]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/sched_fair.c
Merge branch 'master' of git://git.infradead.org/users/dwmw2/solos-2.6
[mirror_ubuntu-bionic-kernel.git] / kernel / sched_fair.c
1 /*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
21 */
22
23 #include <linux/latencytop.h>
24
25 /*
26 * Targeted preemption latency for CPU-bound tasks:
27 * (default: 5ms * (1 + ilog(ncpus)), units: nanoseconds)
28 *
29 * NOTE: this latency value is not the same as the concept of
30 * 'timeslice length' - timeslices in CFS are of variable length
31 * and have no persistent notion like in traditional, time-slice
32 * based scheduling concepts.
33 *
34 * (to see the precise effective timeslice length of your workload,
35 * run vmstat and monitor the context-switches (cs) field)
36 */
37 unsigned int sysctl_sched_latency = 5000000ULL;
38
39 /*
40 * Minimal preemption granularity for CPU-bound tasks:
41 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
42 */
43 unsigned int sysctl_sched_min_granularity = 1000000ULL;
44
45 /*
46 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
47 */
48 static unsigned int sched_nr_latency = 5;
49
50 /*
51 * After fork, child runs first. If set to 0 (default) then
52 * parent will (try to) run first.
53 */
54 unsigned int sysctl_sched_child_runs_first __read_mostly;
55
56 /*
57 * sys_sched_yield() compat mode
58 *
59 * This option switches the agressive yield implementation of the
60 * old scheduler back on.
61 */
62 unsigned int __read_mostly sysctl_sched_compat_yield;
63
64 /*
65 * SCHED_OTHER wake-up granularity.
66 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
67 *
68 * This option delays the preemption effects of decoupled workloads
69 * and reduces their over-scheduling. Synchronous workloads will still
70 * have immediate wakeup/sleep latencies.
71 */
72 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
73
74 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
75
76 static const struct sched_class fair_sched_class;
77
78 /**************************************************************
79 * CFS operations on generic schedulable entities:
80 */
81
82 #ifdef CONFIG_FAIR_GROUP_SCHED
83
84 /* cpu runqueue to which this cfs_rq is attached */
85 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
86 {
87 return cfs_rq->rq;
88 }
89
90 /* An entity is a task if it doesn't "own" a runqueue */
91 #define entity_is_task(se) (!se->my_q)
92
93 static inline struct task_struct *task_of(struct sched_entity *se)
94 {
95 #ifdef CONFIG_SCHED_DEBUG
96 WARN_ON_ONCE(!entity_is_task(se));
97 #endif
98 return container_of(se, struct task_struct, se);
99 }
100
101 /* Walk up scheduling entities hierarchy */
102 #define for_each_sched_entity(se) \
103 for (; se; se = se->parent)
104
105 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
106 {
107 return p->se.cfs_rq;
108 }
109
110 /* runqueue on which this entity is (to be) queued */
111 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
112 {
113 return se->cfs_rq;
114 }
115
116 /* runqueue "owned" by this group */
117 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
118 {
119 return grp->my_q;
120 }
121
122 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
123 * another cpu ('this_cpu')
124 */
125 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
126 {
127 return cfs_rq->tg->cfs_rq[this_cpu];
128 }
129
130 /* Iterate thr' all leaf cfs_rq's on a runqueue */
131 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
132 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
133
134 /* Do the two (enqueued) entities belong to the same group ? */
135 static inline int
136 is_same_group(struct sched_entity *se, struct sched_entity *pse)
137 {
138 if (se->cfs_rq == pse->cfs_rq)
139 return 1;
140
141 return 0;
142 }
143
144 static inline struct sched_entity *parent_entity(struct sched_entity *se)
145 {
146 return se->parent;
147 }
148
149 /* return depth at which a sched entity is present in the hierarchy */
150 static inline int depth_se(struct sched_entity *se)
151 {
152 int depth = 0;
153
154 for_each_sched_entity(se)
155 depth++;
156
157 return depth;
158 }
159
160 static void
161 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
162 {
163 int se_depth, pse_depth;
164
165 /*
166 * preemption test can be made between sibling entities who are in the
167 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
168 * both tasks until we find their ancestors who are siblings of common
169 * parent.
170 */
171
172 /* First walk up until both entities are at same depth */
173 se_depth = depth_se(*se);
174 pse_depth = depth_se(*pse);
175
176 while (se_depth > pse_depth) {
177 se_depth--;
178 *se = parent_entity(*se);
179 }
180
181 while (pse_depth > se_depth) {
182 pse_depth--;
183 *pse = parent_entity(*pse);
184 }
185
186 while (!is_same_group(*se, *pse)) {
187 *se = parent_entity(*se);
188 *pse = parent_entity(*pse);
189 }
190 }
191
192 #else /* !CONFIG_FAIR_GROUP_SCHED */
193
194 static inline struct task_struct *task_of(struct sched_entity *se)
195 {
196 return container_of(se, struct task_struct, se);
197 }
198
199 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
200 {
201 return container_of(cfs_rq, struct rq, cfs);
202 }
203
204 #define entity_is_task(se) 1
205
206 #define for_each_sched_entity(se) \
207 for (; se; se = NULL)
208
209 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
210 {
211 return &task_rq(p)->cfs;
212 }
213
214 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
215 {
216 struct task_struct *p = task_of(se);
217 struct rq *rq = task_rq(p);
218
219 return &rq->cfs;
220 }
221
222 /* runqueue "owned" by this group */
223 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
224 {
225 return NULL;
226 }
227
228 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
229 {
230 return &cpu_rq(this_cpu)->cfs;
231 }
232
233 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
234 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
235
236 static inline int
237 is_same_group(struct sched_entity *se, struct sched_entity *pse)
238 {
239 return 1;
240 }
241
242 static inline struct sched_entity *parent_entity(struct sched_entity *se)
243 {
244 return NULL;
245 }
246
247 static inline void
248 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
249 {
250 }
251
252 #endif /* CONFIG_FAIR_GROUP_SCHED */
253
254
255 /**************************************************************
256 * Scheduling class tree data structure manipulation methods:
257 */
258
259 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
260 {
261 s64 delta = (s64)(vruntime - min_vruntime);
262 if (delta > 0)
263 min_vruntime = vruntime;
264
265 return min_vruntime;
266 }
267
268 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
269 {
270 s64 delta = (s64)(vruntime - min_vruntime);
271 if (delta < 0)
272 min_vruntime = vruntime;
273
274 return min_vruntime;
275 }
276
277 static inline int entity_before(struct sched_entity *a,
278 struct sched_entity *b)
279 {
280 return (s64)(a->vruntime - b->vruntime) < 0;
281 }
282
283 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
284 {
285 return se->vruntime - cfs_rq->min_vruntime;
286 }
287
288 static void update_min_vruntime(struct cfs_rq *cfs_rq)
289 {
290 u64 vruntime = cfs_rq->min_vruntime;
291
292 if (cfs_rq->curr)
293 vruntime = cfs_rq->curr->vruntime;
294
295 if (cfs_rq->rb_leftmost) {
296 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
297 struct sched_entity,
298 run_node);
299
300 if (!cfs_rq->curr)
301 vruntime = se->vruntime;
302 else
303 vruntime = min_vruntime(vruntime, se->vruntime);
304 }
305
306 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
307 }
308
309 /*
310 * Enqueue an entity into the rb-tree:
311 */
312 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
313 {
314 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
315 struct rb_node *parent = NULL;
316 struct sched_entity *entry;
317 s64 key = entity_key(cfs_rq, se);
318 int leftmost = 1;
319
320 /*
321 * Find the right place in the rbtree:
322 */
323 while (*link) {
324 parent = *link;
325 entry = rb_entry(parent, struct sched_entity, run_node);
326 /*
327 * We dont care about collisions. Nodes with
328 * the same key stay together.
329 */
330 if (key < entity_key(cfs_rq, entry)) {
331 link = &parent->rb_left;
332 } else {
333 link = &parent->rb_right;
334 leftmost = 0;
335 }
336 }
337
338 /*
339 * Maintain a cache of leftmost tree entries (it is frequently
340 * used):
341 */
342 if (leftmost)
343 cfs_rq->rb_leftmost = &se->run_node;
344
345 rb_link_node(&se->run_node, parent, link);
346 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
347 }
348
349 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
350 {
351 if (cfs_rq->rb_leftmost == &se->run_node) {
352 struct rb_node *next_node;
353
354 next_node = rb_next(&se->run_node);
355 cfs_rq->rb_leftmost = next_node;
356 }
357
358 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
359 }
360
361 static struct sched_entity *__pick_next_entity(struct cfs_rq *cfs_rq)
362 {
363 struct rb_node *left = cfs_rq->rb_leftmost;
364
365 if (!left)
366 return NULL;
367
368 return rb_entry(left, struct sched_entity, run_node);
369 }
370
371 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
372 {
373 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
374
375 if (!last)
376 return NULL;
377
378 return rb_entry(last, struct sched_entity, run_node);
379 }
380
381 /**************************************************************
382 * Scheduling class statistics methods:
383 */
384
385 #ifdef CONFIG_SCHED_DEBUG
386 int sched_nr_latency_handler(struct ctl_table *table, int write,
387 struct file *filp, void __user *buffer, size_t *lenp,
388 loff_t *ppos)
389 {
390 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
391
392 if (ret || !write)
393 return ret;
394
395 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
396 sysctl_sched_min_granularity);
397
398 return 0;
399 }
400 #endif
401
402 /*
403 * delta /= w
404 */
405 static inline unsigned long
406 calc_delta_fair(unsigned long delta, struct sched_entity *se)
407 {
408 if (unlikely(se->load.weight != NICE_0_LOAD))
409 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
410
411 return delta;
412 }
413
414 /*
415 * The idea is to set a period in which each task runs once.
416 *
417 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
418 * this period because otherwise the slices get too small.
419 *
420 * p = (nr <= nl) ? l : l*nr/nl
421 */
422 static u64 __sched_period(unsigned long nr_running)
423 {
424 u64 period = sysctl_sched_latency;
425 unsigned long nr_latency = sched_nr_latency;
426
427 if (unlikely(nr_running > nr_latency)) {
428 period = sysctl_sched_min_granularity;
429 period *= nr_running;
430 }
431
432 return period;
433 }
434
435 /*
436 * We calculate the wall-time slice from the period by taking a part
437 * proportional to the weight.
438 *
439 * s = p*P[w/rw]
440 */
441 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
442 {
443 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
444
445 for_each_sched_entity(se) {
446 struct load_weight *load;
447 struct load_weight lw;
448
449 cfs_rq = cfs_rq_of(se);
450 load = &cfs_rq->load;
451
452 if (unlikely(!se->on_rq)) {
453 lw = cfs_rq->load;
454
455 update_load_add(&lw, se->load.weight);
456 load = &lw;
457 }
458 slice = calc_delta_mine(slice, se->load.weight, load);
459 }
460 return slice;
461 }
462
463 /*
464 * We calculate the vruntime slice of a to be inserted task
465 *
466 * vs = s/w
467 */
468 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
469 {
470 return calc_delta_fair(sched_slice(cfs_rq, se), se);
471 }
472
473 /*
474 * Update the current task's runtime statistics. Skip current tasks that
475 * are not in our scheduling class.
476 */
477 static inline void
478 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
479 unsigned long delta_exec)
480 {
481 unsigned long delta_exec_weighted;
482
483 schedstat_set(curr->exec_max, max((u64)delta_exec, curr->exec_max));
484
485 curr->sum_exec_runtime += delta_exec;
486 schedstat_add(cfs_rq, exec_clock, delta_exec);
487 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
488 curr->vruntime += delta_exec_weighted;
489 update_min_vruntime(cfs_rq);
490 }
491
492 static void update_curr(struct cfs_rq *cfs_rq)
493 {
494 struct sched_entity *curr = cfs_rq->curr;
495 u64 now = rq_of(cfs_rq)->clock;
496 unsigned long delta_exec;
497
498 if (unlikely(!curr))
499 return;
500
501 /*
502 * Get the amount of time the current task was running
503 * since the last time we changed load (this cannot
504 * overflow on 32 bits):
505 */
506 delta_exec = (unsigned long)(now - curr->exec_start);
507 if (!delta_exec)
508 return;
509
510 __update_curr(cfs_rq, curr, delta_exec);
511 curr->exec_start = now;
512
513 if (entity_is_task(curr)) {
514 struct task_struct *curtask = task_of(curr);
515
516 cpuacct_charge(curtask, delta_exec);
517 account_group_exec_runtime(curtask, delta_exec);
518 }
519 }
520
521 static inline void
522 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
523 {
524 schedstat_set(se->wait_start, rq_of(cfs_rq)->clock);
525 }
526
527 /*
528 * Task is being enqueued - update stats:
529 */
530 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
531 {
532 /*
533 * Are we enqueueing a waiting task? (for current tasks
534 * a dequeue/enqueue event is a NOP)
535 */
536 if (se != cfs_rq->curr)
537 update_stats_wait_start(cfs_rq, se);
538 }
539
540 static void
541 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
542 {
543 schedstat_set(se->wait_max, max(se->wait_max,
544 rq_of(cfs_rq)->clock - se->wait_start));
545 schedstat_set(se->wait_count, se->wait_count + 1);
546 schedstat_set(se->wait_sum, se->wait_sum +
547 rq_of(cfs_rq)->clock - se->wait_start);
548 #ifdef CONFIG_SCHEDSTATS
549 if (entity_is_task(se)) {
550 trace_sched_stat_wait(task_of(se),
551 rq_of(cfs_rq)->clock - se->wait_start);
552 }
553 #endif
554 schedstat_set(se->wait_start, 0);
555 }
556
557 static inline void
558 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
559 {
560 /*
561 * Mark the end of the wait period if dequeueing a
562 * waiting task:
563 */
564 if (se != cfs_rq->curr)
565 update_stats_wait_end(cfs_rq, se);
566 }
567
568 /*
569 * We are picking a new current task - update its stats:
570 */
571 static inline void
572 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
573 {
574 /*
575 * We are starting a new run period:
576 */
577 se->exec_start = rq_of(cfs_rq)->clock;
578 }
579
580 /**************************************************
581 * Scheduling class queueing methods:
582 */
583
584 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
585 static void
586 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
587 {
588 cfs_rq->task_weight += weight;
589 }
590 #else
591 static inline void
592 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
593 {
594 }
595 #endif
596
597 static void
598 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
599 {
600 update_load_add(&cfs_rq->load, se->load.weight);
601 if (!parent_entity(se))
602 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
603 if (entity_is_task(se)) {
604 add_cfs_task_weight(cfs_rq, se->load.weight);
605 list_add(&se->group_node, &cfs_rq->tasks);
606 }
607 cfs_rq->nr_running++;
608 se->on_rq = 1;
609 }
610
611 static void
612 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
613 {
614 update_load_sub(&cfs_rq->load, se->load.weight);
615 if (!parent_entity(se))
616 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
617 if (entity_is_task(se)) {
618 add_cfs_task_weight(cfs_rq, -se->load.weight);
619 list_del_init(&se->group_node);
620 }
621 cfs_rq->nr_running--;
622 se->on_rq = 0;
623 }
624
625 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
626 {
627 #ifdef CONFIG_SCHEDSTATS
628 struct task_struct *tsk = NULL;
629
630 if (entity_is_task(se))
631 tsk = task_of(se);
632
633 if (se->sleep_start) {
634 u64 delta = rq_of(cfs_rq)->clock - se->sleep_start;
635
636 if ((s64)delta < 0)
637 delta = 0;
638
639 if (unlikely(delta > se->sleep_max))
640 se->sleep_max = delta;
641
642 se->sleep_start = 0;
643 se->sum_sleep_runtime += delta;
644
645 if (tsk) {
646 account_scheduler_latency(tsk, delta >> 10, 1);
647 trace_sched_stat_sleep(tsk, delta);
648 }
649 }
650 if (se->block_start) {
651 u64 delta = rq_of(cfs_rq)->clock - se->block_start;
652
653 if ((s64)delta < 0)
654 delta = 0;
655
656 if (unlikely(delta > se->block_max))
657 se->block_max = delta;
658
659 se->block_start = 0;
660 se->sum_sleep_runtime += delta;
661
662 if (tsk) {
663 if (tsk->in_iowait) {
664 se->iowait_sum += delta;
665 se->iowait_count++;
666 trace_sched_stat_iowait(tsk, delta);
667 }
668
669 /*
670 * Blocking time is in units of nanosecs, so shift by
671 * 20 to get a milliseconds-range estimation of the
672 * amount of time that the task spent sleeping:
673 */
674 if (unlikely(prof_on == SLEEP_PROFILING)) {
675 profile_hits(SLEEP_PROFILING,
676 (void *)get_wchan(tsk),
677 delta >> 20);
678 }
679 account_scheduler_latency(tsk, delta >> 10, 0);
680 }
681 }
682 #endif
683 }
684
685 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
686 {
687 #ifdef CONFIG_SCHED_DEBUG
688 s64 d = se->vruntime - cfs_rq->min_vruntime;
689
690 if (d < 0)
691 d = -d;
692
693 if (d > 3*sysctl_sched_latency)
694 schedstat_inc(cfs_rq, nr_spread_over);
695 #endif
696 }
697
698 static void
699 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
700 {
701 u64 vruntime = cfs_rq->min_vruntime;
702
703 /*
704 * The 'current' period is already promised to the current tasks,
705 * however the extra weight of the new task will slow them down a
706 * little, place the new task so that it fits in the slot that
707 * stays open at the end.
708 */
709 if (initial && sched_feat(START_DEBIT))
710 vruntime += sched_vslice(cfs_rq, se);
711
712 if (!initial) {
713 /* sleeps upto a single latency don't count. */
714 if (sched_feat(NEW_FAIR_SLEEPERS)) {
715 unsigned long thresh = sysctl_sched_latency;
716
717 /*
718 * Convert the sleeper threshold into virtual time.
719 * SCHED_IDLE is a special sub-class. We care about
720 * fairness only relative to other SCHED_IDLE tasks,
721 * all of which have the same weight.
722 */
723 if (sched_feat(NORMALIZED_SLEEPER) &&
724 (!entity_is_task(se) ||
725 task_of(se)->policy != SCHED_IDLE))
726 thresh = calc_delta_fair(thresh, se);
727
728 vruntime -= thresh;
729 }
730 }
731
732 /* ensure we never gain time by being placed backwards. */
733 vruntime = max_vruntime(se->vruntime, vruntime);
734
735 se->vruntime = vruntime;
736 }
737
738 static void
739 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int wakeup)
740 {
741 /*
742 * Update run-time statistics of the 'current'.
743 */
744 update_curr(cfs_rq);
745 account_entity_enqueue(cfs_rq, se);
746
747 if (wakeup) {
748 place_entity(cfs_rq, se, 0);
749 enqueue_sleeper(cfs_rq, se);
750 }
751
752 update_stats_enqueue(cfs_rq, se);
753 check_spread(cfs_rq, se);
754 if (se != cfs_rq->curr)
755 __enqueue_entity(cfs_rq, se);
756 }
757
758 static void __clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
759 {
760 if (cfs_rq->last == se)
761 cfs_rq->last = NULL;
762
763 if (cfs_rq->next == se)
764 cfs_rq->next = NULL;
765 }
766
767 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769 for_each_sched_entity(se)
770 __clear_buddies(cfs_rq_of(se), se);
771 }
772
773 static void
774 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int sleep)
775 {
776 /*
777 * Update run-time statistics of the 'current'.
778 */
779 update_curr(cfs_rq);
780
781 update_stats_dequeue(cfs_rq, se);
782 if (sleep) {
783 #ifdef CONFIG_SCHEDSTATS
784 if (entity_is_task(se)) {
785 struct task_struct *tsk = task_of(se);
786
787 if (tsk->state & TASK_INTERRUPTIBLE)
788 se->sleep_start = rq_of(cfs_rq)->clock;
789 if (tsk->state & TASK_UNINTERRUPTIBLE)
790 se->block_start = rq_of(cfs_rq)->clock;
791 }
792 #endif
793 }
794
795 clear_buddies(cfs_rq, se);
796
797 if (se != cfs_rq->curr)
798 __dequeue_entity(cfs_rq, se);
799 account_entity_dequeue(cfs_rq, se);
800 update_min_vruntime(cfs_rq);
801 }
802
803 /*
804 * Preempt the current task with a newly woken task if needed:
805 */
806 static void
807 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
808 {
809 unsigned long ideal_runtime, delta_exec;
810
811 ideal_runtime = sched_slice(cfs_rq, curr);
812 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
813 if (delta_exec > ideal_runtime) {
814 resched_task(rq_of(cfs_rq)->curr);
815 /*
816 * The current task ran long enough, ensure it doesn't get
817 * re-elected due to buddy favours.
818 */
819 clear_buddies(cfs_rq, curr);
820 }
821 }
822
823 static void
824 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
825 {
826 /* 'current' is not kept within the tree. */
827 if (se->on_rq) {
828 /*
829 * Any task has to be enqueued before it get to execute on
830 * a CPU. So account for the time it spent waiting on the
831 * runqueue.
832 */
833 update_stats_wait_end(cfs_rq, se);
834 __dequeue_entity(cfs_rq, se);
835 }
836
837 update_stats_curr_start(cfs_rq, se);
838 cfs_rq->curr = se;
839 #ifdef CONFIG_SCHEDSTATS
840 /*
841 * Track our maximum slice length, if the CPU's load is at
842 * least twice that of our own weight (i.e. dont track it
843 * when there are only lesser-weight tasks around):
844 */
845 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
846 se->slice_max = max(se->slice_max,
847 se->sum_exec_runtime - se->prev_sum_exec_runtime);
848 }
849 #endif
850 se->prev_sum_exec_runtime = se->sum_exec_runtime;
851 }
852
853 static int
854 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
855
856 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
857 {
858 struct sched_entity *se = __pick_next_entity(cfs_rq);
859
860 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, se) < 1)
861 return cfs_rq->next;
862
863 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, se) < 1)
864 return cfs_rq->last;
865
866 return se;
867 }
868
869 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
870 {
871 /*
872 * If still on the runqueue then deactivate_task()
873 * was not called and update_curr() has to be done:
874 */
875 if (prev->on_rq)
876 update_curr(cfs_rq);
877
878 check_spread(cfs_rq, prev);
879 if (prev->on_rq) {
880 update_stats_wait_start(cfs_rq, prev);
881 /* Put 'current' back into the tree. */
882 __enqueue_entity(cfs_rq, prev);
883 }
884 cfs_rq->curr = NULL;
885 }
886
887 static void
888 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
889 {
890 /*
891 * Update run-time statistics of the 'current'.
892 */
893 update_curr(cfs_rq);
894
895 #ifdef CONFIG_SCHED_HRTICK
896 /*
897 * queued ticks are scheduled to match the slice, so don't bother
898 * validating it and just reschedule.
899 */
900 if (queued) {
901 resched_task(rq_of(cfs_rq)->curr);
902 return;
903 }
904 /*
905 * don't let the period tick interfere with the hrtick preemption
906 */
907 if (!sched_feat(DOUBLE_TICK) &&
908 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
909 return;
910 #endif
911
912 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
913 check_preempt_tick(cfs_rq, curr);
914 }
915
916 /**************************************************
917 * CFS operations on tasks:
918 */
919
920 #ifdef CONFIG_SCHED_HRTICK
921 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
922 {
923 struct sched_entity *se = &p->se;
924 struct cfs_rq *cfs_rq = cfs_rq_of(se);
925
926 WARN_ON(task_rq(p) != rq);
927
928 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
929 u64 slice = sched_slice(cfs_rq, se);
930 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
931 s64 delta = slice - ran;
932
933 if (delta < 0) {
934 if (rq->curr == p)
935 resched_task(p);
936 return;
937 }
938
939 /*
940 * Don't schedule slices shorter than 10000ns, that just
941 * doesn't make sense. Rely on vruntime for fairness.
942 */
943 if (rq->curr != p)
944 delta = max_t(s64, 10000LL, delta);
945
946 hrtick_start(rq, delta);
947 }
948 }
949
950 /*
951 * called from enqueue/dequeue and updates the hrtick when the
952 * current task is from our class and nr_running is low enough
953 * to matter.
954 */
955 static void hrtick_update(struct rq *rq)
956 {
957 struct task_struct *curr = rq->curr;
958
959 if (curr->sched_class != &fair_sched_class)
960 return;
961
962 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
963 hrtick_start_fair(rq, curr);
964 }
965 #else /* !CONFIG_SCHED_HRTICK */
966 static inline void
967 hrtick_start_fair(struct rq *rq, struct task_struct *p)
968 {
969 }
970
971 static inline void hrtick_update(struct rq *rq)
972 {
973 }
974 #endif
975
976 /*
977 * The enqueue_task method is called before nr_running is
978 * increased. Here we update the fair scheduling stats and
979 * then put the task into the rbtree:
980 */
981 static void enqueue_task_fair(struct rq *rq, struct task_struct *p, int wakeup)
982 {
983 struct cfs_rq *cfs_rq;
984 struct sched_entity *se = &p->se;
985
986 for_each_sched_entity(se) {
987 if (se->on_rq)
988 break;
989 cfs_rq = cfs_rq_of(se);
990 enqueue_entity(cfs_rq, se, wakeup);
991 wakeup = 1;
992 }
993
994 hrtick_update(rq);
995 }
996
997 /*
998 * The dequeue_task method is called before nr_running is
999 * decreased. We remove the task from the rbtree and
1000 * update the fair scheduling stats:
1001 */
1002 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int sleep)
1003 {
1004 struct cfs_rq *cfs_rq;
1005 struct sched_entity *se = &p->se;
1006
1007 for_each_sched_entity(se) {
1008 cfs_rq = cfs_rq_of(se);
1009 dequeue_entity(cfs_rq, se, sleep);
1010 /* Don't dequeue parent if it has other entities besides us */
1011 if (cfs_rq->load.weight)
1012 break;
1013 sleep = 1;
1014 }
1015
1016 hrtick_update(rq);
1017 }
1018
1019 /*
1020 * sched_yield() support is very simple - we dequeue and enqueue.
1021 *
1022 * If compat_yield is turned on then we requeue to the end of the tree.
1023 */
1024 static void yield_task_fair(struct rq *rq)
1025 {
1026 struct task_struct *curr = rq->curr;
1027 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1028 struct sched_entity *rightmost, *se = &curr->se;
1029
1030 /*
1031 * Are we the only task in the tree?
1032 */
1033 if (unlikely(cfs_rq->nr_running == 1))
1034 return;
1035
1036 clear_buddies(cfs_rq, se);
1037
1038 if (likely(!sysctl_sched_compat_yield) && curr->policy != SCHED_BATCH) {
1039 update_rq_clock(rq);
1040 /*
1041 * Update run-time statistics of the 'current'.
1042 */
1043 update_curr(cfs_rq);
1044
1045 return;
1046 }
1047 /*
1048 * Find the rightmost entry in the rbtree:
1049 */
1050 rightmost = __pick_last_entity(cfs_rq);
1051 /*
1052 * Already in the rightmost position?
1053 */
1054 if (unlikely(!rightmost || entity_before(rightmost, se)))
1055 return;
1056
1057 /*
1058 * Minimally necessary key value to be last in the tree:
1059 * Upon rescheduling, sched_class::put_prev_task() will place
1060 * 'current' within the tree based on its new key value.
1061 */
1062 se->vruntime = rightmost->vruntime + 1;
1063 }
1064
1065 /*
1066 * wake_idle() will wake a task on an idle cpu if task->cpu is
1067 * not idle and an idle cpu is available. The span of cpus to
1068 * search starts with cpus closest then further out as needed,
1069 * so we always favor a closer, idle cpu.
1070 * Domains may include CPUs that are not usable for migration,
1071 * hence we need to mask them out (rq->rd->online)
1072 *
1073 * Returns the CPU we should wake onto.
1074 */
1075 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1076
1077 #define cpu_rd_active(cpu, rq) cpumask_test_cpu(cpu, rq->rd->online)
1078
1079 static int wake_idle(int cpu, struct task_struct *p)
1080 {
1081 struct sched_domain *sd;
1082 int i;
1083 unsigned int chosen_wakeup_cpu;
1084 int this_cpu;
1085 struct rq *task_rq = task_rq(p);
1086
1087 /*
1088 * At POWERSAVINGS_BALANCE_WAKEUP level, if both this_cpu and prev_cpu
1089 * are idle and this is not a kernel thread and this task's affinity
1090 * allows it to be moved to preferred cpu, then just move!
1091 */
1092
1093 this_cpu = smp_processor_id();
1094 chosen_wakeup_cpu =
1095 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu;
1096
1097 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP &&
1098 idle_cpu(cpu) && idle_cpu(this_cpu) &&
1099 p->mm && !(p->flags & PF_KTHREAD) &&
1100 cpu_isset(chosen_wakeup_cpu, p->cpus_allowed))
1101 return chosen_wakeup_cpu;
1102
1103 /*
1104 * If it is idle, then it is the best cpu to run this task.
1105 *
1106 * This cpu is also the best, if it has more than one task already.
1107 * Siblings must be also busy(in most cases) as they didn't already
1108 * pickup the extra load from this cpu and hence we need not check
1109 * sibling runqueue info. This will avoid the checks and cache miss
1110 * penalities associated with that.
1111 */
1112 if (idle_cpu(cpu) || cpu_rq(cpu)->cfs.nr_running > 1)
1113 return cpu;
1114
1115 for_each_domain(cpu, sd) {
1116 if ((sd->flags & SD_WAKE_IDLE)
1117 || ((sd->flags & SD_WAKE_IDLE_FAR)
1118 && !task_hot(p, task_rq->clock, sd))) {
1119 for_each_cpu_and(i, sched_domain_span(sd),
1120 &p->cpus_allowed) {
1121 if (cpu_rd_active(i, task_rq) && idle_cpu(i)) {
1122 if (i != task_cpu(p)) {
1123 schedstat_inc(p,
1124 se.nr_wakeups_idle);
1125 }
1126 return i;
1127 }
1128 }
1129 } else {
1130 break;
1131 }
1132 }
1133 return cpu;
1134 }
1135 #else /* !ARCH_HAS_SCHED_WAKE_IDLE*/
1136 static inline int wake_idle(int cpu, struct task_struct *p)
1137 {
1138 return cpu;
1139 }
1140 #endif
1141
1142 #ifdef CONFIG_SMP
1143
1144 #ifdef CONFIG_FAIR_GROUP_SCHED
1145 /*
1146 * effective_load() calculates the load change as seen from the root_task_group
1147 *
1148 * Adding load to a group doesn't make a group heavier, but can cause movement
1149 * of group shares between cpus. Assuming the shares were perfectly aligned one
1150 * can calculate the shift in shares.
1151 *
1152 * The problem is that perfectly aligning the shares is rather expensive, hence
1153 * we try to avoid doing that too often - see update_shares(), which ratelimits
1154 * this change.
1155 *
1156 * We compensate this by not only taking the current delta into account, but
1157 * also considering the delta between when the shares were last adjusted and
1158 * now.
1159 *
1160 * We still saw a performance dip, some tracing learned us that between
1161 * cgroup:/ and cgroup:/foo balancing the number of affine wakeups increased
1162 * significantly. Therefore try to bias the error in direction of failing
1163 * the affine wakeup.
1164 *
1165 */
1166 static long effective_load(struct task_group *tg, int cpu,
1167 long wl, long wg)
1168 {
1169 struct sched_entity *se = tg->se[cpu];
1170
1171 if (!tg->parent)
1172 return wl;
1173
1174 /*
1175 * By not taking the decrease of shares on the other cpu into
1176 * account our error leans towards reducing the affine wakeups.
1177 */
1178 if (!wl && sched_feat(ASYM_EFF_LOAD))
1179 return wl;
1180
1181 for_each_sched_entity(se) {
1182 long S, rw, s, a, b;
1183 long more_w;
1184
1185 /*
1186 * Instead of using this increment, also add the difference
1187 * between when the shares were last updated and now.
1188 */
1189 more_w = se->my_q->load.weight - se->my_q->rq_weight;
1190 wl += more_w;
1191 wg += more_w;
1192
1193 S = se->my_q->tg->shares;
1194 s = se->my_q->shares;
1195 rw = se->my_q->rq_weight;
1196
1197 a = S*(rw + wl);
1198 b = S*rw + s*wg;
1199
1200 wl = s*(a-b);
1201
1202 if (likely(b))
1203 wl /= b;
1204
1205 /*
1206 * Assume the group is already running and will
1207 * thus already be accounted for in the weight.
1208 *
1209 * That is, moving shares between CPUs, does not
1210 * alter the group weight.
1211 */
1212 wg = 0;
1213 }
1214
1215 return wl;
1216 }
1217
1218 #else
1219
1220 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1221 unsigned long wl, unsigned long wg)
1222 {
1223 return wl;
1224 }
1225
1226 #endif
1227
1228 static int
1229 wake_affine(struct sched_domain *this_sd, struct rq *this_rq,
1230 struct task_struct *p, int prev_cpu, int this_cpu, int sync,
1231 int idx, unsigned long load, unsigned long this_load,
1232 unsigned int imbalance)
1233 {
1234 struct task_struct *curr = this_rq->curr;
1235 struct task_group *tg;
1236 unsigned long tl = this_load;
1237 unsigned long tl_per_task;
1238 unsigned long weight;
1239 int balanced;
1240
1241 if (!(this_sd->flags & SD_WAKE_AFFINE) || !sched_feat(AFFINE_WAKEUPS))
1242 return 0;
1243
1244 if (sync && (curr->se.avg_overlap > sysctl_sched_migration_cost ||
1245 p->se.avg_overlap > sysctl_sched_migration_cost))
1246 sync = 0;
1247
1248 /*
1249 * If sync wakeup then subtract the (maximum possible)
1250 * effect of the currently running task from the load
1251 * of the current CPU:
1252 */
1253 if (sync) {
1254 tg = task_group(current);
1255 weight = current->se.load.weight;
1256
1257 tl += effective_load(tg, this_cpu, -weight, -weight);
1258 load += effective_load(tg, prev_cpu, 0, -weight);
1259 }
1260
1261 tg = task_group(p);
1262 weight = p->se.load.weight;
1263
1264 /*
1265 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1266 * due to the sync cause above having dropped tl to 0, we'll always have
1267 * an imbalance, but there's really nothing you can do about that, so
1268 * that's good too.
1269 *
1270 * Otherwise check if either cpus are near enough in load to allow this
1271 * task to be woken on this_cpu.
1272 */
1273 balanced = !tl ||
1274 100*(tl + effective_load(tg, this_cpu, weight, weight)) <=
1275 imbalance*(load + effective_load(tg, prev_cpu, 0, weight));
1276
1277 /*
1278 * If the currently running task will sleep within
1279 * a reasonable amount of time then attract this newly
1280 * woken task:
1281 */
1282 if (sync && balanced)
1283 return 1;
1284
1285 schedstat_inc(p, se.nr_wakeups_affine_attempts);
1286 tl_per_task = cpu_avg_load_per_task(this_cpu);
1287
1288 if (balanced || (tl <= load && tl + target_load(prev_cpu, idx) <=
1289 tl_per_task)) {
1290 /*
1291 * This domain has SD_WAKE_AFFINE and
1292 * p is cache cold in this domain, and
1293 * there is no bad imbalance.
1294 */
1295 schedstat_inc(this_sd, ttwu_move_affine);
1296 schedstat_inc(p, se.nr_wakeups_affine);
1297
1298 return 1;
1299 }
1300 return 0;
1301 }
1302
1303 static int select_task_rq_fair(struct task_struct *p, int sync)
1304 {
1305 struct sched_domain *sd, *this_sd = NULL;
1306 int prev_cpu, this_cpu, new_cpu;
1307 unsigned long load, this_load;
1308 struct rq *this_rq;
1309 unsigned int imbalance;
1310 int idx;
1311
1312 prev_cpu = task_cpu(p);
1313 this_cpu = smp_processor_id();
1314 this_rq = cpu_rq(this_cpu);
1315 new_cpu = prev_cpu;
1316
1317 /*
1318 * 'this_sd' is the first domain that both
1319 * this_cpu and prev_cpu are present in:
1320 */
1321 for_each_domain(this_cpu, sd) {
1322 if (cpumask_test_cpu(prev_cpu, sched_domain_span(sd))) {
1323 this_sd = sd;
1324 break;
1325 }
1326 }
1327
1328 if (unlikely(!cpumask_test_cpu(this_cpu, &p->cpus_allowed)))
1329 goto out;
1330
1331 /*
1332 * Check for affine wakeup and passive balancing possibilities.
1333 */
1334 if (!this_sd)
1335 goto out;
1336
1337 idx = this_sd->wake_idx;
1338
1339 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1340
1341 load = source_load(prev_cpu, idx);
1342 this_load = target_load(this_cpu, idx);
1343
1344 if (wake_affine(this_sd, this_rq, p, prev_cpu, this_cpu, sync, idx,
1345 load, this_load, imbalance))
1346 return this_cpu;
1347
1348 /*
1349 * Start passive balancing when half the imbalance_pct
1350 * limit is reached.
1351 */
1352 if (this_sd->flags & SD_WAKE_BALANCE) {
1353 if (imbalance*this_load <= 100*load) {
1354 schedstat_inc(this_sd, ttwu_move_balance);
1355 schedstat_inc(p, se.nr_wakeups_passive);
1356 return this_cpu;
1357 }
1358 }
1359
1360 out:
1361 return wake_idle(new_cpu, p);
1362 }
1363 #endif /* CONFIG_SMP */
1364
1365 /*
1366 * Adaptive granularity
1367 *
1368 * se->avg_wakeup gives the average time a task runs until it does a wakeup,
1369 * with the limit of wakeup_gran -- when it never does a wakeup.
1370 *
1371 * So the smaller avg_wakeup is the faster we want this task to preempt,
1372 * but we don't want to treat the preemptee unfairly and therefore allow it
1373 * to run for at least the amount of time we'd like to run.
1374 *
1375 * NOTE: we use 2*avg_wakeup to increase the probability of actually doing one
1376 *
1377 * NOTE: we use *nr_running to scale with load, this nicely matches the
1378 * degrading latency on load.
1379 */
1380 static unsigned long
1381 adaptive_gran(struct sched_entity *curr, struct sched_entity *se)
1382 {
1383 u64 this_run = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1384 u64 expected_wakeup = 2*se->avg_wakeup * cfs_rq_of(se)->nr_running;
1385 u64 gran = 0;
1386
1387 if (this_run < expected_wakeup)
1388 gran = expected_wakeup - this_run;
1389
1390 return min_t(s64, gran, sysctl_sched_wakeup_granularity);
1391 }
1392
1393 static unsigned long
1394 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1395 {
1396 unsigned long gran = sysctl_sched_wakeup_granularity;
1397
1398 if (cfs_rq_of(curr)->curr && sched_feat(ADAPTIVE_GRAN))
1399 gran = adaptive_gran(curr, se);
1400
1401 /*
1402 * Since its curr running now, convert the gran from real-time
1403 * to virtual-time in his units.
1404 */
1405 if (sched_feat(ASYM_GRAN)) {
1406 /*
1407 * By using 'se' instead of 'curr' we penalize light tasks, so
1408 * they get preempted easier. That is, if 'se' < 'curr' then
1409 * the resulting gran will be larger, therefore penalizing the
1410 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1411 * be smaller, again penalizing the lighter task.
1412 *
1413 * This is especially important for buddies when the leftmost
1414 * task is higher priority than the buddy.
1415 */
1416 if (unlikely(se->load.weight != NICE_0_LOAD))
1417 gran = calc_delta_fair(gran, se);
1418 } else {
1419 if (unlikely(curr->load.weight != NICE_0_LOAD))
1420 gran = calc_delta_fair(gran, curr);
1421 }
1422
1423 return gran;
1424 }
1425
1426 /*
1427 * Should 'se' preempt 'curr'.
1428 *
1429 * |s1
1430 * |s2
1431 * |s3
1432 * g
1433 * |<--->|c
1434 *
1435 * w(c, s1) = -1
1436 * w(c, s2) = 0
1437 * w(c, s3) = 1
1438 *
1439 */
1440 static int
1441 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1442 {
1443 s64 gran, vdiff = curr->vruntime - se->vruntime;
1444
1445 if (vdiff <= 0)
1446 return -1;
1447
1448 gran = wakeup_gran(curr, se);
1449 if (vdiff > gran)
1450 return 1;
1451
1452 return 0;
1453 }
1454
1455 static void set_last_buddy(struct sched_entity *se)
1456 {
1457 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1458 for_each_sched_entity(se)
1459 cfs_rq_of(se)->last = se;
1460 }
1461 }
1462
1463 static void set_next_buddy(struct sched_entity *se)
1464 {
1465 if (likely(task_of(se)->policy != SCHED_IDLE)) {
1466 for_each_sched_entity(se)
1467 cfs_rq_of(se)->next = se;
1468 }
1469 }
1470
1471 /*
1472 * Preempt the current task with a newly woken task if needed:
1473 */
1474 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int sync)
1475 {
1476 struct task_struct *curr = rq->curr;
1477 struct sched_entity *se = &curr->se, *pse = &p->se;
1478 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1479
1480 update_curr(cfs_rq);
1481
1482 if (unlikely(rt_prio(p->prio))) {
1483 resched_task(curr);
1484 return;
1485 }
1486
1487 if (unlikely(p->sched_class != &fair_sched_class))
1488 return;
1489
1490 if (unlikely(se == pse))
1491 return;
1492
1493 /*
1494 * Only set the backward buddy when the current task is still on the
1495 * rq. This can happen when a wakeup gets interleaved with schedule on
1496 * the ->pre_schedule() or idle_balance() point, either of which can
1497 * drop the rq lock.
1498 *
1499 * Also, during early boot the idle thread is in the fair class, for
1500 * obvious reasons its a bad idea to schedule back to the idle thread.
1501 */
1502 if (sched_feat(LAST_BUDDY) && likely(se->on_rq && curr != rq->idle))
1503 set_last_buddy(se);
1504 set_next_buddy(pse);
1505
1506 /*
1507 * We can come here with TIF_NEED_RESCHED already set from new task
1508 * wake up path.
1509 */
1510 if (test_tsk_need_resched(curr))
1511 return;
1512
1513 /*
1514 * Batch and idle tasks do not preempt (their preemption is driven by
1515 * the tick):
1516 */
1517 if (unlikely(p->policy != SCHED_NORMAL))
1518 return;
1519
1520 /* Idle tasks are by definition preempted by everybody. */
1521 if (unlikely(curr->policy == SCHED_IDLE)) {
1522 resched_task(curr);
1523 return;
1524 }
1525
1526 if (!sched_feat(WAKEUP_PREEMPT))
1527 return;
1528
1529 if (sched_feat(WAKEUP_OVERLAP) && (sync ||
1530 (se->avg_overlap < sysctl_sched_migration_cost &&
1531 pse->avg_overlap < sysctl_sched_migration_cost))) {
1532 resched_task(curr);
1533 return;
1534 }
1535
1536 find_matching_se(&se, &pse);
1537
1538 BUG_ON(!pse);
1539
1540 if (wakeup_preempt_entity(se, pse) == 1)
1541 resched_task(curr);
1542 }
1543
1544 static struct task_struct *pick_next_task_fair(struct rq *rq)
1545 {
1546 struct task_struct *p;
1547 struct cfs_rq *cfs_rq = &rq->cfs;
1548 struct sched_entity *se;
1549
1550 if (unlikely(!cfs_rq->nr_running))
1551 return NULL;
1552
1553 do {
1554 se = pick_next_entity(cfs_rq);
1555 /*
1556 * If se was a buddy, clear it so that it will have to earn
1557 * the favour again.
1558 */
1559 __clear_buddies(cfs_rq, se);
1560 set_next_entity(cfs_rq, se);
1561 cfs_rq = group_cfs_rq(se);
1562 } while (cfs_rq);
1563
1564 p = task_of(se);
1565 hrtick_start_fair(rq, p);
1566
1567 return p;
1568 }
1569
1570 /*
1571 * Account for a descheduled task:
1572 */
1573 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1574 {
1575 struct sched_entity *se = &prev->se;
1576 struct cfs_rq *cfs_rq;
1577
1578 for_each_sched_entity(se) {
1579 cfs_rq = cfs_rq_of(se);
1580 put_prev_entity(cfs_rq, se);
1581 }
1582 }
1583
1584 #ifdef CONFIG_SMP
1585 /**************************************************
1586 * Fair scheduling class load-balancing methods:
1587 */
1588
1589 /*
1590 * Load-balancing iterator. Note: while the runqueue stays locked
1591 * during the whole iteration, the current task might be
1592 * dequeued so the iterator has to be dequeue-safe. Here we
1593 * achieve that by always pre-iterating before returning
1594 * the current task:
1595 */
1596 static struct task_struct *
1597 __load_balance_iterator(struct cfs_rq *cfs_rq, struct list_head *next)
1598 {
1599 struct task_struct *p = NULL;
1600 struct sched_entity *se;
1601
1602 if (next == &cfs_rq->tasks)
1603 return NULL;
1604
1605 se = list_entry(next, struct sched_entity, group_node);
1606 p = task_of(se);
1607 cfs_rq->balance_iterator = next->next;
1608
1609 return p;
1610 }
1611
1612 static struct task_struct *load_balance_start_fair(void *arg)
1613 {
1614 struct cfs_rq *cfs_rq = arg;
1615
1616 return __load_balance_iterator(cfs_rq, cfs_rq->tasks.next);
1617 }
1618
1619 static struct task_struct *load_balance_next_fair(void *arg)
1620 {
1621 struct cfs_rq *cfs_rq = arg;
1622
1623 return __load_balance_iterator(cfs_rq, cfs_rq->balance_iterator);
1624 }
1625
1626 static unsigned long
1627 __load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1628 unsigned long max_load_move, struct sched_domain *sd,
1629 enum cpu_idle_type idle, int *all_pinned, int *this_best_prio,
1630 struct cfs_rq *cfs_rq)
1631 {
1632 struct rq_iterator cfs_rq_iterator;
1633
1634 cfs_rq_iterator.start = load_balance_start_fair;
1635 cfs_rq_iterator.next = load_balance_next_fair;
1636 cfs_rq_iterator.arg = cfs_rq;
1637
1638 return balance_tasks(this_rq, this_cpu, busiest,
1639 max_load_move, sd, idle, all_pinned,
1640 this_best_prio, &cfs_rq_iterator);
1641 }
1642
1643 #ifdef CONFIG_FAIR_GROUP_SCHED
1644 static unsigned long
1645 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1646 unsigned long max_load_move,
1647 struct sched_domain *sd, enum cpu_idle_type idle,
1648 int *all_pinned, int *this_best_prio)
1649 {
1650 long rem_load_move = max_load_move;
1651 int busiest_cpu = cpu_of(busiest);
1652 struct task_group *tg;
1653
1654 rcu_read_lock();
1655 update_h_load(busiest_cpu);
1656
1657 list_for_each_entry_rcu(tg, &task_groups, list) {
1658 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
1659 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
1660 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
1661 u64 rem_load, moved_load;
1662
1663 /*
1664 * empty group
1665 */
1666 if (!busiest_cfs_rq->task_weight)
1667 continue;
1668
1669 rem_load = (u64)rem_load_move * busiest_weight;
1670 rem_load = div_u64(rem_load, busiest_h_load + 1);
1671
1672 moved_load = __load_balance_fair(this_rq, this_cpu, busiest,
1673 rem_load, sd, idle, all_pinned, this_best_prio,
1674 tg->cfs_rq[busiest_cpu]);
1675
1676 if (!moved_load)
1677 continue;
1678
1679 moved_load *= busiest_h_load;
1680 moved_load = div_u64(moved_load, busiest_weight + 1);
1681
1682 rem_load_move -= moved_load;
1683 if (rem_load_move < 0)
1684 break;
1685 }
1686 rcu_read_unlock();
1687
1688 return max_load_move - rem_load_move;
1689 }
1690 #else
1691 static unsigned long
1692 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1693 unsigned long max_load_move,
1694 struct sched_domain *sd, enum cpu_idle_type idle,
1695 int *all_pinned, int *this_best_prio)
1696 {
1697 return __load_balance_fair(this_rq, this_cpu, busiest,
1698 max_load_move, sd, idle, all_pinned,
1699 this_best_prio, &busiest->cfs);
1700 }
1701 #endif
1702
1703 static int
1704 move_one_task_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
1705 struct sched_domain *sd, enum cpu_idle_type idle)
1706 {
1707 struct cfs_rq *busy_cfs_rq;
1708 struct rq_iterator cfs_rq_iterator;
1709
1710 cfs_rq_iterator.start = load_balance_start_fair;
1711 cfs_rq_iterator.next = load_balance_next_fair;
1712
1713 for_each_leaf_cfs_rq(busiest, busy_cfs_rq) {
1714 /*
1715 * pass busy_cfs_rq argument into
1716 * load_balance_[start|next]_fair iterators
1717 */
1718 cfs_rq_iterator.arg = busy_cfs_rq;
1719 if (iter_move_one_task(this_rq, this_cpu, busiest, sd, idle,
1720 &cfs_rq_iterator))
1721 return 1;
1722 }
1723
1724 return 0;
1725 }
1726 #endif /* CONFIG_SMP */
1727
1728 /*
1729 * scheduler tick hitting a task of our scheduling class:
1730 */
1731 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
1732 {
1733 struct cfs_rq *cfs_rq;
1734 struct sched_entity *se = &curr->se;
1735
1736 for_each_sched_entity(se) {
1737 cfs_rq = cfs_rq_of(se);
1738 entity_tick(cfs_rq, se, queued);
1739 }
1740 }
1741
1742 /*
1743 * Share the fairness runtime between parent and child, thus the
1744 * total amount of pressure for CPU stays equal - new tasks
1745 * get a chance to run but frequent forkers are not allowed to
1746 * monopolize the CPU. Note: the parent runqueue is locked,
1747 * the child is not running yet.
1748 */
1749 static void task_new_fair(struct rq *rq, struct task_struct *p)
1750 {
1751 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1752 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
1753 int this_cpu = smp_processor_id();
1754
1755 sched_info_queued(p);
1756
1757 update_curr(cfs_rq);
1758 if (curr)
1759 se->vruntime = curr->vruntime;
1760 place_entity(cfs_rq, se, 1);
1761
1762 /* 'curr' will be NULL if the child belongs to a different group */
1763 if (sysctl_sched_child_runs_first && this_cpu == task_cpu(p) &&
1764 curr && entity_before(curr, se)) {
1765 /*
1766 * Upon rescheduling, sched_class::put_prev_task() will place
1767 * 'current' within the tree based on its new key value.
1768 */
1769 swap(curr->vruntime, se->vruntime);
1770 resched_task(rq->curr);
1771 }
1772
1773 enqueue_task_fair(rq, p, 0);
1774 }
1775
1776 /*
1777 * Priority of the task has changed. Check to see if we preempt
1778 * the current task.
1779 */
1780 static void prio_changed_fair(struct rq *rq, struct task_struct *p,
1781 int oldprio, int running)
1782 {
1783 /*
1784 * Reschedule if we are currently running on this runqueue and
1785 * our priority decreased, or if we are not currently running on
1786 * this runqueue and our priority is higher than the current's
1787 */
1788 if (running) {
1789 if (p->prio > oldprio)
1790 resched_task(rq->curr);
1791 } else
1792 check_preempt_curr(rq, p, 0);
1793 }
1794
1795 /*
1796 * We switched to the sched_fair class.
1797 */
1798 static void switched_to_fair(struct rq *rq, struct task_struct *p,
1799 int running)
1800 {
1801 /*
1802 * We were most likely switched from sched_rt, so
1803 * kick off the schedule if running, otherwise just see
1804 * if we can still preempt the current task.
1805 */
1806 if (running)
1807 resched_task(rq->curr);
1808 else
1809 check_preempt_curr(rq, p, 0);
1810 }
1811
1812 /* Account for a task changing its policy or group.
1813 *
1814 * This routine is mostly called to set cfs_rq->curr field when a task
1815 * migrates between groups/classes.
1816 */
1817 static void set_curr_task_fair(struct rq *rq)
1818 {
1819 struct sched_entity *se = &rq->curr->se;
1820
1821 for_each_sched_entity(se)
1822 set_next_entity(cfs_rq_of(se), se);
1823 }
1824
1825 #ifdef CONFIG_FAIR_GROUP_SCHED
1826 static void moved_group_fair(struct task_struct *p)
1827 {
1828 struct cfs_rq *cfs_rq = task_cfs_rq(p);
1829
1830 update_curr(cfs_rq);
1831 place_entity(cfs_rq, &p->se, 1);
1832 }
1833 #endif
1834
1835 /*
1836 * All the scheduling class methods:
1837 */
1838 static const struct sched_class fair_sched_class = {
1839 .next = &idle_sched_class,
1840 .enqueue_task = enqueue_task_fair,
1841 .dequeue_task = dequeue_task_fair,
1842 .yield_task = yield_task_fair,
1843
1844 .check_preempt_curr = check_preempt_wakeup,
1845
1846 .pick_next_task = pick_next_task_fair,
1847 .put_prev_task = put_prev_task_fair,
1848
1849 #ifdef CONFIG_SMP
1850 .select_task_rq = select_task_rq_fair,
1851
1852 .load_balance = load_balance_fair,
1853 .move_one_task = move_one_task_fair,
1854 #endif
1855
1856 .set_curr_task = set_curr_task_fair,
1857 .task_tick = task_tick_fair,
1858 .task_new = task_new_fair,
1859
1860 .prio_changed = prio_changed_fair,
1861 .switched_to = switched_to_fair,
1862
1863 #ifdef CONFIG_FAIR_GROUP_SCHED
1864 .moved_group = moved_group_fair,
1865 #endif
1866 };
1867
1868 #ifdef CONFIG_SCHED_DEBUG
1869 static void print_cfs_stats(struct seq_file *m, int cpu)
1870 {
1871 struct cfs_rq *cfs_rq;
1872
1873 rcu_read_lock();
1874 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
1875 print_cfs_rq(m, cpu, cfs_rq);
1876 rcu_read_unlock();
1877 }
1878 #endif