]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched_fair.c
sched: more accurate min_vruntime accounting
[mirror_ubuntu-artful-kernel.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 static const struct sched_class fair_sched_class;
77
78 /**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
82 static inline struct task_struct *task_of(struct sched_entity *se)
83 {
84 return container_of(se, struct task_struct, se);
85 }
86
87 #ifdef CONFIG_FAIR_GROUP_SCHED
88
89 /* cpu runqueue to which this cfs_rq is attached */
90 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91 {
92 return cfs_rq->rq;
93 }
94
95 /* An entity is a task if it doesn't "own" a runqueue */
96 #define entity_is_task(se) (!se->my_q)
97
98 /* Walk up scheduling entities hierarchy */
99 #define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
101
102 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103 {
104 return p->se.cfs_rq;
105 }
106
107 /* runqueue on which this entity is (to be) queued */
108 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109 {
110 return se->cfs_rq;
111 }
112
113 /* runqueue "owned" by this group */
114 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115 {
116 return grp->my_q;
117 }
118
119 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
121 */
122 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123 {
124 return cfs_rq->tg->cfs_rq[this_cpu];
125 }
126
127 /* Iterate thr' all leaf cfs_rq's on a runqueue */
128 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130
131 /* Do the two (enqueued) entities belong to the same group ? */
132 static inline int
133 is_same_group(struct sched_entity *se, struct sched_entity *pse)
134 {
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
137
138 return 0;
139 }
140
141 static inline struct sched_entity *parent_entity(struct sched_entity *se)
142 {
143 return se->parent;
144 }
145
146 #else /* CONFIG_FAIR_GROUP_SCHED */
147
148 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
149 {
150 return container_of(cfs_rq, struct rq, cfs);
151 }
152
153 #define entity_is_task(se) 1
154
155 #define for_each_sched_entity(se) \
156 for (; se; se = NULL)
157
158 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
159 {
160 return &task_rq(p)->cfs;
161 }
162
163 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
164 {
165 struct task_struct *p = task_of(se);
166 struct rq *rq = task_rq(p);
167
168 return &rq->cfs;
169 }
170
171 /* runqueue "owned" by this group */
172 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
173 {
174 return NULL;
175 }
176
177 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
178 {
179 return &cpu_rq(this_cpu)->cfs;
180 }
181
182 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
183 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
184
185 static inline int
186 is_same_group(struct sched_entity *se, struct sched_entity *pse)
187 {
188 return 1;
189 }
190
191 static inline struct sched_entity *parent_entity(struct sched_entity *se)
192 {
193 return NULL;
194 }
195
196 #endif /* CONFIG_FAIR_GROUP_SCHED */
197
198
199 /**************************************************************
200 * Scheduling class tree data structure manipulation methods:
201 */
202
203 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
204 {
205 s64 delta = (s64)(vruntime - min_vruntime);
206 if (delta > 0)
207 min_vruntime = vruntime;
208
209 return min_vruntime;
210 }
211
212 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
213 {
214 s64 delta = (s64)(vruntime - min_vruntime);
215 if (delta < 0)
216 min_vruntime = vruntime;
217
218 return min_vruntime;
219 }
220
221 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
222 {
223 return se->vruntime - cfs_rq->min_vruntime;
224 }
225
226 static void update_min_vruntime(struct cfs_rq *cfs_rq)
227 {
228 u64 vruntime = cfs_rq->min_vruntime;
229
230 if (cfs_rq->curr)
231 vruntime = cfs_rq->curr->vruntime;
232
233 if (cfs_rq->rb_leftmost) {
234 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
235 struct sched_entity,
236 run_node);
237
238 if (vruntime == cfs_rq->min_vruntime)
239 vruntime = se->vruntime;
240 else
241 vruntime = min_vruntime(vruntime, se->vruntime);
242 }
243
244 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
245 }
246
247 /*
248 * Enqueue an entity into the rb-tree:
249 */
250 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
251 {
252 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
253 struct rb_node *parent = NULL;
254 struct sched_entity *entry;
255 s64 key = entity_key(cfs_rq, se);
256 int leftmost = 1;
257
258 /*
259 * Find the right place in the rbtree:
260 */
261 while (*link) {
262 parent = *link;
263 entry = rb_entry(parent, struct sched_entity, run_node);
264 /*
265 * We dont care about collisions. Nodes with
266 * the same key stay together.
267 */
268 if (key < entity_key(cfs_rq, entry)) {
269 link = &parent->rb_left;
270 } else {
271 link = &parent->rb_right;
272 leftmost = 0;
273 }
274 }
275
276 /*
277 * Maintain a cache of leftmost tree entries (it is frequently
278 * used):
279 */
280 if (leftmost)
281 cfs_rq->rb_leftmost = &se->run_node;
282
283 rb_link_node(&se->run_node, parent, link);
284 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
285 }
286
287 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
288 {
289 if (cfs_rq->rb_leftmost == &se->run_node) {
290 struct rb_node *next_node;
291
292 next_node = rb_next(&se->run_node);
293 cfs_rq->rb_leftmost = next_node;
294 }
295
296 if (cfs_rq->next == se)
297 cfs_rq->next = NULL;
298
299 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
300 }
301
302 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
303 {
304 return cfs_rq->rb_leftmost;
305 }
306
307 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
308 {
309 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
310 }
311
312 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
313 {
314 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
315
316 if (!last)
317 return NULL;
318
319 return rb_entry(last, struct sched_entity, run_node);
320 }
321
322 /**************************************************************
323 * Scheduling class statistics methods:
324 */
325
326 #ifdef CONFIG_SCHED_DEBUG
327 int sched_nr_latency_handler(struct ctl_table *table, int write,
328 struct file *filp, void __user *buffer, size_t *lenp,
329 loff_t *ppos)
330 {
331 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
332
333 if (ret || !write)
334 return ret;
335
336 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
337 sysctl_sched_min_granularity);
338
339 return 0;
340 }
341 #endif
342
343 /*
344 * delta *= P[w / rw]
345 */
346 static inline unsigned long
347 calc_delta_weight(unsigned long delta, struct sched_entity *se)
348 {
349 for_each_sched_entity(se) {
350 delta = calc_delta_mine(delta,
351 se->load.weight, &cfs_rq_of(se)->load);
352 }
353
354 return delta;
355 }
356
357 /*
358 * delta /= w
359 */
360 static inline unsigned long
361 calc_delta_fair(unsigned long delta, struct sched_entity *se)
362 {
363 if (unlikely(se->load.weight != NICE_0_LOAD))
364 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
365
366 return delta;
367 }
368
369 /*
370 * The idea is to set a period in which each task runs once.
371 *
372 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
373 * this period because otherwise the slices get too small.
374 *
375 * p = (nr <= nl) ? l : l*nr/nl
376 */
377 static u64 __sched_period(unsigned long nr_running)
378 {
379 u64 period = sysctl_sched_latency;
380 unsigned long nr_latency = sched_nr_latency;
381
382 if (unlikely(nr_running > nr_latency)) {
383 period = sysctl_sched_min_granularity;
384 period *= nr_running;
385 }
386
387 return period;
388 }
389
390 /*
391 * We calculate the wall-time slice from the period by taking a part
392 * proportional to the weight.
393 *
394 * s = p*P[w/rw]
395 */
396 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
397 {
398 unsigned long nr_running = cfs_rq->nr_running;
399
400 if (unlikely(!se->on_rq))
401 nr_running++;
402
403 return calc_delta_weight(__sched_period(nr_running), se);
404 }
405
406 /*
407 * We calculate the vruntime slice of a to be inserted task
408 *
409 * vs = s/w
410 */
411 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
412 {
413 return calc_delta_fair(sched_slice(cfs_rq, se), se);
414 }
415
416 /*
417 * Update the current task's runtime statistics. Skip current tasks that
418 * are not in our scheduling class.
419 */
420 static inline void
421 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
422 unsigned long delta_exec)
423 {
424 unsigned long delta_exec_weighted;
425
426 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
427
428 curr->sum_exec_runtime += delta_exec;
429 schedstat_add(cfs_rq, exec_clock, delta_exec);
430 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
431 curr->vruntime += delta_exec_weighted;
432 update_min_vruntime(cfs_rq);
433 }
434
435 static void update_curr(struct cfs_rq *cfs_rq)
436 {
437 struct sched_entity *curr = cfs_rq->curr;
438 u64 now = rq_of(cfs_rq)->clock;
439 unsigned long delta_exec;
440
441 if (unlikely(!curr))
442 return;
443
444 /*
445 * Get the amount of time the current task was running
446 * since the last time we changed load (this cannot
447 * overflow on 32 bits):
448 */
449 delta_exec = (unsigned long)(now - curr->exec_start);
450
451 __update_curr(cfs_rq, curr, delta_exec);
452 curr->exec_start = now;
453
454 if (entity_is_task(curr)) {
455 struct task_struct *curtask = task_of(curr);
456
457 cpuacct_charge(curtask, delta_exec);
458 account_group_exec_runtime(curtask, delta_exec);
459 }
460 }
461
462 static inline void
463 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
464 {
465 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
466 }
467
468 /*
469 * Task is being enqueued - update stats:
470 */
471 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
472 {
473 /*
474 * Are we enqueueing a waiting task? (for current tasks
475 * a dequeue/enqueue event is a NOP)
476 */
477 if (se != cfs_rq->curr)
478 update_stats_wait_start(cfs_rq, se);
479 }
480
481 static void
482 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
483 {
484 schedstat_set(se->wait_max, max(se->wait_max,
485 rq_of(cfs_rq)->clock - se->wait_start));
486 schedstat_set(se->wait_count, se->wait_count + 1);
487 schedstat_set(se->wait_sum, se->wait_sum +
488 rq_of(cfs_rq)->clock - se->wait_start);
489 schedstat_set(se->wait_start, 0);
490 }
491
492 static inline void
493 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
494 {
495 /*
496 * Mark the end of the wait period if dequeueing a
497 * waiting task:
498 */
499 if (se != cfs_rq->curr)
500 update_stats_wait_end(cfs_rq, se);
501 }
502
503 /*
504 * We are picking a new current task - update its stats:
505 */
506 static inline void
507 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
508 {
509 /*
510 * We are starting a new run period:
511 */
512 se->exec_start = rq_of(cfs_rq)->clock;
513 }
514
515 /**************************************************
516 * Scheduling class queueing methods:
517 */
518
519 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
520 static void
521 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
522 {
523 cfs_rq->task_weight += weight;
524 }
525 #else
526 static inline void
527 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
528 {
529 }
530 #endif
531
532 static void
533 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
534 {
535 update_load_add(&cfs_rq->load, se->load.weight);
536 if (!parent_entity(se))
537 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
538 if (entity_is_task(se)) {
539 add_cfs_task_weight(cfs_rq, se->load.weight);
540 list_add(&se->group_node, &cfs_rq->tasks);
541 }
542 cfs_rq->nr_running++;
543 se->on_rq = 1;
544 }
545
546 static void
547 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
548 {
549 update_load_sub(&cfs_rq->load, se->load.weight);
550 if (!parent_entity(se))
551 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
552 if (entity_is_task(se)) {
553 add_cfs_task_weight(cfs_rq, -se->load.weight);
554 list_del_init(&se->group_node);
555 }
556 cfs_rq->nr_running--;
557 se->on_rq = 0;
558 }
559
560 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
561 {
562 #ifdef CONFIG_SCHEDSTATS
563 if (se->sleep_start) {
564 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
565 struct task_struct *tsk = task_of(se);
566
567 if ((s64)delta < 0)
568 delta = 0;
569
570 if (unlikely(delta > se->sleep_max))
571 se->sleep_max = delta;
572
573 se->sleep_start = 0;
574 se->sum_sleep_runtime += delta;
575
576 account_scheduler_latency(tsk, delta >> 10, 1);
577 }
578 if (se->block_start) {
579 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
580 struct task_struct *tsk = task_of(se);
581
582 if ((s64)delta < 0)
583 delta = 0;
584
585 if (unlikely(delta > se->block_max))
586 se->block_max = delta;
587
588 se->block_start = 0;
589 se->sum_sleep_runtime += delta;
590
591 /*
592 * Blocking time is in units of nanosecs, so shift by 20 to
593 * get a milliseconds-range estimation of the amount of
594 * time that the task spent sleeping:
595 */
596 if (unlikely(prof_on == SLEEP_PROFILING)) {
597
598 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
599 delta >> 20);
600 }
601 account_scheduler_latency(tsk, delta >> 10, 0);
602 }
603 #endif
604 }
605
606 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
607 {
608 #ifdef CONFIG_SCHED_DEBUG
609 s64 d = se->vruntime - cfs_rq->min_vruntime;
610
611 if (d < 0)
612 d = -d;
613
614 if (d > 3*sysctl_sched_latency)
615 schedstat_inc(cfs_rq, nr_spread_over);
616 #endif
617 }
618
619 static void
620 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
621 {
622 u64 vruntime = cfs_rq->min_vruntime;
623
624 /*
625 * The 'current' period is already promised to the current tasks,
626 * however the extra weight of the new task will slow them down a
627 * little, place the new task so that it fits in the slot that
628 * stays open at the end.
629 */
630 if (initial && sched_feat(START_DEBIT))
631 vruntime += sched_vslice(cfs_rq, se);
632
633 if (!initial) {
634 /* sleeps upto a single latency don't count. */
635 if (sched_feat(NEW_FAIR_SLEEPERS)) {
636 unsigned long thresh = sysctl_sched_latency;
637
638 /*
639 * convert the sleeper threshold into virtual time
640 */
641 if (sched_feat(NORMALIZED_SLEEPER))
642 thresh = calc_delta_fair(thresh, se);
643
644 vruntime -= thresh;
645 }
646
647 /* ensure we never gain time by being placed backwards. */
648 vruntime = max_vruntime(se->vruntime, vruntime);
649 }
650
651 se->vruntime = vruntime;
652 }
653
654 static void
655 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
656 {
657 /*
658 * Update run-time statistics of the 'current'.
659 */
660 update_curr(cfs_rq);
661 account_entity_enqueue(cfs_rq, se);
662
663 if (wakeup) {
664 place_entity(cfs_rq, se, 0);
665 enqueue_sleeper(cfs_rq, se);
666 }
667
668 update_stats_enqueue(cfs_rq, se);
669 check_spread(cfs_rq, se);
670 if (se != cfs_rq->curr)
671 __enqueue_entity(cfs_rq, se);
672 }
673
674 static void
675 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
676 {
677 /*
678 * Update run-time statistics of the 'current'.
679 */
680 update_curr(cfs_rq);
681
682 update_stats_dequeue(cfs_rq, se);
683 if (sleep) {
684 #ifdef CONFIG_SCHEDSTATS
685 if (entity_is_task(se)) {
686 struct task_struct *tsk = task_of(se);
687
688 if (tsk->state & TASK_INTERRUPTIBLE)
689 se->sleep_start = rq_of(cfs_rq)->clock;
690 if (tsk->state & TASK_UNINTERRUPTIBLE)
691 se->block_start = rq_of(cfs_rq)->clock;
692 }
693 #endif
694 }
695
696 if (se != cfs_rq->curr)
697 __dequeue_entity(cfs_rq, se);
698 account_entity_dequeue(cfs_rq, se);
699 update_min_vruntime(cfs_rq);
700 }
701
702 /*
703 * Preempt the current task with a newly woken task if needed:
704 */
705 static void
706 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
707 {
708 unsigned long ideal_runtime, delta_exec;
709
710 ideal_runtime = sched_slice(cfs_rq, curr);
711 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
712 if (delta_exec > ideal_runtime)
713 resched_task(rq_of(cfs_rq)->curr);
714 }
715
716 static void
717 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
718 {
719 /* 'current' is not kept within the tree. */
720 if (se->on_rq) {
721 /*
722 * Any task has to be enqueued before it get to execute on
723 * a CPU. So account for the time it spent waiting on the
724 * runqueue.
725 */
726 update_stats_wait_end(cfs_rq, se);
727 __dequeue_entity(cfs_rq, se);
728 }
729
730 update_stats_curr_start(cfs_rq, se);
731 cfs_rq->curr = se;
732 #ifdef CONFIG_SCHEDSTATS
733 /*
734 * Track our maximum slice length, if the CPU's load is at
735 * least twice that of our own weight (i.e. dont track it
736 * when there are only lesser-weight tasks around):
737 */
738 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
739 se->slice_max = max(se->slice_max,
740 se->sum_exec_runtime - se->prev_sum_exec_runtime);
741 }
742 #endif
743 se->prev_sum_exec_runtime = se->sum_exec_runtime;
744 }
745
746 static struct sched_entity *
747 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
748 {
749 struct rq *rq = rq_of(cfs_rq);
750 u64 pair_slice = rq->clock - cfs_rq->pair_start;
751
752 if (!cfs_rq->next || pair_slice > sysctl_sched_min_granularity) {
753 cfs_rq->pair_start = rq->clock;
754 return se;
755 }
756
757 return cfs_rq->next;
758 }
759
760 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
761 {
762 struct sched_entity *se = NULL;
763
764 if (first_fair(cfs_rq)) {
765 se = __pick_next_entity(cfs_rq);
766 se = pick_next(cfs_rq, se);
767 set_next_entity(cfs_rq, se);
768 }
769
770 return se;
771 }
772
773 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
774 {
775 /*
776 * If still on the runqueue then deactivate_task()
777 * was not called and update_curr() has to be done:
778 */
779 if (prev->on_rq)
780 update_curr(cfs_rq);
781
782 check_spread(cfs_rq, prev);
783 if (prev->on_rq) {
784 update_stats_wait_start(cfs_rq, prev);
785 /* Put 'current' back into the tree. */
786 __enqueue_entity(cfs_rq, prev);
787 }
788 cfs_rq->curr = NULL;
789 }
790
791 static void
792 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
793 {
794 /*
795 * Update run-time statistics of the 'current'.
796 */
797 update_curr(cfs_rq);
798
799 #ifdef CONFIG_SCHED_HRTICK
800 /*
801 * queued ticks are scheduled to match the slice, so don't bother
802 * validating it and just reschedule.
803 */
804 if (queued) {
805 resched_task(rq_of(cfs_rq)->curr);
806 return;
807 }
808 /*
809 * don't let the period tick interfere with the hrtick preemption
810 */
811 if (!sched_feat(DOUBLE_TICK) &&
812 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
813 return;
814 #endif
815
816 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
817 check_preempt_tick(cfs_rq, curr);
818 }
819
820 /**************************************************
821 * CFS operations on tasks:
822 */
823
824 #ifdef CONFIG_SCHED_HRTICK
825 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
826 {
827 struct sched_entity *se = &p->se;
828 struct cfs_rq *cfs_rq = cfs_rq_of(se);
829
830 WARN_ON(task_rq(p) != rq);
831
832 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
833 u64 slice = sched_slice(cfs_rq, se);
834 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
835 s64 delta = slice - ran;
836
837 if (delta < 0) {
838 if (rq->curr == p)
839 resched_task(p);
840 return;
841 }
842
843 /*
844 * Don't schedule slices shorter than 10000ns, that just
845 * doesn't make sense. Rely on vruntime for fairness.
846 */
847 if (rq->curr != p)
848 delta = max_t(s64, 10000LL, delta);
849
850 hrtick_start(rq, delta);
851 }
852 }
853
854 /*
855 * called from enqueue/dequeue and updates the hrtick when the
856 * current task is from our class and nr_running is low enough
857 * to matter.
858 */
859 static void hrtick_update(struct rq *rq)
860 {
861 struct task_struct *curr = rq->curr;
862
863 if (curr->sched_class != &fair_sched_class)
864 return;
865
866 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
867 hrtick_start_fair(rq, curr);
868 }
869 #else /* !CONFIG_SCHED_HRTICK */
870 static inline void
871 hrtick_start_fair(struct rq *rq, struct task_struct *p)
872 {
873 }
874
875 static inline void hrtick_update(struct rq *rq)
876 {
877 }
878 #endif
879
880 /*
881 * The enqueue_task method is called before nr_running is
882 * increased. Here we update the fair scheduling stats and
883 * then put the task into the rbtree:
884 */
885 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
886 {
887 struct cfs_rq *cfs_rq;
888 struct sched_entity *se = &p->se;
889
890 for_each_sched_entity(se) {
891 if (se->on_rq)
892 break;
893 cfs_rq = cfs_rq_of(se);
894 enqueue_entity(cfs_rq, se, wakeup);
895 wakeup = 1;
896 }
897
898 hrtick_update(rq);
899 }
900
901 /*
902 * The dequeue_task method is called before nr_running is
903 * decreased. We remove the task from the rbtree and
904 * update the fair scheduling stats:
905 */
906 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
907 {
908 struct cfs_rq *cfs_rq;
909 struct sched_entity *se = &p->se;
910
911 for_each_sched_entity(se) {
912 cfs_rq = cfs_rq_of(se);
913 dequeue_entity(cfs_rq, se, sleep);
914 /* Don't dequeue parent if it has other entities besides us */
915 if (cfs_rq->load.weight)
916 break;
917 sleep = 1;
918 }
919
920 hrtick_update(rq);
921 }
922
923 /*
924 * sched_yield() support is very simple - we dequeue and enqueue.
925 *
926 * If compat_yield is turned on then we requeue to the end of the tree.
927 */
928 static void yield_task_fair(struct rq *rq)
929 {
930 struct task_struct *curr = rq->curr;
931 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
932 struct sched_entity *rightmost, *se = &curr->se;
933
934 /*
935 * Are we the only task in the tree?
936 */
937 if (unlikely(cfs_rq->nr_running == 1))
938 return;
939
940 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
941 update_rq_clock(rq);
942 /*
943 * Update run-time statistics of the 'current'.
944 */
945 update_curr(cfs_rq);
946
947 return;
948 }
949 /*
950 * Find the rightmost entry in the rbtree:
951 */
952 rightmost = __pick_last_entity(cfs_rq);
953 /*
954 * Already in the rightmost position?
955 */
956 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
957 return;
958
959 /*
960 * Minimally necessary key value to be last in the tree:
961 * Upon rescheduling, sched_class::put_prev_task() will place
962 * 'current' within the tree based on its new key value.
963 */
964 se->vruntime = rightmost->vruntime + 1;
965 }
966
967 /*
968 * wake_idle() will wake a task on an idle cpu if task->cpu is
969 * not idle and an idle cpu is available. The span of cpus to
970 * search starts with cpus closest then further out as needed,
971 * so we always favor a closer, idle cpu.
972 * Domains may include CPUs that are not usable for migration,
973 * hence we need to mask them out (cpu_active_map)
974 *
975 * Returns the CPU we should wake onto.
976 */
977 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
978 static int wake_idle(int cpu, struct task_struct *p)
979 {
980 cpumask_t tmp;
981 struct sched_domain *sd;
982 int i;
983
984 /*
985 * If it is idle, then it is the best cpu to run this task.
986 *
987 * This cpu is also the best, if it has more than one task already.
988 * Siblings must be also busy(in most cases) as they didn't already
989 * pickup the extra load from this cpu and hence we need not check
990 * sibling runqueue info. This will avoid the checks and cache miss
991 * penalities associated with that.
992 */
993 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
994 return cpu;
995
996 for_each_domain(cpu, sd) {
997 if ((sd->flags & SD_WAKE_IDLE)
998 || ((sd->flags & SD_WAKE_IDLE_FAR)
999 && !task_hot(p, task_rq(p)->clock, sd))) {
1000 cpus_and(tmp, sd->span, p->cpus_allowed);
1001 cpus_and(tmp, tmp, cpu_active_map);
1002 for_each_cpu_mask_nr(i, tmp) {
1003 if (idle_cpu(i)) {
1004 if (i != task_cpu(p)) {
1005 schedstat_inc(p,
1006 se.nr_wakeups_idle);
1007 }
1008 return i;
1009 }
1010 }
1011 } else {
1012 break;
1013 }
1014 }
1015 return cpu;
1016 }
1017 #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1018 static inline int wake_idle(int cpu, struct task_struct *p)
1019 {
1020 return cpu;
1021 }
1022 #endif
1023
1024 #ifdef CONFIG_SMP
1025
1026 #ifdef CONFIG_FAIR_GROUP_SCHED
1027 /*
1028 * effective_load() calculates the load change as seen from the root_task_group
1029 *
1030 * Adding load to a group doesn't make a group heavier, but can cause movement
1031 * of group shares between cpus. Assuming the shares were perfectly aligned one
1032 * can calculate the shift in shares.
1033 *
1034 * The problem is that perfectly aligning the shares is rather expensive, hence
1035 * we try to avoid doing that too often - see update_shares(), which ratelimits
1036 * this change.
1037 *
1038 * We compensate this by not only taking the current delta into account, but
1039 * also considering the delta between when the shares were last adjusted and
1040 * now.
1041 *
1042 * We still saw a performance dip, some tracing learned us that between
1043 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1044 * significantly. Therefore try to bias the error in direction of failing
1045 * the affine wakeup.
1046 *
1047 */
1048 static long effective_load(struct task_group *tg, int cpu,
1049 long wl, long wg)
1050 {
1051 struct sched_entity *se = tg->se[cpu];
1052
1053 if (!tg->parent)
1054 return wl;
1055
1056 /*
1057 * By not taking the decrease of shares on the other cpu into
1058 * account our error leans towards reducing the affine wakeups.
1059 */
1060 if (!wl && sched_feat(ASYM_EFF_LOAD))
1061 return wl;
1062
1063 for_each_sched_entity(se) {
1064 long S, rw, s, a, b;
1065 long more_w;
1066
1067 /*
1068 * Instead of using this increment, also add the difference
1069 * between when the shares were last updated and now.
1070 */
1071 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1072 wl += more_w;
1073 wg += more_w;
1074
1075 S = se->my_q->tg->shares;
1076 s = se->my_q->shares;
1077 rw = se->my_q->rq_weight;
1078
1079 a = S*(rw + wl);
1080 b = S*rw + s*wg;
1081
1082 wl = s*(a-b);
1083
1084 if (likely(b))
1085 wl /= b;
1086
1087 /*
1088 * Assume the group is already running and will
1089 * thus already be accounted for in the weight.
1090 *
1091 * That is, moving shares between CPUs, does not
1092 * alter the group weight.
1093 */
1094 wg = 0;
1095 }
1096
1097 return wl;
1098 }
1099
1100 #else
1101
1102 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1103 unsigned long wl, unsigned long wg)
1104 {
1105 return wl;
1106 }
1107
1108 #endif
1109
1110 static int
1111 wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1112 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1113 int idx, unsigned long load, unsigned long this_load,
1114 unsigned int imbalance)
1115 {
1116 struct task_struct *curr = this_rq->curr;
1117 struct task_group *tg;
1118 unsigned long tl = this_load;
1119 unsigned long tl_per_task;
1120 unsigned long weight;
1121 int balanced;
1122
1123 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1124 return 0;
1125
1126 if (!sync && sched_feat(SYNC_WAKEUPS) &&
1127 curr->se.avg_overlap < sysctl_sched_migration_cost &&
1128 p->se.avg_overlap < sysctl_sched_migration_cost)
1129 sync = 1;
1130
1131 /*
1132 * If sync wakeup then subtract the (maximum possible)
1133 * effect of the currently running task from the load
1134 * of the current CPU:
1135 */
1136 if (sync) {
1137 tg = task_group(current);
1138 weight = current->se.load.weight;
1139
1140 tl += effective_load(tg, this_cpu, -weight, -weight);
1141 load += effective_load(tg, prev_cpu, 0, -weight);
1142 }
1143
1144 tg = task_group(p);
1145 weight = p->se.load.weight;
1146
1147 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1148 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1149
1150 /*
1151 * If the currently running task will sleep within
1152 * a reasonable amount of time then attract this newly
1153 * woken task:
1154 */
1155 if (sync && balanced)
1156 return 1;
1157
1158 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1159 tl_per_task = cpu_avg_load_per_task(this_cpu);
1160
1161 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1162 tl_per_task)) {
1163 /*
1164 * This domain has SD_WAKE_AFFINE and
1165 * p is cache cold in this domain, and
1166 * there is no bad imbalance.
1167 */
1168 schedstat_inc(this_sd, ttwu_move_affine);
1169 schedstat_inc(p, se.nr_wakeups_affine);
1170
1171 return 1;
1172 }
1173 return 0;
1174 }
1175
1176 static int select_task_rq_fair(struct task_struct *p, int sync)
1177 {
1178 struct sched_domain *sd, *this_sd = NULL;
1179 int prev_cpu, this_cpu, new_cpu;
1180 unsigned long load, this_load;
1181 struct rq *this_rq;
1182 unsigned int imbalance;
1183 int idx;
1184
1185 prev_cpu = task_cpu(p);
1186 this_cpu = smp_processor_id();
1187 this_rq = cpu_rq(this_cpu);
1188 new_cpu = prev_cpu;
1189
1190 if (prev_cpu == this_cpu)
1191 goto out;
1192 /*
1193 * 'this_sd' is the first domain that both
1194 * this_cpu and prev_cpu are present in:
1195 */
1196 for_each_domain(this_cpu, sd) {
1197 if (cpu_isset(prev_cpu, sd->span)) {
1198 this_sd = sd;
1199 break;
1200 }
1201 }
1202
1203 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1204 goto out;
1205
1206 /*
1207 * Check for affine wakeup and passive balancing possibilities.
1208 */
1209 if (!this_sd)
1210 goto out;
1211
1212 idx = this_sd->wake_idx;
1213
1214 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1215
1216 load = source_load(prev_cpu, idx);
1217 this_load = target_load(this_cpu, idx);
1218
1219 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1220 load, this_load, imbalance))
1221 return this_cpu;
1222
1223 /*
1224 * Start passive balancing when half the imbalance_pct
1225 * limit is reached.
1226 */
1227 if (this_sd->flags & SD_WAKE_BALANCE) {
1228 if (imbalance*this_load <= 100*load) {
1229 schedstat_inc(this_sd, ttwu_move_balance);
1230 schedstat_inc(p, se.nr_wakeups_passive);
1231 return this_cpu;
1232 }
1233 }
1234
1235 out:
1236 return wake_idle(new_cpu, p);
1237 }
1238 #endif /* CONFIG_SMP */
1239
1240 static unsigned long wakeup_gran(struct sched_entity *se)
1241 {
1242 unsigned long gran = sysctl_sched_wakeup_granularity;
1243
1244 /*
1245 * More easily preempt - nice tasks, while not making it harder for
1246 * + nice tasks.
1247 */
1248 if (sched_feat(ASYM_GRAN))
1249 gran = calc_delta_mine(gran, NICE_0_LOAD, &se->load);
1250
1251 return gran;
1252 }
1253
1254 /*
1255 * Preempt the current task with a newly woken task if needed:
1256 */
1257 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1258 {
1259 struct task_struct *curr = rq->curr;
1260 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1261 struct sched_entity *se = &curr->se, *pse = &p->se;
1262 s64 delta_exec;
1263
1264 if (unlikely(rt_prio(p->prio))) {
1265 update_rq_clock(rq);
1266 update_curr(cfs_rq);
1267 resched_task(curr);
1268 return;
1269 }
1270
1271 if (unlikely(se == pse))
1272 return;
1273
1274 cfs_rq_of(pse)->next = pse;
1275
1276 /*
1277 * We can come here with TIF_NEED_RESCHED already set from new task
1278 * wake up path.
1279 */
1280 if (test_tsk_need_resched(curr))
1281 return;
1282
1283 /*
1284 * Batch tasks do not preempt (their preemption is driven by
1285 * the tick):
1286 */
1287 if (unlikely(p->policy == SCHED_BATCH))
1288 return;
1289
1290 if (!sched_feat(WAKEUP_PREEMPT))
1291 return;
1292
1293 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1294 (se->avg_overlap < sysctl_sched_migration_cost &&
1295 pse->avg_overlap < sysctl_sched_migration_cost))) {
1296 resched_task(curr);
1297 return;
1298 }
1299
1300 delta_exec = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1301 if (delta_exec > wakeup_gran(pse))
1302 resched_task(curr);
1303 }
1304
1305 static struct task_struct *pick_next_task_fair(struct rq *rq)
1306 {
1307 struct task_struct *p;
1308 struct cfs_rq *cfs_rq = &rq->cfs;
1309 struct sched_entity *se;
1310
1311 if (unlikely(!cfs_rq->nr_running))
1312 return NULL;
1313
1314 do {
1315 se = pick_next_entity(cfs_rq);
1316 cfs_rq = group_cfs_rq(se);
1317 } while (cfs_rq);
1318
1319 p = task_of(se);
1320 hrtick_start_fair(rq, p);
1321
1322 return p;
1323 }
1324
1325 /*
1326 * Account for a descheduled task:
1327 */
1328 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1329 {
1330 struct sched_entity *se = &prev->se;
1331 struct cfs_rq *cfs_rq;
1332
1333 for_each_sched_entity(se) {
1334 cfs_rq = cfs_rq_of(se);
1335 put_prev_entity(cfs_rq, se);
1336 }
1337 }
1338
1339 #ifdef CONFIG_SMP
1340 /**************************************************
1341 * Fair scheduling class load-balancing methods:
1342 */
1343
1344 /*
1345 * Load-balancing iterator. Note: while the runqueue stays locked
1346 * during the whole iteration, the current task might be
1347 * dequeued so the iterator has to be dequeue-safe. Here we
1348 * achieve that by always pre-iterating before returning
1349 * the current task:
1350 */
1351 static struct task_struct *
1352 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1353 {
1354 struct task_struct *p = NULL;
1355 struct sched_entity *se;
1356
1357 if (next == &cfs_rq->tasks)
1358 return NULL;
1359
1360 se = list_entry(next, struct sched_entity, group_node);
1361 p = task_of(se);
1362 cfs_rq->balance_iterator = next->next;
1363
1364 return p;
1365 }
1366
1367 static struct task_struct *load_balance_start_fair(void *arg)
1368 {
1369 struct cfs_rq *cfs_rq = arg;
1370
1371 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1372 }
1373
1374 static struct task_struct *load_balance_next_fair(void *arg)
1375 {
1376 struct cfs_rq *cfs_rq = arg;
1377
1378 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1379 }
1380
1381 static unsigned long
1382 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1383 unsigned long max_load_move, struct sched_domain *sd,
1384 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1385 struct cfs_rq *cfs_rq)
1386 {
1387 struct rq_iterator cfs_rq_iterator;
1388
1389 cfs_rq_iterator.start = load_balance_start_fair;
1390 cfs_rq_iterator.next = load_balance_next_fair;
1391 cfs_rq_iterator.arg = cfs_rq;
1392
1393 return balance_tasks(this_rq, this_cpu, busiest,
1394 max_load_move, sd, idle, all_pinned,
1395 this_best_prio, &cfs_rq_iterator);
1396 }
1397
1398 #ifdef CONFIG_FAIR_GROUP_SCHED
1399 static unsigned long
1400 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1401 unsigned long max_load_move,
1402 struct sched_domain *sd, enum cpu_idle_type idle,
1403 int *all_pinned, int *this_best_prio)
1404 {
1405 long rem_load_move = max_load_move;
1406 int busiest_cpu = cpu_of(busiest);
1407 struct task_group *tg;
1408
1409 rcu_read_lock();
1410 update_h_load(busiest_cpu);
1411
1412 list_for_each_entry_rcu(tg, &task_groups, list) {
1413 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1414 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1415 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1416 u64 rem_load, moved_load;
1417
1418 /*
1419 * empty group
1420 */
1421 if (!busiest_cfs_rq->task_weight)
1422 continue;
1423
1424 rem_load = (u64)rem_load_move * busiest_weight;
1425 rem_load = div_u64(rem_load, busiest_h_load + 1);
1426
1427 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1428 rem_load, sd, idle, all_pinned, this_best_prio,
1429 tg->cfs_rq[busiest_cpu]);
1430
1431 if (!moved_load)
1432 continue;
1433
1434 moved_load *= busiest_h_load;
1435 moved_load = div_u64(moved_load, busiest_weight + 1);
1436
1437 rem_load_move -= moved_load;
1438 if (rem_load_move < 0)
1439 break;
1440 }
1441 rcu_read_unlock();
1442
1443 return max_load_move - rem_load_move;
1444 }
1445 #else
1446 static unsigned long
1447 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1448 unsigned long max_load_move,
1449 struct sched_domain *sd, enum cpu_idle_type idle,
1450 int *all_pinned, int *this_best_prio)
1451 {
1452 return __load_balance_fair(this_rq, this_cpu, busiest,
1453 max_load_move, sd, idle, all_pinned,
1454 this_best_prio, &busiest->cfs);
1455 }
1456 #endif
1457
1458 static int
1459 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1460 struct sched_domain *sd, enum cpu_idle_type idle)
1461 {
1462 struct cfs_rq *busy_cfs_rq;
1463 struct rq_iterator cfs_rq_iterator;
1464
1465 cfs_rq_iterator.start = load_balance_start_fair;
1466 cfs_rq_iterator.next = load_balance_next_fair;
1467
1468 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1469 /*
1470 * pass busy_cfs_rq argument into
1471 * load_balance_[start|next]_fair iterators
1472 */
1473 cfs_rq_iterator.arg = busy_cfs_rq;
1474 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1475 &cfs_rq_iterator))
1476 return 1;
1477 }
1478
1479 return 0;
1480 }
1481 #endif /* CONFIG_SMP */
1482
1483 /*
1484 * scheduler tick hitting a task of our scheduling class:
1485 */
1486 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1487 {
1488 struct cfs_rq *cfs_rq;
1489 struct sched_entity *se = &curr->se;
1490
1491 for_each_sched_entity(se) {
1492 cfs_rq = cfs_rq_of(se);
1493 entity_tick(cfs_rq, se, queued);
1494 }
1495 }
1496
1497 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1498
1499 /*
1500 * Share the fairness runtime between parent and child, thus the
1501 * total amount of pressure for CPU stays equal - new tasks
1502 * get a chance to run but frequent forkers are not allowed to
1503 * monopolize the CPU. Note: the parent runqueue is locked,
1504 * the child is not running yet.
1505 */
1506 static void task_new_fair(struct rq *rq, struct task_struct *p)
1507 {
1508 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1509 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1510 int this_cpu = smp_processor_id();
1511
1512 sched_info_queued(p);
1513
1514 update_curr(cfs_rq);
1515 place_entity(cfs_rq, se, 1);
1516
1517 /* 'curr' will be NULL if the child belongs to a different group */
1518 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1519 curr && curr->vruntime < se->vruntime) {
1520 /*
1521 * Upon rescheduling, sched_class::put_prev_task() will place
1522 * 'current' within the tree based on its new key value.
1523 */
1524 swap(curr->vruntime, se->vruntime);
1525 resched_task(rq->curr);
1526 }
1527
1528 enqueue_task_fair(rq, p, 0);
1529 }
1530
1531 /*
1532 * Priority of the task has changed. Check to see if we preempt
1533 * the current task.
1534 */
1535 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1536 int oldprio, int running)
1537 {
1538 /*
1539 * Reschedule if we are currently running on this runqueue and
1540 * our priority decreased, or if we are not currently running on
1541 * this runqueue and our priority is higher than the current's
1542 */
1543 if (running) {
1544 if (p->prio > oldprio)
1545 resched_task(rq->curr);
1546 } else
1547 check_preempt_curr(rq, p, 0);
1548 }
1549
1550 /*
1551 * We switched to the sched_fair class.
1552 */
1553 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1554 int running)
1555 {
1556 /*
1557 * We were most likely switched from sched_rt, so
1558 * kick off the schedule if running, otherwise just see
1559 * if we can still preempt the current task.
1560 */
1561 if (running)
1562 resched_task(rq->curr);
1563 else
1564 check_preempt_curr(rq, p, 0);
1565 }
1566
1567 /* Account for a task changing its policy or group.
1568 *
1569 * This routine is mostly called to set cfs_rq->curr field when a task
1570 * migrates between groups/classes.
1571 */
1572 static void set_curr_task_fair(struct rq *rq)
1573 {
1574 struct sched_entity *se = &rq->curr->se;
1575
1576 for_each_sched_entity(se)
1577 set_next_entity(cfs_rq_of(se), se);
1578 }
1579
1580 #ifdef CONFIG_FAIR_GROUP_SCHED
1581 static void moved_group_fair(struct task_struct *p)
1582 {
1583 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1584
1585 update_curr(cfs_rq);
1586 place_entity(cfs_rq, &p->se, 1);
1587 }
1588 #endif
1589
1590 /*
1591 * All the scheduling class methods:
1592 */
1593 static const struct sched_class fair_sched_class = {
1594 .next = &idle_sched_class,
1595 .enqueue_task = enqueue_task_fair,
1596 .dequeue_task = dequeue_task_fair,
1597 .yield_task = yield_task_fair,
1598
1599 .check_preempt_curr = check_preempt_wakeup,
1600
1601 .pick_next_task = pick_next_task_fair,
1602 .put_prev_task = put_prev_task_fair,
1603
1604 #ifdef CONFIG_SMP
1605 .select_task_rq = select_task_rq_fair,
1606
1607 .load_balance = load_balance_fair,
1608 .move_one_task = move_one_task_fair,
1609 #endif
1610
1611 .set_curr_task = set_curr_task_fair,
1612 .task_tick = task_tick_fair,
1613 .task_new = task_new_fair,
1614
1615 .prio_changed = prio_changed_fair,
1616 .switched_to = switched_to_fair,
1617
1618 #ifdef CONFIG_FAIR_GROUP_SCHED
1619 .moved_group = moved_group_fair,
1620 #endif
1621 };
1622
1623 #ifdef CONFIG_SCHED_DEBUG
1624 static void print_cfs_stats(struct seq_file *m, int cpu)
1625 {
1626 struct cfs_rq *cfs_rq;
1627
1628 rcu_read_lock();
1629 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1630 print_cfs_rq(m, cpu, cfs_rq);
1631 rcu_read_unlock();
1632 }
1633 #endif