]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched_fair.c
sched: Remove FAIR_SLEEPERS feature
[mirror_ubuntu-artful-kernel.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25
26 /*
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
29 *
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
34 *
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
37 */
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40
41 /*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
53 /*
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds)
56 */
57 unsigned int sysctl_sched_min_granularity = 2000000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 2000000ULL;
59
60 /*
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
63 static unsigned int sched_nr_latency = 3;
64
65 /*
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
68 */
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
70
71 /*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77 unsigned int __read_mostly sysctl_sched_compat_yield;
78
79 /*
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
92 static const struct sched_class fair_sched_class;
93
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
98 #ifdef CONFIG_FAIR_GROUP_SCHED
99
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102 {
103 return cfs_rq->rq;
104 }
105
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
108
109 static inline struct task_struct *task_of(struct sched_entity *se)
110 {
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114 return container_of(se, struct task_struct, se);
115 }
116
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122 {
123 return p->se.cfs_rq;
124 }
125
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128 {
129 return se->cfs_rq;
130 }
131
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134 {
135 return grp->my_q;
136 }
137
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142 {
143 return cfs_rq->tg->cfs_rq[this_cpu];
144 }
145
146 /* Iterate thr' all leaf cfs_rq's on a runqueue */
147 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150 /* Do the two (enqueued) entities belong to the same group ? */
151 static inline int
152 is_same_group(struct sched_entity *se, struct sched_entity *pse)
153 {
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
156
157 return 0;
158 }
159
160 static inline struct sched_entity *parent_entity(struct sched_entity *se)
161 {
162 return se->parent;
163 }
164
165 /* return depth at which a sched entity is present in the hierarchy */
166 static inline int depth_se(struct sched_entity *se)
167 {
168 int depth = 0;
169
170 for_each_sched_entity(se)
171 depth++;
172
173 return depth;
174 }
175
176 static void
177 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178 {
179 int se_depth, pse_depth;
180
181 /*
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
186 */
187
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
191
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
195 }
196
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
200 }
201
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
205 }
206 }
207
208 #else /* !CONFIG_FAIR_GROUP_SCHED */
209
210 static inline struct task_struct *task_of(struct sched_entity *se)
211 {
212 return container_of(se, struct task_struct, se);
213 }
214
215 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216 {
217 return container_of(cfs_rq, struct rq, cfs);
218 }
219
220 #define entity_is_task(se) 1
221
222 #define for_each_sched_entity(se) \
223 for (; se; se = NULL)
224
225 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
226 {
227 return &task_rq(p)->cfs;
228 }
229
230 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231 {
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
234
235 return &rq->cfs;
236 }
237
238 /* runqueue "owned" by this group */
239 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240 {
241 return NULL;
242 }
243
244 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245 {
246 return &cpu_rq(this_cpu)->cfs;
247 }
248
249 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252 static inline int
253 is_same_group(struct sched_entity *se, struct sched_entity *pse)
254 {
255 return 1;
256 }
257
258 static inline struct sched_entity *parent_entity(struct sched_entity *se)
259 {
260 return NULL;
261 }
262
263 static inline void
264 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265 {
266 }
267
268 #endif /* CONFIG_FAIR_GROUP_SCHED */
269
270
271 /**************************************************************
272 * Scheduling class tree data structure manipulation methods:
273 */
274
275 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
276 {
277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
279 min_vruntime = vruntime;
280
281 return min_vruntime;
282 }
283
284 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
285 {
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
289
290 return min_vruntime;
291 }
292
293 static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
295 {
296 return (s64)(a->vruntime - b->vruntime) < 0;
297 }
298
299 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
300 {
301 return se->vruntime - cfs_rq->min_vruntime;
302 }
303
304 static void update_min_vruntime(struct cfs_rq *cfs_rq)
305 {
306 u64 vruntime = cfs_rq->min_vruntime;
307
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
310
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
315
316 if (!cfs_rq->curr)
317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
320 }
321
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323 }
324
325 /*
326 * Enqueue an entity into the rb-tree:
327 */
328 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
329 {
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
333 s64 key = entity_key(cfs_rq, se);
334 int leftmost = 1;
335
336 /*
337 * Find the right place in the rbtree:
338 */
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
342 /*
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
345 */
346 if (key < entity_key(cfs_rq, entry)) {
347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
351 }
352 }
353
354 /*
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
357 */
358 if (leftmost)
359 cfs_rq->rb_leftmost = &se->run_node;
360
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
363 }
364
365 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
366 {
367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
369
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
372 }
373
374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
375 }
376
377 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378 {
379 struct rb_node *left = cfs_rq->rb_leftmost;
380
381 if (!left)
382 return NULL;
383
384 return rb_entry(left, struct sched_entity, run_node);
385 }
386
387 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
388 {
389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
390
391 if (!last)
392 return NULL;
393
394 return rb_entry(last, struct sched_entity, run_node);
395 }
396
397 /**************************************************************
398 * Scheduling class statistics methods:
399 */
400
401 #ifdef CONFIG_SCHED_DEBUG
402 int sched_proc_update_handler(struct ctl_table *table, int write,
403 void __user *buffer, size_t *lenp,
404 loff_t *ppos)
405 {
406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
407 int factor = get_update_sysctl_factor();
408
409 if (ret || !write)
410 return ret;
411
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
414
415 #define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421 #undef WRT_SYSCTL
422
423 return 0;
424 }
425 #endif
426
427 /*
428 * delta /= w
429 */
430 static inline unsigned long
431 calc_delta_fair(unsigned long delta, struct sched_entity *se)
432 {
433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
435
436 return delta;
437 }
438
439 /*
440 * The idea is to set a period in which each task runs once.
441 *
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
444 *
445 * p = (nr <= nl) ? l : l*nr/nl
446 */
447 static u64 __sched_period(unsigned long nr_running)
448 {
449 u64 period = sysctl_sched_latency;
450 unsigned long nr_latency = sched_nr_latency;
451
452 if (unlikely(nr_running > nr_latency)) {
453 period = sysctl_sched_min_granularity;
454 period *= nr_running;
455 }
456
457 return period;
458 }
459
460 /*
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
463 *
464 * s = p*P[w/rw]
465 */
466 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
467 {
468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
469
470 for_each_sched_entity(se) {
471 struct load_weight *load;
472 struct load_weight lw;
473
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
476
477 if (unlikely(!se->on_rq)) {
478 lw = cfs_rq->load;
479
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
482 }
483 slice = calc_delta_mine(slice, se->load.weight, load);
484 }
485 return slice;
486 }
487
488 /*
489 * We calculate the vruntime slice of a to be inserted task
490 *
491 * vs = s/w
492 */
493 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
494 {
495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
496 }
497
498 /*
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
501 */
502 static inline void
503 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
505 {
506 unsigned long delta_exec_weighted;
507
508 schedstat_set(curr->statistics.exec_max,
509 max((u64)delta_exec, curr->statistics.exec_max));
510
511 curr->sum_exec_runtime += delta_exec;
512 schedstat_add(cfs_rq, exec_clock, delta_exec);
513 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
514
515 curr->vruntime += delta_exec_weighted;
516 update_min_vruntime(cfs_rq);
517 }
518
519 static void update_curr(struct cfs_rq *cfs_rq)
520 {
521 struct sched_entity *curr = cfs_rq->curr;
522 u64 now = rq_of(cfs_rq)->clock;
523 unsigned long delta_exec;
524
525 if (unlikely(!curr))
526 return;
527
528 /*
529 * Get the amount of time the current task was running
530 * since the last time we changed load (this cannot
531 * overflow on 32 bits):
532 */
533 delta_exec = (unsigned long)(now - curr->exec_start);
534 if (!delta_exec)
535 return;
536
537 __update_curr(cfs_rq, curr, delta_exec);
538 curr->exec_start = now;
539
540 if (entity_is_task(curr)) {
541 struct task_struct *curtask = task_of(curr);
542
543 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
544 cpuacct_charge(curtask, delta_exec);
545 account_group_exec_runtime(curtask, delta_exec);
546 }
547 }
548
549 static inline void
550 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
551 {
552 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
553 }
554
555 /*
556 * Task is being enqueued - update stats:
557 */
558 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 {
560 /*
561 * Are we enqueueing a waiting task? (for current tasks
562 * a dequeue/enqueue event is a NOP)
563 */
564 if (se != cfs_rq->curr)
565 update_stats_wait_start(cfs_rq, se);
566 }
567
568 static void
569 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
570 {
571 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
572 rq_of(cfs_rq)->clock - se->statistics.wait_start));
573 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
574 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
575 rq_of(cfs_rq)->clock - se->statistics.wait_start);
576 #ifdef CONFIG_SCHEDSTATS
577 if (entity_is_task(se)) {
578 trace_sched_stat_wait(task_of(se),
579 rq_of(cfs_rq)->clock - se->statistics.wait_start);
580 }
581 #endif
582 schedstat_set(se->statistics.wait_start, 0);
583 }
584
585 static inline void
586 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
587 {
588 /*
589 * Mark the end of the wait period if dequeueing a
590 * waiting task:
591 */
592 if (se != cfs_rq->curr)
593 update_stats_wait_end(cfs_rq, se);
594 }
595
596 /*
597 * We are picking a new current task - update its stats:
598 */
599 static inline void
600 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
601 {
602 /*
603 * We are starting a new run period:
604 */
605 se->exec_start = rq_of(cfs_rq)->clock;
606 }
607
608 /**************************************************
609 * Scheduling class queueing methods:
610 */
611
612 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
613 static void
614 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
615 {
616 cfs_rq->task_weight += weight;
617 }
618 #else
619 static inline void
620 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
621 {
622 }
623 #endif
624
625 static void
626 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 update_load_add(&cfs_rq->load, se->load.weight);
629 if (!parent_entity(se))
630 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
631 if (entity_is_task(se)) {
632 add_cfs_task_weight(cfs_rq, se->load.weight);
633 list_add(&se->group_node, &cfs_rq->tasks);
634 }
635 cfs_rq->nr_running++;
636 se->on_rq = 1;
637 }
638
639 static void
640 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
641 {
642 update_load_sub(&cfs_rq->load, se->load.weight);
643 if (!parent_entity(se))
644 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
645 if (entity_is_task(se)) {
646 add_cfs_task_weight(cfs_rq, -se->load.weight);
647 list_del_init(&se->group_node);
648 }
649 cfs_rq->nr_running--;
650 se->on_rq = 0;
651 }
652
653 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 #ifdef CONFIG_SCHEDSTATS
656 struct task_struct *tsk = NULL;
657
658 if (entity_is_task(se))
659 tsk = task_of(se);
660
661 if (se->statistics.sleep_start) {
662 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
663
664 if ((s64)delta < 0)
665 delta = 0;
666
667 if (unlikely(delta > se->statistics.sleep_max))
668 se->statistics.sleep_max = delta;
669
670 se->statistics.sleep_start = 0;
671 se->statistics.sum_sleep_runtime += delta;
672
673 if (tsk) {
674 account_scheduler_latency(tsk, delta >> 10, 1);
675 trace_sched_stat_sleep(tsk, delta);
676 }
677 }
678 if (se->statistics.block_start) {
679 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
680
681 if ((s64)delta < 0)
682 delta = 0;
683
684 if (unlikely(delta > se->statistics.block_max))
685 se->statistics.block_max = delta;
686
687 se->statistics.block_start = 0;
688 se->statistics.sum_sleep_runtime += delta;
689
690 if (tsk) {
691 if (tsk->in_iowait) {
692 se->statistics.iowait_sum += delta;
693 se->statistics.iowait_count++;
694 trace_sched_stat_iowait(tsk, delta);
695 }
696
697 /*
698 * Blocking time is in units of nanosecs, so shift by
699 * 20 to get a milliseconds-range estimation of the
700 * amount of time that the task spent sleeping:
701 */
702 if (unlikely(prof_on == SLEEP_PROFILING)) {
703 profile_hits(SLEEP_PROFILING,
704 (void *)get_wchan(tsk),
705 delta >> 20);
706 }
707 account_scheduler_latency(tsk, delta >> 10, 0);
708 }
709 }
710 #endif
711 }
712
713 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
714 {
715 #ifdef CONFIG_SCHED_DEBUG
716 s64 d = se->vruntime - cfs_rq->min_vruntime;
717
718 if (d < 0)
719 d = -d;
720
721 if (d > 3*sysctl_sched_latency)
722 schedstat_inc(cfs_rq, nr_spread_over);
723 #endif
724 }
725
726 static void
727 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
728 {
729 u64 vruntime = cfs_rq->min_vruntime;
730
731 /*
732 * The 'current' period is already promised to the current tasks,
733 * however the extra weight of the new task will slow them down a
734 * little, place the new task so that it fits in the slot that
735 * stays open at the end.
736 */
737 if (initial && sched_feat(START_DEBIT))
738 vruntime += sched_vslice(cfs_rq, se);
739
740 /* sleeps up to a single latency don't count. */
741 if (!initial) {
742 unsigned long thresh = sysctl_sched_latency;
743
744 /*
745 * Halve their sleep time's effect, to allow
746 * for a gentler effect of sleepers:
747 */
748 if (sched_feat(GENTLE_FAIR_SLEEPERS))
749 thresh >>= 1;
750
751 vruntime -= thresh;
752 }
753
754 /* ensure we never gain time by being placed backwards. */
755 vruntime = max_vruntime(se->vruntime, vruntime);
756
757 se->vruntime = vruntime;
758 }
759
760 #define ENQUEUE_WAKEUP 1
761 #define ENQUEUE_MIGRATE 2
762
763 static void
764 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
765 {
766 /*
767 * Update the normalized vruntime before updating min_vruntime
768 * through callig update_curr().
769 */
770 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATE))
771 se->vruntime += cfs_rq->min_vruntime;
772
773 /*
774 * Update run-time statistics of the 'current'.
775 */
776 update_curr(cfs_rq);
777 account_entity_enqueue(cfs_rq, se);
778
779 if (flags & ENQUEUE_WAKEUP) {
780 place_entity(cfs_rq, se, 0);
781 enqueue_sleeper(cfs_rq, se);
782 }
783
784 update_stats_enqueue(cfs_rq, se);
785 check_spread(cfs_rq, se);
786 if (se != cfs_rq->curr)
787 __enqueue_entity(cfs_rq, se);
788 }
789
790 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
791 {
792 if (!se || cfs_rq->last == se)
793 cfs_rq->last = NULL;
794
795 if (!se || cfs_rq->next == se)
796 cfs_rq->next = NULL;
797 }
798
799 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
800 {
801 for_each_sched_entity(se)
802 __clear_buddies(cfs_rq_of(se), se);
803 }
804
805 static void
806 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
807 {
808 /*
809 * Update run-time statistics of the 'current'.
810 */
811 update_curr(cfs_rq);
812
813 update_stats_dequeue(cfs_rq, se);
814 if (sleep) {
815 #ifdef CONFIG_SCHEDSTATS
816 if (entity_is_task(se)) {
817 struct task_struct *tsk = task_of(se);
818
819 if (tsk->state & TASK_INTERRUPTIBLE)
820 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
821 if (tsk->state & TASK_UNINTERRUPTIBLE)
822 se->statistics.block_start = rq_of(cfs_rq)->clock;
823 }
824 #endif
825 }
826
827 clear_buddies(cfs_rq, se);
828
829 if (se != cfs_rq->curr)
830 __dequeue_entity(cfs_rq, se);
831 account_entity_dequeue(cfs_rq, se);
832 update_min_vruntime(cfs_rq);
833
834 /*
835 * Normalize the entity after updating the min_vruntime because the
836 * update can refer to the ->curr item and we need to reflect this
837 * movement in our normalized position.
838 */
839 if (!sleep)
840 se->vruntime -= cfs_rq->min_vruntime;
841 }
842
843 /*
844 * Preempt the current task with a newly woken task if needed:
845 */
846 static void
847 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
848 {
849 unsigned long ideal_runtime, delta_exec;
850
851 ideal_runtime = sched_slice(cfs_rq, curr);
852 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
853 if (delta_exec > ideal_runtime) {
854 resched_task(rq_of(cfs_rq)->curr);
855 /*
856 * The current task ran long enough, ensure it doesn't get
857 * re-elected due to buddy favours.
858 */
859 clear_buddies(cfs_rq, curr);
860 return;
861 }
862
863 /*
864 * Ensure that a task that missed wakeup preemption by a
865 * narrow margin doesn't have to wait for a full slice.
866 * This also mitigates buddy induced latencies under load.
867 */
868 if (!sched_feat(WAKEUP_PREEMPT))
869 return;
870
871 if (delta_exec < sysctl_sched_min_granularity)
872 return;
873
874 if (cfs_rq->nr_running > 1) {
875 struct sched_entity *se = __pick_next_entity(cfs_rq);
876 s64 delta = curr->vruntime - se->vruntime;
877
878 if (delta > ideal_runtime)
879 resched_task(rq_of(cfs_rq)->curr);
880 }
881 }
882
883 static void
884 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
885 {
886 /* 'current' is not kept within the tree. */
887 if (se->on_rq) {
888 /*
889 * Any task has to be enqueued before it get to execute on
890 * a CPU. So account for the time it spent waiting on the
891 * runqueue.
892 */
893 update_stats_wait_end(cfs_rq, se);
894 __dequeue_entity(cfs_rq, se);
895 }
896
897 update_stats_curr_start(cfs_rq, se);
898 cfs_rq->curr = se;
899 #ifdef CONFIG_SCHEDSTATS
900 /*
901 * Track our maximum slice length, if the CPU's load is at
902 * least twice that of our own weight (i.e. dont track it
903 * when there are only lesser-weight tasks around):
904 */
905 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
906 se->statistics.slice_max = max(se->statistics.slice_max,
907 se->sum_exec_runtime - se->prev_sum_exec_runtime);
908 }
909 #endif
910 se->prev_sum_exec_runtime = se->sum_exec_runtime;
911 }
912
913 static int
914 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
915
916 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
917 {
918 struct sched_entity *se = __pick_next_entity(cfs_rq);
919 struct sched_entity *left = se;
920
921 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
922 se = cfs_rq->next;
923
924 /*
925 * Prefer last buddy, try to return the CPU to a preempted task.
926 */
927 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
928 se = cfs_rq->last;
929
930 clear_buddies(cfs_rq, se);
931
932 return se;
933 }
934
935 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
936 {
937 /*
938 * If still on the runqueue then deactivate_task()
939 * was not called and update_curr() has to be done:
940 */
941 if (prev->on_rq)
942 update_curr(cfs_rq);
943
944 check_spread(cfs_rq, prev);
945 if (prev->on_rq) {
946 update_stats_wait_start(cfs_rq, prev);
947 /* Put 'current' back into the tree. */
948 __enqueue_entity(cfs_rq, prev);
949 }
950 cfs_rq->curr = NULL;
951 }
952
953 static void
954 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
955 {
956 /*
957 * Update run-time statistics of the 'current'.
958 */
959 update_curr(cfs_rq);
960
961 #ifdef CONFIG_SCHED_HRTICK
962 /*
963 * queued ticks are scheduled to match the slice, so don't bother
964 * validating it and just reschedule.
965 */
966 if (queued) {
967 resched_task(rq_of(cfs_rq)->curr);
968 return;
969 }
970 /*
971 * don't let the period tick interfere with the hrtick preemption
972 */
973 if (!sched_feat(DOUBLE_TICK) &&
974 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
975 return;
976 #endif
977
978 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
979 check_preempt_tick(cfs_rq, curr);
980 }
981
982 /**************************************************
983 * CFS operations on tasks:
984 */
985
986 #ifdef CONFIG_SCHED_HRTICK
987 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
988 {
989 struct sched_entity *se = &p->se;
990 struct cfs_rq *cfs_rq = cfs_rq_of(se);
991
992 WARN_ON(task_rq(p) != rq);
993
994 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
995 u64 slice = sched_slice(cfs_rq, se);
996 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
997 s64 delta = slice - ran;
998
999 if (delta < 0) {
1000 if (rq->curr == p)
1001 resched_task(p);
1002 return;
1003 }
1004
1005 /*
1006 * Don't schedule slices shorter than 10000ns, that just
1007 * doesn't make sense. Rely on vruntime for fairness.
1008 */
1009 if (rq->curr != p)
1010 delta = max_t(s64, 10000LL, delta);
1011
1012 hrtick_start(rq, delta);
1013 }
1014 }
1015
1016 /*
1017 * called from enqueue/dequeue and updates the hrtick when the
1018 * current task is from our class and nr_running is low enough
1019 * to matter.
1020 */
1021 static void hrtick_update(struct rq *rq)
1022 {
1023 struct task_struct *curr = rq->curr;
1024
1025 if (curr->sched_class != &fair_sched_class)
1026 return;
1027
1028 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1029 hrtick_start_fair(rq, curr);
1030 }
1031 #else /* !CONFIG_SCHED_HRTICK */
1032 static inline void
1033 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1034 {
1035 }
1036
1037 static inline void hrtick_update(struct rq *rq)
1038 {
1039 }
1040 #endif
1041
1042 /*
1043 * The enqueue_task method is called before nr_running is
1044 * increased. Here we update the fair scheduling stats and
1045 * then put the task into the rbtree:
1046 */
1047 static void
1048 enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1049 {
1050 struct cfs_rq *cfs_rq;
1051 struct sched_entity *se = &p->se;
1052 int flags = 0;
1053
1054 if (wakeup)
1055 flags |= ENQUEUE_WAKEUP;
1056 if (p->state == TASK_WAKING)
1057 flags |= ENQUEUE_MIGRATE;
1058
1059 for_each_sched_entity(se) {
1060 if (se->on_rq)
1061 break;
1062 cfs_rq = cfs_rq_of(se);
1063 enqueue_entity(cfs_rq, se, flags);
1064 flags = ENQUEUE_WAKEUP;
1065 }
1066
1067 hrtick_update(rq);
1068 }
1069
1070 /*
1071 * The dequeue_task method is called before nr_running is
1072 * decreased. We remove the task from the rbtree and
1073 * update the fair scheduling stats:
1074 */
1075 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1076 {
1077 struct cfs_rq *cfs_rq;
1078 struct sched_entity *se = &p->se;
1079
1080 for_each_sched_entity(se) {
1081 cfs_rq = cfs_rq_of(se);
1082 dequeue_entity(cfs_rq, se, sleep);
1083 /* Don't dequeue parent if it has other entities besides us */
1084 if (cfs_rq->load.weight)
1085 break;
1086 sleep = 1;
1087 }
1088
1089 hrtick_update(rq);
1090 }
1091
1092 /*
1093 * sched_yield() support is very simple - we dequeue and enqueue.
1094 *
1095 * If compat_yield is turned on then we requeue to the end of the tree.
1096 */
1097 static void yield_task_fair(struct rq *rq)
1098 {
1099 struct task_struct *curr = rq->curr;
1100 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1101 struct sched_entity *rightmost, *se = &curr->se;
1102
1103 /*
1104 * Are we the only task in the tree?
1105 */
1106 if (unlikely(cfs_rq->nr_running == 1))
1107 return;
1108
1109 clear_buddies(cfs_rq, se);
1110
1111 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1112 update_rq_clock(rq);
1113 /*
1114 * Update run-time statistics of the 'current'.
1115 */
1116 update_curr(cfs_rq);
1117
1118 return;
1119 }
1120 /*
1121 * Find the rightmost entry in the rbtree:
1122 */
1123 rightmost = __pick_last_entity(cfs_rq);
1124 /*
1125 * Already in the rightmost position?
1126 */
1127 if (unlikely(!rightmost || entity_before(rightmost, se)))
1128 return;
1129
1130 /*
1131 * Minimally necessary key value to be last in the tree:
1132 * Upon rescheduling, sched_class::put_prev_task() will place
1133 * 'current' within the tree based on its new key value.
1134 */
1135 se->vruntime = rightmost->vruntime + 1;
1136 }
1137
1138 #ifdef CONFIG_SMP
1139
1140 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1141 {
1142 struct sched_entity *se = &p->se;
1143 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1144
1145 se->vruntime -= cfs_rq->min_vruntime;
1146 }
1147
1148 #ifdef CONFIG_FAIR_GROUP_SCHED
1149 /*
1150 * effective_load() calculates the load change as seen from the root_task_group
1151 *
1152 * Adding load to a group doesn't make a group heavier, but can cause movement
1153 * of group shares between cpus. Assuming the shares were perfectly aligned one
1154 * can calculate the shift in shares.
1155 *
1156 * The problem is that perfectly aligning the shares is rather expensive, hence
1157 * we try to avoid doing that too often - see update_shares(), which ratelimits
1158 * this change.
1159 *
1160 * We compensate this by not only taking the current delta into account, but
1161 * also considering the delta between when the shares were last adjusted and
1162 * now.
1163 *
1164 * We still saw a performance dip, some tracing learned us that between
1165 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1166 * significantly. Therefore try to bias the error in direction of failing
1167 * the affine wakeup.
1168 *
1169 */
1170 static long effective_load(struct task_group *tg, int cpu,
1171 long wl, long wg)
1172 {
1173 struct sched_entity *se = tg->se[cpu];
1174
1175 if (!tg->parent)
1176 return wl;
1177
1178 /*
1179 * By not taking the decrease of shares on the other cpu into
1180 * account our error leans towards reducing the affine wakeups.
1181 */
1182 if (!wl && sched_feat(ASYM_EFF_LOAD))
1183 return wl;
1184
1185 for_each_sched_entity(se) {
1186 long S, rw, s, a, b;
1187 long more_w;
1188
1189 /*
1190 * Instead of using this increment, also add the difference
1191 * between when the shares were last updated and now.
1192 */
1193 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1194 wl += more_w;
1195 wg += more_w;
1196
1197 S = se->my_q->tg->shares;
1198 s = se->my_q->shares;
1199 rw = se->my_q->rq_weight;
1200
1201 a = S*(rw + wl);
1202 b = S*rw + s*wg;
1203
1204 wl = s*(a-b);
1205
1206 if (likely(b))
1207 wl /= b;
1208
1209 /*
1210 * Assume the group is already running and will
1211 * thus already be accounted for in the weight.
1212 *
1213 * That is, moving shares between CPUs, does not
1214 * alter the group weight.
1215 */
1216 wg = 0;
1217 }
1218
1219 return wl;
1220 }
1221
1222 #else
1223
1224 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1225 unsigned long wl, unsigned long wg)
1226 {
1227 return wl;
1228 }
1229
1230 #endif
1231
1232 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1233 {
1234 unsigned long this_load, load;
1235 int idx, this_cpu, prev_cpu;
1236 unsigned long tl_per_task;
1237 unsigned int imbalance;
1238 struct task_group *tg;
1239 unsigned long weight;
1240 int balanced;
1241
1242 idx = sd->wake_idx;
1243 this_cpu = smp_processor_id();
1244 prev_cpu = task_cpu(p);
1245 load = source_load(prev_cpu, idx);
1246 this_load = target_load(this_cpu, idx);
1247
1248 /*
1249 * If sync wakeup then subtract the (maximum possible)
1250 * effect of the currently running task from the load
1251 * of the current CPU:
1252 */
1253 if (sync) {
1254 tg = task_group(current);
1255 weight = current->se.load.weight;
1256
1257 this_load += effective_load(tg, this_cpu, -weight, -weight);
1258 load += effective_load(tg, prev_cpu, 0, -weight);
1259 }
1260
1261 tg = task_group(p);
1262 weight = p->se.load.weight;
1263
1264 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1265
1266 /*
1267 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1268 * due to the sync cause above having dropped this_load to 0, we'll
1269 * always have an imbalance, but there's really nothing you can do
1270 * about that, so that's good too.
1271 *
1272 * Otherwise check if either cpus are near enough in load to allow this
1273 * task to be woken on this_cpu.
1274 */
1275 balanced = !this_load ||
1276 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1277 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1278
1279 /*
1280 * If the currently running task will sleep within
1281 * a reasonable amount of time then attract this newly
1282 * woken task:
1283 */
1284 if (sync && balanced)
1285 return 1;
1286
1287 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1288 tl_per_task = cpu_avg_load_per_task(this_cpu);
1289
1290 if (balanced ||
1291 (this_load <= load &&
1292 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1293 /*
1294 * This domain has SD_WAKE_AFFINE and
1295 * p is cache cold in this domain, and
1296 * there is no bad imbalance.
1297 */
1298 schedstat_inc(sd, ttwu_move_affine);
1299 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1300
1301 return 1;
1302 }
1303 return 0;
1304 }
1305
1306 /*
1307 * find_idlest_group finds and returns the least busy CPU group within the
1308 * domain.
1309 */
1310 static struct sched_group *
1311 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1312 int this_cpu, int load_idx)
1313 {
1314 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1315 unsigned long min_load = ULONG_MAX, this_load = 0;
1316 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1317
1318 do {
1319 unsigned long load, avg_load;
1320 int local_group;
1321 int i;
1322
1323 /* Skip over this group if it has no CPUs allowed */
1324 if (!cpumask_intersects(sched_group_cpus(group),
1325 &p->cpus_allowed))
1326 continue;
1327
1328 local_group = cpumask_test_cpu(this_cpu,
1329 sched_group_cpus(group));
1330
1331 /* Tally up the load of all CPUs in the group */
1332 avg_load = 0;
1333
1334 for_each_cpu(i, sched_group_cpus(group)) {
1335 /* Bias balancing toward cpus of our domain */
1336 if (local_group)
1337 load = source_load(i, load_idx);
1338 else
1339 load = target_load(i, load_idx);
1340
1341 avg_load += load;
1342 }
1343
1344 /* Adjust by relative CPU power of the group */
1345 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1346
1347 if (local_group) {
1348 this_load = avg_load;
1349 this = group;
1350 } else if (avg_load < min_load) {
1351 min_load = avg_load;
1352 idlest = group;
1353 }
1354 } while (group = group->next, group != sd->groups);
1355
1356 if (!idlest || 100*this_load < imbalance*min_load)
1357 return NULL;
1358 return idlest;
1359 }
1360
1361 /*
1362 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1363 */
1364 static int
1365 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1366 {
1367 unsigned long load, min_load = ULONG_MAX;
1368 int idlest = -1;
1369 int i;
1370
1371 /* Traverse only the allowed CPUs */
1372 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1373 load = weighted_cpuload(i);
1374
1375 if (load < min_load || (load == min_load && i == this_cpu)) {
1376 min_load = load;
1377 idlest = i;
1378 }
1379 }
1380
1381 return idlest;
1382 }
1383
1384 /*
1385 * Try and locate an idle CPU in the sched_domain.
1386 */
1387 static int
1388 select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1389 {
1390 int cpu = smp_processor_id();
1391 int prev_cpu = task_cpu(p);
1392 int i;
1393
1394 /*
1395 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1396 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1397 * always a better target than the current cpu.
1398 */
1399 if (target == cpu && !cpu_rq(prev_cpu)->cfs.nr_running)
1400 return prev_cpu;
1401
1402 /*
1403 * Otherwise, iterate the domain and find an elegible idle cpu.
1404 */
1405 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1406 if (!cpu_rq(i)->cfs.nr_running) {
1407 target = i;
1408 break;
1409 }
1410 }
1411
1412 return target;
1413 }
1414
1415 /*
1416 * sched_balance_self: balance the current task (running on cpu) in domains
1417 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1418 * SD_BALANCE_EXEC.
1419 *
1420 * Balance, ie. select the least loaded group.
1421 *
1422 * Returns the target CPU number, or the same CPU if no balancing is needed.
1423 *
1424 * preempt must be disabled.
1425 */
1426 static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1427 {
1428 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1429 int cpu = smp_processor_id();
1430 int prev_cpu = task_cpu(p);
1431 int new_cpu = cpu;
1432 int want_affine = 0, cpu_idle = !current->pid;
1433 int want_sd = 1;
1434 int sync = wake_flags & WF_SYNC;
1435
1436 if (sd_flag & SD_BALANCE_WAKE) {
1437 if (sched_feat(AFFINE_WAKEUPS) &&
1438 cpumask_test_cpu(cpu, &p->cpus_allowed))
1439 want_affine = 1;
1440 new_cpu = prev_cpu;
1441 }
1442
1443 for_each_domain(cpu, tmp) {
1444 if (!(tmp->flags & SD_LOAD_BALANCE))
1445 continue;
1446
1447 /*
1448 * If power savings logic is enabled for a domain, see if we
1449 * are not overloaded, if so, don't balance wider.
1450 */
1451 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1452 unsigned long power = 0;
1453 unsigned long nr_running = 0;
1454 unsigned long capacity;
1455 int i;
1456
1457 for_each_cpu(i, sched_domain_span(tmp)) {
1458 power += power_of(i);
1459 nr_running += cpu_rq(i)->cfs.nr_running;
1460 }
1461
1462 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1463
1464 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1465 nr_running /= 2;
1466
1467 if (nr_running < capacity)
1468 want_sd = 0;
1469 }
1470
1471 /*
1472 * While iterating the domains looking for a spanning
1473 * WAKE_AFFINE domain, adjust the affine target to any idle cpu
1474 * in cache sharing domains along the way.
1475 */
1476 if (want_affine) {
1477 int target = -1;
1478
1479 /*
1480 * If both cpu and prev_cpu are part of this domain,
1481 * cpu is a valid SD_WAKE_AFFINE target.
1482 */
1483 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1484 target = cpu;
1485
1486 /*
1487 * If there's an idle sibling in this domain, make that
1488 * the wake_affine target instead of the current cpu.
1489 */
1490 if (!cpu_idle && tmp->flags & SD_SHARE_PKG_RESOURCES)
1491 target = select_idle_sibling(p, tmp, target);
1492
1493 if (target >= 0) {
1494 if (tmp->flags & SD_WAKE_AFFINE) {
1495 affine_sd = tmp;
1496 want_affine = 0;
1497 if (target != cpu)
1498 cpu_idle = 1;
1499 }
1500 cpu = target;
1501 }
1502 }
1503
1504 if (!want_sd && !want_affine)
1505 break;
1506
1507 if (!(tmp->flags & sd_flag))
1508 continue;
1509
1510 if (want_sd)
1511 sd = tmp;
1512 }
1513
1514 #ifdef CONFIG_FAIR_GROUP_SCHED
1515 if (sched_feat(LB_SHARES_UPDATE)) {
1516 /*
1517 * Pick the largest domain to update shares over
1518 */
1519 tmp = sd;
1520 if (affine_sd && (!tmp ||
1521 cpumask_weight(sched_domain_span(affine_sd)) >
1522 cpumask_weight(sched_domain_span(sd))))
1523 tmp = affine_sd;
1524
1525 if (tmp)
1526 update_shares(tmp);
1527 }
1528 #endif
1529
1530 if (affine_sd) {
1531 if (cpu_idle || cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1532 return cpu;
1533 }
1534
1535 while (sd) {
1536 int load_idx = sd->forkexec_idx;
1537 struct sched_group *group;
1538 int weight;
1539
1540 if (!(sd->flags & sd_flag)) {
1541 sd = sd->child;
1542 continue;
1543 }
1544
1545 if (sd_flag & SD_BALANCE_WAKE)
1546 load_idx = sd->wake_idx;
1547
1548 group = find_idlest_group(sd, p, cpu, load_idx);
1549 if (!group) {
1550 sd = sd->child;
1551 continue;
1552 }
1553
1554 new_cpu = find_idlest_cpu(group, p, cpu);
1555 if (new_cpu == -1 || new_cpu == cpu) {
1556 /* Now try balancing at a lower domain level of cpu */
1557 sd = sd->child;
1558 continue;
1559 }
1560
1561 /* Now try balancing at a lower domain level of new_cpu */
1562 cpu = new_cpu;
1563 weight = cpumask_weight(sched_domain_span(sd));
1564 sd = NULL;
1565 for_each_domain(cpu, tmp) {
1566 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1567 break;
1568 if (tmp->flags & sd_flag)
1569 sd = tmp;
1570 }
1571 /* while loop will break here if sd == NULL */
1572 }
1573
1574 return new_cpu;
1575 }
1576 #endif /* CONFIG_SMP */
1577
1578 static unsigned long
1579 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1580 {
1581 unsigned long gran = sysctl_sched_wakeup_granularity;
1582
1583 /*
1584 * Since its curr running now, convert the gran from real-time
1585 * to virtual-time in his units.
1586 */
1587 if (sched_feat(ASYM_GRAN)) {
1588 /*
1589 * By using 'se' instead of 'curr' we penalize light tasks, so
1590 * they get preempted easier. That is, if 'se' < 'curr' then
1591 * the resulting gran will be larger, therefore penalizing the
1592 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1593 * be smaller, again penalizing the lighter task.
1594 *
1595 * This is especially important for buddies when the leftmost
1596 * task is higher priority than the buddy.
1597 */
1598 if (unlikely(se->load.weight != NICE_0_LOAD))
1599 gran = calc_delta_fair(gran, se);
1600 } else {
1601 if (unlikely(curr->load.weight != NICE_0_LOAD))
1602 gran = calc_delta_fair(gran, curr);
1603 }
1604
1605 return gran;
1606 }
1607
1608 /*
1609 * Should 'se' preempt 'curr'.
1610 *
1611 * |s1
1612 * |s2
1613 * |s3
1614 * g
1615 * |<--->|c
1616 *
1617 * w(c, s1) = -1
1618 * w(c, s2) = 0
1619 * w(c, s3) = 1
1620 *
1621 */
1622 static int
1623 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1624 {
1625 s64 gran, vdiff = curr->vruntime - se->vruntime;
1626
1627 if (vdiff <= 0)
1628 return -1;
1629
1630 gran = wakeup_gran(curr, se);
1631 if (vdiff > gran)
1632 return 1;
1633
1634 return 0;
1635 }
1636
1637 static void set_last_buddy(struct sched_entity *se)
1638 {
1639 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1640 for_each_sched_entity(se)
1641 cfs_rq_of(se)->last = se;
1642 }
1643 }
1644
1645 static void set_next_buddy(struct sched_entity *se)
1646 {
1647 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1648 for_each_sched_entity(se)
1649 cfs_rq_of(se)->next = se;
1650 }
1651 }
1652
1653 /*
1654 * Preempt the current task with a newly woken task if needed:
1655 */
1656 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1657 {
1658 struct task_struct *curr = rq->curr;
1659 struct sched_entity *se = &curr->se, *pse = &p->se;
1660 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1661 int sync = wake_flags & WF_SYNC;
1662 int scale = cfs_rq->nr_running >= sched_nr_latency;
1663
1664 if (unlikely(rt_prio(p->prio)))
1665 goto preempt;
1666
1667 if (unlikely(p->sched_class != &fair_sched_class))
1668 return;
1669
1670 if (unlikely(se == pse))
1671 return;
1672
1673 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1674 set_next_buddy(pse);
1675
1676 /*
1677 * We can come here with TIF_NEED_RESCHED already set from new task
1678 * wake up path.
1679 */
1680 if (test_tsk_need_resched(curr))
1681 return;
1682
1683 /*
1684 * Batch and idle tasks do not preempt (their preemption is driven by
1685 * the tick):
1686 */
1687 if (unlikely(p->policy != SCHED_NORMAL))
1688 return;
1689
1690 /* Idle tasks are by definition preempted by everybody. */
1691 if (unlikely(curr->policy == SCHED_IDLE))
1692 goto preempt;
1693
1694 if (sched_feat(WAKEUP_SYNC) && sync)
1695 goto preempt;
1696
1697 if (!sched_feat(WAKEUP_PREEMPT))
1698 return;
1699
1700 update_curr(cfs_rq);
1701 find_matching_se(&se, &pse);
1702 BUG_ON(!pse);
1703 if (wakeup_preempt_entity(se, pse) == 1)
1704 goto preempt;
1705
1706 return;
1707
1708 preempt:
1709 resched_task(curr);
1710 /*
1711 * Only set the backward buddy when the current task is still
1712 * on the rq. This can happen when a wakeup gets interleaved
1713 * with schedule on the ->pre_schedule() or idle_balance()
1714 * point, either of which can * drop the rq lock.
1715 *
1716 * Also, during early boot the idle thread is in the fair class,
1717 * for obvious reasons its a bad idea to schedule back to it.
1718 */
1719 if (unlikely(!se->on_rq || curr == rq->idle))
1720 return;
1721
1722 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1723 set_last_buddy(se);
1724 }
1725
1726 static struct task_struct *pick_next_task_fair(struct rq *rq)
1727 {
1728 struct task_struct *p;
1729 struct cfs_rq *cfs_rq = &rq->cfs;
1730 struct sched_entity *se;
1731
1732 if (!cfs_rq->nr_running)
1733 return NULL;
1734
1735 do {
1736 se = pick_next_entity(cfs_rq);
1737 set_next_entity(cfs_rq, se);
1738 cfs_rq = group_cfs_rq(se);
1739 } while (cfs_rq);
1740
1741 p = task_of(se);
1742 hrtick_start_fair(rq, p);
1743
1744 return p;
1745 }
1746
1747 /*
1748 * Account for a descheduled task:
1749 */
1750 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1751 {
1752 struct sched_entity *se = &prev->se;
1753 struct cfs_rq *cfs_rq;
1754
1755 for_each_sched_entity(se) {
1756 cfs_rq = cfs_rq_of(se);
1757 put_prev_entity(cfs_rq, se);
1758 }
1759 }
1760
1761 #ifdef CONFIG_SMP
1762 /**************************************************
1763 * Fair scheduling class load-balancing methods:
1764 */
1765
1766 /*
1767 * pull_task - move a task from a remote runqueue to the local runqueue.
1768 * Both runqueues must be locked.
1769 */
1770 static void pull_task(struct rq *src_rq, struct task_struct *p,
1771 struct rq *this_rq, int this_cpu)
1772 {
1773 deactivate_task(src_rq, p, 0);
1774 set_task_cpu(p, this_cpu);
1775 activate_task(this_rq, p, 0);
1776 check_preempt_curr(this_rq, p, 0);
1777 }
1778
1779 /*
1780 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1781 */
1782 static
1783 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1784 struct sched_domain *sd, enum cpu_idle_type idle,
1785 int *all_pinned)
1786 {
1787 int tsk_cache_hot = 0;
1788 /*
1789 * We do not migrate tasks that are:
1790 * 1) running (obviously), or
1791 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1792 * 3) are cache-hot on their current CPU.
1793 */
1794 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1795 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1796 return 0;
1797 }
1798 *all_pinned = 0;
1799
1800 if (task_running(rq, p)) {
1801 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1802 return 0;
1803 }
1804
1805 /*
1806 * Aggressive migration if:
1807 * 1) task is cache cold, or
1808 * 2) too many balance attempts have failed.
1809 */
1810
1811 tsk_cache_hot = task_hot(p, rq->clock, sd);
1812 if (!tsk_cache_hot ||
1813 sd->nr_balance_failed > sd->cache_nice_tries) {
1814 #ifdef CONFIG_SCHEDSTATS
1815 if (tsk_cache_hot) {
1816 schedstat_inc(sd, lb_hot_gained[idle]);
1817 schedstat_inc(p, se.statistics.nr_forced_migrations);
1818 }
1819 #endif
1820 return 1;
1821 }
1822
1823 if (tsk_cache_hot) {
1824 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1825 return 0;
1826 }
1827 return 1;
1828 }
1829
1830 /*
1831 * move_one_task tries to move exactly one task from busiest to this_rq, as
1832 * part of active balancing operations within "domain".
1833 * Returns 1 if successful and 0 otherwise.
1834 *
1835 * Called with both runqueues locked.
1836 */
1837 static int
1838 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1839 struct sched_domain *sd, enum cpu_idle_type idle)
1840 {
1841 struct task_struct *p, *n;
1842 struct cfs_rq *cfs_rq;
1843 int pinned = 0;
1844
1845 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1846 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1847
1848 if (!can_migrate_task(p, busiest, this_cpu,
1849 sd, idle, &pinned))
1850 continue;
1851
1852 pull_task(busiest, p, this_rq, this_cpu);
1853 /*
1854 * Right now, this is only the second place pull_task()
1855 * is called, so we can safely collect pull_task()
1856 * stats here rather than inside pull_task().
1857 */
1858 schedstat_inc(sd, lb_gained[idle]);
1859 return 1;
1860 }
1861 }
1862
1863 return 0;
1864 }
1865
1866 static unsigned long
1867 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1868 unsigned long max_load_move, struct sched_domain *sd,
1869 enum cpu_idle_type idle, int *all_pinned,
1870 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1871 {
1872 int loops = 0, pulled = 0, pinned = 0;
1873 long rem_load_move = max_load_move;
1874 struct task_struct *p, *n;
1875
1876 if (max_load_move == 0)
1877 goto out;
1878
1879 pinned = 1;
1880
1881 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1882 if (loops++ > sysctl_sched_nr_migrate)
1883 break;
1884
1885 if ((p->se.load.weight >> 1) > rem_load_move ||
1886 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1887 continue;
1888
1889 pull_task(busiest, p, this_rq, this_cpu);
1890 pulled++;
1891 rem_load_move -= p->se.load.weight;
1892
1893 #ifdef CONFIG_PREEMPT
1894 /*
1895 * NEWIDLE balancing is a source of latency, so preemptible
1896 * kernels will stop after the first task is pulled to minimize
1897 * the critical section.
1898 */
1899 if (idle == CPU_NEWLY_IDLE)
1900 break;
1901 #endif
1902
1903 /*
1904 * We only want to steal up to the prescribed amount of
1905 * weighted load.
1906 */
1907 if (rem_load_move <= 0)
1908 break;
1909
1910 if (p->prio < *this_best_prio)
1911 *this_best_prio = p->prio;
1912 }
1913 out:
1914 /*
1915 * Right now, this is one of only two places pull_task() is called,
1916 * so we can safely collect pull_task() stats here rather than
1917 * inside pull_task().
1918 */
1919 schedstat_add(sd, lb_gained[idle], pulled);
1920
1921 if (all_pinned)
1922 *all_pinned = pinned;
1923
1924 return max_load_move - rem_load_move;
1925 }
1926
1927 #ifdef CONFIG_FAIR_GROUP_SCHED
1928 static unsigned long
1929 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1930 unsigned long max_load_move,
1931 struct sched_domain *sd, enum cpu_idle_type idle,
1932 int *all_pinned, int *this_best_prio)
1933 {
1934 long rem_load_move = max_load_move;
1935 int busiest_cpu = cpu_of(busiest);
1936 struct task_group *tg;
1937
1938 rcu_read_lock();
1939 update_h_load(busiest_cpu);
1940
1941 list_for_each_entry_rcu(tg, &task_groups, list) {
1942 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1943 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1944 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1945 u64 rem_load, moved_load;
1946
1947 /*
1948 * empty group
1949 */
1950 if (!busiest_cfs_rq->task_weight)
1951 continue;
1952
1953 rem_load = (u64)rem_load_move * busiest_weight;
1954 rem_load = div_u64(rem_load, busiest_h_load + 1);
1955
1956 moved_load = balance_tasks(this_rq, this_cpu, busiest,
1957 rem_load, sd, idle, all_pinned, this_best_prio,
1958 busiest_cfs_rq);
1959
1960 if (!moved_load)
1961 continue;
1962
1963 moved_load *= busiest_h_load;
1964 moved_load = div_u64(moved_load, busiest_weight + 1);
1965
1966 rem_load_move -= moved_load;
1967 if (rem_load_move < 0)
1968 break;
1969 }
1970 rcu_read_unlock();
1971
1972 return max_load_move - rem_load_move;
1973 }
1974 #else
1975 static unsigned long
1976 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1977 unsigned long max_load_move,
1978 struct sched_domain *sd, enum cpu_idle_type idle,
1979 int *all_pinned, int *this_best_prio)
1980 {
1981 return balance_tasks(this_rq, this_cpu, busiest,
1982 max_load_move, sd, idle, all_pinned,
1983 this_best_prio, &busiest->cfs);
1984 }
1985 #endif
1986
1987 /*
1988 * move_tasks tries to move up to max_load_move weighted load from busiest to
1989 * this_rq, as part of a balancing operation within domain "sd".
1990 * Returns 1 if successful and 0 otherwise.
1991 *
1992 * Called with both runqueues locked.
1993 */
1994 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1995 unsigned long max_load_move,
1996 struct sched_domain *sd, enum cpu_idle_type idle,
1997 int *all_pinned)
1998 {
1999 unsigned long total_load_moved = 0, load_moved;
2000 int this_best_prio = this_rq->curr->prio;
2001
2002 do {
2003 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2004 max_load_move - total_load_moved,
2005 sd, idle, all_pinned, &this_best_prio);
2006
2007 total_load_moved += load_moved;
2008
2009 #ifdef CONFIG_PREEMPT
2010 /*
2011 * NEWIDLE balancing is a source of latency, so preemptible
2012 * kernels will stop after the first task is pulled to minimize
2013 * the critical section.
2014 */
2015 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2016 break;
2017
2018 if (raw_spin_is_contended(&this_rq->lock) ||
2019 raw_spin_is_contended(&busiest->lock))
2020 break;
2021 #endif
2022 } while (load_moved && max_load_move > total_load_moved);
2023
2024 return total_load_moved > 0;
2025 }
2026
2027 /********** Helpers for find_busiest_group ************************/
2028 /*
2029 * sd_lb_stats - Structure to store the statistics of a sched_domain
2030 * during load balancing.
2031 */
2032 struct sd_lb_stats {
2033 struct sched_group *busiest; /* Busiest group in this sd */
2034 struct sched_group *this; /* Local group in this sd */
2035 unsigned long total_load; /* Total load of all groups in sd */
2036 unsigned long total_pwr; /* Total power of all groups in sd */
2037 unsigned long avg_load; /* Average load across all groups in sd */
2038
2039 /** Statistics of this group */
2040 unsigned long this_load;
2041 unsigned long this_load_per_task;
2042 unsigned long this_nr_running;
2043
2044 /* Statistics of the busiest group */
2045 unsigned long max_load;
2046 unsigned long busiest_load_per_task;
2047 unsigned long busiest_nr_running;
2048 unsigned long busiest_group_capacity;
2049
2050 int group_imb; /* Is there imbalance in this sd */
2051 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2052 int power_savings_balance; /* Is powersave balance needed for this sd */
2053 struct sched_group *group_min; /* Least loaded group in sd */
2054 struct sched_group *group_leader; /* Group which relieves group_min */
2055 unsigned long min_load_per_task; /* load_per_task in group_min */
2056 unsigned long leader_nr_running; /* Nr running of group_leader */
2057 unsigned long min_nr_running; /* Nr running of group_min */
2058 #endif
2059 };
2060
2061 /*
2062 * sg_lb_stats - stats of a sched_group required for load_balancing
2063 */
2064 struct sg_lb_stats {
2065 unsigned long avg_load; /*Avg load across the CPUs of the group */
2066 unsigned long group_load; /* Total load over the CPUs of the group */
2067 unsigned long sum_nr_running; /* Nr tasks running in the group */
2068 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2069 unsigned long group_capacity;
2070 int group_imb; /* Is there an imbalance in the group ? */
2071 };
2072
2073 /**
2074 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2075 * @group: The group whose first cpu is to be returned.
2076 */
2077 static inline unsigned int group_first_cpu(struct sched_group *group)
2078 {
2079 return cpumask_first(sched_group_cpus(group));
2080 }
2081
2082 /**
2083 * get_sd_load_idx - Obtain the load index for a given sched domain.
2084 * @sd: The sched_domain whose load_idx is to be obtained.
2085 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2086 */
2087 static inline int get_sd_load_idx(struct sched_domain *sd,
2088 enum cpu_idle_type idle)
2089 {
2090 int load_idx;
2091
2092 switch (idle) {
2093 case CPU_NOT_IDLE:
2094 load_idx = sd->busy_idx;
2095 break;
2096
2097 case CPU_NEWLY_IDLE:
2098 load_idx = sd->newidle_idx;
2099 break;
2100 default:
2101 load_idx = sd->idle_idx;
2102 break;
2103 }
2104
2105 return load_idx;
2106 }
2107
2108
2109 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2110 /**
2111 * init_sd_power_savings_stats - Initialize power savings statistics for
2112 * the given sched_domain, during load balancing.
2113 *
2114 * @sd: Sched domain whose power-savings statistics are to be initialized.
2115 * @sds: Variable containing the statistics for sd.
2116 * @idle: Idle status of the CPU at which we're performing load-balancing.
2117 */
2118 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2119 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2120 {
2121 /*
2122 * Busy processors will not participate in power savings
2123 * balance.
2124 */
2125 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2126 sds->power_savings_balance = 0;
2127 else {
2128 sds->power_savings_balance = 1;
2129 sds->min_nr_running = ULONG_MAX;
2130 sds->leader_nr_running = 0;
2131 }
2132 }
2133
2134 /**
2135 * update_sd_power_savings_stats - Update the power saving stats for a
2136 * sched_domain while performing load balancing.
2137 *
2138 * @group: sched_group belonging to the sched_domain under consideration.
2139 * @sds: Variable containing the statistics of the sched_domain
2140 * @local_group: Does group contain the CPU for which we're performing
2141 * load balancing ?
2142 * @sgs: Variable containing the statistics of the group.
2143 */
2144 static inline void update_sd_power_savings_stats(struct sched_group *group,
2145 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2146 {
2147
2148 if (!sds->power_savings_balance)
2149 return;
2150
2151 /*
2152 * If the local group is idle or completely loaded
2153 * no need to do power savings balance at this domain
2154 */
2155 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2156 !sds->this_nr_running))
2157 sds->power_savings_balance = 0;
2158
2159 /*
2160 * If a group is already running at full capacity or idle,
2161 * don't include that group in power savings calculations
2162 */
2163 if (!sds->power_savings_balance ||
2164 sgs->sum_nr_running >= sgs->group_capacity ||
2165 !sgs->sum_nr_running)
2166 return;
2167
2168 /*
2169 * Calculate the group which has the least non-idle load.
2170 * This is the group from where we need to pick up the load
2171 * for saving power
2172 */
2173 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2174 (sgs->sum_nr_running == sds->min_nr_running &&
2175 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2176 sds->group_min = group;
2177 sds->min_nr_running = sgs->sum_nr_running;
2178 sds->min_load_per_task = sgs->sum_weighted_load /
2179 sgs->sum_nr_running;
2180 }
2181
2182 /*
2183 * Calculate the group which is almost near its
2184 * capacity but still has some space to pick up some load
2185 * from other group and save more power
2186 */
2187 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2188 return;
2189
2190 if (sgs->sum_nr_running > sds->leader_nr_running ||
2191 (sgs->sum_nr_running == sds->leader_nr_running &&
2192 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2193 sds->group_leader = group;
2194 sds->leader_nr_running = sgs->sum_nr_running;
2195 }
2196 }
2197
2198 /**
2199 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2200 * @sds: Variable containing the statistics of the sched_domain
2201 * under consideration.
2202 * @this_cpu: Cpu at which we're currently performing load-balancing.
2203 * @imbalance: Variable to store the imbalance.
2204 *
2205 * Description:
2206 * Check if we have potential to perform some power-savings balance.
2207 * If yes, set the busiest group to be the least loaded group in the
2208 * sched_domain, so that it's CPUs can be put to idle.
2209 *
2210 * Returns 1 if there is potential to perform power-savings balance.
2211 * Else returns 0.
2212 */
2213 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2214 int this_cpu, unsigned long *imbalance)
2215 {
2216 if (!sds->power_savings_balance)
2217 return 0;
2218
2219 if (sds->this != sds->group_leader ||
2220 sds->group_leader == sds->group_min)
2221 return 0;
2222
2223 *imbalance = sds->min_load_per_task;
2224 sds->busiest = sds->group_min;
2225
2226 return 1;
2227
2228 }
2229 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2230 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2231 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2232 {
2233 return;
2234 }
2235
2236 static inline void update_sd_power_savings_stats(struct sched_group *group,
2237 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2238 {
2239 return;
2240 }
2241
2242 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2243 int this_cpu, unsigned long *imbalance)
2244 {
2245 return 0;
2246 }
2247 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2248
2249
2250 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2251 {
2252 return SCHED_LOAD_SCALE;
2253 }
2254
2255 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2256 {
2257 return default_scale_freq_power(sd, cpu);
2258 }
2259
2260 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2261 {
2262 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2263 unsigned long smt_gain = sd->smt_gain;
2264
2265 smt_gain /= weight;
2266
2267 return smt_gain;
2268 }
2269
2270 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2271 {
2272 return default_scale_smt_power(sd, cpu);
2273 }
2274
2275 unsigned long scale_rt_power(int cpu)
2276 {
2277 struct rq *rq = cpu_rq(cpu);
2278 u64 total, available;
2279
2280 sched_avg_update(rq);
2281
2282 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2283 available = total - rq->rt_avg;
2284
2285 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2286 total = SCHED_LOAD_SCALE;
2287
2288 total >>= SCHED_LOAD_SHIFT;
2289
2290 return div_u64(available, total);
2291 }
2292
2293 static void update_cpu_power(struct sched_domain *sd, int cpu)
2294 {
2295 unsigned long weight = cpumask_weight(sched_domain_span(sd));
2296 unsigned long power = SCHED_LOAD_SCALE;
2297 struct sched_group *sdg = sd->groups;
2298
2299 if (sched_feat(ARCH_POWER))
2300 power *= arch_scale_freq_power(sd, cpu);
2301 else
2302 power *= default_scale_freq_power(sd, cpu);
2303
2304 power >>= SCHED_LOAD_SHIFT;
2305
2306 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2307 if (sched_feat(ARCH_POWER))
2308 power *= arch_scale_smt_power(sd, cpu);
2309 else
2310 power *= default_scale_smt_power(sd, cpu);
2311
2312 power >>= SCHED_LOAD_SHIFT;
2313 }
2314
2315 power *= scale_rt_power(cpu);
2316 power >>= SCHED_LOAD_SHIFT;
2317
2318 if (!power)
2319 power = 1;
2320
2321 sdg->cpu_power = power;
2322 }
2323
2324 static void update_group_power(struct sched_domain *sd, int cpu)
2325 {
2326 struct sched_domain *child = sd->child;
2327 struct sched_group *group, *sdg = sd->groups;
2328 unsigned long power;
2329
2330 if (!child) {
2331 update_cpu_power(sd, cpu);
2332 return;
2333 }
2334
2335 power = 0;
2336
2337 group = child->groups;
2338 do {
2339 power += group->cpu_power;
2340 group = group->next;
2341 } while (group != child->groups);
2342
2343 sdg->cpu_power = power;
2344 }
2345
2346 /**
2347 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2348 * @sd: The sched_domain whose statistics are to be updated.
2349 * @group: sched_group whose statistics are to be updated.
2350 * @this_cpu: Cpu for which load balance is currently performed.
2351 * @idle: Idle status of this_cpu
2352 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2353 * @sd_idle: Idle status of the sched_domain containing group.
2354 * @local_group: Does group contain this_cpu.
2355 * @cpus: Set of cpus considered for load balancing.
2356 * @balance: Should we balance.
2357 * @sgs: variable to hold the statistics for this group.
2358 */
2359 static inline void update_sg_lb_stats(struct sched_domain *sd,
2360 struct sched_group *group, int this_cpu,
2361 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2362 int local_group, const struct cpumask *cpus,
2363 int *balance, struct sg_lb_stats *sgs)
2364 {
2365 unsigned long load, max_cpu_load, min_cpu_load;
2366 int i;
2367 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2368 unsigned long avg_load_per_task = 0;
2369
2370 if (local_group)
2371 balance_cpu = group_first_cpu(group);
2372
2373 /* Tally up the load of all CPUs in the group */
2374 max_cpu_load = 0;
2375 min_cpu_load = ~0UL;
2376
2377 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2378 struct rq *rq = cpu_rq(i);
2379
2380 if (*sd_idle && rq->nr_running)
2381 *sd_idle = 0;
2382
2383 /* Bias balancing toward cpus of our domain */
2384 if (local_group) {
2385 if (idle_cpu(i) && !first_idle_cpu) {
2386 first_idle_cpu = 1;
2387 balance_cpu = i;
2388 }
2389
2390 load = target_load(i, load_idx);
2391 } else {
2392 load = source_load(i, load_idx);
2393 if (load > max_cpu_load)
2394 max_cpu_load = load;
2395 if (min_cpu_load > load)
2396 min_cpu_load = load;
2397 }
2398
2399 sgs->group_load += load;
2400 sgs->sum_nr_running += rq->nr_running;
2401 sgs->sum_weighted_load += weighted_cpuload(i);
2402
2403 }
2404
2405 /*
2406 * First idle cpu or the first cpu(busiest) in this sched group
2407 * is eligible for doing load balancing at this and above
2408 * domains. In the newly idle case, we will allow all the cpu's
2409 * to do the newly idle load balance.
2410 */
2411 if (idle != CPU_NEWLY_IDLE && local_group &&
2412 balance_cpu != this_cpu) {
2413 *balance = 0;
2414 return;
2415 }
2416
2417 update_group_power(sd, this_cpu);
2418
2419 /* Adjust by relative CPU power of the group */
2420 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2421
2422 /*
2423 * Consider the group unbalanced when the imbalance is larger
2424 * than the average weight of two tasks.
2425 *
2426 * APZ: with cgroup the avg task weight can vary wildly and
2427 * might not be a suitable number - should we keep a
2428 * normalized nr_running number somewhere that negates
2429 * the hierarchy?
2430 */
2431 if (sgs->sum_nr_running)
2432 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2433
2434 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2435 sgs->group_imb = 1;
2436
2437 sgs->group_capacity =
2438 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2439 }
2440
2441 /**
2442 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2443 * @sd: sched_domain whose statistics are to be updated.
2444 * @this_cpu: Cpu for which load balance is currently performed.
2445 * @idle: Idle status of this_cpu
2446 * @sd_idle: Idle status of the sched_domain containing group.
2447 * @cpus: Set of cpus considered for load balancing.
2448 * @balance: Should we balance.
2449 * @sds: variable to hold the statistics for this sched_domain.
2450 */
2451 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2452 enum cpu_idle_type idle, int *sd_idle,
2453 const struct cpumask *cpus, int *balance,
2454 struct sd_lb_stats *sds)
2455 {
2456 struct sched_domain *child = sd->child;
2457 struct sched_group *group = sd->groups;
2458 struct sg_lb_stats sgs;
2459 int load_idx, prefer_sibling = 0;
2460
2461 if (child && child->flags & SD_PREFER_SIBLING)
2462 prefer_sibling = 1;
2463
2464 init_sd_power_savings_stats(sd, sds, idle);
2465 load_idx = get_sd_load_idx(sd, idle);
2466
2467 do {
2468 int local_group;
2469
2470 local_group = cpumask_test_cpu(this_cpu,
2471 sched_group_cpus(group));
2472 memset(&sgs, 0, sizeof(sgs));
2473 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
2474 local_group, cpus, balance, &sgs);
2475
2476 if (local_group && !(*balance))
2477 return;
2478
2479 sds->total_load += sgs.group_load;
2480 sds->total_pwr += group->cpu_power;
2481
2482 /*
2483 * In case the child domain prefers tasks go to siblings
2484 * first, lower the group capacity to one so that we'll try
2485 * and move all the excess tasks away.
2486 */
2487 if (prefer_sibling)
2488 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2489
2490 if (local_group) {
2491 sds->this_load = sgs.avg_load;
2492 sds->this = group;
2493 sds->this_nr_running = sgs.sum_nr_running;
2494 sds->this_load_per_task = sgs.sum_weighted_load;
2495 } else if (sgs.avg_load > sds->max_load &&
2496 (sgs.sum_nr_running > sgs.group_capacity ||
2497 sgs.group_imb)) {
2498 sds->max_load = sgs.avg_load;
2499 sds->busiest = group;
2500 sds->busiest_nr_running = sgs.sum_nr_running;
2501 sds->busiest_group_capacity = sgs.group_capacity;
2502 sds->busiest_load_per_task = sgs.sum_weighted_load;
2503 sds->group_imb = sgs.group_imb;
2504 }
2505
2506 update_sd_power_savings_stats(group, sds, local_group, &sgs);
2507 group = group->next;
2508 } while (group != sd->groups);
2509 }
2510
2511 /**
2512 * fix_small_imbalance - Calculate the minor imbalance that exists
2513 * amongst the groups of a sched_domain, during
2514 * load balancing.
2515 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2516 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2517 * @imbalance: Variable to store the imbalance.
2518 */
2519 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2520 int this_cpu, unsigned long *imbalance)
2521 {
2522 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2523 unsigned int imbn = 2;
2524 unsigned long scaled_busy_load_per_task;
2525
2526 if (sds->this_nr_running) {
2527 sds->this_load_per_task /= sds->this_nr_running;
2528 if (sds->busiest_load_per_task >
2529 sds->this_load_per_task)
2530 imbn = 1;
2531 } else
2532 sds->this_load_per_task =
2533 cpu_avg_load_per_task(this_cpu);
2534
2535 scaled_busy_load_per_task = sds->busiest_load_per_task
2536 * SCHED_LOAD_SCALE;
2537 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2538
2539 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2540 (scaled_busy_load_per_task * imbn)) {
2541 *imbalance = sds->busiest_load_per_task;
2542 return;
2543 }
2544
2545 /*
2546 * OK, we don't have enough imbalance to justify moving tasks,
2547 * however we may be able to increase total CPU power used by
2548 * moving them.
2549 */
2550
2551 pwr_now += sds->busiest->cpu_power *
2552 min(sds->busiest_load_per_task, sds->max_load);
2553 pwr_now += sds->this->cpu_power *
2554 min(sds->this_load_per_task, sds->this_load);
2555 pwr_now /= SCHED_LOAD_SCALE;
2556
2557 /* Amount of load we'd subtract */
2558 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2559 sds->busiest->cpu_power;
2560 if (sds->max_load > tmp)
2561 pwr_move += sds->busiest->cpu_power *
2562 min(sds->busiest_load_per_task, sds->max_load - tmp);
2563
2564 /* Amount of load we'd add */
2565 if (sds->max_load * sds->busiest->cpu_power <
2566 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2567 tmp = (sds->max_load * sds->busiest->cpu_power) /
2568 sds->this->cpu_power;
2569 else
2570 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2571 sds->this->cpu_power;
2572 pwr_move += sds->this->cpu_power *
2573 min(sds->this_load_per_task, sds->this_load + tmp);
2574 pwr_move /= SCHED_LOAD_SCALE;
2575
2576 /* Move if we gain throughput */
2577 if (pwr_move > pwr_now)
2578 *imbalance = sds->busiest_load_per_task;
2579 }
2580
2581 /**
2582 * calculate_imbalance - Calculate the amount of imbalance present within the
2583 * groups of a given sched_domain during load balance.
2584 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2585 * @this_cpu: Cpu for which currently load balance is being performed.
2586 * @imbalance: The variable to store the imbalance.
2587 */
2588 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2589 unsigned long *imbalance)
2590 {
2591 unsigned long max_pull, load_above_capacity = ~0UL;
2592
2593 sds->busiest_load_per_task /= sds->busiest_nr_running;
2594 if (sds->group_imb) {
2595 sds->busiest_load_per_task =
2596 min(sds->busiest_load_per_task, sds->avg_load);
2597 }
2598
2599 /*
2600 * In the presence of smp nice balancing, certain scenarios can have
2601 * max load less than avg load(as we skip the groups at or below
2602 * its cpu_power, while calculating max_load..)
2603 */
2604 if (sds->max_load < sds->avg_load) {
2605 *imbalance = 0;
2606 return fix_small_imbalance(sds, this_cpu, imbalance);
2607 }
2608
2609 if (!sds->group_imb) {
2610 /*
2611 * Don't want to pull so many tasks that a group would go idle.
2612 */
2613 load_above_capacity = (sds->busiest_nr_running -
2614 sds->busiest_group_capacity);
2615
2616 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2617
2618 load_above_capacity /= sds->busiest->cpu_power;
2619 }
2620
2621 /*
2622 * We're trying to get all the cpus to the average_load, so we don't
2623 * want to push ourselves above the average load, nor do we wish to
2624 * reduce the max loaded cpu below the average load. At the same time,
2625 * we also don't want to reduce the group load below the group capacity
2626 * (so that we can implement power-savings policies etc). Thus we look
2627 * for the minimum possible imbalance.
2628 * Be careful of negative numbers as they'll appear as very large values
2629 * with unsigned longs.
2630 */
2631 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
2632
2633 /* How much load to actually move to equalise the imbalance */
2634 *imbalance = min(max_pull * sds->busiest->cpu_power,
2635 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2636 / SCHED_LOAD_SCALE;
2637
2638 /*
2639 * if *imbalance is less than the average load per runnable task
2640 * there is no gaurantee that any tasks will be moved so we'll have
2641 * a think about bumping its value to force at least one task to be
2642 * moved
2643 */
2644 if (*imbalance < sds->busiest_load_per_task)
2645 return fix_small_imbalance(sds, this_cpu, imbalance);
2646
2647 }
2648 /******* find_busiest_group() helpers end here *********************/
2649
2650 /**
2651 * find_busiest_group - Returns the busiest group within the sched_domain
2652 * if there is an imbalance. If there isn't an imbalance, and
2653 * the user has opted for power-savings, it returns a group whose
2654 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2655 * such a group exists.
2656 *
2657 * Also calculates the amount of weighted load which should be moved
2658 * to restore balance.
2659 *
2660 * @sd: The sched_domain whose busiest group is to be returned.
2661 * @this_cpu: The cpu for which load balancing is currently being performed.
2662 * @imbalance: Variable which stores amount of weighted load which should
2663 * be moved to restore balance/put a group to idle.
2664 * @idle: The idle status of this_cpu.
2665 * @sd_idle: The idleness of sd
2666 * @cpus: The set of CPUs under consideration for load-balancing.
2667 * @balance: Pointer to a variable indicating if this_cpu
2668 * is the appropriate cpu to perform load balancing at this_level.
2669 *
2670 * Returns: - the busiest group if imbalance exists.
2671 * - If no imbalance and user has opted for power-savings balance,
2672 * return the least loaded group whose CPUs can be
2673 * put to idle by rebalancing its tasks onto our group.
2674 */
2675 static struct sched_group *
2676 find_busiest_group(struct sched_domain *sd, int this_cpu,
2677 unsigned long *imbalance, enum cpu_idle_type idle,
2678 int *sd_idle, const struct cpumask *cpus, int *balance)
2679 {
2680 struct sd_lb_stats sds;
2681
2682 memset(&sds, 0, sizeof(sds));
2683
2684 /*
2685 * Compute the various statistics relavent for load balancing at
2686 * this level.
2687 */
2688 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2689 balance, &sds);
2690
2691 /* Cases where imbalance does not exist from POV of this_cpu */
2692 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2693 * at this level.
2694 * 2) There is no busy sibling group to pull from.
2695 * 3) This group is the busiest group.
2696 * 4) This group is more busy than the avg busieness at this
2697 * sched_domain.
2698 * 5) The imbalance is within the specified limit.
2699 */
2700 if (!(*balance))
2701 goto ret;
2702
2703 if (!sds.busiest || sds.busiest_nr_running == 0)
2704 goto out_balanced;
2705
2706 if (sds.this_load >= sds.max_load)
2707 goto out_balanced;
2708
2709 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2710
2711 if (sds.this_load >= sds.avg_load)
2712 goto out_balanced;
2713
2714 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2715 goto out_balanced;
2716
2717 /* Looks like there is an imbalance. Compute it */
2718 calculate_imbalance(&sds, this_cpu, imbalance);
2719 return sds.busiest;
2720
2721 out_balanced:
2722 /*
2723 * There is no obvious imbalance. But check if we can do some balancing
2724 * to save power.
2725 */
2726 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2727 return sds.busiest;
2728 ret:
2729 *imbalance = 0;
2730 return NULL;
2731 }
2732
2733 /*
2734 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2735 */
2736 static struct rq *
2737 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
2738 unsigned long imbalance, const struct cpumask *cpus)
2739 {
2740 struct rq *busiest = NULL, *rq;
2741 unsigned long max_load = 0;
2742 int i;
2743
2744 for_each_cpu(i, sched_group_cpus(group)) {
2745 unsigned long power = power_of(i);
2746 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2747 unsigned long wl;
2748
2749 if (!cpumask_test_cpu(i, cpus))
2750 continue;
2751
2752 rq = cpu_rq(i);
2753 wl = weighted_cpuload(i);
2754
2755 /*
2756 * When comparing with imbalance, use weighted_cpuload()
2757 * which is not scaled with the cpu power.
2758 */
2759 if (capacity && rq->nr_running == 1 && wl > imbalance)
2760 continue;
2761
2762 /*
2763 * For the load comparisons with the other cpu's, consider
2764 * the weighted_cpuload() scaled with the cpu power, so that
2765 * the load can be moved away from the cpu that is potentially
2766 * running at a lower capacity.
2767 */
2768 wl = (wl * SCHED_LOAD_SCALE) / power;
2769
2770 if (wl > max_load) {
2771 max_load = wl;
2772 busiest = rq;
2773 }
2774 }
2775
2776 return busiest;
2777 }
2778
2779 /*
2780 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2781 * so long as it is large enough.
2782 */
2783 #define MAX_PINNED_INTERVAL 512
2784
2785 /* Working cpumask for load_balance and load_balance_newidle. */
2786 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2787
2788 static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle)
2789 {
2790 if (idle == CPU_NEWLY_IDLE) {
2791 /*
2792 * The only task running in a non-idle cpu can be moved to this
2793 * cpu in an attempt to completely freeup the other CPU
2794 * package.
2795 *
2796 * The package power saving logic comes from
2797 * find_busiest_group(). If there are no imbalance, then
2798 * f_b_g() will return NULL. However when sched_mc={1,2} then
2799 * f_b_g() will select a group from which a running task may be
2800 * pulled to this cpu in order to make the other package idle.
2801 * If there is no opportunity to make a package idle and if
2802 * there are no imbalance, then f_b_g() will return NULL and no
2803 * action will be taken in load_balance_newidle().
2804 *
2805 * Under normal task pull operation due to imbalance, there
2806 * will be more than one task in the source run queue and
2807 * move_tasks() will succeed. ld_moved will be true and this
2808 * active balance code will not be triggered.
2809 */
2810 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2811 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2812 return 0;
2813
2814 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2815 return 0;
2816 }
2817
2818 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2819 }
2820
2821 /*
2822 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2823 * tasks if there is an imbalance.
2824 */
2825 static int load_balance(int this_cpu, struct rq *this_rq,
2826 struct sched_domain *sd, enum cpu_idle_type idle,
2827 int *balance)
2828 {
2829 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2830 struct sched_group *group;
2831 unsigned long imbalance;
2832 struct rq *busiest;
2833 unsigned long flags;
2834 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2835
2836 cpumask_copy(cpus, cpu_active_mask);
2837
2838 /*
2839 * When power savings policy is enabled for the parent domain, idle
2840 * sibling can pick up load irrespective of busy siblings. In this case,
2841 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2842 * portraying it as CPU_NOT_IDLE.
2843 */
2844 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2845 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2846 sd_idle = 1;
2847
2848 schedstat_inc(sd, lb_count[idle]);
2849
2850 redo:
2851 update_shares(sd);
2852 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2853 cpus, balance);
2854
2855 if (*balance == 0)
2856 goto out_balanced;
2857
2858 if (!group) {
2859 schedstat_inc(sd, lb_nobusyg[idle]);
2860 goto out_balanced;
2861 }
2862
2863 busiest = find_busiest_queue(group, idle, imbalance, cpus);
2864 if (!busiest) {
2865 schedstat_inc(sd, lb_nobusyq[idle]);
2866 goto out_balanced;
2867 }
2868
2869 BUG_ON(busiest == this_rq);
2870
2871 schedstat_add(sd, lb_imbalance[idle], imbalance);
2872
2873 ld_moved = 0;
2874 if (busiest->nr_running > 1) {
2875 /*
2876 * Attempt to move tasks. If find_busiest_group has found
2877 * an imbalance but busiest->nr_running <= 1, the group is
2878 * still unbalanced. ld_moved simply stays zero, so it is
2879 * correctly treated as an imbalance.
2880 */
2881 local_irq_save(flags);
2882 double_rq_lock(this_rq, busiest);
2883 ld_moved = move_tasks(this_rq, this_cpu, busiest,
2884 imbalance, sd, idle, &all_pinned);
2885 double_rq_unlock(this_rq, busiest);
2886 local_irq_restore(flags);
2887
2888 /*
2889 * some other cpu did the load balance for us.
2890 */
2891 if (ld_moved && this_cpu != smp_processor_id())
2892 resched_cpu(this_cpu);
2893
2894 /* All tasks on this runqueue were pinned by CPU affinity */
2895 if (unlikely(all_pinned)) {
2896 cpumask_clear_cpu(cpu_of(busiest), cpus);
2897 if (!cpumask_empty(cpus))
2898 goto redo;
2899 goto out_balanced;
2900 }
2901 }
2902
2903 if (!ld_moved) {
2904 schedstat_inc(sd, lb_failed[idle]);
2905 sd->nr_balance_failed++;
2906
2907 if (need_active_balance(sd, sd_idle, idle)) {
2908 raw_spin_lock_irqsave(&busiest->lock, flags);
2909
2910 /* don't kick the migration_thread, if the curr
2911 * task on busiest cpu can't be moved to this_cpu
2912 */
2913 if (!cpumask_test_cpu(this_cpu,
2914 &busiest->curr->cpus_allowed)) {
2915 raw_spin_unlock_irqrestore(&busiest->lock,
2916 flags);
2917 all_pinned = 1;
2918 goto out_one_pinned;
2919 }
2920
2921 if (!busiest->active_balance) {
2922 busiest->active_balance = 1;
2923 busiest->push_cpu = this_cpu;
2924 active_balance = 1;
2925 }
2926 raw_spin_unlock_irqrestore(&busiest->lock, flags);
2927 if (active_balance)
2928 wake_up_process(busiest->migration_thread);
2929
2930 /*
2931 * We've kicked active balancing, reset the failure
2932 * counter.
2933 */
2934 sd->nr_balance_failed = sd->cache_nice_tries+1;
2935 }
2936 } else
2937 sd->nr_balance_failed = 0;
2938
2939 if (likely(!active_balance)) {
2940 /* We were unbalanced, so reset the balancing interval */
2941 sd->balance_interval = sd->min_interval;
2942 } else {
2943 /*
2944 * If we've begun active balancing, start to back off. This
2945 * case may not be covered by the all_pinned logic if there
2946 * is only 1 task on the busy runqueue (because we don't call
2947 * move_tasks).
2948 */
2949 if (sd->balance_interval < sd->max_interval)
2950 sd->balance_interval *= 2;
2951 }
2952
2953 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2954 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2955 ld_moved = -1;
2956
2957 goto out;
2958
2959 out_balanced:
2960 schedstat_inc(sd, lb_balanced[idle]);
2961
2962 sd->nr_balance_failed = 0;
2963
2964 out_one_pinned:
2965 /* tune up the balancing interval */
2966 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2967 (sd->balance_interval < sd->max_interval))
2968 sd->balance_interval *= 2;
2969
2970 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2971 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2972 ld_moved = -1;
2973 else
2974 ld_moved = 0;
2975 out:
2976 if (ld_moved)
2977 update_shares(sd);
2978 return ld_moved;
2979 }
2980
2981 /*
2982 * idle_balance is called by schedule() if this_cpu is about to become
2983 * idle. Attempts to pull tasks from other CPUs.
2984 */
2985 static void idle_balance(int this_cpu, struct rq *this_rq)
2986 {
2987 struct sched_domain *sd;
2988 int pulled_task = 0;
2989 unsigned long next_balance = jiffies + HZ;
2990
2991 this_rq->idle_stamp = this_rq->clock;
2992
2993 if (this_rq->avg_idle < sysctl_sched_migration_cost)
2994 return;
2995
2996 /*
2997 * Drop the rq->lock, but keep IRQ/preempt disabled.
2998 */
2999 raw_spin_unlock(&this_rq->lock);
3000
3001 for_each_domain(this_cpu, sd) {
3002 unsigned long interval;
3003 int balance = 1;
3004
3005 if (!(sd->flags & SD_LOAD_BALANCE))
3006 continue;
3007
3008 if (sd->flags & SD_BALANCE_NEWIDLE) {
3009 /* If we've pulled tasks over stop searching: */
3010 pulled_task = load_balance(this_cpu, this_rq,
3011 sd, CPU_NEWLY_IDLE, &balance);
3012 }
3013
3014 interval = msecs_to_jiffies(sd->balance_interval);
3015 if (time_after(next_balance, sd->last_balance + interval))
3016 next_balance = sd->last_balance + interval;
3017 if (pulled_task) {
3018 this_rq->idle_stamp = 0;
3019 break;
3020 }
3021 }
3022
3023 raw_spin_lock(&this_rq->lock);
3024
3025 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3026 /*
3027 * We are going idle. next_balance may be set based on
3028 * a busy processor. So reset next_balance.
3029 */
3030 this_rq->next_balance = next_balance;
3031 }
3032 }
3033
3034 /*
3035 * active_load_balance is run by migration threads. It pushes running tasks
3036 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3037 * running on each physical CPU where possible, and avoids physical /
3038 * logical imbalances.
3039 *
3040 * Called with busiest_rq locked.
3041 */
3042 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
3043 {
3044 int target_cpu = busiest_rq->push_cpu;
3045 struct sched_domain *sd;
3046 struct rq *target_rq;
3047
3048 /* Is there any task to move? */
3049 if (busiest_rq->nr_running <= 1)
3050 return;
3051
3052 target_rq = cpu_rq(target_cpu);
3053
3054 /*
3055 * This condition is "impossible", if it occurs
3056 * we need to fix it. Originally reported by
3057 * Bjorn Helgaas on a 128-cpu setup.
3058 */
3059 BUG_ON(busiest_rq == target_rq);
3060
3061 /* move a task from busiest_rq to target_rq */
3062 double_lock_balance(busiest_rq, target_rq);
3063
3064 /* Search for an sd spanning us and the target CPU. */
3065 for_each_domain(target_cpu, sd) {
3066 if ((sd->flags & SD_LOAD_BALANCE) &&
3067 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3068 break;
3069 }
3070
3071 if (likely(sd)) {
3072 schedstat_inc(sd, alb_count);
3073
3074 if (move_one_task(target_rq, target_cpu, busiest_rq,
3075 sd, CPU_IDLE))
3076 schedstat_inc(sd, alb_pushed);
3077 else
3078 schedstat_inc(sd, alb_failed);
3079 }
3080 double_unlock_balance(busiest_rq, target_rq);
3081 }
3082
3083 #ifdef CONFIG_NO_HZ
3084 static struct {
3085 atomic_t load_balancer;
3086 cpumask_var_t cpu_mask;
3087 cpumask_var_t ilb_grp_nohz_mask;
3088 } nohz ____cacheline_aligned = {
3089 .load_balancer = ATOMIC_INIT(-1),
3090 };
3091
3092 int get_nohz_load_balancer(void)
3093 {
3094 return atomic_read(&nohz.load_balancer);
3095 }
3096
3097 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3098 /**
3099 * lowest_flag_domain - Return lowest sched_domain containing flag.
3100 * @cpu: The cpu whose lowest level of sched domain is to
3101 * be returned.
3102 * @flag: The flag to check for the lowest sched_domain
3103 * for the given cpu.
3104 *
3105 * Returns the lowest sched_domain of a cpu which contains the given flag.
3106 */
3107 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3108 {
3109 struct sched_domain *sd;
3110
3111 for_each_domain(cpu, sd)
3112 if (sd && (sd->flags & flag))
3113 break;
3114
3115 return sd;
3116 }
3117
3118 /**
3119 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3120 * @cpu: The cpu whose domains we're iterating over.
3121 * @sd: variable holding the value of the power_savings_sd
3122 * for cpu.
3123 * @flag: The flag to filter the sched_domains to be iterated.
3124 *
3125 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3126 * set, starting from the lowest sched_domain to the highest.
3127 */
3128 #define for_each_flag_domain(cpu, sd, flag) \
3129 for (sd = lowest_flag_domain(cpu, flag); \
3130 (sd && (sd->flags & flag)); sd = sd->parent)
3131
3132 /**
3133 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3134 * @ilb_group: group to be checked for semi-idleness
3135 *
3136 * Returns: 1 if the group is semi-idle. 0 otherwise.
3137 *
3138 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3139 * and atleast one non-idle CPU. This helper function checks if the given
3140 * sched_group is semi-idle or not.
3141 */
3142 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3143 {
3144 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
3145 sched_group_cpus(ilb_group));
3146
3147 /*
3148 * A sched_group is semi-idle when it has atleast one busy cpu
3149 * and atleast one idle cpu.
3150 */
3151 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
3152 return 0;
3153
3154 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
3155 return 0;
3156
3157 return 1;
3158 }
3159 /**
3160 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3161 * @cpu: The cpu which is nominating a new idle_load_balancer.
3162 *
3163 * Returns: Returns the id of the idle load balancer if it exists,
3164 * Else, returns >= nr_cpu_ids.
3165 *
3166 * This algorithm picks the idle load balancer such that it belongs to a
3167 * semi-idle powersavings sched_domain. The idea is to try and avoid
3168 * completely idle packages/cores just for the purpose of idle load balancing
3169 * when there are other idle cpu's which are better suited for that job.
3170 */
3171 static int find_new_ilb(int cpu)
3172 {
3173 struct sched_domain *sd;
3174 struct sched_group *ilb_group;
3175
3176 /*
3177 * Have idle load balancer selection from semi-idle packages only
3178 * when power-aware load balancing is enabled
3179 */
3180 if (!(sched_smt_power_savings || sched_mc_power_savings))
3181 goto out_done;
3182
3183 /*
3184 * Optimize for the case when we have no idle CPUs or only one
3185 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3186 */
3187 if (cpumask_weight(nohz.cpu_mask) < 2)
3188 goto out_done;
3189
3190 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3191 ilb_group = sd->groups;
3192
3193 do {
3194 if (is_semi_idle_group(ilb_group))
3195 return cpumask_first(nohz.ilb_grp_nohz_mask);
3196
3197 ilb_group = ilb_group->next;
3198
3199 } while (ilb_group != sd->groups);
3200 }
3201
3202 out_done:
3203 return cpumask_first(nohz.cpu_mask);
3204 }
3205 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3206 static inline int find_new_ilb(int call_cpu)
3207 {
3208 return cpumask_first(nohz.cpu_mask);
3209 }
3210 #endif
3211
3212 /*
3213 * This routine will try to nominate the ilb (idle load balancing)
3214 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3215 * load balancing on behalf of all those cpus. If all the cpus in the system
3216 * go into this tickless mode, then there will be no ilb owner (as there is
3217 * no need for one) and all the cpus will sleep till the next wakeup event
3218 * arrives...
3219 *
3220 * For the ilb owner, tick is not stopped. And this tick will be used
3221 * for idle load balancing. ilb owner will still be part of
3222 * nohz.cpu_mask..
3223 *
3224 * While stopping the tick, this cpu will become the ilb owner if there
3225 * is no other owner. And will be the owner till that cpu becomes busy
3226 * or if all cpus in the system stop their ticks at which point
3227 * there is no need for ilb owner.
3228 *
3229 * When the ilb owner becomes busy, it nominates another owner, during the
3230 * next busy scheduler_tick()
3231 */
3232 int select_nohz_load_balancer(int stop_tick)
3233 {
3234 int cpu = smp_processor_id();
3235
3236 if (stop_tick) {
3237 cpu_rq(cpu)->in_nohz_recently = 1;
3238
3239 if (!cpu_active(cpu)) {
3240 if (atomic_read(&nohz.load_balancer) != cpu)
3241 return 0;
3242
3243 /*
3244 * If we are going offline and still the leader,
3245 * give up!
3246 */
3247 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3248 BUG();
3249
3250 return 0;
3251 }
3252
3253 cpumask_set_cpu(cpu, nohz.cpu_mask);
3254
3255 /* time for ilb owner also to sleep */
3256 if (cpumask_weight(nohz.cpu_mask) == num_active_cpus()) {
3257 if (atomic_read(&nohz.load_balancer) == cpu)
3258 atomic_set(&nohz.load_balancer, -1);
3259 return 0;
3260 }
3261
3262 if (atomic_read(&nohz.load_balancer) == -1) {
3263 /* make me the ilb owner */
3264 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3265 return 1;
3266 } else if (atomic_read(&nohz.load_balancer) == cpu) {
3267 int new_ilb;
3268
3269 if (!(sched_smt_power_savings ||
3270 sched_mc_power_savings))
3271 return 1;
3272 /*
3273 * Check to see if there is a more power-efficient
3274 * ilb.
3275 */
3276 new_ilb = find_new_ilb(cpu);
3277 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3278 atomic_set(&nohz.load_balancer, -1);
3279 resched_cpu(new_ilb);
3280 return 0;
3281 }
3282 return 1;
3283 }
3284 } else {
3285 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
3286 return 0;
3287
3288 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3289
3290 if (atomic_read(&nohz.load_balancer) == cpu)
3291 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3292 BUG();
3293 }
3294 return 0;
3295 }
3296 #endif
3297
3298 static DEFINE_SPINLOCK(balancing);
3299
3300 /*
3301 * It checks each scheduling domain to see if it is due to be balanced,
3302 * and initiates a balancing operation if so.
3303 *
3304 * Balancing parameters are set up in arch_init_sched_domains.
3305 */
3306 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3307 {
3308 int balance = 1;
3309 struct rq *rq = cpu_rq(cpu);
3310 unsigned long interval;
3311 struct sched_domain *sd;
3312 /* Earliest time when we have to do rebalance again */
3313 unsigned long next_balance = jiffies + 60*HZ;
3314 int update_next_balance = 0;
3315 int need_serialize;
3316
3317 for_each_domain(cpu, sd) {
3318 if (!(sd->flags & SD_LOAD_BALANCE))
3319 continue;
3320
3321 interval = sd->balance_interval;
3322 if (idle != CPU_IDLE)
3323 interval *= sd->busy_factor;
3324
3325 /* scale ms to jiffies */
3326 interval = msecs_to_jiffies(interval);
3327 if (unlikely(!interval))
3328 interval = 1;
3329 if (interval > HZ*NR_CPUS/10)
3330 interval = HZ*NR_CPUS/10;
3331
3332 need_serialize = sd->flags & SD_SERIALIZE;
3333
3334 if (need_serialize) {
3335 if (!spin_trylock(&balancing))
3336 goto out;
3337 }
3338
3339 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3340 if (load_balance(cpu, rq, sd, idle, &balance)) {
3341 /*
3342 * We've pulled tasks over so either we're no
3343 * longer idle, or one of our SMT siblings is
3344 * not idle.
3345 */
3346 idle = CPU_NOT_IDLE;
3347 }
3348 sd->last_balance = jiffies;
3349 }
3350 if (need_serialize)
3351 spin_unlock(&balancing);
3352 out:
3353 if (time_after(next_balance, sd->last_balance + interval)) {
3354 next_balance = sd->last_balance + interval;
3355 update_next_balance = 1;
3356 }
3357
3358 /*
3359 * Stop the load balance at this level. There is another
3360 * CPU in our sched group which is doing load balancing more
3361 * actively.
3362 */
3363 if (!balance)
3364 break;
3365 }
3366
3367 /*
3368 * next_balance will be updated only when there is a need.
3369 * When the cpu is attached to null domain for ex, it will not be
3370 * updated.
3371 */
3372 if (likely(update_next_balance))
3373 rq->next_balance = next_balance;
3374 }
3375
3376 /*
3377 * run_rebalance_domains is triggered when needed from the scheduler tick.
3378 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3379 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3380 */
3381 static void run_rebalance_domains(struct softirq_action *h)
3382 {
3383 int this_cpu = smp_processor_id();
3384 struct rq *this_rq = cpu_rq(this_cpu);
3385 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3386 CPU_IDLE : CPU_NOT_IDLE;
3387
3388 rebalance_domains(this_cpu, idle);
3389
3390 #ifdef CONFIG_NO_HZ
3391 /*
3392 * If this cpu is the owner for idle load balancing, then do the
3393 * balancing on behalf of the other idle cpus whose ticks are
3394 * stopped.
3395 */
3396 if (this_rq->idle_at_tick &&
3397 atomic_read(&nohz.load_balancer) == this_cpu) {
3398 struct rq *rq;
3399 int balance_cpu;
3400
3401 for_each_cpu(balance_cpu, nohz.cpu_mask) {
3402 if (balance_cpu == this_cpu)
3403 continue;
3404
3405 /*
3406 * If this cpu gets work to do, stop the load balancing
3407 * work being done for other cpus. Next load
3408 * balancing owner will pick it up.
3409 */
3410 if (need_resched())
3411 break;
3412
3413 rebalance_domains(balance_cpu, CPU_IDLE);
3414
3415 rq = cpu_rq(balance_cpu);
3416 if (time_after(this_rq->next_balance, rq->next_balance))
3417 this_rq->next_balance = rq->next_balance;
3418 }
3419 }
3420 #endif
3421 }
3422
3423 static inline int on_null_domain(int cpu)
3424 {
3425 return !rcu_dereference(cpu_rq(cpu)->sd);
3426 }
3427
3428 /*
3429 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3430 *
3431 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3432 * idle load balancing owner or decide to stop the periodic load balancing,
3433 * if the whole system is idle.
3434 */
3435 static inline void trigger_load_balance(struct rq *rq, int cpu)
3436 {
3437 #ifdef CONFIG_NO_HZ
3438 /*
3439 * If we were in the nohz mode recently and busy at the current
3440 * scheduler tick, then check if we need to nominate new idle
3441 * load balancer.
3442 */
3443 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3444 rq->in_nohz_recently = 0;
3445
3446 if (atomic_read(&nohz.load_balancer) == cpu) {
3447 cpumask_clear_cpu(cpu, nohz.cpu_mask);
3448 atomic_set(&nohz.load_balancer, -1);
3449 }
3450
3451 if (atomic_read(&nohz.load_balancer) == -1) {
3452 int ilb = find_new_ilb(cpu);
3453
3454 if (ilb < nr_cpu_ids)
3455 resched_cpu(ilb);
3456 }
3457 }
3458
3459 /*
3460 * If this cpu is idle and doing idle load balancing for all the
3461 * cpus with ticks stopped, is it time for that to stop?
3462 */
3463 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3464 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
3465 resched_cpu(cpu);
3466 return;
3467 }
3468
3469 /*
3470 * If this cpu is idle and the idle load balancing is done by
3471 * someone else, then no need raise the SCHED_SOFTIRQ
3472 */
3473 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3474 cpumask_test_cpu(cpu, nohz.cpu_mask))
3475 return;
3476 #endif
3477 /* Don't need to rebalance while attached to NULL domain */
3478 if (time_after_eq(jiffies, rq->next_balance) &&
3479 likely(!on_null_domain(cpu)))
3480 raise_softirq(SCHED_SOFTIRQ);
3481 }
3482
3483 static void rq_online_fair(struct rq *rq)
3484 {
3485 update_sysctl();
3486 }
3487
3488 static void rq_offline_fair(struct rq *rq)
3489 {
3490 update_sysctl();
3491 }
3492
3493 #else /* CONFIG_SMP */
3494
3495 /*
3496 * on UP we do not need to balance between CPUs:
3497 */
3498 static inline void idle_balance(int cpu, struct rq *rq)
3499 {
3500 }
3501
3502 #endif /* CONFIG_SMP */
3503
3504 /*
3505 * scheduler tick hitting a task of our scheduling class:
3506 */
3507 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
3508 {
3509 struct cfs_rq *cfs_rq;
3510 struct sched_entity *se = &curr->se;
3511
3512 for_each_sched_entity(se) {
3513 cfs_rq = cfs_rq_of(se);
3514 entity_tick(cfs_rq, se, queued);
3515 }
3516 }
3517
3518 /*
3519 * called on fork with the child task as argument from the parent's context
3520 * - child not yet on the tasklist
3521 * - preemption disabled
3522 */
3523 static void task_fork_fair(struct task_struct *p)
3524 {
3525 struct cfs_rq *cfs_rq = task_cfs_rq(current);
3526 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
3527 int this_cpu = smp_processor_id();
3528 struct rq *rq = this_rq();
3529 unsigned long flags;
3530
3531 raw_spin_lock_irqsave(&rq->lock, flags);
3532
3533 if (unlikely(task_cpu(p) != this_cpu))
3534 __set_task_cpu(p, this_cpu);
3535
3536 update_curr(cfs_rq);
3537
3538 if (curr)
3539 se->vruntime = curr->vruntime;
3540 place_entity(cfs_rq, se, 1);
3541
3542 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
3543 /*
3544 * Upon rescheduling, sched_class::put_prev_task() will place
3545 * 'current' within the tree based on its new key value.
3546 */
3547 swap(curr->vruntime, se->vruntime);
3548 resched_task(rq->curr);
3549 }
3550
3551 se->vruntime -= cfs_rq->min_vruntime;
3552
3553 raw_spin_unlock_irqrestore(&rq->lock, flags);
3554 }
3555
3556 /*
3557 * Priority of the task has changed. Check to see if we preempt
3558 * the current task.
3559 */
3560 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3561 int oldprio, int running)
3562 {
3563 /*
3564 * Reschedule if we are currently running on this runqueue and
3565 * our priority decreased, or if we are not currently running on
3566 * this runqueue and our priority is higher than the current's
3567 */
3568 if (running) {
3569 if (p->prio > oldprio)
3570 resched_task(rq->curr);
3571 } else
3572 check_preempt_curr(rq, p, 0);
3573 }
3574
3575 /*
3576 * We switched to the sched_fair class.
3577 */
3578 static void switched_to_fair(struct rq *rq, struct task_struct *p,
3579 int running)
3580 {
3581 /*
3582 * We were most likely switched from sched_rt, so
3583 * kick off the schedule if running, otherwise just see
3584 * if we can still preempt the current task.
3585 */
3586 if (running)
3587 resched_task(rq->curr);
3588 else
3589 check_preempt_curr(rq, p, 0);
3590 }
3591
3592 /* Account for a task changing its policy or group.
3593 *
3594 * This routine is mostly called to set cfs_rq->curr field when a task
3595 * migrates between groups/classes.
3596 */
3597 static void set_curr_task_fair(struct rq *rq)
3598 {
3599 struct sched_entity *se = &rq->curr->se;
3600
3601 for_each_sched_entity(se)
3602 set_next_entity(cfs_rq_of(se), se);
3603 }
3604
3605 #ifdef CONFIG_FAIR_GROUP_SCHED
3606 static void moved_group_fair(struct task_struct *p, int on_rq)
3607 {
3608 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3609
3610 update_curr(cfs_rq);
3611 if (!on_rq)
3612 place_entity(cfs_rq, &p->se, 1);
3613 }
3614 #endif
3615
3616 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
3617 {
3618 struct sched_entity *se = &task->se;
3619 unsigned int rr_interval = 0;
3620
3621 /*
3622 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3623 * idle runqueue:
3624 */
3625 if (rq->cfs.load.weight)
3626 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
3627
3628 return rr_interval;
3629 }
3630
3631 /*
3632 * All the scheduling class methods:
3633 */
3634 static const struct sched_class fair_sched_class = {
3635 .next = &idle_sched_class,
3636 .enqueue_task = enqueue_task_fair,
3637 .dequeue_task = dequeue_task_fair,
3638 .yield_task = yield_task_fair,
3639
3640 .check_preempt_curr = check_preempt_wakeup,
3641
3642 .pick_next_task = pick_next_task_fair,
3643 .put_prev_task = put_prev_task_fair,
3644
3645 #ifdef CONFIG_SMP
3646 .select_task_rq = select_task_rq_fair,
3647
3648 .rq_online = rq_online_fair,
3649 .rq_offline = rq_offline_fair,
3650
3651 .task_waking = task_waking_fair,
3652 #endif
3653
3654 .set_curr_task = set_curr_task_fair,
3655 .task_tick = task_tick_fair,
3656 .task_fork = task_fork_fair,
3657
3658 .prio_changed = prio_changed_fair,
3659 .switched_to = switched_to_fair,
3660
3661 .get_rr_interval = get_rr_interval_fair,
3662
3663 #ifdef CONFIG_FAIR_GROUP_SCHED
3664 .moved_group = moved_group_fair,
3665 #endif
3666 };
3667
3668 #ifdef CONFIG_SCHED_DEBUG
3669 static void print_cfs_stats(struct seq_file *m, int cpu)
3670 {
3671 struct cfs_rq *cfs_rq;
3672
3673 rcu_read_lock();
3674 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
3675 print_cfs_rq(m, cpu, cfs_rq);
3676 rcu_read_unlock();
3677 }
3678 #endif