]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched_fair.c
0eb0ae879542d91cd1428575833152bb01e91484
[mirror_ubuntu-bionic-kernel.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 10000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 /**************************************************************
77 * CFS operations on generic schedulable entities:
78 */
79
80 static inline struct task_struct *task_of(struct sched_entity *se)
81 {
82 return container_of(se, struct task_struct, se);
83 }
84
85 #ifdef CONFIG_FAIR_GROUP_SCHED
86
87 /* cpu runqueue to which this cfs_rq is attached */
88 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
89 {
90 return cfs_rq->rq;
91 }
92
93 /* An entity is a task if it doesn't "own" a runqueue */
94 #define entity_is_task(se) (!se->my_q)
95
96 /* Walk up scheduling entities hierarchy */
97 #define for_each_sched_entity(se) \
98 for (; se; se = se->parent)
99
100 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
101 {
102 return p->se.cfs_rq;
103 }
104
105 /* runqueue on which this entity is (to be) queued */
106 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
107 {
108 return se->cfs_rq;
109 }
110
111 /* runqueue "owned" by this group */
112 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
113 {
114 return grp->my_q;
115 }
116
117 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
118 * another cpu ('this_cpu')
119 */
120 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
121 {
122 return cfs_rq->tg->cfs_rq[this_cpu];
123 }
124
125 /* Iterate thr' all leaf cfs_rq's on a runqueue */
126 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
127 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
128
129 /* Do the two (enqueued) entities belong to the same group ? */
130 static inline int
131 is_same_group(struct sched_entity *se, struct sched_entity *pse)
132 {
133 if (se->cfs_rq == pse->cfs_rq)
134 return 1;
135
136 return 0;
137 }
138
139 static inline struct sched_entity *parent_entity(struct sched_entity *se)
140 {
141 return se->parent;
142 }
143
144 #else /* CONFIG_FAIR_GROUP_SCHED */
145
146 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
147 {
148 return container_of(cfs_rq, struct rq, cfs);
149 }
150
151 #define entity_is_task(se) 1
152
153 #define for_each_sched_entity(se) \
154 for (; se; se = NULL)
155
156 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
157 {
158 return &task_rq(p)->cfs;
159 }
160
161 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
162 {
163 struct task_struct *p = task_of(se);
164 struct rq *rq = task_rq(p);
165
166 return &rq->cfs;
167 }
168
169 /* runqueue "owned" by this group */
170 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
171 {
172 return NULL;
173 }
174
175 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
176 {
177 return &cpu_rq(this_cpu)->cfs;
178 }
179
180 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
181 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
182
183 static inline int
184 is_same_group(struct sched_entity *se, struct sched_entity *pse)
185 {
186 return 1;
187 }
188
189 static inline struct sched_entity *parent_entity(struct sched_entity *se)
190 {
191 return NULL;
192 }
193
194 #endif /* CONFIG_FAIR_GROUP_SCHED */
195
196
197 /**************************************************************
198 * Scheduling class tree data structure manipulation methods:
199 */
200
201 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
202 {
203 s64 delta = (s64)(vruntime - min_vruntime);
204 if (delta > 0)
205 min_vruntime = vruntime;
206
207 return min_vruntime;
208 }
209
210 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
211 {
212 s64 delta = (s64)(vruntime - min_vruntime);
213 if (delta < 0)
214 min_vruntime = vruntime;
215
216 return min_vruntime;
217 }
218
219 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
220 {
221 return se->vruntime - cfs_rq->min_vruntime;
222 }
223
224 /*
225 * Enqueue an entity into the rb-tree:
226 */
227 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
228 {
229 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
230 struct rb_node *parent = NULL;
231 struct sched_entity *entry;
232 s64 key = entity_key(cfs_rq, se);
233 int leftmost = 1;
234
235 /*
236 * Find the right place in the rbtree:
237 */
238 while (*link) {
239 parent = *link;
240 entry = rb_entry(parent, struct sched_entity, run_node);
241 /*
242 * We dont care about collisions. Nodes with
243 * the same key stay together.
244 */
245 if (key < entity_key(cfs_rq, entry)) {
246 link = &parent->rb_left;
247 } else {
248 link = &parent->rb_right;
249 leftmost = 0;
250 }
251 }
252
253 /*
254 * Maintain a cache of leftmost tree entries (it is frequently
255 * used):
256 */
257 if (leftmost) {
258 cfs_rq->rb_leftmost = &se->run_node;
259 /*
260 * maintain cfs_rq->min_vruntime to be a monotonic increasing
261 * value tracking the leftmost vruntime in the tree.
262 */
263 cfs_rq->min_vruntime =
264 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
265 }
266
267 rb_link_node(&se->run_node, parent, link);
268 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
269 }
270
271 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
272 {
273 if (cfs_rq->rb_leftmost == &se->run_node) {
274 struct rb_node *next_node;
275 struct sched_entity *next;
276
277 next_node = rb_next(&se->run_node);
278 cfs_rq->rb_leftmost = next_node;
279
280 if (next_node) {
281 next = rb_entry(next_node,
282 struct sched_entity, run_node);
283 cfs_rq->min_vruntime =
284 max_vruntime(cfs_rq->min_vruntime,
285 next->vruntime);
286 }
287 }
288
289 if (cfs_rq->next == se)
290 cfs_rq->next = NULL;
291
292 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
293 }
294
295 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
296 {
297 return cfs_rq->rb_leftmost;
298 }
299
300 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
301 {
302 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
303 }
304
305 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
306 {
307 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
308
309 if (!last)
310 return NULL;
311
312 return rb_entry(last, struct sched_entity, run_node);
313 }
314
315 /**************************************************************
316 * Scheduling class statistics methods:
317 */
318
319 #ifdef CONFIG_SCHED_DEBUG
320 int sched_nr_latency_handler(struct ctl_table *table, int write,
321 struct file *filp, void __user *buffer, size_t *lenp,
322 loff_t *ppos)
323 {
324 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
325
326 if (ret || !write)
327 return ret;
328
329 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
330 sysctl_sched_min_granularity);
331
332 return 0;
333 }
334 #endif
335
336 /*
337 * The idea is to set a period in which each task runs once.
338 *
339 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
340 * this period because otherwise the slices get too small.
341 *
342 * p = (nr <= nl) ? l : l*nr/nl
343 */
344 static u64 __sched_period(unsigned long nr_running)
345 {
346 u64 period = sysctl_sched_latency;
347 unsigned long nr_latency = sched_nr_latency;
348
349 if (unlikely(nr_running > nr_latency)) {
350 period = sysctl_sched_min_granularity;
351 period *= nr_running;
352 }
353
354 return period;
355 }
356
357 /*
358 * We calculate the wall-time slice from the period by taking a part
359 * proportional to the weight.
360 *
361 * s = p*w/rw
362 */
363 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
364 {
365 u64 slice = __sched_period(cfs_rq->nr_running);
366
367 for_each_sched_entity(se) {
368 cfs_rq = cfs_rq_of(se);
369
370 slice *= se->load.weight;
371 do_div(slice, cfs_rq->load.weight);
372 }
373
374
375 return slice;
376 }
377
378 /*
379 * We calculate the vruntime slice of a to be inserted task
380 *
381 * vs = s/w = p/rw
382 */
383 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
384 {
385 unsigned long nr_running = cfs_rq->nr_running;
386 unsigned long weight;
387 u64 vslice;
388
389 if (!se->on_rq)
390 nr_running++;
391
392 vslice = __sched_period(nr_running);
393
394 for_each_sched_entity(se) {
395 cfs_rq = cfs_rq_of(se);
396
397 weight = cfs_rq->load.weight;
398 if (!se->on_rq)
399 weight += se->load.weight;
400
401 vslice *= NICE_0_LOAD;
402 do_div(vslice, weight);
403 }
404
405 return vslice;
406 }
407
408 /*
409 * Update the current task's runtime statistics. Skip current tasks that
410 * are not in our scheduling class.
411 */
412 static inline void
413 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
414 unsigned long delta_exec)
415 {
416 unsigned long delta_exec_weighted;
417
418 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
419
420 curr->sum_exec_runtime += delta_exec;
421 schedstat_add(cfs_rq, exec_clock, delta_exec);
422 delta_exec_weighted = delta_exec;
423 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
424 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
425 &curr->load);
426 }
427 curr->vruntime += delta_exec_weighted;
428 }
429
430 static void update_curr(struct cfs_rq *cfs_rq)
431 {
432 struct sched_entity *curr = cfs_rq->curr;
433 u64 now = rq_of(cfs_rq)->clock;
434 unsigned long delta_exec;
435
436 if (unlikely(!curr))
437 return;
438
439 /*
440 * Get the amount of time the current task was running
441 * since the last time we changed load (this cannot
442 * overflow on 32 bits):
443 */
444 delta_exec = (unsigned long)(now - curr->exec_start);
445
446 __update_curr(cfs_rq, curr, delta_exec);
447 curr->exec_start = now;
448
449 if (entity_is_task(curr)) {
450 struct task_struct *curtask = task_of(curr);
451
452 cpuacct_charge(curtask, delta_exec);
453 }
454 }
455
456 static inline void
457 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
458 {
459 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
460 }
461
462 /*
463 * Task is being enqueued - update stats:
464 */
465 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
466 {
467 /*
468 * Are we enqueueing a waiting task? (for current tasks
469 * a dequeue/enqueue event is a NOP)
470 */
471 if (se != cfs_rq->curr)
472 update_stats_wait_start(cfs_rq, se);
473 }
474
475 static void
476 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
477 {
478 schedstat_set(se->wait_max, max(se->wait_max,
479 rq_of(cfs_rq)->clock - se->wait_start));
480 schedstat_set(se->wait_count, se->wait_count + 1);
481 schedstat_set(se->wait_sum, se->wait_sum +
482 rq_of(cfs_rq)->clock - se->wait_start);
483 schedstat_set(se->wait_start, 0);
484 }
485
486 static inline void
487 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
488 {
489 /*
490 * Mark the end of the wait period if dequeueing a
491 * waiting task:
492 */
493 if (se != cfs_rq->curr)
494 update_stats_wait_end(cfs_rq, se);
495 }
496
497 /*
498 * We are picking a new current task - update its stats:
499 */
500 static inline void
501 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
502 {
503 /*
504 * We are starting a new run period:
505 */
506 se->exec_start = rq_of(cfs_rq)->clock;
507 }
508
509 /**************************************************
510 * Scheduling class queueing methods:
511 */
512
513 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
514 static void
515 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
516 {
517 cfs_rq->task_weight += weight;
518 }
519 #else
520 static inline void
521 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
522 {
523 }
524 #endif
525
526 static void
527 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529 update_load_add(&cfs_rq->load, se->load.weight);
530 if (!parent_entity(se))
531 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
532 if (entity_is_task(se))
533 add_cfs_task_weight(cfs_rq, se->load.weight);
534 cfs_rq->nr_running++;
535 se->on_rq = 1;
536 list_add(&se->group_node, &cfs_rq->tasks);
537 }
538
539 static void
540 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
541 {
542 update_load_sub(&cfs_rq->load, se->load.weight);
543 if (!parent_entity(se))
544 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
545 if (entity_is_task(se))
546 add_cfs_task_weight(cfs_rq, -se->load.weight);
547 cfs_rq->nr_running--;
548 se->on_rq = 0;
549 list_del_init(&se->group_node);
550 }
551
552 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
553 {
554 #ifdef CONFIG_SCHEDSTATS
555 if (se->sleep_start) {
556 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
557 struct task_struct *tsk = task_of(se);
558
559 if ((s64)delta < 0)
560 delta = 0;
561
562 if (unlikely(delta > se->sleep_max))
563 se->sleep_max = delta;
564
565 se->sleep_start = 0;
566 se->sum_sleep_runtime += delta;
567
568 account_scheduler_latency(tsk, delta >> 10, 1);
569 }
570 if (se->block_start) {
571 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
572 struct task_struct *tsk = task_of(se);
573
574 if ((s64)delta < 0)
575 delta = 0;
576
577 if (unlikely(delta > se->block_max))
578 se->block_max = delta;
579
580 se->block_start = 0;
581 se->sum_sleep_runtime += delta;
582
583 /*
584 * Blocking time is in units of nanosecs, so shift by 20 to
585 * get a milliseconds-range estimation of the amount of
586 * time that the task spent sleeping:
587 */
588 if (unlikely(prof_on == SLEEP_PROFILING)) {
589
590 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
591 delta >> 20);
592 }
593 account_scheduler_latency(tsk, delta >> 10, 0);
594 }
595 #endif
596 }
597
598 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
599 {
600 #ifdef CONFIG_SCHED_DEBUG
601 s64 d = se->vruntime - cfs_rq->min_vruntime;
602
603 if (d < 0)
604 d = -d;
605
606 if (d > 3*sysctl_sched_latency)
607 schedstat_inc(cfs_rq, nr_spread_over);
608 #endif
609 }
610
611 static void
612 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
613 {
614 u64 vruntime;
615
616 if (first_fair(cfs_rq)) {
617 vruntime = min_vruntime(cfs_rq->min_vruntime,
618 __pick_next_entity(cfs_rq)->vruntime);
619 } else
620 vruntime = cfs_rq->min_vruntime;
621
622 /*
623 * The 'current' period is already promised to the current tasks,
624 * however the extra weight of the new task will slow them down a
625 * little, place the new task so that it fits in the slot that
626 * stays open at the end.
627 */
628 if (initial && sched_feat(START_DEBIT))
629 vruntime += sched_vslice_add(cfs_rq, se);
630
631 if (!initial) {
632 /* sleeps upto a single latency don't count. */
633 if (sched_feat(NEW_FAIR_SLEEPERS))
634 vruntime -= sysctl_sched_latency;
635
636 /* ensure we never gain time by being placed backwards. */
637 vruntime = max_vruntime(se->vruntime, vruntime);
638 }
639
640 se->vruntime = vruntime;
641 }
642
643 static void
644 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
645 {
646 /*
647 * Update run-time statistics of the 'current'.
648 */
649 update_curr(cfs_rq);
650 account_entity_enqueue(cfs_rq, se);
651
652 if (wakeup) {
653 place_entity(cfs_rq, se, 0);
654 enqueue_sleeper(cfs_rq, se);
655 }
656
657 update_stats_enqueue(cfs_rq, se);
658 check_spread(cfs_rq, se);
659 if (se != cfs_rq->curr)
660 __enqueue_entity(cfs_rq, se);
661 }
662
663 static void update_avg(u64 *avg, u64 sample)
664 {
665 s64 diff = sample - *avg;
666 *avg += diff >> 3;
667 }
668
669 static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
670 {
671 if (!se->last_wakeup)
672 return;
673
674 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
675 se->last_wakeup = 0;
676 }
677
678 static void
679 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
680 {
681 /*
682 * Update run-time statistics of the 'current'.
683 */
684 update_curr(cfs_rq);
685
686 update_stats_dequeue(cfs_rq, se);
687 if (sleep) {
688 update_avg_stats(cfs_rq, se);
689 #ifdef CONFIG_SCHEDSTATS
690 if (entity_is_task(se)) {
691 struct task_struct *tsk = task_of(se);
692
693 if (tsk->state & TASK_INTERRUPTIBLE)
694 se->sleep_start = rq_of(cfs_rq)->clock;
695 if (tsk->state & TASK_UNINTERRUPTIBLE)
696 se->block_start = rq_of(cfs_rq)->clock;
697 }
698 #endif
699 }
700
701 if (se != cfs_rq->curr)
702 __dequeue_entity(cfs_rq, se);
703 account_entity_dequeue(cfs_rq, se);
704 }
705
706 /*
707 * Preempt the current task with a newly woken task if needed:
708 */
709 static void
710 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
711 {
712 unsigned long ideal_runtime, delta_exec;
713
714 ideal_runtime = sched_slice(cfs_rq, curr);
715 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
716 if (delta_exec > ideal_runtime)
717 resched_task(rq_of(cfs_rq)->curr);
718 }
719
720 static void
721 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
722 {
723 /* 'current' is not kept within the tree. */
724 if (se->on_rq) {
725 /*
726 * Any task has to be enqueued before it get to execute on
727 * a CPU. So account for the time it spent waiting on the
728 * runqueue.
729 */
730 update_stats_wait_end(cfs_rq, se);
731 __dequeue_entity(cfs_rq, se);
732 }
733
734 update_stats_curr_start(cfs_rq, se);
735 cfs_rq->curr = se;
736 #ifdef CONFIG_SCHEDSTATS
737 /*
738 * Track our maximum slice length, if the CPU's load is at
739 * least twice that of our own weight (i.e. dont track it
740 * when there are only lesser-weight tasks around):
741 */
742 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
743 se->slice_max = max(se->slice_max,
744 se->sum_exec_runtime - se->prev_sum_exec_runtime);
745 }
746 #endif
747 se->prev_sum_exec_runtime = se->sum_exec_runtime;
748 }
749
750 static int
751 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
752
753 static struct sched_entity *
754 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
755 {
756 if (!cfs_rq->next)
757 return se;
758
759 if (wakeup_preempt_entity(cfs_rq->next, se) != 0)
760 return se;
761
762 return cfs_rq->next;
763 }
764
765 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
766 {
767 struct sched_entity *se = NULL;
768
769 if (first_fair(cfs_rq)) {
770 se = __pick_next_entity(cfs_rq);
771 se = pick_next(cfs_rq, se);
772 set_next_entity(cfs_rq, se);
773 }
774
775 return se;
776 }
777
778 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
779 {
780 /*
781 * If still on the runqueue then deactivate_task()
782 * was not called and update_curr() has to be done:
783 */
784 if (prev->on_rq)
785 update_curr(cfs_rq);
786
787 check_spread(cfs_rq, prev);
788 if (prev->on_rq) {
789 update_stats_wait_start(cfs_rq, prev);
790 /* Put 'current' back into the tree. */
791 __enqueue_entity(cfs_rq, prev);
792 }
793 cfs_rq->curr = NULL;
794 }
795
796 static void
797 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
798 {
799 /*
800 * Update run-time statistics of the 'current'.
801 */
802 update_curr(cfs_rq);
803
804 #ifdef CONFIG_SCHED_HRTICK
805 /*
806 * queued ticks are scheduled to match the slice, so don't bother
807 * validating it and just reschedule.
808 */
809 if (queued) {
810 resched_task(rq_of(cfs_rq)->curr);
811 return;
812 }
813 /*
814 * don't let the period tick interfere with the hrtick preemption
815 */
816 if (!sched_feat(DOUBLE_TICK) &&
817 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
818 return;
819 #endif
820
821 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
822 check_preempt_tick(cfs_rq, curr);
823 }
824
825 /**************************************************
826 * CFS operations on tasks:
827 */
828
829 #ifdef CONFIG_SCHED_HRTICK
830 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
831 {
832 int requeue = rq->curr == p;
833 struct sched_entity *se = &p->se;
834 struct cfs_rq *cfs_rq = cfs_rq_of(se);
835
836 WARN_ON(task_rq(p) != rq);
837
838 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
839 u64 slice = sched_slice(cfs_rq, se);
840 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
841 s64 delta = slice - ran;
842
843 if (delta < 0) {
844 if (rq->curr == p)
845 resched_task(p);
846 return;
847 }
848
849 /*
850 * Don't schedule slices shorter than 10000ns, that just
851 * doesn't make sense. Rely on vruntime for fairness.
852 */
853 if (!requeue)
854 delta = max(10000LL, delta);
855
856 hrtick_start(rq, delta, requeue);
857 }
858 }
859 #else
860 static inline void
861 hrtick_start_fair(struct rq *rq, struct task_struct *p)
862 {
863 }
864 #endif
865
866 /*
867 * The enqueue_task method is called before nr_running is
868 * increased. Here we update the fair scheduling stats and
869 * then put the task into the rbtree:
870 */
871 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
872 {
873 struct cfs_rq *cfs_rq;
874 struct sched_entity *se = &p->se;
875
876 for_each_sched_entity(se) {
877 if (se->on_rq)
878 break;
879 cfs_rq = cfs_rq_of(se);
880 enqueue_entity(cfs_rq, se, wakeup);
881 wakeup = 1;
882 }
883
884 hrtick_start_fair(rq, rq->curr);
885 }
886
887 /*
888 * The dequeue_task method is called before nr_running is
889 * decreased. We remove the task from the rbtree and
890 * update the fair scheduling stats:
891 */
892 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
893 {
894 struct cfs_rq *cfs_rq;
895 struct sched_entity *se = &p->se;
896
897 for_each_sched_entity(se) {
898 cfs_rq = cfs_rq_of(se);
899 dequeue_entity(cfs_rq, se, sleep);
900 /* Don't dequeue parent if it has other entities besides us */
901 if (cfs_rq->load.weight)
902 break;
903 sleep = 1;
904 }
905
906 hrtick_start_fair(rq, rq->curr);
907 }
908
909 /*
910 * sched_yield() support is very simple - we dequeue and enqueue.
911 *
912 * If compat_yield is turned on then we requeue to the end of the tree.
913 */
914 static void yield_task_fair(struct rq *rq)
915 {
916 struct task_struct *curr = rq->curr;
917 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
918 struct sched_entity *rightmost, *se = &curr->se;
919
920 /*
921 * Are we the only task in the tree?
922 */
923 if (unlikely(cfs_rq->nr_running == 1))
924 return;
925
926 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
927 update_rq_clock(rq);
928 /*
929 * Update run-time statistics of the 'current'.
930 */
931 update_curr(cfs_rq);
932
933 return;
934 }
935 /*
936 * Find the rightmost entry in the rbtree:
937 */
938 rightmost = __pick_last_entity(cfs_rq);
939 /*
940 * Already in the rightmost position?
941 */
942 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
943 return;
944
945 /*
946 * Minimally necessary key value to be last in the tree:
947 * Upon rescheduling, sched_class::put_prev_task() will place
948 * 'current' within the tree based on its new key value.
949 */
950 se->vruntime = rightmost->vruntime + 1;
951 }
952
953 /*
954 * wake_idle() will wake a task on an idle cpu if task->cpu is
955 * not idle and an idle cpu is available. The span of cpus to
956 * search starts with cpus closest then further out as needed,
957 * so we always favor a closer, idle cpu.
958 *
959 * Returns the CPU we should wake onto.
960 */
961 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
962 static int wake_idle(int cpu, struct task_struct *p)
963 {
964 cpumask_t tmp;
965 struct sched_domain *sd;
966 int i;
967
968 /*
969 * If it is idle, then it is the best cpu to run this task.
970 *
971 * This cpu is also the best, if it has more than one task already.
972 * Siblings must be also busy(in most cases) as they didn't already
973 * pickup the extra load from this cpu and hence we need not check
974 * sibling runqueue info. This will avoid the checks and cache miss
975 * penalities associated with that.
976 */
977 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
978 return cpu;
979
980 for_each_domain(cpu, sd) {
981 if ((sd->flags & SD_WAKE_IDLE)
982 || ((sd->flags & SD_WAKE_IDLE_FAR)
983 && !task_hot(p, task_rq(p)->clock, sd))) {
984 cpus_and(tmp, sd->span, p->cpus_allowed);
985 for_each_cpu_mask(i, tmp) {
986 if (idle_cpu(i)) {
987 if (i != task_cpu(p)) {
988 schedstat_inc(p,
989 se.nr_wakeups_idle);
990 }
991 return i;
992 }
993 }
994 } else {
995 break;
996 }
997 }
998 return cpu;
999 }
1000 #else
1001 static inline int wake_idle(int cpu, struct task_struct *p)
1002 {
1003 return cpu;
1004 }
1005 #endif
1006
1007 #ifdef CONFIG_SMP
1008
1009 static const struct sched_class fair_sched_class;
1010
1011 static int
1012 wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
1013 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1014 int idx, unsigned long load, unsigned long this_load,
1015 unsigned int imbalance)
1016 {
1017 struct task_struct *curr = this_rq->curr;
1018 unsigned long tl = this_load;
1019 unsigned long tl_per_task;
1020
1021 if (!(this_sd->flags & SD_WAKE_AFFINE))
1022 return 0;
1023
1024 /*
1025 * If the currently running task will sleep within
1026 * a reasonable amount of time then attract this newly
1027 * woken task:
1028 */
1029 if (sync && curr->sched_class == &fair_sched_class) {
1030 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1031 p->se.avg_overlap < sysctl_sched_migration_cost)
1032 return 1;
1033 }
1034
1035 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1036 tl_per_task = cpu_avg_load_per_task(this_cpu);
1037
1038 /*
1039 * If sync wakeup then subtract the (maximum possible)
1040 * effect of the currently running task from the load
1041 * of the current CPU:
1042 */
1043 if (sync)
1044 tl -= current->se.load.weight;
1045
1046 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1047 100*(tl + p->se.load.weight) <= imbalance*load) {
1048 /*
1049 * This domain has SD_WAKE_AFFINE and
1050 * p is cache cold in this domain, and
1051 * there is no bad imbalance.
1052 */
1053 schedstat_inc(this_sd, ttwu_move_affine);
1054 schedstat_inc(p, se.nr_wakeups_affine);
1055
1056 return 1;
1057 }
1058 return 0;
1059 }
1060
1061 static int select_task_rq_fair(struct task_struct *p, int sync)
1062 {
1063 struct sched_domain *sd, *this_sd = NULL;
1064 int prev_cpu, this_cpu, new_cpu;
1065 unsigned long load, this_load;
1066 struct rq *rq, *this_rq;
1067 unsigned int imbalance;
1068 int idx;
1069
1070 prev_cpu = task_cpu(p);
1071 rq = task_rq(p);
1072 this_cpu = smp_processor_id();
1073 this_rq = cpu_rq(this_cpu);
1074 new_cpu = prev_cpu;
1075
1076 /*
1077 * 'this_sd' is the first domain that both
1078 * this_cpu and prev_cpu are present in:
1079 */
1080 for_each_domain(this_cpu, sd) {
1081 if (cpu_isset(prev_cpu, sd->span)) {
1082 this_sd = sd;
1083 break;
1084 }
1085 }
1086
1087 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1088 goto out;
1089
1090 /*
1091 * Check for affine wakeup and passive balancing possibilities.
1092 */
1093 if (!this_sd)
1094 goto out;
1095
1096 idx = this_sd->wake_idx;
1097
1098 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1099
1100 load = source_load(prev_cpu, idx);
1101 this_load = target_load(this_cpu, idx);
1102
1103 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1104 load, this_load, imbalance))
1105 return this_cpu;
1106
1107 if (prev_cpu == this_cpu)
1108 goto out;
1109
1110 /*
1111 * Start passive balancing when half the imbalance_pct
1112 * limit is reached.
1113 */
1114 if (this_sd->flags & SD_WAKE_BALANCE) {
1115 if (imbalance*this_load <= 100*load) {
1116 schedstat_inc(this_sd, ttwu_move_balance);
1117 schedstat_inc(p, se.nr_wakeups_passive);
1118 return this_cpu;
1119 }
1120 }
1121
1122 out:
1123 return wake_idle(new_cpu, p);
1124 }
1125 #endif /* CONFIG_SMP */
1126
1127 static unsigned long wakeup_gran(struct sched_entity *se)
1128 {
1129 unsigned long gran = sysctl_sched_wakeup_granularity;
1130
1131 /*
1132 * More easily preempt - nice tasks, while not making
1133 * it harder for + nice tasks.
1134 */
1135 if (unlikely(se->load.weight > NICE_0_LOAD))
1136 gran = calc_delta_fair(gran, &se->load);
1137
1138 return gran;
1139 }
1140
1141 /*
1142 * Should 'se' preempt 'curr'.
1143 *
1144 * |s1
1145 * |s2
1146 * |s3
1147 * g
1148 * |<--->|c
1149 *
1150 * w(c, s1) = -1
1151 * w(c, s2) = 0
1152 * w(c, s3) = 1
1153 *
1154 */
1155 static int
1156 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1157 {
1158 s64 gran, vdiff = curr->vruntime - se->vruntime;
1159
1160 if (vdiff < 0)
1161 return -1;
1162
1163 gran = wakeup_gran(curr);
1164 if (vdiff > gran)
1165 return 1;
1166
1167 return 0;
1168 }
1169
1170 /* return depth at which a sched entity is present in the hierarchy */
1171 static inline int depth_se(struct sched_entity *se)
1172 {
1173 int depth = 0;
1174
1175 for_each_sched_entity(se)
1176 depth++;
1177
1178 return depth;
1179 }
1180
1181 /*
1182 * Preempt the current task with a newly woken task if needed:
1183 */
1184 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1185 {
1186 struct task_struct *curr = rq->curr;
1187 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1188 struct sched_entity *se = &curr->se, *pse = &p->se;
1189 int se_depth, pse_depth;
1190
1191 if (unlikely(rt_prio(p->prio))) {
1192 update_rq_clock(rq);
1193 update_curr(cfs_rq);
1194 resched_task(curr);
1195 return;
1196 }
1197
1198 se->last_wakeup = se->sum_exec_runtime;
1199 if (unlikely(se == pse))
1200 return;
1201
1202 cfs_rq_of(pse)->next = pse;
1203
1204 /*
1205 * Batch tasks do not preempt (their preemption is driven by
1206 * the tick):
1207 */
1208 if (unlikely(p->policy == SCHED_BATCH))
1209 return;
1210
1211 if (!sched_feat(WAKEUP_PREEMPT))
1212 return;
1213
1214 /*
1215 * preemption test can be made between sibling entities who are in the
1216 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
1217 * both tasks until we find their ancestors who are siblings of common
1218 * parent.
1219 */
1220
1221 /* First walk up until both entities are at same depth */
1222 se_depth = depth_se(se);
1223 pse_depth = depth_se(pse);
1224
1225 while (se_depth > pse_depth) {
1226 se_depth--;
1227 se = parent_entity(se);
1228 }
1229
1230 while (pse_depth > se_depth) {
1231 pse_depth--;
1232 pse = parent_entity(pse);
1233 }
1234
1235 while (!is_same_group(se, pse)) {
1236 se = parent_entity(se);
1237 pse = parent_entity(pse);
1238 }
1239
1240 if (wakeup_preempt_entity(se, pse) == 1)
1241 resched_task(curr);
1242 }
1243
1244 static struct task_struct *pick_next_task_fair(struct rq *rq)
1245 {
1246 struct task_struct *p;
1247 struct cfs_rq *cfs_rq = &rq->cfs;
1248 struct sched_entity *se;
1249
1250 if (unlikely(!cfs_rq->nr_running))
1251 return NULL;
1252
1253 do {
1254 se = pick_next_entity(cfs_rq);
1255 cfs_rq = group_cfs_rq(se);
1256 } while (cfs_rq);
1257
1258 p = task_of(se);
1259 hrtick_start_fair(rq, p);
1260
1261 return p;
1262 }
1263
1264 /*
1265 * Account for a descheduled task:
1266 */
1267 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1268 {
1269 struct sched_entity *se = &prev->se;
1270 struct cfs_rq *cfs_rq;
1271
1272 for_each_sched_entity(se) {
1273 cfs_rq = cfs_rq_of(se);
1274 put_prev_entity(cfs_rq, se);
1275 }
1276 }
1277
1278 #ifdef CONFIG_SMP
1279 /**************************************************
1280 * Fair scheduling class load-balancing methods:
1281 */
1282
1283 /*
1284 * Load-balancing iterator. Note: while the runqueue stays locked
1285 * during the whole iteration, the current task might be
1286 * dequeued so the iterator has to be dequeue-safe. Here we
1287 * achieve that by always pre-iterating before returning
1288 * the current task:
1289 */
1290 static struct task_struct *
1291 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1292 {
1293 struct task_struct *p = NULL;
1294 struct sched_entity *se;
1295
1296 if (next == &cfs_rq->tasks)
1297 return NULL;
1298
1299 /* Skip over entities that are not tasks */
1300 do {
1301 se = list_entry(next, struct sched_entity, group_node);
1302 next = next->next;
1303 } while (next != &cfs_rq->tasks && !entity_is_task(se));
1304
1305 if (next == &cfs_rq->tasks)
1306 return NULL;
1307
1308 cfs_rq->balance_iterator = next;
1309
1310 if (entity_is_task(se))
1311 p = task_of(se);
1312
1313 return p;
1314 }
1315
1316 static struct task_struct *load_balance_start_fair(void *arg)
1317 {
1318 struct cfs_rq *cfs_rq = arg;
1319
1320 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1321 }
1322
1323 static struct task_struct *load_balance_next_fair(void *arg)
1324 {
1325 struct cfs_rq *cfs_rq = arg;
1326
1327 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1328 }
1329
1330 static unsigned long
1331 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1332 unsigned long max_load_move, struct sched_domain *sd,
1333 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1334 struct cfs_rq *cfs_rq)
1335 {
1336 struct rq_iterator cfs_rq_iterator;
1337
1338 cfs_rq_iterator.start = load_balance_start_fair;
1339 cfs_rq_iterator.next = load_balance_next_fair;
1340 cfs_rq_iterator.arg = cfs_rq;
1341
1342 return balance_tasks(this_rq, this_cpu, busiest,
1343 max_load_move, sd, idle, all_pinned,
1344 this_best_prio, &cfs_rq_iterator);
1345 }
1346
1347 #ifdef CONFIG_FAIR_GROUP_SCHED
1348 static unsigned long
1349 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1350 unsigned long max_load_move,
1351 struct sched_domain *sd, enum cpu_idle_type idle,
1352 int *all_pinned, int *this_best_prio)
1353 {
1354 long rem_load_move = max_load_move;
1355 int busiest_cpu = cpu_of(busiest);
1356 struct task_group *tg;
1357
1358 rcu_read_lock();
1359 list_for_each_entry(tg, &task_groups, list) {
1360 long imbalance;
1361 unsigned long this_weight, busiest_weight;
1362 long rem_load, max_load, moved_load;
1363
1364 /*
1365 * empty group
1366 */
1367 if (!aggregate(tg, sd)->task_weight)
1368 continue;
1369
1370 rem_load = rem_load_move * aggregate(tg, sd)->rq_weight;
1371 rem_load /= aggregate(tg, sd)->load + 1;
1372
1373 this_weight = tg->cfs_rq[this_cpu]->task_weight;
1374 busiest_weight = tg->cfs_rq[busiest_cpu]->task_weight;
1375
1376 imbalance = (busiest_weight - this_weight) / 2;
1377
1378 if (imbalance < 0)
1379 imbalance = busiest_weight;
1380
1381 max_load = max(rem_load, imbalance);
1382 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1383 max_load, sd, idle, all_pinned, this_best_prio,
1384 tg->cfs_rq[busiest_cpu]);
1385
1386 if (!moved_load)
1387 continue;
1388
1389 move_group_shares(tg, sd, busiest_cpu, this_cpu);
1390
1391 moved_load *= aggregate(tg, sd)->load;
1392 moved_load /= aggregate(tg, sd)->rq_weight + 1;
1393
1394 rem_load_move -= moved_load;
1395 if (rem_load_move < 0)
1396 break;
1397 }
1398 rcu_read_unlock();
1399
1400 return max_load_move - rem_load_move;
1401 }
1402 #else
1403 static unsigned long
1404 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1405 unsigned long max_load_move,
1406 struct sched_domain *sd, enum cpu_idle_type idle,
1407 int *all_pinned, int *this_best_prio)
1408 {
1409 return __load_balance_fair(this_rq, this_cpu, busiest,
1410 max_load_move, sd, idle, all_pinned,
1411 this_best_prio, &busiest->cfs);
1412 }
1413 #endif
1414
1415 static int
1416 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1417 struct sched_domain *sd, enum cpu_idle_type idle)
1418 {
1419 struct cfs_rq *busy_cfs_rq;
1420 struct rq_iterator cfs_rq_iterator;
1421
1422 cfs_rq_iterator.start = load_balance_start_fair;
1423 cfs_rq_iterator.next = load_balance_next_fair;
1424
1425 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1426 /*
1427 * pass busy_cfs_rq argument into
1428 * load_balance_[start|next]_fair iterators
1429 */
1430 cfs_rq_iterator.arg = busy_cfs_rq;
1431 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1432 &cfs_rq_iterator))
1433 return 1;
1434 }
1435
1436 return 0;
1437 }
1438 #endif
1439
1440 /*
1441 * scheduler tick hitting a task of our scheduling class:
1442 */
1443 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1444 {
1445 struct cfs_rq *cfs_rq;
1446 struct sched_entity *se = &curr->se;
1447
1448 for_each_sched_entity(se) {
1449 cfs_rq = cfs_rq_of(se);
1450 entity_tick(cfs_rq, se, queued);
1451 }
1452 }
1453
1454 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1455
1456 /*
1457 * Share the fairness runtime between parent and child, thus the
1458 * total amount of pressure for CPU stays equal - new tasks
1459 * get a chance to run but frequent forkers are not allowed to
1460 * monopolize the CPU. Note: the parent runqueue is locked,
1461 * the child is not running yet.
1462 */
1463 static void task_new_fair(struct rq *rq, struct task_struct *p)
1464 {
1465 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1466 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1467 int this_cpu = smp_processor_id();
1468
1469 sched_info_queued(p);
1470
1471 update_curr(cfs_rq);
1472 place_entity(cfs_rq, se, 1);
1473
1474 /* 'curr' will be NULL if the child belongs to a different group */
1475 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1476 curr && curr->vruntime < se->vruntime) {
1477 /*
1478 * Upon rescheduling, sched_class::put_prev_task() will place
1479 * 'current' within the tree based on its new key value.
1480 */
1481 swap(curr->vruntime, se->vruntime);
1482 }
1483
1484 enqueue_task_fair(rq, p, 0);
1485 resched_task(rq->curr);
1486 }
1487
1488 /*
1489 * Priority of the task has changed. Check to see if we preempt
1490 * the current task.
1491 */
1492 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1493 int oldprio, int running)
1494 {
1495 /*
1496 * Reschedule if we are currently running on this runqueue and
1497 * our priority decreased, or if we are not currently running on
1498 * this runqueue and our priority is higher than the current's
1499 */
1500 if (running) {
1501 if (p->prio > oldprio)
1502 resched_task(rq->curr);
1503 } else
1504 check_preempt_curr(rq, p);
1505 }
1506
1507 /*
1508 * We switched to the sched_fair class.
1509 */
1510 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1511 int running)
1512 {
1513 /*
1514 * We were most likely switched from sched_rt, so
1515 * kick off the schedule if running, otherwise just see
1516 * if we can still preempt the current task.
1517 */
1518 if (running)
1519 resched_task(rq->curr);
1520 else
1521 check_preempt_curr(rq, p);
1522 }
1523
1524 /* Account for a task changing its policy or group.
1525 *
1526 * This routine is mostly called to set cfs_rq->curr field when a task
1527 * migrates between groups/classes.
1528 */
1529 static void set_curr_task_fair(struct rq *rq)
1530 {
1531 struct sched_entity *se = &rq->curr->se;
1532
1533 for_each_sched_entity(se)
1534 set_next_entity(cfs_rq_of(se), se);
1535 }
1536
1537 #ifdef CONFIG_FAIR_GROUP_SCHED
1538 static void moved_group_fair(struct task_struct *p)
1539 {
1540 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1541
1542 update_curr(cfs_rq);
1543 place_entity(cfs_rq, &p->se, 1);
1544 }
1545 #endif
1546
1547 /*
1548 * All the scheduling class methods:
1549 */
1550 static const struct sched_class fair_sched_class = {
1551 .next = &idle_sched_class,
1552 .enqueue_task = enqueue_task_fair,
1553 .dequeue_task = dequeue_task_fair,
1554 .yield_task = yield_task_fair,
1555 #ifdef CONFIG_SMP
1556 .select_task_rq = select_task_rq_fair,
1557 #endif /* CONFIG_SMP */
1558
1559 .check_preempt_curr = check_preempt_wakeup,
1560
1561 .pick_next_task = pick_next_task_fair,
1562 .put_prev_task = put_prev_task_fair,
1563
1564 #ifdef CONFIG_SMP
1565 .load_balance = load_balance_fair,
1566 .move_one_task = move_one_task_fair,
1567 #endif
1568
1569 .set_curr_task = set_curr_task_fair,
1570 .task_tick = task_tick_fair,
1571 .task_new = task_new_fair,
1572
1573 .prio_changed = prio_changed_fair,
1574 .switched_to = switched_to_fair,
1575
1576 #ifdef CONFIG_FAIR_GROUP_SCHED
1577 .moved_group = moved_group_fair,
1578 #endif
1579 };
1580
1581 #ifdef CONFIG_SCHED_DEBUG
1582 static void print_cfs_stats(struct seq_file *m, int cpu)
1583 {
1584 struct cfs_rq *cfs_rq;
1585
1586 rcu_read_lock();
1587 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1588 print_cfs_rq(m, cpu, cfs_rq);
1589 rcu_read_unlock();
1590 }
1591 #endif