]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched_fair.c
sched: wakeup granularity increase
[mirror_ubuntu-kernels.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 /*
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
26 *
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
36 */
37 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43 const_debug unsigned int sysctl_sched_child_runs_first = 1;
44
45 /*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
49 unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
50
51 /*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57 unsigned int __read_mostly sysctl_sched_compat_yield;
58
59 /*
60 * SCHED_BATCH wake-up granularity.
61 * (default: 25 msec, units: nanoseconds)
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
67 const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
68
69 /*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
77 const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
78
79 unsigned int sysctl_sched_runtime_limit __read_mostly;
80
81 extern struct sched_class fair_sched_class;
82
83 /**************************************************************
84 * CFS operations on generic schedulable entities:
85 */
86
87 #ifdef CONFIG_FAIR_GROUP_SCHED
88
89 /* cpu runqueue to which this cfs_rq is attached */
90 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91 {
92 return cfs_rq->rq;
93 }
94
95 /* An entity is a task if it doesn't "own" a runqueue */
96 #define entity_is_task(se) (!se->my_q)
97
98 #else /* CONFIG_FAIR_GROUP_SCHED */
99
100 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
101 {
102 return container_of(cfs_rq, struct rq, cfs);
103 }
104
105 #define entity_is_task(se) 1
106
107 #endif /* CONFIG_FAIR_GROUP_SCHED */
108
109 static inline struct task_struct *task_of(struct sched_entity *se)
110 {
111 return container_of(se, struct task_struct, se);
112 }
113
114
115 /**************************************************************
116 * Scheduling class tree data structure manipulation methods:
117 */
118
119 static inline void
120 set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
121 {
122 struct sched_entity *se;
123
124 cfs_rq->rb_leftmost = leftmost;
125 if (leftmost) {
126 se = rb_entry(leftmost, struct sched_entity, run_node);
127 cfs_rq->min_vruntime = max(se->vruntime,
128 cfs_rq->min_vruntime);
129 }
130 }
131
132 /*
133 * Enqueue an entity into the rb-tree:
134 */
135 static void
136 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
137 {
138 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
139 struct rb_node *parent = NULL;
140 struct sched_entity *entry;
141 s64 key = se->fair_key;
142 int leftmost = 1;
143
144 /*
145 * Find the right place in the rbtree:
146 */
147 while (*link) {
148 parent = *link;
149 entry = rb_entry(parent, struct sched_entity, run_node);
150 /*
151 * We dont care about collisions. Nodes with
152 * the same key stay together.
153 */
154 if (key - entry->fair_key < 0) {
155 link = &parent->rb_left;
156 } else {
157 link = &parent->rb_right;
158 leftmost = 0;
159 }
160 }
161
162 /*
163 * Maintain a cache of leftmost tree entries (it is frequently
164 * used):
165 */
166 if (leftmost)
167 set_leftmost(cfs_rq, &se->run_node);
168
169 rb_link_node(&se->run_node, parent, link);
170 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
171 update_load_add(&cfs_rq->load, se->load.weight);
172 cfs_rq->nr_running++;
173 se->on_rq = 1;
174
175 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
176 }
177
178 static void
179 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
180 {
181 if (cfs_rq->rb_leftmost == &se->run_node)
182 set_leftmost(cfs_rq, rb_next(&se->run_node));
183
184 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
185 update_load_sub(&cfs_rq->load, se->load.weight);
186 cfs_rq->nr_running--;
187 se->on_rq = 0;
188
189 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
190 }
191
192 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
193 {
194 return cfs_rq->rb_leftmost;
195 }
196
197 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
198 {
199 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
200 }
201
202 /**************************************************************
203 * Scheduling class statistics methods:
204 */
205
206 static u64 __sched_period(unsigned long nr_running)
207 {
208 u64 period = sysctl_sched_latency;
209 unsigned long nr_latency =
210 sysctl_sched_latency / sysctl_sched_min_granularity;
211
212 if (unlikely(nr_running > nr_latency)) {
213 period *= nr_running;
214 do_div(period, nr_latency);
215 }
216
217 return period;
218 }
219
220 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
221 {
222 u64 period = __sched_period(cfs_rq->nr_running);
223
224 period *= se->load.weight;
225 do_div(period, cfs_rq->load.weight);
226
227 return period;
228 }
229
230 static inline void
231 limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
232 {
233 long limit = sysctl_sched_runtime_limit;
234
235 /*
236 * Niced tasks have the same history dynamic range as
237 * non-niced tasks:
238 */
239 if (unlikely(se->wait_runtime > limit)) {
240 se->wait_runtime = limit;
241 schedstat_inc(se, wait_runtime_overruns);
242 schedstat_inc(cfs_rq, wait_runtime_overruns);
243 }
244 if (unlikely(se->wait_runtime < -limit)) {
245 se->wait_runtime = -limit;
246 schedstat_inc(se, wait_runtime_underruns);
247 schedstat_inc(cfs_rq, wait_runtime_underruns);
248 }
249 }
250
251 static inline void
252 __add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
253 {
254 se->wait_runtime += delta;
255 schedstat_add(se, sum_wait_runtime, delta);
256 limit_wait_runtime(cfs_rq, se);
257 }
258
259 static void
260 add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
261 {
262 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
263 __add_wait_runtime(cfs_rq, se, delta);
264 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
265 }
266
267 /*
268 * Update the current task's runtime statistics. Skip current tasks that
269 * are not in our scheduling class.
270 */
271 static inline void
272 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
273 unsigned long delta_exec)
274 {
275 unsigned long delta, delta_fair, delta_mine, delta_exec_weighted;
276 struct load_weight *lw = &cfs_rq->load;
277 unsigned long load = lw->weight;
278
279 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
280
281 curr->sum_exec_runtime += delta_exec;
282 cfs_rq->exec_clock += delta_exec;
283 delta_exec_weighted = delta_exec;
284 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
285 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
286 &curr->load);
287 }
288 curr->vruntime += delta_exec_weighted;
289
290 if (!sched_feat(FAIR_SLEEPERS))
291 return;
292
293 if (unlikely(!load))
294 return;
295
296 delta_fair = calc_delta_fair(delta_exec, lw);
297 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
298
299 if (cfs_rq->sleeper_bonus > sysctl_sched_min_granularity) {
300 delta = min((u64)delta_mine, cfs_rq->sleeper_bonus);
301 delta = min(delta, (unsigned long)(
302 (long)sysctl_sched_runtime_limit - curr->wait_runtime));
303 cfs_rq->sleeper_bonus -= delta;
304 delta_mine -= delta;
305 }
306
307 cfs_rq->fair_clock += delta_fair;
308 /*
309 * We executed delta_exec amount of time on the CPU,
310 * but we were only entitled to delta_mine amount of
311 * time during that period (if nr_running == 1 then
312 * the two values are equal)
313 * [Note: delta_mine - delta_exec is negative]:
314 */
315 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
316 }
317
318 static void update_curr(struct cfs_rq *cfs_rq)
319 {
320 struct sched_entity *curr = cfs_rq->curr;
321 u64 now = rq_of(cfs_rq)->clock;
322 unsigned long delta_exec;
323
324 if (unlikely(!curr))
325 return;
326
327 /*
328 * Get the amount of time the current task was running
329 * since the last time we changed load (this cannot
330 * overflow on 32 bits):
331 */
332 delta_exec = (unsigned long)(now - curr->exec_start);
333
334 __update_curr(cfs_rq, curr, delta_exec);
335 curr->exec_start = now;
336 }
337
338 static inline void
339 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
340 {
341 se->wait_start_fair = cfs_rq->fair_clock;
342 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
343 }
344
345 static inline unsigned long
346 calc_weighted(unsigned long delta, struct sched_entity *se)
347 {
348 unsigned long weight = se->load.weight;
349
350 if (unlikely(weight != NICE_0_LOAD))
351 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
352 else
353 return delta;
354 }
355
356 /*
357 * Task is being enqueued - update stats:
358 */
359 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
360 {
361 /*
362 * Are we enqueueing a waiting task? (for current tasks
363 * a dequeue/enqueue event is a NOP)
364 */
365 if (se != cfs_rq->curr)
366 update_stats_wait_start(cfs_rq, se);
367 /*
368 * Update the key:
369 */
370 se->fair_key = se->vruntime;
371 }
372
373 /*
374 * Note: must be called with a freshly updated rq->fair_clock.
375 */
376 static inline void
377 __update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se,
378 unsigned long delta_fair)
379 {
380 schedstat_set(se->wait_max, max(se->wait_max,
381 rq_of(cfs_rq)->clock - se->wait_start));
382
383 delta_fair = calc_weighted(delta_fair, se);
384
385 add_wait_runtime(cfs_rq, se, delta_fair);
386 }
387
388 static void
389 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
390 {
391 unsigned long delta_fair;
392
393 if (unlikely(!se->wait_start_fair))
394 return;
395
396 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
397 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
398
399 __update_stats_wait_end(cfs_rq, se, delta_fair);
400
401 se->wait_start_fair = 0;
402 schedstat_set(se->wait_start, 0);
403 }
404
405 static inline void
406 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
407 {
408 update_curr(cfs_rq);
409 /*
410 * Mark the end of the wait period if dequeueing a
411 * waiting task:
412 */
413 if (se != cfs_rq->curr)
414 update_stats_wait_end(cfs_rq, se);
415 }
416
417 /*
418 * We are picking a new current task - update its stats:
419 */
420 static inline void
421 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
422 {
423 /*
424 * We are starting a new run period:
425 */
426 se->exec_start = rq_of(cfs_rq)->clock;
427 }
428
429 /*
430 * We are descheduling a task - update its stats:
431 */
432 static inline void
433 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
434 {
435 se->exec_start = 0;
436 }
437
438 /**************************************************
439 * Scheduling class queueing methods:
440 */
441
442 static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se,
443 unsigned long delta_fair)
444 {
445 unsigned long load = cfs_rq->load.weight;
446 long prev_runtime;
447
448 /*
449 * Do not boost sleepers if there's too much bonus 'in flight'
450 * already:
451 */
452 if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
453 return;
454
455 if (sched_feat(SLEEPER_LOAD_AVG))
456 load = rq_of(cfs_rq)->cpu_load[2];
457
458 /*
459 * Fix up delta_fair with the effect of us running
460 * during the whole sleep period:
461 */
462 if (sched_feat(SLEEPER_AVG))
463 delta_fair = div64_likely32((u64)delta_fair * load,
464 load + se->load.weight);
465
466 delta_fair = calc_weighted(delta_fair, se);
467
468 prev_runtime = se->wait_runtime;
469 __add_wait_runtime(cfs_rq, se, delta_fair);
470 delta_fair = se->wait_runtime - prev_runtime;
471
472 /*
473 * Track the amount of bonus we've given to sleepers:
474 */
475 cfs_rq->sleeper_bonus += delta_fair;
476 }
477
478 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
479 {
480 struct task_struct *tsk = task_of(se);
481 unsigned long delta_fair;
482
483 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
484 !sched_feat(FAIR_SLEEPERS))
485 return;
486
487 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
488 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
489
490 __enqueue_sleeper(cfs_rq, se, delta_fair);
491
492 se->sleep_start_fair = 0;
493
494 #ifdef CONFIG_SCHEDSTATS
495 if (se->sleep_start) {
496 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
497
498 if ((s64)delta < 0)
499 delta = 0;
500
501 if (unlikely(delta > se->sleep_max))
502 se->sleep_max = delta;
503
504 se->sleep_start = 0;
505 se->sum_sleep_runtime += delta;
506 }
507 if (se->block_start) {
508 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
509
510 if ((s64)delta < 0)
511 delta = 0;
512
513 if (unlikely(delta > se->block_max))
514 se->block_max = delta;
515
516 se->block_start = 0;
517 se->sum_sleep_runtime += delta;
518
519 /*
520 * Blocking time is in units of nanosecs, so shift by 20 to
521 * get a milliseconds-range estimation of the amount of
522 * time that the task spent sleeping:
523 */
524 if (unlikely(prof_on == SLEEP_PROFILING)) {
525 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
526 delta >> 20);
527 }
528 }
529 #endif
530 }
531
532 static void
533 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
534 {
535 /*
536 * Update the fair clock.
537 */
538 update_curr(cfs_rq);
539
540 if (wakeup) {
541 u64 min_runtime, latency;
542
543 min_runtime = cfs_rq->min_vruntime;
544 min_runtime += sysctl_sched_latency/2;
545
546 if (sched_feat(NEW_FAIR_SLEEPERS)) {
547 latency = calc_weighted(sysctl_sched_latency, se);
548 if (min_runtime > latency)
549 min_runtime -= latency;
550 }
551
552 se->vruntime = max(se->vruntime, min_runtime);
553
554 enqueue_sleeper(cfs_rq, se);
555 }
556
557 update_stats_enqueue(cfs_rq, se);
558 __enqueue_entity(cfs_rq, se);
559 }
560
561 static void
562 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
563 {
564 update_stats_dequeue(cfs_rq, se);
565 if (sleep) {
566 se->sleep_start_fair = cfs_rq->fair_clock;
567 #ifdef CONFIG_SCHEDSTATS
568 if (entity_is_task(se)) {
569 struct task_struct *tsk = task_of(se);
570
571 if (tsk->state & TASK_INTERRUPTIBLE)
572 se->sleep_start = rq_of(cfs_rq)->clock;
573 if (tsk->state & TASK_UNINTERRUPTIBLE)
574 se->block_start = rq_of(cfs_rq)->clock;
575 }
576 #endif
577 }
578 __dequeue_entity(cfs_rq, se);
579 }
580
581 /*
582 * Preempt the current task with a newly woken task if needed:
583 */
584 static void
585 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
586 {
587 unsigned long ideal_runtime, delta_exec;
588
589 ideal_runtime = sched_slice(cfs_rq, curr);
590 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
591 if (delta_exec > ideal_runtime)
592 resched_task(rq_of(cfs_rq)->curr);
593 }
594
595 static inline void
596 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
597 {
598 /*
599 * Any task has to be enqueued before it get to execute on
600 * a CPU. So account for the time it spent waiting on the
601 * runqueue. (note, here we rely on pick_next_task() having
602 * done a put_prev_task_fair() shortly before this, which
603 * updated rq->fair_clock - used by update_stats_wait_end())
604 */
605 update_stats_wait_end(cfs_rq, se);
606 update_stats_curr_start(cfs_rq, se);
607 cfs_rq->curr = se;
608 #ifdef CONFIG_SCHEDSTATS
609 /*
610 * Track our maximum slice length, if the CPU's load is at
611 * least twice that of our own weight (i.e. dont track it
612 * when there are only lesser-weight tasks around):
613 */
614 if (rq_of(cfs_rq)->ls.load.weight >= 2*se->load.weight) {
615 se->slice_max = max(se->slice_max,
616 se->sum_exec_runtime - se->prev_sum_exec_runtime);
617 }
618 #endif
619 se->prev_sum_exec_runtime = se->sum_exec_runtime;
620 }
621
622 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
623 {
624 struct sched_entity *se = __pick_next_entity(cfs_rq);
625
626 set_next_entity(cfs_rq, se);
627
628 return se;
629 }
630
631 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
632 {
633 /*
634 * If still on the runqueue then deactivate_task()
635 * was not called and update_curr() has to be done:
636 */
637 if (prev->on_rq)
638 update_curr(cfs_rq);
639
640 update_stats_curr_end(cfs_rq, prev);
641
642 if (prev->on_rq)
643 update_stats_wait_start(cfs_rq, prev);
644 cfs_rq->curr = NULL;
645 }
646
647 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
648 {
649 /*
650 * Dequeue and enqueue the task to update its
651 * position within the tree:
652 */
653 dequeue_entity(cfs_rq, curr, 0);
654 enqueue_entity(cfs_rq, curr, 0);
655
656 if (cfs_rq->nr_running > 1)
657 check_preempt_tick(cfs_rq, curr);
658 }
659
660 /**************************************************
661 * CFS operations on tasks:
662 */
663
664 #ifdef CONFIG_FAIR_GROUP_SCHED
665
666 /* Walk up scheduling entities hierarchy */
667 #define for_each_sched_entity(se) \
668 for (; se; se = se->parent)
669
670 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
671 {
672 return p->se.cfs_rq;
673 }
674
675 /* runqueue on which this entity is (to be) queued */
676 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
677 {
678 return se->cfs_rq;
679 }
680
681 /* runqueue "owned" by this group */
682 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
683 {
684 return grp->my_q;
685 }
686
687 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
688 * another cpu ('this_cpu')
689 */
690 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
691 {
692 /* A later patch will take group into account */
693 return &cpu_rq(this_cpu)->cfs;
694 }
695
696 /* Iterate thr' all leaf cfs_rq's on a runqueue */
697 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
698 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
699
700 /* Do the two (enqueued) tasks belong to the same group ? */
701 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
702 {
703 if (curr->se.cfs_rq == p->se.cfs_rq)
704 return 1;
705
706 return 0;
707 }
708
709 #else /* CONFIG_FAIR_GROUP_SCHED */
710
711 #define for_each_sched_entity(se) \
712 for (; se; se = NULL)
713
714 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
715 {
716 return &task_rq(p)->cfs;
717 }
718
719 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
720 {
721 struct task_struct *p = task_of(se);
722 struct rq *rq = task_rq(p);
723
724 return &rq->cfs;
725 }
726
727 /* runqueue "owned" by this group */
728 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
729 {
730 return NULL;
731 }
732
733 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
734 {
735 return &cpu_rq(this_cpu)->cfs;
736 }
737
738 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
739 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
740
741 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
742 {
743 return 1;
744 }
745
746 #endif /* CONFIG_FAIR_GROUP_SCHED */
747
748 /*
749 * The enqueue_task method is called before nr_running is
750 * increased. Here we update the fair scheduling stats and
751 * then put the task into the rbtree:
752 */
753 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
754 {
755 struct cfs_rq *cfs_rq;
756 struct sched_entity *se = &p->se;
757
758 for_each_sched_entity(se) {
759 if (se->on_rq)
760 break;
761 cfs_rq = cfs_rq_of(se);
762 enqueue_entity(cfs_rq, se, wakeup);
763 }
764 }
765
766 /*
767 * The dequeue_task method is called before nr_running is
768 * decreased. We remove the task from the rbtree and
769 * update the fair scheduling stats:
770 */
771 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
772 {
773 struct cfs_rq *cfs_rq;
774 struct sched_entity *se = &p->se;
775
776 for_each_sched_entity(se) {
777 cfs_rq = cfs_rq_of(se);
778 dequeue_entity(cfs_rq, se, sleep);
779 /* Don't dequeue parent if it has other entities besides us */
780 if (cfs_rq->load.weight)
781 break;
782 }
783 }
784
785 /*
786 * sched_yield() support is very simple - we dequeue and enqueue.
787 *
788 * If compat_yield is turned on then we requeue to the end of the tree.
789 */
790 static void yield_task_fair(struct rq *rq, struct task_struct *p)
791 {
792 struct cfs_rq *cfs_rq = task_cfs_rq(p);
793 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
794 struct sched_entity *rightmost, *se = &p->se;
795 struct rb_node *parent;
796
797 /*
798 * Are we the only task in the tree?
799 */
800 if (unlikely(cfs_rq->nr_running == 1))
801 return;
802
803 if (likely(!sysctl_sched_compat_yield)) {
804 __update_rq_clock(rq);
805 /*
806 * Dequeue and enqueue the task to update its
807 * position within the tree:
808 */
809 dequeue_entity(cfs_rq, &p->se, 0);
810 enqueue_entity(cfs_rq, &p->se, 0);
811
812 return;
813 }
814 /*
815 * Find the rightmost entry in the rbtree:
816 */
817 do {
818 parent = *link;
819 link = &parent->rb_right;
820 } while (*link);
821
822 rightmost = rb_entry(parent, struct sched_entity, run_node);
823 /*
824 * Already in the rightmost position?
825 */
826 if (unlikely(rightmost == se))
827 return;
828
829 /*
830 * Minimally necessary key value to be last in the tree:
831 */
832 se->fair_key = rightmost->fair_key + 1;
833
834 if (cfs_rq->rb_leftmost == &se->run_node)
835 cfs_rq->rb_leftmost = rb_next(&se->run_node);
836 /*
837 * Relink the task to the rightmost position:
838 */
839 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
840 rb_link_node(&se->run_node, parent, link);
841 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
842 }
843
844 /*
845 * Preempt the current task with a newly woken task if needed:
846 */
847 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
848 {
849 struct task_struct *curr = rq->curr;
850 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
851
852 if (unlikely(rt_prio(p->prio))) {
853 update_rq_clock(rq);
854 update_curr(cfs_rq);
855 resched_task(curr);
856 return;
857 }
858 if (is_same_group(curr, p)) {
859 s64 delta = curr->se.vruntime - p->se.vruntime;
860
861 if (delta > (s64)sysctl_sched_wakeup_granularity)
862 resched_task(curr);
863 }
864 }
865
866 static struct task_struct *pick_next_task_fair(struct rq *rq)
867 {
868 struct cfs_rq *cfs_rq = &rq->cfs;
869 struct sched_entity *se;
870
871 if (unlikely(!cfs_rq->nr_running))
872 return NULL;
873
874 do {
875 se = pick_next_entity(cfs_rq);
876 cfs_rq = group_cfs_rq(se);
877 } while (cfs_rq);
878
879 return task_of(se);
880 }
881
882 /*
883 * Account for a descheduled task:
884 */
885 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
886 {
887 struct sched_entity *se = &prev->se;
888 struct cfs_rq *cfs_rq;
889
890 for_each_sched_entity(se) {
891 cfs_rq = cfs_rq_of(se);
892 put_prev_entity(cfs_rq, se);
893 }
894 }
895
896 /**************************************************
897 * Fair scheduling class load-balancing methods:
898 */
899
900 /*
901 * Load-balancing iterator. Note: while the runqueue stays locked
902 * during the whole iteration, the current task might be
903 * dequeued so the iterator has to be dequeue-safe. Here we
904 * achieve that by always pre-iterating before returning
905 * the current task:
906 */
907 static inline struct task_struct *
908 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
909 {
910 struct task_struct *p;
911
912 if (!curr)
913 return NULL;
914
915 p = rb_entry(curr, struct task_struct, se.run_node);
916 cfs_rq->rb_load_balance_curr = rb_next(curr);
917
918 return p;
919 }
920
921 static struct task_struct *load_balance_start_fair(void *arg)
922 {
923 struct cfs_rq *cfs_rq = arg;
924
925 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
926 }
927
928 static struct task_struct *load_balance_next_fair(void *arg)
929 {
930 struct cfs_rq *cfs_rq = arg;
931
932 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
933 }
934
935 #ifdef CONFIG_FAIR_GROUP_SCHED
936 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
937 {
938 struct sched_entity *curr;
939 struct task_struct *p;
940
941 if (!cfs_rq->nr_running)
942 return MAX_PRIO;
943
944 curr = __pick_next_entity(cfs_rq);
945 p = task_of(curr);
946
947 return p->prio;
948 }
949 #endif
950
951 static unsigned long
952 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
953 unsigned long max_nr_move, unsigned long max_load_move,
954 struct sched_domain *sd, enum cpu_idle_type idle,
955 int *all_pinned, int *this_best_prio)
956 {
957 struct cfs_rq *busy_cfs_rq;
958 unsigned long load_moved, total_nr_moved = 0, nr_moved;
959 long rem_load_move = max_load_move;
960 struct rq_iterator cfs_rq_iterator;
961
962 cfs_rq_iterator.start = load_balance_start_fair;
963 cfs_rq_iterator.next = load_balance_next_fair;
964
965 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
966 #ifdef CONFIG_FAIR_GROUP_SCHED
967 struct cfs_rq *this_cfs_rq;
968 long imbalance;
969 unsigned long maxload;
970
971 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
972
973 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
974 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
975 if (imbalance <= 0)
976 continue;
977
978 /* Don't pull more than imbalance/2 */
979 imbalance /= 2;
980 maxload = min(rem_load_move, imbalance);
981
982 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
983 #else
984 # define maxload rem_load_move
985 #endif
986 /* pass busy_cfs_rq argument into
987 * load_balance_[start|next]_fair iterators
988 */
989 cfs_rq_iterator.arg = busy_cfs_rq;
990 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
991 max_nr_move, maxload, sd, idle, all_pinned,
992 &load_moved, this_best_prio, &cfs_rq_iterator);
993
994 total_nr_moved += nr_moved;
995 max_nr_move -= nr_moved;
996 rem_load_move -= load_moved;
997
998 if (max_nr_move <= 0 || rem_load_move <= 0)
999 break;
1000 }
1001
1002 return max_load_move - rem_load_move;
1003 }
1004
1005 /*
1006 * scheduler tick hitting a task of our scheduling class:
1007 */
1008 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1009 {
1010 struct cfs_rq *cfs_rq;
1011 struct sched_entity *se = &curr->se;
1012
1013 for_each_sched_entity(se) {
1014 cfs_rq = cfs_rq_of(se);
1015 entity_tick(cfs_rq, se);
1016 }
1017 }
1018
1019 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1020
1021 /*
1022 * Share the fairness runtime between parent and child, thus the
1023 * total amount of pressure for CPU stays equal - new tasks
1024 * get a chance to run but frequent forkers are not allowed to
1025 * monopolize the CPU. Note: the parent runqueue is locked,
1026 * the child is not running yet.
1027 */
1028 static void task_new_fair(struct rq *rq, struct task_struct *p)
1029 {
1030 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1031 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1032
1033 sched_info_queued(p);
1034
1035 update_curr(cfs_rq);
1036 se->vruntime = cfs_rq->min_vruntime;
1037 update_stats_enqueue(cfs_rq, se);
1038
1039 /*
1040 * The first wait is dominated by the child-runs-first logic,
1041 * so do not credit it with that waiting time yet:
1042 */
1043 if (sched_feat(SKIP_INITIAL))
1044 se->wait_start_fair = 0;
1045
1046 /*
1047 * The statistical average of wait_runtime is about
1048 * -granularity/2, so initialize the task with that:
1049 */
1050 if (sched_feat(START_DEBIT))
1051 se->wait_runtime = -(__sched_period(cfs_rq->nr_running+1) / 2);
1052
1053 if (sysctl_sched_child_runs_first &&
1054 curr->vruntime < se->vruntime) {
1055
1056 dequeue_entity(cfs_rq, curr, 0);
1057 swap(curr->vruntime, se->vruntime);
1058 enqueue_entity(cfs_rq, curr, 0);
1059 }
1060
1061 update_stats_enqueue(cfs_rq, se);
1062 __enqueue_entity(cfs_rq, se);
1063 resched_task(rq->curr);
1064 }
1065
1066 #ifdef CONFIG_FAIR_GROUP_SCHED
1067 /* Account for a task changing its policy or group.
1068 *
1069 * This routine is mostly called to set cfs_rq->curr field when a task
1070 * migrates between groups/classes.
1071 */
1072 static void set_curr_task_fair(struct rq *rq)
1073 {
1074 struct sched_entity *se = &rq->curr->se;
1075
1076 for_each_sched_entity(se)
1077 set_next_entity(cfs_rq_of(se), se);
1078 }
1079 #else
1080 static void set_curr_task_fair(struct rq *rq)
1081 {
1082 }
1083 #endif
1084
1085 /*
1086 * All the scheduling class methods:
1087 */
1088 struct sched_class fair_sched_class __read_mostly = {
1089 .enqueue_task = enqueue_task_fair,
1090 .dequeue_task = dequeue_task_fair,
1091 .yield_task = yield_task_fair,
1092
1093 .check_preempt_curr = check_preempt_wakeup,
1094
1095 .pick_next_task = pick_next_task_fair,
1096 .put_prev_task = put_prev_task_fair,
1097
1098 .load_balance = load_balance_fair,
1099
1100 .set_curr_task = set_curr_task_fair,
1101 .task_tick = task_tick_fair,
1102 .task_new = task_new_fair,
1103 };
1104
1105 #ifdef CONFIG_SCHED_DEBUG
1106 static void print_cfs_stats(struct seq_file *m, int cpu)
1107 {
1108 struct cfs_rq *cfs_rq;
1109
1110 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1111 print_cfs_rq(m, cpu, cfs_rq);
1112 }
1113 #endif