]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched_debug.c
Merge branch 'x86/urgent' into x86/iommu
[mirror_ubuntu-bionic-kernel.git] / kernel / sched_debug.c
1 /*
2 * kernel/time/sched_debug.c
3 *
4 * Print the CFS rbtree
5 *
6 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/proc_fs.h>
14 #include <linux/sched.h>
15 #include <linux/seq_file.h>
16 #include <linux/kallsyms.h>
17 #include <linux/utsname.h>
18
19 /*
20 * This allows printing both to /proc/sched_debug and
21 * to the console
22 */
23 #define SEQ_printf(m, x...) \
24 do { \
25 if (m) \
26 seq_printf(m, x); \
27 else \
28 printk(x); \
29 } while (0)
30
31 /*
32 * Ease the printing of nsec fields:
33 */
34 static long long nsec_high(unsigned long long nsec)
35 {
36 if ((long long)nsec < 0) {
37 nsec = -nsec;
38 do_div(nsec, 1000000);
39 return -nsec;
40 }
41 do_div(nsec, 1000000);
42
43 return nsec;
44 }
45
46 static unsigned long nsec_low(unsigned long long nsec)
47 {
48 if ((long long)nsec < 0)
49 nsec = -nsec;
50
51 return do_div(nsec, 1000000);
52 }
53
54 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
55
56 static void
57 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
58 {
59 if (rq->curr == p)
60 SEQ_printf(m, "R");
61 else
62 SEQ_printf(m, " ");
63
64 SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
65 p->comm, p->pid,
66 SPLIT_NS(p->se.vruntime),
67 (long long)(p->nvcsw + p->nivcsw),
68 p->prio);
69 #ifdef CONFIG_SCHEDSTATS
70 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
71 SPLIT_NS(p->se.vruntime),
72 SPLIT_NS(p->se.sum_exec_runtime),
73 SPLIT_NS(p->se.sum_sleep_runtime));
74 #else
75 SEQ_printf(m, "%15Ld %15Ld %15Ld.%06ld %15Ld.%06ld %15Ld.%06ld",
76 0LL, 0LL, 0LL, 0L, 0LL, 0L, 0LL, 0L);
77 #endif
78
79 #ifdef CONFIG_CGROUP_SCHED
80 {
81 char path[64];
82
83 cgroup_path(task_group(p)->css.cgroup, path, sizeof(path));
84 SEQ_printf(m, " %s", path);
85 }
86 #endif
87 SEQ_printf(m, "\n");
88 }
89
90 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
91 {
92 struct task_struct *g, *p;
93 unsigned long flags;
94
95 SEQ_printf(m,
96 "\nrunnable tasks:\n"
97 " task PID tree-key switches prio"
98 " exec-runtime sum-exec sum-sleep\n"
99 "------------------------------------------------------"
100 "----------------------------------------------------\n");
101
102 read_lock_irqsave(&tasklist_lock, flags);
103
104 do_each_thread(g, p) {
105 if (!p->se.on_rq || task_cpu(p) != rq_cpu)
106 continue;
107
108 print_task(m, rq, p);
109 } while_each_thread(g, p);
110
111 read_unlock_irqrestore(&tasklist_lock, flags);
112 }
113
114 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
115 {
116 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
117 spread, rq0_min_vruntime, spread0;
118 struct rq *rq = &per_cpu(runqueues, cpu);
119 struct sched_entity *last;
120 unsigned long flags;
121
122 #if defined(CONFIG_CGROUP_SCHED) && defined(CONFIG_FAIR_GROUP_SCHED)
123 char path[128] = "";
124 struct cgroup *cgroup = NULL;
125 struct task_group *tg = cfs_rq->tg;
126
127 if (tg)
128 cgroup = tg->css.cgroup;
129
130 if (cgroup)
131 cgroup_path(cgroup, path, sizeof(path));
132
133 SEQ_printf(m, "\ncfs_rq[%d]:%s\n", cpu, path);
134 #else
135 SEQ_printf(m, "\ncfs_rq[%d]:\n", cpu);
136 #endif
137
138 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock",
139 SPLIT_NS(cfs_rq->exec_clock));
140
141 spin_lock_irqsave(&rq->lock, flags);
142 if (cfs_rq->rb_leftmost)
143 MIN_vruntime = (__pick_next_entity(cfs_rq))->vruntime;
144 last = __pick_last_entity(cfs_rq);
145 if (last)
146 max_vruntime = last->vruntime;
147 min_vruntime = cfs_rq->min_vruntime;
148 rq0_min_vruntime = per_cpu(runqueues, 0).cfs.min_vruntime;
149 spin_unlock_irqrestore(&rq->lock, flags);
150 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime",
151 SPLIT_NS(MIN_vruntime));
152 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime",
153 SPLIT_NS(min_vruntime));
154 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime",
155 SPLIT_NS(max_vruntime));
156 spread = max_vruntime - MIN_vruntime;
157 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread",
158 SPLIT_NS(spread));
159 spread0 = min_vruntime - rq0_min_vruntime;
160 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0",
161 SPLIT_NS(spread0));
162 SEQ_printf(m, " .%-30s: %ld\n", "nr_running", cfs_rq->nr_running);
163 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
164
165 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over",
166 cfs_rq->nr_spread_over);
167 #ifdef CONFIG_FAIR_GROUP_SCHED
168 #ifdef CONFIG_SMP
169 SEQ_printf(m, " .%-30s: %lu\n", "shares", cfs_rq->shares);
170 #endif
171 #endif
172 }
173
174 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
175 {
176 #if defined(CONFIG_CGROUP_SCHED) && defined(CONFIG_RT_GROUP_SCHED)
177 char path[128] = "";
178 struct cgroup *cgroup = NULL;
179 struct task_group *tg = rt_rq->tg;
180
181 if (tg)
182 cgroup = tg->css.cgroup;
183
184 if (cgroup)
185 cgroup_path(cgroup, path, sizeof(path));
186
187 SEQ_printf(m, "\nrt_rq[%d]:%s\n", cpu, path);
188 #else
189 SEQ_printf(m, "\nrt_rq[%d]:\n", cpu);
190 #endif
191
192
193 #define P(x) \
194 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
195 #define PN(x) \
196 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
197
198 P(rt_nr_running);
199 P(rt_throttled);
200 PN(rt_time);
201 PN(rt_runtime);
202
203 #undef PN
204 #undef P
205 }
206
207 static void print_cpu(struct seq_file *m, int cpu)
208 {
209 struct rq *rq = &per_cpu(runqueues, cpu);
210
211 #ifdef CONFIG_X86
212 {
213 unsigned int freq = cpu_khz ? : 1;
214
215 SEQ_printf(m, "\ncpu#%d, %u.%03u MHz\n",
216 cpu, freq / 1000, (freq % 1000));
217 }
218 #else
219 SEQ_printf(m, "\ncpu#%d\n", cpu);
220 #endif
221
222 #define P(x) \
223 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x))
224 #define PN(x) \
225 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
226
227 P(nr_running);
228 SEQ_printf(m, " .%-30s: %lu\n", "load",
229 rq->load.weight);
230 P(nr_switches);
231 P(nr_load_updates);
232 P(nr_uninterruptible);
233 SEQ_printf(m, " .%-30s: %lu\n", "jiffies", jiffies);
234 PN(next_balance);
235 P(curr->pid);
236 PN(clock);
237 P(cpu_load[0]);
238 P(cpu_load[1]);
239 P(cpu_load[2]);
240 P(cpu_load[3]);
241 P(cpu_load[4]);
242 #undef P
243 #undef PN
244
245 #ifdef CONFIG_SCHEDSTATS
246 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, rq->n);
247
248 P(yld_exp_empty);
249 P(yld_act_empty);
250 P(yld_both_empty);
251 P(yld_count);
252
253 P(sched_switch);
254 P(sched_count);
255 P(sched_goidle);
256
257 P(ttwu_count);
258 P(ttwu_local);
259
260 P(bkl_count);
261
262 #undef P
263 #endif
264 print_cfs_stats(m, cpu);
265 print_rt_stats(m, cpu);
266
267 print_rq(m, rq, cpu);
268 }
269
270 static int sched_debug_show(struct seq_file *m, void *v)
271 {
272 u64 now = ktime_to_ns(ktime_get());
273 int cpu;
274
275 SEQ_printf(m, "Sched Debug Version: v0.07, %s %.*s\n",
276 init_utsname()->release,
277 (int)strcspn(init_utsname()->version, " "),
278 init_utsname()->version);
279
280 SEQ_printf(m, "now at %Lu.%06ld msecs\n", SPLIT_NS(now));
281
282 #define P(x) \
283 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x))
284 #define PN(x) \
285 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
286 PN(sysctl_sched_latency);
287 PN(sysctl_sched_min_granularity);
288 PN(sysctl_sched_wakeup_granularity);
289 PN(sysctl_sched_child_runs_first);
290 P(sysctl_sched_features);
291 #undef PN
292 #undef P
293
294 for_each_online_cpu(cpu)
295 print_cpu(m, cpu);
296
297 SEQ_printf(m, "\n");
298
299 return 0;
300 }
301
302 static void sysrq_sched_debug_show(void)
303 {
304 sched_debug_show(NULL, NULL);
305 }
306
307 static int sched_debug_open(struct inode *inode, struct file *filp)
308 {
309 return single_open(filp, sched_debug_show, NULL);
310 }
311
312 static const struct file_operations sched_debug_fops = {
313 .open = sched_debug_open,
314 .read = seq_read,
315 .llseek = seq_lseek,
316 .release = single_release,
317 };
318
319 static int __init init_sched_debug_procfs(void)
320 {
321 struct proc_dir_entry *pe;
322
323 pe = proc_create("sched_debug", 0444, NULL, &sched_debug_fops);
324 if (!pe)
325 return -ENOMEM;
326 return 0;
327 }
328
329 __initcall(init_sched_debug_procfs);
330
331 void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
332 {
333 unsigned long nr_switches;
334 unsigned long flags;
335 int num_threads = 1;
336
337 if (lock_task_sighand(p, &flags)) {
338 num_threads = atomic_read(&p->signal->count);
339 unlock_task_sighand(p, &flags);
340 }
341
342 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, p->pid, num_threads);
343 SEQ_printf(m,
344 "---------------------------------------------------------\n");
345 #define __P(F) \
346 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)F)
347 #define P(F) \
348 SEQ_printf(m, "%-35s:%21Ld\n", #F, (long long)p->F)
349 #define __PN(F) \
350 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
351 #define PN(F) \
352 SEQ_printf(m, "%-35s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
353
354 PN(se.exec_start);
355 PN(se.vruntime);
356 PN(se.sum_exec_runtime);
357 PN(se.avg_overlap);
358
359 nr_switches = p->nvcsw + p->nivcsw;
360
361 #ifdef CONFIG_SCHEDSTATS
362 PN(se.wait_start);
363 PN(se.sleep_start);
364 PN(se.block_start);
365 PN(se.sleep_max);
366 PN(se.block_max);
367 PN(se.exec_max);
368 PN(se.slice_max);
369 PN(se.wait_max);
370 PN(se.wait_sum);
371 P(se.wait_count);
372 P(sched_info.bkl_count);
373 P(se.nr_migrations);
374 P(se.nr_migrations_cold);
375 P(se.nr_failed_migrations_affine);
376 P(se.nr_failed_migrations_running);
377 P(se.nr_failed_migrations_hot);
378 P(se.nr_forced_migrations);
379 P(se.nr_forced2_migrations);
380 P(se.nr_wakeups);
381 P(se.nr_wakeups_sync);
382 P(se.nr_wakeups_migrate);
383 P(se.nr_wakeups_local);
384 P(se.nr_wakeups_remote);
385 P(se.nr_wakeups_affine);
386 P(se.nr_wakeups_affine_attempts);
387 P(se.nr_wakeups_passive);
388 P(se.nr_wakeups_idle);
389
390 {
391 u64 avg_atom, avg_per_cpu;
392
393 avg_atom = p->se.sum_exec_runtime;
394 if (nr_switches)
395 do_div(avg_atom, nr_switches);
396 else
397 avg_atom = -1LL;
398
399 avg_per_cpu = p->se.sum_exec_runtime;
400 if (p->se.nr_migrations) {
401 avg_per_cpu = div64_u64(avg_per_cpu,
402 p->se.nr_migrations);
403 } else {
404 avg_per_cpu = -1LL;
405 }
406
407 __PN(avg_atom);
408 __PN(avg_per_cpu);
409 }
410 #endif
411 __P(nr_switches);
412 SEQ_printf(m, "%-35s:%21Ld\n",
413 "nr_voluntary_switches", (long long)p->nvcsw);
414 SEQ_printf(m, "%-35s:%21Ld\n",
415 "nr_involuntary_switches", (long long)p->nivcsw);
416
417 P(se.load.weight);
418 P(policy);
419 P(prio);
420 #undef PN
421 #undef __PN
422 #undef P
423 #undef __P
424
425 {
426 unsigned int this_cpu = raw_smp_processor_id();
427 u64 t0, t1;
428
429 t0 = cpu_clock(this_cpu);
430 t1 = cpu_clock(this_cpu);
431 SEQ_printf(m, "%-35s:%21Ld\n",
432 "clock-delta", (long long)(t1-t0));
433 }
434 }
435
436 void proc_sched_set_task(struct task_struct *p)
437 {
438 #ifdef CONFIG_SCHEDSTATS
439 p->se.wait_max = 0;
440 p->se.wait_sum = 0;
441 p->se.wait_count = 0;
442 p->se.sleep_max = 0;
443 p->se.sum_sleep_runtime = 0;
444 p->se.block_max = 0;
445 p->se.exec_max = 0;
446 p->se.slice_max = 0;
447 p->se.nr_migrations = 0;
448 p->se.nr_migrations_cold = 0;
449 p->se.nr_failed_migrations_affine = 0;
450 p->se.nr_failed_migrations_running = 0;
451 p->se.nr_failed_migrations_hot = 0;
452 p->se.nr_forced_migrations = 0;
453 p->se.nr_forced2_migrations = 0;
454 p->se.nr_wakeups = 0;
455 p->se.nr_wakeups_sync = 0;
456 p->se.nr_wakeups_migrate = 0;
457 p->se.nr_wakeups_local = 0;
458 p->se.nr_wakeups_remote = 0;
459 p->se.nr_wakeups_affine = 0;
460 p->se.nr_wakeups_affine_attempts = 0;
461 p->se.nr_wakeups_passive = 0;
462 p->se.nr_wakeups_idle = 0;
463 p->sched_info.bkl_count = 0;
464 #endif
465 p->se.sum_exec_runtime = 0;
466 p->se.prev_sum_exec_runtime = 0;
467 p->nvcsw = 0;
468 p->nivcsw = 0;
469 }