]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched_fair.c
sched: clean up code under CONFIG_FAIR_GROUP_SCHED
[mirror_ubuntu-jammy-kernel.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 /*
24 * Targeted preemption latency for CPU-bound tasks:
25 * (default: 20ms, units: nanoseconds)
26 *
27 * NOTE: this latency value is not the same as the concept of
28 * 'timeslice length' - timeslices in CFS are of variable length.
29 * (to see the precise effective timeslice length of your workload,
30 * run vmstat and monitor the context-switches field)
31 *
32 * On SMP systems the value of this is multiplied by the log2 of the
33 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
34 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
35 * Targeted preemption latency for CPU-bound tasks:
36 */
37 const_debug unsigned int sysctl_sched_latency = 20000000ULL;
38
39 /*
40 * After fork, child runs first. (default) If set to 0 then
41 * parent will (try to) run first.
42 */
43 const_debug unsigned int sysctl_sched_child_runs_first = 1;
44
45 /*
46 * Minimal preemption granularity for CPU-bound tasks:
47 * (default: 2 msec, units: nanoseconds)
48 */
49 unsigned int sysctl_sched_min_granularity __read_mostly = 2000000ULL;
50
51 /*
52 * sys_sched_yield() compat mode
53 *
54 * This option switches the agressive yield implementation of the
55 * old scheduler back on.
56 */
57 unsigned int __read_mostly sysctl_sched_compat_yield;
58
59 /*
60 * SCHED_BATCH wake-up granularity.
61 * (default: 25 msec, units: nanoseconds)
62 *
63 * This option delays the preemption effects of decoupled workloads
64 * and reduces their over-scheduling. Synchronous workloads will still
65 * have immediate wakeup/sleep latencies.
66 */
67 const_debug unsigned int sysctl_sched_batch_wakeup_granularity = 25000000UL;
68
69 /*
70 * SCHED_OTHER wake-up granularity.
71 * (default: 1 msec, units: nanoseconds)
72 *
73 * This option delays the preemption effects of decoupled workloads
74 * and reduces their over-scheduling. Synchronous workloads will still
75 * have immediate wakeup/sleep latencies.
76 */
77 const_debug unsigned int sysctl_sched_wakeup_granularity = 2000000UL;
78
79 unsigned int sysctl_sched_runtime_limit __read_mostly;
80
81 extern struct sched_class fair_sched_class;
82
83 /**************************************************************
84 * CFS operations on generic schedulable entities:
85 */
86
87 #ifdef CONFIG_FAIR_GROUP_SCHED
88
89 /* cpu runqueue to which this cfs_rq is attached */
90 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
91 {
92 return cfs_rq->rq;
93 }
94
95 /* An entity is a task if it doesn't "own" a runqueue */
96 #define entity_is_task(se) (!se->my_q)
97
98 #else /* CONFIG_FAIR_GROUP_SCHED */
99
100 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
101 {
102 return container_of(cfs_rq, struct rq, cfs);
103 }
104
105 #define entity_is_task(se) 1
106
107 #endif /* CONFIG_FAIR_GROUP_SCHED */
108
109 static inline struct task_struct *task_of(struct sched_entity *se)
110 {
111 return container_of(se, struct task_struct, se);
112 }
113
114
115 /**************************************************************
116 * Scheduling class tree data structure manipulation methods:
117 */
118
119 static inline u64
120 max_vruntime(u64 min_vruntime, u64 vruntime)
121 {
122 if ((vruntime > min_vruntime) ||
123 (min_vruntime > (1ULL << 61) && vruntime < (1ULL << 50)))
124 min_vruntime = vruntime;
125
126 return min_vruntime;
127 }
128
129 static inline void
130 set_leftmost(struct cfs_rq *cfs_rq, struct rb_node *leftmost)
131 {
132 struct sched_entity *se;
133
134 cfs_rq->rb_leftmost = leftmost;
135 if (leftmost)
136 se = rb_entry(leftmost, struct sched_entity, run_node);
137 }
138
139 static inline s64
140 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
141 {
142 return se->vruntime - cfs_rq->min_vruntime;
143 }
144
145 /*
146 * Enqueue an entity into the rb-tree:
147 */
148 static void
149 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
150 {
151 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
152 struct rb_node *parent = NULL;
153 struct sched_entity *entry;
154 s64 key = entity_key(cfs_rq, se);
155 int leftmost = 1;
156
157 /*
158 * Find the right place in the rbtree:
159 */
160 while (*link) {
161 parent = *link;
162 entry = rb_entry(parent, struct sched_entity, run_node);
163 /*
164 * We dont care about collisions. Nodes with
165 * the same key stay together.
166 */
167 if (key < entity_key(cfs_rq, entry)) {
168 link = &parent->rb_left;
169 } else {
170 link = &parent->rb_right;
171 leftmost = 0;
172 }
173 }
174
175 /*
176 * Maintain a cache of leftmost tree entries (it is frequently
177 * used):
178 */
179 if (leftmost)
180 set_leftmost(cfs_rq, &se->run_node);
181
182 rb_link_node(&se->run_node, parent, link);
183 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
184 }
185
186 static void
187 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
188 {
189 if (cfs_rq->rb_leftmost == &se->run_node)
190 set_leftmost(cfs_rq, rb_next(&se->run_node));
191
192 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
193 }
194
195 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
196 {
197 return cfs_rq->rb_leftmost;
198 }
199
200 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
201 {
202 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
203 }
204
205 static inline struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
206 {
207 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
208 struct sched_entity *se = NULL;
209 struct rb_node *parent;
210
211 while (*link) {
212 parent = *link;
213 se = rb_entry(parent, struct sched_entity, run_node);
214 link = &parent->rb_right;
215 }
216
217 return se;
218 }
219
220 /**************************************************************
221 * Scheduling class statistics methods:
222 */
223
224 static u64 __sched_period(unsigned long nr_running)
225 {
226 u64 period = sysctl_sched_latency;
227 unsigned long nr_latency =
228 sysctl_sched_latency / sysctl_sched_min_granularity;
229
230 if (unlikely(nr_running > nr_latency)) {
231 period *= nr_running;
232 do_div(period, nr_latency);
233 }
234
235 return period;
236 }
237
238 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
239 {
240 u64 period = __sched_period(cfs_rq->nr_running);
241
242 period *= se->load.weight;
243 do_div(period, cfs_rq->load.weight);
244
245 return period;
246 }
247
248 /*
249 * Update the current task's runtime statistics. Skip current tasks that
250 * are not in our scheduling class.
251 */
252 static inline void
253 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
254 unsigned long delta_exec)
255 {
256 unsigned long delta_exec_weighted;
257 u64 next_vruntime, min_vruntime;
258
259 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
260
261 curr->sum_exec_runtime += delta_exec;
262 schedstat_add(cfs_rq, exec_clock, delta_exec);
263 delta_exec_weighted = delta_exec;
264 if (unlikely(curr->load.weight != NICE_0_LOAD)) {
265 delta_exec_weighted = calc_delta_fair(delta_exec_weighted,
266 &curr->load);
267 }
268 curr->vruntime += delta_exec_weighted;
269
270 /*
271 * maintain cfs_rq->min_vruntime to be a monotonic increasing
272 * value tracking the leftmost vruntime in the tree.
273 */
274 if (first_fair(cfs_rq)) {
275 next_vruntime = __pick_next_entity(cfs_rq)->vruntime;
276
277 /* min_vruntime() := !max_vruntime() */
278 min_vruntime = max_vruntime(curr->vruntime, next_vruntime);
279 if (min_vruntime == next_vruntime)
280 min_vruntime = curr->vruntime;
281 else
282 min_vruntime = next_vruntime;
283 } else
284 min_vruntime = curr->vruntime;
285
286 cfs_rq->min_vruntime =
287 max_vruntime(cfs_rq->min_vruntime, min_vruntime);
288 }
289
290 static void update_curr(struct cfs_rq *cfs_rq)
291 {
292 struct sched_entity *curr = cfs_rq->curr;
293 u64 now = rq_of(cfs_rq)->clock;
294 unsigned long delta_exec;
295
296 if (unlikely(!curr))
297 return;
298
299 /*
300 * Get the amount of time the current task was running
301 * since the last time we changed load (this cannot
302 * overflow on 32 bits):
303 */
304 delta_exec = (unsigned long)(now - curr->exec_start);
305
306 __update_curr(cfs_rq, curr, delta_exec);
307 curr->exec_start = now;
308 }
309
310 static inline void
311 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
312 {
313 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
314 }
315
316 static inline unsigned long
317 calc_weighted(unsigned long delta, struct sched_entity *se)
318 {
319 unsigned long weight = se->load.weight;
320
321 if (unlikely(weight != NICE_0_LOAD))
322 return (u64)delta * se->load.weight >> NICE_0_SHIFT;
323 else
324 return delta;
325 }
326
327 /*
328 * Task is being enqueued - update stats:
329 */
330 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
331 {
332 /*
333 * Are we enqueueing a waiting task? (for current tasks
334 * a dequeue/enqueue event is a NOP)
335 */
336 if (se != cfs_rq->curr)
337 update_stats_wait_start(cfs_rq, se);
338 }
339
340 static void
341 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
342 {
343 schedstat_set(se->wait_max, max(se->wait_max,
344 rq_of(cfs_rq)->clock - se->wait_start));
345 schedstat_set(se->wait_start, 0);
346 }
347
348 static inline void
349 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
350 {
351 update_curr(cfs_rq);
352 /*
353 * Mark the end of the wait period if dequeueing a
354 * waiting task:
355 */
356 if (se != cfs_rq->curr)
357 update_stats_wait_end(cfs_rq, se);
358 }
359
360 /*
361 * We are picking a new current task - update its stats:
362 */
363 static inline void
364 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
365 {
366 /*
367 * We are starting a new run period:
368 */
369 se->exec_start = rq_of(cfs_rq)->clock;
370 }
371
372 /*
373 * We are descheduling a task - update its stats:
374 */
375 static inline void
376 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
377 {
378 se->exec_start = 0;
379 }
380
381 /**************************************************
382 * Scheduling class queueing methods:
383 */
384
385 static void
386 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
387 {
388 update_load_add(&cfs_rq->load, se->load.weight);
389 cfs_rq->nr_running++;
390 se->on_rq = 1;
391 }
392
393 static void
394 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
395 {
396 update_load_sub(&cfs_rq->load, se->load.weight);
397 cfs_rq->nr_running--;
398 se->on_rq = 0;
399 }
400
401 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
402 {
403 #ifdef CONFIG_SCHEDSTATS
404 if (se->sleep_start) {
405 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
406
407 if ((s64)delta < 0)
408 delta = 0;
409
410 if (unlikely(delta > se->sleep_max))
411 se->sleep_max = delta;
412
413 se->sleep_start = 0;
414 se->sum_sleep_runtime += delta;
415 }
416 if (se->block_start) {
417 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
418
419 if ((s64)delta < 0)
420 delta = 0;
421
422 if (unlikely(delta > se->block_max))
423 se->block_max = delta;
424
425 se->block_start = 0;
426 se->sum_sleep_runtime += delta;
427
428 /*
429 * Blocking time is in units of nanosecs, so shift by 20 to
430 * get a milliseconds-range estimation of the amount of
431 * time that the task spent sleeping:
432 */
433 if (unlikely(prof_on == SLEEP_PROFILING)) {
434 struct task_struct *tsk = task_of(se);
435
436 profile_hits(SLEEP_PROFILING, (void *)get_wchan(tsk),
437 delta >> 20);
438 }
439 }
440 #endif
441 }
442
443 static void
444 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
445 {
446 u64 min_runtime, latency;
447
448 min_runtime = cfs_rq->min_vruntime;
449
450 if (sched_feat(USE_TREE_AVG)) {
451 struct sched_entity *last = __pick_last_entity(cfs_rq);
452 if (last) {
453 min_runtime = __pick_next_entity(cfs_rq)->vruntime;
454 min_runtime += last->vruntime;
455 min_runtime >>= 1;
456 }
457 } else if (sched_feat(APPROX_AVG))
458 min_runtime += sysctl_sched_latency/2;
459
460 if (initial && sched_feat(START_DEBIT))
461 min_runtime += sched_slice(cfs_rq, se);
462
463 if (!initial && sched_feat(NEW_FAIR_SLEEPERS)) {
464 latency = sysctl_sched_latency;
465 if (min_runtime > latency)
466 min_runtime -= latency;
467 else
468 min_runtime = 0;
469 }
470
471 se->vruntime = max(se->vruntime, min_runtime);
472 }
473
474 static void
475 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
476 {
477 /*
478 * Update the fair clock.
479 */
480 update_curr(cfs_rq);
481
482 if (wakeup) {
483 place_entity(cfs_rq, se, 0);
484 enqueue_sleeper(cfs_rq, se);
485 }
486
487 update_stats_enqueue(cfs_rq, se);
488 if (se != cfs_rq->curr)
489 __enqueue_entity(cfs_rq, se);
490 account_entity_enqueue(cfs_rq, se);
491 }
492
493 static void
494 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
495 {
496 update_stats_dequeue(cfs_rq, se);
497 #ifdef CONFIG_SCHEDSTATS
498 if (sleep) {
499 if (entity_is_task(se)) {
500 struct task_struct *tsk = task_of(se);
501
502 if (tsk->state & TASK_INTERRUPTIBLE)
503 se->sleep_start = rq_of(cfs_rq)->clock;
504 if (tsk->state & TASK_UNINTERRUPTIBLE)
505 se->block_start = rq_of(cfs_rq)->clock;
506 }
507 }
508 #endif
509 if (se != cfs_rq->curr)
510 __dequeue_entity(cfs_rq, se);
511 account_entity_dequeue(cfs_rq, se);
512 }
513
514 /*
515 * Preempt the current task with a newly woken task if needed:
516 */
517 static void
518 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
519 {
520 unsigned long ideal_runtime, delta_exec;
521
522 ideal_runtime = sched_slice(cfs_rq, curr);
523 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
524 if (delta_exec > ideal_runtime)
525 resched_task(rq_of(cfs_rq)->curr);
526 }
527
528 static void
529 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
530 {
531 /* 'current' is not kept within the tree. */
532 if (se->on_rq) {
533 /*
534 * Any task has to be enqueued before it get to execute on
535 * a CPU. So account for the time it spent waiting on the
536 * runqueue.
537 */
538 update_stats_wait_end(cfs_rq, se);
539 __dequeue_entity(cfs_rq, se);
540 }
541
542 update_stats_curr_start(cfs_rq, se);
543 cfs_rq->curr = se;
544 #ifdef CONFIG_SCHEDSTATS
545 /*
546 * Track our maximum slice length, if the CPU's load is at
547 * least twice that of our own weight (i.e. dont track it
548 * when there are only lesser-weight tasks around):
549 */
550 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
551 se->slice_max = max(se->slice_max,
552 se->sum_exec_runtime - se->prev_sum_exec_runtime);
553 }
554 #endif
555 se->prev_sum_exec_runtime = se->sum_exec_runtime;
556 }
557
558 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
559 {
560 struct sched_entity *se = __pick_next_entity(cfs_rq);
561
562 set_next_entity(cfs_rq, se);
563
564 return se;
565 }
566
567 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
568 {
569 /*
570 * If still on the runqueue then deactivate_task()
571 * was not called and update_curr() has to be done:
572 */
573 if (prev->on_rq)
574 update_curr(cfs_rq);
575
576 update_stats_curr_end(cfs_rq, prev);
577
578 if (prev->on_rq) {
579 update_stats_wait_start(cfs_rq, prev);
580 /* Put 'current' back into the tree. */
581 __enqueue_entity(cfs_rq, prev);
582 }
583 cfs_rq->curr = NULL;
584 }
585
586 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
587 {
588 /*
589 * Update run-time statistics of the 'current'.
590 */
591 update_curr(cfs_rq);
592
593 if (cfs_rq->nr_running > 1)
594 check_preempt_tick(cfs_rq, curr);
595 }
596
597 /**************************************************
598 * CFS operations on tasks:
599 */
600
601 #ifdef CONFIG_FAIR_GROUP_SCHED
602
603 /* Walk up scheduling entities hierarchy */
604 #define for_each_sched_entity(se) \
605 for (; se; se = se->parent)
606
607 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
608 {
609 return p->se.cfs_rq;
610 }
611
612 /* runqueue on which this entity is (to be) queued */
613 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
614 {
615 return se->cfs_rq;
616 }
617
618 /* runqueue "owned" by this group */
619 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
620 {
621 return grp->my_q;
622 }
623
624 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
625 * another cpu ('this_cpu')
626 */
627 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
628 {
629 return cfs_rq->tg->cfs_rq[this_cpu];
630 }
631
632 /* Iterate thr' all leaf cfs_rq's on a runqueue */
633 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
634 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
635
636 /* Do the two (enqueued) tasks belong to the same group ? */
637 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
638 {
639 if (curr->se.cfs_rq == p->se.cfs_rq)
640 return 1;
641
642 return 0;
643 }
644
645 #else /* CONFIG_FAIR_GROUP_SCHED */
646
647 #define for_each_sched_entity(se) \
648 for (; se; se = NULL)
649
650 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
651 {
652 return &task_rq(p)->cfs;
653 }
654
655 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
656 {
657 struct task_struct *p = task_of(se);
658 struct rq *rq = task_rq(p);
659
660 return &rq->cfs;
661 }
662
663 /* runqueue "owned" by this group */
664 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
665 {
666 return NULL;
667 }
668
669 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
670 {
671 return &cpu_rq(this_cpu)->cfs;
672 }
673
674 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
675 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
676
677 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
678 {
679 return 1;
680 }
681
682 #endif /* CONFIG_FAIR_GROUP_SCHED */
683
684 /*
685 * The enqueue_task method is called before nr_running is
686 * increased. Here we update the fair scheduling stats and
687 * then put the task into the rbtree:
688 */
689 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
690 {
691 struct cfs_rq *cfs_rq;
692 struct sched_entity *se = &p->se;
693
694 for_each_sched_entity(se) {
695 if (se->on_rq)
696 break;
697 cfs_rq = cfs_rq_of(se);
698 enqueue_entity(cfs_rq, se, wakeup);
699 }
700 }
701
702 /*
703 * The dequeue_task method is called before nr_running is
704 * decreased. We remove the task from the rbtree and
705 * update the fair scheduling stats:
706 */
707 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
708 {
709 struct cfs_rq *cfs_rq;
710 struct sched_entity *se = &p->se;
711
712 for_each_sched_entity(se) {
713 cfs_rq = cfs_rq_of(se);
714 dequeue_entity(cfs_rq, se, sleep);
715 /* Don't dequeue parent if it has other entities besides us */
716 if (cfs_rq->load.weight)
717 break;
718 }
719 }
720
721 /*
722 * sched_yield() support is very simple - we dequeue and enqueue.
723 *
724 * If compat_yield is turned on then we requeue to the end of the tree.
725 */
726 static void yield_task_fair(struct rq *rq)
727 {
728 struct cfs_rq *cfs_rq = task_cfs_rq(rq->curr);
729 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
730 struct sched_entity *rightmost, *se = &rq->curr->se;
731 struct rb_node *parent;
732
733 /*
734 * Are we the only task in the tree?
735 */
736 if (unlikely(cfs_rq->nr_running == 1))
737 return;
738
739 if (likely(!sysctl_sched_compat_yield)) {
740 __update_rq_clock(rq);
741 /*
742 * Dequeue and enqueue the task to update its
743 * position within the tree:
744 */
745 dequeue_entity(cfs_rq, se, 0);
746 enqueue_entity(cfs_rq, se, 0);
747
748 return;
749 }
750 /*
751 * Find the rightmost entry in the rbtree:
752 */
753 do {
754 parent = *link;
755 link = &parent->rb_right;
756 } while (*link);
757
758 rightmost = rb_entry(parent, struct sched_entity, run_node);
759 /*
760 * Already in the rightmost position?
761 */
762 if (unlikely(rightmost == se))
763 return;
764
765 /*
766 * Minimally necessary key value to be last in the tree:
767 */
768 se->vruntime = rightmost->vruntime + 1;
769
770 if (cfs_rq->rb_leftmost == &se->run_node)
771 cfs_rq->rb_leftmost = rb_next(&se->run_node);
772 /*
773 * Relink the task to the rightmost position:
774 */
775 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
776 rb_link_node(&se->run_node, parent, link);
777 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
778 }
779
780 /*
781 * Preempt the current task with a newly woken task if needed:
782 */
783 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p)
784 {
785 struct task_struct *curr = rq->curr;
786 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
787
788 if (unlikely(rt_prio(p->prio))) {
789 update_rq_clock(rq);
790 update_curr(cfs_rq);
791 resched_task(curr);
792 return;
793 }
794 if (is_same_group(curr, p)) {
795 s64 delta = curr->se.vruntime - p->se.vruntime;
796
797 if (delta > (s64)sysctl_sched_wakeup_granularity)
798 resched_task(curr);
799 }
800 }
801
802 static struct task_struct *pick_next_task_fair(struct rq *rq)
803 {
804 struct cfs_rq *cfs_rq = &rq->cfs;
805 struct sched_entity *se;
806
807 if (unlikely(!cfs_rq->nr_running))
808 return NULL;
809
810 do {
811 se = pick_next_entity(cfs_rq);
812 cfs_rq = group_cfs_rq(se);
813 } while (cfs_rq);
814
815 return task_of(se);
816 }
817
818 /*
819 * Account for a descheduled task:
820 */
821 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
822 {
823 struct sched_entity *se = &prev->se;
824 struct cfs_rq *cfs_rq;
825
826 for_each_sched_entity(se) {
827 cfs_rq = cfs_rq_of(se);
828 put_prev_entity(cfs_rq, se);
829 }
830 }
831
832 /**************************************************
833 * Fair scheduling class load-balancing methods:
834 */
835
836 /*
837 * Load-balancing iterator. Note: while the runqueue stays locked
838 * during the whole iteration, the current task might be
839 * dequeued so the iterator has to be dequeue-safe. Here we
840 * achieve that by always pre-iterating before returning
841 * the current task:
842 */
843 static inline struct task_struct *
844 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
845 {
846 struct task_struct *p;
847
848 if (!curr)
849 return NULL;
850
851 p = rb_entry(curr, struct task_struct, se.run_node);
852 cfs_rq->rb_load_balance_curr = rb_next(curr);
853
854 return p;
855 }
856
857 static struct task_struct *load_balance_start_fair(void *arg)
858 {
859 struct cfs_rq *cfs_rq = arg;
860
861 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
862 }
863
864 static struct task_struct *load_balance_next_fair(void *arg)
865 {
866 struct cfs_rq *cfs_rq = arg;
867
868 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
869 }
870
871 #ifdef CONFIG_FAIR_GROUP_SCHED
872 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
873 {
874 struct sched_entity *curr;
875 struct task_struct *p;
876
877 if (!cfs_rq->nr_running)
878 return MAX_PRIO;
879
880 curr = cfs_rq->curr;
881 if (!curr)
882 curr = __pick_next_entity(cfs_rq);
883
884 p = task_of(curr);
885
886 return p->prio;
887 }
888 #endif
889
890 static unsigned long
891 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
892 unsigned long max_nr_move, unsigned long max_load_move,
893 struct sched_domain *sd, enum cpu_idle_type idle,
894 int *all_pinned, int *this_best_prio)
895 {
896 struct cfs_rq *busy_cfs_rq;
897 unsigned long load_moved, total_nr_moved = 0, nr_moved;
898 long rem_load_move = max_load_move;
899 struct rq_iterator cfs_rq_iterator;
900
901 cfs_rq_iterator.start = load_balance_start_fair;
902 cfs_rq_iterator.next = load_balance_next_fair;
903
904 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
905 #ifdef CONFIG_FAIR_GROUP_SCHED
906 struct cfs_rq *this_cfs_rq;
907 long imbalance;
908 unsigned long maxload;
909
910 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
911
912 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
913 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
914 if (imbalance <= 0)
915 continue;
916
917 /* Don't pull more than imbalance/2 */
918 imbalance /= 2;
919 maxload = min(rem_load_move, imbalance);
920
921 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
922 #else
923 # define maxload rem_load_move
924 #endif
925 /* pass busy_cfs_rq argument into
926 * load_balance_[start|next]_fair iterators
927 */
928 cfs_rq_iterator.arg = busy_cfs_rq;
929 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
930 max_nr_move, maxload, sd, idle, all_pinned,
931 &load_moved, this_best_prio, &cfs_rq_iterator);
932
933 total_nr_moved += nr_moved;
934 max_nr_move -= nr_moved;
935 rem_load_move -= load_moved;
936
937 if (max_nr_move <= 0 || rem_load_move <= 0)
938 break;
939 }
940
941 return max_load_move - rem_load_move;
942 }
943
944 /*
945 * scheduler tick hitting a task of our scheduling class:
946 */
947 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
948 {
949 struct cfs_rq *cfs_rq;
950 struct sched_entity *se = &curr->se;
951
952 for_each_sched_entity(se) {
953 cfs_rq = cfs_rq_of(se);
954 entity_tick(cfs_rq, se);
955 }
956 }
957
958 #define swap(a,b) do { typeof(a) tmp = (a); (a) = (b); (b) = tmp; } while (0)
959
960 /*
961 * Share the fairness runtime between parent and child, thus the
962 * total amount of pressure for CPU stays equal - new tasks
963 * get a chance to run but frequent forkers are not allowed to
964 * monopolize the CPU. Note: the parent runqueue is locked,
965 * the child is not running yet.
966 */
967 static void task_new_fair(struct rq *rq, struct task_struct *p)
968 {
969 struct cfs_rq *cfs_rq = task_cfs_rq(p);
970 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
971
972 sched_info_queued(p);
973
974 update_curr(cfs_rq);
975 place_entity(cfs_rq, se, 1);
976
977 if (sysctl_sched_child_runs_first &&
978 curr->vruntime < se->vruntime) {
979 /*
980 * Upon rescheduling, sched_class::put_prev_task() will place
981 * 'current' within the tree based on its new key value.
982 */
983 swap(curr->vruntime, se->vruntime);
984 }
985
986 update_stats_enqueue(cfs_rq, se);
987 __enqueue_entity(cfs_rq, se);
988 account_entity_enqueue(cfs_rq, se);
989 resched_task(rq->curr);
990 }
991
992 /* Account for a task changing its policy or group.
993 *
994 * This routine is mostly called to set cfs_rq->curr field when a task
995 * migrates between groups/classes.
996 */
997 static void set_curr_task_fair(struct rq *rq)
998 {
999 struct sched_entity *se = &rq->curr->se;
1000
1001 for_each_sched_entity(se)
1002 set_next_entity(cfs_rq_of(se), se);
1003 }
1004
1005 /*
1006 * All the scheduling class methods:
1007 */
1008 struct sched_class fair_sched_class __read_mostly = {
1009 .enqueue_task = enqueue_task_fair,
1010 .dequeue_task = dequeue_task_fair,
1011 .yield_task = yield_task_fair,
1012
1013 .check_preempt_curr = check_preempt_wakeup,
1014
1015 .pick_next_task = pick_next_task_fair,
1016 .put_prev_task = put_prev_task_fair,
1017
1018 .load_balance = load_balance_fair,
1019
1020 .set_curr_task = set_curr_task_fair,
1021 .task_tick = task_tick_fair,
1022 .task_new = task_new_fair,
1023 };
1024
1025 #ifdef CONFIG_SCHED_DEBUG
1026 static void print_cfs_stats(struct seq_file *m, int cpu)
1027 {
1028 struct cfs_rq *cfs_rq;
1029
1030 #ifdef CONFIG_FAIR_GROUP_SCHED
1031 print_cfs_rq(m, cpu, &cpu_rq(cpu)->cfs);
1032 #endif
1033 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1034 print_cfs_rq(m, cpu, cfs_rq);
1035 }
1036 #endif