]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched_fair.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/deller...
[mirror_ubuntu-artful-kernel.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 static const struct sched_class fair_sched_class;
77
78 /**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
82 static inline struct task_struct *task_of(struct sched_entity *se)
83 {
84 return container_of(se, struct task_struct, se);
85 }
86
87 #ifdef CONFIG_FAIR_GROUP_SCHED
88
89 /* cpu runqueue to which this cfs_rq is attached */
90 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91 {
92 return cfs_rq->rq;
93 }
94
95 /* An entity is a task if it doesn't "own" a runqueue */
96 #define entity_is_task(se) (!se->my_q)
97
98 /* Walk up scheduling entities hierarchy */
99 #define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
101
102 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103 {
104 return p->se.cfs_rq;
105 }
106
107 /* runqueue on which this entity is (to be) queued */
108 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109 {
110 return se->cfs_rq;
111 }
112
113 /* runqueue "owned" by this group */
114 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115 {
116 return grp->my_q;
117 }
118
119 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
121 */
122 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123 {
124 return cfs_rq->tg->cfs_rq[this_cpu];
125 }
126
127 /* Iterate thr' all leaf cfs_rq's on a runqueue */
128 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130
131 /* Do the two (enqueued) entities belong to the same group ? */
132 static inline int
133 is_same_group(struct sched_entity *se, struct sched_entity *pse)
134 {
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
137
138 return 0;
139 }
140
141 static inline struct sched_entity *parent_entity(struct sched_entity *se)
142 {
143 return se->parent;
144 }
145
146 /* return depth at which a sched entity is present in the hierarchy */
147 static inline int depth_se(struct sched_entity *se)
148 {
149 int depth = 0;
150
151 for_each_sched_entity(se)
152 depth++;
153
154 return depth;
155 }
156
157 static void
158 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
159 {
160 int se_depth, pse_depth;
161
162 /*
163 * preemption test can be made between sibling entities who are in the
164 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
165 * both tasks until we find their ancestors who are siblings of common
166 * parent.
167 */
168
169 /* First walk up until both entities are at same depth */
170 se_depth = depth_se(*se);
171 pse_depth = depth_se(*pse);
172
173 while (se_depth > pse_depth) {
174 se_depth--;
175 *se = parent_entity(*se);
176 }
177
178 while (pse_depth > se_depth) {
179 pse_depth--;
180 *pse = parent_entity(*pse);
181 }
182
183 while (!is_same_group(*se, *pse)) {
184 *se = parent_entity(*se);
185 *pse = parent_entity(*pse);
186 }
187 }
188
189 #else /* CONFIG_FAIR_GROUP_SCHED */
190
191 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
192 {
193 return container_of(cfs_rq, struct rq, cfs);
194 }
195
196 #define entity_is_task(se) 1
197
198 #define for_each_sched_entity(se) \
199 for (; se; se = NULL)
200
201 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
202 {
203 return &task_rq(p)->cfs;
204 }
205
206 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
207 {
208 struct task_struct *p = task_of(se);
209 struct rq *rq = task_rq(p);
210
211 return &rq->cfs;
212 }
213
214 /* runqueue "owned" by this group */
215 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
216 {
217 return NULL;
218 }
219
220 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
221 {
222 return &cpu_rq(this_cpu)->cfs;
223 }
224
225 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
226 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
227
228 static inline int
229 is_same_group(struct sched_entity *se, struct sched_entity *pse)
230 {
231 return 1;
232 }
233
234 static inline struct sched_entity *parent_entity(struct sched_entity *se)
235 {
236 return NULL;
237 }
238
239 static inline void
240 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
241 {
242 }
243
244 #endif /* CONFIG_FAIR_GROUP_SCHED */
245
246
247 /**************************************************************
248 * Scheduling class tree data structure manipulation methods:
249 */
250
251 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
252 {
253 s64 delta = (s64)(vruntime - min_vruntime);
254 if (delta > 0)
255 min_vruntime = vruntime;
256
257 return min_vruntime;
258 }
259
260 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
261 {
262 s64 delta = (s64)(vruntime - min_vruntime);
263 if (delta < 0)
264 min_vruntime = vruntime;
265
266 return min_vruntime;
267 }
268
269 static inline int entity_before(struct sched_entity *a,
270 struct sched_entity *b)
271 {
272 return (s64)(a->vruntime - b->vruntime) < 0;
273 }
274
275 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
276 {
277 return se->vruntime - cfs_rq->min_vruntime;
278 }
279
280 static void update_min_vruntime(struct cfs_rq *cfs_rq)
281 {
282 u64 vruntime = cfs_rq->min_vruntime;
283
284 if (cfs_rq->curr)
285 vruntime = cfs_rq->curr->vruntime;
286
287 if (cfs_rq->rb_leftmost) {
288 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
289 struct sched_entity,
290 run_node);
291
292 if (!cfs_rq->curr)
293 vruntime = se->vruntime;
294 else
295 vruntime = min_vruntime(vruntime, se->vruntime);
296 }
297
298 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
299 }
300
301 /*
302 * Enqueue an entity into the rb-tree:
303 */
304 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
305 {
306 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
307 struct rb_node *parent = NULL;
308 struct sched_entity *entry;
309 s64 key = entity_key(cfs_rq, se);
310 int leftmost = 1;
311
312 /*
313 * Find the right place in the rbtree:
314 */
315 while (*link) {
316 parent = *link;
317 entry = rb_entry(parent, struct sched_entity, run_node);
318 /*
319 * We dont care about collisions. Nodes with
320 * the same key stay together.
321 */
322 if (key < entity_key(cfs_rq, entry)) {
323 link = &parent->rb_left;
324 } else {
325 link = &parent->rb_right;
326 leftmost = 0;
327 }
328 }
329
330 /*
331 * Maintain a cache of leftmost tree entries (it is frequently
332 * used):
333 */
334 if (leftmost)
335 cfs_rq->rb_leftmost = &se->run_node;
336
337 rb_link_node(&se->run_node, parent, link);
338 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
339 }
340
341 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
342 {
343 if (cfs_rq->rb_leftmost == &se->run_node) {
344 struct rb_node *next_node;
345
346 next_node = rb_next(&se->run_node);
347 cfs_rq->rb_leftmost = next_node;
348 }
349
350 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
351 }
352
353 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
354 {
355 struct rb_node *left = cfs_rq->rb_leftmost;
356
357 if (!left)
358 return NULL;
359
360 return rb_entry(left, struct sched_entity, run_node);
361 }
362
363 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
364 {
365 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
366
367 if (!last)
368 return NULL;
369
370 return rb_entry(last, struct sched_entity, run_node);
371 }
372
373 /**************************************************************
374 * Scheduling class statistics methods:
375 */
376
377 #ifdef CONFIG_SCHED_DEBUG
378 int sched_nr_latency_handler(struct ctl_table *table, int write,
379 struct file *filp, void __user *buffer, size_t *lenp,
380 loff_t *ppos)
381 {
382 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
383
384 if (ret || !write)
385 return ret;
386
387 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
388 sysctl_sched_min_granularity);
389
390 return 0;
391 }
392 #endif
393
394 /*
395 * delta /= w
396 */
397 static inline unsigned long
398 calc_delta_fair(unsigned long delta, struct sched_entity *se)
399 {
400 if (unlikely(se->load.weight != NICE_0_LOAD))
401 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
402
403 return delta;
404 }
405
406 /*
407 * The idea is to set a period in which each task runs once.
408 *
409 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
410 * this period because otherwise the slices get too small.
411 *
412 * p = (nr <= nl) ? l : l*nr/nl
413 */
414 static u64 __sched_period(unsigned long nr_running)
415 {
416 u64 period = sysctl_sched_latency;
417 unsigned long nr_latency = sched_nr_latency;
418
419 if (unlikely(nr_running > nr_latency)) {
420 period = sysctl_sched_min_granularity;
421 period *= nr_running;
422 }
423
424 return period;
425 }
426
427 /*
428 * We calculate the wall-time slice from the period by taking a part
429 * proportional to the weight.
430 *
431 * s = p*P[w/rw]
432 */
433 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
434 {
435 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
436
437 for_each_sched_entity(se) {
438 struct load_weight *load;
439 struct load_weight lw;
440
441 cfs_rq = cfs_rq_of(se);
442 load = &cfs_rq->load;
443
444 if (unlikely(!se->on_rq)) {
445 lw = cfs_rq->load;
446
447 update_load_add(&lw, se->load.weight);
448 load = &lw;
449 }
450 slice = calc_delta_mine(slice, se->load.weight, load);
451 }
452 return slice;
453 }
454
455 /*
456 * We calculate the vruntime slice of a to be inserted task
457 *
458 * vs = s/w
459 */
460 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
461 {
462 return calc_delta_fair(sched_slice(cfs_rq, se), se);
463 }
464
465 /*
466 * Update the current task's runtime statistics. Skip current tasks that
467 * are not in our scheduling class.
468 */
469 static inline void
470 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
471 unsigned long delta_exec)
472 {
473 unsigned long delta_exec_weighted;
474
475 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
476
477 curr->sum_exec_runtime += delta_exec;
478 schedstat_add(cfs_rq, exec_clock, delta_exec);
479 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
480 curr->vruntime += delta_exec_weighted;
481 update_min_vruntime(cfs_rq);
482 }
483
484 static void update_curr(struct cfs_rq *cfs_rq)
485 {
486 struct sched_entity *curr = cfs_rq->curr;
487 u64 now = rq_of(cfs_rq)->clock;
488 unsigned long delta_exec;
489
490 if (unlikely(!curr))
491 return;
492
493 /*
494 * Get the amount of time the current task was running
495 * since the last time we changed load (this cannot
496 * overflow on 32 bits):
497 */
498 delta_exec = (unsigned long)(now - curr->exec_start);
499 if (!delta_exec)
500 return;
501
502 __update_curr(cfs_rq, curr, delta_exec);
503 curr->exec_start = now;
504
505 if (entity_is_task(curr)) {
506 struct task_struct *curtask = task_of(curr);
507
508 cpuacct_charge(curtask, delta_exec);
509 account_group_exec_runtime(curtask, delta_exec);
510 }
511 }
512
513 static inline void
514 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
515 {
516 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
517 }
518
519 /*
520 * Task is being enqueued - update stats:
521 */
522 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 /*
525 * Are we enqueueing a waiting task? (for current tasks
526 * a dequeue/enqueue event is a NOP)
527 */
528 if (se != cfs_rq->curr)
529 update_stats_wait_start(cfs_rq, se);
530 }
531
532 static void
533 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
534 {
535 schedstat_set(se->wait_max, max(se->wait_max,
536 rq_of(cfs_rq)->clock - se->wait_start));
537 schedstat_set(se->wait_count, se->wait_count + 1);
538 schedstat_set(se->wait_sum, se->wait_sum +
539 rq_of(cfs_rq)->clock - se->wait_start);
540 schedstat_set(se->wait_start, 0);
541 }
542
543 static inline void
544 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
545 {
546 /*
547 * Mark the end of the wait period if dequeueing a
548 * waiting task:
549 */
550 if (se != cfs_rq->curr)
551 update_stats_wait_end(cfs_rq, se);
552 }
553
554 /*
555 * We are picking a new current task - update its stats:
556 */
557 static inline void
558 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 {
560 /*
561 * We are starting a new run period:
562 */
563 se->exec_start = rq_of(cfs_rq)->clock;
564 }
565
566 /**************************************************
567 * Scheduling class queueing methods:
568 */
569
570 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
571 static void
572 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
573 {
574 cfs_rq->task_weight += weight;
575 }
576 #else
577 static inline void
578 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
579 {
580 }
581 #endif
582
583 static void
584 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
585 {
586 update_load_add(&cfs_rq->load, se->load.weight);
587 if (!parent_entity(se))
588 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
589 if (entity_is_task(se)) {
590 add_cfs_task_weight(cfs_rq, se->load.weight);
591 list_add(&se->group_node, &cfs_rq->tasks);
592 }
593 cfs_rq->nr_running++;
594 se->on_rq = 1;
595 }
596
597 static void
598 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
599 {
600 update_load_sub(&cfs_rq->load, se->load.weight);
601 if (!parent_entity(se))
602 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
603 if (entity_is_task(se)) {
604 add_cfs_task_weight(cfs_rq, -se->load.weight);
605 list_del_init(&se->group_node);
606 }
607 cfs_rq->nr_running--;
608 se->on_rq = 0;
609 }
610
611 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
612 {
613 #ifdef CONFIG_SCHEDSTATS
614 struct task_struct *tsk = NULL;
615
616 if (entity_is_task(se))
617 tsk = task_of(se);
618
619 if (se->sleep_start) {
620 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
621
622 if ((s64)delta < 0)
623 delta = 0;
624
625 if (unlikely(delta > se->sleep_max))
626 se->sleep_max = delta;
627
628 se->sleep_start = 0;
629 se->sum_sleep_runtime += delta;
630
631 if (tsk)
632 account_scheduler_latency(tsk, delta >> 10, 1);
633 }
634 if (se->block_start) {
635 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
636
637 if ((s64)delta < 0)
638 delta = 0;
639
640 if (unlikely(delta > se->block_max))
641 se->block_max = delta;
642
643 se->block_start = 0;
644 se->sum_sleep_runtime += delta;
645
646 if (tsk) {
647 /*
648 * Blocking time is in units of nanosecs, so shift by
649 * 20 to get a milliseconds-range estimation of the
650 * amount of time that the task spent sleeping:
651 */
652 if (unlikely(prof_on == SLEEP_PROFILING)) {
653 profile_hits(SLEEP_PROFILING,
654 (void *)get_wchan(tsk),
655 delta >> 20);
656 }
657 account_scheduler_latency(tsk, delta >> 10, 0);
658 }
659 }
660 #endif
661 }
662
663 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
664 {
665 #ifdef CONFIG_SCHED_DEBUG
666 s64 d = se->vruntime - cfs_rq->min_vruntime;
667
668 if (d < 0)
669 d = -d;
670
671 if (d > 3*sysctl_sched_latency)
672 schedstat_inc(cfs_rq, nr_spread_over);
673 #endif
674 }
675
676 static void
677 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
678 {
679 u64 vruntime = cfs_rq->min_vruntime;
680
681 /*
682 * The 'current' period is already promised to the current tasks,
683 * however the extra weight of the new task will slow them down a
684 * little, place the new task so that it fits in the slot that
685 * stays open at the end.
686 */
687 if (initial && sched_feat(START_DEBIT))
688 vruntime += sched_vslice(cfs_rq, se);
689
690 if (!initial) {
691 /* sleeps upto a single latency don't count. */
692 if (sched_feat(NEW_FAIR_SLEEPERS)) {
693 unsigned long thresh = sysctl_sched_latency;
694
695 /*
696 * Convert the sleeper threshold into virtual time.
697 * SCHED_IDLE is a special sub-class. We care about
698 * fairness only relative to other SCHED_IDLE tasks,
699 * all of which have the same weight.
700 */
701 if (sched_feat(NORMALIZED_SLEEPER) &&
702 (!entity_is_task(se) ||
703 task_of(se)->policy != SCHED_IDLE))
704 thresh = calc_delta_fair(thresh, se);
705
706 vruntime -= thresh;
707 }
708
709 /* ensure we never gain time by being placed backwards. */
710 vruntime = max_vruntime(se->vruntime, vruntime);
711 }
712
713 se->vruntime = vruntime;
714 }
715
716 static void
717 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
718 {
719 /*
720 * Update run-time statistics of the 'current'.
721 */
722 update_curr(cfs_rq);
723 account_entity_enqueue(cfs_rq, se);
724
725 if (wakeup) {
726 place_entity(cfs_rq, se, 0);
727 enqueue_sleeper(cfs_rq, se);
728 }
729
730 update_stats_enqueue(cfs_rq, se);
731 check_spread(cfs_rq, se);
732 if (se != cfs_rq->curr)
733 __enqueue_entity(cfs_rq, se);
734 }
735
736 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
737 {
738 if (cfs_rq->last == se)
739 cfs_rq->last = NULL;
740
741 if (cfs_rq->next == se)
742 cfs_rq->next = NULL;
743 }
744
745 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
746 {
747 for_each_sched_entity(se)
748 __clear_buddies(cfs_rq_of(se), se);
749 }
750
751 static void
752 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
753 {
754 /*
755 * Update run-time statistics of the 'current'.
756 */
757 update_curr(cfs_rq);
758
759 update_stats_dequeue(cfs_rq, se);
760 if (sleep) {
761 #ifdef CONFIG_SCHEDSTATS
762 if (entity_is_task(se)) {
763 struct task_struct *tsk = task_of(se);
764
765 if (tsk->state & TASK_INTERRUPTIBLE)
766 se->sleep_start = rq_of(cfs_rq)->clock;
767 if (tsk->state & TASK_UNINTERRUPTIBLE)
768 se->block_start = rq_of(cfs_rq)->clock;
769 }
770 #endif
771 }
772
773 clear_buddies(cfs_rq, se);
774
775 if (se != cfs_rq->curr)
776 __dequeue_entity(cfs_rq, se);
777 account_entity_dequeue(cfs_rq, se);
778 update_min_vruntime(cfs_rq);
779 }
780
781 /*
782 * Preempt the current task with a newly woken task if needed:
783 */
784 static void
785 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
786 {
787 unsigned long ideal_runtime, delta_exec;
788
789 ideal_runtime = sched_slice(cfs_rq, curr);
790 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
791 if (delta_exec > ideal_runtime) {
792 resched_task(rq_of(cfs_rq)->curr);
793 /*
794 * The current task ran long enough, ensure it doesn't get
795 * re-elected due to buddy favours.
796 */
797 clear_buddies(cfs_rq, curr);
798 }
799 }
800
801 static void
802 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
803 {
804 /* 'current' is not kept within the tree. */
805 if (se->on_rq) {
806 /*
807 * Any task has to be enqueued before it get to execute on
808 * a CPU. So account for the time it spent waiting on the
809 * runqueue.
810 */
811 update_stats_wait_end(cfs_rq, se);
812 __dequeue_entity(cfs_rq, se);
813 }
814
815 update_stats_curr_start(cfs_rq, se);
816 cfs_rq->curr = se;
817 #ifdef CONFIG_SCHEDSTATS
818 /*
819 * Track our maximum slice length, if the CPU's load is at
820 * least twice that of our own weight (i.e. dont track it
821 * when there are only lesser-weight tasks around):
822 */
823 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
824 se->slice_max = max(se->slice_max,
825 se->sum_exec_runtime - se->prev_sum_exec_runtime);
826 }
827 #endif
828 se->prev_sum_exec_runtime = se->sum_exec_runtime;
829 }
830
831 static int
832 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
833
834 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
835 {
836 struct sched_entity *se = __pick_next_entity(cfs_rq);
837
838 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
839 return cfs_rq->next;
840
841 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
842 return cfs_rq->last;
843
844 return se;
845 }
846
847 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
848 {
849 /*
850 * If still on the runqueue then deactivate_task()
851 * was not called and update_curr() has to be done:
852 */
853 if (prev->on_rq)
854 update_curr(cfs_rq);
855
856 check_spread(cfs_rq, prev);
857 if (prev->on_rq) {
858 update_stats_wait_start(cfs_rq, prev);
859 /* Put 'current' back into the tree. */
860 __enqueue_entity(cfs_rq, prev);
861 }
862 cfs_rq->curr = NULL;
863 }
864
865 static void
866 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
867 {
868 /*
869 * Update run-time statistics of the 'current'.
870 */
871 update_curr(cfs_rq);
872
873 #ifdef CONFIG_SCHED_HRTICK
874 /*
875 * queued ticks are scheduled to match the slice, so don't bother
876 * validating it and just reschedule.
877 */
878 if (queued) {
879 resched_task(rq_of(cfs_rq)->curr);
880 return;
881 }
882 /*
883 * don't let the period tick interfere with the hrtick preemption
884 */
885 if (!sched_feat(DOUBLE_TICK) &&
886 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
887 return;
888 #endif
889
890 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
891 check_preempt_tick(cfs_rq, curr);
892 }
893
894 /**************************************************
895 * CFS operations on tasks:
896 */
897
898 #ifdef CONFIG_SCHED_HRTICK
899 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
900 {
901 struct sched_entity *se = &p->se;
902 struct cfs_rq *cfs_rq = cfs_rq_of(se);
903
904 WARN_ON(task_rq(p) != rq);
905
906 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
907 u64 slice = sched_slice(cfs_rq, se);
908 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
909 s64 delta = slice - ran;
910
911 if (delta < 0) {
912 if (rq->curr == p)
913 resched_task(p);
914 return;
915 }
916
917 /*
918 * Don't schedule slices shorter than 10000ns, that just
919 * doesn't make sense. Rely on vruntime for fairness.
920 */
921 if (rq->curr != p)
922 delta = max_t(s64, 10000LL, delta);
923
924 hrtick_start(rq, delta);
925 }
926 }
927
928 /*
929 * called from enqueue/dequeue and updates the hrtick when the
930 * current task is from our class and nr_running is low enough
931 * to matter.
932 */
933 static void hrtick_update(struct rq *rq)
934 {
935 struct task_struct *curr = rq->curr;
936
937 if (curr->sched_class != &fair_sched_class)
938 return;
939
940 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
941 hrtick_start_fair(rq, curr);
942 }
943 #else /* !CONFIG_SCHED_HRTICK */
944 static inline void
945 hrtick_start_fair(struct rq *rq, struct task_struct *p)
946 {
947 }
948
949 static inline void hrtick_update(struct rq *rq)
950 {
951 }
952 #endif
953
954 /*
955 * The enqueue_task method is called before nr_running is
956 * increased. Here we update the fair scheduling stats and
957 * then put the task into the rbtree:
958 */
959 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
960 {
961 struct cfs_rq *cfs_rq;
962 struct sched_entity *se = &p->se;
963
964 for_each_sched_entity(se) {
965 if (se->on_rq)
966 break;
967 cfs_rq = cfs_rq_of(se);
968 enqueue_entity(cfs_rq, se, wakeup);
969 wakeup = 1;
970 }
971
972 hrtick_update(rq);
973 }
974
975 /*
976 * The dequeue_task method is called before nr_running is
977 * decreased. We remove the task from the rbtree and
978 * update the fair scheduling stats:
979 */
980 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
981 {
982 struct cfs_rq *cfs_rq;
983 struct sched_entity *se = &p->se;
984
985 for_each_sched_entity(se) {
986 cfs_rq = cfs_rq_of(se);
987 dequeue_entity(cfs_rq, se, sleep);
988 /* Don't dequeue parent if it has other entities besides us */
989 if (cfs_rq->load.weight)
990 break;
991 sleep = 1;
992 }
993
994 hrtick_update(rq);
995 }
996
997 /*
998 * sched_yield() support is very simple - we dequeue and enqueue.
999 *
1000 * If compat_yield is turned on then we requeue to the end of the tree.
1001 */
1002 static void yield_task_fair(struct rq *rq)
1003 {
1004 struct task_struct *curr = rq->curr;
1005 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1006 struct sched_entity *rightmost, *se = &curr->se;
1007
1008 /*
1009 * Are we the only task in the tree?
1010 */
1011 if (unlikely(cfs_rq->nr_running == 1))
1012 return;
1013
1014 clear_buddies(cfs_rq, se);
1015
1016 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1017 update_rq_clock(rq);
1018 /*
1019 * Update run-time statistics of the 'current'.
1020 */
1021 update_curr(cfs_rq);
1022
1023 return;
1024 }
1025 /*
1026 * Find the rightmost entry in the rbtree:
1027 */
1028 rightmost = __pick_last_entity(cfs_rq);
1029 /*
1030 * Already in the rightmost position?
1031 */
1032 if (unlikely(!rightmost || entity_before(rightmost, se)))
1033 return;
1034
1035 /*
1036 * Minimally necessary key value to be last in the tree:
1037 * Upon rescheduling, sched_class::put_prev_task() will place
1038 * 'current' within the tree based on its new key value.
1039 */
1040 se->vruntime = rightmost->vruntime + 1;
1041 }
1042
1043 /*
1044 * wake_idle() will wake a task on an idle cpu if task->cpu is
1045 * not idle and an idle cpu is available. The span of cpus to
1046 * search starts with cpus closest then further out as needed,
1047 * so we always favor a closer, idle cpu.
1048 * Domains may include CPUs that are not usable for migration,
1049 * hence we need to mask them out (cpu_active_mask)
1050 *
1051 * Returns the CPU we should wake onto.
1052 */
1053 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1054 static int wake_idle(int cpu, struct task_struct *p)
1055 {
1056 struct sched_domain *sd;
1057 int i;
1058 unsigned int chosen_wakeup_cpu;
1059 int this_cpu;
1060
1061 /*
1062 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1063 * are idle and this is not a kernel thread and this task's affinity
1064 * allows it to be moved to preferred cpu, then just move!
1065 */
1066
1067 this_cpu = smp_processor_id();
1068 chosen_wakeup_cpu =
1069 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1070
1071 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1072 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1073 p->mm && !(p->flags & PF_KTHREAD) &&
1074 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1075 return chosen_wakeup_cpu;
1076
1077 /*
1078 * If it is idle, then it is the best cpu to run this task.
1079 *
1080 * This cpu is also the best, if it has more than one task already.
1081 * Siblings must be also busy(in most cases) as they didn't already
1082 * pickup the extra load from this cpu and hence we need not check
1083 * sibling runqueue info. This will avoid the checks and cache miss
1084 * penalities associated with that.
1085 */
1086 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1087 return cpu;
1088
1089 for_each_domain(cpu, sd) {
1090 if ((sd->flags & SD_WAKE_IDLE)
1091 || ((sd->flags & SD_WAKE_IDLE_FAR)
1092 && !task_hot(p, task_rq(p)->clock, sd))) {
1093 for_each_cpu_and(i, sched_domain_span(sd),
1094 &p->cpus_allowed) {
1095 if (cpu_active(i) && idle_cpu(i)) {
1096 if (i != task_cpu(p)) {
1097 schedstat_inc(p,
1098 se.nr_wakeups_idle);
1099 }
1100 return i;
1101 }
1102 }
1103 } else {
1104 break;
1105 }
1106 }
1107 return cpu;
1108 }
1109 #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1110 static inline int wake_idle(int cpu, struct task_struct *p)
1111 {
1112 return cpu;
1113 }
1114 #endif
1115
1116 #ifdef CONFIG_SMP
1117
1118 #ifdef CONFIG_FAIR_GROUP_SCHED
1119 /*
1120 * effective_load() calculates the load change as seen from the root_task_group
1121 *
1122 * Adding load to a group doesn't make a group heavier, but can cause movement
1123 * of group shares between cpus. Assuming the shares were perfectly aligned one
1124 * can calculate the shift in shares.
1125 *
1126 * The problem is that perfectly aligning the shares is rather expensive, hence
1127 * we try to avoid doing that too often - see update_shares(), which ratelimits
1128 * this change.
1129 *
1130 * We compensate this by not only taking the current delta into account, but
1131 * also considering the delta between when the shares were last adjusted and
1132 * now.
1133 *
1134 * We still saw a performance dip, some tracing learned us that between
1135 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1136 * significantly. Therefore try to bias the error in direction of failing
1137 * the affine wakeup.
1138 *
1139 */
1140 static long effective_load(struct task_group *tg, int cpu,
1141 long wl, long wg)
1142 {
1143 struct sched_entity *se = tg->se[cpu];
1144
1145 if (!tg->parent)
1146 return wl;
1147
1148 /*
1149 * By not taking the decrease of shares on the other cpu into
1150 * account our error leans towards reducing the affine wakeups.
1151 */
1152 if (!wl && sched_feat(ASYM_EFF_LOAD))
1153 return wl;
1154
1155 for_each_sched_entity(se) {
1156 long S, rw, s, a, b;
1157 long more_w;
1158
1159 /*
1160 * Instead of using this increment, also add the difference
1161 * between when the shares were last updated and now.
1162 */
1163 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1164 wl += more_w;
1165 wg += more_w;
1166
1167 S = se->my_q->tg->shares;
1168 s = se->my_q->shares;
1169 rw = se->my_q->rq_weight;
1170
1171 a = S*(rw + wl);
1172 b = S*rw + s*wg;
1173
1174 wl = s*(a-b);
1175
1176 if (likely(b))
1177 wl /= b;
1178
1179 /*
1180 * Assume the group is already running and will
1181 * thus already be accounted for in the weight.
1182 *
1183 * That is, moving shares between CPUs, does not
1184 * alter the group weight.
1185 */
1186 wg = 0;
1187 }
1188
1189 return wl;
1190 }
1191
1192 #else
1193
1194 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1195 unsigned long wl, unsigned long wg)
1196 {
1197 return wl;
1198 }
1199
1200 #endif
1201
1202 static int
1203 wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1204 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1205 int idx, unsigned long load, unsigned long this_load,
1206 unsigned int imbalance)
1207 {
1208 struct task_struct *curr = this_rq->curr;
1209 struct task_group *tg;
1210 unsigned long tl = this_load;
1211 unsigned long tl_per_task;
1212 unsigned long weight;
1213 int balanced;
1214
1215 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1216 return 0;
1217
1218 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1219 p->se.avg_overlap > sysctl_sched_migration_cost))
1220 sync = 0;
1221
1222 /*
1223 * If sync wakeup then subtract the (maximum possible)
1224 * effect of the currently running task from the load
1225 * of the current CPU:
1226 */
1227 if (sync) {
1228 tg = task_group(current);
1229 weight = current->se.load.weight;
1230
1231 tl += effective_load(tg, this_cpu, -weight, -weight);
1232 load += effective_load(tg, prev_cpu, 0, -weight);
1233 }
1234
1235 tg = task_group(p);
1236 weight = p->se.load.weight;
1237
1238 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1239 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1240
1241 /*
1242 * If the currently running task will sleep within
1243 * a reasonable amount of time then attract this newly
1244 * woken task:
1245 */
1246 if (sync && balanced)
1247 return 1;
1248
1249 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1250 tl_per_task = cpu_avg_load_per_task(this_cpu);
1251
1252 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1253 tl_per_task)) {
1254 /*
1255 * This domain has SD_WAKE_AFFINE and
1256 * p is cache cold in this domain, and
1257 * there is no bad imbalance.
1258 */
1259 schedstat_inc(this_sd, ttwu_move_affine);
1260 schedstat_inc(p, se.nr_wakeups_affine);
1261
1262 return 1;
1263 }
1264 return 0;
1265 }
1266
1267 static int select_task_rq_fair(struct task_struct *p, int sync)
1268 {
1269 struct sched_domain *sd, *this_sd = NULL;
1270 int prev_cpu, this_cpu, new_cpu;
1271 unsigned long load, this_load;
1272 struct rq *this_rq;
1273 unsigned int imbalance;
1274 int idx;
1275
1276 prev_cpu = task_cpu(p);
1277 this_cpu = smp_processor_id();
1278 this_rq = cpu_rq(this_cpu);
1279 new_cpu = prev_cpu;
1280
1281 if (prev_cpu == this_cpu)
1282 goto out;
1283 /*
1284 * 'this_sd' is the first domain that both
1285 * this_cpu and prev_cpu are present in:
1286 */
1287 for_each_domain(this_cpu, sd) {
1288 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
1289 this_sd = sd;
1290 break;
1291 }
1292 }
1293
1294 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
1295 goto out;
1296
1297 /*
1298 * Check for affine wakeup and passive balancing possibilities.
1299 */
1300 if (!this_sd)
1301 goto out;
1302
1303 idx = this_sd->wake_idx;
1304
1305 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1306
1307 load = source_load(prev_cpu, idx);
1308 this_load = target_load(this_cpu, idx);
1309
1310 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1311 load, this_load, imbalance))
1312 return this_cpu;
1313
1314 /*
1315 * Start passive balancing when half the imbalance_pct
1316 * limit is reached.
1317 */
1318 if (this_sd->flags & SD_WAKE_BALANCE) {
1319 if (imbalance*this_load <= 100*load) {
1320 schedstat_inc(this_sd, ttwu_move_balance);
1321 schedstat_inc(p, se.nr_wakeups_passive);
1322 return this_cpu;
1323 }
1324 }
1325
1326 out:
1327 return wake_idle(new_cpu, p);
1328 }
1329 #endif /* CONFIG_SMP */
1330
1331 /*
1332 * Adaptive granularity
1333 *
1334 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1335 * with the limit of wakeup_gran -- when it never does a wakeup.
1336 *
1337 * So the smaller avg_wakeup is the faster we want this task to preempt,
1338 * but we don't want to treat the preemptee unfairly and therefore allow it
1339 * to run for at least the amount of time we'd like to run.
1340 *
1341 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1342 *
1343 * NOTE: we use *nr_running to scale with load, this nicely matches the
1344 * degrading latency on load.
1345 */
1346 static unsigned long
1347 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1348 {
1349 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1350 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1351 u64 gran = 0;
1352
1353 if (this_run < expected_wakeup)
1354 gran = expected_wakeup - this_run;
1355
1356 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1357 }
1358
1359 static unsigned long
1360 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1361 {
1362 unsigned long gran = sysctl_sched_wakeup_granularity;
1363
1364 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1365 gran = adaptive_gran(curr, se);
1366
1367 /*
1368 * Since its curr running now, convert the gran from real-time
1369 * to virtual-time in his units.
1370 */
1371 if (sched_feat(ASYM_GRAN)) {
1372 /*
1373 * By using 'se' instead of 'curr' we penalize light tasks, so
1374 * they get preempted easier. That is, if 'se' < 'curr' then
1375 * the resulting gran will be larger, therefore penalizing the
1376 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1377 * be smaller, again penalizing the lighter task.
1378 *
1379 * This is especially important for buddies when the leftmost
1380 * task is higher priority than the buddy.
1381 */
1382 if (unlikely(se->load.weight != NICE_0_LOAD))
1383 gran = calc_delta_fair(gran, se);
1384 } else {
1385 if (unlikely(curr->load.weight != NICE_0_LOAD))
1386 gran = calc_delta_fair(gran, curr);
1387 }
1388
1389 return gran;
1390 }
1391
1392 /*
1393 * Should 'se' preempt 'curr'.
1394 *
1395 * |s1
1396 * |s2
1397 * |s3
1398 * g
1399 * |<--->|c
1400 *
1401 * w(c, s1) = -1
1402 * w(c, s2) = 0
1403 * w(c, s3) = 1
1404 *
1405 */
1406 static int
1407 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1408 {
1409 s64 gran, vdiff = curr->vruntime - se->vruntime;
1410
1411 if (vdiff <= 0)
1412 return -1;
1413
1414 gran = wakeup_gran(curr, se);
1415 if (vdiff > gran)
1416 return 1;
1417
1418 return 0;
1419 }
1420
1421 static void set_last_buddy(struct sched_entity *se)
1422 {
1423 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1424 for_each_sched_entity(se)
1425 cfs_rq_of(se)->last = se;
1426 }
1427 }
1428
1429 static void set_next_buddy(struct sched_entity *se)
1430 {
1431 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1432 for_each_sched_entity(se)
1433 cfs_rq_of(se)->next = se;
1434 }
1435 }
1436
1437 /*
1438 * Preempt the current task with a newly woken task if needed:
1439 */
1440 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1441 {
1442 struct task_struct *curr = rq->curr;
1443 struct sched_entity *se = &curr->se, *pse = &p->se;
1444 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1445
1446 update_curr(cfs_rq);
1447
1448 if (unlikely(rt_prio(p->prio))) {
1449 resched_task(curr);
1450 return;
1451 }
1452
1453 if (unlikely(p->sched_class != &fair_sched_class))
1454 return;
1455
1456 if (unlikely(se == pse))
1457 return;
1458
1459 /*
1460 * Only set the backward buddy when the current task is still on the
1461 * rq. This can happen when a wakeup gets interleaved with schedule on
1462 * the ->pre_schedule() or idle_balance() point, either of which can
1463 * drop the rq lock.
1464 *
1465 * Also, during early boot the idle thread is in the fair class, for
1466 * obvious reasons its a bad idea to schedule back to the idle thread.
1467 */
1468 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1469 set_last_buddy(se);
1470 set_next_buddy(pse);
1471
1472 /*
1473 * We can come here with TIF_NEED_RESCHED already set from new task
1474 * wake up path.
1475 */
1476 if (test_tsk_need_resched(curr))
1477 return;
1478
1479 /*
1480 * Batch and idle tasks do not preempt (their preemption is driven by
1481 * the tick):
1482 */
1483 if (unlikely(p->policy != SCHED_NORMAL))
1484 return;
1485
1486 /* Idle tasks are by definition preempted by everybody. */
1487 if (unlikely(curr->policy == SCHED_IDLE)) {
1488 resched_task(curr);
1489 return;
1490 }
1491
1492 if (!sched_feat(WAKEUP_PREEMPT))
1493 return;
1494
1495 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1496 (se->avg_overlap < sysctl_sched_migration_cost &&
1497 pse->avg_overlap < sysctl_sched_migration_cost))) {
1498 resched_task(curr);
1499 return;
1500 }
1501
1502 find_matching_se(&se, &pse);
1503
1504 BUG_ON(!pse);
1505
1506 if (wakeup_preempt_entity(se, pse) == 1)
1507 resched_task(curr);
1508 }
1509
1510 static struct task_struct *pick_next_task_fair(struct rq *rq)
1511 {
1512 struct task_struct *p;
1513 struct cfs_rq *cfs_rq = &rq->cfs;
1514 struct sched_entity *se;
1515
1516 if (unlikely(!cfs_rq->nr_running))
1517 return NULL;
1518
1519 do {
1520 se = pick_next_entity(cfs_rq);
1521 /*
1522 * If se was a buddy, clear it so that it will have to earn
1523 * the favour again.
1524 */
1525 __clear_buddies(cfs_rq, se);
1526 set_next_entity(cfs_rq, se);
1527 cfs_rq = group_cfs_rq(se);
1528 } while (cfs_rq);
1529
1530 p = task_of(se);
1531 hrtick_start_fair(rq, p);
1532
1533 return p;
1534 }
1535
1536 /*
1537 * Account for a descheduled task:
1538 */
1539 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1540 {
1541 struct sched_entity *se = &prev->se;
1542 struct cfs_rq *cfs_rq;
1543
1544 for_each_sched_entity(se) {
1545 cfs_rq = cfs_rq_of(se);
1546 put_prev_entity(cfs_rq, se);
1547 }
1548 }
1549
1550 #ifdef CONFIG_SMP
1551 /**************************************************
1552 * Fair scheduling class load-balancing methods:
1553 */
1554
1555 /*
1556 * Load-balancing iterator. Note: while the runqueue stays locked
1557 * during the whole iteration, the current task might be
1558 * dequeued so the iterator has to be dequeue-safe. Here we
1559 * achieve that by always pre-iterating before returning
1560 * the current task:
1561 */
1562 static struct task_struct *
1563 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1564 {
1565 struct task_struct *p = NULL;
1566 struct sched_entity *se;
1567
1568 if (next == &cfs_rq->tasks)
1569 return NULL;
1570
1571 se = list_entry(next, struct sched_entity, group_node);
1572 p = task_of(se);
1573 cfs_rq->balance_iterator = next->next;
1574
1575 return p;
1576 }
1577
1578 static struct task_struct *load_balance_start_fair(void *arg)
1579 {
1580 struct cfs_rq *cfs_rq = arg;
1581
1582 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1583 }
1584
1585 static struct task_struct *load_balance_next_fair(void *arg)
1586 {
1587 struct cfs_rq *cfs_rq = arg;
1588
1589 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1590 }
1591
1592 static unsigned long
1593 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1594 unsigned long max_load_move, struct sched_domain *sd,
1595 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1596 struct cfs_rq *cfs_rq)
1597 {
1598 struct rq_iterator cfs_rq_iterator;
1599
1600 cfs_rq_iterator.start = load_balance_start_fair;
1601 cfs_rq_iterator.next = load_balance_next_fair;
1602 cfs_rq_iterator.arg = cfs_rq;
1603
1604 return balance_tasks(this_rq, this_cpu, busiest,
1605 max_load_move, sd, idle, all_pinned,
1606 this_best_prio, &cfs_rq_iterator);
1607 }
1608
1609 #ifdef CONFIG_FAIR_GROUP_SCHED
1610 static unsigned long
1611 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1612 unsigned long max_load_move,
1613 struct sched_domain *sd, enum cpu_idle_type idle,
1614 int *all_pinned, int *this_best_prio)
1615 {
1616 long rem_load_move = max_load_move;
1617 int busiest_cpu = cpu_of(busiest);
1618 struct task_group *tg;
1619
1620 rcu_read_lock();
1621 update_h_load(busiest_cpu);
1622
1623 list_for_each_entry_rcu(tg, &task_groups, list) {
1624 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1625 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1626 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1627 u64 rem_load, moved_load;
1628
1629 /*
1630 * empty group
1631 */
1632 if (!busiest_cfs_rq->task_weight)
1633 continue;
1634
1635 rem_load = (u64)rem_load_move * busiest_weight;
1636 rem_load = div_u64(rem_load, busiest_h_load + 1);
1637
1638 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1639 rem_load, sd, idle, all_pinned, this_best_prio,
1640 tg->cfs_rq[busiest_cpu]);
1641
1642 if (!moved_load)
1643 continue;
1644
1645 moved_load *= busiest_h_load;
1646 moved_load = div_u64(moved_load, busiest_weight + 1);
1647
1648 rem_load_move -= moved_load;
1649 if (rem_load_move < 0)
1650 break;
1651 }
1652 rcu_read_unlock();
1653
1654 return max_load_move - rem_load_move;
1655 }
1656 #else
1657 static unsigned long
1658 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1659 unsigned long max_load_move,
1660 struct sched_domain *sd, enum cpu_idle_type idle,
1661 int *all_pinned, int *this_best_prio)
1662 {
1663 return __load_balance_fair(this_rq, this_cpu, busiest,
1664 max_load_move, sd, idle, all_pinned,
1665 this_best_prio, &busiest->cfs);
1666 }
1667 #endif
1668
1669 static int
1670 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1671 struct sched_domain *sd, enum cpu_idle_type idle)
1672 {
1673 struct cfs_rq *busy_cfs_rq;
1674 struct rq_iterator cfs_rq_iterator;
1675
1676 cfs_rq_iterator.start = load_balance_start_fair;
1677 cfs_rq_iterator.next = load_balance_next_fair;
1678
1679 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1680 /*
1681 * pass busy_cfs_rq argument into
1682 * load_balance_[start|next]_fair iterators
1683 */
1684 cfs_rq_iterator.arg = busy_cfs_rq;
1685 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1686 &cfs_rq_iterator))
1687 return 1;
1688 }
1689
1690 return 0;
1691 }
1692 #endif /* CONFIG_SMP */
1693
1694 /*
1695 * scheduler tick hitting a task of our scheduling class:
1696 */
1697 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1698 {
1699 struct cfs_rq *cfs_rq;
1700 struct sched_entity *se = &curr->se;
1701
1702 for_each_sched_entity(se) {
1703 cfs_rq = cfs_rq_of(se);
1704 entity_tick(cfs_rq, se, queued);
1705 }
1706 }
1707
1708 /*
1709 * Share the fairness runtime between parent and child, thus the
1710 * total amount of pressure for CPU stays equal - new tasks
1711 * get a chance to run but frequent forkers are not allowed to
1712 * monopolize the CPU. Note: the parent runqueue is locked,
1713 * the child is not running yet.
1714 */
1715 static void task_new_fair(struct rq *rq, struct task_struct *p)
1716 {
1717 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1718 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1719 int this_cpu = smp_processor_id();
1720
1721 sched_info_queued(p);
1722
1723 update_curr(cfs_rq);
1724 place_entity(cfs_rq, se, 1);
1725
1726 /* 'curr' will be NULL if the child belongs to a different group */
1727 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1728 curr && entity_before(curr, se)) {
1729 /*
1730 * Upon rescheduling, sched_class::put_prev_task() will place
1731 * 'current' within the tree based on its new key value.
1732 */
1733 swap(curr->vruntime, se->vruntime);
1734 resched_task(rq->curr);
1735 }
1736
1737 enqueue_task_fair(rq, p, 0);
1738 }
1739
1740 /*
1741 * Priority of the task has changed. Check to see if we preempt
1742 * the current task.
1743 */
1744 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1745 int oldprio, int running)
1746 {
1747 /*
1748 * Reschedule if we are currently running on this runqueue and
1749 * our priority decreased, or if we are not currently running on
1750 * this runqueue and our priority is higher than the current's
1751 */
1752 if (running) {
1753 if (p->prio > oldprio)
1754 resched_task(rq->curr);
1755 } else
1756 check_preempt_curr(rq, p, 0);
1757 }
1758
1759 /*
1760 * We switched to the sched_fair class.
1761 */
1762 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1763 int running)
1764 {
1765 /*
1766 * We were most likely switched from sched_rt, so
1767 * kick off the schedule if running, otherwise just see
1768 * if we can still preempt the current task.
1769 */
1770 if (running)
1771 resched_task(rq->curr);
1772 else
1773 check_preempt_curr(rq, p, 0);
1774 }
1775
1776 /* Account for a task changing its policy or group.
1777 *
1778 * This routine is mostly called to set cfs_rq->curr field when a task
1779 * migrates between groups/classes.
1780 */
1781 static void set_curr_task_fair(struct rq *rq)
1782 {
1783 struct sched_entity *se = &rq->curr->se;
1784
1785 for_each_sched_entity(se)
1786 set_next_entity(cfs_rq_of(se), se);
1787 }
1788
1789 #ifdef CONFIG_FAIR_GROUP_SCHED
1790 static void moved_group_fair(struct task_struct *p)
1791 {
1792 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1793
1794 update_curr(cfs_rq);
1795 place_entity(cfs_rq, &p->se, 1);
1796 }
1797 #endif
1798
1799 /*
1800 * All the scheduling class methods:
1801 */
1802 static const struct sched_class fair_sched_class = {
1803 .next = &idle_sched_class,
1804 .enqueue_task = enqueue_task_fair,
1805 .dequeue_task = dequeue_task_fair,
1806 .yield_task = yield_task_fair,
1807
1808 .check_preempt_curr = check_preempt_wakeup,
1809
1810 .pick_next_task = pick_next_task_fair,
1811 .put_prev_task = put_prev_task_fair,
1812
1813 #ifdef CONFIG_SMP
1814 .select_task_rq = select_task_rq_fair,
1815
1816 .load_balance = load_balance_fair,
1817 .move_one_task = move_one_task_fair,
1818 #endif
1819
1820 .set_curr_task = set_curr_task_fair,
1821 .task_tick = task_tick_fair,
1822 .task_new = task_new_fair,
1823
1824 .prio_changed = prio_changed_fair,
1825 .switched_to = switched_to_fair,
1826
1827 #ifdef CONFIG_FAIR_GROUP_SCHED
1828 .moved_group = moved_group_fair,
1829 #endif
1830 };
1831
1832 #ifdef CONFIG_SCHED_DEBUG
1833 static void print_cfs_stats(struct seq_file *m, int cpu)
1834 {
1835 struct cfs_rq *cfs_rq;
1836
1837 rcu_read_lock();
1838 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1839 print_cfs_rq(m, cpu, cfs_rq);
1840 rcu_read_unlock();
1841 }
1842 #endif