]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched_rt.c
sched: rt-group: interface
[mirror_ubuntu-zesty-kernel.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #ifdef CONFIG_SMP
7
8 static inline int rt_overloaded(struct rq *rq)
9 {
10 return atomic_read(&rq->rd->rto_count);
11 }
12
13 static inline void rt_set_overload(struct rq *rq)
14 {
15 cpu_set(rq->cpu, rq->rd->rto_mask);
16 /*
17 * Make sure the mask is visible before we set
18 * the overload count. That is checked to determine
19 * if we should look at the mask. It would be a shame
20 * if we looked at the mask, but the mask was not
21 * updated yet.
22 */
23 wmb();
24 atomic_inc(&rq->rd->rto_count);
25 }
26
27 static inline void rt_clear_overload(struct rq *rq)
28 {
29 /* the order here really doesn't matter */
30 atomic_dec(&rq->rd->rto_count);
31 cpu_clear(rq->cpu, rq->rd->rto_mask);
32 }
33
34 static void update_rt_migration(struct rq *rq)
35 {
36 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
37 if (!rq->rt.overloaded) {
38 rt_set_overload(rq);
39 rq->rt.overloaded = 1;
40 }
41 } else if (rq->rt.overloaded) {
42 rt_clear_overload(rq);
43 rq->rt.overloaded = 0;
44 }
45 }
46 #endif /* CONFIG_SMP */
47
48 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
49 {
50 return container_of(rt_se, struct task_struct, rt);
51 }
52
53 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
54 {
55 return !list_empty(&rt_se->run_list);
56 }
57
58 #ifdef CONFIG_FAIR_GROUP_SCHED
59
60 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
61 {
62 if (!rt_rq->tg)
63 return RUNTIME_INF;
64
65 return rt_rq->tg->rt_runtime;
66 }
67
68 #define for_each_leaf_rt_rq(rt_rq, rq) \
69 list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
70
71 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
72 {
73 return rt_rq->rq;
74 }
75
76 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
77 {
78 return rt_se->rt_rq;
79 }
80
81 #define for_each_sched_rt_entity(rt_se) \
82 for (; rt_se; rt_se = rt_se->parent)
83
84 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
85 {
86 return rt_se->my_q;
87 }
88
89 static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
90 static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
91
92 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
93 {
94 struct sched_rt_entity *rt_se = rt_rq->rt_se;
95
96 if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
97 struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
98
99 enqueue_rt_entity(rt_se);
100 if (rt_rq->highest_prio < curr->prio)
101 resched_task(curr);
102 }
103 }
104
105 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
106 {
107 struct sched_rt_entity *rt_se = rt_rq->rt_se;
108
109 if (rt_se && on_rt_rq(rt_se))
110 dequeue_rt_entity(rt_se);
111 }
112
113 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
114 {
115 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
116 }
117
118 static int rt_se_boosted(struct sched_rt_entity *rt_se)
119 {
120 struct rt_rq *rt_rq = group_rt_rq(rt_se);
121 struct task_struct *p;
122
123 if (rt_rq)
124 return !!rt_rq->rt_nr_boosted;
125
126 p = rt_task_of(rt_se);
127 return p->prio != p->normal_prio;
128 }
129
130 #else
131
132 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
133 {
134 if (sysctl_sched_rt_runtime == -1)
135 return RUNTIME_INF;
136
137 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
138 }
139
140 #define for_each_leaf_rt_rq(rt_rq, rq) \
141 for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
142
143 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
144 {
145 return container_of(rt_rq, struct rq, rt);
146 }
147
148 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
149 {
150 struct task_struct *p = rt_task_of(rt_se);
151 struct rq *rq = task_rq(p);
152
153 return &rq->rt;
154 }
155
156 #define for_each_sched_rt_entity(rt_se) \
157 for (; rt_se; rt_se = NULL)
158
159 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
160 {
161 return NULL;
162 }
163
164 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
165 {
166 }
167
168 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
169 {
170 }
171
172 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
173 {
174 return rt_rq->rt_throttled;
175 }
176 #endif
177
178 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
179 {
180 #ifdef CONFIG_FAIR_GROUP_SCHED
181 struct rt_rq *rt_rq = group_rt_rq(rt_se);
182
183 if (rt_rq)
184 return rt_rq->highest_prio;
185 #endif
186
187 return rt_task_of(rt_se)->prio;
188 }
189
190 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
191 {
192 u64 runtime = sched_rt_runtime(rt_rq);
193
194 if (runtime == RUNTIME_INF)
195 return 0;
196
197 if (rt_rq->rt_throttled)
198 return rt_rq_throttled(rt_rq);
199
200 if (rt_rq->rt_time > runtime) {
201 struct rq *rq = rq_of_rt_rq(rt_rq);
202
203 rq->rt_throttled = 1;
204 rt_rq->rt_throttled = 1;
205
206 if (rt_rq_throttled(rt_rq)) {
207 sched_rt_rq_dequeue(rt_rq);
208 return 1;
209 }
210 }
211
212 return 0;
213 }
214
215 static void update_sched_rt_period(struct rq *rq)
216 {
217 struct rt_rq *rt_rq;
218 u64 period;
219
220 while (rq->clock > rq->rt_period_expire) {
221 period = (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
222 rq->rt_period_expire += period;
223
224 for_each_leaf_rt_rq(rt_rq, rq) {
225 u64 runtime = sched_rt_runtime(rt_rq);
226
227 rt_rq->rt_time -= min(rt_rq->rt_time, runtime);
228 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
229 rt_rq->rt_throttled = 0;
230 sched_rt_rq_enqueue(rt_rq);
231 }
232 }
233
234 rq->rt_throttled = 0;
235 }
236 }
237
238 /*
239 * Update the current task's runtime statistics. Skip current tasks that
240 * are not in our scheduling class.
241 */
242 static void update_curr_rt(struct rq *rq)
243 {
244 struct task_struct *curr = rq->curr;
245 struct sched_rt_entity *rt_se = &curr->rt;
246 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
247 u64 delta_exec;
248
249 if (!task_has_rt_policy(curr))
250 return;
251
252 delta_exec = rq->clock - curr->se.exec_start;
253 if (unlikely((s64)delta_exec < 0))
254 delta_exec = 0;
255
256 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
257
258 curr->se.sum_exec_runtime += delta_exec;
259 curr->se.exec_start = rq->clock;
260 cpuacct_charge(curr, delta_exec);
261
262 rt_rq->rt_time += delta_exec;
263 if (sched_rt_runtime_exceeded(rt_rq))
264 resched_task(curr);
265 }
266
267 static inline
268 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
269 {
270 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
271 rt_rq->rt_nr_running++;
272 #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
273 if (rt_se_prio(rt_se) < rt_rq->highest_prio)
274 rt_rq->highest_prio = rt_se_prio(rt_se);
275 #endif
276 #ifdef CONFIG_SMP
277 if (rt_se->nr_cpus_allowed > 1) {
278 struct rq *rq = rq_of_rt_rq(rt_rq);
279 rq->rt.rt_nr_migratory++;
280 }
281
282 update_rt_migration(rq_of_rt_rq(rt_rq));
283 #endif
284 #ifdef CONFIG_FAIR_GROUP_SCHED
285 if (rt_se_boosted(rt_se))
286 rt_rq->rt_nr_boosted++;
287 #endif
288 }
289
290 static inline
291 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
292 {
293 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
294 WARN_ON(!rt_rq->rt_nr_running);
295 rt_rq->rt_nr_running--;
296 #if defined CONFIG_SMP || defined CONFIG_FAIR_GROUP_SCHED
297 if (rt_rq->rt_nr_running) {
298 struct rt_prio_array *array;
299
300 WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
301 if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
302 /* recalculate */
303 array = &rt_rq->active;
304 rt_rq->highest_prio =
305 sched_find_first_bit(array->bitmap);
306 } /* otherwise leave rq->highest prio alone */
307 } else
308 rt_rq->highest_prio = MAX_RT_PRIO;
309 #endif
310 #ifdef CONFIG_SMP
311 if (rt_se->nr_cpus_allowed > 1) {
312 struct rq *rq = rq_of_rt_rq(rt_rq);
313 rq->rt.rt_nr_migratory--;
314 }
315
316 update_rt_migration(rq_of_rt_rq(rt_rq));
317 #endif /* CONFIG_SMP */
318 #ifdef CONFIG_FAIR_GROUP_SCHED
319 if (rt_se_boosted(rt_se))
320 rt_rq->rt_nr_boosted--;
321
322 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
323 #endif
324 }
325
326 static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
327 {
328 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
329 struct rt_prio_array *array = &rt_rq->active;
330 struct rt_rq *group_rq = group_rt_rq(rt_se);
331
332 if (group_rq && rt_rq_throttled(group_rq))
333 return;
334
335 list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
336 __set_bit(rt_se_prio(rt_se), array->bitmap);
337
338 inc_rt_tasks(rt_se, rt_rq);
339 }
340
341 static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
342 {
343 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
344 struct rt_prio_array *array = &rt_rq->active;
345
346 list_del_init(&rt_se->run_list);
347 if (list_empty(array->queue + rt_se_prio(rt_se)))
348 __clear_bit(rt_se_prio(rt_se), array->bitmap);
349
350 dec_rt_tasks(rt_se, rt_rq);
351 }
352
353 /*
354 * Because the prio of an upper entry depends on the lower
355 * entries, we must remove entries top - down.
356 *
357 * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
358 * doesn't matter much for now, as h=2 for GROUP_SCHED.
359 */
360 static void dequeue_rt_stack(struct task_struct *p)
361 {
362 struct sched_rt_entity *rt_se, *top_se;
363
364 /*
365 * dequeue all, top - down.
366 */
367 do {
368 rt_se = &p->rt;
369 top_se = NULL;
370 for_each_sched_rt_entity(rt_se) {
371 if (on_rt_rq(rt_se))
372 top_se = rt_se;
373 }
374 if (top_se)
375 dequeue_rt_entity(top_se);
376 } while (top_se);
377 }
378
379 /*
380 * Adding/removing a task to/from a priority array:
381 */
382 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
383 {
384 struct sched_rt_entity *rt_se = &p->rt;
385
386 if (wakeup)
387 rt_se->timeout = 0;
388
389 dequeue_rt_stack(p);
390
391 /*
392 * enqueue everybody, bottom - up.
393 */
394 for_each_sched_rt_entity(rt_se)
395 enqueue_rt_entity(rt_se);
396
397 inc_cpu_load(rq, p->se.load.weight);
398 }
399
400 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
401 {
402 struct sched_rt_entity *rt_se = &p->rt;
403 struct rt_rq *rt_rq;
404
405 update_curr_rt(rq);
406
407 dequeue_rt_stack(p);
408
409 /*
410 * re-enqueue all non-empty rt_rq entities.
411 */
412 for_each_sched_rt_entity(rt_se) {
413 rt_rq = group_rt_rq(rt_se);
414 if (rt_rq && rt_rq->rt_nr_running)
415 enqueue_rt_entity(rt_se);
416 }
417
418 dec_cpu_load(rq, p->se.load.weight);
419 }
420
421 /*
422 * Put task to the end of the run list without the overhead of dequeue
423 * followed by enqueue.
424 */
425 static
426 void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
427 {
428 struct rt_prio_array *array = &rt_rq->active;
429
430 list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
431 }
432
433 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
434 {
435 struct sched_rt_entity *rt_se = &p->rt;
436 struct rt_rq *rt_rq;
437
438 for_each_sched_rt_entity(rt_se) {
439 rt_rq = rt_rq_of_se(rt_se);
440 requeue_rt_entity(rt_rq, rt_se);
441 }
442 }
443
444 static void yield_task_rt(struct rq *rq)
445 {
446 requeue_task_rt(rq, rq->curr);
447 }
448
449 #ifdef CONFIG_SMP
450 static int find_lowest_rq(struct task_struct *task);
451
452 static int select_task_rq_rt(struct task_struct *p, int sync)
453 {
454 struct rq *rq = task_rq(p);
455
456 /*
457 * If the current task is an RT task, then
458 * try to see if we can wake this RT task up on another
459 * runqueue. Otherwise simply start this RT task
460 * on its current runqueue.
461 *
462 * We want to avoid overloading runqueues. Even if
463 * the RT task is of higher priority than the current RT task.
464 * RT tasks behave differently than other tasks. If
465 * one gets preempted, we try to push it off to another queue.
466 * So trying to keep a preempting RT task on the same
467 * cache hot CPU will force the running RT task to
468 * a cold CPU. So we waste all the cache for the lower
469 * RT task in hopes of saving some of a RT task
470 * that is just being woken and probably will have
471 * cold cache anyway.
472 */
473 if (unlikely(rt_task(rq->curr)) &&
474 (p->rt.nr_cpus_allowed > 1)) {
475 int cpu = find_lowest_rq(p);
476
477 return (cpu == -1) ? task_cpu(p) : cpu;
478 }
479
480 /*
481 * Otherwise, just let it ride on the affined RQ and the
482 * post-schedule router will push the preempted task away
483 */
484 return task_cpu(p);
485 }
486 #endif /* CONFIG_SMP */
487
488 /*
489 * Preempt the current task with a newly woken task if needed:
490 */
491 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
492 {
493 if (p->prio < rq->curr->prio)
494 resched_task(rq->curr);
495 }
496
497 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
498 struct rt_rq *rt_rq)
499 {
500 struct rt_prio_array *array = &rt_rq->active;
501 struct sched_rt_entity *next = NULL;
502 struct list_head *queue;
503 int idx;
504
505 idx = sched_find_first_bit(array->bitmap);
506 BUG_ON(idx >= MAX_RT_PRIO);
507
508 queue = array->queue + idx;
509 next = list_entry(queue->next, struct sched_rt_entity, run_list);
510
511 return next;
512 }
513
514 static struct task_struct *pick_next_task_rt(struct rq *rq)
515 {
516 struct sched_rt_entity *rt_se;
517 struct task_struct *p;
518 struct rt_rq *rt_rq;
519
520 rt_rq = &rq->rt;
521
522 if (unlikely(!rt_rq->rt_nr_running))
523 return NULL;
524
525 if (rt_rq_throttled(rt_rq))
526 return NULL;
527
528 do {
529 rt_se = pick_next_rt_entity(rq, rt_rq);
530 BUG_ON(!rt_se);
531 rt_rq = group_rt_rq(rt_se);
532 } while (rt_rq);
533
534 p = rt_task_of(rt_se);
535 p->se.exec_start = rq->clock;
536 return p;
537 }
538
539 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
540 {
541 update_curr_rt(rq);
542 p->se.exec_start = 0;
543 }
544
545 #ifdef CONFIG_SMP
546
547 /* Only try algorithms three times */
548 #define RT_MAX_TRIES 3
549
550 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
551 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
552
553 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
554 {
555 if (!task_running(rq, p) &&
556 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
557 (p->rt.nr_cpus_allowed > 1))
558 return 1;
559 return 0;
560 }
561
562 /* Return the second highest RT task, NULL otherwise */
563 static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
564 {
565 struct task_struct *next = NULL;
566 struct sched_rt_entity *rt_se;
567 struct rt_prio_array *array;
568 struct rt_rq *rt_rq;
569 int idx;
570
571 for_each_leaf_rt_rq(rt_rq, rq) {
572 array = &rt_rq->active;
573 idx = sched_find_first_bit(array->bitmap);
574 next_idx:
575 if (idx >= MAX_RT_PRIO)
576 continue;
577 if (next && next->prio < idx)
578 continue;
579 list_for_each_entry(rt_se, array->queue + idx, run_list) {
580 struct task_struct *p = rt_task_of(rt_se);
581 if (pick_rt_task(rq, p, cpu)) {
582 next = p;
583 break;
584 }
585 }
586 if (!next) {
587 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
588 goto next_idx;
589 }
590 }
591
592 return next;
593 }
594
595 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
596
597 static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
598 {
599 int lowest_prio = -1;
600 int lowest_cpu = -1;
601 int count = 0;
602 int cpu;
603
604 cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
605
606 /*
607 * Scan each rq for the lowest prio.
608 */
609 for_each_cpu_mask(cpu, *lowest_mask) {
610 struct rq *rq = cpu_rq(cpu);
611
612 /* We look for lowest RT prio or non-rt CPU */
613 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
614 /*
615 * if we already found a low RT queue
616 * and now we found this non-rt queue
617 * clear the mask and set our bit.
618 * Otherwise just return the queue as is
619 * and the count==1 will cause the algorithm
620 * to use the first bit found.
621 */
622 if (lowest_cpu != -1) {
623 cpus_clear(*lowest_mask);
624 cpu_set(rq->cpu, *lowest_mask);
625 }
626 return 1;
627 }
628
629 /* no locking for now */
630 if ((rq->rt.highest_prio > task->prio)
631 && (rq->rt.highest_prio >= lowest_prio)) {
632 if (rq->rt.highest_prio > lowest_prio) {
633 /* new low - clear old data */
634 lowest_prio = rq->rt.highest_prio;
635 lowest_cpu = cpu;
636 count = 0;
637 }
638 count++;
639 } else
640 cpu_clear(cpu, *lowest_mask);
641 }
642
643 /*
644 * Clear out all the set bits that represent
645 * runqueues that were of higher prio than
646 * the lowest_prio.
647 */
648 if (lowest_cpu > 0) {
649 /*
650 * Perhaps we could add another cpumask op to
651 * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
652 * Then that could be optimized to use memset and such.
653 */
654 for_each_cpu_mask(cpu, *lowest_mask) {
655 if (cpu >= lowest_cpu)
656 break;
657 cpu_clear(cpu, *lowest_mask);
658 }
659 }
660
661 return count;
662 }
663
664 static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
665 {
666 int first;
667
668 /* "this_cpu" is cheaper to preempt than a remote processor */
669 if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
670 return this_cpu;
671
672 first = first_cpu(*mask);
673 if (first != NR_CPUS)
674 return first;
675
676 return -1;
677 }
678
679 static int find_lowest_rq(struct task_struct *task)
680 {
681 struct sched_domain *sd;
682 cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
683 int this_cpu = smp_processor_id();
684 int cpu = task_cpu(task);
685 int count = find_lowest_cpus(task, lowest_mask);
686
687 if (!count)
688 return -1; /* No targets found */
689
690 /*
691 * There is no sense in performing an optimal search if only one
692 * target is found.
693 */
694 if (count == 1)
695 return first_cpu(*lowest_mask);
696
697 /*
698 * At this point we have built a mask of cpus representing the
699 * lowest priority tasks in the system. Now we want to elect
700 * the best one based on our affinity and topology.
701 *
702 * We prioritize the last cpu that the task executed on since
703 * it is most likely cache-hot in that location.
704 */
705 if (cpu_isset(cpu, *lowest_mask))
706 return cpu;
707
708 /*
709 * Otherwise, we consult the sched_domains span maps to figure
710 * out which cpu is logically closest to our hot cache data.
711 */
712 if (this_cpu == cpu)
713 this_cpu = -1; /* Skip this_cpu opt if the same */
714
715 for_each_domain(cpu, sd) {
716 if (sd->flags & SD_WAKE_AFFINE) {
717 cpumask_t domain_mask;
718 int best_cpu;
719
720 cpus_and(domain_mask, sd->span, *lowest_mask);
721
722 best_cpu = pick_optimal_cpu(this_cpu,
723 &domain_mask);
724 if (best_cpu != -1)
725 return best_cpu;
726 }
727 }
728
729 /*
730 * And finally, if there were no matches within the domains
731 * just give the caller *something* to work with from the compatible
732 * locations.
733 */
734 return pick_optimal_cpu(this_cpu, lowest_mask);
735 }
736
737 /* Will lock the rq it finds */
738 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
739 {
740 struct rq *lowest_rq = NULL;
741 int tries;
742 int cpu;
743
744 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
745 cpu = find_lowest_rq(task);
746
747 if ((cpu == -1) || (cpu == rq->cpu))
748 break;
749
750 lowest_rq = cpu_rq(cpu);
751
752 /* if the prio of this runqueue changed, try again */
753 if (double_lock_balance(rq, lowest_rq)) {
754 /*
755 * We had to unlock the run queue. In
756 * the mean time, task could have
757 * migrated already or had its affinity changed.
758 * Also make sure that it wasn't scheduled on its rq.
759 */
760 if (unlikely(task_rq(task) != rq ||
761 !cpu_isset(lowest_rq->cpu,
762 task->cpus_allowed) ||
763 task_running(rq, task) ||
764 !task->se.on_rq)) {
765
766 spin_unlock(&lowest_rq->lock);
767 lowest_rq = NULL;
768 break;
769 }
770 }
771
772 /* If this rq is still suitable use it. */
773 if (lowest_rq->rt.highest_prio > task->prio)
774 break;
775
776 /* try again */
777 spin_unlock(&lowest_rq->lock);
778 lowest_rq = NULL;
779 }
780
781 return lowest_rq;
782 }
783
784 /*
785 * If the current CPU has more than one RT task, see if the non
786 * running task can migrate over to a CPU that is running a task
787 * of lesser priority.
788 */
789 static int push_rt_task(struct rq *rq)
790 {
791 struct task_struct *next_task;
792 struct rq *lowest_rq;
793 int ret = 0;
794 int paranoid = RT_MAX_TRIES;
795
796 if (!rq->rt.overloaded)
797 return 0;
798
799 next_task = pick_next_highest_task_rt(rq, -1);
800 if (!next_task)
801 return 0;
802
803 retry:
804 if (unlikely(next_task == rq->curr)) {
805 WARN_ON(1);
806 return 0;
807 }
808
809 /*
810 * It's possible that the next_task slipped in of
811 * higher priority than current. If that's the case
812 * just reschedule current.
813 */
814 if (unlikely(next_task->prio < rq->curr->prio)) {
815 resched_task(rq->curr);
816 return 0;
817 }
818
819 /* We might release rq lock */
820 get_task_struct(next_task);
821
822 /* find_lock_lowest_rq locks the rq if found */
823 lowest_rq = find_lock_lowest_rq(next_task, rq);
824 if (!lowest_rq) {
825 struct task_struct *task;
826 /*
827 * find lock_lowest_rq releases rq->lock
828 * so it is possible that next_task has changed.
829 * If it has, then try again.
830 */
831 task = pick_next_highest_task_rt(rq, -1);
832 if (unlikely(task != next_task) && task && paranoid--) {
833 put_task_struct(next_task);
834 next_task = task;
835 goto retry;
836 }
837 goto out;
838 }
839
840 deactivate_task(rq, next_task, 0);
841 set_task_cpu(next_task, lowest_rq->cpu);
842 activate_task(lowest_rq, next_task, 0);
843
844 resched_task(lowest_rq->curr);
845
846 spin_unlock(&lowest_rq->lock);
847
848 ret = 1;
849 out:
850 put_task_struct(next_task);
851
852 return ret;
853 }
854
855 /*
856 * TODO: Currently we just use the second highest prio task on
857 * the queue, and stop when it can't migrate (or there's
858 * no more RT tasks). There may be a case where a lower
859 * priority RT task has a different affinity than the
860 * higher RT task. In this case the lower RT task could
861 * possibly be able to migrate where as the higher priority
862 * RT task could not. We currently ignore this issue.
863 * Enhancements are welcome!
864 */
865 static void push_rt_tasks(struct rq *rq)
866 {
867 /* push_rt_task will return true if it moved an RT */
868 while (push_rt_task(rq))
869 ;
870 }
871
872 static int pull_rt_task(struct rq *this_rq)
873 {
874 int this_cpu = this_rq->cpu, ret = 0, cpu;
875 struct task_struct *p, *next;
876 struct rq *src_rq;
877
878 if (likely(!rt_overloaded(this_rq)))
879 return 0;
880
881 next = pick_next_task_rt(this_rq);
882
883 for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
884 if (this_cpu == cpu)
885 continue;
886
887 src_rq = cpu_rq(cpu);
888 /*
889 * We can potentially drop this_rq's lock in
890 * double_lock_balance, and another CPU could
891 * steal our next task - hence we must cause
892 * the caller to recalculate the next task
893 * in that case:
894 */
895 if (double_lock_balance(this_rq, src_rq)) {
896 struct task_struct *old_next = next;
897
898 next = pick_next_task_rt(this_rq);
899 if (next != old_next)
900 ret = 1;
901 }
902
903 /*
904 * Are there still pullable RT tasks?
905 */
906 if (src_rq->rt.rt_nr_running <= 1)
907 goto skip;
908
909 p = pick_next_highest_task_rt(src_rq, this_cpu);
910
911 /*
912 * Do we have an RT task that preempts
913 * the to-be-scheduled task?
914 */
915 if (p && (!next || (p->prio < next->prio))) {
916 WARN_ON(p == src_rq->curr);
917 WARN_ON(!p->se.on_rq);
918
919 /*
920 * There's a chance that p is higher in priority
921 * than what's currently running on its cpu.
922 * This is just that p is wakeing up and hasn't
923 * had a chance to schedule. We only pull
924 * p if it is lower in priority than the
925 * current task on the run queue or
926 * this_rq next task is lower in prio than
927 * the current task on that rq.
928 */
929 if (p->prio < src_rq->curr->prio ||
930 (next && next->prio < src_rq->curr->prio))
931 goto skip;
932
933 ret = 1;
934
935 deactivate_task(src_rq, p, 0);
936 set_task_cpu(p, this_cpu);
937 activate_task(this_rq, p, 0);
938 /*
939 * We continue with the search, just in
940 * case there's an even higher prio task
941 * in another runqueue. (low likelyhood
942 * but possible)
943 *
944 * Update next so that we won't pick a task
945 * on another cpu with a priority lower (or equal)
946 * than the one we just picked.
947 */
948 next = p;
949
950 }
951 skip:
952 spin_unlock(&src_rq->lock);
953 }
954
955 return ret;
956 }
957
958 static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
959 {
960 /* Try to pull RT tasks here if we lower this rq's prio */
961 if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
962 pull_rt_task(rq);
963 }
964
965 static void post_schedule_rt(struct rq *rq)
966 {
967 /*
968 * If we have more than one rt_task queued, then
969 * see if we can push the other rt_tasks off to other CPUS.
970 * Note we may release the rq lock, and since
971 * the lock was owned by prev, we need to release it
972 * first via finish_lock_switch and then reaquire it here.
973 */
974 if (unlikely(rq->rt.overloaded)) {
975 spin_lock_irq(&rq->lock);
976 push_rt_tasks(rq);
977 spin_unlock_irq(&rq->lock);
978 }
979 }
980
981
982 static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
983 {
984 if (!task_running(rq, p) &&
985 (p->prio >= rq->rt.highest_prio) &&
986 rq->rt.overloaded)
987 push_rt_tasks(rq);
988 }
989
990 static unsigned long
991 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
992 unsigned long max_load_move,
993 struct sched_domain *sd, enum cpu_idle_type idle,
994 int *all_pinned, int *this_best_prio)
995 {
996 /* don't touch RT tasks */
997 return 0;
998 }
999
1000 static int
1001 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
1002 struct sched_domain *sd, enum cpu_idle_type idle)
1003 {
1004 /* don't touch RT tasks */
1005 return 0;
1006 }
1007
1008 static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
1009 {
1010 int weight = cpus_weight(*new_mask);
1011
1012 BUG_ON(!rt_task(p));
1013
1014 /*
1015 * Update the migration status of the RQ if we have an RT task
1016 * which is running AND changing its weight value.
1017 */
1018 if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
1019 struct rq *rq = task_rq(p);
1020
1021 if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
1022 rq->rt.rt_nr_migratory++;
1023 } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
1024 BUG_ON(!rq->rt.rt_nr_migratory);
1025 rq->rt.rt_nr_migratory--;
1026 }
1027
1028 update_rt_migration(rq);
1029 }
1030
1031 p->cpus_allowed = *new_mask;
1032 p->rt.nr_cpus_allowed = weight;
1033 }
1034
1035 /* Assumes rq->lock is held */
1036 static void join_domain_rt(struct rq *rq)
1037 {
1038 if (rq->rt.overloaded)
1039 rt_set_overload(rq);
1040 }
1041
1042 /* Assumes rq->lock is held */
1043 static void leave_domain_rt(struct rq *rq)
1044 {
1045 if (rq->rt.overloaded)
1046 rt_clear_overload(rq);
1047 }
1048
1049 /*
1050 * When switch from the rt queue, we bring ourselves to a position
1051 * that we might want to pull RT tasks from other runqueues.
1052 */
1053 static void switched_from_rt(struct rq *rq, struct task_struct *p,
1054 int running)
1055 {
1056 /*
1057 * If there are other RT tasks then we will reschedule
1058 * and the scheduling of the other RT tasks will handle
1059 * the balancing. But if we are the last RT task
1060 * we may need to handle the pulling of RT tasks
1061 * now.
1062 */
1063 if (!rq->rt.rt_nr_running)
1064 pull_rt_task(rq);
1065 }
1066 #endif /* CONFIG_SMP */
1067
1068 /*
1069 * When switching a task to RT, we may overload the runqueue
1070 * with RT tasks. In this case we try to push them off to
1071 * other runqueues.
1072 */
1073 static void switched_to_rt(struct rq *rq, struct task_struct *p,
1074 int running)
1075 {
1076 int check_resched = 1;
1077
1078 /*
1079 * If we are already running, then there's nothing
1080 * that needs to be done. But if we are not running
1081 * we may need to preempt the current running task.
1082 * If that current running task is also an RT task
1083 * then see if we can move to another run queue.
1084 */
1085 if (!running) {
1086 #ifdef CONFIG_SMP
1087 if (rq->rt.overloaded && push_rt_task(rq) &&
1088 /* Don't resched if we changed runqueues */
1089 rq != task_rq(p))
1090 check_resched = 0;
1091 #endif /* CONFIG_SMP */
1092 if (check_resched && p->prio < rq->curr->prio)
1093 resched_task(rq->curr);
1094 }
1095 }
1096
1097 /*
1098 * Priority of the task has changed. This may cause
1099 * us to initiate a push or pull.
1100 */
1101 static void prio_changed_rt(struct rq *rq, struct task_struct *p,
1102 int oldprio, int running)
1103 {
1104 if (running) {
1105 #ifdef CONFIG_SMP
1106 /*
1107 * If our priority decreases while running, we
1108 * may need to pull tasks to this runqueue.
1109 */
1110 if (oldprio < p->prio)
1111 pull_rt_task(rq);
1112 /*
1113 * If there's a higher priority task waiting to run
1114 * then reschedule.
1115 */
1116 if (p->prio > rq->rt.highest_prio)
1117 resched_task(p);
1118 #else
1119 /* For UP simply resched on drop of prio */
1120 if (oldprio < p->prio)
1121 resched_task(p);
1122 #endif /* CONFIG_SMP */
1123 } else {
1124 /*
1125 * This task is not running, but if it is
1126 * greater than the current running task
1127 * then reschedule.
1128 */
1129 if (p->prio < rq->curr->prio)
1130 resched_task(rq->curr);
1131 }
1132 }
1133
1134 static void watchdog(struct rq *rq, struct task_struct *p)
1135 {
1136 unsigned long soft, hard;
1137
1138 if (!p->signal)
1139 return;
1140
1141 soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
1142 hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
1143
1144 if (soft != RLIM_INFINITY) {
1145 unsigned long next;
1146
1147 p->rt.timeout++;
1148 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
1149 if (p->rt.timeout > next)
1150 p->it_sched_expires = p->se.sum_exec_runtime;
1151 }
1152 }
1153
1154 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
1155 {
1156 update_curr_rt(rq);
1157
1158 watchdog(rq, p);
1159
1160 /*
1161 * RR tasks need a special form of timeslice management.
1162 * FIFO tasks have no timeslices.
1163 */
1164 if (p->policy != SCHED_RR)
1165 return;
1166
1167 if (--p->rt.time_slice)
1168 return;
1169
1170 p->rt.time_slice = DEF_TIMESLICE;
1171
1172 /*
1173 * Requeue to the end of queue if we are not the only element
1174 * on the queue:
1175 */
1176 if (p->rt.run_list.prev != p->rt.run_list.next) {
1177 requeue_task_rt(rq, p);
1178 set_tsk_need_resched(p);
1179 }
1180 }
1181
1182 static void set_curr_task_rt(struct rq *rq)
1183 {
1184 struct task_struct *p = rq->curr;
1185
1186 p->se.exec_start = rq->clock;
1187 }
1188
1189 const struct sched_class rt_sched_class = {
1190 .next = &fair_sched_class,
1191 .enqueue_task = enqueue_task_rt,
1192 .dequeue_task = dequeue_task_rt,
1193 .yield_task = yield_task_rt,
1194 #ifdef CONFIG_SMP
1195 .select_task_rq = select_task_rq_rt,
1196 #endif /* CONFIG_SMP */
1197
1198 .check_preempt_curr = check_preempt_curr_rt,
1199
1200 .pick_next_task = pick_next_task_rt,
1201 .put_prev_task = put_prev_task_rt,
1202
1203 #ifdef CONFIG_SMP
1204 .load_balance = load_balance_rt,
1205 .move_one_task = move_one_task_rt,
1206 .set_cpus_allowed = set_cpus_allowed_rt,
1207 .join_domain = join_domain_rt,
1208 .leave_domain = leave_domain_rt,
1209 .pre_schedule = pre_schedule_rt,
1210 .post_schedule = post_schedule_rt,
1211 .task_wake_up = task_wake_up_rt,
1212 .switched_from = switched_from_rt,
1213 #endif
1214
1215 .set_curr_task = set_curr_task_rt,
1216 .task_tick = task_tick_rt,
1217
1218 .prio_changed = prio_changed_rt,
1219 .switched_to = switched_to_rt,
1220 };