]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched.c
sched: Limit the number of scheduler debug messages
[mirror_ubuntu-artful-kernel.git] / kernel / sched.c
1 /*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
27 */
28
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
77
78 #include "sched_cpupri.h"
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
82
83 /*
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
87 */
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
91
92 /*
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
96 */
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
100
101 /*
102 * Helpers for converting nanosecond timing to jiffy resolution
103 */
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
105
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
108
109 /*
110 * These are the 'tuning knobs' of the scheduler:
111 *
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
114 */
115 #define DEF_TIMESLICE (100 * HZ / 1000)
116
117 /*
118 * single value that denotes runtime == period, ie unlimited time.
119 */
120 #define RUNTIME_INF ((u64)~0ULL)
121
122 static inline int rt_policy(int policy)
123 {
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
127 }
128
129 static inline int task_has_rt_policy(struct task_struct *p)
130 {
131 return rt_policy(p->policy);
132 }
133
134 /*
135 * This is the priority-queue data structure of the RT scheduling class:
136 */
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
140 };
141
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
148 };
149
150 static struct rt_bandwidth def_rt_bandwidth;
151
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
153
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
155 {
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
161
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
165
166 if (!overrun)
167 break;
168
169 idle = do_sched_rt_period_timer(rt_b, overrun);
170 }
171
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
173 }
174
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
177 {
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
180
181 spin_lock_init(&rt_b->rt_runtime_lock);
182
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
186 }
187
188 static inline int rt_bandwidth_enabled(void)
189 {
190 return sysctl_sched_rt_runtime >= 0;
191 }
192
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
194 {
195 ktime_t now;
196
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
199
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
202
203 spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
207
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
210
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
213
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
219 }
220 spin_unlock(&rt_b->rt_runtime_lock);
221 }
222
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
225 {
226 hrtimer_cancel(&rt_b->rt_period_timer);
227 }
228 #endif
229
230 /*
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
233 */
234 static DEFINE_MUTEX(sched_domains_mutex);
235
236 #ifdef CONFIG_GROUP_SCHED
237
238 #include <linux/cgroup.h>
239
240 struct cfs_rq;
241
242 static LIST_HEAD(task_groups);
243
244 /* task group related information */
245 struct task_group {
246 #ifdef CONFIG_CGROUP_SCHED
247 struct cgroup_subsys_state css;
248 #endif
249
250 #ifdef CONFIG_USER_SCHED
251 uid_t uid;
252 #endif
253
254 #ifdef CONFIG_FAIR_GROUP_SCHED
255 /* schedulable entities of this group on each cpu */
256 struct sched_entity **se;
257 /* runqueue "owned" by this group on each cpu */
258 struct cfs_rq **cfs_rq;
259 unsigned long shares;
260 #endif
261
262 #ifdef CONFIG_RT_GROUP_SCHED
263 struct sched_rt_entity **rt_se;
264 struct rt_rq **rt_rq;
265
266 struct rt_bandwidth rt_bandwidth;
267 #endif
268
269 struct rcu_head rcu;
270 struct list_head list;
271
272 struct task_group *parent;
273 struct list_head siblings;
274 struct list_head children;
275 };
276
277 #ifdef CONFIG_USER_SCHED
278
279 /* Helper function to pass uid information to create_sched_user() */
280 void set_tg_uid(struct user_struct *user)
281 {
282 user->tg->uid = user->uid;
283 }
284
285 /*
286 * Root task group.
287 * Every UID task group (including init_task_group aka UID-0) will
288 * be a child to this group.
289 */
290 struct task_group root_task_group;
291
292 #ifdef CONFIG_FAIR_GROUP_SCHED
293 /* Default task group's sched entity on each cpu */
294 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
295 /* Default task group's cfs_rq on each cpu */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
297 #endif /* CONFIG_FAIR_GROUP_SCHED */
298
299 #ifdef CONFIG_RT_GROUP_SCHED
300 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
301 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
302 #endif /* CONFIG_RT_GROUP_SCHED */
303 #else /* !CONFIG_USER_SCHED */
304 #define root_task_group init_task_group
305 #endif /* CONFIG_USER_SCHED */
306
307 /* task_group_lock serializes add/remove of task groups and also changes to
308 * a task group's cpu shares.
309 */
310 static DEFINE_SPINLOCK(task_group_lock);
311
312 #ifdef CONFIG_SMP
313 static int root_task_group_empty(void)
314 {
315 return list_empty(&root_task_group.children);
316 }
317 #endif
318
319 #ifdef CONFIG_FAIR_GROUP_SCHED
320 #ifdef CONFIG_USER_SCHED
321 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
322 #else /* !CONFIG_USER_SCHED */
323 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
324 #endif /* CONFIG_USER_SCHED */
325
326 /*
327 * A weight of 0 or 1 can cause arithmetics problems.
328 * A weight of a cfs_rq is the sum of weights of which entities
329 * are queued on this cfs_rq, so a weight of a entity should not be
330 * too large, so as the shares value of a task group.
331 * (The default weight is 1024 - so there's no practical
332 * limitation from this.)
333 */
334 #define MIN_SHARES 2
335 #define MAX_SHARES (1UL << 18)
336
337 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
338 #endif
339
340 /* Default task group.
341 * Every task in system belong to this group at bootup.
342 */
343 struct task_group init_task_group;
344
345 /* return group to which a task belongs */
346 static inline struct task_group *task_group(struct task_struct *p)
347 {
348 struct task_group *tg;
349
350 #ifdef CONFIG_USER_SCHED
351 rcu_read_lock();
352 tg = __task_cred(p)->user->tg;
353 rcu_read_unlock();
354 #elif defined(CONFIG_CGROUP_SCHED)
355 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
356 struct task_group, css);
357 #else
358 tg = &init_task_group;
359 #endif
360 return tg;
361 }
362
363 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
364 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
365 {
366 #ifdef CONFIG_FAIR_GROUP_SCHED
367 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
368 p->se.parent = task_group(p)->se[cpu];
369 #endif
370
371 #ifdef CONFIG_RT_GROUP_SCHED
372 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
373 p->rt.parent = task_group(p)->rt_se[cpu];
374 #endif
375 }
376
377 #else
378
379 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
380 static inline struct task_group *task_group(struct task_struct *p)
381 {
382 return NULL;
383 }
384
385 #endif /* CONFIG_GROUP_SCHED */
386
387 /* CFS-related fields in a runqueue */
388 struct cfs_rq {
389 struct load_weight load;
390 unsigned long nr_running;
391
392 u64 exec_clock;
393 u64 min_vruntime;
394
395 struct rb_root tasks_timeline;
396 struct rb_node *rb_leftmost;
397
398 struct list_head tasks;
399 struct list_head *balance_iterator;
400
401 /*
402 * 'curr' points to currently running entity on this cfs_rq.
403 * It is set to NULL otherwise (i.e when none are currently running).
404 */
405 struct sched_entity *curr, *next, *last;
406
407 unsigned int nr_spread_over;
408
409 #ifdef CONFIG_FAIR_GROUP_SCHED
410 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
411
412 /*
413 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
414 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
415 * (like users, containers etc.)
416 *
417 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
418 * list is used during load balance.
419 */
420 struct list_head leaf_cfs_rq_list;
421 struct task_group *tg; /* group that "owns" this runqueue */
422
423 #ifdef CONFIG_SMP
424 /*
425 * the part of load.weight contributed by tasks
426 */
427 unsigned long task_weight;
428
429 /*
430 * h_load = weight * f(tg)
431 *
432 * Where f(tg) is the recursive weight fraction assigned to
433 * this group.
434 */
435 unsigned long h_load;
436
437 /*
438 * this cpu's part of tg->shares
439 */
440 unsigned long shares;
441
442 /*
443 * load.weight at the time we set shares
444 */
445 unsigned long rq_weight;
446 #endif
447 #endif
448 };
449
450 /* Real-Time classes' related field in a runqueue: */
451 struct rt_rq {
452 struct rt_prio_array active;
453 unsigned long rt_nr_running;
454 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
455 struct {
456 int curr; /* highest queued rt task prio */
457 #ifdef CONFIG_SMP
458 int next; /* next highest */
459 #endif
460 } highest_prio;
461 #endif
462 #ifdef CONFIG_SMP
463 unsigned long rt_nr_migratory;
464 unsigned long rt_nr_total;
465 int overloaded;
466 struct plist_head pushable_tasks;
467 #endif
468 int rt_throttled;
469 u64 rt_time;
470 u64 rt_runtime;
471 /* Nests inside the rq lock: */
472 spinlock_t rt_runtime_lock;
473
474 #ifdef CONFIG_RT_GROUP_SCHED
475 unsigned long rt_nr_boosted;
476
477 struct rq *rq;
478 struct list_head leaf_rt_rq_list;
479 struct task_group *tg;
480 struct sched_rt_entity *rt_se;
481 #endif
482 };
483
484 #ifdef CONFIG_SMP
485
486 /*
487 * We add the notion of a root-domain which will be used to define per-domain
488 * variables. Each exclusive cpuset essentially defines an island domain by
489 * fully partitioning the member cpus from any other cpuset. Whenever a new
490 * exclusive cpuset is created, we also create and attach a new root-domain
491 * object.
492 *
493 */
494 struct root_domain {
495 atomic_t refcount;
496 cpumask_var_t span;
497 cpumask_var_t online;
498
499 /*
500 * The "RT overload" flag: it gets set if a CPU has more than
501 * one runnable RT task.
502 */
503 cpumask_var_t rto_mask;
504 atomic_t rto_count;
505 #ifdef CONFIG_SMP
506 struct cpupri cpupri;
507 #endif
508 };
509
510 /*
511 * By default the system creates a single root-domain with all cpus as
512 * members (mimicking the global state we have today).
513 */
514 static struct root_domain def_root_domain;
515
516 #endif
517
518 /*
519 * This is the main, per-CPU runqueue data structure.
520 *
521 * Locking rule: those places that want to lock multiple runqueues
522 * (such as the load balancing or the thread migration code), lock
523 * acquire operations must be ordered by ascending &runqueue.
524 */
525 struct rq {
526 /* runqueue lock: */
527 spinlock_t lock;
528
529 /*
530 * nr_running and cpu_load should be in the same cacheline because
531 * remote CPUs use both these fields when doing load calculation.
532 */
533 unsigned long nr_running;
534 #define CPU_LOAD_IDX_MAX 5
535 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
536 #ifdef CONFIG_NO_HZ
537 unsigned char in_nohz_recently;
538 #endif
539 /* capture load from *all* tasks on this cpu: */
540 struct load_weight load;
541 unsigned long nr_load_updates;
542 u64 nr_switches;
543
544 struct cfs_rq cfs;
545 struct rt_rq rt;
546
547 #ifdef CONFIG_FAIR_GROUP_SCHED
548 /* list of leaf cfs_rq on this cpu: */
549 struct list_head leaf_cfs_rq_list;
550 #endif
551 #ifdef CONFIG_RT_GROUP_SCHED
552 struct list_head leaf_rt_rq_list;
553 #endif
554
555 /*
556 * This is part of a global counter where only the total sum
557 * over all CPUs matters. A task can increase this counter on
558 * one CPU and if it got migrated afterwards it may decrease
559 * it on another CPU. Always updated under the runqueue lock:
560 */
561 unsigned long nr_uninterruptible;
562
563 struct task_struct *curr, *idle;
564 unsigned long next_balance;
565 struct mm_struct *prev_mm;
566
567 u64 clock;
568
569 atomic_t nr_iowait;
570
571 #ifdef CONFIG_SMP
572 struct root_domain *rd;
573 struct sched_domain *sd;
574
575 unsigned char idle_at_tick;
576 /* For active balancing */
577 int post_schedule;
578 int active_balance;
579 int push_cpu;
580 /* cpu of this runqueue: */
581 int cpu;
582 int online;
583
584 unsigned long avg_load_per_task;
585
586 struct task_struct *migration_thread;
587 struct list_head migration_queue;
588
589 u64 rt_avg;
590 u64 age_stamp;
591 u64 idle_stamp;
592 u64 avg_idle;
593 #endif
594
595 /* calc_load related fields */
596 unsigned long calc_load_update;
597 long calc_load_active;
598
599 #ifdef CONFIG_SCHED_HRTICK
600 #ifdef CONFIG_SMP
601 int hrtick_csd_pending;
602 struct call_single_data hrtick_csd;
603 #endif
604 struct hrtimer hrtick_timer;
605 #endif
606
607 #ifdef CONFIG_SCHEDSTATS
608 /* latency stats */
609 struct sched_info rq_sched_info;
610 unsigned long long rq_cpu_time;
611 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
612
613 /* sys_sched_yield() stats */
614 unsigned int yld_count;
615
616 /* schedule() stats */
617 unsigned int sched_switch;
618 unsigned int sched_count;
619 unsigned int sched_goidle;
620
621 /* try_to_wake_up() stats */
622 unsigned int ttwu_count;
623 unsigned int ttwu_local;
624
625 /* BKL stats */
626 unsigned int bkl_count;
627 #endif
628 };
629
630 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
631
632 static inline
633 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
634 {
635 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
636 }
637
638 static inline int cpu_of(struct rq *rq)
639 {
640 #ifdef CONFIG_SMP
641 return rq->cpu;
642 #else
643 return 0;
644 #endif
645 }
646
647 /*
648 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
649 * See detach_destroy_domains: synchronize_sched for details.
650 *
651 * The domain tree of any CPU may only be accessed from within
652 * preempt-disabled sections.
653 */
654 #define for_each_domain(cpu, __sd) \
655 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
656
657 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
658 #define this_rq() (&__get_cpu_var(runqueues))
659 #define task_rq(p) cpu_rq(task_cpu(p))
660 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
661 #define raw_rq() (&__raw_get_cpu_var(runqueues))
662
663 inline void update_rq_clock(struct rq *rq)
664 {
665 rq->clock = sched_clock_cpu(cpu_of(rq));
666 }
667
668 /*
669 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
670 */
671 #ifdef CONFIG_SCHED_DEBUG
672 # define const_debug __read_mostly
673 #else
674 # define const_debug static const
675 #endif
676
677 /**
678 * runqueue_is_locked
679 * @cpu: the processor in question.
680 *
681 * Returns true if the current cpu runqueue is locked.
682 * This interface allows printk to be called with the runqueue lock
683 * held and know whether or not it is OK to wake up the klogd.
684 */
685 int runqueue_is_locked(int cpu)
686 {
687 return spin_is_locked(&cpu_rq(cpu)->lock);
688 }
689
690 /*
691 * Debugging: various feature bits
692 */
693
694 #define SCHED_FEAT(name, enabled) \
695 __SCHED_FEAT_##name ,
696
697 enum {
698 #include "sched_features.h"
699 };
700
701 #undef SCHED_FEAT
702
703 #define SCHED_FEAT(name, enabled) \
704 (1UL << __SCHED_FEAT_##name) * enabled |
705
706 const_debug unsigned int sysctl_sched_features =
707 #include "sched_features.h"
708 0;
709
710 #undef SCHED_FEAT
711
712 #ifdef CONFIG_SCHED_DEBUG
713 #define SCHED_FEAT(name, enabled) \
714 #name ,
715
716 static __read_mostly char *sched_feat_names[] = {
717 #include "sched_features.h"
718 NULL
719 };
720
721 #undef SCHED_FEAT
722
723 static int sched_feat_show(struct seq_file *m, void *v)
724 {
725 int i;
726
727 for (i = 0; sched_feat_names[i]; i++) {
728 if (!(sysctl_sched_features & (1UL << i)))
729 seq_puts(m, "NO_");
730 seq_printf(m, "%s ", sched_feat_names[i]);
731 }
732 seq_puts(m, "\n");
733
734 return 0;
735 }
736
737 static ssize_t
738 sched_feat_write(struct file *filp, const char __user *ubuf,
739 size_t cnt, loff_t *ppos)
740 {
741 char buf[64];
742 char *cmp = buf;
743 int neg = 0;
744 int i;
745
746 if (cnt > 63)
747 cnt = 63;
748
749 if (copy_from_user(&buf, ubuf, cnt))
750 return -EFAULT;
751
752 buf[cnt] = 0;
753
754 if (strncmp(buf, "NO_", 3) == 0) {
755 neg = 1;
756 cmp += 3;
757 }
758
759 for (i = 0; sched_feat_names[i]; i++) {
760 int len = strlen(sched_feat_names[i]);
761
762 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
763 if (neg)
764 sysctl_sched_features &= ~(1UL << i);
765 else
766 sysctl_sched_features |= (1UL << i);
767 break;
768 }
769 }
770
771 if (!sched_feat_names[i])
772 return -EINVAL;
773
774 *ppos += cnt;
775
776 return cnt;
777 }
778
779 static int sched_feat_open(struct inode *inode, struct file *filp)
780 {
781 return single_open(filp, sched_feat_show, NULL);
782 }
783
784 static const struct file_operations sched_feat_fops = {
785 .open = sched_feat_open,
786 .write = sched_feat_write,
787 .read = seq_read,
788 .llseek = seq_lseek,
789 .release = single_release,
790 };
791
792 static __init int sched_init_debug(void)
793 {
794 debugfs_create_file("sched_features", 0644, NULL, NULL,
795 &sched_feat_fops);
796
797 return 0;
798 }
799 late_initcall(sched_init_debug);
800
801 #endif
802
803 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
804
805 /*
806 * Number of tasks to iterate in a single balance run.
807 * Limited because this is done with IRQs disabled.
808 */
809 const_debug unsigned int sysctl_sched_nr_migrate = 32;
810
811 /*
812 * ratelimit for updating the group shares.
813 * default: 0.25ms
814 */
815 unsigned int sysctl_sched_shares_ratelimit = 250000;
816
817 /*
818 * Inject some fuzzyness into changing the per-cpu group shares
819 * this avoids remote rq-locks at the expense of fairness.
820 * default: 4
821 */
822 unsigned int sysctl_sched_shares_thresh = 4;
823
824 /*
825 * period over which we average the RT time consumption, measured
826 * in ms.
827 *
828 * default: 1s
829 */
830 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
831
832 /*
833 * period over which we measure -rt task cpu usage in us.
834 * default: 1s
835 */
836 unsigned int sysctl_sched_rt_period = 1000000;
837
838 static __read_mostly int scheduler_running;
839
840 /*
841 * part of the period that we allow rt tasks to run in us.
842 * default: 0.95s
843 */
844 int sysctl_sched_rt_runtime = 950000;
845
846 static inline u64 global_rt_period(void)
847 {
848 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
849 }
850
851 static inline u64 global_rt_runtime(void)
852 {
853 if (sysctl_sched_rt_runtime < 0)
854 return RUNTIME_INF;
855
856 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
857 }
858
859 #ifndef prepare_arch_switch
860 # define prepare_arch_switch(next) do { } while (0)
861 #endif
862 #ifndef finish_arch_switch
863 # define finish_arch_switch(prev) do { } while (0)
864 #endif
865
866 static inline int task_current(struct rq *rq, struct task_struct *p)
867 {
868 return rq->curr == p;
869 }
870
871 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
872 static inline int task_running(struct rq *rq, struct task_struct *p)
873 {
874 return task_current(rq, p);
875 }
876
877 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
878 {
879 }
880
881 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
882 {
883 #ifdef CONFIG_DEBUG_SPINLOCK
884 /* this is a valid case when another task releases the spinlock */
885 rq->lock.owner = current;
886 #endif
887 /*
888 * If we are tracking spinlock dependencies then we have to
889 * fix up the runqueue lock - which gets 'carried over' from
890 * prev into current:
891 */
892 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
893
894 spin_unlock_irq(&rq->lock);
895 }
896
897 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
898 static inline int task_running(struct rq *rq, struct task_struct *p)
899 {
900 #ifdef CONFIG_SMP
901 return p->oncpu;
902 #else
903 return task_current(rq, p);
904 #endif
905 }
906
907 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
908 {
909 #ifdef CONFIG_SMP
910 /*
911 * We can optimise this out completely for !SMP, because the
912 * SMP rebalancing from interrupt is the only thing that cares
913 * here.
914 */
915 next->oncpu = 1;
916 #endif
917 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
918 spin_unlock_irq(&rq->lock);
919 #else
920 spin_unlock(&rq->lock);
921 #endif
922 }
923
924 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
925 {
926 #ifdef CONFIG_SMP
927 /*
928 * After ->oncpu is cleared, the task can be moved to a different CPU.
929 * We must ensure this doesn't happen until the switch is completely
930 * finished.
931 */
932 smp_wmb();
933 prev->oncpu = 0;
934 #endif
935 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
936 local_irq_enable();
937 #endif
938 }
939 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
940
941 /*
942 * __task_rq_lock - lock the runqueue a given task resides on.
943 * Must be called interrupts disabled.
944 */
945 static inline struct rq *__task_rq_lock(struct task_struct *p)
946 __acquires(rq->lock)
947 {
948 for (;;) {
949 struct rq *rq = task_rq(p);
950 spin_lock(&rq->lock);
951 if (likely(rq == task_rq(p)))
952 return rq;
953 spin_unlock(&rq->lock);
954 }
955 }
956
957 /*
958 * task_rq_lock - lock the runqueue a given task resides on and disable
959 * interrupts. Note the ordering: we can safely lookup the task_rq without
960 * explicitly disabling preemption.
961 */
962 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
963 __acquires(rq->lock)
964 {
965 struct rq *rq;
966
967 for (;;) {
968 local_irq_save(*flags);
969 rq = task_rq(p);
970 spin_lock(&rq->lock);
971 if (likely(rq == task_rq(p)))
972 return rq;
973 spin_unlock_irqrestore(&rq->lock, *flags);
974 }
975 }
976
977 void task_rq_unlock_wait(struct task_struct *p)
978 {
979 struct rq *rq = task_rq(p);
980
981 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
982 spin_unlock_wait(&rq->lock);
983 }
984
985 static void __task_rq_unlock(struct rq *rq)
986 __releases(rq->lock)
987 {
988 spin_unlock(&rq->lock);
989 }
990
991 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
992 __releases(rq->lock)
993 {
994 spin_unlock_irqrestore(&rq->lock, *flags);
995 }
996
997 /*
998 * this_rq_lock - lock this runqueue and disable interrupts.
999 */
1000 static struct rq *this_rq_lock(void)
1001 __acquires(rq->lock)
1002 {
1003 struct rq *rq;
1004
1005 local_irq_disable();
1006 rq = this_rq();
1007 spin_lock(&rq->lock);
1008
1009 return rq;
1010 }
1011
1012 #ifdef CONFIG_SCHED_HRTICK
1013 /*
1014 * Use HR-timers to deliver accurate preemption points.
1015 *
1016 * Its all a bit involved since we cannot program an hrt while holding the
1017 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1018 * reschedule event.
1019 *
1020 * When we get rescheduled we reprogram the hrtick_timer outside of the
1021 * rq->lock.
1022 */
1023
1024 /*
1025 * Use hrtick when:
1026 * - enabled by features
1027 * - hrtimer is actually high res
1028 */
1029 static inline int hrtick_enabled(struct rq *rq)
1030 {
1031 if (!sched_feat(HRTICK))
1032 return 0;
1033 if (!cpu_active(cpu_of(rq)))
1034 return 0;
1035 return hrtimer_is_hres_active(&rq->hrtick_timer);
1036 }
1037
1038 static void hrtick_clear(struct rq *rq)
1039 {
1040 if (hrtimer_active(&rq->hrtick_timer))
1041 hrtimer_cancel(&rq->hrtick_timer);
1042 }
1043
1044 /*
1045 * High-resolution timer tick.
1046 * Runs from hardirq context with interrupts disabled.
1047 */
1048 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1049 {
1050 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1051
1052 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1053
1054 spin_lock(&rq->lock);
1055 update_rq_clock(rq);
1056 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1057 spin_unlock(&rq->lock);
1058
1059 return HRTIMER_NORESTART;
1060 }
1061
1062 #ifdef CONFIG_SMP
1063 /*
1064 * called from hardirq (IPI) context
1065 */
1066 static void __hrtick_start(void *arg)
1067 {
1068 struct rq *rq = arg;
1069
1070 spin_lock(&rq->lock);
1071 hrtimer_restart(&rq->hrtick_timer);
1072 rq->hrtick_csd_pending = 0;
1073 spin_unlock(&rq->lock);
1074 }
1075
1076 /*
1077 * Called to set the hrtick timer state.
1078 *
1079 * called with rq->lock held and irqs disabled
1080 */
1081 static void hrtick_start(struct rq *rq, u64 delay)
1082 {
1083 struct hrtimer *timer = &rq->hrtick_timer;
1084 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1085
1086 hrtimer_set_expires(timer, time);
1087
1088 if (rq == this_rq()) {
1089 hrtimer_restart(timer);
1090 } else if (!rq->hrtick_csd_pending) {
1091 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1092 rq->hrtick_csd_pending = 1;
1093 }
1094 }
1095
1096 static int
1097 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1098 {
1099 int cpu = (int)(long)hcpu;
1100
1101 switch (action) {
1102 case CPU_UP_CANCELED:
1103 case CPU_UP_CANCELED_FROZEN:
1104 case CPU_DOWN_PREPARE:
1105 case CPU_DOWN_PREPARE_FROZEN:
1106 case CPU_DEAD:
1107 case CPU_DEAD_FROZEN:
1108 hrtick_clear(cpu_rq(cpu));
1109 return NOTIFY_OK;
1110 }
1111
1112 return NOTIFY_DONE;
1113 }
1114
1115 static __init void init_hrtick(void)
1116 {
1117 hotcpu_notifier(hotplug_hrtick, 0);
1118 }
1119 #else
1120 /*
1121 * Called to set the hrtick timer state.
1122 *
1123 * called with rq->lock held and irqs disabled
1124 */
1125 static void hrtick_start(struct rq *rq, u64 delay)
1126 {
1127 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1128 HRTIMER_MODE_REL_PINNED, 0);
1129 }
1130
1131 static inline void init_hrtick(void)
1132 {
1133 }
1134 #endif /* CONFIG_SMP */
1135
1136 static void init_rq_hrtick(struct rq *rq)
1137 {
1138 #ifdef CONFIG_SMP
1139 rq->hrtick_csd_pending = 0;
1140
1141 rq->hrtick_csd.flags = 0;
1142 rq->hrtick_csd.func = __hrtick_start;
1143 rq->hrtick_csd.info = rq;
1144 #endif
1145
1146 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1147 rq->hrtick_timer.function = hrtick;
1148 }
1149 #else /* CONFIG_SCHED_HRTICK */
1150 static inline void hrtick_clear(struct rq *rq)
1151 {
1152 }
1153
1154 static inline void init_rq_hrtick(struct rq *rq)
1155 {
1156 }
1157
1158 static inline void init_hrtick(void)
1159 {
1160 }
1161 #endif /* CONFIG_SCHED_HRTICK */
1162
1163 /*
1164 * resched_task - mark a task 'to be rescheduled now'.
1165 *
1166 * On UP this means the setting of the need_resched flag, on SMP it
1167 * might also involve a cross-CPU call to trigger the scheduler on
1168 * the target CPU.
1169 */
1170 #ifdef CONFIG_SMP
1171
1172 #ifndef tsk_is_polling
1173 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1174 #endif
1175
1176 static void resched_task(struct task_struct *p)
1177 {
1178 int cpu;
1179
1180 assert_spin_locked(&task_rq(p)->lock);
1181
1182 if (test_tsk_need_resched(p))
1183 return;
1184
1185 set_tsk_need_resched(p);
1186
1187 cpu = task_cpu(p);
1188 if (cpu == smp_processor_id())
1189 return;
1190
1191 /* NEED_RESCHED must be visible before we test polling */
1192 smp_mb();
1193 if (!tsk_is_polling(p))
1194 smp_send_reschedule(cpu);
1195 }
1196
1197 static void resched_cpu(int cpu)
1198 {
1199 struct rq *rq = cpu_rq(cpu);
1200 unsigned long flags;
1201
1202 if (!spin_trylock_irqsave(&rq->lock, flags))
1203 return;
1204 resched_task(cpu_curr(cpu));
1205 spin_unlock_irqrestore(&rq->lock, flags);
1206 }
1207
1208 #ifdef CONFIG_NO_HZ
1209 /*
1210 * When add_timer_on() enqueues a timer into the timer wheel of an
1211 * idle CPU then this timer might expire before the next timer event
1212 * which is scheduled to wake up that CPU. In case of a completely
1213 * idle system the next event might even be infinite time into the
1214 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1215 * leaves the inner idle loop so the newly added timer is taken into
1216 * account when the CPU goes back to idle and evaluates the timer
1217 * wheel for the next timer event.
1218 */
1219 void wake_up_idle_cpu(int cpu)
1220 {
1221 struct rq *rq = cpu_rq(cpu);
1222
1223 if (cpu == smp_processor_id())
1224 return;
1225
1226 /*
1227 * This is safe, as this function is called with the timer
1228 * wheel base lock of (cpu) held. When the CPU is on the way
1229 * to idle and has not yet set rq->curr to idle then it will
1230 * be serialized on the timer wheel base lock and take the new
1231 * timer into account automatically.
1232 */
1233 if (rq->curr != rq->idle)
1234 return;
1235
1236 /*
1237 * We can set TIF_RESCHED on the idle task of the other CPU
1238 * lockless. The worst case is that the other CPU runs the
1239 * idle task through an additional NOOP schedule()
1240 */
1241 set_tsk_need_resched(rq->idle);
1242
1243 /* NEED_RESCHED must be visible before we test polling */
1244 smp_mb();
1245 if (!tsk_is_polling(rq->idle))
1246 smp_send_reschedule(cpu);
1247 }
1248 #endif /* CONFIG_NO_HZ */
1249
1250 static u64 sched_avg_period(void)
1251 {
1252 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1253 }
1254
1255 static void sched_avg_update(struct rq *rq)
1256 {
1257 s64 period = sched_avg_period();
1258
1259 while ((s64)(rq->clock - rq->age_stamp) > period) {
1260 rq->age_stamp += period;
1261 rq->rt_avg /= 2;
1262 }
1263 }
1264
1265 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1266 {
1267 rq->rt_avg += rt_delta;
1268 sched_avg_update(rq);
1269 }
1270
1271 #else /* !CONFIG_SMP */
1272 static void resched_task(struct task_struct *p)
1273 {
1274 assert_spin_locked(&task_rq(p)->lock);
1275 set_tsk_need_resched(p);
1276 }
1277
1278 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1279 {
1280 }
1281 #endif /* CONFIG_SMP */
1282
1283 #if BITS_PER_LONG == 32
1284 # define WMULT_CONST (~0UL)
1285 #else
1286 # define WMULT_CONST (1UL << 32)
1287 #endif
1288
1289 #define WMULT_SHIFT 32
1290
1291 /*
1292 * Shift right and round:
1293 */
1294 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1295
1296 /*
1297 * delta *= weight / lw
1298 */
1299 static unsigned long
1300 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1301 struct load_weight *lw)
1302 {
1303 u64 tmp;
1304
1305 if (!lw->inv_weight) {
1306 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1307 lw->inv_weight = 1;
1308 else
1309 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1310 / (lw->weight+1);
1311 }
1312
1313 tmp = (u64)delta_exec * weight;
1314 /*
1315 * Check whether we'd overflow the 64-bit multiplication:
1316 */
1317 if (unlikely(tmp > WMULT_CONST))
1318 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1319 WMULT_SHIFT/2);
1320 else
1321 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1322
1323 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1324 }
1325
1326 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1327 {
1328 lw->weight += inc;
1329 lw->inv_weight = 0;
1330 }
1331
1332 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1333 {
1334 lw->weight -= dec;
1335 lw->inv_weight = 0;
1336 }
1337
1338 /*
1339 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1340 * of tasks with abnormal "nice" values across CPUs the contribution that
1341 * each task makes to its run queue's load is weighted according to its
1342 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1343 * scaled version of the new time slice allocation that they receive on time
1344 * slice expiry etc.
1345 */
1346
1347 #define WEIGHT_IDLEPRIO 3
1348 #define WMULT_IDLEPRIO 1431655765
1349
1350 /*
1351 * Nice levels are multiplicative, with a gentle 10% change for every
1352 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1353 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1354 * that remained on nice 0.
1355 *
1356 * The "10% effect" is relative and cumulative: from _any_ nice level,
1357 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1358 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1359 * If a task goes up by ~10% and another task goes down by ~10% then
1360 * the relative distance between them is ~25%.)
1361 */
1362 static const int prio_to_weight[40] = {
1363 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1364 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1365 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1366 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1367 /* 0 */ 1024, 820, 655, 526, 423,
1368 /* 5 */ 335, 272, 215, 172, 137,
1369 /* 10 */ 110, 87, 70, 56, 45,
1370 /* 15 */ 36, 29, 23, 18, 15,
1371 };
1372
1373 /*
1374 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1375 *
1376 * In cases where the weight does not change often, we can use the
1377 * precalculated inverse to speed up arithmetics by turning divisions
1378 * into multiplications:
1379 */
1380 static const u32 prio_to_wmult[40] = {
1381 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1382 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1383 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1384 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1385 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1386 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1387 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1388 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1389 };
1390
1391 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1392
1393 /*
1394 * runqueue iterator, to support SMP load-balancing between different
1395 * scheduling classes, without having to expose their internal data
1396 * structures to the load-balancing proper:
1397 */
1398 struct rq_iterator {
1399 void *arg;
1400 struct task_struct *(*start)(void *);
1401 struct task_struct *(*next)(void *);
1402 };
1403
1404 #ifdef CONFIG_SMP
1405 static unsigned long
1406 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1407 unsigned long max_load_move, struct sched_domain *sd,
1408 enum cpu_idle_type idle, int *all_pinned,
1409 int *this_best_prio, struct rq_iterator *iterator);
1410
1411 static int
1412 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1413 struct sched_domain *sd, enum cpu_idle_type idle,
1414 struct rq_iterator *iterator);
1415 #endif
1416
1417 /* Time spent by the tasks of the cpu accounting group executing in ... */
1418 enum cpuacct_stat_index {
1419 CPUACCT_STAT_USER, /* ... user mode */
1420 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1421
1422 CPUACCT_STAT_NSTATS,
1423 };
1424
1425 #ifdef CONFIG_CGROUP_CPUACCT
1426 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1427 static void cpuacct_update_stats(struct task_struct *tsk,
1428 enum cpuacct_stat_index idx, cputime_t val);
1429 #else
1430 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1431 static inline void cpuacct_update_stats(struct task_struct *tsk,
1432 enum cpuacct_stat_index idx, cputime_t val) {}
1433 #endif
1434
1435 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1436 {
1437 update_load_add(&rq->load, load);
1438 }
1439
1440 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1441 {
1442 update_load_sub(&rq->load, load);
1443 }
1444
1445 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1446 typedef int (*tg_visitor)(struct task_group *, void *);
1447
1448 /*
1449 * Iterate the full tree, calling @down when first entering a node and @up when
1450 * leaving it for the final time.
1451 */
1452 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1453 {
1454 struct task_group *parent, *child;
1455 int ret;
1456
1457 rcu_read_lock();
1458 parent = &root_task_group;
1459 down:
1460 ret = (*down)(parent, data);
1461 if (ret)
1462 goto out_unlock;
1463 list_for_each_entry_rcu(child, &parent->children, siblings) {
1464 parent = child;
1465 goto down;
1466
1467 up:
1468 continue;
1469 }
1470 ret = (*up)(parent, data);
1471 if (ret)
1472 goto out_unlock;
1473
1474 child = parent;
1475 parent = parent->parent;
1476 if (parent)
1477 goto up;
1478 out_unlock:
1479 rcu_read_unlock();
1480
1481 return ret;
1482 }
1483
1484 static int tg_nop(struct task_group *tg, void *data)
1485 {
1486 return 0;
1487 }
1488 #endif
1489
1490 #ifdef CONFIG_SMP
1491 /* Used instead of source_load when we know the type == 0 */
1492 static unsigned long weighted_cpuload(const int cpu)
1493 {
1494 return cpu_rq(cpu)->load.weight;
1495 }
1496
1497 /*
1498 * Return a low guess at the load of a migration-source cpu weighted
1499 * according to the scheduling class and "nice" value.
1500 *
1501 * We want to under-estimate the load of migration sources, to
1502 * balance conservatively.
1503 */
1504 static unsigned long source_load(int cpu, int type)
1505 {
1506 struct rq *rq = cpu_rq(cpu);
1507 unsigned long total = weighted_cpuload(cpu);
1508
1509 if (type == 0 || !sched_feat(LB_BIAS))
1510 return total;
1511
1512 return min(rq->cpu_load[type-1], total);
1513 }
1514
1515 /*
1516 * Return a high guess at the load of a migration-target cpu weighted
1517 * according to the scheduling class and "nice" value.
1518 */
1519 static unsigned long target_load(int cpu, int type)
1520 {
1521 struct rq *rq = cpu_rq(cpu);
1522 unsigned long total = weighted_cpuload(cpu);
1523
1524 if (type == 0 || !sched_feat(LB_BIAS))
1525 return total;
1526
1527 return max(rq->cpu_load[type-1], total);
1528 }
1529
1530 static struct sched_group *group_of(int cpu)
1531 {
1532 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
1533
1534 if (!sd)
1535 return NULL;
1536
1537 return sd->groups;
1538 }
1539
1540 static unsigned long power_of(int cpu)
1541 {
1542 struct sched_group *group = group_of(cpu);
1543
1544 if (!group)
1545 return SCHED_LOAD_SCALE;
1546
1547 return group->cpu_power;
1548 }
1549
1550 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1551
1552 static unsigned long cpu_avg_load_per_task(int cpu)
1553 {
1554 struct rq *rq = cpu_rq(cpu);
1555 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1556
1557 if (nr_running)
1558 rq->avg_load_per_task = rq->load.weight / nr_running;
1559 else
1560 rq->avg_load_per_task = 0;
1561
1562 return rq->avg_load_per_task;
1563 }
1564
1565 #ifdef CONFIG_FAIR_GROUP_SCHED
1566
1567 struct update_shares_data {
1568 unsigned long rq_weight[NR_CPUS];
1569 };
1570
1571 static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1572
1573 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1574
1575 /*
1576 * Calculate and set the cpu's group shares.
1577 */
1578 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1579 unsigned long sd_shares,
1580 unsigned long sd_rq_weight,
1581 struct update_shares_data *usd)
1582 {
1583 unsigned long shares, rq_weight;
1584 int boost = 0;
1585
1586 rq_weight = usd->rq_weight[cpu];
1587 if (!rq_weight) {
1588 boost = 1;
1589 rq_weight = NICE_0_LOAD;
1590 }
1591
1592 /*
1593 * \Sum_j shares_j * rq_weight_i
1594 * shares_i = -----------------------------
1595 * \Sum_j rq_weight_j
1596 */
1597 shares = (sd_shares * rq_weight) / sd_rq_weight;
1598 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1599
1600 if (abs(shares - tg->se[cpu]->load.weight) >
1601 sysctl_sched_shares_thresh) {
1602 struct rq *rq = cpu_rq(cpu);
1603 unsigned long flags;
1604
1605 spin_lock_irqsave(&rq->lock, flags);
1606 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1607 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1608 __set_se_shares(tg->se[cpu], shares);
1609 spin_unlock_irqrestore(&rq->lock, flags);
1610 }
1611 }
1612
1613 /*
1614 * Re-compute the task group their per cpu shares over the given domain.
1615 * This needs to be done in a bottom-up fashion because the rq weight of a
1616 * parent group depends on the shares of its child groups.
1617 */
1618 static int tg_shares_up(struct task_group *tg, void *data)
1619 {
1620 unsigned long weight, rq_weight = 0, shares = 0;
1621 struct update_shares_data *usd;
1622 struct sched_domain *sd = data;
1623 unsigned long flags;
1624 int i;
1625
1626 if (!tg->se[0])
1627 return 0;
1628
1629 local_irq_save(flags);
1630 usd = &__get_cpu_var(update_shares_data);
1631
1632 for_each_cpu(i, sched_domain_span(sd)) {
1633 weight = tg->cfs_rq[i]->load.weight;
1634 usd->rq_weight[i] = weight;
1635
1636 /*
1637 * If there are currently no tasks on the cpu pretend there
1638 * is one of average load so that when a new task gets to
1639 * run here it will not get delayed by group starvation.
1640 */
1641 if (!weight)
1642 weight = NICE_0_LOAD;
1643
1644 rq_weight += weight;
1645 shares += tg->cfs_rq[i]->shares;
1646 }
1647
1648 if ((!shares && rq_weight) || shares > tg->shares)
1649 shares = tg->shares;
1650
1651 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1652 shares = tg->shares;
1653
1654 for_each_cpu(i, sched_domain_span(sd))
1655 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1656
1657 local_irq_restore(flags);
1658
1659 return 0;
1660 }
1661
1662 /*
1663 * Compute the cpu's hierarchical load factor for each task group.
1664 * This needs to be done in a top-down fashion because the load of a child
1665 * group is a fraction of its parents load.
1666 */
1667 static int tg_load_down(struct task_group *tg, void *data)
1668 {
1669 unsigned long load;
1670 long cpu = (long)data;
1671
1672 if (!tg->parent) {
1673 load = cpu_rq(cpu)->load.weight;
1674 } else {
1675 load = tg->parent->cfs_rq[cpu]->h_load;
1676 load *= tg->cfs_rq[cpu]->shares;
1677 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1678 }
1679
1680 tg->cfs_rq[cpu]->h_load = load;
1681
1682 return 0;
1683 }
1684
1685 static void update_shares(struct sched_domain *sd)
1686 {
1687 s64 elapsed;
1688 u64 now;
1689
1690 if (root_task_group_empty())
1691 return;
1692
1693 now = cpu_clock(raw_smp_processor_id());
1694 elapsed = now - sd->last_update;
1695
1696 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1697 sd->last_update = now;
1698 walk_tg_tree(tg_nop, tg_shares_up, sd);
1699 }
1700 }
1701
1702 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1703 {
1704 if (root_task_group_empty())
1705 return;
1706
1707 spin_unlock(&rq->lock);
1708 update_shares(sd);
1709 spin_lock(&rq->lock);
1710 }
1711
1712 static void update_h_load(long cpu)
1713 {
1714 if (root_task_group_empty())
1715 return;
1716
1717 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1718 }
1719
1720 #else
1721
1722 static inline void update_shares(struct sched_domain *sd)
1723 {
1724 }
1725
1726 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1727 {
1728 }
1729
1730 #endif
1731
1732 #ifdef CONFIG_PREEMPT
1733
1734 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1735
1736 /*
1737 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1738 * way at the expense of forcing extra atomic operations in all
1739 * invocations. This assures that the double_lock is acquired using the
1740 * same underlying policy as the spinlock_t on this architecture, which
1741 * reduces latency compared to the unfair variant below. However, it
1742 * also adds more overhead and therefore may reduce throughput.
1743 */
1744 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1745 __releases(this_rq->lock)
1746 __acquires(busiest->lock)
1747 __acquires(this_rq->lock)
1748 {
1749 spin_unlock(&this_rq->lock);
1750 double_rq_lock(this_rq, busiest);
1751
1752 return 1;
1753 }
1754
1755 #else
1756 /*
1757 * Unfair double_lock_balance: Optimizes throughput at the expense of
1758 * latency by eliminating extra atomic operations when the locks are
1759 * already in proper order on entry. This favors lower cpu-ids and will
1760 * grant the double lock to lower cpus over higher ids under contention,
1761 * regardless of entry order into the function.
1762 */
1763 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1764 __releases(this_rq->lock)
1765 __acquires(busiest->lock)
1766 __acquires(this_rq->lock)
1767 {
1768 int ret = 0;
1769
1770 if (unlikely(!spin_trylock(&busiest->lock))) {
1771 if (busiest < this_rq) {
1772 spin_unlock(&this_rq->lock);
1773 spin_lock(&busiest->lock);
1774 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1775 ret = 1;
1776 } else
1777 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1778 }
1779 return ret;
1780 }
1781
1782 #endif /* CONFIG_PREEMPT */
1783
1784 /*
1785 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1786 */
1787 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1788 {
1789 if (unlikely(!irqs_disabled())) {
1790 /* printk() doesn't work good under rq->lock */
1791 spin_unlock(&this_rq->lock);
1792 BUG_ON(1);
1793 }
1794
1795 return _double_lock_balance(this_rq, busiest);
1796 }
1797
1798 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1799 __releases(busiest->lock)
1800 {
1801 spin_unlock(&busiest->lock);
1802 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1803 }
1804 #endif
1805
1806 #ifdef CONFIG_FAIR_GROUP_SCHED
1807 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1808 {
1809 #ifdef CONFIG_SMP
1810 cfs_rq->shares = shares;
1811 #endif
1812 }
1813 #endif
1814
1815 static void calc_load_account_active(struct rq *this_rq);
1816
1817 #include "sched_stats.h"
1818 #include "sched_idletask.c"
1819 #include "sched_fair.c"
1820 #include "sched_rt.c"
1821 #ifdef CONFIG_SCHED_DEBUG
1822 # include "sched_debug.c"
1823 #endif
1824
1825 #define sched_class_highest (&rt_sched_class)
1826 #define for_each_class(class) \
1827 for (class = sched_class_highest; class; class = class->next)
1828
1829 static void inc_nr_running(struct rq *rq)
1830 {
1831 rq->nr_running++;
1832 }
1833
1834 static void dec_nr_running(struct rq *rq)
1835 {
1836 rq->nr_running--;
1837 }
1838
1839 static void set_load_weight(struct task_struct *p)
1840 {
1841 if (task_has_rt_policy(p)) {
1842 p->se.load.weight = prio_to_weight[0] * 2;
1843 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1844 return;
1845 }
1846
1847 /*
1848 * SCHED_IDLE tasks get minimal weight:
1849 */
1850 if (p->policy == SCHED_IDLE) {
1851 p->se.load.weight = WEIGHT_IDLEPRIO;
1852 p->se.load.inv_weight = WMULT_IDLEPRIO;
1853 return;
1854 }
1855
1856 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1857 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1858 }
1859
1860 static void update_avg(u64 *avg, u64 sample)
1861 {
1862 s64 diff = sample - *avg;
1863 *avg += diff >> 3;
1864 }
1865
1866 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1867 {
1868 if (wakeup)
1869 p->se.start_runtime = p->se.sum_exec_runtime;
1870
1871 sched_info_queued(p);
1872 p->sched_class->enqueue_task(rq, p, wakeup);
1873 p->se.on_rq = 1;
1874 }
1875
1876 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1877 {
1878 if (sleep) {
1879 if (p->se.last_wakeup) {
1880 update_avg(&p->se.avg_overlap,
1881 p->se.sum_exec_runtime - p->se.last_wakeup);
1882 p->se.last_wakeup = 0;
1883 } else {
1884 update_avg(&p->se.avg_wakeup,
1885 sysctl_sched_wakeup_granularity);
1886 }
1887 }
1888
1889 sched_info_dequeued(p);
1890 p->sched_class->dequeue_task(rq, p, sleep);
1891 p->se.on_rq = 0;
1892 }
1893
1894 /*
1895 * __normal_prio - return the priority that is based on the static prio
1896 */
1897 static inline int __normal_prio(struct task_struct *p)
1898 {
1899 return p->static_prio;
1900 }
1901
1902 /*
1903 * Calculate the expected normal priority: i.e. priority
1904 * without taking RT-inheritance into account. Might be
1905 * boosted by interactivity modifiers. Changes upon fork,
1906 * setprio syscalls, and whenever the interactivity
1907 * estimator recalculates.
1908 */
1909 static inline int normal_prio(struct task_struct *p)
1910 {
1911 int prio;
1912
1913 if (task_has_rt_policy(p))
1914 prio = MAX_RT_PRIO-1 - p->rt_priority;
1915 else
1916 prio = __normal_prio(p);
1917 return prio;
1918 }
1919
1920 /*
1921 * Calculate the current priority, i.e. the priority
1922 * taken into account by the scheduler. This value might
1923 * be boosted by RT tasks, or might be boosted by
1924 * interactivity modifiers. Will be RT if the task got
1925 * RT-boosted. If not then it returns p->normal_prio.
1926 */
1927 static int effective_prio(struct task_struct *p)
1928 {
1929 p->normal_prio = normal_prio(p);
1930 /*
1931 * If we are RT tasks or we were boosted to RT priority,
1932 * keep the priority unchanged. Otherwise, update priority
1933 * to the normal priority:
1934 */
1935 if (!rt_prio(p->prio))
1936 return p->normal_prio;
1937 return p->prio;
1938 }
1939
1940 /*
1941 * activate_task - move a task to the runqueue.
1942 */
1943 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1944 {
1945 if (task_contributes_to_load(p))
1946 rq->nr_uninterruptible--;
1947
1948 enqueue_task(rq, p, wakeup);
1949 inc_nr_running(rq);
1950 }
1951
1952 /*
1953 * deactivate_task - remove a task from the runqueue.
1954 */
1955 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1956 {
1957 if (task_contributes_to_load(p))
1958 rq->nr_uninterruptible++;
1959
1960 dequeue_task(rq, p, sleep);
1961 dec_nr_running(rq);
1962 }
1963
1964 /**
1965 * task_curr - is this task currently executing on a CPU?
1966 * @p: the task in question.
1967 */
1968 inline int task_curr(const struct task_struct *p)
1969 {
1970 return cpu_curr(task_cpu(p)) == p;
1971 }
1972
1973 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1974 {
1975 set_task_rq(p, cpu);
1976 #ifdef CONFIG_SMP
1977 /*
1978 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1979 * successfuly executed on another CPU. We must ensure that updates of
1980 * per-task data have been completed by this moment.
1981 */
1982 smp_wmb();
1983 task_thread_info(p)->cpu = cpu;
1984 #endif
1985 }
1986
1987 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1988 const struct sched_class *prev_class,
1989 int oldprio, int running)
1990 {
1991 if (prev_class != p->sched_class) {
1992 if (prev_class->switched_from)
1993 prev_class->switched_from(rq, p, running);
1994 p->sched_class->switched_to(rq, p, running);
1995 } else
1996 p->sched_class->prio_changed(rq, p, oldprio, running);
1997 }
1998
1999 #ifdef CONFIG_SMP
2000 /*
2001 * Is this task likely cache-hot:
2002 */
2003 static int
2004 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2005 {
2006 s64 delta;
2007
2008 /*
2009 * Buddy candidates are cache hot:
2010 */
2011 if (sched_feat(CACHE_HOT_BUDDY) &&
2012 (&p->se == cfs_rq_of(&p->se)->next ||
2013 &p->se == cfs_rq_of(&p->se)->last))
2014 return 1;
2015
2016 if (p->sched_class != &fair_sched_class)
2017 return 0;
2018
2019 if (sysctl_sched_migration_cost == -1)
2020 return 1;
2021 if (sysctl_sched_migration_cost == 0)
2022 return 0;
2023
2024 delta = now - p->se.exec_start;
2025
2026 return delta < (s64)sysctl_sched_migration_cost;
2027 }
2028
2029
2030 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2031 {
2032 int old_cpu = task_cpu(p);
2033 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2034 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2035 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2036 u64 clock_offset;
2037
2038 clock_offset = old_rq->clock - new_rq->clock;
2039
2040 trace_sched_migrate_task(p, new_cpu);
2041
2042 #ifdef CONFIG_SCHEDSTATS
2043 if (p->se.wait_start)
2044 p->se.wait_start -= clock_offset;
2045 if (p->se.sleep_start)
2046 p->se.sleep_start -= clock_offset;
2047 if (p->se.block_start)
2048 p->se.block_start -= clock_offset;
2049 #endif
2050 if (old_cpu != new_cpu) {
2051 p->se.nr_migrations++;
2052 #ifdef CONFIG_SCHEDSTATS
2053 if (task_hot(p, old_rq->clock, NULL))
2054 schedstat_inc(p, se.nr_forced2_migrations);
2055 #endif
2056 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2057 1, 1, NULL, 0);
2058 }
2059 p->se.vruntime -= old_cfsrq->min_vruntime -
2060 new_cfsrq->min_vruntime;
2061
2062 __set_task_cpu(p, new_cpu);
2063 }
2064
2065 struct migration_req {
2066 struct list_head list;
2067
2068 struct task_struct *task;
2069 int dest_cpu;
2070
2071 struct completion done;
2072 };
2073
2074 /*
2075 * The task's runqueue lock must be held.
2076 * Returns true if you have to wait for migration thread.
2077 */
2078 static int
2079 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2080 {
2081 struct rq *rq = task_rq(p);
2082
2083 /*
2084 * If the task is not on a runqueue (and not running), then
2085 * it is sufficient to simply update the task's cpu field.
2086 */
2087 if (!p->se.on_rq && !task_running(rq, p)) {
2088 set_task_cpu(p, dest_cpu);
2089 return 0;
2090 }
2091
2092 init_completion(&req->done);
2093 req->task = p;
2094 req->dest_cpu = dest_cpu;
2095 list_add(&req->list, &rq->migration_queue);
2096
2097 return 1;
2098 }
2099
2100 /*
2101 * wait_task_context_switch - wait for a thread to complete at least one
2102 * context switch.
2103 *
2104 * @p must not be current.
2105 */
2106 void wait_task_context_switch(struct task_struct *p)
2107 {
2108 unsigned long nvcsw, nivcsw, flags;
2109 int running;
2110 struct rq *rq;
2111
2112 nvcsw = p->nvcsw;
2113 nivcsw = p->nivcsw;
2114 for (;;) {
2115 /*
2116 * The runqueue is assigned before the actual context
2117 * switch. We need to take the runqueue lock.
2118 *
2119 * We could check initially without the lock but it is
2120 * very likely that we need to take the lock in every
2121 * iteration.
2122 */
2123 rq = task_rq_lock(p, &flags);
2124 running = task_running(rq, p);
2125 task_rq_unlock(rq, &flags);
2126
2127 if (likely(!running))
2128 break;
2129 /*
2130 * The switch count is incremented before the actual
2131 * context switch. We thus wait for two switches to be
2132 * sure at least one completed.
2133 */
2134 if ((p->nvcsw - nvcsw) > 1)
2135 break;
2136 if ((p->nivcsw - nivcsw) > 1)
2137 break;
2138
2139 cpu_relax();
2140 }
2141 }
2142
2143 /*
2144 * wait_task_inactive - wait for a thread to unschedule.
2145 *
2146 * If @match_state is nonzero, it's the @p->state value just checked and
2147 * not expected to change. If it changes, i.e. @p might have woken up,
2148 * then return zero. When we succeed in waiting for @p to be off its CPU,
2149 * we return a positive number (its total switch count). If a second call
2150 * a short while later returns the same number, the caller can be sure that
2151 * @p has remained unscheduled the whole time.
2152 *
2153 * The caller must ensure that the task *will* unschedule sometime soon,
2154 * else this function might spin for a *long* time. This function can't
2155 * be called with interrupts off, or it may introduce deadlock with
2156 * smp_call_function() if an IPI is sent by the same process we are
2157 * waiting to become inactive.
2158 */
2159 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2160 {
2161 unsigned long flags;
2162 int running, on_rq;
2163 unsigned long ncsw;
2164 struct rq *rq;
2165
2166 for (;;) {
2167 /*
2168 * We do the initial early heuristics without holding
2169 * any task-queue locks at all. We'll only try to get
2170 * the runqueue lock when things look like they will
2171 * work out!
2172 */
2173 rq = task_rq(p);
2174
2175 /*
2176 * If the task is actively running on another CPU
2177 * still, just relax and busy-wait without holding
2178 * any locks.
2179 *
2180 * NOTE! Since we don't hold any locks, it's not
2181 * even sure that "rq" stays as the right runqueue!
2182 * But we don't care, since "task_running()" will
2183 * return false if the runqueue has changed and p
2184 * is actually now running somewhere else!
2185 */
2186 while (task_running(rq, p)) {
2187 if (match_state && unlikely(p->state != match_state))
2188 return 0;
2189 cpu_relax();
2190 }
2191
2192 /*
2193 * Ok, time to look more closely! We need the rq
2194 * lock now, to be *sure*. If we're wrong, we'll
2195 * just go back and repeat.
2196 */
2197 rq = task_rq_lock(p, &flags);
2198 trace_sched_wait_task(rq, p);
2199 running = task_running(rq, p);
2200 on_rq = p->se.on_rq;
2201 ncsw = 0;
2202 if (!match_state || p->state == match_state)
2203 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2204 task_rq_unlock(rq, &flags);
2205
2206 /*
2207 * If it changed from the expected state, bail out now.
2208 */
2209 if (unlikely(!ncsw))
2210 break;
2211
2212 /*
2213 * Was it really running after all now that we
2214 * checked with the proper locks actually held?
2215 *
2216 * Oops. Go back and try again..
2217 */
2218 if (unlikely(running)) {
2219 cpu_relax();
2220 continue;
2221 }
2222
2223 /*
2224 * It's not enough that it's not actively running,
2225 * it must be off the runqueue _entirely_, and not
2226 * preempted!
2227 *
2228 * So if it was still runnable (but just not actively
2229 * running right now), it's preempted, and we should
2230 * yield - it could be a while.
2231 */
2232 if (unlikely(on_rq)) {
2233 schedule_timeout_uninterruptible(1);
2234 continue;
2235 }
2236
2237 /*
2238 * Ahh, all good. It wasn't running, and it wasn't
2239 * runnable, which means that it will never become
2240 * running in the future either. We're all done!
2241 */
2242 break;
2243 }
2244
2245 return ncsw;
2246 }
2247
2248 /***
2249 * kick_process - kick a running thread to enter/exit the kernel
2250 * @p: the to-be-kicked thread
2251 *
2252 * Cause a process which is running on another CPU to enter
2253 * kernel-mode, without any delay. (to get signals handled.)
2254 *
2255 * NOTE: this function doesnt have to take the runqueue lock,
2256 * because all it wants to ensure is that the remote task enters
2257 * the kernel. If the IPI races and the task has been migrated
2258 * to another CPU then no harm is done and the purpose has been
2259 * achieved as well.
2260 */
2261 void kick_process(struct task_struct *p)
2262 {
2263 int cpu;
2264
2265 preempt_disable();
2266 cpu = task_cpu(p);
2267 if ((cpu != smp_processor_id()) && task_curr(p))
2268 smp_send_reschedule(cpu);
2269 preempt_enable();
2270 }
2271 EXPORT_SYMBOL_GPL(kick_process);
2272 #endif /* CONFIG_SMP */
2273
2274 /**
2275 * task_oncpu_function_call - call a function on the cpu on which a task runs
2276 * @p: the task to evaluate
2277 * @func: the function to be called
2278 * @info: the function call argument
2279 *
2280 * Calls the function @func when the task is currently running. This might
2281 * be on the current CPU, which just calls the function directly
2282 */
2283 void task_oncpu_function_call(struct task_struct *p,
2284 void (*func) (void *info), void *info)
2285 {
2286 int cpu;
2287
2288 preempt_disable();
2289 cpu = task_cpu(p);
2290 if (task_curr(p))
2291 smp_call_function_single(cpu, func, info, 1);
2292 preempt_enable();
2293 }
2294
2295 /***
2296 * try_to_wake_up - wake up a thread
2297 * @p: the to-be-woken-up thread
2298 * @state: the mask of task states that can be woken
2299 * @sync: do a synchronous wakeup?
2300 *
2301 * Put it on the run-queue if it's not already there. The "current"
2302 * thread is always on the run-queue (except when the actual
2303 * re-schedule is in progress), and as such you're allowed to do
2304 * the simpler "current->state = TASK_RUNNING" to mark yourself
2305 * runnable without the overhead of this.
2306 *
2307 * returns failure only if the task is already active.
2308 */
2309 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2310 int wake_flags)
2311 {
2312 int cpu, orig_cpu, this_cpu, success = 0;
2313 unsigned long flags;
2314 struct rq *rq, *orig_rq;
2315
2316 if (!sched_feat(SYNC_WAKEUPS))
2317 wake_flags &= ~WF_SYNC;
2318
2319 this_cpu = get_cpu();
2320
2321 smp_wmb();
2322 rq = orig_rq = task_rq_lock(p, &flags);
2323 update_rq_clock(rq);
2324 if (!(p->state & state))
2325 goto out;
2326
2327 if (p->se.on_rq)
2328 goto out_running;
2329
2330 cpu = task_cpu(p);
2331 orig_cpu = cpu;
2332
2333 #ifdef CONFIG_SMP
2334 if (unlikely(task_running(rq, p)))
2335 goto out_activate;
2336
2337 /*
2338 * In order to handle concurrent wakeups and release the rq->lock
2339 * we put the task in TASK_WAKING state.
2340 *
2341 * First fix up the nr_uninterruptible count:
2342 */
2343 if (task_contributes_to_load(p))
2344 rq->nr_uninterruptible--;
2345 p->state = TASK_WAKING;
2346 task_rq_unlock(rq, &flags);
2347
2348 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2349 if (cpu != orig_cpu)
2350 set_task_cpu(p, cpu);
2351
2352 rq = task_rq_lock(p, &flags);
2353
2354 if (rq != orig_rq)
2355 update_rq_clock(rq);
2356
2357 WARN_ON(p->state != TASK_WAKING);
2358 cpu = task_cpu(p);
2359
2360 #ifdef CONFIG_SCHEDSTATS
2361 schedstat_inc(rq, ttwu_count);
2362 if (cpu == this_cpu)
2363 schedstat_inc(rq, ttwu_local);
2364 else {
2365 struct sched_domain *sd;
2366 for_each_domain(this_cpu, sd) {
2367 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2368 schedstat_inc(sd, ttwu_wake_remote);
2369 break;
2370 }
2371 }
2372 }
2373 #endif /* CONFIG_SCHEDSTATS */
2374
2375 out_activate:
2376 #endif /* CONFIG_SMP */
2377 schedstat_inc(p, se.nr_wakeups);
2378 if (wake_flags & WF_SYNC)
2379 schedstat_inc(p, se.nr_wakeups_sync);
2380 if (orig_cpu != cpu)
2381 schedstat_inc(p, se.nr_wakeups_migrate);
2382 if (cpu == this_cpu)
2383 schedstat_inc(p, se.nr_wakeups_local);
2384 else
2385 schedstat_inc(p, se.nr_wakeups_remote);
2386 activate_task(rq, p, 1);
2387 success = 1;
2388
2389 /*
2390 * Only attribute actual wakeups done by this task.
2391 */
2392 if (!in_interrupt()) {
2393 struct sched_entity *se = &current->se;
2394 u64 sample = se->sum_exec_runtime;
2395
2396 if (se->last_wakeup)
2397 sample -= se->last_wakeup;
2398 else
2399 sample -= se->start_runtime;
2400 update_avg(&se->avg_wakeup, sample);
2401
2402 se->last_wakeup = se->sum_exec_runtime;
2403 }
2404
2405 out_running:
2406 trace_sched_wakeup(rq, p, success);
2407 check_preempt_curr(rq, p, wake_flags);
2408
2409 p->state = TASK_RUNNING;
2410 #ifdef CONFIG_SMP
2411 if (p->sched_class->task_wake_up)
2412 p->sched_class->task_wake_up(rq, p);
2413
2414 if (unlikely(rq->idle_stamp)) {
2415 u64 delta = rq->clock - rq->idle_stamp;
2416 u64 max = 2*sysctl_sched_migration_cost;
2417
2418 if (delta > max)
2419 rq->avg_idle = max;
2420 else
2421 update_avg(&rq->avg_idle, delta);
2422 rq->idle_stamp = 0;
2423 }
2424 #endif
2425 out:
2426 task_rq_unlock(rq, &flags);
2427 put_cpu();
2428
2429 return success;
2430 }
2431
2432 /**
2433 * wake_up_process - Wake up a specific process
2434 * @p: The process to be woken up.
2435 *
2436 * Attempt to wake up the nominated process and move it to the set of runnable
2437 * processes. Returns 1 if the process was woken up, 0 if it was already
2438 * running.
2439 *
2440 * It may be assumed that this function implies a write memory barrier before
2441 * changing the task state if and only if any tasks are woken up.
2442 */
2443 int wake_up_process(struct task_struct *p)
2444 {
2445 return try_to_wake_up(p, TASK_ALL, 0);
2446 }
2447 EXPORT_SYMBOL(wake_up_process);
2448
2449 int wake_up_state(struct task_struct *p, unsigned int state)
2450 {
2451 return try_to_wake_up(p, state, 0);
2452 }
2453
2454 /*
2455 * Perform scheduler related setup for a newly forked process p.
2456 * p is forked by current.
2457 *
2458 * __sched_fork() is basic setup used by init_idle() too:
2459 */
2460 static void __sched_fork(struct task_struct *p)
2461 {
2462 p->se.exec_start = 0;
2463 p->se.sum_exec_runtime = 0;
2464 p->se.prev_sum_exec_runtime = 0;
2465 p->se.nr_migrations = 0;
2466 p->se.last_wakeup = 0;
2467 p->se.avg_overlap = 0;
2468 p->se.start_runtime = 0;
2469 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2470 p->se.avg_running = 0;
2471
2472 #ifdef CONFIG_SCHEDSTATS
2473 p->se.wait_start = 0;
2474 p->se.wait_max = 0;
2475 p->se.wait_count = 0;
2476 p->se.wait_sum = 0;
2477
2478 p->se.sleep_start = 0;
2479 p->se.sleep_max = 0;
2480 p->se.sum_sleep_runtime = 0;
2481
2482 p->se.block_start = 0;
2483 p->se.block_max = 0;
2484 p->se.exec_max = 0;
2485 p->se.slice_max = 0;
2486
2487 p->se.nr_migrations_cold = 0;
2488 p->se.nr_failed_migrations_affine = 0;
2489 p->se.nr_failed_migrations_running = 0;
2490 p->se.nr_failed_migrations_hot = 0;
2491 p->se.nr_forced_migrations = 0;
2492 p->se.nr_forced2_migrations = 0;
2493
2494 p->se.nr_wakeups = 0;
2495 p->se.nr_wakeups_sync = 0;
2496 p->se.nr_wakeups_migrate = 0;
2497 p->se.nr_wakeups_local = 0;
2498 p->se.nr_wakeups_remote = 0;
2499 p->se.nr_wakeups_affine = 0;
2500 p->se.nr_wakeups_affine_attempts = 0;
2501 p->se.nr_wakeups_passive = 0;
2502 p->se.nr_wakeups_idle = 0;
2503
2504 #endif
2505
2506 INIT_LIST_HEAD(&p->rt.run_list);
2507 p->se.on_rq = 0;
2508 INIT_LIST_HEAD(&p->se.group_node);
2509
2510 #ifdef CONFIG_PREEMPT_NOTIFIERS
2511 INIT_HLIST_HEAD(&p->preempt_notifiers);
2512 #endif
2513
2514 /*
2515 * We mark the process as running here, but have not actually
2516 * inserted it onto the runqueue yet. This guarantees that
2517 * nobody will actually run it, and a signal or other external
2518 * event cannot wake it up and insert it on the runqueue either.
2519 */
2520 p->state = TASK_RUNNING;
2521 }
2522
2523 /*
2524 * fork()/clone()-time setup:
2525 */
2526 void sched_fork(struct task_struct *p, int clone_flags)
2527 {
2528 int cpu = get_cpu();
2529
2530 __sched_fork(p);
2531
2532 /*
2533 * Revert to default priority/policy on fork if requested.
2534 */
2535 if (unlikely(p->sched_reset_on_fork)) {
2536 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2537 p->policy = SCHED_NORMAL;
2538 p->normal_prio = p->static_prio;
2539 }
2540
2541 if (PRIO_TO_NICE(p->static_prio) < 0) {
2542 p->static_prio = NICE_TO_PRIO(0);
2543 p->normal_prio = p->static_prio;
2544 set_load_weight(p);
2545 }
2546
2547 /*
2548 * We don't need the reset flag anymore after the fork. It has
2549 * fulfilled its duty:
2550 */
2551 p->sched_reset_on_fork = 0;
2552 }
2553
2554 /*
2555 * Make sure we do not leak PI boosting priority to the child.
2556 */
2557 p->prio = current->normal_prio;
2558
2559 if (!rt_prio(p->prio))
2560 p->sched_class = &fair_sched_class;
2561
2562 #ifdef CONFIG_SMP
2563 cpu = p->sched_class->select_task_rq(p, SD_BALANCE_FORK, 0);
2564 #endif
2565 set_task_cpu(p, cpu);
2566
2567 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2568 if (likely(sched_info_on()))
2569 memset(&p->sched_info, 0, sizeof(p->sched_info));
2570 #endif
2571 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2572 p->oncpu = 0;
2573 #endif
2574 #ifdef CONFIG_PREEMPT
2575 /* Want to start with kernel preemption disabled. */
2576 task_thread_info(p)->preempt_count = 1;
2577 #endif
2578 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2579
2580 put_cpu();
2581 }
2582
2583 /*
2584 * wake_up_new_task - wake up a newly created task for the first time.
2585 *
2586 * This function will do some initial scheduler statistics housekeeping
2587 * that must be done for every newly created context, then puts the task
2588 * on the runqueue and wakes it.
2589 */
2590 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2591 {
2592 unsigned long flags;
2593 struct rq *rq;
2594
2595 rq = task_rq_lock(p, &flags);
2596 BUG_ON(p->state != TASK_RUNNING);
2597 update_rq_clock(rq);
2598
2599 if (!p->sched_class->task_new || !current->se.on_rq) {
2600 activate_task(rq, p, 0);
2601 } else {
2602 /*
2603 * Let the scheduling class do new task startup
2604 * management (if any):
2605 */
2606 p->sched_class->task_new(rq, p);
2607 inc_nr_running(rq);
2608 }
2609 trace_sched_wakeup_new(rq, p, 1);
2610 check_preempt_curr(rq, p, WF_FORK);
2611 #ifdef CONFIG_SMP
2612 if (p->sched_class->task_wake_up)
2613 p->sched_class->task_wake_up(rq, p);
2614 #endif
2615 task_rq_unlock(rq, &flags);
2616 }
2617
2618 #ifdef CONFIG_PREEMPT_NOTIFIERS
2619
2620 /**
2621 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2622 * @notifier: notifier struct to register
2623 */
2624 void preempt_notifier_register(struct preempt_notifier *notifier)
2625 {
2626 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2627 }
2628 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2629
2630 /**
2631 * preempt_notifier_unregister - no longer interested in preemption notifications
2632 * @notifier: notifier struct to unregister
2633 *
2634 * This is safe to call from within a preemption notifier.
2635 */
2636 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2637 {
2638 hlist_del(&notifier->link);
2639 }
2640 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2641
2642 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2643 {
2644 struct preempt_notifier *notifier;
2645 struct hlist_node *node;
2646
2647 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2648 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2649 }
2650
2651 static void
2652 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2653 struct task_struct *next)
2654 {
2655 struct preempt_notifier *notifier;
2656 struct hlist_node *node;
2657
2658 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2659 notifier->ops->sched_out(notifier, next);
2660 }
2661
2662 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2663
2664 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2665 {
2666 }
2667
2668 static void
2669 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2670 struct task_struct *next)
2671 {
2672 }
2673
2674 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2675
2676 /**
2677 * prepare_task_switch - prepare to switch tasks
2678 * @rq: the runqueue preparing to switch
2679 * @prev: the current task that is being switched out
2680 * @next: the task we are going to switch to.
2681 *
2682 * This is called with the rq lock held and interrupts off. It must
2683 * be paired with a subsequent finish_task_switch after the context
2684 * switch.
2685 *
2686 * prepare_task_switch sets up locking and calls architecture specific
2687 * hooks.
2688 */
2689 static inline void
2690 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2691 struct task_struct *next)
2692 {
2693 fire_sched_out_preempt_notifiers(prev, next);
2694 prepare_lock_switch(rq, next);
2695 prepare_arch_switch(next);
2696 }
2697
2698 /**
2699 * finish_task_switch - clean up after a task-switch
2700 * @rq: runqueue associated with task-switch
2701 * @prev: the thread we just switched away from.
2702 *
2703 * finish_task_switch must be called after the context switch, paired
2704 * with a prepare_task_switch call before the context switch.
2705 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2706 * and do any other architecture-specific cleanup actions.
2707 *
2708 * Note that we may have delayed dropping an mm in context_switch(). If
2709 * so, we finish that here outside of the runqueue lock. (Doing it
2710 * with the lock held can cause deadlocks; see schedule() for
2711 * details.)
2712 */
2713 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2714 __releases(rq->lock)
2715 {
2716 struct mm_struct *mm = rq->prev_mm;
2717 long prev_state;
2718
2719 rq->prev_mm = NULL;
2720
2721 /*
2722 * A task struct has one reference for the use as "current".
2723 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2724 * schedule one last time. The schedule call will never return, and
2725 * the scheduled task must drop that reference.
2726 * The test for TASK_DEAD must occur while the runqueue locks are
2727 * still held, otherwise prev could be scheduled on another cpu, die
2728 * there before we look at prev->state, and then the reference would
2729 * be dropped twice.
2730 * Manfred Spraul <manfred@colorfullife.com>
2731 */
2732 prev_state = prev->state;
2733 finish_arch_switch(prev);
2734 perf_event_task_sched_in(current, cpu_of(rq));
2735 finish_lock_switch(rq, prev);
2736
2737 fire_sched_in_preempt_notifiers(current);
2738 if (mm)
2739 mmdrop(mm);
2740 if (unlikely(prev_state == TASK_DEAD)) {
2741 /*
2742 * Remove function-return probe instances associated with this
2743 * task and put them back on the free list.
2744 */
2745 kprobe_flush_task(prev);
2746 put_task_struct(prev);
2747 }
2748 }
2749
2750 #ifdef CONFIG_SMP
2751
2752 /* assumes rq->lock is held */
2753 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2754 {
2755 if (prev->sched_class->pre_schedule)
2756 prev->sched_class->pre_schedule(rq, prev);
2757 }
2758
2759 /* rq->lock is NOT held, but preemption is disabled */
2760 static inline void post_schedule(struct rq *rq)
2761 {
2762 if (rq->post_schedule) {
2763 unsigned long flags;
2764
2765 spin_lock_irqsave(&rq->lock, flags);
2766 if (rq->curr->sched_class->post_schedule)
2767 rq->curr->sched_class->post_schedule(rq);
2768 spin_unlock_irqrestore(&rq->lock, flags);
2769
2770 rq->post_schedule = 0;
2771 }
2772 }
2773
2774 #else
2775
2776 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2777 {
2778 }
2779
2780 static inline void post_schedule(struct rq *rq)
2781 {
2782 }
2783
2784 #endif
2785
2786 /**
2787 * schedule_tail - first thing a freshly forked thread must call.
2788 * @prev: the thread we just switched away from.
2789 */
2790 asmlinkage void schedule_tail(struct task_struct *prev)
2791 __releases(rq->lock)
2792 {
2793 struct rq *rq = this_rq();
2794
2795 finish_task_switch(rq, prev);
2796
2797 /*
2798 * FIXME: do we need to worry about rq being invalidated by the
2799 * task_switch?
2800 */
2801 post_schedule(rq);
2802
2803 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2804 /* In this case, finish_task_switch does not reenable preemption */
2805 preempt_enable();
2806 #endif
2807 if (current->set_child_tid)
2808 put_user(task_pid_vnr(current), current->set_child_tid);
2809 }
2810
2811 /*
2812 * context_switch - switch to the new MM and the new
2813 * thread's register state.
2814 */
2815 static inline void
2816 context_switch(struct rq *rq, struct task_struct *prev,
2817 struct task_struct *next)
2818 {
2819 struct mm_struct *mm, *oldmm;
2820
2821 prepare_task_switch(rq, prev, next);
2822 trace_sched_switch(rq, prev, next);
2823 mm = next->mm;
2824 oldmm = prev->active_mm;
2825 /*
2826 * For paravirt, this is coupled with an exit in switch_to to
2827 * combine the page table reload and the switch backend into
2828 * one hypercall.
2829 */
2830 arch_start_context_switch(prev);
2831
2832 if (likely(!mm)) {
2833 next->active_mm = oldmm;
2834 atomic_inc(&oldmm->mm_count);
2835 enter_lazy_tlb(oldmm, next);
2836 } else
2837 switch_mm(oldmm, mm, next);
2838
2839 if (likely(!prev->mm)) {
2840 prev->active_mm = NULL;
2841 rq->prev_mm = oldmm;
2842 }
2843 /*
2844 * Since the runqueue lock will be released by the next
2845 * task (which is an invalid locking op but in the case
2846 * of the scheduler it's an obvious special-case), so we
2847 * do an early lockdep release here:
2848 */
2849 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2850 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2851 #endif
2852
2853 /* Here we just switch the register state and the stack. */
2854 switch_to(prev, next, prev);
2855
2856 barrier();
2857 /*
2858 * this_rq must be evaluated again because prev may have moved
2859 * CPUs since it called schedule(), thus the 'rq' on its stack
2860 * frame will be invalid.
2861 */
2862 finish_task_switch(this_rq(), prev);
2863 }
2864
2865 /*
2866 * nr_running, nr_uninterruptible and nr_context_switches:
2867 *
2868 * externally visible scheduler statistics: current number of runnable
2869 * threads, current number of uninterruptible-sleeping threads, total
2870 * number of context switches performed since bootup.
2871 */
2872 unsigned long nr_running(void)
2873 {
2874 unsigned long i, sum = 0;
2875
2876 for_each_online_cpu(i)
2877 sum += cpu_rq(i)->nr_running;
2878
2879 return sum;
2880 }
2881
2882 unsigned long nr_uninterruptible(void)
2883 {
2884 unsigned long i, sum = 0;
2885
2886 for_each_possible_cpu(i)
2887 sum += cpu_rq(i)->nr_uninterruptible;
2888
2889 /*
2890 * Since we read the counters lockless, it might be slightly
2891 * inaccurate. Do not allow it to go below zero though:
2892 */
2893 if (unlikely((long)sum < 0))
2894 sum = 0;
2895
2896 return sum;
2897 }
2898
2899 unsigned long long nr_context_switches(void)
2900 {
2901 int i;
2902 unsigned long long sum = 0;
2903
2904 for_each_possible_cpu(i)
2905 sum += cpu_rq(i)->nr_switches;
2906
2907 return sum;
2908 }
2909
2910 unsigned long nr_iowait(void)
2911 {
2912 unsigned long i, sum = 0;
2913
2914 for_each_possible_cpu(i)
2915 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2916
2917 return sum;
2918 }
2919
2920 unsigned long nr_iowait_cpu(void)
2921 {
2922 struct rq *this = this_rq();
2923 return atomic_read(&this->nr_iowait);
2924 }
2925
2926 unsigned long this_cpu_load(void)
2927 {
2928 struct rq *this = this_rq();
2929 return this->cpu_load[0];
2930 }
2931
2932
2933 /* Variables and functions for calc_load */
2934 static atomic_long_t calc_load_tasks;
2935 static unsigned long calc_load_update;
2936 unsigned long avenrun[3];
2937 EXPORT_SYMBOL(avenrun);
2938
2939 /**
2940 * get_avenrun - get the load average array
2941 * @loads: pointer to dest load array
2942 * @offset: offset to add
2943 * @shift: shift count to shift the result left
2944 *
2945 * These values are estimates at best, so no need for locking.
2946 */
2947 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2948 {
2949 loads[0] = (avenrun[0] + offset) << shift;
2950 loads[1] = (avenrun[1] + offset) << shift;
2951 loads[2] = (avenrun[2] + offset) << shift;
2952 }
2953
2954 static unsigned long
2955 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2956 {
2957 load *= exp;
2958 load += active * (FIXED_1 - exp);
2959 return load >> FSHIFT;
2960 }
2961
2962 /*
2963 * calc_load - update the avenrun load estimates 10 ticks after the
2964 * CPUs have updated calc_load_tasks.
2965 */
2966 void calc_global_load(void)
2967 {
2968 unsigned long upd = calc_load_update + 10;
2969 long active;
2970
2971 if (time_before(jiffies, upd))
2972 return;
2973
2974 active = atomic_long_read(&calc_load_tasks);
2975 active = active > 0 ? active * FIXED_1 : 0;
2976
2977 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2978 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2979 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2980
2981 calc_load_update += LOAD_FREQ;
2982 }
2983
2984 /*
2985 * Either called from update_cpu_load() or from a cpu going idle
2986 */
2987 static void calc_load_account_active(struct rq *this_rq)
2988 {
2989 long nr_active, delta;
2990
2991 nr_active = this_rq->nr_running;
2992 nr_active += (long) this_rq->nr_uninterruptible;
2993
2994 if (nr_active != this_rq->calc_load_active) {
2995 delta = nr_active - this_rq->calc_load_active;
2996 this_rq->calc_load_active = nr_active;
2997 atomic_long_add(delta, &calc_load_tasks);
2998 }
2999 }
3000
3001 /*
3002 * Update rq->cpu_load[] statistics. This function is usually called every
3003 * scheduler tick (TICK_NSEC).
3004 */
3005 static void update_cpu_load(struct rq *this_rq)
3006 {
3007 unsigned long this_load = this_rq->load.weight;
3008 int i, scale;
3009
3010 this_rq->nr_load_updates++;
3011
3012 /* Update our load: */
3013 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3014 unsigned long old_load, new_load;
3015
3016 /* scale is effectively 1 << i now, and >> i divides by scale */
3017
3018 old_load = this_rq->cpu_load[i];
3019 new_load = this_load;
3020 /*
3021 * Round up the averaging division if load is increasing. This
3022 * prevents us from getting stuck on 9 if the load is 10, for
3023 * example.
3024 */
3025 if (new_load > old_load)
3026 new_load += scale-1;
3027 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3028 }
3029
3030 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3031 this_rq->calc_load_update += LOAD_FREQ;
3032 calc_load_account_active(this_rq);
3033 }
3034 }
3035
3036 #ifdef CONFIG_SMP
3037
3038 /*
3039 * double_rq_lock - safely lock two runqueues
3040 *
3041 * Note this does not disable interrupts like task_rq_lock,
3042 * you need to do so manually before calling.
3043 */
3044 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3045 __acquires(rq1->lock)
3046 __acquires(rq2->lock)
3047 {
3048 BUG_ON(!irqs_disabled());
3049 if (rq1 == rq2) {
3050 spin_lock(&rq1->lock);
3051 __acquire(rq2->lock); /* Fake it out ;) */
3052 } else {
3053 if (rq1 < rq2) {
3054 spin_lock(&rq1->lock);
3055 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3056 } else {
3057 spin_lock(&rq2->lock);
3058 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3059 }
3060 }
3061 update_rq_clock(rq1);
3062 update_rq_clock(rq2);
3063 }
3064
3065 /*
3066 * double_rq_unlock - safely unlock two runqueues
3067 *
3068 * Note this does not restore interrupts like task_rq_unlock,
3069 * you need to do so manually after calling.
3070 */
3071 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3072 __releases(rq1->lock)
3073 __releases(rq2->lock)
3074 {
3075 spin_unlock(&rq1->lock);
3076 if (rq1 != rq2)
3077 spin_unlock(&rq2->lock);
3078 else
3079 __release(rq2->lock);
3080 }
3081
3082 /*
3083 * If dest_cpu is allowed for this process, migrate the task to it.
3084 * This is accomplished by forcing the cpu_allowed mask to only
3085 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3086 * the cpu_allowed mask is restored.
3087 */
3088 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3089 {
3090 struct migration_req req;
3091 unsigned long flags;
3092 struct rq *rq;
3093
3094 rq = task_rq_lock(p, &flags);
3095 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3096 || unlikely(!cpu_active(dest_cpu)))
3097 goto out;
3098
3099 /* force the process onto the specified CPU */
3100 if (migrate_task(p, dest_cpu, &req)) {
3101 /* Need to wait for migration thread (might exit: take ref). */
3102 struct task_struct *mt = rq->migration_thread;
3103
3104 get_task_struct(mt);
3105 task_rq_unlock(rq, &flags);
3106 wake_up_process(mt);
3107 put_task_struct(mt);
3108 wait_for_completion(&req.done);
3109
3110 return;
3111 }
3112 out:
3113 task_rq_unlock(rq, &flags);
3114 }
3115
3116 /*
3117 * sched_exec - execve() is a valuable balancing opportunity, because at
3118 * this point the task has the smallest effective memory and cache footprint.
3119 */
3120 void sched_exec(void)
3121 {
3122 int new_cpu, this_cpu = get_cpu();
3123 new_cpu = current->sched_class->select_task_rq(current, SD_BALANCE_EXEC, 0);
3124 put_cpu();
3125 if (new_cpu != this_cpu)
3126 sched_migrate_task(current, new_cpu);
3127 }
3128
3129 /*
3130 * pull_task - move a task from a remote runqueue to the local runqueue.
3131 * Both runqueues must be locked.
3132 */
3133 static void pull_task(struct rq *src_rq, struct task_struct *p,
3134 struct rq *this_rq, int this_cpu)
3135 {
3136 deactivate_task(src_rq, p, 0);
3137 set_task_cpu(p, this_cpu);
3138 activate_task(this_rq, p, 0);
3139 /*
3140 * Note that idle threads have a prio of MAX_PRIO, for this test
3141 * to be always true for them.
3142 */
3143 check_preempt_curr(this_rq, p, 0);
3144 }
3145
3146 /*
3147 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3148 */
3149 static
3150 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3151 struct sched_domain *sd, enum cpu_idle_type idle,
3152 int *all_pinned)
3153 {
3154 int tsk_cache_hot = 0;
3155 /*
3156 * We do not migrate tasks that are:
3157 * 1) running (obviously), or
3158 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3159 * 3) are cache-hot on their current CPU.
3160 */
3161 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3162 schedstat_inc(p, se.nr_failed_migrations_affine);
3163 return 0;
3164 }
3165 *all_pinned = 0;
3166
3167 if (task_running(rq, p)) {
3168 schedstat_inc(p, se.nr_failed_migrations_running);
3169 return 0;
3170 }
3171
3172 /*
3173 * Aggressive migration if:
3174 * 1) task is cache cold, or
3175 * 2) too many balance attempts have failed.
3176 */
3177
3178 tsk_cache_hot = task_hot(p, rq->clock, sd);
3179 if (!tsk_cache_hot ||
3180 sd->nr_balance_failed > sd->cache_nice_tries) {
3181 #ifdef CONFIG_SCHEDSTATS
3182 if (tsk_cache_hot) {
3183 schedstat_inc(sd, lb_hot_gained[idle]);
3184 schedstat_inc(p, se.nr_forced_migrations);
3185 }
3186 #endif
3187 return 1;
3188 }
3189
3190 if (tsk_cache_hot) {
3191 schedstat_inc(p, se.nr_failed_migrations_hot);
3192 return 0;
3193 }
3194 return 1;
3195 }
3196
3197 static unsigned long
3198 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3199 unsigned long max_load_move, struct sched_domain *sd,
3200 enum cpu_idle_type idle, int *all_pinned,
3201 int *this_best_prio, struct rq_iterator *iterator)
3202 {
3203 int loops = 0, pulled = 0, pinned = 0;
3204 struct task_struct *p;
3205 long rem_load_move = max_load_move;
3206
3207 if (max_load_move == 0)
3208 goto out;
3209
3210 pinned = 1;
3211
3212 /*
3213 * Start the load-balancing iterator:
3214 */
3215 p = iterator->start(iterator->arg);
3216 next:
3217 if (!p || loops++ > sysctl_sched_nr_migrate)
3218 goto out;
3219
3220 if ((p->se.load.weight >> 1) > rem_load_move ||
3221 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3222 p = iterator->next(iterator->arg);
3223 goto next;
3224 }
3225
3226 pull_task(busiest, p, this_rq, this_cpu);
3227 pulled++;
3228 rem_load_move -= p->se.load.weight;
3229
3230 #ifdef CONFIG_PREEMPT
3231 /*
3232 * NEWIDLE balancing is a source of latency, so preemptible kernels
3233 * will stop after the first task is pulled to minimize the critical
3234 * section.
3235 */
3236 if (idle == CPU_NEWLY_IDLE)
3237 goto out;
3238 #endif
3239
3240 /*
3241 * We only want to steal up to the prescribed amount of weighted load.
3242 */
3243 if (rem_load_move > 0) {
3244 if (p->prio < *this_best_prio)
3245 *this_best_prio = p->prio;
3246 p = iterator->next(iterator->arg);
3247 goto next;
3248 }
3249 out:
3250 /*
3251 * Right now, this is one of only two places pull_task() is called,
3252 * so we can safely collect pull_task() stats here rather than
3253 * inside pull_task().
3254 */
3255 schedstat_add(sd, lb_gained[idle], pulled);
3256
3257 if (all_pinned)
3258 *all_pinned = pinned;
3259
3260 return max_load_move - rem_load_move;
3261 }
3262
3263 /*
3264 * move_tasks tries to move up to max_load_move weighted load from busiest to
3265 * this_rq, as part of a balancing operation within domain "sd".
3266 * Returns 1 if successful and 0 otherwise.
3267 *
3268 * Called with both runqueues locked.
3269 */
3270 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3271 unsigned long max_load_move,
3272 struct sched_domain *sd, enum cpu_idle_type idle,
3273 int *all_pinned)
3274 {
3275 const struct sched_class *class = sched_class_highest;
3276 unsigned long total_load_moved = 0;
3277 int this_best_prio = this_rq->curr->prio;
3278
3279 do {
3280 total_load_moved +=
3281 class->load_balance(this_rq, this_cpu, busiest,
3282 max_load_move - total_load_moved,
3283 sd, idle, all_pinned, &this_best_prio);
3284 class = class->next;
3285
3286 #ifdef CONFIG_PREEMPT
3287 /*
3288 * NEWIDLE balancing is a source of latency, so preemptible
3289 * kernels will stop after the first task is pulled to minimize
3290 * the critical section.
3291 */
3292 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3293 break;
3294 #endif
3295 } while (class && max_load_move > total_load_moved);
3296
3297 return total_load_moved > 0;
3298 }
3299
3300 static int
3301 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3302 struct sched_domain *sd, enum cpu_idle_type idle,
3303 struct rq_iterator *iterator)
3304 {
3305 struct task_struct *p = iterator->start(iterator->arg);
3306 int pinned = 0;
3307
3308 while (p) {
3309 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3310 pull_task(busiest, p, this_rq, this_cpu);
3311 /*
3312 * Right now, this is only the second place pull_task()
3313 * is called, so we can safely collect pull_task()
3314 * stats here rather than inside pull_task().
3315 */
3316 schedstat_inc(sd, lb_gained[idle]);
3317
3318 return 1;
3319 }
3320 p = iterator->next(iterator->arg);
3321 }
3322
3323 return 0;
3324 }
3325
3326 /*
3327 * move_one_task tries to move exactly one task from busiest to this_rq, as
3328 * part of active balancing operations within "domain".
3329 * Returns 1 if successful and 0 otherwise.
3330 *
3331 * Called with both runqueues locked.
3332 */
3333 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3334 struct sched_domain *sd, enum cpu_idle_type idle)
3335 {
3336 const struct sched_class *class;
3337
3338 for_each_class(class) {
3339 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3340 return 1;
3341 }
3342
3343 return 0;
3344 }
3345 /********** Helpers for find_busiest_group ************************/
3346 /*
3347 * sd_lb_stats - Structure to store the statistics of a sched_domain
3348 * during load balancing.
3349 */
3350 struct sd_lb_stats {
3351 struct sched_group *busiest; /* Busiest group in this sd */
3352 struct sched_group *this; /* Local group in this sd */
3353 unsigned long total_load; /* Total load of all groups in sd */
3354 unsigned long total_pwr; /* Total power of all groups in sd */
3355 unsigned long avg_load; /* Average load across all groups in sd */
3356
3357 /** Statistics of this group */
3358 unsigned long this_load;
3359 unsigned long this_load_per_task;
3360 unsigned long this_nr_running;
3361
3362 /* Statistics of the busiest group */
3363 unsigned long max_load;
3364 unsigned long busiest_load_per_task;
3365 unsigned long busiest_nr_running;
3366
3367 int group_imb; /* Is there imbalance in this sd */
3368 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3369 int power_savings_balance; /* Is powersave balance needed for this sd */
3370 struct sched_group *group_min; /* Least loaded group in sd */
3371 struct sched_group *group_leader; /* Group which relieves group_min */
3372 unsigned long min_load_per_task; /* load_per_task in group_min */
3373 unsigned long leader_nr_running; /* Nr running of group_leader */
3374 unsigned long min_nr_running; /* Nr running of group_min */
3375 #endif
3376 };
3377
3378 /*
3379 * sg_lb_stats - stats of a sched_group required for load_balancing
3380 */
3381 struct sg_lb_stats {
3382 unsigned long avg_load; /*Avg load across the CPUs of the group */
3383 unsigned long group_load; /* Total load over the CPUs of the group */
3384 unsigned long sum_nr_running; /* Nr tasks running in the group */
3385 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3386 unsigned long group_capacity;
3387 int group_imb; /* Is there an imbalance in the group ? */
3388 };
3389
3390 /**
3391 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3392 * @group: The group whose first cpu is to be returned.
3393 */
3394 static inline unsigned int group_first_cpu(struct sched_group *group)
3395 {
3396 return cpumask_first(sched_group_cpus(group));
3397 }
3398
3399 /**
3400 * get_sd_load_idx - Obtain the load index for a given sched domain.
3401 * @sd: The sched_domain whose load_idx is to be obtained.
3402 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3403 */
3404 static inline int get_sd_load_idx(struct sched_domain *sd,
3405 enum cpu_idle_type idle)
3406 {
3407 int load_idx;
3408
3409 switch (idle) {
3410 case CPU_NOT_IDLE:
3411 load_idx = sd->busy_idx;
3412 break;
3413
3414 case CPU_NEWLY_IDLE:
3415 load_idx = sd->newidle_idx;
3416 break;
3417 default:
3418 load_idx = sd->idle_idx;
3419 break;
3420 }
3421
3422 return load_idx;
3423 }
3424
3425
3426 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3427 /**
3428 * init_sd_power_savings_stats - Initialize power savings statistics for
3429 * the given sched_domain, during load balancing.
3430 *
3431 * @sd: Sched domain whose power-savings statistics are to be initialized.
3432 * @sds: Variable containing the statistics for sd.
3433 * @idle: Idle status of the CPU at which we're performing load-balancing.
3434 */
3435 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3436 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3437 {
3438 /*
3439 * Busy processors will not participate in power savings
3440 * balance.
3441 */
3442 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3443 sds->power_savings_balance = 0;
3444 else {
3445 sds->power_savings_balance = 1;
3446 sds->min_nr_running = ULONG_MAX;
3447 sds->leader_nr_running = 0;
3448 }
3449 }
3450
3451 /**
3452 * update_sd_power_savings_stats - Update the power saving stats for a
3453 * sched_domain while performing load balancing.
3454 *
3455 * @group: sched_group belonging to the sched_domain under consideration.
3456 * @sds: Variable containing the statistics of the sched_domain
3457 * @local_group: Does group contain the CPU for which we're performing
3458 * load balancing ?
3459 * @sgs: Variable containing the statistics of the group.
3460 */
3461 static inline void update_sd_power_savings_stats(struct sched_group *group,
3462 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3463 {
3464
3465 if (!sds->power_savings_balance)
3466 return;
3467
3468 /*
3469 * If the local group is idle or completely loaded
3470 * no need to do power savings balance at this domain
3471 */
3472 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3473 !sds->this_nr_running))
3474 sds->power_savings_balance = 0;
3475
3476 /*
3477 * If a group is already running at full capacity or idle,
3478 * don't include that group in power savings calculations
3479 */
3480 if (!sds->power_savings_balance ||
3481 sgs->sum_nr_running >= sgs->group_capacity ||
3482 !sgs->sum_nr_running)
3483 return;
3484
3485 /*
3486 * Calculate the group which has the least non-idle load.
3487 * This is the group from where we need to pick up the load
3488 * for saving power
3489 */
3490 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3491 (sgs->sum_nr_running == sds->min_nr_running &&
3492 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3493 sds->group_min = group;
3494 sds->min_nr_running = sgs->sum_nr_running;
3495 sds->min_load_per_task = sgs->sum_weighted_load /
3496 sgs->sum_nr_running;
3497 }
3498
3499 /*
3500 * Calculate the group which is almost near its
3501 * capacity but still has some space to pick up some load
3502 * from other group and save more power
3503 */
3504 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3505 return;
3506
3507 if (sgs->sum_nr_running > sds->leader_nr_running ||
3508 (sgs->sum_nr_running == sds->leader_nr_running &&
3509 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3510 sds->group_leader = group;
3511 sds->leader_nr_running = sgs->sum_nr_running;
3512 }
3513 }
3514
3515 /**
3516 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3517 * @sds: Variable containing the statistics of the sched_domain
3518 * under consideration.
3519 * @this_cpu: Cpu at which we're currently performing load-balancing.
3520 * @imbalance: Variable to store the imbalance.
3521 *
3522 * Description:
3523 * Check if we have potential to perform some power-savings balance.
3524 * If yes, set the busiest group to be the least loaded group in the
3525 * sched_domain, so that it's CPUs can be put to idle.
3526 *
3527 * Returns 1 if there is potential to perform power-savings balance.
3528 * Else returns 0.
3529 */
3530 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3531 int this_cpu, unsigned long *imbalance)
3532 {
3533 if (!sds->power_savings_balance)
3534 return 0;
3535
3536 if (sds->this != sds->group_leader ||
3537 sds->group_leader == sds->group_min)
3538 return 0;
3539
3540 *imbalance = sds->min_load_per_task;
3541 sds->busiest = sds->group_min;
3542
3543 return 1;
3544
3545 }
3546 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3547 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3548 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3549 {
3550 return;
3551 }
3552
3553 static inline void update_sd_power_savings_stats(struct sched_group *group,
3554 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3555 {
3556 return;
3557 }
3558
3559 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3560 int this_cpu, unsigned long *imbalance)
3561 {
3562 return 0;
3563 }
3564 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3565
3566
3567 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
3568 {
3569 return SCHED_LOAD_SCALE;
3570 }
3571
3572 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
3573 {
3574 return default_scale_freq_power(sd, cpu);
3575 }
3576
3577 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
3578 {
3579 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3580 unsigned long smt_gain = sd->smt_gain;
3581
3582 smt_gain /= weight;
3583
3584 return smt_gain;
3585 }
3586
3587 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3588 {
3589 return default_scale_smt_power(sd, cpu);
3590 }
3591
3592 unsigned long scale_rt_power(int cpu)
3593 {
3594 struct rq *rq = cpu_rq(cpu);
3595 u64 total, available;
3596
3597 sched_avg_update(rq);
3598
3599 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3600 available = total - rq->rt_avg;
3601
3602 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3603 total = SCHED_LOAD_SCALE;
3604
3605 total >>= SCHED_LOAD_SHIFT;
3606
3607 return div_u64(available, total);
3608 }
3609
3610 static void update_cpu_power(struct sched_domain *sd, int cpu)
3611 {
3612 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3613 unsigned long power = SCHED_LOAD_SCALE;
3614 struct sched_group *sdg = sd->groups;
3615
3616 if (sched_feat(ARCH_POWER))
3617 power *= arch_scale_freq_power(sd, cpu);
3618 else
3619 power *= default_scale_freq_power(sd, cpu);
3620
3621 power >>= SCHED_LOAD_SHIFT;
3622
3623 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3624 if (sched_feat(ARCH_POWER))
3625 power *= arch_scale_smt_power(sd, cpu);
3626 else
3627 power *= default_scale_smt_power(sd, cpu);
3628
3629 power >>= SCHED_LOAD_SHIFT;
3630 }
3631
3632 power *= scale_rt_power(cpu);
3633 power >>= SCHED_LOAD_SHIFT;
3634
3635 if (!power)
3636 power = 1;
3637
3638 sdg->cpu_power = power;
3639 }
3640
3641 static void update_group_power(struct sched_domain *sd, int cpu)
3642 {
3643 struct sched_domain *child = sd->child;
3644 struct sched_group *group, *sdg = sd->groups;
3645 unsigned long power;
3646
3647 if (!child) {
3648 update_cpu_power(sd, cpu);
3649 return;
3650 }
3651
3652 power = 0;
3653
3654 group = child->groups;
3655 do {
3656 power += group->cpu_power;
3657 group = group->next;
3658 } while (group != child->groups);
3659
3660 sdg->cpu_power = power;
3661 }
3662
3663 /**
3664 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3665 * @sd: The sched_domain whose statistics are to be updated.
3666 * @group: sched_group whose statistics are to be updated.
3667 * @this_cpu: Cpu for which load balance is currently performed.
3668 * @idle: Idle status of this_cpu
3669 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3670 * @sd_idle: Idle status of the sched_domain containing group.
3671 * @local_group: Does group contain this_cpu.
3672 * @cpus: Set of cpus considered for load balancing.
3673 * @balance: Should we balance.
3674 * @sgs: variable to hold the statistics for this group.
3675 */
3676 static inline void update_sg_lb_stats(struct sched_domain *sd,
3677 struct sched_group *group, int this_cpu,
3678 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3679 int local_group, const struct cpumask *cpus,
3680 int *balance, struct sg_lb_stats *sgs)
3681 {
3682 unsigned long load, max_cpu_load, min_cpu_load;
3683 int i;
3684 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3685 unsigned long sum_avg_load_per_task;
3686 unsigned long avg_load_per_task;
3687
3688 if (local_group) {
3689 balance_cpu = group_first_cpu(group);
3690 if (balance_cpu == this_cpu)
3691 update_group_power(sd, this_cpu);
3692 }
3693
3694 /* Tally up the load of all CPUs in the group */
3695 sum_avg_load_per_task = avg_load_per_task = 0;
3696 max_cpu_load = 0;
3697 min_cpu_load = ~0UL;
3698
3699 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3700 struct rq *rq = cpu_rq(i);
3701
3702 if (*sd_idle && rq->nr_running)
3703 *sd_idle = 0;
3704
3705 /* Bias balancing toward cpus of our domain */
3706 if (local_group) {
3707 if (idle_cpu(i) && !first_idle_cpu) {
3708 first_idle_cpu = 1;
3709 balance_cpu = i;
3710 }
3711
3712 load = target_load(i, load_idx);
3713 } else {
3714 load = source_load(i, load_idx);
3715 if (load > max_cpu_load)
3716 max_cpu_load = load;
3717 if (min_cpu_load > load)
3718 min_cpu_load = load;
3719 }
3720
3721 sgs->group_load += load;
3722 sgs->sum_nr_running += rq->nr_running;
3723 sgs->sum_weighted_load += weighted_cpuload(i);
3724
3725 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3726 }
3727
3728 /*
3729 * First idle cpu or the first cpu(busiest) in this sched group
3730 * is eligible for doing load balancing at this and above
3731 * domains. In the newly idle case, we will allow all the cpu's
3732 * to do the newly idle load balance.
3733 */
3734 if (idle != CPU_NEWLY_IDLE && local_group &&
3735 balance_cpu != this_cpu && balance) {
3736 *balance = 0;
3737 return;
3738 }
3739
3740 /* Adjust by relative CPU power of the group */
3741 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3742
3743
3744 /*
3745 * Consider the group unbalanced when the imbalance is larger
3746 * than the average weight of two tasks.
3747 *
3748 * APZ: with cgroup the avg task weight can vary wildly and
3749 * might not be a suitable number - should we keep a
3750 * normalized nr_running number somewhere that negates
3751 * the hierarchy?
3752 */
3753 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3754 group->cpu_power;
3755
3756 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3757 sgs->group_imb = 1;
3758
3759 sgs->group_capacity =
3760 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3761 }
3762
3763 /**
3764 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3765 * @sd: sched_domain whose statistics are to be updated.
3766 * @this_cpu: Cpu for which load balance is currently performed.
3767 * @idle: Idle status of this_cpu
3768 * @sd_idle: Idle status of the sched_domain containing group.
3769 * @cpus: Set of cpus considered for load balancing.
3770 * @balance: Should we balance.
3771 * @sds: variable to hold the statistics for this sched_domain.
3772 */
3773 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3774 enum cpu_idle_type idle, int *sd_idle,
3775 const struct cpumask *cpus, int *balance,
3776 struct sd_lb_stats *sds)
3777 {
3778 struct sched_domain *child = sd->child;
3779 struct sched_group *group = sd->groups;
3780 struct sg_lb_stats sgs;
3781 int load_idx, prefer_sibling = 0;
3782
3783 if (child && child->flags & SD_PREFER_SIBLING)
3784 prefer_sibling = 1;
3785
3786 init_sd_power_savings_stats(sd, sds, idle);
3787 load_idx = get_sd_load_idx(sd, idle);
3788
3789 do {
3790 int local_group;
3791
3792 local_group = cpumask_test_cpu(this_cpu,
3793 sched_group_cpus(group));
3794 memset(&sgs, 0, sizeof(sgs));
3795 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3796 local_group, cpus, balance, &sgs);
3797
3798 if (local_group && balance && !(*balance))
3799 return;
3800
3801 sds->total_load += sgs.group_load;
3802 sds->total_pwr += group->cpu_power;
3803
3804 /*
3805 * In case the child domain prefers tasks go to siblings
3806 * first, lower the group capacity to one so that we'll try
3807 * and move all the excess tasks away.
3808 */
3809 if (prefer_sibling)
3810 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3811
3812 if (local_group) {
3813 sds->this_load = sgs.avg_load;
3814 sds->this = group;
3815 sds->this_nr_running = sgs.sum_nr_running;
3816 sds->this_load_per_task = sgs.sum_weighted_load;
3817 } else if (sgs.avg_load > sds->max_load &&
3818 (sgs.sum_nr_running > sgs.group_capacity ||
3819 sgs.group_imb)) {
3820 sds->max_load = sgs.avg_load;
3821 sds->busiest = group;
3822 sds->busiest_nr_running = sgs.sum_nr_running;
3823 sds->busiest_load_per_task = sgs.sum_weighted_load;
3824 sds->group_imb = sgs.group_imb;
3825 }
3826
3827 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3828 group = group->next;
3829 } while (group != sd->groups);
3830 }
3831
3832 /**
3833 * fix_small_imbalance - Calculate the minor imbalance that exists
3834 * amongst the groups of a sched_domain, during
3835 * load balancing.
3836 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3837 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3838 * @imbalance: Variable to store the imbalance.
3839 */
3840 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3841 int this_cpu, unsigned long *imbalance)
3842 {
3843 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3844 unsigned int imbn = 2;
3845
3846 if (sds->this_nr_running) {
3847 sds->this_load_per_task /= sds->this_nr_running;
3848 if (sds->busiest_load_per_task >
3849 sds->this_load_per_task)
3850 imbn = 1;
3851 } else
3852 sds->this_load_per_task =
3853 cpu_avg_load_per_task(this_cpu);
3854
3855 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3856 sds->busiest_load_per_task * imbn) {
3857 *imbalance = sds->busiest_load_per_task;
3858 return;
3859 }
3860
3861 /*
3862 * OK, we don't have enough imbalance to justify moving tasks,
3863 * however we may be able to increase total CPU power used by
3864 * moving them.
3865 */
3866
3867 pwr_now += sds->busiest->cpu_power *
3868 min(sds->busiest_load_per_task, sds->max_load);
3869 pwr_now += sds->this->cpu_power *
3870 min(sds->this_load_per_task, sds->this_load);
3871 pwr_now /= SCHED_LOAD_SCALE;
3872
3873 /* Amount of load we'd subtract */
3874 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3875 sds->busiest->cpu_power;
3876 if (sds->max_load > tmp)
3877 pwr_move += sds->busiest->cpu_power *
3878 min(sds->busiest_load_per_task, sds->max_load - tmp);
3879
3880 /* Amount of load we'd add */
3881 if (sds->max_load * sds->busiest->cpu_power <
3882 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
3883 tmp = (sds->max_load * sds->busiest->cpu_power) /
3884 sds->this->cpu_power;
3885 else
3886 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3887 sds->this->cpu_power;
3888 pwr_move += sds->this->cpu_power *
3889 min(sds->this_load_per_task, sds->this_load + tmp);
3890 pwr_move /= SCHED_LOAD_SCALE;
3891
3892 /* Move if we gain throughput */
3893 if (pwr_move > pwr_now)
3894 *imbalance = sds->busiest_load_per_task;
3895 }
3896
3897 /**
3898 * calculate_imbalance - Calculate the amount of imbalance present within the
3899 * groups of a given sched_domain during load balance.
3900 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3901 * @this_cpu: Cpu for which currently load balance is being performed.
3902 * @imbalance: The variable to store the imbalance.
3903 */
3904 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3905 unsigned long *imbalance)
3906 {
3907 unsigned long max_pull;
3908 /*
3909 * In the presence of smp nice balancing, certain scenarios can have
3910 * max load less than avg load(as we skip the groups at or below
3911 * its cpu_power, while calculating max_load..)
3912 */
3913 if (sds->max_load < sds->avg_load) {
3914 *imbalance = 0;
3915 return fix_small_imbalance(sds, this_cpu, imbalance);
3916 }
3917
3918 /* Don't want to pull so many tasks that a group would go idle */
3919 max_pull = min(sds->max_load - sds->avg_load,
3920 sds->max_load - sds->busiest_load_per_task);
3921
3922 /* How much load to actually move to equalise the imbalance */
3923 *imbalance = min(max_pull * sds->busiest->cpu_power,
3924 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
3925 / SCHED_LOAD_SCALE;
3926
3927 /*
3928 * if *imbalance is less than the average load per runnable task
3929 * there is no gaurantee that any tasks will be moved so we'll have
3930 * a think about bumping its value to force at least one task to be
3931 * moved
3932 */
3933 if (*imbalance < sds->busiest_load_per_task)
3934 return fix_small_imbalance(sds, this_cpu, imbalance);
3935
3936 }
3937 /******* find_busiest_group() helpers end here *********************/
3938
3939 /**
3940 * find_busiest_group - Returns the busiest group within the sched_domain
3941 * if there is an imbalance. If there isn't an imbalance, and
3942 * the user has opted for power-savings, it returns a group whose
3943 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3944 * such a group exists.
3945 *
3946 * Also calculates the amount of weighted load which should be moved
3947 * to restore balance.
3948 *
3949 * @sd: The sched_domain whose busiest group is to be returned.
3950 * @this_cpu: The cpu for which load balancing is currently being performed.
3951 * @imbalance: Variable which stores amount of weighted load which should
3952 * be moved to restore balance/put a group to idle.
3953 * @idle: The idle status of this_cpu.
3954 * @sd_idle: The idleness of sd
3955 * @cpus: The set of CPUs under consideration for load-balancing.
3956 * @balance: Pointer to a variable indicating if this_cpu
3957 * is the appropriate cpu to perform load balancing at this_level.
3958 *
3959 * Returns: - the busiest group if imbalance exists.
3960 * - If no imbalance and user has opted for power-savings balance,
3961 * return the least loaded group whose CPUs can be
3962 * put to idle by rebalancing its tasks onto our group.
3963 */
3964 static struct sched_group *
3965 find_busiest_group(struct sched_domain *sd, int this_cpu,
3966 unsigned long *imbalance, enum cpu_idle_type idle,
3967 int *sd_idle, const struct cpumask *cpus, int *balance)
3968 {
3969 struct sd_lb_stats sds;
3970
3971 memset(&sds, 0, sizeof(sds));
3972
3973 /*
3974 * Compute the various statistics relavent for load balancing at
3975 * this level.
3976 */
3977 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
3978 balance, &sds);
3979
3980 /* Cases where imbalance does not exist from POV of this_cpu */
3981 /* 1) this_cpu is not the appropriate cpu to perform load balancing
3982 * at this level.
3983 * 2) There is no busy sibling group to pull from.
3984 * 3) This group is the busiest group.
3985 * 4) This group is more busy than the avg busieness at this
3986 * sched_domain.
3987 * 5) The imbalance is within the specified limit.
3988 * 6) Any rebalance would lead to ping-pong
3989 */
3990 if (balance && !(*balance))
3991 goto ret;
3992
3993 if (!sds.busiest || sds.busiest_nr_running == 0)
3994 goto out_balanced;
3995
3996 if (sds.this_load >= sds.max_load)
3997 goto out_balanced;
3998
3999 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4000
4001 if (sds.this_load >= sds.avg_load)
4002 goto out_balanced;
4003
4004 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4005 goto out_balanced;
4006
4007 sds.busiest_load_per_task /= sds.busiest_nr_running;
4008 if (sds.group_imb)
4009 sds.busiest_load_per_task =
4010 min(sds.busiest_load_per_task, sds.avg_load);
4011
4012 /*
4013 * We're trying to get all the cpus to the average_load, so we don't
4014 * want to push ourselves above the average load, nor do we wish to
4015 * reduce the max loaded cpu below the average load, as either of these
4016 * actions would just result in more rebalancing later, and ping-pong
4017 * tasks around. Thus we look for the minimum possible imbalance.
4018 * Negative imbalances (*we* are more loaded than anyone else) will
4019 * be counted as no imbalance for these purposes -- we can't fix that
4020 * by pulling tasks to us. Be careful of negative numbers as they'll
4021 * appear as very large values with unsigned longs.
4022 */
4023 if (sds.max_load <= sds.busiest_load_per_task)
4024 goto out_balanced;
4025
4026 /* Looks like there is an imbalance. Compute it */
4027 calculate_imbalance(&sds, this_cpu, imbalance);
4028 return sds.busiest;
4029
4030 out_balanced:
4031 /*
4032 * There is no obvious imbalance. But check if we can do some balancing
4033 * to save power.
4034 */
4035 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4036 return sds.busiest;
4037 ret:
4038 *imbalance = 0;
4039 return NULL;
4040 }
4041
4042 /*
4043 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4044 */
4045 static struct rq *
4046 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4047 unsigned long imbalance, const struct cpumask *cpus)
4048 {
4049 struct rq *busiest = NULL, *rq;
4050 unsigned long max_load = 0;
4051 int i;
4052
4053 for_each_cpu(i, sched_group_cpus(group)) {
4054 unsigned long power = power_of(i);
4055 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4056 unsigned long wl;
4057
4058 if (!cpumask_test_cpu(i, cpus))
4059 continue;
4060
4061 rq = cpu_rq(i);
4062 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4063 wl /= power;
4064
4065 if (capacity && rq->nr_running == 1 && wl > imbalance)
4066 continue;
4067
4068 if (wl > max_load) {
4069 max_load = wl;
4070 busiest = rq;
4071 }
4072 }
4073
4074 return busiest;
4075 }
4076
4077 /*
4078 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4079 * so long as it is large enough.
4080 */
4081 #define MAX_PINNED_INTERVAL 512
4082
4083 /* Working cpumask for load_balance and load_balance_newidle. */
4084 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4085
4086 /*
4087 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4088 * tasks if there is an imbalance.
4089 */
4090 static int load_balance(int this_cpu, struct rq *this_rq,
4091 struct sched_domain *sd, enum cpu_idle_type idle,
4092 int *balance)
4093 {
4094 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4095 struct sched_group *group;
4096 unsigned long imbalance;
4097 struct rq *busiest;
4098 unsigned long flags;
4099 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4100
4101 cpumask_copy(cpus, cpu_online_mask);
4102
4103 /*
4104 * When power savings policy is enabled for the parent domain, idle
4105 * sibling can pick up load irrespective of busy siblings. In this case,
4106 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4107 * portraying it as CPU_NOT_IDLE.
4108 */
4109 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4110 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4111 sd_idle = 1;
4112
4113 schedstat_inc(sd, lb_count[idle]);
4114
4115 redo:
4116 update_shares(sd);
4117 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4118 cpus, balance);
4119
4120 if (*balance == 0)
4121 goto out_balanced;
4122
4123 if (!group) {
4124 schedstat_inc(sd, lb_nobusyg[idle]);
4125 goto out_balanced;
4126 }
4127
4128 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4129 if (!busiest) {
4130 schedstat_inc(sd, lb_nobusyq[idle]);
4131 goto out_balanced;
4132 }
4133
4134 BUG_ON(busiest == this_rq);
4135
4136 schedstat_add(sd, lb_imbalance[idle], imbalance);
4137
4138 ld_moved = 0;
4139 if (busiest->nr_running > 1) {
4140 /*
4141 * Attempt to move tasks. If find_busiest_group has found
4142 * an imbalance but busiest->nr_running <= 1, the group is
4143 * still unbalanced. ld_moved simply stays zero, so it is
4144 * correctly treated as an imbalance.
4145 */
4146 local_irq_save(flags);
4147 double_rq_lock(this_rq, busiest);
4148 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4149 imbalance, sd, idle, &all_pinned);
4150 double_rq_unlock(this_rq, busiest);
4151 local_irq_restore(flags);
4152
4153 /*
4154 * some other cpu did the load balance for us.
4155 */
4156 if (ld_moved && this_cpu != smp_processor_id())
4157 resched_cpu(this_cpu);
4158
4159 /* All tasks on this runqueue were pinned by CPU affinity */
4160 if (unlikely(all_pinned)) {
4161 cpumask_clear_cpu(cpu_of(busiest), cpus);
4162 if (!cpumask_empty(cpus))
4163 goto redo;
4164 goto out_balanced;
4165 }
4166 }
4167
4168 if (!ld_moved) {
4169 schedstat_inc(sd, lb_failed[idle]);
4170 sd->nr_balance_failed++;
4171
4172 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4173
4174 spin_lock_irqsave(&busiest->lock, flags);
4175
4176 /* don't kick the migration_thread, if the curr
4177 * task on busiest cpu can't be moved to this_cpu
4178 */
4179 if (!cpumask_test_cpu(this_cpu,
4180 &busiest->curr->cpus_allowed)) {
4181 spin_unlock_irqrestore(&busiest->lock, flags);
4182 all_pinned = 1;
4183 goto out_one_pinned;
4184 }
4185
4186 if (!busiest->active_balance) {
4187 busiest->active_balance = 1;
4188 busiest->push_cpu = this_cpu;
4189 active_balance = 1;
4190 }
4191 spin_unlock_irqrestore(&busiest->lock, flags);
4192 if (active_balance)
4193 wake_up_process(busiest->migration_thread);
4194
4195 /*
4196 * We've kicked active balancing, reset the failure
4197 * counter.
4198 */
4199 sd->nr_balance_failed = sd->cache_nice_tries+1;
4200 }
4201 } else
4202 sd->nr_balance_failed = 0;
4203
4204 if (likely(!active_balance)) {
4205 /* We were unbalanced, so reset the balancing interval */
4206 sd->balance_interval = sd->min_interval;
4207 } else {
4208 /*
4209 * If we've begun active balancing, start to back off. This
4210 * case may not be covered by the all_pinned logic if there
4211 * is only 1 task on the busy runqueue (because we don't call
4212 * move_tasks).
4213 */
4214 if (sd->balance_interval < sd->max_interval)
4215 sd->balance_interval *= 2;
4216 }
4217
4218 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4219 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4220 ld_moved = -1;
4221
4222 goto out;
4223
4224 out_balanced:
4225 schedstat_inc(sd, lb_balanced[idle]);
4226
4227 sd->nr_balance_failed = 0;
4228
4229 out_one_pinned:
4230 /* tune up the balancing interval */
4231 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4232 (sd->balance_interval < sd->max_interval))
4233 sd->balance_interval *= 2;
4234
4235 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4236 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4237 ld_moved = -1;
4238 else
4239 ld_moved = 0;
4240 out:
4241 if (ld_moved)
4242 update_shares(sd);
4243 return ld_moved;
4244 }
4245
4246 /*
4247 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4248 * tasks if there is an imbalance.
4249 *
4250 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4251 * this_rq is locked.
4252 */
4253 static int
4254 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4255 {
4256 struct sched_group *group;
4257 struct rq *busiest = NULL;
4258 unsigned long imbalance;
4259 int ld_moved = 0;
4260 int sd_idle = 0;
4261 int all_pinned = 0;
4262 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4263
4264 cpumask_copy(cpus, cpu_online_mask);
4265
4266 /*
4267 * When power savings policy is enabled for the parent domain, idle
4268 * sibling can pick up load irrespective of busy siblings. In this case,
4269 * let the state of idle sibling percolate up as IDLE, instead of
4270 * portraying it as CPU_NOT_IDLE.
4271 */
4272 if (sd->flags & SD_SHARE_CPUPOWER &&
4273 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4274 sd_idle = 1;
4275
4276 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4277 redo:
4278 update_shares_locked(this_rq, sd);
4279 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4280 &sd_idle, cpus, NULL);
4281 if (!group) {
4282 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4283 goto out_balanced;
4284 }
4285
4286 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4287 if (!busiest) {
4288 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4289 goto out_balanced;
4290 }
4291
4292 BUG_ON(busiest == this_rq);
4293
4294 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4295
4296 ld_moved = 0;
4297 if (busiest->nr_running > 1) {
4298 /* Attempt to move tasks */
4299 double_lock_balance(this_rq, busiest);
4300 /* this_rq->clock is already updated */
4301 update_rq_clock(busiest);
4302 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4303 imbalance, sd, CPU_NEWLY_IDLE,
4304 &all_pinned);
4305 double_unlock_balance(this_rq, busiest);
4306
4307 if (unlikely(all_pinned)) {
4308 cpumask_clear_cpu(cpu_of(busiest), cpus);
4309 if (!cpumask_empty(cpus))
4310 goto redo;
4311 }
4312 }
4313
4314 if (!ld_moved) {
4315 int active_balance = 0;
4316
4317 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4318 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4319 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4320 return -1;
4321
4322 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4323 return -1;
4324
4325 if (sd->nr_balance_failed++ < 2)
4326 return -1;
4327
4328 /*
4329 * The only task running in a non-idle cpu can be moved to this
4330 * cpu in an attempt to completely freeup the other CPU
4331 * package. The same method used to move task in load_balance()
4332 * have been extended for load_balance_newidle() to speedup
4333 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4334 *
4335 * The package power saving logic comes from
4336 * find_busiest_group(). If there are no imbalance, then
4337 * f_b_g() will return NULL. However when sched_mc={1,2} then
4338 * f_b_g() will select a group from which a running task may be
4339 * pulled to this cpu in order to make the other package idle.
4340 * If there is no opportunity to make a package idle and if
4341 * there are no imbalance, then f_b_g() will return NULL and no
4342 * action will be taken in load_balance_newidle().
4343 *
4344 * Under normal task pull operation due to imbalance, there
4345 * will be more than one task in the source run queue and
4346 * move_tasks() will succeed. ld_moved will be true and this
4347 * active balance code will not be triggered.
4348 */
4349
4350 /* Lock busiest in correct order while this_rq is held */
4351 double_lock_balance(this_rq, busiest);
4352
4353 /*
4354 * don't kick the migration_thread, if the curr
4355 * task on busiest cpu can't be moved to this_cpu
4356 */
4357 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4358 double_unlock_balance(this_rq, busiest);
4359 all_pinned = 1;
4360 return ld_moved;
4361 }
4362
4363 if (!busiest->active_balance) {
4364 busiest->active_balance = 1;
4365 busiest->push_cpu = this_cpu;
4366 active_balance = 1;
4367 }
4368
4369 double_unlock_balance(this_rq, busiest);
4370 /*
4371 * Should not call ttwu while holding a rq->lock
4372 */
4373 spin_unlock(&this_rq->lock);
4374 if (active_balance)
4375 wake_up_process(busiest->migration_thread);
4376 spin_lock(&this_rq->lock);
4377
4378 } else
4379 sd->nr_balance_failed = 0;
4380
4381 update_shares_locked(this_rq, sd);
4382 return ld_moved;
4383
4384 out_balanced:
4385 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4386 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4387 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4388 return -1;
4389 sd->nr_balance_failed = 0;
4390
4391 return 0;
4392 }
4393
4394 /*
4395 * idle_balance is called by schedule() if this_cpu is about to become
4396 * idle. Attempts to pull tasks from other CPUs.
4397 */
4398 static void idle_balance(int this_cpu, struct rq *this_rq)
4399 {
4400 struct sched_domain *sd;
4401 int pulled_task = 0;
4402 unsigned long next_balance = jiffies + HZ;
4403
4404 this_rq->idle_stamp = this_rq->clock;
4405
4406 if (this_rq->avg_idle < sysctl_sched_migration_cost)
4407 return;
4408
4409 for_each_domain(this_cpu, sd) {
4410 unsigned long interval;
4411
4412 if (!(sd->flags & SD_LOAD_BALANCE))
4413 continue;
4414
4415 if (sd->flags & SD_BALANCE_NEWIDLE)
4416 /* If we've pulled tasks over stop searching: */
4417 pulled_task = load_balance_newidle(this_cpu, this_rq,
4418 sd);
4419
4420 interval = msecs_to_jiffies(sd->balance_interval);
4421 if (time_after(next_balance, sd->last_balance + interval))
4422 next_balance = sd->last_balance + interval;
4423 if (pulled_task) {
4424 this_rq->idle_stamp = 0;
4425 break;
4426 }
4427 }
4428 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4429 /*
4430 * We are going idle. next_balance may be set based on
4431 * a busy processor. So reset next_balance.
4432 */
4433 this_rq->next_balance = next_balance;
4434 }
4435 }
4436
4437 /*
4438 * active_load_balance is run by migration threads. It pushes running tasks
4439 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4440 * running on each physical CPU where possible, and avoids physical /
4441 * logical imbalances.
4442 *
4443 * Called with busiest_rq locked.
4444 */
4445 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4446 {
4447 int target_cpu = busiest_rq->push_cpu;
4448 struct sched_domain *sd;
4449 struct rq *target_rq;
4450
4451 /* Is there any task to move? */
4452 if (busiest_rq->nr_running <= 1)
4453 return;
4454
4455 target_rq = cpu_rq(target_cpu);
4456
4457 /*
4458 * This condition is "impossible", if it occurs
4459 * we need to fix it. Originally reported by
4460 * Bjorn Helgaas on a 128-cpu setup.
4461 */
4462 BUG_ON(busiest_rq == target_rq);
4463
4464 /* move a task from busiest_rq to target_rq */
4465 double_lock_balance(busiest_rq, target_rq);
4466 update_rq_clock(busiest_rq);
4467 update_rq_clock(target_rq);
4468
4469 /* Search for an sd spanning us and the target CPU. */
4470 for_each_domain(target_cpu, sd) {
4471 if ((sd->flags & SD_LOAD_BALANCE) &&
4472 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4473 break;
4474 }
4475
4476 if (likely(sd)) {
4477 schedstat_inc(sd, alb_count);
4478
4479 if (move_one_task(target_rq, target_cpu, busiest_rq,
4480 sd, CPU_IDLE))
4481 schedstat_inc(sd, alb_pushed);
4482 else
4483 schedstat_inc(sd, alb_failed);
4484 }
4485 double_unlock_balance(busiest_rq, target_rq);
4486 }
4487
4488 #ifdef CONFIG_NO_HZ
4489 static struct {
4490 atomic_t load_balancer;
4491 cpumask_var_t cpu_mask;
4492 cpumask_var_t ilb_grp_nohz_mask;
4493 } nohz ____cacheline_aligned = {
4494 .load_balancer = ATOMIC_INIT(-1),
4495 };
4496
4497 int get_nohz_load_balancer(void)
4498 {
4499 return atomic_read(&nohz.load_balancer);
4500 }
4501
4502 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4503 /**
4504 * lowest_flag_domain - Return lowest sched_domain containing flag.
4505 * @cpu: The cpu whose lowest level of sched domain is to
4506 * be returned.
4507 * @flag: The flag to check for the lowest sched_domain
4508 * for the given cpu.
4509 *
4510 * Returns the lowest sched_domain of a cpu which contains the given flag.
4511 */
4512 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4513 {
4514 struct sched_domain *sd;
4515
4516 for_each_domain(cpu, sd)
4517 if (sd && (sd->flags & flag))
4518 break;
4519
4520 return sd;
4521 }
4522
4523 /**
4524 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4525 * @cpu: The cpu whose domains we're iterating over.
4526 * @sd: variable holding the value of the power_savings_sd
4527 * for cpu.
4528 * @flag: The flag to filter the sched_domains to be iterated.
4529 *
4530 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4531 * set, starting from the lowest sched_domain to the highest.
4532 */
4533 #define for_each_flag_domain(cpu, sd, flag) \
4534 for (sd = lowest_flag_domain(cpu, flag); \
4535 (sd && (sd->flags & flag)); sd = sd->parent)
4536
4537 /**
4538 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4539 * @ilb_group: group to be checked for semi-idleness
4540 *
4541 * Returns: 1 if the group is semi-idle. 0 otherwise.
4542 *
4543 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4544 * and atleast one non-idle CPU. This helper function checks if the given
4545 * sched_group is semi-idle or not.
4546 */
4547 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4548 {
4549 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4550 sched_group_cpus(ilb_group));
4551
4552 /*
4553 * A sched_group is semi-idle when it has atleast one busy cpu
4554 * and atleast one idle cpu.
4555 */
4556 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4557 return 0;
4558
4559 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4560 return 0;
4561
4562 return 1;
4563 }
4564 /**
4565 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4566 * @cpu: The cpu which is nominating a new idle_load_balancer.
4567 *
4568 * Returns: Returns the id of the idle load balancer if it exists,
4569 * Else, returns >= nr_cpu_ids.
4570 *
4571 * This algorithm picks the idle load balancer such that it belongs to a
4572 * semi-idle powersavings sched_domain. The idea is to try and avoid
4573 * completely idle packages/cores just for the purpose of idle load balancing
4574 * when there are other idle cpu's which are better suited for that job.
4575 */
4576 static int find_new_ilb(int cpu)
4577 {
4578 struct sched_domain *sd;
4579 struct sched_group *ilb_group;
4580
4581 /*
4582 * Have idle load balancer selection from semi-idle packages only
4583 * when power-aware load balancing is enabled
4584 */
4585 if (!(sched_smt_power_savings || sched_mc_power_savings))
4586 goto out_done;
4587
4588 /*
4589 * Optimize for the case when we have no idle CPUs or only one
4590 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4591 */
4592 if (cpumask_weight(nohz.cpu_mask) < 2)
4593 goto out_done;
4594
4595 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4596 ilb_group = sd->groups;
4597
4598 do {
4599 if (is_semi_idle_group(ilb_group))
4600 return cpumask_first(nohz.ilb_grp_nohz_mask);
4601
4602 ilb_group = ilb_group->next;
4603
4604 } while (ilb_group != sd->groups);
4605 }
4606
4607 out_done:
4608 return cpumask_first(nohz.cpu_mask);
4609 }
4610 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4611 static inline int find_new_ilb(int call_cpu)
4612 {
4613 return cpumask_first(nohz.cpu_mask);
4614 }
4615 #endif
4616
4617 /*
4618 * This routine will try to nominate the ilb (idle load balancing)
4619 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4620 * load balancing on behalf of all those cpus. If all the cpus in the system
4621 * go into this tickless mode, then there will be no ilb owner (as there is
4622 * no need for one) and all the cpus will sleep till the next wakeup event
4623 * arrives...
4624 *
4625 * For the ilb owner, tick is not stopped. And this tick will be used
4626 * for idle load balancing. ilb owner will still be part of
4627 * nohz.cpu_mask..
4628 *
4629 * While stopping the tick, this cpu will become the ilb owner if there
4630 * is no other owner. And will be the owner till that cpu becomes busy
4631 * or if all cpus in the system stop their ticks at which point
4632 * there is no need for ilb owner.
4633 *
4634 * When the ilb owner becomes busy, it nominates another owner, during the
4635 * next busy scheduler_tick()
4636 */
4637 int select_nohz_load_balancer(int stop_tick)
4638 {
4639 int cpu = smp_processor_id();
4640
4641 if (stop_tick) {
4642 cpu_rq(cpu)->in_nohz_recently = 1;
4643
4644 if (!cpu_active(cpu)) {
4645 if (atomic_read(&nohz.load_balancer) != cpu)
4646 return 0;
4647
4648 /*
4649 * If we are going offline and still the leader,
4650 * give up!
4651 */
4652 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4653 BUG();
4654
4655 return 0;
4656 }
4657
4658 cpumask_set_cpu(cpu, nohz.cpu_mask);
4659
4660 /* time for ilb owner also to sleep */
4661 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4662 if (atomic_read(&nohz.load_balancer) == cpu)
4663 atomic_set(&nohz.load_balancer, -1);
4664 return 0;
4665 }
4666
4667 if (atomic_read(&nohz.load_balancer) == -1) {
4668 /* make me the ilb owner */
4669 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4670 return 1;
4671 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4672 int new_ilb;
4673
4674 if (!(sched_smt_power_savings ||
4675 sched_mc_power_savings))
4676 return 1;
4677 /*
4678 * Check to see if there is a more power-efficient
4679 * ilb.
4680 */
4681 new_ilb = find_new_ilb(cpu);
4682 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4683 atomic_set(&nohz.load_balancer, -1);
4684 resched_cpu(new_ilb);
4685 return 0;
4686 }
4687 return 1;
4688 }
4689 } else {
4690 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4691 return 0;
4692
4693 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4694
4695 if (atomic_read(&nohz.load_balancer) == cpu)
4696 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4697 BUG();
4698 }
4699 return 0;
4700 }
4701 #endif
4702
4703 static DEFINE_SPINLOCK(balancing);
4704
4705 /*
4706 * It checks each scheduling domain to see if it is due to be balanced,
4707 * and initiates a balancing operation if so.
4708 *
4709 * Balancing parameters are set up in arch_init_sched_domains.
4710 */
4711 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4712 {
4713 int balance = 1;
4714 struct rq *rq = cpu_rq(cpu);
4715 unsigned long interval;
4716 struct sched_domain *sd;
4717 /* Earliest time when we have to do rebalance again */
4718 unsigned long next_balance = jiffies + 60*HZ;
4719 int update_next_balance = 0;
4720 int need_serialize;
4721
4722 for_each_domain(cpu, sd) {
4723 if (!(sd->flags & SD_LOAD_BALANCE))
4724 continue;
4725
4726 interval = sd->balance_interval;
4727 if (idle != CPU_IDLE)
4728 interval *= sd->busy_factor;
4729
4730 /* scale ms to jiffies */
4731 interval = msecs_to_jiffies(interval);
4732 if (unlikely(!interval))
4733 interval = 1;
4734 if (interval > HZ*NR_CPUS/10)
4735 interval = HZ*NR_CPUS/10;
4736
4737 need_serialize = sd->flags & SD_SERIALIZE;
4738
4739 if (need_serialize) {
4740 if (!spin_trylock(&balancing))
4741 goto out;
4742 }
4743
4744 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4745 if (load_balance(cpu, rq, sd, idle, &balance)) {
4746 /*
4747 * We've pulled tasks over so either we're no
4748 * longer idle, or one of our SMT siblings is
4749 * not idle.
4750 */
4751 idle = CPU_NOT_IDLE;
4752 }
4753 sd->last_balance = jiffies;
4754 }
4755 if (need_serialize)
4756 spin_unlock(&balancing);
4757 out:
4758 if (time_after(next_balance, sd->last_balance + interval)) {
4759 next_balance = sd->last_balance + interval;
4760 update_next_balance = 1;
4761 }
4762
4763 /*
4764 * Stop the load balance at this level. There is another
4765 * CPU in our sched group which is doing load balancing more
4766 * actively.
4767 */
4768 if (!balance)
4769 break;
4770 }
4771
4772 /*
4773 * next_balance will be updated only when there is a need.
4774 * When the cpu is attached to null domain for ex, it will not be
4775 * updated.
4776 */
4777 if (likely(update_next_balance))
4778 rq->next_balance = next_balance;
4779 }
4780
4781 /*
4782 * run_rebalance_domains is triggered when needed from the scheduler tick.
4783 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4784 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4785 */
4786 static void run_rebalance_domains(struct softirq_action *h)
4787 {
4788 int this_cpu = smp_processor_id();
4789 struct rq *this_rq = cpu_rq(this_cpu);
4790 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4791 CPU_IDLE : CPU_NOT_IDLE;
4792
4793 rebalance_domains(this_cpu, idle);
4794
4795 #ifdef CONFIG_NO_HZ
4796 /*
4797 * If this cpu is the owner for idle load balancing, then do the
4798 * balancing on behalf of the other idle cpus whose ticks are
4799 * stopped.
4800 */
4801 if (this_rq->idle_at_tick &&
4802 atomic_read(&nohz.load_balancer) == this_cpu) {
4803 struct rq *rq;
4804 int balance_cpu;
4805
4806 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4807 if (balance_cpu == this_cpu)
4808 continue;
4809
4810 /*
4811 * If this cpu gets work to do, stop the load balancing
4812 * work being done for other cpus. Next load
4813 * balancing owner will pick it up.
4814 */
4815 if (need_resched())
4816 break;
4817
4818 rebalance_domains(balance_cpu, CPU_IDLE);
4819
4820 rq = cpu_rq(balance_cpu);
4821 if (time_after(this_rq->next_balance, rq->next_balance))
4822 this_rq->next_balance = rq->next_balance;
4823 }
4824 }
4825 #endif
4826 }
4827
4828 static inline int on_null_domain(int cpu)
4829 {
4830 return !rcu_dereference(cpu_rq(cpu)->sd);
4831 }
4832
4833 /*
4834 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4835 *
4836 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4837 * idle load balancing owner or decide to stop the periodic load balancing,
4838 * if the whole system is idle.
4839 */
4840 static inline void trigger_load_balance(struct rq *rq, int cpu)
4841 {
4842 #ifdef CONFIG_NO_HZ
4843 /*
4844 * If we were in the nohz mode recently and busy at the current
4845 * scheduler tick, then check if we need to nominate new idle
4846 * load balancer.
4847 */
4848 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4849 rq->in_nohz_recently = 0;
4850
4851 if (atomic_read(&nohz.load_balancer) == cpu) {
4852 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4853 atomic_set(&nohz.load_balancer, -1);
4854 }
4855
4856 if (atomic_read(&nohz.load_balancer) == -1) {
4857 int ilb = find_new_ilb(cpu);
4858
4859 if (ilb < nr_cpu_ids)
4860 resched_cpu(ilb);
4861 }
4862 }
4863
4864 /*
4865 * If this cpu is idle and doing idle load balancing for all the
4866 * cpus with ticks stopped, is it time for that to stop?
4867 */
4868 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
4869 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4870 resched_cpu(cpu);
4871 return;
4872 }
4873
4874 /*
4875 * If this cpu is idle and the idle load balancing is done by
4876 * someone else, then no need raise the SCHED_SOFTIRQ
4877 */
4878 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
4879 cpumask_test_cpu(cpu, nohz.cpu_mask))
4880 return;
4881 #endif
4882 /* Don't need to rebalance while attached to NULL domain */
4883 if (time_after_eq(jiffies, rq->next_balance) &&
4884 likely(!on_null_domain(cpu)))
4885 raise_softirq(SCHED_SOFTIRQ);
4886 }
4887
4888 #else /* CONFIG_SMP */
4889
4890 /*
4891 * on UP we do not need to balance between CPUs:
4892 */
4893 static inline void idle_balance(int cpu, struct rq *rq)
4894 {
4895 }
4896
4897 #endif
4898
4899 DEFINE_PER_CPU(struct kernel_stat, kstat);
4900
4901 EXPORT_PER_CPU_SYMBOL(kstat);
4902
4903 /*
4904 * Return any ns on the sched_clock that have not yet been accounted in
4905 * @p in case that task is currently running.
4906 *
4907 * Called with task_rq_lock() held on @rq.
4908 */
4909 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
4910 {
4911 u64 ns = 0;
4912
4913 if (task_current(rq, p)) {
4914 update_rq_clock(rq);
4915 ns = rq->clock - p->se.exec_start;
4916 if ((s64)ns < 0)
4917 ns = 0;
4918 }
4919
4920 return ns;
4921 }
4922
4923 unsigned long long task_delta_exec(struct task_struct *p)
4924 {
4925 unsigned long flags;
4926 struct rq *rq;
4927 u64 ns = 0;
4928
4929 rq = task_rq_lock(p, &flags);
4930 ns = do_task_delta_exec(p, rq);
4931 task_rq_unlock(rq, &flags);
4932
4933 return ns;
4934 }
4935
4936 /*
4937 * Return accounted runtime for the task.
4938 * In case the task is currently running, return the runtime plus current's
4939 * pending runtime that have not been accounted yet.
4940 */
4941 unsigned long long task_sched_runtime(struct task_struct *p)
4942 {
4943 unsigned long flags;
4944 struct rq *rq;
4945 u64 ns = 0;
4946
4947 rq = task_rq_lock(p, &flags);
4948 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
4949 task_rq_unlock(rq, &flags);
4950
4951 return ns;
4952 }
4953
4954 /*
4955 * Return sum_exec_runtime for the thread group.
4956 * In case the task is currently running, return the sum plus current's
4957 * pending runtime that have not been accounted yet.
4958 *
4959 * Note that the thread group might have other running tasks as well,
4960 * so the return value not includes other pending runtime that other
4961 * running tasks might have.
4962 */
4963 unsigned long long thread_group_sched_runtime(struct task_struct *p)
4964 {
4965 struct task_cputime totals;
4966 unsigned long flags;
4967 struct rq *rq;
4968 u64 ns;
4969
4970 rq = task_rq_lock(p, &flags);
4971 thread_group_cputime(p, &totals);
4972 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
4973 task_rq_unlock(rq, &flags);
4974
4975 return ns;
4976 }
4977
4978 /*
4979 * Account user cpu time to a process.
4980 * @p: the process that the cpu time gets accounted to
4981 * @cputime: the cpu time spent in user space since the last update
4982 * @cputime_scaled: cputime scaled by cpu frequency
4983 */
4984 void account_user_time(struct task_struct *p, cputime_t cputime,
4985 cputime_t cputime_scaled)
4986 {
4987 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4988 cputime64_t tmp;
4989
4990 /* Add user time to process. */
4991 p->utime = cputime_add(p->utime, cputime);
4992 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
4993 account_group_user_time(p, cputime);
4994
4995 /* Add user time to cpustat. */
4996 tmp = cputime_to_cputime64(cputime);
4997 if (TASK_NICE(p) > 0)
4998 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4999 else
5000 cpustat->user = cputime64_add(cpustat->user, tmp);
5001
5002 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5003 /* Account for user time used */
5004 acct_update_integrals(p);
5005 }
5006
5007 /*
5008 * Account guest cpu time to a process.
5009 * @p: the process that the cpu time gets accounted to
5010 * @cputime: the cpu time spent in virtual machine since the last update
5011 * @cputime_scaled: cputime scaled by cpu frequency
5012 */
5013 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5014 cputime_t cputime_scaled)
5015 {
5016 cputime64_t tmp;
5017 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5018
5019 tmp = cputime_to_cputime64(cputime);
5020
5021 /* Add guest time to process. */
5022 p->utime = cputime_add(p->utime, cputime);
5023 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5024 account_group_user_time(p, cputime);
5025 p->gtime = cputime_add(p->gtime, cputime);
5026
5027 /* Add guest time to cpustat. */
5028 if (TASK_NICE(p) > 0) {
5029 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5030 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
5031 } else {
5032 cpustat->user = cputime64_add(cpustat->user, tmp);
5033 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5034 }
5035 }
5036
5037 /*
5038 * Account system cpu time to a process.
5039 * @p: the process that the cpu time gets accounted to
5040 * @hardirq_offset: the offset to subtract from hardirq_count()
5041 * @cputime: the cpu time spent in kernel space since the last update
5042 * @cputime_scaled: cputime scaled by cpu frequency
5043 */
5044 void account_system_time(struct task_struct *p, int hardirq_offset,
5045 cputime_t cputime, cputime_t cputime_scaled)
5046 {
5047 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5048 cputime64_t tmp;
5049
5050 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5051 account_guest_time(p, cputime, cputime_scaled);
5052 return;
5053 }
5054
5055 /* Add system time to process. */
5056 p->stime = cputime_add(p->stime, cputime);
5057 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5058 account_group_system_time(p, cputime);
5059
5060 /* Add system time to cpustat. */
5061 tmp = cputime_to_cputime64(cputime);
5062 if (hardirq_count() - hardirq_offset)
5063 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5064 else if (softirq_count())
5065 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5066 else
5067 cpustat->system = cputime64_add(cpustat->system, tmp);
5068
5069 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5070
5071 /* Account for system time used */
5072 acct_update_integrals(p);
5073 }
5074
5075 /*
5076 * Account for involuntary wait time.
5077 * @steal: the cpu time spent in involuntary wait
5078 */
5079 void account_steal_time(cputime_t cputime)
5080 {
5081 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5082 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5083
5084 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5085 }
5086
5087 /*
5088 * Account for idle time.
5089 * @cputime: the cpu time spent in idle wait
5090 */
5091 void account_idle_time(cputime_t cputime)
5092 {
5093 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5094 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5095 struct rq *rq = this_rq();
5096
5097 if (atomic_read(&rq->nr_iowait) > 0)
5098 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5099 else
5100 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5101 }
5102
5103 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5104
5105 /*
5106 * Account a single tick of cpu time.
5107 * @p: the process that the cpu time gets accounted to
5108 * @user_tick: indicates if the tick is a user or a system tick
5109 */
5110 void account_process_tick(struct task_struct *p, int user_tick)
5111 {
5112 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
5113 struct rq *rq = this_rq();
5114
5115 if (user_tick)
5116 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
5117 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5118 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
5119 one_jiffy_scaled);
5120 else
5121 account_idle_time(cputime_one_jiffy);
5122 }
5123
5124 /*
5125 * Account multiple ticks of steal time.
5126 * @p: the process from which the cpu time has been stolen
5127 * @ticks: number of stolen ticks
5128 */
5129 void account_steal_ticks(unsigned long ticks)
5130 {
5131 account_steal_time(jiffies_to_cputime(ticks));
5132 }
5133
5134 /*
5135 * Account multiple ticks of idle time.
5136 * @ticks: number of stolen ticks
5137 */
5138 void account_idle_ticks(unsigned long ticks)
5139 {
5140 account_idle_time(jiffies_to_cputime(ticks));
5141 }
5142
5143 #endif
5144
5145 /*
5146 * Use precise platform statistics if available:
5147 */
5148 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5149 cputime_t task_utime(struct task_struct *p)
5150 {
5151 return p->utime;
5152 }
5153
5154 cputime_t task_stime(struct task_struct *p)
5155 {
5156 return p->stime;
5157 }
5158 #else
5159
5160 #ifndef nsecs_to_cputime
5161 # define nsecs_to_cputime(__nsecs) \
5162 msecs_to_cputime(div_u64((__nsecs), NSEC_PER_MSEC))
5163 #endif
5164
5165 cputime_t task_utime(struct task_struct *p)
5166 {
5167 cputime_t utime = p->utime, total = utime + p->stime;
5168 u64 temp;
5169
5170 /*
5171 * Use CFS's precise accounting:
5172 */
5173 temp = (u64)nsecs_to_cputime(p->se.sum_exec_runtime);
5174
5175 if (total) {
5176 temp *= utime;
5177 do_div(temp, total);
5178 }
5179 utime = (cputime_t)temp;
5180
5181 p->prev_utime = max(p->prev_utime, utime);
5182 return p->prev_utime;
5183 }
5184
5185 cputime_t task_stime(struct task_struct *p)
5186 {
5187 cputime_t stime;
5188
5189 /*
5190 * Use CFS's precise accounting. (we subtract utime from
5191 * the total, to make sure the total observed by userspace
5192 * grows monotonically - apps rely on that):
5193 */
5194 stime = nsecs_to_cputime(p->se.sum_exec_runtime) - task_utime(p);
5195
5196 if (stime >= 0)
5197 p->prev_stime = max(p->prev_stime, stime);
5198
5199 return p->prev_stime;
5200 }
5201 #endif
5202
5203 inline cputime_t task_gtime(struct task_struct *p)
5204 {
5205 return p->gtime;
5206 }
5207
5208 /*
5209 * This function gets called by the timer code, with HZ frequency.
5210 * We call it with interrupts disabled.
5211 *
5212 * It also gets called by the fork code, when changing the parent's
5213 * timeslices.
5214 */
5215 void scheduler_tick(void)
5216 {
5217 int cpu = smp_processor_id();
5218 struct rq *rq = cpu_rq(cpu);
5219 struct task_struct *curr = rq->curr;
5220
5221 sched_clock_tick();
5222
5223 spin_lock(&rq->lock);
5224 update_rq_clock(rq);
5225 update_cpu_load(rq);
5226 curr->sched_class->task_tick(rq, curr, 0);
5227 spin_unlock(&rq->lock);
5228
5229 perf_event_task_tick(curr, cpu);
5230
5231 #ifdef CONFIG_SMP
5232 rq->idle_at_tick = idle_cpu(cpu);
5233 trigger_load_balance(rq, cpu);
5234 #endif
5235 }
5236
5237 notrace unsigned long get_parent_ip(unsigned long addr)
5238 {
5239 if (in_lock_functions(addr)) {
5240 addr = CALLER_ADDR2;
5241 if (in_lock_functions(addr))
5242 addr = CALLER_ADDR3;
5243 }
5244 return addr;
5245 }
5246
5247 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5248 defined(CONFIG_PREEMPT_TRACER))
5249
5250 void __kprobes add_preempt_count(int val)
5251 {
5252 #ifdef CONFIG_DEBUG_PREEMPT
5253 /*
5254 * Underflow?
5255 */
5256 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5257 return;
5258 #endif
5259 preempt_count() += val;
5260 #ifdef CONFIG_DEBUG_PREEMPT
5261 /*
5262 * Spinlock count overflowing soon?
5263 */
5264 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5265 PREEMPT_MASK - 10);
5266 #endif
5267 if (preempt_count() == val)
5268 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5269 }
5270 EXPORT_SYMBOL(add_preempt_count);
5271
5272 void __kprobes sub_preempt_count(int val)
5273 {
5274 #ifdef CONFIG_DEBUG_PREEMPT
5275 /*
5276 * Underflow?
5277 */
5278 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5279 return;
5280 /*
5281 * Is the spinlock portion underflowing?
5282 */
5283 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5284 !(preempt_count() & PREEMPT_MASK)))
5285 return;
5286 #endif
5287
5288 if (preempt_count() == val)
5289 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5290 preempt_count() -= val;
5291 }
5292 EXPORT_SYMBOL(sub_preempt_count);
5293
5294 #endif
5295
5296 /*
5297 * Print scheduling while atomic bug:
5298 */
5299 static noinline void __schedule_bug(struct task_struct *prev)
5300 {
5301 struct pt_regs *regs = get_irq_regs();
5302
5303 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5304 prev->comm, prev->pid, preempt_count());
5305
5306 debug_show_held_locks(prev);
5307 print_modules();
5308 if (irqs_disabled())
5309 print_irqtrace_events(prev);
5310
5311 if (regs)
5312 show_regs(regs);
5313 else
5314 dump_stack();
5315 }
5316
5317 /*
5318 * Various schedule()-time debugging checks and statistics:
5319 */
5320 static inline void schedule_debug(struct task_struct *prev)
5321 {
5322 /*
5323 * Test if we are atomic. Since do_exit() needs to call into
5324 * schedule() atomically, we ignore that path for now.
5325 * Otherwise, whine if we are scheduling when we should not be.
5326 */
5327 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5328 __schedule_bug(prev);
5329
5330 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5331
5332 schedstat_inc(this_rq(), sched_count);
5333 #ifdef CONFIG_SCHEDSTATS
5334 if (unlikely(prev->lock_depth >= 0)) {
5335 schedstat_inc(this_rq(), bkl_count);
5336 schedstat_inc(prev, sched_info.bkl_count);
5337 }
5338 #endif
5339 }
5340
5341 static void put_prev_task(struct rq *rq, struct task_struct *p)
5342 {
5343 u64 runtime = p->se.sum_exec_runtime - p->se.prev_sum_exec_runtime;
5344
5345 update_avg(&p->se.avg_running, runtime);
5346
5347 if (p->state == TASK_RUNNING) {
5348 /*
5349 * In order to avoid avg_overlap growing stale when we are
5350 * indeed overlapping and hence not getting put to sleep, grow
5351 * the avg_overlap on preemption.
5352 *
5353 * We use the average preemption runtime because that
5354 * correlates to the amount of cache footprint a task can
5355 * build up.
5356 */
5357 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5358 update_avg(&p->se.avg_overlap, runtime);
5359 } else {
5360 update_avg(&p->se.avg_running, 0);
5361 }
5362 p->sched_class->put_prev_task(rq, p);
5363 }
5364
5365 /*
5366 * Pick up the highest-prio task:
5367 */
5368 static inline struct task_struct *
5369 pick_next_task(struct rq *rq)
5370 {
5371 const struct sched_class *class;
5372 struct task_struct *p;
5373
5374 /*
5375 * Optimization: we know that if all tasks are in
5376 * the fair class we can call that function directly:
5377 */
5378 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5379 p = fair_sched_class.pick_next_task(rq);
5380 if (likely(p))
5381 return p;
5382 }
5383
5384 class = sched_class_highest;
5385 for ( ; ; ) {
5386 p = class->pick_next_task(rq);
5387 if (p)
5388 return p;
5389 /*
5390 * Will never be NULL as the idle class always
5391 * returns a non-NULL p:
5392 */
5393 class = class->next;
5394 }
5395 }
5396
5397 /*
5398 * schedule() is the main scheduler function.
5399 */
5400 asmlinkage void __sched schedule(void)
5401 {
5402 struct task_struct *prev, *next;
5403 unsigned long *switch_count;
5404 struct rq *rq;
5405 int cpu;
5406
5407 need_resched:
5408 preempt_disable();
5409 cpu = smp_processor_id();
5410 rq = cpu_rq(cpu);
5411 rcu_sched_qs(cpu);
5412 prev = rq->curr;
5413 switch_count = &prev->nivcsw;
5414
5415 release_kernel_lock(prev);
5416 need_resched_nonpreemptible:
5417
5418 schedule_debug(prev);
5419
5420 if (sched_feat(HRTICK))
5421 hrtick_clear(rq);
5422
5423 spin_lock_irq(&rq->lock);
5424 update_rq_clock(rq);
5425 clear_tsk_need_resched(prev);
5426
5427 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5428 if (unlikely(signal_pending_state(prev->state, prev)))
5429 prev->state = TASK_RUNNING;
5430 else
5431 deactivate_task(rq, prev, 1);
5432 switch_count = &prev->nvcsw;
5433 }
5434
5435 pre_schedule(rq, prev);
5436
5437 if (unlikely(!rq->nr_running))
5438 idle_balance(cpu, rq);
5439
5440 put_prev_task(rq, prev);
5441 next = pick_next_task(rq);
5442
5443 if (likely(prev != next)) {
5444 sched_info_switch(prev, next);
5445 perf_event_task_sched_out(prev, next, cpu);
5446
5447 rq->nr_switches++;
5448 rq->curr = next;
5449 ++*switch_count;
5450
5451 context_switch(rq, prev, next); /* unlocks the rq */
5452 /*
5453 * the context switch might have flipped the stack from under
5454 * us, hence refresh the local variables.
5455 */
5456 cpu = smp_processor_id();
5457 rq = cpu_rq(cpu);
5458 } else
5459 spin_unlock_irq(&rq->lock);
5460
5461 post_schedule(rq);
5462
5463 if (unlikely(reacquire_kernel_lock(current) < 0))
5464 goto need_resched_nonpreemptible;
5465
5466 preempt_enable_no_resched();
5467 if (need_resched())
5468 goto need_resched;
5469 }
5470 EXPORT_SYMBOL(schedule);
5471
5472 #ifdef CONFIG_SMP
5473 /*
5474 * Look out! "owner" is an entirely speculative pointer
5475 * access and not reliable.
5476 */
5477 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5478 {
5479 unsigned int cpu;
5480 struct rq *rq;
5481
5482 if (!sched_feat(OWNER_SPIN))
5483 return 0;
5484
5485 #ifdef CONFIG_DEBUG_PAGEALLOC
5486 /*
5487 * Need to access the cpu field knowing that
5488 * DEBUG_PAGEALLOC could have unmapped it if
5489 * the mutex owner just released it and exited.
5490 */
5491 if (probe_kernel_address(&owner->cpu, cpu))
5492 goto out;
5493 #else
5494 cpu = owner->cpu;
5495 #endif
5496
5497 /*
5498 * Even if the access succeeded (likely case),
5499 * the cpu field may no longer be valid.
5500 */
5501 if (cpu >= nr_cpumask_bits)
5502 goto out;
5503
5504 /*
5505 * We need to validate that we can do a
5506 * get_cpu() and that we have the percpu area.
5507 */
5508 if (!cpu_online(cpu))
5509 goto out;
5510
5511 rq = cpu_rq(cpu);
5512
5513 for (;;) {
5514 /*
5515 * Owner changed, break to re-assess state.
5516 */
5517 if (lock->owner != owner)
5518 break;
5519
5520 /*
5521 * Is that owner really running on that cpu?
5522 */
5523 if (task_thread_info(rq->curr) != owner || need_resched())
5524 return 0;
5525
5526 cpu_relax();
5527 }
5528 out:
5529 return 1;
5530 }
5531 #endif
5532
5533 #ifdef CONFIG_PREEMPT
5534 /*
5535 * this is the entry point to schedule() from in-kernel preemption
5536 * off of preempt_enable. Kernel preemptions off return from interrupt
5537 * occur there and call schedule directly.
5538 */
5539 asmlinkage void __sched preempt_schedule(void)
5540 {
5541 struct thread_info *ti = current_thread_info();
5542
5543 /*
5544 * If there is a non-zero preempt_count or interrupts are disabled,
5545 * we do not want to preempt the current task. Just return..
5546 */
5547 if (likely(ti->preempt_count || irqs_disabled()))
5548 return;
5549
5550 do {
5551 add_preempt_count(PREEMPT_ACTIVE);
5552 schedule();
5553 sub_preempt_count(PREEMPT_ACTIVE);
5554
5555 /*
5556 * Check again in case we missed a preemption opportunity
5557 * between schedule and now.
5558 */
5559 barrier();
5560 } while (need_resched());
5561 }
5562 EXPORT_SYMBOL(preempt_schedule);
5563
5564 /*
5565 * this is the entry point to schedule() from kernel preemption
5566 * off of irq context.
5567 * Note, that this is called and return with irqs disabled. This will
5568 * protect us against recursive calling from irq.
5569 */
5570 asmlinkage void __sched preempt_schedule_irq(void)
5571 {
5572 struct thread_info *ti = current_thread_info();
5573
5574 /* Catch callers which need to be fixed */
5575 BUG_ON(ti->preempt_count || !irqs_disabled());
5576
5577 do {
5578 add_preempt_count(PREEMPT_ACTIVE);
5579 local_irq_enable();
5580 schedule();
5581 local_irq_disable();
5582 sub_preempt_count(PREEMPT_ACTIVE);
5583
5584 /*
5585 * Check again in case we missed a preemption opportunity
5586 * between schedule and now.
5587 */
5588 barrier();
5589 } while (need_resched());
5590 }
5591
5592 #endif /* CONFIG_PREEMPT */
5593
5594 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
5595 void *key)
5596 {
5597 return try_to_wake_up(curr->private, mode, wake_flags);
5598 }
5599 EXPORT_SYMBOL(default_wake_function);
5600
5601 /*
5602 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5603 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5604 * number) then we wake all the non-exclusive tasks and one exclusive task.
5605 *
5606 * There are circumstances in which we can try to wake a task which has already
5607 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5608 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5609 */
5610 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5611 int nr_exclusive, int wake_flags, void *key)
5612 {
5613 wait_queue_t *curr, *next;
5614
5615 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5616 unsigned flags = curr->flags;
5617
5618 if (curr->func(curr, mode, wake_flags, key) &&
5619 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5620 break;
5621 }
5622 }
5623
5624 /**
5625 * __wake_up - wake up threads blocked on a waitqueue.
5626 * @q: the waitqueue
5627 * @mode: which threads
5628 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5629 * @key: is directly passed to the wakeup function
5630 *
5631 * It may be assumed that this function implies a write memory barrier before
5632 * changing the task state if and only if any tasks are woken up.
5633 */
5634 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5635 int nr_exclusive, void *key)
5636 {
5637 unsigned long flags;
5638
5639 spin_lock_irqsave(&q->lock, flags);
5640 __wake_up_common(q, mode, nr_exclusive, 0, key);
5641 spin_unlock_irqrestore(&q->lock, flags);
5642 }
5643 EXPORT_SYMBOL(__wake_up);
5644
5645 /*
5646 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5647 */
5648 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5649 {
5650 __wake_up_common(q, mode, 1, 0, NULL);
5651 }
5652
5653 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5654 {
5655 __wake_up_common(q, mode, 1, 0, key);
5656 }
5657
5658 /**
5659 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5660 * @q: the waitqueue
5661 * @mode: which threads
5662 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5663 * @key: opaque value to be passed to wakeup targets
5664 *
5665 * The sync wakeup differs that the waker knows that it will schedule
5666 * away soon, so while the target thread will be woken up, it will not
5667 * be migrated to another CPU - ie. the two threads are 'synchronized'
5668 * with each other. This can prevent needless bouncing between CPUs.
5669 *
5670 * On UP it can prevent extra preemption.
5671 *
5672 * It may be assumed that this function implies a write memory barrier before
5673 * changing the task state if and only if any tasks are woken up.
5674 */
5675 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5676 int nr_exclusive, void *key)
5677 {
5678 unsigned long flags;
5679 int wake_flags = WF_SYNC;
5680
5681 if (unlikely(!q))
5682 return;
5683
5684 if (unlikely(!nr_exclusive))
5685 wake_flags = 0;
5686
5687 spin_lock_irqsave(&q->lock, flags);
5688 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
5689 spin_unlock_irqrestore(&q->lock, flags);
5690 }
5691 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5692
5693 /*
5694 * __wake_up_sync - see __wake_up_sync_key()
5695 */
5696 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5697 {
5698 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5699 }
5700 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5701
5702 /**
5703 * complete: - signals a single thread waiting on this completion
5704 * @x: holds the state of this particular completion
5705 *
5706 * This will wake up a single thread waiting on this completion. Threads will be
5707 * awakened in the same order in which they were queued.
5708 *
5709 * See also complete_all(), wait_for_completion() and related routines.
5710 *
5711 * It may be assumed that this function implies a write memory barrier before
5712 * changing the task state if and only if any tasks are woken up.
5713 */
5714 void complete(struct completion *x)
5715 {
5716 unsigned long flags;
5717
5718 spin_lock_irqsave(&x->wait.lock, flags);
5719 x->done++;
5720 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5721 spin_unlock_irqrestore(&x->wait.lock, flags);
5722 }
5723 EXPORT_SYMBOL(complete);
5724
5725 /**
5726 * complete_all: - signals all threads waiting on this completion
5727 * @x: holds the state of this particular completion
5728 *
5729 * This will wake up all threads waiting on this particular completion event.
5730 *
5731 * It may be assumed that this function implies a write memory barrier before
5732 * changing the task state if and only if any tasks are woken up.
5733 */
5734 void complete_all(struct completion *x)
5735 {
5736 unsigned long flags;
5737
5738 spin_lock_irqsave(&x->wait.lock, flags);
5739 x->done += UINT_MAX/2;
5740 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5741 spin_unlock_irqrestore(&x->wait.lock, flags);
5742 }
5743 EXPORT_SYMBOL(complete_all);
5744
5745 static inline long __sched
5746 do_wait_for_common(struct completion *x, long timeout, int state)
5747 {
5748 if (!x->done) {
5749 DECLARE_WAITQUEUE(wait, current);
5750
5751 wait.flags |= WQ_FLAG_EXCLUSIVE;
5752 __add_wait_queue_tail(&x->wait, &wait);
5753 do {
5754 if (signal_pending_state(state, current)) {
5755 timeout = -ERESTARTSYS;
5756 break;
5757 }
5758 __set_current_state(state);
5759 spin_unlock_irq(&x->wait.lock);
5760 timeout = schedule_timeout(timeout);
5761 spin_lock_irq(&x->wait.lock);
5762 } while (!x->done && timeout);
5763 __remove_wait_queue(&x->wait, &wait);
5764 if (!x->done)
5765 return timeout;
5766 }
5767 x->done--;
5768 return timeout ?: 1;
5769 }
5770
5771 static long __sched
5772 wait_for_common(struct completion *x, long timeout, int state)
5773 {
5774 might_sleep();
5775
5776 spin_lock_irq(&x->wait.lock);
5777 timeout = do_wait_for_common(x, timeout, state);
5778 spin_unlock_irq(&x->wait.lock);
5779 return timeout;
5780 }
5781
5782 /**
5783 * wait_for_completion: - waits for completion of a task
5784 * @x: holds the state of this particular completion
5785 *
5786 * This waits to be signaled for completion of a specific task. It is NOT
5787 * interruptible and there is no timeout.
5788 *
5789 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5790 * and interrupt capability. Also see complete().
5791 */
5792 void __sched wait_for_completion(struct completion *x)
5793 {
5794 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5795 }
5796 EXPORT_SYMBOL(wait_for_completion);
5797
5798 /**
5799 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5800 * @x: holds the state of this particular completion
5801 * @timeout: timeout value in jiffies
5802 *
5803 * This waits for either a completion of a specific task to be signaled or for a
5804 * specified timeout to expire. The timeout is in jiffies. It is not
5805 * interruptible.
5806 */
5807 unsigned long __sched
5808 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5809 {
5810 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5811 }
5812 EXPORT_SYMBOL(wait_for_completion_timeout);
5813
5814 /**
5815 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5816 * @x: holds the state of this particular completion
5817 *
5818 * This waits for completion of a specific task to be signaled. It is
5819 * interruptible.
5820 */
5821 int __sched wait_for_completion_interruptible(struct completion *x)
5822 {
5823 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5824 if (t == -ERESTARTSYS)
5825 return t;
5826 return 0;
5827 }
5828 EXPORT_SYMBOL(wait_for_completion_interruptible);
5829
5830 /**
5831 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5832 * @x: holds the state of this particular completion
5833 * @timeout: timeout value in jiffies
5834 *
5835 * This waits for either a completion of a specific task to be signaled or for a
5836 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5837 */
5838 unsigned long __sched
5839 wait_for_completion_interruptible_timeout(struct completion *x,
5840 unsigned long timeout)
5841 {
5842 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5843 }
5844 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5845
5846 /**
5847 * wait_for_completion_killable: - waits for completion of a task (killable)
5848 * @x: holds the state of this particular completion
5849 *
5850 * This waits to be signaled for completion of a specific task. It can be
5851 * interrupted by a kill signal.
5852 */
5853 int __sched wait_for_completion_killable(struct completion *x)
5854 {
5855 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5856 if (t == -ERESTARTSYS)
5857 return t;
5858 return 0;
5859 }
5860 EXPORT_SYMBOL(wait_for_completion_killable);
5861
5862 /**
5863 * try_wait_for_completion - try to decrement a completion without blocking
5864 * @x: completion structure
5865 *
5866 * Returns: 0 if a decrement cannot be done without blocking
5867 * 1 if a decrement succeeded.
5868 *
5869 * If a completion is being used as a counting completion,
5870 * attempt to decrement the counter without blocking. This
5871 * enables us to avoid waiting if the resource the completion
5872 * is protecting is not available.
5873 */
5874 bool try_wait_for_completion(struct completion *x)
5875 {
5876 int ret = 1;
5877
5878 spin_lock_irq(&x->wait.lock);
5879 if (!x->done)
5880 ret = 0;
5881 else
5882 x->done--;
5883 spin_unlock_irq(&x->wait.lock);
5884 return ret;
5885 }
5886 EXPORT_SYMBOL(try_wait_for_completion);
5887
5888 /**
5889 * completion_done - Test to see if a completion has any waiters
5890 * @x: completion structure
5891 *
5892 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5893 * 1 if there are no waiters.
5894 *
5895 */
5896 bool completion_done(struct completion *x)
5897 {
5898 int ret = 1;
5899
5900 spin_lock_irq(&x->wait.lock);
5901 if (!x->done)
5902 ret = 0;
5903 spin_unlock_irq(&x->wait.lock);
5904 return ret;
5905 }
5906 EXPORT_SYMBOL(completion_done);
5907
5908 static long __sched
5909 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
5910 {
5911 unsigned long flags;
5912 wait_queue_t wait;
5913
5914 init_waitqueue_entry(&wait, current);
5915
5916 __set_current_state(state);
5917
5918 spin_lock_irqsave(&q->lock, flags);
5919 __add_wait_queue(q, &wait);
5920 spin_unlock(&q->lock);
5921 timeout = schedule_timeout(timeout);
5922 spin_lock_irq(&q->lock);
5923 __remove_wait_queue(q, &wait);
5924 spin_unlock_irqrestore(&q->lock, flags);
5925
5926 return timeout;
5927 }
5928
5929 void __sched interruptible_sleep_on(wait_queue_head_t *q)
5930 {
5931 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5932 }
5933 EXPORT_SYMBOL(interruptible_sleep_on);
5934
5935 long __sched
5936 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
5937 {
5938 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
5939 }
5940 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5941
5942 void __sched sleep_on(wait_queue_head_t *q)
5943 {
5944 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
5945 }
5946 EXPORT_SYMBOL(sleep_on);
5947
5948 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
5949 {
5950 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
5951 }
5952 EXPORT_SYMBOL(sleep_on_timeout);
5953
5954 #ifdef CONFIG_RT_MUTEXES
5955
5956 /*
5957 * rt_mutex_setprio - set the current priority of a task
5958 * @p: task
5959 * @prio: prio value (kernel-internal form)
5960 *
5961 * This function changes the 'effective' priority of a task. It does
5962 * not touch ->normal_prio like __setscheduler().
5963 *
5964 * Used by the rt_mutex code to implement priority inheritance logic.
5965 */
5966 void rt_mutex_setprio(struct task_struct *p, int prio)
5967 {
5968 unsigned long flags;
5969 int oldprio, on_rq, running;
5970 struct rq *rq;
5971 const struct sched_class *prev_class = p->sched_class;
5972
5973 BUG_ON(prio < 0 || prio > MAX_PRIO);
5974
5975 rq = task_rq_lock(p, &flags);
5976 update_rq_clock(rq);
5977
5978 oldprio = p->prio;
5979 on_rq = p->se.on_rq;
5980 running = task_current(rq, p);
5981 if (on_rq)
5982 dequeue_task(rq, p, 0);
5983 if (running)
5984 p->sched_class->put_prev_task(rq, p);
5985
5986 if (rt_prio(prio))
5987 p->sched_class = &rt_sched_class;
5988 else
5989 p->sched_class = &fair_sched_class;
5990
5991 p->prio = prio;
5992
5993 if (running)
5994 p->sched_class->set_curr_task(rq);
5995 if (on_rq) {
5996 enqueue_task(rq, p, 0);
5997
5998 check_class_changed(rq, p, prev_class, oldprio, running);
5999 }
6000 task_rq_unlock(rq, &flags);
6001 }
6002
6003 #endif
6004
6005 void set_user_nice(struct task_struct *p, long nice)
6006 {
6007 int old_prio, delta, on_rq;
6008 unsigned long flags;
6009 struct rq *rq;
6010
6011 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6012 return;
6013 /*
6014 * We have to be careful, if called from sys_setpriority(),
6015 * the task might be in the middle of scheduling on another CPU.
6016 */
6017 rq = task_rq_lock(p, &flags);
6018 update_rq_clock(rq);
6019 /*
6020 * The RT priorities are set via sched_setscheduler(), but we still
6021 * allow the 'normal' nice value to be set - but as expected
6022 * it wont have any effect on scheduling until the task is
6023 * SCHED_FIFO/SCHED_RR:
6024 */
6025 if (task_has_rt_policy(p)) {
6026 p->static_prio = NICE_TO_PRIO(nice);
6027 goto out_unlock;
6028 }
6029 on_rq = p->se.on_rq;
6030 if (on_rq)
6031 dequeue_task(rq, p, 0);
6032
6033 p->static_prio = NICE_TO_PRIO(nice);
6034 set_load_weight(p);
6035 old_prio = p->prio;
6036 p->prio = effective_prio(p);
6037 delta = p->prio - old_prio;
6038
6039 if (on_rq) {
6040 enqueue_task(rq, p, 0);
6041 /*
6042 * If the task increased its priority or is running and
6043 * lowered its priority, then reschedule its CPU:
6044 */
6045 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6046 resched_task(rq->curr);
6047 }
6048 out_unlock:
6049 task_rq_unlock(rq, &flags);
6050 }
6051 EXPORT_SYMBOL(set_user_nice);
6052
6053 /*
6054 * can_nice - check if a task can reduce its nice value
6055 * @p: task
6056 * @nice: nice value
6057 */
6058 int can_nice(const struct task_struct *p, const int nice)
6059 {
6060 /* convert nice value [19,-20] to rlimit style value [1,40] */
6061 int nice_rlim = 20 - nice;
6062
6063 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6064 capable(CAP_SYS_NICE));
6065 }
6066
6067 #ifdef __ARCH_WANT_SYS_NICE
6068
6069 /*
6070 * sys_nice - change the priority of the current process.
6071 * @increment: priority increment
6072 *
6073 * sys_setpriority is a more generic, but much slower function that
6074 * does similar things.
6075 */
6076 SYSCALL_DEFINE1(nice, int, increment)
6077 {
6078 long nice, retval;
6079
6080 /*
6081 * Setpriority might change our priority at the same moment.
6082 * We don't have to worry. Conceptually one call occurs first
6083 * and we have a single winner.
6084 */
6085 if (increment < -40)
6086 increment = -40;
6087 if (increment > 40)
6088 increment = 40;
6089
6090 nice = TASK_NICE(current) + increment;
6091 if (nice < -20)
6092 nice = -20;
6093 if (nice > 19)
6094 nice = 19;
6095
6096 if (increment < 0 && !can_nice(current, nice))
6097 return -EPERM;
6098
6099 retval = security_task_setnice(current, nice);
6100 if (retval)
6101 return retval;
6102
6103 set_user_nice(current, nice);
6104 return 0;
6105 }
6106
6107 #endif
6108
6109 /**
6110 * task_prio - return the priority value of a given task.
6111 * @p: the task in question.
6112 *
6113 * This is the priority value as seen by users in /proc.
6114 * RT tasks are offset by -200. Normal tasks are centered
6115 * around 0, value goes from -16 to +15.
6116 */
6117 int task_prio(const struct task_struct *p)
6118 {
6119 return p->prio - MAX_RT_PRIO;
6120 }
6121
6122 /**
6123 * task_nice - return the nice value of a given task.
6124 * @p: the task in question.
6125 */
6126 int task_nice(const struct task_struct *p)
6127 {
6128 return TASK_NICE(p);
6129 }
6130 EXPORT_SYMBOL(task_nice);
6131
6132 /**
6133 * idle_cpu - is a given cpu idle currently?
6134 * @cpu: the processor in question.
6135 */
6136 int idle_cpu(int cpu)
6137 {
6138 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6139 }
6140
6141 /**
6142 * idle_task - return the idle task for a given cpu.
6143 * @cpu: the processor in question.
6144 */
6145 struct task_struct *idle_task(int cpu)
6146 {
6147 return cpu_rq(cpu)->idle;
6148 }
6149
6150 /**
6151 * find_process_by_pid - find a process with a matching PID value.
6152 * @pid: the pid in question.
6153 */
6154 static struct task_struct *find_process_by_pid(pid_t pid)
6155 {
6156 return pid ? find_task_by_vpid(pid) : current;
6157 }
6158
6159 /* Actually do priority change: must hold rq lock. */
6160 static void
6161 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6162 {
6163 BUG_ON(p->se.on_rq);
6164
6165 p->policy = policy;
6166 p->rt_priority = prio;
6167 p->normal_prio = normal_prio(p);
6168 /* we are holding p->pi_lock already */
6169 p->prio = rt_mutex_getprio(p);
6170 if (rt_prio(p->prio))
6171 p->sched_class = &rt_sched_class;
6172 else
6173 p->sched_class = &fair_sched_class;
6174 set_load_weight(p);
6175 }
6176
6177 /*
6178 * check the target process has a UID that matches the current process's
6179 */
6180 static bool check_same_owner(struct task_struct *p)
6181 {
6182 const struct cred *cred = current_cred(), *pcred;
6183 bool match;
6184
6185 rcu_read_lock();
6186 pcred = __task_cred(p);
6187 match = (cred->euid == pcred->euid ||
6188 cred->euid == pcred->uid);
6189 rcu_read_unlock();
6190 return match;
6191 }
6192
6193 static int __sched_setscheduler(struct task_struct *p, int policy,
6194 struct sched_param *param, bool user)
6195 {
6196 int retval, oldprio, oldpolicy = -1, on_rq, running;
6197 unsigned long flags;
6198 const struct sched_class *prev_class = p->sched_class;
6199 struct rq *rq;
6200 int reset_on_fork;
6201
6202 /* may grab non-irq protected spin_locks */
6203 BUG_ON(in_interrupt());
6204 recheck:
6205 /* double check policy once rq lock held */
6206 if (policy < 0) {
6207 reset_on_fork = p->sched_reset_on_fork;
6208 policy = oldpolicy = p->policy;
6209 } else {
6210 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6211 policy &= ~SCHED_RESET_ON_FORK;
6212
6213 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6214 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6215 policy != SCHED_IDLE)
6216 return -EINVAL;
6217 }
6218
6219 /*
6220 * Valid priorities for SCHED_FIFO and SCHED_RR are
6221 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6222 * SCHED_BATCH and SCHED_IDLE is 0.
6223 */
6224 if (param->sched_priority < 0 ||
6225 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6226 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6227 return -EINVAL;
6228 if (rt_policy(policy) != (param->sched_priority != 0))
6229 return -EINVAL;
6230
6231 /*
6232 * Allow unprivileged RT tasks to decrease priority:
6233 */
6234 if (user && !capable(CAP_SYS_NICE)) {
6235 if (rt_policy(policy)) {
6236 unsigned long rlim_rtprio;
6237
6238 if (!lock_task_sighand(p, &flags))
6239 return -ESRCH;
6240 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6241 unlock_task_sighand(p, &flags);
6242
6243 /* can't set/change the rt policy */
6244 if (policy != p->policy && !rlim_rtprio)
6245 return -EPERM;
6246
6247 /* can't increase priority */
6248 if (param->sched_priority > p->rt_priority &&
6249 param->sched_priority > rlim_rtprio)
6250 return -EPERM;
6251 }
6252 /*
6253 * Like positive nice levels, dont allow tasks to
6254 * move out of SCHED_IDLE either:
6255 */
6256 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6257 return -EPERM;
6258
6259 /* can't change other user's priorities */
6260 if (!check_same_owner(p))
6261 return -EPERM;
6262
6263 /* Normal users shall not reset the sched_reset_on_fork flag */
6264 if (p->sched_reset_on_fork && !reset_on_fork)
6265 return -EPERM;
6266 }
6267
6268 if (user) {
6269 #ifdef CONFIG_RT_GROUP_SCHED
6270 /*
6271 * Do not allow realtime tasks into groups that have no runtime
6272 * assigned.
6273 */
6274 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6275 task_group(p)->rt_bandwidth.rt_runtime == 0)
6276 return -EPERM;
6277 #endif
6278
6279 retval = security_task_setscheduler(p, policy, param);
6280 if (retval)
6281 return retval;
6282 }
6283
6284 /*
6285 * make sure no PI-waiters arrive (or leave) while we are
6286 * changing the priority of the task:
6287 */
6288 spin_lock_irqsave(&p->pi_lock, flags);
6289 /*
6290 * To be able to change p->policy safely, the apropriate
6291 * runqueue lock must be held.
6292 */
6293 rq = __task_rq_lock(p);
6294 /* recheck policy now with rq lock held */
6295 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6296 policy = oldpolicy = -1;
6297 __task_rq_unlock(rq);
6298 spin_unlock_irqrestore(&p->pi_lock, flags);
6299 goto recheck;
6300 }
6301 update_rq_clock(rq);
6302 on_rq = p->se.on_rq;
6303 running = task_current(rq, p);
6304 if (on_rq)
6305 deactivate_task(rq, p, 0);
6306 if (running)
6307 p->sched_class->put_prev_task(rq, p);
6308
6309 p->sched_reset_on_fork = reset_on_fork;
6310
6311 oldprio = p->prio;
6312 __setscheduler(rq, p, policy, param->sched_priority);
6313
6314 if (running)
6315 p->sched_class->set_curr_task(rq);
6316 if (on_rq) {
6317 activate_task(rq, p, 0);
6318
6319 check_class_changed(rq, p, prev_class, oldprio, running);
6320 }
6321 __task_rq_unlock(rq);
6322 spin_unlock_irqrestore(&p->pi_lock, flags);
6323
6324 rt_mutex_adjust_pi(p);
6325
6326 return 0;
6327 }
6328
6329 /**
6330 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6331 * @p: the task in question.
6332 * @policy: new policy.
6333 * @param: structure containing the new RT priority.
6334 *
6335 * NOTE that the task may be already dead.
6336 */
6337 int sched_setscheduler(struct task_struct *p, int policy,
6338 struct sched_param *param)
6339 {
6340 return __sched_setscheduler(p, policy, param, true);
6341 }
6342 EXPORT_SYMBOL_GPL(sched_setscheduler);
6343
6344 /**
6345 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6346 * @p: the task in question.
6347 * @policy: new policy.
6348 * @param: structure containing the new RT priority.
6349 *
6350 * Just like sched_setscheduler, only don't bother checking if the
6351 * current context has permission. For example, this is needed in
6352 * stop_machine(): we create temporary high priority worker threads,
6353 * but our caller might not have that capability.
6354 */
6355 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6356 struct sched_param *param)
6357 {
6358 return __sched_setscheduler(p, policy, param, false);
6359 }
6360
6361 static int
6362 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6363 {
6364 struct sched_param lparam;
6365 struct task_struct *p;
6366 int retval;
6367
6368 if (!param || pid < 0)
6369 return -EINVAL;
6370 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6371 return -EFAULT;
6372
6373 rcu_read_lock();
6374 retval = -ESRCH;
6375 p = find_process_by_pid(pid);
6376 if (p != NULL)
6377 retval = sched_setscheduler(p, policy, &lparam);
6378 rcu_read_unlock();
6379
6380 return retval;
6381 }
6382
6383 /**
6384 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6385 * @pid: the pid in question.
6386 * @policy: new policy.
6387 * @param: structure containing the new RT priority.
6388 */
6389 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6390 struct sched_param __user *, param)
6391 {
6392 /* negative values for policy are not valid */
6393 if (policy < 0)
6394 return -EINVAL;
6395
6396 return do_sched_setscheduler(pid, policy, param);
6397 }
6398
6399 /**
6400 * sys_sched_setparam - set/change the RT priority of a thread
6401 * @pid: the pid in question.
6402 * @param: structure containing the new RT priority.
6403 */
6404 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6405 {
6406 return do_sched_setscheduler(pid, -1, param);
6407 }
6408
6409 /**
6410 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6411 * @pid: the pid in question.
6412 */
6413 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6414 {
6415 struct task_struct *p;
6416 int retval;
6417
6418 if (pid < 0)
6419 return -EINVAL;
6420
6421 retval = -ESRCH;
6422 read_lock(&tasklist_lock);
6423 p = find_process_by_pid(pid);
6424 if (p) {
6425 retval = security_task_getscheduler(p);
6426 if (!retval)
6427 retval = p->policy
6428 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6429 }
6430 read_unlock(&tasklist_lock);
6431 return retval;
6432 }
6433
6434 /**
6435 * sys_sched_getparam - get the RT priority of a thread
6436 * @pid: the pid in question.
6437 * @param: structure containing the RT priority.
6438 */
6439 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6440 {
6441 struct sched_param lp;
6442 struct task_struct *p;
6443 int retval;
6444
6445 if (!param || pid < 0)
6446 return -EINVAL;
6447
6448 read_lock(&tasklist_lock);
6449 p = find_process_by_pid(pid);
6450 retval = -ESRCH;
6451 if (!p)
6452 goto out_unlock;
6453
6454 retval = security_task_getscheduler(p);
6455 if (retval)
6456 goto out_unlock;
6457
6458 lp.sched_priority = p->rt_priority;
6459 read_unlock(&tasklist_lock);
6460
6461 /*
6462 * This one might sleep, we cannot do it with a spinlock held ...
6463 */
6464 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6465
6466 return retval;
6467
6468 out_unlock:
6469 read_unlock(&tasklist_lock);
6470 return retval;
6471 }
6472
6473 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6474 {
6475 cpumask_var_t cpus_allowed, new_mask;
6476 struct task_struct *p;
6477 int retval;
6478
6479 get_online_cpus();
6480 read_lock(&tasklist_lock);
6481
6482 p = find_process_by_pid(pid);
6483 if (!p) {
6484 read_unlock(&tasklist_lock);
6485 put_online_cpus();
6486 return -ESRCH;
6487 }
6488
6489 /*
6490 * It is not safe to call set_cpus_allowed with the
6491 * tasklist_lock held. We will bump the task_struct's
6492 * usage count and then drop tasklist_lock.
6493 */
6494 get_task_struct(p);
6495 read_unlock(&tasklist_lock);
6496
6497 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6498 retval = -ENOMEM;
6499 goto out_put_task;
6500 }
6501 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6502 retval = -ENOMEM;
6503 goto out_free_cpus_allowed;
6504 }
6505 retval = -EPERM;
6506 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6507 goto out_unlock;
6508
6509 retval = security_task_setscheduler(p, 0, NULL);
6510 if (retval)
6511 goto out_unlock;
6512
6513 cpuset_cpus_allowed(p, cpus_allowed);
6514 cpumask_and(new_mask, in_mask, cpus_allowed);
6515 again:
6516 retval = set_cpus_allowed_ptr(p, new_mask);
6517
6518 if (!retval) {
6519 cpuset_cpus_allowed(p, cpus_allowed);
6520 if (!cpumask_subset(new_mask, cpus_allowed)) {
6521 /*
6522 * We must have raced with a concurrent cpuset
6523 * update. Just reset the cpus_allowed to the
6524 * cpuset's cpus_allowed
6525 */
6526 cpumask_copy(new_mask, cpus_allowed);
6527 goto again;
6528 }
6529 }
6530 out_unlock:
6531 free_cpumask_var(new_mask);
6532 out_free_cpus_allowed:
6533 free_cpumask_var(cpus_allowed);
6534 out_put_task:
6535 put_task_struct(p);
6536 put_online_cpus();
6537 return retval;
6538 }
6539
6540 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6541 struct cpumask *new_mask)
6542 {
6543 if (len < cpumask_size())
6544 cpumask_clear(new_mask);
6545 else if (len > cpumask_size())
6546 len = cpumask_size();
6547
6548 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6549 }
6550
6551 /**
6552 * sys_sched_setaffinity - set the cpu affinity of a process
6553 * @pid: pid of the process
6554 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6555 * @user_mask_ptr: user-space pointer to the new cpu mask
6556 */
6557 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6558 unsigned long __user *, user_mask_ptr)
6559 {
6560 cpumask_var_t new_mask;
6561 int retval;
6562
6563 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6564 return -ENOMEM;
6565
6566 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6567 if (retval == 0)
6568 retval = sched_setaffinity(pid, new_mask);
6569 free_cpumask_var(new_mask);
6570 return retval;
6571 }
6572
6573 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6574 {
6575 struct task_struct *p;
6576 int retval;
6577
6578 get_online_cpus();
6579 read_lock(&tasklist_lock);
6580
6581 retval = -ESRCH;
6582 p = find_process_by_pid(pid);
6583 if (!p)
6584 goto out_unlock;
6585
6586 retval = security_task_getscheduler(p);
6587 if (retval)
6588 goto out_unlock;
6589
6590 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6591
6592 out_unlock:
6593 read_unlock(&tasklist_lock);
6594 put_online_cpus();
6595
6596 return retval;
6597 }
6598
6599 /**
6600 * sys_sched_getaffinity - get the cpu affinity of a process
6601 * @pid: pid of the process
6602 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6603 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6604 */
6605 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6606 unsigned long __user *, user_mask_ptr)
6607 {
6608 int ret;
6609 cpumask_var_t mask;
6610
6611 if (len < cpumask_size())
6612 return -EINVAL;
6613
6614 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6615 return -ENOMEM;
6616
6617 ret = sched_getaffinity(pid, mask);
6618 if (ret == 0) {
6619 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6620 ret = -EFAULT;
6621 else
6622 ret = cpumask_size();
6623 }
6624 free_cpumask_var(mask);
6625
6626 return ret;
6627 }
6628
6629 /**
6630 * sys_sched_yield - yield the current processor to other threads.
6631 *
6632 * This function yields the current CPU to other tasks. If there are no
6633 * other threads running on this CPU then this function will return.
6634 */
6635 SYSCALL_DEFINE0(sched_yield)
6636 {
6637 struct rq *rq = this_rq_lock();
6638
6639 schedstat_inc(rq, yld_count);
6640 current->sched_class->yield_task(rq);
6641
6642 /*
6643 * Since we are going to call schedule() anyway, there's
6644 * no need to preempt or enable interrupts:
6645 */
6646 __release(rq->lock);
6647 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6648 _raw_spin_unlock(&rq->lock);
6649 preempt_enable_no_resched();
6650
6651 schedule();
6652
6653 return 0;
6654 }
6655
6656 static inline int should_resched(void)
6657 {
6658 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6659 }
6660
6661 static void __cond_resched(void)
6662 {
6663 add_preempt_count(PREEMPT_ACTIVE);
6664 schedule();
6665 sub_preempt_count(PREEMPT_ACTIVE);
6666 }
6667
6668 int __sched _cond_resched(void)
6669 {
6670 if (should_resched()) {
6671 __cond_resched();
6672 return 1;
6673 }
6674 return 0;
6675 }
6676 EXPORT_SYMBOL(_cond_resched);
6677
6678 /*
6679 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6680 * call schedule, and on return reacquire the lock.
6681 *
6682 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6683 * operations here to prevent schedule() from being called twice (once via
6684 * spin_unlock(), once by hand).
6685 */
6686 int __cond_resched_lock(spinlock_t *lock)
6687 {
6688 int resched = should_resched();
6689 int ret = 0;
6690
6691 lockdep_assert_held(lock);
6692
6693 if (spin_needbreak(lock) || resched) {
6694 spin_unlock(lock);
6695 if (resched)
6696 __cond_resched();
6697 else
6698 cpu_relax();
6699 ret = 1;
6700 spin_lock(lock);
6701 }
6702 return ret;
6703 }
6704 EXPORT_SYMBOL(__cond_resched_lock);
6705
6706 int __sched __cond_resched_softirq(void)
6707 {
6708 BUG_ON(!in_softirq());
6709
6710 if (should_resched()) {
6711 local_bh_enable();
6712 __cond_resched();
6713 local_bh_disable();
6714 return 1;
6715 }
6716 return 0;
6717 }
6718 EXPORT_SYMBOL(__cond_resched_softirq);
6719
6720 /**
6721 * yield - yield the current processor to other threads.
6722 *
6723 * This is a shortcut for kernel-space yielding - it marks the
6724 * thread runnable and calls sys_sched_yield().
6725 */
6726 void __sched yield(void)
6727 {
6728 set_current_state(TASK_RUNNING);
6729 sys_sched_yield();
6730 }
6731 EXPORT_SYMBOL(yield);
6732
6733 /*
6734 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6735 * that process accounting knows that this is a task in IO wait state.
6736 */
6737 void __sched io_schedule(void)
6738 {
6739 struct rq *rq = raw_rq();
6740
6741 delayacct_blkio_start();
6742 atomic_inc(&rq->nr_iowait);
6743 current->in_iowait = 1;
6744 schedule();
6745 current->in_iowait = 0;
6746 atomic_dec(&rq->nr_iowait);
6747 delayacct_blkio_end();
6748 }
6749 EXPORT_SYMBOL(io_schedule);
6750
6751 long __sched io_schedule_timeout(long timeout)
6752 {
6753 struct rq *rq = raw_rq();
6754 long ret;
6755
6756 delayacct_blkio_start();
6757 atomic_inc(&rq->nr_iowait);
6758 current->in_iowait = 1;
6759 ret = schedule_timeout(timeout);
6760 current->in_iowait = 0;
6761 atomic_dec(&rq->nr_iowait);
6762 delayacct_blkio_end();
6763 return ret;
6764 }
6765
6766 /**
6767 * sys_sched_get_priority_max - return maximum RT priority.
6768 * @policy: scheduling class.
6769 *
6770 * this syscall returns the maximum rt_priority that can be used
6771 * by a given scheduling class.
6772 */
6773 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6774 {
6775 int ret = -EINVAL;
6776
6777 switch (policy) {
6778 case SCHED_FIFO:
6779 case SCHED_RR:
6780 ret = MAX_USER_RT_PRIO-1;
6781 break;
6782 case SCHED_NORMAL:
6783 case SCHED_BATCH:
6784 case SCHED_IDLE:
6785 ret = 0;
6786 break;
6787 }
6788 return ret;
6789 }
6790
6791 /**
6792 * sys_sched_get_priority_min - return minimum RT priority.
6793 * @policy: scheduling class.
6794 *
6795 * this syscall returns the minimum rt_priority that can be used
6796 * by a given scheduling class.
6797 */
6798 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6799 {
6800 int ret = -EINVAL;
6801
6802 switch (policy) {
6803 case SCHED_FIFO:
6804 case SCHED_RR:
6805 ret = 1;
6806 break;
6807 case SCHED_NORMAL:
6808 case SCHED_BATCH:
6809 case SCHED_IDLE:
6810 ret = 0;
6811 }
6812 return ret;
6813 }
6814
6815 /**
6816 * sys_sched_rr_get_interval - return the default timeslice of a process.
6817 * @pid: pid of the process.
6818 * @interval: userspace pointer to the timeslice value.
6819 *
6820 * this syscall writes the default timeslice value of a given process
6821 * into the user-space timespec buffer. A value of '0' means infinity.
6822 */
6823 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6824 struct timespec __user *, interval)
6825 {
6826 struct task_struct *p;
6827 unsigned int time_slice;
6828 int retval;
6829 struct timespec t;
6830
6831 if (pid < 0)
6832 return -EINVAL;
6833
6834 retval = -ESRCH;
6835 read_lock(&tasklist_lock);
6836 p = find_process_by_pid(pid);
6837 if (!p)
6838 goto out_unlock;
6839
6840 retval = security_task_getscheduler(p);
6841 if (retval)
6842 goto out_unlock;
6843
6844 time_slice = p->sched_class->get_rr_interval(p);
6845
6846 read_unlock(&tasklist_lock);
6847 jiffies_to_timespec(time_slice, &t);
6848 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
6849 return retval;
6850
6851 out_unlock:
6852 read_unlock(&tasklist_lock);
6853 return retval;
6854 }
6855
6856 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
6857
6858 void sched_show_task(struct task_struct *p)
6859 {
6860 unsigned long free = 0;
6861 unsigned state;
6862
6863 state = p->state ? __ffs(p->state) + 1 : 0;
6864 printk(KERN_INFO "%-13.13s %c", p->comm,
6865 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6866 #if BITS_PER_LONG == 32
6867 if (state == TASK_RUNNING)
6868 printk(KERN_CONT " running ");
6869 else
6870 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6871 #else
6872 if (state == TASK_RUNNING)
6873 printk(KERN_CONT " running task ");
6874 else
6875 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6876 #endif
6877 #ifdef CONFIG_DEBUG_STACK_USAGE
6878 free = stack_not_used(p);
6879 #endif
6880 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6881 task_pid_nr(p), task_pid_nr(p->real_parent),
6882 (unsigned long)task_thread_info(p)->flags);
6883
6884 show_stack(p, NULL);
6885 }
6886
6887 void show_state_filter(unsigned long state_filter)
6888 {
6889 struct task_struct *g, *p;
6890
6891 #if BITS_PER_LONG == 32
6892 printk(KERN_INFO
6893 " task PC stack pid father\n");
6894 #else
6895 printk(KERN_INFO
6896 " task PC stack pid father\n");
6897 #endif
6898 read_lock(&tasklist_lock);
6899 do_each_thread(g, p) {
6900 /*
6901 * reset the NMI-timeout, listing all files on a slow
6902 * console might take alot of time:
6903 */
6904 touch_nmi_watchdog();
6905 if (!state_filter || (p->state & state_filter))
6906 sched_show_task(p);
6907 } while_each_thread(g, p);
6908
6909 touch_all_softlockup_watchdogs();
6910
6911 #ifdef CONFIG_SCHED_DEBUG
6912 sysrq_sched_debug_show();
6913 #endif
6914 read_unlock(&tasklist_lock);
6915 /*
6916 * Only show locks if all tasks are dumped:
6917 */
6918 if (!state_filter)
6919 debug_show_all_locks();
6920 }
6921
6922 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6923 {
6924 idle->sched_class = &idle_sched_class;
6925 }
6926
6927 /**
6928 * init_idle - set up an idle thread for a given CPU
6929 * @idle: task in question
6930 * @cpu: cpu the idle task belongs to
6931 *
6932 * NOTE: this function does not set the idle thread's NEED_RESCHED
6933 * flag, to make booting more robust.
6934 */
6935 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6936 {
6937 struct rq *rq = cpu_rq(cpu);
6938 unsigned long flags;
6939
6940 spin_lock_irqsave(&rq->lock, flags);
6941
6942 __sched_fork(idle);
6943 idle->se.exec_start = sched_clock();
6944
6945 idle->prio = idle->normal_prio = MAX_PRIO;
6946 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
6947 __set_task_cpu(idle, cpu);
6948
6949 rq->curr = rq->idle = idle;
6950 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6951 idle->oncpu = 1;
6952 #endif
6953 spin_unlock_irqrestore(&rq->lock, flags);
6954
6955 /* Set the preempt count _outside_ the spinlocks! */
6956 #if defined(CONFIG_PREEMPT)
6957 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6958 #else
6959 task_thread_info(idle)->preempt_count = 0;
6960 #endif
6961 /*
6962 * The idle tasks have their own, simple scheduling class:
6963 */
6964 idle->sched_class = &idle_sched_class;
6965 ftrace_graph_init_task(idle);
6966 }
6967
6968 /*
6969 * In a system that switches off the HZ timer nohz_cpu_mask
6970 * indicates which cpus entered this state. This is used
6971 * in the rcu update to wait only for active cpus. For system
6972 * which do not switch off the HZ timer nohz_cpu_mask should
6973 * always be CPU_BITS_NONE.
6974 */
6975 cpumask_var_t nohz_cpu_mask;
6976
6977 /*
6978 * Increase the granularity value when there are more CPUs,
6979 * because with more CPUs the 'effective latency' as visible
6980 * to users decreases. But the relationship is not linear,
6981 * so pick a second-best guess by going with the log2 of the
6982 * number of CPUs.
6983 *
6984 * This idea comes from the SD scheduler of Con Kolivas:
6985 */
6986 static inline void sched_init_granularity(void)
6987 {
6988 unsigned int factor = 1 + ilog2(num_online_cpus());
6989 const unsigned long limit = 200000000;
6990
6991 sysctl_sched_min_granularity *= factor;
6992 if (sysctl_sched_min_granularity > limit)
6993 sysctl_sched_min_granularity = limit;
6994
6995 sysctl_sched_latency *= factor;
6996 if (sysctl_sched_latency > limit)
6997 sysctl_sched_latency = limit;
6998
6999 sysctl_sched_wakeup_granularity *= factor;
7000
7001 sysctl_sched_shares_ratelimit *= factor;
7002 }
7003
7004 #ifdef CONFIG_SMP
7005 /*
7006 * This is how migration works:
7007 *
7008 * 1) we queue a struct migration_req structure in the source CPU's
7009 * runqueue and wake up that CPU's migration thread.
7010 * 2) we down() the locked semaphore => thread blocks.
7011 * 3) migration thread wakes up (implicitly it forces the migrated
7012 * thread off the CPU)
7013 * 4) it gets the migration request and checks whether the migrated
7014 * task is still in the wrong runqueue.
7015 * 5) if it's in the wrong runqueue then the migration thread removes
7016 * it and puts it into the right queue.
7017 * 6) migration thread up()s the semaphore.
7018 * 7) we wake up and the migration is done.
7019 */
7020
7021 /*
7022 * Change a given task's CPU affinity. Migrate the thread to a
7023 * proper CPU and schedule it away if the CPU it's executing on
7024 * is removed from the allowed bitmask.
7025 *
7026 * NOTE: the caller must have a valid reference to the task, the
7027 * task must not exit() & deallocate itself prematurely. The
7028 * call is not atomic; no spinlocks may be held.
7029 */
7030 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7031 {
7032 struct migration_req req;
7033 unsigned long flags;
7034 struct rq *rq;
7035 int ret = 0;
7036
7037 rq = task_rq_lock(p, &flags);
7038 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7039 ret = -EINVAL;
7040 goto out;
7041 }
7042
7043 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7044 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7045 ret = -EINVAL;
7046 goto out;
7047 }
7048
7049 if (p->sched_class->set_cpus_allowed)
7050 p->sched_class->set_cpus_allowed(p, new_mask);
7051 else {
7052 cpumask_copy(&p->cpus_allowed, new_mask);
7053 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7054 }
7055
7056 /* Can the task run on the task's current CPU? If so, we're done */
7057 if (cpumask_test_cpu(task_cpu(p), new_mask))
7058 goto out;
7059
7060 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7061 /* Need help from migration thread: drop lock and wait. */
7062 struct task_struct *mt = rq->migration_thread;
7063
7064 get_task_struct(mt);
7065 task_rq_unlock(rq, &flags);
7066 wake_up_process(rq->migration_thread);
7067 put_task_struct(mt);
7068 wait_for_completion(&req.done);
7069 tlb_migrate_finish(p->mm);
7070 return 0;
7071 }
7072 out:
7073 task_rq_unlock(rq, &flags);
7074
7075 return ret;
7076 }
7077 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7078
7079 /*
7080 * Move (not current) task off this cpu, onto dest cpu. We're doing
7081 * this because either it can't run here any more (set_cpus_allowed()
7082 * away from this CPU, or CPU going down), or because we're
7083 * attempting to rebalance this task on exec (sched_exec).
7084 *
7085 * So we race with normal scheduler movements, but that's OK, as long
7086 * as the task is no longer on this CPU.
7087 *
7088 * Returns non-zero if task was successfully migrated.
7089 */
7090 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7091 {
7092 struct rq *rq_dest, *rq_src;
7093 int ret = 0, on_rq;
7094
7095 if (unlikely(!cpu_active(dest_cpu)))
7096 return ret;
7097
7098 rq_src = cpu_rq(src_cpu);
7099 rq_dest = cpu_rq(dest_cpu);
7100
7101 double_rq_lock(rq_src, rq_dest);
7102 /* Already moved. */
7103 if (task_cpu(p) != src_cpu)
7104 goto done;
7105 /* Affinity changed (again). */
7106 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7107 goto fail;
7108
7109 on_rq = p->se.on_rq;
7110 if (on_rq)
7111 deactivate_task(rq_src, p, 0);
7112
7113 set_task_cpu(p, dest_cpu);
7114 if (on_rq) {
7115 activate_task(rq_dest, p, 0);
7116 check_preempt_curr(rq_dest, p, 0);
7117 }
7118 done:
7119 ret = 1;
7120 fail:
7121 double_rq_unlock(rq_src, rq_dest);
7122 return ret;
7123 }
7124
7125 #define RCU_MIGRATION_IDLE 0
7126 #define RCU_MIGRATION_NEED_QS 1
7127 #define RCU_MIGRATION_GOT_QS 2
7128 #define RCU_MIGRATION_MUST_SYNC 3
7129
7130 /*
7131 * migration_thread - this is a highprio system thread that performs
7132 * thread migration by bumping thread off CPU then 'pushing' onto
7133 * another runqueue.
7134 */
7135 static int migration_thread(void *data)
7136 {
7137 int badcpu;
7138 int cpu = (long)data;
7139 struct rq *rq;
7140
7141 rq = cpu_rq(cpu);
7142 BUG_ON(rq->migration_thread != current);
7143
7144 set_current_state(TASK_INTERRUPTIBLE);
7145 while (!kthread_should_stop()) {
7146 struct migration_req *req;
7147 struct list_head *head;
7148
7149 spin_lock_irq(&rq->lock);
7150
7151 if (cpu_is_offline(cpu)) {
7152 spin_unlock_irq(&rq->lock);
7153 break;
7154 }
7155
7156 if (rq->active_balance) {
7157 active_load_balance(rq, cpu);
7158 rq->active_balance = 0;
7159 }
7160
7161 head = &rq->migration_queue;
7162
7163 if (list_empty(head)) {
7164 spin_unlock_irq(&rq->lock);
7165 schedule();
7166 set_current_state(TASK_INTERRUPTIBLE);
7167 continue;
7168 }
7169 req = list_entry(head->next, struct migration_req, list);
7170 list_del_init(head->next);
7171
7172 if (req->task != NULL) {
7173 spin_unlock(&rq->lock);
7174 __migrate_task(req->task, cpu, req->dest_cpu);
7175 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7176 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7177 spin_unlock(&rq->lock);
7178 } else {
7179 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7180 spin_unlock(&rq->lock);
7181 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7182 }
7183 local_irq_enable();
7184
7185 complete(&req->done);
7186 }
7187 __set_current_state(TASK_RUNNING);
7188
7189 return 0;
7190 }
7191
7192 #ifdef CONFIG_HOTPLUG_CPU
7193
7194 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7195 {
7196 int ret;
7197
7198 local_irq_disable();
7199 ret = __migrate_task(p, src_cpu, dest_cpu);
7200 local_irq_enable();
7201 return ret;
7202 }
7203
7204 /*
7205 * Figure out where task on dead CPU should go, use force if necessary.
7206 */
7207 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7208 {
7209 int dest_cpu;
7210 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7211
7212 again:
7213 /* Look for allowed, online CPU in same node. */
7214 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7215 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7216 goto move;
7217
7218 /* Any allowed, online CPU? */
7219 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7220 if (dest_cpu < nr_cpu_ids)
7221 goto move;
7222
7223 /* No more Mr. Nice Guy. */
7224 if (dest_cpu >= nr_cpu_ids) {
7225 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7226 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7227
7228 /*
7229 * Don't tell them about moving exiting tasks or
7230 * kernel threads (both mm NULL), since they never
7231 * leave kernel.
7232 */
7233 if (p->mm && printk_ratelimit()) {
7234 printk(KERN_INFO "process %d (%s) no "
7235 "longer affine to cpu%d\n",
7236 task_pid_nr(p), p->comm, dead_cpu);
7237 }
7238 }
7239
7240 move:
7241 /* It can have affinity changed while we were choosing. */
7242 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7243 goto again;
7244 }
7245
7246 /*
7247 * While a dead CPU has no uninterruptible tasks queued at this point,
7248 * it might still have a nonzero ->nr_uninterruptible counter, because
7249 * for performance reasons the counter is not stricly tracking tasks to
7250 * their home CPUs. So we just add the counter to another CPU's counter,
7251 * to keep the global sum constant after CPU-down:
7252 */
7253 static void migrate_nr_uninterruptible(struct rq *rq_src)
7254 {
7255 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7256 unsigned long flags;
7257
7258 local_irq_save(flags);
7259 double_rq_lock(rq_src, rq_dest);
7260 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7261 rq_src->nr_uninterruptible = 0;
7262 double_rq_unlock(rq_src, rq_dest);
7263 local_irq_restore(flags);
7264 }
7265
7266 /* Run through task list and migrate tasks from the dead cpu. */
7267 static void migrate_live_tasks(int src_cpu)
7268 {
7269 struct task_struct *p, *t;
7270
7271 read_lock(&tasklist_lock);
7272
7273 do_each_thread(t, p) {
7274 if (p == current)
7275 continue;
7276
7277 if (task_cpu(p) == src_cpu)
7278 move_task_off_dead_cpu(src_cpu, p);
7279 } while_each_thread(t, p);
7280
7281 read_unlock(&tasklist_lock);
7282 }
7283
7284 /*
7285 * Schedules idle task to be the next runnable task on current CPU.
7286 * It does so by boosting its priority to highest possible.
7287 * Used by CPU offline code.
7288 */
7289 void sched_idle_next(void)
7290 {
7291 int this_cpu = smp_processor_id();
7292 struct rq *rq = cpu_rq(this_cpu);
7293 struct task_struct *p = rq->idle;
7294 unsigned long flags;
7295
7296 /* cpu has to be offline */
7297 BUG_ON(cpu_online(this_cpu));
7298
7299 /*
7300 * Strictly not necessary since rest of the CPUs are stopped by now
7301 * and interrupts disabled on the current cpu.
7302 */
7303 spin_lock_irqsave(&rq->lock, flags);
7304
7305 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7306
7307 update_rq_clock(rq);
7308 activate_task(rq, p, 0);
7309
7310 spin_unlock_irqrestore(&rq->lock, flags);
7311 }
7312
7313 /*
7314 * Ensures that the idle task is using init_mm right before its cpu goes
7315 * offline.
7316 */
7317 void idle_task_exit(void)
7318 {
7319 struct mm_struct *mm = current->active_mm;
7320
7321 BUG_ON(cpu_online(smp_processor_id()));
7322
7323 if (mm != &init_mm)
7324 switch_mm(mm, &init_mm, current);
7325 mmdrop(mm);
7326 }
7327
7328 /* called under rq->lock with disabled interrupts */
7329 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7330 {
7331 struct rq *rq = cpu_rq(dead_cpu);
7332
7333 /* Must be exiting, otherwise would be on tasklist. */
7334 BUG_ON(!p->exit_state);
7335
7336 /* Cannot have done final schedule yet: would have vanished. */
7337 BUG_ON(p->state == TASK_DEAD);
7338
7339 get_task_struct(p);
7340
7341 /*
7342 * Drop lock around migration; if someone else moves it,
7343 * that's OK. No task can be added to this CPU, so iteration is
7344 * fine.
7345 */
7346 spin_unlock_irq(&rq->lock);
7347 move_task_off_dead_cpu(dead_cpu, p);
7348 spin_lock_irq(&rq->lock);
7349
7350 put_task_struct(p);
7351 }
7352
7353 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7354 static void migrate_dead_tasks(unsigned int dead_cpu)
7355 {
7356 struct rq *rq = cpu_rq(dead_cpu);
7357 struct task_struct *next;
7358
7359 for ( ; ; ) {
7360 if (!rq->nr_running)
7361 break;
7362 update_rq_clock(rq);
7363 next = pick_next_task(rq);
7364 if (!next)
7365 break;
7366 next->sched_class->put_prev_task(rq, next);
7367 migrate_dead(dead_cpu, next);
7368
7369 }
7370 }
7371
7372 /*
7373 * remove the tasks which were accounted by rq from calc_load_tasks.
7374 */
7375 static void calc_global_load_remove(struct rq *rq)
7376 {
7377 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7378 rq->calc_load_active = 0;
7379 }
7380 #endif /* CONFIG_HOTPLUG_CPU */
7381
7382 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7383
7384 static struct ctl_table sd_ctl_dir[] = {
7385 {
7386 .procname = "sched_domain",
7387 .mode = 0555,
7388 },
7389 {0, },
7390 };
7391
7392 static struct ctl_table sd_ctl_root[] = {
7393 {
7394 .ctl_name = CTL_KERN,
7395 .procname = "kernel",
7396 .mode = 0555,
7397 .child = sd_ctl_dir,
7398 },
7399 {0, },
7400 };
7401
7402 static struct ctl_table *sd_alloc_ctl_entry(int n)
7403 {
7404 struct ctl_table *entry =
7405 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7406
7407 return entry;
7408 }
7409
7410 static void sd_free_ctl_entry(struct ctl_table **tablep)
7411 {
7412 struct ctl_table *entry;
7413
7414 /*
7415 * In the intermediate directories, both the child directory and
7416 * procname are dynamically allocated and could fail but the mode
7417 * will always be set. In the lowest directory the names are
7418 * static strings and all have proc handlers.
7419 */
7420 for (entry = *tablep; entry->mode; entry++) {
7421 if (entry->child)
7422 sd_free_ctl_entry(&entry->child);
7423 if (entry->proc_handler == NULL)
7424 kfree(entry->procname);
7425 }
7426
7427 kfree(*tablep);
7428 *tablep = NULL;
7429 }
7430
7431 static void
7432 set_table_entry(struct ctl_table *entry,
7433 const char *procname, void *data, int maxlen,
7434 mode_t mode, proc_handler *proc_handler)
7435 {
7436 entry->procname = procname;
7437 entry->data = data;
7438 entry->maxlen = maxlen;
7439 entry->mode = mode;
7440 entry->proc_handler = proc_handler;
7441 }
7442
7443 static struct ctl_table *
7444 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7445 {
7446 struct ctl_table *table = sd_alloc_ctl_entry(13);
7447
7448 if (table == NULL)
7449 return NULL;
7450
7451 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7452 sizeof(long), 0644, proc_doulongvec_minmax);
7453 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7454 sizeof(long), 0644, proc_doulongvec_minmax);
7455 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7456 sizeof(int), 0644, proc_dointvec_minmax);
7457 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7458 sizeof(int), 0644, proc_dointvec_minmax);
7459 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7460 sizeof(int), 0644, proc_dointvec_minmax);
7461 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7462 sizeof(int), 0644, proc_dointvec_minmax);
7463 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7464 sizeof(int), 0644, proc_dointvec_minmax);
7465 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7466 sizeof(int), 0644, proc_dointvec_minmax);
7467 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7468 sizeof(int), 0644, proc_dointvec_minmax);
7469 set_table_entry(&table[9], "cache_nice_tries",
7470 &sd->cache_nice_tries,
7471 sizeof(int), 0644, proc_dointvec_minmax);
7472 set_table_entry(&table[10], "flags", &sd->flags,
7473 sizeof(int), 0644, proc_dointvec_minmax);
7474 set_table_entry(&table[11], "name", sd->name,
7475 CORENAME_MAX_SIZE, 0444, proc_dostring);
7476 /* &table[12] is terminator */
7477
7478 return table;
7479 }
7480
7481 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7482 {
7483 struct ctl_table *entry, *table;
7484 struct sched_domain *sd;
7485 int domain_num = 0, i;
7486 char buf[32];
7487
7488 for_each_domain(cpu, sd)
7489 domain_num++;
7490 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7491 if (table == NULL)
7492 return NULL;
7493
7494 i = 0;
7495 for_each_domain(cpu, sd) {
7496 snprintf(buf, 32, "domain%d", i);
7497 entry->procname = kstrdup(buf, GFP_KERNEL);
7498 entry->mode = 0555;
7499 entry->child = sd_alloc_ctl_domain_table(sd);
7500 entry++;
7501 i++;
7502 }
7503 return table;
7504 }
7505
7506 static struct ctl_table_header *sd_sysctl_header;
7507 static void register_sched_domain_sysctl(void)
7508 {
7509 int i, cpu_num = num_online_cpus();
7510 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7511 char buf[32];
7512
7513 WARN_ON(sd_ctl_dir[0].child);
7514 sd_ctl_dir[0].child = entry;
7515
7516 if (entry == NULL)
7517 return;
7518
7519 for_each_online_cpu(i) {
7520 snprintf(buf, 32, "cpu%d", i);
7521 entry->procname = kstrdup(buf, GFP_KERNEL);
7522 entry->mode = 0555;
7523 entry->child = sd_alloc_ctl_cpu_table(i);
7524 entry++;
7525 }
7526
7527 WARN_ON(sd_sysctl_header);
7528 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7529 }
7530
7531 /* may be called multiple times per register */
7532 static void unregister_sched_domain_sysctl(void)
7533 {
7534 if (sd_sysctl_header)
7535 unregister_sysctl_table(sd_sysctl_header);
7536 sd_sysctl_header = NULL;
7537 if (sd_ctl_dir[0].child)
7538 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7539 }
7540 #else
7541 static void register_sched_domain_sysctl(void)
7542 {
7543 }
7544 static void unregister_sched_domain_sysctl(void)
7545 {
7546 }
7547 #endif
7548
7549 static void set_rq_online(struct rq *rq)
7550 {
7551 if (!rq->online) {
7552 const struct sched_class *class;
7553
7554 cpumask_set_cpu(rq->cpu, rq->rd->online);
7555 rq->online = 1;
7556
7557 for_each_class(class) {
7558 if (class->rq_online)
7559 class->rq_online(rq);
7560 }
7561 }
7562 }
7563
7564 static void set_rq_offline(struct rq *rq)
7565 {
7566 if (rq->online) {
7567 const struct sched_class *class;
7568
7569 for_each_class(class) {
7570 if (class->rq_offline)
7571 class->rq_offline(rq);
7572 }
7573
7574 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7575 rq->online = 0;
7576 }
7577 }
7578
7579 /*
7580 * migration_call - callback that gets triggered when a CPU is added.
7581 * Here we can start up the necessary migration thread for the new CPU.
7582 */
7583 static int __cpuinit
7584 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7585 {
7586 struct task_struct *p;
7587 int cpu = (long)hcpu;
7588 unsigned long flags;
7589 struct rq *rq;
7590
7591 switch (action) {
7592
7593 case CPU_UP_PREPARE:
7594 case CPU_UP_PREPARE_FROZEN:
7595 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7596 if (IS_ERR(p))
7597 return NOTIFY_BAD;
7598 kthread_bind(p, cpu);
7599 /* Must be high prio: stop_machine expects to yield to it. */
7600 rq = task_rq_lock(p, &flags);
7601 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7602 task_rq_unlock(rq, &flags);
7603 get_task_struct(p);
7604 cpu_rq(cpu)->migration_thread = p;
7605 rq->calc_load_update = calc_load_update;
7606 break;
7607
7608 case CPU_ONLINE:
7609 case CPU_ONLINE_FROZEN:
7610 /* Strictly unnecessary, as first user will wake it. */
7611 wake_up_process(cpu_rq(cpu)->migration_thread);
7612
7613 /* Update our root-domain */
7614 rq = cpu_rq(cpu);
7615 spin_lock_irqsave(&rq->lock, flags);
7616 if (rq->rd) {
7617 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7618
7619 set_rq_online(rq);
7620 }
7621 spin_unlock_irqrestore(&rq->lock, flags);
7622 break;
7623
7624 #ifdef CONFIG_HOTPLUG_CPU
7625 case CPU_UP_CANCELED:
7626 case CPU_UP_CANCELED_FROZEN:
7627 if (!cpu_rq(cpu)->migration_thread)
7628 break;
7629 /* Unbind it from offline cpu so it can run. Fall thru. */
7630 kthread_bind(cpu_rq(cpu)->migration_thread,
7631 cpumask_any(cpu_online_mask));
7632 kthread_stop(cpu_rq(cpu)->migration_thread);
7633 put_task_struct(cpu_rq(cpu)->migration_thread);
7634 cpu_rq(cpu)->migration_thread = NULL;
7635 break;
7636
7637 case CPU_DEAD:
7638 case CPU_DEAD_FROZEN:
7639 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7640 migrate_live_tasks(cpu);
7641 rq = cpu_rq(cpu);
7642 kthread_stop(rq->migration_thread);
7643 put_task_struct(rq->migration_thread);
7644 rq->migration_thread = NULL;
7645 /* Idle task back to normal (off runqueue, low prio) */
7646 spin_lock_irq(&rq->lock);
7647 update_rq_clock(rq);
7648 deactivate_task(rq, rq->idle, 0);
7649 rq->idle->static_prio = MAX_PRIO;
7650 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7651 rq->idle->sched_class = &idle_sched_class;
7652 migrate_dead_tasks(cpu);
7653 spin_unlock_irq(&rq->lock);
7654 cpuset_unlock();
7655 migrate_nr_uninterruptible(rq);
7656 BUG_ON(rq->nr_running != 0);
7657 calc_global_load_remove(rq);
7658 /*
7659 * No need to migrate the tasks: it was best-effort if
7660 * they didn't take sched_hotcpu_mutex. Just wake up
7661 * the requestors.
7662 */
7663 spin_lock_irq(&rq->lock);
7664 while (!list_empty(&rq->migration_queue)) {
7665 struct migration_req *req;
7666
7667 req = list_entry(rq->migration_queue.next,
7668 struct migration_req, list);
7669 list_del_init(&req->list);
7670 spin_unlock_irq(&rq->lock);
7671 complete(&req->done);
7672 spin_lock_irq(&rq->lock);
7673 }
7674 spin_unlock_irq(&rq->lock);
7675 break;
7676
7677 case CPU_DYING:
7678 case CPU_DYING_FROZEN:
7679 /* Update our root-domain */
7680 rq = cpu_rq(cpu);
7681 spin_lock_irqsave(&rq->lock, flags);
7682 if (rq->rd) {
7683 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7684 set_rq_offline(rq);
7685 }
7686 spin_unlock_irqrestore(&rq->lock, flags);
7687 break;
7688 #endif
7689 }
7690 return NOTIFY_OK;
7691 }
7692
7693 /*
7694 * Register at high priority so that task migration (migrate_all_tasks)
7695 * happens before everything else. This has to be lower priority than
7696 * the notifier in the perf_event subsystem, though.
7697 */
7698 static struct notifier_block __cpuinitdata migration_notifier = {
7699 .notifier_call = migration_call,
7700 .priority = 10
7701 };
7702
7703 static int __init migration_init(void)
7704 {
7705 void *cpu = (void *)(long)smp_processor_id();
7706 int err;
7707
7708 /* Start one for the boot CPU: */
7709 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7710 BUG_ON(err == NOTIFY_BAD);
7711 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7712 register_cpu_notifier(&migration_notifier);
7713
7714 return 0;
7715 }
7716 early_initcall(migration_init);
7717 #endif
7718
7719 #ifdef CONFIG_SMP
7720
7721 #ifdef CONFIG_SCHED_DEBUG
7722
7723 static __read_mostly int sched_domain_debug_enabled;
7724
7725 static int __init sched_domain_debug_setup(char *str)
7726 {
7727 sched_domain_debug_enabled = 1;
7728
7729 return 0;
7730 }
7731 early_param("sched_debug", sched_domain_debug_setup);
7732
7733 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7734 struct cpumask *groupmask)
7735 {
7736 struct sched_group *group = sd->groups;
7737 char str[256];
7738
7739 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7740 cpumask_clear(groupmask);
7741
7742 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7743
7744 if (!(sd->flags & SD_LOAD_BALANCE)) {
7745 printk("does not load-balance\n");
7746 if (sd->parent)
7747 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7748 " has parent");
7749 return -1;
7750 }
7751
7752 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7753
7754 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7755 printk(KERN_ERR "ERROR: domain->span does not contain "
7756 "CPU%d\n", cpu);
7757 }
7758 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7759 printk(KERN_ERR "ERROR: domain->groups does not contain"
7760 " CPU%d\n", cpu);
7761 }
7762
7763 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7764 do {
7765 if (!group) {
7766 printk("\n");
7767 printk(KERN_ERR "ERROR: group is NULL\n");
7768 break;
7769 }
7770
7771 if (!group->cpu_power) {
7772 printk(KERN_CONT "\n");
7773 printk(KERN_ERR "ERROR: domain->cpu_power not "
7774 "set\n");
7775 break;
7776 }
7777
7778 if (!cpumask_weight(sched_group_cpus(group))) {
7779 printk(KERN_CONT "\n");
7780 printk(KERN_ERR "ERROR: empty group\n");
7781 break;
7782 }
7783
7784 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7785 printk(KERN_CONT "\n");
7786 printk(KERN_ERR "ERROR: repeated CPUs\n");
7787 break;
7788 }
7789
7790 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7791
7792 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7793
7794 printk(KERN_CONT " %s", str);
7795 if (group->cpu_power != SCHED_LOAD_SCALE) {
7796 printk(KERN_CONT " (cpu_power = %d)",
7797 group->cpu_power);
7798 }
7799
7800 group = group->next;
7801 } while (group != sd->groups);
7802 printk(KERN_CONT "\n");
7803
7804 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7805 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7806
7807 if (sd->parent &&
7808 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7809 printk(KERN_ERR "ERROR: parent span is not a superset "
7810 "of domain->span\n");
7811 return 0;
7812 }
7813
7814 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7815 {
7816 cpumask_var_t groupmask;
7817 int level = 0;
7818
7819 if (!sched_domain_debug_enabled)
7820 return;
7821
7822 if (!sd) {
7823 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7824 return;
7825 }
7826
7827 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7828
7829 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7830 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7831 return;
7832 }
7833
7834 for (;;) {
7835 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7836 break;
7837 level++;
7838 sd = sd->parent;
7839 if (!sd)
7840 break;
7841 }
7842 free_cpumask_var(groupmask);
7843 }
7844 #else /* !CONFIG_SCHED_DEBUG */
7845 # define sched_domain_debug(sd, cpu) do { } while (0)
7846 #endif /* CONFIG_SCHED_DEBUG */
7847
7848 static int sd_degenerate(struct sched_domain *sd)
7849 {
7850 if (cpumask_weight(sched_domain_span(sd)) == 1)
7851 return 1;
7852
7853 /* Following flags need at least 2 groups */
7854 if (sd->flags & (SD_LOAD_BALANCE |
7855 SD_BALANCE_NEWIDLE |
7856 SD_BALANCE_FORK |
7857 SD_BALANCE_EXEC |
7858 SD_SHARE_CPUPOWER |
7859 SD_SHARE_PKG_RESOURCES)) {
7860 if (sd->groups != sd->groups->next)
7861 return 0;
7862 }
7863
7864 /* Following flags don't use groups */
7865 if (sd->flags & (SD_WAKE_AFFINE))
7866 return 0;
7867
7868 return 1;
7869 }
7870
7871 static int
7872 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
7873 {
7874 unsigned long cflags = sd->flags, pflags = parent->flags;
7875
7876 if (sd_degenerate(parent))
7877 return 1;
7878
7879 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
7880 return 0;
7881
7882 /* Flags needing groups don't count if only 1 group in parent */
7883 if (parent->groups == parent->groups->next) {
7884 pflags &= ~(SD_LOAD_BALANCE |
7885 SD_BALANCE_NEWIDLE |
7886 SD_BALANCE_FORK |
7887 SD_BALANCE_EXEC |
7888 SD_SHARE_CPUPOWER |
7889 SD_SHARE_PKG_RESOURCES);
7890 if (nr_node_ids == 1)
7891 pflags &= ~SD_SERIALIZE;
7892 }
7893 if (~cflags & pflags)
7894 return 0;
7895
7896 return 1;
7897 }
7898
7899 static void free_rootdomain(struct root_domain *rd)
7900 {
7901 cpupri_cleanup(&rd->cpupri);
7902
7903 free_cpumask_var(rd->rto_mask);
7904 free_cpumask_var(rd->online);
7905 free_cpumask_var(rd->span);
7906 kfree(rd);
7907 }
7908
7909 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7910 {
7911 struct root_domain *old_rd = NULL;
7912 unsigned long flags;
7913
7914 spin_lock_irqsave(&rq->lock, flags);
7915
7916 if (rq->rd) {
7917 old_rd = rq->rd;
7918
7919 if (cpumask_test_cpu(rq->cpu, old_rd->online))
7920 set_rq_offline(rq);
7921
7922 cpumask_clear_cpu(rq->cpu, old_rd->span);
7923
7924 /*
7925 * If we dont want to free the old_rt yet then
7926 * set old_rd to NULL to skip the freeing later
7927 * in this function:
7928 */
7929 if (!atomic_dec_and_test(&old_rd->refcount))
7930 old_rd = NULL;
7931 }
7932
7933 atomic_inc(&rd->refcount);
7934 rq->rd = rd;
7935
7936 cpumask_set_cpu(rq->cpu, rd->span);
7937 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
7938 set_rq_online(rq);
7939
7940 spin_unlock_irqrestore(&rq->lock, flags);
7941
7942 if (old_rd)
7943 free_rootdomain(old_rd);
7944 }
7945
7946 static int init_rootdomain(struct root_domain *rd, bool bootmem)
7947 {
7948 gfp_t gfp = GFP_KERNEL;
7949
7950 memset(rd, 0, sizeof(*rd));
7951
7952 if (bootmem)
7953 gfp = GFP_NOWAIT;
7954
7955 if (!alloc_cpumask_var(&rd->span, gfp))
7956 goto out;
7957 if (!alloc_cpumask_var(&rd->online, gfp))
7958 goto free_span;
7959 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
7960 goto free_online;
7961
7962 if (cpupri_init(&rd->cpupri, bootmem) != 0)
7963 goto free_rto_mask;
7964 return 0;
7965
7966 free_rto_mask:
7967 free_cpumask_var(rd->rto_mask);
7968 free_online:
7969 free_cpumask_var(rd->online);
7970 free_span:
7971 free_cpumask_var(rd->span);
7972 out:
7973 return -ENOMEM;
7974 }
7975
7976 static void init_defrootdomain(void)
7977 {
7978 init_rootdomain(&def_root_domain, true);
7979
7980 atomic_set(&def_root_domain.refcount, 1);
7981 }
7982
7983 static struct root_domain *alloc_rootdomain(void)
7984 {
7985 struct root_domain *rd;
7986
7987 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7988 if (!rd)
7989 return NULL;
7990
7991 if (init_rootdomain(rd, false) != 0) {
7992 kfree(rd);
7993 return NULL;
7994 }
7995
7996 return rd;
7997 }
7998
7999 /*
8000 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8001 * hold the hotplug lock.
8002 */
8003 static void
8004 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8005 {
8006 struct rq *rq = cpu_rq(cpu);
8007 struct sched_domain *tmp;
8008
8009 /* Remove the sched domains which do not contribute to scheduling. */
8010 for (tmp = sd; tmp; ) {
8011 struct sched_domain *parent = tmp->parent;
8012 if (!parent)
8013 break;
8014
8015 if (sd_parent_degenerate(tmp, parent)) {
8016 tmp->parent = parent->parent;
8017 if (parent->parent)
8018 parent->parent->child = tmp;
8019 } else
8020 tmp = tmp->parent;
8021 }
8022
8023 if (sd && sd_degenerate(sd)) {
8024 sd = sd->parent;
8025 if (sd)
8026 sd->child = NULL;
8027 }
8028
8029 sched_domain_debug(sd, cpu);
8030
8031 rq_attach_root(rq, rd);
8032 rcu_assign_pointer(rq->sd, sd);
8033 }
8034
8035 /* cpus with isolated domains */
8036 static cpumask_var_t cpu_isolated_map;
8037
8038 /* Setup the mask of cpus configured for isolated domains */
8039 static int __init isolated_cpu_setup(char *str)
8040 {
8041 cpulist_parse(str, cpu_isolated_map);
8042 return 1;
8043 }
8044
8045 __setup("isolcpus=", isolated_cpu_setup);
8046
8047 /*
8048 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8049 * to a function which identifies what group(along with sched group) a CPU
8050 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8051 * (due to the fact that we keep track of groups covered with a struct cpumask).
8052 *
8053 * init_sched_build_groups will build a circular linked list of the groups
8054 * covered by the given span, and will set each group's ->cpumask correctly,
8055 * and ->cpu_power to 0.
8056 */
8057 static void
8058 init_sched_build_groups(const struct cpumask *span,
8059 const struct cpumask *cpu_map,
8060 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8061 struct sched_group **sg,
8062 struct cpumask *tmpmask),
8063 struct cpumask *covered, struct cpumask *tmpmask)
8064 {
8065 struct sched_group *first = NULL, *last = NULL;
8066 int i;
8067
8068 cpumask_clear(covered);
8069
8070 for_each_cpu(i, span) {
8071 struct sched_group *sg;
8072 int group = group_fn(i, cpu_map, &sg, tmpmask);
8073 int j;
8074
8075 if (cpumask_test_cpu(i, covered))
8076 continue;
8077
8078 cpumask_clear(sched_group_cpus(sg));
8079 sg->cpu_power = 0;
8080
8081 for_each_cpu(j, span) {
8082 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8083 continue;
8084
8085 cpumask_set_cpu(j, covered);
8086 cpumask_set_cpu(j, sched_group_cpus(sg));
8087 }
8088 if (!first)
8089 first = sg;
8090 if (last)
8091 last->next = sg;
8092 last = sg;
8093 }
8094 last->next = first;
8095 }
8096
8097 #define SD_NODES_PER_DOMAIN 16
8098
8099 #ifdef CONFIG_NUMA
8100
8101 /**
8102 * find_next_best_node - find the next node to include in a sched_domain
8103 * @node: node whose sched_domain we're building
8104 * @used_nodes: nodes already in the sched_domain
8105 *
8106 * Find the next node to include in a given scheduling domain. Simply
8107 * finds the closest node not already in the @used_nodes map.
8108 *
8109 * Should use nodemask_t.
8110 */
8111 static int find_next_best_node(int node, nodemask_t *used_nodes)
8112 {
8113 int i, n, val, min_val, best_node = 0;
8114
8115 min_val = INT_MAX;
8116
8117 for (i = 0; i < nr_node_ids; i++) {
8118 /* Start at @node */
8119 n = (node + i) % nr_node_ids;
8120
8121 if (!nr_cpus_node(n))
8122 continue;
8123
8124 /* Skip already used nodes */
8125 if (node_isset(n, *used_nodes))
8126 continue;
8127
8128 /* Simple min distance search */
8129 val = node_distance(node, n);
8130
8131 if (val < min_val) {
8132 min_val = val;
8133 best_node = n;
8134 }
8135 }
8136
8137 node_set(best_node, *used_nodes);
8138 return best_node;
8139 }
8140
8141 /**
8142 * sched_domain_node_span - get a cpumask for a node's sched_domain
8143 * @node: node whose cpumask we're constructing
8144 * @span: resulting cpumask
8145 *
8146 * Given a node, construct a good cpumask for its sched_domain to span. It
8147 * should be one that prevents unnecessary balancing, but also spreads tasks
8148 * out optimally.
8149 */
8150 static void sched_domain_node_span(int node, struct cpumask *span)
8151 {
8152 nodemask_t used_nodes;
8153 int i;
8154
8155 cpumask_clear(span);
8156 nodes_clear(used_nodes);
8157
8158 cpumask_or(span, span, cpumask_of_node(node));
8159 node_set(node, used_nodes);
8160
8161 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8162 int next_node = find_next_best_node(node, &used_nodes);
8163
8164 cpumask_or(span, span, cpumask_of_node(next_node));
8165 }
8166 }
8167 #endif /* CONFIG_NUMA */
8168
8169 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8170
8171 /*
8172 * The cpus mask in sched_group and sched_domain hangs off the end.
8173 *
8174 * ( See the the comments in include/linux/sched.h:struct sched_group
8175 * and struct sched_domain. )
8176 */
8177 struct static_sched_group {
8178 struct sched_group sg;
8179 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8180 };
8181
8182 struct static_sched_domain {
8183 struct sched_domain sd;
8184 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8185 };
8186
8187 struct s_data {
8188 #ifdef CONFIG_NUMA
8189 int sd_allnodes;
8190 cpumask_var_t domainspan;
8191 cpumask_var_t covered;
8192 cpumask_var_t notcovered;
8193 #endif
8194 cpumask_var_t nodemask;
8195 cpumask_var_t this_sibling_map;
8196 cpumask_var_t this_core_map;
8197 cpumask_var_t send_covered;
8198 cpumask_var_t tmpmask;
8199 struct sched_group **sched_group_nodes;
8200 struct root_domain *rd;
8201 };
8202
8203 enum s_alloc {
8204 sa_sched_groups = 0,
8205 sa_rootdomain,
8206 sa_tmpmask,
8207 sa_send_covered,
8208 sa_this_core_map,
8209 sa_this_sibling_map,
8210 sa_nodemask,
8211 sa_sched_group_nodes,
8212 #ifdef CONFIG_NUMA
8213 sa_notcovered,
8214 sa_covered,
8215 sa_domainspan,
8216 #endif
8217 sa_none,
8218 };
8219
8220 /*
8221 * SMT sched-domains:
8222 */
8223 #ifdef CONFIG_SCHED_SMT
8224 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8225 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8226
8227 static int
8228 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8229 struct sched_group **sg, struct cpumask *unused)
8230 {
8231 if (sg)
8232 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8233 return cpu;
8234 }
8235 #endif /* CONFIG_SCHED_SMT */
8236
8237 /*
8238 * multi-core sched-domains:
8239 */
8240 #ifdef CONFIG_SCHED_MC
8241 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8242 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8243 #endif /* CONFIG_SCHED_MC */
8244
8245 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8246 static int
8247 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8248 struct sched_group **sg, struct cpumask *mask)
8249 {
8250 int group;
8251
8252 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8253 group = cpumask_first(mask);
8254 if (sg)
8255 *sg = &per_cpu(sched_group_core, group).sg;
8256 return group;
8257 }
8258 #elif defined(CONFIG_SCHED_MC)
8259 static int
8260 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8261 struct sched_group **sg, struct cpumask *unused)
8262 {
8263 if (sg)
8264 *sg = &per_cpu(sched_group_core, cpu).sg;
8265 return cpu;
8266 }
8267 #endif
8268
8269 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8270 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8271
8272 static int
8273 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8274 struct sched_group **sg, struct cpumask *mask)
8275 {
8276 int group;
8277 #ifdef CONFIG_SCHED_MC
8278 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8279 group = cpumask_first(mask);
8280 #elif defined(CONFIG_SCHED_SMT)
8281 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8282 group = cpumask_first(mask);
8283 #else
8284 group = cpu;
8285 #endif
8286 if (sg)
8287 *sg = &per_cpu(sched_group_phys, group).sg;
8288 return group;
8289 }
8290
8291 #ifdef CONFIG_NUMA
8292 /*
8293 * The init_sched_build_groups can't handle what we want to do with node
8294 * groups, so roll our own. Now each node has its own list of groups which
8295 * gets dynamically allocated.
8296 */
8297 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8298 static struct sched_group ***sched_group_nodes_bycpu;
8299
8300 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8301 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8302
8303 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8304 struct sched_group **sg,
8305 struct cpumask *nodemask)
8306 {
8307 int group;
8308
8309 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8310 group = cpumask_first(nodemask);
8311
8312 if (sg)
8313 *sg = &per_cpu(sched_group_allnodes, group).sg;
8314 return group;
8315 }
8316
8317 static void init_numa_sched_groups_power(struct sched_group *group_head)
8318 {
8319 struct sched_group *sg = group_head;
8320 int j;
8321
8322 if (!sg)
8323 return;
8324 do {
8325 for_each_cpu(j, sched_group_cpus(sg)) {
8326 struct sched_domain *sd;
8327
8328 sd = &per_cpu(phys_domains, j).sd;
8329 if (j != group_first_cpu(sd->groups)) {
8330 /*
8331 * Only add "power" once for each
8332 * physical package.
8333 */
8334 continue;
8335 }
8336
8337 sg->cpu_power += sd->groups->cpu_power;
8338 }
8339 sg = sg->next;
8340 } while (sg != group_head);
8341 }
8342
8343 static int build_numa_sched_groups(struct s_data *d,
8344 const struct cpumask *cpu_map, int num)
8345 {
8346 struct sched_domain *sd;
8347 struct sched_group *sg, *prev;
8348 int n, j;
8349
8350 cpumask_clear(d->covered);
8351 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8352 if (cpumask_empty(d->nodemask)) {
8353 d->sched_group_nodes[num] = NULL;
8354 goto out;
8355 }
8356
8357 sched_domain_node_span(num, d->domainspan);
8358 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8359
8360 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8361 GFP_KERNEL, num);
8362 if (!sg) {
8363 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8364 num);
8365 return -ENOMEM;
8366 }
8367 d->sched_group_nodes[num] = sg;
8368
8369 for_each_cpu(j, d->nodemask) {
8370 sd = &per_cpu(node_domains, j).sd;
8371 sd->groups = sg;
8372 }
8373
8374 sg->cpu_power = 0;
8375 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8376 sg->next = sg;
8377 cpumask_or(d->covered, d->covered, d->nodemask);
8378
8379 prev = sg;
8380 for (j = 0; j < nr_node_ids; j++) {
8381 n = (num + j) % nr_node_ids;
8382 cpumask_complement(d->notcovered, d->covered);
8383 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8384 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8385 if (cpumask_empty(d->tmpmask))
8386 break;
8387 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8388 if (cpumask_empty(d->tmpmask))
8389 continue;
8390 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8391 GFP_KERNEL, num);
8392 if (!sg) {
8393 printk(KERN_WARNING
8394 "Can not alloc domain group for node %d\n", j);
8395 return -ENOMEM;
8396 }
8397 sg->cpu_power = 0;
8398 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8399 sg->next = prev->next;
8400 cpumask_or(d->covered, d->covered, d->tmpmask);
8401 prev->next = sg;
8402 prev = sg;
8403 }
8404 out:
8405 return 0;
8406 }
8407 #endif /* CONFIG_NUMA */
8408
8409 #ifdef CONFIG_NUMA
8410 /* Free memory allocated for various sched_group structures */
8411 static void free_sched_groups(const struct cpumask *cpu_map,
8412 struct cpumask *nodemask)
8413 {
8414 int cpu, i;
8415
8416 for_each_cpu(cpu, cpu_map) {
8417 struct sched_group **sched_group_nodes
8418 = sched_group_nodes_bycpu[cpu];
8419
8420 if (!sched_group_nodes)
8421 continue;
8422
8423 for (i = 0; i < nr_node_ids; i++) {
8424 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8425
8426 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8427 if (cpumask_empty(nodemask))
8428 continue;
8429
8430 if (sg == NULL)
8431 continue;
8432 sg = sg->next;
8433 next_sg:
8434 oldsg = sg;
8435 sg = sg->next;
8436 kfree(oldsg);
8437 if (oldsg != sched_group_nodes[i])
8438 goto next_sg;
8439 }
8440 kfree(sched_group_nodes);
8441 sched_group_nodes_bycpu[cpu] = NULL;
8442 }
8443 }
8444 #else /* !CONFIG_NUMA */
8445 static void free_sched_groups(const struct cpumask *cpu_map,
8446 struct cpumask *nodemask)
8447 {
8448 }
8449 #endif /* CONFIG_NUMA */
8450
8451 /*
8452 * Initialize sched groups cpu_power.
8453 *
8454 * cpu_power indicates the capacity of sched group, which is used while
8455 * distributing the load between different sched groups in a sched domain.
8456 * Typically cpu_power for all the groups in a sched domain will be same unless
8457 * there are asymmetries in the topology. If there are asymmetries, group
8458 * having more cpu_power will pickup more load compared to the group having
8459 * less cpu_power.
8460 */
8461 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8462 {
8463 struct sched_domain *child;
8464 struct sched_group *group;
8465 long power;
8466 int weight;
8467
8468 WARN_ON(!sd || !sd->groups);
8469
8470 if (cpu != group_first_cpu(sd->groups))
8471 return;
8472
8473 child = sd->child;
8474
8475 sd->groups->cpu_power = 0;
8476
8477 if (!child) {
8478 power = SCHED_LOAD_SCALE;
8479 weight = cpumask_weight(sched_domain_span(sd));
8480 /*
8481 * SMT siblings share the power of a single core.
8482 * Usually multiple threads get a better yield out of
8483 * that one core than a single thread would have,
8484 * reflect that in sd->smt_gain.
8485 */
8486 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8487 power *= sd->smt_gain;
8488 power /= weight;
8489 power >>= SCHED_LOAD_SHIFT;
8490 }
8491 sd->groups->cpu_power += power;
8492 return;
8493 }
8494
8495 /*
8496 * Add cpu_power of each child group to this groups cpu_power.
8497 */
8498 group = child->groups;
8499 do {
8500 sd->groups->cpu_power += group->cpu_power;
8501 group = group->next;
8502 } while (group != child->groups);
8503 }
8504
8505 /*
8506 * Initializers for schedule domains
8507 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8508 */
8509
8510 #ifdef CONFIG_SCHED_DEBUG
8511 # define SD_INIT_NAME(sd, type) sd->name = #type
8512 #else
8513 # define SD_INIT_NAME(sd, type) do { } while (0)
8514 #endif
8515
8516 #define SD_INIT(sd, type) sd_init_##type(sd)
8517
8518 #define SD_INIT_FUNC(type) \
8519 static noinline void sd_init_##type(struct sched_domain *sd) \
8520 { \
8521 memset(sd, 0, sizeof(*sd)); \
8522 *sd = SD_##type##_INIT; \
8523 sd->level = SD_LV_##type; \
8524 SD_INIT_NAME(sd, type); \
8525 }
8526
8527 SD_INIT_FUNC(CPU)
8528 #ifdef CONFIG_NUMA
8529 SD_INIT_FUNC(ALLNODES)
8530 SD_INIT_FUNC(NODE)
8531 #endif
8532 #ifdef CONFIG_SCHED_SMT
8533 SD_INIT_FUNC(SIBLING)
8534 #endif
8535 #ifdef CONFIG_SCHED_MC
8536 SD_INIT_FUNC(MC)
8537 #endif
8538
8539 static int default_relax_domain_level = -1;
8540
8541 static int __init setup_relax_domain_level(char *str)
8542 {
8543 unsigned long val;
8544
8545 val = simple_strtoul(str, NULL, 0);
8546 if (val < SD_LV_MAX)
8547 default_relax_domain_level = val;
8548
8549 return 1;
8550 }
8551 __setup("relax_domain_level=", setup_relax_domain_level);
8552
8553 static void set_domain_attribute(struct sched_domain *sd,
8554 struct sched_domain_attr *attr)
8555 {
8556 int request;
8557
8558 if (!attr || attr->relax_domain_level < 0) {
8559 if (default_relax_domain_level < 0)
8560 return;
8561 else
8562 request = default_relax_domain_level;
8563 } else
8564 request = attr->relax_domain_level;
8565 if (request < sd->level) {
8566 /* turn off idle balance on this domain */
8567 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8568 } else {
8569 /* turn on idle balance on this domain */
8570 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
8571 }
8572 }
8573
8574 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8575 const struct cpumask *cpu_map)
8576 {
8577 switch (what) {
8578 case sa_sched_groups:
8579 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8580 d->sched_group_nodes = NULL;
8581 case sa_rootdomain:
8582 free_rootdomain(d->rd); /* fall through */
8583 case sa_tmpmask:
8584 free_cpumask_var(d->tmpmask); /* fall through */
8585 case sa_send_covered:
8586 free_cpumask_var(d->send_covered); /* fall through */
8587 case sa_this_core_map:
8588 free_cpumask_var(d->this_core_map); /* fall through */
8589 case sa_this_sibling_map:
8590 free_cpumask_var(d->this_sibling_map); /* fall through */
8591 case sa_nodemask:
8592 free_cpumask_var(d->nodemask); /* fall through */
8593 case sa_sched_group_nodes:
8594 #ifdef CONFIG_NUMA
8595 kfree(d->sched_group_nodes); /* fall through */
8596 case sa_notcovered:
8597 free_cpumask_var(d->notcovered); /* fall through */
8598 case sa_covered:
8599 free_cpumask_var(d->covered); /* fall through */
8600 case sa_domainspan:
8601 free_cpumask_var(d->domainspan); /* fall through */
8602 #endif
8603 case sa_none:
8604 break;
8605 }
8606 }
8607
8608 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8609 const struct cpumask *cpu_map)
8610 {
8611 #ifdef CONFIG_NUMA
8612 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8613 return sa_none;
8614 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8615 return sa_domainspan;
8616 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8617 return sa_covered;
8618 /* Allocate the per-node list of sched groups */
8619 d->sched_group_nodes = kcalloc(nr_node_ids,
8620 sizeof(struct sched_group *), GFP_KERNEL);
8621 if (!d->sched_group_nodes) {
8622 printk(KERN_WARNING "Can not alloc sched group node list\n");
8623 return sa_notcovered;
8624 }
8625 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8626 #endif
8627 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8628 return sa_sched_group_nodes;
8629 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8630 return sa_nodemask;
8631 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8632 return sa_this_sibling_map;
8633 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8634 return sa_this_core_map;
8635 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8636 return sa_send_covered;
8637 d->rd = alloc_rootdomain();
8638 if (!d->rd) {
8639 printk(KERN_WARNING "Cannot alloc root domain\n");
8640 return sa_tmpmask;
8641 }
8642 return sa_rootdomain;
8643 }
8644
8645 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8646 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8647 {
8648 struct sched_domain *sd = NULL;
8649 #ifdef CONFIG_NUMA
8650 struct sched_domain *parent;
8651
8652 d->sd_allnodes = 0;
8653 if (cpumask_weight(cpu_map) >
8654 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8655 sd = &per_cpu(allnodes_domains, i).sd;
8656 SD_INIT(sd, ALLNODES);
8657 set_domain_attribute(sd, attr);
8658 cpumask_copy(sched_domain_span(sd), cpu_map);
8659 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8660 d->sd_allnodes = 1;
8661 }
8662 parent = sd;
8663
8664 sd = &per_cpu(node_domains, i).sd;
8665 SD_INIT(sd, NODE);
8666 set_domain_attribute(sd, attr);
8667 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8668 sd->parent = parent;
8669 if (parent)
8670 parent->child = sd;
8671 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8672 #endif
8673 return sd;
8674 }
8675
8676 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8677 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8678 struct sched_domain *parent, int i)
8679 {
8680 struct sched_domain *sd;
8681 sd = &per_cpu(phys_domains, i).sd;
8682 SD_INIT(sd, CPU);
8683 set_domain_attribute(sd, attr);
8684 cpumask_copy(sched_domain_span(sd), d->nodemask);
8685 sd->parent = parent;
8686 if (parent)
8687 parent->child = sd;
8688 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8689 return sd;
8690 }
8691
8692 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8693 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8694 struct sched_domain *parent, int i)
8695 {
8696 struct sched_domain *sd = parent;
8697 #ifdef CONFIG_SCHED_MC
8698 sd = &per_cpu(core_domains, i).sd;
8699 SD_INIT(sd, MC);
8700 set_domain_attribute(sd, attr);
8701 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8702 sd->parent = parent;
8703 parent->child = sd;
8704 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8705 #endif
8706 return sd;
8707 }
8708
8709 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8710 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8711 struct sched_domain *parent, int i)
8712 {
8713 struct sched_domain *sd = parent;
8714 #ifdef CONFIG_SCHED_SMT
8715 sd = &per_cpu(cpu_domains, i).sd;
8716 SD_INIT(sd, SIBLING);
8717 set_domain_attribute(sd, attr);
8718 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8719 sd->parent = parent;
8720 parent->child = sd;
8721 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8722 #endif
8723 return sd;
8724 }
8725
8726 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8727 const struct cpumask *cpu_map, int cpu)
8728 {
8729 switch (l) {
8730 #ifdef CONFIG_SCHED_SMT
8731 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8732 cpumask_and(d->this_sibling_map, cpu_map,
8733 topology_thread_cpumask(cpu));
8734 if (cpu == cpumask_first(d->this_sibling_map))
8735 init_sched_build_groups(d->this_sibling_map, cpu_map,
8736 &cpu_to_cpu_group,
8737 d->send_covered, d->tmpmask);
8738 break;
8739 #endif
8740 #ifdef CONFIG_SCHED_MC
8741 case SD_LV_MC: /* set up multi-core groups */
8742 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8743 if (cpu == cpumask_first(d->this_core_map))
8744 init_sched_build_groups(d->this_core_map, cpu_map,
8745 &cpu_to_core_group,
8746 d->send_covered, d->tmpmask);
8747 break;
8748 #endif
8749 case SD_LV_CPU: /* set up physical groups */
8750 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8751 if (!cpumask_empty(d->nodemask))
8752 init_sched_build_groups(d->nodemask, cpu_map,
8753 &cpu_to_phys_group,
8754 d->send_covered, d->tmpmask);
8755 break;
8756 #ifdef CONFIG_NUMA
8757 case SD_LV_ALLNODES:
8758 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8759 d->send_covered, d->tmpmask);
8760 break;
8761 #endif
8762 default:
8763 break;
8764 }
8765 }
8766
8767 /*
8768 * Build sched domains for a given set of cpus and attach the sched domains
8769 * to the individual cpus
8770 */
8771 static int __build_sched_domains(const struct cpumask *cpu_map,
8772 struct sched_domain_attr *attr)
8773 {
8774 enum s_alloc alloc_state = sa_none;
8775 struct s_data d;
8776 struct sched_domain *sd;
8777 int i;
8778 #ifdef CONFIG_NUMA
8779 d.sd_allnodes = 0;
8780 #endif
8781
8782 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8783 if (alloc_state != sa_rootdomain)
8784 goto error;
8785 alloc_state = sa_sched_groups;
8786
8787 /*
8788 * Set up domains for cpus specified by the cpu_map.
8789 */
8790 for_each_cpu(i, cpu_map) {
8791 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8792 cpu_map);
8793
8794 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8795 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8796 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8797 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8798 }
8799
8800 for_each_cpu(i, cpu_map) {
8801 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8802 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8803 }
8804
8805 /* Set up physical groups */
8806 for (i = 0; i < nr_node_ids; i++)
8807 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8808
8809 #ifdef CONFIG_NUMA
8810 /* Set up node groups */
8811 if (d.sd_allnodes)
8812 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8813
8814 for (i = 0; i < nr_node_ids; i++)
8815 if (build_numa_sched_groups(&d, cpu_map, i))
8816 goto error;
8817 #endif
8818
8819 /* Calculate CPU power for physical packages and nodes */
8820 #ifdef CONFIG_SCHED_SMT
8821 for_each_cpu(i, cpu_map) {
8822 sd = &per_cpu(cpu_domains, i).sd;
8823 init_sched_groups_power(i, sd);
8824 }
8825 #endif
8826 #ifdef CONFIG_SCHED_MC
8827 for_each_cpu(i, cpu_map) {
8828 sd = &per_cpu(core_domains, i).sd;
8829 init_sched_groups_power(i, sd);
8830 }
8831 #endif
8832
8833 for_each_cpu(i, cpu_map) {
8834 sd = &per_cpu(phys_domains, i).sd;
8835 init_sched_groups_power(i, sd);
8836 }
8837
8838 #ifdef CONFIG_NUMA
8839 for (i = 0; i < nr_node_ids; i++)
8840 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8841
8842 if (d.sd_allnodes) {
8843 struct sched_group *sg;
8844
8845 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8846 d.tmpmask);
8847 init_numa_sched_groups_power(sg);
8848 }
8849 #endif
8850
8851 /* Attach the domains */
8852 for_each_cpu(i, cpu_map) {
8853 #ifdef CONFIG_SCHED_SMT
8854 sd = &per_cpu(cpu_domains, i).sd;
8855 #elif defined(CONFIG_SCHED_MC)
8856 sd = &per_cpu(core_domains, i).sd;
8857 #else
8858 sd = &per_cpu(phys_domains, i).sd;
8859 #endif
8860 cpu_attach_domain(sd, d.rd, i);
8861 }
8862
8863 d.sched_group_nodes = NULL; /* don't free this we still need it */
8864 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
8865 return 0;
8866
8867 error:
8868 __free_domain_allocs(&d, alloc_state, cpu_map);
8869 return -ENOMEM;
8870 }
8871
8872 static int build_sched_domains(const struct cpumask *cpu_map)
8873 {
8874 return __build_sched_domains(cpu_map, NULL);
8875 }
8876
8877 static cpumask_var_t *doms_cur; /* current sched domains */
8878 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
8879 static struct sched_domain_attr *dattr_cur;
8880 /* attribues of custom domains in 'doms_cur' */
8881
8882 /*
8883 * Special case: If a kmalloc of a doms_cur partition (array of
8884 * cpumask) fails, then fallback to a single sched domain,
8885 * as determined by the single cpumask fallback_doms.
8886 */
8887 static cpumask_var_t fallback_doms;
8888
8889 /*
8890 * arch_update_cpu_topology lets virtualized architectures update the
8891 * cpu core maps. It is supposed to return 1 if the topology changed
8892 * or 0 if it stayed the same.
8893 */
8894 int __attribute__((weak)) arch_update_cpu_topology(void)
8895 {
8896 return 0;
8897 }
8898
8899 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
8900 {
8901 int i;
8902 cpumask_var_t *doms;
8903
8904 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
8905 if (!doms)
8906 return NULL;
8907 for (i = 0; i < ndoms; i++) {
8908 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
8909 free_sched_domains(doms, i);
8910 return NULL;
8911 }
8912 }
8913 return doms;
8914 }
8915
8916 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
8917 {
8918 unsigned int i;
8919 for (i = 0; i < ndoms; i++)
8920 free_cpumask_var(doms[i]);
8921 kfree(doms);
8922 }
8923
8924 /*
8925 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
8926 * For now this just excludes isolated cpus, but could be used to
8927 * exclude other special cases in the future.
8928 */
8929 static int arch_init_sched_domains(const struct cpumask *cpu_map)
8930 {
8931 int err;
8932
8933 arch_update_cpu_topology();
8934 ndoms_cur = 1;
8935 doms_cur = alloc_sched_domains(ndoms_cur);
8936 if (!doms_cur)
8937 doms_cur = &fallback_doms;
8938 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
8939 dattr_cur = NULL;
8940 err = build_sched_domains(doms_cur[0]);
8941 register_sched_domain_sysctl();
8942
8943 return err;
8944 }
8945
8946 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8947 struct cpumask *tmpmask)
8948 {
8949 free_sched_groups(cpu_map, tmpmask);
8950 }
8951
8952 /*
8953 * Detach sched domains from a group of cpus specified in cpu_map
8954 * These cpus will now be attached to the NULL domain
8955 */
8956 static void detach_destroy_domains(const struct cpumask *cpu_map)
8957 {
8958 /* Save because hotplug lock held. */
8959 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
8960 int i;
8961
8962 for_each_cpu(i, cpu_map)
8963 cpu_attach_domain(NULL, &def_root_domain, i);
8964 synchronize_sched();
8965 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
8966 }
8967
8968 /* handle null as "default" */
8969 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8970 struct sched_domain_attr *new, int idx_new)
8971 {
8972 struct sched_domain_attr tmp;
8973
8974 /* fast path */
8975 if (!new && !cur)
8976 return 1;
8977
8978 tmp = SD_ATTR_INIT;
8979 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8980 new ? (new + idx_new) : &tmp,
8981 sizeof(struct sched_domain_attr));
8982 }
8983
8984 /*
8985 * Partition sched domains as specified by the 'ndoms_new'
8986 * cpumasks in the array doms_new[] of cpumasks. This compares
8987 * doms_new[] to the current sched domain partitioning, doms_cur[].
8988 * It destroys each deleted domain and builds each new domain.
8989 *
8990 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
8991 * The masks don't intersect (don't overlap.) We should setup one
8992 * sched domain for each mask. CPUs not in any of the cpumasks will
8993 * not be load balanced. If the same cpumask appears both in the
8994 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8995 * it as it is.
8996 *
8997 * The passed in 'doms_new' should be allocated using
8998 * alloc_sched_domains. This routine takes ownership of it and will
8999 * free_sched_domains it when done with it. If the caller failed the
9000 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
9001 * and partition_sched_domains() will fallback to the single partition
9002 * 'fallback_doms', it also forces the domains to be rebuilt.
9003 *
9004 * If doms_new == NULL it will be replaced with cpu_online_mask.
9005 * ndoms_new == 0 is a special case for destroying existing domains,
9006 * and it will not create the default domain.
9007 *
9008 * Call with hotplug lock held
9009 */
9010 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
9011 struct sched_domain_attr *dattr_new)
9012 {
9013 int i, j, n;
9014 int new_topology;
9015
9016 mutex_lock(&sched_domains_mutex);
9017
9018 /* always unregister in case we don't destroy any domains */
9019 unregister_sched_domain_sysctl();
9020
9021 /* Let architecture update cpu core mappings. */
9022 new_topology = arch_update_cpu_topology();
9023
9024 n = doms_new ? ndoms_new : 0;
9025
9026 /* Destroy deleted domains */
9027 for (i = 0; i < ndoms_cur; i++) {
9028 for (j = 0; j < n && !new_topology; j++) {
9029 if (cpumask_equal(doms_cur[i], doms_new[j])
9030 && dattrs_equal(dattr_cur, i, dattr_new, j))
9031 goto match1;
9032 }
9033 /* no match - a current sched domain not in new doms_new[] */
9034 detach_destroy_domains(doms_cur[i]);
9035 match1:
9036 ;
9037 }
9038
9039 if (doms_new == NULL) {
9040 ndoms_cur = 0;
9041 doms_new = &fallback_doms;
9042 cpumask_andnot(doms_new[0], cpu_online_mask, cpu_isolated_map);
9043 WARN_ON_ONCE(dattr_new);
9044 }
9045
9046 /* Build new domains */
9047 for (i = 0; i < ndoms_new; i++) {
9048 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9049 if (cpumask_equal(doms_new[i], doms_cur[j])
9050 && dattrs_equal(dattr_new, i, dattr_cur, j))
9051 goto match2;
9052 }
9053 /* no match - add a new doms_new */
9054 __build_sched_domains(doms_new[i],
9055 dattr_new ? dattr_new + i : NULL);
9056 match2:
9057 ;
9058 }
9059
9060 /* Remember the new sched domains */
9061 if (doms_cur != &fallback_doms)
9062 free_sched_domains(doms_cur, ndoms_cur);
9063 kfree(dattr_cur); /* kfree(NULL) is safe */
9064 doms_cur = doms_new;
9065 dattr_cur = dattr_new;
9066 ndoms_cur = ndoms_new;
9067
9068 register_sched_domain_sysctl();
9069
9070 mutex_unlock(&sched_domains_mutex);
9071 }
9072
9073 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9074 static void arch_reinit_sched_domains(void)
9075 {
9076 get_online_cpus();
9077
9078 /* Destroy domains first to force the rebuild */
9079 partition_sched_domains(0, NULL, NULL);
9080
9081 rebuild_sched_domains();
9082 put_online_cpus();
9083 }
9084
9085 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9086 {
9087 unsigned int level = 0;
9088
9089 if (sscanf(buf, "%u", &level) != 1)
9090 return -EINVAL;
9091
9092 /*
9093 * level is always be positive so don't check for
9094 * level < POWERSAVINGS_BALANCE_NONE which is 0
9095 * What happens on 0 or 1 byte write,
9096 * need to check for count as well?
9097 */
9098
9099 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9100 return -EINVAL;
9101
9102 if (smt)
9103 sched_smt_power_savings = level;
9104 else
9105 sched_mc_power_savings = level;
9106
9107 arch_reinit_sched_domains();
9108
9109 return count;
9110 }
9111
9112 #ifdef CONFIG_SCHED_MC
9113 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9114 char *page)
9115 {
9116 return sprintf(page, "%u\n", sched_mc_power_savings);
9117 }
9118 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9119 const char *buf, size_t count)
9120 {
9121 return sched_power_savings_store(buf, count, 0);
9122 }
9123 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9124 sched_mc_power_savings_show,
9125 sched_mc_power_savings_store);
9126 #endif
9127
9128 #ifdef CONFIG_SCHED_SMT
9129 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9130 char *page)
9131 {
9132 return sprintf(page, "%u\n", sched_smt_power_savings);
9133 }
9134 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9135 const char *buf, size_t count)
9136 {
9137 return sched_power_savings_store(buf, count, 1);
9138 }
9139 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9140 sched_smt_power_savings_show,
9141 sched_smt_power_savings_store);
9142 #endif
9143
9144 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9145 {
9146 int err = 0;
9147
9148 #ifdef CONFIG_SCHED_SMT
9149 if (smt_capable())
9150 err = sysfs_create_file(&cls->kset.kobj,
9151 &attr_sched_smt_power_savings.attr);
9152 #endif
9153 #ifdef CONFIG_SCHED_MC
9154 if (!err && mc_capable())
9155 err = sysfs_create_file(&cls->kset.kobj,
9156 &attr_sched_mc_power_savings.attr);
9157 #endif
9158 return err;
9159 }
9160 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9161
9162 #ifndef CONFIG_CPUSETS
9163 /*
9164 * Add online and remove offline CPUs from the scheduler domains.
9165 * When cpusets are enabled they take over this function.
9166 */
9167 static int update_sched_domains(struct notifier_block *nfb,
9168 unsigned long action, void *hcpu)
9169 {
9170 switch (action) {
9171 case CPU_ONLINE:
9172 case CPU_ONLINE_FROZEN:
9173 case CPU_DEAD:
9174 case CPU_DEAD_FROZEN:
9175 partition_sched_domains(1, NULL, NULL);
9176 return NOTIFY_OK;
9177
9178 default:
9179 return NOTIFY_DONE;
9180 }
9181 }
9182 #endif
9183
9184 static int update_runtime(struct notifier_block *nfb,
9185 unsigned long action, void *hcpu)
9186 {
9187 int cpu = (int)(long)hcpu;
9188
9189 switch (action) {
9190 case CPU_DOWN_PREPARE:
9191 case CPU_DOWN_PREPARE_FROZEN:
9192 disable_runtime(cpu_rq(cpu));
9193 return NOTIFY_OK;
9194
9195 case CPU_DOWN_FAILED:
9196 case CPU_DOWN_FAILED_FROZEN:
9197 case CPU_ONLINE:
9198 case CPU_ONLINE_FROZEN:
9199 enable_runtime(cpu_rq(cpu));
9200 return NOTIFY_OK;
9201
9202 default:
9203 return NOTIFY_DONE;
9204 }
9205 }
9206
9207 void __init sched_init_smp(void)
9208 {
9209 cpumask_var_t non_isolated_cpus;
9210
9211 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9212 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9213
9214 #if defined(CONFIG_NUMA)
9215 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9216 GFP_KERNEL);
9217 BUG_ON(sched_group_nodes_bycpu == NULL);
9218 #endif
9219 get_online_cpus();
9220 mutex_lock(&sched_domains_mutex);
9221 arch_init_sched_domains(cpu_online_mask);
9222 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9223 if (cpumask_empty(non_isolated_cpus))
9224 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9225 mutex_unlock(&sched_domains_mutex);
9226 put_online_cpus();
9227
9228 #ifndef CONFIG_CPUSETS
9229 /* XXX: Theoretical race here - CPU may be hotplugged now */
9230 hotcpu_notifier(update_sched_domains, 0);
9231 #endif
9232
9233 /* RT runtime code needs to handle some hotplug events */
9234 hotcpu_notifier(update_runtime, 0);
9235
9236 init_hrtick();
9237
9238 /* Move init over to a non-isolated CPU */
9239 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9240 BUG();
9241 sched_init_granularity();
9242 free_cpumask_var(non_isolated_cpus);
9243
9244 init_sched_rt_class();
9245 }
9246 #else
9247 void __init sched_init_smp(void)
9248 {
9249 sched_init_granularity();
9250 }
9251 #endif /* CONFIG_SMP */
9252
9253 const_debug unsigned int sysctl_timer_migration = 1;
9254
9255 int in_sched_functions(unsigned long addr)
9256 {
9257 return in_lock_functions(addr) ||
9258 (addr >= (unsigned long)__sched_text_start
9259 && addr < (unsigned long)__sched_text_end);
9260 }
9261
9262 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9263 {
9264 cfs_rq->tasks_timeline = RB_ROOT;
9265 INIT_LIST_HEAD(&cfs_rq->tasks);
9266 #ifdef CONFIG_FAIR_GROUP_SCHED
9267 cfs_rq->rq = rq;
9268 #endif
9269 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9270 }
9271
9272 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9273 {
9274 struct rt_prio_array *array;
9275 int i;
9276
9277 array = &rt_rq->active;
9278 for (i = 0; i < MAX_RT_PRIO; i++) {
9279 INIT_LIST_HEAD(array->queue + i);
9280 __clear_bit(i, array->bitmap);
9281 }
9282 /* delimiter for bitsearch: */
9283 __set_bit(MAX_RT_PRIO, array->bitmap);
9284
9285 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9286 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9287 #ifdef CONFIG_SMP
9288 rt_rq->highest_prio.next = MAX_RT_PRIO;
9289 #endif
9290 #endif
9291 #ifdef CONFIG_SMP
9292 rt_rq->rt_nr_migratory = 0;
9293 rt_rq->overloaded = 0;
9294 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9295 #endif
9296
9297 rt_rq->rt_time = 0;
9298 rt_rq->rt_throttled = 0;
9299 rt_rq->rt_runtime = 0;
9300 spin_lock_init(&rt_rq->rt_runtime_lock);
9301
9302 #ifdef CONFIG_RT_GROUP_SCHED
9303 rt_rq->rt_nr_boosted = 0;
9304 rt_rq->rq = rq;
9305 #endif
9306 }
9307
9308 #ifdef CONFIG_FAIR_GROUP_SCHED
9309 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9310 struct sched_entity *se, int cpu, int add,
9311 struct sched_entity *parent)
9312 {
9313 struct rq *rq = cpu_rq(cpu);
9314 tg->cfs_rq[cpu] = cfs_rq;
9315 init_cfs_rq(cfs_rq, rq);
9316 cfs_rq->tg = tg;
9317 if (add)
9318 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9319
9320 tg->se[cpu] = se;
9321 /* se could be NULL for init_task_group */
9322 if (!se)
9323 return;
9324
9325 if (!parent)
9326 se->cfs_rq = &rq->cfs;
9327 else
9328 se->cfs_rq = parent->my_q;
9329
9330 se->my_q = cfs_rq;
9331 se->load.weight = tg->shares;
9332 se->load.inv_weight = 0;
9333 se->parent = parent;
9334 }
9335 #endif
9336
9337 #ifdef CONFIG_RT_GROUP_SCHED
9338 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9339 struct sched_rt_entity *rt_se, int cpu, int add,
9340 struct sched_rt_entity *parent)
9341 {
9342 struct rq *rq = cpu_rq(cpu);
9343
9344 tg->rt_rq[cpu] = rt_rq;
9345 init_rt_rq(rt_rq, rq);
9346 rt_rq->tg = tg;
9347 rt_rq->rt_se = rt_se;
9348 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9349 if (add)
9350 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9351
9352 tg->rt_se[cpu] = rt_se;
9353 if (!rt_se)
9354 return;
9355
9356 if (!parent)
9357 rt_se->rt_rq = &rq->rt;
9358 else
9359 rt_se->rt_rq = parent->my_q;
9360
9361 rt_se->my_q = rt_rq;
9362 rt_se->parent = parent;
9363 INIT_LIST_HEAD(&rt_se->run_list);
9364 }
9365 #endif
9366
9367 void __init sched_init(void)
9368 {
9369 int i, j;
9370 unsigned long alloc_size = 0, ptr;
9371
9372 #ifdef CONFIG_FAIR_GROUP_SCHED
9373 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9374 #endif
9375 #ifdef CONFIG_RT_GROUP_SCHED
9376 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9377 #endif
9378 #ifdef CONFIG_USER_SCHED
9379 alloc_size *= 2;
9380 #endif
9381 #ifdef CONFIG_CPUMASK_OFFSTACK
9382 alloc_size += num_possible_cpus() * cpumask_size();
9383 #endif
9384 if (alloc_size) {
9385 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9386
9387 #ifdef CONFIG_FAIR_GROUP_SCHED
9388 init_task_group.se = (struct sched_entity **)ptr;
9389 ptr += nr_cpu_ids * sizeof(void **);
9390
9391 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9392 ptr += nr_cpu_ids * sizeof(void **);
9393
9394 #ifdef CONFIG_USER_SCHED
9395 root_task_group.se = (struct sched_entity **)ptr;
9396 ptr += nr_cpu_ids * sizeof(void **);
9397
9398 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9399 ptr += nr_cpu_ids * sizeof(void **);
9400 #endif /* CONFIG_USER_SCHED */
9401 #endif /* CONFIG_FAIR_GROUP_SCHED */
9402 #ifdef CONFIG_RT_GROUP_SCHED
9403 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9404 ptr += nr_cpu_ids * sizeof(void **);
9405
9406 init_task_group.rt_rq = (struct rt_rq **)ptr;
9407 ptr += nr_cpu_ids * sizeof(void **);
9408
9409 #ifdef CONFIG_USER_SCHED
9410 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9411 ptr += nr_cpu_ids * sizeof(void **);
9412
9413 root_task_group.rt_rq = (struct rt_rq **)ptr;
9414 ptr += nr_cpu_ids * sizeof(void **);
9415 #endif /* CONFIG_USER_SCHED */
9416 #endif /* CONFIG_RT_GROUP_SCHED */
9417 #ifdef CONFIG_CPUMASK_OFFSTACK
9418 for_each_possible_cpu(i) {
9419 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9420 ptr += cpumask_size();
9421 }
9422 #endif /* CONFIG_CPUMASK_OFFSTACK */
9423 }
9424
9425 #ifdef CONFIG_SMP
9426 init_defrootdomain();
9427 #endif
9428
9429 init_rt_bandwidth(&def_rt_bandwidth,
9430 global_rt_period(), global_rt_runtime());
9431
9432 #ifdef CONFIG_RT_GROUP_SCHED
9433 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9434 global_rt_period(), global_rt_runtime());
9435 #ifdef CONFIG_USER_SCHED
9436 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9437 global_rt_period(), RUNTIME_INF);
9438 #endif /* CONFIG_USER_SCHED */
9439 #endif /* CONFIG_RT_GROUP_SCHED */
9440
9441 #ifdef CONFIG_GROUP_SCHED
9442 list_add(&init_task_group.list, &task_groups);
9443 INIT_LIST_HEAD(&init_task_group.children);
9444
9445 #ifdef CONFIG_USER_SCHED
9446 INIT_LIST_HEAD(&root_task_group.children);
9447 init_task_group.parent = &root_task_group;
9448 list_add(&init_task_group.siblings, &root_task_group.children);
9449 #endif /* CONFIG_USER_SCHED */
9450 #endif /* CONFIG_GROUP_SCHED */
9451
9452 for_each_possible_cpu(i) {
9453 struct rq *rq;
9454
9455 rq = cpu_rq(i);
9456 spin_lock_init(&rq->lock);
9457 rq->nr_running = 0;
9458 rq->calc_load_active = 0;
9459 rq->calc_load_update = jiffies + LOAD_FREQ;
9460 init_cfs_rq(&rq->cfs, rq);
9461 init_rt_rq(&rq->rt, rq);
9462 #ifdef CONFIG_FAIR_GROUP_SCHED
9463 init_task_group.shares = init_task_group_load;
9464 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9465 #ifdef CONFIG_CGROUP_SCHED
9466 /*
9467 * How much cpu bandwidth does init_task_group get?
9468 *
9469 * In case of task-groups formed thr' the cgroup filesystem, it
9470 * gets 100% of the cpu resources in the system. This overall
9471 * system cpu resource is divided among the tasks of
9472 * init_task_group and its child task-groups in a fair manner,
9473 * based on each entity's (task or task-group's) weight
9474 * (se->load.weight).
9475 *
9476 * In other words, if init_task_group has 10 tasks of weight
9477 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9478 * then A0's share of the cpu resource is:
9479 *
9480 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9481 *
9482 * We achieve this by letting init_task_group's tasks sit
9483 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9484 */
9485 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9486 #elif defined CONFIG_USER_SCHED
9487 root_task_group.shares = NICE_0_LOAD;
9488 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9489 /*
9490 * In case of task-groups formed thr' the user id of tasks,
9491 * init_task_group represents tasks belonging to root user.
9492 * Hence it forms a sibling of all subsequent groups formed.
9493 * In this case, init_task_group gets only a fraction of overall
9494 * system cpu resource, based on the weight assigned to root
9495 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9496 * by letting tasks of init_task_group sit in a separate cfs_rq
9497 * (init_tg_cfs_rq) and having one entity represent this group of
9498 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9499 */
9500 init_tg_cfs_entry(&init_task_group,
9501 &per_cpu(init_tg_cfs_rq, i),
9502 &per_cpu(init_sched_entity, i), i, 1,
9503 root_task_group.se[i]);
9504
9505 #endif
9506 #endif /* CONFIG_FAIR_GROUP_SCHED */
9507
9508 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9509 #ifdef CONFIG_RT_GROUP_SCHED
9510 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9511 #ifdef CONFIG_CGROUP_SCHED
9512 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9513 #elif defined CONFIG_USER_SCHED
9514 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9515 init_tg_rt_entry(&init_task_group,
9516 &per_cpu(init_rt_rq, i),
9517 &per_cpu(init_sched_rt_entity, i), i, 1,
9518 root_task_group.rt_se[i]);
9519 #endif
9520 #endif
9521
9522 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9523 rq->cpu_load[j] = 0;
9524 #ifdef CONFIG_SMP
9525 rq->sd = NULL;
9526 rq->rd = NULL;
9527 rq->post_schedule = 0;
9528 rq->active_balance = 0;
9529 rq->next_balance = jiffies;
9530 rq->push_cpu = 0;
9531 rq->cpu = i;
9532 rq->online = 0;
9533 rq->migration_thread = NULL;
9534 rq->idle_stamp = 0;
9535 rq->avg_idle = 2*sysctl_sched_migration_cost;
9536 INIT_LIST_HEAD(&rq->migration_queue);
9537 rq_attach_root(rq, &def_root_domain);
9538 #endif
9539 init_rq_hrtick(rq);
9540 atomic_set(&rq->nr_iowait, 0);
9541 }
9542
9543 set_load_weight(&init_task);
9544
9545 #ifdef CONFIG_PREEMPT_NOTIFIERS
9546 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9547 #endif
9548
9549 #ifdef CONFIG_SMP
9550 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9551 #endif
9552
9553 #ifdef CONFIG_RT_MUTEXES
9554 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9555 #endif
9556
9557 /*
9558 * The boot idle thread does lazy MMU switching as well:
9559 */
9560 atomic_inc(&init_mm.mm_count);
9561 enter_lazy_tlb(&init_mm, current);
9562
9563 /*
9564 * Make us the idle thread. Technically, schedule() should not be
9565 * called from this thread, however somewhere below it might be,
9566 * but because we are the idle thread, we just pick up running again
9567 * when this runqueue becomes "idle".
9568 */
9569 init_idle(current, smp_processor_id());
9570
9571 calc_load_update = jiffies + LOAD_FREQ;
9572
9573 /*
9574 * During early bootup we pretend to be a normal task:
9575 */
9576 current->sched_class = &fair_sched_class;
9577
9578 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9579 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9580 #ifdef CONFIG_SMP
9581 #ifdef CONFIG_NO_HZ
9582 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9583 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9584 #endif
9585 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9586 #endif /* SMP */
9587
9588 perf_event_init();
9589
9590 scheduler_running = 1;
9591 }
9592
9593 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9594 static inline int preempt_count_equals(int preempt_offset)
9595 {
9596 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9597
9598 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9599 }
9600
9601 void __might_sleep(char *file, int line, int preempt_offset)
9602 {
9603 #ifdef in_atomic
9604 static unsigned long prev_jiffy; /* ratelimiting */
9605
9606 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9607 system_state != SYSTEM_RUNNING || oops_in_progress)
9608 return;
9609 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9610 return;
9611 prev_jiffy = jiffies;
9612
9613 printk(KERN_ERR
9614 "BUG: sleeping function called from invalid context at %s:%d\n",
9615 file, line);
9616 printk(KERN_ERR
9617 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9618 in_atomic(), irqs_disabled(),
9619 current->pid, current->comm);
9620
9621 debug_show_held_locks(current);
9622 if (irqs_disabled())
9623 print_irqtrace_events(current);
9624 dump_stack();
9625 #endif
9626 }
9627 EXPORT_SYMBOL(__might_sleep);
9628 #endif
9629
9630 #ifdef CONFIG_MAGIC_SYSRQ
9631 static void normalize_task(struct rq *rq, struct task_struct *p)
9632 {
9633 int on_rq;
9634
9635 update_rq_clock(rq);
9636 on_rq = p->se.on_rq;
9637 if (on_rq)
9638 deactivate_task(rq, p, 0);
9639 __setscheduler(rq, p, SCHED_NORMAL, 0);
9640 if (on_rq) {
9641 activate_task(rq, p, 0);
9642 resched_task(rq->curr);
9643 }
9644 }
9645
9646 void normalize_rt_tasks(void)
9647 {
9648 struct task_struct *g, *p;
9649 unsigned long flags;
9650 struct rq *rq;
9651
9652 read_lock_irqsave(&tasklist_lock, flags);
9653 do_each_thread(g, p) {
9654 /*
9655 * Only normalize user tasks:
9656 */
9657 if (!p->mm)
9658 continue;
9659
9660 p->se.exec_start = 0;
9661 #ifdef CONFIG_SCHEDSTATS
9662 p->se.wait_start = 0;
9663 p->se.sleep_start = 0;
9664 p->se.block_start = 0;
9665 #endif
9666
9667 if (!rt_task(p)) {
9668 /*
9669 * Renice negative nice level userspace
9670 * tasks back to 0:
9671 */
9672 if (TASK_NICE(p) < 0 && p->mm)
9673 set_user_nice(p, 0);
9674 continue;
9675 }
9676
9677 spin_lock(&p->pi_lock);
9678 rq = __task_rq_lock(p);
9679
9680 normalize_task(rq, p);
9681
9682 __task_rq_unlock(rq);
9683 spin_unlock(&p->pi_lock);
9684 } while_each_thread(g, p);
9685
9686 read_unlock_irqrestore(&tasklist_lock, flags);
9687 }
9688
9689 #endif /* CONFIG_MAGIC_SYSRQ */
9690
9691 #ifdef CONFIG_IA64
9692 /*
9693 * These functions are only useful for the IA64 MCA handling.
9694 *
9695 * They can only be called when the whole system has been
9696 * stopped - every CPU needs to be quiescent, and no scheduling
9697 * activity can take place. Using them for anything else would
9698 * be a serious bug, and as a result, they aren't even visible
9699 * under any other configuration.
9700 */
9701
9702 /**
9703 * curr_task - return the current task for a given cpu.
9704 * @cpu: the processor in question.
9705 *
9706 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9707 */
9708 struct task_struct *curr_task(int cpu)
9709 {
9710 return cpu_curr(cpu);
9711 }
9712
9713 /**
9714 * set_curr_task - set the current task for a given cpu.
9715 * @cpu: the processor in question.
9716 * @p: the task pointer to set.
9717 *
9718 * Description: This function must only be used when non-maskable interrupts
9719 * are serviced on a separate stack. It allows the architecture to switch the
9720 * notion of the current task on a cpu in a non-blocking manner. This function
9721 * must be called with all CPU's synchronized, and interrupts disabled, the
9722 * and caller must save the original value of the current task (see
9723 * curr_task() above) and restore that value before reenabling interrupts and
9724 * re-starting the system.
9725 *
9726 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9727 */
9728 void set_curr_task(int cpu, struct task_struct *p)
9729 {
9730 cpu_curr(cpu) = p;
9731 }
9732
9733 #endif
9734
9735 #ifdef CONFIG_FAIR_GROUP_SCHED
9736 static void free_fair_sched_group(struct task_group *tg)
9737 {
9738 int i;
9739
9740 for_each_possible_cpu(i) {
9741 if (tg->cfs_rq)
9742 kfree(tg->cfs_rq[i]);
9743 if (tg->se)
9744 kfree(tg->se[i]);
9745 }
9746
9747 kfree(tg->cfs_rq);
9748 kfree(tg->se);
9749 }
9750
9751 static
9752 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9753 {
9754 struct cfs_rq *cfs_rq;
9755 struct sched_entity *se;
9756 struct rq *rq;
9757 int i;
9758
9759 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9760 if (!tg->cfs_rq)
9761 goto err;
9762 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9763 if (!tg->se)
9764 goto err;
9765
9766 tg->shares = NICE_0_LOAD;
9767
9768 for_each_possible_cpu(i) {
9769 rq = cpu_rq(i);
9770
9771 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9772 GFP_KERNEL, cpu_to_node(i));
9773 if (!cfs_rq)
9774 goto err;
9775
9776 se = kzalloc_node(sizeof(struct sched_entity),
9777 GFP_KERNEL, cpu_to_node(i));
9778 if (!se)
9779 goto err;
9780
9781 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9782 }
9783
9784 return 1;
9785
9786 err:
9787 return 0;
9788 }
9789
9790 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9791 {
9792 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9793 &cpu_rq(cpu)->leaf_cfs_rq_list);
9794 }
9795
9796 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9797 {
9798 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9799 }
9800 #else /* !CONFG_FAIR_GROUP_SCHED */
9801 static inline void free_fair_sched_group(struct task_group *tg)
9802 {
9803 }
9804
9805 static inline
9806 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9807 {
9808 return 1;
9809 }
9810
9811 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9812 {
9813 }
9814
9815 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9816 {
9817 }
9818 #endif /* CONFIG_FAIR_GROUP_SCHED */
9819
9820 #ifdef CONFIG_RT_GROUP_SCHED
9821 static void free_rt_sched_group(struct task_group *tg)
9822 {
9823 int i;
9824
9825 destroy_rt_bandwidth(&tg->rt_bandwidth);
9826
9827 for_each_possible_cpu(i) {
9828 if (tg->rt_rq)
9829 kfree(tg->rt_rq[i]);
9830 if (tg->rt_se)
9831 kfree(tg->rt_se[i]);
9832 }
9833
9834 kfree(tg->rt_rq);
9835 kfree(tg->rt_se);
9836 }
9837
9838 static
9839 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9840 {
9841 struct rt_rq *rt_rq;
9842 struct sched_rt_entity *rt_se;
9843 struct rq *rq;
9844 int i;
9845
9846 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9847 if (!tg->rt_rq)
9848 goto err;
9849 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9850 if (!tg->rt_se)
9851 goto err;
9852
9853 init_rt_bandwidth(&tg->rt_bandwidth,
9854 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9855
9856 for_each_possible_cpu(i) {
9857 rq = cpu_rq(i);
9858
9859 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9860 GFP_KERNEL, cpu_to_node(i));
9861 if (!rt_rq)
9862 goto err;
9863
9864 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9865 GFP_KERNEL, cpu_to_node(i));
9866 if (!rt_se)
9867 goto err;
9868
9869 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9870 }
9871
9872 return 1;
9873
9874 err:
9875 return 0;
9876 }
9877
9878 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9879 {
9880 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
9881 &cpu_rq(cpu)->leaf_rt_rq_list);
9882 }
9883
9884 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9885 {
9886 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
9887 }
9888 #else /* !CONFIG_RT_GROUP_SCHED */
9889 static inline void free_rt_sched_group(struct task_group *tg)
9890 {
9891 }
9892
9893 static inline
9894 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9895 {
9896 return 1;
9897 }
9898
9899 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
9900 {
9901 }
9902
9903 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
9904 {
9905 }
9906 #endif /* CONFIG_RT_GROUP_SCHED */
9907
9908 #ifdef CONFIG_GROUP_SCHED
9909 static void free_sched_group(struct task_group *tg)
9910 {
9911 free_fair_sched_group(tg);
9912 free_rt_sched_group(tg);
9913 kfree(tg);
9914 }
9915
9916 /* allocate runqueue etc for a new task group */
9917 struct task_group *sched_create_group(struct task_group *parent)
9918 {
9919 struct task_group *tg;
9920 unsigned long flags;
9921 int i;
9922
9923 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
9924 if (!tg)
9925 return ERR_PTR(-ENOMEM);
9926
9927 if (!alloc_fair_sched_group(tg, parent))
9928 goto err;
9929
9930 if (!alloc_rt_sched_group(tg, parent))
9931 goto err;
9932
9933 spin_lock_irqsave(&task_group_lock, flags);
9934 for_each_possible_cpu(i) {
9935 register_fair_sched_group(tg, i);
9936 register_rt_sched_group(tg, i);
9937 }
9938 list_add_rcu(&tg->list, &task_groups);
9939
9940 WARN_ON(!parent); /* root should already exist */
9941
9942 tg->parent = parent;
9943 INIT_LIST_HEAD(&tg->children);
9944 list_add_rcu(&tg->siblings, &parent->children);
9945 spin_unlock_irqrestore(&task_group_lock, flags);
9946
9947 return tg;
9948
9949 err:
9950 free_sched_group(tg);
9951 return ERR_PTR(-ENOMEM);
9952 }
9953
9954 /* rcu callback to free various structures associated with a task group */
9955 static void free_sched_group_rcu(struct rcu_head *rhp)
9956 {
9957 /* now it should be safe to free those cfs_rqs */
9958 free_sched_group(container_of(rhp, struct task_group, rcu));
9959 }
9960
9961 /* Destroy runqueue etc associated with a task group */
9962 void sched_destroy_group(struct task_group *tg)
9963 {
9964 unsigned long flags;
9965 int i;
9966
9967 spin_lock_irqsave(&task_group_lock, flags);
9968 for_each_possible_cpu(i) {
9969 unregister_fair_sched_group(tg, i);
9970 unregister_rt_sched_group(tg, i);
9971 }
9972 list_del_rcu(&tg->list);
9973 list_del_rcu(&tg->siblings);
9974 spin_unlock_irqrestore(&task_group_lock, flags);
9975
9976 /* wait for possible concurrent references to cfs_rqs complete */
9977 call_rcu(&tg->rcu, free_sched_group_rcu);
9978 }
9979
9980 /* change task's runqueue when it moves between groups.
9981 * The caller of this function should have put the task in its new group
9982 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9983 * reflect its new group.
9984 */
9985 void sched_move_task(struct task_struct *tsk)
9986 {
9987 int on_rq, running;
9988 unsigned long flags;
9989 struct rq *rq;
9990
9991 rq = task_rq_lock(tsk, &flags);
9992
9993 update_rq_clock(rq);
9994
9995 running = task_current(rq, tsk);
9996 on_rq = tsk->se.on_rq;
9997
9998 if (on_rq)
9999 dequeue_task(rq, tsk, 0);
10000 if (unlikely(running))
10001 tsk->sched_class->put_prev_task(rq, tsk);
10002
10003 set_task_rq(tsk, task_cpu(tsk));
10004
10005 #ifdef CONFIG_FAIR_GROUP_SCHED
10006 if (tsk->sched_class->moved_group)
10007 tsk->sched_class->moved_group(tsk);
10008 #endif
10009
10010 if (unlikely(running))
10011 tsk->sched_class->set_curr_task(rq);
10012 if (on_rq)
10013 enqueue_task(rq, tsk, 0);
10014
10015 task_rq_unlock(rq, &flags);
10016 }
10017 #endif /* CONFIG_GROUP_SCHED */
10018
10019 #ifdef CONFIG_FAIR_GROUP_SCHED
10020 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10021 {
10022 struct cfs_rq *cfs_rq = se->cfs_rq;
10023 int on_rq;
10024
10025 on_rq = se->on_rq;
10026 if (on_rq)
10027 dequeue_entity(cfs_rq, se, 0);
10028
10029 se->load.weight = shares;
10030 se->load.inv_weight = 0;
10031
10032 if (on_rq)
10033 enqueue_entity(cfs_rq, se, 0);
10034 }
10035
10036 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10037 {
10038 struct cfs_rq *cfs_rq = se->cfs_rq;
10039 struct rq *rq = cfs_rq->rq;
10040 unsigned long flags;
10041
10042 spin_lock_irqsave(&rq->lock, flags);
10043 __set_se_shares(se, shares);
10044 spin_unlock_irqrestore(&rq->lock, flags);
10045 }
10046
10047 static DEFINE_MUTEX(shares_mutex);
10048
10049 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10050 {
10051 int i;
10052 unsigned long flags;
10053
10054 /*
10055 * We can't change the weight of the root cgroup.
10056 */
10057 if (!tg->se[0])
10058 return -EINVAL;
10059
10060 if (shares < MIN_SHARES)
10061 shares = MIN_SHARES;
10062 else if (shares > MAX_SHARES)
10063 shares = MAX_SHARES;
10064
10065 mutex_lock(&shares_mutex);
10066 if (tg->shares == shares)
10067 goto done;
10068
10069 spin_lock_irqsave(&task_group_lock, flags);
10070 for_each_possible_cpu(i)
10071 unregister_fair_sched_group(tg, i);
10072 list_del_rcu(&tg->siblings);
10073 spin_unlock_irqrestore(&task_group_lock, flags);
10074
10075 /* wait for any ongoing reference to this group to finish */
10076 synchronize_sched();
10077
10078 /*
10079 * Now we are free to modify the group's share on each cpu
10080 * w/o tripping rebalance_share or load_balance_fair.
10081 */
10082 tg->shares = shares;
10083 for_each_possible_cpu(i) {
10084 /*
10085 * force a rebalance
10086 */
10087 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10088 set_se_shares(tg->se[i], shares);
10089 }
10090
10091 /*
10092 * Enable load balance activity on this group, by inserting it back on
10093 * each cpu's rq->leaf_cfs_rq_list.
10094 */
10095 spin_lock_irqsave(&task_group_lock, flags);
10096 for_each_possible_cpu(i)
10097 register_fair_sched_group(tg, i);
10098 list_add_rcu(&tg->siblings, &tg->parent->children);
10099 spin_unlock_irqrestore(&task_group_lock, flags);
10100 done:
10101 mutex_unlock(&shares_mutex);
10102 return 0;
10103 }
10104
10105 unsigned long sched_group_shares(struct task_group *tg)
10106 {
10107 return tg->shares;
10108 }
10109 #endif
10110
10111 #ifdef CONFIG_RT_GROUP_SCHED
10112 /*
10113 * Ensure that the real time constraints are schedulable.
10114 */
10115 static DEFINE_MUTEX(rt_constraints_mutex);
10116
10117 static unsigned long to_ratio(u64 period, u64 runtime)
10118 {
10119 if (runtime == RUNTIME_INF)
10120 return 1ULL << 20;
10121
10122 return div64_u64(runtime << 20, period);
10123 }
10124
10125 /* Must be called with tasklist_lock held */
10126 static inline int tg_has_rt_tasks(struct task_group *tg)
10127 {
10128 struct task_struct *g, *p;
10129
10130 do_each_thread(g, p) {
10131 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10132 return 1;
10133 } while_each_thread(g, p);
10134
10135 return 0;
10136 }
10137
10138 struct rt_schedulable_data {
10139 struct task_group *tg;
10140 u64 rt_period;
10141 u64 rt_runtime;
10142 };
10143
10144 static int tg_schedulable(struct task_group *tg, void *data)
10145 {
10146 struct rt_schedulable_data *d = data;
10147 struct task_group *child;
10148 unsigned long total, sum = 0;
10149 u64 period, runtime;
10150
10151 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10152 runtime = tg->rt_bandwidth.rt_runtime;
10153
10154 if (tg == d->tg) {
10155 period = d->rt_period;
10156 runtime = d->rt_runtime;
10157 }
10158
10159 #ifdef CONFIG_USER_SCHED
10160 if (tg == &root_task_group) {
10161 period = global_rt_period();
10162 runtime = global_rt_runtime();
10163 }
10164 #endif
10165
10166 /*
10167 * Cannot have more runtime than the period.
10168 */
10169 if (runtime > period && runtime != RUNTIME_INF)
10170 return -EINVAL;
10171
10172 /*
10173 * Ensure we don't starve existing RT tasks.
10174 */
10175 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10176 return -EBUSY;
10177
10178 total = to_ratio(period, runtime);
10179
10180 /*
10181 * Nobody can have more than the global setting allows.
10182 */
10183 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10184 return -EINVAL;
10185
10186 /*
10187 * The sum of our children's runtime should not exceed our own.
10188 */
10189 list_for_each_entry_rcu(child, &tg->children, siblings) {
10190 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10191 runtime = child->rt_bandwidth.rt_runtime;
10192
10193 if (child == d->tg) {
10194 period = d->rt_period;
10195 runtime = d->rt_runtime;
10196 }
10197
10198 sum += to_ratio(period, runtime);
10199 }
10200
10201 if (sum > total)
10202 return -EINVAL;
10203
10204 return 0;
10205 }
10206
10207 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10208 {
10209 struct rt_schedulable_data data = {
10210 .tg = tg,
10211 .rt_period = period,
10212 .rt_runtime = runtime,
10213 };
10214
10215 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10216 }
10217
10218 static int tg_set_bandwidth(struct task_group *tg,
10219 u64 rt_period, u64 rt_runtime)
10220 {
10221 int i, err = 0;
10222
10223 mutex_lock(&rt_constraints_mutex);
10224 read_lock(&tasklist_lock);
10225 err = __rt_schedulable(tg, rt_period, rt_runtime);
10226 if (err)
10227 goto unlock;
10228
10229 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10230 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10231 tg->rt_bandwidth.rt_runtime = rt_runtime;
10232
10233 for_each_possible_cpu(i) {
10234 struct rt_rq *rt_rq = tg->rt_rq[i];
10235
10236 spin_lock(&rt_rq->rt_runtime_lock);
10237 rt_rq->rt_runtime = rt_runtime;
10238 spin_unlock(&rt_rq->rt_runtime_lock);
10239 }
10240 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10241 unlock:
10242 read_unlock(&tasklist_lock);
10243 mutex_unlock(&rt_constraints_mutex);
10244
10245 return err;
10246 }
10247
10248 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10249 {
10250 u64 rt_runtime, rt_period;
10251
10252 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10253 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10254 if (rt_runtime_us < 0)
10255 rt_runtime = RUNTIME_INF;
10256
10257 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10258 }
10259
10260 long sched_group_rt_runtime(struct task_group *tg)
10261 {
10262 u64 rt_runtime_us;
10263
10264 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10265 return -1;
10266
10267 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10268 do_div(rt_runtime_us, NSEC_PER_USEC);
10269 return rt_runtime_us;
10270 }
10271
10272 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10273 {
10274 u64 rt_runtime, rt_period;
10275
10276 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10277 rt_runtime = tg->rt_bandwidth.rt_runtime;
10278
10279 if (rt_period == 0)
10280 return -EINVAL;
10281
10282 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10283 }
10284
10285 long sched_group_rt_period(struct task_group *tg)
10286 {
10287 u64 rt_period_us;
10288
10289 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10290 do_div(rt_period_us, NSEC_PER_USEC);
10291 return rt_period_us;
10292 }
10293
10294 static int sched_rt_global_constraints(void)
10295 {
10296 u64 runtime, period;
10297 int ret = 0;
10298
10299 if (sysctl_sched_rt_period <= 0)
10300 return -EINVAL;
10301
10302 runtime = global_rt_runtime();
10303 period = global_rt_period();
10304
10305 /*
10306 * Sanity check on the sysctl variables.
10307 */
10308 if (runtime > period && runtime != RUNTIME_INF)
10309 return -EINVAL;
10310
10311 mutex_lock(&rt_constraints_mutex);
10312 read_lock(&tasklist_lock);
10313 ret = __rt_schedulable(NULL, 0, 0);
10314 read_unlock(&tasklist_lock);
10315 mutex_unlock(&rt_constraints_mutex);
10316
10317 return ret;
10318 }
10319
10320 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10321 {
10322 /* Don't accept realtime tasks when there is no way for them to run */
10323 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10324 return 0;
10325
10326 return 1;
10327 }
10328
10329 #else /* !CONFIG_RT_GROUP_SCHED */
10330 static int sched_rt_global_constraints(void)
10331 {
10332 unsigned long flags;
10333 int i;
10334
10335 if (sysctl_sched_rt_period <= 0)
10336 return -EINVAL;
10337
10338 /*
10339 * There's always some RT tasks in the root group
10340 * -- migration, kstopmachine etc..
10341 */
10342 if (sysctl_sched_rt_runtime == 0)
10343 return -EBUSY;
10344
10345 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10346 for_each_possible_cpu(i) {
10347 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10348
10349 spin_lock(&rt_rq->rt_runtime_lock);
10350 rt_rq->rt_runtime = global_rt_runtime();
10351 spin_unlock(&rt_rq->rt_runtime_lock);
10352 }
10353 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10354
10355 return 0;
10356 }
10357 #endif /* CONFIG_RT_GROUP_SCHED */
10358
10359 int sched_rt_handler(struct ctl_table *table, int write,
10360 void __user *buffer, size_t *lenp,
10361 loff_t *ppos)
10362 {
10363 int ret;
10364 int old_period, old_runtime;
10365 static DEFINE_MUTEX(mutex);
10366
10367 mutex_lock(&mutex);
10368 old_period = sysctl_sched_rt_period;
10369 old_runtime = sysctl_sched_rt_runtime;
10370
10371 ret = proc_dointvec(table, write, buffer, lenp, ppos);
10372
10373 if (!ret && write) {
10374 ret = sched_rt_global_constraints();
10375 if (ret) {
10376 sysctl_sched_rt_period = old_period;
10377 sysctl_sched_rt_runtime = old_runtime;
10378 } else {
10379 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10380 def_rt_bandwidth.rt_period =
10381 ns_to_ktime(global_rt_period());
10382 }
10383 }
10384 mutex_unlock(&mutex);
10385
10386 return ret;
10387 }
10388
10389 #ifdef CONFIG_CGROUP_SCHED
10390
10391 /* return corresponding task_group object of a cgroup */
10392 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10393 {
10394 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10395 struct task_group, css);
10396 }
10397
10398 static struct cgroup_subsys_state *
10399 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10400 {
10401 struct task_group *tg, *parent;
10402
10403 if (!cgrp->parent) {
10404 /* This is early initialization for the top cgroup */
10405 return &init_task_group.css;
10406 }
10407
10408 parent = cgroup_tg(cgrp->parent);
10409 tg = sched_create_group(parent);
10410 if (IS_ERR(tg))
10411 return ERR_PTR(-ENOMEM);
10412
10413 return &tg->css;
10414 }
10415
10416 static void
10417 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10418 {
10419 struct task_group *tg = cgroup_tg(cgrp);
10420
10421 sched_destroy_group(tg);
10422 }
10423
10424 static int
10425 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
10426 {
10427 #ifdef CONFIG_RT_GROUP_SCHED
10428 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10429 return -EINVAL;
10430 #else
10431 /* We don't support RT-tasks being in separate groups */
10432 if (tsk->sched_class != &fair_sched_class)
10433 return -EINVAL;
10434 #endif
10435 return 0;
10436 }
10437
10438 static int
10439 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10440 struct task_struct *tsk, bool threadgroup)
10441 {
10442 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
10443 if (retval)
10444 return retval;
10445 if (threadgroup) {
10446 struct task_struct *c;
10447 rcu_read_lock();
10448 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10449 retval = cpu_cgroup_can_attach_task(cgrp, c);
10450 if (retval) {
10451 rcu_read_unlock();
10452 return retval;
10453 }
10454 }
10455 rcu_read_unlock();
10456 }
10457 return 0;
10458 }
10459
10460 static void
10461 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10462 struct cgroup *old_cont, struct task_struct *tsk,
10463 bool threadgroup)
10464 {
10465 sched_move_task(tsk);
10466 if (threadgroup) {
10467 struct task_struct *c;
10468 rcu_read_lock();
10469 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
10470 sched_move_task(c);
10471 }
10472 rcu_read_unlock();
10473 }
10474 }
10475
10476 #ifdef CONFIG_FAIR_GROUP_SCHED
10477 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10478 u64 shareval)
10479 {
10480 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10481 }
10482
10483 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10484 {
10485 struct task_group *tg = cgroup_tg(cgrp);
10486
10487 return (u64) tg->shares;
10488 }
10489 #endif /* CONFIG_FAIR_GROUP_SCHED */
10490
10491 #ifdef CONFIG_RT_GROUP_SCHED
10492 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10493 s64 val)
10494 {
10495 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10496 }
10497
10498 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10499 {
10500 return sched_group_rt_runtime(cgroup_tg(cgrp));
10501 }
10502
10503 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10504 u64 rt_period_us)
10505 {
10506 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10507 }
10508
10509 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10510 {
10511 return sched_group_rt_period(cgroup_tg(cgrp));
10512 }
10513 #endif /* CONFIG_RT_GROUP_SCHED */
10514
10515 static struct cftype cpu_files[] = {
10516 #ifdef CONFIG_FAIR_GROUP_SCHED
10517 {
10518 .name = "shares",
10519 .read_u64 = cpu_shares_read_u64,
10520 .write_u64 = cpu_shares_write_u64,
10521 },
10522 #endif
10523 #ifdef CONFIG_RT_GROUP_SCHED
10524 {
10525 .name = "rt_runtime_us",
10526 .read_s64 = cpu_rt_runtime_read,
10527 .write_s64 = cpu_rt_runtime_write,
10528 },
10529 {
10530 .name = "rt_period_us",
10531 .read_u64 = cpu_rt_period_read_uint,
10532 .write_u64 = cpu_rt_period_write_uint,
10533 },
10534 #endif
10535 };
10536
10537 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10538 {
10539 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10540 }
10541
10542 struct cgroup_subsys cpu_cgroup_subsys = {
10543 .name = "cpu",
10544 .create = cpu_cgroup_create,
10545 .destroy = cpu_cgroup_destroy,
10546 .can_attach = cpu_cgroup_can_attach,
10547 .attach = cpu_cgroup_attach,
10548 .populate = cpu_cgroup_populate,
10549 .subsys_id = cpu_cgroup_subsys_id,
10550 .early_init = 1,
10551 };
10552
10553 #endif /* CONFIG_CGROUP_SCHED */
10554
10555 #ifdef CONFIG_CGROUP_CPUACCT
10556
10557 /*
10558 * CPU accounting code for task groups.
10559 *
10560 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10561 * (balbir@in.ibm.com).
10562 */
10563
10564 /* track cpu usage of a group of tasks and its child groups */
10565 struct cpuacct {
10566 struct cgroup_subsys_state css;
10567 /* cpuusage holds pointer to a u64-type object on every cpu */
10568 u64 *cpuusage;
10569 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10570 struct cpuacct *parent;
10571 };
10572
10573 struct cgroup_subsys cpuacct_subsys;
10574
10575 /* return cpu accounting group corresponding to this container */
10576 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10577 {
10578 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10579 struct cpuacct, css);
10580 }
10581
10582 /* return cpu accounting group to which this task belongs */
10583 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10584 {
10585 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10586 struct cpuacct, css);
10587 }
10588
10589 /* create a new cpu accounting group */
10590 static struct cgroup_subsys_state *cpuacct_create(
10591 struct cgroup_subsys *ss, struct cgroup *cgrp)
10592 {
10593 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10594 int i;
10595
10596 if (!ca)
10597 goto out;
10598
10599 ca->cpuusage = alloc_percpu(u64);
10600 if (!ca->cpuusage)
10601 goto out_free_ca;
10602
10603 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10604 if (percpu_counter_init(&ca->cpustat[i], 0))
10605 goto out_free_counters;
10606
10607 if (cgrp->parent)
10608 ca->parent = cgroup_ca(cgrp->parent);
10609
10610 return &ca->css;
10611
10612 out_free_counters:
10613 while (--i >= 0)
10614 percpu_counter_destroy(&ca->cpustat[i]);
10615 free_percpu(ca->cpuusage);
10616 out_free_ca:
10617 kfree(ca);
10618 out:
10619 return ERR_PTR(-ENOMEM);
10620 }
10621
10622 /* destroy an existing cpu accounting group */
10623 static void
10624 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10625 {
10626 struct cpuacct *ca = cgroup_ca(cgrp);
10627 int i;
10628
10629 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10630 percpu_counter_destroy(&ca->cpustat[i]);
10631 free_percpu(ca->cpuusage);
10632 kfree(ca);
10633 }
10634
10635 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10636 {
10637 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10638 u64 data;
10639
10640 #ifndef CONFIG_64BIT
10641 /*
10642 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10643 */
10644 spin_lock_irq(&cpu_rq(cpu)->lock);
10645 data = *cpuusage;
10646 spin_unlock_irq(&cpu_rq(cpu)->lock);
10647 #else
10648 data = *cpuusage;
10649 #endif
10650
10651 return data;
10652 }
10653
10654 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10655 {
10656 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10657
10658 #ifndef CONFIG_64BIT
10659 /*
10660 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10661 */
10662 spin_lock_irq(&cpu_rq(cpu)->lock);
10663 *cpuusage = val;
10664 spin_unlock_irq(&cpu_rq(cpu)->lock);
10665 #else
10666 *cpuusage = val;
10667 #endif
10668 }
10669
10670 /* return total cpu usage (in nanoseconds) of a group */
10671 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10672 {
10673 struct cpuacct *ca = cgroup_ca(cgrp);
10674 u64 totalcpuusage = 0;
10675 int i;
10676
10677 for_each_present_cpu(i)
10678 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10679
10680 return totalcpuusage;
10681 }
10682
10683 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10684 u64 reset)
10685 {
10686 struct cpuacct *ca = cgroup_ca(cgrp);
10687 int err = 0;
10688 int i;
10689
10690 if (reset) {
10691 err = -EINVAL;
10692 goto out;
10693 }
10694
10695 for_each_present_cpu(i)
10696 cpuacct_cpuusage_write(ca, i, 0);
10697
10698 out:
10699 return err;
10700 }
10701
10702 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10703 struct seq_file *m)
10704 {
10705 struct cpuacct *ca = cgroup_ca(cgroup);
10706 u64 percpu;
10707 int i;
10708
10709 for_each_present_cpu(i) {
10710 percpu = cpuacct_cpuusage_read(ca, i);
10711 seq_printf(m, "%llu ", (unsigned long long) percpu);
10712 }
10713 seq_printf(m, "\n");
10714 return 0;
10715 }
10716
10717 static const char *cpuacct_stat_desc[] = {
10718 [CPUACCT_STAT_USER] = "user",
10719 [CPUACCT_STAT_SYSTEM] = "system",
10720 };
10721
10722 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10723 struct cgroup_map_cb *cb)
10724 {
10725 struct cpuacct *ca = cgroup_ca(cgrp);
10726 int i;
10727
10728 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10729 s64 val = percpu_counter_read(&ca->cpustat[i]);
10730 val = cputime64_to_clock_t(val);
10731 cb->fill(cb, cpuacct_stat_desc[i], val);
10732 }
10733 return 0;
10734 }
10735
10736 static struct cftype files[] = {
10737 {
10738 .name = "usage",
10739 .read_u64 = cpuusage_read,
10740 .write_u64 = cpuusage_write,
10741 },
10742 {
10743 .name = "usage_percpu",
10744 .read_seq_string = cpuacct_percpu_seq_read,
10745 },
10746 {
10747 .name = "stat",
10748 .read_map = cpuacct_stats_show,
10749 },
10750 };
10751
10752 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10753 {
10754 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10755 }
10756
10757 /*
10758 * charge this task's execution time to its accounting group.
10759 *
10760 * called with rq->lock held.
10761 */
10762 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10763 {
10764 struct cpuacct *ca;
10765 int cpu;
10766
10767 if (unlikely(!cpuacct_subsys.active))
10768 return;
10769
10770 cpu = task_cpu(tsk);
10771
10772 rcu_read_lock();
10773
10774 ca = task_ca(tsk);
10775
10776 for (; ca; ca = ca->parent) {
10777 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10778 *cpuusage += cputime;
10779 }
10780
10781 rcu_read_unlock();
10782 }
10783
10784 /*
10785 * Charge the system/user time to the task's accounting group.
10786 */
10787 static void cpuacct_update_stats(struct task_struct *tsk,
10788 enum cpuacct_stat_index idx, cputime_t val)
10789 {
10790 struct cpuacct *ca;
10791
10792 if (unlikely(!cpuacct_subsys.active))
10793 return;
10794
10795 rcu_read_lock();
10796 ca = task_ca(tsk);
10797
10798 do {
10799 percpu_counter_add(&ca->cpustat[idx], val);
10800 ca = ca->parent;
10801 } while (ca);
10802 rcu_read_unlock();
10803 }
10804
10805 struct cgroup_subsys cpuacct_subsys = {
10806 .name = "cpuacct",
10807 .create = cpuacct_create,
10808 .destroy = cpuacct_destroy,
10809 .populate = cpuacct_populate,
10810 .subsys_id = cpuacct_subsys_id,
10811 };
10812 #endif /* CONFIG_CGROUP_CPUACCT */
10813
10814 #ifndef CONFIG_SMP
10815
10816 int rcu_expedited_torture_stats(char *page)
10817 {
10818 return 0;
10819 }
10820 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10821
10822 void synchronize_sched_expedited(void)
10823 {
10824 }
10825 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10826
10827 #else /* #ifndef CONFIG_SMP */
10828
10829 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10830 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10831
10832 #define RCU_EXPEDITED_STATE_POST -2
10833 #define RCU_EXPEDITED_STATE_IDLE -1
10834
10835 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10836
10837 int rcu_expedited_torture_stats(char *page)
10838 {
10839 int cnt = 0;
10840 int cpu;
10841
10842 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10843 for_each_online_cpu(cpu) {
10844 cnt += sprintf(&page[cnt], " %d:%d",
10845 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10846 }
10847 cnt += sprintf(&page[cnt], "\n");
10848 return cnt;
10849 }
10850 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10851
10852 static long synchronize_sched_expedited_count;
10853
10854 /*
10855 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10856 * approach to force grace period to end quickly. This consumes
10857 * significant time on all CPUs, and is thus not recommended for
10858 * any sort of common-case code.
10859 *
10860 * Note that it is illegal to call this function while holding any
10861 * lock that is acquired by a CPU-hotplug notifier. Failing to
10862 * observe this restriction will result in deadlock.
10863 */
10864 void synchronize_sched_expedited(void)
10865 {
10866 int cpu;
10867 unsigned long flags;
10868 bool need_full_sync = 0;
10869 struct rq *rq;
10870 struct migration_req *req;
10871 long snap;
10872 int trycount = 0;
10873
10874 smp_mb(); /* ensure prior mod happens before capturing snap. */
10875 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10876 get_online_cpus();
10877 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10878 put_online_cpus();
10879 if (trycount++ < 10)
10880 udelay(trycount * num_online_cpus());
10881 else {
10882 synchronize_sched();
10883 return;
10884 }
10885 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10886 smp_mb(); /* ensure test happens before caller kfree */
10887 return;
10888 }
10889 get_online_cpus();
10890 }
10891 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10892 for_each_online_cpu(cpu) {
10893 rq = cpu_rq(cpu);
10894 req = &per_cpu(rcu_migration_req, cpu);
10895 init_completion(&req->done);
10896 req->task = NULL;
10897 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10898 spin_lock_irqsave(&rq->lock, flags);
10899 list_add(&req->list, &rq->migration_queue);
10900 spin_unlock_irqrestore(&rq->lock, flags);
10901 wake_up_process(rq->migration_thread);
10902 }
10903 for_each_online_cpu(cpu) {
10904 rcu_expedited_state = cpu;
10905 req = &per_cpu(rcu_migration_req, cpu);
10906 rq = cpu_rq(cpu);
10907 wait_for_completion(&req->done);
10908 spin_lock_irqsave(&rq->lock, flags);
10909 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
10910 need_full_sync = 1;
10911 req->dest_cpu = RCU_MIGRATION_IDLE;
10912 spin_unlock_irqrestore(&rq->lock, flags);
10913 }
10914 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10915 mutex_unlock(&rcu_sched_expedited_mutex);
10916 put_online_cpus();
10917 if (need_full_sync)
10918 synchronize_sched();
10919 }
10920 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10921
10922 #endif /* #else #ifndef CONFIG_SMP */