]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/sched_fair.c
sched: simplify bonus calculation #1
[mirror_ubuntu-kernels.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 */
19
20 /*
21 * Preemption granularity:
22 * (default: 10 msec, units: nanoseconds)
23 *
24 * NOTE: this granularity value is not the same as the concept of
25 * 'timeslice length' - timeslices in CFS will typically be somewhat
26 * larger than this value. (to see the precise effective timeslice
27 * length of your workload, run vmstat and monitor the context-switches
28 * field)
29 *
30 * On SMP systems the value of this is multiplied by the log2 of the
31 * number of CPUs. (i.e. factor 2x on 2-way systems, 3x on 4-way
32 * systems, 4x on 8-way systems, 5x on 16-way systems, etc.)
33 */
34 unsigned int sysctl_sched_granularity __read_mostly = 10000000UL;
35
36 /*
37 * SCHED_BATCH wake-up granularity.
38 * (default: 25 msec, units: nanoseconds)
39 *
40 * This option delays the preemption effects of decoupled workloads
41 * and reduces their over-scheduling. Synchronous workloads will still
42 * have immediate wakeup/sleep latencies.
43 */
44 unsigned int sysctl_sched_batch_wakeup_granularity __read_mostly = 25000000UL;
45
46 /*
47 * SCHED_OTHER wake-up granularity.
48 * (default: 1 msec, units: nanoseconds)
49 *
50 * This option delays the preemption effects of decoupled workloads
51 * and reduces their over-scheduling. Synchronous workloads will still
52 * have immediate wakeup/sleep latencies.
53 */
54 unsigned int sysctl_sched_wakeup_granularity __read_mostly = 1000000UL;
55
56 unsigned int sysctl_sched_stat_granularity __read_mostly;
57
58 /*
59 * Initialized in sched_init_granularity() [to 5 times the base granularity]:
60 */
61 unsigned int sysctl_sched_runtime_limit __read_mostly;
62
63 /*
64 * Debugging: various feature bits
65 */
66 enum {
67 SCHED_FEAT_FAIR_SLEEPERS = 1,
68 SCHED_FEAT_SLEEPER_AVG = 2,
69 SCHED_FEAT_SLEEPER_LOAD_AVG = 4,
70 SCHED_FEAT_PRECISE_CPU_LOAD = 8,
71 SCHED_FEAT_START_DEBIT = 16,
72 SCHED_FEAT_SKIP_INITIAL = 32,
73 };
74
75 unsigned int sysctl_sched_features __read_mostly =
76 SCHED_FEAT_FAIR_SLEEPERS *1 |
77 SCHED_FEAT_SLEEPER_AVG *0 |
78 SCHED_FEAT_SLEEPER_LOAD_AVG *1 |
79 SCHED_FEAT_PRECISE_CPU_LOAD *1 |
80 SCHED_FEAT_START_DEBIT *1 |
81 SCHED_FEAT_SKIP_INITIAL *0;
82
83 extern struct sched_class fair_sched_class;
84
85 /**************************************************************
86 * CFS operations on generic schedulable entities:
87 */
88
89 #ifdef CONFIG_FAIR_GROUP_SCHED
90
91 /* cpu runqueue to which this cfs_rq is attached */
92 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
93 {
94 return cfs_rq->rq;
95 }
96
97 /* currently running entity (if any) on this cfs_rq */
98 static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
99 {
100 return cfs_rq->curr;
101 }
102
103 /* An entity is a task if it doesn't "own" a runqueue */
104 #define entity_is_task(se) (!se->my_q)
105
106 static inline void
107 set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se)
108 {
109 cfs_rq->curr = se;
110 }
111
112 #else /* CONFIG_FAIR_GROUP_SCHED */
113
114 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
115 {
116 return container_of(cfs_rq, struct rq, cfs);
117 }
118
119 static inline struct sched_entity *cfs_rq_curr(struct cfs_rq *cfs_rq)
120 {
121 struct rq *rq = rq_of(cfs_rq);
122
123 if (unlikely(rq->curr->sched_class != &fair_sched_class))
124 return NULL;
125
126 return &rq->curr->se;
127 }
128
129 #define entity_is_task(se) 1
130
131 static inline void
132 set_cfs_rq_curr(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
133
134 #endif /* CONFIG_FAIR_GROUP_SCHED */
135
136 static inline struct task_struct *task_of(struct sched_entity *se)
137 {
138 return container_of(se, struct task_struct, se);
139 }
140
141
142 /**************************************************************
143 * Scheduling class tree data structure manipulation methods:
144 */
145
146 /*
147 * Enqueue an entity into the rb-tree:
148 */
149 static inline void
150 __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
151 {
152 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
153 struct rb_node *parent = NULL;
154 struct sched_entity *entry;
155 s64 key = se->fair_key;
156 int leftmost = 1;
157
158 /*
159 * Find the right place in the rbtree:
160 */
161 while (*link) {
162 parent = *link;
163 entry = rb_entry(parent, struct sched_entity, run_node);
164 /*
165 * We dont care about collisions. Nodes with
166 * the same key stay together.
167 */
168 if (key - entry->fair_key < 0) {
169 link = &parent->rb_left;
170 } else {
171 link = &parent->rb_right;
172 leftmost = 0;
173 }
174 }
175
176 /*
177 * Maintain a cache of leftmost tree entries (it is frequently
178 * used):
179 */
180 if (leftmost)
181 cfs_rq->rb_leftmost = &se->run_node;
182
183 rb_link_node(&se->run_node, parent, link);
184 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
185 update_load_add(&cfs_rq->load, se->load.weight);
186 cfs_rq->nr_running++;
187 se->on_rq = 1;
188 }
189
190 static inline void
191 __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
192 {
193 if (cfs_rq->rb_leftmost == &se->run_node)
194 cfs_rq->rb_leftmost = rb_next(&se->run_node);
195 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
196 update_load_sub(&cfs_rq->load, se->load.weight);
197 cfs_rq->nr_running--;
198 se->on_rq = 0;
199 }
200
201 static inline struct rb_node *first_fair(struct cfs_rq *cfs_rq)
202 {
203 return cfs_rq->rb_leftmost;
204 }
205
206 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
207 {
208 return rb_entry(first_fair(cfs_rq), struct sched_entity, run_node);
209 }
210
211 /**************************************************************
212 * Scheduling class statistics methods:
213 */
214
215 /*
216 * We rescale the rescheduling granularity of tasks according to their
217 * nice level, but only linearly, not exponentially:
218 */
219 static long
220 niced_granularity(struct sched_entity *curr, unsigned long granularity)
221 {
222 u64 tmp;
223
224 if (likely(curr->load.weight == NICE_0_LOAD))
225 return granularity;
226 /*
227 * Positive nice levels get the same granularity as nice-0:
228 */
229 if (likely(curr->load.weight < NICE_0_LOAD)) {
230 tmp = curr->load.weight * (u64)granularity;
231 return (long) (tmp >> NICE_0_SHIFT);
232 }
233 /*
234 * Negative nice level tasks get linearly finer
235 * granularity:
236 */
237 tmp = curr->load.inv_weight * (u64)granularity;
238
239 /*
240 * It will always fit into 'long':
241 */
242 return (long) (tmp >> WMULT_SHIFT);
243 }
244
245 static inline void
246 limit_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se)
247 {
248 long limit = sysctl_sched_runtime_limit;
249
250 /*
251 * Niced tasks have the same history dynamic range as
252 * non-niced tasks:
253 */
254 if (unlikely(se->wait_runtime > limit)) {
255 se->wait_runtime = limit;
256 schedstat_inc(se, wait_runtime_overruns);
257 schedstat_inc(cfs_rq, wait_runtime_overruns);
258 }
259 if (unlikely(se->wait_runtime < -limit)) {
260 se->wait_runtime = -limit;
261 schedstat_inc(se, wait_runtime_underruns);
262 schedstat_inc(cfs_rq, wait_runtime_underruns);
263 }
264 }
265
266 static inline void
267 __add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
268 {
269 se->wait_runtime += delta;
270 schedstat_add(se, sum_wait_runtime, delta);
271 limit_wait_runtime(cfs_rq, se);
272 }
273
274 static void
275 add_wait_runtime(struct cfs_rq *cfs_rq, struct sched_entity *se, long delta)
276 {
277 schedstat_add(cfs_rq, wait_runtime, -se->wait_runtime);
278 __add_wait_runtime(cfs_rq, se, delta);
279 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
280 }
281
282 /*
283 * Update the current task's runtime statistics. Skip current tasks that
284 * are not in our scheduling class.
285 */
286 static inline void
287 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr)
288 {
289 unsigned long delta, delta_exec, delta_fair, delta_mine;
290 struct load_weight *lw = &cfs_rq->load;
291 unsigned long load = lw->weight;
292
293 delta_exec = curr->delta_exec;
294 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
295
296 curr->sum_exec_runtime += delta_exec;
297 cfs_rq->exec_clock += delta_exec;
298
299 if (unlikely(!load))
300 return;
301
302 delta_fair = calc_delta_fair(delta_exec, lw);
303 delta_mine = calc_delta_mine(delta_exec, curr->load.weight, lw);
304
305 if (cfs_rq->sleeper_bonus > sysctl_sched_granularity) {
306 delta = calc_delta_mine(delta_exec, curr->load.weight, lw);
307 delta = min((u64)delta, cfs_rq->sleeper_bonus);
308 delta = min(delta, (unsigned long)(
309 (long)sysctl_sched_runtime_limit - curr->wait_runtime));
310 cfs_rq->sleeper_bonus -= delta;
311 delta_mine -= delta;
312 }
313
314 cfs_rq->fair_clock += delta_fair;
315 /*
316 * We executed delta_exec amount of time on the CPU,
317 * but we were only entitled to delta_mine amount of
318 * time during that period (if nr_running == 1 then
319 * the two values are equal)
320 * [Note: delta_mine - delta_exec is negative]:
321 */
322 add_wait_runtime(cfs_rq, curr, delta_mine - delta_exec);
323 }
324
325 static void update_curr(struct cfs_rq *cfs_rq)
326 {
327 struct sched_entity *curr = cfs_rq_curr(cfs_rq);
328 unsigned long delta_exec;
329
330 if (unlikely(!curr))
331 return;
332
333 /*
334 * Get the amount of time the current task was running
335 * since the last time we changed load (this cannot
336 * overflow on 32 bits):
337 */
338 delta_exec = (unsigned long)(rq_of(cfs_rq)->clock - curr->exec_start);
339
340 curr->delta_exec += delta_exec;
341
342 if (unlikely(curr->delta_exec > sysctl_sched_stat_granularity)) {
343 __update_curr(cfs_rq, curr);
344 curr->delta_exec = 0;
345 }
346 curr->exec_start = rq_of(cfs_rq)->clock;
347 }
348
349 static inline void
350 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
351 {
352 se->wait_start_fair = cfs_rq->fair_clock;
353 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
354 }
355
356 /*
357 * We calculate fair deltas here, so protect against the random effects
358 * of a multiplication overflow by capping it to the runtime limit:
359 */
360 #if BITS_PER_LONG == 32
361 static inline unsigned long
362 calc_weighted(unsigned long delta, unsigned long weight, int shift)
363 {
364 u64 tmp = (u64)delta * weight >> shift;
365
366 if (unlikely(tmp > sysctl_sched_runtime_limit*2))
367 return sysctl_sched_runtime_limit*2;
368 return tmp;
369 }
370 #else
371 static inline unsigned long
372 calc_weighted(unsigned long delta, unsigned long weight, int shift)
373 {
374 return delta * weight >> shift;
375 }
376 #endif
377
378 /*
379 * Task is being enqueued - update stats:
380 */
381 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
382 {
383 s64 key;
384
385 /*
386 * Are we enqueueing a waiting task? (for current tasks
387 * a dequeue/enqueue event is a NOP)
388 */
389 if (se != cfs_rq_curr(cfs_rq))
390 update_stats_wait_start(cfs_rq, se);
391 /*
392 * Update the key:
393 */
394 key = cfs_rq->fair_clock;
395
396 /*
397 * Optimize the common nice 0 case:
398 */
399 if (likely(se->load.weight == NICE_0_LOAD)) {
400 key -= se->wait_runtime;
401 } else {
402 u64 tmp;
403
404 if (se->wait_runtime < 0) {
405 tmp = -se->wait_runtime;
406 key += (tmp * se->load.inv_weight) >>
407 (WMULT_SHIFT - NICE_0_SHIFT);
408 } else {
409 tmp = se->wait_runtime;
410 key -= (tmp * se->load.inv_weight) >>
411 (WMULT_SHIFT - NICE_0_SHIFT);
412 }
413 }
414
415 se->fair_key = key;
416 }
417
418 /*
419 * Note: must be called with a freshly updated rq->fair_clock.
420 */
421 static inline void
422 __update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
423 {
424 unsigned long delta_fair = se->delta_fair_run;
425
426 schedstat_set(se->wait_max, max(se->wait_max,
427 rq_of(cfs_rq)->clock - se->wait_start));
428
429 if (unlikely(se->load.weight != NICE_0_LOAD))
430 delta_fair = calc_weighted(delta_fair, se->load.weight,
431 NICE_0_SHIFT);
432
433 add_wait_runtime(cfs_rq, se, delta_fair);
434 }
435
436 static void
437 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
438 {
439 unsigned long delta_fair;
440
441 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
442 (u64)(cfs_rq->fair_clock - se->wait_start_fair));
443
444 se->delta_fair_run += delta_fair;
445 if (unlikely(abs(se->delta_fair_run) >=
446 sysctl_sched_stat_granularity)) {
447 __update_stats_wait_end(cfs_rq, se);
448 se->delta_fair_run = 0;
449 }
450
451 se->wait_start_fair = 0;
452 schedstat_set(se->wait_start, 0);
453 }
454
455 static inline void
456 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
457 {
458 update_curr(cfs_rq);
459 /*
460 * Mark the end of the wait period if dequeueing a
461 * waiting task:
462 */
463 if (se != cfs_rq_curr(cfs_rq))
464 update_stats_wait_end(cfs_rq, se);
465 }
466
467 /*
468 * We are picking a new current task - update its stats:
469 */
470 static inline void
471 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
472 {
473 /*
474 * We are starting a new run period:
475 */
476 se->exec_start = rq_of(cfs_rq)->clock;
477 }
478
479 /*
480 * We are descheduling a task - update its stats:
481 */
482 static inline void
483 update_stats_curr_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
484 {
485 se->exec_start = 0;
486 }
487
488 /**************************************************
489 * Scheduling class queueing methods:
490 */
491
492 static void __enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
493 {
494 unsigned long load = cfs_rq->load.weight, delta_fair;
495 long prev_runtime;
496
497 /*
498 * Do not boost sleepers if there's too much bonus 'in flight'
499 * already:
500 */
501 if (unlikely(cfs_rq->sleeper_bonus > sysctl_sched_runtime_limit))
502 return;
503
504 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_LOAD_AVG)
505 load = rq_of(cfs_rq)->cpu_load[2];
506
507 delta_fair = se->delta_fair_sleep;
508
509 /*
510 * Fix up delta_fair with the effect of us running
511 * during the whole sleep period:
512 */
513 if (sysctl_sched_features & SCHED_FEAT_SLEEPER_AVG)
514 delta_fair = div64_likely32((u64)delta_fair * load,
515 load + se->load.weight);
516
517 if (unlikely(se->load.weight != NICE_0_LOAD))
518 delta_fair = calc_weighted(delta_fair, se->load.weight,
519 NICE_0_SHIFT);
520
521 prev_runtime = se->wait_runtime;
522 __add_wait_runtime(cfs_rq, se, delta_fair);
523 schedstat_add(cfs_rq, wait_runtime, se->wait_runtime);
524 delta_fair = se->wait_runtime - prev_runtime;
525
526 /*
527 * Track the amount of bonus we've given to sleepers:
528 */
529 cfs_rq->sleeper_bonus += delta_fair;
530 }
531
532 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
533 {
534 struct task_struct *tsk = task_of(se);
535 unsigned long delta_fair;
536
537 if ((entity_is_task(se) && tsk->policy == SCHED_BATCH) ||
538 !(sysctl_sched_features & SCHED_FEAT_FAIR_SLEEPERS))
539 return;
540
541 delta_fair = (unsigned long)min((u64)(2*sysctl_sched_runtime_limit),
542 (u64)(cfs_rq->fair_clock - se->sleep_start_fair));
543
544 se->delta_fair_sleep += delta_fair;
545 if (unlikely(abs(se->delta_fair_sleep) >=
546 sysctl_sched_stat_granularity)) {
547 __enqueue_sleeper(cfs_rq, se);
548 se->delta_fair_sleep = 0;
549 }
550
551 se->sleep_start_fair = 0;
552
553 #ifdef CONFIG_SCHEDSTATS
554 if (se->sleep_start) {
555 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
556
557 if ((s64)delta < 0)
558 delta = 0;
559
560 if (unlikely(delta > se->sleep_max))
561 se->sleep_max = delta;
562
563 se->sleep_start = 0;
564 se->sum_sleep_runtime += delta;
565 }
566 if (se->block_start) {
567 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
568
569 if ((s64)delta < 0)
570 delta = 0;
571
572 if (unlikely(delta > se->block_max))
573 se->block_max = delta;
574
575 se->block_start = 0;
576 se->sum_sleep_runtime += delta;
577 }
578 #endif
579 }
580
581 static void
582 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
583 {
584 /*
585 * Update the fair clock.
586 */
587 update_curr(cfs_rq);
588
589 if (wakeup)
590 enqueue_sleeper(cfs_rq, se);
591
592 update_stats_enqueue(cfs_rq, se);
593 __enqueue_entity(cfs_rq, se);
594 }
595
596 static void
597 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
598 {
599 update_stats_dequeue(cfs_rq, se);
600 if (sleep) {
601 se->sleep_start_fair = cfs_rq->fair_clock;
602 #ifdef CONFIG_SCHEDSTATS
603 if (entity_is_task(se)) {
604 struct task_struct *tsk = task_of(se);
605
606 if (tsk->state & TASK_INTERRUPTIBLE)
607 se->sleep_start = rq_of(cfs_rq)->clock;
608 if (tsk->state & TASK_UNINTERRUPTIBLE)
609 se->block_start = rq_of(cfs_rq)->clock;
610 }
611 cfs_rq->wait_runtime -= se->wait_runtime;
612 #endif
613 }
614 __dequeue_entity(cfs_rq, se);
615 }
616
617 /*
618 * Preempt the current task with a newly woken task if needed:
619 */
620 static void
621 __check_preempt_curr_fair(struct cfs_rq *cfs_rq, struct sched_entity *se,
622 struct sched_entity *curr, unsigned long granularity)
623 {
624 s64 __delta = curr->fair_key - se->fair_key;
625
626 /*
627 * Take scheduling granularity into account - do not
628 * preempt the current task unless the best task has
629 * a larger than sched_granularity fairness advantage:
630 */
631 if (__delta > niced_granularity(curr, granularity))
632 resched_task(rq_of(cfs_rq)->curr);
633 }
634
635 static inline void
636 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
637 {
638 /*
639 * Any task has to be enqueued before it get to execute on
640 * a CPU. So account for the time it spent waiting on the
641 * runqueue. (note, here we rely on pick_next_task() having
642 * done a put_prev_task_fair() shortly before this, which
643 * updated rq->fair_clock - used by update_stats_wait_end())
644 */
645 update_stats_wait_end(cfs_rq, se);
646 update_stats_curr_start(cfs_rq, se);
647 set_cfs_rq_curr(cfs_rq, se);
648 }
649
650 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
651 {
652 struct sched_entity *se = __pick_next_entity(cfs_rq);
653
654 set_next_entity(cfs_rq, se);
655
656 return se;
657 }
658
659 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
660 {
661 /*
662 * If still on the runqueue then deactivate_task()
663 * was not called and update_curr() has to be done:
664 */
665 if (prev->on_rq)
666 update_curr(cfs_rq);
667
668 update_stats_curr_end(cfs_rq, prev);
669
670 if (prev->on_rq)
671 update_stats_wait_start(cfs_rq, prev);
672 set_cfs_rq_curr(cfs_rq, NULL);
673 }
674
675 static void entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
676 {
677 struct sched_entity *next;
678
679 /*
680 * Dequeue and enqueue the task to update its
681 * position within the tree:
682 */
683 dequeue_entity(cfs_rq, curr, 0);
684 enqueue_entity(cfs_rq, curr, 0);
685
686 /*
687 * Reschedule if another task tops the current one.
688 */
689 next = __pick_next_entity(cfs_rq);
690 if (next == curr)
691 return;
692
693 __check_preempt_curr_fair(cfs_rq, next, curr, sysctl_sched_granularity);
694 }
695
696 /**************************************************
697 * CFS operations on tasks:
698 */
699
700 #ifdef CONFIG_FAIR_GROUP_SCHED
701
702 /* Walk up scheduling entities hierarchy */
703 #define for_each_sched_entity(se) \
704 for (; se; se = se->parent)
705
706 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
707 {
708 return p->se.cfs_rq;
709 }
710
711 /* runqueue on which this entity is (to be) queued */
712 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
713 {
714 return se->cfs_rq;
715 }
716
717 /* runqueue "owned" by this group */
718 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
719 {
720 return grp->my_q;
721 }
722
723 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
724 * another cpu ('this_cpu')
725 */
726 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
727 {
728 /* A later patch will take group into account */
729 return &cpu_rq(this_cpu)->cfs;
730 }
731
732 /* Iterate thr' all leaf cfs_rq's on a runqueue */
733 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
734 list_for_each_entry(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
735
736 /* Do the two (enqueued) tasks belong to the same group ? */
737 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
738 {
739 if (curr->se.cfs_rq == p->se.cfs_rq)
740 return 1;
741
742 return 0;
743 }
744
745 #else /* CONFIG_FAIR_GROUP_SCHED */
746
747 #define for_each_sched_entity(se) \
748 for (; se; se = NULL)
749
750 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
751 {
752 return &task_rq(p)->cfs;
753 }
754
755 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
756 {
757 struct task_struct *p = task_of(se);
758 struct rq *rq = task_rq(p);
759
760 return &rq->cfs;
761 }
762
763 /* runqueue "owned" by this group */
764 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
765 {
766 return NULL;
767 }
768
769 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
770 {
771 return &cpu_rq(this_cpu)->cfs;
772 }
773
774 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
775 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
776
777 static inline int is_same_group(struct task_struct *curr, struct task_struct *p)
778 {
779 return 1;
780 }
781
782 #endif /* CONFIG_FAIR_GROUP_SCHED */
783
784 /*
785 * The enqueue_task method is called before nr_running is
786 * increased. Here we update the fair scheduling stats and
787 * then put the task into the rbtree:
788 */
789 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
790 {
791 struct cfs_rq *cfs_rq;
792 struct sched_entity *se = &p->se;
793
794 for_each_sched_entity(se) {
795 if (se->on_rq)
796 break;
797 cfs_rq = cfs_rq_of(se);
798 enqueue_entity(cfs_rq, se, wakeup);
799 }
800 }
801
802 /*
803 * The dequeue_task method is called before nr_running is
804 * decreased. We remove the task from the rbtree and
805 * update the fair scheduling stats:
806 */
807 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
808 {
809 struct cfs_rq *cfs_rq;
810 struct sched_entity *se = &p->se;
811
812 for_each_sched_entity(se) {
813 cfs_rq = cfs_rq_of(se);
814 dequeue_entity(cfs_rq, se, sleep);
815 /* Don't dequeue parent if it has other entities besides us */
816 if (cfs_rq->load.weight)
817 break;
818 }
819 }
820
821 /*
822 * sched_yield() support is very simple - we dequeue and enqueue
823 */
824 static void yield_task_fair(struct rq *rq, struct task_struct *p)
825 {
826 struct cfs_rq *cfs_rq = task_cfs_rq(p);
827
828 __update_rq_clock(rq);
829 /*
830 * Dequeue and enqueue the task to update its
831 * position within the tree:
832 */
833 dequeue_entity(cfs_rq, &p->se, 0);
834 enqueue_entity(cfs_rq, &p->se, 0);
835 }
836
837 /*
838 * Preempt the current task with a newly woken task if needed:
839 */
840 static void check_preempt_curr_fair(struct rq *rq, struct task_struct *p)
841 {
842 struct task_struct *curr = rq->curr;
843 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
844 unsigned long gran;
845
846 if (unlikely(rt_prio(p->prio))) {
847 update_rq_clock(rq);
848 update_curr(cfs_rq);
849 resched_task(curr);
850 return;
851 }
852
853 gran = sysctl_sched_wakeup_granularity;
854 /*
855 * Batch tasks prefer throughput over latency:
856 */
857 if (unlikely(p->policy == SCHED_BATCH))
858 gran = sysctl_sched_batch_wakeup_granularity;
859
860 if (is_same_group(curr, p))
861 __check_preempt_curr_fair(cfs_rq, &p->se, &curr->se, gran);
862 }
863
864 static struct task_struct *pick_next_task_fair(struct rq *rq)
865 {
866 struct cfs_rq *cfs_rq = &rq->cfs;
867 struct sched_entity *se;
868
869 if (unlikely(!cfs_rq->nr_running))
870 return NULL;
871
872 do {
873 se = pick_next_entity(cfs_rq);
874 cfs_rq = group_cfs_rq(se);
875 } while (cfs_rq);
876
877 return task_of(se);
878 }
879
880 /*
881 * Account for a descheduled task:
882 */
883 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
884 {
885 struct sched_entity *se = &prev->se;
886 struct cfs_rq *cfs_rq;
887
888 for_each_sched_entity(se) {
889 cfs_rq = cfs_rq_of(se);
890 put_prev_entity(cfs_rq, se);
891 }
892 }
893
894 /**************************************************
895 * Fair scheduling class load-balancing methods:
896 */
897
898 /*
899 * Load-balancing iterator. Note: while the runqueue stays locked
900 * during the whole iteration, the current task might be
901 * dequeued so the iterator has to be dequeue-safe. Here we
902 * achieve that by always pre-iterating before returning
903 * the current task:
904 */
905 static inline struct task_struct *
906 __load_balance_iterator(struct cfs_rq *cfs_rq, struct rb_node *curr)
907 {
908 struct task_struct *p;
909
910 if (!curr)
911 return NULL;
912
913 p = rb_entry(curr, struct task_struct, se.run_node);
914 cfs_rq->rb_load_balance_curr = rb_next(curr);
915
916 return p;
917 }
918
919 static struct task_struct *load_balance_start_fair(void *arg)
920 {
921 struct cfs_rq *cfs_rq = arg;
922
923 return __load_balance_iterator(cfs_rq, first_fair(cfs_rq));
924 }
925
926 static struct task_struct *load_balance_next_fair(void *arg)
927 {
928 struct cfs_rq *cfs_rq = arg;
929
930 return __load_balance_iterator(cfs_rq, cfs_rq->rb_load_balance_curr);
931 }
932
933 #ifdef CONFIG_FAIR_GROUP_SCHED
934 static int cfs_rq_best_prio(struct cfs_rq *cfs_rq)
935 {
936 struct sched_entity *curr;
937 struct task_struct *p;
938
939 if (!cfs_rq->nr_running)
940 return MAX_PRIO;
941
942 curr = __pick_next_entity(cfs_rq);
943 p = task_of(curr);
944
945 return p->prio;
946 }
947 #endif
948
949 static unsigned long
950 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
951 unsigned long max_nr_move, unsigned long max_load_move,
952 struct sched_domain *sd, enum cpu_idle_type idle,
953 int *all_pinned, int *this_best_prio)
954 {
955 struct cfs_rq *busy_cfs_rq;
956 unsigned long load_moved, total_nr_moved = 0, nr_moved;
957 long rem_load_move = max_load_move;
958 struct rq_iterator cfs_rq_iterator;
959
960 cfs_rq_iterator.start = load_balance_start_fair;
961 cfs_rq_iterator.next = load_balance_next_fair;
962
963 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
964 #ifdef CONFIG_FAIR_GROUP_SCHED
965 struct cfs_rq *this_cfs_rq;
966 long imbalance;
967 unsigned long maxload;
968
969 this_cfs_rq = cpu_cfs_rq(busy_cfs_rq, this_cpu);
970
971 imbalance = busy_cfs_rq->load.weight - this_cfs_rq->load.weight;
972 /* Don't pull if this_cfs_rq has more load than busy_cfs_rq */
973 if (imbalance <= 0)
974 continue;
975
976 /* Don't pull more than imbalance/2 */
977 imbalance /= 2;
978 maxload = min(rem_load_move, imbalance);
979
980 *this_best_prio = cfs_rq_best_prio(this_cfs_rq);
981 #else
982 # define maxload rem_load_move
983 #endif
984 /* pass busy_cfs_rq argument into
985 * load_balance_[start|next]_fair iterators
986 */
987 cfs_rq_iterator.arg = busy_cfs_rq;
988 nr_moved = balance_tasks(this_rq, this_cpu, busiest,
989 max_nr_move, maxload, sd, idle, all_pinned,
990 &load_moved, this_best_prio, &cfs_rq_iterator);
991
992 total_nr_moved += nr_moved;
993 max_nr_move -= nr_moved;
994 rem_load_move -= load_moved;
995
996 if (max_nr_move <= 0 || rem_load_move <= 0)
997 break;
998 }
999
1000 return max_load_move - rem_load_move;
1001 }
1002
1003 /*
1004 * scheduler tick hitting a task of our scheduling class:
1005 */
1006 static void task_tick_fair(struct rq *rq, struct task_struct *curr)
1007 {
1008 struct cfs_rq *cfs_rq;
1009 struct sched_entity *se = &curr->se;
1010
1011 for_each_sched_entity(se) {
1012 cfs_rq = cfs_rq_of(se);
1013 entity_tick(cfs_rq, se);
1014 }
1015 }
1016
1017 /*
1018 * Share the fairness runtime between parent and child, thus the
1019 * total amount of pressure for CPU stays equal - new tasks
1020 * get a chance to run but frequent forkers are not allowed to
1021 * monopolize the CPU. Note: the parent runqueue is locked,
1022 * the child is not running yet.
1023 */
1024 static void task_new_fair(struct rq *rq, struct task_struct *p)
1025 {
1026 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1027 struct sched_entity *se = &p->se;
1028
1029 sched_info_queued(p);
1030
1031 update_stats_enqueue(cfs_rq, se);
1032 /*
1033 * Child runs first: we let it run before the parent
1034 * until it reschedules once. We set up the key so that
1035 * it will preempt the parent:
1036 */
1037 p->se.fair_key = current->se.fair_key -
1038 niced_granularity(&rq->curr->se, sysctl_sched_granularity) - 1;
1039 /*
1040 * The first wait is dominated by the child-runs-first logic,
1041 * so do not credit it with that waiting time yet:
1042 */
1043 if (sysctl_sched_features & SCHED_FEAT_SKIP_INITIAL)
1044 p->se.wait_start_fair = 0;
1045
1046 /*
1047 * The statistical average of wait_runtime is about
1048 * -granularity/2, so initialize the task with that:
1049 */
1050 if (sysctl_sched_features & SCHED_FEAT_START_DEBIT)
1051 p->se.wait_runtime = -(sysctl_sched_granularity / 2);
1052
1053 __enqueue_entity(cfs_rq, se);
1054 }
1055
1056 #ifdef CONFIG_FAIR_GROUP_SCHED
1057 /* Account for a task changing its policy or group.
1058 *
1059 * This routine is mostly called to set cfs_rq->curr field when a task
1060 * migrates between groups/classes.
1061 */
1062 static void set_curr_task_fair(struct rq *rq)
1063 {
1064 struct sched_entity *se = &rq->curr->se;
1065
1066 for_each_sched_entity(se)
1067 set_next_entity(cfs_rq_of(se), se);
1068 }
1069 #else
1070 static void set_curr_task_fair(struct rq *rq)
1071 {
1072 }
1073 #endif
1074
1075 /*
1076 * All the scheduling class methods:
1077 */
1078 struct sched_class fair_sched_class __read_mostly = {
1079 .enqueue_task = enqueue_task_fair,
1080 .dequeue_task = dequeue_task_fair,
1081 .yield_task = yield_task_fair,
1082
1083 .check_preempt_curr = check_preempt_curr_fair,
1084
1085 .pick_next_task = pick_next_task_fair,
1086 .put_prev_task = put_prev_task_fair,
1087
1088 .load_balance = load_balance_fair,
1089
1090 .set_curr_task = set_curr_task_fair,
1091 .task_tick = task_tick_fair,
1092 .task_new = task_new_fair,
1093 };
1094
1095 #ifdef CONFIG_SCHED_DEBUG
1096 static void print_cfs_stats(struct seq_file *m, int cpu)
1097 {
1098 struct cfs_rq *cfs_rq;
1099
1100 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1101 print_cfs_rq(m, cpu, cfs_rq);
1102 }
1103 #endif