]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched_fair.c
Merge branch 'fix/hda' into for-linus
[mirror_ubuntu-bionic-kernel.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 5000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 1000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. If set to 0 (default) then
52 * parent will (try to) run first.
53 */
54 unsigned int sysctl_sched_child_runs_first __read_mostly;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 static const struct sched_class fair_sched_class;
77
78 /**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
82 #ifdef CONFIG_FAIR_GROUP_SCHED
83
84 /* cpu runqueue to which this cfs_rq is attached */
85 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
86 {
87 return cfs_rq->rq;
88 }
89
90 /* An entity is a task if it doesn't "own" a runqueue */
91 #define entity_is_task(se) (!se->my_q)
92
93 static inline struct task_struct *task_of(struct sched_entity *se)
94 {
95 #ifdef CONFIG_SCHED_DEBUG
96 WARN_ON_ONCE(!entity_is_task(se));
97 #endif
98 return container_of(se, struct task_struct, se);
99 }
100
101 /* Walk up scheduling entities hierarchy */
102 #define for_each_sched_entity(se) \
103 for (; se; se = se->parent)
104
105 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
106 {
107 return p->se.cfs_rq;
108 }
109
110 /* runqueue on which this entity is (to be) queued */
111 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
112 {
113 return se->cfs_rq;
114 }
115
116 /* runqueue "owned" by this group */
117 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
118 {
119 return grp->my_q;
120 }
121
122 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123 * another cpu ('this_cpu')
124 */
125 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
126 {
127 return cfs_rq->tg->cfs_rq[this_cpu];
128 }
129
130 /* Iterate thr' all leaf cfs_rq's on a runqueue */
131 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
132 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
133
134 /* Do the two (enqueued) entities belong to the same group ? */
135 static inline int
136 is_same_group(struct sched_entity *se, struct sched_entity *pse)
137 {
138 if (se->cfs_rq == pse->cfs_rq)
139 return 1;
140
141 return 0;
142 }
143
144 static inline struct sched_entity *parent_entity(struct sched_entity *se)
145 {
146 return se->parent;
147 }
148
149 /* return depth at which a sched entity is present in the hierarchy */
150 static inline int depth_se(struct sched_entity *se)
151 {
152 int depth = 0;
153
154 for_each_sched_entity(se)
155 depth++;
156
157 return depth;
158 }
159
160 static void
161 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
162 {
163 int se_depth, pse_depth;
164
165 /*
166 * preemption test can be made between sibling entities who are in the
167 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168 * both tasks until we find their ancestors who are siblings of common
169 * parent.
170 */
171
172 /* First walk up until both entities are at same depth */
173 se_depth = depth_se(*se);
174 pse_depth = depth_se(*pse);
175
176 while (se_depth > pse_depth) {
177 se_depth--;
178 *se = parent_entity(*se);
179 }
180
181 while (pse_depth > se_depth) {
182 pse_depth--;
183 *pse = parent_entity(*pse);
184 }
185
186 while (!is_same_group(*se, *pse)) {
187 *se = parent_entity(*se);
188 *pse = parent_entity(*pse);
189 }
190 }
191
192 #else /* !CONFIG_FAIR_GROUP_SCHED */
193
194 static inline struct task_struct *task_of(struct sched_entity *se)
195 {
196 return container_of(se, struct task_struct, se);
197 }
198
199 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
200 {
201 return container_of(cfs_rq, struct rq, cfs);
202 }
203
204 #define entity_is_task(se) 1
205
206 #define for_each_sched_entity(se) \
207 for (; se; se = NULL)
208
209 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
210 {
211 return &task_rq(p)->cfs;
212 }
213
214 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
215 {
216 struct task_struct *p = task_of(se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->cfs;
220 }
221
222 /* runqueue "owned" by this group */
223 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
224 {
225 return NULL;
226 }
227
228 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
229 {
230 return &cpu_rq(this_cpu)->cfs;
231 }
232
233 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
234 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
235
236 static inline int
237 is_same_group(struct sched_entity *se, struct sched_entity *pse)
238 {
239 return 1;
240 }
241
242 static inline struct sched_entity *parent_entity(struct sched_entity *se)
243 {
244 return NULL;
245 }
246
247 static inline void
248 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
249 {
250 }
251
252 #endif /* CONFIG_FAIR_GROUP_SCHED */
253
254
255 /**************************************************************
256 * Scheduling class tree data structure manipulation methods:
257 */
258
259 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
260 {
261 s64 delta = (s64)(vruntime - min_vruntime);
262 if (delta > 0)
263 min_vruntime = vruntime;
264
265 return min_vruntime;
266 }
267
268 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
269 {
270 s64 delta = (s64)(vruntime - min_vruntime);
271 if (delta < 0)
272 min_vruntime = vruntime;
273
274 return min_vruntime;
275 }
276
277 static inline int entity_before(struct sched_entity *a,
278 struct sched_entity *b)
279 {
280 return (s64)(a->vruntime - b->vruntime) < 0;
281 }
282
283 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
284 {
285 return se->vruntime - cfs_rq->min_vruntime;
286 }
287
288 static void update_min_vruntime(struct cfs_rq *cfs_rq)
289 {
290 u64 vruntime = cfs_rq->min_vruntime;
291
292 if (cfs_rq->curr)
293 vruntime = cfs_rq->curr->vruntime;
294
295 if (cfs_rq->rb_leftmost) {
296 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
297 struct sched_entity,
298 run_node);
299
300 if (!cfs_rq->curr)
301 vruntime = se->vruntime;
302 else
303 vruntime = min_vruntime(vruntime, se->vruntime);
304 }
305
306 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
307 }
308
309 /*
310 * Enqueue an entity into the rb-tree:
311 */
312 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
313 {
314 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
315 struct rb_node *parent = NULL;
316 struct sched_entity *entry;
317 s64 key = entity_key(cfs_rq, se);
318 int leftmost = 1;
319
320 /*
321 * Find the right place in the rbtree:
322 */
323 while (*link) {
324 parent = *link;
325 entry = rb_entry(parent, struct sched_entity, run_node);
326 /*
327 * We dont care about collisions. Nodes with
328 * the same key stay together.
329 */
330 if (key < entity_key(cfs_rq, entry)) {
331 link = &parent->rb_left;
332 } else {
333 link = &parent->rb_right;
334 leftmost = 0;
335 }
336 }
337
338 /*
339 * Maintain a cache of leftmost tree entries (it is frequently
340 * used):
341 */
342 if (leftmost)
343 cfs_rq->rb_leftmost = &se->run_node;
344
345 rb_link_node(&se->run_node, parent, link);
346 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
347 }
348
349 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
350 {
351 if (cfs_rq->rb_leftmost == &se->run_node) {
352 struct rb_node *next_node;
353
354 next_node = rb_next(&se->run_node);
355 cfs_rq->rb_leftmost = next_node;
356 }
357
358 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
359 }
360
361 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
362 {
363 struct rb_node *left = cfs_rq->rb_leftmost;
364
365 if (!left)
366 return NULL;
367
368 return rb_entry(left, struct sched_entity, run_node);
369 }
370
371 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
372 {
373 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
374
375 if (!last)
376 return NULL;
377
378 return rb_entry(last, struct sched_entity, run_node);
379 }
380
381 /**************************************************************
382 * Scheduling class statistics methods:
383 */
384
385 #ifdef CONFIG_SCHED_DEBUG
386 int sched_nr_latency_handler(struct ctl_table *table, int write,
387 void __user *buffer, size_t *lenp,
388 loff_t *ppos)
389 {
390 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
391
392 if (ret || !write)
393 return ret;
394
395 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396 sysctl_sched_min_granularity);
397
398 return 0;
399 }
400 #endif
401
402 /*
403 * delta /= w
404 */
405 static inline unsigned long
406 calc_delta_fair(unsigned long delta, struct sched_entity *se)
407 {
408 if (unlikely(se->load.weight != NICE_0_LOAD))
409 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
410
411 return delta;
412 }
413
414 /*
415 * The idea is to set a period in which each task runs once.
416 *
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
419 *
420 * p = (nr <= nl) ? l : l*nr/nl
421 */
422 static u64 __sched_period(unsigned long nr_running)
423 {
424 u64 period = sysctl_sched_latency;
425 unsigned long nr_latency = sched_nr_latency;
426
427 if (unlikely(nr_running > nr_latency)) {
428 period = sysctl_sched_min_granularity;
429 period *= nr_running;
430 }
431
432 return period;
433 }
434
435 /*
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
438 *
439 * s = p*P[w/rw]
440 */
441 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
442 {
443 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
444
445 for_each_sched_entity(se) {
446 struct load_weight *load;
447 struct load_weight lw;
448
449 cfs_rq = cfs_rq_of(se);
450 load = &cfs_rq->load;
451
452 if (unlikely(!se->on_rq)) {
453 lw = cfs_rq->load;
454
455 update_load_add(&lw, se->load.weight);
456 load = &lw;
457 }
458 slice = calc_delta_mine(slice, se->load.weight, load);
459 }
460 return slice;
461 }
462
463 /*
464 * We calculate the vruntime slice of a to be inserted task
465 *
466 * vs = s/w
467 */
468 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
469 {
470 return calc_delta_fair(sched_slice(cfs_rq, se), se);
471 }
472
473 /*
474 * Update the current task's runtime statistics. Skip current tasks that
475 * are not in our scheduling class.
476 */
477 static inline void
478 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
479 unsigned long delta_exec)
480 {
481 unsigned long delta_exec_weighted;
482
483 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
484
485 curr->sum_exec_runtime += delta_exec;
486 schedstat_add(cfs_rq, exec_clock, delta_exec);
487 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
488 curr->vruntime += delta_exec_weighted;
489 update_min_vruntime(cfs_rq);
490 }
491
492 static void update_curr(struct cfs_rq *cfs_rq)
493 {
494 struct sched_entity *curr = cfs_rq->curr;
495 u64 now = rq_of(cfs_rq)->clock;
496 unsigned long delta_exec;
497
498 if (unlikely(!curr))
499 return;
500
501 /*
502 * Get the amount of time the current task was running
503 * since the last time we changed load (this cannot
504 * overflow on 32 bits):
505 */
506 delta_exec = (unsigned long)(now - curr->exec_start);
507 if (!delta_exec)
508 return;
509
510 __update_curr(cfs_rq, curr, delta_exec);
511 curr->exec_start = now;
512
513 if (entity_is_task(curr)) {
514 struct task_struct *curtask = task_of(curr);
515
516 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
517 cpuacct_charge(curtask, delta_exec);
518 account_group_exec_runtime(curtask, delta_exec);
519 }
520 }
521
522 static inline void
523 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
524 {
525 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
526 }
527
528 /*
529 * Task is being enqueued - update stats:
530 */
531 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
532 {
533 /*
534 * Are we enqueueing a waiting task? (for current tasks
535 * a dequeue/enqueue event is a NOP)
536 */
537 if (se != cfs_rq->curr)
538 update_stats_wait_start(cfs_rq, se);
539 }
540
541 static void
542 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
543 {
544 schedstat_set(se->wait_max, max(se->wait_max,
545 rq_of(cfs_rq)->clock - se->wait_start));
546 schedstat_set(se->wait_count, se->wait_count + 1);
547 schedstat_set(se->wait_sum, se->wait_sum +
548 rq_of(cfs_rq)->clock - se->wait_start);
549 #ifdef CONFIG_SCHEDSTATS
550 if (entity_is_task(se)) {
551 trace_sched_stat_wait(task_of(se),
552 rq_of(cfs_rq)->clock - se->wait_start);
553 }
554 #endif
555 schedstat_set(se->wait_start, 0);
556 }
557
558 static inline void
559 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
560 {
561 /*
562 * Mark the end of the wait period if dequeueing a
563 * waiting task:
564 */
565 if (se != cfs_rq->curr)
566 update_stats_wait_end(cfs_rq, se);
567 }
568
569 /*
570 * We are picking a new current task - update its stats:
571 */
572 static inline void
573 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
574 {
575 /*
576 * We are starting a new run period:
577 */
578 se->exec_start = rq_of(cfs_rq)->clock;
579 }
580
581 /**************************************************
582 * Scheduling class queueing methods:
583 */
584
585 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
586 static void
587 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
588 {
589 cfs_rq->task_weight += weight;
590 }
591 #else
592 static inline void
593 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
594 {
595 }
596 #endif
597
598 static void
599 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
600 {
601 update_load_add(&cfs_rq->load, se->load.weight);
602 if (!parent_entity(se))
603 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
604 if (entity_is_task(se)) {
605 add_cfs_task_weight(cfs_rq, se->load.weight);
606 list_add(&se->group_node, &cfs_rq->tasks);
607 }
608 cfs_rq->nr_running++;
609 se->on_rq = 1;
610 }
611
612 static void
613 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
614 {
615 update_load_sub(&cfs_rq->load, se->load.weight);
616 if (!parent_entity(se))
617 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
618 if (entity_is_task(se)) {
619 add_cfs_task_weight(cfs_rq, -se->load.weight);
620 list_del_init(&se->group_node);
621 }
622 cfs_rq->nr_running--;
623 se->on_rq = 0;
624 }
625
626 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 #ifdef CONFIG_SCHEDSTATS
629 struct task_struct *tsk = NULL;
630
631 if (entity_is_task(se))
632 tsk = task_of(se);
633
634 if (se->sleep_start) {
635 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
636
637 if ((s64)delta < 0)
638 delta = 0;
639
640 if (unlikely(delta > se->sleep_max))
641 se->sleep_max = delta;
642
643 se->sleep_start = 0;
644 se->sum_sleep_runtime += delta;
645
646 if (tsk) {
647 account_scheduler_latency(tsk, delta >> 10, 1);
648 trace_sched_stat_sleep(tsk, delta);
649 }
650 }
651 if (se->block_start) {
652 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
653
654 if ((s64)delta < 0)
655 delta = 0;
656
657 if (unlikely(delta > se->block_max))
658 se->block_max = delta;
659
660 se->block_start = 0;
661 se->sum_sleep_runtime += delta;
662
663 if (tsk) {
664 if (tsk->in_iowait) {
665 se->iowait_sum += delta;
666 se->iowait_count++;
667 trace_sched_stat_iowait(tsk, delta);
668 }
669
670 /*
671 * Blocking time is in units of nanosecs, so shift by
672 * 20 to get a milliseconds-range estimation of the
673 * amount of time that the task spent sleeping:
674 */
675 if (unlikely(prof_on == SLEEP_PROFILING)) {
676 profile_hits(SLEEP_PROFILING,
677 (void *)get_wchan(tsk),
678 delta >> 20);
679 }
680 account_scheduler_latency(tsk, delta >> 10, 0);
681 }
682 }
683 #endif
684 }
685
686 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
687 {
688 #ifdef CONFIG_SCHED_DEBUG
689 s64 d = se->vruntime - cfs_rq->min_vruntime;
690
691 if (d < 0)
692 d = -d;
693
694 if (d > 3*sysctl_sched_latency)
695 schedstat_inc(cfs_rq, nr_spread_over);
696 #endif
697 }
698
699 static void
700 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
701 {
702 u64 vruntime = cfs_rq->min_vruntime;
703
704 /*
705 * The 'current' period is already promised to the current tasks,
706 * however the extra weight of the new task will slow them down a
707 * little, place the new task so that it fits in the slot that
708 * stays open at the end.
709 */
710 if (initial && sched_feat(START_DEBIT))
711 vruntime += sched_vslice(cfs_rq, se);
712
713 /* sleeps up to a single latency don't count. */
714 if (!initial && sched_feat(FAIR_SLEEPERS)) {
715 unsigned long thresh = sysctl_sched_latency;
716
717 /*
718 * Convert the sleeper threshold into virtual time.
719 * SCHED_IDLE is a special sub-class. We care about
720 * fairness only relative to other SCHED_IDLE tasks,
721 * all of which have the same weight.
722 */
723 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
724 task_of(se)->policy != SCHED_IDLE))
725 thresh = calc_delta_fair(thresh, se);
726
727 /*
728 * Halve their sleep time's effect, to allow
729 * for a gentler effect of sleepers:
730 */
731 if (sched_feat(GENTLE_FAIR_SLEEPERS))
732 thresh >>= 1;
733
734 vruntime -= thresh;
735 }
736
737 /* ensure we never gain time by being placed backwards. */
738 vruntime = max_vruntime(se->vruntime, vruntime);
739
740 se->vruntime = vruntime;
741 }
742
743 static void
744 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
745 {
746 /*
747 * Update run-time statistics of the 'current'.
748 */
749 update_curr(cfs_rq);
750 account_entity_enqueue(cfs_rq, se);
751
752 if (wakeup) {
753 place_entity(cfs_rq, se, 0);
754 enqueue_sleeper(cfs_rq, se);
755 }
756
757 update_stats_enqueue(cfs_rq, se);
758 check_spread(cfs_rq, se);
759 if (se != cfs_rq->curr)
760 __enqueue_entity(cfs_rq, se);
761 }
762
763 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
764 {
765 if (!se || cfs_rq->last == se)
766 cfs_rq->last = NULL;
767
768 if (!se || cfs_rq->next == se)
769 cfs_rq->next = NULL;
770 }
771
772 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
773 {
774 for_each_sched_entity(se)
775 __clear_buddies(cfs_rq_of(se), se);
776 }
777
778 static void
779 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
780 {
781 /*
782 * Update run-time statistics of the 'current'.
783 */
784 update_curr(cfs_rq);
785
786 update_stats_dequeue(cfs_rq, se);
787 if (sleep) {
788 #ifdef CONFIG_SCHEDSTATS
789 if (entity_is_task(se)) {
790 struct task_struct *tsk = task_of(se);
791
792 if (tsk->state & TASK_INTERRUPTIBLE)
793 se->sleep_start = rq_of(cfs_rq)->clock;
794 if (tsk->state & TASK_UNINTERRUPTIBLE)
795 se->block_start = rq_of(cfs_rq)->clock;
796 }
797 #endif
798 }
799
800 clear_buddies(cfs_rq, se);
801
802 if (se != cfs_rq->curr)
803 __dequeue_entity(cfs_rq, se);
804 account_entity_dequeue(cfs_rq, se);
805 update_min_vruntime(cfs_rq);
806 }
807
808 /*
809 * Preempt the current task with a newly woken task if needed:
810 */
811 static void
812 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
813 {
814 unsigned long ideal_runtime, delta_exec;
815
816 ideal_runtime = sched_slice(cfs_rq, curr);
817 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
818 if (delta_exec > ideal_runtime) {
819 resched_task(rq_of(cfs_rq)->curr);
820 /*
821 * The current task ran long enough, ensure it doesn't get
822 * re-elected due to buddy favours.
823 */
824 clear_buddies(cfs_rq, curr);
825 }
826 }
827
828 static void
829 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
830 {
831 /* 'current' is not kept within the tree. */
832 if (se->on_rq) {
833 /*
834 * Any task has to be enqueued before it get to execute on
835 * a CPU. So account for the time it spent waiting on the
836 * runqueue.
837 */
838 update_stats_wait_end(cfs_rq, se);
839 __dequeue_entity(cfs_rq, se);
840 }
841
842 update_stats_curr_start(cfs_rq, se);
843 cfs_rq->curr = se;
844 #ifdef CONFIG_SCHEDSTATS
845 /*
846 * Track our maximum slice length, if the CPU's load is at
847 * least twice that of our own weight (i.e. dont track it
848 * when there are only lesser-weight tasks around):
849 */
850 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
851 se->slice_max = max(se->slice_max,
852 se->sum_exec_runtime - se->prev_sum_exec_runtime);
853 }
854 #endif
855 se->prev_sum_exec_runtime = se->sum_exec_runtime;
856 }
857
858 static int
859 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
860
861 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
862 {
863 struct sched_entity *se = __pick_next_entity(cfs_rq);
864 struct sched_entity *buddy;
865
866 if (cfs_rq->next) {
867 buddy = cfs_rq->next;
868 cfs_rq->next = NULL;
869 if (wakeup_preempt_entity(buddy, se) < 1)
870 return buddy;
871 }
872
873 if (cfs_rq->last) {
874 buddy = cfs_rq->last;
875 cfs_rq->last = NULL;
876 if (wakeup_preempt_entity(buddy, se) < 1)
877 return buddy;
878 }
879
880 return se;
881 }
882
883 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
884 {
885 /*
886 * If still on the runqueue then deactivate_task()
887 * was not called and update_curr() has to be done:
888 */
889 if (prev->on_rq)
890 update_curr(cfs_rq);
891
892 check_spread(cfs_rq, prev);
893 if (prev->on_rq) {
894 update_stats_wait_start(cfs_rq, prev);
895 /* Put 'current' back into the tree. */
896 __enqueue_entity(cfs_rq, prev);
897 }
898 cfs_rq->curr = NULL;
899 }
900
901 static void
902 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
903 {
904 /*
905 * Update run-time statistics of the 'current'.
906 */
907 update_curr(cfs_rq);
908
909 #ifdef CONFIG_SCHED_HRTICK
910 /*
911 * queued ticks are scheduled to match the slice, so don't bother
912 * validating it and just reschedule.
913 */
914 if (queued) {
915 resched_task(rq_of(cfs_rq)->curr);
916 return;
917 }
918 /*
919 * don't let the period tick interfere with the hrtick preemption
920 */
921 if (!sched_feat(DOUBLE_TICK) &&
922 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
923 return;
924 #endif
925
926 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
927 check_preempt_tick(cfs_rq, curr);
928 }
929
930 /**************************************************
931 * CFS operations on tasks:
932 */
933
934 #ifdef CONFIG_SCHED_HRTICK
935 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
936 {
937 struct sched_entity *se = &p->se;
938 struct cfs_rq *cfs_rq = cfs_rq_of(se);
939
940 WARN_ON(task_rq(p) != rq);
941
942 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
943 u64 slice = sched_slice(cfs_rq, se);
944 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
945 s64 delta = slice - ran;
946
947 if (delta < 0) {
948 if (rq->curr == p)
949 resched_task(p);
950 return;
951 }
952
953 /*
954 * Don't schedule slices shorter than 10000ns, that just
955 * doesn't make sense. Rely on vruntime for fairness.
956 */
957 if (rq->curr != p)
958 delta = max_t(s64, 10000LL, delta);
959
960 hrtick_start(rq, delta);
961 }
962 }
963
964 /*
965 * called from enqueue/dequeue and updates the hrtick when the
966 * current task is from our class and nr_running is low enough
967 * to matter.
968 */
969 static void hrtick_update(struct rq *rq)
970 {
971 struct task_struct *curr = rq->curr;
972
973 if (curr->sched_class != &fair_sched_class)
974 return;
975
976 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
977 hrtick_start_fair(rq, curr);
978 }
979 #else /* !CONFIG_SCHED_HRTICK */
980 static inline void
981 hrtick_start_fair(struct rq *rq, struct task_struct *p)
982 {
983 }
984
985 static inline void hrtick_update(struct rq *rq)
986 {
987 }
988 #endif
989
990 /*
991 * The enqueue_task method is called before nr_running is
992 * increased. Here we update the fair scheduling stats and
993 * then put the task into the rbtree:
994 */
995 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
996 {
997 struct cfs_rq *cfs_rq;
998 struct sched_entity *se = &p->se;
999
1000 for_each_sched_entity(se) {
1001 if (se->on_rq)
1002 break;
1003 cfs_rq = cfs_rq_of(se);
1004 enqueue_entity(cfs_rq, se, wakeup);
1005 wakeup = 1;
1006 }
1007
1008 hrtick_update(rq);
1009 }
1010
1011 /*
1012 * The dequeue_task method is called before nr_running is
1013 * decreased. We remove the task from the rbtree and
1014 * update the fair scheduling stats:
1015 */
1016 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1017 {
1018 struct cfs_rq *cfs_rq;
1019 struct sched_entity *se = &p->se;
1020
1021 for_each_sched_entity(se) {
1022 cfs_rq = cfs_rq_of(se);
1023 dequeue_entity(cfs_rq, se, sleep);
1024 /* Don't dequeue parent if it has other entities besides us */
1025 if (cfs_rq->load.weight)
1026 break;
1027 sleep = 1;
1028 }
1029
1030 hrtick_update(rq);
1031 }
1032
1033 /*
1034 * sched_yield() support is very simple - we dequeue and enqueue.
1035 *
1036 * If compat_yield is turned on then we requeue to the end of the tree.
1037 */
1038 static void yield_task_fair(struct rq *rq)
1039 {
1040 struct task_struct *curr = rq->curr;
1041 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1042 struct sched_entity *rightmost, *se = &curr->se;
1043
1044 /*
1045 * Are we the only task in the tree?
1046 */
1047 if (unlikely(cfs_rq->nr_running == 1))
1048 return;
1049
1050 clear_buddies(cfs_rq, se);
1051
1052 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1053 update_rq_clock(rq);
1054 /*
1055 * Update run-time statistics of the 'current'.
1056 */
1057 update_curr(cfs_rq);
1058
1059 return;
1060 }
1061 /*
1062 * Find the rightmost entry in the rbtree:
1063 */
1064 rightmost = __pick_last_entity(cfs_rq);
1065 /*
1066 * Already in the rightmost position?
1067 */
1068 if (unlikely(!rightmost || entity_before(rightmost, se)))
1069 return;
1070
1071 /*
1072 * Minimally necessary key value to be last in the tree:
1073 * Upon rescheduling, sched_class::put_prev_task() will place
1074 * 'current' within the tree based on its new key value.
1075 */
1076 se->vruntime = rightmost->vruntime + 1;
1077 }
1078
1079 #ifdef CONFIG_SMP
1080
1081 #ifdef CONFIG_FAIR_GROUP_SCHED
1082 /*
1083 * effective_load() calculates the load change as seen from the root_task_group
1084 *
1085 * Adding load to a group doesn't make a group heavier, but can cause movement
1086 * of group shares between cpus. Assuming the shares were perfectly aligned one
1087 * can calculate the shift in shares.
1088 *
1089 * The problem is that perfectly aligning the shares is rather expensive, hence
1090 * we try to avoid doing that too often - see update_shares(), which ratelimits
1091 * this change.
1092 *
1093 * We compensate this by not only taking the current delta into account, but
1094 * also considering the delta between when the shares were last adjusted and
1095 * now.
1096 *
1097 * We still saw a performance dip, some tracing learned us that between
1098 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1099 * significantly. Therefore try to bias the error in direction of failing
1100 * the affine wakeup.
1101 *
1102 */
1103 static long effective_load(struct task_group *tg, int cpu,
1104 long wl, long wg)
1105 {
1106 struct sched_entity *se = tg->se[cpu];
1107
1108 if (!tg->parent)
1109 return wl;
1110
1111 /*
1112 * By not taking the decrease of shares on the other cpu into
1113 * account our error leans towards reducing the affine wakeups.
1114 */
1115 if (!wl && sched_feat(ASYM_EFF_LOAD))
1116 return wl;
1117
1118 for_each_sched_entity(se) {
1119 long S, rw, s, a, b;
1120 long more_w;
1121
1122 /*
1123 * Instead of using this increment, also add the difference
1124 * between when the shares were last updated and now.
1125 */
1126 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1127 wl += more_w;
1128 wg += more_w;
1129
1130 S = se->my_q->tg->shares;
1131 s = se->my_q->shares;
1132 rw = se->my_q->rq_weight;
1133
1134 a = S*(rw + wl);
1135 b = S*rw + s*wg;
1136
1137 wl = s*(a-b);
1138
1139 if (likely(b))
1140 wl /= b;
1141
1142 /*
1143 * Assume the group is already running and will
1144 * thus already be accounted for in the weight.
1145 *
1146 * That is, moving shares between CPUs, does not
1147 * alter the group weight.
1148 */
1149 wg = 0;
1150 }
1151
1152 return wl;
1153 }
1154
1155 #else
1156
1157 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1158 unsigned long wl, unsigned long wg)
1159 {
1160 return wl;
1161 }
1162
1163 #endif
1164
1165 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1166 {
1167 struct task_struct *curr = current;
1168 unsigned long this_load, load;
1169 int idx, this_cpu, prev_cpu;
1170 unsigned long tl_per_task;
1171 unsigned int imbalance;
1172 struct task_group *tg;
1173 unsigned long weight;
1174 int balanced;
1175
1176 idx = sd->wake_idx;
1177 this_cpu = smp_processor_id();
1178 prev_cpu = task_cpu(p);
1179 load = source_load(prev_cpu, idx);
1180 this_load = target_load(this_cpu, idx);
1181
1182 if (sync) {
1183 if (sched_feat(SYNC_LESS) &&
1184 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1185 p->se.avg_overlap > sysctl_sched_migration_cost))
1186 sync = 0;
1187 } else {
1188 if (sched_feat(SYNC_MORE) &&
1189 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1190 p->se.avg_overlap < sysctl_sched_migration_cost))
1191 sync = 1;
1192 }
1193
1194 /*
1195 * If sync wakeup then subtract the (maximum possible)
1196 * effect of the currently running task from the load
1197 * of the current CPU:
1198 */
1199 if (sync) {
1200 tg = task_group(current);
1201 weight = current->se.load.weight;
1202
1203 this_load += effective_load(tg, this_cpu, -weight, -weight);
1204 load += effective_load(tg, prev_cpu, 0, -weight);
1205 }
1206
1207 tg = task_group(p);
1208 weight = p->se.load.weight;
1209
1210 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1211
1212 /*
1213 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1214 * due to the sync cause above having dropped this_load to 0, we'll
1215 * always have an imbalance, but there's really nothing you can do
1216 * about that, so that's good too.
1217 *
1218 * Otherwise check if either cpus are near enough in load to allow this
1219 * task to be woken on this_cpu.
1220 */
1221 balanced = !this_load ||
1222 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1223 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1224
1225 /*
1226 * If the currently running task will sleep within
1227 * a reasonable amount of time then attract this newly
1228 * woken task:
1229 */
1230 if (sync && balanced)
1231 return 1;
1232
1233 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1234 tl_per_task = cpu_avg_load_per_task(this_cpu);
1235
1236 if (balanced ||
1237 (this_load <= load &&
1238 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1239 /*
1240 * This domain has SD_WAKE_AFFINE and
1241 * p is cache cold in this domain, and
1242 * there is no bad imbalance.
1243 */
1244 schedstat_inc(sd, ttwu_move_affine);
1245 schedstat_inc(p, se.nr_wakeups_affine);
1246
1247 return 1;
1248 }
1249 return 0;
1250 }
1251
1252 /*
1253 * find_idlest_group finds and returns the least busy CPU group within the
1254 * domain.
1255 */
1256 static struct sched_group *
1257 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1258 int this_cpu, int load_idx)
1259 {
1260 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1261 unsigned long min_load = ULONG_MAX, this_load = 0;
1262 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1263
1264 do {
1265 unsigned long load, avg_load;
1266 int local_group;
1267 int i;
1268
1269 /* Skip over this group if it has no CPUs allowed */
1270 if (!cpumask_intersects(sched_group_cpus(group),
1271 &p->cpus_allowed))
1272 continue;
1273
1274 local_group = cpumask_test_cpu(this_cpu,
1275 sched_group_cpus(group));
1276
1277 /* Tally up the load of all CPUs in the group */
1278 avg_load = 0;
1279
1280 for_each_cpu(i, sched_group_cpus(group)) {
1281 /* Bias balancing toward cpus of our domain */
1282 if (local_group)
1283 load = source_load(i, load_idx);
1284 else
1285 load = target_load(i, load_idx);
1286
1287 avg_load += load;
1288 }
1289
1290 /* Adjust by relative CPU power of the group */
1291 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1292
1293 if (local_group) {
1294 this_load = avg_load;
1295 this = group;
1296 } else if (avg_load < min_load) {
1297 min_load = avg_load;
1298 idlest = group;
1299 }
1300 } while (group = group->next, group != sd->groups);
1301
1302 if (!idlest || 100*this_load < imbalance*min_load)
1303 return NULL;
1304 return idlest;
1305 }
1306
1307 /*
1308 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1309 */
1310 static int
1311 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1312 {
1313 unsigned long load, min_load = ULONG_MAX;
1314 int idlest = -1;
1315 int i;
1316
1317 /* Traverse only the allowed CPUs */
1318 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1319 load = weighted_cpuload(i);
1320
1321 if (load < min_load || (load == min_load && i == this_cpu)) {
1322 min_load = load;
1323 idlest = i;
1324 }
1325 }
1326
1327 return idlest;
1328 }
1329
1330 /*
1331 * sched_balance_self: balance the current task (running on cpu) in domains
1332 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1333 * SD_BALANCE_EXEC.
1334 *
1335 * Balance, ie. select the least loaded group.
1336 *
1337 * Returns the target CPU number, or the same CPU if no balancing is needed.
1338 *
1339 * preempt must be disabled.
1340 */
1341 static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1342 {
1343 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1344 int cpu = smp_processor_id();
1345 int prev_cpu = task_cpu(p);
1346 int new_cpu = cpu;
1347 int want_affine = 0;
1348 int want_sd = 1;
1349 int sync = wake_flags & WF_SYNC;
1350
1351 if (sd_flag & SD_BALANCE_WAKE) {
1352 if (sched_feat(AFFINE_WAKEUPS) &&
1353 cpumask_test_cpu(cpu, &p->cpus_allowed))
1354 want_affine = 1;
1355 new_cpu = prev_cpu;
1356 }
1357
1358 rcu_read_lock();
1359 for_each_domain(cpu, tmp) {
1360 /*
1361 * If power savings logic is enabled for a domain, see if we
1362 * are not overloaded, if so, don't balance wider.
1363 */
1364 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1365 unsigned long power = 0;
1366 unsigned long nr_running = 0;
1367 unsigned long capacity;
1368 int i;
1369
1370 for_each_cpu(i, sched_domain_span(tmp)) {
1371 power += power_of(i);
1372 nr_running += cpu_rq(i)->cfs.nr_running;
1373 }
1374
1375 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1376
1377 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1378 nr_running /= 2;
1379
1380 if (nr_running < capacity)
1381 want_sd = 0;
1382 }
1383
1384 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1385 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1386
1387 affine_sd = tmp;
1388 want_affine = 0;
1389 }
1390
1391 if (!want_sd && !want_affine)
1392 break;
1393
1394 if (!(tmp->flags & sd_flag))
1395 continue;
1396
1397 if (want_sd)
1398 sd = tmp;
1399 }
1400
1401 if (sched_feat(LB_SHARES_UPDATE)) {
1402 /*
1403 * Pick the largest domain to update shares over
1404 */
1405 tmp = sd;
1406 if (affine_sd && (!tmp ||
1407 cpumask_weight(sched_domain_span(affine_sd)) >
1408 cpumask_weight(sched_domain_span(sd))))
1409 tmp = affine_sd;
1410
1411 if (tmp)
1412 update_shares(tmp);
1413 }
1414
1415 if (affine_sd && wake_affine(affine_sd, p, sync)) {
1416 new_cpu = cpu;
1417 goto out;
1418 }
1419
1420 while (sd) {
1421 int load_idx = sd->forkexec_idx;
1422 struct sched_group *group;
1423 int weight;
1424
1425 if (!(sd->flags & sd_flag)) {
1426 sd = sd->child;
1427 continue;
1428 }
1429
1430 if (sd_flag & SD_BALANCE_WAKE)
1431 load_idx = sd->wake_idx;
1432
1433 group = find_idlest_group(sd, p, cpu, load_idx);
1434 if (!group) {
1435 sd = sd->child;
1436 continue;
1437 }
1438
1439 new_cpu = find_idlest_cpu(group, p, cpu);
1440 if (new_cpu == -1 || new_cpu == cpu) {
1441 /* Now try balancing at a lower domain level of cpu */
1442 sd = sd->child;
1443 continue;
1444 }
1445
1446 /* Now try balancing at a lower domain level of new_cpu */
1447 cpu = new_cpu;
1448 weight = cpumask_weight(sched_domain_span(sd));
1449 sd = NULL;
1450 for_each_domain(cpu, tmp) {
1451 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1452 break;
1453 if (tmp->flags & sd_flag)
1454 sd = tmp;
1455 }
1456 /* while loop will break here if sd == NULL */
1457 }
1458
1459 out:
1460 rcu_read_unlock();
1461 return new_cpu;
1462 }
1463 #endif /* CONFIG_SMP */
1464
1465 /*
1466 * Adaptive granularity
1467 *
1468 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1469 * with the limit of wakeup_gran -- when it never does a wakeup.
1470 *
1471 * So the smaller avg_wakeup is the faster we want this task to preempt,
1472 * but we don't want to treat the preemptee unfairly and therefore allow it
1473 * to run for at least the amount of time we'd like to run.
1474 *
1475 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1476 *
1477 * NOTE: we use *nr_running to scale with load, this nicely matches the
1478 * degrading latency on load.
1479 */
1480 static unsigned long
1481 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1482 {
1483 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1484 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1485 u64 gran = 0;
1486
1487 if (this_run < expected_wakeup)
1488 gran = expected_wakeup - this_run;
1489
1490 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1491 }
1492
1493 static unsigned long
1494 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1495 {
1496 unsigned long gran = sysctl_sched_wakeup_granularity;
1497
1498 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1499 gran = adaptive_gran(curr, se);
1500
1501 /*
1502 * Since its curr running now, convert the gran from real-time
1503 * to virtual-time in his units.
1504 */
1505 if (sched_feat(ASYM_GRAN)) {
1506 /*
1507 * By using 'se' instead of 'curr' we penalize light tasks, so
1508 * they get preempted easier. That is, if 'se' < 'curr' then
1509 * the resulting gran will be larger, therefore penalizing the
1510 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1511 * be smaller, again penalizing the lighter task.
1512 *
1513 * This is especially important for buddies when the leftmost
1514 * task is higher priority than the buddy.
1515 */
1516 if (unlikely(se->load.weight != NICE_0_LOAD))
1517 gran = calc_delta_fair(gran, se);
1518 } else {
1519 if (unlikely(curr->load.weight != NICE_0_LOAD))
1520 gran = calc_delta_fair(gran, curr);
1521 }
1522
1523 return gran;
1524 }
1525
1526 /*
1527 * Should 'se' preempt 'curr'.
1528 *
1529 * |s1
1530 * |s2
1531 * |s3
1532 * g
1533 * |<--->|c
1534 *
1535 * w(c, s1) = -1
1536 * w(c, s2) = 0
1537 * w(c, s3) = 1
1538 *
1539 */
1540 static int
1541 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1542 {
1543 s64 gran, vdiff = curr->vruntime - se->vruntime;
1544
1545 if (vdiff <= 0)
1546 return -1;
1547
1548 gran = wakeup_gran(curr, se);
1549 if (vdiff > gran)
1550 return 1;
1551
1552 return 0;
1553 }
1554
1555 static void set_last_buddy(struct sched_entity *se)
1556 {
1557 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1558 for_each_sched_entity(se)
1559 cfs_rq_of(se)->last = se;
1560 }
1561 }
1562
1563 static void set_next_buddy(struct sched_entity *se)
1564 {
1565 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1566 for_each_sched_entity(se)
1567 cfs_rq_of(se)->next = se;
1568 }
1569 }
1570
1571 /*
1572 * Preempt the current task with a newly woken task if needed:
1573 */
1574 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1575 {
1576 struct task_struct *curr = rq->curr;
1577 struct sched_entity *se = &curr->se, *pse = &p->se;
1578 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1579 int sync = wake_flags & WF_SYNC;
1580
1581 update_curr(cfs_rq);
1582
1583 if (unlikely(rt_prio(p->prio))) {
1584 resched_task(curr);
1585 return;
1586 }
1587
1588 if (unlikely(p->sched_class != &fair_sched_class))
1589 return;
1590
1591 if (unlikely(se == pse))
1592 return;
1593
1594 /*
1595 * Only set the backward buddy when the current task is still on the
1596 * rq. This can happen when a wakeup gets interleaved with schedule on
1597 * the ->pre_schedule() or idle_balance() point, either of which can
1598 * drop the rq lock.
1599 *
1600 * Also, during early boot the idle thread is in the fair class, for
1601 * obvious reasons its a bad idea to schedule back to the idle thread.
1602 */
1603 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1604 set_last_buddy(se);
1605 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK))
1606 set_next_buddy(pse);
1607
1608 /*
1609 * We can come here with TIF_NEED_RESCHED already set from new task
1610 * wake up path.
1611 */
1612 if (test_tsk_need_resched(curr))
1613 return;
1614
1615 /*
1616 * Batch and idle tasks do not preempt (their preemption is driven by
1617 * the tick):
1618 */
1619 if (unlikely(p->policy != SCHED_NORMAL))
1620 return;
1621
1622 /* Idle tasks are by definition preempted by everybody. */
1623 if (unlikely(curr->policy == SCHED_IDLE)) {
1624 resched_task(curr);
1625 return;
1626 }
1627
1628 if ((sched_feat(WAKEUP_SYNC) && sync) ||
1629 (sched_feat(WAKEUP_OVERLAP) &&
1630 (se->avg_overlap < sysctl_sched_migration_cost &&
1631 pse->avg_overlap < sysctl_sched_migration_cost))) {
1632 resched_task(curr);
1633 return;
1634 }
1635
1636 if (sched_feat(WAKEUP_RUNNING)) {
1637 if (pse->avg_running < se->avg_running) {
1638 set_next_buddy(pse);
1639 resched_task(curr);
1640 return;
1641 }
1642 }
1643
1644 if (!sched_feat(WAKEUP_PREEMPT))
1645 return;
1646
1647 find_matching_se(&se, &pse);
1648
1649 BUG_ON(!pse);
1650
1651 if (wakeup_preempt_entity(se, pse) == 1)
1652 resched_task(curr);
1653 }
1654
1655 static struct task_struct *pick_next_task_fair(struct rq *rq)
1656 {
1657 struct task_struct *p;
1658 struct cfs_rq *cfs_rq = &rq->cfs;
1659 struct sched_entity *se;
1660
1661 if (unlikely(!cfs_rq->nr_running))
1662 return NULL;
1663
1664 do {
1665 se = pick_next_entity(cfs_rq);
1666 set_next_entity(cfs_rq, se);
1667 cfs_rq = group_cfs_rq(se);
1668 } while (cfs_rq);
1669
1670 p = task_of(se);
1671 hrtick_start_fair(rq, p);
1672
1673 return p;
1674 }
1675
1676 /*
1677 * Account for a descheduled task:
1678 */
1679 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1680 {
1681 struct sched_entity *se = &prev->se;
1682 struct cfs_rq *cfs_rq;
1683
1684 for_each_sched_entity(se) {
1685 cfs_rq = cfs_rq_of(se);
1686 put_prev_entity(cfs_rq, se);
1687 }
1688 }
1689
1690 #ifdef CONFIG_SMP
1691 /**************************************************
1692 * Fair scheduling class load-balancing methods:
1693 */
1694
1695 /*
1696 * Load-balancing iterator. Note: while the runqueue stays locked
1697 * during the whole iteration, the current task might be
1698 * dequeued so the iterator has to be dequeue-safe. Here we
1699 * achieve that by always pre-iterating before returning
1700 * the current task:
1701 */
1702 static struct task_struct *
1703 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1704 {
1705 struct task_struct *p = NULL;
1706 struct sched_entity *se;
1707
1708 if (next == &cfs_rq->tasks)
1709 return NULL;
1710
1711 se = list_entry(next, struct sched_entity, group_node);
1712 p = task_of(se);
1713 cfs_rq->balance_iterator = next->next;
1714
1715 return p;
1716 }
1717
1718 static struct task_struct *load_balance_start_fair(void *arg)
1719 {
1720 struct cfs_rq *cfs_rq = arg;
1721
1722 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1723 }
1724
1725 static struct task_struct *load_balance_next_fair(void *arg)
1726 {
1727 struct cfs_rq *cfs_rq = arg;
1728
1729 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1730 }
1731
1732 static unsigned long
1733 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1734 unsigned long max_load_move, struct sched_domain *sd,
1735 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1736 struct cfs_rq *cfs_rq)
1737 {
1738 struct rq_iterator cfs_rq_iterator;
1739
1740 cfs_rq_iterator.start = load_balance_start_fair;
1741 cfs_rq_iterator.next = load_balance_next_fair;
1742 cfs_rq_iterator.arg = cfs_rq;
1743
1744 return balance_tasks(this_rq, this_cpu, busiest,
1745 max_load_move, sd, idle, all_pinned,
1746 this_best_prio, &cfs_rq_iterator);
1747 }
1748
1749 #ifdef CONFIG_FAIR_GROUP_SCHED
1750 static unsigned long
1751 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1752 unsigned long max_load_move,
1753 struct sched_domain *sd, enum cpu_idle_type idle,
1754 int *all_pinned, int *this_best_prio)
1755 {
1756 long rem_load_move = max_load_move;
1757 int busiest_cpu = cpu_of(busiest);
1758 struct task_group *tg;
1759
1760 rcu_read_lock();
1761 update_h_load(busiest_cpu);
1762
1763 list_for_each_entry_rcu(tg, &task_groups, list) {
1764 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1765 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1766 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1767 u64 rem_load, moved_load;
1768
1769 /*
1770 * empty group
1771 */
1772 if (!busiest_cfs_rq->task_weight)
1773 continue;
1774
1775 rem_load = (u64)rem_load_move * busiest_weight;
1776 rem_load = div_u64(rem_load, busiest_h_load + 1);
1777
1778 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1779 rem_load, sd, idle, all_pinned, this_best_prio,
1780 tg->cfs_rq[busiest_cpu]);
1781
1782 if (!moved_load)
1783 continue;
1784
1785 moved_load *= busiest_h_load;
1786 moved_load = div_u64(moved_load, busiest_weight + 1);
1787
1788 rem_load_move -= moved_load;
1789 if (rem_load_move < 0)
1790 break;
1791 }
1792 rcu_read_unlock();
1793
1794 return max_load_move - rem_load_move;
1795 }
1796 #else
1797 static unsigned long
1798 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1799 unsigned long max_load_move,
1800 struct sched_domain *sd, enum cpu_idle_type idle,
1801 int *all_pinned, int *this_best_prio)
1802 {
1803 return __load_balance_fair(this_rq, this_cpu, busiest,
1804 max_load_move, sd, idle, all_pinned,
1805 this_best_prio, &busiest->cfs);
1806 }
1807 #endif
1808
1809 static int
1810 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1811 struct sched_domain *sd, enum cpu_idle_type idle)
1812 {
1813 struct cfs_rq *busy_cfs_rq;
1814 struct rq_iterator cfs_rq_iterator;
1815
1816 cfs_rq_iterator.start = load_balance_start_fair;
1817 cfs_rq_iterator.next = load_balance_next_fair;
1818
1819 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1820 /*
1821 * pass busy_cfs_rq argument into
1822 * load_balance_[start|next]_fair iterators
1823 */
1824 cfs_rq_iterator.arg = busy_cfs_rq;
1825 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1826 &cfs_rq_iterator))
1827 return 1;
1828 }
1829
1830 return 0;
1831 }
1832 #endif /* CONFIG_SMP */
1833
1834 /*
1835 * scheduler tick hitting a task of our scheduling class:
1836 */
1837 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1838 {
1839 struct cfs_rq *cfs_rq;
1840 struct sched_entity *se = &curr->se;
1841
1842 for_each_sched_entity(se) {
1843 cfs_rq = cfs_rq_of(se);
1844 entity_tick(cfs_rq, se, queued);
1845 }
1846 }
1847
1848 /*
1849 * Share the fairness runtime between parent and child, thus the
1850 * total amount of pressure for CPU stays equal - new tasks
1851 * get a chance to run but frequent forkers are not allowed to
1852 * monopolize the CPU. Note: the parent runqueue is locked,
1853 * the child is not running yet.
1854 */
1855 static void task_new_fair(struct rq *rq, struct task_struct *p)
1856 {
1857 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1858 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1859 int this_cpu = smp_processor_id();
1860
1861 sched_info_queued(p);
1862
1863 update_curr(cfs_rq);
1864 if (curr)
1865 se->vruntime = curr->vruntime;
1866 place_entity(cfs_rq, se, 1);
1867
1868 /* 'curr' will be NULL if the child belongs to a different group */
1869 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1870 curr && entity_before(curr, se)) {
1871 /*
1872 * Upon rescheduling, sched_class::put_prev_task() will place
1873 * 'current' within the tree based on its new key value.
1874 */
1875 swap(curr->vruntime, se->vruntime);
1876 resched_task(rq->curr);
1877 }
1878
1879 enqueue_task_fair(rq, p, 0);
1880 }
1881
1882 /*
1883 * Priority of the task has changed. Check to see if we preempt
1884 * the current task.
1885 */
1886 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1887 int oldprio, int running)
1888 {
1889 /*
1890 * Reschedule if we are currently running on this runqueue and
1891 * our priority decreased, or if we are not currently running on
1892 * this runqueue and our priority is higher than the current's
1893 */
1894 if (running) {
1895 if (p->prio > oldprio)
1896 resched_task(rq->curr);
1897 } else
1898 check_preempt_curr(rq, p, 0);
1899 }
1900
1901 /*
1902 * We switched to the sched_fair class.
1903 */
1904 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1905 int running)
1906 {
1907 /*
1908 * We were most likely switched from sched_rt, so
1909 * kick off the schedule if running, otherwise just see
1910 * if we can still preempt the current task.
1911 */
1912 if (running)
1913 resched_task(rq->curr);
1914 else
1915 check_preempt_curr(rq, p, 0);
1916 }
1917
1918 /* Account for a task changing its policy or group.
1919 *
1920 * This routine is mostly called to set cfs_rq->curr field when a task
1921 * migrates between groups/classes.
1922 */
1923 static void set_curr_task_fair(struct rq *rq)
1924 {
1925 struct sched_entity *se = &rq->curr->se;
1926
1927 for_each_sched_entity(se)
1928 set_next_entity(cfs_rq_of(se), se);
1929 }
1930
1931 #ifdef CONFIG_FAIR_GROUP_SCHED
1932 static void moved_group_fair(struct task_struct *p)
1933 {
1934 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1935
1936 update_curr(cfs_rq);
1937 place_entity(cfs_rq, &p->se, 1);
1938 }
1939 #endif
1940
1941 unsigned int get_rr_interval_fair(struct task_struct *task)
1942 {
1943 struct sched_entity *se = &task->se;
1944 unsigned long flags;
1945 struct rq *rq;
1946 unsigned int rr_interval = 0;
1947
1948 /*
1949 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
1950 * idle runqueue:
1951 */
1952 rq = task_rq_lock(task, &flags);
1953 if (rq->cfs.load.weight)
1954 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
1955 task_rq_unlock(rq, &flags);
1956
1957 return rr_interval;
1958 }
1959
1960 /*
1961 * All the scheduling class methods:
1962 */
1963 static const struct sched_class fair_sched_class = {
1964 .next = &idle_sched_class,
1965 .enqueue_task = enqueue_task_fair,
1966 .dequeue_task = dequeue_task_fair,
1967 .yield_task = yield_task_fair,
1968
1969 .check_preempt_curr = check_preempt_wakeup,
1970
1971 .pick_next_task = pick_next_task_fair,
1972 .put_prev_task = put_prev_task_fair,
1973
1974 #ifdef CONFIG_SMP
1975 .select_task_rq = select_task_rq_fair,
1976
1977 .load_balance = load_balance_fair,
1978 .move_one_task = move_one_task_fair,
1979 #endif
1980
1981 .set_curr_task = set_curr_task_fair,
1982 .task_tick = task_tick_fair,
1983 .task_new = task_new_fair,
1984
1985 .prio_changed = prio_changed_fair,
1986 .switched_to = switched_to_fair,
1987
1988 .get_rr_interval = get_rr_interval_fair,
1989
1990 #ifdef CONFIG_FAIR_GROUP_SCHED
1991 .moved_group = moved_group_fair,
1992 #endif
1993 };
1994
1995 #ifdef CONFIG_SCHED_DEBUG
1996 static void print_cfs_stats(struct seq_file *m, int cpu)
1997 {
1998 struct cfs_rq *cfs_rq;
1999
2000 rcu_read_lock();
2001 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
2002 print_cfs_rq(m, cpu, cfs_rq);
2003 rcu_read_unlock();
2004 }
2005 #endif