]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched_fair.c
sched: retune wake granularity
[mirror_ubuntu-zesty-kernel.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 20ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 4 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 4000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. (default) If set to 0 then
52 * parent will (try to) run first.
53 */
54 const_debug unsigned int sysctl_sched_child_runs_first = 1;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_BATCH wake-up granularity.
66 * (default: 10 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_batch_wakeup_granularity = 10000000UL;
73
74 /*
75 * SCHED_OTHER wake-up granularity.
76 * (default: 5 msec * (1 + ilog(ncpus)), units: nanoseconds)
77 *
78 * This option delays the preemption effects of decoupled workloads
79 * and reduces their over-scheduling. Synchronous workloads will still
80 * have immediate wakeup/sleep latencies.
81 */
82 unsigned int sysctl_sched_wakeup_granularity = 5000000UL;
83
84 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
85
86 /**************************************************************
87 * CFS operations on generic schedulable entities:
88 */
89
90 #ifdef CONFIG_FAIR_GROUP_SCHED
91
92 /* cpu runqueue to which this cfs_rq is attached */
93 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
94 {
95 return cfs_rq->rq;
96 }
97
98 /* An entity is a task if it doesn't "own" a runqueue */
99 #define entity_is_task(se) (!se->my_q)
100
101 #else /* CONFIG_FAIR_GROUP_SCHED */
102
103 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
104 {
105 return container_of(cfs_rq, struct rq, cfs);
106 }
107
108 #define entity_is_task(se) 1
109
110 #endif /* CONFIG_FAIR_GROUP_SCHED */
111
112 static inline struct task_struct *task_of(struct sched_entity *se)
113 {
114 return container_of(se, struct task_struct, se);
115 }
116
117
118 /**************************************************************
119 * Scheduling class tree data structure manipulation methods:
120 */
121
122 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
123 {
124 s64 delta = (s64)(vruntime - min_vruntime);
125 if (delta > 0)
126 min_vruntime = vruntime;
127
128 return min_vruntime;
129 }
130
131 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
132 {
133 s64 delta = (s64)(vruntime - min_vruntime);
134 if (delta < 0)
135 min_vruntime = vruntime;
136
137 return min_vruntime;
138 }
139
140 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
141 {
142 return se->vruntime - cfs_rq->min_vruntime;
143 }
144
145 /*
146 * Enqueue an entity into the rb-tree:
147 */
148 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
149 {
150 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
151 struct rb_node *parent = NULL;
152 struct sched_entity *entry;
153 s64 key = entity_key(cfs_rq, se);
154 int leftmost = 1;
155
156 /*
157 * Find the right place in the rbtree:
158 */
159 while (*link) {
160 parent = *link;
161 entry = rb_entry(parent, struct sched_entity, run_node);
162 /*
163 * We dont care about collisions. Nodes with
164 * the same key stay together.
165 */
166 if (key < entity_key(cfs_rq, entry)) {
167 link = &parent->rb_left;
168 } else {
169 link = &parent->rb_right;
170 leftmost = 0;
171 }
172 }
173
174 /*
175 * Maintain a cache of leftmost tree entries (it is frequently
176 * used):
177 */
178 if (leftmost) {
179 cfs_rq->rb_leftmost = &se->run_node;
180 /*
181 * maintain cfs_rq->min_vruntime to be a monotonic increasing
182 * value tracking the leftmost vruntime in the tree.
183 */
184 cfs_rq->min_vruntime =
185 max_vruntime(cfs_rq->min_vruntime, se->vruntime);
186 }
187
188 rb_link_node(&se->run_node, parent, link);
189 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
190 }
191
192 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
193 {
194 if (cfs_rq->rb_leftmost == &se->run_node) {
195 struct rb_node *next_node;
196 struct sched_entity *next;
197
198 next_node = rb_next(&se->run_node);
199 cfs_rq->rb_leftmost = next_node;
200
201 if (next_node) {
202 next = rb_entry(next_node,
203 struct sched_entity, run_node);
204 cfs_rq->min_vruntime =
205 max_vruntime(cfs_rq->min_vruntime,
206 next->vruntime);
207 }
208 }
209
210 if (cfs_rq->next == se)
211 cfs_rq->next = NULL;
212
213 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
214 }
215
216 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
217 {
218 return cfs_rq->rb_leftmost;
219 }
220
221 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
222 {
223 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
224 }
225
226 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
227 {
228 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
229
230 if (!last)
231 return NULL;
232
233 return rb_entry(last, struct sched_entity, run_node);
234 }
235
236 /**************************************************************
237 * Scheduling class statistics methods:
238 */
239
240 #ifdef CONFIG_SCHED_DEBUG
241 int sched_nr_latency_handler(struct ctl_table *table, int write,
242 struct file *filp, void __user *buffer, size_t *lenp,
243 loff_t *ppos)
244 {
245 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
246
247 if (ret || !write)
248 return ret;
249
250 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
251 sysctl_sched_min_granularity);
252
253 return 0;
254 }
255 #endif
256
257 /*
258 * The idea is to set a period in which each task runs once.
259 *
260 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
261 * this period because otherwise the slices get too small.
262 *
263 * p = (nr <= nl) ? l : l*nr/nl
264 */
265 static u64 __sched_period(unsigned long nr_running)
266 {
267 u64 period = sysctl_sched_latency;
268 unsigned long nr_latency = sched_nr_latency;
269
270 if (unlikely(nr_running > nr_latency)) {
271 period = sysctl_sched_min_granularity;
272 period *= nr_running;
273 }
274
275 return period;
276 }
277
278 /*
279 * We calculate the wall-time slice from the period by taking a part
280 * proportional to the weight.
281 *
282 * s = p*w/rw
283 */
284 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
285 {
286 return calc_delta_mine(__sched_period(cfs_rq->nr_running),
287 se->load.weight, &cfs_rq->load);
288 }
289
290 /*
291 * We calculate the vruntime slice.
292 *
293 * vs = s/w = p/rw
294 */
295 static u64 __sched_vslice(unsigned long rq_weight, unsigned long nr_running)
296 {
297 u64 vslice = __sched_period(nr_running);
298
299 vslice *= NICE_0_LOAD;
300 do_div(vslice, rq_weight);
301
302 return vslice;
303 }
304
305 static u64 sched_vslice(struct cfs_rq *cfs_rq)
306 {
307 return __sched_vslice(cfs_rq->load.weight, cfs_rq->nr_running);
308 }
309
310 static u64 sched_vslice_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
311 {
312 return __sched_vslice(cfs_rq->load.weight + se->load.weight,
313 cfs_rq->nr_running + 1);
314 }
315
316 /*
317 * Update the current task's runtime statistics. Skip current tasks that
318 * are not in our scheduling class.
319 */
320 static inline void
321 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
322 unsigned long delta_exec)
323 {
324 unsigned long delta_exec_weighted;
325
326 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
327
328 curr->sum_exec_runtime += delta_exec;
329 schedstat_add(cfs_rq, exec_clock, delta_exec);
330 delta_exec_weighted = delta_exec;
331 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
332 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
333 &curr->load);
334 }
335 curr->vruntime += delta_exec_weighted;
336 }
337
338 static void update_curr(struct cfs_rq *cfs_rq)
339 {
340 struct sched_entity *curr = cfs_rq->curr;
341 u64 now = rq_of(cfs_rq)->clock;
342 unsigned long delta_exec;
343
344 if (unlikely(!curr))
345 return;
346
347 /*
348 * Get the amount of time the current task was running
349 * since the last time we changed load (this cannot
350 * overflow on 32 bits):
351 */
352 delta_exec = (unsigned long)(now - curr->exec_start);
353
354 __update_curr(cfs_rq, curr, delta_exec);
355 curr->exec_start = now;
356
357 if (entity_is_task(curr)) {
358 struct task_struct *curtask = task_of(curr);
359
360 cpuacct_charge(curtask, delta_exec);
361 }
362 }
363
364 static inline void
365 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
366 {
367 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
368 }
369
370 /*
371 * Task is being enqueued - update stats:
372 */
373 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
374 {
375 /*
376 * Are we enqueueing a waiting task? (for current tasks
377 * a dequeue/enqueue event is a NOP)
378 */
379 if (se != cfs_rq->curr)
380 update_stats_wait_start(cfs_rq, se);
381 }
382
383 static void
384 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
385 {
386 schedstat_set(se->wait_max, max(se->wait_max,
387 rq_of(cfs_rq)->clock - se->wait_start));
388 schedstat_set(se->wait_count, se->wait_count + 1);
389 schedstat_set(se->wait_sum, se->wait_sum +
390 rq_of(cfs_rq)->clock - se->wait_start);
391 schedstat_set(se->wait_start, 0);
392 }
393
394 static inline void
395 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
396 {
397 /*
398 * Mark the end of the wait period if dequeueing a
399 * waiting task:
400 */
401 if (se != cfs_rq->curr)
402 update_stats_wait_end(cfs_rq, se);
403 }
404
405 /*
406 * We are picking a new current task - update its stats:
407 */
408 static inline void
409 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
410 {
411 /*
412 * We are starting a new run period:
413 */
414 se->exec_start = rq_of(cfs_rq)->clock;
415 }
416
417 /**************************************************
418 * Scheduling class queueing methods:
419 */
420
421 static void
422 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
423 {
424 update_load_add(&cfs_rq->load, se->load.weight);
425 cfs_rq->nr_running++;
426 se->on_rq = 1;
427 }
428
429 static void
430 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
431 {
432 update_load_sub(&cfs_rq->load, se->load.weight);
433 cfs_rq->nr_running--;
434 se->on_rq = 0;
435 }
436
437 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
438 {
439 #ifdef CONFIG_SCHEDSTATS
440 if (se->sleep_start) {
441 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
442 struct task_struct *tsk = task_of(se);
443
444 if ((s64)delta < 0)
445 delta = 0;
446
447 if (unlikely(delta > se->sleep_max))
448 se->sleep_max = delta;
449
450 se->sleep_start = 0;
451 se->sum_sleep_runtime += delta;
452
453 account_scheduler_latency(tsk, delta >> 10, 1);
454 }
455 if (se->block_start) {
456 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
457 struct task_struct *tsk = task_of(se);
458
459 if ((s64)delta < 0)
460 delta = 0;
461
462 if (unlikely(delta > se->block_max))
463 se->block_max = delta;
464
465 se->block_start = 0;
466 se->sum_sleep_runtime += delta;
467
468 /*
469 * Blocking time is in units of nanosecs, so shift by 20 to
470 * get a milliseconds-range estimation of the amount of
471 * time that the task spent sleeping:
472 */
473 if (unlikely(prof_on == SLEEP_PROFILING)) {
474
475 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
476 delta >> 20);
477 }
478 account_scheduler_latency(tsk, delta >> 10, 0);
479 }
480 #endif
481 }
482
483 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
484 {
485 #ifdef CONFIG_SCHED_DEBUG
486 s64 d = se->vruntime - cfs_rq->min_vruntime;
487
488 if (d < 0)
489 d = -d;
490
491 if (d > 3*sysctl_sched_latency)
492 schedstat_inc(cfs_rq, nr_spread_over);
493 #endif
494 }
495
496 static void
497 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
498 {
499 u64 vruntime;
500
501 if (first_fair(cfs_rq)) {
502 vruntime = min_vruntime(cfs_rq->min_vruntime,
503 __pick_next_entity(cfs_rq)->vruntime);
504 } else
505 vruntime = cfs_rq->min_vruntime;
506
507 if (sched_feat(TREE_AVG)) {
508 struct sched_entity *last = __pick_last_entity(cfs_rq);
509 if (last) {
510 vruntime += last->vruntime;
511 vruntime >>= 1;
512 }
513 } else if (sched_feat(APPROX_AVG) && cfs_rq->nr_running)
514 vruntime += sched_vslice(cfs_rq)/2;
515
516 /*
517 * The 'current' period is already promised to the current tasks,
518 * however the extra weight of the new task will slow them down a
519 * little, place the new task so that it fits in the slot that
520 * stays open at the end.
521 */
522 if (initial && sched_feat(START_DEBIT))
523 vruntime += sched_vslice_add(cfs_rq, se);
524
525 if (!initial) {
526 /* sleeps upto a single latency don't count. */
527 if (sched_feat(NEW_FAIR_SLEEPERS)) {
528 vruntime -= calc_delta_fair(sysctl_sched_latency,
529 &cfs_rq->load);
530 }
531
532 /* ensure we never gain time by being placed backwards. */
533 vruntime = max_vruntime(se->vruntime, vruntime);
534 }
535
536 se->vruntime = vruntime;
537 }
538
539 static void
540 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
541 {
542 /*
543 * Update run-time statistics of the 'current'.
544 */
545 update_curr(cfs_rq);
546
547 if (wakeup) {
548 place_entity(cfs_rq, se, 0);
549 enqueue_sleeper(cfs_rq, se);
550 }
551
552 update_stats_enqueue(cfs_rq, se);
553 check_spread(cfs_rq, se);
554 if (se != cfs_rq->curr)
555 __enqueue_entity(cfs_rq, se);
556 account_entity_enqueue(cfs_rq, se);
557 }
558
559 static void update_avg(u64 *avg, u64 sample)
560 {
561 s64 diff = sample - *avg;
562 *avg += diff >> 3;
563 }
564
565 static void update_avg_stats(struct cfs_rq *cfs_rq, struct sched_entity *se)
566 {
567 if (!se->last_wakeup)
568 return;
569
570 update_avg(&se->avg_overlap, se->sum_exec_runtime - se->last_wakeup);
571 se->last_wakeup = 0;
572 }
573
574 static void
575 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
576 {
577 /*
578 * Update run-time statistics of the 'current'.
579 */
580 update_curr(cfs_rq);
581
582 update_stats_dequeue(cfs_rq, se);
583 if (sleep) {
584 update_avg_stats(cfs_rq, se);
585 #ifdef CONFIG_SCHEDSTATS
586 if (entity_is_task(se)) {
587 struct task_struct *tsk = task_of(se);
588
589 if (tsk->state & TASK_INTERRUPTIBLE)
590 se->sleep_start = rq_of(cfs_rq)->clock;
591 if (tsk->state & TASK_UNINTERRUPTIBLE)
592 se->block_start = rq_of(cfs_rq)->clock;
593 }
594 #endif
595 }
596
597 if (se != cfs_rq->curr)
598 __dequeue_entity(cfs_rq, se);
599 account_entity_dequeue(cfs_rq, se);
600 }
601
602 /*
603 * Preempt the current task with a newly woken task if needed:
604 */
605 static void
606 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
607 {
608 unsigned long ideal_runtime, delta_exec;
609
610 ideal_runtime = sched_slice(cfs_rq, curr);
611 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
612 if (delta_exec > ideal_runtime)
613 resched_task(rq_of(cfs_rq)->curr);
614 }
615
616 static void
617 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
618 {
619 /* 'current' is not kept within the tree. */
620 if (se->on_rq) {
621 /*
622 * Any task has to be enqueued before it get to execute on
623 * a CPU. So account for the time it spent waiting on the
624 * runqueue.
625 */
626 update_stats_wait_end(cfs_rq, se);
627 __dequeue_entity(cfs_rq, se);
628 }
629
630 update_stats_curr_start(cfs_rq, se);
631 cfs_rq->curr = se;
632 #ifdef CONFIG_SCHEDSTATS
633 /*
634 * Track our maximum slice length, if the CPU's load is at
635 * least twice that of our own weight (i.e. dont track it
636 * when there are only lesser-weight tasks around):
637 */
638 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
639 se->slice_max = max(se->slice_max,
640 se->sum_exec_runtime - se->prev_sum_exec_runtime);
641 }
642 #endif
643 se->prev_sum_exec_runtime = se->sum_exec_runtime;
644 }
645
646 static struct sched_entity *
647 pick_next(struct cfs_rq *cfs_rq, struct sched_entity *se)
648 {
649 s64 diff, gran;
650
651 if (!cfs_rq->next)
652 return se;
653
654 diff = cfs_rq->next->vruntime - se->vruntime;
655 if (diff < 0)
656 return se;
657
658 gran = calc_delta_fair(sysctl_sched_wakeup_granularity, &cfs_rq->load);
659 if (diff > gran)
660 return se;
661
662 return cfs_rq->next;
663 }
664
665 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
666 {
667 struct sched_entity *se = NULL;
668
669 if (first_fair(cfs_rq)) {
670 se = __pick_next_entity(cfs_rq);
671 se = pick_next(cfs_rq, se);
672 set_next_entity(cfs_rq, se);
673 }
674
675 return se;
676 }
677
678 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
679 {
680 /*
681 * If still on the runqueue then deactivate_task()
682 * was not called and update_curr() has to be done:
683 */
684 if (prev->on_rq)
685 update_curr(cfs_rq);
686
687 check_spread(cfs_rq, prev);
688 if (prev->on_rq) {
689 update_stats_wait_start(cfs_rq, prev);
690 /* Put 'current' back into the tree. */
691 __enqueue_entity(cfs_rq, prev);
692 }
693 cfs_rq->curr = NULL;
694 }
695
696 static void
697 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
698 {
699 /*
700 * Update run-time statistics of the 'current'.
701 */
702 update_curr(cfs_rq);
703
704 #ifdef CONFIG_SCHED_HRTICK
705 /*
706 * queued ticks are scheduled to match the slice, so don't bother
707 * validating it and just reschedule.
708 */
709 if (queued)
710 return resched_task(rq_of(cfs_rq)->curr);
711 /*
712 * don't let the period tick interfere with the hrtick preemption
713 */
714 if (!sched_feat(DOUBLE_TICK) &&
715 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
716 return;
717 #endif
718
719 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
720 check_preempt_tick(cfs_rq, curr);
721 }
722
723 /**************************************************
724 * CFS operations on tasks:
725 */
726
727 #ifdef CONFIG_FAIR_GROUP_SCHED
728
729 /* Walk up scheduling entities hierarchy */
730 #define for_each_sched_entity(se) \
731 for (; se; se = se->parent)
732
733 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
734 {
735 return p->se.cfs_rq;
736 }
737
738 /* runqueue on which this entity is (to be) queued */
739 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
740 {
741 return se->cfs_rq;
742 }
743
744 /* runqueue "owned" by this group */
745 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
746 {
747 return grp->my_q;
748 }
749
750 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
751 * another cpu ('this_cpu')
752 */
753 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
754 {
755 return cfs_rq->tg->cfs_rq[this_cpu];
756 }
757
758 /* Iterate thr' all leaf cfs_rq's on a runqueue */
759 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
760 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
761
762 /* Do the two (enqueued) entities belong to the same group ? */
763 static inline int
764 is_same_group(struct sched_entity *se, struct sched_entity *pse)
765 {
766 if (se->cfs_rq == pse->cfs_rq)
767 return 1;
768
769 return 0;
770 }
771
772 static inline struct sched_entity *parent_entity(struct sched_entity *se)
773 {
774 return se->parent;
775 }
776
777 #else /* CONFIG_FAIR_GROUP_SCHED */
778
779 #define for_each_sched_entity(se) \
780 for (; se; se = NULL)
781
782 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
783 {
784 return &task_rq(p)->cfs;
785 }
786
787 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
788 {
789 struct task_struct *p = task_of(se);
790 struct rq *rq = task_rq(p);
791
792 return &rq->cfs;
793 }
794
795 /* runqueue "owned" by this group */
796 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
797 {
798 return NULL;
799 }
800
801 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
802 {
803 return &cpu_rq(this_cpu)->cfs;
804 }
805
806 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
807 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
808
809 static inline int
810 is_same_group(struct sched_entity *se, struct sched_entity *pse)
811 {
812 return 1;
813 }
814
815 static inline struct sched_entity *parent_entity(struct sched_entity *se)
816 {
817 return NULL;
818 }
819
820 #endif /* CONFIG_FAIR_GROUP_SCHED */
821
822 #ifdef CONFIG_SCHED_HRTICK
823 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
824 {
825 int requeue = rq->curr == p;
826 struct sched_entity *se = &p->se;
827 struct cfs_rq *cfs_rq = cfs_rq_of(se);
828
829 WARN_ON(task_rq(p) != rq);
830
831 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
832 u64 slice = sched_slice(cfs_rq, se);
833 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
834 s64 delta = slice - ran;
835
836 if (delta < 0) {
837 if (rq->curr == p)
838 resched_task(p);
839 return;
840 }
841
842 /*
843 * Don't schedule slices shorter than 10000ns, that just
844 * doesn't make sense. Rely on vruntime for fairness.
845 */
846 if (!requeue)
847 delta = max(10000LL, delta);
848
849 hrtick_start(rq, delta, requeue);
850 }
851 }
852 #else
853 static inline void
854 hrtick_start_fair(struct rq *rq, struct task_struct *p)
855 {
856 }
857 #endif
858
859 /*
860 * The enqueue_task method is called before nr_running is
861 * increased. Here we update the fair scheduling stats and
862 * then put the task into the rbtree:
863 */
864 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
865 {
866 struct cfs_rq *cfs_rq;
867 struct sched_entity *se = &p->se;
868
869 for_each_sched_entity(se) {
870 if (se->on_rq)
871 break;
872 cfs_rq = cfs_rq_of(se);
873 enqueue_entity(cfs_rq, se, wakeup);
874 wakeup = 1;
875 }
876
877 hrtick_start_fair(rq, rq->curr);
878 }
879
880 /*
881 * The dequeue_task method is called before nr_running is
882 * decreased. We remove the task from the rbtree and
883 * update the fair scheduling stats:
884 */
885 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
886 {
887 struct cfs_rq *cfs_rq;
888 struct sched_entity *se = &p->se;
889
890 for_each_sched_entity(se) {
891 cfs_rq = cfs_rq_of(se);
892 dequeue_entity(cfs_rq, se, sleep);
893 /* Don't dequeue parent if it has other entities besides us */
894 if (cfs_rq->load.weight)
895 break;
896 sleep = 1;
897 }
898
899 hrtick_start_fair(rq, rq->curr);
900 }
901
902 /*
903 * sched_yield() support is very simple - we dequeue and enqueue.
904 *
905 * If compat_yield is turned on then we requeue to the end of the tree.
906 */
907 static void yield_task_fair(struct rq *rq)
908 {
909 struct task_struct *curr = rq->curr;
910 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
911 struct sched_entity *rightmost, *se = &curr->se;
912
913 /*
914 * Are we the only task in the tree?
915 */
916 if (unlikely(cfs_rq->nr_running == 1))
917 return;
918
919 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
920 __update_rq_clock(rq);
921 /*
922 * Update run-time statistics of the 'current'.
923 */
924 update_curr(cfs_rq);
925
926 return;
927 }
928 /*
929 * Find the rightmost entry in the rbtree:
930 */
931 rightmost = __pick_last_entity(cfs_rq);
932 /*
933 * Already in the rightmost position?
934 */
935 if (unlikely(rightmost->vruntime < se->vruntime))
936 return;
937
938 /*
939 * Minimally necessary key value to be last in the tree:
940 * Upon rescheduling, sched_class::put_prev_task() will place
941 * 'current' within the tree based on its new key value.
942 */
943 se->vruntime = rightmost->vruntime + 1;
944 }
945
946 /*
947 * wake_idle() will wake a task on an idle cpu if task->cpu is
948 * not idle and an idle cpu is available. The span of cpus to
949 * search starts with cpus closest then further out as needed,
950 * so we always favor a closer, idle cpu.
951 *
952 * Returns the CPU we should wake onto.
953 */
954 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
955 static int wake_idle(int cpu, struct task_struct *p)
956 {
957 cpumask_t tmp;
958 struct sched_domain *sd;
959 int i;
960
961 /*
962 * If it is idle, then it is the best cpu to run this task.
963 *
964 * This cpu is also the best, if it has more than one task already.
965 * Siblings must be also busy(in most cases) as they didn't already
966 * pickup the extra load from this cpu and hence we need not check
967 * sibling runqueue info. This will avoid the checks and cache miss
968 * penalities associated with that.
969 */
970 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
971 return cpu;
972
973 for_each_domain(cpu, sd) {
974 if (sd->flags & SD_WAKE_IDLE) {
975 cpus_and(tmp, sd->span, p->cpus_allowed);
976 for_each_cpu_mask(i, tmp) {
977 if (idle_cpu(i)) {
978 if (i != task_cpu(p)) {
979 schedstat_inc(p,
980 se.nr_wakeups_idle);
981 }
982 return i;
983 }
984 }
985 } else {
986 break;
987 }
988 }
989 return cpu;
990 }
991 #else
992 static inline int wake_idle(int cpu, struct task_struct *p)
993 {
994 return cpu;
995 }
996 #endif
997
998 #ifdef CONFIG_SMP
999
1000 static const struct sched_class fair_sched_class;
1001
1002 static int
1003 wake_affine(struct rq *rq, struct sched_domain *this_sd, struct rq *this_rq,
1004 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1005 int idx, unsigned long load, unsigned long this_load,
1006 unsigned int imbalance)
1007 {
1008 struct task_struct *curr = this_rq->curr;
1009 unsigned long tl = this_load;
1010 unsigned long tl_per_task;
1011
1012 if (!(this_sd->flags & SD_WAKE_AFFINE))
1013 return 0;
1014
1015 /*
1016 * If the currently running task will sleep within
1017 * a reasonable amount of time then attract this newly
1018 * woken task:
1019 */
1020 if (sync && curr->sched_class == &fair_sched_class) {
1021 if (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1022 p->se.avg_overlap < sysctl_sched_migration_cost)
1023 return 1;
1024 }
1025
1026 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1027 tl_per_task = cpu_avg_load_per_task(this_cpu);
1028
1029 /*
1030 * If sync wakeup then subtract the (maximum possible)
1031 * effect of the currently running task from the load
1032 * of the current CPU:
1033 */
1034 if (sync)
1035 tl -= current->se.load.weight;
1036
1037 if ((tl <= load && tl + target_load(prev_cpu, idx) <= tl_per_task) ||
1038 100*(tl + p->se.load.weight) <= imbalance*load) {
1039 /*
1040 * This domain has SD_WAKE_AFFINE and
1041 * p is cache cold in this domain, and
1042 * there is no bad imbalance.
1043 */
1044 schedstat_inc(this_sd, ttwu_move_affine);
1045 schedstat_inc(p, se.nr_wakeups_affine);
1046
1047 return 1;
1048 }
1049 return 0;
1050 }
1051
1052 static int select_task_rq_fair(struct task_struct *p, int sync)
1053 {
1054 struct sched_domain *sd, *this_sd = NULL;
1055 int prev_cpu, this_cpu, new_cpu;
1056 unsigned long load, this_load;
1057 struct rq *rq, *this_rq;
1058 unsigned int imbalance;
1059 int idx;
1060
1061 prev_cpu = task_cpu(p);
1062 rq = task_rq(p);
1063 this_cpu = smp_processor_id();
1064 this_rq = cpu_rq(this_cpu);
1065 new_cpu = prev_cpu;
1066
1067 /*
1068 * 'this_sd' is the first domain that both
1069 * this_cpu and prev_cpu are present in:
1070 */
1071 for_each_domain(this_cpu, sd) {
1072 if (cpu_isset(prev_cpu, sd->span)) {
1073 this_sd = sd;
1074 break;
1075 }
1076 }
1077
1078 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1079 goto out;
1080
1081 /*
1082 * Check for affine wakeup and passive balancing possibilities.
1083 */
1084 if (!this_sd)
1085 goto out;
1086
1087 idx = this_sd->wake_idx;
1088
1089 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1090
1091 load = source_load(prev_cpu, idx);
1092 this_load = target_load(this_cpu, idx);
1093
1094 if (wake_affine(rq, this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1095 load, this_load, imbalance))
1096 return this_cpu;
1097
1098 if (prev_cpu == this_cpu)
1099 goto out;
1100
1101 /*
1102 * Start passive balancing when half the imbalance_pct
1103 * limit is reached.
1104 */
1105 if (this_sd->flags & SD_WAKE_BALANCE) {
1106 if (imbalance*this_load <= 100*load) {
1107 schedstat_inc(this_sd, ttwu_move_balance);
1108 schedstat_inc(p, se.nr_wakeups_passive);
1109 return this_cpu;
1110 }
1111 }
1112
1113 out:
1114 return wake_idle(new_cpu, p);
1115 }
1116 #endif /* CONFIG_SMP */
1117
1118
1119 /*
1120 * Preempt the current task with a newly woken task if needed:
1121 */
1122 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
1123 {
1124 struct task_struct *curr = rq->curr;
1125 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1126 struct sched_entity *se = &curr->se, *pse = &p->se;
1127 unsigned long gran;
1128
1129 if (unlikely(rt_prio(p->prio))) {
1130 update_rq_clock(rq);
1131 update_curr(cfs_rq);
1132 resched_task(curr);
1133 return;
1134 }
1135
1136 se->last_wakeup = se->sum_exec_runtime;
1137 if (unlikely(se == pse))
1138 return;
1139
1140 cfs_rq_of(pse)->next = pse;
1141
1142 /*
1143 * Batch tasks do not preempt (their preemption is driven by
1144 * the tick):
1145 */
1146 if (unlikely(p->policy == SCHED_BATCH))
1147 return;
1148
1149 if (!sched_feat(WAKEUP_PREEMPT))
1150 return;
1151
1152 while (!is_same_group(se, pse)) {
1153 se = parent_entity(se);
1154 pse = parent_entity(pse);
1155 }
1156
1157 gran = sysctl_sched_wakeup_granularity;
1158 /*
1159 * More easily preempt - nice tasks, while not making
1160 * it harder for + nice tasks.
1161 */
1162 if (unlikely(se->load.weight > NICE_0_LOAD))
1163 gran = calc_delta_fair(gran, &se->load);
1164
1165 if (pse->vruntime + gran < se->vruntime)
1166 resched_task(curr);
1167 }
1168
1169 static struct task_struct *pick_next_task_fair(struct rq *rq)
1170 {
1171 struct task_struct *p;
1172 struct cfs_rq *cfs_rq = &rq->cfs;
1173 struct sched_entity *se;
1174
1175 if (unlikely(!cfs_rq->nr_running))
1176 return NULL;
1177
1178 do {
1179 se = pick_next_entity(cfs_rq);
1180 cfs_rq = group_cfs_rq(se);
1181 } while (cfs_rq);
1182
1183 p = task_of(se);
1184 hrtick_start_fair(rq, p);
1185
1186 return p;
1187 }
1188
1189 /*
1190 * Account for a descheduled task:
1191 */
1192 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1193 {
1194 struct sched_entity *se = &prev->se;
1195 struct cfs_rq *cfs_rq;
1196
1197 for_each_sched_entity(se) {
1198 cfs_rq = cfs_rq_of(se);
1199 put_prev_entity(cfs_rq, se);
1200 }
1201 }
1202
1203 #ifdef CONFIG_SMP
1204 /**************************************************
1205 * Fair scheduling class load-balancing methods:
1206 */
1207
1208 /*
1209 * Load-balancing iterator. Note: while the runqueue stays locked
1210 * during the whole iteration, the current task might be
1211 * dequeued so the iterator has to be dequeue-safe. Here we
1212 * achieve that by always pre-iterating before returning
1213 * the current task:
1214 */
1215 static struct task_struct *
1216 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
1217 {
1218 struct task_struct *p;
1219
1220 if (!curr)
1221 return NULL;
1222
1223 p = rb_entry(curr, struct task_struct, se.run_node);
1224 cfs_rq->rb_load_balance_curr = rb_next(curr);
1225
1226 return p;
1227 }
1228
1229 static struct task_struct *load_balance_start_fair(void *arg)
1230 {
1231 struct cfs_rq *cfs_rq = arg;
1232
1233 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
1234 }
1235
1236 static struct task_struct *load_balance_next_fair(void *arg)
1237 {
1238 struct cfs_rq *cfs_rq = arg;
1239
1240 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
1241 }
1242
1243 #ifdef CONFIG_FAIR_GROUP_SCHED
1244 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
1245 {
1246 struct sched_entity *curr;
1247 struct task_struct *p;
1248
1249 if (!cfs_rq->nr_running || !first_fair(cfs_rq))
1250 return MAX_PRIO;
1251
1252 curr = cfs_rq->curr;
1253 if (!curr)
1254 curr = __pick_next_entity(cfs_rq);
1255
1256 p = task_of(curr);
1257
1258 return p->prio;
1259 }
1260 #endif
1261
1262 static unsigned long
1263 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1264 unsigned long max_load_move,
1265 struct sched_domain *sd, enum cpu_idle_type idle,
1266 int *all_pinned, int *this_best_prio)
1267 {
1268 struct cfs_rq *busy_cfs_rq;
1269 long rem_load_move = max_load_move;
1270 struct rq_iterator cfs_rq_iterator;
1271
1272 cfs_rq_iterator.start = load_balance_start_fair;
1273 cfs_rq_iterator.next = load_balance_next_fair;
1274
1275 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1276 #ifdef CONFIG_FAIR_GROUP_SCHED
1277 struct cfs_rq *this_cfs_rq;
1278 long imbalance;
1279 unsigned long maxload;
1280
1281 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
1282
1283 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
1284 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
1285 if (imbalance <= 0)
1286 continue;
1287
1288 /* Don't pull more than imbalance/2 */
1289 imbalance /= 2;
1290 maxload = min(rem_load_move, imbalance);
1291
1292 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
1293 #else
1294 # define maxload rem_load_move
1295 #endif
1296 /*
1297 * pass busy_cfs_rq argument into
1298 * load_balance_[start|next]_fair iterators
1299 */
1300 cfs_rq_iterator.arg = busy_cfs_rq;
1301 rem_load_move -= balance_tasks(this_rq, this_cpu, busiest,
1302 maxload, sd, idle, all_pinned,
1303 this_best_prio,
1304 &cfs_rq_iterator);
1305
1306 if (rem_load_move <= 0)
1307 break;
1308 }
1309
1310 return max_load_move - rem_load_move;
1311 }
1312
1313 static int
1314 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1315 struct sched_domain *sd, enum cpu_idle_type idle)
1316 {
1317 struct cfs_rq *busy_cfs_rq;
1318 struct rq_iterator cfs_rq_iterator;
1319
1320 cfs_rq_iterator.start = load_balance_start_fair;
1321 cfs_rq_iterator.next = load_balance_next_fair;
1322
1323 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1324 /*
1325 * pass busy_cfs_rq argument into
1326 * load_balance_[start|next]_fair iterators
1327 */
1328 cfs_rq_iterator.arg = busy_cfs_rq;
1329 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1330 &cfs_rq_iterator))
1331 return 1;
1332 }
1333
1334 return 0;
1335 }
1336 #endif
1337
1338 /*
1339 * scheduler tick hitting a task of our scheduling class:
1340 */
1341 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1342 {
1343 struct cfs_rq *cfs_rq;
1344 struct sched_entity *se = &curr->se;
1345
1346 for_each_sched_entity(se) {
1347 cfs_rq = cfs_rq_of(se);
1348 entity_tick(cfs_rq, se, queued);
1349 }
1350 }
1351
1352 #define swap(a, b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
1353
1354 /*
1355 * Share the fairness runtime between parent and child, thus the
1356 * total amount of pressure for CPU stays equal - new tasks
1357 * get a chance to run but frequent forkers are not allowed to
1358 * monopolize the CPU. Note: the parent runqueue is locked,
1359 * the child is not running yet.
1360 */
1361 static void task_new_fair(struct rq *rq, struct task_struct *p)
1362 {
1363 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1364 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1365 int this_cpu = smp_processor_id();
1366
1367 sched_info_queued(p);
1368
1369 update_curr(cfs_rq);
1370 place_entity(cfs_rq, se, 1);
1371
1372 /* 'curr' will be NULL if the child belongs to a different group */
1373 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1374 curr && curr->vruntime < se->vruntime) {
1375 /*
1376 * Upon rescheduling, sched_class::put_prev_task() will place
1377 * 'current' within the tree based on its new key value.
1378 */
1379 swap(curr->vruntime, se->vruntime);
1380 }
1381
1382 enqueue_task_fair(rq, p, 0);
1383 resched_task(rq->curr);
1384 }
1385
1386 /*
1387 * Priority of the task has changed. Check to see if we preempt
1388 * the current task.
1389 */
1390 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1391 int oldprio, int running)
1392 {
1393 /*
1394 * Reschedule if we are currently running on this runqueue and
1395 * our priority decreased, or if we are not currently running on
1396 * this runqueue and our priority is higher than the current's
1397 */
1398 if (running) {
1399 if (p->prio > oldprio)
1400 resched_task(rq->curr);
1401 } else
1402 check_preempt_curr(rq, p);
1403 }
1404
1405 /*
1406 * We switched to the sched_fair class.
1407 */
1408 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1409 int running)
1410 {
1411 /*
1412 * We were most likely switched from sched_rt, so
1413 * kick off the schedule if running, otherwise just see
1414 * if we can still preempt the current task.
1415 */
1416 if (running)
1417 resched_task(rq->curr);
1418 else
1419 check_preempt_curr(rq, p);
1420 }
1421
1422 /* Account for a task changing its policy or group.
1423 *
1424 * This routine is mostly called to set cfs_rq->curr field when a task
1425 * migrates between groups/classes.
1426 */
1427 static void set_curr_task_fair(struct rq *rq)
1428 {
1429 struct sched_entity *se = &rq->curr->se;
1430
1431 for_each_sched_entity(se)
1432 set_next_entity(cfs_rq_of(se), se);
1433 }
1434
1435 #ifdef CONFIG_FAIR_GROUP_SCHED
1436 static void moved_group_fair(struct task_struct *p)
1437 {
1438 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1439
1440 update_curr(cfs_rq);
1441 place_entity(cfs_rq, &p->se, 1);
1442 }
1443 #endif
1444
1445 /*
1446 * All the scheduling class methods:
1447 */
1448 static const struct sched_class fair_sched_class = {
1449 .next = &idle_sched_class,
1450 .enqueue_task = enqueue_task_fair,
1451 .dequeue_task = dequeue_task_fair,
1452 .yield_task = yield_task_fair,
1453 #ifdef CONFIG_SMP
1454 .select_task_rq = select_task_rq_fair,
1455 #endif /* CONFIG_SMP */
1456
1457 .check_preempt_curr = check_preempt_wakeup,
1458
1459 .pick_next_task = pick_next_task_fair,
1460 .put_prev_task = put_prev_task_fair,
1461
1462 #ifdef CONFIG_SMP
1463 .load_balance = load_balance_fair,
1464 .move_one_task = move_one_task_fair,
1465 #endif
1466
1467 .set_curr_task = set_curr_task_fair,
1468 .task_tick = task_tick_fair,
1469 .task_new = task_new_fair,
1470
1471 .prio_changed = prio_changed_fair,
1472 .switched_to = switched_to_fair,
1473
1474 #ifdef CONFIG_FAIR_GROUP_SCHED
1475 .moved_group = moved_group_fair,
1476 #endif
1477 };
1478
1479 #ifdef CONFIG_SCHED_DEBUG
1480 static void print_cfs_stats(struct seq_file *m, int cpu)
1481 {
1482 struct cfs_rq *cfs_rq;
1483
1484 #ifdef CONFIG_FAIR_GROUP_SCHED
1485 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1486 #endif
1487 rcu_read_lock();
1488 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1489 print_cfs_rq(m, cpu, cfs_rq);
1490 rcu_read_unlock();
1491 }
1492 #endif