]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/sched_rt.c
sched: break out search for RT tasks
[mirror_ubuntu-zesty-kernel.git] / kernel / sched_rt.c
1 /*
2 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
3 * policies)
4 */
5
6 #ifdef CONFIG_SMP
7 static cpumask_t rt_overload_mask;
8 static atomic_t rto_count;
9 static inline int rt_overloaded(void)
10 {
11 return atomic_read(&rto_count);
12 }
13 static inline cpumask_t *rt_overload(void)
14 {
15 return &rt_overload_mask;
16 }
17 static inline void rt_set_overload(struct rq *rq)
18 {
19 cpu_set(rq->cpu, rt_overload_mask);
20 /*
21 * Make sure the mask is visible before we set
22 * the overload count. That is checked to determine
23 * if we should look at the mask. It would be a shame
24 * if we looked at the mask, but the mask was not
25 * updated yet.
26 */
27 wmb();
28 atomic_inc(&rto_count);
29 }
30 static inline void rt_clear_overload(struct rq *rq)
31 {
32 /* the order here really doesn't matter */
33 atomic_dec(&rto_count);
34 cpu_clear(rq->cpu, rt_overload_mask);
35 }
36
37 static void update_rt_migration(struct rq *rq)
38 {
39 if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1))
40 rt_set_overload(rq);
41 else
42 rt_clear_overload(rq);
43 }
44 #endif /* CONFIG_SMP */
45
46 /*
47 * Update the current task's runtime statistics. Skip current tasks that
48 * are not in our scheduling class.
49 */
50 static void update_curr_rt(struct rq *rq)
51 {
52 struct task_struct *curr = rq->curr;
53 u64 delta_exec;
54
55 if (!task_has_rt_policy(curr))
56 return;
57
58 delta_exec = rq->clock - curr->se.exec_start;
59 if (unlikely((s64)delta_exec < 0))
60 delta_exec = 0;
61
62 schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
63
64 curr->se.sum_exec_runtime += delta_exec;
65 curr->se.exec_start = rq->clock;
66 cpuacct_charge(curr, delta_exec);
67 }
68
69 static inline void inc_rt_tasks(struct task_struct *p, struct rq *rq)
70 {
71 WARN_ON(!rt_task(p));
72 rq->rt.rt_nr_running++;
73 #ifdef CONFIG_SMP
74 if (p->prio < rq->rt.highest_prio)
75 rq->rt.highest_prio = p->prio;
76 if (p->nr_cpus_allowed > 1)
77 rq->rt.rt_nr_migratory++;
78
79 update_rt_migration(rq);
80 #endif /* CONFIG_SMP */
81 }
82
83 static inline void dec_rt_tasks(struct task_struct *p, struct rq *rq)
84 {
85 WARN_ON(!rt_task(p));
86 WARN_ON(!rq->rt.rt_nr_running);
87 rq->rt.rt_nr_running--;
88 #ifdef CONFIG_SMP
89 if (rq->rt.rt_nr_running) {
90 struct rt_prio_array *array;
91
92 WARN_ON(p->prio < rq->rt.highest_prio);
93 if (p->prio == rq->rt.highest_prio) {
94 /* recalculate */
95 array = &rq->rt.active;
96 rq->rt.highest_prio =
97 sched_find_first_bit(array->bitmap);
98 } /* otherwise leave rq->highest prio alone */
99 } else
100 rq->rt.highest_prio = MAX_RT_PRIO;
101 if (p->nr_cpus_allowed > 1)
102 rq->rt.rt_nr_migratory--;
103
104 update_rt_migration(rq);
105 #endif /* CONFIG_SMP */
106 }
107
108 static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
109 {
110 struct rt_prio_array *array = &rq->rt.active;
111
112 list_add_tail(&p->run_list, array->queue + p->prio);
113 __set_bit(p->prio, array->bitmap);
114 inc_cpu_load(rq, p->se.load.weight);
115
116 inc_rt_tasks(p, rq);
117 }
118
119 /*
120 * Adding/removing a task to/from a priority array:
121 */
122 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
123 {
124 struct rt_prio_array *array = &rq->rt.active;
125
126 update_curr_rt(rq);
127
128 list_del(&p->run_list);
129 if (list_empty(array->queue + p->prio))
130 __clear_bit(p->prio, array->bitmap);
131 dec_cpu_load(rq, p->se.load.weight);
132
133 dec_rt_tasks(p, rq);
134 }
135
136 /*
137 * Put task to the end of the run list without the overhead of dequeue
138 * followed by enqueue.
139 */
140 static void requeue_task_rt(struct rq *rq, struct task_struct *p)
141 {
142 struct rt_prio_array *array = &rq->rt.active;
143
144 list_move_tail(&p->run_list, array->queue + p->prio);
145 }
146
147 static void
148 yield_task_rt(struct rq *rq)
149 {
150 requeue_task_rt(rq, rq->curr);
151 }
152
153 #ifdef CONFIG_SMP
154 static int select_task_rq_rt(struct task_struct *p, int sync)
155 {
156 return task_cpu(p);
157 }
158 #endif /* CONFIG_SMP */
159
160 /*
161 * Preempt the current task with a newly woken task if needed:
162 */
163 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
164 {
165 if (p->prio < rq->curr->prio)
166 resched_task(rq->curr);
167 }
168
169 static struct task_struct *pick_next_task_rt(struct rq *rq)
170 {
171 struct rt_prio_array *array = &rq->rt.active;
172 struct task_struct *next;
173 struct list_head *queue;
174 int idx;
175
176 idx = sched_find_first_bit(array->bitmap);
177 if (idx >= MAX_RT_PRIO)
178 return NULL;
179
180 queue = array->queue + idx;
181 next = list_entry(queue->next, struct task_struct, run_list);
182
183 next->se.exec_start = rq->clock;
184
185 return next;
186 }
187
188 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
189 {
190 update_curr_rt(rq);
191 p->se.exec_start = 0;
192 }
193
194 #ifdef CONFIG_SMP
195 /* Only try algorithms three times */
196 #define RT_MAX_TRIES 3
197
198 static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
199 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
200
201 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
202 {
203 if (!task_running(rq, p) &&
204 (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
205 (p->nr_cpus_allowed > 1))
206 return 1;
207 return 0;
208 }
209
210 /* Return the second highest RT task, NULL otherwise */
211 static struct task_struct *pick_next_highest_task_rt(struct rq *rq,
212 int cpu)
213 {
214 struct rt_prio_array *array = &rq->rt.active;
215 struct task_struct *next;
216 struct list_head *queue;
217 int idx;
218
219 assert_spin_locked(&rq->lock);
220
221 if (likely(rq->rt.rt_nr_running < 2))
222 return NULL;
223
224 idx = sched_find_first_bit(array->bitmap);
225 if (unlikely(idx >= MAX_RT_PRIO)) {
226 WARN_ON(1); /* rt_nr_running is bad */
227 return NULL;
228 }
229
230 queue = array->queue + idx;
231 BUG_ON(list_empty(queue));
232
233 next = list_entry(queue->next, struct task_struct, run_list);
234 if (unlikely(pick_rt_task(rq, next, cpu)))
235 goto out;
236
237 if (queue->next->next != queue) {
238 /* same prio task */
239 next = list_entry(queue->next->next, struct task_struct, run_list);
240 if (pick_rt_task(rq, next, cpu))
241 goto out;
242 }
243
244 retry:
245 /* slower, but more flexible */
246 idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
247 if (unlikely(idx >= MAX_RT_PRIO))
248 return NULL;
249
250 queue = array->queue + idx;
251 BUG_ON(list_empty(queue));
252
253 list_for_each_entry(next, queue, run_list) {
254 if (pick_rt_task(rq, next, cpu))
255 goto out;
256 }
257
258 goto retry;
259
260 out:
261 return next;
262 }
263
264 static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
265
266 static int find_lowest_rq(struct task_struct *task)
267 {
268 int cpu;
269 cpumask_t *cpu_mask = &__get_cpu_var(local_cpu_mask);
270 struct rq *lowest_rq = NULL;
271
272 cpus_and(*cpu_mask, cpu_online_map, task->cpus_allowed);
273
274 /*
275 * Scan each rq for the lowest prio.
276 */
277 for_each_cpu_mask(cpu, *cpu_mask) {
278 struct rq *rq = cpu_rq(cpu);
279
280 if (cpu == rq->cpu)
281 continue;
282
283 /* We look for lowest RT prio or non-rt CPU */
284 if (rq->rt.highest_prio >= MAX_RT_PRIO) {
285 lowest_rq = rq;
286 break;
287 }
288
289 /* no locking for now */
290 if (rq->rt.highest_prio > task->prio &&
291 (!lowest_rq || rq->rt.highest_prio > lowest_rq->rt.highest_prio)) {
292 lowest_rq = rq;
293 }
294 }
295
296 return lowest_rq ? lowest_rq->cpu : -1;
297 }
298
299 /* Will lock the rq it finds */
300 static struct rq *find_lock_lowest_rq(struct task_struct *task,
301 struct rq *rq)
302 {
303 struct rq *lowest_rq = NULL;
304 int cpu;
305 int tries;
306
307 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
308 cpu = find_lowest_rq(task);
309
310 if (cpu == -1)
311 break;
312
313 lowest_rq = cpu_rq(cpu);
314
315 /* if the prio of this runqueue changed, try again */
316 if (double_lock_balance(rq, lowest_rq)) {
317 /*
318 * We had to unlock the run queue. In
319 * the mean time, task could have
320 * migrated already or had its affinity changed.
321 * Also make sure that it wasn't scheduled on its rq.
322 */
323 if (unlikely(task_rq(task) != rq ||
324 !cpu_isset(lowest_rq->cpu, task->cpus_allowed) ||
325 task_running(rq, task) ||
326 !task->se.on_rq)) {
327 spin_unlock(&lowest_rq->lock);
328 lowest_rq = NULL;
329 break;
330 }
331 }
332
333 /* If this rq is still suitable use it. */
334 if (lowest_rq->rt.highest_prio > task->prio)
335 break;
336
337 /* try again */
338 spin_unlock(&lowest_rq->lock);
339 lowest_rq = NULL;
340 }
341
342 return lowest_rq;
343 }
344
345 /*
346 * If the current CPU has more than one RT task, see if the non
347 * running task can migrate over to a CPU that is running a task
348 * of lesser priority.
349 */
350 static int push_rt_task(struct rq *rq)
351 {
352 struct task_struct *next_task;
353 struct rq *lowest_rq;
354 int ret = 0;
355 int paranoid = RT_MAX_TRIES;
356
357 assert_spin_locked(&rq->lock);
358
359 next_task = pick_next_highest_task_rt(rq, -1);
360 if (!next_task)
361 return 0;
362
363 retry:
364 if (unlikely(next_task == rq->curr)) {
365 WARN_ON(1);
366 return 0;
367 }
368
369 /*
370 * It's possible that the next_task slipped in of
371 * higher priority than current. If that's the case
372 * just reschedule current.
373 */
374 if (unlikely(next_task->prio < rq->curr->prio)) {
375 resched_task(rq->curr);
376 return 0;
377 }
378
379 /* We might release rq lock */
380 get_task_struct(next_task);
381
382 /* find_lock_lowest_rq locks the rq if found */
383 lowest_rq = find_lock_lowest_rq(next_task, rq);
384 if (!lowest_rq) {
385 struct task_struct *task;
386 /*
387 * find lock_lowest_rq releases rq->lock
388 * so it is possible that next_task has changed.
389 * If it has, then try again.
390 */
391 task = pick_next_highest_task_rt(rq, -1);
392 if (unlikely(task != next_task) && task && paranoid--) {
393 put_task_struct(next_task);
394 next_task = task;
395 goto retry;
396 }
397 goto out;
398 }
399
400 assert_spin_locked(&lowest_rq->lock);
401
402 deactivate_task(rq, next_task, 0);
403 set_task_cpu(next_task, lowest_rq->cpu);
404 activate_task(lowest_rq, next_task, 0);
405
406 resched_task(lowest_rq->curr);
407
408 spin_unlock(&lowest_rq->lock);
409
410 ret = 1;
411 out:
412 put_task_struct(next_task);
413
414 return ret;
415 }
416
417 /*
418 * TODO: Currently we just use the second highest prio task on
419 * the queue, and stop when it can't migrate (or there's
420 * no more RT tasks). There may be a case where a lower
421 * priority RT task has a different affinity than the
422 * higher RT task. In this case the lower RT task could
423 * possibly be able to migrate where as the higher priority
424 * RT task could not. We currently ignore this issue.
425 * Enhancements are welcome!
426 */
427 static void push_rt_tasks(struct rq *rq)
428 {
429 /* push_rt_task will return true if it moved an RT */
430 while (push_rt_task(rq))
431 ;
432 }
433
434 static int pull_rt_task(struct rq *this_rq)
435 {
436 struct task_struct *next;
437 struct task_struct *p;
438 struct rq *src_rq;
439 cpumask_t *rto_cpumask;
440 int this_cpu = this_rq->cpu;
441 int cpu;
442 int ret = 0;
443
444 assert_spin_locked(&this_rq->lock);
445
446 /*
447 * If cpusets are used, and we have overlapping
448 * run queue cpusets, then this algorithm may not catch all.
449 * This is just the price you pay on trying to keep
450 * dirtying caches down on large SMP machines.
451 */
452 if (likely(!rt_overloaded()))
453 return 0;
454
455 next = pick_next_task_rt(this_rq);
456
457 rto_cpumask = rt_overload();
458
459 for_each_cpu_mask(cpu, *rto_cpumask) {
460 if (this_cpu == cpu)
461 continue;
462
463 src_rq = cpu_rq(cpu);
464 if (unlikely(src_rq->rt.rt_nr_running <= 1)) {
465 /*
466 * It is possible that overlapping cpusets
467 * will miss clearing a non overloaded runqueue.
468 * Clear it now.
469 */
470 if (double_lock_balance(this_rq, src_rq)) {
471 /* unlocked our runqueue lock */
472 struct task_struct *old_next = next;
473 next = pick_next_task_rt(this_rq);
474 if (next != old_next)
475 ret = 1;
476 }
477 if (likely(src_rq->rt.rt_nr_running <= 1))
478 /*
479 * Small chance that this_rq->curr changed
480 * but it's really harmless here.
481 */
482 rt_clear_overload(this_rq);
483 else
484 /*
485 * Heh, the src_rq is now overloaded, since
486 * we already have the src_rq lock, go straight
487 * to pulling tasks from it.
488 */
489 goto try_pulling;
490 spin_unlock(&src_rq->lock);
491 continue;
492 }
493
494 /*
495 * We can potentially drop this_rq's lock in
496 * double_lock_balance, and another CPU could
497 * steal our next task - hence we must cause
498 * the caller to recalculate the next task
499 * in that case:
500 */
501 if (double_lock_balance(this_rq, src_rq)) {
502 struct task_struct *old_next = next;
503 next = pick_next_task_rt(this_rq);
504 if (next != old_next)
505 ret = 1;
506 }
507
508 /*
509 * Are there still pullable RT tasks?
510 */
511 if (src_rq->rt.rt_nr_running <= 1) {
512 spin_unlock(&src_rq->lock);
513 continue;
514 }
515
516 try_pulling:
517 p = pick_next_highest_task_rt(src_rq, this_cpu);
518
519 /*
520 * Do we have an RT task that preempts
521 * the to-be-scheduled task?
522 */
523 if (p && (!next || (p->prio < next->prio))) {
524 WARN_ON(p == src_rq->curr);
525 WARN_ON(!p->se.on_rq);
526
527 /*
528 * There's a chance that p is higher in priority
529 * than what's currently running on its cpu.
530 * This is just that p is wakeing up and hasn't
531 * had a chance to schedule. We only pull
532 * p if it is lower in priority than the
533 * current task on the run queue or
534 * this_rq next task is lower in prio than
535 * the current task on that rq.
536 */
537 if (p->prio < src_rq->curr->prio ||
538 (next && next->prio < src_rq->curr->prio))
539 goto bail;
540
541 ret = 1;
542
543 deactivate_task(src_rq, p, 0);
544 set_task_cpu(p, this_cpu);
545 activate_task(this_rq, p, 0);
546 /*
547 * We continue with the search, just in
548 * case there's an even higher prio task
549 * in another runqueue. (low likelyhood
550 * but possible)
551 */
552
553 /*
554 * Update next so that we won't pick a task
555 * on another cpu with a priority lower (or equal)
556 * than the one we just picked.
557 */
558 next = p;
559
560 }
561 bail:
562 spin_unlock(&src_rq->lock);
563 }
564
565 return ret;
566 }
567
568 static void schedule_balance_rt(struct rq *rq,
569 struct task_struct *prev)
570 {
571 /* Try to pull RT tasks here if we lower this rq's prio */
572 if (unlikely(rt_task(prev)) &&
573 rq->rt.highest_prio > prev->prio)
574 pull_rt_task(rq);
575 }
576
577 static void schedule_tail_balance_rt(struct rq *rq)
578 {
579 /*
580 * If we have more than one rt_task queued, then
581 * see if we can push the other rt_tasks off to other CPUS.
582 * Note we may release the rq lock, and since
583 * the lock was owned by prev, we need to release it
584 * first via finish_lock_switch and then reaquire it here.
585 */
586 if (unlikely(rq->rt.rt_nr_running > 1)) {
587 spin_lock_irq(&rq->lock);
588 push_rt_tasks(rq);
589 spin_unlock_irq(&rq->lock);
590 }
591 }
592
593
594 static void wakeup_balance_rt(struct rq *rq, struct task_struct *p)
595 {
596 if (unlikely(rt_task(p)) &&
597 !task_running(rq, p) &&
598 (p->prio >= rq->curr->prio))
599 push_rt_tasks(rq);
600 }
601
602 static unsigned long
603 load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
604 unsigned long max_load_move,
605 struct sched_domain *sd, enum cpu_idle_type idle,
606 int *all_pinned, int *this_best_prio)
607 {
608 /* don't touch RT tasks */
609 return 0;
610 }
611
612 static int
613 move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
614 struct sched_domain *sd, enum cpu_idle_type idle)
615 {
616 /* don't touch RT tasks */
617 return 0;
618 }
619 static void set_cpus_allowed_rt(struct task_struct *p, cpumask_t *new_mask)
620 {
621 int weight = cpus_weight(*new_mask);
622
623 BUG_ON(!rt_task(p));
624
625 /*
626 * Update the migration status of the RQ if we have an RT task
627 * which is running AND changing its weight value.
628 */
629 if (p->se.on_rq && (weight != p->nr_cpus_allowed)) {
630 struct rq *rq = task_rq(p);
631
632 if ((p->nr_cpus_allowed <= 1) && (weight > 1))
633 rq->rt.rt_nr_migratory++;
634 else if((p->nr_cpus_allowed > 1) && (weight <= 1)) {
635 BUG_ON(!rq->rt.rt_nr_migratory);
636 rq->rt.rt_nr_migratory--;
637 }
638
639 update_rt_migration(rq);
640 }
641
642 p->cpus_allowed = *new_mask;
643 p->nr_cpus_allowed = weight;
644 }
645 #else /* CONFIG_SMP */
646 # define schedule_tail_balance_rt(rq) do { } while (0)
647 # define schedule_balance_rt(rq, prev) do { } while (0)
648 # define wakeup_balance_rt(rq, p) do { } while (0)
649 #endif /* CONFIG_SMP */
650
651 static void task_tick_rt(struct rq *rq, struct task_struct *p)
652 {
653 update_curr_rt(rq);
654
655 /*
656 * RR tasks need a special form of timeslice management.
657 * FIFO tasks have no timeslices.
658 */
659 if (p->policy != SCHED_RR)
660 return;
661
662 if (--p->time_slice)
663 return;
664
665 p->time_slice = DEF_TIMESLICE;
666
667 /*
668 * Requeue to the end of queue if we are not the only element
669 * on the queue:
670 */
671 if (p->run_list.prev != p->run_list.next) {
672 requeue_task_rt(rq, p);
673 set_tsk_need_resched(p);
674 }
675 }
676
677 static void set_curr_task_rt(struct rq *rq)
678 {
679 struct task_struct *p = rq->curr;
680
681 p->se.exec_start = rq->clock;
682 }
683
684 const struct sched_class rt_sched_class = {
685 .next = &fair_sched_class,
686 .enqueue_task = enqueue_task_rt,
687 .dequeue_task = dequeue_task_rt,
688 .yield_task = yield_task_rt,
689 #ifdef CONFIG_SMP
690 .select_task_rq = select_task_rq_rt,
691 #endif /* CONFIG_SMP */
692
693 .check_preempt_curr = check_preempt_curr_rt,
694
695 .pick_next_task = pick_next_task_rt,
696 .put_prev_task = put_prev_task_rt,
697
698 #ifdef CONFIG_SMP
699 .load_balance = load_balance_rt,
700 .move_one_task = move_one_task_rt,
701 .set_cpus_allowed = set_cpus_allowed_rt,
702 #endif
703
704 .set_curr_task = set_curr_task_rt,
705 .task_tick = task_tick_rt,
706 };