]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/sched_fair.c
sched: Cleanup select_task_rq_fair()
[mirror_ubuntu-jammy-kernel.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 5000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 1000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. If set to 0 (default) then
52 * parent will (try to) run first.
53 */
54 unsigned int sysctl_sched_child_runs_first __read_mostly;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 static const struct sched_class fair_sched_class;
77
78 /**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
82 #ifdef CONFIG_FAIR_GROUP_SCHED
83
84 /* cpu runqueue to which this cfs_rq is attached */
85 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
86 {
87 return cfs_rq->rq;
88 }
89
90 /* An entity is a task if it doesn't "own" a runqueue */
91 #define entity_is_task(se) (!se->my_q)
92
93 static inline struct task_struct *task_of(struct sched_entity *se)
94 {
95 #ifdef CONFIG_SCHED_DEBUG
96 WARN_ON_ONCE(!entity_is_task(se));
97 #endif
98 return container_of(se, struct task_struct, se);
99 }
100
101 /* Walk up scheduling entities hierarchy */
102 #define for_each_sched_entity(se) \
103 for (; se; se = se->parent)
104
105 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
106 {
107 return p->se.cfs_rq;
108 }
109
110 /* runqueue on which this entity is (to be) queued */
111 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
112 {
113 return se->cfs_rq;
114 }
115
116 /* runqueue "owned" by this group */
117 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
118 {
119 return grp->my_q;
120 }
121
122 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123 * another cpu ('this_cpu')
124 */
125 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
126 {
127 return cfs_rq->tg->cfs_rq[this_cpu];
128 }
129
130 /* Iterate thr' all leaf cfs_rq's on a runqueue */
131 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
132 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
133
134 /* Do the two (enqueued) entities belong to the same group ? */
135 static inline int
136 is_same_group(struct sched_entity *se, struct sched_entity *pse)
137 {
138 if (se->cfs_rq == pse->cfs_rq)
139 return 1;
140
141 return 0;
142 }
143
144 static inline struct sched_entity *parent_entity(struct sched_entity *se)
145 {
146 return se->parent;
147 }
148
149 /* return depth at which a sched entity is present in the hierarchy */
150 static inline int depth_se(struct sched_entity *se)
151 {
152 int depth = 0;
153
154 for_each_sched_entity(se)
155 depth++;
156
157 return depth;
158 }
159
160 static void
161 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
162 {
163 int se_depth, pse_depth;
164
165 /*
166 * preemption test can be made between sibling entities who are in the
167 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168 * both tasks until we find their ancestors who are siblings of common
169 * parent.
170 */
171
172 /* First walk up until both entities are at same depth */
173 se_depth = depth_se(*se);
174 pse_depth = depth_se(*pse);
175
176 while (se_depth > pse_depth) {
177 se_depth--;
178 *se = parent_entity(*se);
179 }
180
181 while (pse_depth > se_depth) {
182 pse_depth--;
183 *pse = parent_entity(*pse);
184 }
185
186 while (!is_same_group(*se, *pse)) {
187 *se = parent_entity(*se);
188 *pse = parent_entity(*pse);
189 }
190 }
191
192 #else /* !CONFIG_FAIR_GROUP_SCHED */
193
194 static inline struct task_struct *task_of(struct sched_entity *se)
195 {
196 return container_of(se, struct task_struct, se);
197 }
198
199 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
200 {
201 return container_of(cfs_rq, struct rq, cfs);
202 }
203
204 #define entity_is_task(se) 1
205
206 #define for_each_sched_entity(se) \
207 for (; se; se = NULL)
208
209 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
210 {
211 return &task_rq(p)->cfs;
212 }
213
214 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
215 {
216 struct task_struct *p = task_of(se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->cfs;
220 }
221
222 /* runqueue "owned" by this group */
223 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
224 {
225 return NULL;
226 }
227
228 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
229 {
230 return &cpu_rq(this_cpu)->cfs;
231 }
232
233 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
234 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
235
236 static inline int
237 is_same_group(struct sched_entity *se, struct sched_entity *pse)
238 {
239 return 1;
240 }
241
242 static inline struct sched_entity *parent_entity(struct sched_entity *se)
243 {
244 return NULL;
245 }
246
247 static inline void
248 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
249 {
250 }
251
252 #endif /* CONFIG_FAIR_GROUP_SCHED */
253
254
255 /**************************************************************
256 * Scheduling class tree data structure manipulation methods:
257 */
258
259 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
260 {
261 s64 delta = (s64)(vruntime - min_vruntime);
262 if (delta > 0)
263 min_vruntime = vruntime;
264
265 return min_vruntime;
266 }
267
268 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
269 {
270 s64 delta = (s64)(vruntime - min_vruntime);
271 if (delta < 0)
272 min_vruntime = vruntime;
273
274 return min_vruntime;
275 }
276
277 static inline int entity_before(struct sched_entity *a,
278 struct sched_entity *b)
279 {
280 return (s64)(a->vruntime - b->vruntime) < 0;
281 }
282
283 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
284 {
285 return se->vruntime - cfs_rq->min_vruntime;
286 }
287
288 static void update_min_vruntime(struct cfs_rq *cfs_rq)
289 {
290 u64 vruntime = cfs_rq->min_vruntime;
291
292 if (cfs_rq->curr)
293 vruntime = cfs_rq->curr->vruntime;
294
295 if (cfs_rq->rb_leftmost) {
296 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
297 struct sched_entity,
298 run_node);
299
300 if (!cfs_rq->curr)
301 vruntime = se->vruntime;
302 else
303 vruntime = min_vruntime(vruntime, se->vruntime);
304 }
305
306 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
307 }
308
309 /*
310 * Enqueue an entity into the rb-tree:
311 */
312 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
313 {
314 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
315 struct rb_node *parent = NULL;
316 struct sched_entity *entry;
317 s64 key = entity_key(cfs_rq, se);
318 int leftmost = 1;
319
320 /*
321 * Find the right place in the rbtree:
322 */
323 while (*link) {
324 parent = *link;
325 entry = rb_entry(parent, struct sched_entity, run_node);
326 /*
327 * We dont care about collisions. Nodes with
328 * the same key stay together.
329 */
330 if (key < entity_key(cfs_rq, entry)) {
331 link = &parent->rb_left;
332 } else {
333 link = &parent->rb_right;
334 leftmost = 0;
335 }
336 }
337
338 /*
339 * Maintain a cache of leftmost tree entries (it is frequently
340 * used):
341 */
342 if (leftmost)
343 cfs_rq->rb_leftmost = &se->run_node;
344
345 rb_link_node(&se->run_node, parent, link);
346 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
347 }
348
349 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
350 {
351 if (cfs_rq->rb_leftmost == &se->run_node) {
352 struct rb_node *next_node;
353
354 next_node = rb_next(&se->run_node);
355 cfs_rq->rb_leftmost = next_node;
356 }
357
358 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
359 }
360
361 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
362 {
363 struct rb_node *left = cfs_rq->rb_leftmost;
364
365 if (!left)
366 return NULL;
367
368 return rb_entry(left, struct sched_entity, run_node);
369 }
370
371 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
372 {
373 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
374
375 if (!last)
376 return NULL;
377
378 return rb_entry(last, struct sched_entity, run_node);
379 }
380
381 /**************************************************************
382 * Scheduling class statistics methods:
383 */
384
385 #ifdef CONFIG_SCHED_DEBUG
386 int sched_nr_latency_handler(struct ctl_table *table, int write,
387 void __user *buffer, size_t *lenp,
388 loff_t *ppos)
389 {
390 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
391
392 if (ret || !write)
393 return ret;
394
395 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396 sysctl_sched_min_granularity);
397
398 return 0;
399 }
400 #endif
401
402 /*
403 * delta /= w
404 */
405 static inline unsigned long
406 calc_delta_fair(unsigned long delta, struct sched_entity *se)
407 {
408 if (unlikely(se->load.weight != NICE_0_LOAD))
409 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
410
411 return delta;
412 }
413
414 /*
415 * The idea is to set a period in which each task runs once.
416 *
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
419 *
420 * p = (nr <= nl) ? l : l*nr/nl
421 */
422 static u64 __sched_period(unsigned long nr_running)
423 {
424 u64 period = sysctl_sched_latency;
425 unsigned long nr_latency = sched_nr_latency;
426
427 if (unlikely(nr_running > nr_latency)) {
428 period = sysctl_sched_min_granularity;
429 period *= nr_running;
430 }
431
432 return period;
433 }
434
435 /*
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
438 *
439 * s = p*P[w/rw]
440 */
441 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
442 {
443 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
444
445 for_each_sched_entity(se) {
446 struct load_weight *load;
447 struct load_weight lw;
448
449 cfs_rq = cfs_rq_of(se);
450 load = &cfs_rq->load;
451
452 if (unlikely(!se->on_rq)) {
453 lw = cfs_rq->load;
454
455 update_load_add(&lw, se->load.weight);
456 load = &lw;
457 }
458 slice = calc_delta_mine(slice, se->load.weight, load);
459 }
460 return slice;
461 }
462
463 /*
464 * We calculate the vruntime slice of a to be inserted task
465 *
466 * vs = s/w
467 */
468 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
469 {
470 return calc_delta_fair(sched_slice(cfs_rq, se), se);
471 }
472
473 /*
474 * Update the current task's runtime statistics. Skip current tasks that
475 * are not in our scheduling class.
476 */
477 static inline void
478 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
479 unsigned long delta_exec)
480 {
481 unsigned long delta_exec_weighted;
482
483 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
484
485 curr->sum_exec_runtime += delta_exec;
486 schedstat_add(cfs_rq, exec_clock, delta_exec);
487 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
488 curr->vruntime += delta_exec_weighted;
489 update_min_vruntime(cfs_rq);
490 }
491
492 static void update_curr(struct cfs_rq *cfs_rq)
493 {
494 struct sched_entity *curr = cfs_rq->curr;
495 u64 now = rq_of(cfs_rq)->clock;
496 unsigned long delta_exec;
497
498 if (unlikely(!curr))
499 return;
500
501 /*
502 * Get the amount of time the current task was running
503 * since the last time we changed load (this cannot
504 * overflow on 32 bits):
505 */
506 delta_exec = (unsigned long)(now - curr->exec_start);
507 if (!delta_exec)
508 return;
509
510 __update_curr(cfs_rq, curr, delta_exec);
511 curr->exec_start = now;
512
513 if (entity_is_task(curr)) {
514 struct task_struct *curtask = task_of(curr);
515
516 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
517 cpuacct_charge(curtask, delta_exec);
518 account_group_exec_runtime(curtask, delta_exec);
519 }
520 }
521
522 static inline void
523 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
524 {
525 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
526 }
527
528 /*
529 * Task is being enqueued - update stats:
530 */
531 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
532 {
533 /*
534 * Are we enqueueing a waiting task? (for current tasks
535 * a dequeue/enqueue event is a NOP)
536 */
537 if (se != cfs_rq->curr)
538 update_stats_wait_start(cfs_rq, se);
539 }
540
541 static void
542 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
543 {
544 schedstat_set(se->wait_max, max(se->wait_max,
545 rq_of(cfs_rq)->clock - se->wait_start));
546 schedstat_set(se->wait_count, se->wait_count + 1);
547 schedstat_set(se->wait_sum, se->wait_sum +
548 rq_of(cfs_rq)->clock - se->wait_start);
549 #ifdef CONFIG_SCHEDSTATS
550 if (entity_is_task(se)) {
551 trace_sched_stat_wait(task_of(se),
552 rq_of(cfs_rq)->clock - se->wait_start);
553 }
554 #endif
555 schedstat_set(se->wait_start, 0);
556 }
557
558 static inline void
559 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
560 {
561 /*
562 * Mark the end of the wait period if dequeueing a
563 * waiting task:
564 */
565 if (se != cfs_rq->curr)
566 update_stats_wait_end(cfs_rq, se);
567 }
568
569 /*
570 * We are picking a new current task - update its stats:
571 */
572 static inline void
573 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
574 {
575 /*
576 * We are starting a new run period:
577 */
578 se->exec_start = rq_of(cfs_rq)->clock;
579 }
580
581 /**************************************************
582 * Scheduling class queueing methods:
583 */
584
585 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
586 static void
587 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
588 {
589 cfs_rq->task_weight += weight;
590 }
591 #else
592 static inline void
593 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
594 {
595 }
596 #endif
597
598 static void
599 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
600 {
601 update_load_add(&cfs_rq->load, se->load.weight);
602 if (!parent_entity(se))
603 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
604 if (entity_is_task(se)) {
605 add_cfs_task_weight(cfs_rq, se->load.weight);
606 list_add(&se->group_node, &cfs_rq->tasks);
607 }
608 cfs_rq->nr_running++;
609 se->on_rq = 1;
610 }
611
612 static void
613 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
614 {
615 update_load_sub(&cfs_rq->load, se->load.weight);
616 if (!parent_entity(se))
617 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
618 if (entity_is_task(se)) {
619 add_cfs_task_weight(cfs_rq, -se->load.weight);
620 list_del_init(&se->group_node);
621 }
622 cfs_rq->nr_running--;
623 se->on_rq = 0;
624 }
625
626 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
627 {
628 #ifdef CONFIG_SCHEDSTATS
629 struct task_struct *tsk = NULL;
630
631 if (entity_is_task(se))
632 tsk = task_of(se);
633
634 if (se->sleep_start) {
635 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
636
637 if ((s64)delta < 0)
638 delta = 0;
639
640 if (unlikely(delta > se->sleep_max))
641 se->sleep_max = delta;
642
643 se->sleep_start = 0;
644 se->sum_sleep_runtime += delta;
645
646 if (tsk) {
647 account_scheduler_latency(tsk, delta >> 10, 1);
648 trace_sched_stat_sleep(tsk, delta);
649 }
650 }
651 if (se->block_start) {
652 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
653
654 if ((s64)delta < 0)
655 delta = 0;
656
657 if (unlikely(delta > se->block_max))
658 se->block_max = delta;
659
660 se->block_start = 0;
661 se->sum_sleep_runtime += delta;
662
663 if (tsk) {
664 if (tsk->in_iowait) {
665 se->iowait_sum += delta;
666 se->iowait_count++;
667 trace_sched_stat_iowait(tsk, delta);
668 }
669
670 /*
671 * Blocking time is in units of nanosecs, so shift by
672 * 20 to get a milliseconds-range estimation of the
673 * amount of time that the task spent sleeping:
674 */
675 if (unlikely(prof_on == SLEEP_PROFILING)) {
676 profile_hits(SLEEP_PROFILING,
677 (void *)get_wchan(tsk),
678 delta >> 20);
679 }
680 account_scheduler_latency(tsk, delta >> 10, 0);
681 }
682 }
683 #endif
684 }
685
686 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
687 {
688 #ifdef CONFIG_SCHED_DEBUG
689 s64 d = se->vruntime - cfs_rq->min_vruntime;
690
691 if (d < 0)
692 d = -d;
693
694 if (d > 3*sysctl_sched_latency)
695 schedstat_inc(cfs_rq, nr_spread_over);
696 #endif
697 }
698
699 static void
700 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
701 {
702 u64 vruntime = cfs_rq->min_vruntime;
703
704 /*
705 * The 'current' period is already promised to the current tasks,
706 * however the extra weight of the new task will slow them down a
707 * little, place the new task so that it fits in the slot that
708 * stays open at the end.
709 */
710 if (initial && sched_feat(START_DEBIT))
711 vruntime += sched_vslice(cfs_rq, se);
712
713 /* sleeps up to a single latency don't count. */
714 if (!initial && sched_feat(FAIR_SLEEPERS)) {
715 unsigned long thresh = sysctl_sched_latency;
716
717 /*
718 * Convert the sleeper threshold into virtual time.
719 * SCHED_IDLE is a special sub-class. We care about
720 * fairness only relative to other SCHED_IDLE tasks,
721 * all of which have the same weight.
722 */
723 if (sched_feat(NORMALIZED_SLEEPER) && (!entity_is_task(se) ||
724 task_of(se)->policy != SCHED_IDLE))
725 thresh = calc_delta_fair(thresh, se);
726
727 /*
728 * Halve their sleep time's effect, to allow
729 * for a gentler effect of sleepers:
730 */
731 if (sched_feat(GENTLE_FAIR_SLEEPERS))
732 thresh >>= 1;
733
734 vruntime -= thresh;
735 }
736
737 /* ensure we never gain time by being placed backwards. */
738 vruntime = max_vruntime(se->vruntime, vruntime);
739
740 se->vruntime = vruntime;
741 }
742
743 static void
744 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
745 {
746 /*
747 * Update run-time statistics of the 'current'.
748 */
749 update_curr(cfs_rq);
750 account_entity_enqueue(cfs_rq, se);
751
752 if (wakeup) {
753 place_entity(cfs_rq, se, 0);
754 enqueue_sleeper(cfs_rq, se);
755 }
756
757 update_stats_enqueue(cfs_rq, se);
758 check_spread(cfs_rq, se);
759 if (se != cfs_rq->curr)
760 __enqueue_entity(cfs_rq, se);
761 }
762
763 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
764 {
765 if (!se || cfs_rq->last == se)
766 cfs_rq->last = NULL;
767
768 if (!se || cfs_rq->next == se)
769 cfs_rq->next = NULL;
770 }
771
772 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
773 {
774 for_each_sched_entity(se)
775 __clear_buddies(cfs_rq_of(se), se);
776 }
777
778 static void
779 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
780 {
781 /*
782 * Update run-time statistics of the 'current'.
783 */
784 update_curr(cfs_rq);
785
786 update_stats_dequeue(cfs_rq, se);
787 if (sleep) {
788 #ifdef CONFIG_SCHEDSTATS
789 if (entity_is_task(se)) {
790 struct task_struct *tsk = task_of(se);
791
792 if (tsk->state & TASK_INTERRUPTIBLE)
793 se->sleep_start = rq_of(cfs_rq)->clock;
794 if (tsk->state & TASK_UNINTERRUPTIBLE)
795 se->block_start = rq_of(cfs_rq)->clock;
796 }
797 #endif
798 }
799
800 clear_buddies(cfs_rq, se);
801
802 if (se != cfs_rq->curr)
803 __dequeue_entity(cfs_rq, se);
804 account_entity_dequeue(cfs_rq, se);
805 update_min_vruntime(cfs_rq);
806 }
807
808 /*
809 * Preempt the current task with a newly woken task if needed:
810 */
811 static void
812 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
813 {
814 unsigned long ideal_runtime, delta_exec;
815
816 ideal_runtime = sched_slice(cfs_rq, curr);
817 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
818 if (delta_exec > ideal_runtime) {
819 resched_task(rq_of(cfs_rq)->curr);
820 /*
821 * The current task ran long enough, ensure it doesn't get
822 * re-elected due to buddy favours.
823 */
824 clear_buddies(cfs_rq, curr);
825 }
826 }
827
828 static void
829 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
830 {
831 /* 'current' is not kept within the tree. */
832 if (se->on_rq) {
833 /*
834 * Any task has to be enqueued before it get to execute on
835 * a CPU. So account for the time it spent waiting on the
836 * runqueue.
837 */
838 update_stats_wait_end(cfs_rq, se);
839 __dequeue_entity(cfs_rq, se);
840 }
841
842 update_stats_curr_start(cfs_rq, se);
843 cfs_rq->curr = se;
844 #ifdef CONFIG_SCHEDSTATS
845 /*
846 * Track our maximum slice length, if the CPU's load is at
847 * least twice that of our own weight (i.e. dont track it
848 * when there are only lesser-weight tasks around):
849 */
850 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
851 se->slice_max = max(se->slice_max,
852 se->sum_exec_runtime - se->prev_sum_exec_runtime);
853 }
854 #endif
855 se->prev_sum_exec_runtime = se->sum_exec_runtime;
856 }
857
858 static int
859 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
860
861 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
862 {
863 struct sched_entity *se = __pick_next_entity(cfs_rq);
864
865 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
866 return cfs_rq->next;
867
868 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
869 return cfs_rq->last;
870
871 return se;
872 }
873
874 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
875 {
876 /*
877 * If still on the runqueue then deactivate_task()
878 * was not called and update_curr() has to be done:
879 */
880 if (prev->on_rq)
881 update_curr(cfs_rq);
882
883 check_spread(cfs_rq, prev);
884 if (prev->on_rq) {
885 update_stats_wait_start(cfs_rq, prev);
886 /* Put 'current' back into the tree. */
887 __enqueue_entity(cfs_rq, prev);
888 }
889 cfs_rq->curr = NULL;
890 }
891
892 static void
893 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
894 {
895 /*
896 * Update run-time statistics of the 'current'.
897 */
898 update_curr(cfs_rq);
899
900 #ifdef CONFIG_SCHED_HRTICK
901 /*
902 * queued ticks are scheduled to match the slice, so don't bother
903 * validating it and just reschedule.
904 */
905 if (queued) {
906 resched_task(rq_of(cfs_rq)->curr);
907 return;
908 }
909 /*
910 * don't let the period tick interfere with the hrtick preemption
911 */
912 if (!sched_feat(DOUBLE_TICK) &&
913 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
914 return;
915 #endif
916
917 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
918 check_preempt_tick(cfs_rq, curr);
919 }
920
921 /**************************************************
922 * CFS operations on tasks:
923 */
924
925 #ifdef CONFIG_SCHED_HRTICK
926 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
927 {
928 struct sched_entity *se = &p->se;
929 struct cfs_rq *cfs_rq = cfs_rq_of(se);
930
931 WARN_ON(task_rq(p) != rq);
932
933 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
934 u64 slice = sched_slice(cfs_rq, se);
935 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
936 s64 delta = slice - ran;
937
938 if (delta < 0) {
939 if (rq->curr == p)
940 resched_task(p);
941 return;
942 }
943
944 /*
945 * Don't schedule slices shorter than 10000ns, that just
946 * doesn't make sense. Rely on vruntime for fairness.
947 */
948 if (rq->curr != p)
949 delta = max_t(s64, 10000LL, delta);
950
951 hrtick_start(rq, delta);
952 }
953 }
954
955 /*
956 * called from enqueue/dequeue and updates the hrtick when the
957 * current task is from our class and nr_running is low enough
958 * to matter.
959 */
960 static void hrtick_update(struct rq *rq)
961 {
962 struct task_struct *curr = rq->curr;
963
964 if (curr->sched_class != &fair_sched_class)
965 return;
966
967 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
968 hrtick_start_fair(rq, curr);
969 }
970 #else /* !CONFIG_SCHED_HRTICK */
971 static inline void
972 hrtick_start_fair(struct rq *rq, struct task_struct *p)
973 {
974 }
975
976 static inline void hrtick_update(struct rq *rq)
977 {
978 }
979 #endif
980
981 /*
982 * The enqueue_task method is called before nr_running is
983 * increased. Here we update the fair scheduling stats and
984 * then put the task into the rbtree:
985 */
986 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
987 {
988 struct cfs_rq *cfs_rq;
989 struct sched_entity *se = &p->se;
990
991 for_each_sched_entity(se) {
992 if (se->on_rq)
993 break;
994 cfs_rq = cfs_rq_of(se);
995 enqueue_entity(cfs_rq, se, wakeup);
996 wakeup = 1;
997 }
998
999 hrtick_update(rq);
1000 }
1001
1002 /*
1003 * The dequeue_task method is called before nr_running is
1004 * decreased. We remove the task from the rbtree and
1005 * update the fair scheduling stats:
1006 */
1007 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1008 {
1009 struct cfs_rq *cfs_rq;
1010 struct sched_entity *se = &p->se;
1011
1012 for_each_sched_entity(se) {
1013 cfs_rq = cfs_rq_of(se);
1014 dequeue_entity(cfs_rq, se, sleep);
1015 /* Don't dequeue parent if it has other entities besides us */
1016 if (cfs_rq->load.weight)
1017 break;
1018 sleep = 1;
1019 }
1020
1021 hrtick_update(rq);
1022 }
1023
1024 /*
1025 * sched_yield() support is very simple - we dequeue and enqueue.
1026 *
1027 * If compat_yield is turned on then we requeue to the end of the tree.
1028 */
1029 static void yield_task_fair(struct rq *rq)
1030 {
1031 struct task_struct *curr = rq->curr;
1032 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1033 struct sched_entity *rightmost, *se = &curr->se;
1034
1035 /*
1036 * Are we the only task in the tree?
1037 */
1038 if (unlikely(cfs_rq->nr_running == 1))
1039 return;
1040
1041 clear_buddies(cfs_rq, se);
1042
1043 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1044 update_rq_clock(rq);
1045 /*
1046 * Update run-time statistics of the 'current'.
1047 */
1048 update_curr(cfs_rq);
1049
1050 return;
1051 }
1052 /*
1053 * Find the rightmost entry in the rbtree:
1054 */
1055 rightmost = __pick_last_entity(cfs_rq);
1056 /*
1057 * Already in the rightmost position?
1058 */
1059 if (unlikely(!rightmost || entity_before(rightmost, se)))
1060 return;
1061
1062 /*
1063 * Minimally necessary key value to be last in the tree:
1064 * Upon rescheduling, sched_class::put_prev_task() will place
1065 * 'current' within the tree based on its new key value.
1066 */
1067 se->vruntime = rightmost->vruntime + 1;
1068 }
1069
1070 #ifdef CONFIG_SMP
1071
1072 #ifdef CONFIG_FAIR_GROUP_SCHED
1073 /*
1074 * effective_load() calculates the load change as seen from the root_task_group
1075 *
1076 * Adding load to a group doesn't make a group heavier, but can cause movement
1077 * of group shares between cpus. Assuming the shares were perfectly aligned one
1078 * can calculate the shift in shares.
1079 *
1080 * The problem is that perfectly aligning the shares is rather expensive, hence
1081 * we try to avoid doing that too often - see update_shares(), which ratelimits
1082 * this change.
1083 *
1084 * We compensate this by not only taking the current delta into account, but
1085 * also considering the delta between when the shares were last adjusted and
1086 * now.
1087 *
1088 * We still saw a performance dip, some tracing learned us that between
1089 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1090 * significantly. Therefore try to bias the error in direction of failing
1091 * the affine wakeup.
1092 *
1093 */
1094 static long effective_load(struct task_group *tg, int cpu,
1095 long wl, long wg)
1096 {
1097 struct sched_entity *se = tg->se[cpu];
1098
1099 if (!tg->parent)
1100 return wl;
1101
1102 /*
1103 * By not taking the decrease of shares on the other cpu into
1104 * account our error leans towards reducing the affine wakeups.
1105 */
1106 if (!wl && sched_feat(ASYM_EFF_LOAD))
1107 return wl;
1108
1109 for_each_sched_entity(se) {
1110 long S, rw, s, a, b;
1111 long more_w;
1112
1113 /*
1114 * Instead of using this increment, also add the difference
1115 * between when the shares were last updated and now.
1116 */
1117 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1118 wl += more_w;
1119 wg += more_w;
1120
1121 S = se->my_q->tg->shares;
1122 s = se->my_q->shares;
1123 rw = se->my_q->rq_weight;
1124
1125 a = S*(rw + wl);
1126 b = S*rw + s*wg;
1127
1128 wl = s*(a-b);
1129
1130 if (likely(b))
1131 wl /= b;
1132
1133 /*
1134 * Assume the group is already running and will
1135 * thus already be accounted for in the weight.
1136 *
1137 * That is, moving shares between CPUs, does not
1138 * alter the group weight.
1139 */
1140 wg = 0;
1141 }
1142
1143 return wl;
1144 }
1145
1146 #else
1147
1148 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1149 unsigned long wl, unsigned long wg)
1150 {
1151 return wl;
1152 }
1153
1154 #endif
1155
1156 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1157 {
1158 struct task_struct *curr = current;
1159 unsigned long this_load, load;
1160 int idx, this_cpu, prev_cpu;
1161 unsigned long tl_per_task;
1162 unsigned int imbalance;
1163 struct task_group *tg;
1164 unsigned long weight;
1165 int balanced;
1166
1167 idx = sd->wake_idx;
1168 this_cpu = smp_processor_id();
1169 prev_cpu = task_cpu(p);
1170 load = source_load(prev_cpu, idx);
1171 this_load = target_load(this_cpu, idx);
1172
1173 if (sync) {
1174 if (sched_feat(SYNC_LESS) &&
1175 (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1176 p->se.avg_overlap > sysctl_sched_migration_cost))
1177 sync = 0;
1178 } else {
1179 if (sched_feat(SYNC_MORE) &&
1180 (curr->se.avg_overlap < sysctl_sched_migration_cost &&
1181 p->se.avg_overlap < sysctl_sched_migration_cost))
1182 sync = 1;
1183 }
1184
1185 /*
1186 * If sync wakeup then subtract the (maximum possible)
1187 * effect of the currently running task from the load
1188 * of the current CPU:
1189 */
1190 if (sync) {
1191 tg = task_group(current);
1192 weight = current->se.load.weight;
1193
1194 this_load += effective_load(tg, this_cpu, -weight, -weight);
1195 load += effective_load(tg, prev_cpu, 0, -weight);
1196 }
1197
1198 tg = task_group(p);
1199 weight = p->se.load.weight;
1200
1201 imbalance = 100 + (sd->imbalance_pct - 100) / 2;
1202
1203 /*
1204 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1205 * due to the sync cause above having dropped this_load to 0, we'll
1206 * always have an imbalance, but there's really nothing you can do
1207 * about that, so that's good too.
1208 *
1209 * Otherwise check if either cpus are near enough in load to allow this
1210 * task to be woken on this_cpu.
1211 */
1212 balanced = !this_load ||
1213 100*(this_load + effective_load(tg, this_cpu, weight, weight)) <=
1214 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1215
1216 /*
1217 * If the currently running task will sleep within
1218 * a reasonable amount of time then attract this newly
1219 * woken task:
1220 */
1221 if (sync && balanced)
1222 return 1;
1223
1224 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1225 tl_per_task = cpu_avg_load_per_task(this_cpu);
1226
1227 if (balanced ||
1228 (this_load <= load &&
1229 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1230 /*
1231 * This domain has SD_WAKE_AFFINE and
1232 * p is cache cold in this domain, and
1233 * there is no bad imbalance.
1234 */
1235 schedstat_inc(sd, ttwu_move_affine);
1236 schedstat_inc(p, se.nr_wakeups_affine);
1237
1238 return 1;
1239 }
1240 return 0;
1241 }
1242
1243 /*
1244 * find_idlest_group finds and returns the least busy CPU group within the
1245 * domain.
1246 */
1247 static struct sched_group *
1248 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1249 int this_cpu, int load_idx)
1250 {
1251 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1252 unsigned long min_load = ULONG_MAX, this_load = 0;
1253 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1254
1255 do {
1256 unsigned long load, avg_load;
1257 int local_group;
1258 int i;
1259
1260 /* Skip over this group if it has no CPUs allowed */
1261 if (!cpumask_intersects(sched_group_cpus(group),
1262 &p->cpus_allowed))
1263 continue;
1264
1265 local_group = cpumask_test_cpu(this_cpu,
1266 sched_group_cpus(group));
1267
1268 /* Tally up the load of all CPUs in the group */
1269 avg_load = 0;
1270
1271 for_each_cpu(i, sched_group_cpus(group)) {
1272 /* Bias balancing toward cpus of our domain */
1273 if (local_group)
1274 load = source_load(i, load_idx);
1275 else
1276 load = target_load(i, load_idx);
1277
1278 avg_load += load;
1279 }
1280
1281 /* Adjust by relative CPU power of the group */
1282 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1283
1284 if (local_group) {
1285 this_load = avg_load;
1286 this = group;
1287 } else if (avg_load < min_load) {
1288 min_load = avg_load;
1289 idlest = group;
1290 }
1291 } while (group = group->next, group != sd->groups);
1292
1293 if (!idlest || 100*this_load < imbalance*min_load)
1294 return NULL;
1295 return idlest;
1296 }
1297
1298 /*
1299 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1300 */
1301 static int
1302 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1303 {
1304 unsigned long load, min_load = ULONG_MAX;
1305 int idlest = -1;
1306 int i;
1307
1308 /* Traverse only the allowed CPUs */
1309 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1310 load = weighted_cpuload(i);
1311
1312 if (load < min_load || (load == min_load && i == this_cpu)) {
1313 min_load = load;
1314 idlest = i;
1315 }
1316 }
1317
1318 return idlest;
1319 }
1320
1321 /*
1322 * Try and locate an idle CPU in the sched_domain.
1323 */
1324 static int
1325 select_idle_sibling(struct task_struct *p, struct sched_domain *sd, int target)
1326 {
1327 int cpu = smp_processor_id();
1328 int prev_cpu = task_cpu(p);
1329 int i;
1330
1331 /*
1332 * If this domain spans both cpu and prev_cpu (see the SD_WAKE_AFFINE
1333 * test in select_task_rq_fair) and the prev_cpu is idle then that's
1334 * always a better target than the current cpu.
1335 */
1336 if (target == cpu) {
1337 if (!cpu_rq(prev_cpu)->cfs.nr_running)
1338 target = prev_cpu;
1339 }
1340
1341 /*
1342 * Otherwise, iterate the domain and find an elegible idle cpu.
1343 */
1344 if (target == -1 || target == cpu) {
1345 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1346 if (!cpu_rq(i)->cfs.nr_running) {
1347 target = i;
1348 break;
1349 }
1350 }
1351 }
1352
1353 return target;
1354 }
1355
1356 /*
1357 * sched_balance_self: balance the current task (running on cpu) in domains
1358 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1359 * SD_BALANCE_EXEC.
1360 *
1361 * Balance, ie. select the least loaded group.
1362 *
1363 * Returns the target CPU number, or the same CPU if no balancing is needed.
1364 *
1365 * preempt must be disabled.
1366 */
1367 static int select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1368 {
1369 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1370 int cpu = smp_processor_id();
1371 int prev_cpu = task_cpu(p);
1372 int new_cpu = cpu;
1373 int want_affine = 0;
1374 int want_sd = 1;
1375 int sync = wake_flags & WF_SYNC;
1376
1377 if (sd_flag & SD_BALANCE_WAKE) {
1378 if (sched_feat(AFFINE_WAKEUPS) &&
1379 cpumask_test_cpu(cpu, &p->cpus_allowed))
1380 want_affine = 1;
1381 new_cpu = prev_cpu;
1382 }
1383
1384 rcu_read_lock();
1385 for_each_domain(cpu, tmp) {
1386 /*
1387 * If power savings logic is enabled for a domain, see if we
1388 * are not overloaded, if so, don't balance wider.
1389 */
1390 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1391 unsigned long power = 0;
1392 unsigned long nr_running = 0;
1393 unsigned long capacity;
1394 int i;
1395
1396 for_each_cpu(i, sched_domain_span(tmp)) {
1397 power += power_of(i);
1398 nr_running += cpu_rq(i)->cfs.nr_running;
1399 }
1400
1401 capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
1402
1403 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1404 nr_running /= 2;
1405
1406 if (nr_running < capacity)
1407 want_sd = 0;
1408 }
1409
1410 if (want_affine && (tmp->flags & SD_WAKE_AFFINE)) {
1411 int target = -1;
1412
1413 /*
1414 * If both cpu and prev_cpu are part of this domain,
1415 * cpu is a valid SD_WAKE_AFFINE target.
1416 */
1417 if (cpumask_test_cpu(prev_cpu, sched_domain_span(tmp)))
1418 target = cpu;
1419
1420 /*
1421 * If there's an idle sibling in this domain, make that
1422 * the wake_affine target instead of the current cpu.
1423 *
1424 * XXX: should we possibly do this outside of
1425 * WAKE_AFFINE, in case the shared cache domain is
1426 * smaller than the WAKE_AFFINE domain?
1427 */
1428 if (tmp->flags & SD_PREFER_SIBLING)
1429 target = select_idle_sibling(p, tmp, target);
1430
1431 if (target >= 0) {
1432 affine_sd = tmp;
1433 want_affine = 0;
1434 cpu = target;
1435 }
1436 }
1437
1438 if (!want_sd && !want_affine)
1439 break;
1440
1441 if (!(tmp->flags & sd_flag))
1442 continue;
1443
1444 if (want_sd)
1445 sd = tmp;
1446 }
1447
1448 if (sched_feat(LB_SHARES_UPDATE)) {
1449 /*
1450 * Pick the largest domain to update shares over
1451 */
1452 tmp = sd;
1453 if (affine_sd && (!tmp ||
1454 cpumask_weight(sched_domain_span(affine_sd)) >
1455 cpumask_weight(sched_domain_span(sd))))
1456 tmp = affine_sd;
1457
1458 if (tmp)
1459 update_shares(tmp);
1460 }
1461
1462 if (affine_sd && wake_affine(affine_sd, p, sync)) {
1463 new_cpu = cpu;
1464 goto out;
1465 }
1466
1467 while (sd) {
1468 int load_idx = sd->forkexec_idx;
1469 struct sched_group *group;
1470 int weight;
1471
1472 if (!(sd->flags & sd_flag)) {
1473 sd = sd->child;
1474 continue;
1475 }
1476
1477 if (sd_flag & SD_BALANCE_WAKE)
1478 load_idx = sd->wake_idx;
1479
1480 group = find_idlest_group(sd, p, cpu, load_idx);
1481 if (!group) {
1482 sd = sd->child;
1483 continue;
1484 }
1485
1486 new_cpu = find_idlest_cpu(group, p, cpu);
1487 if (new_cpu == -1 || new_cpu == cpu) {
1488 /* Now try balancing at a lower domain level of cpu */
1489 sd = sd->child;
1490 continue;
1491 }
1492
1493 /* Now try balancing at a lower domain level of new_cpu */
1494 cpu = new_cpu;
1495 weight = cpumask_weight(sched_domain_span(sd));
1496 sd = NULL;
1497 for_each_domain(cpu, tmp) {
1498 if (weight <= cpumask_weight(sched_domain_span(tmp)))
1499 break;
1500 if (tmp->flags & sd_flag)
1501 sd = tmp;
1502 }
1503 /* while loop will break here if sd == NULL */
1504 }
1505
1506 out:
1507 rcu_read_unlock();
1508 return new_cpu;
1509 }
1510 #endif /* CONFIG_SMP */
1511
1512 /*
1513 * Adaptive granularity
1514 *
1515 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1516 * with the limit of wakeup_gran -- when it never does a wakeup.
1517 *
1518 * So the smaller avg_wakeup is the faster we want this task to preempt,
1519 * but we don't want to treat the preemptee unfairly and therefore allow it
1520 * to run for at least the amount of time we'd like to run.
1521 *
1522 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1523 *
1524 * NOTE: we use *nr_running to scale with load, this nicely matches the
1525 * degrading latency on load.
1526 */
1527 static unsigned long
1528 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1529 {
1530 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1531 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1532 u64 gran = 0;
1533
1534 if (this_run < expected_wakeup)
1535 gran = expected_wakeup - this_run;
1536
1537 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1538 }
1539
1540 static unsigned long
1541 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1542 {
1543 unsigned long gran = sysctl_sched_wakeup_granularity;
1544
1545 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1546 gran = adaptive_gran(curr, se);
1547
1548 /*
1549 * Since its curr running now, convert the gran from real-time
1550 * to virtual-time in his units.
1551 */
1552 if (sched_feat(ASYM_GRAN)) {
1553 /*
1554 * By using 'se' instead of 'curr' we penalize light tasks, so
1555 * they get preempted easier. That is, if 'se' < 'curr' then
1556 * the resulting gran will be larger, therefore penalizing the
1557 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1558 * be smaller, again penalizing the lighter task.
1559 *
1560 * This is especially important for buddies when the leftmost
1561 * task is higher priority than the buddy.
1562 */
1563 if (unlikely(se->load.weight != NICE_0_LOAD))
1564 gran = calc_delta_fair(gran, se);
1565 } else {
1566 if (unlikely(curr->load.weight != NICE_0_LOAD))
1567 gran = calc_delta_fair(gran, curr);
1568 }
1569
1570 return gran;
1571 }
1572
1573 /*
1574 * Should 'se' preempt 'curr'.
1575 *
1576 * |s1
1577 * |s2
1578 * |s3
1579 * g
1580 * |<--->|c
1581 *
1582 * w(c, s1) = -1
1583 * w(c, s2) = 0
1584 * w(c, s3) = 1
1585 *
1586 */
1587 static int
1588 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1589 {
1590 s64 gran, vdiff = curr->vruntime - se->vruntime;
1591
1592 if (vdiff <= 0)
1593 return -1;
1594
1595 gran = wakeup_gran(curr, se);
1596 if (vdiff > gran)
1597 return 1;
1598
1599 return 0;
1600 }
1601
1602 static void set_last_buddy(struct sched_entity *se)
1603 {
1604 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1605 for_each_sched_entity(se)
1606 cfs_rq_of(se)->last = se;
1607 }
1608 }
1609
1610 static void set_next_buddy(struct sched_entity *se)
1611 {
1612 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1613 for_each_sched_entity(se)
1614 cfs_rq_of(se)->next = se;
1615 }
1616 }
1617
1618 /*
1619 * Preempt the current task with a newly woken task if needed:
1620 */
1621 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1622 {
1623 struct task_struct *curr = rq->curr;
1624 struct sched_entity *se = &curr->se, *pse = &p->se;
1625 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1626 int sync = wake_flags & WF_SYNC;
1627
1628 update_curr(cfs_rq);
1629
1630 if (unlikely(rt_prio(p->prio))) {
1631 resched_task(curr);
1632 return;
1633 }
1634
1635 if (unlikely(p->sched_class != &fair_sched_class))
1636 return;
1637
1638 if (unlikely(se == pse))
1639 return;
1640
1641 /*
1642 * Only set the backward buddy when the current task is still on the
1643 * rq. This can happen when a wakeup gets interleaved with schedule on
1644 * the ->pre_schedule() or idle_balance() point, either of which can
1645 * drop the rq lock.
1646 *
1647 * Also, during early boot the idle thread is in the fair class, for
1648 * obvious reasons its a bad idea to schedule back to the idle thread.
1649 */
1650 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1651 set_last_buddy(se);
1652 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK))
1653 set_next_buddy(pse);
1654
1655 /*
1656 * We can come here with TIF_NEED_RESCHED already set from new task
1657 * wake up path.
1658 */
1659 if (test_tsk_need_resched(curr))
1660 return;
1661
1662 /*
1663 * Batch and idle tasks do not preempt (their preemption is driven by
1664 * the tick):
1665 */
1666 if (unlikely(p->policy != SCHED_NORMAL))
1667 return;
1668
1669 /* Idle tasks are by definition preempted by everybody. */
1670 if (unlikely(curr->policy == SCHED_IDLE)) {
1671 resched_task(curr);
1672 return;
1673 }
1674
1675 if ((sched_feat(WAKEUP_SYNC) && sync) ||
1676 (sched_feat(WAKEUP_OVERLAP) &&
1677 (se->avg_overlap < sysctl_sched_migration_cost &&
1678 pse->avg_overlap < sysctl_sched_migration_cost))) {
1679 resched_task(curr);
1680 return;
1681 }
1682
1683 if (sched_feat(WAKEUP_RUNNING)) {
1684 if (pse->avg_running < se->avg_running) {
1685 set_next_buddy(pse);
1686 resched_task(curr);
1687 return;
1688 }
1689 }
1690
1691 if (!sched_feat(WAKEUP_PREEMPT))
1692 return;
1693
1694 find_matching_se(&se, &pse);
1695
1696 BUG_ON(!pse);
1697
1698 if (wakeup_preempt_entity(se, pse) == 1)
1699 resched_task(curr);
1700 }
1701
1702 static struct task_struct *pick_next_task_fair(struct rq *rq)
1703 {
1704 struct task_struct *p;
1705 struct cfs_rq *cfs_rq = &rq->cfs;
1706 struct sched_entity *se;
1707
1708 if (unlikely(!cfs_rq->nr_running))
1709 return NULL;
1710
1711 do {
1712 se = pick_next_entity(cfs_rq);
1713 /*
1714 * If se was a buddy, clear it so that it will have to earn
1715 * the favour again.
1716 *
1717 * If se was not a buddy, clear the buddies because neither
1718 * was elegible to run, let them earn it again.
1719 *
1720 * IOW. unconditionally clear buddies.
1721 */
1722 __clear_buddies(cfs_rq, NULL);
1723 set_next_entity(cfs_rq, se);
1724 cfs_rq = group_cfs_rq(se);
1725 } while (cfs_rq);
1726
1727 p = task_of(se);
1728 hrtick_start_fair(rq, p);
1729
1730 return p;
1731 }
1732
1733 /*
1734 * Account for a descheduled task:
1735 */
1736 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1737 {
1738 struct sched_entity *se = &prev->se;
1739 struct cfs_rq *cfs_rq;
1740
1741 for_each_sched_entity(se) {
1742 cfs_rq = cfs_rq_of(se);
1743 put_prev_entity(cfs_rq, se);
1744 }
1745 }
1746
1747 #ifdef CONFIG_SMP
1748 /**************************************************
1749 * Fair scheduling class load-balancing methods:
1750 */
1751
1752 /*
1753 * Load-balancing iterator. Note: while the runqueue stays locked
1754 * during the whole iteration, the current task might be
1755 * dequeued so the iterator has to be dequeue-safe. Here we
1756 * achieve that by always pre-iterating before returning
1757 * the current task:
1758 */
1759 static struct task_struct *
1760 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1761 {
1762 struct task_struct *p = NULL;
1763 struct sched_entity *se;
1764
1765 if (next == &cfs_rq->tasks)
1766 return NULL;
1767
1768 se = list_entry(next, struct sched_entity, group_node);
1769 p = task_of(se);
1770 cfs_rq->balance_iterator = next->next;
1771
1772 return p;
1773 }
1774
1775 static struct task_struct *load_balance_start_fair(void *arg)
1776 {
1777 struct cfs_rq *cfs_rq = arg;
1778
1779 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1780 }
1781
1782 static struct task_struct *load_balance_next_fair(void *arg)
1783 {
1784 struct cfs_rq *cfs_rq = arg;
1785
1786 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1787 }
1788
1789 static unsigned long
1790 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1791 unsigned long max_load_move, struct sched_domain *sd,
1792 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1793 struct cfs_rq *cfs_rq)
1794 {
1795 struct rq_iterator cfs_rq_iterator;
1796
1797 cfs_rq_iterator.start = load_balance_start_fair;
1798 cfs_rq_iterator.next = load_balance_next_fair;
1799 cfs_rq_iterator.arg = cfs_rq;
1800
1801 return balance_tasks(this_rq, this_cpu, busiest,
1802 max_load_move, sd, idle, all_pinned,
1803 this_best_prio, &cfs_rq_iterator);
1804 }
1805
1806 #ifdef CONFIG_FAIR_GROUP_SCHED
1807 static unsigned long
1808 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1809 unsigned long max_load_move,
1810 struct sched_domain *sd, enum cpu_idle_type idle,
1811 int *all_pinned, int *this_best_prio)
1812 {
1813 long rem_load_move = max_load_move;
1814 int busiest_cpu = cpu_of(busiest);
1815 struct task_group *tg;
1816
1817 rcu_read_lock();
1818 update_h_load(busiest_cpu);
1819
1820 list_for_each_entry_rcu(tg, &task_groups, list) {
1821 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1822 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1823 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1824 u64 rem_load, moved_load;
1825
1826 /*
1827 * empty group
1828 */
1829 if (!busiest_cfs_rq->task_weight)
1830 continue;
1831
1832 rem_load = (u64)rem_load_move * busiest_weight;
1833 rem_load = div_u64(rem_load, busiest_h_load + 1);
1834
1835 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1836 rem_load, sd, idle, all_pinned, this_best_prio,
1837 tg->cfs_rq[busiest_cpu]);
1838
1839 if (!moved_load)
1840 continue;
1841
1842 moved_load *= busiest_h_load;
1843 moved_load = div_u64(moved_load, busiest_weight + 1);
1844
1845 rem_load_move -= moved_load;
1846 if (rem_load_move < 0)
1847 break;
1848 }
1849 rcu_read_unlock();
1850
1851 return max_load_move - rem_load_move;
1852 }
1853 #else
1854 static unsigned long
1855 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1856 unsigned long max_load_move,
1857 struct sched_domain *sd, enum cpu_idle_type idle,
1858 int *all_pinned, int *this_best_prio)
1859 {
1860 return __load_balance_fair(this_rq, this_cpu, busiest,
1861 max_load_move, sd, idle, all_pinned,
1862 this_best_prio, &busiest->cfs);
1863 }
1864 #endif
1865
1866 static int
1867 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1868 struct sched_domain *sd, enum cpu_idle_type idle)
1869 {
1870 struct cfs_rq *busy_cfs_rq;
1871 struct rq_iterator cfs_rq_iterator;
1872
1873 cfs_rq_iterator.start = load_balance_start_fair;
1874 cfs_rq_iterator.next = load_balance_next_fair;
1875
1876 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1877 /*
1878 * pass busy_cfs_rq argument into
1879 * load_balance_[start|next]_fair iterators
1880 */
1881 cfs_rq_iterator.arg = busy_cfs_rq;
1882 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1883 &cfs_rq_iterator))
1884 return 1;
1885 }
1886
1887 return 0;
1888 }
1889 #endif /* CONFIG_SMP */
1890
1891 /*
1892 * scheduler tick hitting a task of our scheduling class:
1893 */
1894 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1895 {
1896 struct cfs_rq *cfs_rq;
1897 struct sched_entity *se = &curr->se;
1898
1899 for_each_sched_entity(se) {
1900 cfs_rq = cfs_rq_of(se);
1901 entity_tick(cfs_rq, se, queued);
1902 }
1903 }
1904
1905 /*
1906 * Share the fairness runtime between parent and child, thus the
1907 * total amount of pressure for CPU stays equal - new tasks
1908 * get a chance to run but frequent forkers are not allowed to
1909 * monopolize the CPU. Note: the parent runqueue is locked,
1910 * the child is not running yet.
1911 */
1912 static void task_new_fair(struct rq *rq, struct task_struct *p)
1913 {
1914 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1915 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1916 int this_cpu = smp_processor_id();
1917
1918 sched_info_queued(p);
1919
1920 update_curr(cfs_rq);
1921 if (curr)
1922 se->vruntime = curr->vruntime;
1923 place_entity(cfs_rq, se, 1);
1924
1925 /* 'curr' will be NULL if the child belongs to a different group */
1926 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1927 curr && entity_before(curr, se)) {
1928 /*
1929 * Upon rescheduling, sched_class::put_prev_task() will place
1930 * 'current' within the tree based on its new key value.
1931 */
1932 swap(curr->vruntime, se->vruntime);
1933 resched_task(rq->curr);
1934 }
1935
1936 enqueue_task_fair(rq, p, 0);
1937 }
1938
1939 /*
1940 * Priority of the task has changed. Check to see if we preempt
1941 * the current task.
1942 */
1943 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1944 int oldprio, int running)
1945 {
1946 /*
1947 * Reschedule if we are currently running on this runqueue and
1948 * our priority decreased, or if we are not currently running on
1949 * this runqueue and our priority is higher than the current's
1950 */
1951 if (running) {
1952 if (p->prio > oldprio)
1953 resched_task(rq->curr);
1954 } else
1955 check_preempt_curr(rq, p, 0);
1956 }
1957
1958 /*
1959 * We switched to the sched_fair class.
1960 */
1961 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1962 int running)
1963 {
1964 /*
1965 * We were most likely switched from sched_rt, so
1966 * kick off the schedule if running, otherwise just see
1967 * if we can still preempt the current task.
1968 */
1969 if (running)
1970 resched_task(rq->curr);
1971 else
1972 check_preempt_curr(rq, p, 0);
1973 }
1974
1975 /* Account for a task changing its policy or group.
1976 *
1977 * This routine is mostly called to set cfs_rq->curr field when a task
1978 * migrates between groups/classes.
1979 */
1980 static void set_curr_task_fair(struct rq *rq)
1981 {
1982 struct sched_entity *se = &rq->curr->se;
1983
1984 for_each_sched_entity(se)
1985 set_next_entity(cfs_rq_of(se), se);
1986 }
1987
1988 #ifdef CONFIG_FAIR_GROUP_SCHED
1989 static void moved_group_fair(struct task_struct *p)
1990 {
1991 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1992
1993 update_curr(cfs_rq);
1994 place_entity(cfs_rq, &p->se, 1);
1995 }
1996 #endif
1997
1998 unsigned int get_rr_interval_fair(struct task_struct *task)
1999 {
2000 struct sched_entity *se = &task->se;
2001 unsigned long flags;
2002 struct rq *rq;
2003 unsigned int rr_interval = 0;
2004
2005 /*
2006 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
2007 * idle runqueue:
2008 */
2009 rq = task_rq_lock(task, &flags);
2010 if (rq->cfs.load.weight)
2011 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
2012 task_rq_unlock(rq, &flags);
2013
2014 return rr_interval;
2015 }
2016
2017 /*
2018 * All the scheduling class methods:
2019 */
2020 static const struct sched_class fair_sched_class = {
2021 .next = &idle_sched_class,
2022 .enqueue_task = enqueue_task_fair,
2023 .dequeue_task = dequeue_task_fair,
2024 .yield_task = yield_task_fair,
2025
2026 .check_preempt_curr = check_preempt_wakeup,
2027
2028 .pick_next_task = pick_next_task_fair,
2029 .put_prev_task = put_prev_task_fair,
2030
2031 #ifdef CONFIG_SMP
2032 .select_task_rq = select_task_rq_fair,
2033
2034 .load_balance = load_balance_fair,
2035 .move_one_task = move_one_task_fair,
2036 #endif
2037
2038 .set_curr_task = set_curr_task_fair,
2039 .task_tick = task_tick_fair,
2040 .task_new = task_new_fair,
2041
2042 .prio_changed = prio_changed_fair,
2043 .switched_to = switched_to_fair,
2044
2045 .get_rr_interval = get_rr_interval_fair,
2046
2047 #ifdef CONFIG_FAIR_GROUP_SCHED
2048 .moved_group = moved_group_fair,
2049 #endif
2050 };
2051
2052 #ifdef CONFIG_SCHED_DEBUG
2053 static void print_cfs_stats(struct seq_file *m, int cpu)
2054 {
2055 struct cfs_rq *cfs_rq;
2056
2057 rcu_read_lock();
2058 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
2059 print_cfs_rq(m, cpu, cfs_rq);
2060 rcu_read_unlock();
2061 }
2062 #endif