]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched_fair.c
sched: kernel/sched_fair.c whitespace cleanups
[mirror_ubuntu-kernels.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 /*
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
26 *
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
36 */
37 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43 const_debug unsigned int sysctl_sched_child_runs_first = 1;
44
45 /*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
49 unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
50
51 /*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57 unsigned int __read_mostly sysctl_sched_compat_yield;
58
59 /*
60 * SCHED_BATCH wake-up granularity.
61 * (default: 25 msec, units: nanoseconds)
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
67 const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
68
69 /*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
77 const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
78
79 unsigned int sysctl_sched_runtime_limit __read_mostly;
80
81 extern struct sched_class fair_sched_class;
82
83 /**************************************************************
84 * CFS operations on generic schedulable entities:
85 */
86
87 #ifdef CONFIG_FAIR_GROUP_SCHED
88
89 /* cpu runqueue to which this cfs_rq is attached */
90 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91 {
92 return cfs_rq->rq;
93 }
94
95 /* An entity is a task if it doesn't "own" a runqueue */
96 #define entity_is_task(se) (!se->my_q)
97
98 #else /* CONFIG_FAIR_GROUP_SCHED */
99
100 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
101 {
102 return container_of(cfs_rq, struct rq, cfs);
103 }
104
105 #define entity_is_task(se) 1
106
107 #endif /* CONFIG_FAIR_GROUP_SCHED */
108
109 static inline struct task_struct *task_of(struct sched_entity *se)
110 {
111 return container_of(se, struct task_struct, se);
112 }
113
114
115 /**************************************************************
116 * Scheduling class tree data structure manipulation methods:
117 */
118
119 static inline u64
120 max_vruntime(u64 min_vruntime, u64 vruntime)
121 {
122 if ((vruntime > min_vruntime) ||
123 (min_vruntime > (1ULL << 61) && vruntime < (1ULL << 50)))
124 min_vruntime = vruntime;
125
126 return min_vruntime;
127 }
128
129 static inline void
130 set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
131 {
132 struct sched_entity *se;
133
134 cfs_rq->rb_leftmost = leftmost;
135 if (leftmost)
136 se = rb_entry(leftmost, struct sched_entity, run_node);
137 }
138
139 static inline s64
140 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
141 {
142 return se->vruntime - cfs_rq->min_vruntime;
143 }
144
145 /*
146 * Enqueue an entity into the rb-tree:
147 */
148 static void
149 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
150 {
151 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
152 struct rb_node *parent = NULL;
153 struct sched_entity *entry;
154 s64 key = entity_key(cfs_rq, se);
155 int leftmost = 1;
156
157 /*
158 * Find the right place in the rbtree:
159 */
160 while (*link) {
161 parent = *link;
162 entry = rb_entry(parent, struct sched_entity, run_node);
163 /*
164 * We dont care about collisions. Nodes with
165 * the same key stay together.
166 */
167 if (key < entity_key(cfs_rq, entry)) {
168 link = &parent->rb_left;
169 } else {
170 link = &parent->rb_right;
171 leftmost = 0;
172 }
173 }
174
175 /*
176 * Maintain a cache of leftmost tree entries (it is frequently
177 * used):
178 */
179 if (leftmost)
180 set_leftmost(cfs_rq, &se->run_node);
181
182 rb_link_node(&se->run_node, parent, link);
183 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
184 }
185
186 static void
187 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
188 {
189 if (cfs_rq->rb_leftmost == &se->run_node)
190 set_leftmost(cfs_rq, rb_next(&se->run_node));
191
192 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
193 }
194
195 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
196 {
197 return cfs_rq->rb_leftmost;
198 }
199
200 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
201 {
202 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
203 }
204
205 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
206 {
207 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
208 struct sched_entity *se = NULL;
209 struct rb_node *parent;
210
211 while (*link) {
212 parent = *link;
213 se = rb_entry(parent, struct sched_entity, run_node);
214 link = &parent->rb_right;
215 }
216
217 return se;
218 }
219
220 /**************************************************************
221 * Scheduling class statistics methods:
222 */
223
224 static u64 __sched_period(unsigned long nr_running)
225 {
226 u64 period = sysctl_sched_latency;
227 unsigned long nr_latency =
228 sysctl_sched_latency / sysctl_sched_min_granularity;
229
230 if (unlikely(nr_running > nr_latency)) {
231 period *= nr_running;
232 do_div(period, nr_latency);
233 }
234
235 return period;
236 }
237
238 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
239 {
240 u64 period = __sched_period(cfs_rq->nr_running);
241
242 period *= se->load.weight;
243 do_div(period, cfs_rq->load.weight);
244
245 return period;
246 }
247
248 /*
249 * Update the current task's runtime statistics. Skip current tasks that
250 * are not in our scheduling class.
251 */
252 static inline void
253 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
254 unsigned long delta_exec)
255 {
256 unsigned long delta_exec_weighted;
257 u64 next_vruntime, min_vruntime;
258
259 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
260
261 curr->sum_exec_runtime += delta_exec;
262 schedstat_add(cfs_rq, exec_clock, delta_exec);
263 delta_exec_weighted = delta_exec;
264 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
265 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
266 &curr->load);
267 }
268 curr->vruntime += delta_exec_weighted;
269
270 /*
271 * maintain cfs_rq->min_vruntime to be a monotonic increasing
272 * value tracking the leftmost vruntime in the tree.
273 */
274 if (first_fair(cfs_rq)) {
275 next_vruntime = __pick_next_entity(cfs_rq)->vruntime;
276
277 /* min_vruntime() := !max_vruntime() */
278 min_vruntime = max_vruntime(curr->vruntime, next_vruntime);
279 if (min_vruntime == next_vruntime)
280 min_vruntime = curr->vruntime;
281 else
282 min_vruntime = next_vruntime;
283 } else
284 min_vruntime = curr->vruntime;
285
286 cfs_rq->min_vruntime =
287 max_vruntime(cfs_rq->min_vruntime, min_vruntime);
288 }
289
290 static void update_curr(struct cfs_rq *cfs_rq)
291 {
292 struct sched_entity *curr = cfs_rq->curr;
293 u64 now = rq_of(cfs_rq)->clock;
294 unsigned long delta_exec;
295
296 if (unlikely(!curr))
297 return;
298
299 /*
300 * Get the amount of time the current task was running
301 * since the last time we changed load (this cannot
302 * overflow on 32 bits):
303 */
304 delta_exec = (unsigned long)(now - curr->exec_start);
305
306 __update_curr(cfs_rq, curr, delta_exec);
307 curr->exec_start = now;
308 }
309
310 static inline void
311 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
312 {
313 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
314 }
315
316 static inline unsigned long
317 calc_weighted(unsigned long delta, struct sched_entity *se)
318 {
319 unsigned long weight = se->load.weight;
320
321 if (unlikely(weight != NICE_0_LOAD))
322 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
323 else
324 return delta;
325 }
326
327 /*
328 * Task is being enqueued - update stats:
329 */
330 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
331 {
332 /*
333 * Are we enqueueing a waiting task? (for current tasks
334 * a dequeue/enqueue event is a NOP)
335 */
336 if (se != cfs_rq->curr)
337 update_stats_wait_start(cfs_rq, se);
338 }
339
340 static void
341 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
342 {
343 schedstat_set(se->wait_max, max(se->wait_max,
344 rq_of(cfs_rq)->clock - se->wait_start));
345 schedstat_set(se->wait_start, 0);
346 }
347
348 static inline void
349 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
350 {
351 update_curr(cfs_rq);
352 /*
353 * Mark the end of the wait period if dequeueing a
354 * waiting task:
355 */
356 if (se != cfs_rq->curr)
357 update_stats_wait_end(cfs_rq, se);
358 }
359
360 /*
361 * We are picking a new current task - update its stats:
362 */
363 static inline void
364 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
365 {
366 /*
367 * We are starting a new run period:
368 */
369 se->exec_start = rq_of(cfs_rq)->clock;
370 }
371
372 /*
373 * We are descheduling a task - update its stats:
374 */
375 static inline void
376 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
377 {
378 se->exec_start = 0;
379 }
380
381 /**************************************************
382 * Scheduling class queueing methods:
383 */
384
385 static void
386 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
387 {
388 update_load_add(&cfs_rq->load, se->load.weight);
389 cfs_rq->nr_running++;
390 se->on_rq = 1;
391 }
392
393 static void
394 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
395 {
396 update_load_sub(&cfs_rq->load, se->load.weight);
397 cfs_rq->nr_running--;
398 se->on_rq = 0;
399 }
400
401 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
402 {
403 #ifdef CONFIG_SCHEDSTATS
404 if (se->sleep_start) {
405 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
406
407 if ((s64)delta < 0)
408 delta = 0;
409
410 if (unlikely(delta > se->sleep_max))
411 se->sleep_max = delta;
412
413 se->sleep_start = 0;
414 se->sum_sleep_runtime += delta;
415 }
416 if (se->block_start) {
417 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
418
419 if ((s64)delta < 0)
420 delta = 0;
421
422 if (unlikely(delta > se->block_max))
423 se->block_max = delta;
424
425 se->block_start = 0;
426 se->sum_sleep_runtime += delta;
427
428 /*
429 * Blocking time is in units of nanosecs, so shift by 20 to
430 * get a milliseconds-range estimation of the amount of
431 * time that the task spent sleeping:
432 */
433 if (unlikely(prof_on == SLEEP_PROFILING)) {
434 struct task_struct *tsk = task_of(se);
435
436 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
437 delta >> 20);
438 }
439 }
440 #endif
441 }
442
443 static void
444 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
445 {
446 u64 min_runtime, latency;
447
448 min_runtime = cfs_rq->min_vruntime;
449
450 if (sched_feat(USE_TREE_AVG)) {
451 struct sched_entity *last = __pick_last_entity(cfs_rq);
452 if (last) {
453 min_runtime = __pick_next_entity(cfs_rq)->vruntime;
454 min_runtime += last->vruntime;
455 min_runtime >>= 1;
456 }
457 } else if (sched_feat(APPROX_AVG))
458 min_runtime += sysctl_sched_latency/2;
459
460 if (initial && sched_feat(START_DEBIT))
461 min_runtime += sched_slice(cfs_rq, se);
462
463 if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
464 latency = sysctl_sched_latency;
465 if (min_runtime > latency)
466 min_runtime -= latency;
467 else
468 min_runtime = 0;
469 }
470
471 se->vruntime = max(se->vruntime, min_runtime);
472 }
473
474 static void
475 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
476 int wakeup, int set_curr)
477 {
478 /*
479 * In case of the 'current'.
480 */
481 if (unlikely(set_curr)) {
482 update_stats_curr_start(cfs_rq, se);
483 cfs_rq->curr = se;
484 account_entity_enqueue(cfs_rq, se);
485 return;
486 }
487
488 /*
489 * Update the fair clock.
490 */
491 update_curr(cfs_rq);
492
493 if (wakeup) {
494 place_entity(cfs_rq, se, 0);
495 enqueue_sleeper(cfs_rq, se);
496 }
497
498 update_stats_enqueue(cfs_rq, se);
499 __enqueue_entity(cfs_rq, se);
500 account_entity_enqueue(cfs_rq, se);
501 }
502
503 static void
504 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
505 {
506 update_stats_dequeue(cfs_rq, se);
507 #ifdef CONFIG_SCHEDSTATS
508 if (sleep) {
509 if (entity_is_task(se)) {
510 struct task_struct *tsk = task_of(se);
511
512 if (tsk->state & TASK_INTERRUPTIBLE)
513 se->sleep_start = rq_of(cfs_rq)->clock;
514 if (tsk->state & TASK_UNINTERRUPTIBLE)
515 se->block_start = rq_of(cfs_rq)->clock;
516 }
517 }
518 #endif
519 if (likely(se != cfs_rq->curr))
520 __dequeue_entity(cfs_rq, se);
521 else {
522 update_stats_curr_end(cfs_rq, se);
523 cfs_rq->curr = NULL;
524 }
525 account_entity_dequeue(cfs_rq, se);
526 }
527
528 /*
529 * Preempt the current task with a newly woken task if needed:
530 */
531 static void
532 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
533 {
534 unsigned long ideal_runtime, delta_exec;
535
536 ideal_runtime = sched_slice(cfs_rq, curr);
537 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
538 if (delta_exec > ideal_runtime)
539 resched_task(rq_of(cfs_rq)->curr);
540 }
541
542 static inline void
543 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
544 {
545 /*
546 * Any task has to be enqueued before it get to execute on
547 * a CPU. So account for the time it spent waiting on the
548 * runqueue.
549 */
550 update_stats_wait_end(cfs_rq, se);
551 update_stats_curr_start(cfs_rq, se);
552 cfs_rq->curr = se;
553 #ifdef CONFIG_SCHEDSTATS
554 /*
555 * Track our maximum slice length, if the CPU's load is at
556 * least twice that of our own weight (i.e. dont track it
557 * when there are only lesser-weight tasks around):
558 */
559 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
560 se->slice_max = max(se->slice_max,
561 se->sum_exec_runtime - se->prev_sum_exec_runtime);
562 }
563 #endif
564 se->prev_sum_exec_runtime = se->sum_exec_runtime;
565 }
566
567 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
568 {
569 struct sched_entity *se = __pick_next_entity(cfs_rq);
570
571 /* 'current' is not kept within the tree. */
572 if (se)
573 __dequeue_entity(cfs_rq, se);
574
575 set_next_entity(cfs_rq, se);
576
577 return se;
578 }
579
580 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
581 {
582 /*
583 * If still on the runqueue then deactivate_task()
584 * was not called and update_curr() has to be done:
585 */
586 if (prev->on_rq)
587 update_curr(cfs_rq);
588
589 update_stats_curr_end(cfs_rq, prev);
590
591 if (prev->on_rq) {
592 update_stats_wait_start(cfs_rq, prev);
593 /* Put 'current' back into the tree. */
594 __enqueue_entity(cfs_rq, prev);
595 }
596 cfs_rq->curr = NULL;
597 }
598
599 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
600 {
601 /*
602 * Update run-time statistics of the 'current'.
603 */
604 update_curr(cfs_rq);
605
606 if (cfs_rq->nr_running > 1)
607 check_preempt_tick(cfs_rq, curr);
608 }
609
610 /**************************************************
611 * CFS operations on tasks:
612 */
613
614 #ifdef CONFIG_FAIR_GROUP_SCHED
615
616 /* Walk up scheduling entities hierarchy */
617 #define for_each_sched_entity(se) \
618 for (; se; se = se->parent)
619
620 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
621 {
622 return p->se.cfs_rq;
623 }
624
625 /* runqueue on which this entity is (to be) queued */
626 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
627 {
628 return se->cfs_rq;
629 }
630
631 /* runqueue "owned" by this group */
632 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
633 {
634 return grp->my_q;
635 }
636
637 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
638 * another cpu ('this_cpu')
639 */
640 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
641 {
642 return cfs_rq->tg->cfs_rq[this_cpu];
643 }
644
645 /* Iterate thr' all leaf cfs_rq's on a runqueue */
646 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
647 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
648
649 /* Do the two (enqueued) tasks belong to the same group ? */
650 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
651 {
652 if (curr->se.cfs_rq == p->se.cfs_rq)
653 return 1;
654
655 return 0;
656 }
657
658 #else /* CONFIG_FAIR_GROUP_SCHED */
659
660 #define for_each_sched_entity(se) \
661 for (; se; se = NULL)
662
663 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
664 {
665 return &task_rq(p)->cfs;
666 }
667
668 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
669 {
670 struct task_struct *p = task_of(se);
671 struct rq *rq = task_rq(p);
672
673 return &rq->cfs;
674 }
675
676 /* runqueue "owned" by this group */
677 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
678 {
679 return NULL;
680 }
681
682 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
683 {
684 return &cpu_rq(this_cpu)->cfs;
685 }
686
687 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
688 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
689
690 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
691 {
692 return 1;
693 }
694
695 #endif /* CONFIG_FAIR_GROUP_SCHED */
696
697 /*
698 * The enqueue_task method is called before nr_running is
699 * increased. Here we update the fair scheduling stats and
700 * then put the task into the rbtree:
701 */
702 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
703 {
704 struct cfs_rq *cfs_rq;
705 struct sched_entity *se = &p->se;
706 int set_curr = 0;
707
708 /* Are we enqueuing the current task? */
709 if (unlikely(task_running(rq, p)))
710 set_curr = 1;
711
712 for_each_sched_entity(se) {
713 if (se->on_rq)
714 break;
715 cfs_rq = cfs_rq_of(se);
716 enqueue_entity(cfs_rq, se, wakeup, set_curr);
717 }
718 }
719
720 /*
721 * The dequeue_task method is called before nr_running is
722 * decreased. We remove the task from the rbtree and
723 * update the fair scheduling stats:
724 */
725 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
726 {
727 struct cfs_rq *cfs_rq;
728 struct sched_entity *se = &p->se;
729
730 for_each_sched_entity(se) {
731 cfs_rq = cfs_rq_of(se);
732 dequeue_entity(cfs_rq, se, sleep);
733 /* Don't dequeue parent if it has other entities besides us */
734 if (cfs_rq->load.weight)
735 break;
736 }
737 }
738
739 /*
740 * sched_yield() support is very simple - we dequeue and enqueue.
741 *
742 * If compat_yield is turned on then we requeue to the end of the tree.
743 */
744 static void yield_task_fair(struct rq *rq)
745 {
746 struct cfs_rq *cfs_rq = &rq->cfs;
747 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
748 struct sched_entity *rightmost, *se = &rq->curr->se;
749 struct rb_node *parent;
750
751 /*
752 * Are we the only task in the tree?
753 */
754 if (unlikely(cfs_rq->nr_running == 1))
755 return;
756
757 if (likely(!sysctl_sched_compat_yield)) {
758 __update_rq_clock(rq);
759 /*
760 * Dequeue and enqueue the task to update its
761 * position within the tree:
762 */
763 dequeue_entity(cfs_rq, se, 0);
764 enqueue_entity(cfs_rq, se, 0, 1);
765
766 return;
767 }
768 /*
769 * Find the rightmost entry in the rbtree:
770 */
771 do {
772 parent = *link;
773 link = &parent->rb_right;
774 } while (*link);
775
776 rightmost = rb_entry(parent, struct sched_entity, run_node);
777 /*
778 * Already in the rightmost position?
779 */
780 if (unlikely(rightmost == se))
781 return;
782
783 /*
784 * Minimally necessary key value to be last in the tree:
785 */
786 se->vruntime = rightmost->vruntime + 1;
787
788 if (cfs_rq->rb_leftmost == &se->run_node)
789 cfs_rq->rb_leftmost = rb_next(&se->run_node);
790 /*
791 * Relink the task to the rightmost position:
792 */
793 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
794 rb_link_node(&se->run_node, parent, link);
795 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
796 }
797
798 /*
799 * Preempt the current task with a newly woken task if needed:
800 */
801 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
802 {
803 struct task_struct *curr = rq->curr;
804 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
805
806 if (unlikely(rt_prio(p->prio))) {
807 update_rq_clock(rq);
808 update_curr(cfs_rq);
809 resched_task(curr);
810 return;
811 }
812 if (is_same_group(curr, p)) {
813 s64 delta = curr->se.vruntime - p->se.vruntime;
814
815 if (delta > (s64)sysctl_sched_wakeup_granularity)
816 resched_task(curr);
817 }
818 }
819
820 static struct task_struct *pick_next_task_fair(struct rq *rq)
821 {
822 struct cfs_rq *cfs_rq = &rq->cfs;
823 struct sched_entity *se;
824
825 if (unlikely(!cfs_rq->nr_running))
826 return NULL;
827
828 do {
829 se = pick_next_entity(cfs_rq);
830 cfs_rq = group_cfs_rq(se);
831 } while (cfs_rq);
832
833 return task_of(se);
834 }
835
836 /*
837 * Account for a descheduled task:
838 */
839 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
840 {
841 struct sched_entity *se = &prev->se;
842 struct cfs_rq *cfs_rq;
843
844 for_each_sched_entity(se) {
845 cfs_rq = cfs_rq_of(se);
846 put_prev_entity(cfs_rq, se);
847 }
848 }
849
850 /**************************************************
851 * Fair scheduling class load-balancing methods:
852 */
853
854 /*
855 * Load-balancing iterator. Note: while the runqueue stays locked
856 * during the whole iteration, the current task might be
857 * dequeued so the iterator has to be dequeue-safe. Here we
858 * achieve that by always pre-iterating before returning
859 * the current task:
860 */
861 static inline struct task_struct *
862 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
863 {
864 struct task_struct *p;
865
866 if (!curr)
867 return NULL;
868
869 p = rb_entry(curr, struct task_struct, se.run_node);
870 cfs_rq->rb_load_balance_curr = rb_next(curr);
871
872 return p;
873 }
874
875 static struct task_struct *load_balance_start_fair(void *arg)
876 {
877 struct cfs_rq *cfs_rq = arg;
878
879 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
880 }
881
882 static struct task_struct *load_balance_next_fair(void *arg)
883 {
884 struct cfs_rq *cfs_rq = arg;
885
886 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
887 }
888
889 #ifdef CONFIG_FAIR_GROUP_SCHED
890 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
891 {
892 struct sched_entity *curr;
893 struct task_struct *p;
894
895 if (!cfs_rq->nr_running)
896 return MAX_PRIO;
897
898 curr = __pick_next_entity(cfs_rq);
899 p = task_of(curr);
900
901 return p->prio;
902 }
903 #endif
904
905 static unsigned long
906 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
907 unsigned long max_nr_move, unsigned long max_load_move,
908 struct sched_domain *sd, enum cpu_idle_type idle,
909 int *all_pinned, int *this_best_prio)
910 {
911 struct cfs_rq *busy_cfs_rq;
912 unsigned long load_moved, total_nr_moved = 0, nr_moved;
913 long rem_load_move = max_load_move;
914 struct rq_iterator cfs_rq_iterator;
915
916 cfs_rq_iterator.start = load_balance_start_fair;
917 cfs_rq_iterator.next = load_balance_next_fair;
918
919 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
920 #ifdef CONFIG_FAIR_GROUP_SCHED
921 struct cfs_rq *this_cfs_rq;
922 long imbalance;
923 unsigned long maxload;
924
925 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
926
927 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
928 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
929 if (imbalance <= 0)
930 continue;
931
932 /* Don't pull more than imbalance/2 */
933 imbalance /= 2;
934 maxload = min(rem_load_move, imbalance);
935
936 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
937 #else
938 # define maxload rem_load_move
939 #endif
940 /* pass busy_cfs_rq argument into
941 * load_balance_[start|next]_fair iterators
942 */
943 cfs_rq_iterator.arg = busy_cfs_rq;
944 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
945 max_nr_move, maxload, sd, idle, all_pinned,
946 &load_moved, this_best_prio, &cfs_rq_iterator);
947
948 total_nr_moved += nr_moved;
949 max_nr_move -= nr_moved;
950 rem_load_move -= load_moved;
951
952 if (max_nr_move <= 0 || rem_load_move <= 0)
953 break;
954 }
955
956 return max_load_move - rem_load_move;
957 }
958
959 /*
960 * scheduler tick hitting a task of our scheduling class:
961 */
962 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
963 {
964 struct cfs_rq *cfs_rq;
965 struct sched_entity *se = &curr->se;
966
967 for_each_sched_entity(se) {
968 cfs_rq = cfs_rq_of(se);
969 entity_tick(cfs_rq, se);
970 }
971 }
972
973 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
974
975 /*
976 * Share the fairness runtime between parent and child, thus the
977 * total amount of pressure for CPU stays equal - new tasks
978 * get a chance to run but frequent forkers are not allowed to
979 * monopolize the CPU. Note: the parent runqueue is locked,
980 * the child is not running yet.
981 */
982 static void task_new_fair(struct rq *rq, struct task_struct *p)
983 {
984 struct cfs_rq *cfs_rq = task_cfs_rq(p);
985 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
986
987 sched_info_queued(p);
988
989 update_curr(cfs_rq);
990 place_entity(cfs_rq, se, 1);
991
992 if (sysctl_sched_child_runs_first &&
993 curr->vruntime < se->vruntime) {
994 /*
995 * Upon rescheduling, sched_class::put_prev_task() will place
996 * 'current' within the tree based on its new key value.
997 */
998 swap(curr->vruntime, se->vruntime);
999 }
1000
1001 update_stats_enqueue(cfs_rq, se);
1002 __enqueue_entity(cfs_rq, se);
1003 account_entity_enqueue(cfs_rq, se);
1004 resched_task(rq->curr);
1005 }
1006
1007 /*
1008 * All the scheduling class methods:
1009 */
1010 struct sched_class fair_sched_class __read_mostly = {
1011 .enqueue_task = enqueue_task_fair,
1012 .dequeue_task = dequeue_task_fair,
1013 .yield_task = yield_task_fair,
1014
1015 .check_preempt_curr = check_preempt_wakeup,
1016
1017 .pick_next_task = pick_next_task_fair,
1018 .put_prev_task = put_prev_task_fair,
1019
1020 .load_balance = load_balance_fair,
1021
1022 .task_tick = task_tick_fair,
1023 .task_new = task_new_fair,
1024 };
1025
1026 #ifdef CONFIG_SCHED_DEBUG
1027 static void print_cfs_stats(struct seq_file *m, int cpu)
1028 {
1029 struct cfs_rq *cfs_rq;
1030
1031 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1032 print_cfs_rq(m, cpu, cfs_rq);
1033 }
1034 #endif