]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/sched_fair.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ryusuke...
[mirror_ubuntu-artful-kernel.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 static const struct sched_class fair_sched_class;
77
78 /**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
82 static inline struct task_struct *task_of(struct sched_entity *se)
83 {
84 return container_of(se, struct task_struct, se);
85 }
86
87 #ifdef CONFIG_FAIR_GROUP_SCHED
88
89 /* cpu runqueue to which this cfs_rq is attached */
90 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91 {
92 return cfs_rq->rq;
93 }
94
95 /* An entity is a task if it doesn't "own" a runqueue */
96 #define entity_is_task(se) (!se->my_q)
97
98 /* Walk up scheduling entities hierarchy */
99 #define for_each_sched_entity(se) \
100 for (; se; se = se->parent)
101
102 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
103 {
104 return p->se.cfs_rq;
105 }
106
107 /* runqueue on which this entity is (to be) queued */
108 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
109 {
110 return se->cfs_rq;
111 }
112
113 /* runqueue "owned" by this group */
114 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
115 {
116 return grp->my_q;
117 }
118
119 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
120 * another cpu ('this_cpu')
121 */
122 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
123 {
124 return cfs_rq->tg->cfs_rq[this_cpu];
125 }
126
127 /* Iterate thr' all leaf cfs_rq's on a runqueue */
128 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
129 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
130
131 /* Do the two (enqueued) entities belong to the same group ? */
132 static inline int
133 is_same_group(struct sched_entity *se, struct sched_entity *pse)
134 {
135 if (se->cfs_rq == pse->cfs_rq)
136 return 1;
137
138 return 0;
139 }
140
141 static inline struct sched_entity *parent_entity(struct sched_entity *se)
142 {
143 return se->parent;
144 }
145
146 /* return depth at which a sched entity is present in the hierarchy */
147 static inline int depth_se(struct sched_entity *se)
148 {
149 int depth = 0;
150
151 for_each_sched_entity(se)
152 depth++;
153
154 return depth;
155 }
156
157 static void
158 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
159 {
160 int se_depth, pse_depth;
161
162 /*
163 * preemption test can be made between sibling entities who are in the
164 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
165 * both tasks until we find their ancestors who are siblings of common
166 * parent.
167 */
168
169 /* First walk up until both entities are at same depth */
170 se_depth = depth_se(*se);
171 pse_depth = depth_se(*pse);
172
173 while (se_depth > pse_depth) {
174 se_depth--;
175 *se = parent_entity(*se);
176 }
177
178 while (pse_depth > se_depth) {
179 pse_depth--;
180 *pse = parent_entity(*pse);
181 }
182
183 while (!is_same_group(*se, *pse)) {
184 *se = parent_entity(*se);
185 *pse = parent_entity(*pse);
186 }
187 }
188
189 #else /* CONFIG_FAIR_GROUP_SCHED */
190
191 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
192 {
193 return container_of(cfs_rq, struct rq, cfs);
194 }
195
196 #define entity_is_task(se) 1
197
198 #define for_each_sched_entity(se) \
199 for (; se; se = NULL)
200
201 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
202 {
203 return &task_rq(p)->cfs;
204 }
205
206 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
207 {
208 struct task_struct *p = task_of(se);
209 struct rq *rq = task_rq(p);
210
211 return &rq->cfs;
212 }
213
214 /* runqueue "owned" by this group */
215 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
216 {
217 return NULL;
218 }
219
220 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
221 {
222 return &cpu_rq(this_cpu)->cfs;
223 }
224
225 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
226 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
227
228 static inline int
229 is_same_group(struct sched_entity *se, struct sched_entity *pse)
230 {
231 return 1;
232 }
233
234 static inline struct sched_entity *parent_entity(struct sched_entity *se)
235 {
236 return NULL;
237 }
238
239 static inline void
240 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
241 {
242 }
243
244 #endif /* CONFIG_FAIR_GROUP_SCHED */
245
246
247 /**************************************************************
248 * Scheduling class tree data structure manipulation methods:
249 */
250
251 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
252 {
253 s64 delta = (s64)(vruntime - min_vruntime);
254 if (delta > 0)
255 min_vruntime = vruntime;
256
257 return min_vruntime;
258 }
259
260 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
261 {
262 s64 delta = (s64)(vruntime - min_vruntime);
263 if (delta < 0)
264 min_vruntime = vruntime;
265
266 return min_vruntime;
267 }
268
269 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
270 {
271 return se->vruntime - cfs_rq->min_vruntime;
272 }
273
274 static void update_min_vruntime(struct cfs_rq *cfs_rq)
275 {
276 u64 vruntime = cfs_rq->min_vruntime;
277
278 if (cfs_rq->curr)
279 vruntime = cfs_rq->curr->vruntime;
280
281 if (cfs_rq->rb_leftmost) {
282 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
283 struct sched_entity,
284 run_node);
285
286 if (!cfs_rq->curr)
287 vruntime = se->vruntime;
288 else
289 vruntime = min_vruntime(vruntime, se->vruntime);
290 }
291
292 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
293 }
294
295 /*
296 * Enqueue an entity into the rb-tree:
297 */
298 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
299 {
300 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
301 struct rb_node *parent = NULL;
302 struct sched_entity *entry;
303 s64 key = entity_key(cfs_rq, se);
304 int leftmost = 1;
305
306 /*
307 * Find the right place in the rbtree:
308 */
309 while (*link) {
310 parent = *link;
311 entry = rb_entry(parent, struct sched_entity, run_node);
312 /*
313 * We dont care about collisions. Nodes with
314 * the same key stay together.
315 */
316 if (key < entity_key(cfs_rq, entry)) {
317 link = &parent->rb_left;
318 } else {
319 link = &parent->rb_right;
320 leftmost = 0;
321 }
322 }
323
324 /*
325 * Maintain a cache of leftmost tree entries (it is frequently
326 * used):
327 */
328 if (leftmost)
329 cfs_rq->rb_leftmost = &se->run_node;
330
331 rb_link_node(&se->run_node, parent, link);
332 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
333 }
334
335 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
336 {
337 if (cfs_rq->rb_leftmost == &se->run_node) {
338 struct rb_node *next_node;
339
340 next_node = rb_next(&se->run_node);
341 cfs_rq->rb_leftmost = next_node;
342 }
343
344 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
345 }
346
347 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
348 {
349 struct rb_node *left = cfs_rq->rb_leftmost;
350
351 if (!left)
352 return NULL;
353
354 return rb_entry(left, struct sched_entity, run_node);
355 }
356
357 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
358 {
359 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
360
361 if (!last)
362 return NULL;
363
364 return rb_entry(last, struct sched_entity, run_node);
365 }
366
367 /**************************************************************
368 * Scheduling class statistics methods:
369 */
370
371 #ifdef CONFIG_SCHED_DEBUG
372 int sched_nr_latency_handler(struct ctl_table *table, int write,
373 struct file *filp, void __user *buffer, size_t *lenp,
374 loff_t *ppos)
375 {
376 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
377
378 if (ret || !write)
379 return ret;
380
381 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
382 sysctl_sched_min_granularity);
383
384 return 0;
385 }
386 #endif
387
388 /*
389 * delta /= w
390 */
391 static inline unsigned long
392 calc_delta_fair(unsigned long delta, struct sched_entity *se)
393 {
394 if (unlikely(se->load.weight != NICE_0_LOAD))
395 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
396
397 return delta;
398 }
399
400 /*
401 * The idea is to set a period in which each task runs once.
402 *
403 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
404 * this period because otherwise the slices get too small.
405 *
406 * p = (nr <= nl) ? l : l*nr/nl
407 */
408 static u64 __sched_period(unsigned long nr_running)
409 {
410 u64 period = sysctl_sched_latency;
411 unsigned long nr_latency = sched_nr_latency;
412
413 if (unlikely(nr_running > nr_latency)) {
414 period = sysctl_sched_min_granularity;
415 period *= nr_running;
416 }
417
418 return period;
419 }
420
421 /*
422 * We calculate the wall-time slice from the period by taking a part
423 * proportional to the weight.
424 *
425 * s = p*P[w/rw]
426 */
427 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
428 {
429 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
430
431 for_each_sched_entity(se) {
432 struct load_weight *load;
433 struct load_weight lw;
434
435 cfs_rq = cfs_rq_of(se);
436 load = &cfs_rq->load;
437
438 if (unlikely(!se->on_rq)) {
439 lw = cfs_rq->load;
440
441 update_load_add(&lw, se->load.weight);
442 load = &lw;
443 }
444 slice = calc_delta_mine(slice, se->load.weight, load);
445 }
446 return slice;
447 }
448
449 /*
450 * We calculate the vruntime slice of a to be inserted task
451 *
452 * vs = s/w
453 */
454 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
455 {
456 return calc_delta_fair(sched_slice(cfs_rq, se), se);
457 }
458
459 /*
460 * Update the current task's runtime statistics. Skip current tasks that
461 * are not in our scheduling class.
462 */
463 static inline void
464 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
465 unsigned long delta_exec)
466 {
467 unsigned long delta_exec_weighted;
468
469 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
470
471 curr->sum_exec_runtime += delta_exec;
472 schedstat_add(cfs_rq, exec_clock, delta_exec);
473 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
474 curr->vruntime += delta_exec_weighted;
475 update_min_vruntime(cfs_rq);
476 }
477
478 static void update_curr(struct cfs_rq *cfs_rq)
479 {
480 struct sched_entity *curr = cfs_rq->curr;
481 u64 now = rq_of(cfs_rq)->clock;
482 unsigned long delta_exec;
483
484 if (unlikely(!curr))
485 return;
486
487 /*
488 * Get the amount of time the current task was running
489 * since the last time we changed load (this cannot
490 * overflow on 32 bits):
491 */
492 delta_exec = (unsigned long)(now - curr->exec_start);
493 if (!delta_exec)
494 return;
495
496 __update_curr(cfs_rq, curr, delta_exec);
497 curr->exec_start = now;
498
499 if (entity_is_task(curr)) {
500 struct task_struct *curtask = task_of(curr);
501
502 cpuacct_charge(curtask, delta_exec);
503 account_group_exec_runtime(curtask, delta_exec);
504 }
505 }
506
507 static inline void
508 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
509 {
510 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
511 }
512
513 /*
514 * Task is being enqueued - update stats:
515 */
516 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
517 {
518 /*
519 * Are we enqueueing a waiting task? (for current tasks
520 * a dequeue/enqueue event is a NOP)
521 */
522 if (se != cfs_rq->curr)
523 update_stats_wait_start(cfs_rq, se);
524 }
525
526 static void
527 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
528 {
529 schedstat_set(se->wait_max, max(se->wait_max,
530 rq_of(cfs_rq)->clock - se->wait_start));
531 schedstat_set(se->wait_count, se->wait_count + 1);
532 schedstat_set(se->wait_sum, se->wait_sum +
533 rq_of(cfs_rq)->clock - se->wait_start);
534 schedstat_set(se->wait_start, 0);
535 }
536
537 static inline void
538 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
539 {
540 /*
541 * Mark the end of the wait period if dequeueing a
542 * waiting task:
543 */
544 if (se != cfs_rq->curr)
545 update_stats_wait_end(cfs_rq, se);
546 }
547
548 /*
549 * We are picking a new current task - update its stats:
550 */
551 static inline void
552 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
553 {
554 /*
555 * We are starting a new run period:
556 */
557 se->exec_start = rq_of(cfs_rq)->clock;
558 }
559
560 /**************************************************
561 * Scheduling class queueing methods:
562 */
563
564 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
565 static void
566 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
567 {
568 cfs_rq->task_weight += weight;
569 }
570 #else
571 static inline void
572 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
573 {
574 }
575 #endif
576
577 static void
578 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
579 {
580 update_load_add(&cfs_rq->load, se->load.weight);
581 if (!parent_entity(se))
582 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
583 if (entity_is_task(se)) {
584 add_cfs_task_weight(cfs_rq, se->load.weight);
585 list_add(&se->group_node, &cfs_rq->tasks);
586 }
587 cfs_rq->nr_running++;
588 se->on_rq = 1;
589 }
590
591 static void
592 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
593 {
594 update_load_sub(&cfs_rq->load, se->load.weight);
595 if (!parent_entity(se))
596 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
597 if (entity_is_task(se)) {
598 add_cfs_task_weight(cfs_rq, -se->load.weight);
599 list_del_init(&se->group_node);
600 }
601 cfs_rq->nr_running--;
602 se->on_rq = 0;
603 }
604
605 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
606 {
607 #ifdef CONFIG_SCHEDSTATS
608 if (se->sleep_start) {
609 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
610 struct task_struct *tsk = task_of(se);
611
612 if ((s64)delta < 0)
613 delta = 0;
614
615 if (unlikely(delta > se->sleep_max))
616 se->sleep_max = delta;
617
618 se->sleep_start = 0;
619 se->sum_sleep_runtime += delta;
620
621 account_scheduler_latency(tsk, delta >> 10, 1);
622 }
623 if (se->block_start) {
624 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
625 struct task_struct *tsk = task_of(se);
626
627 if ((s64)delta < 0)
628 delta = 0;
629
630 if (unlikely(delta > se->block_max))
631 se->block_max = delta;
632
633 se->block_start = 0;
634 se->sum_sleep_runtime += delta;
635
636 /*
637 * Blocking time is in units of nanosecs, so shift by 20 to
638 * get a milliseconds-range estimation of the amount of
639 * time that the task spent sleeping:
640 */
641 if (unlikely(prof_on == SLEEP_PROFILING)) {
642
643 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
644 delta >> 20);
645 }
646 account_scheduler_latency(tsk, delta >> 10, 0);
647 }
648 #endif
649 }
650
651 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
652 {
653 #ifdef CONFIG_SCHED_DEBUG
654 s64 d = se->vruntime - cfs_rq->min_vruntime;
655
656 if (d < 0)
657 d = -d;
658
659 if (d > 3*sysctl_sched_latency)
660 schedstat_inc(cfs_rq, nr_spread_over);
661 #endif
662 }
663
664 static void
665 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
666 {
667 u64 vruntime = cfs_rq->min_vruntime;
668
669 /*
670 * The 'current' period is already promised to the current tasks,
671 * however the extra weight of the new task will slow them down a
672 * little, place the new task so that it fits in the slot that
673 * stays open at the end.
674 */
675 if (initial && sched_feat(START_DEBIT))
676 vruntime += sched_vslice(cfs_rq, se);
677
678 if (!initial) {
679 /* sleeps upto a single latency don't count. */
680 if (sched_feat(NEW_FAIR_SLEEPERS)) {
681 unsigned long thresh = sysctl_sched_latency;
682
683 /*
684 * Convert the sleeper threshold into virtual time.
685 * SCHED_IDLE is a special sub-class. We care about
686 * fairness only relative to other SCHED_IDLE tasks,
687 * all of which have the same weight.
688 */
689 if (sched_feat(NORMALIZED_SLEEPER) &&
690 (!entity_is_task(se) ||
691 task_of(se)->policy != SCHED_IDLE))
692 thresh = calc_delta_fair(thresh, se);
693
694 vruntime -= thresh;
695 }
696
697 /* ensure we never gain time by being placed backwards. */
698 vruntime = max_vruntime(se->vruntime, vruntime);
699 }
700
701 se->vruntime = vruntime;
702 }
703
704 static void
705 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
706 {
707 /*
708 * Update run-time statistics of the 'current'.
709 */
710 update_curr(cfs_rq);
711 account_entity_enqueue(cfs_rq, se);
712
713 if (wakeup) {
714 place_entity(cfs_rq, se, 0);
715 enqueue_sleeper(cfs_rq, se);
716 }
717
718 update_stats_enqueue(cfs_rq, se);
719 check_spread(cfs_rq, se);
720 if (se != cfs_rq->curr)
721 __enqueue_entity(cfs_rq, se);
722 }
723
724 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
725 {
726 if (cfs_rq->last == se)
727 cfs_rq->last = NULL;
728
729 if (cfs_rq->next == se)
730 cfs_rq->next = NULL;
731 }
732
733 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
734 {
735 for_each_sched_entity(se)
736 __clear_buddies(cfs_rq_of(se), se);
737 }
738
739 static void
740 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
741 {
742 /*
743 * Update run-time statistics of the 'current'.
744 */
745 update_curr(cfs_rq);
746
747 update_stats_dequeue(cfs_rq, se);
748 if (sleep) {
749 #ifdef CONFIG_SCHEDSTATS
750 if (entity_is_task(se)) {
751 struct task_struct *tsk = task_of(se);
752
753 if (tsk->state & TASK_INTERRUPTIBLE)
754 se->sleep_start = rq_of(cfs_rq)->clock;
755 if (tsk->state & TASK_UNINTERRUPTIBLE)
756 se->block_start = rq_of(cfs_rq)->clock;
757 }
758 #endif
759 }
760
761 clear_buddies(cfs_rq, se);
762
763 if (se != cfs_rq->curr)
764 __dequeue_entity(cfs_rq, se);
765 account_entity_dequeue(cfs_rq, se);
766 update_min_vruntime(cfs_rq);
767 }
768
769 /*
770 * Preempt the current task with a newly woken task if needed:
771 */
772 static void
773 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
774 {
775 unsigned long ideal_runtime, delta_exec;
776
777 ideal_runtime = sched_slice(cfs_rq, curr);
778 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
779 if (delta_exec > ideal_runtime) {
780 resched_task(rq_of(cfs_rq)->curr);
781 /*
782 * The current task ran long enough, ensure it doesn't get
783 * re-elected due to buddy favours.
784 */
785 clear_buddies(cfs_rq, curr);
786 }
787 }
788
789 static void
790 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
791 {
792 /* 'current' is not kept within the tree. */
793 if (se->on_rq) {
794 /*
795 * Any task has to be enqueued before it get to execute on
796 * a CPU. So account for the time it spent waiting on the
797 * runqueue.
798 */
799 update_stats_wait_end(cfs_rq, se);
800 __dequeue_entity(cfs_rq, se);
801 }
802
803 update_stats_curr_start(cfs_rq, se);
804 cfs_rq->curr = se;
805 #ifdef CONFIG_SCHEDSTATS
806 /*
807 * Track our maximum slice length, if the CPU's load is at
808 * least twice that of our own weight (i.e. dont track it
809 * when there are only lesser-weight tasks around):
810 */
811 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
812 se->slice_max = max(se->slice_max,
813 se->sum_exec_runtime - se->prev_sum_exec_runtime);
814 }
815 #endif
816 se->prev_sum_exec_runtime = se->sum_exec_runtime;
817 }
818
819 static int
820 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
821
822 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
823 {
824 struct sched_entity *se = __pick_next_entity(cfs_rq);
825
826 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
827 return cfs_rq->next;
828
829 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
830 return cfs_rq->last;
831
832 return se;
833 }
834
835 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
836 {
837 /*
838 * If still on the runqueue then deactivate_task()
839 * was not called and update_curr() has to be done:
840 */
841 if (prev->on_rq)
842 update_curr(cfs_rq);
843
844 check_spread(cfs_rq, prev);
845 if (prev->on_rq) {
846 update_stats_wait_start(cfs_rq, prev);
847 /* Put 'current' back into the tree. */
848 __enqueue_entity(cfs_rq, prev);
849 }
850 cfs_rq->curr = NULL;
851 }
852
853 static void
854 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
855 {
856 /*
857 * Update run-time statistics of the 'current'.
858 */
859 update_curr(cfs_rq);
860
861 #ifdef CONFIG_SCHED_HRTICK
862 /*
863 * queued ticks are scheduled to match the slice, so don't bother
864 * validating it and just reschedule.
865 */
866 if (queued) {
867 resched_task(rq_of(cfs_rq)->curr);
868 return;
869 }
870 /*
871 * don't let the period tick interfere with the hrtick preemption
872 */
873 if (!sched_feat(DOUBLE_TICK) &&
874 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
875 return;
876 #endif
877
878 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
879 check_preempt_tick(cfs_rq, curr);
880 }
881
882 /**************************************************
883 * CFS operations on tasks:
884 */
885
886 #ifdef CONFIG_SCHED_HRTICK
887 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
888 {
889 struct sched_entity *se = &p->se;
890 struct cfs_rq *cfs_rq = cfs_rq_of(se);
891
892 WARN_ON(task_rq(p) != rq);
893
894 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
895 u64 slice = sched_slice(cfs_rq, se);
896 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
897 s64 delta = slice - ran;
898
899 if (delta < 0) {
900 if (rq->curr == p)
901 resched_task(p);
902 return;
903 }
904
905 /*
906 * Don't schedule slices shorter than 10000ns, that just
907 * doesn't make sense. Rely on vruntime for fairness.
908 */
909 if (rq->curr != p)
910 delta = max_t(s64, 10000LL, delta);
911
912 hrtick_start(rq, delta);
913 }
914 }
915
916 /*
917 * called from enqueue/dequeue and updates the hrtick when the
918 * current task is from our class and nr_running is low enough
919 * to matter.
920 */
921 static void hrtick_update(struct rq *rq)
922 {
923 struct task_struct *curr = rq->curr;
924
925 if (curr->sched_class != &fair_sched_class)
926 return;
927
928 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
929 hrtick_start_fair(rq, curr);
930 }
931 #else /* !CONFIG_SCHED_HRTICK */
932 static inline void
933 hrtick_start_fair(struct rq *rq, struct task_struct *p)
934 {
935 }
936
937 static inline void hrtick_update(struct rq *rq)
938 {
939 }
940 #endif
941
942 /*
943 * The enqueue_task method is called before nr_running is
944 * increased. Here we update the fair scheduling stats and
945 * then put the task into the rbtree:
946 */
947 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
948 {
949 struct cfs_rq *cfs_rq;
950 struct sched_entity *se = &p->se;
951
952 for_each_sched_entity(se) {
953 if (se->on_rq)
954 break;
955 cfs_rq = cfs_rq_of(se);
956 enqueue_entity(cfs_rq, se, wakeup);
957 wakeup = 1;
958 }
959
960 hrtick_update(rq);
961 }
962
963 /*
964 * The dequeue_task method is called before nr_running is
965 * decreased. We remove the task from the rbtree and
966 * update the fair scheduling stats:
967 */
968 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
969 {
970 struct cfs_rq *cfs_rq;
971 struct sched_entity *se = &p->se;
972
973 for_each_sched_entity(se) {
974 cfs_rq = cfs_rq_of(se);
975 dequeue_entity(cfs_rq, se, sleep);
976 /* Don't dequeue parent if it has other entities besides us */
977 if (cfs_rq->load.weight)
978 break;
979 sleep = 1;
980 }
981
982 hrtick_update(rq);
983 }
984
985 /*
986 * sched_yield() support is very simple - we dequeue and enqueue.
987 *
988 * If compat_yield is turned on then we requeue to the end of the tree.
989 */
990 static void yield_task_fair(struct rq *rq)
991 {
992 struct task_struct *curr = rq->curr;
993 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
994 struct sched_entity *rightmost, *se = &curr->se;
995
996 /*
997 * Are we the only task in the tree?
998 */
999 if (unlikely(cfs_rq->nr_running == 1))
1000 return;
1001
1002 clear_buddies(cfs_rq, se);
1003
1004 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1005 update_rq_clock(rq);
1006 /*
1007 * Update run-time statistics of the 'current'.
1008 */
1009 update_curr(cfs_rq);
1010
1011 return;
1012 }
1013 /*
1014 * Find the rightmost entry in the rbtree:
1015 */
1016 rightmost = __pick_last_entity(cfs_rq);
1017 /*
1018 * Already in the rightmost position?
1019 */
1020 if (unlikely(!rightmost || rightmost->vruntime < se->vruntime))
1021 return;
1022
1023 /*
1024 * Minimally necessary key value to be last in the tree:
1025 * Upon rescheduling, sched_class::put_prev_task() will place
1026 * 'current' within the tree based on its new key value.
1027 */
1028 se->vruntime = rightmost->vruntime + 1;
1029 }
1030
1031 /*
1032 * wake_idle() will wake a task on an idle cpu if task->cpu is
1033 * not idle and an idle cpu is available. The span of cpus to
1034 * search starts with cpus closest then further out as needed,
1035 * so we always favor a closer, idle cpu.
1036 * Domains may include CPUs that are not usable for migration,
1037 * hence we need to mask them out (cpu_active_mask)
1038 *
1039 * Returns the CPU we should wake onto.
1040 */
1041 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1042 static int wake_idle(int cpu, struct task_struct *p)
1043 {
1044 struct sched_domain *sd;
1045 int i;
1046 unsigned int chosen_wakeup_cpu;
1047 int this_cpu;
1048
1049 /*
1050 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1051 * are idle and this is not a kernel thread and this task's affinity
1052 * allows it to be moved to preferred cpu, then just move!
1053 */
1054
1055 this_cpu = smp_processor_id();
1056 chosen_wakeup_cpu =
1057 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1058
1059 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1060 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1061 p->mm && !(p->flags & PF_KTHREAD) &&
1062 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1063 return chosen_wakeup_cpu;
1064
1065 /*
1066 * If it is idle, then it is the best cpu to run this task.
1067 *
1068 * This cpu is also the best, if it has more than one task already.
1069 * Siblings must be also busy(in most cases) as they didn't already
1070 * pickup the extra load from this cpu and hence we need not check
1071 * sibling runqueue info. This will avoid the checks and cache miss
1072 * penalities associated with that.
1073 */
1074 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1075 return cpu;
1076
1077 for_each_domain(cpu, sd) {
1078 if ((sd->flags & SD_WAKE_IDLE)
1079 || ((sd->flags & SD_WAKE_IDLE_FAR)
1080 && !task_hot(p, task_rq(p)->clock, sd))) {
1081 for_each_cpu_and(i, sched_domain_span(sd),
1082 &p->cpus_allowed) {
1083 if (cpu_active(i) && idle_cpu(i)) {
1084 if (i != task_cpu(p)) {
1085 schedstat_inc(p,
1086 se.nr_wakeups_idle);
1087 }
1088 return i;
1089 }
1090 }
1091 } else {
1092 break;
1093 }
1094 }
1095 return cpu;
1096 }
1097 #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1098 static inline int wake_idle(int cpu, struct task_struct *p)
1099 {
1100 return cpu;
1101 }
1102 #endif
1103
1104 #ifdef CONFIG_SMP
1105
1106 #ifdef CONFIG_FAIR_GROUP_SCHED
1107 /*
1108 * effective_load() calculates the load change as seen from the root_task_group
1109 *
1110 * Adding load to a group doesn't make a group heavier, but can cause movement
1111 * of group shares between cpus. Assuming the shares were perfectly aligned one
1112 * can calculate the shift in shares.
1113 *
1114 * The problem is that perfectly aligning the shares is rather expensive, hence
1115 * we try to avoid doing that too often - see update_shares(), which ratelimits
1116 * this change.
1117 *
1118 * We compensate this by not only taking the current delta into account, but
1119 * also considering the delta between when the shares were last adjusted and
1120 * now.
1121 *
1122 * We still saw a performance dip, some tracing learned us that between
1123 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1124 * significantly. Therefore try to bias the error in direction of failing
1125 * the affine wakeup.
1126 *
1127 */
1128 static long effective_load(struct task_group *tg, int cpu,
1129 long wl, long wg)
1130 {
1131 struct sched_entity *se = tg->se[cpu];
1132
1133 if (!tg->parent)
1134 return wl;
1135
1136 /*
1137 * By not taking the decrease of shares on the other cpu into
1138 * account our error leans towards reducing the affine wakeups.
1139 */
1140 if (!wl && sched_feat(ASYM_EFF_LOAD))
1141 return wl;
1142
1143 for_each_sched_entity(se) {
1144 long S, rw, s, a, b;
1145 long more_w;
1146
1147 /*
1148 * Instead of using this increment, also add the difference
1149 * between when the shares were last updated and now.
1150 */
1151 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1152 wl += more_w;
1153 wg += more_w;
1154
1155 S = se->my_q->tg->shares;
1156 s = se->my_q->shares;
1157 rw = se->my_q->rq_weight;
1158
1159 a = S*(rw + wl);
1160 b = S*rw + s*wg;
1161
1162 wl = s*(a-b);
1163
1164 if (likely(b))
1165 wl /= b;
1166
1167 /*
1168 * Assume the group is already running and will
1169 * thus already be accounted for in the weight.
1170 *
1171 * That is, moving shares between CPUs, does not
1172 * alter the group weight.
1173 */
1174 wg = 0;
1175 }
1176
1177 return wl;
1178 }
1179
1180 #else
1181
1182 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1183 unsigned long wl, unsigned long wg)
1184 {
1185 return wl;
1186 }
1187
1188 #endif
1189
1190 static int
1191 wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1192 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1193 int idx, unsigned long load, unsigned long this_load,
1194 unsigned int imbalance)
1195 {
1196 struct task_struct *curr = this_rq->curr;
1197 struct task_group *tg;
1198 unsigned long tl = this_load;
1199 unsigned long tl_per_task;
1200 unsigned long weight;
1201 int balanced;
1202
1203 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1204 return 0;
1205
1206 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1207 p->se.avg_overlap > sysctl_sched_migration_cost))
1208 sync = 0;
1209
1210 /*
1211 * If sync wakeup then subtract the (maximum possible)
1212 * effect of the currently running task from the load
1213 * of the current CPU:
1214 */
1215 if (sync) {
1216 tg = task_group(current);
1217 weight = current->se.load.weight;
1218
1219 tl += effective_load(tg, this_cpu, -weight, -weight);
1220 load += effective_load(tg, prev_cpu, 0, -weight);
1221 }
1222
1223 tg = task_group(p);
1224 weight = p->se.load.weight;
1225
1226 balanced = 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1227 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1228
1229 /*
1230 * If the currently running task will sleep within
1231 * a reasonable amount of time then attract this newly
1232 * woken task:
1233 */
1234 if (sync && balanced)
1235 return 1;
1236
1237 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1238 tl_per_task = cpu_avg_load_per_task(this_cpu);
1239
1240 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1241 tl_per_task)) {
1242 /*
1243 * This domain has SD_WAKE_AFFINE and
1244 * p is cache cold in this domain, and
1245 * there is no bad imbalance.
1246 */
1247 schedstat_inc(this_sd, ttwu_move_affine);
1248 schedstat_inc(p, se.nr_wakeups_affine);
1249
1250 return 1;
1251 }
1252 return 0;
1253 }
1254
1255 static int select_task_rq_fair(struct task_struct *p, int sync)
1256 {
1257 struct sched_domain *sd, *this_sd = NULL;
1258 int prev_cpu, this_cpu, new_cpu;
1259 unsigned long load, this_load;
1260 struct rq *this_rq;
1261 unsigned int imbalance;
1262 int idx;
1263
1264 prev_cpu = task_cpu(p);
1265 this_cpu = smp_processor_id();
1266 this_rq = cpu_rq(this_cpu);
1267 new_cpu = prev_cpu;
1268
1269 if (prev_cpu == this_cpu)
1270 goto out;
1271 /*
1272 * 'this_sd' is the first domain that both
1273 * this_cpu and prev_cpu are present in:
1274 */
1275 for_each_domain(this_cpu, sd) {
1276 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
1277 this_sd = sd;
1278 break;
1279 }
1280 }
1281
1282 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
1283 goto out;
1284
1285 /*
1286 * Check for affine wakeup and passive balancing possibilities.
1287 */
1288 if (!this_sd)
1289 goto out;
1290
1291 idx = this_sd->wake_idx;
1292
1293 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1294
1295 load = source_load(prev_cpu, idx);
1296 this_load = target_load(this_cpu, idx);
1297
1298 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1299 load, this_load, imbalance))
1300 return this_cpu;
1301
1302 /*
1303 * Start passive balancing when half the imbalance_pct
1304 * limit is reached.
1305 */
1306 if (this_sd->flags & SD_WAKE_BALANCE) {
1307 if (imbalance*this_load <= 100*load) {
1308 schedstat_inc(this_sd, ttwu_move_balance);
1309 schedstat_inc(p, se.nr_wakeups_passive);
1310 return this_cpu;
1311 }
1312 }
1313
1314 out:
1315 return wake_idle(new_cpu, p);
1316 }
1317 #endif /* CONFIG_SMP */
1318
1319 /*
1320 * Adaptive granularity
1321 *
1322 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1323 * with the limit of wakeup_gran -- when it never does a wakeup.
1324 *
1325 * So the smaller avg_wakeup is the faster we want this task to preempt,
1326 * but we don't want to treat the preemptee unfairly and therefore allow it
1327 * to run for at least the amount of time we'd like to run.
1328 *
1329 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1330 *
1331 * NOTE: we use *nr_running to scale with load, this nicely matches the
1332 * degrading latency on load.
1333 */
1334 static unsigned long
1335 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1336 {
1337 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1338 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1339 u64 gran = 0;
1340
1341 if (this_run < expected_wakeup)
1342 gran = expected_wakeup - this_run;
1343
1344 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1345 }
1346
1347 static unsigned long
1348 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1349 {
1350 unsigned long gran = sysctl_sched_wakeup_granularity;
1351
1352 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1353 gran = adaptive_gran(curr, se);
1354
1355 /*
1356 * Since its curr running now, convert the gran from real-time
1357 * to virtual-time in his units.
1358 */
1359 if (sched_feat(ASYM_GRAN)) {
1360 /*
1361 * By using 'se' instead of 'curr' we penalize light tasks, so
1362 * they get preempted easier. That is, if 'se' < 'curr' then
1363 * the resulting gran will be larger, therefore penalizing the
1364 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1365 * be smaller, again penalizing the lighter task.
1366 *
1367 * This is especially important for buddies when the leftmost
1368 * task is higher priority than the buddy.
1369 */
1370 if (unlikely(se->load.weight != NICE_0_LOAD))
1371 gran = calc_delta_fair(gran, se);
1372 } else {
1373 if (unlikely(curr->load.weight != NICE_0_LOAD))
1374 gran = calc_delta_fair(gran, curr);
1375 }
1376
1377 return gran;
1378 }
1379
1380 /*
1381 * Should 'se' preempt 'curr'.
1382 *
1383 * |s1
1384 * |s2
1385 * |s3
1386 * g
1387 * |<--->|c
1388 *
1389 * w(c, s1) = -1
1390 * w(c, s2) = 0
1391 * w(c, s3) = 1
1392 *
1393 */
1394 static int
1395 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1396 {
1397 s64 gran, vdiff = curr->vruntime - se->vruntime;
1398
1399 if (vdiff <= 0)
1400 return -1;
1401
1402 gran = wakeup_gran(curr, se);
1403 if (vdiff > gran)
1404 return 1;
1405
1406 return 0;
1407 }
1408
1409 static void set_last_buddy(struct sched_entity *se)
1410 {
1411 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1412 for_each_sched_entity(se)
1413 cfs_rq_of(se)->last = se;
1414 }
1415 }
1416
1417 static void set_next_buddy(struct sched_entity *se)
1418 {
1419 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1420 for_each_sched_entity(se)
1421 cfs_rq_of(se)->next = se;
1422 }
1423 }
1424
1425 /*
1426 * Preempt the current task with a newly woken task if needed:
1427 */
1428 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1429 {
1430 struct task_struct *curr = rq->curr;
1431 struct sched_entity *se = &curr->se, *pse = &p->se;
1432 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1433
1434 update_curr(cfs_rq);
1435
1436 if (unlikely(rt_prio(p->prio))) {
1437 resched_task(curr);
1438 return;
1439 }
1440
1441 if (unlikely(p->sched_class != &fair_sched_class))
1442 return;
1443
1444 if (unlikely(se == pse))
1445 return;
1446
1447 /*
1448 * Only set the backward buddy when the current task is still on the
1449 * rq. This can happen when a wakeup gets interleaved with schedule on
1450 * the ->pre_schedule() or idle_balance() point, either of which can
1451 * drop the rq lock.
1452 *
1453 * Also, during early boot the idle thread is in the fair class, for
1454 * obvious reasons its a bad idea to schedule back to the idle thread.
1455 */
1456 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1457 set_last_buddy(se);
1458 set_next_buddy(pse);
1459
1460 /*
1461 * We can come here with TIF_NEED_RESCHED already set from new task
1462 * wake up path.
1463 */
1464 if (test_tsk_need_resched(curr))
1465 return;
1466
1467 /*
1468 * Batch and idle tasks do not preempt (their preemption is driven by
1469 * the tick):
1470 */
1471 if (unlikely(p->policy != SCHED_NORMAL))
1472 return;
1473
1474 /* Idle tasks are by definition preempted by everybody. */
1475 if (unlikely(curr->policy == SCHED_IDLE)) {
1476 resched_task(curr);
1477 return;
1478 }
1479
1480 if (!sched_feat(WAKEUP_PREEMPT))
1481 return;
1482
1483 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1484 (se->avg_overlap < sysctl_sched_migration_cost &&
1485 pse->avg_overlap < sysctl_sched_migration_cost))) {
1486 resched_task(curr);
1487 return;
1488 }
1489
1490 find_matching_se(&se, &pse);
1491
1492 BUG_ON(!pse);
1493
1494 if (wakeup_preempt_entity(se, pse) == 1)
1495 resched_task(curr);
1496 }
1497
1498 static struct task_struct *pick_next_task_fair(struct rq *rq)
1499 {
1500 struct task_struct *p;
1501 struct cfs_rq *cfs_rq = &rq->cfs;
1502 struct sched_entity *se;
1503
1504 if (unlikely(!cfs_rq->nr_running))
1505 return NULL;
1506
1507 do {
1508 se = pick_next_entity(cfs_rq);
1509 /*
1510 * If se was a buddy, clear it so that it will have to earn
1511 * the favour again.
1512 */
1513 __clear_buddies(cfs_rq, se);
1514 set_next_entity(cfs_rq, se);
1515 cfs_rq = group_cfs_rq(se);
1516 } while (cfs_rq);
1517
1518 p = task_of(se);
1519 hrtick_start_fair(rq, p);
1520
1521 return p;
1522 }
1523
1524 /*
1525 * Account for a descheduled task:
1526 */
1527 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1528 {
1529 struct sched_entity *se = &prev->se;
1530 struct cfs_rq *cfs_rq;
1531
1532 for_each_sched_entity(se) {
1533 cfs_rq = cfs_rq_of(se);
1534 put_prev_entity(cfs_rq, se);
1535 }
1536 }
1537
1538 #ifdef CONFIG_SMP
1539 /**************************************************
1540 * Fair scheduling class load-balancing methods:
1541 */
1542
1543 /*
1544 * Load-balancing iterator. Note: while the runqueue stays locked
1545 * during the whole iteration, the current task might be
1546 * dequeued so the iterator has to be dequeue-safe. Here we
1547 * achieve that by always pre-iterating before returning
1548 * the current task:
1549 */
1550 static struct task_struct *
1551 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1552 {
1553 struct task_struct *p = NULL;
1554 struct sched_entity *se;
1555
1556 if (next == &cfs_rq->tasks)
1557 return NULL;
1558
1559 se = list_entry(next, struct sched_entity, group_node);
1560 p = task_of(se);
1561 cfs_rq->balance_iterator = next->next;
1562
1563 return p;
1564 }
1565
1566 static struct task_struct *load_balance_start_fair(void *arg)
1567 {
1568 struct cfs_rq *cfs_rq = arg;
1569
1570 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1571 }
1572
1573 static struct task_struct *load_balance_next_fair(void *arg)
1574 {
1575 struct cfs_rq *cfs_rq = arg;
1576
1577 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1578 }
1579
1580 static unsigned long
1581 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1582 unsigned long max_load_move, struct sched_domain *sd,
1583 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1584 struct cfs_rq *cfs_rq)
1585 {
1586 struct rq_iterator cfs_rq_iterator;
1587
1588 cfs_rq_iterator.start = load_balance_start_fair;
1589 cfs_rq_iterator.next = load_balance_next_fair;
1590 cfs_rq_iterator.arg = cfs_rq;
1591
1592 return balance_tasks(this_rq, this_cpu, busiest,
1593 max_load_move, sd, idle, all_pinned,
1594 this_best_prio, &cfs_rq_iterator);
1595 }
1596
1597 #ifdef CONFIG_FAIR_GROUP_SCHED
1598 static unsigned long
1599 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1600 unsigned long max_load_move,
1601 struct sched_domain *sd, enum cpu_idle_type idle,
1602 int *all_pinned, int *this_best_prio)
1603 {
1604 long rem_load_move = max_load_move;
1605 int busiest_cpu = cpu_of(busiest);
1606 struct task_group *tg;
1607
1608 rcu_read_lock();
1609 update_h_load(busiest_cpu);
1610
1611 list_for_each_entry_rcu(tg, &task_groups, list) {
1612 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1613 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1614 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1615 u64 rem_load, moved_load;
1616
1617 /*
1618 * empty group
1619 */
1620 if (!busiest_cfs_rq->task_weight)
1621 continue;
1622
1623 rem_load = (u64)rem_load_move * busiest_weight;
1624 rem_load = div_u64(rem_load, busiest_h_load + 1);
1625
1626 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1627 rem_load, sd, idle, all_pinned, this_best_prio,
1628 tg->cfs_rq[busiest_cpu]);
1629
1630 if (!moved_load)
1631 continue;
1632
1633 moved_load *= busiest_h_load;
1634 moved_load = div_u64(moved_load, busiest_weight + 1);
1635
1636 rem_load_move -= moved_load;
1637 if (rem_load_move < 0)
1638 break;
1639 }
1640 rcu_read_unlock();
1641
1642 return max_load_move - rem_load_move;
1643 }
1644 #else
1645 static unsigned long
1646 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1647 unsigned long max_load_move,
1648 struct sched_domain *sd, enum cpu_idle_type idle,
1649 int *all_pinned, int *this_best_prio)
1650 {
1651 return __load_balance_fair(this_rq, this_cpu, busiest,
1652 max_load_move, sd, idle, all_pinned,
1653 this_best_prio, &busiest->cfs);
1654 }
1655 #endif
1656
1657 static int
1658 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1659 struct sched_domain *sd, enum cpu_idle_type idle)
1660 {
1661 struct cfs_rq *busy_cfs_rq;
1662 struct rq_iterator cfs_rq_iterator;
1663
1664 cfs_rq_iterator.start = load_balance_start_fair;
1665 cfs_rq_iterator.next = load_balance_next_fair;
1666
1667 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1668 /*
1669 * pass busy_cfs_rq argument into
1670 * load_balance_[start|next]_fair iterators
1671 */
1672 cfs_rq_iterator.arg = busy_cfs_rq;
1673 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1674 &cfs_rq_iterator))
1675 return 1;
1676 }
1677
1678 return 0;
1679 }
1680 #endif /* CONFIG_SMP */
1681
1682 /*
1683 * scheduler tick hitting a task of our scheduling class:
1684 */
1685 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1686 {
1687 struct cfs_rq *cfs_rq;
1688 struct sched_entity *se = &curr->se;
1689
1690 for_each_sched_entity(se) {
1691 cfs_rq = cfs_rq_of(se);
1692 entity_tick(cfs_rq, se, queued);
1693 }
1694 }
1695
1696 /*
1697 * Share the fairness runtime between parent and child, thus the
1698 * total amount of pressure for CPU stays equal - new tasks
1699 * get a chance to run but frequent forkers are not allowed to
1700 * monopolize the CPU. Note: the parent runqueue is locked,
1701 * the child is not running yet.
1702 */
1703 static void task_new_fair(struct rq *rq, struct task_struct *p)
1704 {
1705 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1706 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1707 int this_cpu = smp_processor_id();
1708
1709 sched_info_queued(p);
1710
1711 update_curr(cfs_rq);
1712 place_entity(cfs_rq, se, 1);
1713
1714 /* 'curr' will be NULL if the child belongs to a different group */
1715 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1716 curr && curr->vruntime < se->vruntime) {
1717 /*
1718 * Upon rescheduling, sched_class::put_prev_task() will place
1719 * 'current' within the tree based on its new key value.
1720 */
1721 swap(curr->vruntime, se->vruntime);
1722 resched_task(rq->curr);
1723 }
1724
1725 enqueue_task_fair(rq, p, 0);
1726 }
1727
1728 /*
1729 * Priority of the task has changed. Check to see if we preempt
1730 * the current task.
1731 */
1732 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1733 int oldprio, int running)
1734 {
1735 /*
1736 * Reschedule if we are currently running on this runqueue and
1737 * our priority decreased, or if we are not currently running on
1738 * this runqueue and our priority is higher than the current's
1739 */
1740 if (running) {
1741 if (p->prio > oldprio)
1742 resched_task(rq->curr);
1743 } else
1744 check_preempt_curr(rq, p, 0);
1745 }
1746
1747 /*
1748 * We switched to the sched_fair class.
1749 */
1750 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1751 int running)
1752 {
1753 /*
1754 * We were most likely switched from sched_rt, so
1755 * kick off the schedule if running, otherwise just see
1756 * if we can still preempt the current task.
1757 */
1758 if (running)
1759 resched_task(rq->curr);
1760 else
1761 check_preempt_curr(rq, p, 0);
1762 }
1763
1764 /* Account for a task changing its policy or group.
1765 *
1766 * This routine is mostly called to set cfs_rq->curr field when a task
1767 * migrates between groups/classes.
1768 */
1769 static void set_curr_task_fair(struct rq *rq)
1770 {
1771 struct sched_entity *se = &rq->curr->se;
1772
1773 for_each_sched_entity(se)
1774 set_next_entity(cfs_rq_of(se), se);
1775 }
1776
1777 #ifdef CONFIG_FAIR_GROUP_SCHED
1778 static void moved_group_fair(struct task_struct *p)
1779 {
1780 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1781
1782 update_curr(cfs_rq);
1783 place_entity(cfs_rq, &p->se, 1);
1784 }
1785 #endif
1786
1787 /*
1788 * All the scheduling class methods:
1789 */
1790 static const struct sched_class fair_sched_class = {
1791 .next = &idle_sched_class,
1792 .enqueue_task = enqueue_task_fair,
1793 .dequeue_task = dequeue_task_fair,
1794 .yield_task = yield_task_fair,
1795
1796 .check_preempt_curr = check_preempt_wakeup,
1797
1798 .pick_next_task = pick_next_task_fair,
1799 .put_prev_task = put_prev_task_fair,
1800
1801 #ifdef CONFIG_SMP
1802 .select_task_rq = select_task_rq_fair,
1803
1804 .load_balance = load_balance_fair,
1805 .move_one_task = move_one_task_fair,
1806 #endif
1807
1808 .set_curr_task = set_curr_task_fair,
1809 .task_tick = task_tick_fair,
1810 .task_new = task_new_fair,
1811
1812 .prio_changed = prio_changed_fair,
1813 .switched_to = switched_to_fair,
1814
1815 #ifdef CONFIG_FAIR_GROUP_SCHED
1816 .moved_group = moved_group_fair,
1817 #endif
1818 };
1819
1820 #ifdef CONFIG_SCHED_DEBUG
1821 static void print_cfs_stats(struct seq_file *m, int cpu)
1822 {
1823 struct cfs_rq *cfs_rq;
1824
1825 rcu_read_lock();
1826 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1827 print_cfs_rq(m, cpu, cfs_rq);
1828 rcu_read_unlock();
1829 }
1830 #endif