]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched.c
sched: remove the 'u64 now' parameter from ->dequeue_task()
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 */
26
27 #include <linux/mm.h>
28 #include <linux/module.h>
29 #include <linux/nmi.h>
30 #include <linux/init.h>
31 #include <linux/uaccess.h>
32 #include <linux/highmem.h>
33 #include <linux/smp_lock.h>
34 #include <asm/mmu_context.h>
35 #include <linux/interrupt.h>
36 #include <linux/capability.h>
37 #include <linux/completion.h>
38 #include <linux/kernel_stat.h>
39 #include <linux/debug_locks.h>
40 #include <linux/security.h>
41 #include <linux/notifier.h>
42 #include <linux/profile.h>
43 #include <linux/freezer.h>
44 #include <linux/vmalloc.h>
45 #include <linux/blkdev.h>
46 #include <linux/delay.h>
47 #include <linux/smp.h>
48 #include <linux/threads.h>
49 #include <linux/timer.h>
50 #include <linux/rcupdate.h>
51 #include <linux/cpu.h>
52 #include <linux/cpuset.h>
53 #include <linux/percpu.h>
54 #include <linux/kthread.h>
55 #include <linux/seq_file.h>
56 #include <linux/sysctl.h>
57 #include <linux/syscalls.h>
58 #include <linux/times.h>
59 #include <linux/tsacct_kern.h>
60 #include <linux/kprobes.h>
61 #include <linux/delayacct.h>
62 #include <linux/reciprocal_div.h>
63 #include <linux/unistd.h>
64
65 #include <asm/tlb.h>
66
67 /*
68 * Scheduler clock - returns current time in nanosec units.
69 * This is default implementation.
70 * Architectures and sub-architectures can override this.
71 */
72 unsigned long long __attribute__((weak)) sched_clock(void)
73 {
74 return (unsigned long long)jiffies * (1000000000 / HZ);
75 }
76
77 /*
78 * Convert user-nice values [ -20 ... 0 ... 19 ]
79 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
80 * and back.
81 */
82 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
83 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
84 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
85
86 /*
87 * 'User priority' is the nice value converted to something we
88 * can work with better when scaling various scheduler parameters,
89 * it's a [ 0 ... 39 ] range.
90 */
91 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
92 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
93 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
94
95 /*
96 * Some helpers for converting nanosecond timing to jiffy resolution
97 */
98 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
99 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
100
101 #define NICE_0_LOAD SCHED_LOAD_SCALE
102 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
103
104 /*
105 * These are the 'tuning knobs' of the scheduler:
106 *
107 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
108 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
109 * Timeslices get refilled after they expire.
110 */
111 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
112 #define DEF_TIMESLICE (100 * HZ / 1000)
113
114 #ifdef CONFIG_SMP
115 /*
116 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
117 * Since cpu_power is a 'constant', we can use a reciprocal divide.
118 */
119 static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
120 {
121 return reciprocal_divide(load, sg->reciprocal_cpu_power);
122 }
123
124 /*
125 * Each time a sched group cpu_power is changed,
126 * we must compute its reciprocal value
127 */
128 static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
129 {
130 sg->__cpu_power += val;
131 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
132 }
133 #endif
134
135 #define SCALE_PRIO(x, prio) \
136 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
137
138 /*
139 * static_prio_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
140 * to time slice values: [800ms ... 100ms ... 5ms]
141 */
142 static unsigned int static_prio_timeslice(int static_prio)
143 {
144 if (static_prio == NICE_TO_PRIO(19))
145 return 1;
146
147 if (static_prio < NICE_TO_PRIO(0))
148 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
149 else
150 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
151 }
152
153 static inline int rt_policy(int policy)
154 {
155 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
156 return 1;
157 return 0;
158 }
159
160 static inline int task_has_rt_policy(struct task_struct *p)
161 {
162 return rt_policy(p->policy);
163 }
164
165 /*
166 * This is the priority-queue data structure of the RT scheduling class:
167 */
168 struct rt_prio_array {
169 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
170 struct list_head queue[MAX_RT_PRIO];
171 };
172
173 struct load_stat {
174 struct load_weight load;
175 u64 load_update_start, load_update_last;
176 unsigned long delta_fair, delta_exec, delta_stat;
177 };
178
179 /* CFS-related fields in a runqueue */
180 struct cfs_rq {
181 struct load_weight load;
182 unsigned long nr_running;
183
184 s64 fair_clock;
185 u64 exec_clock;
186 s64 wait_runtime;
187 u64 sleeper_bonus;
188 unsigned long wait_runtime_overruns, wait_runtime_underruns;
189
190 struct rb_root tasks_timeline;
191 struct rb_node *rb_leftmost;
192 struct rb_node *rb_load_balance_curr;
193 #ifdef CONFIG_FAIR_GROUP_SCHED
194 /* 'curr' points to currently running entity on this cfs_rq.
195 * It is set to NULL otherwise (i.e when none are currently running).
196 */
197 struct sched_entity *curr;
198 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
199
200 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
201 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
202 * (like users, containers etc.)
203 *
204 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
205 * list is used during load balance.
206 */
207 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
208 #endif
209 };
210
211 /* Real-Time classes' related field in a runqueue: */
212 struct rt_rq {
213 struct rt_prio_array active;
214 int rt_load_balance_idx;
215 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
216 };
217
218 /*
219 * This is the main, per-CPU runqueue data structure.
220 *
221 * Locking rule: those places that want to lock multiple runqueues
222 * (such as the load balancing or the thread migration code), lock
223 * acquire operations must be ordered by ascending &runqueue.
224 */
225 struct rq {
226 spinlock_t lock; /* runqueue lock */
227
228 /*
229 * nr_running and cpu_load should be in the same cacheline because
230 * remote CPUs use both these fields when doing load calculation.
231 */
232 unsigned long nr_running;
233 #define CPU_LOAD_IDX_MAX 5
234 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
235 unsigned char idle_at_tick;
236 #ifdef CONFIG_NO_HZ
237 unsigned char in_nohz_recently;
238 #endif
239 struct load_stat ls; /* capture load from *all* tasks on this cpu */
240 unsigned long nr_load_updates;
241 u64 nr_switches;
242
243 struct cfs_rq cfs;
244 #ifdef CONFIG_FAIR_GROUP_SCHED
245 struct list_head leaf_cfs_rq_list; /* list of leaf cfs_rq on this cpu */
246 #endif
247 struct rt_rq rt;
248
249 /*
250 * This is part of a global counter where only the total sum
251 * over all CPUs matters. A task can increase this counter on
252 * one CPU and if it got migrated afterwards it may decrease
253 * it on another CPU. Always updated under the runqueue lock:
254 */
255 unsigned long nr_uninterruptible;
256
257 struct task_struct *curr, *idle;
258 unsigned long next_balance;
259 struct mm_struct *prev_mm;
260
261 u64 clock, prev_clock_raw;
262 s64 clock_max_delta;
263
264 unsigned int clock_warps, clock_overflows;
265 unsigned int clock_unstable_events;
266
267 atomic_t nr_iowait;
268
269 #ifdef CONFIG_SMP
270 struct sched_domain *sd;
271
272 /* For active balancing */
273 int active_balance;
274 int push_cpu;
275 int cpu; /* cpu of this runqueue */
276
277 struct task_struct *migration_thread;
278 struct list_head migration_queue;
279 #endif
280
281 #ifdef CONFIG_SCHEDSTATS
282 /* latency stats */
283 struct sched_info rq_sched_info;
284
285 /* sys_sched_yield() stats */
286 unsigned long yld_exp_empty;
287 unsigned long yld_act_empty;
288 unsigned long yld_both_empty;
289 unsigned long yld_cnt;
290
291 /* schedule() stats */
292 unsigned long sched_switch;
293 unsigned long sched_cnt;
294 unsigned long sched_goidle;
295
296 /* try_to_wake_up() stats */
297 unsigned long ttwu_cnt;
298 unsigned long ttwu_local;
299 #endif
300 struct lock_class_key rq_lock_key;
301 };
302
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
304 static DEFINE_MUTEX(sched_hotcpu_mutex);
305
306 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
307 {
308 rq->curr->sched_class->check_preempt_curr(rq, p);
309 }
310
311 static inline int cpu_of(struct rq *rq)
312 {
313 #ifdef CONFIG_SMP
314 return rq->cpu;
315 #else
316 return 0;
317 #endif
318 }
319
320 /*
321 * Update the per-runqueue clock, as finegrained as the platform can give
322 * us, but without assuming monotonicity, etc.:
323 */
324 static void __update_rq_clock(struct rq *rq)
325 {
326 u64 prev_raw = rq->prev_clock_raw;
327 u64 now = sched_clock();
328 s64 delta = now - prev_raw;
329 u64 clock = rq->clock;
330
331 #ifdef CONFIG_SCHED_DEBUG
332 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
333 #endif
334 /*
335 * Protect against sched_clock() occasionally going backwards:
336 */
337 if (unlikely(delta < 0)) {
338 clock++;
339 rq->clock_warps++;
340 } else {
341 /*
342 * Catch too large forward jumps too:
343 */
344 if (unlikely(delta > 2*TICK_NSEC)) {
345 clock++;
346 rq->clock_overflows++;
347 } else {
348 if (unlikely(delta > rq->clock_max_delta))
349 rq->clock_max_delta = delta;
350 clock += delta;
351 }
352 }
353
354 rq->prev_clock_raw = now;
355 rq->clock = clock;
356 }
357
358 static void update_rq_clock(struct rq *rq)
359 {
360 if (likely(smp_processor_id() == cpu_of(rq)))
361 __update_rq_clock(rq);
362 }
363
364 /*
365 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
366 * See detach_destroy_domains: synchronize_sched for details.
367 *
368 * The domain tree of any CPU may only be accessed from within
369 * preempt-disabled sections.
370 */
371 #define for_each_domain(cpu, __sd) \
372 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
373
374 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
375 #define this_rq() (&__get_cpu_var(runqueues))
376 #define task_rq(p) cpu_rq(task_cpu(p))
377 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
378
379 /*
380 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
381 * clock constructed from sched_clock():
382 */
383 unsigned long long cpu_clock(int cpu)
384 {
385 unsigned long long now;
386 unsigned long flags;
387 struct rq *rq;
388
389 local_irq_save(flags);
390 rq = cpu_rq(cpu);
391 update_rq_clock(rq);
392 now = rq->clock;
393 local_irq_restore(flags);
394
395 return now;
396 }
397
398 #ifdef CONFIG_FAIR_GROUP_SCHED
399 /* Change a task's ->cfs_rq if it moves across CPUs */
400 static inline void set_task_cfs_rq(struct task_struct *p)
401 {
402 p->se.cfs_rq = &task_rq(p)->cfs;
403 }
404 #else
405 static inline void set_task_cfs_rq(struct task_struct *p)
406 {
407 }
408 #endif
409
410 #ifndef prepare_arch_switch
411 # define prepare_arch_switch(next) do { } while (0)
412 #endif
413 #ifndef finish_arch_switch
414 # define finish_arch_switch(prev) do { } while (0)
415 #endif
416
417 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
418 static inline int task_running(struct rq *rq, struct task_struct *p)
419 {
420 return rq->curr == p;
421 }
422
423 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
424 {
425 }
426
427 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
428 {
429 #ifdef CONFIG_DEBUG_SPINLOCK
430 /* this is a valid case when another task releases the spinlock */
431 rq->lock.owner = current;
432 #endif
433 /*
434 * If we are tracking spinlock dependencies then we have to
435 * fix up the runqueue lock - which gets 'carried over' from
436 * prev into current:
437 */
438 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
439
440 spin_unlock_irq(&rq->lock);
441 }
442
443 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
444 static inline int task_running(struct rq *rq, struct task_struct *p)
445 {
446 #ifdef CONFIG_SMP
447 return p->oncpu;
448 #else
449 return rq->curr == p;
450 #endif
451 }
452
453 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
454 {
455 #ifdef CONFIG_SMP
456 /*
457 * We can optimise this out completely for !SMP, because the
458 * SMP rebalancing from interrupt is the only thing that cares
459 * here.
460 */
461 next->oncpu = 1;
462 #endif
463 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
464 spin_unlock_irq(&rq->lock);
465 #else
466 spin_unlock(&rq->lock);
467 #endif
468 }
469
470 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
471 {
472 #ifdef CONFIG_SMP
473 /*
474 * After ->oncpu is cleared, the task can be moved to a different CPU.
475 * We must ensure this doesn't happen until the switch is completely
476 * finished.
477 */
478 smp_wmb();
479 prev->oncpu = 0;
480 #endif
481 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
482 local_irq_enable();
483 #endif
484 }
485 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
486
487 /*
488 * __task_rq_lock - lock the runqueue a given task resides on.
489 * Must be called interrupts disabled.
490 */
491 static inline struct rq *__task_rq_lock(struct task_struct *p)
492 __acquires(rq->lock)
493 {
494 struct rq *rq;
495
496 repeat_lock_task:
497 rq = task_rq(p);
498 spin_lock(&rq->lock);
499 if (unlikely(rq != task_rq(p))) {
500 spin_unlock(&rq->lock);
501 goto repeat_lock_task;
502 }
503 return rq;
504 }
505
506 /*
507 * task_rq_lock - lock the runqueue a given task resides on and disable
508 * interrupts. Note the ordering: we can safely lookup the task_rq without
509 * explicitly disabling preemption.
510 */
511 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
512 __acquires(rq->lock)
513 {
514 struct rq *rq;
515
516 repeat_lock_task:
517 local_irq_save(*flags);
518 rq = task_rq(p);
519 spin_lock(&rq->lock);
520 if (unlikely(rq != task_rq(p))) {
521 spin_unlock_irqrestore(&rq->lock, *flags);
522 goto repeat_lock_task;
523 }
524 return rq;
525 }
526
527 static inline void __task_rq_unlock(struct rq *rq)
528 __releases(rq->lock)
529 {
530 spin_unlock(&rq->lock);
531 }
532
533 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
534 __releases(rq->lock)
535 {
536 spin_unlock_irqrestore(&rq->lock, *flags);
537 }
538
539 /*
540 * this_rq_lock - lock this runqueue and disable interrupts.
541 */
542 static inline struct rq *this_rq_lock(void)
543 __acquires(rq->lock)
544 {
545 struct rq *rq;
546
547 local_irq_disable();
548 rq = this_rq();
549 spin_lock(&rq->lock);
550
551 return rq;
552 }
553
554 /*
555 * CPU frequency is/was unstable - start new by setting prev_clock_raw:
556 */
557 void sched_clock_unstable_event(void)
558 {
559 unsigned long flags;
560 struct rq *rq;
561
562 rq = task_rq_lock(current, &flags);
563 rq->prev_clock_raw = sched_clock();
564 rq->clock_unstable_events++;
565 task_rq_unlock(rq, &flags);
566 }
567
568 /*
569 * resched_task - mark a task 'to be rescheduled now'.
570 *
571 * On UP this means the setting of the need_resched flag, on SMP it
572 * might also involve a cross-CPU call to trigger the scheduler on
573 * the target CPU.
574 */
575 #ifdef CONFIG_SMP
576
577 #ifndef tsk_is_polling
578 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
579 #endif
580
581 static void resched_task(struct task_struct *p)
582 {
583 int cpu;
584
585 assert_spin_locked(&task_rq(p)->lock);
586
587 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
588 return;
589
590 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
591
592 cpu = task_cpu(p);
593 if (cpu == smp_processor_id())
594 return;
595
596 /* NEED_RESCHED must be visible before we test polling */
597 smp_mb();
598 if (!tsk_is_polling(p))
599 smp_send_reschedule(cpu);
600 }
601
602 static void resched_cpu(int cpu)
603 {
604 struct rq *rq = cpu_rq(cpu);
605 unsigned long flags;
606
607 if (!spin_trylock_irqsave(&rq->lock, flags))
608 return;
609 resched_task(cpu_curr(cpu));
610 spin_unlock_irqrestore(&rq->lock, flags);
611 }
612 #else
613 static inline void resched_task(struct task_struct *p)
614 {
615 assert_spin_locked(&task_rq(p)->lock);
616 set_tsk_need_resched(p);
617 }
618 #endif
619
620 static u64 div64_likely32(u64 divident, unsigned long divisor)
621 {
622 #if BITS_PER_LONG == 32
623 if (likely(divident <= 0xffffffffULL))
624 return (u32)divident / divisor;
625 do_div(divident, divisor);
626
627 return divident;
628 #else
629 return divident / divisor;
630 #endif
631 }
632
633 #if BITS_PER_LONG == 32
634 # define WMULT_CONST (~0UL)
635 #else
636 # define WMULT_CONST (1UL << 32)
637 #endif
638
639 #define WMULT_SHIFT 32
640
641 static unsigned long
642 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
643 struct load_weight *lw)
644 {
645 u64 tmp;
646
647 if (unlikely(!lw->inv_weight))
648 lw->inv_weight = WMULT_CONST / lw->weight;
649
650 tmp = (u64)delta_exec * weight;
651 /*
652 * Check whether we'd overflow the 64-bit multiplication:
653 */
654 if (unlikely(tmp > WMULT_CONST)) {
655 tmp = ((tmp >> WMULT_SHIFT/2) * lw->inv_weight)
656 >> (WMULT_SHIFT/2);
657 } else {
658 tmp = (tmp * lw->inv_weight) >> WMULT_SHIFT;
659 }
660
661 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
662 }
663
664 static inline unsigned long
665 calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
666 {
667 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
668 }
669
670 static void update_load_add(struct load_weight *lw, unsigned long inc)
671 {
672 lw->weight += inc;
673 lw->inv_weight = 0;
674 }
675
676 static void update_load_sub(struct load_weight *lw, unsigned long dec)
677 {
678 lw->weight -= dec;
679 lw->inv_weight = 0;
680 }
681
682 /*
683 * To aid in avoiding the subversion of "niceness" due to uneven distribution
684 * of tasks with abnormal "nice" values across CPUs the contribution that
685 * each task makes to its run queue's load is weighted according to its
686 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
687 * scaled version of the new time slice allocation that they receive on time
688 * slice expiry etc.
689 */
690
691 #define WEIGHT_IDLEPRIO 2
692 #define WMULT_IDLEPRIO (1 << 31)
693
694 /*
695 * Nice levels are multiplicative, with a gentle 10% change for every
696 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
697 * nice 1, it will get ~10% less CPU time than another CPU-bound task
698 * that remained on nice 0.
699 *
700 * The "10% effect" is relative and cumulative: from _any_ nice level,
701 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
702 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
703 * If a task goes up by ~10% and another task goes down by ~10% then
704 * the relative distance between them is ~25%.)
705 */
706 static const int prio_to_weight[40] = {
707 /* -20 */ 88818, 71054, 56843, 45475, 36380, 29104, 23283, 18626, 14901, 11921,
708 /* -10 */ 9537, 7629, 6103, 4883, 3906, 3125, 2500, 2000, 1600, 1280,
709 /* 0 */ NICE_0_LOAD /* 1024 */,
710 /* 1 */ 819, 655, 524, 419, 336, 268, 215, 172, 137,
711 /* 10 */ 110, 87, 70, 56, 45, 36, 29, 23, 18, 15,
712 };
713
714 /*
715 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
716 *
717 * In cases where the weight does not change often, we can use the
718 * precalculated inverse to speed up arithmetics by turning divisions
719 * into multiplications:
720 */
721 static const u32 prio_to_wmult[40] = {
722 /* -20 */ 48356, 60446, 75558, 94446, 118058,
723 /* -15 */ 147573, 184467, 230589, 288233, 360285,
724 /* -10 */ 450347, 562979, 703746, 879575, 1099582,
725 /* -5 */ 1374389, 1717986, 2147483, 2684354, 3355443,
726 /* 0 */ 4194304, 5244160, 6557201, 8196502, 10250518,
727 /* 5 */ 12782640, 16025997, 19976592, 24970740, 31350126,
728 /* 10 */ 39045157, 49367440, 61356675, 76695844, 95443717,
729 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
730 };
731
732 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
733
734 /*
735 * runqueue iterator, to support SMP load-balancing between different
736 * scheduling classes, without having to expose their internal data
737 * structures to the load-balancing proper:
738 */
739 struct rq_iterator {
740 void *arg;
741 struct task_struct *(*start)(void *);
742 struct task_struct *(*next)(void *);
743 };
744
745 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
746 unsigned long max_nr_move, unsigned long max_load_move,
747 struct sched_domain *sd, enum cpu_idle_type idle,
748 int *all_pinned, unsigned long *load_moved,
749 int *this_best_prio, struct rq_iterator *iterator);
750
751 #include "sched_stats.h"
752 #include "sched_rt.c"
753 #include "sched_fair.c"
754 #include "sched_idletask.c"
755 #ifdef CONFIG_SCHED_DEBUG
756 # include "sched_debug.c"
757 #endif
758
759 #define sched_class_highest (&rt_sched_class)
760
761 static void __update_curr_load(struct rq *rq, struct load_stat *ls)
762 {
763 if (rq->curr != rq->idle && ls->load.weight) {
764 ls->delta_exec += ls->delta_stat;
765 ls->delta_fair += calc_delta_fair(ls->delta_stat, &ls->load);
766 ls->delta_stat = 0;
767 }
768 }
769
770 /*
771 * Update delta_exec, delta_fair fields for rq.
772 *
773 * delta_fair clock advances at a rate inversely proportional to
774 * total load (rq->ls.load.weight) on the runqueue, while
775 * delta_exec advances at the same rate as wall-clock (provided
776 * cpu is not idle).
777 *
778 * delta_exec / delta_fair is a measure of the (smoothened) load on this
779 * runqueue over any given interval. This (smoothened) load is used
780 * during load balance.
781 *
782 * This function is called /before/ updating rq->ls.load
783 * and when switching tasks.
784 */
785 static void update_curr_load(struct rq *rq, u64 now)
786 {
787 struct load_stat *ls = &rq->ls;
788 u64 start;
789
790 start = ls->load_update_start;
791 ls->load_update_start = rq->clock;
792 ls->delta_stat += rq->clock - start;
793 /*
794 * Stagger updates to ls->delta_fair. Very frequent updates
795 * can be expensive.
796 */
797 if (ls->delta_stat >= sysctl_sched_stat_granularity)
798 __update_curr_load(rq, ls);
799 }
800
801 static inline void
802 inc_load(struct rq *rq, const struct task_struct *p, u64 now)
803 {
804 update_curr_load(rq, now);
805 update_load_add(&rq->ls.load, p->se.load.weight);
806 }
807
808 static inline void
809 dec_load(struct rq *rq, const struct task_struct *p, u64 now)
810 {
811 update_curr_load(rq, now);
812 update_load_sub(&rq->ls.load, p->se.load.weight);
813 }
814
815 static void inc_nr_running(struct task_struct *p, struct rq *rq, u64 now)
816 {
817 rq->nr_running++;
818 inc_load(rq, p, now);
819 }
820
821 static void dec_nr_running(struct task_struct *p, struct rq *rq, u64 now)
822 {
823 rq->nr_running--;
824 dec_load(rq, p, now);
825 }
826
827 static void set_load_weight(struct task_struct *p)
828 {
829 task_rq(p)->cfs.wait_runtime -= p->se.wait_runtime;
830 p->se.wait_runtime = 0;
831
832 if (task_has_rt_policy(p)) {
833 p->se.load.weight = prio_to_weight[0] * 2;
834 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
835 return;
836 }
837
838 /*
839 * SCHED_IDLE tasks get minimal weight:
840 */
841 if (p->policy == SCHED_IDLE) {
842 p->se.load.weight = WEIGHT_IDLEPRIO;
843 p->se.load.inv_weight = WMULT_IDLEPRIO;
844 return;
845 }
846
847 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
848 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
849 }
850
851 static void
852 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, u64 now)
853 {
854 sched_info_queued(p);
855 p->sched_class->enqueue_task(rq, p, wakeup);
856 p->se.on_rq = 1;
857 }
858
859 static void
860 dequeue_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
861 {
862 p->sched_class->dequeue_task(rq, p, sleep);
863 p->se.on_rq = 0;
864 }
865
866 /*
867 * __normal_prio - return the priority that is based on the static prio
868 */
869 static inline int __normal_prio(struct task_struct *p)
870 {
871 return p->static_prio;
872 }
873
874 /*
875 * Calculate the expected normal priority: i.e. priority
876 * without taking RT-inheritance into account. Might be
877 * boosted by interactivity modifiers. Changes upon fork,
878 * setprio syscalls, and whenever the interactivity
879 * estimator recalculates.
880 */
881 static inline int normal_prio(struct task_struct *p)
882 {
883 int prio;
884
885 if (task_has_rt_policy(p))
886 prio = MAX_RT_PRIO-1 - p->rt_priority;
887 else
888 prio = __normal_prio(p);
889 return prio;
890 }
891
892 /*
893 * Calculate the current priority, i.e. the priority
894 * taken into account by the scheduler. This value might
895 * be boosted by RT tasks, or might be boosted by
896 * interactivity modifiers. Will be RT if the task got
897 * RT-boosted. If not then it returns p->normal_prio.
898 */
899 static int effective_prio(struct task_struct *p)
900 {
901 p->normal_prio = normal_prio(p);
902 /*
903 * If we are RT tasks or we were boosted to RT priority,
904 * keep the priority unchanged. Otherwise, update priority
905 * to the normal priority:
906 */
907 if (!rt_prio(p->prio))
908 return p->normal_prio;
909 return p->prio;
910 }
911
912 /*
913 * activate_task - move a task to the runqueue.
914 */
915 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
916 {
917 u64 now;
918
919 update_rq_clock(rq);
920 now = rq->clock;
921
922 if (p->state == TASK_UNINTERRUPTIBLE)
923 rq->nr_uninterruptible--;
924
925 enqueue_task(rq, p, wakeup, now);
926 inc_nr_running(p, rq, now);
927 }
928
929 /*
930 * activate_idle_task - move idle task to the _front_ of runqueue.
931 */
932 static inline void activate_idle_task(struct task_struct *p, struct rq *rq)
933 {
934 u64 now;
935
936 update_rq_clock(rq);
937 now = rq->clock;
938
939 if (p->state == TASK_UNINTERRUPTIBLE)
940 rq->nr_uninterruptible--;
941
942 enqueue_task(rq, p, 0, now);
943 inc_nr_running(p, rq, now);
944 }
945
946 /*
947 * deactivate_task - remove a task from the runqueue.
948 */
949 static void
950 deactivate_task(struct rq *rq, struct task_struct *p, int sleep, u64 now)
951 {
952 if (p->state == TASK_UNINTERRUPTIBLE)
953 rq->nr_uninterruptible++;
954
955 dequeue_task(rq, p, sleep, now);
956 dec_nr_running(p, rq, now);
957 }
958
959 /**
960 * task_curr - is this task currently executing on a CPU?
961 * @p: the task in question.
962 */
963 inline int task_curr(const struct task_struct *p)
964 {
965 return cpu_curr(task_cpu(p)) == p;
966 }
967
968 /* Used instead of source_load when we know the type == 0 */
969 unsigned long weighted_cpuload(const int cpu)
970 {
971 return cpu_rq(cpu)->ls.load.weight;
972 }
973
974 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
975 {
976 #ifdef CONFIG_SMP
977 task_thread_info(p)->cpu = cpu;
978 set_task_cfs_rq(p);
979 #endif
980 }
981
982 #ifdef CONFIG_SMP
983
984 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
985 {
986 int old_cpu = task_cpu(p);
987 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
988 u64 clock_offset, fair_clock_offset;
989
990 clock_offset = old_rq->clock - new_rq->clock;
991 fair_clock_offset = old_rq->cfs.fair_clock - new_rq->cfs.fair_clock;
992
993 if (p->se.wait_start_fair)
994 p->se.wait_start_fair -= fair_clock_offset;
995 if (p->se.sleep_start_fair)
996 p->se.sleep_start_fair -= fair_clock_offset;
997
998 #ifdef CONFIG_SCHEDSTATS
999 if (p->se.wait_start)
1000 p->se.wait_start -= clock_offset;
1001 if (p->se.sleep_start)
1002 p->se.sleep_start -= clock_offset;
1003 if (p->se.block_start)
1004 p->se.block_start -= clock_offset;
1005 #endif
1006
1007 __set_task_cpu(p, new_cpu);
1008 }
1009
1010 struct migration_req {
1011 struct list_head list;
1012
1013 struct task_struct *task;
1014 int dest_cpu;
1015
1016 struct completion done;
1017 };
1018
1019 /*
1020 * The task's runqueue lock must be held.
1021 * Returns true if you have to wait for migration thread.
1022 */
1023 static int
1024 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1025 {
1026 struct rq *rq = task_rq(p);
1027
1028 /*
1029 * If the task is not on a runqueue (and not running), then
1030 * it is sufficient to simply update the task's cpu field.
1031 */
1032 if (!p->se.on_rq && !task_running(rq, p)) {
1033 set_task_cpu(p, dest_cpu);
1034 return 0;
1035 }
1036
1037 init_completion(&req->done);
1038 req->task = p;
1039 req->dest_cpu = dest_cpu;
1040 list_add(&req->list, &rq->migration_queue);
1041
1042 return 1;
1043 }
1044
1045 /*
1046 * wait_task_inactive - wait for a thread to unschedule.
1047 *
1048 * The caller must ensure that the task *will* unschedule sometime soon,
1049 * else this function might spin for a *long* time. This function can't
1050 * be called with interrupts off, or it may introduce deadlock with
1051 * smp_call_function() if an IPI is sent by the same process we are
1052 * waiting to become inactive.
1053 */
1054 void wait_task_inactive(struct task_struct *p)
1055 {
1056 unsigned long flags;
1057 int running, on_rq;
1058 struct rq *rq;
1059
1060 repeat:
1061 /*
1062 * We do the initial early heuristics without holding
1063 * any task-queue locks at all. We'll only try to get
1064 * the runqueue lock when things look like they will
1065 * work out!
1066 */
1067 rq = task_rq(p);
1068
1069 /*
1070 * If the task is actively running on another CPU
1071 * still, just relax and busy-wait without holding
1072 * any locks.
1073 *
1074 * NOTE! Since we don't hold any locks, it's not
1075 * even sure that "rq" stays as the right runqueue!
1076 * But we don't care, since "task_running()" will
1077 * return false if the runqueue has changed and p
1078 * is actually now running somewhere else!
1079 */
1080 while (task_running(rq, p))
1081 cpu_relax();
1082
1083 /*
1084 * Ok, time to look more closely! We need the rq
1085 * lock now, to be *sure*. If we're wrong, we'll
1086 * just go back and repeat.
1087 */
1088 rq = task_rq_lock(p, &flags);
1089 running = task_running(rq, p);
1090 on_rq = p->se.on_rq;
1091 task_rq_unlock(rq, &flags);
1092
1093 /*
1094 * Was it really running after all now that we
1095 * checked with the proper locks actually held?
1096 *
1097 * Oops. Go back and try again..
1098 */
1099 if (unlikely(running)) {
1100 cpu_relax();
1101 goto repeat;
1102 }
1103
1104 /*
1105 * It's not enough that it's not actively running,
1106 * it must be off the runqueue _entirely_, and not
1107 * preempted!
1108 *
1109 * So if it wa still runnable (but just not actively
1110 * running right now), it's preempted, and we should
1111 * yield - it could be a while.
1112 */
1113 if (unlikely(on_rq)) {
1114 yield();
1115 goto repeat;
1116 }
1117
1118 /*
1119 * Ahh, all good. It wasn't running, and it wasn't
1120 * runnable, which means that it will never become
1121 * running in the future either. We're all done!
1122 */
1123 }
1124
1125 /***
1126 * kick_process - kick a running thread to enter/exit the kernel
1127 * @p: the to-be-kicked thread
1128 *
1129 * Cause a process which is running on another CPU to enter
1130 * kernel-mode, without any delay. (to get signals handled.)
1131 *
1132 * NOTE: this function doesnt have to take the runqueue lock,
1133 * because all it wants to ensure is that the remote task enters
1134 * the kernel. If the IPI races and the task has been migrated
1135 * to another CPU then no harm is done and the purpose has been
1136 * achieved as well.
1137 */
1138 void kick_process(struct task_struct *p)
1139 {
1140 int cpu;
1141
1142 preempt_disable();
1143 cpu = task_cpu(p);
1144 if ((cpu != smp_processor_id()) && task_curr(p))
1145 smp_send_reschedule(cpu);
1146 preempt_enable();
1147 }
1148
1149 /*
1150 * Return a low guess at the load of a migration-source cpu weighted
1151 * according to the scheduling class and "nice" value.
1152 *
1153 * We want to under-estimate the load of migration sources, to
1154 * balance conservatively.
1155 */
1156 static inline unsigned long source_load(int cpu, int type)
1157 {
1158 struct rq *rq = cpu_rq(cpu);
1159 unsigned long total = weighted_cpuload(cpu);
1160
1161 if (type == 0)
1162 return total;
1163
1164 return min(rq->cpu_load[type-1], total);
1165 }
1166
1167 /*
1168 * Return a high guess at the load of a migration-target cpu weighted
1169 * according to the scheduling class and "nice" value.
1170 */
1171 static inline unsigned long target_load(int cpu, int type)
1172 {
1173 struct rq *rq = cpu_rq(cpu);
1174 unsigned long total = weighted_cpuload(cpu);
1175
1176 if (type == 0)
1177 return total;
1178
1179 return max(rq->cpu_load[type-1], total);
1180 }
1181
1182 /*
1183 * Return the average load per task on the cpu's run queue
1184 */
1185 static inline unsigned long cpu_avg_load_per_task(int cpu)
1186 {
1187 struct rq *rq = cpu_rq(cpu);
1188 unsigned long total = weighted_cpuload(cpu);
1189 unsigned long n = rq->nr_running;
1190
1191 return n ? total / n : SCHED_LOAD_SCALE;
1192 }
1193
1194 /*
1195 * find_idlest_group finds and returns the least busy CPU group within the
1196 * domain.
1197 */
1198 static struct sched_group *
1199 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1200 {
1201 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1202 unsigned long min_load = ULONG_MAX, this_load = 0;
1203 int load_idx = sd->forkexec_idx;
1204 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1205
1206 do {
1207 unsigned long load, avg_load;
1208 int local_group;
1209 int i;
1210
1211 /* Skip over this group if it has no CPUs allowed */
1212 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1213 goto nextgroup;
1214
1215 local_group = cpu_isset(this_cpu, group->cpumask);
1216
1217 /* Tally up the load of all CPUs in the group */
1218 avg_load = 0;
1219
1220 for_each_cpu_mask(i, group->cpumask) {
1221 /* Bias balancing toward cpus of our domain */
1222 if (local_group)
1223 load = source_load(i, load_idx);
1224 else
1225 load = target_load(i, load_idx);
1226
1227 avg_load += load;
1228 }
1229
1230 /* Adjust by relative CPU power of the group */
1231 avg_load = sg_div_cpu_power(group,
1232 avg_load * SCHED_LOAD_SCALE);
1233
1234 if (local_group) {
1235 this_load = avg_load;
1236 this = group;
1237 } else if (avg_load < min_load) {
1238 min_load = avg_load;
1239 idlest = group;
1240 }
1241 nextgroup:
1242 group = group->next;
1243 } while (group != sd->groups);
1244
1245 if (!idlest || 100*this_load < imbalance*min_load)
1246 return NULL;
1247 return idlest;
1248 }
1249
1250 /*
1251 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1252 */
1253 static int
1254 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1255 {
1256 cpumask_t tmp;
1257 unsigned long load, min_load = ULONG_MAX;
1258 int idlest = -1;
1259 int i;
1260
1261 /* Traverse only the allowed CPUs */
1262 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1263
1264 for_each_cpu_mask(i, tmp) {
1265 load = weighted_cpuload(i);
1266
1267 if (load < min_load || (load == min_load && i == this_cpu)) {
1268 min_load = load;
1269 idlest = i;
1270 }
1271 }
1272
1273 return idlest;
1274 }
1275
1276 /*
1277 * sched_balance_self: balance the current task (running on cpu) in domains
1278 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1279 * SD_BALANCE_EXEC.
1280 *
1281 * Balance, ie. select the least loaded group.
1282 *
1283 * Returns the target CPU number, or the same CPU if no balancing is needed.
1284 *
1285 * preempt must be disabled.
1286 */
1287 static int sched_balance_self(int cpu, int flag)
1288 {
1289 struct task_struct *t = current;
1290 struct sched_domain *tmp, *sd = NULL;
1291
1292 for_each_domain(cpu, tmp) {
1293 /*
1294 * If power savings logic is enabled for a domain, stop there.
1295 */
1296 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1297 break;
1298 if (tmp->flags & flag)
1299 sd = tmp;
1300 }
1301
1302 while (sd) {
1303 cpumask_t span;
1304 struct sched_group *group;
1305 int new_cpu, weight;
1306
1307 if (!(sd->flags & flag)) {
1308 sd = sd->child;
1309 continue;
1310 }
1311
1312 span = sd->span;
1313 group = find_idlest_group(sd, t, cpu);
1314 if (!group) {
1315 sd = sd->child;
1316 continue;
1317 }
1318
1319 new_cpu = find_idlest_cpu(group, t, cpu);
1320 if (new_cpu == -1 || new_cpu == cpu) {
1321 /* Now try balancing at a lower domain level of cpu */
1322 sd = sd->child;
1323 continue;
1324 }
1325
1326 /* Now try balancing at a lower domain level of new_cpu */
1327 cpu = new_cpu;
1328 sd = NULL;
1329 weight = cpus_weight(span);
1330 for_each_domain(cpu, tmp) {
1331 if (weight <= cpus_weight(tmp->span))
1332 break;
1333 if (tmp->flags & flag)
1334 sd = tmp;
1335 }
1336 /* while loop will break here if sd == NULL */
1337 }
1338
1339 return cpu;
1340 }
1341
1342 #endif /* CONFIG_SMP */
1343
1344 /*
1345 * wake_idle() will wake a task on an idle cpu if task->cpu is
1346 * not idle and an idle cpu is available. The span of cpus to
1347 * search starts with cpus closest then further out as needed,
1348 * so we always favor a closer, idle cpu.
1349 *
1350 * Returns the CPU we should wake onto.
1351 */
1352 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1353 static int wake_idle(int cpu, struct task_struct *p)
1354 {
1355 cpumask_t tmp;
1356 struct sched_domain *sd;
1357 int i;
1358
1359 /*
1360 * If it is idle, then it is the best cpu to run this task.
1361 *
1362 * This cpu is also the best, if it has more than one task already.
1363 * Siblings must be also busy(in most cases) as they didn't already
1364 * pickup the extra load from this cpu and hence we need not check
1365 * sibling runqueue info. This will avoid the checks and cache miss
1366 * penalities associated with that.
1367 */
1368 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1369 return cpu;
1370
1371 for_each_domain(cpu, sd) {
1372 if (sd->flags & SD_WAKE_IDLE) {
1373 cpus_and(tmp, sd->span, p->cpus_allowed);
1374 for_each_cpu_mask(i, tmp) {
1375 if (idle_cpu(i))
1376 return i;
1377 }
1378 } else {
1379 break;
1380 }
1381 }
1382 return cpu;
1383 }
1384 #else
1385 static inline int wake_idle(int cpu, struct task_struct *p)
1386 {
1387 return cpu;
1388 }
1389 #endif
1390
1391 /***
1392 * try_to_wake_up - wake up a thread
1393 * @p: the to-be-woken-up thread
1394 * @state: the mask of task states that can be woken
1395 * @sync: do a synchronous wakeup?
1396 *
1397 * Put it on the run-queue if it's not already there. The "current"
1398 * thread is always on the run-queue (except when the actual
1399 * re-schedule is in progress), and as such you're allowed to do
1400 * the simpler "current->state = TASK_RUNNING" to mark yourself
1401 * runnable without the overhead of this.
1402 *
1403 * returns failure only if the task is already active.
1404 */
1405 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1406 {
1407 int cpu, this_cpu, success = 0;
1408 unsigned long flags;
1409 long old_state;
1410 struct rq *rq;
1411 #ifdef CONFIG_SMP
1412 struct sched_domain *sd, *this_sd = NULL;
1413 unsigned long load, this_load;
1414 int new_cpu;
1415 #endif
1416
1417 rq = task_rq_lock(p, &flags);
1418 old_state = p->state;
1419 if (!(old_state & state))
1420 goto out;
1421
1422 if (p->se.on_rq)
1423 goto out_running;
1424
1425 cpu = task_cpu(p);
1426 this_cpu = smp_processor_id();
1427
1428 #ifdef CONFIG_SMP
1429 if (unlikely(task_running(rq, p)))
1430 goto out_activate;
1431
1432 new_cpu = cpu;
1433
1434 schedstat_inc(rq, ttwu_cnt);
1435 if (cpu == this_cpu) {
1436 schedstat_inc(rq, ttwu_local);
1437 goto out_set_cpu;
1438 }
1439
1440 for_each_domain(this_cpu, sd) {
1441 if (cpu_isset(cpu, sd->span)) {
1442 schedstat_inc(sd, ttwu_wake_remote);
1443 this_sd = sd;
1444 break;
1445 }
1446 }
1447
1448 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1449 goto out_set_cpu;
1450
1451 /*
1452 * Check for affine wakeup and passive balancing possibilities.
1453 */
1454 if (this_sd) {
1455 int idx = this_sd->wake_idx;
1456 unsigned int imbalance;
1457
1458 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1459
1460 load = source_load(cpu, idx);
1461 this_load = target_load(this_cpu, idx);
1462
1463 new_cpu = this_cpu; /* Wake to this CPU if we can */
1464
1465 if (this_sd->flags & SD_WAKE_AFFINE) {
1466 unsigned long tl = this_load;
1467 unsigned long tl_per_task;
1468
1469 tl_per_task = cpu_avg_load_per_task(this_cpu);
1470
1471 /*
1472 * If sync wakeup then subtract the (maximum possible)
1473 * effect of the currently running task from the load
1474 * of the current CPU:
1475 */
1476 if (sync)
1477 tl -= current->se.load.weight;
1478
1479 if ((tl <= load &&
1480 tl + target_load(cpu, idx) <= tl_per_task) ||
1481 100*(tl + p->se.load.weight) <= imbalance*load) {
1482 /*
1483 * This domain has SD_WAKE_AFFINE and
1484 * p is cache cold in this domain, and
1485 * there is no bad imbalance.
1486 */
1487 schedstat_inc(this_sd, ttwu_move_affine);
1488 goto out_set_cpu;
1489 }
1490 }
1491
1492 /*
1493 * Start passive balancing when half the imbalance_pct
1494 * limit is reached.
1495 */
1496 if (this_sd->flags & SD_WAKE_BALANCE) {
1497 if (imbalance*this_load <= 100*load) {
1498 schedstat_inc(this_sd, ttwu_move_balance);
1499 goto out_set_cpu;
1500 }
1501 }
1502 }
1503
1504 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1505 out_set_cpu:
1506 new_cpu = wake_idle(new_cpu, p);
1507 if (new_cpu != cpu) {
1508 set_task_cpu(p, new_cpu);
1509 task_rq_unlock(rq, &flags);
1510 /* might preempt at this point */
1511 rq = task_rq_lock(p, &flags);
1512 old_state = p->state;
1513 if (!(old_state & state))
1514 goto out;
1515 if (p->se.on_rq)
1516 goto out_running;
1517
1518 this_cpu = smp_processor_id();
1519 cpu = task_cpu(p);
1520 }
1521
1522 out_activate:
1523 #endif /* CONFIG_SMP */
1524 activate_task(rq, p, 1);
1525 /*
1526 * Sync wakeups (i.e. those types of wakeups where the waker
1527 * has indicated that it will leave the CPU in short order)
1528 * don't trigger a preemption, if the woken up task will run on
1529 * this cpu. (in this case the 'I will reschedule' promise of
1530 * the waker guarantees that the freshly woken up task is going
1531 * to be considered on this CPU.)
1532 */
1533 if (!sync || cpu != this_cpu)
1534 check_preempt_curr(rq, p);
1535 success = 1;
1536
1537 out_running:
1538 p->state = TASK_RUNNING;
1539 out:
1540 task_rq_unlock(rq, &flags);
1541
1542 return success;
1543 }
1544
1545 int fastcall wake_up_process(struct task_struct *p)
1546 {
1547 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1548 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1549 }
1550 EXPORT_SYMBOL(wake_up_process);
1551
1552 int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1553 {
1554 return try_to_wake_up(p, state, 0);
1555 }
1556
1557 /*
1558 * Perform scheduler related setup for a newly forked process p.
1559 * p is forked by current.
1560 *
1561 * __sched_fork() is basic setup used by init_idle() too:
1562 */
1563 static void __sched_fork(struct task_struct *p)
1564 {
1565 p->se.wait_start_fair = 0;
1566 p->se.exec_start = 0;
1567 p->se.sum_exec_runtime = 0;
1568 p->se.delta_exec = 0;
1569 p->se.delta_fair_run = 0;
1570 p->se.delta_fair_sleep = 0;
1571 p->se.wait_runtime = 0;
1572 p->se.sleep_start_fair = 0;
1573
1574 #ifdef CONFIG_SCHEDSTATS
1575 p->se.wait_start = 0;
1576 p->se.sum_wait_runtime = 0;
1577 p->se.sum_sleep_runtime = 0;
1578 p->se.sleep_start = 0;
1579 p->se.block_start = 0;
1580 p->se.sleep_max = 0;
1581 p->se.block_max = 0;
1582 p->se.exec_max = 0;
1583 p->se.wait_max = 0;
1584 p->se.wait_runtime_overruns = 0;
1585 p->se.wait_runtime_underruns = 0;
1586 #endif
1587
1588 INIT_LIST_HEAD(&p->run_list);
1589 p->se.on_rq = 0;
1590
1591 #ifdef CONFIG_PREEMPT_NOTIFIERS
1592 INIT_HLIST_HEAD(&p->preempt_notifiers);
1593 #endif
1594
1595 /*
1596 * We mark the process as running here, but have not actually
1597 * inserted it onto the runqueue yet. This guarantees that
1598 * nobody will actually run it, and a signal or other external
1599 * event cannot wake it up and insert it on the runqueue either.
1600 */
1601 p->state = TASK_RUNNING;
1602 }
1603
1604 /*
1605 * fork()/clone()-time setup:
1606 */
1607 void sched_fork(struct task_struct *p, int clone_flags)
1608 {
1609 int cpu = get_cpu();
1610
1611 __sched_fork(p);
1612
1613 #ifdef CONFIG_SMP
1614 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1615 #endif
1616 __set_task_cpu(p, cpu);
1617
1618 /*
1619 * Make sure we do not leak PI boosting priority to the child:
1620 */
1621 p->prio = current->normal_prio;
1622
1623 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1624 if (likely(sched_info_on()))
1625 memset(&p->sched_info, 0, sizeof(p->sched_info));
1626 #endif
1627 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1628 p->oncpu = 0;
1629 #endif
1630 #ifdef CONFIG_PREEMPT
1631 /* Want to start with kernel preemption disabled. */
1632 task_thread_info(p)->preempt_count = 1;
1633 #endif
1634 put_cpu();
1635 }
1636
1637 /*
1638 * After fork, child runs first. (default) If set to 0 then
1639 * parent will (try to) run first.
1640 */
1641 unsigned int __read_mostly sysctl_sched_child_runs_first = 1;
1642
1643 /*
1644 * wake_up_new_task - wake up a newly created task for the first time.
1645 *
1646 * This function will do some initial scheduler statistics housekeeping
1647 * that must be done for every newly created context, then puts the task
1648 * on the runqueue and wakes it.
1649 */
1650 void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1651 {
1652 unsigned long flags;
1653 struct rq *rq;
1654 int this_cpu;
1655 u64 now;
1656
1657 rq = task_rq_lock(p, &flags);
1658 BUG_ON(p->state != TASK_RUNNING);
1659 this_cpu = smp_processor_id(); /* parent's CPU */
1660 update_rq_clock(rq);
1661 now = rq->clock;
1662
1663 p->prio = effective_prio(p);
1664
1665 if (!p->sched_class->task_new || !sysctl_sched_child_runs_first ||
1666 (clone_flags & CLONE_VM) || task_cpu(p) != this_cpu ||
1667 !current->se.on_rq) {
1668
1669 activate_task(rq, p, 0);
1670 } else {
1671 /*
1672 * Let the scheduling class do new task startup
1673 * management (if any):
1674 */
1675 p->sched_class->task_new(rq, p, now);
1676 inc_nr_running(p, rq, now);
1677 }
1678 check_preempt_curr(rq, p);
1679 task_rq_unlock(rq, &flags);
1680 }
1681
1682 #ifdef CONFIG_PREEMPT_NOTIFIERS
1683
1684 /**
1685 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1686 * @notifier: notifier struct to register
1687 */
1688 void preempt_notifier_register(struct preempt_notifier *notifier)
1689 {
1690 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1691 }
1692 EXPORT_SYMBOL_GPL(preempt_notifier_register);
1693
1694 /**
1695 * preempt_notifier_unregister - no longer interested in preemption notifications
1696 * @notifier: notifier struct to unregister
1697 *
1698 * This is safe to call from within a preemption notifier.
1699 */
1700 void preempt_notifier_unregister(struct preempt_notifier *notifier)
1701 {
1702 hlist_del(&notifier->link);
1703 }
1704 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1705
1706 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1707 {
1708 struct preempt_notifier *notifier;
1709 struct hlist_node *node;
1710
1711 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1712 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1713 }
1714
1715 static void
1716 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1717 struct task_struct *next)
1718 {
1719 struct preempt_notifier *notifier;
1720 struct hlist_node *node;
1721
1722 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1723 notifier->ops->sched_out(notifier, next);
1724 }
1725
1726 #else
1727
1728 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1729 {
1730 }
1731
1732 static void
1733 fire_sched_out_preempt_notifiers(struct task_struct *curr,
1734 struct task_struct *next)
1735 {
1736 }
1737
1738 #endif
1739
1740 /**
1741 * prepare_task_switch - prepare to switch tasks
1742 * @rq: the runqueue preparing to switch
1743 * @prev: the current task that is being switched out
1744 * @next: the task we are going to switch to.
1745 *
1746 * This is called with the rq lock held and interrupts off. It must
1747 * be paired with a subsequent finish_task_switch after the context
1748 * switch.
1749 *
1750 * prepare_task_switch sets up locking and calls architecture specific
1751 * hooks.
1752 */
1753 static inline void
1754 prepare_task_switch(struct rq *rq, struct task_struct *prev,
1755 struct task_struct *next)
1756 {
1757 fire_sched_out_preempt_notifiers(prev, next);
1758 prepare_lock_switch(rq, next);
1759 prepare_arch_switch(next);
1760 }
1761
1762 /**
1763 * finish_task_switch - clean up after a task-switch
1764 * @rq: runqueue associated with task-switch
1765 * @prev: the thread we just switched away from.
1766 *
1767 * finish_task_switch must be called after the context switch, paired
1768 * with a prepare_task_switch call before the context switch.
1769 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1770 * and do any other architecture-specific cleanup actions.
1771 *
1772 * Note that we may have delayed dropping an mm in context_switch(). If
1773 * so, we finish that here outside of the runqueue lock. (Doing it
1774 * with the lock held can cause deadlocks; see schedule() for
1775 * details.)
1776 */
1777 static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1778 __releases(rq->lock)
1779 {
1780 struct mm_struct *mm = rq->prev_mm;
1781 long prev_state;
1782
1783 rq->prev_mm = NULL;
1784
1785 /*
1786 * A task struct has one reference for the use as "current".
1787 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
1788 * schedule one last time. The schedule call will never return, and
1789 * the scheduled task must drop that reference.
1790 * The test for TASK_DEAD must occur while the runqueue locks are
1791 * still held, otherwise prev could be scheduled on another cpu, die
1792 * there before we look at prev->state, and then the reference would
1793 * be dropped twice.
1794 * Manfred Spraul <manfred@colorfullife.com>
1795 */
1796 prev_state = prev->state;
1797 finish_arch_switch(prev);
1798 finish_lock_switch(rq, prev);
1799 fire_sched_in_preempt_notifiers(current);
1800 if (mm)
1801 mmdrop(mm);
1802 if (unlikely(prev_state == TASK_DEAD)) {
1803 /*
1804 * Remove function-return probe instances associated with this
1805 * task and put them back on the free list.
1806 */
1807 kprobe_flush_task(prev);
1808 put_task_struct(prev);
1809 }
1810 }
1811
1812 /**
1813 * schedule_tail - first thing a freshly forked thread must call.
1814 * @prev: the thread we just switched away from.
1815 */
1816 asmlinkage void schedule_tail(struct task_struct *prev)
1817 __releases(rq->lock)
1818 {
1819 struct rq *rq = this_rq();
1820
1821 finish_task_switch(rq, prev);
1822 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1823 /* In this case, finish_task_switch does not reenable preemption */
1824 preempt_enable();
1825 #endif
1826 if (current->set_child_tid)
1827 put_user(current->pid, current->set_child_tid);
1828 }
1829
1830 /*
1831 * context_switch - switch to the new MM and the new
1832 * thread's register state.
1833 */
1834 static inline void
1835 context_switch(struct rq *rq, struct task_struct *prev,
1836 struct task_struct *next)
1837 {
1838 struct mm_struct *mm, *oldmm;
1839
1840 prepare_task_switch(rq, prev, next);
1841 mm = next->mm;
1842 oldmm = prev->active_mm;
1843 /*
1844 * For paravirt, this is coupled with an exit in switch_to to
1845 * combine the page table reload and the switch backend into
1846 * one hypercall.
1847 */
1848 arch_enter_lazy_cpu_mode();
1849
1850 if (unlikely(!mm)) {
1851 next->active_mm = oldmm;
1852 atomic_inc(&oldmm->mm_count);
1853 enter_lazy_tlb(oldmm, next);
1854 } else
1855 switch_mm(oldmm, mm, next);
1856
1857 if (unlikely(!prev->mm)) {
1858 prev->active_mm = NULL;
1859 rq->prev_mm = oldmm;
1860 }
1861 /*
1862 * Since the runqueue lock will be released by the next
1863 * task (which is an invalid locking op but in the case
1864 * of the scheduler it's an obvious special-case), so we
1865 * do an early lockdep release here:
1866 */
1867 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1868 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1869 #endif
1870
1871 /* Here we just switch the register state and the stack. */
1872 switch_to(prev, next, prev);
1873
1874 barrier();
1875 /*
1876 * this_rq must be evaluated again because prev may have moved
1877 * CPUs since it called schedule(), thus the 'rq' on its stack
1878 * frame will be invalid.
1879 */
1880 finish_task_switch(this_rq(), prev);
1881 }
1882
1883 /*
1884 * nr_running, nr_uninterruptible and nr_context_switches:
1885 *
1886 * externally visible scheduler statistics: current number of runnable
1887 * threads, current number of uninterruptible-sleeping threads, total
1888 * number of context switches performed since bootup.
1889 */
1890 unsigned long nr_running(void)
1891 {
1892 unsigned long i, sum = 0;
1893
1894 for_each_online_cpu(i)
1895 sum += cpu_rq(i)->nr_running;
1896
1897 return sum;
1898 }
1899
1900 unsigned long nr_uninterruptible(void)
1901 {
1902 unsigned long i, sum = 0;
1903
1904 for_each_possible_cpu(i)
1905 sum += cpu_rq(i)->nr_uninterruptible;
1906
1907 /*
1908 * Since we read the counters lockless, it might be slightly
1909 * inaccurate. Do not allow it to go below zero though:
1910 */
1911 if (unlikely((long)sum < 0))
1912 sum = 0;
1913
1914 return sum;
1915 }
1916
1917 unsigned long long nr_context_switches(void)
1918 {
1919 int i;
1920 unsigned long long sum = 0;
1921
1922 for_each_possible_cpu(i)
1923 sum += cpu_rq(i)->nr_switches;
1924
1925 return sum;
1926 }
1927
1928 unsigned long nr_iowait(void)
1929 {
1930 unsigned long i, sum = 0;
1931
1932 for_each_possible_cpu(i)
1933 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1934
1935 return sum;
1936 }
1937
1938 unsigned long nr_active(void)
1939 {
1940 unsigned long i, running = 0, uninterruptible = 0;
1941
1942 for_each_online_cpu(i) {
1943 running += cpu_rq(i)->nr_running;
1944 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1945 }
1946
1947 if (unlikely((long)uninterruptible < 0))
1948 uninterruptible = 0;
1949
1950 return running + uninterruptible;
1951 }
1952
1953 /*
1954 * Update rq->cpu_load[] statistics. This function is usually called every
1955 * scheduler tick (TICK_NSEC).
1956 */
1957 static void update_cpu_load(struct rq *this_rq)
1958 {
1959 u64 fair_delta64, exec_delta64, idle_delta64, sample_interval64, tmp64;
1960 unsigned long total_load = this_rq->ls.load.weight;
1961 unsigned long this_load = total_load;
1962 struct load_stat *ls = &this_rq->ls;
1963 u64 now;
1964 int i, scale;
1965
1966 __update_rq_clock(this_rq);
1967 now = this_rq->clock;
1968
1969 this_rq->nr_load_updates++;
1970 if (unlikely(!(sysctl_sched_features & SCHED_FEAT_PRECISE_CPU_LOAD)))
1971 goto do_avg;
1972
1973 /* Update delta_fair/delta_exec fields first */
1974 update_curr_load(this_rq, now);
1975
1976 fair_delta64 = ls->delta_fair + 1;
1977 ls->delta_fair = 0;
1978
1979 exec_delta64 = ls->delta_exec + 1;
1980 ls->delta_exec = 0;
1981
1982 sample_interval64 = this_rq->clock - ls->load_update_last;
1983 ls->load_update_last = this_rq->clock;
1984
1985 if ((s64)sample_interval64 < (s64)TICK_NSEC)
1986 sample_interval64 = TICK_NSEC;
1987
1988 if (exec_delta64 > sample_interval64)
1989 exec_delta64 = sample_interval64;
1990
1991 idle_delta64 = sample_interval64 - exec_delta64;
1992
1993 tmp64 = div64_64(SCHED_LOAD_SCALE * exec_delta64, fair_delta64);
1994 tmp64 = div64_64(tmp64 * exec_delta64, sample_interval64);
1995
1996 this_load = (unsigned long)tmp64;
1997
1998 do_avg:
1999
2000 /* Update our load: */
2001 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2002 unsigned long old_load, new_load;
2003
2004 /* scale is effectively 1 << i now, and >> i divides by scale */
2005
2006 old_load = this_rq->cpu_load[i];
2007 new_load = this_load;
2008
2009 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2010 }
2011 }
2012
2013 #ifdef CONFIG_SMP
2014
2015 /*
2016 * double_rq_lock - safely lock two runqueues
2017 *
2018 * Note this does not disable interrupts like task_rq_lock,
2019 * you need to do so manually before calling.
2020 */
2021 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
2022 __acquires(rq1->lock)
2023 __acquires(rq2->lock)
2024 {
2025 BUG_ON(!irqs_disabled());
2026 if (rq1 == rq2) {
2027 spin_lock(&rq1->lock);
2028 __acquire(rq2->lock); /* Fake it out ;) */
2029 } else {
2030 if (rq1 < rq2) {
2031 spin_lock(&rq1->lock);
2032 spin_lock(&rq2->lock);
2033 } else {
2034 spin_lock(&rq2->lock);
2035 spin_lock(&rq1->lock);
2036 }
2037 }
2038 }
2039
2040 /*
2041 * double_rq_unlock - safely unlock two runqueues
2042 *
2043 * Note this does not restore interrupts like task_rq_unlock,
2044 * you need to do so manually after calling.
2045 */
2046 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2047 __releases(rq1->lock)
2048 __releases(rq2->lock)
2049 {
2050 spin_unlock(&rq1->lock);
2051 if (rq1 != rq2)
2052 spin_unlock(&rq2->lock);
2053 else
2054 __release(rq2->lock);
2055 }
2056
2057 /*
2058 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2059 */
2060 static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
2061 __releases(this_rq->lock)
2062 __acquires(busiest->lock)
2063 __acquires(this_rq->lock)
2064 {
2065 if (unlikely(!irqs_disabled())) {
2066 /* printk() doesn't work good under rq->lock */
2067 spin_unlock(&this_rq->lock);
2068 BUG_ON(1);
2069 }
2070 if (unlikely(!spin_trylock(&busiest->lock))) {
2071 if (busiest < this_rq) {
2072 spin_unlock(&this_rq->lock);
2073 spin_lock(&busiest->lock);
2074 spin_lock(&this_rq->lock);
2075 } else
2076 spin_lock(&busiest->lock);
2077 }
2078 }
2079
2080 /*
2081 * If dest_cpu is allowed for this process, migrate the task to it.
2082 * This is accomplished by forcing the cpu_allowed mask to only
2083 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2084 * the cpu_allowed mask is restored.
2085 */
2086 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
2087 {
2088 struct migration_req req;
2089 unsigned long flags;
2090 struct rq *rq;
2091
2092 rq = task_rq_lock(p, &flags);
2093 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2094 || unlikely(cpu_is_offline(dest_cpu)))
2095 goto out;
2096
2097 /* force the process onto the specified CPU */
2098 if (migrate_task(p, dest_cpu, &req)) {
2099 /* Need to wait for migration thread (might exit: take ref). */
2100 struct task_struct *mt = rq->migration_thread;
2101
2102 get_task_struct(mt);
2103 task_rq_unlock(rq, &flags);
2104 wake_up_process(mt);
2105 put_task_struct(mt);
2106 wait_for_completion(&req.done);
2107
2108 return;
2109 }
2110 out:
2111 task_rq_unlock(rq, &flags);
2112 }
2113
2114 /*
2115 * sched_exec - execve() is a valuable balancing opportunity, because at
2116 * this point the task has the smallest effective memory and cache footprint.
2117 */
2118 void sched_exec(void)
2119 {
2120 int new_cpu, this_cpu = get_cpu();
2121 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
2122 put_cpu();
2123 if (new_cpu != this_cpu)
2124 sched_migrate_task(current, new_cpu);
2125 }
2126
2127 /*
2128 * pull_task - move a task from a remote runqueue to the local runqueue.
2129 * Both runqueues must be locked.
2130 */
2131 static void pull_task(struct rq *src_rq, struct task_struct *p,
2132 struct rq *this_rq, int this_cpu)
2133 {
2134 update_rq_clock(src_rq);
2135 deactivate_task(src_rq, p, 0, src_rq->clock);
2136 set_task_cpu(p, this_cpu);
2137 activate_task(this_rq, p, 0);
2138 /*
2139 * Note that idle threads have a prio of MAX_PRIO, for this test
2140 * to be always true for them.
2141 */
2142 check_preempt_curr(this_rq, p);
2143 }
2144
2145 /*
2146 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2147 */
2148 static
2149 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2150 struct sched_domain *sd, enum cpu_idle_type idle,
2151 int *all_pinned)
2152 {
2153 /*
2154 * We do not migrate tasks that are:
2155 * 1) running (obviously), or
2156 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2157 * 3) are cache-hot on their current CPU.
2158 */
2159 if (!cpu_isset(this_cpu, p->cpus_allowed))
2160 return 0;
2161 *all_pinned = 0;
2162
2163 if (task_running(rq, p))
2164 return 0;
2165
2166 /*
2167 * Aggressive migration if too many balance attempts have failed:
2168 */
2169 if (sd->nr_balance_failed > sd->cache_nice_tries)
2170 return 1;
2171
2172 return 1;
2173 }
2174
2175 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2176 unsigned long max_nr_move, unsigned long max_load_move,
2177 struct sched_domain *sd, enum cpu_idle_type idle,
2178 int *all_pinned, unsigned long *load_moved,
2179 int *this_best_prio, struct rq_iterator *iterator)
2180 {
2181 int pulled = 0, pinned = 0, skip_for_load;
2182 struct task_struct *p;
2183 long rem_load_move = max_load_move;
2184
2185 if (max_nr_move == 0 || max_load_move == 0)
2186 goto out;
2187
2188 pinned = 1;
2189
2190 /*
2191 * Start the load-balancing iterator:
2192 */
2193 p = iterator->start(iterator->arg);
2194 next:
2195 if (!p)
2196 goto out;
2197 /*
2198 * To help distribute high priority tasks accross CPUs we don't
2199 * skip a task if it will be the highest priority task (i.e. smallest
2200 * prio value) on its new queue regardless of its load weight
2201 */
2202 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2203 SCHED_LOAD_SCALE_FUZZ;
2204 if ((skip_for_load && p->prio >= *this_best_prio) ||
2205 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
2206 p = iterator->next(iterator->arg);
2207 goto next;
2208 }
2209
2210 pull_task(busiest, p, this_rq, this_cpu);
2211 pulled++;
2212 rem_load_move -= p->se.load.weight;
2213
2214 /*
2215 * We only want to steal up to the prescribed number of tasks
2216 * and the prescribed amount of weighted load.
2217 */
2218 if (pulled < max_nr_move && rem_load_move > 0) {
2219 if (p->prio < *this_best_prio)
2220 *this_best_prio = p->prio;
2221 p = iterator->next(iterator->arg);
2222 goto next;
2223 }
2224 out:
2225 /*
2226 * Right now, this is the only place pull_task() is called,
2227 * so we can safely collect pull_task() stats here rather than
2228 * inside pull_task().
2229 */
2230 schedstat_add(sd, lb_gained[idle], pulled);
2231
2232 if (all_pinned)
2233 *all_pinned = pinned;
2234 *load_moved = max_load_move - rem_load_move;
2235 return pulled;
2236 }
2237
2238 /*
2239 * move_tasks tries to move up to max_load_move weighted load from busiest to
2240 * this_rq, as part of a balancing operation within domain "sd".
2241 * Returns 1 if successful and 0 otherwise.
2242 *
2243 * Called with both runqueues locked.
2244 */
2245 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2246 unsigned long max_load_move,
2247 struct sched_domain *sd, enum cpu_idle_type idle,
2248 int *all_pinned)
2249 {
2250 struct sched_class *class = sched_class_highest;
2251 unsigned long total_load_moved = 0;
2252 int this_best_prio = this_rq->curr->prio;
2253
2254 do {
2255 total_load_moved +=
2256 class->load_balance(this_rq, this_cpu, busiest,
2257 ULONG_MAX, max_load_move - total_load_moved,
2258 sd, idle, all_pinned, &this_best_prio);
2259 class = class->next;
2260 } while (class && max_load_move > total_load_moved);
2261
2262 return total_load_moved > 0;
2263 }
2264
2265 /*
2266 * move_one_task tries to move exactly one task from busiest to this_rq, as
2267 * part of active balancing operations within "domain".
2268 * Returns 1 if successful and 0 otherwise.
2269 *
2270 * Called with both runqueues locked.
2271 */
2272 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2273 struct sched_domain *sd, enum cpu_idle_type idle)
2274 {
2275 struct sched_class *class;
2276 int this_best_prio = MAX_PRIO;
2277
2278 for (class = sched_class_highest; class; class = class->next)
2279 if (class->load_balance(this_rq, this_cpu, busiest,
2280 1, ULONG_MAX, sd, idle, NULL,
2281 &this_best_prio))
2282 return 1;
2283
2284 return 0;
2285 }
2286
2287 /*
2288 * find_busiest_group finds and returns the busiest CPU group within the
2289 * domain. It calculates and returns the amount of weighted load which
2290 * should be moved to restore balance via the imbalance parameter.
2291 */
2292 static struct sched_group *
2293 find_busiest_group(struct sched_domain *sd, int this_cpu,
2294 unsigned long *imbalance, enum cpu_idle_type idle,
2295 int *sd_idle, cpumask_t *cpus, int *balance)
2296 {
2297 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2298 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
2299 unsigned long max_pull;
2300 unsigned long busiest_load_per_task, busiest_nr_running;
2301 unsigned long this_load_per_task, this_nr_running;
2302 int load_idx;
2303 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2304 int power_savings_balance = 1;
2305 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2306 unsigned long min_nr_running = ULONG_MAX;
2307 struct sched_group *group_min = NULL, *group_leader = NULL;
2308 #endif
2309
2310 max_load = this_load = total_load = total_pwr = 0;
2311 busiest_load_per_task = busiest_nr_running = 0;
2312 this_load_per_task = this_nr_running = 0;
2313 if (idle == CPU_NOT_IDLE)
2314 load_idx = sd->busy_idx;
2315 else if (idle == CPU_NEWLY_IDLE)
2316 load_idx = sd->newidle_idx;
2317 else
2318 load_idx = sd->idle_idx;
2319
2320 do {
2321 unsigned long load, group_capacity;
2322 int local_group;
2323 int i;
2324 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2325 unsigned long sum_nr_running, sum_weighted_load;
2326
2327 local_group = cpu_isset(this_cpu, group->cpumask);
2328
2329 if (local_group)
2330 balance_cpu = first_cpu(group->cpumask);
2331
2332 /* Tally up the load of all CPUs in the group */
2333 sum_weighted_load = sum_nr_running = avg_load = 0;
2334
2335 for_each_cpu_mask(i, group->cpumask) {
2336 struct rq *rq;
2337
2338 if (!cpu_isset(i, *cpus))
2339 continue;
2340
2341 rq = cpu_rq(i);
2342
2343 if (*sd_idle && rq->nr_running)
2344 *sd_idle = 0;
2345
2346 /* Bias balancing toward cpus of our domain */
2347 if (local_group) {
2348 if (idle_cpu(i) && !first_idle_cpu) {
2349 first_idle_cpu = 1;
2350 balance_cpu = i;
2351 }
2352
2353 load = target_load(i, load_idx);
2354 } else
2355 load = source_load(i, load_idx);
2356
2357 avg_load += load;
2358 sum_nr_running += rq->nr_running;
2359 sum_weighted_load += weighted_cpuload(i);
2360 }
2361
2362 /*
2363 * First idle cpu or the first cpu(busiest) in this sched group
2364 * is eligible for doing load balancing at this and above
2365 * domains. In the newly idle case, we will allow all the cpu's
2366 * to do the newly idle load balance.
2367 */
2368 if (idle != CPU_NEWLY_IDLE && local_group &&
2369 balance_cpu != this_cpu && balance) {
2370 *balance = 0;
2371 goto ret;
2372 }
2373
2374 total_load += avg_load;
2375 total_pwr += group->__cpu_power;
2376
2377 /* Adjust by relative CPU power of the group */
2378 avg_load = sg_div_cpu_power(group,
2379 avg_load * SCHED_LOAD_SCALE);
2380
2381 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
2382
2383 if (local_group) {
2384 this_load = avg_load;
2385 this = group;
2386 this_nr_running = sum_nr_running;
2387 this_load_per_task = sum_weighted_load;
2388 } else if (avg_load > max_load &&
2389 sum_nr_running > group_capacity) {
2390 max_load = avg_load;
2391 busiest = group;
2392 busiest_nr_running = sum_nr_running;
2393 busiest_load_per_task = sum_weighted_load;
2394 }
2395
2396 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2397 /*
2398 * Busy processors will not participate in power savings
2399 * balance.
2400 */
2401 if (idle == CPU_NOT_IDLE ||
2402 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2403 goto group_next;
2404
2405 /*
2406 * If the local group is idle or completely loaded
2407 * no need to do power savings balance at this domain
2408 */
2409 if (local_group && (this_nr_running >= group_capacity ||
2410 !this_nr_running))
2411 power_savings_balance = 0;
2412
2413 /*
2414 * If a group is already running at full capacity or idle,
2415 * don't include that group in power savings calculations
2416 */
2417 if (!power_savings_balance || sum_nr_running >= group_capacity
2418 || !sum_nr_running)
2419 goto group_next;
2420
2421 /*
2422 * Calculate the group which has the least non-idle load.
2423 * This is the group from where we need to pick up the load
2424 * for saving power
2425 */
2426 if ((sum_nr_running < min_nr_running) ||
2427 (sum_nr_running == min_nr_running &&
2428 first_cpu(group->cpumask) <
2429 first_cpu(group_min->cpumask))) {
2430 group_min = group;
2431 min_nr_running = sum_nr_running;
2432 min_load_per_task = sum_weighted_load /
2433 sum_nr_running;
2434 }
2435
2436 /*
2437 * Calculate the group which is almost near its
2438 * capacity but still has some space to pick up some load
2439 * from other group and save more power
2440 */
2441 if (sum_nr_running <= group_capacity - 1) {
2442 if (sum_nr_running > leader_nr_running ||
2443 (sum_nr_running == leader_nr_running &&
2444 first_cpu(group->cpumask) >
2445 first_cpu(group_leader->cpumask))) {
2446 group_leader = group;
2447 leader_nr_running = sum_nr_running;
2448 }
2449 }
2450 group_next:
2451 #endif
2452 group = group->next;
2453 } while (group != sd->groups);
2454
2455 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
2456 goto out_balanced;
2457
2458 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2459
2460 if (this_load >= avg_load ||
2461 100*max_load <= sd->imbalance_pct*this_load)
2462 goto out_balanced;
2463
2464 busiest_load_per_task /= busiest_nr_running;
2465 /*
2466 * We're trying to get all the cpus to the average_load, so we don't
2467 * want to push ourselves above the average load, nor do we wish to
2468 * reduce the max loaded cpu below the average load, as either of these
2469 * actions would just result in more rebalancing later, and ping-pong
2470 * tasks around. Thus we look for the minimum possible imbalance.
2471 * Negative imbalances (*we* are more loaded than anyone else) will
2472 * be counted as no imbalance for these purposes -- we can't fix that
2473 * by pulling tasks to us. Be careful of negative numbers as they'll
2474 * appear as very large values with unsigned longs.
2475 */
2476 if (max_load <= busiest_load_per_task)
2477 goto out_balanced;
2478
2479 /*
2480 * In the presence of smp nice balancing, certain scenarios can have
2481 * max load less than avg load(as we skip the groups at or below
2482 * its cpu_power, while calculating max_load..)
2483 */
2484 if (max_load < avg_load) {
2485 *imbalance = 0;
2486 goto small_imbalance;
2487 }
2488
2489 /* Don't want to pull so many tasks that a group would go idle */
2490 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
2491
2492 /* How much load to actually move to equalise the imbalance */
2493 *imbalance = min(max_pull * busiest->__cpu_power,
2494 (avg_load - this_load) * this->__cpu_power)
2495 / SCHED_LOAD_SCALE;
2496
2497 /*
2498 * if *imbalance is less than the average load per runnable task
2499 * there is no gaurantee that any tasks will be moved so we'll have
2500 * a think about bumping its value to force at least one task to be
2501 * moved
2502 */
2503 if (*imbalance + SCHED_LOAD_SCALE_FUZZ < busiest_load_per_task/2) {
2504 unsigned long tmp, pwr_now, pwr_move;
2505 unsigned int imbn;
2506
2507 small_imbalance:
2508 pwr_move = pwr_now = 0;
2509 imbn = 2;
2510 if (this_nr_running) {
2511 this_load_per_task /= this_nr_running;
2512 if (busiest_load_per_task > this_load_per_task)
2513 imbn = 1;
2514 } else
2515 this_load_per_task = SCHED_LOAD_SCALE;
2516
2517 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2518 busiest_load_per_task * imbn) {
2519 *imbalance = busiest_load_per_task;
2520 return busiest;
2521 }
2522
2523 /*
2524 * OK, we don't have enough imbalance to justify moving tasks,
2525 * however we may be able to increase total CPU power used by
2526 * moving them.
2527 */
2528
2529 pwr_now += busiest->__cpu_power *
2530 min(busiest_load_per_task, max_load);
2531 pwr_now += this->__cpu_power *
2532 min(this_load_per_task, this_load);
2533 pwr_now /= SCHED_LOAD_SCALE;
2534
2535 /* Amount of load we'd subtract */
2536 tmp = sg_div_cpu_power(busiest,
2537 busiest_load_per_task * SCHED_LOAD_SCALE);
2538 if (max_load > tmp)
2539 pwr_move += busiest->__cpu_power *
2540 min(busiest_load_per_task, max_load - tmp);
2541
2542 /* Amount of load we'd add */
2543 if (max_load * busiest->__cpu_power <
2544 busiest_load_per_task * SCHED_LOAD_SCALE)
2545 tmp = sg_div_cpu_power(this,
2546 max_load * busiest->__cpu_power);
2547 else
2548 tmp = sg_div_cpu_power(this,
2549 busiest_load_per_task * SCHED_LOAD_SCALE);
2550 pwr_move += this->__cpu_power *
2551 min(this_load_per_task, this_load + tmp);
2552 pwr_move /= SCHED_LOAD_SCALE;
2553
2554 /* Move if we gain throughput */
2555 if (pwr_move <= pwr_now)
2556 goto out_balanced;
2557
2558 *imbalance = busiest_load_per_task;
2559 }
2560
2561 return busiest;
2562
2563 out_balanced:
2564 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2565 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2566 goto ret;
2567
2568 if (this == group_leader && group_leader != group_min) {
2569 *imbalance = min_load_per_task;
2570 return group_min;
2571 }
2572 #endif
2573 ret:
2574 *imbalance = 0;
2575 return NULL;
2576 }
2577
2578 /*
2579 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2580 */
2581 static struct rq *
2582 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2583 unsigned long imbalance, cpumask_t *cpus)
2584 {
2585 struct rq *busiest = NULL, *rq;
2586 unsigned long max_load = 0;
2587 int i;
2588
2589 for_each_cpu_mask(i, group->cpumask) {
2590 unsigned long wl;
2591
2592 if (!cpu_isset(i, *cpus))
2593 continue;
2594
2595 rq = cpu_rq(i);
2596 wl = weighted_cpuload(i);
2597
2598 if (rq->nr_running == 1 && wl > imbalance)
2599 continue;
2600
2601 if (wl > max_load) {
2602 max_load = wl;
2603 busiest = rq;
2604 }
2605 }
2606
2607 return busiest;
2608 }
2609
2610 /*
2611 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2612 * so long as it is large enough.
2613 */
2614 #define MAX_PINNED_INTERVAL 512
2615
2616 /*
2617 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2618 * tasks if there is an imbalance.
2619 */
2620 static int load_balance(int this_cpu, struct rq *this_rq,
2621 struct sched_domain *sd, enum cpu_idle_type idle,
2622 int *balance)
2623 {
2624 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2625 struct sched_group *group;
2626 unsigned long imbalance;
2627 struct rq *busiest;
2628 cpumask_t cpus = CPU_MASK_ALL;
2629 unsigned long flags;
2630
2631 /*
2632 * When power savings policy is enabled for the parent domain, idle
2633 * sibling can pick up load irrespective of busy siblings. In this case,
2634 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2635 * portraying it as CPU_NOT_IDLE.
2636 */
2637 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2638 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2639 sd_idle = 1;
2640
2641 schedstat_inc(sd, lb_cnt[idle]);
2642
2643 redo:
2644 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2645 &cpus, balance);
2646
2647 if (*balance == 0)
2648 goto out_balanced;
2649
2650 if (!group) {
2651 schedstat_inc(sd, lb_nobusyg[idle]);
2652 goto out_balanced;
2653 }
2654
2655 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
2656 if (!busiest) {
2657 schedstat_inc(sd, lb_nobusyq[idle]);
2658 goto out_balanced;
2659 }
2660
2661 BUG_ON(busiest == this_rq);
2662
2663 schedstat_add(sd, lb_imbalance[idle], imbalance);
2664
2665 ld_moved = 0;
2666 if (busiest->nr_running > 1) {
2667 /*
2668 * Attempt to move tasks. If find_busiest_group has found
2669 * an imbalance but busiest->nr_running <= 1, the group is
2670 * still unbalanced. ld_moved simply stays zero, so it is
2671 * correctly treated as an imbalance.
2672 */
2673 local_irq_save(flags);
2674 double_rq_lock(this_rq, busiest);
2675 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2676 imbalance, sd, idle, &all_pinned);
2677 double_rq_unlock(this_rq, busiest);
2678 local_irq_restore(flags);
2679
2680 /*
2681 * some other cpu did the load balance for us.
2682 */
2683 if (ld_moved && this_cpu != smp_processor_id())
2684 resched_cpu(this_cpu);
2685
2686 /* All tasks on this runqueue were pinned by CPU affinity */
2687 if (unlikely(all_pinned)) {
2688 cpu_clear(cpu_of(busiest), cpus);
2689 if (!cpus_empty(cpus))
2690 goto redo;
2691 goto out_balanced;
2692 }
2693 }
2694
2695 if (!ld_moved) {
2696 schedstat_inc(sd, lb_failed[idle]);
2697 sd->nr_balance_failed++;
2698
2699 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2700
2701 spin_lock_irqsave(&busiest->lock, flags);
2702
2703 /* don't kick the migration_thread, if the curr
2704 * task on busiest cpu can't be moved to this_cpu
2705 */
2706 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2707 spin_unlock_irqrestore(&busiest->lock, flags);
2708 all_pinned = 1;
2709 goto out_one_pinned;
2710 }
2711
2712 if (!busiest->active_balance) {
2713 busiest->active_balance = 1;
2714 busiest->push_cpu = this_cpu;
2715 active_balance = 1;
2716 }
2717 spin_unlock_irqrestore(&busiest->lock, flags);
2718 if (active_balance)
2719 wake_up_process(busiest->migration_thread);
2720
2721 /*
2722 * We've kicked active balancing, reset the failure
2723 * counter.
2724 */
2725 sd->nr_balance_failed = sd->cache_nice_tries+1;
2726 }
2727 } else
2728 sd->nr_balance_failed = 0;
2729
2730 if (likely(!active_balance)) {
2731 /* We were unbalanced, so reset the balancing interval */
2732 sd->balance_interval = sd->min_interval;
2733 } else {
2734 /*
2735 * If we've begun active balancing, start to back off. This
2736 * case may not be covered by the all_pinned logic if there
2737 * is only 1 task on the busy runqueue (because we don't call
2738 * move_tasks).
2739 */
2740 if (sd->balance_interval < sd->max_interval)
2741 sd->balance_interval *= 2;
2742 }
2743
2744 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2745 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2746 return -1;
2747 return ld_moved;
2748
2749 out_balanced:
2750 schedstat_inc(sd, lb_balanced[idle]);
2751
2752 sd->nr_balance_failed = 0;
2753
2754 out_one_pinned:
2755 /* tune up the balancing interval */
2756 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2757 (sd->balance_interval < sd->max_interval))
2758 sd->balance_interval *= 2;
2759
2760 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2761 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2762 return -1;
2763 return 0;
2764 }
2765
2766 /*
2767 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2768 * tasks if there is an imbalance.
2769 *
2770 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
2771 * this_rq is locked.
2772 */
2773 static int
2774 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
2775 {
2776 struct sched_group *group;
2777 struct rq *busiest = NULL;
2778 unsigned long imbalance;
2779 int ld_moved = 0;
2780 int sd_idle = 0;
2781 int all_pinned = 0;
2782 cpumask_t cpus = CPU_MASK_ALL;
2783
2784 /*
2785 * When power savings policy is enabled for the parent domain, idle
2786 * sibling can pick up load irrespective of busy siblings. In this case,
2787 * let the state of idle sibling percolate up as IDLE, instead of
2788 * portraying it as CPU_NOT_IDLE.
2789 */
2790 if (sd->flags & SD_SHARE_CPUPOWER &&
2791 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2792 sd_idle = 1;
2793
2794 schedstat_inc(sd, lb_cnt[CPU_NEWLY_IDLE]);
2795 redo:
2796 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
2797 &sd_idle, &cpus, NULL);
2798 if (!group) {
2799 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
2800 goto out_balanced;
2801 }
2802
2803 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
2804 &cpus);
2805 if (!busiest) {
2806 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
2807 goto out_balanced;
2808 }
2809
2810 BUG_ON(busiest == this_rq);
2811
2812 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
2813
2814 ld_moved = 0;
2815 if (busiest->nr_running > 1) {
2816 /* Attempt to move tasks */
2817 double_lock_balance(this_rq, busiest);
2818 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2819 imbalance, sd, CPU_NEWLY_IDLE,
2820 &all_pinned);
2821 spin_unlock(&busiest->lock);
2822
2823 if (unlikely(all_pinned)) {
2824 cpu_clear(cpu_of(busiest), cpus);
2825 if (!cpus_empty(cpus))
2826 goto redo;
2827 }
2828 }
2829
2830 if (!ld_moved) {
2831 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
2832 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2833 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2834 return -1;
2835 } else
2836 sd->nr_balance_failed = 0;
2837
2838 return ld_moved;
2839
2840 out_balanced:
2841 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
2842 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2843 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2844 return -1;
2845 sd->nr_balance_failed = 0;
2846
2847 return 0;
2848 }
2849
2850 /*
2851 * idle_balance is called by schedule() if this_cpu is about to become
2852 * idle. Attempts to pull tasks from other CPUs.
2853 */
2854 static void idle_balance(int this_cpu, struct rq *this_rq)
2855 {
2856 struct sched_domain *sd;
2857 int pulled_task = -1;
2858 unsigned long next_balance = jiffies + HZ;
2859
2860 for_each_domain(this_cpu, sd) {
2861 unsigned long interval;
2862
2863 if (!(sd->flags & SD_LOAD_BALANCE))
2864 continue;
2865
2866 if (sd->flags & SD_BALANCE_NEWIDLE)
2867 /* If we've pulled tasks over stop searching: */
2868 pulled_task = load_balance_newidle(this_cpu,
2869 this_rq, sd);
2870
2871 interval = msecs_to_jiffies(sd->balance_interval);
2872 if (time_after(next_balance, sd->last_balance + interval))
2873 next_balance = sd->last_balance + interval;
2874 if (pulled_task)
2875 break;
2876 }
2877 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
2878 /*
2879 * We are going idle. next_balance may be set based on
2880 * a busy processor. So reset next_balance.
2881 */
2882 this_rq->next_balance = next_balance;
2883 }
2884 }
2885
2886 /*
2887 * active_load_balance is run by migration threads. It pushes running tasks
2888 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2889 * running on each physical CPU where possible, and avoids physical /
2890 * logical imbalances.
2891 *
2892 * Called with busiest_rq locked.
2893 */
2894 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
2895 {
2896 int target_cpu = busiest_rq->push_cpu;
2897 struct sched_domain *sd;
2898 struct rq *target_rq;
2899
2900 /* Is there any task to move? */
2901 if (busiest_rq->nr_running <= 1)
2902 return;
2903
2904 target_rq = cpu_rq(target_cpu);
2905
2906 /*
2907 * This condition is "impossible", if it occurs
2908 * we need to fix it. Originally reported by
2909 * Bjorn Helgaas on a 128-cpu setup.
2910 */
2911 BUG_ON(busiest_rq == target_rq);
2912
2913 /* move a task from busiest_rq to target_rq */
2914 double_lock_balance(busiest_rq, target_rq);
2915
2916 /* Search for an sd spanning us and the target CPU. */
2917 for_each_domain(target_cpu, sd) {
2918 if ((sd->flags & SD_LOAD_BALANCE) &&
2919 cpu_isset(busiest_cpu, sd->span))
2920 break;
2921 }
2922
2923 if (likely(sd)) {
2924 schedstat_inc(sd, alb_cnt);
2925
2926 if (move_one_task(target_rq, target_cpu, busiest_rq,
2927 sd, CPU_IDLE))
2928 schedstat_inc(sd, alb_pushed);
2929 else
2930 schedstat_inc(sd, alb_failed);
2931 }
2932 spin_unlock(&target_rq->lock);
2933 }
2934
2935 #ifdef CONFIG_NO_HZ
2936 static struct {
2937 atomic_t load_balancer;
2938 cpumask_t cpu_mask;
2939 } nohz ____cacheline_aligned = {
2940 .load_balancer = ATOMIC_INIT(-1),
2941 .cpu_mask = CPU_MASK_NONE,
2942 };
2943
2944 /*
2945 * This routine will try to nominate the ilb (idle load balancing)
2946 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
2947 * load balancing on behalf of all those cpus. If all the cpus in the system
2948 * go into this tickless mode, then there will be no ilb owner (as there is
2949 * no need for one) and all the cpus will sleep till the next wakeup event
2950 * arrives...
2951 *
2952 * For the ilb owner, tick is not stopped. And this tick will be used
2953 * for idle load balancing. ilb owner will still be part of
2954 * nohz.cpu_mask..
2955 *
2956 * While stopping the tick, this cpu will become the ilb owner if there
2957 * is no other owner. And will be the owner till that cpu becomes busy
2958 * or if all cpus in the system stop their ticks at which point
2959 * there is no need for ilb owner.
2960 *
2961 * When the ilb owner becomes busy, it nominates another owner, during the
2962 * next busy scheduler_tick()
2963 */
2964 int select_nohz_load_balancer(int stop_tick)
2965 {
2966 int cpu = smp_processor_id();
2967
2968 if (stop_tick) {
2969 cpu_set(cpu, nohz.cpu_mask);
2970 cpu_rq(cpu)->in_nohz_recently = 1;
2971
2972 /*
2973 * If we are going offline and still the leader, give up!
2974 */
2975 if (cpu_is_offline(cpu) &&
2976 atomic_read(&nohz.load_balancer) == cpu) {
2977 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
2978 BUG();
2979 return 0;
2980 }
2981
2982 /* time for ilb owner also to sleep */
2983 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
2984 if (atomic_read(&nohz.load_balancer) == cpu)
2985 atomic_set(&nohz.load_balancer, -1);
2986 return 0;
2987 }
2988
2989 if (atomic_read(&nohz.load_balancer) == -1) {
2990 /* make me the ilb owner */
2991 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
2992 return 1;
2993 } else if (atomic_read(&nohz.load_balancer) == cpu)
2994 return 1;
2995 } else {
2996 if (!cpu_isset(cpu, nohz.cpu_mask))
2997 return 0;
2998
2999 cpu_clear(cpu, nohz.cpu_mask);
3000
3001 if (atomic_read(&nohz.load_balancer) == cpu)
3002 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3003 BUG();
3004 }
3005 return 0;
3006 }
3007 #endif
3008
3009 static DEFINE_SPINLOCK(balancing);
3010
3011 /*
3012 * It checks each scheduling domain to see if it is due to be balanced,
3013 * and initiates a balancing operation if so.
3014 *
3015 * Balancing parameters are set up in arch_init_sched_domains.
3016 */
3017 static inline void rebalance_domains(int cpu, enum cpu_idle_type idle)
3018 {
3019 int balance = 1;
3020 struct rq *rq = cpu_rq(cpu);
3021 unsigned long interval;
3022 struct sched_domain *sd;
3023 /* Earliest time when we have to do rebalance again */
3024 unsigned long next_balance = jiffies + 60*HZ;
3025
3026 for_each_domain(cpu, sd) {
3027 if (!(sd->flags & SD_LOAD_BALANCE))
3028 continue;
3029
3030 interval = sd->balance_interval;
3031 if (idle != CPU_IDLE)
3032 interval *= sd->busy_factor;
3033
3034 /* scale ms to jiffies */
3035 interval = msecs_to_jiffies(interval);
3036 if (unlikely(!interval))
3037 interval = 1;
3038 if (interval > HZ*NR_CPUS/10)
3039 interval = HZ*NR_CPUS/10;
3040
3041
3042 if (sd->flags & SD_SERIALIZE) {
3043 if (!spin_trylock(&balancing))
3044 goto out;
3045 }
3046
3047 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3048 if (load_balance(cpu, rq, sd, idle, &balance)) {
3049 /*
3050 * We've pulled tasks over so either we're no
3051 * longer idle, or one of our SMT siblings is
3052 * not idle.
3053 */
3054 idle = CPU_NOT_IDLE;
3055 }
3056 sd->last_balance = jiffies;
3057 }
3058 if (sd->flags & SD_SERIALIZE)
3059 spin_unlock(&balancing);
3060 out:
3061 if (time_after(next_balance, sd->last_balance + interval))
3062 next_balance = sd->last_balance + interval;
3063
3064 /*
3065 * Stop the load balance at this level. There is another
3066 * CPU in our sched group which is doing load balancing more
3067 * actively.
3068 */
3069 if (!balance)
3070 break;
3071 }
3072 rq->next_balance = next_balance;
3073 }
3074
3075 /*
3076 * run_rebalance_domains is triggered when needed from the scheduler tick.
3077 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3078 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3079 */
3080 static void run_rebalance_domains(struct softirq_action *h)
3081 {
3082 int this_cpu = smp_processor_id();
3083 struct rq *this_rq = cpu_rq(this_cpu);
3084 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3085 CPU_IDLE : CPU_NOT_IDLE;
3086
3087 rebalance_domains(this_cpu, idle);
3088
3089 #ifdef CONFIG_NO_HZ
3090 /*
3091 * If this cpu is the owner for idle load balancing, then do the
3092 * balancing on behalf of the other idle cpus whose ticks are
3093 * stopped.
3094 */
3095 if (this_rq->idle_at_tick &&
3096 atomic_read(&nohz.load_balancer) == this_cpu) {
3097 cpumask_t cpus = nohz.cpu_mask;
3098 struct rq *rq;
3099 int balance_cpu;
3100
3101 cpu_clear(this_cpu, cpus);
3102 for_each_cpu_mask(balance_cpu, cpus) {
3103 /*
3104 * If this cpu gets work to do, stop the load balancing
3105 * work being done for other cpus. Next load
3106 * balancing owner will pick it up.
3107 */
3108 if (need_resched())
3109 break;
3110
3111 rebalance_domains(balance_cpu, SCHED_IDLE);
3112
3113 rq = cpu_rq(balance_cpu);
3114 if (time_after(this_rq->next_balance, rq->next_balance))
3115 this_rq->next_balance = rq->next_balance;
3116 }
3117 }
3118 #endif
3119 }
3120
3121 /*
3122 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3123 *
3124 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3125 * idle load balancing owner or decide to stop the periodic load balancing,
3126 * if the whole system is idle.
3127 */
3128 static inline void trigger_load_balance(struct rq *rq, int cpu)
3129 {
3130 #ifdef CONFIG_NO_HZ
3131 /*
3132 * If we were in the nohz mode recently and busy at the current
3133 * scheduler tick, then check if we need to nominate new idle
3134 * load balancer.
3135 */
3136 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3137 rq->in_nohz_recently = 0;
3138
3139 if (atomic_read(&nohz.load_balancer) == cpu) {
3140 cpu_clear(cpu, nohz.cpu_mask);
3141 atomic_set(&nohz.load_balancer, -1);
3142 }
3143
3144 if (atomic_read(&nohz.load_balancer) == -1) {
3145 /*
3146 * simple selection for now: Nominate the
3147 * first cpu in the nohz list to be the next
3148 * ilb owner.
3149 *
3150 * TBD: Traverse the sched domains and nominate
3151 * the nearest cpu in the nohz.cpu_mask.
3152 */
3153 int ilb = first_cpu(nohz.cpu_mask);
3154
3155 if (ilb != NR_CPUS)
3156 resched_cpu(ilb);
3157 }
3158 }
3159
3160 /*
3161 * If this cpu is idle and doing idle load balancing for all the
3162 * cpus with ticks stopped, is it time for that to stop?
3163 */
3164 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3165 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3166 resched_cpu(cpu);
3167 return;
3168 }
3169
3170 /*
3171 * If this cpu is idle and the idle load balancing is done by
3172 * someone else, then no need raise the SCHED_SOFTIRQ
3173 */
3174 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3175 cpu_isset(cpu, nohz.cpu_mask))
3176 return;
3177 #endif
3178 if (time_after_eq(jiffies, rq->next_balance))
3179 raise_softirq(SCHED_SOFTIRQ);
3180 }
3181
3182 #else /* CONFIG_SMP */
3183
3184 /*
3185 * on UP we do not need to balance between CPUs:
3186 */
3187 static inline void idle_balance(int cpu, struct rq *rq)
3188 {
3189 }
3190
3191 /* Avoid "used but not defined" warning on UP */
3192 static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3193 unsigned long max_nr_move, unsigned long max_load_move,
3194 struct sched_domain *sd, enum cpu_idle_type idle,
3195 int *all_pinned, unsigned long *load_moved,
3196 int *this_best_prio, struct rq_iterator *iterator)
3197 {
3198 *load_moved = 0;
3199
3200 return 0;
3201 }
3202
3203 #endif
3204
3205 DEFINE_PER_CPU(struct kernel_stat, kstat);
3206
3207 EXPORT_PER_CPU_SYMBOL(kstat);
3208
3209 /*
3210 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3211 * that have not yet been banked in case the task is currently running.
3212 */
3213 unsigned long long task_sched_runtime(struct task_struct *p)
3214 {
3215 unsigned long flags;
3216 u64 ns, delta_exec;
3217 struct rq *rq;
3218
3219 rq = task_rq_lock(p, &flags);
3220 ns = p->se.sum_exec_runtime;
3221 if (rq->curr == p) {
3222 update_rq_clock(rq);
3223 delta_exec = rq->clock - p->se.exec_start;
3224 if ((s64)delta_exec > 0)
3225 ns += delta_exec;
3226 }
3227 task_rq_unlock(rq, &flags);
3228
3229 return ns;
3230 }
3231
3232 /*
3233 * Account user cpu time to a process.
3234 * @p: the process that the cpu time gets accounted to
3235 * @hardirq_offset: the offset to subtract from hardirq_count()
3236 * @cputime: the cpu time spent in user space since the last update
3237 */
3238 void account_user_time(struct task_struct *p, cputime_t cputime)
3239 {
3240 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3241 cputime64_t tmp;
3242
3243 p->utime = cputime_add(p->utime, cputime);
3244
3245 /* Add user time to cpustat. */
3246 tmp = cputime_to_cputime64(cputime);
3247 if (TASK_NICE(p) > 0)
3248 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3249 else
3250 cpustat->user = cputime64_add(cpustat->user, tmp);
3251 }
3252
3253 /*
3254 * Account system cpu time to a process.
3255 * @p: the process that the cpu time gets accounted to
3256 * @hardirq_offset: the offset to subtract from hardirq_count()
3257 * @cputime: the cpu time spent in kernel space since the last update
3258 */
3259 void account_system_time(struct task_struct *p, int hardirq_offset,
3260 cputime_t cputime)
3261 {
3262 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3263 struct rq *rq = this_rq();
3264 cputime64_t tmp;
3265
3266 p->stime = cputime_add(p->stime, cputime);
3267
3268 /* Add system time to cpustat. */
3269 tmp = cputime_to_cputime64(cputime);
3270 if (hardirq_count() - hardirq_offset)
3271 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3272 else if (softirq_count())
3273 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3274 else if (p != rq->idle)
3275 cpustat->system = cputime64_add(cpustat->system, tmp);
3276 else if (atomic_read(&rq->nr_iowait) > 0)
3277 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3278 else
3279 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3280 /* Account for system time used */
3281 acct_update_integrals(p);
3282 }
3283
3284 /*
3285 * Account for involuntary wait time.
3286 * @p: the process from which the cpu time has been stolen
3287 * @steal: the cpu time spent in involuntary wait
3288 */
3289 void account_steal_time(struct task_struct *p, cputime_t steal)
3290 {
3291 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3292 cputime64_t tmp = cputime_to_cputime64(steal);
3293 struct rq *rq = this_rq();
3294
3295 if (p == rq->idle) {
3296 p->stime = cputime_add(p->stime, steal);
3297 if (atomic_read(&rq->nr_iowait) > 0)
3298 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3299 else
3300 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3301 } else
3302 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3303 }
3304
3305 /*
3306 * This function gets called by the timer code, with HZ frequency.
3307 * We call it with interrupts disabled.
3308 *
3309 * It also gets called by the fork code, when changing the parent's
3310 * timeslices.
3311 */
3312 void scheduler_tick(void)
3313 {
3314 int cpu = smp_processor_id();
3315 struct rq *rq = cpu_rq(cpu);
3316 struct task_struct *curr = rq->curr;
3317
3318 spin_lock(&rq->lock);
3319 update_cpu_load(rq);
3320 if (curr != rq->idle) /* FIXME: needed? */
3321 curr->sched_class->task_tick(rq, curr);
3322 spin_unlock(&rq->lock);
3323
3324 #ifdef CONFIG_SMP
3325 rq->idle_at_tick = idle_cpu(cpu);
3326 trigger_load_balance(rq, cpu);
3327 #endif
3328 }
3329
3330 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3331
3332 void fastcall add_preempt_count(int val)
3333 {
3334 /*
3335 * Underflow?
3336 */
3337 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3338 return;
3339 preempt_count() += val;
3340 /*
3341 * Spinlock count overflowing soon?
3342 */
3343 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3344 PREEMPT_MASK - 10);
3345 }
3346 EXPORT_SYMBOL(add_preempt_count);
3347
3348 void fastcall sub_preempt_count(int val)
3349 {
3350 /*
3351 * Underflow?
3352 */
3353 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3354 return;
3355 /*
3356 * Is the spinlock portion underflowing?
3357 */
3358 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3359 !(preempt_count() & PREEMPT_MASK)))
3360 return;
3361
3362 preempt_count() -= val;
3363 }
3364 EXPORT_SYMBOL(sub_preempt_count);
3365
3366 #endif
3367
3368 /*
3369 * Print scheduling while atomic bug:
3370 */
3371 static noinline void __schedule_bug(struct task_struct *prev)
3372 {
3373 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
3374 prev->comm, preempt_count(), prev->pid);
3375 debug_show_held_locks(prev);
3376 if (irqs_disabled())
3377 print_irqtrace_events(prev);
3378 dump_stack();
3379 }
3380
3381 /*
3382 * Various schedule()-time debugging checks and statistics:
3383 */
3384 static inline void schedule_debug(struct task_struct *prev)
3385 {
3386 /*
3387 * Test if we are atomic. Since do_exit() needs to call into
3388 * schedule() atomically, we ignore that path for now.
3389 * Otherwise, whine if we are scheduling when we should not be.
3390 */
3391 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3392 __schedule_bug(prev);
3393
3394 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3395
3396 schedstat_inc(this_rq(), sched_cnt);
3397 }
3398
3399 /*
3400 * Pick up the highest-prio task:
3401 */
3402 static inline struct task_struct *
3403 pick_next_task(struct rq *rq, struct task_struct *prev, u64 now)
3404 {
3405 struct sched_class *class;
3406 struct task_struct *p;
3407
3408 /*
3409 * Optimization: we know that if all tasks are in
3410 * the fair class we can call that function directly:
3411 */
3412 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3413 p = fair_sched_class.pick_next_task(rq, now);
3414 if (likely(p))
3415 return p;
3416 }
3417
3418 class = sched_class_highest;
3419 for ( ; ; ) {
3420 p = class->pick_next_task(rq, now);
3421 if (p)
3422 return p;
3423 /*
3424 * Will never be NULL as the idle class always
3425 * returns a non-NULL p:
3426 */
3427 class = class->next;
3428 }
3429 }
3430
3431 /*
3432 * schedule() is the main scheduler function.
3433 */
3434 asmlinkage void __sched schedule(void)
3435 {
3436 struct task_struct *prev, *next;
3437 long *switch_count;
3438 struct rq *rq;
3439 u64 now;
3440 int cpu;
3441
3442 need_resched:
3443 preempt_disable();
3444 cpu = smp_processor_id();
3445 rq = cpu_rq(cpu);
3446 rcu_qsctr_inc(cpu);
3447 prev = rq->curr;
3448 switch_count = &prev->nivcsw;
3449
3450 release_kernel_lock(prev);
3451 need_resched_nonpreemptible:
3452
3453 schedule_debug(prev);
3454
3455 spin_lock_irq(&rq->lock);
3456 clear_tsk_need_resched(prev);
3457 __update_rq_clock(rq);
3458 now = rq->clock;
3459
3460 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3461 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3462 unlikely(signal_pending(prev)))) {
3463 prev->state = TASK_RUNNING;
3464 } else {
3465 deactivate_task(rq, prev, 1, now);
3466 }
3467 switch_count = &prev->nvcsw;
3468 }
3469
3470 if (unlikely(!rq->nr_running))
3471 idle_balance(cpu, rq);
3472
3473 prev->sched_class->put_prev_task(rq, prev, now);
3474 next = pick_next_task(rq, prev, now);
3475
3476 sched_info_switch(prev, next);
3477
3478 if (likely(prev != next)) {
3479 rq->nr_switches++;
3480 rq->curr = next;
3481 ++*switch_count;
3482
3483 context_switch(rq, prev, next); /* unlocks the rq */
3484 } else
3485 spin_unlock_irq(&rq->lock);
3486
3487 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3488 cpu = smp_processor_id();
3489 rq = cpu_rq(cpu);
3490 goto need_resched_nonpreemptible;
3491 }
3492 preempt_enable_no_resched();
3493 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3494 goto need_resched;
3495 }
3496 EXPORT_SYMBOL(schedule);
3497
3498 #ifdef CONFIG_PREEMPT
3499 /*
3500 * this is the entry point to schedule() from in-kernel preemption
3501 * off of preempt_enable. Kernel preemptions off return from interrupt
3502 * occur there and call schedule directly.
3503 */
3504 asmlinkage void __sched preempt_schedule(void)
3505 {
3506 struct thread_info *ti = current_thread_info();
3507 #ifdef CONFIG_PREEMPT_BKL
3508 struct task_struct *task = current;
3509 int saved_lock_depth;
3510 #endif
3511 /*
3512 * If there is a non-zero preempt_count or interrupts are disabled,
3513 * we do not want to preempt the current task. Just return..
3514 */
3515 if (likely(ti->preempt_count || irqs_disabled()))
3516 return;
3517
3518 need_resched:
3519 add_preempt_count(PREEMPT_ACTIVE);
3520 /*
3521 * We keep the big kernel semaphore locked, but we
3522 * clear ->lock_depth so that schedule() doesnt
3523 * auto-release the semaphore:
3524 */
3525 #ifdef CONFIG_PREEMPT_BKL
3526 saved_lock_depth = task->lock_depth;
3527 task->lock_depth = -1;
3528 #endif
3529 schedule();
3530 #ifdef CONFIG_PREEMPT_BKL
3531 task->lock_depth = saved_lock_depth;
3532 #endif
3533 sub_preempt_count(PREEMPT_ACTIVE);
3534
3535 /* we could miss a preemption opportunity between schedule and now */
3536 barrier();
3537 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3538 goto need_resched;
3539 }
3540 EXPORT_SYMBOL(preempt_schedule);
3541
3542 /*
3543 * this is the entry point to schedule() from kernel preemption
3544 * off of irq context.
3545 * Note, that this is called and return with irqs disabled. This will
3546 * protect us against recursive calling from irq.
3547 */
3548 asmlinkage void __sched preempt_schedule_irq(void)
3549 {
3550 struct thread_info *ti = current_thread_info();
3551 #ifdef CONFIG_PREEMPT_BKL
3552 struct task_struct *task = current;
3553 int saved_lock_depth;
3554 #endif
3555 /* Catch callers which need to be fixed */
3556 BUG_ON(ti->preempt_count || !irqs_disabled());
3557
3558 need_resched:
3559 add_preempt_count(PREEMPT_ACTIVE);
3560 /*
3561 * We keep the big kernel semaphore locked, but we
3562 * clear ->lock_depth so that schedule() doesnt
3563 * auto-release the semaphore:
3564 */
3565 #ifdef CONFIG_PREEMPT_BKL
3566 saved_lock_depth = task->lock_depth;
3567 task->lock_depth = -1;
3568 #endif
3569 local_irq_enable();
3570 schedule();
3571 local_irq_disable();
3572 #ifdef CONFIG_PREEMPT_BKL
3573 task->lock_depth = saved_lock_depth;
3574 #endif
3575 sub_preempt_count(PREEMPT_ACTIVE);
3576
3577 /* we could miss a preemption opportunity between schedule and now */
3578 barrier();
3579 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3580 goto need_resched;
3581 }
3582
3583 #endif /* CONFIG_PREEMPT */
3584
3585 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3586 void *key)
3587 {
3588 return try_to_wake_up(curr->private, mode, sync);
3589 }
3590 EXPORT_SYMBOL(default_wake_function);
3591
3592 /*
3593 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3594 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3595 * number) then we wake all the non-exclusive tasks and one exclusive task.
3596 *
3597 * There are circumstances in which we can try to wake a task which has already
3598 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3599 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3600 */
3601 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3602 int nr_exclusive, int sync, void *key)
3603 {
3604 struct list_head *tmp, *next;
3605
3606 list_for_each_safe(tmp, next, &q->task_list) {
3607 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3608 unsigned flags = curr->flags;
3609
3610 if (curr->func(curr, mode, sync, key) &&
3611 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3612 break;
3613 }
3614 }
3615
3616 /**
3617 * __wake_up - wake up threads blocked on a waitqueue.
3618 * @q: the waitqueue
3619 * @mode: which threads
3620 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3621 * @key: is directly passed to the wakeup function
3622 */
3623 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3624 int nr_exclusive, void *key)
3625 {
3626 unsigned long flags;
3627
3628 spin_lock_irqsave(&q->lock, flags);
3629 __wake_up_common(q, mode, nr_exclusive, 0, key);
3630 spin_unlock_irqrestore(&q->lock, flags);
3631 }
3632 EXPORT_SYMBOL(__wake_up);
3633
3634 /*
3635 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3636 */
3637 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3638 {
3639 __wake_up_common(q, mode, 1, 0, NULL);
3640 }
3641
3642 /**
3643 * __wake_up_sync - wake up threads blocked on a waitqueue.
3644 * @q: the waitqueue
3645 * @mode: which threads
3646 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3647 *
3648 * The sync wakeup differs that the waker knows that it will schedule
3649 * away soon, so while the target thread will be woken up, it will not
3650 * be migrated to another CPU - ie. the two threads are 'synchronized'
3651 * with each other. This can prevent needless bouncing between CPUs.
3652 *
3653 * On UP it can prevent extra preemption.
3654 */
3655 void fastcall
3656 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3657 {
3658 unsigned long flags;
3659 int sync = 1;
3660
3661 if (unlikely(!q))
3662 return;
3663
3664 if (unlikely(!nr_exclusive))
3665 sync = 0;
3666
3667 spin_lock_irqsave(&q->lock, flags);
3668 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3669 spin_unlock_irqrestore(&q->lock, flags);
3670 }
3671 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3672
3673 void fastcall complete(struct completion *x)
3674 {
3675 unsigned long flags;
3676
3677 spin_lock_irqsave(&x->wait.lock, flags);
3678 x->done++;
3679 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3680 1, 0, NULL);
3681 spin_unlock_irqrestore(&x->wait.lock, flags);
3682 }
3683 EXPORT_SYMBOL(complete);
3684
3685 void fastcall complete_all(struct completion *x)
3686 {
3687 unsigned long flags;
3688
3689 spin_lock_irqsave(&x->wait.lock, flags);
3690 x->done += UINT_MAX/2;
3691 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3692 0, 0, NULL);
3693 spin_unlock_irqrestore(&x->wait.lock, flags);
3694 }
3695 EXPORT_SYMBOL(complete_all);
3696
3697 void fastcall __sched wait_for_completion(struct completion *x)
3698 {
3699 might_sleep();
3700
3701 spin_lock_irq(&x->wait.lock);
3702 if (!x->done) {
3703 DECLARE_WAITQUEUE(wait, current);
3704
3705 wait.flags |= WQ_FLAG_EXCLUSIVE;
3706 __add_wait_queue_tail(&x->wait, &wait);
3707 do {
3708 __set_current_state(TASK_UNINTERRUPTIBLE);
3709 spin_unlock_irq(&x->wait.lock);
3710 schedule();
3711 spin_lock_irq(&x->wait.lock);
3712 } while (!x->done);
3713 __remove_wait_queue(&x->wait, &wait);
3714 }
3715 x->done--;
3716 spin_unlock_irq(&x->wait.lock);
3717 }
3718 EXPORT_SYMBOL(wait_for_completion);
3719
3720 unsigned long fastcall __sched
3721 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3722 {
3723 might_sleep();
3724
3725 spin_lock_irq(&x->wait.lock);
3726 if (!x->done) {
3727 DECLARE_WAITQUEUE(wait, current);
3728
3729 wait.flags |= WQ_FLAG_EXCLUSIVE;
3730 __add_wait_queue_tail(&x->wait, &wait);
3731 do {
3732 __set_current_state(TASK_UNINTERRUPTIBLE);
3733 spin_unlock_irq(&x->wait.lock);
3734 timeout = schedule_timeout(timeout);
3735 spin_lock_irq(&x->wait.lock);
3736 if (!timeout) {
3737 __remove_wait_queue(&x->wait, &wait);
3738 goto out;
3739 }
3740 } while (!x->done);
3741 __remove_wait_queue(&x->wait, &wait);
3742 }
3743 x->done--;
3744 out:
3745 spin_unlock_irq(&x->wait.lock);
3746 return timeout;
3747 }
3748 EXPORT_SYMBOL(wait_for_completion_timeout);
3749
3750 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3751 {
3752 int ret = 0;
3753
3754 might_sleep();
3755
3756 spin_lock_irq(&x->wait.lock);
3757 if (!x->done) {
3758 DECLARE_WAITQUEUE(wait, current);
3759
3760 wait.flags |= WQ_FLAG_EXCLUSIVE;
3761 __add_wait_queue_tail(&x->wait, &wait);
3762 do {
3763 if (signal_pending(current)) {
3764 ret = -ERESTARTSYS;
3765 __remove_wait_queue(&x->wait, &wait);
3766 goto out;
3767 }
3768 __set_current_state(TASK_INTERRUPTIBLE);
3769 spin_unlock_irq(&x->wait.lock);
3770 schedule();
3771 spin_lock_irq(&x->wait.lock);
3772 } while (!x->done);
3773 __remove_wait_queue(&x->wait, &wait);
3774 }
3775 x->done--;
3776 out:
3777 spin_unlock_irq(&x->wait.lock);
3778
3779 return ret;
3780 }
3781 EXPORT_SYMBOL(wait_for_completion_interruptible);
3782
3783 unsigned long fastcall __sched
3784 wait_for_completion_interruptible_timeout(struct completion *x,
3785 unsigned long timeout)
3786 {
3787 might_sleep();
3788
3789 spin_lock_irq(&x->wait.lock);
3790 if (!x->done) {
3791 DECLARE_WAITQUEUE(wait, current);
3792
3793 wait.flags |= WQ_FLAG_EXCLUSIVE;
3794 __add_wait_queue_tail(&x->wait, &wait);
3795 do {
3796 if (signal_pending(current)) {
3797 timeout = -ERESTARTSYS;
3798 __remove_wait_queue(&x->wait, &wait);
3799 goto out;
3800 }
3801 __set_current_state(TASK_INTERRUPTIBLE);
3802 spin_unlock_irq(&x->wait.lock);
3803 timeout = schedule_timeout(timeout);
3804 spin_lock_irq(&x->wait.lock);
3805 if (!timeout) {
3806 __remove_wait_queue(&x->wait, &wait);
3807 goto out;
3808 }
3809 } while (!x->done);
3810 __remove_wait_queue(&x->wait, &wait);
3811 }
3812 x->done--;
3813 out:
3814 spin_unlock_irq(&x->wait.lock);
3815 return timeout;
3816 }
3817 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3818
3819 static inline void
3820 sleep_on_head(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3821 {
3822 spin_lock_irqsave(&q->lock, *flags);
3823 __add_wait_queue(q, wait);
3824 spin_unlock(&q->lock);
3825 }
3826
3827 static inline void
3828 sleep_on_tail(wait_queue_head_t *q, wait_queue_t *wait, unsigned long *flags)
3829 {
3830 spin_lock_irq(&q->lock);
3831 __remove_wait_queue(q, wait);
3832 spin_unlock_irqrestore(&q->lock, *flags);
3833 }
3834
3835 void __sched interruptible_sleep_on(wait_queue_head_t *q)
3836 {
3837 unsigned long flags;
3838 wait_queue_t wait;
3839
3840 init_waitqueue_entry(&wait, current);
3841
3842 current->state = TASK_INTERRUPTIBLE;
3843
3844 sleep_on_head(q, &wait, &flags);
3845 schedule();
3846 sleep_on_tail(q, &wait, &flags);
3847 }
3848 EXPORT_SYMBOL(interruptible_sleep_on);
3849
3850 long __sched
3851 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3852 {
3853 unsigned long flags;
3854 wait_queue_t wait;
3855
3856 init_waitqueue_entry(&wait, current);
3857
3858 current->state = TASK_INTERRUPTIBLE;
3859
3860 sleep_on_head(q, &wait, &flags);
3861 timeout = schedule_timeout(timeout);
3862 sleep_on_tail(q, &wait, &flags);
3863
3864 return timeout;
3865 }
3866 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3867
3868 void __sched sleep_on(wait_queue_head_t *q)
3869 {
3870 unsigned long flags;
3871 wait_queue_t wait;
3872
3873 init_waitqueue_entry(&wait, current);
3874
3875 current->state = TASK_UNINTERRUPTIBLE;
3876
3877 sleep_on_head(q, &wait, &flags);
3878 schedule();
3879 sleep_on_tail(q, &wait, &flags);
3880 }
3881 EXPORT_SYMBOL(sleep_on);
3882
3883 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3884 {
3885 unsigned long flags;
3886 wait_queue_t wait;
3887
3888 init_waitqueue_entry(&wait, current);
3889
3890 current->state = TASK_UNINTERRUPTIBLE;
3891
3892 sleep_on_head(q, &wait, &flags);
3893 timeout = schedule_timeout(timeout);
3894 sleep_on_tail(q, &wait, &flags);
3895
3896 return timeout;
3897 }
3898 EXPORT_SYMBOL(sleep_on_timeout);
3899
3900 #ifdef CONFIG_RT_MUTEXES
3901
3902 /*
3903 * rt_mutex_setprio - set the current priority of a task
3904 * @p: task
3905 * @prio: prio value (kernel-internal form)
3906 *
3907 * This function changes the 'effective' priority of a task. It does
3908 * not touch ->normal_prio like __setscheduler().
3909 *
3910 * Used by the rt_mutex code to implement priority inheritance logic.
3911 */
3912 void rt_mutex_setprio(struct task_struct *p, int prio)
3913 {
3914 unsigned long flags;
3915 int oldprio, on_rq;
3916 struct rq *rq;
3917 u64 now;
3918
3919 BUG_ON(prio < 0 || prio > MAX_PRIO);
3920
3921 rq = task_rq_lock(p, &flags);
3922 update_rq_clock(rq);
3923 now = rq->clock;
3924
3925 oldprio = p->prio;
3926 on_rq = p->se.on_rq;
3927 if (on_rq)
3928 dequeue_task(rq, p, 0, now);
3929
3930 if (rt_prio(prio))
3931 p->sched_class = &rt_sched_class;
3932 else
3933 p->sched_class = &fair_sched_class;
3934
3935 p->prio = prio;
3936
3937 if (on_rq) {
3938 enqueue_task(rq, p, 0, now);
3939 /*
3940 * Reschedule if we are currently running on this runqueue and
3941 * our priority decreased, or if we are not currently running on
3942 * this runqueue and our priority is higher than the current's
3943 */
3944 if (task_running(rq, p)) {
3945 if (p->prio > oldprio)
3946 resched_task(rq->curr);
3947 } else {
3948 check_preempt_curr(rq, p);
3949 }
3950 }
3951 task_rq_unlock(rq, &flags);
3952 }
3953
3954 #endif
3955
3956 void set_user_nice(struct task_struct *p, long nice)
3957 {
3958 int old_prio, delta, on_rq;
3959 unsigned long flags;
3960 struct rq *rq;
3961 u64 now;
3962
3963 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3964 return;
3965 /*
3966 * We have to be careful, if called from sys_setpriority(),
3967 * the task might be in the middle of scheduling on another CPU.
3968 */
3969 rq = task_rq_lock(p, &flags);
3970 update_rq_clock(rq);
3971 now = rq->clock;
3972 /*
3973 * The RT priorities are set via sched_setscheduler(), but we still
3974 * allow the 'normal' nice value to be set - but as expected
3975 * it wont have any effect on scheduling until the task is
3976 * SCHED_FIFO/SCHED_RR:
3977 */
3978 if (task_has_rt_policy(p)) {
3979 p->static_prio = NICE_TO_PRIO(nice);
3980 goto out_unlock;
3981 }
3982 on_rq = p->se.on_rq;
3983 if (on_rq) {
3984 dequeue_task(rq, p, 0, now);
3985 dec_load(rq, p, now);
3986 }
3987
3988 p->static_prio = NICE_TO_PRIO(nice);
3989 set_load_weight(p);
3990 old_prio = p->prio;
3991 p->prio = effective_prio(p);
3992 delta = p->prio - old_prio;
3993
3994 if (on_rq) {
3995 enqueue_task(rq, p, 0, now);
3996 inc_load(rq, p, now);
3997 /*
3998 * If the task increased its priority or is running and
3999 * lowered its priority, then reschedule its CPU:
4000 */
4001 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4002 resched_task(rq->curr);
4003 }
4004 out_unlock:
4005 task_rq_unlock(rq, &flags);
4006 }
4007 EXPORT_SYMBOL(set_user_nice);
4008
4009 /*
4010 * can_nice - check if a task can reduce its nice value
4011 * @p: task
4012 * @nice: nice value
4013 */
4014 int can_nice(const struct task_struct *p, const int nice)
4015 {
4016 /* convert nice value [19,-20] to rlimit style value [1,40] */
4017 int nice_rlim = 20 - nice;
4018
4019 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4020 capable(CAP_SYS_NICE));
4021 }
4022
4023 #ifdef __ARCH_WANT_SYS_NICE
4024
4025 /*
4026 * sys_nice - change the priority of the current process.
4027 * @increment: priority increment
4028 *
4029 * sys_setpriority is a more generic, but much slower function that
4030 * does similar things.
4031 */
4032 asmlinkage long sys_nice(int increment)
4033 {
4034 long nice, retval;
4035
4036 /*
4037 * Setpriority might change our priority at the same moment.
4038 * We don't have to worry. Conceptually one call occurs first
4039 * and we have a single winner.
4040 */
4041 if (increment < -40)
4042 increment = -40;
4043 if (increment > 40)
4044 increment = 40;
4045
4046 nice = PRIO_TO_NICE(current->static_prio) + increment;
4047 if (nice < -20)
4048 nice = -20;
4049 if (nice > 19)
4050 nice = 19;
4051
4052 if (increment < 0 && !can_nice(current, nice))
4053 return -EPERM;
4054
4055 retval = security_task_setnice(current, nice);
4056 if (retval)
4057 return retval;
4058
4059 set_user_nice(current, nice);
4060 return 0;
4061 }
4062
4063 #endif
4064
4065 /**
4066 * task_prio - return the priority value of a given task.
4067 * @p: the task in question.
4068 *
4069 * This is the priority value as seen by users in /proc.
4070 * RT tasks are offset by -200. Normal tasks are centered
4071 * around 0, value goes from -16 to +15.
4072 */
4073 int task_prio(const struct task_struct *p)
4074 {
4075 return p->prio - MAX_RT_PRIO;
4076 }
4077
4078 /**
4079 * task_nice - return the nice value of a given task.
4080 * @p: the task in question.
4081 */
4082 int task_nice(const struct task_struct *p)
4083 {
4084 return TASK_NICE(p);
4085 }
4086 EXPORT_SYMBOL_GPL(task_nice);
4087
4088 /**
4089 * idle_cpu - is a given cpu idle currently?
4090 * @cpu: the processor in question.
4091 */
4092 int idle_cpu(int cpu)
4093 {
4094 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4095 }
4096
4097 /**
4098 * idle_task - return the idle task for a given cpu.
4099 * @cpu: the processor in question.
4100 */
4101 struct task_struct *idle_task(int cpu)
4102 {
4103 return cpu_rq(cpu)->idle;
4104 }
4105
4106 /**
4107 * find_process_by_pid - find a process with a matching PID value.
4108 * @pid: the pid in question.
4109 */
4110 static inline struct task_struct *find_process_by_pid(pid_t pid)
4111 {
4112 return pid ? find_task_by_pid(pid) : current;
4113 }
4114
4115 /* Actually do priority change: must hold rq lock. */
4116 static void
4117 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4118 {
4119 BUG_ON(p->se.on_rq);
4120
4121 p->policy = policy;
4122 switch (p->policy) {
4123 case SCHED_NORMAL:
4124 case SCHED_BATCH:
4125 case SCHED_IDLE:
4126 p->sched_class = &fair_sched_class;
4127 break;
4128 case SCHED_FIFO:
4129 case SCHED_RR:
4130 p->sched_class = &rt_sched_class;
4131 break;
4132 }
4133
4134 p->rt_priority = prio;
4135 p->normal_prio = normal_prio(p);
4136 /* we are holding p->pi_lock already */
4137 p->prio = rt_mutex_getprio(p);
4138 set_load_weight(p);
4139 }
4140
4141 /**
4142 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4143 * @p: the task in question.
4144 * @policy: new policy.
4145 * @param: structure containing the new RT priority.
4146 *
4147 * NOTE that the task may be already dead.
4148 */
4149 int sched_setscheduler(struct task_struct *p, int policy,
4150 struct sched_param *param)
4151 {
4152 int retval, oldprio, oldpolicy = -1, on_rq;
4153 unsigned long flags;
4154 struct rq *rq;
4155
4156 /* may grab non-irq protected spin_locks */
4157 BUG_ON(in_interrupt());
4158 recheck:
4159 /* double check policy once rq lock held */
4160 if (policy < 0)
4161 policy = oldpolicy = p->policy;
4162 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
4163 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4164 policy != SCHED_IDLE)
4165 return -EINVAL;
4166 /*
4167 * Valid priorities for SCHED_FIFO and SCHED_RR are
4168 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4169 * SCHED_BATCH and SCHED_IDLE is 0.
4170 */
4171 if (param->sched_priority < 0 ||
4172 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4173 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4174 return -EINVAL;
4175 if (rt_policy(policy) != (param->sched_priority != 0))
4176 return -EINVAL;
4177
4178 /*
4179 * Allow unprivileged RT tasks to decrease priority:
4180 */
4181 if (!capable(CAP_SYS_NICE)) {
4182 if (rt_policy(policy)) {
4183 unsigned long rlim_rtprio;
4184
4185 if (!lock_task_sighand(p, &flags))
4186 return -ESRCH;
4187 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4188 unlock_task_sighand(p, &flags);
4189
4190 /* can't set/change the rt policy */
4191 if (policy != p->policy && !rlim_rtprio)
4192 return -EPERM;
4193
4194 /* can't increase priority */
4195 if (param->sched_priority > p->rt_priority &&
4196 param->sched_priority > rlim_rtprio)
4197 return -EPERM;
4198 }
4199 /*
4200 * Like positive nice levels, dont allow tasks to
4201 * move out of SCHED_IDLE either:
4202 */
4203 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4204 return -EPERM;
4205
4206 /* can't change other user's priorities */
4207 if ((current->euid != p->euid) &&
4208 (current->euid != p->uid))
4209 return -EPERM;
4210 }
4211
4212 retval = security_task_setscheduler(p, policy, param);
4213 if (retval)
4214 return retval;
4215 /*
4216 * make sure no PI-waiters arrive (or leave) while we are
4217 * changing the priority of the task:
4218 */
4219 spin_lock_irqsave(&p->pi_lock, flags);
4220 /*
4221 * To be able to change p->policy safely, the apropriate
4222 * runqueue lock must be held.
4223 */
4224 rq = __task_rq_lock(p);
4225 /* recheck policy now with rq lock held */
4226 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4227 policy = oldpolicy = -1;
4228 __task_rq_unlock(rq);
4229 spin_unlock_irqrestore(&p->pi_lock, flags);
4230 goto recheck;
4231 }
4232 on_rq = p->se.on_rq;
4233 if (on_rq) {
4234 update_rq_clock(rq);
4235 deactivate_task(rq, p, 0, rq->clock);
4236 }
4237 oldprio = p->prio;
4238 __setscheduler(rq, p, policy, param->sched_priority);
4239 if (on_rq) {
4240 activate_task(rq, p, 0);
4241 /*
4242 * Reschedule if we are currently running on this runqueue and
4243 * our priority decreased, or if we are not currently running on
4244 * this runqueue and our priority is higher than the current's
4245 */
4246 if (task_running(rq, p)) {
4247 if (p->prio > oldprio)
4248 resched_task(rq->curr);
4249 } else {
4250 check_preempt_curr(rq, p);
4251 }
4252 }
4253 __task_rq_unlock(rq);
4254 spin_unlock_irqrestore(&p->pi_lock, flags);
4255
4256 rt_mutex_adjust_pi(p);
4257
4258 return 0;
4259 }
4260 EXPORT_SYMBOL_GPL(sched_setscheduler);
4261
4262 static int
4263 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4264 {
4265 struct sched_param lparam;
4266 struct task_struct *p;
4267 int retval;
4268
4269 if (!param || pid < 0)
4270 return -EINVAL;
4271 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4272 return -EFAULT;
4273
4274 rcu_read_lock();
4275 retval = -ESRCH;
4276 p = find_process_by_pid(pid);
4277 if (p != NULL)
4278 retval = sched_setscheduler(p, policy, &lparam);
4279 rcu_read_unlock();
4280
4281 return retval;
4282 }
4283
4284 /**
4285 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4286 * @pid: the pid in question.
4287 * @policy: new policy.
4288 * @param: structure containing the new RT priority.
4289 */
4290 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4291 struct sched_param __user *param)
4292 {
4293 /* negative values for policy are not valid */
4294 if (policy < 0)
4295 return -EINVAL;
4296
4297 return do_sched_setscheduler(pid, policy, param);
4298 }
4299
4300 /**
4301 * sys_sched_setparam - set/change the RT priority of a thread
4302 * @pid: the pid in question.
4303 * @param: structure containing the new RT priority.
4304 */
4305 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4306 {
4307 return do_sched_setscheduler(pid, -1, param);
4308 }
4309
4310 /**
4311 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4312 * @pid: the pid in question.
4313 */
4314 asmlinkage long sys_sched_getscheduler(pid_t pid)
4315 {
4316 struct task_struct *p;
4317 int retval = -EINVAL;
4318
4319 if (pid < 0)
4320 goto out_nounlock;
4321
4322 retval = -ESRCH;
4323 read_lock(&tasklist_lock);
4324 p = find_process_by_pid(pid);
4325 if (p) {
4326 retval = security_task_getscheduler(p);
4327 if (!retval)
4328 retval = p->policy;
4329 }
4330 read_unlock(&tasklist_lock);
4331
4332 out_nounlock:
4333 return retval;
4334 }
4335
4336 /**
4337 * sys_sched_getscheduler - get the RT priority of a thread
4338 * @pid: the pid in question.
4339 * @param: structure containing the RT priority.
4340 */
4341 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4342 {
4343 struct sched_param lp;
4344 struct task_struct *p;
4345 int retval = -EINVAL;
4346
4347 if (!param || pid < 0)
4348 goto out_nounlock;
4349
4350 read_lock(&tasklist_lock);
4351 p = find_process_by_pid(pid);
4352 retval = -ESRCH;
4353 if (!p)
4354 goto out_unlock;
4355
4356 retval = security_task_getscheduler(p);
4357 if (retval)
4358 goto out_unlock;
4359
4360 lp.sched_priority = p->rt_priority;
4361 read_unlock(&tasklist_lock);
4362
4363 /*
4364 * This one might sleep, we cannot do it with a spinlock held ...
4365 */
4366 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4367
4368 out_nounlock:
4369 return retval;
4370
4371 out_unlock:
4372 read_unlock(&tasklist_lock);
4373 return retval;
4374 }
4375
4376 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4377 {
4378 cpumask_t cpus_allowed;
4379 struct task_struct *p;
4380 int retval;
4381
4382 mutex_lock(&sched_hotcpu_mutex);
4383 read_lock(&tasklist_lock);
4384
4385 p = find_process_by_pid(pid);
4386 if (!p) {
4387 read_unlock(&tasklist_lock);
4388 mutex_unlock(&sched_hotcpu_mutex);
4389 return -ESRCH;
4390 }
4391
4392 /*
4393 * It is not safe to call set_cpus_allowed with the
4394 * tasklist_lock held. We will bump the task_struct's
4395 * usage count and then drop tasklist_lock.
4396 */
4397 get_task_struct(p);
4398 read_unlock(&tasklist_lock);
4399
4400 retval = -EPERM;
4401 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4402 !capable(CAP_SYS_NICE))
4403 goto out_unlock;
4404
4405 retval = security_task_setscheduler(p, 0, NULL);
4406 if (retval)
4407 goto out_unlock;
4408
4409 cpus_allowed = cpuset_cpus_allowed(p);
4410 cpus_and(new_mask, new_mask, cpus_allowed);
4411 retval = set_cpus_allowed(p, new_mask);
4412
4413 out_unlock:
4414 put_task_struct(p);
4415 mutex_unlock(&sched_hotcpu_mutex);
4416 return retval;
4417 }
4418
4419 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4420 cpumask_t *new_mask)
4421 {
4422 if (len < sizeof(cpumask_t)) {
4423 memset(new_mask, 0, sizeof(cpumask_t));
4424 } else if (len > sizeof(cpumask_t)) {
4425 len = sizeof(cpumask_t);
4426 }
4427 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4428 }
4429
4430 /**
4431 * sys_sched_setaffinity - set the cpu affinity of a process
4432 * @pid: pid of the process
4433 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4434 * @user_mask_ptr: user-space pointer to the new cpu mask
4435 */
4436 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4437 unsigned long __user *user_mask_ptr)
4438 {
4439 cpumask_t new_mask;
4440 int retval;
4441
4442 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4443 if (retval)
4444 return retval;
4445
4446 return sched_setaffinity(pid, new_mask);
4447 }
4448
4449 /*
4450 * Represents all cpu's present in the system
4451 * In systems capable of hotplug, this map could dynamically grow
4452 * as new cpu's are detected in the system via any platform specific
4453 * method, such as ACPI for e.g.
4454 */
4455
4456 cpumask_t cpu_present_map __read_mostly;
4457 EXPORT_SYMBOL(cpu_present_map);
4458
4459 #ifndef CONFIG_SMP
4460 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
4461 EXPORT_SYMBOL(cpu_online_map);
4462
4463 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
4464 EXPORT_SYMBOL(cpu_possible_map);
4465 #endif
4466
4467 long sched_getaffinity(pid_t pid, cpumask_t *mask)
4468 {
4469 struct task_struct *p;
4470 int retval;
4471
4472 mutex_lock(&sched_hotcpu_mutex);
4473 read_lock(&tasklist_lock);
4474
4475 retval = -ESRCH;
4476 p = find_process_by_pid(pid);
4477 if (!p)
4478 goto out_unlock;
4479
4480 retval = security_task_getscheduler(p);
4481 if (retval)
4482 goto out_unlock;
4483
4484 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
4485
4486 out_unlock:
4487 read_unlock(&tasklist_lock);
4488 mutex_unlock(&sched_hotcpu_mutex);
4489
4490 return retval;
4491 }
4492
4493 /**
4494 * sys_sched_getaffinity - get the cpu affinity of a process
4495 * @pid: pid of the process
4496 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4497 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4498 */
4499 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4500 unsigned long __user *user_mask_ptr)
4501 {
4502 int ret;
4503 cpumask_t mask;
4504
4505 if (len < sizeof(cpumask_t))
4506 return -EINVAL;
4507
4508 ret = sched_getaffinity(pid, &mask);
4509 if (ret < 0)
4510 return ret;
4511
4512 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4513 return -EFAULT;
4514
4515 return sizeof(cpumask_t);
4516 }
4517
4518 /**
4519 * sys_sched_yield - yield the current processor to other threads.
4520 *
4521 * This function yields the current CPU to other tasks. If there are no
4522 * other threads running on this CPU then this function will return.
4523 */
4524 asmlinkage long sys_sched_yield(void)
4525 {
4526 struct rq *rq = this_rq_lock();
4527
4528 schedstat_inc(rq, yld_cnt);
4529 if (unlikely(rq->nr_running == 1))
4530 schedstat_inc(rq, yld_act_empty);
4531 else
4532 current->sched_class->yield_task(rq, current);
4533
4534 /*
4535 * Since we are going to call schedule() anyway, there's
4536 * no need to preempt or enable interrupts:
4537 */
4538 __release(rq->lock);
4539 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4540 _raw_spin_unlock(&rq->lock);
4541 preempt_enable_no_resched();
4542
4543 schedule();
4544
4545 return 0;
4546 }
4547
4548 static void __cond_resched(void)
4549 {
4550 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4551 __might_sleep(__FILE__, __LINE__);
4552 #endif
4553 /*
4554 * The BKS might be reacquired before we have dropped
4555 * PREEMPT_ACTIVE, which could trigger a second
4556 * cond_resched() call.
4557 */
4558 do {
4559 add_preempt_count(PREEMPT_ACTIVE);
4560 schedule();
4561 sub_preempt_count(PREEMPT_ACTIVE);
4562 } while (need_resched());
4563 }
4564
4565 int __sched cond_resched(void)
4566 {
4567 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4568 system_state == SYSTEM_RUNNING) {
4569 __cond_resched();
4570 return 1;
4571 }
4572 return 0;
4573 }
4574 EXPORT_SYMBOL(cond_resched);
4575
4576 /*
4577 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4578 * call schedule, and on return reacquire the lock.
4579 *
4580 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4581 * operations here to prevent schedule() from being called twice (once via
4582 * spin_unlock(), once by hand).
4583 */
4584 int cond_resched_lock(spinlock_t *lock)
4585 {
4586 int ret = 0;
4587
4588 if (need_lockbreak(lock)) {
4589 spin_unlock(lock);
4590 cpu_relax();
4591 ret = 1;
4592 spin_lock(lock);
4593 }
4594 if (need_resched() && system_state == SYSTEM_RUNNING) {
4595 spin_release(&lock->dep_map, 1, _THIS_IP_);
4596 _raw_spin_unlock(lock);
4597 preempt_enable_no_resched();
4598 __cond_resched();
4599 ret = 1;
4600 spin_lock(lock);
4601 }
4602 return ret;
4603 }
4604 EXPORT_SYMBOL(cond_resched_lock);
4605
4606 int __sched cond_resched_softirq(void)
4607 {
4608 BUG_ON(!in_softirq());
4609
4610 if (need_resched() && system_state == SYSTEM_RUNNING) {
4611 local_bh_enable();
4612 __cond_resched();
4613 local_bh_disable();
4614 return 1;
4615 }
4616 return 0;
4617 }
4618 EXPORT_SYMBOL(cond_resched_softirq);
4619
4620 /**
4621 * yield - yield the current processor to other threads.
4622 *
4623 * This is a shortcut for kernel-space yielding - it marks the
4624 * thread runnable and calls sys_sched_yield().
4625 */
4626 void __sched yield(void)
4627 {
4628 set_current_state(TASK_RUNNING);
4629 sys_sched_yield();
4630 }
4631 EXPORT_SYMBOL(yield);
4632
4633 /*
4634 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4635 * that process accounting knows that this is a task in IO wait state.
4636 *
4637 * But don't do that if it is a deliberate, throttling IO wait (this task
4638 * has set its backing_dev_info: the queue against which it should throttle)
4639 */
4640 void __sched io_schedule(void)
4641 {
4642 struct rq *rq = &__raw_get_cpu_var(runqueues);
4643
4644 delayacct_blkio_start();
4645 atomic_inc(&rq->nr_iowait);
4646 schedule();
4647 atomic_dec(&rq->nr_iowait);
4648 delayacct_blkio_end();
4649 }
4650 EXPORT_SYMBOL(io_schedule);
4651
4652 long __sched io_schedule_timeout(long timeout)
4653 {
4654 struct rq *rq = &__raw_get_cpu_var(runqueues);
4655 long ret;
4656
4657 delayacct_blkio_start();
4658 atomic_inc(&rq->nr_iowait);
4659 ret = schedule_timeout(timeout);
4660 atomic_dec(&rq->nr_iowait);
4661 delayacct_blkio_end();
4662 return ret;
4663 }
4664
4665 /**
4666 * sys_sched_get_priority_max - return maximum RT priority.
4667 * @policy: scheduling class.
4668 *
4669 * this syscall returns the maximum rt_priority that can be used
4670 * by a given scheduling class.
4671 */
4672 asmlinkage long sys_sched_get_priority_max(int policy)
4673 {
4674 int ret = -EINVAL;
4675
4676 switch (policy) {
4677 case SCHED_FIFO:
4678 case SCHED_RR:
4679 ret = MAX_USER_RT_PRIO-1;
4680 break;
4681 case SCHED_NORMAL:
4682 case SCHED_BATCH:
4683 case SCHED_IDLE:
4684 ret = 0;
4685 break;
4686 }
4687 return ret;
4688 }
4689
4690 /**
4691 * sys_sched_get_priority_min - return minimum RT priority.
4692 * @policy: scheduling class.
4693 *
4694 * this syscall returns the minimum rt_priority that can be used
4695 * by a given scheduling class.
4696 */
4697 asmlinkage long sys_sched_get_priority_min(int policy)
4698 {
4699 int ret = -EINVAL;
4700
4701 switch (policy) {
4702 case SCHED_FIFO:
4703 case SCHED_RR:
4704 ret = 1;
4705 break;
4706 case SCHED_NORMAL:
4707 case SCHED_BATCH:
4708 case SCHED_IDLE:
4709 ret = 0;
4710 }
4711 return ret;
4712 }
4713
4714 /**
4715 * sys_sched_rr_get_interval - return the default timeslice of a process.
4716 * @pid: pid of the process.
4717 * @interval: userspace pointer to the timeslice value.
4718 *
4719 * this syscall writes the default timeslice value of a given process
4720 * into the user-space timespec buffer. A value of '0' means infinity.
4721 */
4722 asmlinkage
4723 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4724 {
4725 struct task_struct *p;
4726 int retval = -EINVAL;
4727 struct timespec t;
4728
4729 if (pid < 0)
4730 goto out_nounlock;
4731
4732 retval = -ESRCH;
4733 read_lock(&tasklist_lock);
4734 p = find_process_by_pid(pid);
4735 if (!p)
4736 goto out_unlock;
4737
4738 retval = security_task_getscheduler(p);
4739 if (retval)
4740 goto out_unlock;
4741
4742 jiffies_to_timespec(p->policy == SCHED_FIFO ?
4743 0 : static_prio_timeslice(p->static_prio), &t);
4744 read_unlock(&tasklist_lock);
4745 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4746 out_nounlock:
4747 return retval;
4748 out_unlock:
4749 read_unlock(&tasklist_lock);
4750 return retval;
4751 }
4752
4753 static const char stat_nam[] = "RSDTtZX";
4754
4755 static void show_task(struct task_struct *p)
4756 {
4757 unsigned long free = 0;
4758 unsigned state;
4759
4760 state = p->state ? __ffs(p->state) + 1 : 0;
4761 printk("%-13.13s %c", p->comm,
4762 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4763 #if BITS_PER_LONG == 32
4764 if (state == TASK_RUNNING)
4765 printk(" running ");
4766 else
4767 printk(" %08lx ", thread_saved_pc(p));
4768 #else
4769 if (state == TASK_RUNNING)
4770 printk(" running task ");
4771 else
4772 printk(" %016lx ", thread_saved_pc(p));
4773 #endif
4774 #ifdef CONFIG_DEBUG_STACK_USAGE
4775 {
4776 unsigned long *n = end_of_stack(p);
4777 while (!*n)
4778 n++;
4779 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4780 }
4781 #endif
4782 printk("%5lu %5d %6d\n", free, p->pid, p->parent->pid);
4783
4784 if (state != TASK_RUNNING)
4785 show_stack(p, NULL);
4786 }
4787
4788 void show_state_filter(unsigned long state_filter)
4789 {
4790 struct task_struct *g, *p;
4791
4792 #if BITS_PER_LONG == 32
4793 printk(KERN_INFO
4794 " task PC stack pid father\n");
4795 #else
4796 printk(KERN_INFO
4797 " task PC stack pid father\n");
4798 #endif
4799 read_lock(&tasklist_lock);
4800 do_each_thread(g, p) {
4801 /*
4802 * reset the NMI-timeout, listing all files on a slow
4803 * console might take alot of time:
4804 */
4805 touch_nmi_watchdog();
4806 if (!state_filter || (p->state & state_filter))
4807 show_task(p);
4808 } while_each_thread(g, p);
4809
4810 touch_all_softlockup_watchdogs();
4811
4812 #ifdef CONFIG_SCHED_DEBUG
4813 sysrq_sched_debug_show();
4814 #endif
4815 read_unlock(&tasklist_lock);
4816 /*
4817 * Only show locks if all tasks are dumped:
4818 */
4819 if (state_filter == -1)
4820 debug_show_all_locks();
4821 }
4822
4823 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4824 {
4825 idle->sched_class = &idle_sched_class;
4826 }
4827
4828 /**
4829 * init_idle - set up an idle thread for a given CPU
4830 * @idle: task in question
4831 * @cpu: cpu the idle task belongs to
4832 *
4833 * NOTE: this function does not set the idle thread's NEED_RESCHED
4834 * flag, to make booting more robust.
4835 */
4836 void __cpuinit init_idle(struct task_struct *idle, int cpu)
4837 {
4838 struct rq *rq = cpu_rq(cpu);
4839 unsigned long flags;
4840
4841 __sched_fork(idle);
4842 idle->se.exec_start = sched_clock();
4843
4844 idle->prio = idle->normal_prio = MAX_PRIO;
4845 idle->cpus_allowed = cpumask_of_cpu(cpu);
4846 __set_task_cpu(idle, cpu);
4847
4848 spin_lock_irqsave(&rq->lock, flags);
4849 rq->curr = rq->idle = idle;
4850 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4851 idle->oncpu = 1;
4852 #endif
4853 spin_unlock_irqrestore(&rq->lock, flags);
4854
4855 /* Set the preempt count _outside_ the spinlocks! */
4856 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4857 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4858 #else
4859 task_thread_info(idle)->preempt_count = 0;
4860 #endif
4861 /*
4862 * The idle tasks have their own, simple scheduling class:
4863 */
4864 idle->sched_class = &idle_sched_class;
4865 }
4866
4867 /*
4868 * In a system that switches off the HZ timer nohz_cpu_mask
4869 * indicates which cpus entered this state. This is used
4870 * in the rcu update to wait only for active cpus. For system
4871 * which do not switch off the HZ timer nohz_cpu_mask should
4872 * always be CPU_MASK_NONE.
4873 */
4874 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4875
4876 /*
4877 * Increase the granularity value when there are more CPUs,
4878 * because with more CPUs the 'effective latency' as visible
4879 * to users decreases. But the relationship is not linear,
4880 * so pick a second-best guess by going with the log2 of the
4881 * number of CPUs.
4882 *
4883 * This idea comes from the SD scheduler of Con Kolivas:
4884 */
4885 static inline void sched_init_granularity(void)
4886 {
4887 unsigned int factor = 1 + ilog2(num_online_cpus());
4888 const unsigned long gran_limit = 100000000;
4889
4890 sysctl_sched_granularity *= factor;
4891 if (sysctl_sched_granularity > gran_limit)
4892 sysctl_sched_granularity = gran_limit;
4893
4894 sysctl_sched_runtime_limit = sysctl_sched_granularity * 4;
4895 sysctl_sched_wakeup_granularity = sysctl_sched_granularity / 2;
4896 }
4897
4898 #ifdef CONFIG_SMP
4899 /*
4900 * This is how migration works:
4901 *
4902 * 1) we queue a struct migration_req structure in the source CPU's
4903 * runqueue and wake up that CPU's migration thread.
4904 * 2) we down() the locked semaphore => thread blocks.
4905 * 3) migration thread wakes up (implicitly it forces the migrated
4906 * thread off the CPU)
4907 * 4) it gets the migration request and checks whether the migrated
4908 * task is still in the wrong runqueue.
4909 * 5) if it's in the wrong runqueue then the migration thread removes
4910 * it and puts it into the right queue.
4911 * 6) migration thread up()s the semaphore.
4912 * 7) we wake up and the migration is done.
4913 */
4914
4915 /*
4916 * Change a given task's CPU affinity. Migrate the thread to a
4917 * proper CPU and schedule it away if the CPU it's executing on
4918 * is removed from the allowed bitmask.
4919 *
4920 * NOTE: the caller must have a valid reference to the task, the
4921 * task must not exit() & deallocate itself prematurely. The
4922 * call is not atomic; no spinlocks may be held.
4923 */
4924 int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
4925 {
4926 struct migration_req req;
4927 unsigned long flags;
4928 struct rq *rq;
4929 int ret = 0;
4930
4931 rq = task_rq_lock(p, &flags);
4932 if (!cpus_intersects(new_mask, cpu_online_map)) {
4933 ret = -EINVAL;
4934 goto out;
4935 }
4936
4937 p->cpus_allowed = new_mask;
4938 /* Can the task run on the task's current CPU? If so, we're done */
4939 if (cpu_isset(task_cpu(p), new_mask))
4940 goto out;
4941
4942 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4943 /* Need help from migration thread: drop lock and wait. */
4944 task_rq_unlock(rq, &flags);
4945 wake_up_process(rq->migration_thread);
4946 wait_for_completion(&req.done);
4947 tlb_migrate_finish(p->mm);
4948 return 0;
4949 }
4950 out:
4951 task_rq_unlock(rq, &flags);
4952
4953 return ret;
4954 }
4955 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4956
4957 /*
4958 * Move (not current) task off this cpu, onto dest cpu. We're doing
4959 * this because either it can't run here any more (set_cpus_allowed()
4960 * away from this CPU, or CPU going down), or because we're
4961 * attempting to rebalance this task on exec (sched_exec).
4962 *
4963 * So we race with normal scheduler movements, but that's OK, as long
4964 * as the task is no longer on this CPU.
4965 *
4966 * Returns non-zero if task was successfully migrated.
4967 */
4968 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4969 {
4970 struct rq *rq_dest, *rq_src;
4971 int ret = 0, on_rq;
4972
4973 if (unlikely(cpu_is_offline(dest_cpu)))
4974 return ret;
4975
4976 rq_src = cpu_rq(src_cpu);
4977 rq_dest = cpu_rq(dest_cpu);
4978
4979 double_rq_lock(rq_src, rq_dest);
4980 /* Already moved. */
4981 if (task_cpu(p) != src_cpu)
4982 goto out;
4983 /* Affinity changed (again). */
4984 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4985 goto out;
4986
4987 on_rq = p->se.on_rq;
4988 if (on_rq) {
4989 update_rq_clock(rq_src);
4990 deactivate_task(rq_src, p, 0, rq_src->clock);
4991 }
4992 set_task_cpu(p, dest_cpu);
4993 if (on_rq) {
4994 activate_task(rq_dest, p, 0);
4995 check_preempt_curr(rq_dest, p);
4996 }
4997 ret = 1;
4998 out:
4999 double_rq_unlock(rq_src, rq_dest);
5000 return ret;
5001 }
5002
5003 /*
5004 * migration_thread - this is a highprio system thread that performs
5005 * thread migration by bumping thread off CPU then 'pushing' onto
5006 * another runqueue.
5007 */
5008 static int migration_thread(void *data)
5009 {
5010 int cpu = (long)data;
5011 struct rq *rq;
5012
5013 rq = cpu_rq(cpu);
5014 BUG_ON(rq->migration_thread != current);
5015
5016 set_current_state(TASK_INTERRUPTIBLE);
5017 while (!kthread_should_stop()) {
5018 struct migration_req *req;
5019 struct list_head *head;
5020
5021 spin_lock_irq(&rq->lock);
5022
5023 if (cpu_is_offline(cpu)) {
5024 spin_unlock_irq(&rq->lock);
5025 goto wait_to_die;
5026 }
5027
5028 if (rq->active_balance) {
5029 active_load_balance(rq, cpu);
5030 rq->active_balance = 0;
5031 }
5032
5033 head = &rq->migration_queue;
5034
5035 if (list_empty(head)) {
5036 spin_unlock_irq(&rq->lock);
5037 schedule();
5038 set_current_state(TASK_INTERRUPTIBLE);
5039 continue;
5040 }
5041 req = list_entry(head->next, struct migration_req, list);
5042 list_del_init(head->next);
5043
5044 spin_unlock(&rq->lock);
5045 __migrate_task(req->task, cpu, req->dest_cpu);
5046 local_irq_enable();
5047
5048 complete(&req->done);
5049 }
5050 __set_current_state(TASK_RUNNING);
5051 return 0;
5052
5053 wait_to_die:
5054 /* Wait for kthread_stop */
5055 set_current_state(TASK_INTERRUPTIBLE);
5056 while (!kthread_should_stop()) {
5057 schedule();
5058 set_current_state(TASK_INTERRUPTIBLE);
5059 }
5060 __set_current_state(TASK_RUNNING);
5061 return 0;
5062 }
5063
5064 #ifdef CONFIG_HOTPLUG_CPU
5065 /*
5066 * Figure out where task on dead CPU should go, use force if neccessary.
5067 * NOTE: interrupts should be disabled by the caller
5068 */
5069 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5070 {
5071 unsigned long flags;
5072 cpumask_t mask;
5073 struct rq *rq;
5074 int dest_cpu;
5075
5076 restart:
5077 /* On same node? */
5078 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5079 cpus_and(mask, mask, p->cpus_allowed);
5080 dest_cpu = any_online_cpu(mask);
5081
5082 /* On any allowed CPU? */
5083 if (dest_cpu == NR_CPUS)
5084 dest_cpu = any_online_cpu(p->cpus_allowed);
5085
5086 /* No more Mr. Nice Guy. */
5087 if (dest_cpu == NR_CPUS) {
5088 rq = task_rq_lock(p, &flags);
5089 cpus_setall(p->cpus_allowed);
5090 dest_cpu = any_online_cpu(p->cpus_allowed);
5091 task_rq_unlock(rq, &flags);
5092
5093 /*
5094 * Don't tell them about moving exiting tasks or
5095 * kernel threads (both mm NULL), since they never
5096 * leave kernel.
5097 */
5098 if (p->mm && printk_ratelimit())
5099 printk(KERN_INFO "process %d (%s) no "
5100 "longer affine to cpu%d\n",
5101 p->pid, p->comm, dead_cpu);
5102 }
5103 if (!__migrate_task(p, dead_cpu, dest_cpu))
5104 goto restart;
5105 }
5106
5107 /*
5108 * While a dead CPU has no uninterruptible tasks queued at this point,
5109 * it might still have a nonzero ->nr_uninterruptible counter, because
5110 * for performance reasons the counter is not stricly tracking tasks to
5111 * their home CPUs. So we just add the counter to another CPU's counter,
5112 * to keep the global sum constant after CPU-down:
5113 */
5114 static void migrate_nr_uninterruptible(struct rq *rq_src)
5115 {
5116 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
5117 unsigned long flags;
5118
5119 local_irq_save(flags);
5120 double_rq_lock(rq_src, rq_dest);
5121 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5122 rq_src->nr_uninterruptible = 0;
5123 double_rq_unlock(rq_src, rq_dest);
5124 local_irq_restore(flags);
5125 }
5126
5127 /* Run through task list and migrate tasks from the dead cpu. */
5128 static void migrate_live_tasks(int src_cpu)
5129 {
5130 struct task_struct *p, *t;
5131
5132 write_lock_irq(&tasklist_lock);
5133
5134 do_each_thread(t, p) {
5135 if (p == current)
5136 continue;
5137
5138 if (task_cpu(p) == src_cpu)
5139 move_task_off_dead_cpu(src_cpu, p);
5140 } while_each_thread(t, p);
5141
5142 write_unlock_irq(&tasklist_lock);
5143 }
5144
5145 /*
5146 * Schedules idle task to be the next runnable task on current CPU.
5147 * It does so by boosting its priority to highest possible and adding it to
5148 * the _front_ of the runqueue. Used by CPU offline code.
5149 */
5150 void sched_idle_next(void)
5151 {
5152 int this_cpu = smp_processor_id();
5153 struct rq *rq = cpu_rq(this_cpu);
5154 struct task_struct *p = rq->idle;
5155 unsigned long flags;
5156
5157 /* cpu has to be offline */
5158 BUG_ON(cpu_online(this_cpu));
5159
5160 /*
5161 * Strictly not necessary since rest of the CPUs are stopped by now
5162 * and interrupts disabled on the current cpu.
5163 */
5164 spin_lock_irqsave(&rq->lock, flags);
5165
5166 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5167
5168 /* Add idle task to the _front_ of its priority queue: */
5169 activate_idle_task(p, rq);
5170
5171 spin_unlock_irqrestore(&rq->lock, flags);
5172 }
5173
5174 /*
5175 * Ensures that the idle task is using init_mm right before its cpu goes
5176 * offline.
5177 */
5178 void idle_task_exit(void)
5179 {
5180 struct mm_struct *mm = current->active_mm;
5181
5182 BUG_ON(cpu_online(smp_processor_id()));
5183
5184 if (mm != &init_mm)
5185 switch_mm(mm, &init_mm, current);
5186 mmdrop(mm);
5187 }
5188
5189 /* called under rq->lock with disabled interrupts */
5190 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5191 {
5192 struct rq *rq = cpu_rq(dead_cpu);
5193
5194 /* Must be exiting, otherwise would be on tasklist. */
5195 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
5196
5197 /* Cannot have done final schedule yet: would have vanished. */
5198 BUG_ON(p->state == TASK_DEAD);
5199
5200 get_task_struct(p);
5201
5202 /*
5203 * Drop lock around migration; if someone else moves it,
5204 * that's OK. No task can be added to this CPU, so iteration is
5205 * fine.
5206 * NOTE: interrupts should be left disabled --dev@
5207 */
5208 spin_unlock(&rq->lock);
5209 move_task_off_dead_cpu(dead_cpu, p);
5210 spin_lock(&rq->lock);
5211
5212 put_task_struct(p);
5213 }
5214
5215 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5216 static void migrate_dead_tasks(unsigned int dead_cpu)
5217 {
5218 struct rq *rq = cpu_rq(dead_cpu);
5219 struct task_struct *next;
5220
5221 for ( ; ; ) {
5222 if (!rq->nr_running)
5223 break;
5224 update_rq_clock(rq);
5225 next = pick_next_task(rq, rq->curr, rq->clock);
5226 if (!next)
5227 break;
5228 migrate_dead(dead_cpu, next);
5229
5230 }
5231 }
5232 #endif /* CONFIG_HOTPLUG_CPU */
5233
5234 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5235
5236 static struct ctl_table sd_ctl_dir[] = {
5237 {
5238 .procname = "sched_domain",
5239 .mode = 0755,
5240 },
5241 {0,},
5242 };
5243
5244 static struct ctl_table sd_ctl_root[] = {
5245 {
5246 .procname = "kernel",
5247 .mode = 0755,
5248 .child = sd_ctl_dir,
5249 },
5250 {0,},
5251 };
5252
5253 static struct ctl_table *sd_alloc_ctl_entry(int n)
5254 {
5255 struct ctl_table *entry =
5256 kmalloc(n * sizeof(struct ctl_table), GFP_KERNEL);
5257
5258 BUG_ON(!entry);
5259 memset(entry, 0, n * sizeof(struct ctl_table));
5260
5261 return entry;
5262 }
5263
5264 static void
5265 set_table_entry(struct ctl_table *entry,
5266 const char *procname, void *data, int maxlen,
5267 mode_t mode, proc_handler *proc_handler)
5268 {
5269 entry->procname = procname;
5270 entry->data = data;
5271 entry->maxlen = maxlen;
5272 entry->mode = mode;
5273 entry->proc_handler = proc_handler;
5274 }
5275
5276 static struct ctl_table *
5277 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5278 {
5279 struct ctl_table *table = sd_alloc_ctl_entry(14);
5280
5281 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5282 sizeof(long), 0644, proc_doulongvec_minmax);
5283 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5284 sizeof(long), 0644, proc_doulongvec_minmax);
5285 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5286 sizeof(int), 0644, proc_dointvec_minmax);
5287 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5288 sizeof(int), 0644, proc_dointvec_minmax);
5289 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5290 sizeof(int), 0644, proc_dointvec_minmax);
5291 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5292 sizeof(int), 0644, proc_dointvec_minmax);
5293 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5294 sizeof(int), 0644, proc_dointvec_minmax);
5295 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5296 sizeof(int), 0644, proc_dointvec_minmax);
5297 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5298 sizeof(int), 0644, proc_dointvec_minmax);
5299 set_table_entry(&table[10], "cache_nice_tries",
5300 &sd->cache_nice_tries,
5301 sizeof(int), 0644, proc_dointvec_minmax);
5302 set_table_entry(&table[12], "flags", &sd->flags,
5303 sizeof(int), 0644, proc_dointvec_minmax);
5304
5305 return table;
5306 }
5307
5308 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5309 {
5310 struct ctl_table *entry, *table;
5311 struct sched_domain *sd;
5312 int domain_num = 0, i;
5313 char buf[32];
5314
5315 for_each_domain(cpu, sd)
5316 domain_num++;
5317 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5318
5319 i = 0;
5320 for_each_domain(cpu, sd) {
5321 snprintf(buf, 32, "domain%d", i);
5322 entry->procname = kstrdup(buf, GFP_KERNEL);
5323 entry->mode = 0755;
5324 entry->child = sd_alloc_ctl_domain_table(sd);
5325 entry++;
5326 i++;
5327 }
5328 return table;
5329 }
5330
5331 static struct ctl_table_header *sd_sysctl_header;
5332 static void init_sched_domain_sysctl(void)
5333 {
5334 int i, cpu_num = num_online_cpus();
5335 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5336 char buf[32];
5337
5338 sd_ctl_dir[0].child = entry;
5339
5340 for (i = 0; i < cpu_num; i++, entry++) {
5341 snprintf(buf, 32, "cpu%d", i);
5342 entry->procname = kstrdup(buf, GFP_KERNEL);
5343 entry->mode = 0755;
5344 entry->child = sd_alloc_ctl_cpu_table(i);
5345 }
5346 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5347 }
5348 #else
5349 static void init_sched_domain_sysctl(void)
5350 {
5351 }
5352 #endif
5353
5354 /*
5355 * migration_call - callback that gets triggered when a CPU is added.
5356 * Here we can start up the necessary migration thread for the new CPU.
5357 */
5358 static int __cpuinit
5359 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5360 {
5361 struct task_struct *p;
5362 int cpu = (long)hcpu;
5363 unsigned long flags;
5364 struct rq *rq;
5365
5366 switch (action) {
5367 case CPU_LOCK_ACQUIRE:
5368 mutex_lock(&sched_hotcpu_mutex);
5369 break;
5370
5371 case CPU_UP_PREPARE:
5372 case CPU_UP_PREPARE_FROZEN:
5373 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5374 if (IS_ERR(p))
5375 return NOTIFY_BAD;
5376 kthread_bind(p, cpu);
5377 /* Must be high prio: stop_machine expects to yield to it. */
5378 rq = task_rq_lock(p, &flags);
5379 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5380 task_rq_unlock(rq, &flags);
5381 cpu_rq(cpu)->migration_thread = p;
5382 break;
5383
5384 case CPU_ONLINE:
5385 case CPU_ONLINE_FROZEN:
5386 /* Strictly unneccessary, as first user will wake it. */
5387 wake_up_process(cpu_rq(cpu)->migration_thread);
5388 break;
5389
5390 #ifdef CONFIG_HOTPLUG_CPU
5391 case CPU_UP_CANCELED:
5392 case CPU_UP_CANCELED_FROZEN:
5393 if (!cpu_rq(cpu)->migration_thread)
5394 break;
5395 /* Unbind it from offline cpu so it can run. Fall thru. */
5396 kthread_bind(cpu_rq(cpu)->migration_thread,
5397 any_online_cpu(cpu_online_map));
5398 kthread_stop(cpu_rq(cpu)->migration_thread);
5399 cpu_rq(cpu)->migration_thread = NULL;
5400 break;
5401
5402 case CPU_DEAD:
5403 case CPU_DEAD_FROZEN:
5404 migrate_live_tasks(cpu);
5405 rq = cpu_rq(cpu);
5406 kthread_stop(rq->migration_thread);
5407 rq->migration_thread = NULL;
5408 /* Idle task back to normal (off runqueue, low prio) */
5409 rq = task_rq_lock(rq->idle, &flags);
5410 update_rq_clock(rq);
5411 deactivate_task(rq, rq->idle, 0, rq->clock);
5412 rq->idle->static_prio = MAX_PRIO;
5413 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5414 rq->idle->sched_class = &idle_sched_class;
5415 migrate_dead_tasks(cpu);
5416 task_rq_unlock(rq, &flags);
5417 migrate_nr_uninterruptible(rq);
5418 BUG_ON(rq->nr_running != 0);
5419
5420 /* No need to migrate the tasks: it was best-effort if
5421 * they didn't take sched_hotcpu_mutex. Just wake up
5422 * the requestors. */
5423 spin_lock_irq(&rq->lock);
5424 while (!list_empty(&rq->migration_queue)) {
5425 struct migration_req *req;
5426
5427 req = list_entry(rq->migration_queue.next,
5428 struct migration_req, list);
5429 list_del_init(&req->list);
5430 complete(&req->done);
5431 }
5432 spin_unlock_irq(&rq->lock);
5433 break;
5434 #endif
5435 case CPU_LOCK_RELEASE:
5436 mutex_unlock(&sched_hotcpu_mutex);
5437 break;
5438 }
5439 return NOTIFY_OK;
5440 }
5441
5442 /* Register at highest priority so that task migration (migrate_all_tasks)
5443 * happens before everything else.
5444 */
5445 static struct notifier_block __cpuinitdata migration_notifier = {
5446 .notifier_call = migration_call,
5447 .priority = 10
5448 };
5449
5450 int __init migration_init(void)
5451 {
5452 void *cpu = (void *)(long)smp_processor_id();
5453 int err;
5454
5455 /* Start one for the boot CPU: */
5456 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5457 BUG_ON(err == NOTIFY_BAD);
5458 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5459 register_cpu_notifier(&migration_notifier);
5460
5461 return 0;
5462 }
5463 #endif
5464
5465 #ifdef CONFIG_SMP
5466
5467 /* Number of possible processor ids */
5468 int nr_cpu_ids __read_mostly = NR_CPUS;
5469 EXPORT_SYMBOL(nr_cpu_ids);
5470
5471 #undef SCHED_DOMAIN_DEBUG
5472 #ifdef SCHED_DOMAIN_DEBUG
5473 static void sched_domain_debug(struct sched_domain *sd, int cpu)
5474 {
5475 int level = 0;
5476
5477 if (!sd) {
5478 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5479 return;
5480 }
5481
5482 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5483
5484 do {
5485 int i;
5486 char str[NR_CPUS];
5487 struct sched_group *group = sd->groups;
5488 cpumask_t groupmask;
5489
5490 cpumask_scnprintf(str, NR_CPUS, sd->span);
5491 cpus_clear(groupmask);
5492
5493 printk(KERN_DEBUG);
5494 for (i = 0; i < level + 1; i++)
5495 printk(" ");
5496 printk("domain %d: ", level);
5497
5498 if (!(sd->flags & SD_LOAD_BALANCE)) {
5499 printk("does not load-balance\n");
5500 if (sd->parent)
5501 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5502 " has parent");
5503 break;
5504 }
5505
5506 printk("span %s\n", str);
5507
5508 if (!cpu_isset(cpu, sd->span))
5509 printk(KERN_ERR "ERROR: domain->span does not contain "
5510 "CPU%d\n", cpu);
5511 if (!cpu_isset(cpu, group->cpumask))
5512 printk(KERN_ERR "ERROR: domain->groups does not contain"
5513 " CPU%d\n", cpu);
5514
5515 printk(KERN_DEBUG);
5516 for (i = 0; i < level + 2; i++)
5517 printk(" ");
5518 printk("groups:");
5519 do {
5520 if (!group) {
5521 printk("\n");
5522 printk(KERN_ERR "ERROR: group is NULL\n");
5523 break;
5524 }
5525
5526 if (!group->__cpu_power) {
5527 printk("\n");
5528 printk(KERN_ERR "ERROR: domain->cpu_power not "
5529 "set\n");
5530 }
5531
5532 if (!cpus_weight(group->cpumask)) {
5533 printk("\n");
5534 printk(KERN_ERR "ERROR: empty group\n");
5535 }
5536
5537 if (cpus_intersects(groupmask, group->cpumask)) {
5538 printk("\n");
5539 printk(KERN_ERR "ERROR: repeated CPUs\n");
5540 }
5541
5542 cpus_or(groupmask, groupmask, group->cpumask);
5543
5544 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5545 printk(" %s", str);
5546
5547 group = group->next;
5548 } while (group != sd->groups);
5549 printk("\n");
5550
5551 if (!cpus_equal(sd->span, groupmask))
5552 printk(KERN_ERR "ERROR: groups don't span "
5553 "domain->span\n");
5554
5555 level++;
5556 sd = sd->parent;
5557 if (!sd)
5558 continue;
5559
5560 if (!cpus_subset(groupmask, sd->span))
5561 printk(KERN_ERR "ERROR: parent span is not a superset "
5562 "of domain->span\n");
5563
5564 } while (sd);
5565 }
5566 #else
5567 # define sched_domain_debug(sd, cpu) do { } while (0)
5568 #endif
5569
5570 static int sd_degenerate(struct sched_domain *sd)
5571 {
5572 if (cpus_weight(sd->span) == 1)
5573 return 1;
5574
5575 /* Following flags need at least 2 groups */
5576 if (sd->flags & (SD_LOAD_BALANCE |
5577 SD_BALANCE_NEWIDLE |
5578 SD_BALANCE_FORK |
5579 SD_BALANCE_EXEC |
5580 SD_SHARE_CPUPOWER |
5581 SD_SHARE_PKG_RESOURCES)) {
5582 if (sd->groups != sd->groups->next)
5583 return 0;
5584 }
5585
5586 /* Following flags don't use groups */
5587 if (sd->flags & (SD_WAKE_IDLE |
5588 SD_WAKE_AFFINE |
5589 SD_WAKE_BALANCE))
5590 return 0;
5591
5592 return 1;
5593 }
5594
5595 static int
5596 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
5597 {
5598 unsigned long cflags = sd->flags, pflags = parent->flags;
5599
5600 if (sd_degenerate(parent))
5601 return 1;
5602
5603 if (!cpus_equal(sd->span, parent->span))
5604 return 0;
5605
5606 /* Does parent contain flags not in child? */
5607 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5608 if (cflags & SD_WAKE_AFFINE)
5609 pflags &= ~SD_WAKE_BALANCE;
5610 /* Flags needing groups don't count if only 1 group in parent */
5611 if (parent->groups == parent->groups->next) {
5612 pflags &= ~(SD_LOAD_BALANCE |
5613 SD_BALANCE_NEWIDLE |
5614 SD_BALANCE_FORK |
5615 SD_BALANCE_EXEC |
5616 SD_SHARE_CPUPOWER |
5617 SD_SHARE_PKG_RESOURCES);
5618 }
5619 if (~cflags & pflags)
5620 return 0;
5621
5622 return 1;
5623 }
5624
5625 /*
5626 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5627 * hold the hotplug lock.
5628 */
5629 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
5630 {
5631 struct rq *rq = cpu_rq(cpu);
5632 struct sched_domain *tmp;
5633
5634 /* Remove the sched domains which do not contribute to scheduling. */
5635 for (tmp = sd; tmp; tmp = tmp->parent) {
5636 struct sched_domain *parent = tmp->parent;
5637 if (!parent)
5638 break;
5639 if (sd_parent_degenerate(tmp, parent)) {
5640 tmp->parent = parent->parent;
5641 if (parent->parent)
5642 parent->parent->child = tmp;
5643 }
5644 }
5645
5646 if (sd && sd_degenerate(sd)) {
5647 sd = sd->parent;
5648 if (sd)
5649 sd->child = NULL;
5650 }
5651
5652 sched_domain_debug(sd, cpu);
5653
5654 rcu_assign_pointer(rq->sd, sd);
5655 }
5656
5657 /* cpus with isolated domains */
5658 static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
5659
5660 /* Setup the mask of cpus configured for isolated domains */
5661 static int __init isolated_cpu_setup(char *str)
5662 {
5663 int ints[NR_CPUS], i;
5664
5665 str = get_options(str, ARRAY_SIZE(ints), ints);
5666 cpus_clear(cpu_isolated_map);
5667 for (i = 1; i <= ints[0]; i++)
5668 if (ints[i] < NR_CPUS)
5669 cpu_set(ints[i], cpu_isolated_map);
5670 return 1;
5671 }
5672
5673 __setup ("isolcpus=", isolated_cpu_setup);
5674
5675 /*
5676 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5677 * to a function which identifies what group(along with sched group) a CPU
5678 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5679 * (due to the fact that we keep track of groups covered with a cpumask_t).
5680 *
5681 * init_sched_build_groups will build a circular linked list of the groups
5682 * covered by the given span, and will set each group's ->cpumask correctly,
5683 * and ->cpu_power to 0.
5684 */
5685 static void
5686 init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5687 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5688 struct sched_group **sg))
5689 {
5690 struct sched_group *first = NULL, *last = NULL;
5691 cpumask_t covered = CPU_MASK_NONE;
5692 int i;
5693
5694 for_each_cpu_mask(i, span) {
5695 struct sched_group *sg;
5696 int group = group_fn(i, cpu_map, &sg);
5697 int j;
5698
5699 if (cpu_isset(i, covered))
5700 continue;
5701
5702 sg->cpumask = CPU_MASK_NONE;
5703 sg->__cpu_power = 0;
5704
5705 for_each_cpu_mask(j, span) {
5706 if (group_fn(j, cpu_map, NULL) != group)
5707 continue;
5708
5709 cpu_set(j, covered);
5710 cpu_set(j, sg->cpumask);
5711 }
5712 if (!first)
5713 first = sg;
5714 if (last)
5715 last->next = sg;
5716 last = sg;
5717 }
5718 last->next = first;
5719 }
5720
5721 #define SD_NODES_PER_DOMAIN 16
5722
5723 #ifdef CONFIG_NUMA
5724
5725 /**
5726 * find_next_best_node - find the next node to include in a sched_domain
5727 * @node: node whose sched_domain we're building
5728 * @used_nodes: nodes already in the sched_domain
5729 *
5730 * Find the next node to include in a given scheduling domain. Simply
5731 * finds the closest node not already in the @used_nodes map.
5732 *
5733 * Should use nodemask_t.
5734 */
5735 static int find_next_best_node(int node, unsigned long *used_nodes)
5736 {
5737 int i, n, val, min_val, best_node = 0;
5738
5739 min_val = INT_MAX;
5740
5741 for (i = 0; i < MAX_NUMNODES; i++) {
5742 /* Start at @node */
5743 n = (node + i) % MAX_NUMNODES;
5744
5745 if (!nr_cpus_node(n))
5746 continue;
5747
5748 /* Skip already used nodes */
5749 if (test_bit(n, used_nodes))
5750 continue;
5751
5752 /* Simple min distance search */
5753 val = node_distance(node, n);
5754
5755 if (val < min_val) {
5756 min_val = val;
5757 best_node = n;
5758 }
5759 }
5760
5761 set_bit(best_node, used_nodes);
5762 return best_node;
5763 }
5764
5765 /**
5766 * sched_domain_node_span - get a cpumask for a node's sched_domain
5767 * @node: node whose cpumask we're constructing
5768 * @size: number of nodes to include in this span
5769 *
5770 * Given a node, construct a good cpumask for its sched_domain to span. It
5771 * should be one that prevents unnecessary balancing, but also spreads tasks
5772 * out optimally.
5773 */
5774 static cpumask_t sched_domain_node_span(int node)
5775 {
5776 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5777 cpumask_t span, nodemask;
5778 int i;
5779
5780 cpus_clear(span);
5781 bitmap_zero(used_nodes, MAX_NUMNODES);
5782
5783 nodemask = node_to_cpumask(node);
5784 cpus_or(span, span, nodemask);
5785 set_bit(node, used_nodes);
5786
5787 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5788 int next_node = find_next_best_node(node, used_nodes);
5789
5790 nodemask = node_to_cpumask(next_node);
5791 cpus_or(span, span, nodemask);
5792 }
5793
5794 return span;
5795 }
5796 #endif
5797
5798 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
5799
5800 /*
5801 * SMT sched-domains:
5802 */
5803 #ifdef CONFIG_SCHED_SMT
5804 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5805 static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
5806
5807 static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5808 struct sched_group **sg)
5809 {
5810 if (sg)
5811 *sg = &per_cpu(sched_group_cpus, cpu);
5812 return cpu;
5813 }
5814 #endif
5815
5816 /*
5817 * multi-core sched-domains:
5818 */
5819 #ifdef CONFIG_SCHED_MC
5820 static DEFINE_PER_CPU(struct sched_domain, core_domains);
5821 static DEFINE_PER_CPU(struct sched_group, sched_group_core);
5822 #endif
5823
5824 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5825 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5826 struct sched_group **sg)
5827 {
5828 int group;
5829 cpumask_t mask = cpu_sibling_map[cpu];
5830 cpus_and(mask, mask, *cpu_map);
5831 group = first_cpu(mask);
5832 if (sg)
5833 *sg = &per_cpu(sched_group_core, group);
5834 return group;
5835 }
5836 #elif defined(CONFIG_SCHED_MC)
5837 static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5838 struct sched_group **sg)
5839 {
5840 if (sg)
5841 *sg = &per_cpu(sched_group_core, cpu);
5842 return cpu;
5843 }
5844 #endif
5845
5846 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5847 static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
5848
5849 static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
5850 struct sched_group **sg)
5851 {
5852 int group;
5853 #ifdef CONFIG_SCHED_MC
5854 cpumask_t mask = cpu_coregroup_map(cpu);
5855 cpus_and(mask, mask, *cpu_map);
5856 group = first_cpu(mask);
5857 #elif defined(CONFIG_SCHED_SMT)
5858 cpumask_t mask = cpu_sibling_map[cpu];
5859 cpus_and(mask, mask, *cpu_map);
5860 group = first_cpu(mask);
5861 #else
5862 group = cpu;
5863 #endif
5864 if (sg)
5865 *sg = &per_cpu(sched_group_phys, group);
5866 return group;
5867 }
5868
5869 #ifdef CONFIG_NUMA
5870 /*
5871 * The init_sched_build_groups can't handle what we want to do with node
5872 * groups, so roll our own. Now each node has its own list of groups which
5873 * gets dynamically allocated.
5874 */
5875 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5876 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5877
5878 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5879 static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
5880
5881 static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
5882 struct sched_group **sg)
5883 {
5884 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
5885 int group;
5886
5887 cpus_and(nodemask, nodemask, *cpu_map);
5888 group = first_cpu(nodemask);
5889
5890 if (sg)
5891 *sg = &per_cpu(sched_group_allnodes, group);
5892 return group;
5893 }
5894
5895 static void init_numa_sched_groups_power(struct sched_group *group_head)
5896 {
5897 struct sched_group *sg = group_head;
5898 int j;
5899
5900 if (!sg)
5901 return;
5902 next_sg:
5903 for_each_cpu_mask(j, sg->cpumask) {
5904 struct sched_domain *sd;
5905
5906 sd = &per_cpu(phys_domains, j);
5907 if (j != first_cpu(sd->groups->cpumask)) {
5908 /*
5909 * Only add "power" once for each
5910 * physical package.
5911 */
5912 continue;
5913 }
5914
5915 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
5916 }
5917 sg = sg->next;
5918 if (sg != group_head)
5919 goto next_sg;
5920 }
5921 #endif
5922
5923 #ifdef CONFIG_NUMA
5924 /* Free memory allocated for various sched_group structures */
5925 static void free_sched_groups(const cpumask_t *cpu_map)
5926 {
5927 int cpu, i;
5928
5929 for_each_cpu_mask(cpu, *cpu_map) {
5930 struct sched_group **sched_group_nodes
5931 = sched_group_nodes_bycpu[cpu];
5932
5933 if (!sched_group_nodes)
5934 continue;
5935
5936 for (i = 0; i < MAX_NUMNODES; i++) {
5937 cpumask_t nodemask = node_to_cpumask(i);
5938 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5939
5940 cpus_and(nodemask, nodemask, *cpu_map);
5941 if (cpus_empty(nodemask))
5942 continue;
5943
5944 if (sg == NULL)
5945 continue;
5946 sg = sg->next;
5947 next_sg:
5948 oldsg = sg;
5949 sg = sg->next;
5950 kfree(oldsg);
5951 if (oldsg != sched_group_nodes[i])
5952 goto next_sg;
5953 }
5954 kfree(sched_group_nodes);
5955 sched_group_nodes_bycpu[cpu] = NULL;
5956 }
5957 }
5958 #else
5959 static void free_sched_groups(const cpumask_t *cpu_map)
5960 {
5961 }
5962 #endif
5963
5964 /*
5965 * Initialize sched groups cpu_power.
5966 *
5967 * cpu_power indicates the capacity of sched group, which is used while
5968 * distributing the load between different sched groups in a sched domain.
5969 * Typically cpu_power for all the groups in a sched domain will be same unless
5970 * there are asymmetries in the topology. If there are asymmetries, group
5971 * having more cpu_power will pickup more load compared to the group having
5972 * less cpu_power.
5973 *
5974 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
5975 * the maximum number of tasks a group can handle in the presence of other idle
5976 * or lightly loaded groups in the same sched domain.
5977 */
5978 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
5979 {
5980 struct sched_domain *child;
5981 struct sched_group *group;
5982
5983 WARN_ON(!sd || !sd->groups);
5984
5985 if (cpu != first_cpu(sd->groups->cpumask))
5986 return;
5987
5988 child = sd->child;
5989
5990 sd->groups->__cpu_power = 0;
5991
5992 /*
5993 * For perf policy, if the groups in child domain share resources
5994 * (for example cores sharing some portions of the cache hierarchy
5995 * or SMT), then set this domain groups cpu_power such that each group
5996 * can handle only one task, when there are other idle groups in the
5997 * same sched domain.
5998 */
5999 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6000 (child->flags &
6001 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6002 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
6003 return;
6004 }
6005
6006 /*
6007 * add cpu_power of each child group to this groups cpu_power
6008 */
6009 group = child->groups;
6010 do {
6011 sg_inc_cpu_power(sd->groups, group->__cpu_power);
6012 group = group->next;
6013 } while (group != child->groups);
6014 }
6015
6016 /*
6017 * Build sched domains for a given set of cpus and attach the sched domains
6018 * to the individual cpus
6019 */
6020 static int build_sched_domains(const cpumask_t *cpu_map)
6021 {
6022 int i;
6023 #ifdef CONFIG_NUMA
6024 struct sched_group **sched_group_nodes = NULL;
6025 int sd_allnodes = 0;
6026
6027 /*
6028 * Allocate the per-node list of sched groups
6029 */
6030 sched_group_nodes = kzalloc(sizeof(struct sched_group *)*MAX_NUMNODES,
6031 GFP_KERNEL);
6032 if (!sched_group_nodes) {
6033 printk(KERN_WARNING "Can not alloc sched group node list\n");
6034 return -ENOMEM;
6035 }
6036 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6037 #endif
6038
6039 /*
6040 * Set up domains for cpus specified by the cpu_map.
6041 */
6042 for_each_cpu_mask(i, *cpu_map) {
6043 struct sched_domain *sd = NULL, *p;
6044 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6045
6046 cpus_and(nodemask, nodemask, *cpu_map);
6047
6048 #ifdef CONFIG_NUMA
6049 if (cpus_weight(*cpu_map) >
6050 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6051 sd = &per_cpu(allnodes_domains, i);
6052 *sd = SD_ALLNODES_INIT;
6053 sd->span = *cpu_map;
6054 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
6055 p = sd;
6056 sd_allnodes = 1;
6057 } else
6058 p = NULL;
6059
6060 sd = &per_cpu(node_domains, i);
6061 *sd = SD_NODE_INIT;
6062 sd->span = sched_domain_node_span(cpu_to_node(i));
6063 sd->parent = p;
6064 if (p)
6065 p->child = sd;
6066 cpus_and(sd->span, sd->span, *cpu_map);
6067 #endif
6068
6069 p = sd;
6070 sd = &per_cpu(phys_domains, i);
6071 *sd = SD_CPU_INIT;
6072 sd->span = nodemask;
6073 sd->parent = p;
6074 if (p)
6075 p->child = sd;
6076 cpu_to_phys_group(i, cpu_map, &sd->groups);
6077
6078 #ifdef CONFIG_SCHED_MC
6079 p = sd;
6080 sd = &per_cpu(core_domains, i);
6081 *sd = SD_MC_INIT;
6082 sd->span = cpu_coregroup_map(i);
6083 cpus_and(sd->span, sd->span, *cpu_map);
6084 sd->parent = p;
6085 p->child = sd;
6086 cpu_to_core_group(i, cpu_map, &sd->groups);
6087 #endif
6088
6089 #ifdef CONFIG_SCHED_SMT
6090 p = sd;
6091 sd = &per_cpu(cpu_domains, i);
6092 *sd = SD_SIBLING_INIT;
6093 sd->span = cpu_sibling_map[i];
6094 cpus_and(sd->span, sd->span, *cpu_map);
6095 sd->parent = p;
6096 p->child = sd;
6097 cpu_to_cpu_group(i, cpu_map, &sd->groups);
6098 #endif
6099 }
6100
6101 #ifdef CONFIG_SCHED_SMT
6102 /* Set up CPU (sibling) groups */
6103 for_each_cpu_mask(i, *cpu_map) {
6104 cpumask_t this_sibling_map = cpu_sibling_map[i];
6105 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
6106 if (i != first_cpu(this_sibling_map))
6107 continue;
6108
6109 init_sched_build_groups(this_sibling_map, cpu_map,
6110 &cpu_to_cpu_group);
6111 }
6112 #endif
6113
6114 #ifdef CONFIG_SCHED_MC
6115 /* Set up multi-core groups */
6116 for_each_cpu_mask(i, *cpu_map) {
6117 cpumask_t this_core_map = cpu_coregroup_map(i);
6118 cpus_and(this_core_map, this_core_map, *cpu_map);
6119 if (i != first_cpu(this_core_map))
6120 continue;
6121 init_sched_build_groups(this_core_map, cpu_map,
6122 &cpu_to_core_group);
6123 }
6124 #endif
6125
6126 /* Set up physical groups */
6127 for (i = 0; i < MAX_NUMNODES; i++) {
6128 cpumask_t nodemask = node_to_cpumask(i);
6129
6130 cpus_and(nodemask, nodemask, *cpu_map);
6131 if (cpus_empty(nodemask))
6132 continue;
6133
6134 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
6135 }
6136
6137 #ifdef CONFIG_NUMA
6138 /* Set up node groups */
6139 if (sd_allnodes)
6140 init_sched_build_groups(*cpu_map, cpu_map,
6141 &cpu_to_allnodes_group);
6142
6143 for (i = 0; i < MAX_NUMNODES; i++) {
6144 /* Set up node groups */
6145 struct sched_group *sg, *prev;
6146 cpumask_t nodemask = node_to_cpumask(i);
6147 cpumask_t domainspan;
6148 cpumask_t covered = CPU_MASK_NONE;
6149 int j;
6150
6151 cpus_and(nodemask, nodemask, *cpu_map);
6152 if (cpus_empty(nodemask)) {
6153 sched_group_nodes[i] = NULL;
6154 continue;
6155 }
6156
6157 domainspan = sched_domain_node_span(i);
6158 cpus_and(domainspan, domainspan, *cpu_map);
6159
6160 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
6161 if (!sg) {
6162 printk(KERN_WARNING "Can not alloc domain group for "
6163 "node %d\n", i);
6164 goto error;
6165 }
6166 sched_group_nodes[i] = sg;
6167 for_each_cpu_mask(j, nodemask) {
6168 struct sched_domain *sd;
6169
6170 sd = &per_cpu(node_domains, j);
6171 sd->groups = sg;
6172 }
6173 sg->__cpu_power = 0;
6174 sg->cpumask = nodemask;
6175 sg->next = sg;
6176 cpus_or(covered, covered, nodemask);
6177 prev = sg;
6178
6179 for (j = 0; j < MAX_NUMNODES; j++) {
6180 cpumask_t tmp, notcovered;
6181 int n = (i + j) % MAX_NUMNODES;
6182
6183 cpus_complement(notcovered, covered);
6184 cpus_and(tmp, notcovered, *cpu_map);
6185 cpus_and(tmp, tmp, domainspan);
6186 if (cpus_empty(tmp))
6187 break;
6188
6189 nodemask = node_to_cpumask(n);
6190 cpus_and(tmp, tmp, nodemask);
6191 if (cpus_empty(tmp))
6192 continue;
6193
6194 sg = kmalloc_node(sizeof(struct sched_group),
6195 GFP_KERNEL, i);
6196 if (!sg) {
6197 printk(KERN_WARNING
6198 "Can not alloc domain group for node %d\n", j);
6199 goto error;
6200 }
6201 sg->__cpu_power = 0;
6202 sg->cpumask = tmp;
6203 sg->next = prev->next;
6204 cpus_or(covered, covered, tmp);
6205 prev->next = sg;
6206 prev = sg;
6207 }
6208 }
6209 #endif
6210
6211 /* Calculate CPU power for physical packages and nodes */
6212 #ifdef CONFIG_SCHED_SMT
6213 for_each_cpu_mask(i, *cpu_map) {
6214 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6215
6216 init_sched_groups_power(i, sd);
6217 }
6218 #endif
6219 #ifdef CONFIG_SCHED_MC
6220 for_each_cpu_mask(i, *cpu_map) {
6221 struct sched_domain *sd = &per_cpu(core_domains, i);
6222
6223 init_sched_groups_power(i, sd);
6224 }
6225 #endif
6226
6227 for_each_cpu_mask(i, *cpu_map) {
6228 struct sched_domain *sd = &per_cpu(phys_domains, i);
6229
6230 init_sched_groups_power(i, sd);
6231 }
6232
6233 #ifdef CONFIG_NUMA
6234 for (i = 0; i < MAX_NUMNODES; i++)
6235 init_numa_sched_groups_power(sched_group_nodes[i]);
6236
6237 if (sd_allnodes) {
6238 struct sched_group *sg;
6239
6240 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
6241 init_numa_sched_groups_power(sg);
6242 }
6243 #endif
6244
6245 /* Attach the domains */
6246 for_each_cpu_mask(i, *cpu_map) {
6247 struct sched_domain *sd;
6248 #ifdef CONFIG_SCHED_SMT
6249 sd = &per_cpu(cpu_domains, i);
6250 #elif defined(CONFIG_SCHED_MC)
6251 sd = &per_cpu(core_domains, i);
6252 #else
6253 sd = &per_cpu(phys_domains, i);
6254 #endif
6255 cpu_attach_domain(sd, i);
6256 }
6257
6258 return 0;
6259
6260 #ifdef CONFIG_NUMA
6261 error:
6262 free_sched_groups(cpu_map);
6263 return -ENOMEM;
6264 #endif
6265 }
6266 /*
6267 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6268 */
6269 static int arch_init_sched_domains(const cpumask_t *cpu_map)
6270 {
6271 cpumask_t cpu_default_map;
6272 int err;
6273
6274 /*
6275 * Setup mask for cpus without special case scheduling requirements.
6276 * For now this just excludes isolated cpus, but could be used to
6277 * exclude other special cases in the future.
6278 */
6279 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6280
6281 err = build_sched_domains(&cpu_default_map);
6282
6283 return err;
6284 }
6285
6286 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
6287 {
6288 free_sched_groups(cpu_map);
6289 }
6290
6291 /*
6292 * Detach sched domains from a group of cpus specified in cpu_map
6293 * These cpus will now be attached to the NULL domain
6294 */
6295 static void detach_destroy_domains(const cpumask_t *cpu_map)
6296 {
6297 int i;
6298
6299 for_each_cpu_mask(i, *cpu_map)
6300 cpu_attach_domain(NULL, i);
6301 synchronize_sched();
6302 arch_destroy_sched_domains(cpu_map);
6303 }
6304
6305 /*
6306 * Partition sched domains as specified by the cpumasks below.
6307 * This attaches all cpus from the cpumasks to the NULL domain,
6308 * waits for a RCU quiescent period, recalculates sched
6309 * domain information and then attaches them back to the
6310 * correct sched domains
6311 * Call with hotplug lock held
6312 */
6313 int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6314 {
6315 cpumask_t change_map;
6316 int err = 0;
6317
6318 cpus_and(*partition1, *partition1, cpu_online_map);
6319 cpus_and(*partition2, *partition2, cpu_online_map);
6320 cpus_or(change_map, *partition1, *partition2);
6321
6322 /* Detach sched domains from all of the affected cpus */
6323 detach_destroy_domains(&change_map);
6324 if (!cpus_empty(*partition1))
6325 err = build_sched_domains(partition1);
6326 if (!err && !cpus_empty(*partition2))
6327 err = build_sched_domains(partition2);
6328
6329 return err;
6330 }
6331
6332 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6333 int arch_reinit_sched_domains(void)
6334 {
6335 int err;
6336
6337 mutex_lock(&sched_hotcpu_mutex);
6338 detach_destroy_domains(&cpu_online_map);
6339 err = arch_init_sched_domains(&cpu_online_map);
6340 mutex_unlock(&sched_hotcpu_mutex);
6341
6342 return err;
6343 }
6344
6345 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6346 {
6347 int ret;
6348
6349 if (buf[0] != '0' && buf[0] != '1')
6350 return -EINVAL;
6351
6352 if (smt)
6353 sched_smt_power_savings = (buf[0] == '1');
6354 else
6355 sched_mc_power_savings = (buf[0] == '1');
6356
6357 ret = arch_reinit_sched_domains();
6358
6359 return ret ? ret : count;
6360 }
6361
6362 int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6363 {
6364 int err = 0;
6365
6366 #ifdef CONFIG_SCHED_SMT
6367 if (smt_capable())
6368 err = sysfs_create_file(&cls->kset.kobj,
6369 &attr_sched_smt_power_savings.attr);
6370 #endif
6371 #ifdef CONFIG_SCHED_MC
6372 if (!err && mc_capable())
6373 err = sysfs_create_file(&cls->kset.kobj,
6374 &attr_sched_mc_power_savings.attr);
6375 #endif
6376 return err;
6377 }
6378 #endif
6379
6380 #ifdef CONFIG_SCHED_MC
6381 static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6382 {
6383 return sprintf(page, "%u\n", sched_mc_power_savings);
6384 }
6385 static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6386 const char *buf, size_t count)
6387 {
6388 return sched_power_savings_store(buf, count, 0);
6389 }
6390 SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6391 sched_mc_power_savings_store);
6392 #endif
6393
6394 #ifdef CONFIG_SCHED_SMT
6395 static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6396 {
6397 return sprintf(page, "%u\n", sched_smt_power_savings);
6398 }
6399 static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6400 const char *buf, size_t count)
6401 {
6402 return sched_power_savings_store(buf, count, 1);
6403 }
6404 SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6405 sched_smt_power_savings_store);
6406 #endif
6407
6408 /*
6409 * Force a reinitialization of the sched domains hierarchy. The domains
6410 * and groups cannot be updated in place without racing with the balancing
6411 * code, so we temporarily attach all running cpus to the NULL domain
6412 * which will prevent rebalancing while the sched domains are recalculated.
6413 */
6414 static int update_sched_domains(struct notifier_block *nfb,
6415 unsigned long action, void *hcpu)
6416 {
6417 switch (action) {
6418 case CPU_UP_PREPARE:
6419 case CPU_UP_PREPARE_FROZEN:
6420 case CPU_DOWN_PREPARE:
6421 case CPU_DOWN_PREPARE_FROZEN:
6422 detach_destroy_domains(&cpu_online_map);
6423 return NOTIFY_OK;
6424
6425 case CPU_UP_CANCELED:
6426 case CPU_UP_CANCELED_FROZEN:
6427 case CPU_DOWN_FAILED:
6428 case CPU_DOWN_FAILED_FROZEN:
6429 case CPU_ONLINE:
6430 case CPU_ONLINE_FROZEN:
6431 case CPU_DEAD:
6432 case CPU_DEAD_FROZEN:
6433 /*
6434 * Fall through and re-initialise the domains.
6435 */
6436 break;
6437 default:
6438 return NOTIFY_DONE;
6439 }
6440
6441 /* The hotplug lock is already held by cpu_up/cpu_down */
6442 arch_init_sched_domains(&cpu_online_map);
6443
6444 return NOTIFY_OK;
6445 }
6446
6447 void __init sched_init_smp(void)
6448 {
6449 cpumask_t non_isolated_cpus;
6450
6451 mutex_lock(&sched_hotcpu_mutex);
6452 arch_init_sched_domains(&cpu_online_map);
6453 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
6454 if (cpus_empty(non_isolated_cpus))
6455 cpu_set(smp_processor_id(), non_isolated_cpus);
6456 mutex_unlock(&sched_hotcpu_mutex);
6457 /* XXX: Theoretical race here - CPU may be hotplugged now */
6458 hotcpu_notifier(update_sched_domains, 0);
6459
6460 init_sched_domain_sysctl();
6461
6462 /* Move init over to a non-isolated CPU */
6463 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6464 BUG();
6465 sched_init_granularity();
6466 }
6467 #else
6468 void __init sched_init_smp(void)
6469 {
6470 sched_init_granularity();
6471 }
6472 #endif /* CONFIG_SMP */
6473
6474 int in_sched_functions(unsigned long addr)
6475 {
6476 /* Linker adds these: start and end of __sched functions */
6477 extern char __sched_text_start[], __sched_text_end[];
6478
6479 return in_lock_functions(addr) ||
6480 (addr >= (unsigned long)__sched_text_start
6481 && addr < (unsigned long)__sched_text_end);
6482 }
6483
6484 static inline void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
6485 {
6486 cfs_rq->tasks_timeline = RB_ROOT;
6487 cfs_rq->fair_clock = 1;
6488 #ifdef CONFIG_FAIR_GROUP_SCHED
6489 cfs_rq->rq = rq;
6490 #endif
6491 }
6492
6493 void __init sched_init(void)
6494 {
6495 u64 now = sched_clock();
6496 int highest_cpu = 0;
6497 int i, j;
6498
6499 /*
6500 * Link up the scheduling class hierarchy:
6501 */
6502 rt_sched_class.next = &fair_sched_class;
6503 fair_sched_class.next = &idle_sched_class;
6504 idle_sched_class.next = NULL;
6505
6506 for_each_possible_cpu(i) {
6507 struct rt_prio_array *array;
6508 struct rq *rq;
6509
6510 rq = cpu_rq(i);
6511 spin_lock_init(&rq->lock);
6512 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
6513 rq->nr_running = 0;
6514 rq->clock = 1;
6515 init_cfs_rq(&rq->cfs, rq);
6516 #ifdef CONFIG_FAIR_GROUP_SCHED
6517 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
6518 list_add(&rq->cfs.leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6519 #endif
6520 rq->ls.load_update_last = now;
6521 rq->ls.load_update_start = now;
6522
6523 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6524 rq->cpu_load[j] = 0;
6525 #ifdef CONFIG_SMP
6526 rq->sd = NULL;
6527 rq->active_balance = 0;
6528 rq->next_balance = jiffies;
6529 rq->push_cpu = 0;
6530 rq->cpu = i;
6531 rq->migration_thread = NULL;
6532 INIT_LIST_HEAD(&rq->migration_queue);
6533 #endif
6534 atomic_set(&rq->nr_iowait, 0);
6535
6536 array = &rq->rt.active;
6537 for (j = 0; j < MAX_RT_PRIO; j++) {
6538 INIT_LIST_HEAD(array->queue + j);
6539 __clear_bit(j, array->bitmap);
6540 }
6541 highest_cpu = i;
6542 /* delimiter for bitsearch: */
6543 __set_bit(MAX_RT_PRIO, array->bitmap);
6544 }
6545
6546 set_load_weight(&init_task);
6547
6548 #ifdef CONFIG_PREEMPT_NOTIFIERS
6549 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6550 #endif
6551
6552 #ifdef CONFIG_SMP
6553 nr_cpu_ids = highest_cpu + 1;
6554 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6555 #endif
6556
6557 #ifdef CONFIG_RT_MUTEXES
6558 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6559 #endif
6560
6561 /*
6562 * The boot idle thread does lazy MMU switching as well:
6563 */
6564 atomic_inc(&init_mm.mm_count);
6565 enter_lazy_tlb(&init_mm, current);
6566
6567 /*
6568 * Make us the idle thread. Technically, schedule() should not be
6569 * called from this thread, however somewhere below it might be,
6570 * but because we are the idle thread, we just pick up running again
6571 * when this runqueue becomes "idle".
6572 */
6573 init_idle(current, smp_processor_id());
6574 /*
6575 * During early bootup we pretend to be a normal task:
6576 */
6577 current->sched_class = &fair_sched_class;
6578 }
6579
6580 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6581 void __might_sleep(char *file, int line)
6582 {
6583 #ifdef in_atomic
6584 static unsigned long prev_jiffy; /* ratelimiting */
6585
6586 if ((in_atomic() || irqs_disabled()) &&
6587 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6588 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6589 return;
6590 prev_jiffy = jiffies;
6591 printk(KERN_ERR "BUG: sleeping function called from invalid"
6592 " context at %s:%d\n", file, line);
6593 printk("in_atomic():%d, irqs_disabled():%d\n",
6594 in_atomic(), irqs_disabled());
6595 debug_show_held_locks(current);
6596 if (irqs_disabled())
6597 print_irqtrace_events(current);
6598 dump_stack();
6599 }
6600 #endif
6601 }
6602 EXPORT_SYMBOL(__might_sleep);
6603 #endif
6604
6605 #ifdef CONFIG_MAGIC_SYSRQ
6606 void normalize_rt_tasks(void)
6607 {
6608 struct task_struct *g, *p;
6609 unsigned long flags;
6610 struct rq *rq;
6611 int on_rq;
6612
6613 read_lock_irq(&tasklist_lock);
6614 do_each_thread(g, p) {
6615 p->se.fair_key = 0;
6616 p->se.wait_runtime = 0;
6617 p->se.exec_start = 0;
6618 p->se.wait_start_fair = 0;
6619 p->se.sleep_start_fair = 0;
6620 #ifdef CONFIG_SCHEDSTATS
6621 p->se.wait_start = 0;
6622 p->se.sleep_start = 0;
6623 p->se.block_start = 0;
6624 #endif
6625 task_rq(p)->cfs.fair_clock = 0;
6626 task_rq(p)->clock = 0;
6627
6628 if (!rt_task(p)) {
6629 /*
6630 * Renice negative nice level userspace
6631 * tasks back to 0:
6632 */
6633 if (TASK_NICE(p) < 0 && p->mm)
6634 set_user_nice(p, 0);
6635 continue;
6636 }
6637
6638 spin_lock_irqsave(&p->pi_lock, flags);
6639 rq = __task_rq_lock(p);
6640 #ifdef CONFIG_SMP
6641 /*
6642 * Do not touch the migration thread:
6643 */
6644 if (p == rq->migration_thread)
6645 goto out_unlock;
6646 #endif
6647
6648 on_rq = p->se.on_rq;
6649 if (on_rq) {
6650 update_rq_clock(task_rq(p));
6651 deactivate_task(task_rq(p), p, 0, task_rq(p)->clock);
6652 }
6653 __setscheduler(rq, p, SCHED_NORMAL, 0);
6654 if (on_rq) {
6655 activate_task(task_rq(p), p, 0);
6656 resched_task(rq->curr);
6657 }
6658 #ifdef CONFIG_SMP
6659 out_unlock:
6660 #endif
6661 __task_rq_unlock(rq);
6662 spin_unlock_irqrestore(&p->pi_lock, flags);
6663 } while_each_thread(g, p);
6664
6665 read_unlock_irq(&tasklist_lock);
6666 }
6667
6668 #endif /* CONFIG_MAGIC_SYSRQ */
6669
6670 #ifdef CONFIG_IA64
6671 /*
6672 * These functions are only useful for the IA64 MCA handling.
6673 *
6674 * They can only be called when the whole system has been
6675 * stopped - every CPU needs to be quiescent, and no scheduling
6676 * activity can take place. Using them for anything else would
6677 * be a serious bug, and as a result, they aren't even visible
6678 * under any other configuration.
6679 */
6680
6681 /**
6682 * curr_task - return the current task for a given cpu.
6683 * @cpu: the processor in question.
6684 *
6685 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6686 */
6687 struct task_struct *curr_task(int cpu)
6688 {
6689 return cpu_curr(cpu);
6690 }
6691
6692 /**
6693 * set_curr_task - set the current task for a given cpu.
6694 * @cpu: the processor in question.
6695 * @p: the task pointer to set.
6696 *
6697 * Description: This function must only be used when non-maskable interrupts
6698 * are serviced on a separate stack. It allows the architecture to switch the
6699 * notion of the current task on a cpu in a non-blocking manner. This function
6700 * must be called with all CPU's synchronized, and interrupts disabled, the
6701 * and caller must save the original value of the current task (see
6702 * curr_task() above) and restore that value before reenabling interrupts and
6703 * re-starting the system.
6704 *
6705 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6706 */
6707 void set_curr_task(int cpu, struct task_struct *p)
6708 {
6709 cpu_curr(cpu) = p;
6710 }
6711
6712 #endif