]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched_rt.c
sched: Implement group scheduler statistics in one struct
[mirror_ubuntu-zesty-kernel.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #ifdef CONFIG_RT_GROUP_SCHED
7
8 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
9
10 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
11 {
12 #ifdef CONFIG_SCHED_DEBUG
13 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
14 #endif
15 return container_of(rt_se, struct task_struct, rt);
16 }
17
18 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
19 {
20 return rt_rq->rq;
21 }
22
23 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
24 {
25 return rt_se->rt_rq;
26 }
27
28 #else /* CONFIG_RT_GROUP_SCHED */
29
30 #define rt_entity_is_task(rt_se) (1)
31
32 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
33 {
34 return container_of(rt_se, struct task_struct, rt);
35 }
36
37 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
38 {
39 return container_of(rt_rq, struct rq, rt);
40 }
41
42 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
43 {
44 struct task_struct *p = rt_task_of(rt_se);
45 struct rq *rq = task_rq(p);
46
47 return &rq->rt;
48 }
49
50 #endif /* CONFIG_RT_GROUP_SCHED */
51
52 #ifdef CONFIG_SMP
53
54 static inline int rt_overloaded(struct rq *rq)
55 {
56 return atomic_read(&rq->rd->rto_count);
57 }
58
59 static inline void rt_set_overload(struct rq *rq)
60 {
61 if (!rq->online)
62 return;
63
64 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
65 /*
66 * Make sure the mask is visible before we set
67 * the overload count. That is checked to determine
68 * if we should look at the mask. It would be a shame
69 * if we looked at the mask, but the mask was not
70 * updated yet.
71 */
72 wmb();
73 atomic_inc(&rq->rd->rto_count);
74 }
75
76 static inline void rt_clear_overload(struct rq *rq)
77 {
78 if (!rq->online)
79 return;
80
81 /* the order here really doesn't matter */
82 atomic_dec(&rq->rd->rto_count);
83 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
84 }
85
86 static void update_rt_migration(struct rt_rq *rt_rq)
87 {
88 if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
89 if (!rt_rq->overloaded) {
90 rt_set_overload(rq_of_rt_rq(rt_rq));
91 rt_rq->overloaded = 1;
92 }
93 } else if (rt_rq->overloaded) {
94 rt_clear_overload(rq_of_rt_rq(rt_rq));
95 rt_rq->overloaded = 0;
96 }
97 }
98
99 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
100 {
101 if (!rt_entity_is_task(rt_se))
102 return;
103
104 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
105
106 rt_rq->rt_nr_total++;
107 if (rt_se->nr_cpus_allowed > 1)
108 rt_rq->rt_nr_migratory++;
109
110 update_rt_migration(rt_rq);
111 }
112
113 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
114 {
115 if (!rt_entity_is_task(rt_se))
116 return;
117
118 rt_rq = &rq_of_rt_rq(rt_rq)->rt;
119
120 rt_rq->rt_nr_total--;
121 if (rt_se->nr_cpus_allowed > 1)
122 rt_rq->rt_nr_migratory--;
123
124 update_rt_migration(rt_rq);
125 }
126
127 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
128 {
129 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
130 plist_node_init(&p->pushable_tasks, p->prio);
131 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
132 }
133
134 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
135 {
136 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
137 }
138
139 static inline int has_pushable_tasks(struct rq *rq)
140 {
141 return !plist_head_empty(&rq->rt.pushable_tasks);
142 }
143
144 #else
145
146 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
147 {
148 }
149
150 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
151 {
152 }
153
154 static inline
155 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
156 {
157 }
158
159 static inline
160 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
161 {
162 }
163
164 #endif /* CONFIG_SMP */
165
166 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
167 {
168 return !list_empty(&rt_se->run_list);
169 }
170
171 #ifdef CONFIG_RT_GROUP_SCHED
172
173 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
174 {
175 if (!rt_rq->tg)
176 return RUNTIME_INF;
177
178 return rt_rq->rt_runtime;
179 }
180
181 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
182 {
183 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
184 }
185
186 #define for_each_leaf_rt_rq(rt_rq, rq) \
187 list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
188
189 #define for_each_sched_rt_entity(rt_se) \
190 for (; rt_se; rt_se = rt_se->parent)
191
192 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
193 {
194 return rt_se->my_q;
195 }
196
197 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
198 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
199
200 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
201 {
202 int this_cpu = smp_processor_id();
203 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
204 struct sched_rt_entity *rt_se;
205
206 rt_se = rt_rq->tg->rt_se[this_cpu];
207
208 if (rt_rq->rt_nr_running) {
209 if (rt_se && !on_rt_rq(rt_se))
210 enqueue_rt_entity(rt_se, false);
211 if (rt_rq->highest_prio.curr < curr->prio)
212 resched_task(curr);
213 }
214 }
215
216 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
217 {
218 int this_cpu = smp_processor_id();
219 struct sched_rt_entity *rt_se;
220
221 rt_se = rt_rq->tg->rt_se[this_cpu];
222
223 if (rt_se && on_rt_rq(rt_se))
224 dequeue_rt_entity(rt_se);
225 }
226
227 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
228 {
229 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
230 }
231
232 static int rt_se_boosted(struct sched_rt_entity *rt_se)
233 {
234 struct rt_rq *rt_rq = group_rt_rq(rt_se);
235 struct task_struct *p;
236
237 if (rt_rq)
238 return !!rt_rq->rt_nr_boosted;
239
240 p = rt_task_of(rt_se);
241 return p->prio != p->normal_prio;
242 }
243
244 #ifdef CONFIG_SMP
245 static inline const struct cpumask *sched_rt_period_mask(void)
246 {
247 return cpu_rq(smp_processor_id())->rd->span;
248 }
249 #else
250 static inline const struct cpumask *sched_rt_period_mask(void)
251 {
252 return cpu_online_mask;
253 }
254 #endif
255
256 static inline
257 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
258 {
259 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
260 }
261
262 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
263 {
264 return &rt_rq->tg->rt_bandwidth;
265 }
266
267 #else /* !CONFIG_RT_GROUP_SCHED */
268
269 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
270 {
271 return rt_rq->rt_runtime;
272 }
273
274 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
275 {
276 return ktime_to_ns(def_rt_bandwidth.rt_period);
277 }
278
279 #define for_each_leaf_rt_rq(rt_rq, rq) \
280 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
281
282 #define for_each_sched_rt_entity(rt_se) \
283 for (; rt_se; rt_se = NULL)
284
285 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
286 {
287 return NULL;
288 }
289
290 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
291 {
292 if (rt_rq->rt_nr_running)
293 resched_task(rq_of_rt_rq(rt_rq)->curr);
294 }
295
296 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
297 {
298 }
299
300 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
301 {
302 return rt_rq->rt_throttled;
303 }
304
305 static inline const struct cpumask *sched_rt_period_mask(void)
306 {
307 return cpu_online_mask;
308 }
309
310 static inline
311 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
312 {
313 return &cpu_rq(cpu)->rt;
314 }
315
316 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
317 {
318 return &def_rt_bandwidth;
319 }
320
321 #endif /* CONFIG_RT_GROUP_SCHED */
322
323 #ifdef CONFIG_SMP
324 /*
325 * We ran out of runtime, see if we can borrow some from our neighbours.
326 */
327 static int do_balance_runtime(struct rt_rq *rt_rq)
328 {
329 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
330 struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
331 int i, weight, more = 0;
332 u64 rt_period;
333
334 weight = cpumask_weight(rd->span);
335
336 raw_spin_lock(&rt_b->rt_runtime_lock);
337 rt_period = ktime_to_ns(rt_b->rt_period);
338 for_each_cpu(i, rd->span) {
339 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
340 s64 diff;
341
342 if (iter == rt_rq)
343 continue;
344
345 raw_spin_lock(&iter->rt_runtime_lock);
346 /*
347 * Either all rqs have inf runtime and there's nothing to steal
348 * or __disable_runtime() below sets a specific rq to inf to
349 * indicate its been disabled and disalow stealing.
350 */
351 if (iter->rt_runtime == RUNTIME_INF)
352 goto next;
353
354 /*
355 * From runqueues with spare time, take 1/n part of their
356 * spare time, but no more than our period.
357 */
358 diff = iter->rt_runtime - iter->rt_time;
359 if (diff > 0) {
360 diff = div_u64((u64)diff, weight);
361 if (rt_rq->rt_runtime + diff > rt_period)
362 diff = rt_period - rt_rq->rt_runtime;
363 iter->rt_runtime -= diff;
364 rt_rq->rt_runtime += diff;
365 more = 1;
366 if (rt_rq->rt_runtime == rt_period) {
367 raw_spin_unlock(&iter->rt_runtime_lock);
368 break;
369 }
370 }
371 next:
372 raw_spin_unlock(&iter->rt_runtime_lock);
373 }
374 raw_spin_unlock(&rt_b->rt_runtime_lock);
375
376 return more;
377 }
378
379 /*
380 * Ensure this RQ takes back all the runtime it lend to its neighbours.
381 */
382 static void __disable_runtime(struct rq *rq)
383 {
384 struct root_domain *rd = rq->rd;
385 struct rt_rq *rt_rq;
386
387 if (unlikely(!scheduler_running))
388 return;
389
390 for_each_leaf_rt_rq(rt_rq, rq) {
391 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
392 s64 want;
393 int i;
394
395 raw_spin_lock(&rt_b->rt_runtime_lock);
396 raw_spin_lock(&rt_rq->rt_runtime_lock);
397 /*
398 * Either we're all inf and nobody needs to borrow, or we're
399 * already disabled and thus have nothing to do, or we have
400 * exactly the right amount of runtime to take out.
401 */
402 if (rt_rq->rt_runtime == RUNTIME_INF ||
403 rt_rq->rt_runtime == rt_b->rt_runtime)
404 goto balanced;
405 raw_spin_unlock(&rt_rq->rt_runtime_lock);
406
407 /*
408 * Calculate the difference between what we started out with
409 * and what we current have, that's the amount of runtime
410 * we lend and now have to reclaim.
411 */
412 want = rt_b->rt_runtime - rt_rq->rt_runtime;
413
414 /*
415 * Greedy reclaim, take back as much as we can.
416 */
417 for_each_cpu(i, rd->span) {
418 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
419 s64 diff;
420
421 /*
422 * Can't reclaim from ourselves or disabled runqueues.
423 */
424 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
425 continue;
426
427 raw_spin_lock(&iter->rt_runtime_lock);
428 if (want > 0) {
429 diff = min_t(s64, iter->rt_runtime, want);
430 iter->rt_runtime -= diff;
431 want -= diff;
432 } else {
433 iter->rt_runtime -= want;
434 want -= want;
435 }
436 raw_spin_unlock(&iter->rt_runtime_lock);
437
438 if (!want)
439 break;
440 }
441
442 raw_spin_lock(&rt_rq->rt_runtime_lock);
443 /*
444 * We cannot be left wanting - that would mean some runtime
445 * leaked out of the system.
446 */
447 BUG_ON(want);
448 balanced:
449 /*
450 * Disable all the borrow logic by pretending we have inf
451 * runtime - in which case borrowing doesn't make sense.
452 */
453 rt_rq->rt_runtime = RUNTIME_INF;
454 raw_spin_unlock(&rt_rq->rt_runtime_lock);
455 raw_spin_unlock(&rt_b->rt_runtime_lock);
456 }
457 }
458
459 static void disable_runtime(struct rq *rq)
460 {
461 unsigned long flags;
462
463 raw_spin_lock_irqsave(&rq->lock, flags);
464 __disable_runtime(rq);
465 raw_spin_unlock_irqrestore(&rq->lock, flags);
466 }
467
468 static void __enable_runtime(struct rq *rq)
469 {
470 struct rt_rq *rt_rq;
471
472 if (unlikely(!scheduler_running))
473 return;
474
475 /*
476 * Reset each runqueue's bandwidth settings
477 */
478 for_each_leaf_rt_rq(rt_rq, rq) {
479 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
480
481 raw_spin_lock(&rt_b->rt_runtime_lock);
482 raw_spin_lock(&rt_rq->rt_runtime_lock);
483 rt_rq->rt_runtime = rt_b->rt_runtime;
484 rt_rq->rt_time = 0;
485 rt_rq->rt_throttled = 0;
486 raw_spin_unlock(&rt_rq->rt_runtime_lock);
487 raw_spin_unlock(&rt_b->rt_runtime_lock);
488 }
489 }
490
491 static void enable_runtime(struct rq *rq)
492 {
493 unsigned long flags;
494
495 raw_spin_lock_irqsave(&rq->lock, flags);
496 __enable_runtime(rq);
497 raw_spin_unlock_irqrestore(&rq->lock, flags);
498 }
499
500 static int balance_runtime(struct rt_rq *rt_rq)
501 {
502 int more = 0;
503
504 if (rt_rq->rt_time > rt_rq->rt_runtime) {
505 raw_spin_unlock(&rt_rq->rt_runtime_lock);
506 more = do_balance_runtime(rt_rq);
507 raw_spin_lock(&rt_rq->rt_runtime_lock);
508 }
509
510 return more;
511 }
512 #else /* !CONFIG_SMP */
513 static inline int balance_runtime(struct rt_rq *rt_rq)
514 {
515 return 0;
516 }
517 #endif /* CONFIG_SMP */
518
519 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
520 {
521 int i, idle = 1;
522 const struct cpumask *span;
523
524 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
525 return 1;
526
527 span = sched_rt_period_mask();
528 for_each_cpu(i, span) {
529 int enqueue = 0;
530 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
531 struct rq *rq = rq_of_rt_rq(rt_rq);
532
533 raw_spin_lock(&rq->lock);
534 if (rt_rq->rt_time) {
535 u64 runtime;
536
537 raw_spin_lock(&rt_rq->rt_runtime_lock);
538 if (rt_rq->rt_throttled)
539 balance_runtime(rt_rq);
540 runtime = rt_rq->rt_runtime;
541 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
542 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
543 rt_rq->rt_throttled = 0;
544 enqueue = 1;
545 }
546 if (rt_rq->rt_time || rt_rq->rt_nr_running)
547 idle = 0;
548 raw_spin_unlock(&rt_rq->rt_runtime_lock);
549 } else if (rt_rq->rt_nr_running)
550 idle = 0;
551
552 if (enqueue)
553 sched_rt_rq_enqueue(rt_rq);
554 raw_spin_unlock(&rq->lock);
555 }
556
557 return idle;
558 }
559
560 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
561 {
562 #ifdef CONFIG_RT_GROUP_SCHED
563 struct rt_rq *rt_rq = group_rt_rq(rt_se);
564
565 if (rt_rq)
566 return rt_rq->highest_prio.curr;
567 #endif
568
569 return rt_task_of(rt_se)->prio;
570 }
571
572 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
573 {
574 u64 runtime = sched_rt_runtime(rt_rq);
575
576 if (rt_rq->rt_throttled)
577 return rt_rq_throttled(rt_rq);
578
579 if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
580 return 0;
581
582 balance_runtime(rt_rq);
583 runtime = sched_rt_runtime(rt_rq);
584 if (runtime == RUNTIME_INF)
585 return 0;
586
587 if (rt_rq->rt_time > runtime) {
588 rt_rq->rt_throttled = 1;
589 if (rt_rq_throttled(rt_rq)) {
590 sched_rt_rq_dequeue(rt_rq);
591 return 1;
592 }
593 }
594
595 return 0;
596 }
597
598 /*
599 * Update the current task's runtime statistics. Skip current tasks that
600 * are not in our scheduling class.
601 */
602 static void update_curr_rt(struct rq *rq)
603 {
604 struct task_struct *curr = rq->curr;
605 struct sched_rt_entity *rt_se = &curr->rt;
606 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
607 u64 delta_exec;
608
609 if (!task_has_rt_policy(curr))
610 return;
611
612 delta_exec = rq->clock - curr->se.exec_start;
613 if (unlikely((s64)delta_exec < 0))
614 delta_exec = 0;
615
616 schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
617
618 curr->se.sum_exec_runtime += delta_exec;
619 account_group_exec_runtime(curr, delta_exec);
620
621 curr->se.exec_start = rq->clock;
622 cpuacct_charge(curr, delta_exec);
623
624 sched_rt_avg_update(rq, delta_exec);
625
626 if (!rt_bandwidth_enabled())
627 return;
628
629 for_each_sched_rt_entity(rt_se) {
630 rt_rq = rt_rq_of_se(rt_se);
631
632 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
633 raw_spin_lock(&rt_rq->rt_runtime_lock);
634 rt_rq->rt_time += delta_exec;
635 if (sched_rt_runtime_exceeded(rt_rq))
636 resched_task(curr);
637 raw_spin_unlock(&rt_rq->rt_runtime_lock);
638 }
639 }
640 }
641
642 #if defined CONFIG_SMP
643
644 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
645
646 static inline int next_prio(struct rq *rq)
647 {
648 struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
649
650 if (next && rt_prio(next->prio))
651 return next->prio;
652 else
653 return MAX_RT_PRIO;
654 }
655
656 static void
657 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
658 {
659 struct rq *rq = rq_of_rt_rq(rt_rq);
660
661 if (prio < prev_prio) {
662
663 /*
664 * If the new task is higher in priority than anything on the
665 * run-queue, we know that the previous high becomes our
666 * next-highest.
667 */
668 rt_rq->highest_prio.next = prev_prio;
669
670 if (rq->online)
671 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
672
673 } else if (prio == rt_rq->highest_prio.curr)
674 /*
675 * If the next task is equal in priority to the highest on
676 * the run-queue, then we implicitly know that the next highest
677 * task cannot be any lower than current
678 */
679 rt_rq->highest_prio.next = prio;
680 else if (prio < rt_rq->highest_prio.next)
681 /*
682 * Otherwise, we need to recompute next-highest
683 */
684 rt_rq->highest_prio.next = next_prio(rq);
685 }
686
687 static void
688 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
689 {
690 struct rq *rq = rq_of_rt_rq(rt_rq);
691
692 if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
693 rt_rq->highest_prio.next = next_prio(rq);
694
695 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
696 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
697 }
698
699 #else /* CONFIG_SMP */
700
701 static inline
702 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
703 static inline
704 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
705
706 #endif /* CONFIG_SMP */
707
708 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
709 static void
710 inc_rt_prio(struct rt_rq *rt_rq, int prio)
711 {
712 int prev_prio = rt_rq->highest_prio.curr;
713
714 if (prio < prev_prio)
715 rt_rq->highest_prio.curr = prio;
716
717 inc_rt_prio_smp(rt_rq, prio, prev_prio);
718 }
719
720 static void
721 dec_rt_prio(struct rt_rq *rt_rq, int prio)
722 {
723 int prev_prio = rt_rq->highest_prio.curr;
724
725 if (rt_rq->rt_nr_running) {
726
727 WARN_ON(prio < prev_prio);
728
729 /*
730 * This may have been our highest task, and therefore
731 * we may have some recomputation to do
732 */
733 if (prio == prev_prio) {
734 struct rt_prio_array *array = &rt_rq->active;
735
736 rt_rq->highest_prio.curr =
737 sched_find_first_bit(array->bitmap);
738 }
739
740 } else
741 rt_rq->highest_prio.curr = MAX_RT_PRIO;
742
743 dec_rt_prio_smp(rt_rq, prio, prev_prio);
744 }
745
746 #else
747
748 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
749 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
750
751 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
752
753 #ifdef CONFIG_RT_GROUP_SCHED
754
755 static void
756 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
757 {
758 if (rt_se_boosted(rt_se))
759 rt_rq->rt_nr_boosted++;
760
761 if (rt_rq->tg)
762 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
763 }
764
765 static void
766 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
767 {
768 if (rt_se_boosted(rt_se))
769 rt_rq->rt_nr_boosted--;
770
771 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
772 }
773
774 #else /* CONFIG_RT_GROUP_SCHED */
775
776 static void
777 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
778 {
779 start_rt_bandwidth(&def_rt_bandwidth);
780 }
781
782 static inline
783 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
784
785 #endif /* CONFIG_RT_GROUP_SCHED */
786
787 static inline
788 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
789 {
790 int prio = rt_se_prio(rt_se);
791
792 WARN_ON(!rt_prio(prio));
793 rt_rq->rt_nr_running++;
794
795 inc_rt_prio(rt_rq, prio);
796 inc_rt_migration(rt_se, rt_rq);
797 inc_rt_group(rt_se, rt_rq);
798 }
799
800 static inline
801 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
802 {
803 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
804 WARN_ON(!rt_rq->rt_nr_running);
805 rt_rq->rt_nr_running--;
806
807 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
808 dec_rt_migration(rt_se, rt_rq);
809 dec_rt_group(rt_se, rt_rq);
810 }
811
812 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
813 {
814 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
815 struct rt_prio_array *array = &rt_rq->active;
816 struct rt_rq *group_rq = group_rt_rq(rt_se);
817 struct list_head *queue = array->queue + rt_se_prio(rt_se);
818
819 /*
820 * Don't enqueue the group if its throttled, or when empty.
821 * The latter is a consequence of the former when a child group
822 * get throttled and the current group doesn't have any other
823 * active members.
824 */
825 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
826 return;
827
828 if (head)
829 list_add(&rt_se->run_list, queue);
830 else
831 list_add_tail(&rt_se->run_list, queue);
832 __set_bit(rt_se_prio(rt_se), array->bitmap);
833
834 inc_rt_tasks(rt_se, rt_rq);
835 }
836
837 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
838 {
839 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
840 struct rt_prio_array *array = &rt_rq->active;
841
842 list_del_init(&rt_se->run_list);
843 if (list_empty(array->queue + rt_se_prio(rt_se)))
844 __clear_bit(rt_se_prio(rt_se), array->bitmap);
845
846 dec_rt_tasks(rt_se, rt_rq);
847 }
848
849 /*
850 * Because the prio of an upper entry depends on the lower
851 * entries, we must remove entries top - down.
852 */
853 static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
854 {
855 struct sched_rt_entity *back = NULL;
856
857 for_each_sched_rt_entity(rt_se) {
858 rt_se->back = back;
859 back = rt_se;
860 }
861
862 for (rt_se = back; rt_se; rt_se = rt_se->back) {
863 if (on_rt_rq(rt_se))
864 __dequeue_rt_entity(rt_se);
865 }
866 }
867
868 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
869 {
870 dequeue_rt_stack(rt_se);
871 for_each_sched_rt_entity(rt_se)
872 __enqueue_rt_entity(rt_se, head);
873 }
874
875 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
876 {
877 dequeue_rt_stack(rt_se);
878
879 for_each_sched_rt_entity(rt_se) {
880 struct rt_rq *rt_rq = group_rt_rq(rt_se);
881
882 if (rt_rq && rt_rq->rt_nr_running)
883 __enqueue_rt_entity(rt_se, false);
884 }
885 }
886
887 /*
888 * Adding/removing a task to/from a priority array:
889 */
890 static void
891 enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup, bool head)
892 {
893 struct sched_rt_entity *rt_se = &p->rt;
894
895 if (wakeup)
896 rt_se->timeout = 0;
897
898 enqueue_rt_entity(rt_se, head);
899
900 if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
901 enqueue_pushable_task(rq, p);
902 }
903
904 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
905 {
906 struct sched_rt_entity *rt_se = &p->rt;
907
908 update_curr_rt(rq);
909 dequeue_rt_entity(rt_se);
910
911 dequeue_pushable_task(rq, p);
912 }
913
914 /*
915 * Put task to the end of the run list without the overhead of dequeue
916 * followed by enqueue.
917 */
918 static void
919 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
920 {
921 if (on_rt_rq(rt_se)) {
922 struct rt_prio_array *array = &rt_rq->active;
923 struct list_head *queue = array->queue + rt_se_prio(rt_se);
924
925 if (head)
926 list_move(&rt_se->run_list, queue);
927 else
928 list_move_tail(&rt_se->run_list, queue);
929 }
930 }
931
932 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
933 {
934 struct sched_rt_entity *rt_se = &p->rt;
935 struct rt_rq *rt_rq;
936
937 for_each_sched_rt_entity(rt_se) {
938 rt_rq = rt_rq_of_se(rt_se);
939 requeue_rt_entity(rt_rq, rt_se, head);
940 }
941 }
942
943 static void yield_task_rt(struct rq *rq)
944 {
945 requeue_task_rt(rq, rq->curr, 0);
946 }
947
948 #ifdef CONFIG_SMP
949 static int find_lowest_rq(struct task_struct *task);
950
951 static int select_task_rq_rt(struct task_struct *p, int sd_flag, int flags)
952 {
953 struct rq *rq = task_rq(p);
954
955 if (sd_flag != SD_BALANCE_WAKE)
956 return smp_processor_id();
957
958 /*
959 * If the current task is an RT task, then
960 * try to see if we can wake this RT task up on another
961 * runqueue. Otherwise simply start this RT task
962 * on its current runqueue.
963 *
964 * We want to avoid overloading runqueues. Even if
965 * the RT task is of higher priority than the current RT task.
966 * RT tasks behave differently than other tasks. If
967 * one gets preempted, we try to push it off to another queue.
968 * So trying to keep a preempting RT task on the same
969 * cache hot CPU will force the running RT task to
970 * a cold CPU. So we waste all the cache for the lower
971 * RT task in hopes of saving some of a RT task
972 * that is just being woken and probably will have
973 * cold cache anyway.
974 */
975 if (unlikely(rt_task(rq->curr)) &&
976 (p->rt.nr_cpus_allowed > 1)) {
977 int cpu = find_lowest_rq(p);
978
979 return (cpu == -1) ? task_cpu(p) : cpu;
980 }
981
982 /*
983 * Otherwise, just let it ride on the affined RQ and the
984 * post-schedule router will push the preempted task away
985 */
986 return task_cpu(p);
987 }
988
989 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
990 {
991 if (rq->curr->rt.nr_cpus_allowed == 1)
992 return;
993
994 if (p->rt.nr_cpus_allowed != 1
995 && cpupri_find(&rq->rd->cpupri, p, NULL))
996 return;
997
998 if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
999 return;
1000
1001 /*
1002 * There appears to be other cpus that can accept
1003 * current and none to run 'p', so lets reschedule
1004 * to try and push current away:
1005 */
1006 requeue_task_rt(rq, p, 1);
1007 resched_task(rq->curr);
1008 }
1009
1010 #endif /* CONFIG_SMP */
1011
1012 /*
1013 * Preempt the current task with a newly woken task if needed:
1014 */
1015 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1016 {
1017 if (p->prio < rq->curr->prio) {
1018 resched_task(rq->curr);
1019 return;
1020 }
1021
1022 #ifdef CONFIG_SMP
1023 /*
1024 * If:
1025 *
1026 * - the newly woken task is of equal priority to the current task
1027 * - the newly woken task is non-migratable while current is migratable
1028 * - current will be preempted on the next reschedule
1029 *
1030 * we should check to see if current can readily move to a different
1031 * cpu. If so, we will reschedule to allow the push logic to try
1032 * to move current somewhere else, making room for our non-migratable
1033 * task.
1034 */
1035 if (p->prio == rq->curr->prio && !need_resched())
1036 check_preempt_equal_prio(rq, p);
1037 #endif
1038 }
1039
1040 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1041 struct rt_rq *rt_rq)
1042 {
1043 struct rt_prio_array *array = &rt_rq->active;
1044 struct sched_rt_entity *next = NULL;
1045 struct list_head *queue;
1046 int idx;
1047
1048 idx = sched_find_first_bit(array->bitmap);
1049 BUG_ON(idx >= MAX_RT_PRIO);
1050
1051 queue = array->queue + idx;
1052 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1053
1054 return next;
1055 }
1056
1057 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1058 {
1059 struct sched_rt_entity *rt_se;
1060 struct task_struct *p;
1061 struct rt_rq *rt_rq;
1062
1063 rt_rq = &rq->rt;
1064
1065 if (unlikely(!rt_rq->rt_nr_running))
1066 return NULL;
1067
1068 if (rt_rq_throttled(rt_rq))
1069 return NULL;
1070
1071 do {
1072 rt_se = pick_next_rt_entity(rq, rt_rq);
1073 BUG_ON(!rt_se);
1074 rt_rq = group_rt_rq(rt_se);
1075 } while (rt_rq);
1076
1077 p = rt_task_of(rt_se);
1078 p->se.exec_start = rq->clock;
1079
1080 return p;
1081 }
1082
1083 static struct task_struct *pick_next_task_rt(struct rq *rq)
1084 {
1085 struct task_struct *p = _pick_next_task_rt(rq);
1086
1087 /* The running task is never eligible for pushing */
1088 if (p)
1089 dequeue_pushable_task(rq, p);
1090
1091 #ifdef CONFIG_SMP
1092 /*
1093 * We detect this state here so that we can avoid taking the RQ
1094 * lock again later if there is no need to push
1095 */
1096 rq->post_schedule = has_pushable_tasks(rq);
1097 #endif
1098
1099 return p;
1100 }
1101
1102 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1103 {
1104 update_curr_rt(rq);
1105 p->se.exec_start = 0;
1106
1107 /*
1108 * The previous task needs to be made eligible for pushing
1109 * if it is still active
1110 */
1111 if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
1112 enqueue_pushable_task(rq, p);
1113 }
1114
1115 #ifdef CONFIG_SMP
1116
1117 /* Only try algorithms three times */
1118 #define RT_MAX_TRIES 3
1119
1120 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
1121
1122 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1123 {
1124 if (!task_running(rq, p) &&
1125 (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
1126 (p->rt.nr_cpus_allowed > 1))
1127 return 1;
1128 return 0;
1129 }
1130
1131 /* Return the second highest RT task, NULL otherwise */
1132 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
1133 {
1134 struct task_struct *next = NULL;
1135 struct sched_rt_entity *rt_se;
1136 struct rt_prio_array *array;
1137 struct rt_rq *rt_rq;
1138 int idx;
1139
1140 for_each_leaf_rt_rq(rt_rq, rq) {
1141 array = &rt_rq->active;
1142 idx = sched_find_first_bit(array->bitmap);
1143 next_idx:
1144 if (idx >= MAX_RT_PRIO)
1145 continue;
1146 if (next && next->prio < idx)
1147 continue;
1148 list_for_each_entry(rt_se, array->queue + idx, run_list) {
1149 struct task_struct *p;
1150
1151 if (!rt_entity_is_task(rt_se))
1152 continue;
1153
1154 p = rt_task_of(rt_se);
1155 if (pick_rt_task(rq, p, cpu)) {
1156 next = p;
1157 break;
1158 }
1159 }
1160 if (!next) {
1161 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
1162 goto next_idx;
1163 }
1164 }
1165
1166 return next;
1167 }
1168
1169 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1170
1171 static int find_lowest_rq(struct task_struct *task)
1172 {
1173 struct sched_domain *sd;
1174 struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
1175 int this_cpu = smp_processor_id();
1176 int cpu = task_cpu(task);
1177
1178 if (task->rt.nr_cpus_allowed == 1)
1179 return -1; /* No other targets possible */
1180
1181 if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
1182 return -1; /* No targets found */
1183
1184 /*
1185 * At this point we have built a mask of cpus representing the
1186 * lowest priority tasks in the system. Now we want to elect
1187 * the best one based on our affinity and topology.
1188 *
1189 * We prioritize the last cpu that the task executed on since
1190 * it is most likely cache-hot in that location.
1191 */
1192 if (cpumask_test_cpu(cpu, lowest_mask))
1193 return cpu;
1194
1195 /*
1196 * Otherwise, we consult the sched_domains span maps to figure
1197 * out which cpu is logically closest to our hot cache data.
1198 */
1199 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1200 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1201
1202 for_each_domain(cpu, sd) {
1203 if (sd->flags & SD_WAKE_AFFINE) {
1204 int best_cpu;
1205
1206 /*
1207 * "this_cpu" is cheaper to preempt than a
1208 * remote processor.
1209 */
1210 if (this_cpu != -1 &&
1211 cpumask_test_cpu(this_cpu, sched_domain_span(sd)))
1212 return this_cpu;
1213
1214 best_cpu = cpumask_first_and(lowest_mask,
1215 sched_domain_span(sd));
1216 if (best_cpu < nr_cpu_ids)
1217 return best_cpu;
1218 }
1219 }
1220
1221 /*
1222 * And finally, if there were no matches within the domains
1223 * just give the caller *something* to work with from the compatible
1224 * locations.
1225 */
1226 if (this_cpu != -1)
1227 return this_cpu;
1228
1229 cpu = cpumask_any(lowest_mask);
1230 if (cpu < nr_cpu_ids)
1231 return cpu;
1232 return -1;
1233 }
1234
1235 /* Will lock the rq it finds */
1236 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1237 {
1238 struct rq *lowest_rq = NULL;
1239 int tries;
1240 int cpu;
1241
1242 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1243 cpu = find_lowest_rq(task);
1244
1245 if ((cpu == -1) || (cpu == rq->cpu))
1246 break;
1247
1248 lowest_rq = cpu_rq(cpu);
1249
1250 /* if the prio of this runqueue changed, try again */
1251 if (double_lock_balance(rq, lowest_rq)) {
1252 /*
1253 * We had to unlock the run queue. In
1254 * the mean time, task could have
1255 * migrated already or had its affinity changed.
1256 * Also make sure that it wasn't scheduled on its rq.
1257 */
1258 if (unlikely(task_rq(task) != rq ||
1259 !cpumask_test_cpu(lowest_rq->cpu,
1260 &task->cpus_allowed) ||
1261 task_running(rq, task) ||
1262 !task->se.on_rq)) {
1263
1264 raw_spin_unlock(&lowest_rq->lock);
1265 lowest_rq = NULL;
1266 break;
1267 }
1268 }
1269
1270 /* If this rq is still suitable use it. */
1271 if (lowest_rq->rt.highest_prio.curr > task->prio)
1272 break;
1273
1274 /* try again */
1275 double_unlock_balance(rq, lowest_rq);
1276 lowest_rq = NULL;
1277 }
1278
1279 return lowest_rq;
1280 }
1281
1282 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1283 {
1284 struct task_struct *p;
1285
1286 if (!has_pushable_tasks(rq))
1287 return NULL;
1288
1289 p = plist_first_entry(&rq->rt.pushable_tasks,
1290 struct task_struct, pushable_tasks);
1291
1292 BUG_ON(rq->cpu != task_cpu(p));
1293 BUG_ON(task_current(rq, p));
1294 BUG_ON(p->rt.nr_cpus_allowed <= 1);
1295
1296 BUG_ON(!p->se.on_rq);
1297 BUG_ON(!rt_task(p));
1298
1299 return p;
1300 }
1301
1302 /*
1303 * If the current CPU has more than one RT task, see if the non
1304 * running task can migrate over to a CPU that is running a task
1305 * of lesser priority.
1306 */
1307 static int push_rt_task(struct rq *rq)
1308 {
1309 struct task_struct *next_task;
1310 struct rq *lowest_rq;
1311
1312 if (!rq->rt.overloaded)
1313 return 0;
1314
1315 next_task = pick_next_pushable_task(rq);
1316 if (!next_task)
1317 return 0;
1318
1319 retry:
1320 if (unlikely(next_task == rq->curr)) {
1321 WARN_ON(1);
1322 return 0;
1323 }
1324
1325 /*
1326 * It's possible that the next_task slipped in of
1327 * higher priority than current. If that's the case
1328 * just reschedule current.
1329 */
1330 if (unlikely(next_task->prio < rq->curr->prio)) {
1331 resched_task(rq->curr);
1332 return 0;
1333 }
1334
1335 /* We might release rq lock */
1336 get_task_struct(next_task);
1337
1338 /* find_lock_lowest_rq locks the rq if found */
1339 lowest_rq = find_lock_lowest_rq(next_task, rq);
1340 if (!lowest_rq) {
1341 struct task_struct *task;
1342 /*
1343 * find lock_lowest_rq releases rq->lock
1344 * so it is possible that next_task has migrated.
1345 *
1346 * We need to make sure that the task is still on the same
1347 * run-queue and is also still the next task eligible for
1348 * pushing.
1349 */
1350 task = pick_next_pushable_task(rq);
1351 if (task_cpu(next_task) == rq->cpu && task == next_task) {
1352 /*
1353 * If we get here, the task hasnt moved at all, but
1354 * it has failed to push. We will not try again,
1355 * since the other cpus will pull from us when they
1356 * are ready.
1357 */
1358 dequeue_pushable_task(rq, next_task);
1359 goto out;
1360 }
1361
1362 if (!task)
1363 /* No more tasks, just exit */
1364 goto out;
1365
1366 /*
1367 * Something has shifted, try again.
1368 */
1369 put_task_struct(next_task);
1370 next_task = task;
1371 goto retry;
1372 }
1373
1374 deactivate_task(rq, next_task, 0);
1375 set_task_cpu(next_task, lowest_rq->cpu);
1376 activate_task(lowest_rq, next_task, 0);
1377
1378 resched_task(lowest_rq->curr);
1379
1380 double_unlock_balance(rq, lowest_rq);
1381
1382 out:
1383 put_task_struct(next_task);
1384
1385 return 1;
1386 }
1387
1388 static void push_rt_tasks(struct rq *rq)
1389 {
1390 /* push_rt_task will return true if it moved an RT */
1391 while (push_rt_task(rq))
1392 ;
1393 }
1394
1395 static int pull_rt_task(struct rq *this_rq)
1396 {
1397 int this_cpu = this_rq->cpu, ret = 0, cpu;
1398 struct task_struct *p;
1399 struct rq *src_rq;
1400
1401 if (likely(!rt_overloaded(this_rq)))
1402 return 0;
1403
1404 for_each_cpu(cpu, this_rq->rd->rto_mask) {
1405 if (this_cpu == cpu)
1406 continue;
1407
1408 src_rq = cpu_rq(cpu);
1409
1410 /*
1411 * Don't bother taking the src_rq->lock if the next highest
1412 * task is known to be lower-priority than our current task.
1413 * This may look racy, but if this value is about to go
1414 * logically higher, the src_rq will push this task away.
1415 * And if its going logically lower, we do not care
1416 */
1417 if (src_rq->rt.highest_prio.next >=
1418 this_rq->rt.highest_prio.curr)
1419 continue;
1420
1421 /*
1422 * We can potentially drop this_rq's lock in
1423 * double_lock_balance, and another CPU could
1424 * alter this_rq
1425 */
1426 double_lock_balance(this_rq, src_rq);
1427
1428 /*
1429 * Are there still pullable RT tasks?
1430 */
1431 if (src_rq->rt.rt_nr_running <= 1)
1432 goto skip;
1433
1434 p = pick_next_highest_task_rt(src_rq, this_cpu);
1435
1436 /*
1437 * Do we have an RT task that preempts
1438 * the to-be-scheduled task?
1439 */
1440 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
1441 WARN_ON(p == src_rq->curr);
1442 WARN_ON(!p->se.on_rq);
1443
1444 /*
1445 * There's a chance that p is higher in priority
1446 * than what's currently running on its cpu.
1447 * This is just that p is wakeing up and hasn't
1448 * had a chance to schedule. We only pull
1449 * p if it is lower in priority than the
1450 * current task on the run queue
1451 */
1452 if (p->prio < src_rq->curr->prio)
1453 goto skip;
1454
1455 ret = 1;
1456
1457 deactivate_task(src_rq, p, 0);
1458 set_task_cpu(p, this_cpu);
1459 activate_task(this_rq, p, 0);
1460 /*
1461 * We continue with the search, just in
1462 * case there's an even higher prio task
1463 * in another runqueue. (low likelyhood
1464 * but possible)
1465 */
1466 }
1467 skip:
1468 double_unlock_balance(this_rq, src_rq);
1469 }
1470
1471 return ret;
1472 }
1473
1474 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
1475 {
1476 /* Try to pull RT tasks here if we lower this rq's prio */
1477 if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
1478 pull_rt_task(rq);
1479 }
1480
1481 static void post_schedule_rt(struct rq *rq)
1482 {
1483 push_rt_tasks(rq);
1484 }
1485
1486 /*
1487 * If we are not running and we are not going to reschedule soon, we should
1488 * try to push tasks away now
1489 */
1490 static void task_woken_rt(struct rq *rq, struct task_struct *p)
1491 {
1492 if (!task_running(rq, p) &&
1493 !test_tsk_need_resched(rq->curr) &&
1494 has_pushable_tasks(rq) &&
1495 p->rt.nr_cpus_allowed > 1)
1496 push_rt_tasks(rq);
1497 }
1498
1499 static void set_cpus_allowed_rt(struct task_struct *p,
1500 const struct cpumask *new_mask)
1501 {
1502 int weight = cpumask_weight(new_mask);
1503
1504 BUG_ON(!rt_task(p));
1505
1506 /*
1507 * Update the migration status of the RQ if we have an RT task
1508 * which is running AND changing its weight value.
1509 */
1510 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1511 struct rq *rq = task_rq(p);
1512
1513 if (!task_current(rq, p)) {
1514 /*
1515 * Make sure we dequeue this task from the pushable list
1516 * before going further. It will either remain off of
1517 * the list because we are no longer pushable, or it
1518 * will be requeued.
1519 */
1520 if (p->rt.nr_cpus_allowed > 1)
1521 dequeue_pushable_task(rq, p);
1522
1523 /*
1524 * Requeue if our weight is changing and still > 1
1525 */
1526 if (weight > 1)
1527 enqueue_pushable_task(rq, p);
1528
1529 }
1530
1531 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1532 rq->rt.rt_nr_migratory++;
1533 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1534 BUG_ON(!rq->rt.rt_nr_migratory);
1535 rq->rt.rt_nr_migratory--;
1536 }
1537
1538 update_rt_migration(&rq->rt);
1539 }
1540
1541 cpumask_copy(&p->cpus_allowed, new_mask);
1542 p->rt.nr_cpus_allowed = weight;
1543 }
1544
1545 /* Assumes rq->lock is held */
1546 static void rq_online_rt(struct rq *rq)
1547 {
1548 if (rq->rt.overloaded)
1549 rt_set_overload(rq);
1550
1551 __enable_runtime(rq);
1552
1553 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
1554 }
1555
1556 /* Assumes rq->lock is held */
1557 static void rq_offline_rt(struct rq *rq)
1558 {
1559 if (rq->rt.overloaded)
1560 rt_clear_overload(rq);
1561
1562 __disable_runtime(rq);
1563
1564 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
1565 }
1566
1567 /*
1568 * When switch from the rt queue, we bring ourselves to a position
1569 * that we might want to pull RT tasks from other runqueues.
1570 */
1571 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1572 int running)
1573 {
1574 /*
1575 * If there are other RT tasks then we will reschedule
1576 * and the scheduling of the other RT tasks will handle
1577 * the balancing. But if we are the last RT task
1578 * we may need to handle the pulling of RT tasks
1579 * now.
1580 */
1581 if (!rq->rt.rt_nr_running)
1582 pull_rt_task(rq);
1583 }
1584
1585 static inline void init_sched_rt_class(void)
1586 {
1587 unsigned int i;
1588
1589 for_each_possible_cpu(i)
1590 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
1591 GFP_KERNEL, cpu_to_node(i));
1592 }
1593 #endif /* CONFIG_SMP */
1594
1595 /*
1596 * When switching a task to RT, we may overload the runqueue
1597 * with RT tasks. In this case we try to push them off to
1598 * other runqueues.
1599 */
1600 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1601 int running)
1602 {
1603 int check_resched = 1;
1604
1605 /*
1606 * If we are already running, then there's nothing
1607 * that needs to be done. But if we are not running
1608 * we may need to preempt the current running task.
1609 * If that current running task is also an RT task
1610 * then see if we can move to another run queue.
1611 */
1612 if (!running) {
1613 #ifdef CONFIG_SMP
1614 if (rq->rt.overloaded && push_rt_task(rq) &&
1615 /* Don't resched if we changed runqueues */
1616 rq != task_rq(p))
1617 check_resched = 0;
1618 #endif /* CONFIG_SMP */
1619 if (check_resched && p->prio < rq->curr->prio)
1620 resched_task(rq->curr);
1621 }
1622 }
1623
1624 /*
1625 * Priority of the task has changed. This may cause
1626 * us to initiate a push or pull.
1627 */
1628 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1629 int oldprio, int running)
1630 {
1631 if (running) {
1632 #ifdef CONFIG_SMP
1633 /*
1634 * If our priority decreases while running, we
1635 * may need to pull tasks to this runqueue.
1636 */
1637 if (oldprio < p->prio)
1638 pull_rt_task(rq);
1639 /*
1640 * If there's a higher priority task waiting to run
1641 * then reschedule. Note, the above pull_rt_task
1642 * can release the rq lock and p could migrate.
1643 * Only reschedule if p is still on the same runqueue.
1644 */
1645 if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
1646 resched_task(p);
1647 #else
1648 /* For UP simply resched on drop of prio */
1649 if (oldprio < p->prio)
1650 resched_task(p);
1651 #endif /* CONFIG_SMP */
1652 } else {
1653 /*
1654 * This task is not running, but if it is
1655 * greater than the current running task
1656 * then reschedule.
1657 */
1658 if (p->prio < rq->curr->prio)
1659 resched_task(rq->curr);
1660 }
1661 }
1662
1663 static void watchdog(struct rq *rq, struct task_struct *p)
1664 {
1665 unsigned long soft, hard;
1666
1667 if (!p->signal)
1668 return;
1669
1670 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1671 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1672
1673 if (soft != RLIM_INFINITY) {
1674 unsigned long next;
1675
1676 p->rt.timeout++;
1677 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1678 if (p->rt.timeout > next)
1679 p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
1680 }
1681 }
1682
1683 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1684 {
1685 update_curr_rt(rq);
1686
1687 watchdog(rq, p);
1688
1689 /*
1690 * RR tasks need a special form of timeslice management.
1691 * FIFO tasks have no timeslices.
1692 */
1693 if (p->policy != SCHED_RR)
1694 return;
1695
1696 if (--p->rt.time_slice)
1697 return;
1698
1699 p->rt.time_slice = DEF_TIMESLICE;
1700
1701 /*
1702 * Requeue to the end of queue if we are not the only element
1703 * on the queue:
1704 */
1705 if (p->rt.run_list.prev != p->rt.run_list.next) {
1706 requeue_task_rt(rq, p, 0);
1707 set_tsk_need_resched(p);
1708 }
1709 }
1710
1711 static void set_curr_task_rt(struct rq *rq)
1712 {
1713 struct task_struct *p = rq->curr;
1714
1715 p->se.exec_start = rq->clock;
1716
1717 /* The running task is never eligible for pushing */
1718 dequeue_pushable_task(rq, p);
1719 }
1720
1721 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
1722 {
1723 /*
1724 * Time slice is 0 for SCHED_FIFO tasks
1725 */
1726 if (task->policy == SCHED_RR)
1727 return DEF_TIMESLICE;
1728 else
1729 return 0;
1730 }
1731
1732 static const struct sched_class rt_sched_class = {
1733 .next = &fair_sched_class,
1734 .enqueue_task = enqueue_task_rt,
1735 .dequeue_task = dequeue_task_rt,
1736 .yield_task = yield_task_rt,
1737
1738 .check_preempt_curr = check_preempt_curr_rt,
1739
1740 .pick_next_task = pick_next_task_rt,
1741 .put_prev_task = put_prev_task_rt,
1742
1743 #ifdef CONFIG_SMP
1744 .select_task_rq = select_task_rq_rt,
1745
1746 .set_cpus_allowed = set_cpus_allowed_rt,
1747 .rq_online = rq_online_rt,
1748 .rq_offline = rq_offline_rt,
1749 .pre_schedule = pre_schedule_rt,
1750 .post_schedule = post_schedule_rt,
1751 .task_woken = task_woken_rt,
1752 .switched_from = switched_from_rt,
1753 #endif
1754
1755 .set_curr_task = set_curr_task_rt,
1756 .task_tick = task_tick_rt,
1757
1758 .get_rr_interval = get_rr_interval_rt,
1759
1760 .prio_changed = prio_changed_rt,
1761 .switched_to = switched_to_rt,
1762 };
1763
1764 #ifdef CONFIG_SCHED_DEBUG
1765 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
1766
1767 static void print_rt_stats(struct seq_file *m, int cpu)
1768 {
1769 struct rt_rq *rt_rq;
1770
1771 rcu_read_lock();
1772 for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
1773 print_rt_rq(m, cpu, rt_rq);
1774 rcu_read_unlock();
1775 }
1776 #endif /* CONFIG_SCHED_DEBUG */
1777