]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched_fair.c
Merge master.kernel.org:/home/rmk/linux-2.6-arm
[mirror_ubuntu-artful-kernel.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25
26 /*
27 * Targeted preemption latency for CPU-bound tasks:
28 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
29 *
30 * NOTE: this latency value is not the same as the concept of
31 * 'timeslice length' - timeslices in CFS are of variable length
32 * and have no persistent notion like in traditional, time-slice
33 * based scheduling concepts.
34 *
35 * (to see the precise effective timeslice length of your workload,
36 * run vmstat and monitor the context-switches (cs) field)
37 */
38 unsigned int sysctl_sched_latency = 6000000ULL;
39 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
40
41 /*
42 * The initial- and re-scaling of tunables is configurable
43 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
44 *
45 * Options are:
46 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
47 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
48 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
49 */
50 enum sched_tunable_scaling sysctl_sched_tunable_scaling
51 = SCHED_TUNABLESCALING_LOG;
52
53 /*
54 * Minimal preemption granularity for CPU-bound tasks:
55 * (default: 2 msec * (1 + ilog(ncpus)), units: nanoseconds)
56 */
57 unsigned int sysctl_sched_min_granularity = 2000000ULL;
58 unsigned int normalized_sysctl_sched_min_granularity = 2000000ULL;
59
60 /*
61 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
62 */
63 static unsigned int sched_nr_latency = 3;
64
65 /*
66 * After fork, child runs first. If set to 0 (default) then
67 * parent will (try to) run first.
68 */
69 unsigned int sysctl_sched_child_runs_first __read_mostly;
70
71 /*
72 * sys_sched_yield() compat mode
73 *
74 * This option switches the agressive yield implementation of the
75 * old scheduler back on.
76 */
77 unsigned int __read_mostly sysctl_sched_compat_yield;
78
79 /*
80 * SCHED_OTHER wake-up granularity.
81 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
82 *
83 * This option delays the preemption effects of decoupled workloads
84 * and reduces their over-scheduling. Synchronous workloads will still
85 * have immediate wakeup/sleep latencies.
86 */
87 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
88 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
89
90 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
91
92 static const struct sched_class fair_sched_class;
93
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
96 */
97
98 #ifdef CONFIG_FAIR_GROUP_SCHED
99
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
102 {
103 return cfs_rq->rq;
104 }
105
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
108
109 static inline struct task_struct *task_of(struct sched_entity *se)
110 {
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
113 #endif
114 return container_of(se, struct task_struct, se);
115 }
116
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
120
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
122 {
123 return p->se.cfs_rq;
124 }
125
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
128 {
129 return se->cfs_rq;
130 }
131
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
134 {
135 return grp->my_q;
136 }
137
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
140 */
141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
142 {
143 return cfs_rq->tg->cfs_rq[this_cpu];
144 }
145
146 /* Iterate thr' all leaf cfs_rq's on a runqueue */
147 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
148 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
149
150 /* Do the two (enqueued) entities belong to the same group ? */
151 static inline int
152 is_same_group(struct sched_entity *se, struct sched_entity *pse)
153 {
154 if (se->cfs_rq == pse->cfs_rq)
155 return 1;
156
157 return 0;
158 }
159
160 static inline struct sched_entity *parent_entity(struct sched_entity *se)
161 {
162 return se->parent;
163 }
164
165 /* return depth at which a sched entity is present in the hierarchy */
166 static inline int depth_se(struct sched_entity *se)
167 {
168 int depth = 0;
169
170 for_each_sched_entity(se)
171 depth++;
172
173 return depth;
174 }
175
176 static void
177 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
178 {
179 int se_depth, pse_depth;
180
181 /*
182 * preemption test can be made between sibling entities who are in the
183 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
184 * both tasks until we find their ancestors who are siblings of common
185 * parent.
186 */
187
188 /* First walk up until both entities are at same depth */
189 se_depth = depth_se(*se);
190 pse_depth = depth_se(*pse);
191
192 while (se_depth > pse_depth) {
193 se_depth--;
194 *se = parent_entity(*se);
195 }
196
197 while (pse_depth > se_depth) {
198 pse_depth--;
199 *pse = parent_entity(*pse);
200 }
201
202 while (!is_same_group(*se, *pse)) {
203 *se = parent_entity(*se);
204 *pse = parent_entity(*pse);
205 }
206 }
207
208 #else /* !CONFIG_FAIR_GROUP_SCHED */
209
210 static inline struct task_struct *task_of(struct sched_entity *se)
211 {
212 return container_of(se, struct task_struct, se);
213 }
214
215 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
216 {
217 return container_of(cfs_rq, struct rq, cfs);
218 }
219
220 #define entity_is_task(se) 1
221
222 #define for_each_sched_entity(se) \
223 for (; se; se = NULL)
224
225 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
226 {
227 return &task_rq(p)->cfs;
228 }
229
230 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
231 {
232 struct task_struct *p = task_of(se);
233 struct rq *rq = task_rq(p);
234
235 return &rq->cfs;
236 }
237
238 /* runqueue "owned" by this group */
239 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
240 {
241 return NULL;
242 }
243
244 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
245 {
246 return &cpu_rq(this_cpu)->cfs;
247 }
248
249 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
250 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
251
252 static inline int
253 is_same_group(struct sched_entity *se, struct sched_entity *pse)
254 {
255 return 1;
256 }
257
258 static inline struct sched_entity *parent_entity(struct sched_entity *se)
259 {
260 return NULL;
261 }
262
263 static inline void
264 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
265 {
266 }
267
268 #endif /* CONFIG_FAIR_GROUP_SCHED */
269
270
271 /**************************************************************
272 * Scheduling class tree data structure manipulation methods:
273 */
274
275 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
276 {
277 s64 delta = (s64)(vruntime - min_vruntime);
278 if (delta > 0)
279 min_vruntime = vruntime;
280
281 return min_vruntime;
282 }
283
284 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
285 {
286 s64 delta = (s64)(vruntime - min_vruntime);
287 if (delta < 0)
288 min_vruntime = vruntime;
289
290 return min_vruntime;
291 }
292
293 static inline int entity_before(struct sched_entity *a,
294 struct sched_entity *b)
295 {
296 return (s64)(a->vruntime - b->vruntime) < 0;
297 }
298
299 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
300 {
301 return se->vruntime - cfs_rq->min_vruntime;
302 }
303
304 static void update_min_vruntime(struct cfs_rq *cfs_rq)
305 {
306 u64 vruntime = cfs_rq->min_vruntime;
307
308 if (cfs_rq->curr)
309 vruntime = cfs_rq->curr->vruntime;
310
311 if (cfs_rq->rb_leftmost) {
312 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
313 struct sched_entity,
314 run_node);
315
316 if (!cfs_rq->curr)
317 vruntime = se->vruntime;
318 else
319 vruntime = min_vruntime(vruntime, se->vruntime);
320 }
321
322 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
323 }
324
325 /*
326 * Enqueue an entity into the rb-tree:
327 */
328 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
329 {
330 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
331 struct rb_node *parent = NULL;
332 struct sched_entity *entry;
333 s64 key = entity_key(cfs_rq, se);
334 int leftmost = 1;
335
336 /*
337 * Find the right place in the rbtree:
338 */
339 while (*link) {
340 parent = *link;
341 entry = rb_entry(parent, struct sched_entity, run_node);
342 /*
343 * We dont care about collisions. Nodes with
344 * the same key stay together.
345 */
346 if (key < entity_key(cfs_rq, entry)) {
347 link = &parent->rb_left;
348 } else {
349 link = &parent->rb_right;
350 leftmost = 0;
351 }
352 }
353
354 /*
355 * Maintain a cache of leftmost tree entries (it is frequently
356 * used):
357 */
358 if (leftmost)
359 cfs_rq->rb_leftmost = &se->run_node;
360
361 rb_link_node(&se->run_node, parent, link);
362 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
363 }
364
365 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
366 {
367 if (cfs_rq->rb_leftmost == &se->run_node) {
368 struct rb_node *next_node;
369
370 next_node = rb_next(&se->run_node);
371 cfs_rq->rb_leftmost = next_node;
372 }
373
374 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
375 }
376
377 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
378 {
379 struct rb_node *left = cfs_rq->rb_leftmost;
380
381 if (!left)
382 return NULL;
383
384 return rb_entry(left, struct sched_entity, run_node);
385 }
386
387 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
388 {
389 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
390
391 if (!last)
392 return NULL;
393
394 return rb_entry(last, struct sched_entity, run_node);
395 }
396
397 /**************************************************************
398 * Scheduling class statistics methods:
399 */
400
401 #ifdef CONFIG_SCHED_DEBUG
402 int sched_proc_update_handler(struct ctl_table *table, int write,
403 void __user *buffer, size_t *lenp,
404 loff_t *ppos)
405 {
406 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
407 int factor = get_update_sysctl_factor();
408
409 if (ret || !write)
410 return ret;
411
412 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
413 sysctl_sched_min_granularity);
414
415 #define WRT_SYSCTL(name) \
416 (normalized_sysctl_##name = sysctl_##name / (factor))
417 WRT_SYSCTL(sched_min_granularity);
418 WRT_SYSCTL(sched_latency);
419 WRT_SYSCTL(sched_wakeup_granularity);
420 WRT_SYSCTL(sched_shares_ratelimit);
421 #undef WRT_SYSCTL
422
423 return 0;
424 }
425 #endif
426
427 /*
428 * delta /= w
429 */
430 static inline unsigned long
431 calc_delta_fair(unsigned long delta, struct sched_entity *se)
432 {
433 if (unlikely(se->load.weight != NICE_0_LOAD))
434 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
435
436 return delta;
437 }
438
439 /*
440 * The idea is to set a period in which each task runs once.
441 *
442 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
443 * this period because otherwise the slices get too small.
444 *
445 * p = (nr <= nl) ? l : l*nr/nl
446 */
447 static u64 __sched_period(unsigned long nr_running)
448 {
449 u64 period = sysctl_sched_latency;
450 unsigned long nr_latency = sched_nr_latency;
451
452 if (unlikely(nr_running > nr_latency)) {
453 period = sysctl_sched_min_granularity;
454 period *= nr_running;
455 }
456
457 return period;
458 }
459
460 /*
461 * We calculate the wall-time slice from the period by taking a part
462 * proportional to the weight.
463 *
464 * s = p*P[w/rw]
465 */
466 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
467 {
468 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
469
470 for_each_sched_entity(se) {
471 struct load_weight *load;
472 struct load_weight lw;
473
474 cfs_rq = cfs_rq_of(se);
475 load = &cfs_rq->load;
476
477 if (unlikely(!se->on_rq)) {
478 lw = cfs_rq->load;
479
480 update_load_add(&lw, se->load.weight);
481 load = &lw;
482 }
483 slice = calc_delta_mine(slice, se->load.weight, load);
484 }
485 return slice;
486 }
487
488 /*
489 * We calculate the vruntime slice of a to be inserted task
490 *
491 * vs = s/w
492 */
493 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
494 {
495 return calc_delta_fair(sched_slice(cfs_rq, se), se);
496 }
497
498 /*
499 * Update the current task's runtime statistics. Skip current tasks that
500 * are not in our scheduling class.
501 */
502 static inline void
503 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
504 unsigned long delta_exec)
505 {
506 unsigned long delta_exec_weighted;
507
508 schedstat_set(curr->statistics.exec_max,
509 max((u64)delta_exec, curr->statistics.exec_max));
510
511 curr->sum_exec_runtime += delta_exec;
512 schedstat_add(cfs_rq, exec_clock, delta_exec);
513 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
514
515 curr->vruntime += delta_exec_weighted;
516 update_min_vruntime(cfs_rq);
517 }
518
519 static void update_curr(struct cfs_rq *cfs_rq)
520 {
521 struct sched_entity *curr = cfs_rq->curr;
522 u64 now = rq_of(cfs_rq)->clock;
523 unsigned long delta_exec;
524
525 if (unlikely(!curr))
526 return;
527
528 /*
529 * Get the amount of time the current task was running
530 * since the last time we changed load (this cannot
531 * overflow on 32 bits):
532 */
533 delta_exec = (unsigned long)(now - curr->exec_start);
534 if (!delta_exec)
535 return;
536
537 __update_curr(cfs_rq, curr, delta_exec);
538 curr->exec_start = now;
539
540 if (entity_is_task(curr)) {
541 struct task_struct *curtask = task_of(curr);
542
543 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
544 cpuacct_charge(curtask, delta_exec);
545 account_group_exec_runtime(curtask, delta_exec);
546 }
547 }
548
549 static inline void
550 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
551 {
552 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
553 }
554
555 /*
556 * Task is being enqueued - update stats:
557 */
558 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 {
560 /*
561 * Are we enqueueing a waiting task? (for current tasks
562 * a dequeue/enqueue event is a NOP)
563 */
564 if (se != cfs_rq->curr)
565 update_stats_wait_start(cfs_rq, se);
566 }
567
568 static void
569 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
570 {
571 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
572 rq_of(cfs_rq)->clock - se->statistics.wait_start));
573 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
574 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
575 rq_of(cfs_rq)->clock - se->statistics.wait_start);
576 #ifdef CONFIG_SCHEDSTATS
577 if (entity_is_task(se)) {
578 trace_sched_stat_wait(task_of(se),
579 rq_of(cfs_rq)->clock - se->statistics.wait_start);
580 }
581 #endif
582 schedstat_set(se->statistics.wait_start, 0);
583 }
584
585 static inline void
586 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
587 {
588 /*
589 * Mark the end of the wait period if dequeueing a
590 * waiting task:
591 */
592 if (se != cfs_rq->curr)
593 update_stats_wait_end(cfs_rq, se);
594 }
595
596 /*
597 * We are picking a new current task - update its stats:
598 */
599 static inline void
600 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
601 {
602 /*
603 * We are starting a new run period:
604 */
605 se->exec_start = rq_of(cfs_rq)->clock;
606 }
607
608 /**************************************************
609 * Scheduling class queueing methods:
610 */
611
612 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
613 static void
614 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
615 {
616 cfs_rq->task_weight += weight;
617 }
618 #else
619 static inline void
620 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
621 {
622 }
623 #endif
624
625 static void
626 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 update_load_add(&cfs_rq->load, se->load.weight);
629 if (!parent_entity(se))
630 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
631 if (entity_is_task(se)) {
632 add_cfs_task_weight(cfs_rq, se->load.weight);
633 list_add(&se->group_node, &cfs_rq->tasks);
634 }
635 cfs_rq->nr_running++;
636 se->on_rq = 1;
637 }
638
639 static void
640 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
641 {
642 update_load_sub(&cfs_rq->load, se->load.weight);
643 if (!parent_entity(se))
644 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
645 if (entity_is_task(se)) {
646 add_cfs_task_weight(cfs_rq, -se->load.weight);
647 list_del_init(&se->group_node);
648 }
649 cfs_rq->nr_running--;
650 se->on_rq = 0;
651 }
652
653 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
654 {
655 #ifdef CONFIG_SCHEDSTATS
656 struct task_struct *tsk = NULL;
657
658 if (entity_is_task(se))
659 tsk = task_of(se);
660
661 if (se->statistics.sleep_start) {
662 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
663
664 if ((s64)delta < 0)
665 delta = 0;
666
667 if (unlikely(delta > se->statistics.sleep_max))
668 se->statistics.sleep_max = delta;
669
670 se->statistics.sleep_start = 0;
671 se->statistics.sum_sleep_runtime += delta;
672
673 if (tsk) {
674 account_scheduler_latency(tsk, delta >> 10, 1);
675 trace_sched_stat_sleep(tsk, delta);
676 }
677 }
678 if (se->statistics.block_start) {
679 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
680
681 if ((s64)delta < 0)
682 delta = 0;
683
684 if (unlikely(delta > se->statistics.block_max))
685 se->statistics.block_max = delta;
686
687 se->statistics.block_start = 0;
688 se->statistics.sum_sleep_runtime += delta;
689
690 if (tsk) {
691 if (tsk->in_iowait) {
692 se->statistics.iowait_sum += delta;
693 se->statistics.iowait_count++;
694 trace_sched_stat_iowait(tsk, delta);
695 }
696
697 /*
698 * Blocking time is in units of nanosecs, so shift by
699 * 20 to get a milliseconds-range estimation of the
700 * amount of time that the task spent sleeping:
701 */
702 if (unlikely(prof_on == SLEEP_PROFILING)) {
703 profile_hits(SLEEP_PROFILING,
704 (void *)get_wchan(tsk),
705 delta >> 20);
706 }
707 account_scheduler_latency(tsk, delta >> 10, 0);
708 }
709 }
710 #endif
711 }
712
713 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
714 {
715 #ifdef CONFIG_SCHED_DEBUG
716 s64 d = se->vruntime - cfs_rq->min_vruntime;
717
718 if (d < 0)
719 d = -d;
720
721 if (d > 3*sysctl_sched_latency)
722 schedstat_inc(cfs_rq, nr_spread_over);
723 #endif
724 }
725
726 static void
727 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
728 {
729 u64 vruntime = cfs_rq->min_vruntime;
730
731 /*
732 * The 'current' period is already promised to the current tasks,
733 * however the extra weight of the new task will slow them down a
734 * little, place the new task so that it fits in the slot that
735 * stays open at the end.
736 */
737 if (initial && sched_feat(START_DEBIT))
738 vruntime += sched_vslice(cfs_rq, se);
739
740 /* sleeps up to a single latency don't count. */
741 if (!initial) {
742 unsigned long thresh = sysctl_sched_latency;
743
744 /*
745 * Halve their sleep time's effect, to allow
746 * for a gentler effect of sleepers:
747 */
748 if (sched_feat(GENTLE_FAIR_SLEEPERS))
749 thresh >>= 1;
750
751 vruntime -= thresh;
752 }
753
754 /* ensure we never gain time by being placed backwards. */
755 vruntime = max_vruntime(se->vruntime, vruntime);
756
757 se->vruntime = vruntime;
758 }
759
760 static void
761 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
762 {
763 /*
764 * Update the normalized vruntime before updating min_vruntime
765 * through callig update_curr().
766 */
767 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
768 se->vruntime += cfs_rq->min_vruntime;
769
770 /*
771 * Update run-time statistics of the 'current'.
772 */
773 update_curr(cfs_rq);
774 account_entity_enqueue(cfs_rq, se);
775
776 if (flags & ENQUEUE_WAKEUP) {
777 place_entity(cfs_rq, se, 0);
778 enqueue_sleeper(cfs_rq, se);
779 }
780
781 update_stats_enqueue(cfs_rq, se);
782 check_spread(cfs_rq, se);
783 if (se != cfs_rq->curr)
784 __enqueue_entity(cfs_rq, se);
785 }
786
787 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
788 {
789 if (!se || cfs_rq->last == se)
790 cfs_rq->last = NULL;
791
792 if (!se || cfs_rq->next == se)
793 cfs_rq->next = NULL;
794 }
795
796 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
797 {
798 for_each_sched_entity(se)
799 __clear_buddies(cfs_rq_of(se), se);
800 }
801
802 static void
803 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
804 {
805 /*
806 * Update run-time statistics of the 'current'.
807 */
808 update_curr(cfs_rq);
809
810 update_stats_dequeue(cfs_rq, se);
811 if (flags & DEQUEUE_SLEEP) {
812 #ifdef CONFIG_SCHEDSTATS
813 if (entity_is_task(se)) {
814 struct task_struct *tsk = task_of(se);
815
816 if (tsk->state & TASK_INTERRUPTIBLE)
817 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
818 if (tsk->state & TASK_UNINTERRUPTIBLE)
819 se->statistics.block_start = rq_of(cfs_rq)->clock;
820 }
821 #endif
822 }
823
824 clear_buddies(cfs_rq, se);
825
826 if (se != cfs_rq->curr)
827 __dequeue_entity(cfs_rq, se);
828 account_entity_dequeue(cfs_rq, se);
829 update_min_vruntime(cfs_rq);
830
831 /*
832 * Normalize the entity after updating the min_vruntime because the
833 * update can refer to the ->curr item and we need to reflect this
834 * movement in our normalized position.
835 */
836 if (!(flags & DEQUEUE_SLEEP))
837 se->vruntime -= cfs_rq->min_vruntime;
838 }
839
840 /*
841 * Preempt the current task with a newly woken task if needed:
842 */
843 static void
844 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
845 {
846 unsigned long ideal_runtime, delta_exec;
847
848 ideal_runtime = sched_slice(cfs_rq, curr);
849 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
850 if (delta_exec > ideal_runtime) {
851 resched_task(rq_of(cfs_rq)->curr);
852 /*
853 * The current task ran long enough, ensure it doesn't get
854 * re-elected due to buddy favours.
855 */
856 clear_buddies(cfs_rq, curr);
857 return;
858 }
859
860 /*
861 * Ensure that a task that missed wakeup preemption by a
862 * narrow margin doesn't have to wait for a full slice.
863 * This also mitigates buddy induced latencies under load.
864 */
865 if (!sched_feat(WAKEUP_PREEMPT))
866 return;
867
868 if (delta_exec < sysctl_sched_min_granularity)
869 return;
870
871 if (cfs_rq->nr_running > 1) {
872 struct sched_entity *se = __pick_next_entity(cfs_rq);
873 s64 delta = curr->vruntime - se->vruntime;
874
875 if (delta > ideal_runtime)
876 resched_task(rq_of(cfs_rq)->curr);
877 }
878 }
879
880 static void
881 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
882 {
883 /* 'current' is not kept within the tree. */
884 if (se->on_rq) {
885 /*
886 * Any task has to be enqueued before it get to execute on
887 * a CPU. So account for the time it spent waiting on the
888 * runqueue.
889 */
890 update_stats_wait_end(cfs_rq, se);
891 __dequeue_entity(cfs_rq, se);
892 }
893
894 update_stats_curr_start(cfs_rq, se);
895 cfs_rq->curr = se;
896 #ifdef CONFIG_SCHEDSTATS
897 /*
898 * Track our maximum slice length, if the CPU's load is at
899 * least twice that of our own weight (i.e. dont track it
900 * when there are only lesser-weight tasks around):
901 */
902 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
903 se->statistics.slice_max = max(se->statistics.slice_max,
904 se->sum_exec_runtime - se->prev_sum_exec_runtime);
905 }
906 #endif
907 se->prev_sum_exec_runtime = se->sum_exec_runtime;
908 }
909
910 static int
911 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
912
913 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
914 {
915 struct sched_entity *se = __pick_next_entity(cfs_rq);
916 struct sched_entity *left = se;
917
918 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
919 se = cfs_rq->next;
920
921 /*
922 * Prefer last buddy, try to return the CPU to a preempted task.
923 */
924 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
925 se = cfs_rq->last;
926
927 clear_buddies(cfs_rq, se);
928
929 return se;
930 }
931
932 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
933 {
934 /*
935 * If still on the runqueue then deactivate_task()
936 * was not called and update_curr() has to be done:
937 */
938 if (prev->on_rq)
939 update_curr(cfs_rq);
940
941 check_spread(cfs_rq, prev);
942 if (prev->on_rq) {
943 update_stats_wait_start(cfs_rq, prev);
944 /* Put 'current' back into the tree. */
945 __enqueue_entity(cfs_rq, prev);
946 }
947 cfs_rq->curr = NULL;
948 }
949
950 static void
951 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
952 {
953 /*
954 * Update run-time statistics of the 'current'.
955 */
956 update_curr(cfs_rq);
957
958 #ifdef CONFIG_SCHED_HRTICK
959 /*
960 * queued ticks are scheduled to match the slice, so don't bother
961 * validating it and just reschedule.
962 */
963 if (queued) {
964 resched_task(rq_of(cfs_rq)->curr);
965 return;
966 }
967 /*
968 * don't let the period tick interfere with the hrtick preemption
969 */
970 if (!sched_feat(DOUBLE_TICK) &&
971 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
972 return;
973 #endif
974
975 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
976 check_preempt_tick(cfs_rq, curr);
977 }
978
979 /**************************************************
980 * CFS operations on tasks:
981 */
982
983 #ifdef CONFIG_SCHED_HRTICK
984 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
985 {
986 struct sched_entity *se = &p->se;
987 struct cfs_rq *cfs_rq = cfs_rq_of(se);
988
989 WARN_ON(task_rq(p) != rq);
990
991 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
992 u64 slice = sched_slice(cfs_rq, se);
993 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
994 s64 delta = slice - ran;
995
996 if (delta < 0) {
997 if (rq->curr == p)
998 resched_task(p);
999 return;
1000 }
1001
1002 /*
1003 * Don't schedule slices shorter than 10000ns, that just
1004 * doesn't make sense. Rely on vruntime for fairness.
1005 */
1006 if (rq->curr != p)
1007 delta = max_t(s64, 10000LL, delta);
1008
1009 hrtick_start(rq, delta);
1010 }
1011 }
1012
1013 /*
1014 * called from enqueue/dequeue and updates the hrtick when the
1015 * current task is from our class and nr_running is low enough
1016 * to matter.
1017 */
1018 static void hrtick_update(struct rq *rq)
1019 {
1020 struct task_struct *curr = rq->curr;
1021
1022 if (curr->sched_class != &fair_sched_class)
1023 return;
1024
1025 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1026 hrtick_start_fair(rq, curr);
1027 }
1028 #else /* !CONFIG_SCHED_HRTICK */
1029 static inline void
1030 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1031 {
1032 }
1033
1034 static inline void hrtick_update(struct rq *rq)
1035 {
1036 }
1037 #endif
1038
1039 /*
1040 * The enqueue_task method is called before nr_running is
1041 * increased. Here we update the fair scheduling stats and
1042 * then put the task into the rbtree:
1043 */
1044 static void
1045 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1046 {
1047 struct cfs_rq *cfs_rq;
1048 struct sched_entity *se = &p->se;
1049
1050 for_each_sched_entity(se) {
1051 if (se->on_rq)
1052 break;
1053 cfs_rq = cfs_rq_of(se);
1054 enqueue_entity(cfs_rq, se, flags);
1055 flags = ENQUEUE_WAKEUP;
1056 }
1057
1058 hrtick_update(rq);
1059 }
1060
1061 /*
1062 * The dequeue_task method is called before nr_running is
1063 * decreased. We remove the task from the rbtree and
1064 * update the fair scheduling stats:
1065 */
1066 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1067 {
1068 struct cfs_rq *cfs_rq;
1069 struct sched_entity *se = &p->se;
1070
1071 for_each_sched_entity(se) {
1072 cfs_rq = cfs_rq_of(se);
1073 dequeue_entity(cfs_rq, se, flags);
1074 /* Don't dequeue parent if it has other entities besides us */
1075 if (cfs_rq->load.weight)
1076 break;
1077 flags |= DEQUEUE_SLEEP;
1078 }
1079
1080 hrtick_update(rq);
1081 }
1082
1083 /*
1084 * sched_yield() support is very simple - we dequeue and enqueue.
1085 *
1086 * If compat_yield is turned on then we requeue to the end of the tree.
1087 */
1088 static void yield_task_fair(struct rq *rq)
1089 {
1090 struct task_struct *curr = rq->curr;
1091 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1092 struct sched_entity *rightmost, *se = &curr->se;
1093
1094 /*
1095 * Are we the only task in the tree?
1096 */
1097 if (unlikely(cfs_rq->nr_running == 1))
1098 return;
1099
1100 clear_buddies(cfs_rq, se);
1101
1102 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1103 update_rq_clock(rq);
1104 /*
1105 * Update run-time statistics of the 'current'.
1106 */
1107 update_curr(cfs_rq);
1108
1109 return;
1110 }
1111 /*
1112 * Find the rightmost entry in the rbtree:
1113 */
1114 rightmost = __pick_last_entity(cfs_rq);
1115 /*
1116 * Already in the rightmost position?
1117 */
1118 if (unlikely(!rightmost || entity_before(rightmost, se)))
1119 return;
1120
1121 /*
1122 * Minimally necessary key value to be last in the tree:
1123 * Upon rescheduling, sched_class::put_prev_task() will place
1124 * 'current' within the tree based on its new key value.
1125 */
1126 se->vruntime = rightmost->vruntime + 1;
1127 }
1128
1129 #ifdef CONFIG_SMP
1130
1131 static void task_waking_fair(struct rq *rq, struct task_struct *p)
1132 {
1133 struct sched_entity *se = &p->se;
1134 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1135
1136 se->vruntime -= cfs_rq->min_vruntime;
1137 }
1138
1139 #ifdef CONFIG_FAIR_GROUP_SCHED
1140 /*
1141 * effective_load() calculates the load change as seen from the root_task_group
1142 *
1143 * Adding load to a group doesn't make a group heavier, but can cause movement
1144 * of group shares between cpus. Assuming the shares were perfectly aligned one
1145 * can calculate the shift in shares.
1146 *
1147 * The problem is that perfectly aligning the shares is rather expensive, hence
1148 * we try to avoid doing that too often - see update_shares(), which ratelimits
1149 * this change.
1150 *
1151 * We compensate this by not only taking the current delta into account, but
1152 * also considering the delta between when the shares were last adjusted and
1153 * now.
1154 *
1155 * We still saw a performance dip, some tracing learned us that between
1156 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1157 * significantly. Therefore try to bias the error in direction of failing
1158 * the affine wakeup.
1159 *
1160 */
1161 static long effective_load(struct task_group *tg, int cpu,
1162 long wl, long wg)
1163 {
1164 struct sched_entity *se = tg->se[cpu];
1165
1166 if (!tg->parent)
1167 return wl;
1168
1169 /*
1170 * By not taking the decrease of shares on the other cpu into
1171 * account our error leans towards reducing the affine wakeups.
1172 */
1173 if (!wl && sched_feat(ASYM_EFF_LOAD))
1174 return wl;
1175
1176 for_each_sched_entity(se) {
1177 long S, rw, s, a, b;
1178 long more_w;
1179
1180 /*
1181 * Instead of using this increment, also add the difference
1182 * between when the shares were last updated and now.
1183 */
1184 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1185 wl += more_w;
1186 wg += more_w;
1187
1188 S = se->my_q->tg->shares;
1189 s = se->my_q->shares;
1190 rw = se->my_q->rq_weight;
1191
1192 a = S*(rw + wl);
1193 b = S*rw + s*wg;
1194
1195 wl = s*(a-b);
1196
1197 if (likely(b))
1198 wl /= b;
1199
1200 /*
1201 * Assume the group is already running and will
1202 * thus already be accounted for in the weight.
1203 *
1204 * That is, moving shares between CPUs, does not
1205 * alter the group weight.
1206 */
1207 wg = 0;
1208 }
1209
1210 return wl;
1211 }
1212
1213 #else
1214
1215 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1216 unsigned long wl, unsigned long wg)
1217 {
1218 return wl;
1219 }
1220
1221 #endif
1222
1223 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1224 {
1225 unsigned long this_load, load;
1226 int idx, this_cpu, prev_cpu;
1227 unsigned long tl_per_task;
1228 struct task_group *tg;
1229 unsigned long weight;
1230 int balanced;
1231
1232 idx = sd->wake_idx;
1233 this_cpu = smp_processor_id();
1234 prev_cpu = task_cpu(p);
1235 load = source_load(prev_cpu, idx);
1236 this_load = target_load(this_cpu, idx);
1237
1238 /*
1239 * If sync wakeup then subtract the (maximum possible)
1240 * effect of the currently running task from the load
1241 * of the current CPU:
1242 */
1243 rcu_read_lock();
1244 if (sync) {
1245 tg = task_group(current);
1246 weight = current->se.load.weight;
1247
1248 this_load += effective_load(tg, this_cpu, -weight, -weight);
1249 load += effective_load(tg, prev_cpu, 0, -weight);
1250 }
1251
1252 tg = task_group(p);
1253 weight = p->se.load.weight;
1254
1255 /*
1256 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1257 * due to the sync cause above having dropped this_load to 0, we'll
1258 * always have an imbalance, but there's really nothing you can do
1259 * about that, so that's good too.
1260 *
1261 * Otherwise check if either cpus are near enough in load to allow this
1262 * task to be woken on this_cpu.
1263 */
1264 if (this_load) {
1265 unsigned long this_eff_load, prev_eff_load;
1266
1267 this_eff_load = 100;
1268 this_eff_load *= power_of(prev_cpu);
1269 this_eff_load *= this_load +
1270 effective_load(tg, this_cpu, weight, weight);
1271
1272 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1273 prev_eff_load *= power_of(this_cpu);
1274 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1275
1276 balanced = this_eff_load <= prev_eff_load;
1277 } else
1278 balanced = true;
1279 rcu_read_unlock();
1280
1281 /*
1282 * If the currently running task will sleep within
1283 * a reasonable amount of time then attract this newly
1284 * woken task:
1285 */
1286 if (sync && balanced)
1287 return 1;
1288
1289 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1290 tl_per_task = cpu_avg_load_per_task(this_cpu);
1291
1292 if (balanced ||
1293 (this_load <= load &&
1294 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1295 /*
1296 * This domain has SD_WAKE_AFFINE and
1297 * p is cache cold in this domain, and
1298 * there is no bad imbalance.
1299 */
1300 schedstat_inc(sd, ttwu_move_affine);
1301 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1302
1303 return 1;
1304 }
1305 return 0;
1306 }
1307
1308 /*
1309 * find_idlest_group finds and returns the least busy CPU group within the
1310 * domain.
1311 */
1312 static struct sched_group *
1313 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1314 int this_cpu, int load_idx)
1315 {
1316 struct sched_group *idlest = NULL, *group = sd->groups;
1317 unsigned long min_load = ULONG_MAX, this_load = 0;
1318 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1319
1320 do {
1321 unsigned long load, avg_load;
1322 int local_group;
1323 int i;
1324
1325 /* Skip over this group if it has no CPUs allowed */
1326 if (!cpumask_intersects(sched_group_cpus(group),
1327 &p->cpus_allowed))
1328 continue;
1329
1330 local_group = cpumask_test_cpu(this_cpu,
1331 sched_group_cpus(group));
1332
1333 /* Tally up the load of all CPUs in the group */
1334 avg_load = 0;
1335
1336 for_each_cpu(i, sched_group_cpus(group)) {
1337 /* Bias balancing toward cpus of our domain */
1338 if (local_group)
1339 load = source_load(i, load_idx);
1340 else
1341 load = target_load(i, load_idx);
1342
1343 avg_load += load;
1344 }
1345
1346 /* Adjust by relative CPU power of the group */
1347 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1348
1349 if (local_group) {
1350 this_load = avg_load;
1351 } else if (avg_load < min_load) {
1352 min_load = avg_load;
1353 idlest = group;
1354 }
1355 } while (group = group->next, group != sd->groups);
1356
1357 if (!idlest || 100*this_load < imbalance*min_load)
1358 return NULL;
1359 return idlest;
1360 }
1361
1362 /*
1363 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1364 */
1365 static int
1366 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1367 {
1368 unsigned long load, min_load = ULONG_MAX;
1369 int idlest = -1;
1370 int i;
1371
1372 /* Traverse only the allowed CPUs */
1373 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1374 load = weighted_cpuload(i);
1375
1376 if (load < min_load || (load == min_load && i == this_cpu)) {
1377 min_load = load;
1378 idlest = i;
1379 }
1380 }
1381
1382 return idlest;
1383 }
1384
1385 /*
1386 * Try and locate an idle CPU in the sched_domain.
1387 */
1388 static int select_idle_sibling(struct task_struct *p, int target)
1389 {
1390 int cpu = smp_processor_id();
1391 int prev_cpu = task_cpu(p);
1392 struct sched_domain *sd;
1393 int i;
1394
1395 /*
1396 * If the task is going to be woken-up on this cpu and if it is
1397 * already idle, then it is the right target.
1398 */
1399 if (target == cpu && idle_cpu(cpu))
1400 return cpu;
1401
1402 /*
1403 * If the task is going to be woken-up on the cpu where it previously
1404 * ran and if it is currently idle, then it the right target.
1405 */
1406 if (target == prev_cpu && idle_cpu(prev_cpu))
1407 return prev_cpu;
1408
1409 /*
1410 * Otherwise, iterate the domains and find an elegible idle cpu.
1411 */
1412 for_each_domain(target, sd) {
1413 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1414 break;
1415
1416 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1417 if (idle_cpu(i)) {
1418 target = i;
1419 break;
1420 }
1421 }
1422
1423 /*
1424 * Lets stop looking for an idle sibling when we reached
1425 * the domain that spans the current cpu and prev_cpu.
1426 */
1427 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1428 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1429 break;
1430 }
1431
1432 return target;
1433 }
1434
1435 /*
1436 * sched_balance_self: balance the current task (running on cpu) in domains
1437 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1438 * SD_BALANCE_EXEC.
1439 *
1440 * Balance, ie. select the least loaded group.
1441 *
1442 * Returns the target CPU number, or the same CPU if no balancing is needed.
1443 *
1444 * preempt must be disabled.
1445 */
1446 static int
1447 select_task_rq_fair(struct rq *rq, struct task_struct *p, int sd_flag, int wake_flags)
1448 {
1449 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1450 int cpu = smp_processor_id();
1451 int prev_cpu = task_cpu(p);
1452 int new_cpu = cpu;
1453 int want_affine = 0;
1454 int want_sd = 1;
1455 int sync = wake_flags & WF_SYNC;
1456
1457 if (sd_flag & SD_BALANCE_WAKE) {
1458 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1459 want_affine = 1;
1460 new_cpu = prev_cpu;
1461 }
1462
1463 for_each_domain(cpu, tmp) {
1464 if (!(tmp->flags & SD_LOAD_BALANCE))
1465 continue;
1466
1467 /*
1468 * If power savings logic is enabled for a domain, see if we
1469 * are not overloaded, if so, don't balance wider.
1470 */
1471 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1472 unsigned long power = 0;
1473 unsigned long nr_running = 0;
1474 unsigned long capacity;
1475 int i;
1476
1477 for_each_cpu(i, sched_domain_span(tmp)) {
1478 power += power_of(i);
1479 nr_running += cpu_rq(i)->cfs.nr_running;
1480 }
1481
1482 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1483
1484 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1485 nr_running /= 2;
1486
1487 if (nr_running < capacity)
1488 want_sd = 0;
1489 }
1490
1491 /*
1492 * If both cpu and prev_cpu are part of this domain,
1493 * cpu is a valid SD_WAKE_AFFINE target.
1494 */
1495 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1496 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1497 affine_sd = tmp;
1498 want_affine = 0;
1499 }
1500
1501 if (!want_sd && !want_affine)
1502 break;
1503
1504 if (!(tmp->flags & sd_flag))
1505 continue;
1506
1507 if (want_sd)
1508 sd = tmp;
1509 }
1510
1511 #ifdef CONFIG_FAIR_GROUP_SCHED
1512 if (sched_feat(LB_SHARES_UPDATE)) {
1513 /*
1514 * Pick the largest domain to update shares over
1515 */
1516 tmp = sd;
1517 if (affine_sd && (!tmp || affine_sd->span_weight > sd->span_weight))
1518 tmp = affine_sd;
1519
1520 if (tmp) {
1521 raw_spin_unlock(&rq->lock);
1522 update_shares(tmp);
1523 raw_spin_lock(&rq->lock);
1524 }
1525 }
1526 #endif
1527
1528 if (affine_sd) {
1529 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1530 return select_idle_sibling(p, cpu);
1531 else
1532 return select_idle_sibling(p, prev_cpu);
1533 }
1534
1535 while (sd) {
1536 int load_idx = sd->forkexec_idx;
1537 struct sched_group *group;
1538 int weight;
1539
1540 if (!(sd->flags & sd_flag)) {
1541 sd = sd->child;
1542 continue;
1543 }
1544
1545 if (sd_flag & SD_BALANCE_WAKE)
1546 load_idx = sd->wake_idx;
1547
1548 group = find_idlest_group(sd, p, cpu, load_idx);
1549 if (!group) {
1550 sd = sd->child;
1551 continue;
1552 }
1553
1554 new_cpu = find_idlest_cpu(group, p, cpu);
1555 if (new_cpu == -1 || new_cpu == cpu) {
1556 /* Now try balancing at a lower domain level of cpu */
1557 sd = sd->child;
1558 continue;
1559 }
1560
1561 /* Now try balancing at a lower domain level of new_cpu */
1562 cpu = new_cpu;
1563 weight = sd->span_weight;
1564 sd = NULL;
1565 for_each_domain(cpu, tmp) {
1566 if (weight <= tmp->span_weight)
1567 break;
1568 if (tmp->flags & sd_flag)
1569 sd = tmp;
1570 }
1571 /* while loop will break here if sd == NULL */
1572 }
1573
1574 return new_cpu;
1575 }
1576 #endif /* CONFIG_SMP */
1577
1578 static unsigned long
1579 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1580 {
1581 unsigned long gran = sysctl_sched_wakeup_granularity;
1582
1583 /*
1584 * Since its curr running now, convert the gran from real-time
1585 * to virtual-time in his units.
1586 *
1587 * By using 'se' instead of 'curr' we penalize light tasks, so
1588 * they get preempted easier. That is, if 'se' < 'curr' then
1589 * the resulting gran will be larger, therefore penalizing the
1590 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1591 * be smaller, again penalizing the lighter task.
1592 *
1593 * This is especially important for buddies when the leftmost
1594 * task is higher priority than the buddy.
1595 */
1596 if (unlikely(se->load.weight != NICE_0_LOAD))
1597 gran = calc_delta_fair(gran, se);
1598
1599 return gran;
1600 }
1601
1602 /*
1603 * Should 'se' preempt 'curr'.
1604 *
1605 * |s1
1606 * |s2
1607 * |s3
1608 * g
1609 * |<--->|c
1610 *
1611 * w(c, s1) = -1
1612 * w(c, s2) = 0
1613 * w(c, s3) = 1
1614 *
1615 */
1616 static int
1617 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1618 {
1619 s64 gran, vdiff = curr->vruntime - se->vruntime;
1620
1621 if (vdiff <= 0)
1622 return -1;
1623
1624 gran = wakeup_gran(curr, se);
1625 if (vdiff > gran)
1626 return 1;
1627
1628 return 0;
1629 }
1630
1631 static void set_last_buddy(struct sched_entity *se)
1632 {
1633 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1634 for_each_sched_entity(se)
1635 cfs_rq_of(se)->last = se;
1636 }
1637 }
1638
1639 static void set_next_buddy(struct sched_entity *se)
1640 {
1641 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1642 for_each_sched_entity(se)
1643 cfs_rq_of(se)->next = se;
1644 }
1645 }
1646
1647 /*
1648 * Preempt the current task with a newly woken task if needed:
1649 */
1650 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1651 {
1652 struct task_struct *curr = rq->curr;
1653 struct sched_entity *se = &curr->se, *pse = &p->se;
1654 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1655 int scale = cfs_rq->nr_running >= sched_nr_latency;
1656
1657 if (unlikely(rt_prio(p->prio)))
1658 goto preempt;
1659
1660 if (unlikely(p->sched_class != &fair_sched_class))
1661 return;
1662
1663 if (unlikely(se == pse))
1664 return;
1665
1666 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK))
1667 set_next_buddy(pse);
1668
1669 /*
1670 * We can come here with TIF_NEED_RESCHED already set from new task
1671 * wake up path.
1672 */
1673 if (test_tsk_need_resched(curr))
1674 return;
1675
1676 /*
1677 * Batch and idle tasks do not preempt (their preemption is driven by
1678 * the tick):
1679 */
1680 if (unlikely(p->policy != SCHED_NORMAL))
1681 return;
1682
1683 /* Idle tasks are by definition preempted by everybody. */
1684 if (unlikely(curr->policy == SCHED_IDLE))
1685 goto preempt;
1686
1687 if (!sched_feat(WAKEUP_PREEMPT))
1688 return;
1689
1690 update_curr(cfs_rq);
1691 find_matching_se(&se, &pse);
1692 BUG_ON(!pse);
1693 if (wakeup_preempt_entity(se, pse) == 1)
1694 goto preempt;
1695
1696 return;
1697
1698 preempt:
1699 resched_task(curr);
1700 /*
1701 * Only set the backward buddy when the current task is still
1702 * on the rq. This can happen when a wakeup gets interleaved
1703 * with schedule on the ->pre_schedule() or idle_balance()
1704 * point, either of which can * drop the rq lock.
1705 *
1706 * Also, during early boot the idle thread is in the fair class,
1707 * for obvious reasons its a bad idea to schedule back to it.
1708 */
1709 if (unlikely(!se->on_rq || curr == rq->idle))
1710 return;
1711
1712 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1713 set_last_buddy(se);
1714 }
1715
1716 static struct task_struct *pick_next_task_fair(struct rq *rq)
1717 {
1718 struct task_struct *p;
1719 struct cfs_rq *cfs_rq = &rq->cfs;
1720 struct sched_entity *se;
1721
1722 if (!cfs_rq->nr_running)
1723 return NULL;
1724
1725 do {
1726 se = pick_next_entity(cfs_rq);
1727 set_next_entity(cfs_rq, se);
1728 cfs_rq = group_cfs_rq(se);
1729 } while (cfs_rq);
1730
1731 p = task_of(se);
1732 hrtick_start_fair(rq, p);
1733
1734 return p;
1735 }
1736
1737 /*
1738 * Account for a descheduled task:
1739 */
1740 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1741 {
1742 struct sched_entity *se = &prev->se;
1743 struct cfs_rq *cfs_rq;
1744
1745 for_each_sched_entity(se) {
1746 cfs_rq = cfs_rq_of(se);
1747 put_prev_entity(cfs_rq, se);
1748 }
1749 }
1750
1751 #ifdef CONFIG_SMP
1752 /**************************************************
1753 * Fair scheduling class load-balancing methods:
1754 */
1755
1756 /*
1757 * pull_task - move a task from a remote runqueue to the local runqueue.
1758 * Both runqueues must be locked.
1759 */
1760 static void pull_task(struct rq *src_rq, struct task_struct *p,
1761 struct rq *this_rq, int this_cpu)
1762 {
1763 deactivate_task(src_rq, p, 0);
1764 set_task_cpu(p, this_cpu);
1765 activate_task(this_rq, p, 0);
1766 check_preempt_curr(this_rq, p, 0);
1767 }
1768
1769 /*
1770 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1771 */
1772 static
1773 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
1774 struct sched_domain *sd, enum cpu_idle_type idle,
1775 int *all_pinned)
1776 {
1777 int tsk_cache_hot = 0;
1778 /*
1779 * We do not migrate tasks that are:
1780 * 1) running (obviously), or
1781 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1782 * 3) are cache-hot on their current CPU.
1783 */
1784 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
1785 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
1786 return 0;
1787 }
1788 *all_pinned = 0;
1789
1790 if (task_running(rq, p)) {
1791 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
1792 return 0;
1793 }
1794
1795 /*
1796 * Aggressive migration if:
1797 * 1) task is cache cold, or
1798 * 2) too many balance attempts have failed.
1799 */
1800
1801 tsk_cache_hot = task_hot(p, rq->clock, sd);
1802 if (!tsk_cache_hot ||
1803 sd->nr_balance_failed > sd->cache_nice_tries) {
1804 #ifdef CONFIG_SCHEDSTATS
1805 if (tsk_cache_hot) {
1806 schedstat_inc(sd, lb_hot_gained[idle]);
1807 schedstat_inc(p, se.statistics.nr_forced_migrations);
1808 }
1809 #endif
1810 return 1;
1811 }
1812
1813 if (tsk_cache_hot) {
1814 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
1815 return 0;
1816 }
1817 return 1;
1818 }
1819
1820 /*
1821 * move_one_task tries to move exactly one task from busiest to this_rq, as
1822 * part of active balancing operations within "domain".
1823 * Returns 1 if successful and 0 otherwise.
1824 *
1825 * Called with both runqueues locked.
1826 */
1827 static int
1828 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1829 struct sched_domain *sd, enum cpu_idle_type idle)
1830 {
1831 struct task_struct *p, *n;
1832 struct cfs_rq *cfs_rq;
1833 int pinned = 0;
1834
1835 for_each_leaf_cfs_rq(busiest, cfs_rq) {
1836 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
1837
1838 if (!can_migrate_task(p, busiest, this_cpu,
1839 sd, idle, &pinned))
1840 continue;
1841
1842 pull_task(busiest, p, this_rq, this_cpu);
1843 /*
1844 * Right now, this is only the second place pull_task()
1845 * is called, so we can safely collect pull_task()
1846 * stats here rather than inside pull_task().
1847 */
1848 schedstat_inc(sd, lb_gained[idle]);
1849 return 1;
1850 }
1851 }
1852
1853 return 0;
1854 }
1855
1856 static unsigned long
1857 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1858 unsigned long max_load_move, struct sched_domain *sd,
1859 enum cpu_idle_type idle, int *all_pinned,
1860 int *this_best_prio, struct cfs_rq *busiest_cfs_rq)
1861 {
1862 int loops = 0, pulled = 0, pinned = 0;
1863 long rem_load_move = max_load_move;
1864 struct task_struct *p, *n;
1865
1866 if (max_load_move == 0)
1867 goto out;
1868
1869 pinned = 1;
1870
1871 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
1872 if (loops++ > sysctl_sched_nr_migrate)
1873 break;
1874
1875 if ((p->se.load.weight >> 1) > rem_load_move ||
1876 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned))
1877 continue;
1878
1879 pull_task(busiest, p, this_rq, this_cpu);
1880 pulled++;
1881 rem_load_move -= p->se.load.weight;
1882
1883 #ifdef CONFIG_PREEMPT
1884 /*
1885 * NEWIDLE balancing is a source of latency, so preemptible
1886 * kernels will stop after the first task is pulled to minimize
1887 * the critical section.
1888 */
1889 if (idle == CPU_NEWLY_IDLE)
1890 break;
1891 #endif
1892
1893 /*
1894 * We only want to steal up to the prescribed amount of
1895 * weighted load.
1896 */
1897 if (rem_load_move <= 0)
1898 break;
1899
1900 if (p->prio < *this_best_prio)
1901 *this_best_prio = p->prio;
1902 }
1903 out:
1904 /*
1905 * Right now, this is one of only two places pull_task() is called,
1906 * so we can safely collect pull_task() stats here rather than
1907 * inside pull_task().
1908 */
1909 schedstat_add(sd, lb_gained[idle], pulled);
1910
1911 if (all_pinned)
1912 *all_pinned = pinned;
1913
1914 return max_load_move - rem_load_move;
1915 }
1916
1917 #ifdef CONFIG_FAIR_GROUP_SCHED
1918 static unsigned long
1919 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1920 unsigned long max_load_move,
1921 struct sched_domain *sd, enum cpu_idle_type idle,
1922 int *all_pinned, int *this_best_prio)
1923 {
1924 long rem_load_move = max_load_move;
1925 int busiest_cpu = cpu_of(busiest);
1926 struct task_group *tg;
1927
1928 rcu_read_lock();
1929 update_h_load(busiest_cpu);
1930
1931 list_for_each_entry_rcu(tg, &task_groups, list) {
1932 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1933 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1934 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1935 u64 rem_load, moved_load;
1936
1937 /*
1938 * empty group
1939 */
1940 if (!busiest_cfs_rq->task_weight)
1941 continue;
1942
1943 rem_load = (u64)rem_load_move * busiest_weight;
1944 rem_load = div_u64(rem_load, busiest_h_load + 1);
1945
1946 moved_load = balance_tasks(this_rq, this_cpu, busiest,
1947 rem_load, sd, idle, all_pinned, this_best_prio,
1948 busiest_cfs_rq);
1949
1950 if (!moved_load)
1951 continue;
1952
1953 moved_load *= busiest_h_load;
1954 moved_load = div_u64(moved_load, busiest_weight + 1);
1955
1956 rem_load_move -= moved_load;
1957 if (rem_load_move < 0)
1958 break;
1959 }
1960 rcu_read_unlock();
1961
1962 return max_load_move - rem_load_move;
1963 }
1964 #else
1965 static unsigned long
1966 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1967 unsigned long max_load_move,
1968 struct sched_domain *sd, enum cpu_idle_type idle,
1969 int *all_pinned, int *this_best_prio)
1970 {
1971 return balance_tasks(this_rq, this_cpu, busiest,
1972 max_load_move, sd, idle, all_pinned,
1973 this_best_prio, &busiest->cfs);
1974 }
1975 #endif
1976
1977 /*
1978 * move_tasks tries to move up to max_load_move weighted load from busiest to
1979 * this_rq, as part of a balancing operation within domain "sd".
1980 * Returns 1 if successful and 0 otherwise.
1981 *
1982 * Called with both runqueues locked.
1983 */
1984 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1985 unsigned long max_load_move,
1986 struct sched_domain *sd, enum cpu_idle_type idle,
1987 int *all_pinned)
1988 {
1989 unsigned long total_load_moved = 0, load_moved;
1990 int this_best_prio = this_rq->curr->prio;
1991
1992 do {
1993 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
1994 max_load_move - total_load_moved,
1995 sd, idle, all_pinned, &this_best_prio);
1996
1997 total_load_moved += load_moved;
1998
1999 #ifdef CONFIG_PREEMPT
2000 /*
2001 * NEWIDLE balancing is a source of latency, so preemptible
2002 * kernels will stop after the first task is pulled to minimize
2003 * the critical section.
2004 */
2005 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2006 break;
2007
2008 if (raw_spin_is_contended(&this_rq->lock) ||
2009 raw_spin_is_contended(&busiest->lock))
2010 break;
2011 #endif
2012 } while (load_moved && max_load_move > total_load_moved);
2013
2014 return total_load_moved > 0;
2015 }
2016
2017 /********** Helpers for find_busiest_group ************************/
2018 /*
2019 * sd_lb_stats - Structure to store the statistics of a sched_domain
2020 * during load balancing.
2021 */
2022 struct sd_lb_stats {
2023 struct sched_group *busiest; /* Busiest group in this sd */
2024 struct sched_group *this; /* Local group in this sd */
2025 unsigned long total_load; /* Total load of all groups in sd */
2026 unsigned long total_pwr; /* Total power of all groups in sd */
2027 unsigned long avg_load; /* Average load across all groups in sd */
2028
2029 /** Statistics of this group */
2030 unsigned long this_load;
2031 unsigned long this_load_per_task;
2032 unsigned long this_nr_running;
2033
2034 /* Statistics of the busiest group */
2035 unsigned long max_load;
2036 unsigned long busiest_load_per_task;
2037 unsigned long busiest_nr_running;
2038 unsigned long busiest_group_capacity;
2039
2040 int group_imb; /* Is there imbalance in this sd */
2041 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2042 int power_savings_balance; /* Is powersave balance needed for this sd */
2043 struct sched_group *group_min; /* Least loaded group in sd */
2044 struct sched_group *group_leader; /* Group which relieves group_min */
2045 unsigned long min_load_per_task; /* load_per_task in group_min */
2046 unsigned long leader_nr_running; /* Nr running of group_leader */
2047 unsigned long min_nr_running; /* Nr running of group_min */
2048 #endif
2049 };
2050
2051 /*
2052 * sg_lb_stats - stats of a sched_group required for load_balancing
2053 */
2054 struct sg_lb_stats {
2055 unsigned long avg_load; /*Avg load across the CPUs of the group */
2056 unsigned long group_load; /* Total load over the CPUs of the group */
2057 unsigned long sum_nr_running; /* Nr tasks running in the group */
2058 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2059 unsigned long group_capacity;
2060 int group_imb; /* Is there an imbalance in the group ? */
2061 };
2062
2063 /**
2064 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2065 * @group: The group whose first cpu is to be returned.
2066 */
2067 static inline unsigned int group_first_cpu(struct sched_group *group)
2068 {
2069 return cpumask_first(sched_group_cpus(group));
2070 }
2071
2072 /**
2073 * get_sd_load_idx - Obtain the load index for a given sched domain.
2074 * @sd: The sched_domain whose load_idx is to be obtained.
2075 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2076 */
2077 static inline int get_sd_load_idx(struct sched_domain *sd,
2078 enum cpu_idle_type idle)
2079 {
2080 int load_idx;
2081
2082 switch (idle) {
2083 case CPU_NOT_IDLE:
2084 load_idx = sd->busy_idx;
2085 break;
2086
2087 case CPU_NEWLY_IDLE:
2088 load_idx = sd->newidle_idx;
2089 break;
2090 default:
2091 load_idx = sd->idle_idx;
2092 break;
2093 }
2094
2095 return load_idx;
2096 }
2097
2098
2099 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2100 /**
2101 * init_sd_power_savings_stats - Initialize power savings statistics for
2102 * the given sched_domain, during load balancing.
2103 *
2104 * @sd: Sched domain whose power-savings statistics are to be initialized.
2105 * @sds: Variable containing the statistics for sd.
2106 * @idle: Idle status of the CPU at which we're performing load-balancing.
2107 */
2108 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2109 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2110 {
2111 /*
2112 * Busy processors will not participate in power savings
2113 * balance.
2114 */
2115 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2116 sds->power_savings_balance = 0;
2117 else {
2118 sds->power_savings_balance = 1;
2119 sds->min_nr_running = ULONG_MAX;
2120 sds->leader_nr_running = 0;
2121 }
2122 }
2123
2124 /**
2125 * update_sd_power_savings_stats - Update the power saving stats for a
2126 * sched_domain while performing load balancing.
2127 *
2128 * @group: sched_group belonging to the sched_domain under consideration.
2129 * @sds: Variable containing the statistics of the sched_domain
2130 * @local_group: Does group contain the CPU for which we're performing
2131 * load balancing ?
2132 * @sgs: Variable containing the statistics of the group.
2133 */
2134 static inline void update_sd_power_savings_stats(struct sched_group *group,
2135 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2136 {
2137
2138 if (!sds->power_savings_balance)
2139 return;
2140
2141 /*
2142 * If the local group is idle or completely loaded
2143 * no need to do power savings balance at this domain
2144 */
2145 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2146 !sds->this_nr_running))
2147 sds->power_savings_balance = 0;
2148
2149 /*
2150 * If a group is already running at full capacity or idle,
2151 * don't include that group in power savings calculations
2152 */
2153 if (!sds->power_savings_balance ||
2154 sgs->sum_nr_running >= sgs->group_capacity ||
2155 !sgs->sum_nr_running)
2156 return;
2157
2158 /*
2159 * Calculate the group which has the least non-idle load.
2160 * This is the group from where we need to pick up the load
2161 * for saving power
2162 */
2163 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2164 (sgs->sum_nr_running == sds->min_nr_running &&
2165 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2166 sds->group_min = group;
2167 sds->min_nr_running = sgs->sum_nr_running;
2168 sds->min_load_per_task = sgs->sum_weighted_load /
2169 sgs->sum_nr_running;
2170 }
2171
2172 /*
2173 * Calculate the group which is almost near its
2174 * capacity but still has some space to pick up some load
2175 * from other group and save more power
2176 */
2177 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2178 return;
2179
2180 if (sgs->sum_nr_running > sds->leader_nr_running ||
2181 (sgs->sum_nr_running == sds->leader_nr_running &&
2182 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2183 sds->group_leader = group;
2184 sds->leader_nr_running = sgs->sum_nr_running;
2185 }
2186 }
2187
2188 /**
2189 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2190 * @sds: Variable containing the statistics of the sched_domain
2191 * under consideration.
2192 * @this_cpu: Cpu at which we're currently performing load-balancing.
2193 * @imbalance: Variable to store the imbalance.
2194 *
2195 * Description:
2196 * Check if we have potential to perform some power-savings balance.
2197 * If yes, set the busiest group to be the least loaded group in the
2198 * sched_domain, so that it's CPUs can be put to idle.
2199 *
2200 * Returns 1 if there is potential to perform power-savings balance.
2201 * Else returns 0.
2202 */
2203 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2204 int this_cpu, unsigned long *imbalance)
2205 {
2206 if (!sds->power_savings_balance)
2207 return 0;
2208
2209 if (sds->this != sds->group_leader ||
2210 sds->group_leader == sds->group_min)
2211 return 0;
2212
2213 *imbalance = sds->min_load_per_task;
2214 sds->busiest = sds->group_min;
2215
2216 return 1;
2217
2218 }
2219 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2220 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2221 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2222 {
2223 return;
2224 }
2225
2226 static inline void update_sd_power_savings_stats(struct sched_group *group,
2227 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2228 {
2229 return;
2230 }
2231
2232 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2233 int this_cpu, unsigned long *imbalance)
2234 {
2235 return 0;
2236 }
2237 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2238
2239
2240 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2241 {
2242 return SCHED_LOAD_SCALE;
2243 }
2244
2245 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2246 {
2247 return default_scale_freq_power(sd, cpu);
2248 }
2249
2250 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2251 {
2252 unsigned long weight = sd->span_weight;
2253 unsigned long smt_gain = sd->smt_gain;
2254
2255 smt_gain /= weight;
2256
2257 return smt_gain;
2258 }
2259
2260 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2261 {
2262 return default_scale_smt_power(sd, cpu);
2263 }
2264
2265 unsigned long scale_rt_power(int cpu)
2266 {
2267 struct rq *rq = cpu_rq(cpu);
2268 u64 total, available;
2269
2270 sched_avg_update(rq);
2271
2272 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2273 available = total - rq->rt_avg;
2274
2275 if (unlikely((s64)total < SCHED_LOAD_SCALE))
2276 total = SCHED_LOAD_SCALE;
2277
2278 total >>= SCHED_LOAD_SHIFT;
2279
2280 return div_u64(available, total);
2281 }
2282
2283 static void update_cpu_power(struct sched_domain *sd, int cpu)
2284 {
2285 unsigned long weight = sd->span_weight;
2286 unsigned long power = SCHED_LOAD_SCALE;
2287 struct sched_group *sdg = sd->groups;
2288
2289 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2290 if (sched_feat(ARCH_POWER))
2291 power *= arch_scale_smt_power(sd, cpu);
2292 else
2293 power *= default_scale_smt_power(sd, cpu);
2294
2295 power >>= SCHED_LOAD_SHIFT;
2296 }
2297
2298 sdg->cpu_power_orig = power;
2299
2300 if (sched_feat(ARCH_POWER))
2301 power *= arch_scale_freq_power(sd, cpu);
2302 else
2303 power *= default_scale_freq_power(sd, cpu);
2304
2305 power >>= SCHED_LOAD_SHIFT;
2306
2307 power *= scale_rt_power(cpu);
2308 power >>= SCHED_LOAD_SHIFT;
2309
2310 if (!power)
2311 power = 1;
2312
2313 cpu_rq(cpu)->cpu_power = power;
2314 sdg->cpu_power = power;
2315 }
2316
2317 static void update_group_power(struct sched_domain *sd, int cpu)
2318 {
2319 struct sched_domain *child = sd->child;
2320 struct sched_group *group, *sdg = sd->groups;
2321 unsigned long power;
2322
2323 if (!child) {
2324 update_cpu_power(sd, cpu);
2325 return;
2326 }
2327
2328 power = 0;
2329
2330 group = child->groups;
2331 do {
2332 power += group->cpu_power;
2333 group = group->next;
2334 } while (group != child->groups);
2335
2336 sdg->cpu_power = power;
2337 }
2338
2339 /*
2340 * Try and fix up capacity for tiny siblings, this is needed when
2341 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2342 * which on its own isn't powerful enough.
2343 *
2344 * See update_sd_pick_busiest() and check_asym_packing().
2345 */
2346 static inline int
2347 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2348 {
2349 /*
2350 * Only siblings can have significantly less than SCHED_LOAD_SCALE
2351 */
2352 if (sd->level != SD_LV_SIBLING)
2353 return 0;
2354
2355 /*
2356 * If ~90% of the cpu_power is still there, we're good.
2357 */
2358 if (group->cpu_power * 32 > group->cpu_power_orig * 29)
2359 return 1;
2360
2361 return 0;
2362 }
2363
2364 /**
2365 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2366 * @sd: The sched_domain whose statistics are to be updated.
2367 * @group: sched_group whose statistics are to be updated.
2368 * @this_cpu: Cpu for which load balance is currently performed.
2369 * @idle: Idle status of this_cpu
2370 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2371 * @sd_idle: Idle status of the sched_domain containing group.
2372 * @local_group: Does group contain this_cpu.
2373 * @cpus: Set of cpus considered for load balancing.
2374 * @balance: Should we balance.
2375 * @sgs: variable to hold the statistics for this group.
2376 */
2377 static inline void update_sg_lb_stats(struct sched_domain *sd,
2378 struct sched_group *group, int this_cpu,
2379 enum cpu_idle_type idle, int load_idx, int *sd_idle,
2380 int local_group, const struct cpumask *cpus,
2381 int *balance, struct sg_lb_stats *sgs)
2382 {
2383 unsigned long load, max_cpu_load, min_cpu_load;
2384 int i;
2385 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2386 unsigned long avg_load_per_task = 0;
2387
2388 if (local_group)
2389 balance_cpu = group_first_cpu(group);
2390
2391 /* Tally up the load of all CPUs in the group */
2392 max_cpu_load = 0;
2393 min_cpu_load = ~0UL;
2394
2395 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2396 struct rq *rq = cpu_rq(i);
2397
2398 if (*sd_idle && rq->nr_running)
2399 *sd_idle = 0;
2400
2401 /* Bias balancing toward cpus of our domain */
2402 if (local_group) {
2403 if (idle_cpu(i) && !first_idle_cpu) {
2404 first_idle_cpu = 1;
2405 balance_cpu = i;
2406 }
2407
2408 load = target_load(i, load_idx);
2409 } else {
2410 load = source_load(i, load_idx);
2411 if (load > max_cpu_load)
2412 max_cpu_load = load;
2413 if (min_cpu_load > load)
2414 min_cpu_load = load;
2415 }
2416
2417 sgs->group_load += load;
2418 sgs->sum_nr_running += rq->nr_running;
2419 sgs->sum_weighted_load += weighted_cpuload(i);
2420
2421 }
2422
2423 /*
2424 * First idle cpu or the first cpu(busiest) in this sched group
2425 * is eligible for doing load balancing at this and above
2426 * domains. In the newly idle case, we will allow all the cpu's
2427 * to do the newly idle load balance.
2428 */
2429 if (idle != CPU_NEWLY_IDLE && local_group) {
2430 if (balance_cpu != this_cpu) {
2431 *balance = 0;
2432 return;
2433 }
2434 update_group_power(sd, this_cpu);
2435 }
2436
2437 /* Adjust by relative CPU power of the group */
2438 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
2439
2440 /*
2441 * Consider the group unbalanced when the imbalance is larger
2442 * than the average weight of two tasks.
2443 *
2444 * APZ: with cgroup the avg task weight can vary wildly and
2445 * might not be a suitable number - should we keep a
2446 * normalized nr_running number somewhere that negates
2447 * the hierarchy?
2448 */
2449 if (sgs->sum_nr_running)
2450 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2451
2452 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
2453 sgs->group_imb = 1;
2454
2455 sgs->group_capacity =
2456 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
2457 if (!sgs->group_capacity)
2458 sgs->group_capacity = fix_small_capacity(sd, group);
2459 }
2460
2461 /**
2462 * update_sd_pick_busiest - return 1 on busiest group
2463 * @sd: sched_domain whose statistics are to be checked
2464 * @sds: sched_domain statistics
2465 * @sg: sched_group candidate to be checked for being the busiest
2466 * @sgs: sched_group statistics
2467 * @this_cpu: the current cpu
2468 *
2469 * Determine if @sg is a busier group than the previously selected
2470 * busiest group.
2471 */
2472 static bool update_sd_pick_busiest(struct sched_domain *sd,
2473 struct sd_lb_stats *sds,
2474 struct sched_group *sg,
2475 struct sg_lb_stats *sgs,
2476 int this_cpu)
2477 {
2478 if (sgs->avg_load <= sds->max_load)
2479 return false;
2480
2481 if (sgs->sum_nr_running > sgs->group_capacity)
2482 return true;
2483
2484 if (sgs->group_imb)
2485 return true;
2486
2487 /*
2488 * ASYM_PACKING needs to move all the work to the lowest
2489 * numbered CPUs in the group, therefore mark all groups
2490 * higher than ourself as busy.
2491 */
2492 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2493 this_cpu < group_first_cpu(sg)) {
2494 if (!sds->busiest)
2495 return true;
2496
2497 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2498 return true;
2499 }
2500
2501 return false;
2502 }
2503
2504 /**
2505 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2506 * @sd: sched_domain whose statistics are to be updated.
2507 * @this_cpu: Cpu for which load balance is currently performed.
2508 * @idle: Idle status of this_cpu
2509 * @sd_idle: Idle status of the sched_domain containing sg.
2510 * @cpus: Set of cpus considered for load balancing.
2511 * @balance: Should we balance.
2512 * @sds: variable to hold the statistics for this sched_domain.
2513 */
2514 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2515 enum cpu_idle_type idle, int *sd_idle,
2516 const struct cpumask *cpus, int *balance,
2517 struct sd_lb_stats *sds)
2518 {
2519 struct sched_domain *child = sd->child;
2520 struct sched_group *sg = sd->groups;
2521 struct sg_lb_stats sgs;
2522 int load_idx, prefer_sibling = 0;
2523
2524 if (child && child->flags & SD_PREFER_SIBLING)
2525 prefer_sibling = 1;
2526
2527 init_sd_power_savings_stats(sd, sds, idle);
2528 load_idx = get_sd_load_idx(sd, idle);
2529
2530 do {
2531 int local_group;
2532
2533 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2534 memset(&sgs, 0, sizeof(sgs));
2535 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx, sd_idle,
2536 local_group, cpus, balance, &sgs);
2537
2538 if (local_group && !(*balance))
2539 return;
2540
2541 sds->total_load += sgs.group_load;
2542 sds->total_pwr += sg->cpu_power;
2543
2544 /*
2545 * In case the child domain prefers tasks go to siblings
2546 * first, lower the sg capacity to one so that we'll try
2547 * and move all the excess tasks away.
2548 */
2549 if (prefer_sibling)
2550 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2551
2552 if (local_group) {
2553 sds->this_load = sgs.avg_load;
2554 sds->this = sg;
2555 sds->this_nr_running = sgs.sum_nr_running;
2556 sds->this_load_per_task = sgs.sum_weighted_load;
2557 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2558 sds->max_load = sgs.avg_load;
2559 sds->busiest = sg;
2560 sds->busiest_nr_running = sgs.sum_nr_running;
2561 sds->busiest_group_capacity = sgs.group_capacity;
2562 sds->busiest_load_per_task = sgs.sum_weighted_load;
2563 sds->group_imb = sgs.group_imb;
2564 }
2565
2566 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2567 sg = sg->next;
2568 } while (sg != sd->groups);
2569 }
2570
2571 int __weak arch_sd_sibling_asym_packing(void)
2572 {
2573 return 0*SD_ASYM_PACKING;
2574 }
2575
2576 /**
2577 * check_asym_packing - Check to see if the group is packed into the
2578 * sched doman.
2579 *
2580 * This is primarily intended to used at the sibling level. Some
2581 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2582 * case of POWER7, it can move to lower SMT modes only when higher
2583 * threads are idle. When in lower SMT modes, the threads will
2584 * perform better since they share less core resources. Hence when we
2585 * have idle threads, we want them to be the higher ones.
2586 *
2587 * This packing function is run on idle threads. It checks to see if
2588 * the busiest CPU in this domain (core in the P7 case) has a higher
2589 * CPU number than the packing function is being run on. Here we are
2590 * assuming lower CPU number will be equivalent to lower a SMT thread
2591 * number.
2592 *
2593 * Returns 1 when packing is required and a task should be moved to
2594 * this CPU. The amount of the imbalance is returned in *imbalance.
2595 *
2596 * @sd: The sched_domain whose packing is to be checked.
2597 * @sds: Statistics of the sched_domain which is to be packed
2598 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2599 * @imbalance: returns amount of imbalanced due to packing.
2600 */
2601 static int check_asym_packing(struct sched_domain *sd,
2602 struct sd_lb_stats *sds,
2603 int this_cpu, unsigned long *imbalance)
2604 {
2605 int busiest_cpu;
2606
2607 if (!(sd->flags & SD_ASYM_PACKING))
2608 return 0;
2609
2610 if (!sds->busiest)
2611 return 0;
2612
2613 busiest_cpu = group_first_cpu(sds->busiest);
2614 if (this_cpu > busiest_cpu)
2615 return 0;
2616
2617 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
2618 SCHED_LOAD_SCALE);
2619 return 1;
2620 }
2621
2622 /**
2623 * fix_small_imbalance - Calculate the minor imbalance that exists
2624 * amongst the groups of a sched_domain, during
2625 * load balancing.
2626 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2627 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2628 * @imbalance: Variable to store the imbalance.
2629 */
2630 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2631 int this_cpu, unsigned long *imbalance)
2632 {
2633 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2634 unsigned int imbn = 2;
2635 unsigned long scaled_busy_load_per_task;
2636
2637 if (sds->this_nr_running) {
2638 sds->this_load_per_task /= sds->this_nr_running;
2639 if (sds->busiest_load_per_task >
2640 sds->this_load_per_task)
2641 imbn = 1;
2642 } else
2643 sds->this_load_per_task =
2644 cpu_avg_load_per_task(this_cpu);
2645
2646 scaled_busy_load_per_task = sds->busiest_load_per_task
2647 * SCHED_LOAD_SCALE;
2648 scaled_busy_load_per_task /= sds->busiest->cpu_power;
2649
2650 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
2651 (scaled_busy_load_per_task * imbn)) {
2652 *imbalance = sds->busiest_load_per_task;
2653 return;
2654 }
2655
2656 /*
2657 * OK, we don't have enough imbalance to justify moving tasks,
2658 * however we may be able to increase total CPU power used by
2659 * moving them.
2660 */
2661
2662 pwr_now += sds->busiest->cpu_power *
2663 min(sds->busiest_load_per_task, sds->max_load);
2664 pwr_now += sds->this->cpu_power *
2665 min(sds->this_load_per_task, sds->this_load);
2666 pwr_now /= SCHED_LOAD_SCALE;
2667
2668 /* Amount of load we'd subtract */
2669 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2670 sds->busiest->cpu_power;
2671 if (sds->max_load > tmp)
2672 pwr_move += sds->busiest->cpu_power *
2673 min(sds->busiest_load_per_task, sds->max_load - tmp);
2674
2675 /* Amount of load we'd add */
2676 if (sds->max_load * sds->busiest->cpu_power <
2677 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
2678 tmp = (sds->max_load * sds->busiest->cpu_power) /
2679 sds->this->cpu_power;
2680 else
2681 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
2682 sds->this->cpu_power;
2683 pwr_move += sds->this->cpu_power *
2684 min(sds->this_load_per_task, sds->this_load + tmp);
2685 pwr_move /= SCHED_LOAD_SCALE;
2686
2687 /* Move if we gain throughput */
2688 if (pwr_move > pwr_now)
2689 *imbalance = sds->busiest_load_per_task;
2690 }
2691
2692 /**
2693 * calculate_imbalance - Calculate the amount of imbalance present within the
2694 * groups of a given sched_domain during load balance.
2695 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
2696 * @this_cpu: Cpu for which currently load balance is being performed.
2697 * @imbalance: The variable to store the imbalance.
2698 */
2699 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
2700 unsigned long *imbalance)
2701 {
2702 unsigned long max_pull, load_above_capacity = ~0UL;
2703
2704 sds->busiest_load_per_task /= sds->busiest_nr_running;
2705 if (sds->group_imb) {
2706 sds->busiest_load_per_task =
2707 min(sds->busiest_load_per_task, sds->avg_load);
2708 }
2709
2710 /*
2711 * In the presence of smp nice balancing, certain scenarios can have
2712 * max load less than avg load(as we skip the groups at or below
2713 * its cpu_power, while calculating max_load..)
2714 */
2715 if (sds->max_load < sds->avg_load) {
2716 *imbalance = 0;
2717 return fix_small_imbalance(sds, this_cpu, imbalance);
2718 }
2719
2720 if (!sds->group_imb) {
2721 /*
2722 * Don't want to pull so many tasks that a group would go idle.
2723 */
2724 load_above_capacity = (sds->busiest_nr_running -
2725 sds->busiest_group_capacity);
2726
2727 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
2728
2729 load_above_capacity /= sds->busiest->cpu_power;
2730 }
2731
2732 /*
2733 * We're trying to get all the cpus to the average_load, so we don't
2734 * want to push ourselves above the average load, nor do we wish to
2735 * reduce the max loaded cpu below the average load. At the same time,
2736 * we also don't want to reduce the group load below the group capacity
2737 * (so that we can implement power-savings policies etc). Thus we look
2738 * for the minimum possible imbalance.
2739 * Be careful of negative numbers as they'll appear as very large values
2740 * with unsigned longs.
2741 */
2742 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
2743
2744 /* How much load to actually move to equalise the imbalance */
2745 *imbalance = min(max_pull * sds->busiest->cpu_power,
2746 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
2747 / SCHED_LOAD_SCALE;
2748
2749 /*
2750 * if *imbalance is less than the average load per runnable task
2751 * there is no gaurantee that any tasks will be moved so we'll have
2752 * a think about bumping its value to force at least one task to be
2753 * moved
2754 */
2755 if (*imbalance < sds->busiest_load_per_task)
2756 return fix_small_imbalance(sds, this_cpu, imbalance);
2757
2758 }
2759 /******* find_busiest_group() helpers end here *********************/
2760
2761 /**
2762 * find_busiest_group - Returns the busiest group within the sched_domain
2763 * if there is an imbalance. If there isn't an imbalance, and
2764 * the user has opted for power-savings, it returns a group whose
2765 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
2766 * such a group exists.
2767 *
2768 * Also calculates the amount of weighted load which should be moved
2769 * to restore balance.
2770 *
2771 * @sd: The sched_domain whose busiest group is to be returned.
2772 * @this_cpu: The cpu for which load balancing is currently being performed.
2773 * @imbalance: Variable which stores amount of weighted load which should
2774 * be moved to restore balance/put a group to idle.
2775 * @idle: The idle status of this_cpu.
2776 * @sd_idle: The idleness of sd
2777 * @cpus: The set of CPUs under consideration for load-balancing.
2778 * @balance: Pointer to a variable indicating if this_cpu
2779 * is the appropriate cpu to perform load balancing at this_level.
2780 *
2781 * Returns: - the busiest group if imbalance exists.
2782 * - If no imbalance and user has opted for power-savings balance,
2783 * return the least loaded group whose CPUs can be
2784 * put to idle by rebalancing its tasks onto our group.
2785 */
2786 static struct sched_group *
2787 find_busiest_group(struct sched_domain *sd, int this_cpu,
2788 unsigned long *imbalance, enum cpu_idle_type idle,
2789 int *sd_idle, const struct cpumask *cpus, int *balance)
2790 {
2791 struct sd_lb_stats sds;
2792
2793 memset(&sds, 0, sizeof(sds));
2794
2795 /*
2796 * Compute the various statistics relavent for load balancing at
2797 * this level.
2798 */
2799 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
2800 balance, &sds);
2801
2802 /* Cases where imbalance does not exist from POV of this_cpu */
2803 /* 1) this_cpu is not the appropriate cpu to perform load balancing
2804 * at this level.
2805 * 2) There is no busy sibling group to pull from.
2806 * 3) This group is the busiest group.
2807 * 4) This group is more busy than the avg busieness at this
2808 * sched_domain.
2809 * 5) The imbalance is within the specified limit.
2810 */
2811 if (!(*balance))
2812 goto ret;
2813
2814 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
2815 check_asym_packing(sd, &sds, this_cpu, imbalance))
2816 return sds.busiest;
2817
2818 if (!sds.busiest || sds.busiest_nr_running == 0)
2819 goto out_balanced;
2820
2821 if (sds.this_load >= sds.max_load)
2822 goto out_balanced;
2823
2824 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
2825
2826 if (sds.this_load >= sds.avg_load)
2827 goto out_balanced;
2828
2829 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
2830 goto out_balanced;
2831
2832 /* Looks like there is an imbalance. Compute it */
2833 calculate_imbalance(&sds, this_cpu, imbalance);
2834 return sds.busiest;
2835
2836 out_balanced:
2837 /*
2838 * There is no obvious imbalance. But check if we can do some balancing
2839 * to save power.
2840 */
2841 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
2842 return sds.busiest;
2843 ret:
2844 *imbalance = 0;
2845 return NULL;
2846 }
2847
2848 /*
2849 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2850 */
2851 static struct rq *
2852 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
2853 enum cpu_idle_type idle, unsigned long imbalance,
2854 const struct cpumask *cpus)
2855 {
2856 struct rq *busiest = NULL, *rq;
2857 unsigned long max_load = 0;
2858 int i;
2859
2860 for_each_cpu(i, sched_group_cpus(group)) {
2861 unsigned long power = power_of(i);
2862 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
2863 unsigned long wl;
2864
2865 if (!capacity)
2866 capacity = fix_small_capacity(sd, group);
2867
2868 if (!cpumask_test_cpu(i, cpus))
2869 continue;
2870
2871 rq = cpu_rq(i);
2872 wl = weighted_cpuload(i);
2873
2874 /*
2875 * When comparing with imbalance, use weighted_cpuload()
2876 * which is not scaled with the cpu power.
2877 */
2878 if (capacity && rq->nr_running == 1 && wl > imbalance)
2879 continue;
2880
2881 /*
2882 * For the load comparisons with the other cpu's, consider
2883 * the weighted_cpuload() scaled with the cpu power, so that
2884 * the load can be moved away from the cpu that is potentially
2885 * running at a lower capacity.
2886 */
2887 wl = (wl * SCHED_LOAD_SCALE) / power;
2888
2889 if (wl > max_load) {
2890 max_load = wl;
2891 busiest = rq;
2892 }
2893 }
2894
2895 return busiest;
2896 }
2897
2898 /*
2899 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2900 * so long as it is large enough.
2901 */
2902 #define MAX_PINNED_INTERVAL 512
2903
2904 /* Working cpumask for load_balance and load_balance_newidle. */
2905 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
2906
2907 static int need_active_balance(struct sched_domain *sd, int sd_idle, int idle,
2908 int busiest_cpu, int this_cpu)
2909 {
2910 if (idle == CPU_NEWLY_IDLE) {
2911
2912 /*
2913 * ASYM_PACKING needs to force migrate tasks from busy but
2914 * higher numbered CPUs in order to pack all tasks in the
2915 * lowest numbered CPUs.
2916 */
2917 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
2918 return 1;
2919
2920 /*
2921 * The only task running in a non-idle cpu can be moved to this
2922 * cpu in an attempt to completely freeup the other CPU
2923 * package.
2924 *
2925 * The package power saving logic comes from
2926 * find_busiest_group(). If there are no imbalance, then
2927 * f_b_g() will return NULL. However when sched_mc={1,2} then
2928 * f_b_g() will select a group from which a running task may be
2929 * pulled to this cpu in order to make the other package idle.
2930 * If there is no opportunity to make a package idle and if
2931 * there are no imbalance, then f_b_g() will return NULL and no
2932 * action will be taken in load_balance_newidle().
2933 *
2934 * Under normal task pull operation due to imbalance, there
2935 * will be more than one task in the source run queue and
2936 * move_tasks() will succeed. ld_moved will be true and this
2937 * active balance code will not be triggered.
2938 */
2939 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2940 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2941 return 0;
2942
2943 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
2944 return 0;
2945 }
2946
2947 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
2948 }
2949
2950 static int active_load_balance_cpu_stop(void *data);
2951
2952 /*
2953 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2954 * tasks if there is an imbalance.
2955 */
2956 static int load_balance(int this_cpu, struct rq *this_rq,
2957 struct sched_domain *sd, enum cpu_idle_type idle,
2958 int *balance)
2959 {
2960 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
2961 struct sched_group *group;
2962 unsigned long imbalance;
2963 struct rq *busiest;
2964 unsigned long flags;
2965 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
2966
2967 cpumask_copy(cpus, cpu_active_mask);
2968
2969 /*
2970 * When power savings policy is enabled for the parent domain, idle
2971 * sibling can pick up load irrespective of busy siblings. In this case,
2972 * let the state of idle sibling percolate up as CPU_IDLE, instead of
2973 * portraying it as CPU_NOT_IDLE.
2974 */
2975 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
2976 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
2977 sd_idle = 1;
2978
2979 schedstat_inc(sd, lb_count[idle]);
2980
2981 redo:
2982 update_shares(sd);
2983 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
2984 cpus, balance);
2985
2986 if (*balance == 0)
2987 goto out_balanced;
2988
2989 if (!group) {
2990 schedstat_inc(sd, lb_nobusyg[idle]);
2991 goto out_balanced;
2992 }
2993
2994 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
2995 if (!busiest) {
2996 schedstat_inc(sd, lb_nobusyq[idle]);
2997 goto out_balanced;
2998 }
2999
3000 BUG_ON(busiest == this_rq);
3001
3002 schedstat_add(sd, lb_imbalance[idle], imbalance);
3003
3004 ld_moved = 0;
3005 if (busiest->nr_running > 1) {
3006 /*
3007 * Attempt to move tasks. If find_busiest_group has found
3008 * an imbalance but busiest->nr_running <= 1, the group is
3009 * still unbalanced. ld_moved simply stays zero, so it is
3010 * correctly treated as an imbalance.
3011 */
3012 local_irq_save(flags);
3013 double_rq_lock(this_rq, busiest);
3014 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3015 imbalance, sd, idle, &all_pinned);
3016 double_rq_unlock(this_rq, busiest);
3017 local_irq_restore(flags);
3018
3019 /*
3020 * some other cpu did the load balance for us.
3021 */
3022 if (ld_moved && this_cpu != smp_processor_id())
3023 resched_cpu(this_cpu);
3024
3025 /* All tasks on this runqueue were pinned by CPU affinity */
3026 if (unlikely(all_pinned)) {
3027 cpumask_clear_cpu(cpu_of(busiest), cpus);
3028 if (!cpumask_empty(cpus))
3029 goto redo;
3030 goto out_balanced;
3031 }
3032 }
3033
3034 if (!ld_moved) {
3035 schedstat_inc(sd, lb_failed[idle]);
3036 sd->nr_balance_failed++;
3037
3038 if (need_active_balance(sd, sd_idle, idle, cpu_of(busiest),
3039 this_cpu)) {
3040 raw_spin_lock_irqsave(&busiest->lock, flags);
3041
3042 /* don't kick the active_load_balance_cpu_stop,
3043 * if the curr task on busiest cpu can't be
3044 * moved to this_cpu
3045 */
3046 if (!cpumask_test_cpu(this_cpu,
3047 &busiest->curr->cpus_allowed)) {
3048 raw_spin_unlock_irqrestore(&busiest->lock,
3049 flags);
3050 all_pinned = 1;
3051 goto out_one_pinned;
3052 }
3053
3054 /*
3055 * ->active_balance synchronizes accesses to
3056 * ->active_balance_work. Once set, it's cleared
3057 * only after active load balance is finished.
3058 */
3059 if (!busiest->active_balance) {
3060 busiest->active_balance = 1;
3061 busiest->push_cpu = this_cpu;
3062 active_balance = 1;
3063 }
3064 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3065
3066 if (active_balance)
3067 stop_one_cpu_nowait(cpu_of(busiest),
3068 active_load_balance_cpu_stop, busiest,
3069 &busiest->active_balance_work);
3070
3071 /*
3072 * We've kicked active balancing, reset the failure
3073 * counter.
3074 */
3075 sd->nr_balance_failed = sd->cache_nice_tries+1;
3076 }
3077 } else
3078 sd->nr_balance_failed = 0;
3079
3080 if (likely(!active_balance)) {
3081 /* We were unbalanced, so reset the balancing interval */
3082 sd->balance_interval = sd->min_interval;
3083 } else {
3084 /*
3085 * If we've begun active balancing, start to back off. This
3086 * case may not be covered by the all_pinned logic if there
3087 * is only 1 task on the busy runqueue (because we don't call
3088 * move_tasks).
3089 */
3090 if (sd->balance_interval < sd->max_interval)
3091 sd->balance_interval *= 2;
3092 }
3093
3094 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3095 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3096 ld_moved = -1;
3097
3098 goto out;
3099
3100 out_balanced:
3101 schedstat_inc(sd, lb_balanced[idle]);
3102
3103 sd->nr_balance_failed = 0;
3104
3105 out_one_pinned:
3106 /* tune up the balancing interval */
3107 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3108 (sd->balance_interval < sd->max_interval))
3109 sd->balance_interval *= 2;
3110
3111 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3112 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
3113 ld_moved = -1;
3114 else
3115 ld_moved = 0;
3116 out:
3117 if (ld_moved)
3118 update_shares(sd);
3119 return ld_moved;
3120 }
3121
3122 /*
3123 * idle_balance is called by schedule() if this_cpu is about to become
3124 * idle. Attempts to pull tasks from other CPUs.
3125 */
3126 static void idle_balance(int this_cpu, struct rq *this_rq)
3127 {
3128 struct sched_domain *sd;
3129 int pulled_task = 0;
3130 unsigned long next_balance = jiffies + HZ;
3131
3132 this_rq->idle_stamp = this_rq->clock;
3133
3134 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3135 return;
3136
3137 /*
3138 * Drop the rq->lock, but keep IRQ/preempt disabled.
3139 */
3140 raw_spin_unlock(&this_rq->lock);
3141
3142 for_each_domain(this_cpu, sd) {
3143 unsigned long interval;
3144 int balance = 1;
3145
3146 if (!(sd->flags & SD_LOAD_BALANCE))
3147 continue;
3148
3149 if (sd->flags & SD_BALANCE_NEWIDLE) {
3150 /* If we've pulled tasks over stop searching: */
3151 pulled_task = load_balance(this_cpu, this_rq,
3152 sd, CPU_NEWLY_IDLE, &balance);
3153 }
3154
3155 interval = msecs_to_jiffies(sd->balance_interval);
3156 if (time_after(next_balance, sd->last_balance + interval))
3157 next_balance = sd->last_balance + interval;
3158 if (pulled_task) {
3159 this_rq->idle_stamp = 0;
3160 break;
3161 }
3162 }
3163
3164 raw_spin_lock(&this_rq->lock);
3165
3166 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3167 /*
3168 * We are going idle. next_balance may be set based on
3169 * a busy processor. So reset next_balance.
3170 */
3171 this_rq->next_balance = next_balance;
3172 }
3173 }
3174
3175 /*
3176 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3177 * running tasks off the busiest CPU onto idle CPUs. It requires at
3178 * least 1 task to be running on each physical CPU where possible, and
3179 * avoids physical / logical imbalances.
3180 */
3181 static int active_load_balance_cpu_stop(void *data)
3182 {
3183 struct rq *busiest_rq = data;
3184 int busiest_cpu = cpu_of(busiest_rq);
3185 int target_cpu = busiest_rq->push_cpu;
3186 struct rq *target_rq = cpu_rq(target_cpu);
3187 struct sched_domain *sd;
3188
3189 raw_spin_lock_irq(&busiest_rq->lock);
3190
3191 /* make sure the requested cpu hasn't gone down in the meantime */
3192 if (unlikely(busiest_cpu != smp_processor_id() ||
3193 !busiest_rq->active_balance))
3194 goto out_unlock;
3195
3196 /* Is there any task to move? */
3197 if (busiest_rq->nr_running <= 1)
3198 goto out_unlock;
3199
3200 /*
3201 * This condition is "impossible", if it occurs
3202 * we need to fix it. Originally reported by
3203 * Bjorn Helgaas on a 128-cpu setup.
3204 */
3205 BUG_ON(busiest_rq == target_rq);
3206
3207 /* move a task from busiest_rq to target_rq */
3208 double_lock_balance(busiest_rq, target_rq);
3209
3210 /* Search for an sd spanning us and the target CPU. */
3211 for_each_domain(target_cpu, sd) {
3212 if ((sd->flags & SD_LOAD_BALANCE) &&
3213 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3214 break;
3215 }
3216
3217 if (likely(sd)) {
3218 schedstat_inc(sd, alb_count);
3219
3220 if (move_one_task(target_rq, target_cpu, busiest_rq,
3221 sd, CPU_IDLE))
3222 schedstat_inc(sd, alb_pushed);
3223 else
3224 schedstat_inc(sd, alb_failed);
3225 }
3226 double_unlock_balance(busiest_rq, target_rq);
3227 out_unlock:
3228 busiest_rq->active_balance = 0;
3229 raw_spin_unlock_irq(&busiest_rq->lock);
3230 return 0;
3231 }
3232
3233 #ifdef CONFIG_NO_HZ
3234
3235 static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3236
3237 static void trigger_sched_softirq(void *data)
3238 {
3239 raise_softirq_irqoff(SCHED_SOFTIRQ);
3240 }
3241
3242 static inline void init_sched_softirq_csd(struct call_single_data *csd)
3243 {
3244 csd->func = trigger_sched_softirq;
3245 csd->info = NULL;
3246 csd->flags = 0;
3247 csd->priv = 0;
3248 }
3249
3250 /*
3251 * idle load balancing details
3252 * - One of the idle CPUs nominates itself as idle load_balancer, while
3253 * entering idle.
3254 * - This idle load balancer CPU will also go into tickless mode when
3255 * it is idle, just like all other idle CPUs
3256 * - When one of the busy CPUs notice that there may be an idle rebalancing
3257 * needed, they will kick the idle load balancer, which then does idle
3258 * load balancing for all the idle CPUs.
3259 */
3260 static struct {
3261 atomic_t load_balancer;
3262 atomic_t first_pick_cpu;
3263 atomic_t second_pick_cpu;
3264 cpumask_var_t idle_cpus_mask;
3265 cpumask_var_t grp_idle_mask;
3266 unsigned long next_balance; /* in jiffy units */
3267 } nohz ____cacheline_aligned;
3268
3269 int get_nohz_load_balancer(void)
3270 {
3271 return atomic_read(&nohz.load_balancer);
3272 }
3273
3274 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3275 /**
3276 * lowest_flag_domain - Return lowest sched_domain containing flag.
3277 * @cpu: The cpu whose lowest level of sched domain is to
3278 * be returned.
3279 * @flag: The flag to check for the lowest sched_domain
3280 * for the given cpu.
3281 *
3282 * Returns the lowest sched_domain of a cpu which contains the given flag.
3283 */
3284 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3285 {
3286 struct sched_domain *sd;
3287
3288 for_each_domain(cpu, sd)
3289 if (sd && (sd->flags & flag))
3290 break;
3291
3292 return sd;
3293 }
3294
3295 /**
3296 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3297 * @cpu: The cpu whose domains we're iterating over.
3298 * @sd: variable holding the value of the power_savings_sd
3299 * for cpu.
3300 * @flag: The flag to filter the sched_domains to be iterated.
3301 *
3302 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3303 * set, starting from the lowest sched_domain to the highest.
3304 */
3305 #define for_each_flag_domain(cpu, sd, flag) \
3306 for (sd = lowest_flag_domain(cpu, flag); \
3307 (sd && (sd->flags & flag)); sd = sd->parent)
3308
3309 /**
3310 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3311 * @ilb_group: group to be checked for semi-idleness
3312 *
3313 * Returns: 1 if the group is semi-idle. 0 otherwise.
3314 *
3315 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3316 * and atleast one non-idle CPU. This helper function checks if the given
3317 * sched_group is semi-idle or not.
3318 */
3319 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3320 {
3321 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3322 sched_group_cpus(ilb_group));
3323
3324 /*
3325 * A sched_group is semi-idle when it has atleast one busy cpu
3326 * and atleast one idle cpu.
3327 */
3328 if (cpumask_empty(nohz.grp_idle_mask))
3329 return 0;
3330
3331 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3332 return 0;
3333
3334 return 1;
3335 }
3336 /**
3337 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3338 * @cpu: The cpu which is nominating a new idle_load_balancer.
3339 *
3340 * Returns: Returns the id of the idle load balancer if it exists,
3341 * Else, returns >= nr_cpu_ids.
3342 *
3343 * This algorithm picks the idle load balancer such that it belongs to a
3344 * semi-idle powersavings sched_domain. The idea is to try and avoid
3345 * completely idle packages/cores just for the purpose of idle load balancing
3346 * when there are other idle cpu's which are better suited for that job.
3347 */
3348 static int find_new_ilb(int cpu)
3349 {
3350 struct sched_domain *sd;
3351 struct sched_group *ilb_group;
3352
3353 /*
3354 * Have idle load balancer selection from semi-idle packages only
3355 * when power-aware load balancing is enabled
3356 */
3357 if (!(sched_smt_power_savings || sched_mc_power_savings))
3358 goto out_done;
3359
3360 /*
3361 * Optimize for the case when we have no idle CPUs or only one
3362 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3363 */
3364 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3365 goto out_done;
3366
3367 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3368 ilb_group = sd->groups;
3369
3370 do {
3371 if (is_semi_idle_group(ilb_group))
3372 return cpumask_first(nohz.grp_idle_mask);
3373
3374 ilb_group = ilb_group->next;
3375
3376 } while (ilb_group != sd->groups);
3377 }
3378
3379 out_done:
3380 return nr_cpu_ids;
3381 }
3382 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3383 static inline int find_new_ilb(int call_cpu)
3384 {
3385 return nr_cpu_ids;
3386 }
3387 #endif
3388
3389 /*
3390 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3391 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3392 * CPU (if there is one).
3393 */
3394 static void nohz_balancer_kick(int cpu)
3395 {
3396 int ilb_cpu;
3397
3398 nohz.next_balance++;
3399
3400 ilb_cpu = get_nohz_load_balancer();
3401
3402 if (ilb_cpu >= nr_cpu_ids) {
3403 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3404 if (ilb_cpu >= nr_cpu_ids)
3405 return;
3406 }
3407
3408 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3409 struct call_single_data *cp;
3410
3411 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3412 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3413 __smp_call_function_single(ilb_cpu, cp, 0);
3414 }
3415 return;
3416 }
3417
3418 /*
3419 * This routine will try to nominate the ilb (idle load balancing)
3420 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3421 * load balancing on behalf of all those cpus.
3422 *
3423 * When the ilb owner becomes busy, we will not have new ilb owner until some
3424 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3425 * idle load balancing by kicking one of the idle CPUs.
3426 *
3427 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3428 * ilb owner CPU in future (when there is a need for idle load balancing on
3429 * behalf of all idle CPUs).
3430 */
3431 void select_nohz_load_balancer(int stop_tick)
3432 {
3433 int cpu = smp_processor_id();
3434
3435 if (stop_tick) {
3436 if (!cpu_active(cpu)) {
3437 if (atomic_read(&nohz.load_balancer) != cpu)
3438 return;
3439
3440 /*
3441 * If we are going offline and still the leader,
3442 * give up!
3443 */
3444 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3445 nr_cpu_ids) != cpu)
3446 BUG();
3447
3448 return;
3449 }
3450
3451 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3452
3453 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3454 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3455 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3456 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3457
3458 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3459 int new_ilb;
3460
3461 /* make me the ilb owner */
3462 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3463 cpu) != nr_cpu_ids)
3464 return;
3465
3466 /*
3467 * Check to see if there is a more power-efficient
3468 * ilb.
3469 */
3470 new_ilb = find_new_ilb(cpu);
3471 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3472 atomic_set(&nohz.load_balancer, nr_cpu_ids);
3473 resched_cpu(new_ilb);
3474 return;
3475 }
3476 return;
3477 }
3478 } else {
3479 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3480 return;
3481
3482 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3483
3484 if (atomic_read(&nohz.load_balancer) == cpu)
3485 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3486 nr_cpu_ids) != cpu)
3487 BUG();
3488 }
3489 return;
3490 }
3491 #endif
3492
3493 static DEFINE_SPINLOCK(balancing);
3494
3495 /*
3496 * It checks each scheduling domain to see if it is due to be balanced,
3497 * and initiates a balancing operation if so.
3498 *
3499 * Balancing parameters are set up in arch_init_sched_domains.
3500 */
3501 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3502 {
3503 int balance = 1;
3504 struct rq *rq = cpu_rq(cpu);
3505 unsigned long interval;
3506 struct sched_domain *sd;
3507 /* Earliest time when we have to do rebalance again */
3508 unsigned long next_balance = jiffies + 60*HZ;
3509 int update_next_balance = 0;
3510 int need_serialize;
3511
3512 for_each_domain(cpu, sd) {
3513 if (!(sd->flags & SD_LOAD_BALANCE))
3514 continue;
3515
3516 interval = sd->balance_interval;
3517 if (idle != CPU_IDLE)
3518 interval *= sd->busy_factor;
3519
3520 /* scale ms to jiffies */
3521 interval = msecs_to_jiffies(interval);
3522 if (unlikely(!interval))
3523 interval = 1;
3524 if (interval > HZ*NR_CPUS/10)
3525 interval = HZ*NR_CPUS/10;
3526
3527 need_serialize = sd->flags & SD_SERIALIZE;
3528
3529 if (need_serialize) {
3530 if (!spin_trylock(&balancing))
3531 goto out;
3532 }
3533
3534 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3535 if (load_balance(cpu, rq, sd, idle, &balance)) {
3536 /*
3537 * We've pulled tasks over so either we're no
3538 * longer idle, or one of our SMT siblings is
3539 * not idle.
3540 */
3541 idle = CPU_NOT_IDLE;
3542 }
3543 sd->last_balance = jiffies;
3544 }
3545 if (need_serialize)
3546 spin_unlock(&balancing);
3547 out:
3548 if (time_after(next_balance, sd->last_balance + interval)) {
3549 next_balance = sd->last_balance + interval;
3550 update_next_balance = 1;
3551 }
3552
3553 /*
3554 * Stop the load balance at this level. There is another
3555 * CPU in our sched group which is doing load balancing more
3556 * actively.
3557 */
3558 if (!balance)
3559 break;
3560 }
3561
3562 /*
3563 * next_balance will be updated only when there is a need.
3564 * When the cpu is attached to null domain for ex, it will not be
3565 * updated.
3566 */
3567 if (likely(update_next_balance))
3568 rq->next_balance = next_balance;
3569 }
3570
3571 #ifdef CONFIG_NO_HZ
3572 /*
3573 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3574 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3575 */
3576 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3577 {
3578 struct rq *this_rq = cpu_rq(this_cpu);
3579 struct rq *rq;
3580 int balance_cpu;
3581
3582 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3583 return;
3584
3585 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3586 if (balance_cpu == this_cpu)
3587 continue;
3588
3589 /*
3590 * If this cpu gets work to do, stop the load balancing
3591 * work being done for other cpus. Next load
3592 * balancing owner will pick it up.
3593 */
3594 if (need_resched()) {
3595 this_rq->nohz_balance_kick = 0;
3596 break;
3597 }
3598
3599 raw_spin_lock_irq(&this_rq->lock);
3600 update_rq_clock(this_rq);
3601 update_cpu_load(this_rq);
3602 raw_spin_unlock_irq(&this_rq->lock);
3603
3604 rebalance_domains(balance_cpu, CPU_IDLE);
3605
3606 rq = cpu_rq(balance_cpu);
3607 if (time_after(this_rq->next_balance, rq->next_balance))
3608 this_rq->next_balance = rq->next_balance;
3609 }
3610 nohz.next_balance = this_rq->next_balance;
3611 this_rq->nohz_balance_kick = 0;
3612 }
3613
3614 /*
3615 * Current heuristic for kicking the idle load balancer
3616 * - first_pick_cpu is the one of the busy CPUs. It will kick
3617 * idle load balancer when it has more than one process active. This
3618 * eliminates the need for idle load balancing altogether when we have
3619 * only one running process in the system (common case).
3620 * - If there are more than one busy CPU, idle load balancer may have
3621 * to run for active_load_balance to happen (i.e., two busy CPUs are
3622 * SMT or core siblings and can run better if they move to different
3623 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
3624 * which will kick idle load balancer as soon as it has any load.
3625 */
3626 static inline int nohz_kick_needed(struct rq *rq, int cpu)
3627 {
3628 unsigned long now = jiffies;
3629 int ret;
3630 int first_pick_cpu, second_pick_cpu;
3631
3632 if (time_before(now, nohz.next_balance))
3633 return 0;
3634
3635 if (!rq->nr_running)
3636 return 0;
3637
3638 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
3639 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
3640
3641 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
3642 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
3643 return 0;
3644
3645 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
3646 if (ret == nr_cpu_ids || ret == cpu) {
3647 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3648 if (rq->nr_running > 1)
3649 return 1;
3650 } else {
3651 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
3652 if (ret == nr_cpu_ids || ret == cpu) {
3653 if (rq->nr_running)
3654 return 1;
3655 }
3656 }
3657 return 0;
3658 }
3659 #else
3660 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
3661 #endif
3662
3663 /*
3664 * run_rebalance_domains is triggered when needed from the scheduler tick.
3665 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
3666 */
3667 static void run_rebalance_domains(struct softirq_action *h)
3668 {
3669 int this_cpu = smp_processor_id();
3670 struct rq *this_rq = cpu_rq(this_cpu);
3671 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3672 CPU_IDLE : CPU_NOT_IDLE;
3673
3674 rebalance_domains(this_cpu, idle);
3675
3676 /*
3677 * If this cpu has a pending nohz_balance_kick, then do the
3678 * balancing on behalf of the other idle cpus whose ticks are
3679 * stopped.
3680 */
3681 nohz_idle_balance(this_cpu, idle);
3682 }
3683
3684 static inline int on_null_domain(int cpu)
3685 {
3686 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
3687 }
3688
3689 /*
3690 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3691 */
3692 static inline void trigger_load_balance(struct rq *rq, int cpu)
3693 {
3694 /* Don't need to rebalance while attached to NULL domain */
3695 if (time_after_eq(jiffies, rq->next_balance) &&
3696 likely(!on_null_domain(cpu)))
3697 raise_softirq(SCHED_SOFTIRQ);
3698 #ifdef CONFIG_NO_HZ
3699 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
3700 nohz_balancer_kick(cpu);
3701 #endif
3702 }
3703
3704 static void rq_online_fair(struct rq *rq)
3705 {
3706 update_sysctl();
3707 }
3708
3709 static void rq_offline_fair(struct rq *rq)
3710 {
3711 update_sysctl();
3712 }
3713
3714 #else /* CONFIG_SMP */
3715
3716 /*
3717 * on UP we do not need to balance between CPUs:
3718 */
3719 static inline void idle_balance(int cpu, struct rq *rq)
3720 {
3721 }
3722
3723 #endif /* CONFIG_SMP */
3724
3725 /*
3726 * scheduler tick hitting a task of our scheduling class:
3727 */
3728 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
3729 {
3730 struct cfs_rq *cfs_rq;
3731 struct sched_entity *se = &curr->se;
3732
3733 for_each_sched_entity(se) {
3734 cfs_rq = cfs_rq_of(se);
3735 entity_tick(cfs_rq, se, queued);
3736 }
3737 }
3738
3739 /*
3740 * called on fork with the child task as argument from the parent's context
3741 * - child not yet on the tasklist
3742 * - preemption disabled
3743 */
3744 static void task_fork_fair(struct task_struct *p)
3745 {
3746 struct cfs_rq *cfs_rq = task_cfs_rq(current);
3747 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
3748 int this_cpu = smp_processor_id();
3749 struct rq *rq = this_rq();
3750 unsigned long flags;
3751
3752 raw_spin_lock_irqsave(&rq->lock, flags);
3753
3754 update_rq_clock(rq);
3755
3756 if (unlikely(task_cpu(p) != this_cpu))
3757 __set_task_cpu(p, this_cpu);
3758
3759 update_curr(cfs_rq);
3760
3761 if (curr)
3762 se->vruntime = curr->vruntime;
3763 place_entity(cfs_rq, se, 1);
3764
3765 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
3766 /*
3767 * Upon rescheduling, sched_class::put_prev_task() will place
3768 * 'current' within the tree based on its new key value.
3769 */
3770 swap(curr->vruntime, se->vruntime);
3771 resched_task(rq->curr);
3772 }
3773
3774 se->vruntime -= cfs_rq->min_vruntime;
3775
3776 raw_spin_unlock_irqrestore(&rq->lock, flags);
3777 }
3778
3779 /*
3780 * Priority of the task has changed. Check to see if we preempt
3781 * the current task.
3782 */
3783 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
3784 int oldprio, int running)
3785 {
3786 /*
3787 * Reschedule if we are currently running on this runqueue and
3788 * our priority decreased, or if we are not currently running on
3789 * this runqueue and our priority is higher than the current's
3790 */
3791 if (running) {
3792 if (p->prio > oldprio)
3793 resched_task(rq->curr);
3794 } else
3795 check_preempt_curr(rq, p, 0);
3796 }
3797
3798 /*
3799 * We switched to the sched_fair class.
3800 */
3801 static void switched_to_fair(struct rq *rq, struct task_struct *p,
3802 int running)
3803 {
3804 /*
3805 * We were most likely switched from sched_rt, so
3806 * kick off the schedule if running, otherwise just see
3807 * if we can still preempt the current task.
3808 */
3809 if (running)
3810 resched_task(rq->curr);
3811 else
3812 check_preempt_curr(rq, p, 0);
3813 }
3814
3815 /* Account for a task changing its policy or group.
3816 *
3817 * This routine is mostly called to set cfs_rq->curr field when a task
3818 * migrates between groups/classes.
3819 */
3820 static void set_curr_task_fair(struct rq *rq)
3821 {
3822 struct sched_entity *se = &rq->curr->se;
3823
3824 for_each_sched_entity(se)
3825 set_next_entity(cfs_rq_of(se), se);
3826 }
3827
3828 #ifdef CONFIG_FAIR_GROUP_SCHED
3829 static void moved_group_fair(struct task_struct *p, int on_rq)
3830 {
3831 struct cfs_rq *cfs_rq = task_cfs_rq(p);
3832
3833 update_curr(cfs_rq);
3834 if (!on_rq)
3835 place_entity(cfs_rq, &p->se, 1);
3836 }
3837 #endif
3838
3839 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
3840 {
3841 struct sched_entity *se = &task->se;
3842 unsigned int rr_interval = 0;
3843
3844 /*
3845 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
3846 * idle runqueue:
3847 */
3848 if (rq->cfs.load.weight)
3849 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
3850
3851 return rr_interval;
3852 }
3853
3854 /*
3855 * All the scheduling class methods:
3856 */
3857 static const struct sched_class fair_sched_class = {
3858 .next = &idle_sched_class,
3859 .enqueue_task = enqueue_task_fair,
3860 .dequeue_task = dequeue_task_fair,
3861 .yield_task = yield_task_fair,
3862
3863 .check_preempt_curr = check_preempt_wakeup,
3864
3865 .pick_next_task = pick_next_task_fair,
3866 .put_prev_task = put_prev_task_fair,
3867
3868 #ifdef CONFIG_SMP
3869 .select_task_rq = select_task_rq_fair,
3870
3871 .rq_online = rq_online_fair,
3872 .rq_offline = rq_offline_fair,
3873
3874 .task_waking = task_waking_fair,
3875 #endif
3876
3877 .set_curr_task = set_curr_task_fair,
3878 .task_tick = task_tick_fair,
3879 .task_fork = task_fork_fair,
3880
3881 .prio_changed = prio_changed_fair,
3882 .switched_to = switched_to_fair,
3883
3884 .get_rr_interval = get_rr_interval_fair,
3885
3886 #ifdef CONFIG_FAIR_GROUP_SCHED
3887 .moved_group = moved_group_fair,
3888 #endif
3889 };
3890
3891 #ifdef CONFIG_SCHED_DEBUG
3892 static void print_cfs_stats(struct seq_file *m, int cpu)
3893 {
3894 struct cfs_rq *cfs_rq;
3895
3896 rcu_read_lock();
3897 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
3898 print_cfs_rq(m, cpu, cfs_rq);
3899 rcu_read_unlock();
3900 }
3901 #endif