]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/sched_debug.c
sched: revert revert of: fair-group: SMP-nice for group scheduling
[mirror_ubuntu-hirsute-kernel.git] / kernel / sched_debug.c
1 /*
2 * kernel/time/sched_debug.c
3 *
4 * Print the CFS rbtree
5 *
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/proc_fs.h>
14 #include <linux/sched.h>
15 #include <linux/seq_file.h>
16 #include <linux/kallsyms.h>
17 #include <linux/utsname.h>
18
19 /*
20 * This allows printing both to /proc/sched_debug and
21 * to the console
22 */
23 #define SEQ_printf(m, x...) \
24 do { \
25 if (m) \
26 seq_printf(m, x); \
27 else \
28 printk(x); \
29 } while (0)
30
31 /*
32 * Ease the printing of nsec fields:
33 */
34 static long long nsec_high(unsigned long long nsec)
35 {
36 if ((long long)nsec < 0) {
37 nsec = -nsec;
38 do_div(nsec, 1000000);
39 return -nsec;
40 }
41 do_div(nsec, 1000000);
42
43 return nsec;
44 }
45
46 static unsigned long nsec_low(unsigned long long nsec)
47 {
48 if ((long long)nsec < 0)
49 nsec = -nsec;
50
51 return do_div(nsec, 1000000);
52 }
53
54 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
55
56 static void
57 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
58 {
59 if (rq->curr == p)
60 SEQ_printf(m, "R");
61 else
62 SEQ_printf(m, " ");
63
64 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
65 p->comm, p->pid,
66 SPLIT_NS(p->se.vruntime),
67 (long long)(p->nvcsw + p->nivcsw),
68 p->prio);
69 #ifdef CONFIG_SCHEDSTATS
70 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
71 SPLIT_NS(p->se.vruntime),
72 SPLIT_NS(p->se.sum_exec_runtime),
73 SPLIT_NS(p->se.sum_sleep_runtime));
74 #else
75 SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
76 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
77 #endif
78
79 #ifdef CONFIG_CGROUP_SCHED
80 {
81 char path[64];
82
83 cgroup_path(task_group(p)->css.cgroup, path, sizeof(path));
84 SEQ_printf(m, " %s", path);
85 }
86 #endif
87 SEQ_printf(m, "\n");
88 }
89
90 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
91 {
92 struct task_struct *g, *p;
93 unsigned long flags;
94
95 SEQ_printf(m,
96 "\nrunnable tasks:\n"
97 " task PID tree-key switches prio"
98 " exec-runtime sum-exec sum-sleep\n"
99 "------------------------------------------------------"
100 "----------------------------------------------------\n");
101
102 read_lock_irqsave(&tasklist_lock, flags);
103
104 do_each_thread(g, p) {
105 if (!p->se.on_rq || task_cpu(p) != rq_cpu)
106 continue;
107
108 print_task(m, rq, p);
109 } while_each_thread(g, p);
110
111 read_unlock_irqrestore(&tasklist_lock, flags);
112 }
113
114 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
115 {
116 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
117 spread, rq0_min_vruntime, spread0;
118 struct rq *rq = &per_cpu(runqueues, cpu);
119 struct sched_entity *last;
120 unsigned long flags;
121
122 #if defined(CONFIG_CGROUP_SCHED) && defined(CONFIG_FAIR_GROUP_SCHED)
123 char path[128] = "";
124 struct cgroup *cgroup = NULL;
125 struct task_group *tg = cfs_rq->tg;
126
127 if (tg)
128 cgroup = tg->css.cgroup;
129
130 if (cgroup)
131 cgroup_path(cgroup, path, sizeof(path));
132
133 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path);
134 #else
135 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
136 #endif
137
138 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
139 SPLIT_NS(cfs_rq->exec_clock));
140
141 spin_lock_irqsave(&rq->lock, flags);
142 if (cfs_rq->rb_leftmost)
143 MIN_vruntime = (__pick_next_entity(cfs_rq))->vruntime;
144 last = __pick_last_entity(cfs_rq);
145 if (last)
146 max_vruntime = last->vruntime;
147 min_vruntime = rq->cfs.min_vruntime;
148 rq0_min_vruntime = per_cpu(runqueues, 0).cfs.min_vruntime;
149 spin_unlock_irqrestore(&rq->lock, flags);
150 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
151 SPLIT_NS(MIN_vruntime));
152 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
153 SPLIT_NS(min_vruntime));
154 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
155 SPLIT_NS(max_vruntime));
156 spread = max_vruntime - MIN_vruntime;
157 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
158 SPLIT_NS(spread));
159 spread0 = min_vruntime - rq0_min_vruntime;
160 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
161 SPLIT_NS(spread0));
162 SEQ_printf(m, " .%-30s: %ld\n", "nr_running", cfs_rq->nr_running);
163 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
164 #ifdef CONFIG_SCHEDSTATS
165 SEQ_printf(m, " .%-30s: %d\n", "bkl_count",
166 rq->bkl_count);
167 #endif
168 SEQ_printf(m, " .%-30s: %ld\n", "nr_spread_over",
169 cfs_rq->nr_spread_over);
170 #ifdef CONFIG_FAIR_GROUP_SCHED
171 #ifdef CONFIG_SMP
172 SEQ_printf(m, " .%-30s: %lu\n", "shares", cfs_rq->shares);
173 #endif
174 #endif
175 }
176
177 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
178 {
179 #if defined(CONFIG_CGROUP_SCHED) && defined(CONFIG_RT_GROUP_SCHED)
180 char path[128] = "";
181 struct cgroup *cgroup = NULL;
182 struct task_group *tg = rt_rq->tg;
183
184 if (tg)
185 cgroup = tg->css.cgroup;
186
187 if (cgroup)
188 cgroup_path(cgroup, path, sizeof(path));
189
190 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, path);
191 #else
192 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
193 #endif
194
195
196 #define P(x) \
197 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
198 #define PN(x) \
199 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
200
201 P(rt_nr_running);
202 P(rt_throttled);
203 PN(rt_time);
204 PN(rt_runtime);
205
206 #undef PN
207 #undef P
208 }
209
210 static void print_cpu(struct seq_file *m, int cpu)
211 {
212 struct rq *rq = &per_cpu(runqueues, cpu);
213
214 #ifdef CONFIG_X86
215 {
216 unsigned int freq = cpu_khz ? : 1;
217
218 SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n",
219 cpu, freq / 1000, (freq % 1000));
220 }
221 #else
222 SEQ_printf(m, "\ncpu#%d\n", cpu);
223 #endif
224
225 #define P(x) \
226 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x))
227 #define PN(x) \
228 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
229
230 P(nr_running);
231 SEQ_printf(m, " .%-30s: %lu\n", "load",
232 rq->load.weight);
233 P(nr_switches);
234 P(nr_load_updates);
235 P(nr_uninterruptible);
236 SEQ_printf(m, " .%-30s: %lu\n", "jiffies", jiffies);
237 PN(next_balance);
238 P(curr->pid);
239 PN(clock);
240 P(cpu_load[0]);
241 P(cpu_load[1]);
242 P(cpu_load[2]);
243 P(cpu_load[3]);
244 P(cpu_load[4]);
245 #undef P
246 #undef PN
247
248 print_cfs_stats(m, cpu);
249 print_rt_stats(m, cpu);
250
251 print_rq(m, rq, cpu);
252 }
253
254 static int sched_debug_show(struct seq_file *m, void *v)
255 {
256 u64 now = ktime_to_ns(ktime_get());
257 int cpu;
258
259 SEQ_printf(m, "Sched Debug Version: v0.07, %s %.*s\n",
260 init_utsname()->release,
261 (int)strcspn(init_utsname()->version, " "),
262 init_utsname()->version);
263
264 SEQ_printf(m, "now at %Lu.%06ld msecs\n", SPLIT_NS(now));
265
266 #define P(x) \
267 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
268 #define PN(x) \
269 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
270 PN(sysctl_sched_latency);
271 PN(sysctl_sched_min_granularity);
272 PN(sysctl_sched_wakeup_granularity);
273 PN(sysctl_sched_child_runs_first);
274 P(sysctl_sched_features);
275 #undef PN
276 #undef P
277
278 for_each_online_cpu(cpu)
279 print_cpu(m, cpu);
280
281 SEQ_printf(m, "\n");
282
283 return 0;
284 }
285
286 static void sysrq_sched_debug_show(void)
287 {
288 sched_debug_show(NULL, NULL);
289 }
290
291 static int sched_debug_open(struct inode *inode, struct file *filp)
292 {
293 return single_open(filp, sched_debug_show, NULL);
294 }
295
296 static const struct file_operations sched_debug_fops = {
297 .open = sched_debug_open,
298 .read = seq_read,
299 .llseek = seq_lseek,
300 .release = single_release,
301 };
302
303 static int __init init_sched_debug_procfs(void)
304 {
305 struct proc_dir_entry *pe;
306
307 pe = proc_create("sched_debug", 0644, NULL, &sched_debug_fops);
308 if (!pe)
309 return -ENOMEM;
310 return 0;
311 }
312
313 __initcall(init_sched_debug_procfs);
314
315 void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
316 {
317 unsigned long nr_switches;
318 unsigned long flags;
319 int num_threads = 1;
320
321 rcu_read_lock();
322 if (lock_task_sighand(p, &flags)) {
323 num_threads = atomic_read(&p->signal->count);
324 unlock_task_sighand(p, &flags);
325 }
326 rcu_read_unlock();
327
328 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads);
329 SEQ_printf(m,
330 "---------------------------------------------------------\n");
331 #define __P(F) \
332 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F)
333 #define P(F) \
334 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F)
335 #define __PN(F) \
336 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
337 #define PN(F) \
338 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
339
340 PN(se.exec_start);
341 PN(se.vruntime);
342 PN(se.sum_exec_runtime);
343 PN(se.avg_overlap);
344
345 nr_switches = p->nvcsw + p->nivcsw;
346
347 #ifdef CONFIG_SCHEDSTATS
348 PN(se.wait_start);
349 PN(se.sleep_start);
350 PN(se.block_start);
351 PN(se.sleep_max);
352 PN(se.block_max);
353 PN(se.exec_max);
354 PN(se.slice_max);
355 PN(se.wait_max);
356 PN(se.wait_sum);
357 P(se.wait_count);
358 P(sched_info.bkl_count);
359 P(se.nr_migrations);
360 P(se.nr_migrations_cold);
361 P(se.nr_failed_migrations_affine);
362 P(se.nr_failed_migrations_running);
363 P(se.nr_failed_migrations_hot);
364 P(se.nr_forced_migrations);
365 P(se.nr_forced2_migrations);
366 P(se.nr_wakeups);
367 P(se.nr_wakeups_sync);
368 P(se.nr_wakeups_migrate);
369 P(se.nr_wakeups_local);
370 P(se.nr_wakeups_remote);
371 P(se.nr_wakeups_affine);
372 P(se.nr_wakeups_affine_attempts);
373 P(se.nr_wakeups_passive);
374 P(se.nr_wakeups_idle);
375
376 {
377 u64 avg_atom, avg_per_cpu;
378
379 avg_atom = p->se.sum_exec_runtime;
380 if (nr_switches)
381 do_div(avg_atom, nr_switches);
382 else
383 avg_atom = -1LL;
384
385 avg_per_cpu = p->se.sum_exec_runtime;
386 if (p->se.nr_migrations) {
387 avg_per_cpu = div64_u64(avg_per_cpu,
388 p->se.nr_migrations);
389 } else {
390 avg_per_cpu = -1LL;
391 }
392
393 __PN(avg_atom);
394 __PN(avg_per_cpu);
395 }
396 #endif
397 __P(nr_switches);
398 SEQ_printf(m, "%-35s:%21Ld\n",
399 "nr_voluntary_switches", (long long)p->nvcsw);
400 SEQ_printf(m, "%-35s:%21Ld\n",
401 "nr_involuntary_switches", (long long)p->nivcsw);
402
403 P(se.load.weight);
404 P(policy);
405 P(prio);
406 #undef PN
407 #undef __PN
408 #undef P
409 #undef __P
410
411 {
412 u64 t0, t1;
413
414 t0 = sched_clock();
415 t1 = sched_clock();
416 SEQ_printf(m, "%-35s:%21Ld\n",
417 "clock-delta", (long long)(t1-t0));
418 }
419 }
420
421 void proc_sched_set_task(struct task_struct *p)
422 {
423 #ifdef CONFIG_SCHEDSTATS
424 p->se.wait_max = 0;
425 p->se.wait_sum = 0;
426 p->se.wait_count = 0;
427 p->se.sleep_max = 0;
428 p->se.sum_sleep_runtime = 0;
429 p->se.block_max = 0;
430 p->se.exec_max = 0;
431 p->se.slice_max = 0;
432 p->se.nr_migrations = 0;
433 p->se.nr_migrations_cold = 0;
434 p->se.nr_failed_migrations_affine = 0;
435 p->se.nr_failed_migrations_running = 0;
436 p->se.nr_failed_migrations_hot = 0;
437 p->se.nr_forced_migrations = 0;
438 p->se.nr_forced2_migrations = 0;
439 p->se.nr_wakeups = 0;
440 p->se.nr_wakeups_sync = 0;
441 p->se.nr_wakeups_migrate = 0;
442 p->se.nr_wakeups_local = 0;
443 p->se.nr_wakeups_remote = 0;
444 p->se.nr_wakeups_affine = 0;
445 p->se.nr_wakeups_affine_attempts = 0;
446 p->se.nr_wakeups_passive = 0;
447 p->se.nr_wakeups_idle = 0;
448 p->sched_info.bkl_count = 0;
449 #endif
450 p->se.sum_exec_runtime = 0;
451 p->se.prev_sum_exec_runtime = 0;
452 p->nvcsw = 0;
453 p->nivcsw = 0;
454 }