints[i] < NR_CPUS)
6409 cpu_set(ints[i], cpu_isolated_map);
6410 return 1;
6411 }
6412
6413 __setup("isolcpus=", isolated_cpu_setup);
6414
6415 /*
6416 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6417 * to a function which identifies what group(along with sched group) a CPU
6418 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
6419 * (due to the fact that we keep track of groups covered with a cpumask_t).
6420 *
6421 * init_sched_build_groups will build a circular linked list of the groups
6422 * covered by the given span, and will set each group's ->cpumask correctly,
6423 * and ->cpu_power to 0.
6424 */
6425 static void
6426 init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map,
6427 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
6428 struct sched_group **sg,
6429 cpumask_t *tmpmask),
6430 cpumask_t *covered, cpumask_t *tmpmask)
6431 {
6432 struct sched_group *first = NULL, *last = NULL;
6433 int i;
6434
6435 cpus_clear(*covered);
6436
6437 for_each_cpu_mask(i, *span) {
6438 struct sched_group *sg;
6439 int group = group_fn(i, cpu_map, &sg, tmpmask);
6440 int j;
6441
6442 if (cpu_isset(i, *covered))
6443 continue;
6444
6445 cpus_clear(sg->cpumask);
6446 sg->__cpu_power = 0;
6447
6448 for_each_cpu_mask(j, *span) {
6449 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6450 continue;
6451
6452 cpu_set(j, *covered);
6453 cpu_set(j, sg->cpumask);
6454 }
6455 if (!first)
6456 first = sg;
6457 if (last)
6458 last->next = sg;
6459 last = sg;
6460 }
6461 last->next = first;
6462 }
6463
6464 #define SD_NODES_PER_DOMAIN 16
6465
6466 #ifdef CONFIG_NUMA
6467
6468 /**
6469 * find_next_best_node - find the next node to include in a sched_domain
6470 * @node: node whose sched_domain we're building
6471 * @used_nodes: nodes already in the sched_domain
6472 *
6473 * Find the next node to include in a given scheduling domain. Simply
6474 * finds the closest node not already in the @used_nodes map.
6475 *
6476 * Should use nodemask_t.
6477 */
6478 static int find_next_best_node(int node, nodemask_t *used_nodes)
6479 {
6480 int i, n, val, min_val, best_node = 0;
6481
6482 min_val = INT_MAX;
6483
6484 for (i = 0; i < MAX_NUMNODES; i++) {
6485 /* Start at @node */
6486 n = (node + i) % MAX_NUMNODES;
6487
6488 if (!nr_cpus_node(n))
6489 continue;
6490
6491 /* Skip already used nodes */
6492 if (node_isset(n, *used_nodes))
6493 continue;
6494
6495 /* Simple min distance search */
6496 val = node_distance(node, n);
6497
6498 if (val < min_val) {
6499 min_val = val;
6500 best_node = n;
6501 }
6502 }
6503
6504 node_set(best_node, *used_nodes);
6505 return best_node;
6506 }
6507
6508 /**
6509 * sched_domain_node_span - get a cpumask for a node's sched_domain
6510 * @node: node whose cpumask we're constructing
6511 *
6512 * Given a node, construct a good cpumask for its sched_domain to span. It
6513 * should be one that prevents unnecessary balancing, but also spreads tasks
6514 * out optimally.
6515 */
6516 static void sched_domain_node_span(int node, cpumask_t *span)
6517 {
6518 nodemask_t used_nodes;
6519 node_to_cpumask_ptr(nodemask, node);
6520 int i;
6521
6522 cpus_clear(*span);
6523 nodes_clear(used_nodes);
6524
6525 cpus_or(*span, *span, *nodemask);
6526 node_set(node, used_nodes);
6527
6528 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6529 int next_node = find_next_best_node(node, &used_nodes);
6530
6531 node_to_cpumask_ptr_next(nodemask, next_node);
6532 cpus_or(*span, *span, *nodemask);
6533 }
6534 }
6535 #endif
6536
6537 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6538
6539 /*
6540 * SMT sched-domains:
6541 */
6542 #ifdef CONFIG_SCHED_SMT
6543 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6544 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
6545
6546 static int
6547 cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6548 cpumask_t *unused)
6549 {
6550 if (sg)
6551 *sg = &per_cpu(sched_group_cpus, cpu);
6552 return cpu;
6553 }
6554 #endif
6555
6556 /*
6557 * multi-core sched-domains:
6558 */
6559 #ifdef CONFIG_SCHED_MC
6560 static DEFINE_PER_CPU(struct sched_domain, core_domains);
6561 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
6562 #endif
6563
6564 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6565 static int
6566 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6567 cpumask_t *mask)
6568 {
6569 int group;
6570
6571 *mask = per_cpu(cpu_sibling_map, cpu);
6572 cpus_and(*mask, *mask, *cpu_map);
6573 group = first_cpu(*mask);
6574 if (sg)
6575 *sg = &per_cpu(sched_group_core, group);
6576 return group;
6577 }
6578 #elif defined(CONFIG_SCHED_MC)
6579 static int
6580 cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6581 cpumask_t *unused)
6582 {
6583 if (sg)
6584 *sg = &per_cpu(sched_group_core, cpu);
6585 return cpu;
6586 }
6587 #endif
6588
6589 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6590 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
6591
6592 static int
6593 cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg,
6594 cpumask_t *mask)
6595 {
6596 int group;
6597 #ifdef CONFIG_SCHED_MC
6598 *mask = cpu_coregroup_map(cpu);
6599 cpus_and(*mask, *mask, *cpu_map);
6600 group = first_cpu(*mask);
6601 #elif defined(CONFIG_SCHED_SMT)
6602 *mask = per_cpu(cpu_sibling_map, cpu);
6603 cpus_and(*mask, *mask, *cpu_map);
6604 group = first_cpu(*mask);
6605 #else
6606 group = cpu;
6607 #endif
6608 if (sg)
6609 *sg = &per_cpu(sched_group_phys, group);
6610 return group;
6611 }
6612
6613 #ifdef CONFIG_NUMA
6614 /*
6615 * The init_sched_build_groups can't handle what we want to do with node
6616 * groups, so roll our own. Now each node has its own list of groups which
6617 * gets dynamically allocated.
6618 */
6619 static DEFINE_PER_CPU(struct sched_domain, node_domains);
6620 static struct sched_group ***sched_group_nodes_bycpu;
6621
6622 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6623 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
6624
6625 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6626 struct sched_group **sg, cpumask_t *nodemask)
6627 {
6628 int group;
6629
6630 *nodemask = node_to_cpumask(cpu_to_node(cpu));
6631 cpus_and(*nodemask, *nodemask, *cpu_map);
6632 group = first_cpu(*nodemask);
6633
6634 if (sg)
6635 *sg = &per_cpu(sched_group_allnodes, group);
6636 return group;
6637 }
6638
6639 static void init_numa_sched_groups_power(struct sched_group *group_head)
6640 {
6641 struct sched_group *sg = group_head;
6642 int j;
6643
6644 if (!sg)
6645 return;
6646 do {
6647 for_each_cpu_mask(j, sg->cpumask) {
6648 struct sched_domain *sd;
6649
6650 sd = &per_cpu(phys_domains, j);
6651 if (j != first_cpu(sd->groups->cpumask)) {
6652 /*
6653 * Only add "power" once for each
6654 * physical package.
6655 */
6656 continue;
6657 }
6658
6659 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6660 }
6661 sg = sg->next;
6662 } while (sg != group_head);
6663 }
6664 #endif
6665
6666 #ifdef CONFIG_NUMA
6667 /* Free memory allocated for various sched_group structures */
6668 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6669 {
6670 int cpu, i;
6671
6672 for_each_cpu_mask(cpu, *cpu_map) {
6673 struct sched_group **sched_group_nodes
6674 = sched_group_nodes_bycpu[cpu];
6675
6676 if (!sched_group_nodes)
6677 continue;
6678
6679 for (i = 0; i < MAX_NUMNODES; i++) {
6680 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6681
6682 *nodemask = node_to_cpumask(i);
6683 cpus_and(*nodemask, *nodemask, *cpu_map);
6684 if (cpus_empty(*nodemask))
6685 continue;
6686
6687 if (sg == NULL)
6688 continue;
6689 sg = sg->next;
6690 next_sg:
6691 oldsg = sg;
6692 sg = sg->next;
6693 kfree(oldsg);
6694 if (oldsg != sched_group_nodes[i])
6695 goto next_sg;
6696 }
6697 kfree(sched_group_nodes);
6698 sched_group_nodes_bycpu[cpu] = NULL;
6699 }
6700 }
6701 #else
6702 static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask)
6703 {
6704 }
6705 #endif
6706
6707 /*
6708 * Initialize sched groups cpu_power.
6709 *
6710 * cpu_power indicates the capacity of sched group, which is used while
6711 * distributing the load between different sched groups in a sched domain.
6712 * Typically cpu_power for all the groups in a sched domain will be same unless
6713 * there are asymmetries in the topology. If there are asymmetries, group
6714 * having more cpu_power will pickup more load compared to the group having
6715 * less cpu_power.
6716 *
6717 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6718 * the maximum number of tasks a group can handle in the presence of other idle
6719 * or lightly loaded groups in the same sched domain.
6720 */
6721 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6722 {
6723 struct sched_domain *child;
6724 struct sched_group *group;
6725
6726 WARN_ON(!sd || !sd->groups);
6727
6728 if (cpu != first_cpu(sd->groups->cpumask))
6729 return;
6730
6731 child = sd->child;
6732
6733 sd->groups->__cpu_power = 0;
6734
6735 /*
6736 * For perf policy, if the groups in child domain share resources
6737 * (for example cores sharing some portions of the cache hierarchy
6738 * or SMT), then set this domain groups cpu_power such that each group
6739 * can handle only one task, when there are other idle groups in the
6740 * same sched domain.
6741 */
6742 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6743 (child->flags &
6744 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6745 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6746 return;
6747 }
6748
6749 /*
6750 * add cpu_power of each child group to this groups cpu_power
6751 */
6752 group = child->groups;
6753 do {
6754 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6755 group = group->next;
6756 } while (group != child->groups);
6757 }
6758
6759 /*
6760 * Initializers for schedule domains
6761 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6762 */
6763
6764 #define SD_INIT(sd, type) sd_init_##type(sd)
6765 #define SD_INIT_FUNC(type) \
6766 static noinline void sd_init_##type(struct sched_domain *sd) \
6767 { \
6768 memset(sd, 0, sizeof(*sd)); \
6769 *sd = SD_##type##_INIT; \
6770 }
6771
6772 SD_INIT_FUNC(CPU)
6773 #ifdef CONFIG_NUMA
6774 SD_INIT_FUNC(ALLNODES)
6775 SD_INIT_FUNC(NODE)
6776 #endif
6777 #ifdef CONFIG_SCHED_SMT
6778 SD_INIT_FUNC(SIBLING)
6779 #endif
6780 #ifdef CONFIG_SCHED_MC
6781 SD_INIT_FUNC(MC)
6782 #endif
6783
6784 /*
6785 * To minimize stack usage kmalloc room for cpumasks and share the
6786 * space as the usage in build_sched_domains() dictates. Used only
6787 * if the amount of space is significant.
6788 */
6789 struct allmasks {
6790 cpumask_t tmpmask; /* make this one first */
6791 union {
6792 cpumask_t nodemask;
6793 cpumask_t this_sibling_map;
6794 cpumask_t this_core_map;
6795 };
6796 cpumask_t send_covered;
6797
6798 #ifdef CONFIG_NUMA
6799 cpumask_t domainspan;
6800 cpumask_t covered;
6801 cpumask_t notcovered;
6802 #endif
6803 };
6804
6805 #if NR_CPUS > 128
6806 #define SCHED_CPUMASK_ALLOC 1
6807 #define SCHED_CPUMASK_FREE(v) kfree(v)
6808 #define SCHED_CPUMASK_DECLARE(v) struct allmasks *v
6809 #else
6810 #define SCHED_CPUMASK_ALLOC 0
6811 #define SCHED_CPUMASK_FREE(v)
6812 #define SCHED_CPUMASK_DECLARE(v) struct allmasks _v, *v = &_v
6813 #endif
6814
6815 #define SCHED_CPUMASK_VAR(v, a) cpumask_t *v = (cpumask_t *) \
6816 ((unsigned long)(a) + offsetof(struct allmasks, v))
6817
6818 /*
6819 * Build sched domains for a given set of cpus and attach the sched domains
6820 * to the individual cpus
6821 */
6822 static int build_sched_domains(const cpumask_t *cpu_map)
6823 {
6824 int i;
6825 struct root_domain *rd;
6826 SCHED_CPUMASK_DECLARE(allmasks);
6827 cpumask_t *tmpmask;
6828 #ifdef CONFIG_NUMA
6829 struct sched_group **sched_group_nodes = NULL;
6830 int sd_allnodes = 0;
6831
6832 /*
6833 * Allocate the per-node list of sched groups
6834 */
6835 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
6836 GFP_KERNEL);
6837 if (!sched_group_nodes) {
6838 printk(KERN_WARNING "Can not alloc sched group node list\n");
6839 return -ENOMEM;
6840 }
6841 #endif
6842
6843 rd = alloc_rootdomain();
6844 if (!rd) {
6845 printk(KERN_WARNING "Cannot alloc root domain\n");
6846 #ifdef CONFIG_NUMA
6847 kfree(sched_group_nodes);
6848 #endif
6849 return -ENOMEM;
6850 }
6851
6852 #if SCHED_CPUMASK_ALLOC
6853 /* get space for all scratch cpumask variables */
6854 allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL);
6855 if (!allmasks) {
6856 printk(KERN_WARNING "Cannot alloc cpumask array\n");
6857 kfree(rd);
6858 #ifdef CONFIG_NUMA
6859 kfree(sched_group_nodes);
6860 #endif
6861 return -ENOMEM;
6862 }
6863 #endif
6864 tmpmask = (cpumask_t *)allmasks;
6865
6866
6867 #ifdef CONFIG_NUMA
6868 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6869 #endif
6870
6871 /*
6872 * Set up domains for cpus specified by the cpu_map.
6873 */
6874 for_each_cpu_mask(i, *cpu_map) {
6875 struct sched_domain *sd = NULL, *p;
6876 SCHED_CPUMASK_VAR(nodemask, allmasks);
6877
6878 *nodemask = node_to_cpumask(cpu_to_node(i));
6879 cpus_and(*nodemask, *nodemask, *cpu_map);
6880
6881 #ifdef CONFIG_NUMA
6882 if (cpus_weight(*cpu_map) >
6883 SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) {
6884 sd = &per_cpu(allnodes_domains, i);
6885 SD_INIT(sd, ALLNODES);
6886 sd->span = *cpu_map;
6887 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
6888 p = sd;
6889 sd_allnodes = 1;
6890 } else
6891 p = NULL;
6892
6893 sd = &per_cpu(node_domains, i);
6894 SD_INIT(sd, NODE);
6895 sched_domain_node_span(cpu_to_node(i), &sd->span);
6896 sd->parent = p;
6897 if (p)
6898 p->child = sd;
6899 cpus_and(sd->span, sd->span, *cpu_map);
6900 #endif
6901
6902 p = sd;
6903 sd = &per_cpu(phys_domains, i);
6904 SD_INIT(sd, CPU);
6905 sd->span = *nodemask;
6906 sd->parent = p;
6907 if (p)
6908 p->child = sd;
6909 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
6910
6911 #ifdef CONFIG_SCHED_MC
6912 p = sd;
6913 sd = &per_cpu(core_domains, i);
6914 SD_INIT(sd, MC);
6915 sd->span = cpu_coregroup_map(i);
6916 cpus_and(sd->span, sd->span, *cpu_map);
6917 sd->parent = p;
6918 p->child = sd;
6919 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
6920 #endif
6921
6922 #ifdef CONFIG_SCHED_SMT
6923 p = sd;
6924 sd = &per_cpu(cpu_domains, i);
6925 SD_INIT(sd, SIBLING);
6926 sd->span = per_cpu(cpu_sibling_map, i);
6927 cpus_and(sd->span, sd->span, *cpu_map);
6928 sd->parent = p;
6929 p->child = sd;
6930 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
6931 #endif
6932 }
6933
6934 #ifdef CONFIG_SCHED_SMT
6935 /* Set up CPU (sibling) groups */
6936 for_each_cpu_mask(i, *cpu_map) {
6937 SCHED_CPUMASK_VAR(this_sibling_map, allmasks);
6938 SCHED_CPUMASK_VAR(send_covered, allmasks);
6939
6940 *this_sibling_map = per_cpu(cpu_sibling_map, i);
6941 cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map);
6942 if (i != first_cpu(*this_sibling_map))
6943 continue;
6944
6945 init_sched_build_groups(this_sibling_map, cpu_map,
6946 &cpu_to_cpu_group,
6947 send_covered, tmpmask);
6948 }
6949 #endif
6950
6951 #ifdef CONFIG_SCHED_MC
6952 /* Set up multi-core groups */
6953 for_each_cpu_mask(i, *cpu_map) {
6954 SCHED_CPUMASK_VAR(this_core_map, allmasks);
6955 SCHED_CPUMASK_VAR(send_covered, allmasks);
6956
6957 *this_core_map = cpu_coregroup_map(i);
6958 cpus_and(*this_core_map, *this_core_map, *cpu_map);
6959 if (i != first_cpu(*this_core_map))
6960 continue;
6961
6962 init_sched_build_groups(this_core_map, cpu_map,
6963 &cpu_to_core_group,
6964 send_covered, tmpmask);
6965 }
6966 #endif
6967
6968 /* Set up physical groups */
6969 for (i = 0; i < MAX_NUMNODES; i++) {
6970 SCHED_CPUMASK_VAR(nodemask, allmasks);
6971 SCHED_CPUMASK_VAR(send_covered, allmasks);
6972
6973 *nodemask = node_to_cpumask(i);
6974 cpus_and(*nodemask, *nodemask, *cpu_map);
6975 if (cpus_empty(*nodemask))
6976 continue;
6977
6978 init_sched_build_groups(nodemask, cpu_map,
6979 &cpu_to_phys_group,
6980 send_covered, tmpmask);
6981 }
6982
6983 #ifdef CONFIG_NUMA
6984 /* Set up node groups */
6985 if (sd_allnodes) {
6986 SCHED_CPUMASK_VAR(send_covered, allmasks);
6987
6988 init_sched_build_groups(cpu_map, cpu_map,
6989 &cpu_to_allnodes_group,
6990 send_covered, tmpmask);
6991 }
6992
6993 for (i = 0; i < MAX_NUMNODES; i++) {
6994 /* Set up node groups */
6995 struct sched_group *sg, *prev;
6996 SCHED_CPUMASK_VAR(nodemask, allmasks);
6997 SCHED_CPUMASK_VAR(domainspan, allmasks);
6998 SCHED_CPUMASK_VAR(covered, allmasks);
6999 int j;
7000
7001 *nodemask = node_to_cpumask(i);
7002 cpus_clear(*covered);
7003
7004 cpus_and(*nodemask, *nodemask, *cpu_map);
7005 if (cpus_empty(*nodemask)) {
7006 sched_group_nodes[i] = NULL;
7007 continue;
7008 }
7009
7010 sched_domain_node_span(i, domainspan);
7011 cpus_and(*domainspan, *domainspan, *cpu_map);
7012
7013 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
7014 if (!sg) {
7015 printk(KERN_WARNING "Can not alloc domain group for "
7016 "node %d\n", i);
7017 goto error;
7018 }
7019 sched_group_nodes[i] = sg;
7020 for_each_cpu_mask(j, *nodemask) {
7021 struct sched_domain *sd;
7022
7023 sd = &per_cpu(node_domains, j);
7024 sd->groups = sg;
7025 }
7026 sg->__cpu_power = 0;
7027 sg->cpumask = *nodemask;
7028 sg->next = sg;
7029 cpus_or(*covered, *covered, *nodemask);
7030 prev = sg;
7031
7032 for (j = 0; j < MAX_NUMNODES; j++) {
7033 SCHED_CPUMASK_VAR(notcovered, allmasks);
7034 int n = (i + j) % MAX_NUMNODES;
7035 node_to_cpumask_ptr(pnodemask, n);
7036
7037 cpus_complement(*notcovered, *covered);
7038 cpus_and(*tmpmask, *notcovered, *cpu_map);
7039 cpus_and(*tmpmask, *tmpmask, *domainspan);
7040 if (cpus_empty(*tmpmask))
7041 break;
7042
7043 cpus_and(*tmpmask, *tmpmask, *pnodemask);
7044 if (cpus_empty(*tmpmask))
7045 continue;
7046
7047 sg = kmalloc_node(sizeof(struct sched_group),
7048 GFP_KERNEL, i);
7049 if (!sg) {
7050 printk(KERN_WARNING
7051 "Can not alloc domain group for node %d\n", j);
7052 goto error;
7053 }
7054 sg->__cpu_power = 0;
7055 sg->cpumask = *tmpmask;
7056 sg->next = prev->next;
7057 cpus_or(*covered, *covered, *tmpmask);
7058 prev->next = sg;
7059 prev = sg;
7060 }
7061 }
7062 #endif
7063
7064 /* Calculate CPU power for physical packages and nodes */
7065 #ifdef CONFIG_SCHED_SMT
7066 for_each_cpu_mask(i, *cpu_map) {
7067 struct sched_domain *sd = &per_cpu(cpu_domains, i);
7068
7069 init_sched_groups_power(i, sd);
7070 }
7071 #endif
7072 #ifdef CONFIG_SCHED_MC
7073 for_each_cpu_mask(i, *cpu_map) {
7074 struct sched_domain *sd = &per_cpu(core_domains, i);
7075
7076 init_sched_groups_power(i, sd);
7077 }
7078 #endif
7079
7080 for_each_cpu_mask(i, *cpu_map) {
7081 struct sched_domain *sd = &per_cpu(phys_domains, i);
7082
7083 init_sched_groups_power(i, sd);
7084 }
7085
7086 #ifdef CONFIG_NUMA
7087 for (i = 0; i < MAX_NUMNODES; i++)
7088 init_numa_sched_groups_power(sched_group_nodes[i]);
7089
7090 if (sd_allnodes) {
7091 struct sched_group *sg;
7092
7093 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg,
7094 tmpmask);
7095 init_numa_sched_groups_power(sg);
7096 }
7097 #endif
7098
7099 /* Attach the domains */
7100 for_each_cpu_mask(i, *cpu_map) {
7101 struct sched_domain *sd;
7102 #ifdef CONFIG_SCHED_SMT
7103 sd = &per_cpu(cpu_domains, i);
7104 #elif defined(CONFIG_SCHED_MC)
7105 sd = &per_cpu(core_domains, i);
7106 #else
7107 sd = &per_cpu(phys_domains, i);
7108 #endif
7109 cpu_attach_domain(sd, rd, i);
7110 }
7111
7112 SCHED_CPUMASK_FREE((void *)allmasks);
7113 return 0;
7114
7115 #ifdef CONFIG_NUMA
7116 error:
7117 free_sched_groups(cpu_map, tmpmask);
7118 SCHED_CPUMASK_FREE((void *)allmasks);
7119 return -ENOMEM;
7120 #endif
7121 }
7122
7123 static cpumask_t *doms_cur; /* current sched domains */
7124 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7125
7126 /*
7127 * Special case: If a kmalloc of a doms_cur partition (array of
7128 * cpumask_t) fails, then fallback to a single sched domain,
7129 * as determined by the single cpumask_t fallback_doms.
7130 */
7131 static cpumask_t fallback_doms;
7132
7133 void __attribute__((weak)) arch_update_cpu_topology(void)
7134 {
7135 }
7136
7137 /*
7138 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7139 * For now this just excludes isolated cpus, but could be used to
7140 * exclude other special cases in the future.
7141 */
7142 static int arch_init_sched_domains(const cpumask_t *cpu_map)
7143 {
7144 int err;
7145
7146 arch_update_cpu_topology();
7147 ndoms_cur = 1;
7148 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
7149 if (!doms_cur)
7150 doms_cur = &fallback_doms;
7151 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7152 err = build_sched_domains(doms_cur);
7153 register_sched_domain_sysctl();
7154
7155 return err;
7156 }
7157
7158 static void arch_destroy_sched_domains(const cpumask_t *cpu_map,
7159 cpumask_t *tmpmask)
7160 {
7161 free_sched_groups(cpu_map, tmpmask);
7162 }
7163
7164 /*
7165 * Detach sched domains from a group of cpus specified in cpu_map
7166 * These cpus will now be attached to the NULL domain
7167 */
7168 static void detach_destroy_domains(const cpumask_t *cpu_map)
7169 {
7170 cpumask_t tmpmask;
7171 int i;
7172
7173 unregister_sched_domain_sysctl();
7174
7175 for_each_cpu_mask(i, *cpu_map)
7176 cpu_attach_domain(NULL, &def_root_domain, i);
7177 synchronize_sched();
7178 arch_destroy_sched_domains(cpu_map, &tmpmask);
7179 }
7180
7181 /*
7182 * Partition sched domains as specified by the 'ndoms_new'
7183 * cpumasks in the array doms_new[] of cpumasks. This compares
7184 * doms_new[] to the current sched domain partitioning, doms_cur[].
7185 * It destroys each deleted domain and builds each new domain.
7186 *
7187 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
7188 * The masks don't intersect (don't overlap.) We should setup one
7189 * sched domain for each mask. CPUs not in any of the cpumasks will
7190 * not be load balanced. If the same cpumask appears both in the
7191 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7192 * it as it is.
7193 *
7194 * The passed in 'doms_new' should be kmalloc'd. This routine takes
7195 * ownership of it and will kfree it when done with it. If the caller
7196 * failed the kmalloc call, then it can pass in doms_new == NULL,
7197 * and partition_sched_domains() will fallback to the single partition
7198 * 'fallback_doms'.
7199 *
7200 * Call with hotplug lock held
7201 */
7202 void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
7203 {
7204 int i, j;
7205
7206 lock_doms_cur();
7207
7208 /* always unregister in case we don't destroy any domains */
7209 unregister_sched_domain_sysctl();
7210
7211 if (doms_new == NULL) {
7212 ndoms_new = 1;
7213 doms_new = &fallback_doms;
7214 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
7215 }
7216
7217 /* Destroy deleted domains */
7218 for (i = 0; i < ndoms_cur; i++) {
7219 for (j = 0; j < ndoms_new; j++) {
7220 if (cpus_equal(doms_cur[i], doms_new[j]))
7221 goto match1;
7222 }
7223 /* no match - a current sched domain not in new doms_new[] */
7224 detach_destroy_domains(doms_cur + i);
7225 match1:
7226 ;
7227 }
7228
7229 /* Build new domains */
7230 for (i = 0; i < ndoms_new; i++) {
7231 for (j = 0; j < ndoms_cur; j++) {
7232 if (cpus_equal(doms_new[i], doms_cur[j]))
7233 goto match2;
7234 }
7235 /* no match - add a new doms_new */
7236 build_sched_domains(doms_new + i);
7237 match2:
7238 ;
7239 }
7240
7241 /* Remember the new sched domains */
7242 if (doms_cur != &fallback_doms)
7243 kfree(doms_cur);
7244 doms_cur = doms_new;
7245 ndoms_cur = ndoms_new;
7246
7247 register_sched_domain_sysctl();
7248
7249 unlock_doms_cur();
7250 }
7251
7252 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7253 int arch_reinit_sched_domains(void)
7254 {
7255 int err;
7256
7257 get_online_cpus();
7258 detach_destroy_domains(&cpu_online_map);
7259 err = arch_init_sched_domains(&cpu_online_map);
7260 put_online_cpus();
7261
7262 return err;
7263 }
7264
7265 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7266 {
7267 int ret;
7268
7269 if (buf[0] != '0' && buf[0] != '1')
7270 return -EINVAL;
7271
7272 if (smt)
7273 sched_smt_power_savings = (buf[0] == '1');
7274 else
7275 sched_mc_power_savings = (buf[0] == '1');
7276
7277 ret = arch_reinit_sched_domains();
7278
7279 return ret ? ret : count;
7280 }
7281
7282 #ifdef CONFIG_SCHED_MC
7283 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
7284 {
7285 return sprintf(page, "%u\n", sched_mc_power_savings);
7286 }
7287 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
7288 const char *buf, size_t count)
7289 {
7290 return sched_power_savings_store(buf, count, 0);
7291 }
7292 static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
7293 sched_mc_power_savings_store);
7294 #endif
7295
7296 #ifdef CONFIG_SCHED_SMT
7297 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
7298 {
7299 return sprintf(page, "%u\n", sched_smt_power_savings);
7300 }
7301 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
7302 const char *buf, size_t count)
7303 {
7304 return sched_power_savings_store(buf, count, 1);
7305 }
7306 static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
7307 sched_smt_power_savings_store);
7308 #endif
7309
7310 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7311 {
7312 int err = 0;
7313
7314 #ifdef CONFIG_SCHED_SMT
7315 if (smt_capable())
7316 err = sysfs_create_file(&cls->kset.kobj,
7317 &attr_sched_smt_power_savings.attr);
7318 #endif
7319 #ifdef CONFIG_SCHED_MC
7320 if (!err && mc_capable())
7321 err = sysfs_create_file(&cls->kset.kobj,
7322 &attr_sched_mc_power_savings.attr);
7323 #endif
7324 return err;
7325 }
7326 #endif
7327
7328 /*
7329 * Force a reinitialization of the sched domains hierarchy. The domains
7330 * and groups cannot be updated in place without racing with the balancing
7331 * code, so we temporarily attach all running cpus to the NULL domain
7332 * which will prevent rebalancing while the sched domains are recalculated.
7333 */
7334 static int update_sched_domains(struct notifier_block *nfb,
7335 unsigned long action, void *hcpu)
7336 {
7337 switch (action) {
7338 case CPU_UP_PREPARE:
7339 case CPU_UP_PREPARE_FROZEN:
7340 case CPU_DOWN_PREPARE:
7341 case CPU_DOWN_PREPARE_FROZEN:
7342 detach_destroy_domains(&cpu_online_map);
7343 return NOTIFY_OK;
7344
7345 case CPU_UP_CANCELED:
7346 case CPU_UP_CANCELED_FROZEN:
7347 case CPU_DOWN_FAILED:
7348 case CPU_DOWN_FAILED_FROZEN:
7349 case CPU_ONLINE:
7350 case CPU_ONLINE_FROZEN:
7351 case CPU_DEAD:
7352 case CPU_DEAD_FROZEN:
7353 /*
7354 * Fall through and re-initialise the domains.
7355 */
7356 break;
7357 default:
7358 return NOTIFY_DONE;
7359 }
7360
7361 /* The hotplug lock is already held by cpu_up/cpu_down */
7362 arch_init_sched_domains(&cpu_online_map);
7363
7364 return NOTIFY_OK;
7365 }
7366
7367 void __init sched_init_smp(void)
7368 {
7369 cpumask_t non_isolated_cpus;
7370
7371 #if defined(CONFIG_NUMA)
7372 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7373 GFP_KERNEL);
7374 BUG_ON(sched_group_nodes_bycpu == NULL);
7375 #endif
7376 get_online_cpus();
7377 arch_init_sched_domains(&cpu_online_map);
7378 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
7379 if (cpus_empty(non_isolated_cpus))
7380 cpu_set(smp_processor_id(), non_isolated_cpus);
7381 put_online_cpus();
7382 /* XXX: Theoretical race here - CPU may be hotplugged now */
7383 hotcpu_notifier(update_sched_domains, 0);
7384
7385 /* Move init over to a non-isolated CPU */
7386 if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0)
7387 BUG();
7388 sched_init_granularity();
7389 }
7390 #else
7391 void __init sched_init_smp(void)
7392 {
7393 #if defined(CONFIG_NUMA)
7394 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7395 GFP_KERNEL);
7396 BUG_ON(sched_group_nodes_bycpu == NULL);
7397 #endif
7398 sched_init_granularity();
7399 }
7400 #endif /* CONFIG_SMP */
7401
7402 int in_sched_functions(unsigned long addr)
7403 {
7404 return in_lock_functions(addr) ||
7405 (addr >= (unsigned long)__sched_text_start
7406 && addr < (unsigned long)__sched_text_end);
7407 }
7408
7409 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7410 {
7411 cfs_rq->tasks_timeline = RB_ROOT;
7412 #ifdef CONFIG_FAIR_GROUP_SCHED
7413 cfs_rq->rq = rq;
7414 #endif
7415 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7416 }
7417
7418 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7419 {
7420 struct rt_prio_array *array;
7421 int i;
7422
7423 array = &rt_rq->active;
7424 for (i = 0; i < MAX_RT_PRIO; i++) {
7425 INIT_LIST_HEAD(array->queue + i);
7426 __clear_bit(i, array->bitmap);
7427 }
7428 /* delimiter for bitsearch: */
7429 __set_bit(MAX_RT_PRIO, array->bitmap);
7430
7431 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7432 rt_rq->highest_prio = MAX_RT_PRIO;
7433 #endif
7434 #ifdef CONFIG_SMP
7435 rt_rq->rt_nr_migratory = 0;
7436 rt_rq->overloaded = 0;
7437 #endif
7438
7439 rt_rq->rt_time = 0;
7440 rt_rq->rt_throttled = 0;
7441 rt_rq->rt_runtime = 0;
7442 spin_lock_init(&rt_rq->rt_runtime_lock);
7443
7444 #ifdef CONFIG_RT_GROUP_SCHED
7445 rt_rq->rt_nr_boosted = 0;
7446 rt_rq->rq = rq;
7447 #endif
7448 }
7449
7450 #ifdef CONFIG_FAIR_GROUP_SCHED
7451 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7452 struct sched_entity *se, int cpu, int add,
7453 struct sched_entity *parent)
7454 {
7455 struct rq *rq = cpu_rq(cpu);
7456 tg->cfs_rq[cpu] = cfs_rq;
7457 init_cfs_rq(cfs_rq, rq);
7458 cfs_rq->tg = tg;
7459 if (add)
7460 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7461
7462 tg->se[cpu] = se;
7463 /* se could be NULL for init_task_group */
7464 if (!se)
7465 return;
7466
7467 if (!parent)
7468 se->cfs_rq = &rq->cfs;
7469 else
7470 se->cfs_rq = parent->my_q;
7471
7472 se->my_q = cfs_rq;
7473 se->load.weight = tg->shares;
7474 se->load.inv_weight = div64_64(1ULL<<32, se->load.weight);
7475 se->parent = parent;
7476 }
7477 #endif
7478
7479 #ifdef CONFIG_RT_GROUP_SCHED
7480 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7481 struct sched_rt_entity *rt_se, int cpu, int add,
7482 struct sched_rt_entity *parent)
7483 {
7484 struct rq *rq = cpu_rq(cpu);
7485
7486 tg->rt_rq[cpu] = rt_rq;
7487 init_rt_rq(rt_rq, rq);
7488 rt_rq->tg = tg;
7489 rt_rq->rt_se = rt_se;
7490 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7491 if (add)
7492 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7493
7494 tg->rt_se[cpu] = rt_se;
7495 if (!rt_se)
7496 return;
7497
7498 if (!parent)
7499 rt_se->rt_rq = &rq->rt;
7500 else
7501 rt_se->rt_rq = parent->my_q;
7502
7503 rt_se->rt_rq = &rq->rt;
7504 rt_se->my_q = rt_rq;
7505 rt_se->parent = parent;
7506 INIT_LIST_HEAD(&rt_se->run_list);
7507 }
7508 #endif
7509
7510 void __init sched_init(void)
7511 {
7512 int i, j;
7513 unsigned long alloc_size = 0, ptr;
7514
7515 #ifdef CONFIG_FAIR_GROUP_SCHED
7516 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7517 #endif
7518 #ifdef CONFIG_RT_GROUP_SCHED
7519 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7520 #endif
7521 #ifdef CONFIG_USER_SCHED
7522 alloc_size *= 2;
7523 #endif
7524 /*
7525 * As sched_init() is called before page_alloc is setup,
7526 * we use alloc_bootmem().
7527 */
7528 if (alloc_size) {
7529 ptr = (unsigned long)alloc_bootmem_low(alloc_size);
7530
7531 #ifdef CONFIG_FAIR_GROUP_SCHED
7532 init_task_group.se = (struct sched_entity **)ptr;
7533 ptr += nr_cpu_ids * sizeof(void **);
7534
7535 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7536 ptr += nr_cpu_ids * sizeof(void **);
7537
7538 #ifdef CONFIG_USER_SCHED
7539 root_task_group.se = (struct sched_entity **)ptr;
7540 ptr += nr_cpu_ids * sizeof(void **);
7541
7542 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7543 ptr += nr_cpu_ids * sizeof(void **);
7544 #endif
7545 #endif
7546 #ifdef CONFIG_RT_GROUP_SCHED
7547 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7548 ptr += nr_cpu_ids * sizeof(void **);
7549
7550 init_task_group.rt_rq = (struct rt_rq **)ptr;
7551 ptr += nr_cpu_ids * sizeof(void **);
7552
7553 #ifdef CONFIG_USER_SCHED
7554 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7555 ptr += nr_cpu_ids * sizeof(void **);
7556
7557 root_task_group.rt_rq = (struct rt_rq **)ptr;
7558 ptr += nr_cpu_ids * sizeof(void **);
7559 #endif
7560 #endif
7561 }
7562
7563 #ifdef CONFIG_SMP
7564 init_defrootdomain();
7565 #endif
7566
7567 init_rt_bandwidth(&def_rt_bandwidth,
7568 global_rt_period(), global_rt_runtime());
7569
7570 #ifdef CONFIG_RT_GROUP_SCHED
7571 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7572 global_rt_period(), global_rt_runtime());
7573 #ifdef CONFIG_USER_SCHED
7574 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7575 global_rt_period(), RUNTIME_INF);
7576 #endif
7577 #endif
7578
7579 #ifdef CONFIG_GROUP_SCHED
7580 list_add(&init_task_group.list, &task_groups);
7581 #endif
7582
7583 for_each_possible_cpu(i) {
7584 struct rq *rq;
7585
7586 rq = cpu_rq(i);
7587 spin_lock_init(&rq->lock);
7588 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7589 rq->nr_running = 0;
7590 rq->clock = 1;
7591 update_last_tick_seen(rq);
7592 init_cfs_rq(&rq->cfs, rq);
7593 init_rt_rq(&rq->rt, rq);
7594 #ifdef CONFIG_FAIR_GROUP_SCHED
7595 init_task_group.shares = init_task_group_load;
7596 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7597 #ifdef CONFIG_CGROUP_SCHED
7598 /*
7599 * How much cpu bandwidth does init_task_group get?
7600 *
7601 * In case of task-groups formed thr' the cgroup filesystem, it
7602 * gets 100% of the cpu resources in the system. This overall
7603 * system cpu resource is divided among the tasks of
7604 * init_task_group and its child task-groups in a fair manner,
7605 * based on each entity's (task or task-group's) weight
7606 * (se->load.weight).
7607 *
7608 * In other words, if init_task_group has 10 tasks of weight
7609 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7610 * then A0's share of the cpu resource is:
7611 *
7612 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7613 *
7614 * We achieve this by letting init_task_group's tasks sit
7615 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7616 */
7617 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7618 #elif defined CONFIG_USER_SCHED
7619 root_task_group.shares = NICE_0_LOAD;
7620 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
7621 /*
7622 * In case of task-groups formed thr' the user id of tasks,
7623 * init_task_group represents tasks belonging to root user.
7624 * Hence it forms a sibling of all subsequent groups formed.
7625 * In this case, init_task_group gets only a fraction of overall
7626 * system cpu resource, based on the weight assigned to root
7627 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
7628 * by letting tasks of init_task_group sit in a separate cfs_rq
7629 * (init_cfs_rq) and having one entity represent this group of
7630 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
7631 */
7632 init_tg_cfs_entry(&init_task_group,
7633 &per_cpu(init_cfs_rq, i),
7634 &per_cpu(init_sched_entity, i), i, 1,
7635 root_task_group.se[i]);
7636
7637 #endif
7638 #endif /* CONFIG_FAIR_GROUP_SCHED */
7639
7640 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7641 #ifdef CONFIG_RT_GROUP_SCHED
7642 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7643 #ifdef CONFIG_CGROUP_SCHED
7644 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7645 #elif defined CONFIG_USER_SCHED
7646 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
7647 init_tg_rt_entry(&init_task_group,
7648 &per_cpu(init_rt_rq, i),
7649 &per_cpu(init_sched_rt_entity, i), i, 1,
7650 root_task_group.rt_se[i]);
7651 #endif
7652 #endif
7653
7654 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7655 rq->cpu_load[j] = 0;
7656 #ifdef CONFIG_SMP
7657 rq->sd = NULL;
7658 rq->rd = NULL;
7659 rq->active_balance = 0;
7660 rq->next_balance = jiffies;
7661 rq->push_cpu = 0;
7662 rq->cpu = i;
7663 rq->migration_thread = NULL;
7664 INIT_LIST_HEAD(&rq->migration_queue);
7665 rq_attach_root(rq, &def_root_domain);
7666 #endif
7667 init_rq_hrtick(rq);
7668 atomic_set(&rq->nr_iowait, 0);
7669 }
7670
7671 set_load_weight(&init_task);
7672
7673 #ifdef CONFIG_PREEMPT_NOTIFIERS
7674 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7675 #endif
7676
7677 #ifdef CONFIG_SMP
7678 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
7679 #endif
7680
7681 #ifdef CONFIG_RT_MUTEXES
7682 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
7683 #endif
7684
7685 /*
7686 * The boot idle thread does lazy MMU switching as well:
7687 */
7688 atomic_inc(&init_mm.mm_count);
7689 enter_lazy_tlb(&init_mm, current);
7690
7691 /*
7692 * Make us the idle thread. Technically, schedule() should not be
7693 * called from this thread, however somewhere below it might be,
7694 * but because we are the idle thread, we just pick up running again
7695 * when this runqueue becomes "idle".
7696 */
7697 init_idle(current, smp_processor_id());
7698 /*
7699 * During early bootup we pretend to be a normal task:
7700 */
7701 current->sched_class = &fair_sched_class;
7702
7703 scheduler_running = 1;
7704 }
7705
7706 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7707 void __might_sleep(char *file, int line)
7708 {
7709 #ifdef in_atomic
7710 static unsigned long prev_jiffy; /* ratelimiting */
7711
7712 if ((in_atomic() || irqs_disabled()) &&
7713 system_state == SYSTEM_RUNNING && !oops_in_progress) {
7714 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7715 return;
7716 prev_jiffy = jiffies;
7717 printk(KERN_ERR "BUG: sleeping function called from invalid"
7718 " context at %s:%d\n", file, line);
7719 printk("in_atomic():%d, irqs_disabled():%d\n",
7720 in_atomic(), irqs_disabled());
7721 debug_show_held_locks(current);
7722 if (irqs_disabled())
7723 print_irqtrace_events(current);
7724 dump_stack();
7725 }
7726 #endif
7727 }
7728 EXPORT_SYMBOL(__might_sleep);
7729 #endif
7730
7731 #ifdef CONFIG_MAGIC_SYSRQ
7732 static void normalize_task(struct rq *rq, struct task_struct *p)
7733 {
7734 int on_rq;
7735 update_rq_clock(rq);
7736 on_rq = p->se.on_rq;
7737 if (on_rq)
7738 deactivate_task(rq, p, 0);
7739 __setscheduler(rq, p, SCHED_NORMAL, 0);
7740 if (on_rq) {
7741 activate_task(rq, p, 0);
7742 resched_task(rq->curr);
7743 }
7744 }
7745
7746 void normalize_rt_tasks(void)
7747 {
7748 struct task_struct *g, *p;
7749 unsigned long flags;
7750 struct rq *rq;
7751
7752 read_lock_irqsave(&tasklist_lock, flags);
7753 do_each_thread(g, p) {
7754 /*
7755 * Only normalize user tasks:
7756 */
7757 if (!p->mm)
7758 continue;
7759
7760 p->se.exec_start = 0;
7761 #ifdef CONFIG_SCHEDSTATS
7762 p->se.wait_start = 0;
7763 p->se.sleep_start = 0;
7764 p->se.block_start = 0;
7765 #endif
7766 task_rq(p)->clock = 0;
7767
7768 if (!rt_task(p)) {
7769 /*
7770 * Renice negative nice level userspace
7771 * tasks back to 0:
7772 */
7773 if (TASK_NICE(p) < 0 && p->mm)
7774 set_user_nice(p, 0);
7775 continue;
7776 }
7777
7778 spin_lock(&p->pi_lock);
7779 rq = __task_rq_lock(p);
7780
7781 normalize_task(rq, p);
7782
7783 __task_rq_unlock(rq);
7784 spin_unlock(&p->pi_lock);
7785 } while_each_thread(g, p);
7786
7787 read_unlock_irqrestore(&tasklist_lock, flags);
7788 }
7789
7790 #endif /* CONFIG_MAGIC_SYSRQ */
7791
7792 #ifdef CONFIG_IA64
7793 /*
7794 * These functions are only useful for the IA64 MCA handling.
7795 *
7796 * They can only be called when the whole system has been
7797 * stopped - every CPU needs to be quiescent, and no scheduling
7798 * activity can take place. Using them for anything else would
7799 * be a serious bug, and as a result, they aren't even visible
7800 * under any other configuration.
7801 */
7802
7803 /**
7804 * curr_task - return the current task for a given cpu.
7805 * @cpu: the processor in question.
7806 *
7807 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7808 */
7809 struct task_struct *curr_task(int cpu)
7810 {
7811 return cpu_curr(cpu);
7812 }
7813
7814 /**
7815 * set_curr_task - set the current task for a given cpu.
7816 * @cpu: the processor in question.
7817 * @p: the task pointer to set.
7818 *
7819 * Description: This function must only be used when non-maskable interrupts
7820 * are serviced on a separate stack. It allows the architecture to switch the
7821 * notion of the current task on a cpu in a non-blocking manner. This function
7822 * must be called with all CPU's synchronized, and interrupts disabled, the
7823 * and caller must save the original value of the current task (see
7824 * curr_task() above) and restore that value before reenabling interrupts and
7825 * re-starting the system.
7826 *
7827 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7828 */
7829 void set_curr_task(int cpu, struct task_struct *p)
7830 {
7831 cpu_curr(cpu) = p;
7832 }
7833
7834 #endif
7835
7836 #ifdef CONFIG_FAIR_GROUP_SCHED
7837 static void free_fair_sched_group(struct task_group *tg)
7838 {
7839 int i;
7840
7841 for_each_possible_cpu(i) {
7842 if (tg->cfs_rq)
7843 kfree(tg->cfs_rq[i]);
7844 if (tg->se)
7845 kfree(tg->se[i]);
7846 }
7847
7848 kfree(tg->cfs_rq);
7849 kfree(tg->se);
7850 }
7851
7852 static
7853 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7854 {
7855 struct cfs_rq *cfs_rq;
7856 struct sched_entity *se, *parent_se;
7857 struct rq *rq;
7858 int i;
7859
7860 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7861 if (!tg->cfs_rq)
7862 goto err;
7863 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7864 if (!tg->se)
7865 goto err;
7866
7867 tg->shares = NICE_0_LOAD;
7868
7869 for_each_possible_cpu(i) {
7870 rq = cpu_rq(i);
7871
7872 cfs_rq = kmalloc_node(sizeof(struct cfs_rq),
7873 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7874 if (!cfs_rq)
7875 goto err;
7876
7877 se = kmalloc_node(sizeof(struct sched_entity),
7878 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7879 if (!se)
7880 goto err;
7881
7882 parent_se = parent ? parent->se[i] : NULL;
7883 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se);
7884 }
7885
7886 return 1;
7887
7888 err:
7889 return 0;
7890 }
7891
7892 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7893 {
7894 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7895 &cpu_rq(cpu)->leaf_cfs_rq_list);
7896 }
7897
7898 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7899 {
7900 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7901 }
7902 #else
7903 static inline void free_fair_sched_group(struct task_group *tg)
7904 {
7905 }
7906
7907 static inline
7908 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7909 {
7910 return 1;
7911 }
7912
7913 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7914 {
7915 }
7916
7917 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7918 {
7919 }
7920 #endif
7921
7922 #ifdef CONFIG_RT_GROUP_SCHED
7923 static void free_rt_sched_group(struct task_group *tg)
7924 {
7925 int i;
7926
7927 destroy_rt_bandwidth(&tg->rt_bandwidth);
7928
7929 for_each_possible_cpu(i) {
7930 if (tg->rt_rq)
7931 kfree(tg->rt_rq[i]);
7932 if (tg->rt_se)
7933 kfree(tg->rt_se[i]);
7934 }
7935
7936 kfree(tg->rt_rq);
7937 kfree(tg->rt_se);
7938 }
7939
7940 static
7941 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7942 {
7943 struct rt_rq *rt_rq;
7944 struct sched_rt_entity *rt_se, *parent_se;
7945 struct rq *rq;
7946 int i;
7947
7948 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
7949 if (!tg->rt_rq)
7950 goto err;
7951 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
7952 if (!tg->rt_se)
7953 goto err;
7954
7955 init_rt_bandwidth(&tg->rt_bandwidth,
7956 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
7957
7958 for_each_possible_cpu(i) {
7959 rq = cpu_rq(i);
7960
7961 rt_rq = kmalloc_node(sizeof(struct rt_rq),
7962 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7963 if (!rt_rq)
7964 goto err;
7965
7966 rt_se = kmalloc_node(sizeof(struct sched_rt_entity),
7967 GFP_KERNEL|__GFP_ZERO, cpu_to_node(i));
7968 if (!rt_se)
7969 goto err;
7970
7971 parent_se = parent ? parent->rt_se[i] : NULL;
7972 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se);
7973 }
7974
7975 return 1;
7976
7977 err:
7978 return 0;
7979 }
7980
7981 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
7982 {
7983 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
7984 &cpu_rq(cpu)->leaf_rt_rq_list);
7985 }
7986
7987 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
7988 {
7989 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
7990 }
7991 #else
7992 static inline void free_rt_sched_group(struct task_group *tg)
7993 {
7994 }
7995
7996 static inline
7997 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
7998 {
7999 return 1;
8000 }
8001
8002 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8003 {
8004 }
8005
8006 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8007 {
8008 }
8009 #endif
8010
8011 #ifdef CONFIG_GROUP_SCHED
8012 static void free_sched_group(struct task_group *tg)
8013 {
8014 free_fair_sched_group(tg);
8015 free_rt_sched_group(tg);
8016 kfree(tg);
8017 }
8018
8019 /* allocate runqueue etc for a new task group */
8020 struct task_group *sched_create_group(struct task_group *parent)
8021 {
8022 struct task_group *tg;
8023 unsigned long flags;
8024 int i;
8025
8026 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8027 if (!tg)
8028 return ERR_PTR(-ENOMEM);
8029
8030 if (!alloc_fair_sched_group(tg, parent))
8031 goto err;
8032
8033 if (!alloc_rt_sched_group(tg, parent))
8034 goto err;
8035
8036 spin_lock_irqsave(&task_group_lock, flags);
8037 for_each_possible_cpu(i) {
8038 register_fair_sched_group(tg, i);
8039 register_rt_sched_group(tg, i);
8040 }
8041 list_add_rcu(&tg->list, &task_groups);
8042 spin_unlock_irqrestore(&task_group_lock, flags);
8043
8044 return tg;
8045
8046 err:
8047 free_sched_group(tg);
8048 return ERR_PTR(-ENOMEM);
8049 }
8050
8051 /* rcu callback to free various structures associated with a task group */
8052 static void free_sched_group_rcu(struct rcu_head *rhp)
8053 {
8054 /* now it should be safe to free those cfs_rqs */
8055 free_sched_group(container_of(rhp, struct task_group, rcu));
8056 }
8057
8058 /* Destroy runqueue etc associated with a task group */
8059 void sched_destroy_group(struct task_group *tg)
8060 {
8061 unsigned long flags;
8062 int i;
8063
8064 spin_lock_irqsave(&task_group_lock, flags);
8065 for_each_possible_cpu(i) {
8066 unregister_fair_sched_group(tg, i);
8067 unregister_rt_sched_group(tg, i);
8068 }
8069 list_del_rcu(&tg->list);
8070 spin_unlock_irqrestore(&task_group_lock, flags);
8071
8072 /* wait for possible concurrent references to cfs_rqs complete */
8073 call_rcu(&tg->rcu, free_sched_group_rcu);
8074 }
8075
8076 /* change task's runqueue when it moves between groups.
8077 * The caller of this function should have put the task in its new group
8078 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8079 * reflect its new group.
8080 */
8081 void sched_move_task(struct task_struct *tsk)
8082 {
8083 int on_rq, running;
8084 unsigned long flags;
8085 struct rq *rq;
8086
8087 rq = task_rq_lock(tsk, &flags);
8088
8089 update_rq_clock(rq);
8090
8091 running = task_current(rq, tsk);
8092 on_rq = tsk->se.on_rq;
8093
8094 if (on_rq)
8095 dequeue_task(rq, tsk, 0);
8096 if (unlikely(running))
8097 tsk->sched_class->put_prev_task(rq, tsk);
8098
8099 set_task_rq(tsk, task_cpu(tsk));
8100
8101 #ifdef CONFIG_FAIR_GROUP_SCHED
8102 if (tsk->sched_class->moved_group)
8103 tsk->sched_class->moved_group(tsk);
8104 #endif
8105
8106 if (unlikely(running))
8107 tsk->sched_class->set_curr_task(rq);
8108 if (on_rq)
8109 enqueue_task(rq, tsk, 0);
8110
8111 task_rq_unlock(rq, &flags);
8112 }
8113 #endif
8114
8115 #ifdef CONFIG_FAIR_GROUP_SCHED
8116 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8117 {
8118 struct cfs_rq *cfs_rq = se->cfs_rq;
8119 struct rq *rq = cfs_rq->rq;
8120 int on_rq;
8121
8122 spin_lock_irq(&rq->lock);
8123
8124 on_rq = se->on_rq;
8125 if (on_rq)
8126 dequeue_entity(cfs_rq, se, 0);
8127
8128 se->load.weight = shares;
8129 se->load.inv_weight = div64_64((1ULL<<32), shares);
8130
8131 if (on_rq)
8132 enqueue_entity(cfs_rq, se, 0);
8133
8134 spin_unlock_irq(&rq->lock);
8135 }
8136
8137 static DEFINE_MUTEX(shares_mutex);
8138
8139 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8140 {
8141 int i;
8142 unsigned long flags;
8143
8144 /*
8145 * We can't change the weight of the root cgroup.
8146 */
8147 if (!tg->se[0])
8148 return -EINVAL;
8149
8150 /*
8151 * A weight of 0 or 1 can cause arithmetics problems.
8152 * (The default weight is 1024 - so there's no practical
8153 * limitation from this.)
8154 */
8155 if (shares < 2)
8156 shares = 2;
8157
8158 mutex_lock(&shares_mutex);
8159 if (tg->shares == shares)
8160 goto done;
8161
8162 spin_lock_irqsave(&task_group_lock, flags);
8163 for_each_possible_cpu(i)
8164 unregister_fair_sched_group(tg, i);
8165 spin_unlock_irqrestore(&task_group_lock, flags);
8166
8167 /* wait for any ongoing reference to this group to finish */
8168 synchronize_sched();
8169
8170 /*
8171 * Now we are free to modify the group's share on each cpu
8172 * w/o tripping rebalance_share or load_balance_fair.
8173 */
8174 tg->shares = shares;
8175 for_each_possible_cpu(i)
8176 set_se_shares(tg->se[i], shares);
8177
8178 /*
8179 * Enable load balance activity on this group, by inserting it back on
8180 * each cpu's rq->leaf_cfs_rq_list.
8181 */
8182 spin_lock_irqsave(&task_group_lock, flags);
8183 for_each_possible_cpu(i)
8184 register_fair_sched_group(tg, i);
8185 spin_unlock_irqrestore(&task_group_lock, flags);
8186 done:
8187 mutex_unlock(&shares_mutex);
8188 return 0;
8189 }
8190
8191 unsigned long sched_group_shares(struct task_group *tg)
8192 {
8193 return tg->shares;
8194 }
8195 #endif
8196
8197 #ifdef CONFIG_RT_GROUP_SCHED
8198 /*
8199 * Ensure that the real time constraints are schedulable.
8200 */
8201 static DEFINE_MUTEX(rt_constraints_mutex);
8202
8203 static unsigned long to_ratio(u64 period, u64 runtime)
8204 {
8205 if (runtime == RUNTIME_INF)
8206 return 1ULL << 16;
8207
8208 return div64_64(runtime << 16, period);
8209 }
8210
8211 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8212 {
8213 struct task_group *tgi;
8214 unsigned long total = 0;
8215 unsigned long global_ratio =
8216 to_ratio(global_rt_period(), global_rt_runtime());
8217
8218 rcu_read_lock();
8219 list_for_each_entry_rcu(tgi, &task_groups, list) {
8220 if (tgi == tg)
8221 continue;
8222
8223 total += to_ratio(ktime_to_ns(tgi->rt_bandwidth.rt_period),
8224 tgi->rt_bandwidth.rt_runtime);
8225 }
8226 rcu_read_unlock();
8227
8228 return total + to_ratio(period, runtime) < global_ratio;
8229 }
8230
8231 /* Must be called with tasklist_lock held */
8232 static inline int tg_has_rt_tasks(struct task_group *tg)
8233 {
8234 struct task_struct *g, *p;
8235 do_each_thread(g, p) {
8236 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8237 return 1;
8238 } while_each_thread(g, p);
8239 return 0;
8240 }
8241
8242 static int tg_set_bandwidth(struct task_group *tg,
8243 u64 rt_period, u64 rt_runtime)
8244 {
8245 int i, err = 0;
8246
8247 mutex_lock(&rt_constraints_mutex);
8248 read_lock(&tasklist_lock);
8249 if (rt_runtime == 0 && tg_has_rt_tasks(tg)) {
8250 err = -EBUSY;
8251 goto unlock;
8252 }
8253 if (!__rt_schedulable(tg, rt_period, rt_runtime)) {
8254 err = -EINVAL;
8255 goto unlock;
8256 }
8257
8258 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8259 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8260 tg->rt_bandwidth.rt_runtime = rt_runtime;
8261
8262 for_each_possible_cpu(i) {
8263 struct rt_rq *rt_rq = tg->rt_rq[i];
8264
8265 spin_lock(&rt_rq->rt_runtime_lock);
8266 rt_rq->rt_runtime = rt_runtime;
8267 spin_unlock(&rt_rq->rt_runtime_lock);
8268 }
8269 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8270 unlock:
8271 read_unlock(&tasklist_lock);
8272 mutex_unlock(&rt_constraints_mutex);
8273
8274 return err;
8275 }
8276
8277 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8278 {
8279 u64 rt_runtime, rt_period;
8280
8281 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8282 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8283 if (rt_runtime_us < 0)
8284 rt_runtime = RUNTIME_INF;
8285
8286 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8287 }
8288
8289 long sched_group_rt_runtime(struct task_group *tg)
8290 {
8291 u64 rt_runtime_us;
8292
8293 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8294 return -1;
8295
8296 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8297 do_div(rt_runtime_us, NSEC_PER_USEC);
8298 return rt_runtime_us;
8299 }
8300
8301 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8302 {
8303 u64 rt_runtime, rt_period;
8304
8305 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8306 rt_runtime = tg->rt_bandwidth.rt_runtime;
8307
8308 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8309 }
8310
8311 long sched_group_rt_period(struct task_group *tg)
8312 {
8313 u64 rt_period_us;
8314
8315 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8316 do_div(rt_period_us, NSEC_PER_USEC);
8317 return rt_period_us;
8318 }
8319
8320 static int sched_rt_global_constraints(void)
8321 {
8322 int ret = 0;
8323
8324 mutex_lock(&rt_constraints_mutex);
8325 if (!__rt_schedulable(NULL, 1, 0))
8326 ret = -EINVAL;
8327 mutex_unlock(&rt_constraints_mutex);
8328
8329 return ret;
8330 }
8331 #else
8332 static int sched_rt_global_constraints(void)
8333 {
8334 unsigned long flags;
8335 int i;
8336
8337 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8338 for_each_possible_cpu(i) {
8339 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8340
8341 spin_lock(&rt_rq->rt_runtime_lock);
8342 rt_rq->rt_runtime = global_rt_runtime();
8343 spin_unlock(&rt_rq->rt_runtime_lock);
8344 }
8345 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8346
8347 return 0;
8348 }
8349 #endif
8350
8351 int sched_rt_handler(struct ctl_table *table, int write,
8352 struct file *filp, void __user *buffer, size_t *lenp,
8353 loff_t *ppos)
8354 {
8355 int ret;
8356 int old_period, old_runtime;
8357 static DEFINE_MUTEX(mutex);
8358
8359 mutex_lock(&mutex);
8360 old_period = sysctl_sched_rt_period;
8361 old_runtime = sysctl_sched_rt_runtime;
8362
8363 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
8364
8365 if (!ret && write) {
8366 ret = sched_rt_global_constraints();
8367 if (ret) {
8368 sysctl_sched_rt_period = old_period;
8369 sysctl_sched_rt_runtime = old_runtime;
8370 } else {
8371 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8372 def_rt_bandwidth.rt_period =
8373 ns_to_ktime(global_rt_period());
8374 }
8375 }
8376 mutex_unlock(&mutex);
8377
8378 return ret;
8379 }
8380
8381 #ifdef CONFIG_CGROUP_SCHED
8382
8383 /* return corresponding task_group object of a cgroup */
8384 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8385 {
8386 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8387 struct task_group, css);
8388 }
8389
8390 static struct cgroup_subsys_state *
8391 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8392 {
8393 struct task_group *tg, *parent;
8394
8395 if (!cgrp->parent) {
8396 /* This is early initialization for the top cgroup */
8397 init_task_group.css.cgroup = cgrp;
8398 return &init_task_group.css;
8399 }
8400
8401 parent = cgroup_tg(cgrp->parent);
8402 tg = sched_create_group(parent);
8403 if (IS_ERR(tg))
8404 return ERR_PTR(-ENOMEM);
8405
8406 /* Bind the cgroup to task_group object we just created */
8407 tg->css.cgroup = cgrp;
8408
8409 return &tg->css;
8410 }
8411
8412 static void
8413 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8414 {
8415 struct task_group *tg = cgroup_tg(cgrp);
8416
8417 sched_destroy_group(tg);
8418 }
8419
8420 static int
8421 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8422 struct task_struct *tsk)
8423 {
8424 #ifdef CONFIG_RT_GROUP_SCHED
8425 /* Don't accept realtime tasks when there is no way for them to run */
8426 if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0)
8427 return -EINVAL;
8428 #else
8429 /* We don't support RT-tasks being in separate groups */
8430 if (tsk->sched_class != &fair_sched_class)
8431 return -EINVAL;
8432 #endif
8433
8434 return 0;
8435 }
8436
8437 static void
8438 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8439 struct cgroup *old_cont, struct task_struct *tsk)
8440 {
8441 sched_move_task(tsk);
8442 }
8443
8444 #ifdef CONFIG_FAIR_GROUP_SCHED
8445 static int cpu_shares_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8446 u64 shareval)
8447 {
8448 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8449 }
8450
8451 static u64 cpu_shares_read_uint(struct cgroup *cgrp, struct cftype *cft)
8452 {
8453 struct task_group *tg = cgroup_tg(cgrp);
8454
8455 return (u64) tg->shares;
8456 }
8457 #endif
8458
8459 #ifdef CONFIG_RT_GROUP_SCHED
8460 static ssize_t cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8461 struct file *file,
8462 const char __user *userbuf,
8463 size_t nbytes, loff_t *unused_ppos)
8464 {
8465 char buffer[64];
8466 int retval = 0;
8467 s64 val;
8468 char *end;
8469
8470 if (!nbytes)
8471 return -EINVAL;
8472 if (nbytes >= sizeof(buffer))
8473 return -E2BIG;
8474 if (copy_from_user(buffer, userbuf, nbytes))
8475 return -EFAULT;
8476
8477 buffer[nbytes] = 0; /* nul-terminate */
8478
8479 /* strip newline if necessary */
8480 if (nbytes && (buffer[nbytes-1] == '\n'))
8481 buffer[nbytes-1] = 0;
8482 val = simple_strtoll(buffer, &end, 0);
8483 if (*end)
8484 return -EINVAL;
8485
8486 /* Pass to subsystem */
8487 retval = sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8488 if (!retval)
8489 retval = nbytes;
8490 return retval;
8491 }
8492
8493 static ssize_t cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft,
8494 struct file *file,
8495 char __user *buf, size_t nbytes,
8496 loff_t *ppos)
8497 {
8498 char tmp[64];
8499 long val = sched_group_rt_runtime(cgroup_tg(cgrp));
8500 int len = sprintf(tmp, "%ld\n", val);
8501
8502 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
8503 }
8504
8505 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8506 u64 rt_period_us)
8507 {
8508 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8509 }
8510
8511 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8512 {
8513 return sched_group_rt_period(cgroup_tg(cgrp));
8514 }
8515 #endif
8516
8517 static struct cftype cpu_files[] = {
8518 #ifdef CONFIG_FAIR_GROUP_SCHED
8519 {
8520 .name = "shares",
8521 .read_uint = cpu_shares_read_uint,
8522 .write_uint = cpu_shares_write_uint,
8523 },
8524 #endif
8525 #ifdef CONFIG_RT_GROUP_SCHED
8526 {
8527 .name = "rt_runtime_us",
8528 .read = cpu_rt_runtime_read,
8529 .write = cpu_rt_runtime_write,
8530 },
8531 {
8532 .name = "rt_period_us",
8533 .read_uint = cpu_rt_period_read_uint,
8534 .write_uint = cpu_rt_period_write_uint,
8535 },
8536 #endif
8537 };
8538
8539 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8540 {
8541 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8542 }
8543
8544 struct cgroup_subsys cpu_cgroup_subsys = {
8545 .name = "cpu",
8546 .create = cpu_cgroup_create,
8547 .destroy = cpu_cgroup_destroy,
8548 .can_attach = cpu_cgroup_can_attach,
8549 .attach = cpu_cgroup_attach,
8550 .populate = cpu_cgroup_populate,
8551 .subsys_id = cpu_cgroup_subsys_id,
8552 .early_init = 1,
8553 };
8554
8555 #endif /* CONFIG_CGROUP_SCHED */
8556
8557 #ifdef CONFIG_CGROUP_CPUACCT
8558
8559 /*
8560 * CPU accounting code for task groups.
8561 *
8562 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8563 * (balbir@in.ibm.com).
8564 */
8565
8566 /* track cpu usage of a group of tasks */
8567 struct cpuacct {
8568 struct cgroup_subsys_state css;
8569 /* cpuusage holds pointer to a u64-type object on every cpu */
8570 u64 *cpuusage;
8571 };
8572
8573 struct cgroup_subsys cpuacct_subsys;
8574
8575 /* return cpu accounting group corresponding to this container */
8576 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8577 {
8578 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8579 struct cpuacct, css);
8580 }
8581
8582 /* return cpu accounting group to which this task belongs */
8583 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8584 {
8585 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8586 struct cpuacct, css);
8587 }
8588
8589 /* create a new cpu accounting group */
8590 static struct cgroup_subsys_state *cpuacct_create(
8591 struct cgroup_subsys *ss, struct cgroup *cgrp)
8592 {
8593 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8594
8595 if (!ca)
8596 return ERR_PTR(-ENOMEM);
8597
8598 ca->cpuusage = alloc_percpu(u64);
8599 if (!ca->cpuusage) {
8600 kfree(ca);
8601 return ERR_PTR(-ENOMEM);
8602 }
8603
8604 return &ca->css;
8605 }
8606
8607 /* destroy an existing cpu accounting group */
8608 static void
8609 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8610 {
8611 struct cpuacct *ca = cgroup_ca(cgrp);
8612
8613 free_percpu(ca->cpuusage);
8614 kfree(ca);
8615 }
8616
8617 /* return total cpu usage (in nanoseconds) of a group */
8618 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8619 {
8620 struct cpuacct *ca = cgroup_ca(cgrp);
8621 u64 totalcpuusage = 0;
8622 int i;
8623
8624 for_each_possible_cpu(i) {
8625 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8626
8627 /*
8628 * Take rq->lock to make 64-bit addition safe on 32-bit
8629 * platforms.
8630 */
8631 spin_lock_irq(&cpu_rq(i)->lock);
8632 totalcpuusage += *cpuusage;
8633 spin_unlock_irq(&cpu_rq(i)->lock);
8634 }
8635
8636 return totalcpuusage;
8637 }
8638
8639 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8640 u64 reset)
8641 {
8642 struct cpuacct *ca = cgroup_ca(cgrp);
8643 int err = 0;
8644 int i;
8645
8646 if (reset) {
8647 err = -EINVAL;
8648 goto out;
8649 }
8650
8651 for_each_possible_cpu(i) {
8652 u64 *cpuusage = percpu_ptr(ca->cpuusage, i);
8653
8654 spin_lock_irq(&cpu_rq(i)->lock);
8655 *cpuusage = 0;
8656 spin_unlock_irq(&cpu_rq(i)->lock);
8657 }
8658 out:
8659 return err;
8660 }
8661
8662 static struct cftype files[] = {
8663 {
8664 .name = "usage",
8665 .read_uint = cpuusage_read,
8666 .write_uint = cpuusage_write,
8667 },
8668 };
8669
8670 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8671 {
8672 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8673 }
8674
8675 /*
8676 * charge this task's execution time to its accounting group.
8677 *
8678 * called with rq->lock held.
8679 */
8680 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8681 {
8682 struct cpuacct *ca;
8683
8684 if (!cpuacct_subsys.active)
8685 return;
8686
8687 ca = task_ca(tsk);
8688 if (ca) {
8689 u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk));
8690
8691 *cpuusage += cputime;
8692 }
8693 }
8694
8695 struct cgroup_subsys cpuacct_subsys = {
8696 .name = "cpuacct",
8697 .create = cpuacct_create,
8698 .destroy = cpuacct_destroy,
8699 .populate = cpuacct_populate,
8700 .subsys_id = cpuacct_subsys_id,
8701 };
8702 #endif /* CONFIG_CGROUP_CPUACCT */